- May 2024
-
www.biorxiv.org www.biorxiv.org
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
The manuscript from Morh and collaborators reports the characterization of an ARF-like GTPase of Arabidopsis. Small GTPases of the ARF family play crucial role in intracellular trafficking and plant physiology. The ARF-like proteins are poorly addressed in Arabidopsis while they could reveal completely different function than the canonical known ARF proteins. Thus, the aim of the study is important and could be of interest to a wide range of plant scientists. I am impressed by the biochemical characterization of the TTN5 protein and its mutated versions, this is clearly a very nice point of the paper and allows for proper interpretations of the other results. However, I was much less convinced on the cell biology part of this manuscript and aside from the subcellular localization of the TTN5 I think the paper would benefit from a more functional angle. Below are my comments to improve the manuscript:
- In the different pictures and movies, TTN5 is quite clearly appearing as a typical ER-like pattern. The pattern of localization further extends to dotty-like structures and structures labeled only at the periphery of the structure, with a depletion of fluorescence inside the structure. These observations raise several points. First, the ER pattern is never mentioned in the manuscript while I think it can be clearly observed. Given that the YFP-TTN5 construct is not functional (the mutant phenotype is not rescued) the ER-localization could be due to the retention at the ER due to quality control. The HA-TTN5 construct is functional but to me its localization shows a quite different pattern from the YFP version, I do not see the ER for example or the periphery-labeled structures. In this case, it will be a crucial point to perform co-localization experiments between HA-TTN5 and organelles markers to confirm that the functional TTN5 construct is labeling the Golgi and MVBs, as does the non-functional one. I am also quite sure that a co-localization between YFP-TTN5 and HA-TTN5 will not completely match... The ER is contacting so many organelles that the localization of YFP-TTN5 might not reflects the real location of the protein.
- What are the structures with TTN5 fluorescence depleted at the center that appear in control conditions? They look different from the Golgi labeled by Man1 but similar to MVBs upon wortmannin treatment, except that in control conditions MVBs never appear like this. Are they related to any kind of vacuolar structures that would be involved in quality control-induced degradation of non-functional proteins?
- The fluorescence at nucleus could be due to a proportion of YFP-TTN5 that is degraded and released free-GFP, a western-blot of the membrane fraction vs the cytosolic fraction could help solving this issue.
- It is not so easy to conclude from the co-localization experiments. The confocal pictures are not always of high quality, some of them appear blurry. The Golgi localization looks convincing, but the BFA experiments are not that clear. The MVB localization is pretty convincing but the images are blurry. An issue is the quantification of the co-localizations. Several methods were employed but they do not provide consistent results. As for the object-based co-localization method, the authors employ in the text co-localization result either base on the % of YFP-labeled structures or the % of mCherry/mRFP-labeled structures, but the results are not going always in the same direction. For example, the proportion of YFP-TTN5 that co-localize with MVBs is not so different between WT and mutated version but the proportion of MVBs that co-localize with TTN5 is largely increased in the Q70L mutant. Thus it is quite difficult to interpret homogenously and in an unbiased way these results. Moreover, the results coming from the centroid-based method were presented in a table rather than a graph, I think here the authors wanted to hide the huge standard deviation of these results, what is the statistical meaning of these results?
- The use of FM4-64 to address the vacuolar trafficking is a hazardous, FM4-64 allows the tracking of endocytosis but does not say anything on vacuolar degradation targeting and even less on the potential function of TTN5 in endosomal vacuolar targeting. Similarly, TTN5, even if localized at the Golgi, is not necessarily function in Golgi-trafficking.
- The manuscript lacks in its present shape of functional evidences for a role of TTN5 in any trafficking steps. I understand that the KO mutant is lethal but what are the phenotypes of the Q70L and T30N mutant plants? What is the seedling phenotype, how are the Golgi and MVBs looking like in these mutants? Do the Q70L or T30N mutants perturbed the trafficking of any cargos?
Significance
In conclusion, I think this manuscript is a good biochemical description of an ARF-like protein but it would need to be strengthen on the cell biology and functional sides. Nonetheless, provided these limitations fixed, this manuscript would advance our knowledge of small GTPases in plants. The major conceptual advance of that study is to provide a non-canonical behavior of the active/inactive cycle dynamics for a small-GTPase. Of course this dynamic probably has an impact on TTN5 function and involvement in trafficking, although this remains to be fully demonstrated. Provided a substantial amount of additional experiments to support the claims of that study, this study could be of general interest for scientist working in the trafficking field.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Compared to our initial submission to Review Commons, we have addressed all the reviewers' comments. We have extensively re-written the manuscript to make it clearer to a larger audience. In particular, we have transferred Figure EV1 to Figure 1 with more complete panels and included a scheme (Figure EV3) on the steps of D2R internalization which we measure with live cell imaging. We have added a new paragraph to the start of the Discussion to summarize our main conclusions and reordered the discussion on the possible mechanisms of membrane PUFA enrichment on D2R endocytosis. All the changes in the text are in red for easier comparison with the previous version.
As suggested by reviewer 1, we have performed additional experiments to test the specificity of the effects of PUFA treatments on D2R endocytosis, reinforcing the results shown in Figure 4 using feeding assays. We show with live cell TIRF imaging and the ppH assay that TfR-SEP endocytosis is not affected (Figure EV5) and that SEP-β2AR endocytosis and βarr2-mCherry recruitment to the plasma membrane are not affected (Figure EV6).
Reviewer #1
Evidence, reproducibility and clarity
*The manuscript, using different live and fixed cell trafficking assays, demonstrates that incorporation of poly-unsaturated, but not saturated, free fatty acids in the membrane phospholipids reduce agonist induced internalization of the D2 dopamine receptor but not the adrenergic beta2 receptors or the transferrin receptor. Pulsed pH (ppH) live microscopy further demonstrated that the reduced internalization by incorporation of free fatty acid was accompanied by a blunted recruitment of Beta-arrestin for the D2R.
I believe said claims put forward in the manuscript are overall well supported by the data and as such I do not believe that further experiments are necessarily needed to uphold these key claims. Also, the methodology is satisfactorily reported, and statistics are robust, although two-way Anova like used in Fig 1 seems appropriate for Fig 2 and 3*
We thank the reviewer for his/her positive assessment of our work. We have checked the statistical tests used for all our measures. For Figure 2 and 3 (now 3 and 4) we test for only one factor (PUFA treatment or not) so we ran ordinary one-way ANOVA using Graphpad Prism.
That said, I suggest that the fixed cell internalization experiments (Fig 2 and 3), which relate the effect on the D2R to B2AR and transferrin are revised. This is important since this is relevant to judge whether the effect is a general or a selective molecular mechanism since this is the one of the three assay which this comparison relies on. Alternatively, I suggest omitting this data and include the B2AR in the Live DERET assay and both B2AR and TfR in the ppH assay. Specifically, my concerns with the fixed cell internalization are: • The analysis is based on counting the number of endosomes, which is not necessarily equivalent to the number of receptors internalized
The number of puncta, as well as their fluorescence, is reported by the analysis program (written in Matlab2021 and available upon request). We chose to show number of puncta because they reflect more directly the number of labelled endosomes (in Figures 3 and 4). As shown in the figure below, we found slight but significant differences between groups for FLAG-D2R (88.6 % and 87.6 % of average fluorescence in DHA and DPA treated cells compared to control cells), (panel A), and no differences for FLAG-β2AR (panel B). We find a significant decrease in puncta fluorescence for transferrin uptake in cells incubated with DHA (but not DPA) relative to control cells (panel C). However, because we did not detect differences in the number of puncta or in the frequency and amplitude of endocytic vesicle creation events (see below), we still conclude that enrichment with exogenous PUFAs does not affect clathrin mediated endocytosis.
In conclusion, the most robust measure of endocytosis for this assay is the number of detected puncta per cell rather than their fluorescence.
- The analysis relies on fully effective stripping of the surface pool of receptors - i.e clustered surface receptors not stripped by the protocol will be assessed as internalized. It is often very difficult to obtain full efficiency of the Flag-tag stripping and this is somewhat expression dependent. • The protocol for the constitutive and agonist induced internalization is different and yet shown on the same absolute graph. Although I take it the microscope gain setting are unaltered between the constitutive and agonist induced internalization I don't believe the quantification can be directly related. This is confusing at the very least. More critically however, the membrane signal from the non-stripped condition of constitutive internalization will likely fully shield internalized receptors in the Rab4 membrane proximal recycling pathway leading to under-estimation of the in the constitutive endocytosis. I believe this methodological limitation underlies the massive relative difference in the constitutive endocytosis between panel 2A,B and 2C,D. For comparison, by a quantitative dual color FACS endocytosis assay, we have previously demonstrated the ligand endocytosis a ~4 fold increased over constitutive (in concert with Fig 2A,B here) (Schmidt et al 20XX). Importantly, high relative variability by this methodology could well shield an actual effect of incorporation of FFAs on the constitutive endocytosis. We thank the reviewer for pointing this difference in the protocol. As a matter of fact, we have not used acid stripping in all the conditions used for the uptake assays (Figures 3 and 4). We apologize for the confusion and we have clarified this point in the Methods section. In early experiments we compared conditions with or without stripping but we concluded from these experiments that indeed, the stripping was not complete. Moreover, we noticed early on that many cells treated with DHA or DPA did not have any detectable cluster (13 cells out of 58 quantified cells treated with DHA after addition of QPL, 12/56 cells treated with DPA, 0/68 for cells treated with vehicle). Stripping the antibody would have made these cells undetectable, biasing the analysis. Therefore, to make our results more consistent we decided to use non-stripping conditions. To detect endosomes specifically, we used a segmentation tool developed earlier (see Rosendale et al.* 2019). This tool is based on wavelet transforms which recognizes dot-like structures. In addition, we excluded from the cell mask the labelled plasma membrane by a mask erosion.
We agree the design of experiments was not aimed at comparing the effect of PUFA treatment on low levels of constitutive D2R endocytosis. This would require more sensitive assays and be addressed in subsequent studies.
'Optional' Also, it would be informative to see the ppH Beta-arrestin experiments with the B2AR to assess, whether the putative discrepancy between D2R and B2AR is upstream or downstream of the blunted Beta-arrestin recruitment. To the same point, it would be very informative to assess how the incorporation of the free fatty acids affect receptor signalling, which would also help relate the effect of incorporation of the FFA's in the phospholipids to previous experiment using short term incubation with FFA's
We have now performed live imaging experiments in HEK293 cells expressing SEP-β2AR, GRK2 and βarr2-mCherry and stimulated with isoproterenol (Figure EV6). We show that the clustering of SEP-β2AR, of βarr2-mCherry, as well as endocytosis, are not affected by treatments with DHA or DPA. In this study, we focused on the early trafficking steps of D2R internalization. It will be interesting in a future study to address its consequences on G protein dependent and independent signaling. Moreover, and for good measure, we performed experiments to assess TfR-SEP endocytosis with the ppH assay. Again, we found no difference between cells treated or not with PUFAs (Figure EV5)
*References overall seem appropriate although Schmidt et al would be relevant for reference of the constitutive vs agonist induced endocytosis of D2R and B2AR. *
We have now cited Schmidt et al. 2020 doi 10.1111/bcpt.13274 in the discussion with the following sentences: "D2R also shows constitutive endocytosis (Schmidt et al, 2020) which may be modulated by PUFAs although we did not detect any significant difference in our measures (see Figure 3) which were aimed at detecting high levels of internalization induced by agonists. Further work will be required to specifically examine the effect of PUFAs on constitutive GPCR internalization."
Overall, the figures are well composed and convey the messages fairly well. Specific point that would strengthen the rigor include: • Chosing actual representative pictures of the quantitative data in Fig 2 and 3 (e.g. hard to see 25 endocytic events in Fig 2A constitutive endo, EtOH)
We apologize for the confusion. We employ a normalization procedure to account for cell size. In addition, all numbers have been normalized to the condition stimulated with agonist with no PUFA treatment). In fact, we detect in unstimulated cells very few puncta (on average 0.6, range 0-5) compared to 27.3 clusters (range 2-87) in cells stimulated with QPL.
- Showing actual p values for the statistical comparisons* For easier reading, we have kept the stars convention for the figures but added two tables with all statistical tests and the p values for both main figures and EV figures.
Moreover, for ease of reading the figures (without consulting the legend repeatedly) it would be very helpful to headline individual panel with what the experiments assesses. Figure 1a and 1b for example can't be distinguished at all before reading the figure legend. Also, y-axis could be more informative on what I measured rather than just giving the unit.
We have added titles to panels (in particular for Figure 2A,B which correspond to former Figure 1A,B) and we have given new titles to Y axes to make them clearer. We hope that the reading of our figures will now be easier.
Finally, the figure presentation and description of S1 is very hard to follow. I cannot really make out what is assessed in the different panels.
We have changed substantially Figure EV1 (now Figure 1) with new presentation of data: all 4 conditions (control, treated with DHA, DPA or BA) systematically presented in the same graph, and clearer titles for the parameter displayed on the Y axes. We hope that this figure is now easier to follow.
Significance
*The strength of the manuscript is the use and validation of incorporation of FFA's in the plasma membrane, which more closely mimics the physiological situation than brief application of FFAs as often done. Is addition, the blunted recruitment of beta-arrestin as assessed by the ppH protocol is quite intriguing mechanistically. The limitation are the relative narrow focus on the D2 receptor (and not multiple GPCRs) that does not really speak to as or assess the physiological, pathophysiological or therapeutic role of the observations (except from referring the relation between FFAs and disease). Also, despite the putative role of Beta-arrestin recruitment in the process, the actual causation in the process is not clear. This shortcoming is underscored by the putative effect on the constitutive internalization described above.
My specific expertise for assessing the paper is within general trafficking processes (including the trafficking methodology applied), trafficking of GPCRs and function of the dopamine system including the role of D2 receptors.*
- *
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
- *
The only conclusion that I was able to understand from the study was that enrichment of cell membranes with polyunsaturated fatty acids specifically inhibited agonist-induced internalization of D2 receptors. However, I think that the experiments used to conclude that PUFAs do not alter D2R clustering but reduce the recruitment of β-arrestin2 and D2R endocytosis need some clarification (i.e. data depicted in Fig. 2-5). This lack of clarity might be due to the fact I am not familiar enough with the employed technologies or to the unclear writing style of the paper. There was an overuse of acronyms, initialisms and abbreviations, which are difficult to understand for researchers outside of the specific lipid field. I think that the manuscript should be written in a way to be legible also for researchers not working in the immediate filed.
The paper was not written in a manner that a general audience of cell biologists or those interested in GPCR biology could understand and judge. It is indeed interesting that polyunsaturated fatty acids specifically inhibit D2R internalization in HEK293 cells, and it could be significant. But, it is difficult to judge the significance of the observation without more in vivo data.
I would suggest the following. Remove all acronyms and abbreviations. Significantly, expand the Materials and Methods section, either in the manuscript or in the Supplemental section. I suggest clearly explaining each construct used, and the function of each module in the construct, with diagrams. In addition, provide a comprehensive step by step description of each experimental protocol, providing the reader with the rationale for each step in the protocol with explanatory diagrams. The authors should also more clearly explain the rationale and logic that was utilized to make the conclusions that they did from the depicted observations. Only then can a broader audience determine if the authors' conclusions are justified.
We thank the reviewer for his/her comments. Indeed, our main message was that two types of PUFAs (DHA and DPA) specifically alter D2R endocytosis by reducing the recruitment of β-arrestin2 without changing D2R clustering at the plasma membrane. We are sorry that our writing was not clear enough. We also found out that in the last steps of the submission to Review Commons, the first paragraph of the Discussion was inadvertently erased. This made our main conclusions, summarized in this first paragraph, less clear. We have now put back this important paragraph. Moreover, we have extensively rewritten the manuscript thriving to make it as clear as possible to a large audience. We have reduced the use of acronyms to keep only the most used ones [e.g. PUFA (used 99 times), DHA (37 times), GPCR (34 times), D2R (126 times), GRK (17 times)] and made them consistent throughout the manuscript. Following the reviewer's suggestion, we have also added a scheme of the steps following D2R activation by agonist leading to its internalization (Figure EV3).
We understand that the reviewer implies by "in vivo data" results obtained in the brain of animals. As written in the Introduction and in the Discussion, the current work follows up on a recently published manuscripts by a subset of the authors, namely (i) Ducrocq et al. 2020 (doi 10.1016/j.cmet.2020.02.012) in which we show that deficits in motivation in animals deprived in ω3-PUFAs can be restored specifically by conditional expression of a fatty acid desaturase from c. elegans (FAT1) that allows restoring PUFA levels specifically in D2R-expressing striatal projection neurons (which mediate the so-called indirect pathway), and (ii) Jobin et al. 2023 (doi: 10.1038/s41380-022-01928-6) which combines in cellulo (HEK 293 cells) and in vivo data to show that PUFAs affects the ligand binding of the dopamine D2 receptor and its signaling in a lipid context that reflects patient lipid profiles regarding poly-unsaturation levels.
Reviewer #2 (Significance (Required)):
- *
In summary, I will reiterate that the reported experiments need to be much better explained to make the study understandable to a broader audience and for that audience to determine whether the conclusions are justified.
-
*
-
*
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
- *
Summary:
The authors investigate the role of lipid polyunsaturation in endocytic uptake of the dopamine D2 receptor (D2R). To modulate the degree of unsaturation in live cell plasma membranes, the authors incubate cell lines with pure fatty acid that is metabolized and incorporated into the cellular membranes. To quantify the internalization of D2R in these live cells, the authors utilized quantitative fluorescence assays such as DERET and endosome analysis to determine the degree and rate of D2R internalization in the presence of two model agonists - dopamine and quinpirole. The authors conclude that when the PUFA content of the plasma membrane is increased (i.e., via ω3 or ω6 fatty acids), both the quantity and rate of D2R internalization decrease substantially. The authors confirmed that these phenomena are specific to D2R as caveolar endocytosis and clathrin-mediated endocytosis were unaffected when these same experimental techniques were utilized for β2 adrenergic receptor and transferrin. Additionally, the authors conclude that the clustering ability of D2R is unaffected by lipid unsaturation but that the ability of D2R clusters to interact with β-arrestin2 is inhibited in the presence of excess PUFA. Based on these findings, the authors propose several hypothetical mechanisms for lipid-D2R interactions on the plasma membrane, which will likely be the scope of future work.
Overall, this is a highly thorough and rigorous body of work that convincingly illustrates the connection between PUFA levels and D2R activity. However, I do not agree with the authors' conclusions pertaining to how their results should be interpreted in the context of fatty acid-related disorders. Additionally, this manuscript could benefit from some reorganization which would present the work more clearly. Please see the comments below.
We thank the reviewer for the positive appreciation of our work, qualified as a "thorough and rigorous body of work that convincingly illustrates the connection between PUFA levels and D2R activity". We will address the specific points raised by the reviewer with our answers below.
Comments:
-
- A recurring motivation for this study that is brought up by the authors is that dietary deficiency of ω3 fatty acids is tied to D2R dysfunction. This would indicate that PUFA reduction in the plasma membrane results in D2R dysfunction. However, the experiments emphasized in this manuscript investigate the condition where PUFA content is INCREASED in the plasma membrane and D2R function is compromised. It seems inappropriate for the authors to cite dietary deficiency of ω3 as a motivation when they experimentally test a condition that is tied to ω3 surplus.* Regarding the general comment of the reviewer, we agree that direct conclusion cannot be drawn on the etiology of psychiatric disorders by looking at the effect of membrane fatty acid levels on D2R in HEK 293 cells. Nevertheless, we mention in the Introduction the intriguing occurrence of low PUFA levels in psychiatric disorders as starting point to look at D2R as an important target for psychoactive drugs prescribed for these disorders. In the Discussion, we propose that manipulating fatty acid levels might potentiate the efficacy of D2R ligands used as treatments. We felt raising these aspects was not putting too much emphasis on psychiatric disorders. However, in accordance with the reviewer's comment, we toned down these descriptions in the revised manuscript.
The goal of increasing the levels of fatty acids at the membrane in HEK 293, the most widely used cellular system to study GPCR trafficking, was to try to emulate the levels of lipids in brain cells. Indeed, the levels of PUFAs in our culture conditions are much lower (~8 %, Figure 1B) than in brain extracts (~30 %). Therefore, the "control" condition in HEK 293 cells would correspond to PUFA deficiency while after our enrichment protocol these levels are closer to those found in brain cells. Our results could therefore be interpreted as endocytosis of D2R being augmented under membrane PUFA decrease. Importantly, increased receptor internalization often correlates with decreased signaling. Therefore, membrane PUFA enrichment in our conditions would rather potentiate D2R signaling.
- Following up on the first comment, the authors' results seem to indicate that excess ω3's are detrimental to D2R function. This result would be at odds with the conventional view that ω3's are essential and that excessive ω3 may not be harmful. The authors should rationalize their findings in the context of what is known about excess dietary ω3.*
The Reviewer is right that the conventional view is that excessive ω3 PUFA may not be harmful. However, this rather applies to dietary consumption, which might have limited effect to brain fatty acid contents since their accretion is highly regulated. Moreover, the majority of studies looking at ω3 supplementation have been performed in young adults and the effects on the developing brain - as it might be happening in pathological conditions in which D2R is involved - remain poorly understood. Furthermore, as mentioned above, blunted internalization of D2R under membrane PUFA enrichment is not an indication of "detrimental" to D2R function. Nor do we argue that membrane enrichment corresponds to excess PUFAs.
- I would argue that the control experiments with saturated fatty acids (i.e., Behenic Acid in figure 1), represent a scenario mimicking ω3 deficiency as the enrichment of Behenic Acid causes an overall reduction in PUFAs (Figure EV1C - an increase in SFA must correspond to a decrease in PUFA). These Behenic acid results are the only experiments presented by the authors that mimic a scenario resembling ω3 deficiency and the results show that the D2R internalization is unaffected (Figure 1G-H). Therefore, I would further argue that if anything, the authors results suggest that ω3 deficiency is NOT correlated to D2R internalization. Again, the authors must rationalize these findings in the context of what is known about dietary intake of ω3's.*
The Reviewer must refer to the fact that nutrients rich in SFAs are usually poor in PUFAs and vice-versa. Based on our lipidomic analysis, we now present in Figure 1B the effect of treatments (DHA, DPA, BA) on the levels of PUFAs (Figure 1B) and saturated fatty acids (Figure 1C). In cells treated with behenic acid (BA), PUFA levels are not significantly changed relative to control, untreated cells, while saturated fatty acid levels are increased. BA was used here to determine whether the effects observed with PUFAs was related to the enrichment in unsaturations or due to carbon chain length (C22). It is not the case because BA treatment, unlike DHA or DPA treatment, does not affect D2R endocytosis (Figure 2G,H).
- It's not clear why the authors decided to include an ω6 fatty acid in this study. The authors built up a detailed rationale for investigating ω3's as they are dietarily essential and tied to disease when deficient. To my knowledge, ω6's are considered much less beneficial than ω3's in a dietary sense. The inclusion of an ω6 almost seems coerced as the ω6-related results don't provide any interesting additional insights. It would benefit the manuscript if the authors provided some additional discussion explaining why ω6's are being investigated in addition to ω3's. *
We agree that we could have made the rationale clearer. The goal in comparing ω3-DHA and ω6-DPA was to assess whether the position of the first unsaturation (n-3 vs n-6), with the same carbon chain length (C22) might differentially impact D2R endocytosis.
- In Figure EV1D, the AHA and DPA percentages each increase by ~6%. The corresponding Figure EV1B indicates that the overall PUFA% in the plasma membrane also increases by 6%. This makes sense as the total change in PUFA content is consistent with the amount of AHA or DPA being internalized to cells. However, this consistency was not observed with BA and SFAs. In Figure EV1E, the BA percentage increases only ~1% while the total SFA percentage in Figure EV1C increases by ~6%. How can something undergoing a 1% change (relative to total lipid content) result in a 6% overall change in SFA content?*
The reviewer is correct: the level of SFAs is increased by 5.2% (34.5 % of total FAs in control cells to 39.7 % in BA treated cells), more than the increase in BA alone (1.18% from 0.35 % to 1.53 %). A close look at our lipidomics data showed that many of the 10 saturated fatty acids quantified are enhanced. In particular, the two most abundant ones, palmitic acid (16:0) and stearic acid (18:0) are increased, from 21.37 % to 22.28 % and 8.47 % to 11.17%, respectively. The reasons for these apparent discrepancies may involve lipid metabolic pathways which convert the rare and long BA into more common and shorter SFAs to preserve lipid contents and thus membrane properties.
- In Figure 4, the discussion of kinetics does not make sense. How exactly are kinetics being monitored in this figure? (Recruitment kinetics are discussed in panels D and G)*
We wanted to convey the impression that the time to reach the peak βarr2-mCherry recruitment was shorter in PUFA-treated cells than in control cells. However, after analyzing the kinetics in individual cells, we did not find a statistically significant difference in the time to maximum fluorescence. Therefore, we removed this reference to the kinetics of recruitment.
We now write: " However, treatment with DHA or DPA significantly decreased peak βarr2-mCherry fluorescence (Figure 5F-G).."
- In Figure 5, What is the purpose of panel D? Would it be more helpful to include additional, overlaid "cumulative N" plots for scenarios in which PUFAs were enriched? This would work well in conjunction with panel F.*
The purpose of this panel is to show the kinetics of increase in the frequency of endocytic vesicle formation upon agonist addition, and the decrease in frequency when the agonist is removed. We have now added examples of cells treated with DHA and DPA of similar surface for direct comparison with control (EtOH) cells.
- For the readers who are new to this area or unfamiliar with the assays used, Figure 1 is not intuitive and initially difficult to interpret. It would greatly benefit the flow of the manuscript if Figures EV1A-C and EV2A were included in the main text and "Normalized R" was clearly defined in the main text, prior to discussion of Figure 1.*
We have now transferred Figure EV1 as Figure 1. We have adapted the scheme of the DERET assay and its legend (now in Figure EV1A) to make it clearer. We did not put in Figure 2 because this figure is already very big. We have changed "Normalized R" to "Ratio 620/520) (% max)" to be clearer and more consistent with the scheme.
Reviewer #3 (Significance (Required)):
- *
General assessment: The work, for the most part, is rigorous and scientifically sound. The authors utilize impressive, quantitative assays to expand our understanding of protein-lipid interactions. However, the authors need to improve their discussion of the actual physiological conditions that correspond to their experimental results.
- *
Advance: This work may fill a gap in our understanding of disorders related to the dopamine D2 receptor. However, some of the results may be at odds with what is currently known/understood about dietary ω3 fatty acids.
- *
Audience: This work will be of broad interest to researchers in the biophysics field, with particular emphasis on researchers who study protein and membrane biophysics. This work will also be of interest to researchers who study membrane molecular biology.
- *
Reviewer Expertise: quantitative fluorescence spectroscopy and microscopy; membrane biophysics; protein-lipid interactions
- *
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Summary:
The authors investigate the role of lipid polyunsaturation in endocytic uptake of the dopamine D2 receptor (D2R). To modulate the degree of unsaturation in live cell plasma membranes, the authors incubate cell lines with pure fatty acid that is metabolized and incorporated into the cellular membranes. To quantify the internalization of D2R in these live cells, the authors utilized quantitative fluorescence assays such as DERET and endosome analysis to determine the degree and rate of D2R internalization in the presence of two model agonists - dopamine and quinpirole. The authors conclude that when the PUFA content of the plasma membrane is increased (i.e., via ω3 or ω6 fatty acids), both the quantity and rate of D2R internalization decrease substantially. The authors confirmed that these phenomena are specific to D2R as caveolar endocytosis and clathrin-mediated endocytosis were unaffected when these same experimental techniques were utilized for β2 adrenergic receptor and transferrin. Additionally, the authors conclude that the clustering ability of D2R is unaffected by lipid unsaturation but that the ability of D2R clusters to interact with β-arrestin2 is inhibited in the presence of excess PUFA. Based on these findings, the authors propose several hypothetical mechanisms for lipid-D2R interactions on the plasma membrane, which will likely be the scope of future work.
Overall, this is a highly thorough and rigorous body of work that convincingly illustrates the connection between PUFA levels and D2R activity. However, I do not agree with the authors' conclusions pertaining to how their results should be interpreted in the context of fatty acid-related disorders. Additionally, this manuscript could benefit from some reorganization which would present the work more clearly. Please see the comments below.
Comments:
- A recurring motivation for this study that is brought up by the authors is that dietary deficiency of ω3 fatty acids is tied to D2R dysfunction. This would indicate that PUFA reduction in the plasma membrane results in D2R dysfunction. However, the experiments emphasized in this manuscript investigate the condition where PUFA content is INCREASED in the plasma membrane and D2R function is compromised. It seems inappropriate for the authors to cite dietary deficiency of ω3 as a motivation when they experimentally test a condition that is tied to ω3 surplus.
- Following up on the first comment, the authors' results seem to indicate that excess ω3's are detrimental to D2R function. This result would be at odds with the conventional view that ω3's are essential and that excessive ω3 may not be harmful. The authors should rationalize their findings in the context of what is known about excess dietary ω3.
- I would argue that the control experiments with saturated fatty acids (i.e., Behenic Acid in figure 1), represent a scenario mimicking ω3 deficiency as the enrichment of Behenic Acid causes an overall reduction in PUFAs (Figure EV1C - an increase in SFA must correspond to a decrease in PUFA). These Behenic acid results are the only experiments presented by the authors that mimic a scenario resembling ω3 deficiency and the results show that the D2R internalization is unaffected (Figure 1G-H). Therefore, I would further argue that if anything, the authors results suggest that ω3 deficiency is NOT correlated to D2R internalization. Again, the authors must rationalize these findings in the context of what is known about dietary intake of ω3's.
- It's not clear why the authors decided to include an ω6 fatty acid in this study. The authors built up a detailed rationale for investigating ω3's as they are dietarily essential and tied to disease when deficient. To my knowledge, ω6's are considered much less beneficial than ω3's in a dietary sense. The inclusion of an ω6 almost seems coerced as the ω6-related results don't provide any interesting additional insights. It would benefit the manuscript if the authors provided some additional discussion explaining why ω6's are being investigated in addition to ω3's.
- In Figure EV1D, the AHA and DPA percentages each increase by ~6%. The corresponding Figure EV1B indicates that the overall PUFA% in the plasma membrane also increases by 6%. This makes sense as the total change in PUFA content is consistent with the amount of AHA or DPA being internalized to cells. However, this consistency was not observed with BA and SFAs. In Figure EV1E, the BA percentage increases only ~1% while the total SFA percentage in Figure EV1C increases by ~6%. How can something undergoing a 1% change (relative to total lipid content) result in a 6% overall change in SFA content?
- In Figure 4, the discussion of kinetics does not make sense. How exactly are kinetics being monitored in this figure? (Recruitment kinetics are discussed in panels D and G)
- In Figure 5, What is the purpose of panel D? Would it be more helpful to include additional, overlaid "cumulative N" plots for scenarios in which PUFAs were enriched? This would work well in conjunction with panel F.
- For the readers who are new to this area or unfamiliar with the assays used, Figure 1 is not intuitive and initially difficult to interpret. It would greatly benefit the flow of the manuscript if Figures EV1A-C and EV2A were included in the main text and "Normalized R" was clearly defined in the main text, prior to discussion of Figure 1.
Significance
General assessment: The work, for the most part, is rigorous and scientifically sound. The authors utilize impressive, quantitative assays to expand our understanding of protein-lipid interactions. However, the authors need to improve their discussion of the actual physiological conditions that correspond to their experimental results.
Advance: This work may fill a gap in our understanding of disorders related to the dopamine D2 receptor. However, some of the results may be at odds with what is currently known/understood about dietary ω3 fatty acids.
Audience: This work will be of broad interest to researchers in the biophysics field, with particular emphasis on researchers who study protein and membrane biophysics. This work will also be of interest to researchers who study membrane molecular biology.
Reviewer Expertise: quantitative fluorescence spectroscopy and microscopy; membrane biophysics; protein-lipid interactions
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
The only conclusion that I was able to understand from the study was that enrichment of cell membranes with polyunsaturated fatty acids specifically inhibited agonist-induced internalization of D2 receptors. However, I think that the experiments used to conclude that PUFAs do not alter D2R clustering but reduce the recruitment of β-arrestin2 and D2R endocytosis need some clarification (i.e. data depicted in Fig. 2-5). This lack of clarity might be due to the fact I am not familiar enough with the employed technologies or to the unclear writing style of the paper . There was an overuse of acronyms, initialisms and abbreviations, which are difficult to understand for researchers outside of the specific lipid field. I think that the manuscript should be written in a way to be legible also for researchers not working in the immediate filed.
The paper was not written in a manner that a general audience of cell biologists or those interested in GPCR biology could understand and judge. It is indeed interesting that polyunsaturated fatty acids specifically inhibit D2R internalization in HEK293 cells, and it could be significant. But, it is difficult to judge the significance of the observation without more in vivo data.
I would suggest the following. Remove all acronyms and abbreviations. Significantly, expand the Materials and Methods section, either in the manuscript or in the Supplemental section. I suggest clearly explaining each construct used, and the function of each module in the construct, with diagrams. In addition, provide a comprehensive step by step description of each experimental protocol, providing the reader with the rationale for each step in the protocol with explanatory diagrams. The authors should also more clearly explain the rationale and logic that was utilized to make the conclusions that they did from the depicted observations. Only then can a broader audience determine if the authors' conclusions are justified.
Significance
In summary, I will reiterate that the reported experiments need to be much better explained to make the study understandable to a broader audience and for that audience to determine whether the conclusions are justified.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
The manuscript, using different live and fixed cell trafficking assays, demonstrates that incorporation of poly-unsaturated, but not saturated, free fatty acids in the membrane phospholipids reduce agonist induced internalization of the D2 dopamine receptor but not the adrenergic beta2 receptors or the transferrin receptor. Pulsed pH (ppH) live microscopy further demonstrated that the reduced internalization by incorporation of free fatty acid was accompanied by a blunted recruitment of Beta-arrestin for the D2R.
I believe said claims put forward in the manuscript are overall well supported by the data and as such I do not believe that further experiments are necessarily needed to uphold these key claims. Also, the methodology is satisfactorily reported, and statistics are robust, although two-way Anova like used in Fig 1 seems appropriate for Fig 2 and 3
That said, I suggest that the fixed cell internalization experiments (Fig 2 and 3), which relate the effect on the D2R to B2AR and transferrin are revised. This is important since this is relevant to judge whether the effect is a general or a selective molecular mechanism since this is the one of the three assay which this comparison relies on. Alternatively, I suggest omitting this data and include the B2AR in the Live DERET assay and both B2AR and TfR in the ppH assay. Specifically, my concerns with the fixed cell internalization are:
- The analysis is based on counting the number of endosomes, which is not necessarily equivalent to the number of receptors internalized
- The analysis relies on fully effective stripping of the surface pool of receptors - i.e clustered surface receptors not stripped by the protocol will be assessed as internalized. It is often very difficult to obtain full efficiency of the Flag-tag stripping and this is somewhat expression dependent.
- The protocol for the constitutive and agonist induced internalization is different and yet shown on the same absolute graph. Although I take it the microscope gain setting are unaltered between the constitutive and agonist induced internalization I don't believe the quantification can be directly related. This is confusing at the very least. More critically however, the membrane signal from the non-stripped condition of constitutive internalization will likely fully shield internalized receptors in the Rab4 membrane proximal recycling pathway leading to under-estimation of the in the constitutive endocytosis. I believe this methodological limitation underlies the massive relative difference in the constitutive endocytosis between panel 2A,B and 2C,D. For comparison, by a quantitative dual color FACS endocytosis assay, we have previously demonstrated the ligand endocytosis a ~4 fold increased over constitutive (in concert with Fig 2A,B here) (Schmidt et al 20XX). Importantly, high relative variability by this methodology could well shield an actual effect of incorporation of FFAs on the constitutive endocytosis.
'Optional' Also, it would be informative to see the ppH Beta-arrestin experiments with the B2AR to assess, whether the putative discrepancy between D2R and B2AR is upstream or downstream of the blunted Beta-arrestin recruitment. To the same point, it would be very informative to assess how the incorporation of the free fatty acids affect receptor signalling, which would also help relate the effect of incorporation of the FFA's in the phospholipids to previous experiment using short term incubation with FFA's
References overall seem appropriate although Schmidt et al would be relevant for reference of the constitutive vs agonist induced endocytosis of D2R and B2AR. Overall, the figures are well composed and convey the messages fairly well. Specific point that would strengthen the rigor include:
- Chosing actual representative pictures of the qunatiative data in Fig 2 and 3 (e.g. har to see 25 endocytic events in Fig 2A constitutive endo, EtOH)
- Showing actual p values for the statistical comparisions
Moreover, for ease of reading the figures (without consulting the legend repeatedly) it would be very helpful to headline individual panel with what the experiments assesses. Figure 1a and 1b for example can't be distinguished at all before reading the figure legend. Also, y-axis could be more informative on what I measured rather than just giving the unit.
Finally, the figure presentation and description of S1 is very hard to follow. I cannot really make out what is assessed in the different panels.
Significance
The strength of the manuscript is the use and validation of incorporation of FFA's in the plasma membrane, which more closely mimics the physiological situation than brief application of FFAs as often done. Is addition, the blunted recruitment of beta-arrestin as assessed by the ppH protocol is quite intriguing mechanistically. The limitation are the relative narrow focus on the D2 receptor (and not multiple GPCRs) that does not really speak to as or assess the physiological, pathophysiological or therapeutic role of the observations (except from referring the relation between FFAs and disease). Also, despite the putative role of Beta-arrestin recruitment in the process, the actual causation in the process is not clear. This shortcoming is underscored by the putative effect on the constitutive internalization described above.
My specific expertise for assessing the paper is within general trafficking processes (including the trafficking methodology applied), trafficking of GPCRs and function of the dopamine system including the role of D2 receptors.
-
-
www.ncbi.nlm.nih.gov www.ncbi.nlm.nih.gov
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
Summary: In this paper, Dresselhaus et al (2023) investigate the possibility that known cargoes of extracellular vesicles (EVs) released at the Drosophila neuromuscular junction have cell-autonomous functions rather than functions specifically conferred as a condition of their release in EVs, in vivo. To do so, authors focus their studies on use of Tsg101-KD, a mutant of the ESCRT-I machinery, of the ESCRT EV biogenesis pathway, and are able to show that for some endogenously-expressed, fluorescently-tagged cargoes, fluorescence intensity in the pre-synaptic compartment is significantly elevated (Syt4 and Evi) and the postsynaptic intensity in the muscle is significantly decreased (Syt4, Evi, APP, and Nrg).
We note that throughout our study, we detected endogenous Nrg with a well-characterized monoclonal antibody, not a fluorescent tag. We and others previously demonstrated that endogenous Nrg detected by this antibody is trafficked from neurons into EVs, using the same pathways as other EV cargoes such as Syt4, APP and Evi (Blanchette et al., 2022; Enneking et al., 2013; Walsh et al., 2021). Thus, the EV trafficking phenotypes in our study are consistent across fluorescently tagged cargo (endogenous knockin for Syt4 and GAL4/UAS-driven for APP and Evi), as well as for untagged, endogenous Nrg, thus controlling for effects of either overexpression or tagging.
These findings suggest that these cargoes become trapped in the endosomal system (colocalizing with early, late, and recycling endosomal compartments), rather than undergoing secretion in EVs targeting post-synaptic muscle and glia as usual. This phenotype is recapitulated for select cargoes using mutants of both early and late components of ESCRT pathway machinery. They further characterize the Tsg101 mutant, demonstrating co-occurrence of an autophagic flux defect, but as the cargo phenotype is present without induction of the autophagic flux defect for their Hrs mutants, authors suggest the overlapping role of Tsg101 in autophagy is independent of its role in the ESCRT pathway/ EV secretion. Subsequently, they use previously defined functional phenotypes of the Evi (number of active zones, number of boutons, number of developmentally-arrested ghost boutons) and Syt-4 (number of transient ghost boutons and mEJPs) cargoes to show a minimal dependence on cargo delivery via ESCRT-derived EVs for these cargoes to carry out their synaptic growth and plasticity functions in vivo. However, it should be notes that for Evi/ Wg cargo, there is a slight increase in developmentally-arrested ghost boutons suggesting the cargo may not be entirely independent of EV-mediated cargo delivery. Finally, authors express an anti-GFP proteasome-directed nanobody using motor neuron or muscle-specific drivers and find that Syt4-GFP cargo doesn't enter muscle cytoplasm as fluorescence is maintained and cargo is not degraded by the muscle proteasome. While authors suggest this as evidence of EV-mediated transfer for cargo proteostasis, it is not explicitly shown that Syt4 cargo is, in fact, trafficked and degraded by the lysosome or hypothesized how Syt4 function or post-synaptic localization may be carried out independently of EVs.
We have added new data showing that Syt4 is taken up by glial and muscle phagocytosis (Fig. 7), and included in the discussion several possible interpretations for how Syt4 activity is carried out independently of its traffic into EVs. Indeed we believe it is more likely to function in the presynaptic neuron rather than the postsynaptic muscle.
Major comments:
R1.1 It is difficult to evaluate the findings of this study without knowing the extent of ESCRT pathway impairment. Please provide data quantifying the degree of knockdown/ mutant expression for each ESCRT component (i.e., western blot)
To address the reviewer’s request to specifically measure the degree of knockdown in the RNAi lines, we tested all available reagents. Unfortunately no Drosophila Tsg101 antibody exists and we did not receive a reply to our requests for a Shrub antibody. An Hrs antibody exists, but we found that none of three available Hrs RNAi lines depleted Hrs signal, or caused a phenotype similar to the HrsD28 point mutant, suggesting that they are not effective at knocking down the protein. Therefore, we were unable to specifically measure the level of depletion in motor neurons for RNAi of Tsg101, Shrub, or Hrs.
However, we can make a strong argument that our knockdowns were sufficiently effective to answer the questions in our study. We used RNAi as only one of several complementary tools to manipulate ESCRT function (i.e. we also used loss-of-function mutants (HrsD28/Deficiency) and dominant negative mutants (Vps4DN)). These mutants caused a comparable and severe loss of EVs to RNAi (Fig 2): therefore the extent of depletion in the RNAi experiments was sufficient to cause a similarly severe phenotype as genomic or DN mutations, meeting the definition of a bona fide loss-of-function. We also know, since we used these complementary strategies, that the phenotypes we observe are very unlikely to be due to off-target effects of the RNAi.
More importantly, what is directly relevant for our subsequent functional experiments is to know the extent of EV depletion, which we have explicitly measured throughout the paper. It is unclear what additional insights would be gained by knowing whether the strong Tsg101 and Shrub RNAi phenotypes are due to incomplete versus complete knockdown, given that we do measure the extent of EV depletion under these conditions. Further, we note that tsg101 null mutants die as first instar larvae (Moberg et al., 2005), raising the possibility that a more complete knockdown in neurons would be lethal early in development and make our study impossible. Indeed HrsD28 is an early stop that preserves the VHS and FYVE domains but truncates the C-terminal ⅔ of the protein. Its (occasional) survival to third instar indicates that it may be a severe hypomorph rather than a null.
We have added a sentence in the text (p12 line 21-25) to clarify that we do not know the exact extent of knockdown for our RNAi experiments, but that by genetic definitions, they meet the criteria of a loss-of-function manipulation.
R1.2 Loss of ESCRT machinery likely disrupts the release of small EVs to a significant extent; however, the authors do not show that EV release is entirely lost, only that 1) cargoes are backed up in the endosomal system due to endosomal dysfunction and 2) fluorescence of cargoes in the postsynaptic compartment is diminished. To claim that ESCRT-derived EVs with the relevant cargoes are lost, the authors should perform immunogold labelling with TEM. This would provide direct evidence that the cargoes examined here are packaged in ILVs, and that the ILVs are of a size (~50-150nm) consistent with exosomes (which should really be referred to as small extracellular vesicles (sEVs) per the minimal information for studies of extracellular vesicles (MISEV 2018 [https://doi.org/10.1080/20013078.2018.1535750]) Additionally, EM would show the loss of cargo packaging and provide information about where these cargoes localize in the presence of ESCRT mutants/loss-of-function.
EM (including some limited immunoEM) studies requested by Reviewer 1 have previously been performed in this system by us and by the Budnik and Verstreken labs (Koles et al., 2012; Korkut et al., 2009; Korkut et al., 2013; Lauwers et al., 2018; Walsh et al., 2021). MVBs at the NMJ contain ~50-100 nm ILVs, and can often be seen proximal to or fusing with the plasma membrane. Mutants such as Hsp90 that block this fusion also block EV release, arguing that these MVBs are the source of EV (Lauwers et al., 2018). By immunoEM, the EV cargo Evi localizes to MVBs (Koles et al., 2012). ~50-200 nm structures containing immunogold against Evi were also observed in the subsynaptic reticulum between the neuron and the muscle, as well as in membrane compartments in the muscle cytoplasm (Koles et al., 2012; Korkut et al., 2009). Thus, the criteria requested by the reviewer have previously been established in this system.
In response to the reviewer’s request to show that these structures are altered in ESCRT mutants, we attempted immunoEM experiments in the Tsg101KD condition. However, similar to the previously published results (Koles et al., 2012; Korkut et al., 2009), immunoEM in thick tissue such as Drosophila larval fillets is quite challenging, and we found it very difficult to retain immunogenicity together with excellent fixation and preservation of membrane structures, such that we could rigorously measure compartment morphology and size. Even if we did achieve good structural preservation, exosomes are ambiguous in complex membrane-rich tissues, since cross-sections through the extensively infolded muscle membrane (e.g. see Fig 3B) are very similar in size to EVs.
As an alternative and more robust approach, we used STED microscopy, with a resolution of ~50nm, where we could conduct a rigorous and properly powered study of directly labeled EV cargoes (New data in Fig. S1). We show that postsynaptic Nrg and APP-GFP are found in structures with a mean diameter of ~125 nm, consistent with small EVs or exosomes, and these are strongly depleted in the Tsg101KD animals (to similar levels as antibody background far from the site of EV accumulation), as expected. Note that we are able to detect particles significantly smaller than 125 nm in the distribution, suggesting that the resolution of our system is sufficient to measure EV width.
We also note that several of these cargoes are detected via an intracellular tag (Syt4, APP, Evi) or antibody against an intracellular domain (Nrg), so by topology they must be membrane-bound in the EVs rather than cleaved from the cell surface. We and others have previously shown that this postsynaptic signal is entirely derived from the presynaptic neuron, by using neuronal UAS-expression of a tagged protein, by neuronal RNAi of the endogenous gene, or by the tissue-specific tagging approach in the current manuscript (Fig. S4). We have also previously shown that these puncta contain the tetraspanin Sunglasses (CG12143/Tsp42Ej), which is an EV marker (Walsh et al., 2021). We have added new data to our manuscript (Fig. S1A) to show that neuronally-derived tetraspanin EVs are depleted in upon Tsg101KD. Therefore, the reviewer’s point “2) fluorescence of cargoes in the postsynaptic compartment is diminished.” is the most direct and sensitive test of trans-synaptic cargo transfer, and is the precise parameter that we are trying to manipulate to test the functions of this transfer.
We believe that light microscopy showing loss of presynaptically-derived cargoes in the postsynaptic region is the best and most direct argument for loss of EV secretion, compared to the ambiguity of EM. It is also exactly the method that led to the proposal for the signaling function of EVs in previous work, which our current manuscript is revisiting. We are now using improved tests of that original hypothesis by examining it in light of additional membrane trafficking mutants (and finding that it no longer holds up). Overall, given the preponderance of evidence from the preceding literature and our studies indicating that (1) these cargoes are indeed in EVs and (2) we see a strong enough depletion of transsynaptic transfer to challenge the hypothesis that EVs serve signaling functions (see R1.3 response below), we are reluctant to spend more time attempting immunoEM which is not likely to resolve membrane structures.
To address the point of EV terminology used in our manuscript, we think it is very unlikely that the postsynaptic structures are not exosomes. The criteria defined by MISEV for exosomes is that they are endosomally-derived from MVBs, ideally with the EV “caught in the act of release” upon fusion with the plasma membrane. As noted above, cargoes such as Syt4 and Evi are observed by immunoEM in MVBs, and these can be found in the process of fusing with the plasma membrane (i.e. caught in the act of release) (Koles et al., 2012; Korkut et al., 2009; Korkut et al., 2013; Lauwers et al., 2018). Mutants that block MVB fusion also block EV release at the NMJ (Lauwers et al., 2018). These EVs require ESCRT for their formation and are trapped in endosomes rather than the plasma membrane upon ESCRT depletion (this study). They depend on multiple components of the endosomal system (Rab GTPases, retromer) for their formation (Koles et al., 2012; Walsh et al., 2021). Taken together, it seems to us that there is sufficient data to argue that these are exosomes. However, as the reviewers requested, we have called them EVs in the revised paper (and only suggest they are exosomes in the discussion).
R1.3 Other biogenesis pathways utilize multivesicular bodies to generate EVs, most prominently the nSMase2/ceramide synthesis pathway (which operates in an ESCRT-independent manner). It is possible that this pathway compensates when there are defects in the canonical ESCRT pathway. Thus, it is imperative for the authors to show that the cargo secretion no longer occurs in the presence of ESCRT mutations/loss-of-function. The authors should also use nSMase2 pathway mutants to see if the phenotypes in cargo trafficking (i.e., pre/ post-synaptic protein levels) are recapitulated.
The reviewer asked us to show that cargo secretion does not occur in the ESCRT mutants. We reiterate that at the limits of detection of our assay, we see a very strong depletion of secretion__, and that EV cargo levels are not distinguishable from background (__Figure S1). Perhaps Reviewer 1’s concern is that since it would never be possible to show that we have depleted EVs completely (i.e. below the level of detection of our assays), that it is not possible to challenge the hypothesis that EV traffic is required for the proposed signaling functions of EVs. Indeed, they mention in their overall assessment “as it is unknown if minor sources of cargo+ EVs are sufficient in maintaining functional phenotype”. We do have some information on this, as described in the manuscript (p3 lines 41-43; p7 lines 25-31; p11 lines 27-30) and as follows: The critical argument against this concern is that other trafficking mutants with residual levels of EVs (rab11 or nwk) do show loss of signaling function (Blanchette et al., 2022; Korkut et al., 2013). Therefore residual EVs, even at the lower level of detection of our assay, are not enough to support signaling. The main difference is that in nwk and rab11 mutants the levels of the cargo in the donor presynaptic neuron are also strongly depleted, unlike in the ESCRT mutants. This strongly suggests that the cargoes are signaling from the presynaptic compartment, rather than in EVs. We have added the nwk mutant to show this baseline in Figure 2A,D. Similarly, our new results showing that hrs mutants retain Wg signaling while Tsg101 mutants do not, despite a similar degree of EV depletion (new data with more cargoes in Figure 2A-F), argues that residual EVs do not account for the lack of disruption of signaling. Finally, we have been transparent in our discussion that trace amounts of EVs could still exist, including by alternative pathways, but are unlikely to provide function (p11 lines 25-33).
We agree that it might be an interesting future mechanistic direction to ask if the SMase pathway works with or in parallel to the ESCRT pathway (both have been suggested in the literature). However, we do not believe that this is essential for the current work: The SMase pathway is unlikely to be “compensating”, since EVs are already very strongly depleted with ESCRT disruption alone. We also note that SMase depletion may also affect other trafficking pathways (Back et al., 2018; Choezom and Gross, 2022; Niekamp et al., 2022), and therefore might not provide any clarifying information if it did disrupt signaling. In summary, we believe the depletion we see in single ESCRT mutants is sufficient to (1) establish the role of ESCRT in EV traffic in this system, and (2) test the role of transsynaptic transfer in signaling functions of cargoes.
R1.4 The authors' findings support that cargo trafficking is affected by widespread endosomal dysfunction but doesn't cleanly prove that 1) synaptic sEV release is lost and 2) that cargo-specific sEVs are lost. As previously mentioned, loss of cargo+ ILVs in MVEs by TEM could demonstrate this, but another useful approach would be to include in vitro Drosophila primary neuronal culture/ EV isolation and mass spec/proteomic characterization studies as proof of concept. According to widely agreed upon guidelines in the EV field, the authors should directly characterize their EV population to show 1) the appropriate size distribution associated with exosomes/sEVs, 2) the presence of traditional EV markers (i.e., tetraspanins), 3) changes in overall EV count by ESCRT mutants, and 4) decreased levels of cargo(es) of interest in the presence of ESCRT mutants/loss-of-function. In vitro experiments would be particularly helpful for quantifying the degree of loss of cargo-specific EVs with each ESCRT mutant. These experiments could also investigate the possibility that cargoes are secreted in nSMase2/ Ceramide-derived EVs, by showing that EV cargo levels are unaffected in nSMase mutants.
Our data already show loss of cargo-specific EVs, defined by puncta of several independent specific cargoes in the extraneuronal space and postsynaptic muscle. To further substantiate this, we have directly characterized our EV population and shown a distribution of ~125 nm extraneuronal structures containing the transmembrane cargoes Nrg and APP (by STED) as well as Evi, Syt4 and the EV marker tetraspanin (by confocal microscopy). This addresses the (1) size distribution, (2) EV marker and (3) count criteria. All these markers (cargoes and tetraspanins) are severely depleted from the postsynaptic area in the ESCRT mutants, satisfying the (4) decreased levels criteria. As noted above, we and others have repeatedly demonstrated that these postsynaptic puncta are derived from neurons, and since we are detecting the intracellular domain in all cases, must be membrane-bound. Others have previously shown by EM that several of these markers are surrounded by membrane and derived from neuronal MVBs (see R1.2). Note that we do not believe that ESCRT mutants must necessarily cleanly show enlarged endosomes without ILVs or a class E vps compartment - instead stalled endosomes appear to be targeted for autophagy in heterogeneous intermediates (Fig 3).
We do not believe that turning to a heterologous system (e.g. cultured primary Drosophila neurons, which do not even form functional synapses) is usefully translatable to results in neurons in vivo. Data from our lab and many other systems has shown that EV biogenesis and release pathways are highly cell-type specific (p9 lines 8-12), and also differ in different regions of neurons (eg synapses vs soma) (Blanchette and Rodal, 2020). Further, keeping the experimental setup of the original for EV signaling hypothesis is a prerequisite for our improved tests of this hypothesis. We do note that APP, Evi and Syt4 have been demonstrated by us and others to be released from Drosophila S2 cells in EVs defined by differential centrifugation, sucrose gradient buoyancy, electron microscopy and mass spectrometry (Koles et al., 2012; Korkut et al., 2009; Korkut et al., 2013; Walsh et al., 2021). However even if we did measure the precise change in EV number and cargoes upon ESCRT manipulation in these heterologous cells, it would not allow us to conclude that the same quantitative change was happening in the motor neurons of interest in vivo, which is the information we need to conduct our tests of cargo signaling function. All we would learn is whether ESCRT was required in that cell type, which would not be informative for our study.
We appreciate that EV researchers working in cell culture systems often use a set of approaches including bulk isolation, EM, and mass spectrometry. Our system does not allow for these approaches, but provides complementary strengths of single EV characterization, in vivo relevance with functional assays, and a wealth of genetic tools. MISEV itself states that it does not provide a set of agreed-upon rules that can be applied generically to any experiment. We agree with the MISEV statement that we should use the best available assays for the system under investigation.
R1.5 During functional tests of Evi+ motor neurons lacking generation of Evi+ EVs, there is a slight defect observed, namely the increased formation of developmentally arrested ghost boutons when Evi secretion in sEVs is lost. As mentioned, Evi is a transporter of Wg and it is possible for Wg to be transmitted between cells via normal diffusion. Thus, some basal levels of Wg may be reaching the muscle when its transfer via sEVs is abolished, and these basal levels may be sufficient to phenocopy the WT in the number of active zones and boutons. Is it possible that this element of Evi/ Wg function is dose-dependent and thus reliant on the extra Evi/ Wg transferred via sEVs? If possible, the authors should use a Wnt-signaling pathway reporter (i.e., fluorescently tagged Beta-Catenin) to measure the levels of Wnt signaling activity in the muscle when Evi/Wg+ EVs are present vs. abolished. If the degree of Wnt signaling (readout would be intensity of fluorescent reporter) is decreased without Evi+ sEVs, there may be a dose-dependent response. Otherwise, please more clearly disclose the partial loss of Evi function without Evi+ sEVs or state the intact function of Evi without sEVs as speculative.
We agree that Wg is likely to be reaching the muscle in the absence of Evi exosomes via conventional secretory mechanisms, and have conducted new experiments to test this hypothesis (Fig. 5). In Drosophila muscles, Wg does not signal via a conventional b-catenin pathway. Instead, neuronally-derived Wg activates cleavage of its receptor Fz2, resulting in translocation of a Fz2 C-terminal fragment into the nucleus (Mathew et al., 2005; Mosca and Schwarz, 2010). We did attempt to directly measure Wg (using antibodies or knockins) and though we were able to detect a specific presynaptic signal, the background noise throughout the postsynaptic muscle was too high for a sensible quantification. In response to the reviewer’s question and also R2.6), we collaborated with the laboratory of Timothy Mosca to test Fz2 nuclear import in Tsg101 and Hrs mutants (new Figure 5F-G). Strikingly, we found that Hrs mutants, despite being extremely sickly, have normal nuclear import of Frizzled. We also confirmed that Hrs mutants have dramatically depleted levels of all EV cargoes examined, including Evi (Figure 2A-F). On the other hand we found that Tsg101 knockdowns have dramatically reduced Wg signaling (and a concomitant defect in postsynaptic development). We do not rule out (but think it is unlikely) that very small amounts of EVs could be present in hrs but not tsg101 mutants. A more parsimonious interpretation is that additional membrane trafficking defects in the Tsg101 mutants (which are beyond the scope of this study to explore in detail) block an alternative mode of Wg release, perhaps conventional secretion. The fact that Hrs mutants, despite showing similar depletion of Evi EVs, do not have a signaling defect strongly argues that EV release per se is not required for Wg signaling.
R1.6 To support the authors' hypothesis that Syt4 transmission via EVs is a proteostatic mechanism, the authors should determine whether Syt4 cargo localizes to lysosomal compartments in muscle, glia, or both. Otherwise, the proteostatic degradation of Syt4 via EVs is speculative.
Our data suggest that EVs serve as one of several parallel proteostatic mechanisms for presynaptic cargoes. We have added new data to the manuscript to emphasize the advance our work makes in our understanding of these mechanisms, and have emphasized this in the discussion on p 11-12, lines 46-5).
- Degradation of neuronally derived EVs in glia and muscles. Previous work has shown that EV cargoes such as Evi can be found in compartments in the muscle cytoplasm, and that a-HRP-positive puncta are taken up and degraded by glial and muscle phagocytosis (Fuentes-Medel et al., 2009). These a-HRP-positive structures, despite colocalizing with EV cargoes Syt4, Nrg and APP (Walsh et al., 2021), were not previously connected to EVs. We have added new data showing that muscle or glial-specific RNAi of the phagocytic receptor Draper leads to the accumulation of EVs containing Syt4 (new Figure 7G-H)). Together with our finding (Figure 7A-F) that Syt4 is not significantly detected in the muscle cytoplasm, these results indicate that the main destination for transynaptic transfer is phagocytosis by the recipient cell. We have not been able to convincingly detect EV cargoes in the endolysosomal system of muscles, even in mutants disrupting lysosomal traffic, likely because the small number of EVs released by neurons (even over days of development) are drastically diluted in the much larger muscle cell.
- Compensatory endosomophagy in the neuron. __When EV release is blocked in Hrs or Tsg101 mutants, we observe an induction of autophagy in the neuron (__Figure 3B, E-G). However, in the absence of ESCRT manipulation, autophagy mutants do not accumulate EVs (Figure 3C,D. S2H-I). This suggests that autophagy is a compensatory mechanism that is induced in the absence of EV release.
- Retrograde transport to cell bodies: We previously found that disruption of neuronal dynactin leads to accumulation EV cargoes in presynaptic terminals (Blanchette et al., 2022), suggesting that retrograde transport is a mechanism for removal of these cargoes from synapses. Interestingly, EV release is not increased in these conditions, indicating that the retrogradely transported compartment represents a late endosome without ILVs, or an MVB that cannot fuse with the plasma membrane.
R1.7 Please discuss alternate modes of cargo transfer from the presynaptic compartment to the postsynaptic compartment that may be utilized when EV-mediated transfer is abolished (i.e., cytonemes or tunneling nanotubules).
We have added these possibilities to the discussion (p11 line 31), though we note that we do not observe any such structures, or indeed any Syt4 in the muscle cytoplasm, and there is no current evidence for such transsynaptic structures in this system. Conventional secretion of Wg into the extracellular space and signaling through its transmembrane receptor Frizzled2 can account for Wg signaling in the absence of exosomes.
R1.8 OPTIONAL: Investigate the mechanism of Syt4+ sEV fusion with the postsynaptic compartment (direct fusion with the plasma membrane, receptor-mediated fusion, endocytosis and unpacking, or endocytosis and degradation).
We note that the Budnik lab has already shown that HRP-positive EVs released by NMJs are taken up by glia and muscles (Fuentes-Medel et al., 2009), and we have added data showing that this also applies for Syt4 (Fig. 7). Our data are not consistent with Syt4 fusing with recipient cell membranes or entering the muscle cytoplasm. Further investigation of this mechanism is beyond the scope of this project.
Given that several fundamental questions have yet to be answered regarding the biogenesis pathways and machinery utilized for EV-mediated cargo secretion, and the necessity for further TEM studies and/or work with primary cultures to characterize ILVs and EVs, >6 months is estimated to perform the necessary experiments that may require learning/ optimizing new systems.
Minor comments:
R1.9 Please clarify the choice of using Tsg101 KD in place of mutants of other ESCRT machinery (i.e., Hrs). Especially as when the Tsg101 mutant was characterized, you found major defects in autophagic flux that were not present for HrsD28/Df.
Tsg101 RNAi was selected since it provides a neuron-autonomous knockdown, eliminating the complications of mutant effects in other tissues. These animals are also relatively healthy as third instar larvae compared to genomic mutants tsg1012 (L1 lethal) and HrsD28 or motor-neuron driven Vps4DN (where L3 larvae are rare). This made it easier to recover enough larvae to properly power experiments, and alleviated concerns that general sickness is contributing to the phenotype (though note that neuronal Tsg101KD does result in pupal lethality). Finally, we were unable to effectively knock down Hrs by RNAi (see R1.1). To extend our studies beyond Tsg101, we have included additional experiments in the revised manuscript showing that HrsD28 animals, despite being quite unhealthy, still retain Syt4-dependent functional plasticity (See R2.5 and R3.4) and Wg signaling.
R1.10 Please clarify why the specific method in experiment in Fig. 4E-J was chosen. As Syt4 is a transmembrane protein, is likely undergoes degradation via the lysosome, like other membrane-bound proteins. Is it known whether the proteasome-directed nanobody is sufficient to pull Syt4 from membrane-bound compartments to undergo degradation in the proteasome? Would it make more sense to use a lysosome-directed nanobody?
The GFP tag on Syt4 is cytosolic rather than lumenal. Our data show that when we express the proteosome-directed nanobody presynaptically, it efficiently degrades membrane-associated Syt4-GFP (Fig. 7B). Therefore we expect that this tool should be similarly effective on membrane-associated Syt4-GFP if it were exposed to the muscle cytoplasm. We have confirmed that it is effective in the muscle against DLG-GFP (Fig. S5A)
R1.11 Please provide further methodological information regarding the sample preparation for live imaging of axons to generate kymographs found in Fig. S3.
Additional details have been provided on p14 lines 10-24 and p15 lines 31-37.
R1.12 In Figure 1I and 1J, include representative image and quantification of Syt4-GFP pre- and post-synaptic intensity for HrsD28/Df for consistency with ShrubKD and Vps4DN in Figure 1K-P.
We generated and tested HrsD28; Syt4-GFP (Fig 2A,D), and HrsD28; Evi-GFP strains (Fig 2B-E). All EV cargoes exhibited a dramatic post-synaptic depletion in Hrs mutants, similar to the other ESCRT manipulations.
R1.13 In Figure 2H, please provide a cell type marker or HRP mask with a merged image for image clarity.
This image shows neuronal cell bodies in the ventral ganglion, which are densely packed relative to each other. The cell type specificity is provided by the motor neuron driver. We did not use a cell type marker or individually mask cells for analysis, but instead quantified intensity over the whole field of view. We can manually trace cell bodies in this image if requested, but it would not represent our ROI for analysis.
R1.14 In Figure 4B, please provide quantification for the differences between 1) WT Mock and Tsg101 MOCK and 2) WT Stim and Tsg101KD Stim to show that upon stimulation, WT and Tsg101 undergo the same increase in the number of ghost boutons/ NMJ in Muscle 4.
We have added these statistical comparisons to the graph (Fig. 6B)
R1.15 In Figure 3 G and H, use consistent scale bars to compare between temperatures.
We have removed the Shrub data at 20º as it did not provide additional insight to the manuscript.
Reviewer #1 (Significance (Required)):
General assessment (Strengths):
-Use of Drosophila NMJ model system consistent with others in the field and exceptional harnessing of genetic tools for mutations across the ESCRT pathway (-0, -I, -III, etc.) -Identification of ESCRT pathway mutants that do not deplete pre-synaptic cargo levels but generate endosomal dysfunction, indicative of a possible decrease in secretion of cargoes via EVs -Implementing functional characterization of Evi/ Wg and Syt4 cargoes, consistent with previous work in the field; highly reproducible
-Sufficiently thorough investigation of the cross-regulation of autophagy and EV biogenesis by Tsg101
General assessment (Weaknesses):
-Lack of investigation of known ESCRT-independent pathways/ genes involved in the generation of sEVs (i.e., nSMase2/ Ceramide) especially as it is unknown if minor sources of cargo+ EVs are sufficient in maintaining functional phenotype
See R1.3 for comments on this point
-Lack of sEV characterization and validation of EVs derived from mutant
We have added STED data to measure EV size, and described the challenges in EV membrane measurements by EM in the in vivo system.
-Does not show the loss of cargoes of interest on EVs from mutants other than through back-up of cargoes in the presynaptic endocytic pathway (Rab7, Rab5, Rab11)
We strongly disagree with this comment. We have explicitly measured the loss of numerous cargoes in postsynaptic structures that have been rigorously established to be EVs in this and previous publications. Our findings are not limited to back-up of presynaptic structures.
-Lack of rigorous investigation of the claim that Evi and Syt4 are released via EVs for proteostatic means is missing. Authors should demonstrate the degradation of EV cargoes by recipient cells (either muscle OR glia)
We have added new data and discussion on multiple and compensatory proteostatic pathways.
-If EV-mediated cargo transfer is not required, authors should investigate alternate modes of cargo transfer more rigorously (i.e., diffusion of Wg, suggest/ test hypotheses for mechanism of Syt4 function or transfer).
We have included discussion of alternate modes of transfer for Wg (i.e. conventional secretion). By contrast, for Syt4 we believe it is acting in the donor cell without transfer, and have included alternate interpretations of the previous literature that had suggested its function in muscles.
Advance: -Compared with other recent in vivo studies of EVs where donor EVs are loaded with a cargo, such as Cre, which uniquely identifies recipient cells through Cre recombination-mediated expression of a fluorescent reporter (Zomer et al 2015, Cell), this study relies on the readout of fluorescently tagged cargo in the recipient cells to represent transfer via EVs. While numerous studies in the Drosophila field focus on the same small set of known EV cargoes at the NMJ (Koles et al., 2012; Gross et al., 2012; Korkut et al., 2013; Korkut et al., 2009; Walsh et al., 2021), there is a noticeable lack of EV characterization based on MISEV (i.e. TEM of EVs, size distribution, enrichment of well-known EV markers [https://doi.org/10.1080/20013078.2018.1535750]) that would significantly strengthen the work and make it more widely accepted in the EV field.
As mentioned above, many of these criteria (including EV size and enrichment of known EV markers) are already established in the previous literature for this system. As requested, we have also added similar data to our revised manuscript.
-In this study, the use of ESCRT machinery mutants is proven as a new technical method in delineating the role of EV cargoes in cell-autonomous versus EV-dependent functions. This is the first study, to my knowledge, that has leveraged mutants from both early and late ESCRT complexes for the study of EVs in Drosophila. Additionally, the finding that some cargoes may be able to carry out their signaling functions, independent of transfer via EVs, provides key mechanistic insight into one possible role of EVs as proteostatic shuttles for cargo. This work also begins to address a fundamental question in the field, which is to delineate roles that EVs actually carry out in physiological conditions, compared to the many roles that have been shown possible in vitro.
We appreciate the reviewer’s insight into the impact of our work.
Audience: -Basic research (endosomal biology, ESCRT pathway, cell signaling, neurodevelopment)
-Specialized (Drosophila, Neurobiology; Extracellular Vesicles)
-This article will be of interest to basic scientists in the field of endosomal trafficking and extracellular vesicle biology as well as though studying the nervous system in Drosophila melanogaster. As the field of extracellular vesicle biology has broad implications in the spread of pathogenic cargoes in cancer and neurodegenerative disease, the basic biology associated with EVs has some translational relevance.
Expertise (Keywords):
-ESCRT and nSMase2 EV biogenesis pathways
-EV characterization in vitro/ live imaging studies
-EV release and uptake
-Neuronal and glial cell biology
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
This manuscript addresses the role of exosome secretion in neuromuscular junction development in Drosophila, a system that has been proposed to depend on exosomes. In particular, delivery of Wingless via exosomes has been proposed to promote structural organization of the synapse. Previously, however, the studies that proposed this model targeted the cargoes themselves, rather than targeting exosome biogenesis or secretion. In this new study, exosome biogenesis is targeted via knockdown of the ESCRT components Hrs, TSG101, and Chmp4. The authors find that some previously ascribed functions are not inhibited by these knockdowns. In particular, formation of active zones, as defined by BRP-positive puncta (total and per micrometer), and total bouton numbers. It does look like there is a partial defect in BRP-positive puncta per micrometer, but it is not significant. For ghost bouton formation, there is a similar increase in evi-mutant and ESCRT-KD NMJs (with some subtle differences depending on abdominal segment and temperature). They also examine the role of Syt4, which has been proposed to be transferred from nerve to muscle cells at the junction and to regulate mEJP frequency after stimulation. They found no difference in mEJP frequency after stimulation between WT and TSG101-KD animals, although they did not have a positive control with inhibition of Syt4. They did do an elegant experiment to demonstrate that most of extracellularly transferred Syt4 does not reach the muscle cytoplasm. Overall, it is an interesting paper, mostly well controlled and rigorous, and well-written. It is an important contribution to the EV and NMJ fields. The data should provoke reconsideration of some of the functions that were previously ascribed to exosome transfer at the NMJ. However, I do think that there are some overly strong statements and the functions of the exosomes at the synapse were quite narrowly examined. For example, the title of the paper is pretty strong and the abstract does not say which functions were or were not affected by TSG101 KD. There are also a couple of experiments that would enhance the manuscript. Some specific suggestions are below:
R2.1 Title: "ESCRT disruption provides evidence against signaling functions for synaptic exosomes" seems a bit broad -- only evi/Wg and Syt4 functions were examined at NMJ synapses, not all signaling functions of all exosomes at all synapses. Something like, "ESCRT disruption provides evidence against signaling functions for exosome-carried evi/Wg and Syt4 at the neuromuscular junction" seems a bit more reasonable.
We are open to changing the title to: “ESCRT disruption provides evidence against transsynaptic signaling functions for some extracellular vesicle cargoes” though we prefer to leave it as is since “provides evidence against” is already fairly understated.
__ __R2.2 Abstract: the description of the actual data is very little, just one sentence saying that "many" of the signaling functions are retained with ESCRT depletion. I think a bit more focus on the actual data is warranted.
We have edited the abstract to include more detail on the signaling phenotypes.
__
__R2.3 Results section:
Fig 3: What does A2 and A3 mean for the graphs in c,d,e, g, h? Please specify in figure legend.
We have described in the figure legends that A2 and A3 refer to specific abdominal segments in the larvae.
R2.4 The sentence "Further, active zones in Tsg101KD appeared morphologically normal by TEM (Fig.2B)." is confusing to me. What do you mean by that? Are you referring to the following two sentences about feathery DLG and SSR? But the feathery DLG I presume is in Fig 3, where that staining is. And I also don't know what feathery DLG means -- it should be pointed out in the appropriate image.
Presynaptic active zones are defined by an electron-dense T-shaped pedestal at sites of synaptic vesicle release, and can be seen in the TEM in what is now Figure 3B, marked as AZ. We have also labeled AZ by immunofluorescence (Fig. 5A) and they appear normal.
By contrast, Dlg primarily labels the postsynaptic apparatus associated with the infoldings of the muscle membrane. In control animals, Dlg immunostaining is relatively tightly and smoothly clustered within ~1µm of the presynaptic neuron. By contrast, in Evi mutants, there are wisps of Dlg-positive structures extending from the bouton periphery. We have added arrows in what is now Fig. 5C to indicate the feathery structures.
R2.5 Fig 4 addresses Syt4 function. However, there is no positive control inhibiting Syt4 to see if there is a change. Just comparison of WT and TSG101. It seems like this positive control is in order.
We have added the positive control (Fig. 6E-F) reproducing the previously reported result that Syt4 mutants lack the high-frequency stimulation-induced increase in mEPSP frequency (HFMR). We have also added new data on HrsD28 genomic mutants. Despite the fact that few of these larvae survive and they are quite unhealthy, they still exhibit robust HFMR, similar to the Tsg101KD larvae, strongly supporting our hypothesis.
R2.6 Discussion: I think some discussion of what ghost boutons are and what the possible significance is of the evi and ESCRT mutant phenotype of enhanced ghost bouton formation
We have added more discussion on the ghost bouton phenotype (p11 lines 5-14), especially in light of our new findings that Hrs and Tsg101 mutants may distinguish alternative modes of Wg secretion (see R1.5)
R2.7 Also, in the Discussion, it is mentioned that Wg probably gets secreted in the ESCRT mutants -- presumably this accounts for the discrepancy between evi mutants and the ESCRT mutants. An experiment to actually test this would greatly enhance the manuscript.
We have added this experiment as addressed in R1.5
Reviewer #2 (Significance (Required)):
Overall, it is an interesting paper, mostly well controlled and rigorous, and well-written. It is an important contribution to the EV and NMJ fields. The data should provoke reconsideration of some of the functions that were previously ascribed to exosome transfer at the NMJ. However, I do think that there are some overly strong statements and the functions of the exosomes at the synapse were quite narrowly examined. For example, the title of the paper is pretty strong and the abstract does not say which functions were or were not affected by TSG101 KD.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
Dresselhaus et al. investigates signaling functions for synaptic exosomes at the Drosophila NMJ. Exosomes are widely seen in vivo and in vitro. They are clearly sufficient to induce signaling responses in vitro, but whether they normally fulfill signaling functions in vivo has not been rigorously addressed. The authors make use of several mutants that block exosome release to test whether exosome release is important for two distinct signaling pathways: the Evi/Wg pathway and the Syt4 signaling pathway. Both pathways have been implicated in neuron to muscle signaling. Surprisingly, the authors find scant evidence that exosome release is required for either pathway. They convincingly show that knockdown of Tsg101 (an ESCRT-I component) does not phenocopy many synaptic phenotypes of either wg or syt4. Instead, they propose that in vivo, exosomes may serve as a proteostatic mechanism, as a mechanism for the neuron to dispose of unwanted/damaged proteins.
Specific comments are below:
R3.1 Loss of Tsg101 has been linked to upregulated MAPK stress signaling pathways and autophagy. Thus, it's possible that activating such compensatory mechanisms in Tsg101 knockdown animals could mask phenotypes associated with specific loss of EV cargoes such as Wg or Syt4. Indeed, the authors demonstrate that loss of Tsg101 and Hrs have very different effects on synaptic autophagy. To provide additional evidence that Wg or Syt4 signaling is independent of EV release, it would be good to check for wg/syt4 phenocopy in additional ESCRT complex mutants. I understand they did a bit with Shrub knockdown at low temperature in Figure 3, but the temperature-dependence of the ghost bouton phenotype clouds the interpretation. Could the authors try a motorneuron driver with a more restricted phenotype to overcome the lethality issues, or alternatively use one of their other ESCRT component mutants? This is obviously the central claim of the manuscript, and it would be strengthened by carrying out phenotypic analysis in mutants other than the Tsg101 RNAi line.
As noted for R2.5, we have added HFMR experiments for the HrsD28 genomic mutant, and found that despite being very unhealthy, they exhibit robust HFMR similar to Tsg101KD. We also confirmed dramatic depletion of Syt4 EVs in the HrsD28 mutant. Thus, the preserved Syt4 signaling function in ESCRT mutants with depleted EV Syt4 is not restricted to Tsg101, and does not depend on the co-occurring autophagy phenotype.
R3.2 In Figure 1, the authors show that neuronal Tsg101 RNAi dramatically reduces "postsynaptic" levels of exosome cargoes at the L3 stage to argue that exosome release is blocked in this mutant. While this seems very likely at the L3 stage, it is unclear when Tsg101 levels are reduced and thus when exosome release is impaired in this background. This is important because we don't know when these signaling pathways act. For example, it is possible that the critical period for Wg and Syt4 signaling is during the L1 stage, and that Tsg101 knockdown is incomplete at that stage. It is important to assay exosome release at earlier larval stage, particularly when RNAi is the method used to reduce gene function.
We have conducted this experiment. We noted accumulation of cargoes in Tsg101KD L1 larvae, indicating that the RNAi is effective early in development. However, we do not find many EVs in either wild-type or Tsg101KD first instar larvae (red is a-HRP, green is Syt4-GFP). This argues that it is unlikely that EV-mediated signaling has a critical period earlier in development. It is likely that the accumulation of EVs that we observe trapped in the muscle membrane reticulum in third instar larvae were laid down over days or hours of development. We do not propose to include these data in the manuscript unless the editors and reviewers prefer that we do so.
R3.3 If the Syt4 and Evi exosomes do not serve major signaling roles and are in fact neuronal waste, it seems likely they are phagocytosed by glia. Are levels of non-neuronal Syt4/Evi levels increased when glial phagocytosis in blocked (eg in draper mutants)?
As mentioned above, the Budnik lab previously showed that uptake and degradation of postsynaptic a-HRP-positive structures depends on glial and muscle phagocytosis.a-HRP recognizes a number of neuronally-derived glycoproteins (Snow et al., 1987). Though the Budnik lab had not previously linked these structures to EVs, we do know that they very strongly colocalize with known EV cargoes and depend on the exact same membrane traffic machinery for release, arguing that some a-HRP antigen proteins are also EV cargoes (Blanchette et al., 2022). To close this loop. we have added data showing that Syt4-positive EVs also depend on Draper for their clearance (Fig 7).
R3.4 For the HFMR experiment, it would be good to see the syt4-dependent phenotype as a positive control.__ __
As mentioned for R2.5, we have added the Syt4 positive control (Figure 6E,F), which fails to show HFMR as expected.
.__ __R3.5 In the abstract, the authors state that, "the cargoes are likely to function cell autonomously in the motorneuron". Isn't it alternatively possible that these proteins (wg in particular) could signal to the muscle in a non-exosome dependent pathway?
Yes, we believe that Wg is likely released by another mechanism (perhaps conventional secretion). As noted for R1.5 and R2.6, we have added new data in Fig. 5 showing that Frizzled nuclear import IS NOT disrupted in Hrs mutants, despite dramatic loss of Evi EVs. Interestingly Frizzled nuclear import (and postsynaptic development) IS altered in neuronal Tsg101KD larvae, which disrupt additional membrane trafficking pathways beyond EV release (see Fig. 3). This is particularly interesting in light of the normal Syt4 signaling in Tsg101KD larvae, and supports the hypothesis that Syt4 can function without leaving the neuron, while Wg must be released, albeit not via Hrs-dependent EV formation. Another (less parsimonious) interpretation is that very small amounts of Wg release in the Hrs mutant are sufficient to promote Frizzled nuclear import.
Reviewer #3 (Significance (Required)):
This is an important paper that is well-organized and logically presented. It makes a clear and largely compelling case against major signaling roles for exosomes at this synapse. The authors should be commended for publishing this work, which demands a re-evaluation of proposed key roles for exosomes at the fly NMJ. Given the intense interest in exosomes in neurobiology, this paper will be of great interest to neuronal cell biologists working across systems.
We thank the reviewer for their appreciation of the impact of our work on the field.
Back, M.J., H.C. Ha, Z. Fu, J.M. Choi, Y. Piao, J.H. Won, J.M. Jang, I.C. Shin, and D.K. Kim. 2018. Activation of neutral sphingomyelinase 2 by starvation induces cell-protective autophagy via an increase in Golgi-localized ceramide. Cell Death Dis. 9:670.
Blanchette, C.R., and A.A. Rodal. 2020. Mechanisms for biogenesis and release of neuronal extracellular vesicles. Curr Opin Neurobiol. 63:104-110.
Blanchette, C.R., A.L. Scalera, K.P. Harris, Z. Zhao, E.C. Dresselhaus, K. Koles, A. Yeh, J.K. Apiki, B.A. Stewart, and A.A. Rodal. 2022. Local regulation of extracellular vesicle traffic by the synaptic endocytic machinery. J. Cell Biol. 10.1083/jcb.202112094.
Choezom, D., and J.C. Gross. 2022. Neutral sphingomyelinase 2 controls exosome secretion by counteracting V-ATPase-mediated endosome acidification. J Cell Sci. 135.
Enneking, E.M., S.R. Kudumala, E. Moreno, R. Stephan, J. Boerner, T.A. Godenschwege, and J. Pielage. 2013. Transsynaptic coordination of synaptic growth, function, and stability by the L1-type CAM Neuroglian. PLoS Biol. 11:e1001537.
Fuentes-Medel, Y., M.A. Logan, J. Ashley, B. Ataman, V. Budnik, and M.R. Freeman. 2009. Glia and muscle sculpt neuromuscular arbors by engulfing destabilized synaptic boutons and shed presynaptic debris. PLoS Biol. 7:e1000184.
Koles, K., J. Nunnari, C. Korkut, R. Barria, C. Brewer, Y. Li, J. Leszyk, B. Zhang, and V. Budnik. 2012. Mechanism of evenness interrupted (Evi)-exosome release at synaptic boutons. J Biol Chem. 287:16820-16834.
Korkut, C., B. Ataman, P. Ramachandran, J. Ashley, R. Barria, N. Gherbesi, and V. Budnik. 2009. Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell. 139:393-404.
Korkut, C., Y. Li, K. Koles, C. Brewer, J. Ashley, M. Yoshihara, and V. Budnik. 2013. Regulation of postsynaptic retrograde signaling by presynaptic exosome release. Neuron. 77:1039-1046.
Lauwers, E., Y.C. Wang, R. Gallardo, R. Van der Kant, E. Michiels, J. Swerts, P. Baatsen, S.S. Zaiter, S.R. McAlpine, N.V. Gounko, F. Rousseau, J. Schymkowitz, and P. Verstreken. 2018. Hsp90 Mediates Membrane Deformation and Exosome Release. Mol Cell. 71:689-702 e689.
Mathew, D., B. Ataman, J. Chen, Y. Zhang, S. Cumberledge, and V. Budnik. 2005. Wingless signaling at synapses is through cleavage and nuclear import of receptor DFrizzled2. Science. 310:1344-1347.
Moberg, K.H., S. Schelble, S.K. Burdick, and I.K. Hariharan. 2005. Mutations in erupted, the Drosophila ortholog of mammalian tumor susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev Cell. 9:699-710.
Mosca, T.J., and T.L. Schwarz. 2010. The nuclear import of Frizzled2-C by Importins-beta11 and alpha2 promotes postsynaptic development. Nat Neurosci. 13:935-943.
Niekamp, P., F. Scharte, T. Sokoya, L. Vittadello, Y. Kim, Y. Deng, E. Sudhoff, A. Hilderink, M. Imlau, C.J. Clarke, M. Hensel, C.G. Burd, and J.C.M. Holthuis. 2022. Ca(2+)-activated sphingomyelin scrambling and turnover mediate ESCRT-independent lysosomal repair. Nat Commun. 13:1875.
Snow, P.M., N.H. Patel, A.L. Harrelson, and C.S. Goodman. 1987. Neural-specific carbohydrate moiety shared by many surface glycoproteins in Drosophila and grasshopper embryos. J Neurosci. 7:4137-4144.
Trajkovic, K., C. Hsu, S. Chiantia, L. Rajendran, D. Wenzel, F. Wieland, P. Schwille, B. Brugger, and M. Simons. 2008. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 319:1244-1247.
Walsh, R.B., E.C. Dresselhaus, A.N. Becalska, M.J. Zunitch, C.R. Blanchette, A.L. Scalera, T. Lemos, S.M. Lee, J. Apiki, S. Wang, B. Isaac, A. Yeh, K. Koles, and A.A. Rodal. 2021. Opposing functions for retromer and Rab11 in extracellular vesicle traffic at presynaptic terminals. J Cell Biol. 220:e202012034.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Dresselhaus et al. investigates signaling functions for synaptic exosomes at the Drosophila NMJ. Exosomes are widely seen in vivo and in vitro. They are clearly sufficient to induce signaling responses in vitro, but whether they normally fulfill signaling functions in vivo has not been rigorously addressed. The authors make use of several mutants that block exosome release to test whether exosome release is important for two distinct signaling pathways: the Evi/Wg pathway and the Syt4 signaling pathway. Both pathways have been implicated in neuron to muscle signaling. Surprisingly, the authors find scant evidence that exosome release is required for either pathway. They convincingly show that knockdown of Tsg101 (an ESCRT-I component) does not phenocopy many synaptic phenotypes of either wg or syt4. Instead, they propose that in vivo, exosomes may serve as a proteostatic mechanism, as a mechanism for the neuron to dispose of unwanted/damaged proteins.
Specific comments are below:
Loss of Tsg101 has been linked to upregulated MAPK stress signaling pathways and autophagy. Thus, it's possible that activating such compensatory mechanisms in Tsg101 knockdown animals could mask phenotypes associated with specific loss of EV cargoes such as Wg or Syt4. Indeed, the authors demonstrate that loss of Tsg101 and Hrs have very different effects on synaptic autophagy. To provide additional evidence that Wg or Syt4 signaling is independent of EV release, it would be good to check for wg/syt4 phenocopy in additional ESCRT complex mutants. I understand they did a bit with Shrub knockdown at low temperature in Figure 3, but the temperature-dependence of the ghost bouton phenotype clouds the interpretation. Could the authors try a motorneuron driver with a more restricted phenotype to overcome the lethality issues, or alternatively use one of their other ESCRT component mutants? This is obviously the central claim of the manuscript, and it would be strengthened by carrying out phenotypic analysis in mutants other than the Tsg101 RNAi line.
In Figure 1, the authors show that neuronal Tsg101 RNAi dramatically reduces "postsynaptic" levels of exosome cargoes at the L3 stage to argue that exosome release is blocked in this mutant. While this seems very likely at the L3 stage, it is unclear when Tsg101 levels are reduced and thus when exosome release is impaired in this background. This is important because we don't know when these signaling pathways act. For example, it is possible that the critical period for Wg and Syt4 signaling is during the L1 stage, and that Tsg101 knockdown is incomplete at that stage. It is important to assay exosome release at earlier larval stage, particularly when RNAi is the method used to reduce gene function.
If the Syt4 and Evi exosomes do not serve major signaling roles and are in fact neuronal waste, it seems likely they are phagocytosed by glia. Are levels of non-neuronal Syt4/Evi levels increased when glial phagocytosis in blocked (eg in draper mutants)?
For the HFMR experiment, it would be good to see the syt4-dependent phenotype as a positive control.
In the abstract, the authors state that, "the cargoes are likely to function cell autonomously in the motorneuron". Isn't it alternatively possible that these proteins (wg in particular) could signal to the muscle in a non-exosome dependent pathway?
Significance
This is an important paper that is well-organized and logically presented. It makes a clear and largely compelling case against major signaling roles for exosomes at this synapse. The authors should be commended for publishing this work, which demands a re-evaluation of proposed key roles for exosomes at the fly NMJ. Given the intense interest in exosomes in neurobiology, this paper will be of great interest to neuronal cell biologists working across systems.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
This manuscript addresses the role of exosome secretion in neuromuscular junction development in Drosophila, a system that has been proposed to depend on exosomes. In particular, delivery of Wingless via exosomes has been proposed to promote structural organization of the synapse. Previously, however, the studies that proposed this model targeted the cargoes themselves, rather than targeting exosome biogenesis or secretion. In this new study, exosome biogenesis is targeted via knockdown of the ESCRT components Hrs, TSG101, and Chmp4. The authors find that some previously ascribed functions are not inhibited by these knockdowns. In particular, formation of active zones, as defined by BRP-positive puncta (total and per micrometer), and total bouton numbers. It does look like there is a partial defect in BRP-positive puncta per micrometer, but it is not significant. For ghost bouton formation, there is a similar increase in evi-mutant and ESCRT-KD NMJs (with some subtle differences depending on abdominal segment and temperature). They also examine the role of Syt4, which has been proposed to be transferred from nerve to muscle cells at the junction and to regulate mEJP frequency after stimulation. They found no difference in mEJP frequency after stimulation between WT and TSG101-KD animals, although they did not have a positive control with inhibition of Syt4. They did do an elegant experiment to demonstrate that most of extracellularly transferred Syt4 does not reach the muscle cytoplasm. Overall, it is an interesting paper, mostly well controlled and rigorous, and well-written. It is an important contribution to the EV and NMJ fields. The data should provoke reconsideration of some of the functions that were previously ascribed to exosome transfer at the NMJ. However, I do think that there are some overly strong statements and the functions of the exosomes at the synapse were quite narrowly examined. For example, the title of the paper is pretty strong and the abstract does not say which functions were or were not affected by TSG101 KD. There are also a couple of experiments that would enhance the manuscript. Some specific suggestions are below:
Title: "ESCRT disruption provides evidence against signaling functions for synaptic exosomes" seems a bit broad -- only evi/Wg and Syt4 functions were examined at NMJ synapses, not all signaling functions of all exosomes at all synapses. Something like, "ESCRT disruption provides evidence against signaling functions for exosome-carried evi/Wg and Syt4 at the neuromuscular junction" seems a bit more reasonable.
Abstract: the description of the actual data is very little, just one sentence saying that "many" of the signaling functions are retained with ESCRT depletion. I think a bit more focus on the actual data is warranted.
Results section: Fig 3: What does A2 and A3 mean for the graphs in c,d,e, g, h? Please specify in figure legend.
The sentence "Further, active zones in Tsg101KD appeared morphologically normal by TEM (Fig. 2B)." is confusing to me. What do you mean by that? Are you referring to the following two sentences about feathery DLG and SSR? But the feathery DLG I presume is in Fig 3, where that staining is. And I also don't know what feathery DLG means -- it should be pointed out in the appropriate image.
Fig 4 addresses Syt4 function. However, there is no positive control inhibiting Syt4 to see if there is a change. Just comparison of WT and TSG101. It seems like this positive control is in order. Discussion: I think some discussion of what ghost boutons are and what the possible significance is of the evi and ESCRT mutant phenotype of enhanced ghost bouton formation
Also, in the Discussion, it is mentioned that Wg probably gets secreted in the ESCRT mutants -- presumably this accounts for the discrepancy between evi mutants and the ESCRT mutants. An experiment to actually test this would greatly enhance the manuscript.
Significance
Overall, it is an interesting paper, mostly well controlled and rigorous, and well-written. It is an important contribution to the EV and NMJ fields. The data should provoke reconsideration of some of the functions that were previously ascribed to exosome transfer at the NMJ. However, I do think that there are some overly strong statements and the functions of the exosomes at the synapse were quite narrowly examined. For example, the title of the paper is pretty strong and the abstract does not say which functions were or were not affected by TSG101 KD.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary:
In this paper, Dresselhaus et al (2023) investigate the possibility that known cargoes of extracellular vesicles (EVs) released at the Drosophila neuromuscular junction have cell-autonomous functions rather than functions specifically conferred as a condition of their release in EVs, in vivo. To do so, authors focus their studies on use of Tsg101-KD, a mutant of the ESCRT-I machinery, of the ESCRT EV biogenesis pathway, and are able to show that for some endogenously-expressed, fluorescently-tagged cargoes, fluorescence intensity in the pre-synaptic compartment is significantly elevated (Syt4 and Evi) and the postsynaptic intensity in the muscle is significantly decreased (Syt4, Evi, APP, and Nrg). These findings suggest that these cargoes become trapped in the endosomal system (colocalizing with early, late, and recycling endosomal compartments), rather than undergoing secretion in EVs targeting post-synaptic muscle and glia as usual. This phenotype is recapitulated for select cargoes using mutants of both early and late components of ESCRT pathway machinery. They further characterize the Tsg101 mutant, demonstrating co-occurrence of an autophagic flux defect , but as the cargo phenotype is present without induction of the autophagic flux defect for their Hrs mutants, authors suggest the overlapping role of Tsg101 in autophagy is independent of its role in the ESCRT pathway/ EV secretion. Subsequently, they use previously defined functional phenotypes of the Evi (number of active zones, number of boutons, number of developmentally-arrested ghost boutons) and Syt-4 (number of transient ghost boutons and mEJPs) cargoes to show a minimal dependence on cargo delivery via ESCRT-derived EVs for these cargoes to carry out their synaptic growth and plasticity functions in vivo. However, it should be notes that for Evi/ Wg cargo, there is a slight increase in developmentally-arrested ghost boutons suggesting the cargo may not be entirely independent of EV-mediated cargo delivery. Finally, authors express an anti-GFP proteasome-directed nanobody using motor neuron or muscle-specific drivers and find that Syt4-GFP cargo doesn't enter muscle cytoplasm as fluorescence is maintained and cargo is not degraded by the muscle proteasome. While authors suggest this as evidence of EV-mediated transfer for cargo proteostasis, it is not explicitly shown that Syt4 cargo is, in fact, trafficked and degraded by the lysosome or hypothesized how Syt4 function or post-synaptic localization may be carried out independently of EVs.
Major comments:
- It is difficult to evaluate the findings of this study without knowing the extent of ESCRT pathway impairment. Please provide data quantifying the degree of knockdown/ mutant expression for each ESCRT component (i.e., western blot)
- Loss of ESCRT machinery likely disrupts the release of small EVs to a significant extent; however, the authors do not show that EV release is entirely lost, only that 1) cargoes are backed up in the endosomal system due to endosomal dysfunction and 2) fluorescence of cargoes in the postsynaptic compartment is diminished. To claim that ESCRT-derived EVs with the relevant cargoes are lost, the authors should perform immunogold labelling with TEM. This would provide direct evidence that the cargoes examined here are packaged in ILVs, and that the ILVs are of a size (~50-150nm) consistent with exosomes (which should really be referred to as small extracellular vesicles (sEVs) per the minimal information for studies of extracellular vesicles (MISEV 2018 [https://doi.org/10.1080/20013078.2018.1535750])
- Additionally, EM would show the loss of cargo packaging and provide information about where these cargoes localize in the presence of ESCRT mutants/loss-of-function.
- Other biogenesis pathways utilize multivesicular bodies to generate EVs, most prominently the nSMase2/ceramide synthesis pathway (which operates in an ESCRT-independent manner). It is possible that this pathway compensates when there are defects in the canonical ESCRT pathway. Thus, it is imperative for the authors to show that the cargo secretion no longer occurs in the presence of ESCRT mutations/loss-of-function. The authors should also use nSMase2 pathway mutants to see if the phenotypes in cargo trafficking (i.e., pre/ post-synaptic protein levels) are recapitulated.
- The authors' findings support that cargo trafficking is affected by widespread endosomal dysfunction but doesn't cleanly prove that 1) synaptic sEV release is lost and 2) that cargo-specific sEVs are lost. As previously mentioned, loss of cargo+ ILVs in MVEs by TEM could demonstrate this, but another useful approach would be to include in vitro Drosophila primary neuronal culture/ EV isolation and mass spec/proteomic characterization studies as proof of concept. According to widely agreed upon guidelines in the EV field, the authors should directly characterize their EV population to show 1) the appropriate size distribution associated with exosomes/sEVs, 2) the presence of traditional EV markers (i.e., tetraspanins), 3) changes in overall EV count by ESCRT mutants, and 4) decreased levels of cargo(es) of interest in the presence of ESCRT mutants/loss-of-function. In vitro experiments would be particularly helpful for quantifying the degree of loss of cargo-specific EVs with each ESCRT mutant. These experiments could also investigate the possibility that cargoes are secreted in nSMase2/ Ceramide-derived EVs, by showing that EV cargo levels are unaffected in nSMase mutants.
- During functional tests of Evi+ motor neurons lacking generation of Evi+ EVs, there is a slight defect observed, namely the increased formation of developmentally arrested ghost boutons when Evi secretion in sEVs is lost. As mentioned, Evi is a transporter of Wg and it is possible for Wg to be transmitted between cells via normal diffusion. Thus, some basal levels of Wg may be reaching the muscle when its transfer via sEVs is abolished, and these basal levels may be sufficient to phenocopy the WT in the number of active zones and boutons. Is it possible that this element of Evi/ Wg function is dose-dependent and thus reliant on the extra Evi/ Wg transferred via sEVs? If possible, the authors should use a Wnt-signaling pathway reporter (i.e., fluorescently tagged Beta-Catenin) to measure the levels of Wnt signaling activity in the muscle when Evi/Wg+ EVs are present vs. abolished. If the degree of Wnt signaling (readout would be intensity of fluorescent reporter) is decreased without Evi+ sEVs, there may be a dose-dependent response. Otherwise, please more clearly disclose the partial loss of Evi function without Evi+ sEVs or state the intact function of Evi without sEVs as speculative.
- To support the authors' hypothesis that Syt4 transmission via EVs is a proteostatic mechanism, the authors should determine whether Syt4 cargo localizes to lysosomal compartments in muscle, glia, or both. Otherwise, the proteostatic degradation of Syt4 via EVs is speculative.
- Please discuss alternate modes of cargo transfer from the presynaptic compartment to the postsynaptic compartment that may be utilized when EV-mediated transfer is abolished (i.e., cytonemes or tunneling nanotubules).
- OPTIONAL: Investigate the mechanism of Syt4+ sEV fusion with the postsynaptic compartment (direct fusion with the plasma membrane, receptor-mediated fusion, endocytosis and unpacking, or endocytosis and degradation).
- Given that several fundamental questions have yet to be answered regarding the biogenesis pathways and machinery utilized for EV-mediated cargo secretion, and the necessity for further TEM studies and/or work with primary cultures to characterize ILVs and EVs, >6 months is estimated to perform the necessary experiments that may require learning/ optimizing new systems.
Minor comments:
- Please clarify the choice of using Tsg101 KD in place of mutants of other ESCRT machinery (i.e., Hrs). Especially as when the Tsg101 mutant was characterized, you found major defects in autophagic flux that were not present for HrsD28/Df.
- Please clarify why the specific method in experiment in Fig. 4E-J was chosen. As Syt4 is a transmembrane protein, is likely undergoes degradation via the lysosome, like other membrane-bound proteins. Is it known whether the proteasome-directed nanobody is sufficient to pull Syt4 from membrane-bound compartments to undergo degradation in the proteasome? Would it make more sense to use a lysosome-directed nanobody?
- Please provide further methodological information regarding the sample preparation for live imaging of axons to generate kymographs found in Fig. S3.
- In Figure 1I and 1J, include representative image and quantification of Syt4-GFP pre- and post-synaptic intensity for HrsD28/Df for consistency with ShrubKD and Vps4DN in Figure 1K-P.
- In Figure 2H, please provide a cell type marker or HRP mask with a merged image for image clarity.
- In Figure 4B, please provide quantification for the differences between 1) WT Mock and Tsg101 MOCK and 2) WT Stim and Tsg101KD Stim to show that upon stimulation, WT and Tsg101 undergo the same increase in the number of ghost boutons/ NMJ in Muscle 4.
- In Figure 3 G and H, use consistent scale bars to compare between temperatures.
Significance
General assessment (Strengths):
- Use of Drosophila NMJ model system consistent with others in the field and exceptional harnessing of genetic tools for mutations across the ESCRT pathway (-0, -I, -III, etc.)
- Identification of ESCRT pathway mutants that do not deplete pre-synaptic cargo levels but generate endosomal dysfunction, indicative of a possible decrease in secretion of cargoes via EVs
- Implementing functional characterization of Evi/ Wg and Syt4 cargoes, consistent with previous work in the field; highly reproducible
- Sufficiently thorough investigation of the cross-regulation of autophagy and EV biogenesis by Tsg101
General assessment (Weaknesses):
- Lack of investigation of known ESCRT-independent pathways/ genes involved in the generation of sEVs (i.e., nSMase2/ Ceramide) especially as it is unknown if minor sources of cargo+ EVs are sufficient in maintaining functional phenotype
- Lack of sEV characterization and validation of EVs derived from mutant
- Does not show the loss of cargoes of interest on EVs from mutants other than through back-up of cargoes in the presynaptic endocytic pathway (Rab7, Rab5, Rab11)
- Lack of rigorous investigation of the claim that Evi and Syt4 are released via EVs for proteostatic means is missing. Authors should demonstrate the degradation of EV cargoes by recipient cells (either muscle OR glia)
- If EV-mediated cargo transfer is not required, authors should investigate alternate modes of cargo transfer more rigorously (i.e., diffusion of Wg, suggest/ test hypotheses for mechanism of Syt4 function or transfer).
Advance:
- Compared with other recent in vivo studies of EVs where donor EVs are loaded with a cargo, such as Cre, which uniquely identifies recipient cells through Cre recombination-mediated expression of a fluorescent reporter (Zomer et al 2015, Cell), this study relies on the readout of fluorescently tagged cargo in the recipient cells to represent transfer via EVs. While numerous studies in the Drosophila field focus on the same small set of known EV cargoes at the NMJ (Koles et al., 2012; Gross et al., 2012; Korkut et al., 2013; Korkut et al., 2009; Walsh et al., 2021), there is a noticeable lack of EV characterization based on MISEV (i.e. TEM of EVs, size distribution, enrichment of well-known EV markers [https://doi.org/10.1080/20013078.2018.1535750]) that would significantly strengthen the work and make it more widely accepted in the EV field.
- In this study, the use of ESCRT machinery mutants is proven as a new technical method in delineating the role of EV cargoes in cell-autonomous versus EV-dependent functions. This is the first study, to my knowledge, that has leveraged mutants from both early and late ESCRT complexes for the study of EVs in Drosophila. Additionally, the finding that some cargoes may be able to carry out their signaling functions, independent of transfer via EVs, provides key mechanistic insight into one possible role of EVs as proteostatic shuttles for cargo. This work also begins to address a fundamental question in the field, which is to delineate roles that EVs actually carry out in physiological conditions, compared to the many roles that have been shown possible in vitro.
Audience:
- Basic research (endosomal biology, ESCRT pathway, cell signaling, neurodevelopment)
- Specialized (Drosophila, Neurobiology; Extracellular Vesicles)
- This article will be of interest to basic scientists in the field of endosomal trafficking and extracellular vesicle biology as well as though studying the nervous system in Drosophila melanogaster. As the field of extracellular vesicle biology has broad implications in the spread of pathogenic cargoes in cancer and neurodegenerative disease, the basic biology associated with EVs has some translational relevance.
Expertise (Keywords):
- ESCRT and nSMase2 EV biogenesis pathways
- EV characterization in vitro/ live imaging studies
- EV release and uptake
- Neuronal and glial cell biology
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
1. Point-by-point description of the revisions
__Response to Reviewers’ comments and suggestions __
We are thankful to the reviewers for their time and effort to review our study and for their constructive suggestions. We address below their comments to further improve the manuscript.
__Reviewer #1 __
Major revision points:
The authors should consider using CENH3 as a marker instead of NDC80 to claim NEK1's role in chromosome segregation. Using a direct marker like CENH3 would strengthen their conclusion. However, if the authors choose not to generate the cell line and new set of data, it would be advisable to tone down their conclusion regarding chromosome segregation. I acknowledge the extensive work and data present in the paper.
Response: Thanks to the reviewer for the suggestion. We have tried previously to generate a CENH3-GFP marker line but were not successful. We also requested a CenH3 antibody from the group who published it, but without success. These are the reasons why we generated the NDC80 line, which is another kinetochore marker for chromosome segregation. We have characterised the NDC80-GFP parasite line extensively in a previous study using live cell imaging and super-resolution microscopy to follow its spatiotemporal dynamics at different stages of the Plasmodium life cycle including its correlation with the kinetochore (Zeeshan et al, 2020). We showed its binding to the centromeric region of chromosomes by ChIP seq analysis (See the figure below-Zeeshan et al, 2020). In our recent studies we also showed its dynamic location with other spindle markers like EB1 and ARK2 (Zeeshan et al, 2023). Based on these data, we believe that both CENH3 and NDC80 are appropriate markers for chromosome segregation in Plasmodium, and we hope that the reviewer appreciates this interpretation.
We are pleased to read that the reviewer recognises the extensive amount of work and data present in the paper.
Minor revision points: The figures are well-designed and presented to a high standard. I especially appreciate the guide schematics associated with the IFAs. However, one area that could be improved is the presentation of the expanded parasites. Firstly, the insets cover a major section of the cell, concealing data from the figure. Secondly, the NHS-ester signal is currently saturated and could be dimmed to more accurately represent the MTOC.
Response: We thank the reviewer for their appreciation and suggestions to further improve the figures. We have shifted the insets on the figures to avoid concealing the data. We have tried to improve the NHS-ester signal and provided more Z-stacks to show the MTOC more accurately. Please see the new supplementary figure S7.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
Major points (please note that both points do not necessarily need further experiments):
1) there is a scarcity for n numbers for many parts of the manuscript. Please give some indications how many cells were inspected, how often a phenotype was observed and how often an experiment was independently carried out (see also minor points).
Response: We have now provided better quantification for all the observations, with the number of cells observed and how many times each experiment was performed reported in the figure legends and in the method section.
2) While the -omics data is interesting, it is somewhat disconnected from the remainder of the manuscript in that it does not lead to any experimental work on the cell level to bring it in connection with NEK1 nor is there any validation. For instance, while the interactome analysis includes a good proportion of very plausible hits, not a single one is validated. I do see that it may be beyond this manuscript to do extensive validations but as this data has limits what can be concluded from it, this should at least be stated in the text. For instance in the paragraph in the discussion (line 613etc). Some experimental validations, if only to show location at the expected site, would be even better.
Response: We thank the reviewer for this insight. We have reanalysed the proteomics data and identified some other MTOC and spindle proteins, including kinesin-8B and kinesin-13 (see new Figure 4). We have already validated kinesin-8B as an MTOC/basal body marker in a previous study, with a similar phenotype during male gametogenesis resulting from its ablation (Zeeshan et al, 2019). Here we show the relative location of NEK1 with respect to that of kinesin-8B, which has a similar MTOC location in early-stage male gametogenesis. In another study we showed that kinesin-13 is localised at the MTOC and spindle and has a similar role during male gametogenesis (Zeeshan et al, 2022). Other proteins, including PF16 and kinesin15, have also been shown to be important for male gametogenesis (Straschil et al, 2010, Zeeshan et al, 2022).
Minor points: 1) Plasmodium is a species name, better not use it on its own (Anopheles would also not be used on its own if Anopheles mosquitoes are meant).
Response: We now mentioned the particular species of the Plasmodium genus or in general, we use Plasmodium spp.
2) While the imaging is very nice, I do have some issues with backgrounds containing mostly pixels of zero intensity (which seems to be the case for some of the images). In western blots this is not permitted anymore (because it is unclear what was clipped and whether this made weaker bands disappear). The same should apply to microscopy, unless very specific and defined analyses were used that caused this. If this was the case here (e.g. deconvolution, back ground subtraction etc), this should be stated for each type of imaging (including parameters). If this was just due to adjusting levels in Photoshp to clip low intensity, I would recommend to reduce that to a degree where no pixel has 0 intensity anymore to ensure no information in the image was lost.
Response: We thank the reviewer for pointing out this issue. Here, we have used several different types of imaging, including live cell, structural illumination microscopy (SIM), expansion microscopy and fixed immunofluorescence. In general, we adjusted the backgrounds for most of these images as necessary but did not use photoshop for any of them. For live cell imaging, the GFP/RFP fluorescent cell signals are well captured at different time points with an auto-exposure time and then processed simply using Axiovision/Zeiss zen software. SIM images were captured using different parameters based on fluorescence signal intensity and processed to remove background at a threshold level. We provide the processing parameters in the SIM processing method section). For expansion microscopy (ExM), the Z stacks were collected for different channels and the brightness adjusted to remove background. The SIM and ExM resolution images are presented as maximum intensity projections, as explained in the methods section; please see pages 23, 25 and 27. An example of SIM image processing is shown below:
3) Line 158: The role of NEK1 in centrosome splitting in Toxoplasma. Given that Plasmodium NEKs are not analogous to mammalian NEKs, a quick word on the relation of Plasmodium and Toxoplasma NEKs may be beneficial. Does Toxo also have 4 NEKs and is TgNEK1 an orthologoue of Plasmodium NEK1?
Response: In fact, Toxoplasma gondii encodes 4 NEKs (Miranda-Saavedra et al., 2012; PMID: 22587893), with TgNEK1 the orthologue of Plasmodium spp NEK1.
4) Fig. S1A: is hDHFR really fused to NEK1? Maybe the scheme can be updated to clarify this without readers having to consult the cited publication (Guttery et al., 2014a)
Response: We apologise for the confusion; we have updated and clarified the schematic for readers.
5) Line 135: those other model eukaryotes -> insert "of" before other
Response: We thank the reviewer for spotting this error and have now inserted “of”.
6) Line 149: is substituted by an SMASH -> by a SMASH
Response: We thank the reviewer for spotting this error and have now substituted by “a SMASH”.
7) Line 151: in the modulation of MAPK pathway -> an article seems to be missing here
Response: We thank the reviewer for pointing out the missing article and have now added Dorin-Semblat et al., 2007 article on MAP kinases to the text.
8) Line 153: remove first bracket
Response: We thank the reviewer for noticing the surplus bracket which has now been removed.
9) Line 189; insert „the" before parasite life cycle
Response: We thank the reviewer for noticing this and have now inserted “the”.
10) Line 211: We observed an overlap of NEK1 and centrin signals but in this case NEK1 was closer than centrin to the DNA (Fig 1C). In contrast to the NDC80 statement ("NDC80-mCherry was always closer to the DNA"), there is no quantitative information. Looking at the images this also seems a bit less clear cut. Can the authors put a number to his in some way?
Response: We thank the reviewer for highlighting this issue. To clarify, we have added some images showing the locations of Centrin-4/NDC80/DNA (New Fig 1B). We also calculated the overlap of DNA with centrin and DNA with NEK1 in the images showing the signals of these proteins (new Fig 1E). Similarly, the overlap of DNA with Ndc80 and DNA with NEK1 was calculated in the images showing the signals of these proteins (new Fig 1F). This analysis describes the order of signals for the different markers showing centrin is further than NDC80 from the DNA.
11) Line 216: The live cell images of the proliferative liver schizogony (Fig S1D) and sporogony (Fig S1E) stages showed similar patterns of NEK1-GFP foci formation during proliferative stages. Can the authors specify what they mean with similar? I do not see any change from cytoplasmic to one focus per nucleus in the liver schizont and also in sporogony there only seems one focus per nucleus in the sporozoite.
Response: The focal points are not very clear in these stages. Plasmodium liver and oocyst stages contain thousands of progenies and accurate study of the temporal dynamics of GFP expression is difficult. We highlight here that NEK1-GFP is localised at focal points in the nucleus, together with a diffused cytoplasmic location similar to that in asexual blood and male gametocyte stages. These foci are only observed during proliferative stages in cells undergoing active endomitosis in both oocyst and liver stages. No signal is observed in later stages when nuclear division is finished.
12) Not all videos seem to have been treated the same way. Video 1 shows strong increase in the DAPI signal, suggesting post-acquisition boosting of the signal in later time points to compensate for GFP bleaching. In contrast the DAPI in Video S2 stays in a reasonable dynamic range. Can the type of processing used be indicated in the materials or legends?
Response: We agree with the reviewer. Our main aim here was to observe the dynamic location of GFP- and RFP-tagged proteins at various stages during male gametogenesis, and not focus on quantifying the signal. We adjusted different channels according to fluorescence intensity only to show the protein location. We could collect a series of timelapse images for only two to three minutes because the GFP/RFP signals are bleached quickly.
13) Particularly for Fig. 2F and Fig. S2, Fig. 3I-L and Fig. 6A but also for others, please indicate how many cells and independent experiments this is based on and give the number in the legend (image representative of X inspected cells or something along these lines). Fig. 6B has some of that information in the main text but also their total number of cells inspected should be added to the figure legend.
Response: We thank the reviewer for this important suggestion. We now include the total number of cells analysed for each representative image, and the number of experiments performed, in both the figure legends and methods section.
14) Line318/Figure 3: "Live cell imaging showed that both NEK1 and kinesin-8B were located in the cytoplasm (Fig 3G, S3D)". And also later in this paragraph: Fig. S3D should be S3G and S3H. Also, the recruitment of Kinesin-8B within the first 30 seconds that is mentioned is not shown, a pre-induction image would be generally good to show. At the start of video 6 Kinesin-8B is also already recruited.
Response: We thank the reviewer for this suggestion. We have now included pre-induction gametocytes images showing expression of these proteins in new Fig 3A.
15) Line 339: "the" before nucleus might make this long sentence clearer.
Response: We thank the reviewer for pointing this out. “the” has now been added.
16) Line 341: Fig. 3I, beaded NDC80 signal. This signal does not seem that much different to some of the other markers in the SIM images in this figure part and the signal looks quite processed. How sure are the authors that the beads are real? This would be a very fascinating data point, so maybe worth providing some more image data. Does the number of NDC80 foci make sense? See also point 13.
Response: We thank the reviewer for pointing out this observation. We agree that that the NDC80 signal in this image does not look disimilar from some others, but this beaded structure is present in many images we have captured. Our focus was to locate the NEK1 signal relative to the signal of NDC80, and it was very challenging to capture both focal points, especially using two markers. We have replaced the image in Fig 3I with another with better signals for NDC80 and included more images in supplementary figures (S3I and J) to validate the observation. In previous studies we have observed similar NDC80 foci (about 28 NDC80 foci in a diploid gametocyte). (Zeeshan et al 2022 and Zeeshan et al 2023); please see the following figure. The NDC80 focal points represent the number of unclustered kinetochores; for example, in a diploid gametocyte during spindle formation, this would be expected for the Plasmodium haploid genome consisting of 14 chromosomes and the centromeric region of each chromosome associated with the kinetochore multi-protein complex that facilitates spindle attachment.
17) Is S4A a replicate of Fig. 5A, it looks like the identical gel? Was this done more than once? Maybe also add that it was a 1 h induction time into the figure. Three replicates were done for the qPCR for the clag promoter strategy, but again this graph is in both, Fig. 5 and Fig. S4. Can the authors weed out the redundancies in these two figures and provide all n numbers?
Response: We thank the reviewer for highlighting this duplication of the image to show depletion/downregulation of NEK1. The image that was originally part of main Figure 5 has now been deleted, leaving it in supplementary Figure S4.
18) Line 419: please help the reader here and modify to start of this paragraph with something along the lines of "To generate PTD lines..."
Response: We have modified the start of the sentence to make clear to readers the importance of the PTD lines.
19) Line 432: Is this how this is typically phrased (In mosquitoes fed NEK1clag parasites)? I would remove "s" from mosquitoes or insert "with" after "fed" (or maybe fed on NEK1clag infected mice?).
Response: We thank the reviewer for this suggestion. We have added “with” after “fed”.
20) Line 436: on the naïve mice, remove "the"
Response: We thank the reviewer for noticing this. We have removed “the” before naïve mice.
21) Line 446: log2fold -1.5
Response: We thank the reviewer for pointing this out and have corrected this.
22) Fig. S5: It might be beneficial to give in the figure the information to at a glance see what kind of data the figure parts show because it is a mix of RNASeq, phosphoproteomics, NEK1clag and NEK1-AID/HA gametocytes.
Response: We thank the reviewer for this suggestion and have now described the data/plots showing RNA-seq and phosphoproteomic analyses in Figure S5.
23) Line 500: consider replacing imaging with information.
Response: We thank the reviewer for this suggestion and have now replaced “imaging” with “information”.
24) Line 585: remove "be"
Response: We thank the reviewer for spotting this and have now removed “be”.
25) Not all symbol fonts did survive PDF conversion, see e.g. line 1050 or 1101 or 1197.
Response: We are not quite sure why the symbols did not survive conversion to pdf; we have tested conversion of the Word file to pdf format and all the symbols survived.
Reviewer #2 (Significance (Required)):
The strength of this work is the very comprehensive imaging data that combines several high-end techniques and provides a coherent picture. It has all the necessary markers to firstly localize NEK1 in the context of mitosis and then understand the phenotype when it is inactivated. The weakness of this work lies in the limited quantitative information on some of the observed phenotypes.
Response: We appreciate the concern of the reviewer and have revised the manuscript by adding further quantitative information in figure legends and in the method section.
and in the limited pursuit of the findings of the -omics data although, in favour of the paper - these data do add meaningfully to the overall picture even if they were not further validated.
Response: We have discussed more about the omics data. Please line number 656-58 in discussion
__Reviewer #3 __
Major comments:
- NEK1 mutant parasites show a defect in male gametogenesis. Did authors observe any defect on female gamete formation? This data can be included in the main manuscript. An IFA with female gametocyte marker such as Pbg337 can be included to demonstrate sex-specific expression of NEK1. Response: We have investigated sex-specificity by using P28 antibody (13.1), a reagent which is generally used in P. berghei to identify female gametes and zygotes (we do not have a Pbg337-specific reagent and assume that the reviewer is referring to Pf g377). We see no defect in the number of female gametes formed and identified by surface expression of P28 (Fig S4I and J). This observation was supported by the lack of NEK1-GFP expression in female gametocytes at any time point (Fig. S1F). Furthermore, the rescue experiment (now added in Fig 5F) proves that the defect is only in the male and not the female lineage.
Authors should include genetic crosses experiments to demonstrate female gametes of NEK1 mutant are fertile. Authors appear to have sex-sterile lines available in their lab and have performed these experiments in their previous studies (PMID: 37704606).
Response: We thank the reviewer for this suggestion. We have now performed the genetic rescue experiment by crossing NEK1Clag parasites with two female deficient lines (Δnek4 and Δdozi) and one male deficient line (Δhap2). In three independent set of experiments, we could rescue the defect in NEK1Clag parasites by crossing with female deficient lines, but not by crossing with the male deficient line, by observing ookinete formation. These data are presented in Fig 5F.
- Proteomic and phosphoproteomic data using mutant NEK1 parasites showed differential phosphorylation of several proteins but authors did not observe same proteins to be differentially phosphorylated in different replicates. Using in vitro experiments involving peptides or recombinant protein fragments, authors should validate and demonstrate some of the substrates to be direct parasite substrates for NEK1. Kinesin-15 can be one good candidate substrate as kinesin-15 is less phosphorylated in NEK1-AID/HA and is enriched in NEK1-GFP Immunoprecipitates. This is very relevant especially since authors observe perturbation of levels for several other kinases in NEK1 knock down parasites.
Response: We appreciate the reviewer’s suggestion to do in vitro biochemical experimentation to validate NEK1 kinase substrates. With respect, this suggestion is well beyond the focus of this study since our aim was to characterise the cell biology of NEK1 function in vivo, with a focus on male gametogenesis. Kinesin-15 together with NEK1 was one of the few proteins for which we detected a significant reduction of phosphorylated peptides across all replicates, despite the high sample variability (likely linked to the pre-treatment involving ethanol and/or auxin to degrade the auxin-induced degron). It is therefore highly likely that phosphorylation of Kinesin-15-S454 is dependent on NEK1. We observed no differential phosphorylation of other kinases in the dataset, but we cannot exclude that other kinases or phosphatases are involved in this signalling pathway.
NEK1 is known to phosphorylate MAP2 kinase in vitro in P. falciparum. Did authors find MAP2 to be differentially phosphorylated in their dataset? It should be discussed accordingly in the current manuscript.
Response: We observed phosphorylation of serine 301 in MAPK2. At 6 min post-activation we detected a two-fold reduction of the corresponding peptide with a Q-value of 0.0528, which is just above the selected threshold. Given the high replicate variability, it is possible that this serine is phosphorylated by NEK1 upon gametocyte activation, but more targeted analyses would be necessary to test this hypothesis. As this observation is still rather speculative, we preferred to refer to it in the discussion.
- Authors show that NEK1 is expressed in pre-erythrocytic stages. Since authors have multiple tools/ transgenic parasites to study relative expression of NEK1, authors can test relative expression of NEK1 in pre-erythrocytic stages and discuss possible function of NEK1 during liver stages.
Response: We appreciate this suggestion of the reviewer, but we consider the proposed work to be outside the scope of this manuscript, where our focus is on the role of NEK1 in sexual cells. We agree that it will be interesting to examine the possible function of NEK1 in liver stages and believe that several groups are now embarking upon such work.
Minor comments: Authors should cite relevant literature on role of kinases in male gametogenesis by adding a paragraph. e.g. PMID: 18532880, PMID: 29042501, PMID: 29311293, PMID: 32568069, PMID: 34724830, PMID: 32681115, PMID: 36154191 and other kinases.
Response: These references have been added in the discussion section, line numbers 632-635.
Reviewer #3 (Significance (Required)):
Expansion microscopy and live cell imaging are cutting edge and provide the detail and dynamic picture of NEK1 expression in the context of components associated with rapid mitosis, spindle formation, and Kinetochore attachment. This study adds new information to our understanding of the process of male gametogenesis in apicomplexan parasites.
Response: We appreciate these encouraging comments.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
The manuscript by Zeeshan et al. investigates the function of Never in mitosis (NIMA)-like kinase (NEK 1) during Plasmodium gametogenesis with a focus on NEK1 in the rodent malaria parasites. The current study shows NEK1 as an important component present near MTOC, kinetochore complex and assisting in spindle formation during rapid mitosis during gametogenesis. Using NEK1-GFP parasites, authors show general association of NEK1 with axoneme/ciliary proteins as well as subunits of the replication machinery. By conditional knock down approaches, authors showed that NEK1 is required during male gametogenesis and parasite transmission to mosquitoes suggesting it to be a significant target for developing transmission blocking interventions.
Major comments:
- NEK1 mutant parasites show a defect in male gametogenesis. Did authors observe any defect on female gamete formation? This data can be included in the main manuscript. . An IFA with female gametocyte marker such as Pbg337 can be included to demonstrate sex-specific expression of NEK1.
- Authors should include genetic crosses experiments to demonstrate female gametes of NEK1 mutant are fertile. Authors appear to have sex-sterile lines available in their lab and have performed these experiments in their previous studies (PMID: 37704606).
- Proteomic and phosphoproteomic data using mutant NEK1 parasites showed differential phosphorylation of several proteins but authors did not observe same proteins to be differentially phosphorylated in different replicates. Using in vitro experiments involving peptides or recombinant protein fragments, authors should validate and demonstrate some of the substrates to be direct parasite substrates for NEK1. Kinesin-15 can be one good candidate substrate as kinesin-15 is less phosphorylated in NEK1-AID/HA and is enriched in NEK1-GFP Immunoprecipitates. This is very relevant especially since authors observe perturbation of levels for several other kinases in NEK1 knock down parasites.
- NEK1 is known to phosphorylate MAP2 kinase in vitro in P. falciparum. Did authors find MAP2 to be differentially phosphorylated in their dataset? It should be discussed accordingly in the current manuscript.
- Authors show that NEK1 is expressed in pre-erythrocytic stages. Since authors have multiple tools/ transgenic parasites to study relative expression of NEK1, authors can test relative expression of NEK1 in pre-erythrocytic stages and discuss possible function of NEK1 during liver stages.
Minor comments:
Authors should cite relevant literature on role of kinases in male gametogenesis by adding a paragraph. e.g. PMID: 18532880, PMID: 29042501, PMID: 29311293, PMID: 32568069, PMID: 34724830, PMID: 32681115, PMID: 36154191 and other kinases.
Significance
Expansion microscopy and live cell imaging are cutting edge and provide the detail and dynamic picture of NEK1 expression in the context of components associated with rapid mitosis, spindle formation, and Kinetochore attachment. This study adds new information to our understanding of the process of male gametogenesis in apicomplexan parasites.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
A fascinating aspect of malaria parasite biology is the incredibly fast generation of 8 nuclei in microgamete formation. In this work the authors identify NEK1, one of the 4 NEKs of the parasite, as an essential protein in that process. They use impressive imaging (but see small comment on that below) including live cell time lapse, superresolution, expansion and EM with markers to describe the location of NEK1 in relation to mitosis relevant structures and the impact of its loss. This is bolstered by some IP, RNASeq and phosphoproteomic data, providing a very thorough characterization of NEK1 although these data are less thorough than the imaging. The sound conclusion from the authors is that Nek1 is needed for MTOC organization, spindle assembly and kinetochore attachment in mitosis during male gamete formation.
Major points(please note that both points do not necessarily need further experiments):
- there is a scarcity for n numbers for many parts of the manuscript. Please give some indications how many cells were inspected, how often a phenotype was observed and how often an experiment was independently carried out (see also minor points).
- while the -omics data is interesting, it is somewhat disconnected from the remainder of the manuscript in that it does not lead to any experimental work on the cell level to bring it in connection with NEK1 nor is there any validation. For instance, while the interactome analysis includes a good proportion of very plausible hits, not a single one is validated. I do see that it may be beyond this manuscript to do extensive validations but as this data has limits what can be concluded from it, this should at least be stated in the text. For instance in the paragraph in the discussion (line 613etc). Some experimental validations, if only to show location at the expected site, would be even better.
Minor points:
- Plasmodium is a species name, better not use it on its own (Anopheles would also not be used on its own if Anopheles mosquitoes are meant).
- While the imaging is very nice, I do have some issues with backgrounds containing mostly pixels of zero intensity (which seems to be the case for some of the images). In western blots this is not permitted anymore (because it is unclear what was clipped and whether this made weaker bands disappear). The same should apply to microscopy, unless very specific and defined analyses were used that caused this. If this was the case here (e.g. deconvolution, back ground subtraction etc), this should be stated for each type of imaging (including parameters). If this was just due to adjusting levels in Photoshp to clip low intensity, I would recommend to reduce that to a degree where no pixel has 0 intensity anymore to ensure no information in the image was lost.
- Line 158: The role of NEK1 in centrosome splitting in Toxoplasma. Given that Plasmodium NEKs are not analogous to mammalian NEKs, a quick word on the relation of Plasmodium and Toxoplasma NEKs may be beneficial. Does Toxo also have 4 NEKs and is TgNEK1 an orthologoue of Plasmodium NEK1?
- Fig. S1A: is hDHFR really fused to NEK1? Maybe the scheme can be updated to clarify this without readers having to consult the cited publication (Guttery et al., 2014a)
- Line 135: those other model eukaryotes -> insert "of" before other
- Line 149: is substituted by an SMASH -> by a SMASH
- Line 151: in the modulation of MAPK pathway -> an article seems to be missing here
- Line 153: remove first bracket
- Line 189; insert „the" before parasite life cycle
- Line 211: We observed an overlap of NEK1 and centrin signals but in this case NEK1 was closer than centrin to the DNA (Fig 1C). In contrast to the NDC80 statement ("NDC80-mCherry was always closer to the DNA"), there is no quantitative information. Looking at the images this also seems a bit less clear cut. Can the authors put a number to his in some way?
- Line 216: The live cell images of the proliferative liver schizogony (Fig S1D) and sporogony (Fig S1E) stages showed similar patterns of NEK1-GFP foci formation during proliferative stages. Can the authors specify what they mean with similar? I do not see any change from cytoplasmic to one focus per nucleus in the liver schizont and also in sporogony there only seems one focus per nucleus in the sporozoite.
- Not all videos seem to have been treated the same way. Video 1 shows strong increase in the DAPI signal, suggesting post acquisition boosting of the signal in later time points to compensate for GFP bleaching. In contrast the DAPI in Video S2 stays in a reasonable dynamic range. Can the type of processing used be indicated in the materials or legends?
- Particularly for Fig. 2F and Fig. S2, Fig. 3I-L and Fig. 6A but also for others, please indicate how many cells and independent experiments this is based on and give the number in the legend (image representative of X inspected cells or something along these lines). Fig. 6B has some of that information in the main text but also there total number of cells inspected should be added to the figure legend.
- Line318/Figure 3: "Live cell imaging showed that both NEK1 and kinesin-8B were located in the cytoplasm (Fig 3G, S3D)". And also later in this paragraph: Fig. S3D should be S3G and S3H. Also, the recruitment of Kinesin-8B within the first 30 seconds that is mentioned is not shown, a pre-induction image would be generally good to show. At the start of video 6 Kinesin-8B is also already recruited.
- Line 339: "the" before nucleus might make this long sentence clearer.
- Line 341: Fig. 3I, beaded NDC80 signal. This signal does not seem that much different to some of the other markers in the SIM images in this figure part and the signal looks quite processed. How sure are the authors that the beads are real? This would be a very fascinating data point, so maybe worth providing some more image data. Does the number of NDC80 foci make sense? See also point 13.
- Is S4A a replicate of Fig. 5A, it looks like the identical gel? Was this done more than once? Maybe also add that it was a 1 h induction time into the figure. Three replicates were done for the qPCR for the clag promoter strategy, but again this graph is in both, Fig. 5 and Fig. S4. Can the authors weed out the redundancies in these two figures and provide all n numbers?
- Line 419: please help the reader here and modify to start of this paragraph with something along the lines of "To generate PTD lines..."
- Line 432: Is this how this is typically phrased (In mosquitoes fed NEK1clag parasites)? I would remove "s" from mosquitoes or insert "with" after "fed" (or maybe fed on NEK1clag infected mice?).
- Line 436: on the naïve mice, remove "the"
- Line 446: log2fold 1.5 likely should be log2fold>-1.5
- Fig. S5: It might be beneficial to give in the figure the information to at a glance see what kind of data the figure parts show because it is a mix of RNASeq, phosphoproteomics, NEK1clag and NEK1-AID/HA gametocytes.
- Line 500: consider replacing imaging with information.
- Line 585: remove "be"
- Not all symbol fonts did survive PDF conversion, see e.g. line 1050 or 1101 or 1197.
Significance
The strength of this work is the very comprehensive imaging data that combines several high-end techniques and provides a coherent picture. It has all the necessary markers to firstly localize NEK1 in the context of mitosis and then understand the phenotype when it is inactivated. The weakness of this work lies in the limited quantitative information on some of the observed phenotypes and in the limited pursuit of the findings of the -omics data although, in favour of the paper - these data do add meaningfully to the overall picture even if they were not further validated.
The study provides very interesting information to a field that currently is gaining momentum in malaria research. It will be of interest to researchers working on
- mitosis in malaria parasites and other apicomplexans
- kinases in these parasites and likely also for researchers working on mitosis in model organisms.
Expertise: I am a cell biologist working with P. falciparum blood stages
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary:
This article by Zeeshan et al. investigates the role of NEK1 kinase in Plasmodium, the malaria parasite, focusing on its essential functions in microtubule organizing center (MTOC) organization and kinetochore attachment during the rapid mitosis involved in male gamete formation. Utilizing a combination of live cell imaging, ultrastructure expansion microscopy (U-ExM), and various molecular biology techniques, the authors elucidate the spatiotemporal dynamics of NEK1 in relation to MTOC dynamics across different stages of the Plasmodium life cycle. Their findings reveal that NEK1 is crucial for coordinating spindle formation and chromosome segregation, highlighting its potential as a target for malaria intervention strategies.
Strengths:
Comprehensive Methodological Approach: The combination of cutting-edge imaging techniques with conditional gene knockdown and proteomics provides a robust framework for investigating NEK1's role in Plasmodium mitosis, ensuring the reliability and depth of the findings. Novel Insights into Plasmodium Biology: The study offers groundbreaking insights into the mitotic mechanisms of Plasmodium, particularly the atypical processes involved in male gametogenesis, thereby filling a significant knowledge gap. Implications for Malaria Control: By identifying a potential new drug target, this research directly contributes to the ongoing malaria control and eradication efforts, highlighting the translational potential of basic biological research. Major revision points: The authors should consider using CENH3 as a marker instead of NDC80 to claim NEK1's role in chromosome segregation. Using a direct marker like CENH3 would strengthen their conclusion. However, if the authors choose not to generate the cell line and new set of data, it would be advisable to tone down their conclusion regarding chromosome segregation. I acknowledge the extensive work and data present in the paper. Minor revision points: The figures are well-designed and presented to a high standard. I especially appreciate the guide schematics associated with the IFAs. However, one area that could be improved is the presentation of the expanded parasites. Firstly, the insets cover a major section of the cell, concealing data from the figure. Secondly, the NHS-ester signal is currently saturated and could be dimmed to more accurately represent the MTOC.
Significance
This study significantly advances our understanding of the cell cycle mechanisms in Plasmodium, particularly the unique mitotic processes involved in male gametogenesis. By elucidating the role of NEK1 kinase, the research addresses a critical gap in malaria biology, offering insights into the parasite's ability to proliferate and transmit between hosts. The identification of NEK1 as a key regulator of MTOC organization and kinetochore attachment during Plasmodium mitosis not only broadens our fundamental knowledge of cellular division in divergent eukaryotes. The study lays a solid foundation for future research to disrupt malaria transmission through targeted intervention strategies. Further exploration of NEK1's interactions and the development of specific inhibitors could pave the way for novel antimalarial therapies, highlighting the importance of continued research in this area.
The article by Zeeshan et al. contributes significantly to our understanding of Plasmodium biology, particularly the role of NEK1 kinase in the parasite's cell cycle. Despite some limitations, such as the scope of kinase investigation and the direct translation to therapeutic applications, the study lays a solid foundation for future research to disrupt malaria transmission through targeted intervention strategies. Further exploration of NEK1's interactions and the development of specific inhibitors could pave the way for novel antimalarial therapies, highlighting the importance of continued research in this area.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Response to reviewer comments
R: We really appreciate the reviewer positive comments and consideration, and we believe that the review process has significantly strengthened our manuscript.
We have responded to all the reviewer comments, as follows:
Response (R)
FROM REVIEWER #1
Major comments:
The manuscript is mostly well written (it could use a few minor grammatical corrections), the significance of the problem is well described, and the results are clearly presented with adequate controls. The movies, provided as supplementary material, are of the highest quality and are essential additions to the stills provided in the figures. The data convincingly support the key conclusions of the manuscript.
R: We sincerely appreciate the positive comments provided by the reviewer. In response, we have thoroughly revised the manuscript to address any grammatical issue.
Does the MO knockdown both S and L homeologs of X. laevis? Since the level of GAPDH in Figure 1H also looks reduced in Gai2 MO lane, it should be made clear that the apparent knockdown of Gai2 was normalized to GAPDH, rather than being the results of unequal loading of the gel. Yes, I recognize that Figure 1I says normalized, but this is not stated in the results or the methods. Also, was this experiment done with X. laevis or X. tropicalis? I could imagine that if done in X. laevis, the lack of complete knockdown might be due to only one homeolog being affected.
R: We appreciate the reviewer comment, and we described in Material and Methods section the region targeted by the morpholino, in both Xenopus species. We added the next paragraph in the Material and Methods section, see page 24, paragraph 2, lines: 4-11:
"MO against Xenopus Gαi2 was designed by GeneTools to target the 5' UTR site of X. tropicalis (X.t) and X. laevis (X.l) transcripts (Gαi2MO: 5'-CGACACAGCCCCAGATAGTGCGT-3'). Specifically, it hybridizes with the 5' UTR of X. t Gαi2 (NM_203919), 17 nucleotides upstream of the ATG start codon. For X. l Gαi2, the morpholino hybridizes with both isoforms described in Xenbase. It specifically targets the 5' UTR of the Gαi2.L isoform (XM_018258962), located 17 nucleotides upstream of the ATG start codon, and the 5' UTR of the Gαi2.S isoform (NM_001097056), situated 275 nucleotides upstream of the ATG."
With respect to Figure 1H and 1I, we have specified in the Fig. 1 legend that we normalized the data to GAPDH to quantifying the decrease in Gαi2 expression induced by the morpholino.
See page 40, Figure 1H-I, Legends section. Finally, the result showed in Fig. 1A-I was done in X.t., that was now stated at the legend from the figure. We added at the Supplementary material Fig.1S, the result done in X.l. experiment.
The knowledge of the efficacy of knockdown in each Xenopus species provided by the information requested in the previous point, would allow the reader to assess the level of knockdown in the remaining assays. To do this, the authors should tell us which assays were done in which species. I am not suggesting that each experiment needs to be done in each species, only that the information should be provided. If the MO is more effective in X. tropicalis - which assays used this species? If the knock down is partial, as shown in Figure 1H-I, which species this represents in the remaining assays would be useful knowledge.
R: We greatly appreciate the reviewer's valuable comments and suggestions, and as a response, we have incorporated a new supplementary figure (Figure S1). This figure includes a western blot and an in situ hybridization assay illustrating the efficiency of the knockdown in Xenopus laevis. The results presented in Figure S1 demonstrate that the knockdown efficiency is similar in both Xenopus species, allowing for a comparison between Figure 1A-I (X. tropicalis) and Figure 1S (X. laevis).
To complement this information, we have also improved the section of Material and Methods regarding the experiments in both Xenopus species (Xenopus tropicalis and Xenopus laevis). As detailed in the Materials and Methods section, we employed 20 ng of Gai2MO for Xenopus tropicalis embryos and 35 ng of Gai2MO for Xenopus laevis embryos to deplete cell migration. In both species, in vivo migration was analyzed, resulting in a substantial inhibition of cranial neural crest (NC) migration, ranging from 60% to 80%. Additionally, we conducted dispersion assays in both species. In X. laevis, in vitro migration was monitored for 10 hours, while in X. tropicalis, it was tracked for 4 hours, both yielding the same phenotype. We also studied cell morphology and microtubule dynamics in both Xenopus models. However, we used different tracer concentrations for each, with 200 pg for X. laevis and 100 pg for X. tropicalis, as specified in the Materials and Methods section. Our Rac1 and RhoA timelapse experiments were conducted in both species as well, employing pGBD-GFP and rGBD-mCherry probes, respectively, and different probe concentrations as outlined in the Materials and Methods section. These experiments revealed polarity impairment and consistent Rac1 behavior in both Xenopus species. The study of focal adhesion in vivo dynamics using the FAK-GFP tracer was carried out also in both species, resulting in the same phenotype. It is worth noting that the only experiment conducted exclusively in X. tropicalis was the focal adhesion disassembly assay with nocodazole.
Regarding the improvements of the Materials and Method section see page 24, paragraph 1.
We want to highlight that at the beginning of the Materials and Methods section, we incorporated a paragraph to clarify that "All experiments were conducted in both Xenopus species (X.t and X.l) using distinct concentrations of the morpholino (MO) and mRNA, as specified in each respective methodology description". This approach consistently yielded similar results. It is important to note that for the figures, we selected the most representative images.
We have also specified in each figure legend which Xenopus species is depicted.
Minor comments:
While prior studies are referenced appropriately, and the text and figures are mostly clear and accurately presented, the following are a few suggestions that would help the authors improve the presentation of their data and conclusions:
The cell biological experiments convincingly demonstrate that knockdown of Gai2 causes cells to move more slowly. It would be a nice addition to bring the explant experimental data back to the embryo by showing whether the slower moving NC cells in morphants eventually populate the BA. DO they cease to migrate or are they just slower getting to their destination? This could be done by performing snail2 ISH at a later stage (34-35?).
R: We appreciate the reviewer's insightful point, and in response, we conducted the in situ hybridization assay at stages 32-36 to address this question. The result has been included in Figure S1F-H, revealing a delayed migration of cranial neural crest cells. Consequently, we have updated the text in the results section, page 6, paragraph 1, line 18:
"In later developmental stages, such as stage 32, WISH revealed alterations in migration as well, albeit to a lesser extent compared to the early stages (22-23). This suggests a phenotype characterized by delayed migration (supplementary material Fig S1F-H)."
There are places in the manuscript where the authors use the terms "silencing" or "suppression" of Gai2, when they really mean reduced translation - their system is not a genetic knockout, as clearly demonstrated in Figure 1H-I. I suggest that more accurate wording be used.
R: We appreciate the reviewer's comment, and we agree that the Gαi2 morpholino impedes Gαi2 translation, leading to a reduction in Gαi2 protein expression. Consequently, we have revised the entire manuscript, replacing the terms "silencing" and "suppression" with "knockdown".
In Figures 1-5 there are scale of bars on the cell images, but these are not defined in any of the figure legends.
R: We value the reviewer's comment, and we have revised all the figure legends by including the scale information. Each image has been scaled to 10 µm with varying magnifications.
The abstract is the weakest section of the manuscript, and would have greater impact if it were more clearly written.
R: We appreciate the reviewer's comment on the abstract, and we have revised and edited it to enhance its quality.
Abstract:
"Cell migration is a complex and essential process in various biological contexts, from embryonic development to tissue repair and cancer metastasis. Central to this process are the actin and tubulin cytoskeletons, which control cell morphology, polarity, focal adhesion dynamics, and overall motility in response to diverse chemical and mechanical cues. Despite the well- established involvement of heterotrimeric G proteins in cell migration, the precise underlying mechanism remains elusive, particularly in the context of development. This study explores the involvement of Gαi2, a subunit of heterotrimeric G proteins, in cranial neural crest cell migration, a critical event in embryonic development. Our research uncovers the intricate mechanisms underlying Gαi2 influence, revealing a direct interaction with the microtubule-associated protein EB1, and through this with tubulin, suggesting a regulatory function in microtubule dynamics modulation. Here, we show that Gαi2 knockdown leads to microtubule stabilization, alterations in cell polarity and morphology with an increased Rac1-GTP concentration at the leading edge and cell-cell contacts, impaired cortical actin localization and focal adhesion disassembly. Interestingly, in Gai2 depleted cells RhoA-GTP was found to be reduced at cell-cell contacts and concentrated at the leading edge, providing evidence of Gαi2 significant role in polarity. Remarkably, treatment with nocodazole, a microtubule-depolymerizing agent, effectively reduces Rac1 activity, restoring cranial NC cell morphology, actin distribution, and overall migration. Collectively, our findings shed light on the intricate molecular mechanisms underlying cranial neural crest cell migration and highlight the pivotal role of Gαi2 in orchestrating microtubule dynamics through EB1 and EB3 interaction, modulating Rac1 activity during this crucial developmental process."
Reviewer #1 (Significance (Required)):
The molecular regulation of cell movement is a key feature of a number of developmental and homeostatic processes. While many of the proteins involved have been identified, how they interact to provide motility has not been elucidated in any great detail, particularly in embryo-derived cells (as opposed to cell lines). The results obtained from the presented experiments are novel, in-depth and provide a novel paradigm for how G proteins regulate microtubule dynamics which in turn regulate other components of the cytoskeleton required for cell movement. The results will be applicable to many migrating cell types, not just neural crest cells.
Because of the application of the data to many types of cells that migrate, the audience is expected to include a broad array of developmental biologists, basic cell biologists and those interested in clinically relevant aberrant cell migrations.
R: We really appreciate the reviewer positive comments and consideration
FROM REVIEWER #2
Reviewer: Major comments:
The authors aim to address two issues in this manuscript: a) the role of Gai2 in neural crest development; and b) the mechanism of Gai2 function. While they have done a good job demonstrating a role of Gai2 in NC migration both in vivo and in vitro as well as the effects of Gai2 knockdown on cytoskeleton dynamics, protein distribution of selected polarity and focal adhesion molecules, and Rac1 activation, the link between Gai2 and the downstream effectors is largely correlative. Because of this, the model suggesting the sequential events flowing from Gai2 to microtubule to Rac1 to focal adhesion/actin should be modified to allow room for direct and indirect regulation at potentially multiple entry points.
R: We appreciate the valuable comments provided by the reviewer. To further elucidate the mechanism underlying Gαi2 regulation of cranial neural crest cell migration, we have incorporated new data from interaction analysis conducted by PLA (proximity ligand assay). This analysis supports our proposed model, indicating Gαi2 interacts with EB proteins to form a complex with tubulin, thereby regulating microtubules dynamics and subsequently influencing Rac1 and RhoA activity, cell morphology (actin cytoskeleton) and cell-matrix adhesion, ultimately affecting migration. However, we cannot exclude that this regulation may also involve other intermediary proteins, such as GEFs, GAPs, GDIs, and others. Finally, as a result, we have revised our model and its description to provide a more detailed explanation of the potential mechanism in line with the reviewer suggestion. Specifically, we have edited the discussion/conclusion, model and the legend for Figure 6. Please refer to page 16 (paragraph 1, 2 and 3), 22 (paragraph 1), 23 (paragraph 1), 44 (Legend Fig. 6).
__Reviewer: __Specific major comments are as the following:
Strengths:
-Determination of a role of Gai2 in neural crest migration is novel.
-The effect of Gai2 knockdown on membrane protrusion morphology and microtubule stability and dynamics are demonstrated nicely.
-Quantification of experimental perimeters has been performed throughout the manuscript in all the figures, and statistical analysis is included in the figures.
R: We appreciate the reviewer positive comments
Weaknesses: -The heavy focus of the study on microtubule is due to the previous publication on the function of Gai2 in regulation of microtubule during asymmetrical cell division. However, the activity of Gai2 is likely cell type-specific, as it has not been shown to control microtubule during cytokinesis in general. It is equally likely that Gai2 primarily regulates Rac1 or actin regulators to influence both microtubule and actin dynamics. The tone of the discussion should therefore be softened.
R: We greatly appreciate and agree with the comment from the reviewer, highlighting the possibility that Gαi2 primarily regulates Rac1 or actin regulators to influence both microtubule and actin dynamics. In this regard, we have revised our manuscript to include a discussion of this point. We added the next paragraph in the Discussion/Conclusion section, page 22-23.
"It is well established that the activity from the Rho family of small GTPases is controlling cytoskeletal organization during migration (Ridley et al., 2015). Contrariwise, it has been described in many cell types, that microtubules dynamic polymerization plays a crucial role in establishing the structural foundation for cell polarization, consequently influencing the direction of cell motility (Watanabe et al., 2005). Our results appear to align with this latter view. While it is reasonable to postulate the possibility that Gαi2 regulates Rac1 activity, subsequently influencing actin and microtubule dynamics, our findings in the context of cranial NC cells, lend support to an alternative sequence of events. Initially, Gαi2 knockdown leads to a decrease in microtubule dynamics, which in turn increase Rac-GTP towards the leading edge. This shift is accompanied by reduced levels of cortical actin and impaired focal adhesion disassembly, culminating in compromised cell migration. Notably, nocodazole, a microtubule-depolymerizing agent, not only diminishes Rac-GTP localization at the leading edge but also rescues cell morphology, restores normal cortical actin localization, and promotes focal adhesion disassembly, thereby facilitating cell migration. If Rac1 activity were indeed upstream of microtubules, it would be expected that nocodazole would not reduce Rac-GTP levels at the cell leading edge. These results suggest that the regulation of Rac1 activity may follow, rather than precede, alterations in microtubule dynamics, in the context of NC cells. Furthermore, in support of our model, our protein interaction analysis demonstrates Gαi2 interacting with microtubule components such as EB proteins and tubulin. As we already mention above, earlier studies have reported that microtubule dynamics promote Rac1 signaling at the leading edge and by releasing RhoGEFs promote RhoA signaling as well (Best et al., 1996; Garcin and Straube, 2019; Moore et al., 2013; Waterman-Storer et al., 1999). In addition, it is well-documented that RhoGEFs interact with microtubules, including bPix, a GEF for Rac1 and Cdc42, which, in turn, promotes tubulin acetylation (Kwon et al., 2020). Interestingly, in ovarian cancer cells, Gαi2 has been shown to activate Rac1 through an interaction with bPix, thereby jointly regulating migration in response to LPA (Ward et al., 2015). Taken together, these findings further support our proposed model (refer to Fig. 6)."
The effect of rescue of NC migration with Rac1 inhibitor is marginal and the result is hard to interpret considering the inhibitor also blocks control NC migration. Either lower doses of Rac1 inhibitor can be used or the experiment can be removed from the manuscript, as Rac1 is required for membrane protrusions and the inhibitor doses can be hard to titrate.
R: We appreciate and agree with the reviewer's comments. To address this concern and enhance clarity, we have incorporated the following paragraph into the manuscript within the Discussion section. Additionally, we have included information on the range of NSC23766 concentrations used for this analysis in the Materials and Methods section. Page 25, Explants and microdissection.
In the results section see page 11 and 12, paragraph 2.
"It is worth noting that we conducted Rac inhibitor NSC23766 trials at concentrations ranging from 20 nM to 50 nM for X. laevis and between 10 nM to 30 nM for X. tropicalis. In both cases, higher concentrations of the Rac inhibitor proved to be lethal (data not shown), underscoring the essential role of Rac1 in both cell migration and cell survival. Remarkably, our results show partial restoration in cranial NC cells dispersion following a 5-minute treatment with a low concentration of the Rac1 inhibitor (20 nM of NSC23766 X. laevis and 10 nM for X. tropicalis) (Fig. 3L-P, supplementary material movie S5). This suggests that these concentrations are sufficient to demonstrate that the increase in Rac1-GTP resulting from Gαi2 morpholino knockdown impairs cell migration."
The partial rescue can be attributed to the crucial role of microtubule dynamics in cell migration, which acts upstream of Rac activity. Additionally, Rac is pivotal for the modulation of cell polarity at the leading edge of migration. It is worth emphasizing that Rac1 levels are critical for cell migration, as demonstrated by other researchers. Lower concentrations of Rac1-GTP have been shown to hinder cell migration in cells deficient in Rac1, leading to a significant reduction in wound closure and random cell migration (Steffen et al., 2013).
"Therefore, we believe that the lower concentration of NSC23766 used in our assay was adequate to reduce the abnormal Rac1-GTP activity in the morphant NC cells. However, it is important to note that for normal NC cell, this level of reduction in Rac1-GTP activity is critical and sufficient to impair normal migration".
See page 11 and 12, paragraph 2.
Steffen A, Ladwein M, Dimchev GA, Hein A, Schwenkmezger L, Arens S, Ladwein KI, Margit Holleboom J, Schur F, Victor Small J, Schwarz J, Gerhard R, Faix J, Stradal TE, Brakebusch C, Rottner K. Rac function is crucial for cell migration but is not required for spreading and focal adhesion formation. J Cell Sci. 2013 Oct 15;126(Pt 20):4572-88. doi: 10.1242/jcs.118232. Epub 2013 Jul 31. PMID: 23902686; PMCID: PMC3817791.
Since the defects seem to result partially from the inability of the NC cells to retract and move away, it may help to either include some data on Rho activation patterns in knockdown cells or simply add some discussion about the issue.
R: We acknowledge and sincerely appreciate the reviewer's valuable comments on this pivotal aspect, which significantly enhances our capacity to elucidate the impact of Gαi2 knockdown on cell polarity. To address this crucial point, we have introduced an experiment that examines RhoA-GTP localization under Gαi2 knockdown conditions, and we have incorporated a supplementary figure S3 into our manuscript. This newly added figure clearly demonstrates that, under Gαi2 knockdown conditions, and in contrast to control cells, RhoA-GTP localization is substantially disrupted at cell-cell contacts and now detected at the leading edge of the cell, providing compelling evidence of cell polarity defects (refer to Figure S3A-C). In response to these results, we have included a description of these findings in the Results section (please see page 10) and a dedicated paragraph in the Discussion section (please see page 19, paragraph 2, last line, page 19-21).
Results section 1 (page 10, paragraph 1 line 6-12): "To achieve this, we explored whether Gαi2 regulates the subcellular distribution of active Rac1 and RhoA in cranial NC explants under Gαi2 loss-of-function conditions, considering their pivotal roles in cranial NC migration and contact inhibition of locomotion (CIL) (Carmona-Fontaine et al., 2011; Moore et al., 2013; Leal et al., 2018). Hence, we employed mRNA encoding the small GTPase-based probe, enabling specific visualization of the GTP-bound states of these proteins."
Results section 2 (page 10, paragraph 1 line 14-27): "Consistent with earlier observations by Carmona-Fontaine et al. (2011), in control cranial NC cells, active Rac1 displayed prominent localization at the leading edge of migrating cells, whereas its presence was reduced at cell-cell contacts, coincident with an increase in RhoA-GTP levels (white arrows in Fig. 3A, supplementary material Figure S3A,C). On the contrary, in comparison to the control cells, Gαi2 morphants exhibit a pronounced accumulation of active Rac1 protein in the protrusions at cell-cell contacts, where active RhoA localization is conventionally expected (white arrow in Fig. 4B, supplementary material Figure S3A,C and movie S4). In contrast to control cells, a notable shift in the localization of active RhoA protein was observed, with its predominant accumulation now detected at the leading edge of the cell, instead of the typical localization towards the trailing edge or cell-cell contacts (__supplementary material Figure S3B,C). __These findings suggest a dysregulation of contractile forces that align with the observed distribution of active RhoA, cortical actin disruption, and diminished retraction in cell treated with Gαi2MO."
*Discussion section: (page 19 last line, page 20, paragraph 1, line 1-20) *
"Other studies have reported that microtubule assembly promotes Rac1 signaling at the leading edge, while microtubule depolymerization stimulates RhoA signaling through guanine nucleotide exchange factors associated with microtubule-binding proteins controlling cell contractility, via Rho-ROCK and focal adhesion formation (Krendel et al., 2002; Ren et al., 1999; Best et al., 1996; Garcin and Straube, 2019; Waterman-Storer et al., 1999; Bershadsky et al., 1996; Moore et al., 2013). This mechanism would contribute to establishing the antero-posterior polarity of cells, crucial for maintaining migration directionality, underscoring the significance of regulating microtubule dynamics in directed cell migration. These findings closely align with the results obtained in this investigation, demonstrating that Gαi2 loss of function reduces microtubule catastrophes and promotes tubulin stabilization, resulting in increased localization of active Rac1 at the leading edge and cell-cell contacts, while decreasing active RhoA at the cell-cell contact but increasing it at the leading edge. This possibly reinforces focal adhesion, which is consistent with the presence of large and highly stable focal adhesions under Gαi2 knockdown conditions. This finding also suggests a dysregulation of contractile forces in comparison to control cells, a result that aligns with the observed distribution of active RhoA, cortical actin distribution and diminished retraction in cells treated with Gαi2MO. This strikingly contrasts with the normal cranial NC migration phenotype, where Rac1 is suppressed while active RhoA is increased at cell-cell contacts during CIL, leading to a shift in polarity towards the cell-free edge to sustain directed migration (Theveneau et al., 2010; Shoval and Kalcheim, 2012; Leal et al., 2018)."
To consider focal adhesion dynamics, live imaging should be used in the analysis. The fixed samples are different from each other, and natural variations of focal adhesion may exist among the samples. This can obscure data collection and quantification.
R: We agree with the reviewer that focal adhesion (FA) dynamics need to be analysed using live imaging. Indeed, Fig 5E-H shows an extensive analysis of FA using live imaging of neural crest expressing FAK-GFP. As complement to this live imaging analysis, and in order to analyse the effect on the endogenous levels of FA proteins, we performed immunostaining against FA. Both experiments using live imaging or fixed cells produce similar results, and they are consistent with our model on the role of Gαi2 on FA dynamics.
Reviewer: minor comments
Fig. 2, the centrosomes in control cells are not always obvious. The microtubules simply seem to be more networked and more fluid in control cells. This should be clarified with either marking the centrosomes in the figure or modifying the wording in the manuscript.
R: We appreciate and concur with the reviewer's comment on this matter. As pointed out by the reviewer, the precise localization of the centrosome is not consistently clear in all cells. In response to this observation, we have revised the manuscript to emphasize this aspect solely as "microtubule morphology". Please refer to the Results section description Figure 2.
In Fig. 3, a better negative control for co-IP should be using anti-V5 antibody to IP against tubulin/EB1/EB3 in the absence of Gai2-V5.
R: We appreciate the reviewer's comment, and we agree with the suggested control. Accordingly, we have included this control in Supplementary material Figure S4A. Additionally, we conducted all Co-IPP in triplicate, and these data have been incorporated into Supplementary material Figure S4B. Furthermore, as mentioned earlier, we have reorganized some of the sections of the results to improve the logical flow of the manuscript's description. As a result, the Figure presenting the interaction analysis by Co-IPP now corresponds to Figure 5.
The data for cell polarity proteins Par3 and PKC-zeta seem to be out of place. It is unclear whether mis-localization of these proteins has anything to do with NC migration defects induced by Gai2 knockdown. The conclusion does not seem to be affected if the data are taken out of the manuscript.
R: We appreciate the reviewer's concern, and we would like to highlight two points in this regard. Firstly, we have included these results as additional data to support the impact of Gai2 knockdown on cell polarity, given that these two proteins are commonly used as polarity markers. Secondly, we have discussed this aspect extensively in the Discussion section of the manuscript. (See page 20, paragraph 1, lines 21-31).
In that section, we delve into the relationship between aPKC, Par3, and Gαi2 in controlling cell polarity during asymmetric cell division, as described in Hao et al., 2010. Par3 is known to play a role in regulating microtubule dynamics and Rac1 activation through its interaction with Rac-GEF Tiam1 (Chen et al., 2005). Additionally, it has been shown to promote microtubule catastrophes and inhibit Rac1/Trio signaling, regulating Contact Inhibition of Locomotion (CIL) as demonstrated in Moore et al., 2013. Thus, we believe that the data we present support the relationship between Par3 and aPKC localization changes and the neural crest migration defects induced by Gαi2 knockdown, probably by controlling microtubule dynamics. However, we have moved these results as part of the supplementary Figure S3D-G.
In Suppl. Fig. 1, protrusion versus retraction should be defined more clearly. The retraction shown in this figure seems to be just membrane between protrusions instead of actively retracting membrane.
R: We appreciate the reviewer's comments, and here we aim to provide a clearer description of our approach to this analysis. For the measurement of protrusion extension/retraction, we conducted two distinct experiments. The first, as described in Figure 1, involved measuring membrane extension and retraction in live cell using membrane-GFP by utilizing the image subtraction tool in ImageJ, which highlights changes in the membrane in red. Secondly, we employed ADAPT software to quantify cell perimeter based on fluorescence intensity in live cell using lifeactin-GFP, distinguishing membrane extension in green and retraction in red (as has been shown similarly in Barry et al., 2015). In both approaches, we observed a substantial increase in membrane protrusion (both in area and extension) and protrusion stability in Gαi2 morphants. Hence, we have revised the Materials and Methods section of the manuscript and included this clarification.
See Materials and Methods section, Cell dispersion and morphology, page 28.
In addition we inform hat this images now are included in Supplementary material Fig S2G,H.
Barry DJ, Durkin CH, Abella JV, Way M. Open source software for quantification of cell migration, protrusions and fluorescence intensities. J Cell Biol. 2015. Doi: 10.1083/jcb.201501081
Discussion can be improved by better incorporating all the components to make a cohesive story on how Gai2 works to regulate migration in the context of the neural crest cells.
R: We appreciate the reviewer's comment and agree. To enhance the manuscript, we have included a new paragraph at the end of the Discussion/Conclusion section specifically addressing this point. For more details, please refer to page 23.
"Therefore, in the context of collective cranial NC cells migration, our findings reveal the pivotal role played by Gαi2 in orchestrating the intricate interplay of microtubule dynamics and cellular polarity. When Gαi2 levels are diminished, we observe significant impediments in the ability of cells to efficiently navigate through their environment, resulting in a range of distinct effects. First and foremost, Gαi2 deficiency leads to the diminished ability of cells to adjust and reorient new protrusions effectively. Primary protrusions exhibit higher stability and heightened levels of active Rac1/RhoA when compared to control conditions in the leading edge. In addition, we observe a notable increase in protrusion area, a decrease in retraction velocity, and an enhanced level of cell-matrix adhesion in Gαi2 knockdown cells. These findings underscore the pivotal role that Gαi2 plays in the modulation of various cellular dynamics essential for collective cranial NC cells migration. Notably, the application of nocodazole, a microtubule-depolymerizing agent, and NSC73266, a Rac1 inhibitor, to Gαi2 knockdown cells leads to the rescue of the observed effects, thus facilitating migration. This observed response closely mirrors the outcomes associated with Par3, a known regulator of microtubule catastrophe during contact inhibition of locomotion (CIL) in NC cells (Moore et al., 2013). This parallel implies that there exists a delicate equilibrium between microtubule dynamics and Rac1-GTP levels, crucial for the establishment of proper cell polarity during collective migration. Our findings collectively position Gαi2 as a central master regulator within the intricate framework of collective cranial NC migration. This master regulator role is pivotal in orchestrating the dynamics of polarity, morphology, and cell-matrix adhesion by modulating microtubule dynamics through interactions with EB1 and EB3 proteins, described here for the first time, possible in a protein complex involving other intermediary proteins such as other microtubules accessory proteins like CLIP170, actin intermediaries, like mDia1-2, and signaling proteins such as GDIs, GAPs and GEFs, thus fostering crosstalk between the actin and tubulin cytoskeletons. This orchestration ultimately ensures the effective collective migration of cranial NC cells (Fig. 6)."
Review____er #2 (Significance (Required)):
The authors demonstrate a role of Gai2 in regulation of neural crest migration in Xenopus by modulating microtubule dynamics. In addition, they show an effect of Gai2 knockdown on Rac1 spatial activation and focal adhesion stability. These are novel discoveries of the study. Some limitations exist in linking Gai2 with downstream effectors that directly or indirectly impact on cytoskeleton and Rac1 small GTPase.
R: We really appreciate the reviewer positive comments and consideration. We believe that the review process has significantly strengthened our manuscript in this regard.
FROM REVIEWER #3
__ ____Reviewer: mayor comments:__
The authors focus exclusively on the analysis of the subcellular levels of Rac1, which is probably related to the fact that they observe large extended protrusions with high Rac1 activity. However, as the authors note, a global fine-tuning of Rho GTPase activity is required for neural crest migration. One of the observed phenotypes of Gαi2-morphant neural crest cells is a decrease in cell dispersion, which may be caused by defects in contact inhibition of locomotion (CIL). This process involves a local activation of RhoA at cell-cell contact sites (Carmona-Fontaine et al., 2008). Furthermore, in fibroblast, RhoA/ROCK activity is required for the front-rear polarity switch during CIL (Kadir et al., 2011). Interestingly, similar to the Gαi2 loss of function phenotype, ROCK inhibition leads to microtubule stabilization, which can be rescued by nocodazole treatment, restoring microtubule dynamics and CIL. Therefore, it would also be interesting to know how RhoA activity is affected in Gαi2-morphant NC cells. At a minimum, this point should be be included in the discussion.
R: We acknowledge and sincerely appreciate the reviewer's valuable comments on this pivotal aspect, which significantly enhances our capacity to elucidate the impact of Gαi2 knockdown on cell polarity. To address this crucial point, we have introduced an experiment that examines RhoA-GTP localization under Gαi2 knockdown conditions, and we have incorporated a supplementary figure S3A-C into our manuscript. This newly added figure clearly demonstrates that, under Gαi2 knockdown conditions and in contrast to control cells, RhoA-GTP localization is substantially disrupted at cell-cell contacts and now detected at the leading edge of the cell, providing compelling evidence of cell polarity defects (refer to Figure S3). In response to these results, we have included a description of these findings in the Results section (please see page 10) and a dedicated paragraph in the Discussion section (please see page 19-20).
Results section 1 (page 10, paragraph 1 line 6-12): "To achieve this, we explored whether Gαi2 regulates the subcellular distribution of active Rac1 and RhoA in cranial NC explants under Gαi2 loss-of-function conditions, considering their pivotal roles in cranial NC migration and contact inhibition of locomotion (CIL) (Carmona-Fontaine et al., 2011; Moore et al., 2013; Leal et al., 2018). Hence, we employed mRNA encoding the small GTPase-based probe, enabling specific visualization of the GTP-bound states of these proteins."
Results section 2 (page 10, paragraph 1 line 14-27): "Consistent with earlier observations by Carmona-Fontaine et al. (2011), in control cranial NC cells, active Rac1 displayed prominent localization at the leading edge of migrating cells, whereas its presence was reduced at cell-cell contacts, coincident with an increase in RhoA-GTP levels (white arrows in Fig. 3A, supplementary material Figure S3A,C). On the contrary, in comparison to the control cells, Gαi2 morphants exhibit a pronounced accumulation of active Rac1 protein in the protrusions at cell-cell contacts, where active RhoA localization is conventionally expected (white arrow in Fig. 4B, supplementary material Figure S3A,C and movie S4). In contrast to control cells, a notable shift in the localization of active RhoA protein was observed, with its predominant accumulation now detected at the leading edge of the cell, instead of the typical localization towards the trailing edge or cell-cell contacts (__supplementary material Figure S3B,C). __These findings suggest a dysregulation of contractile forces that align with the observed distribution of active RhoA, cortical actin disruption, and diminished retraction in cell treated with Gαi2MO."
*Discussion section: (page 19, second paragraph, line 12 and page 20, paragraph 1, line 1-18) *
"Other studies have reported that microtubule assembly promotes Rac1 signaling at the leading edge, while microtubule depolymerization stimulates RhoA signaling through guanine nucleotide exchange factors associated with microtubule-binding proteins controlling cell contractility, via Rho-ROCK and focal adhesion formation (Krendel et al., 2002; Ren et al., 1999; Best et al., 1996; Garcin and Straube, 2019; Waterman-Storer et al., 1999; Bershadsky et al., 1996; Moore et al., 2013). This mechanism would contribute to establishing the antero-posterior polarity of cells, crucial for maintaining migration directionality, underscoring the significance of regulating microtubule dynamics in directed cell migration. These findings closely align with the results obtained in this investigation, demonstrating that Gαi2 loss of function reduces microtubule catastrophes and promotes tubulin stabilization, resulting in increased localization of active Rac1 at the leading edge and cell-cell contacts, while decreasing active RhoA at the cell-cell contact but increasing it at the leading edge. This possibly reinforces focal adhesion, which is consistent with the presence of large and highly stable focal adhesions under Gαi2 knockdown conditions. This finding also suggests a dysregulation of contractile forces in comparison to control cells, a result that aligns with the observed distribution of active RhoA, cortical actin distribution and diminished retraction in cells treated with Gαi2MO. This strikingly contrasts with the normal cranial NC migration phenotype, where Rac1 is suppressed while active RhoA is increased at cell-cell contacts during CIL, leading to a shift in polarity towards the cell-free edge to sustain directed migration (Theveneau et al., 2010; Shoval and Kalcheim, 2012; Leal et al., 2018)."
The co-Immunoprecipitation data lack marker bands (larger images/sections of the blots would be preferable) and the labelling is not clear. What do the white arrows in Fig. 3H,I mean? What does "elu" and "non eluted" mean?. ? Did the reverse IP work as well?
R: We appreciate the reviewer's comments, and here we intend to provide a more detailed explanation of our approach to this analysis. Since we do not possess a secondary antibody specific to the heavy chain, our method involves eluting the co-immunoprecipitated proteins to visualize those with weights close to that of the light chain (such as EB1). We have outlined this elution step in the "Cell lysates and co-immunoprecipitation" protocol in the Materials and Methods section. To ensure proper control, we load both fractions - the eluted (or supernatant) and non-eluted (or resin) fractions - to monitor the amount of protein extracted from the resin using a 1% SDS solution. It's important to note that the elution step, as indicated by the V5 signal, is not entirely efficient, and a significant portion of the protein remains bound to the resin. This issue may also apply to the EB1 protein; however, it is still possible to visualize both bands (Gαi2V5 and EB1).
As we mentioned earlier the Co-IPP analysis now are in Figure 5. We have revised the legend for Figure 5 to include an explanation of the terms 'elu' (eluted fraction) and 'non-eluted' (non-eluted fraction). We have also included the explanation of the white arrows' significance in the legends for Figure 5H and 5I. These arrows indicate the bands corresponding to the immunoprecipitated proteins.
We also agree with the reviewer's suggestion to conduct the reverse IP. To address this point, and in favour of the lack of this control, accordingly, we have included a negative control for co-IP using anti-V5 antibody to IP, this control was included in Supplementary material Figure S4A. Additionally, we conducted all Co-IPP in triplicate, and these data have been incorporated into Supplementary material Figure S4B.
The presentation of the Delaunay triangulations varies in quality. In Fig. 1 J/K the cells are clearly visible in the images, while this is not the case in Fig. 3 J-M and Fig. 4K-N. Conversely, the Delaunay triangulations in Fig. 1L are mainly black, while they are clear in Fig. 3 and 4. Perhaps the authors could find a more consistent way to present the data. Were the explants all approximately the same size at the beginning of the experiment? The Gαi2-morphant explant in Fig. 3K appears to be unusually small.
R: We appreciate the reviewer's concerns and have taken steps to address them. To improve the quality of our data, we have made enhancements to the presentation of Figures 3 (panels L-O) and Figure 5 (panels P-S). Specifically, we have standardized the Delaunay triangulation representations.
Regarding the size of the explants at the beginning of the experiments, they were indeed approximately similar in size. We confirmed this by including a reference point (point 0) for each condition in the figures 5. However, in the panels presented, we show the results after 10 hours (Figure 5, X. laevis, in the actual Figure organization) and 4 hours (Figure 3, X. tropicalis, in the actual Figure organization) to assess cell dispersion, as indicated in the respective figure legends. This uniformity in size was further ensured by the calculation used to quantify dispersion. For the dispersion assay, we normalized each initial size of the explant upon the control, and we have added another representative explant of Gαi2 morpholino with its Delaunay triangulation to facilitate the experiment interpretation. Every Delaunay triangulation calculates the area generated between three adjacent cells and it grows depending on how much disperse are the cells between each other in the final point. (See Material and Methods section, Cell dispersion and morphology). As we can see in the manuscript, in every dispersion experiment that we have performed with Gαi2 morpholino, the cells cannot disperse at all. Furthermore, to analyze the dispersion rate in this experiment we use Control n= 21 explants, Gαi2MO n= 24 explants, Gαi2MO + 65 nM Nocodazole n= 36 explants, Control + 65 nM Nocodazole n= 30 explants (as we mentioned in the manuscript legend).
Why was the tubulin distribution in Fig. 2F measured from the nucleus to the cell cortex? Would it not make more sense to include cell protrusions? This does not seem to be the case in the example shown in Fig. 2F.
R: We appreciate the reviewer's concern. We would like to clarify that for the tubulin distribution measurements, we indeed measured from the nucleus to the cell protrusion. As a result, we have made an edit to Figure 2 (panel 2F) to provide further clarity on this matter.
The immunostaining for acetylated tubulin (Fig. 3A,B) looks potentially unspecific and seems to co-localize with actin (for comparison see Bance et al., 2019). For imaging and quantification, it may be better to use tubulin co-staining to calculate the percentage of acetylated tubulin. Please also add marker bands to the Western blot in Fig. 3C. If this issue cannot be resolved it may be better to only include the Western blot data.
R: We appreciate the reviewer's concern about the potential unspecific nature of acetylated-tubulin and its co-localization with actin. Regarding the co-localization with actin, it is predominantly observed in panel B, and we attribute this phenomenon to the Gαi2 morphant phenotype, where cortical actin is notably reduced, creating the appearance of co-localization. In response to the reviewer comment, we have retained the acetylated tubulin western blot analysis in the main Figure 5A,B, while relocating the immunofluorescence analysis to Supplementary material Figure S4C-H. Additionally, we have included the measurements of the acetylated tubulin fluorescence intensity for both conditions Gαi2MO and control, as depicted Supplementary material Figure S4I.
We have also included marker weight indications on the western blot panel in now Figure 5A.
The model in Fig.6 indicates that Gαi2 inhibits EB1/3. What is the experimental evidence and the proposed mechanism for this? In the discussion, the authors cite evidence that Gαi activates the intrinsic GTPase activity of tubulin, which would destabilize microtubules by removing the GTP cap. However, this mechanism would not directly affect EB1 and EB3 stability as the Fig. 6A seems to suggest. The authors also mention that EB3 appears to be permanently associated with microtubules in Gαi2-morphant cells. How would this work, given that end-binding proteins bind to the cap region? Are the authors suggesting that there is an extended cap region in Gαi2 morphants?
R: We appreciate the reviewer's valuable comments. We have revised our model accordingly to our data and new data that we have incorporated regarding interaction analysis conducted by PLA (proximity ligand assay), in order to further elucidate the mechanism underlying Gαi2 regulation of cranial neural crest cell migration. This analysis supports our actual proposed model, indicating Gαi2 interacts with EB proteins to form a complex with tubulin, thereby regulating microtubules dynamics and subsequently influencing Rac1 and RhoA activity, cell morphology (actin cytoskeleton) and cell-matrix adhesion, ultimately affecting migration. Therefore, we have revised our model and its description to provide a more detailed explanation of the potential mechanism in line with the reviewer suggestion. Specifically, we have edited the discussion/conclusion, model and the legend for Figure 6. Please refer to page 16 (paragraph 1, 2 and 3), 22 (paragraph 1), 23 (paragraph 1), 45 (Legend Fig. 6). In addition, in Gαi2 knockdown conditions we have found a strong reduction in microtubules dynamics following EB3-GFP comets. Regarding the observation that EB3 seems to be persistently associated with microtubules in Gαi2-morphant cells, we wish to clarify that this is a speculation based on the microtubule phenotype observed during our dynamic analysis, where they appear more like lines rather than comets. It is important to note that none of the experiments conducted in this study conclusively demonstrate this, and thus, it remains a suggestion. As a result, we have revised our model in accordance with the reviewer suggestion.
Reviewer 3: minor comments:
The citation of Wang et al. 2018 in the introduction does not seem to fit.
R: We appreciate the correction provided by the reviewer. We have carefully reviewed the Introduction and Reference sections and have corrected this error.
Does the graph in Fig. 4S show average values for the three conditions? If so, what is the standard deviation?
R: We appreciate the reviewer's concern and we have added the standard deviation to now Figure 4J.
From the images in Fig. 2G and H, it is difficult to understand what the difference is between the four groups shown.
R: We appreciate the reviewer's comment, and to clarify this point, we would like to explain that the comparison has been made between each type of comet. The PlusTipTracker software separates comets based on their speed and lifetime, classifying them as fast long-lived, fast short-lived, slow long-lived, or slow short-lived. In both conditions (control and morphant cells), we compared the percentage of each type of comet, as previously described in Moore et al., 2013. The results demonstrate that morphant cells exhibit an increase in slow comets compared to control cells. The same explanation is described in the Material and Methods section on page 28, Microtubule dynamics analysis.
Review____er #3: (Significance (Required)):
Overall, the study is well executed and significantly advances our understanding of the control and role of microtubule dynamics in cell migration, which is much less understood compared to the function of the actin cytoskeleton in this process. The strength of the study is the use of state-of-the-art (live imaging) techniques to characterize the role of Gαi in neural crest migration at the cellular/subcellular level. This article will be of interest to a broad readership, including researchers interested in basic embryonic morphogenesis, cell migration, and cytoskeletal dynamics, as well as translational/clinical researchers interested in cancer progression or wound healing.
R: We really appreciate the reviewer positive comments and consideration. We believe that the review process has significantly strengthened our manuscript.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Summary: The manuscript by Villaseca et al. analyzes the role of Gαi2 in cranial neural crest migration and reveals a novel mechanistic link to microtubule dynamics. The authors nicely demonstrate that Gαi2 is required for Xenopus neural crest migration and affects cell dispersion, cell polarity, focal adhesion turnover, and microtubule dynamics. They find that Gαi2-morphant neural crest cells are elongated, have larger, more stable protrusions, higher active Rac1 levels, and a concentration of microtubules at the leading edge. Using co-immunoprecipitation, the authors show that Gαi2 forms a complex with α-tubulin and the microtubule plus-end binding proteins EB1 and EB3, which are known regulators of microtubule dynamics. Time-lapse imaging shows that Gαi2 loss of function increases microtubule stability, which is further supported by an increase in acetylated tubulin levels. Consistently, treatment with nocodazole, which inhibits microtubule polymerization, as well as treatment with a Rac1 inhibitor, is able to rescue cell dispersion and morphology of Gαi2-morphant neural crest cells. The authors propose a model, whereby Gαi2 interacts with components of the plus-tip microtubule-binding complex to control microtubule dynamics and Rac1 activity to establish cell polarity, disassemble focal adhesion, and thereby facilitate neural crest migration.
Major comments:
- The authors focus exclusively on the analysis of the subcellular levels of Rac1, which is probably related to the fact that they observe large extended protrusions with high Rac1 activity. However, as the authors note, a global fine-tuning of Rho GTPase activity is required for neural crest migration. One of the observed phenotypes of Gαi2-morphant neural crest cells is a decrease in cell dispersion, which may be caused by defects in contact inhibition of locomotion (CIL). This process involves a local activation of RhoA at cell-cell contact sites (Carmona-Fontaine et al., 2008). Furthermore, in fibroblast, RhoA/ROCK activity is required for the front-rear polarity switch during CIL (Kadir et al., 2011). Interestingly, similar to the Gαi2 loss of function phenotype, ROCK inhibition leads to microtubule stabilization, which can be rescued by nocodazole treatment, restoring microtubule dynamics and CIL. Therefore, it would also be interesting to know how RhoA activity is affected in Gαi2-morphant NC cells. At a minimum, this point should be be included in the discussion.
- The co-Immunoprecipitation data lack marker bands (larger images/sections of the blots would be preferable) and the labelling is not clear. What do the white arrows in Fig. 3H,I mean? What does "elu" and "non eluted" mean? Did the reverse IP work as well?
- The presentation of the Delaunay triangulations varies in quality. In Fig. 1 J/K the cells are clearly visible in the images, while this is not the case in Fig. 3 J-M and Fig. 4K-N. Conversely, the Delaunay triangulations in Fig. 1L are mainly black, while they are clear in Fig. 3 and 4. Perhaps the authors could find a more consistent way to present the data. Were the explants all approximately the same size at the beginning of the experiment? The Gαi2-morphant explant in Fig. 3K appears to be unusually small.
- Why was the tubulin distribution in Fig. 2F measured from the nucleus to the cell cortex? Would it not make more sense to include cell protrusions? This does not seem to be the case in the example shown in Fig. 2F.
- The immunostaining for acetylated tubulin (Fig. 3A,B) looks potentially unspecific and seems to co-localize with actin (for comparison see Bance et al., 2019). For imaging and quantification, it may be better to use tubulin co-staining to calculate the percentage of acetylated tubulin. Please also add marker bands to the Western blot in Fig. 3C. If this issue cannot be resolved it may be better to only include the Western blot data.
- The model in Fig.6 indicates that Gαi2 inhibits EB1/3. What is the experimental evidence and the proposed mechanism for this? In the discussion, the authors cite evidence that Gαi activates the intrinsic GTPase activity of tubulin, which would destabilize microtubules by removing the GTP cap. However, this mechanism would not directly affect EB1 and EB3 stability as the Fig. 6A seems to suggest. The authors also mention that EB3 appears to be permanently associated with microtubules in Gαi2-morphant cells. How would this work, given that end-binding proteins bind to the cap region? Are the authors suggesting that there is an extended cap region in Gαi2 morphants?
Minor comments
- The citation of Wang et al. 2018 in the introduction does not seem to fit.
- Does the graph in Fig. 4S show average values for the three conditions? If so, what is the standard deviation?
- From the images in Fig. 2G and H, it is difficult to understand what the difference is between the four groups shown.
Referees cross-commenting The concerns raised by my colleagues are entirely valid.
Significance
Overall, the study is well executed and significantly advances our understanding of the control and role of microtubule dynamics in cell migration, which is much less understood compared to the function of the actin cytoskeleton in this process. The strength of the study is the use of state-of-the-art (live imaging) techniques to characterize the role of Gαi in neural crest migration at the cellular/subcellular level. This article will be of interest to a broad readership, including researchers interested in basic embryonic morphogenesis, cell migration, and cytoskeletal dynamics, as well as translational/clinical researchers interested in cancer progression or wound healing.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Summary
The manuscript by Villaseca et al. describes functional analysis of Gai2 in cranial neural crest (CNC) migration using the frog Xenopus as their model system. The authors performed the loss-of-function assay to knock down expression of endogenous of Gai2 and discovered that CNC migration was impaired in the absence of changes of CNC fate specification. Based on the literature on Gai2 activities in other cellular contexts, the authors speculated that Gai2 might regulate microtubule dynamics and Rac1 function. Their studies using immunofluorescence (IF) and live-cell imaging indeed showed that microtubules were stabilized in membrane protrusions with concurrent activation of Rac1 in Gai2 knockdown cells. In addition, focal adhesion turnover was reduced. They further demonstrated that the CNC migration defects could be partially rescued by destabilization of microtubules with chemical treatment. The authors conclude from the studies that Gai2 orchestrates microtubule dynamics and modulates Rac1 activation during neural crest migration.
Major comments
The authors aim to address two issues in this manuscript: a) the role of Gai2 in neural crest development; and b) the mechanism of Gai2 function. While they have done a good job demonstrating a role of Gai2 in NC migration both in vivo and in vitro as well as the effects of Gai2 knockdown on cytoskeleton dynamics, protein distribution of selected polarity and focal adhesion molecules, and Rac1 activation, the link between Gai2 and the downstream effectors is largely correlative. Because of this, the model suggesting the sequential events flowing from Gai2 to microtubule to Rac1 to focal adhesion/actin should be modified to allow room for direct and indirect regulation at potentially multiple entry points.
Specific major comments are as the following:
Strengths:
-Determination of a role of Gai2 in neural crest migration is novel. -The effect of Gai2 knockdown on membrane protrusion morphology and microtubule stability and dynamics are demonstrated nicely. -Quantification of experimental perimeters has been performed throughout the manuscript in all the figures, and statistical analysis is included in the figures.
Weaknesses:
- The heavy focus of the study on microtubule is due to the previous publication on the function of Gai2 in regulation of microtubule during asymmetrical cell division. However, the activity of Gai2 is likely cell type-specific, as it has not been shown to control microtubule during cytokinesis in general. It is equally likely that Gai2 primarily regulates Rac1 or actin regulators to influence both microtubule and actin dynamics. The tone of the discussion should therefore be softened.
- The effect of rescue of NC migration with Rac1 inhibitor is marginal and the result is hard to interpret considering the inhibitor also blocks control NC migration. Either lower doses of Rac1 inhibitor can be used or the experiment can be removed from the manuscript, as Rac1 is required for membrane protrusions and the inhibitor doses can be hard to titrate.
- Since the defects seem to result partially from the inability of the NC cells to retract and move away, it may help to either include some data on Rho activation patterns in knockdown cells or simply add some discussion about the issue.
- To consider focal adhesion dynamics, live imaging should be used in the analysis. The fixed samples are different from each other, and natural variations of focal adhesion may exist among the samples. This can obscure data collection and quantification.
Minor comments
- Fig. 2, the centrosomes in control cells are not always obvious. The microtubules simply seem to be more networked and more fluid in control cells. This should be clarified with either marking the centrosomes in the figure or modifying the wording in the manuscript.
- In Fig. 3, a better negative control for co-IP should be using anti-V5 antibody to IP against tubulin/EB1/EB3 in the absence of Gai2-V5.
- The data for cell polarity proteins Par3 and PKC-zeta seem to be out of place. It is unclear whether mis-localization of these proteins has anything to do with NC migration defects induced by Gai2 knockdown. The conclusion does not seem to be affected if the data are taken out of the manuscript.
- In Suppl. Fig. 1, protrusion versus retraction should be defined more clearly. The retraction shown in this figure seems to be just membrane between protrusions instead of actively retracting membrane.
- Discussion can be improved by better incorporating all the components to make a cohesive story on how Gai2 works to regulate migration in the context of the neural crest cells.
Referees cross-commenting I agree with other reviewers' comments.
Significance
The authors demonstrate a role of Gai2 in regulation of neural crest migration in Xenopus by modulating microtubule dynamics. In addition, they show an effect of Gai2 knockdown on Rac1 spatial activation and focal adhesion stability. These are novel discoveries of the study. Some limitations exist in linking Gai2 with downstream effectors that directly or indirectly impact on cytoskeleton and Rac1 small GTPase.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary:
This manuscript examines the role of a G protein, Gai2, in regulating the migration of cranial neural crest cells. Although previous literature has established that heterotrimeric G proteins are involved in cell migration, a central process during embryogenesis and adult homeostasis, the underlying cell biological mechanisms of their activities have not been elucidated. This manuscript rigorously examines the various aspects of Gai2 protein interactions to generate an exciting new paradigm in which Gai2 maintains normal microtubule dynamics by binding to tubulin and EB proteins. This normally dynamic microtubular intracellular environment then promotes cortical actin formation in the leading edge of the migrating cell as well as rapid focal adhesion disassembly by controlling Rac1 activity. Under conditions in which the levels of Gai2 are reduced by MO-mediated knockdown, cells display reduced microtubule dynamics and a decreased catastrophe rate, resulting in slower and more stable microtubules to which EB3 is more persistently associated. A stable microtubule environment leads to enhanced Rac1 activation at the leading edge and stable and larger focal adhesions, resulting in reduced migration. The authors utilize cutting edge approaches to examine the interactions between Gai2 and these other cellular components, taking advantage of the well characterized cell migration model - the cranial neural crest - both in embryos and in cultured explants of these cells.
Major comments:
The manuscript is mostly well written (it could use a few minor grammatical corrections), the significance of the problem is well described, and the results are clearly presented with adequate controls. The movies, provided as supplementary material, are of the highest quality and are essential additions to the stills provided in the figures. The data convincingly support the key conclusions of the manuscript.
Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether? No
Would additional experiments be essential to support the claims of the paper? No additional experiments are essential.
Are the experiments adequately replicated and statistical analysis adequate? The number of embryos/ explants per assay and the number of explant replicates for each assay and the statistical assessments are rigorous.
Are the data and the methods presented in such a way that they can be reproduced? Mostly, however, the description of the MO used for Gai2 knockdown needs more detail:
- Does the MO knockdown both S and L homoeologs of X. laevis? Since the level of GAPDH in Figure 1H also looks reduced in Gai2 MO lane, it should be made clear that the apparent knockdown of Gai2 was normalized to GAPDH, rather than being the results of unequal loading of the gel. Yes, I recognize that Figure 1I says normalized, but this is not stated in the results or the methods. Also, was this experiment done with X. laevis or X. tropicalis? I could imagine that if done in X. laevis, the lack of complete knockdown might be due to only one homoeolog being affected.
- The knowledge of the efficacy of knockdown in each Xenopus species provided by the information requested in the previous point, would allow the reader to assess the level of knockdown in the remaining assays. To do this, the authors should tell us which assays were done in which species. I am not suggesting that each experiment needs to be done in each species, only that the information should be provided. If the MO is more effective in X. tropicalis - which assays used this species? If the knock down is partial, as shown in Figure 1H-I, which species this represents in the remaining assays would be useful knowledge.
Minor comments:
While prior studies are referenced appropriately, and the text and figures are mostly clear and accurately presented, the following are a few suggestions that would help the authors improve the presentation of their data and conclusions:
- The cell biological experiments convincingly demonstrate that knockdown of Gai2 causes cells to move more slowly. It would be a nice addition to bring the explant experimental data back to the embryo by showing whether the slower moving NC cells in morphants eventually populate the BA. DO they cease to migrate or are they just slower getting to their destination? This could be done by performing snail2 ISH at a later stage (34-35?)
- There are places in the manuscript where the authors use the terms "silencing" or "suppression" of Gai2, when they really mean reduced translation - their system is not a genetic knockout, as clearly demonstrated in Figure 1H-I. I suggest that more accurate wording be used.
- In Figures 1-5 there are scale of bars on the cell images, but these are not defined in any of the figure legends.
- The abstract is the weakest section of the manuscript, and would have greater impact if it were more clearly written.
Referees cross-commenting
The concerns are fair assessments. However, most can be addressed in the text and by clearer presentation of existing data rather than more experimentation.
Significance
The molecular regulation of cell movement is a key feature of a number of developmental and homeostatic processes. While many of the proteins involved have been identified, how they interact to provide motility has not been elucidated in any great detail, particularly in embryo-derived cells (as opposed to cell lines). The results obtained from the presented experiments are novel, in-depth and provide a novel paradigm for how G proteins regulate microtubule dynamics which in turn regulate other components of the cytoskeleton required for cell movement. The results will be applicable to many migrating cell types, not just neural crest cells.
Because of the application of the data to many types of cells that migrate, the audience is expected to include a broad array of developmental biologists, basic cell biologists and those interested in clinically relevant aberrant cell migrations.
Reviewer keywords: Xenopus embryology; neural crest gene expression; use of MO-mediated knockdown of gene expression. Not an expert in microtubule dynamics.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
We are very grateful to the reviewers for their positive appraisal of the manuscript and for their useful comments and suggestions. Below are our answers and corresponding modifications of the manuscript.
Reviewer #1
1 - Figures 1&4 focus on JU1264 as the primary double-sensitive strain. However, the authors built their RILs with HK104 by crossing with JU1498 in Figures 7&8. In the results section and/or methods, the authors should provide some justification for this strain switch. Alternatively, the equivalent analysis of Figure 1 focusing on JU1498 would be valuable to demonstrate that the effects of both viruses on fitness are similar to JU1264. I am not recommending that the JU1264xHK104 crosses be performed or that Figures 7&8 be repeated with JU1264xHK104 lines, but that more explanation for strain selection for RIL generation should be provided.
JU1264 and JU1498 are the strains where SANTV and LEBV were found, respectively. The experiments were performed over the years by different authors and were designed to answer different questions. JU1264 was the strain where the first virus was found and was used as a doubly sensitive strain in Figure 1 and the small RNA experiment. The main reason we chose JU1498 for genetic crosses to discover the genetic basis of LEBV sensitivity is that LEBV was detected and isolated from JU1498. Note that the JU1264 and JU1498 strains come from France and are in the same isotype group at CaeNDR (see also Figure 3) so the two strains may be interchangeable (although we cannot be sure).
We added in the text concerning the RIL construction: "We chose to use JU1498 as the LEBV-sensitive strain as it was the original strain in which LEBV was discovered."
2-The authors reasonably claim that the resistance of tropical strains like AF16 could be due to blocking viral entry or early inhibition of replication before the small RNA response is activated. Could the authors test this by directly microinjecting virus (in combination with a dye as a control for successful injection) into the intestine? I understand this could not be done on a scale that would allow for small RNA sequencing, but one could perform small-scale FISH to determine if LEBV or SANTV are replication-competent if the entry barrier is artificially overcome. Such an experiment may require considerable technical development. It may be beyond the scope/timing of this specific study, but it is worth considering to gain some insight into the possible resistance mechanisms observed.
Although the suggested experiment is in principle a great approach, it is difficult to perform without losing animals during the FISH staining. In addition, in this manuscript we are not particularly searching for the resistance mechanisms of AF16 but trying to present a wider perspective concerning viral infections of C. briggsae and their specificity. We performed small RNA analysis for AF16 together with the sensitive strains and therefore we commented on the lack of small RNA response in AF16 comparing to the sensitive strains. We thus consider that setting up intestinal injections at this point is arduous and beyond the scope of this manuscript.
Minor Comments: Line 78 - provide the full genus name for Caenorhabditis elegans at first appearance, as done for Caenorhabditis briggsae
This was modified. Line 117 - The description of cul-6 could also reference Bakowski et al. 2014. This study is referenced more generally as a player in proteostasis a few lines below but could be more explicitly tied to cul-6-mediated resistance to ORV (Bakowski et al. 2014 - see Fig. 7A) This section focus on the use of natural polymorphisms but we added this reference, which is indeed key for the effect of cul-6 knockdown on viral infection in C. elegans. Line 197-198 - The authors could consider adding sequences for FISH probes as part of Table S2. This information could add value to the present study even if previously listed in Frézal et al. We actually removed them from an earlier version since these sequences are already published: here and in further work, it seems preferable to refer to the primary study where these probes were designed, Line 263 - Were embryos obtained by bleaching of gravid adults, or was an egg lay performed, and the embryos were collected from plates? This is potentially an important distinction and should be clarified briefly in the methods. In the section “Preparation of small RNA libraries”, we obtained embryos by bleaching gravid adults.
We changed the first sentence to “Gravid hermaphrodites from uninfected cultures (AF16, HK104 and JU1264) were harvested using M9 solution, then bleached and washed twice using nuclease-free water. Embryo concentrations were estimated by counting embryos under the dissecting microscope and diluted to 2 embryos per mL of nuclease-free water. 200 embryos of each strain (AF16, HK104 and JU1264) were then plated onto 55 mm NGM plates seeded with E. coli OP50.” We also added “The embryos were obtained by bleaching gravid hermaphrodites.” to the Figure S5 legend. Line 330 - Provide justification for using JU1498 to make these RILs (see comment above). We added this sentence in the Results section. "We chose to use JU1498 as the LEBV-sensitive strain as it was the original strain in which LEBV was discovered." Line 446-Refer to the methods section for full clarity on the role of FISH in this set of experiments or reword for improved clarity. At first read-through, this phrasing made me expect some FISH experiments associated with Fig. 1, which does not appear to be the case.
We did perform FISH experiments as control that the cultures were infected, as explained in the Methods. We removed this mention from the Results section. Line 478 - The supplementary figure callouts are misaligned with the provided documents. S2A in the text appears to refer to S3A RT-qPCR results. Changed. Line 483 - Similar to above, the text suggests serial dilutions should refer to S4, not S3. Changed. Line 498 - Modify the text to 'Figure 2C and Figure 3' for clarity. Changed. Line 531,535 - viRNAs are defined in line 535 but this should be moved to 531 above at first appearance in the text. Changed. Line 593 - Typo in 'Logarithm of Odds?' Corrected. Line 621-624 - I recommend the authors include the data for the LEBV control experiments with NIL strains, either as a supplementary table, an additional panel for Fig. 6, or represented as done in Figure 8. We removed this sentence. Line 625-632 - How many total genes are represented in the QTL on IV? The reasoning behind testing rde-11 and rsd-2 is sound, but readers might want to know other potential candidates within this region (perhaps something the authors could also speculate on in the discussion). A similar comment applies for # genes in the QTLs on II and III.
We added in Table S7 the list of detected SNPs and short indels in the chromosome IV region and now indicate in the text "among them over 2700 SNPs and short indels (Table S7)." We added Table S11 with the polymorphisms in the chromosome II QTL region. We note that these tables do not include possible structural variants. The chromosome III QTL being weak, we abstained for this one but the data can now be found using CaeNDR.
Line 991-992 - Figure 1B - LEBV, SANTV, and co-infection effects on body size are mentioned but not quantified. Has this phenotype been quantified elsewhere? If so, the authors should reference it in the results section or Fig. 1 legend. Alternatively, body size could be quantified as part of this study and added to Fig. 1.
Because we do not have a large amount of data on body size, we removed "Body size quantification” from Figure 1B legend. Line 1001 - There is a typo in the first sentence; the period after LEBV should be removed. Small suggestion: Figure 2A - While described in the methods, I recommend that the authors briefly reiterate in the figure legend that the white/yellow boxes are intended to indicate serial chunking for clarity.
We removed the typo and explained the agar chunk representation in the figure legend: "The transfer by chunking a piece of agar is indicated by beige rectangles cut out from one plate and transferred to the next plate." Line 1034 - Small formatting note for Figure 4B - percentages of reads mapping to RNA1 and RNA2 appear underneath gridlines for the graph which obscures visibility and is inconsistent with the other graphs presented.
This was modified and is indeed clearer. Line 1094 - Figure S1 - this analysis could be strengthened by RT-qPCR represented as fold change in viral load instead of, or in addition to, the agarose gel image (like Fig. S3). Doing so would also allow for the normalization of eft-2 control across individual samples (e.g.: particularly low eft-2 amplification in ED3073). However, these results are sufficiently convincing that LEBV does not replicate in C. elegans, but a more quantitative approach is recommended if feasible for the authors. Alternatively, an additional figure panel and/or repeat of this analysis with C. elegans infected with ORV would also be beneficial as an additional control.
We do not understand how we can estimate a viral load by a ratio when we do not seem to see any significant amplification. Of course, a RT-qPCR would provide a finite Ct value and a ratio but they are likely to be meaningless. The ED3073 sample did not amplify for eft-2 either and calculating a ratio of high Ct values in a RT-qPCR would be misleading. We could remove the two ED3073 lanes but prefer to leave them.
Line 1112 - "Experiments using RNA2 primers gave similar results" - if this data isn't included in the study, this text should be removed.
Removed. Line 1141 - Figure S6 - For full transparency, the authors could consider including HK104 infected with LEBV to show minimal (zero) reads align to the RNA1/RNA2 segments using scales consistent with JU1264 infected with LEBV (S6C) The proportion of reads mapping (0%) are provided in Figure 4A and supplementary tables. We do not show the distribution of antisense 22G and sense 23nt along the LEBV genome for the HK104 (co)infections for the following reasons. 0% of these reads map to LEBV in HK104 monoinfection, and only 0.02% antisense 22G in coinfection. Moreover, the 23nt reads mapping to LEBV-RNA2 in the HK104 coinfection (16.54%;1931 reads) correspond to a 41 bp region with 85% nucleotide similarity between SANTV-RNA2 and LEBV-RNA2. Overall, the few 23nt (+) reads mapping to LEBV in HK104 coinfection are most likely a spillover of the HK104 antiviral response to JUv1264 entry into the intestinal cells.
Reviewer #2
Main points: 1. In figure 1C and D, is more than 1 biological replicate performed? Ideally multiple independent infections would be performed which would increase confidence in these experiments, but minimally the authors should make clear that this data was from an experiment only performed once. The conclusion from the life span assays is unlikely to change, but given the variance of the brood size assays within replicates, the conclusions that LEBV infection reduces the brood size is weakly supported.
We added “Panels C-D correspond to a single experiment (see Methods).” to the legend of Figure 1. We changed the wording to "LEBV and especially the co-infection appeared to lower brood size." We do not have data for independent experiments.
If the authors want to claim that there is a defect in viral entry in the resistant strains, they should perform infections experiments at an earlier time point that could capture viral invasion. In C. elegans with Orsay virus these experiments have been done as early as 18 hours by FISH. https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1011120 The way the assays are currently set up, if the infection was cleared it wouldn't be observed.
The strongest point that indicates that the virus does not replicate is the small RNA experiment, in which the animals were collected on the initial plate inoculated with the virus. We think that our wording was careful:
We further amended it:
-
in Results " The animals were collected for sRNA sequencing on the plates onto which the viral inoculate was added and where they were constantly exposed to the virus".
-
in Discussion " Indeed, as we did not assay viral entry by sensitive FISH or RT-PCR at early timepoints, it is possible that the viruses are cleared without production of small RNAs."
The evidence that the region on chromosome III contributes to susceptibility is weak. The analysis in figure 5B does not identify this region and it is not clear to me how to read the scale in figure 5C to determine that a region on chromosome III is significant.
We added in the Figure legend: "with a LOD score of 10.5, above the threshold calculated by simulations (see Methods)." and detailed the method in the Methods section (see reply to Reviewer 3 below).
In figure 6 using a more appropriate statistical test such as one way ANOVA with multiple hypothesis testing is necessary to determine if there is a difference between JU2832 and JU2916. It would be helpful if the authors could add more discussion of the evidence that they feel that supports this region being involved in susceptibility.
We do not think that an ANOVA is appropriate to analyze these proportions which cannot have normal distributions of residuals, therefore we used a generalized linear model, taking genotype and block (day of experiment) into account. This was only explained in the legend and is now explained in the Methods section as well. Maybe the reviewer suggests us to us a global analysis with strain as a factor. We could do this but we do not think that it applies well to this situation: here we test for a specific hypothesis for each one-QTL strain. We have corrected for multiple testing as explained next. The legend now reads: " The significance p values were obtained in a generalized linear model (glm) taking independent experimental blocks and infection replicates into account, testing NILs against their relevant background parent. The p values using the two strains testing for the QTL on chromosome IV and those using the two-QTL strain JU2832 are corrected for multiple testing." In addition, we now provide p values rather than three stars, which reinforce the point (they are very low).
Minor points 1. In figure 1B it would be helpful to provide more information on the animals chosen to display. Are these representative examples or extreme examples?
These are representative examples. This detail was added in the legend.
In figure 2B, adding a legend for the colored dots would be helpful.
We had indicated: "Dots are replicates within a block, with 100 animals scored per replicate (see Table S4 for the detailed results and Figure S2 and Methods for the experimental design). Experimental blocks are represented by colors and the bar indicates the grand mean of the blocks." 3. In figure 2C, the definitions for a strain to be labeled as belonging to each category should be provided.
The categorization method is now explained in the Methods section. In addition, Figure 2C legend now refers to Table S4 for the category of each strain. 4. Could the data in figure 2 be used for genome-wide association mapping and compared to the RIL QTL experiments? Adding comment on this would be helpful to understanding the usefulness of this data.
There are too few strains here to test genome-wide for association. If we had the causative SNP, it would be interesting to assess its frequency but this is beyond the focus and scope of this work, which focused on the outlier phenotype of the HK104 strain. 5. In figure 4b, in HK104 LRBV the numbers in top right corner are not defined.
We added to the legend of Figure 4B: “For the HK104 infection with LEBV, the number of read counts is provided in the top right corner to signal their rarity compared to ca. 107 in the other conditions. See Table S5 for all read counts. ” 6. Line 1001 remove period from "LEBV.of" and add period after isolates. Removed.
Reviewer #3 Major comments • The authors provide most data in both a processed and raw format, which is helpful. In two cases (data from 3 DPI, line 492 and LEBV infections in the AF16xHK104 NILs, line 621), the authors state their results, but the data seems not to be provided in the document (at least no direct reference is provided). These are supporting results and do not affect the main conclusions, nevertheless providing the data in form of a table or supplementary figure would be required. Generally, it may help to include a data availability statement to have a combined overview of where data can be found.
As noted by the reviewer, we tried to provide the data in raw format, but did not judge it necessary when the experiment had two datapoints that are provided in the text. We added the number of animals in the instance where it was missing.
Minor comments • Line 97-126: Here the manuscript fully focuses on the work in C. elegans. It would be interesting to make clear links to the work in C. briggsae (e.g. mention if homologs are present). The paragraph in line 127 clarifies advantages of studying viral infection in C. briggsae compared to C. elegans. It may be logical to place this information early in the text.
We added a sentence to link the C. elegans work and C. briggsae. • Line 166 and results from this experiment: Is the LEBV-SANTV mixture consisting of 50uL of both viruses or a total of 50uL (so 25uL of both)? This is also important for the interpretation of results.
To clarify, we changed to: “50 l ... of an equivolume mix of SANTV and LEBV”. • Line 167: The text says the culture is maintain for 4 days, but then also mentions day 5. Figure 2 clarifies the experimental setup later, but the text could be clearer here.
Thank you for noticing this. We changed the 4 to 7. • Line 172: What are the nine starter cultures?
The nine starting cultures were those obtained as described in the paragraph preceding this line in the manuscript. From a plate of infected animals (five L4 larvae), we propagated the infected population by chunking over 3 plates (day 3) and 3*3 plates (day 5). To make this point clear, we have added above: "to generate for the following experiments nine starter cultures for each of the four conditions " • Line 185: 'Infection of the set of C. briggsae natural isolates'. From the text it is not clear what set the authors refer to.
We changed to "a set" and refer to Figure 2B and Table S4 in the sentence below for the list of natural isolates. • Line 223: 'The proportion of infected animals were overall higher in Batch3 but the qualitative results are similar'. It is unclear why this statement is here instead of in the result section and it is also not clear what the authors mean by the second part of the sentence.
We moved the sentence to Results and changed it to: " The proportion of infected animals were overall higher in Batch 3 but the relative results of the different strains were similar for the three batches." • Line 326: Is 'the same method as above' using FISH or RT-qPCR?
Changed to "using FISH as above". • Line 382: What do the authors mean by 'two cross directions'?
We removed this mention as the method is better explained in the next sentence.
- Line 454-458: The data presented here does not appear well integrated in the storyline. It does not fit under the subheading. Perhaps it would be a better fit under the subheading of line 462? We moved it below the subheading. • Line 478: Reference to Fig S2 should be reference to Fig S3
Changed. • Line 483: Reference to Fig S3 should be reference to Fig S4
Changed. • Line 540-544: The sentence reads as a contradiction (C. elegans defends itself using RNAi, C. briggsae blocks viral infection during entry). As a result, the sentence reads as if RNAi is not of much antiviral importance in C. briggsae, but that cannot be concluded from this data. I am not sure if this is what the authors aim to suggest, but another word choice (e.g. changing 'whereas' and 'this does not seem the case for C. briggsae') may be considered.
We changed the wording to " whereas the C. elegans N2 reference strain allows for viral entry and defends itself against ORV via its small RNA response (Félix et al. 2011; Ashe et al. 2013; Shirayama et al. 2014; Coffman et al. 2017), in the tested resistant C. briggsae strains, the viruses appeared to be blocked at entry or at early steps of the viral cycle." • Line 585 and 592: There are two QTL approaches being applied and referred to as 'the one- and two-QTL analyses'. The description in this part is rather technical and the terminology is not clear. As a result, for readers not familiar with QTL mapping, the biological interpretation may become obscured.
We now explain in Methods: " ...scanning each pair of positions for several models, including single-QTL, full, additive and epistatic. The significance threshold LOD score of each model was estimated via 1,000 permutation tests with a coefficient of risk a=0.05. The threshold was 4.91 for the additive model and 6.09 for the full model. The LOD score of each pair of position is represented by a color scale in Figure 5C). The combination of the chromosomes III and IV QTLs had a LOD score of 10.5 in the full and additive models. No epistatic interaction was detected. The LOD score of the single-QTL model comparison was below the threshold."
-
Line 659: The authors end the section about natural genetic variation in the response to SANTV with candidate genes and a CRISPR experiment. As the authors identify a small genetic region associated with LEBV susceptibility, it would be interesting to hear about any candidate genes in this region. There are still many genes and more importantly, many polymorphisms in this region (ca. 700 single-nucleotide polymorphisms and short indels). Because structural variants are difficult to call (long-read sequencing has not been performed on the parents), we had preferred to abstain to provide a list of polymorphisms that would be incomplete and preferentially point towards SNPs. However, because of the reviewer's query, we now provide it in Table S11.
-
Line 674: The authors make use of HK104 strain in this study as it is the exception in their dataset that provides resistance against LEBV, but not SANTV. Possibly, the genetic variation linked to viral susceptibility uncovered using HK104 may therefore be relatively uncommon in C. briggsae. The implications of this choice and option for other studies using different genotypes could be interesting to discuss in this short paragraph. The aim in here is to discover why HK104 is specifically resistant to one virus and not the other. There is a possibility of uncovering a specific mechanism that is present in only two or three strains of our 40-strain dataset but we find this specificity particularly
interesting, regardless of its prevalence. We explore in the Discussion which of the two crosses may reveal the specificity.
- Line 774: The IPR is already described on abbreviated in line 742. As a reader, we prefer having the abbreviation explained twice than not understanding it. • Overall, to reach a broader audience, the manuscript can expand explanations in the discussion. E.g. statements in line 695 and 773, refer to previous observations, but do not explain them in enough detail to understand parallels between this and previous studies without prior knowledge.
We added some explanations, specifically for lines 695 and 773 (of previous version). • Figure 2: Only HK104 is labelled in the figure, it would be useful to also see HK105 as this strain is also explicitly mentioned in the text.
We now included HK105 and strains that are used in further experiments.
- Figure 2: It is not clear from the results or methods how strains as designated into a certain class. The figure legend says variability in the data is taken into account and that is why some strains are close to each other, yet distinct in class, but how this works is not described. We now explain our criteria. See above in the response to Reviewer 2. • Figure S3: The strain JU1264 and JU1498 are mentioned thrice (as '2', 'rep' and 'ref'). These annotations should be clarified.
These explanations were indeed missing. We now explain them in the figure legend. • Figure S4: The figure would benefit from a division in panels per strain to facilitate comparisons across strains.
Indeed. We now added a division in panels per strain. • Figure S4: Have the authors correlated viral loads with the number of infected animals? This could result in addition information if not all individuals are infected equally.
We have not done so in this precise experiment but preferred to use the number of infected animals in most other experiments, in particular because it is less subject to outlier effects. • Figure S4: Could the authors clarify the meaning of JU1264 Rep?
It is explained in the legend: "The undiluted viral preparations on JU1264 are used to normalize and are indicated as "JU1264 1/1". A separate replicate was performed and indicated as "JU1264 Rep"."
- Figure 8: The meaning of the stars in this figure is a bit confusing and the description of these stars in the legend is not clear. Indeed. We changed the legend to: " ***: p<0.001 comparing JU4034 with its parent strain HK104 using a generalized linear model."
-
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Summary
The manuscript provides new and detailed insight into two viruses infecting Caenorhabditis briggsae, a close relative of the widely studied model organism Caenorhabditis elegans. The authors study infection from a host perspective using two out of three viruses known to infect C. briggsae. The study mostly focuses on unravelling genetic variation within the host that links to viral susceptibility. They identify and confirm three QTL locations. They subsequently create CRISPR mutations to study candidate genes. Moreover, the study provides novel molecular insight into the C. briggsae antiviral RNAi pathway. Overall, the study provides a good basis to continue using C. briggsae to study viral infection.
Major comments
- The authors provide most data in both a processed and raw format, which is helpful. In two cases (data from 3 DPI, line 492 and LEBV infections in the AF16xHK104 NILs, line 621), the authors state their results, but the data seems not to be provided in the document (at least no direct reference is provided). These are supporting results and do not affect the main conclusions, nevertheless providing the data in form of a table or supplementary figure would be required. Generally, it may help to include a data availability statement to have a combined overview of where data can be found.
Minor comments
- Line 97-126: Here the manuscript fully focuses on the work in C. elegans. It would be interesting to make clear links to the work in C. briggsae (e.g. mention if homologs are present). The paragraph in line 127 clarifies advantages of studying viral infection in C. briggsae compared to C. elegans. It may be logical to place this information early in the text.
- Line 166 and results from this experiment: Is the LEBV-SANTV mixture consisting of 50uL of both viruses or a total of 50uL (so 25uL of both)? This is also important for the interpretation of results.
- Line 167: The text says the culture is maintain for 4 days, but then also mentions day 5. Figure 2 clarifies the experimental setup later, but the text could be clearer here.
- Line 172: What are the nine starter cultures?
- Line 185: 'Infection of the set of C. briggsae natural isolates'. From the text it is not clear what set the authors refer to.
- Line 223: 'The proportion of infected animals were overall higher in Batch 3 but the qualitative results are similar'. It is unclear why this statement is here instead of in the result section and it is also not clear what the authors mean by the second part of the sentence.
- Line 326: Is 'the same method as above' using FISH or RT-qPCR?
- Line 382: What do the authors mean by 'two cross directions'?
- Line 454-458: The data presented here does not appear well integrated in the storyline. It does not fit under the subheading. Perhaps it would be a better fit under the subheading of line 462?
- Line 478: Reference to Fig S2 should be reference to Fig S3
- Line 483: Reference to Fig S3 should be reference to Fig S4
- Line 540-544: The sentence reads as a contradiction (C. elegans defends itself using RNAi, C. briggsae blocks viral infection during entry). As a result, the sentence reads as if RNAi is not of much antiviral importance in C. briggsae, but that cannot be concluded from this data. I am not sure if this is what the authors aim to suggest, but another word choice (e.g. changing 'whereas' and 'this does not seem the case for C. briggsae') may be considered.
- Line 585 and 592: There are two QTL approaches being applied and referred to as 'the one- and two-QTL analyses'. The description in this part is rather technical and the terminology is not clear. As a result, for readers not familiar with QTL mapping, the biological interpretation may become obscured.
- Line 659: The authors end the section about natural genetic variation in the response to SANTV with candidate genes and a CRISPR experiment. As the authors identify a small genetic region associated with LEBV susceptibility, it would be interesting to hear about any candidate genes in this region.
- Line 674: The authors make use of HK104 strain in this study as it is the exception in their dataset that provides resistance against LEBV, but not SANTV. Possibly, the genetic variation linked to viral susceptibility uncovered using HK104 may therefore be relatively uncommon in C. briggsae. The implications of this choice and option for other studies using different genotypes could be interesting to discuss in this short paragraph.
- Line 774: The IPR is already described on abbreviated in line 742.
- Overall, to reach a broader audience, the manuscript can expand explanations in the discussion. E.g. statements in line 695 and 773, refer to previous observations, but do not explain them in enough detail to understand parallels between this and previous studies without prior knowledge.
- Figure 2: Only HK104 is labelled in the figure, it would be useful to also see HK105 as this strain is also explicitly mentioned in the text.
- Figure 2: It is not clear from the results or methods how strains as designated into a certain class. The figure legend says variability in the data is taken into account and that is why some strains are close to each other, yet distinct in class, but how this works is not described.
- Figure S3: The strain JU1264 and JU1498 are mentioned thrice (as '2', 'rep' and 'ref'). These annotations should be clarified.
- Figure S4: The figure would benefit from a division in panels per strain to facilitate comparisons across strains.
- Figure S4: Have the authors correlated viral loads with the number of infected animals? This could result in addition information if not all individuals are infected equally.
- Figure S4: Could the authors clarify the meaning of JU1264 Rep?
- Figure 8: The meaning of the stars in this figure is a bit confusing and the description of these stars in the legend is not clear.
Significance
The study contains a large amount of experimental data that provides a solid basis for using C. briggsae as a model to study viral (co-)infections. Interesting comparisons to C. elegans that is more thoroughly studied are drawn and used to advance understanding of viral infection for both organisms. Diverse experimental approaches have been taken to support conclusions and the data is thoughtfully considered throughout the manuscript. Sometimes, the text or presentation of the figures could be improved for clarity. The current manuscript will be of most interest for an audience with some knowledge about viral infections in nematodes and/or an interest in natural genetic variation or RNAi in C. elegans. Moreover, further development of model organisms like the Caenorhabditis nematodes for study of viral infection is of broad interest to virologists.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Viruses are common parasites of most animals and hosts have evolved a variety of mechanisms to defend against viruses. C. elegans and its natural Orsay virus have been used to discover novel mechanisms of viral immunity. Understanding the genetic basis why some hosts get infected and others do not can lead to a better mechanistic understanding of viral infection. In this manuscript, the authors describe their characterization of strain-specific differences in immunity to Santeuil and Le Blanc viruses in their natural nematode host C. briggsae. They found that particular strains of C. briggsae were sensitive or resistant to either or both viruses corresponding to the geographic origins of the strains. Resistant strains were determined to lack a small RNA response to infection suggesting an alternate, pre-invasion method of resistance. QTLs corresponding to resistance in both viruses were identified through utilization of Advanced Intercrossed Recombinant Inbred Lines (RILs).
Main points:
- In figure 1C and D, is more than 1 biological replicate performed? Ideally multiple independent infections would be performed which would increase confidence in these experiments, but minimally the authors should make clear that this data was from an experiment only performed once. The conclusion from the life span assays is unlikely to change, but given the variance of the brood size assays within replicates, the conclusions that LEBV infection reduces the brood size is weakly supported.
- If the authors want to claim that there is a defect in viral entry in the resistant strains, they should perform infections experiments at an earlier time point that could capture viral invasion. In C. elegans with Orsay virus these experiments have been done as early as 18 hours by FISH. https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1011120 The way the assays are currently set up, if the infection was cleared it wouldn't be observed.
- The evidence that the region on chromosome III contributes to susceptibility is weak. The analysis in figure 5B does not identify this region and it is not clear to me how to read the scale in figure 5C to determine that a region on chromosome III is significant. In figure 6 using a more appropriate statistical test such as one way ANOVA with multiple hypothesis testing is necessary to determine if there is a difference between JU2832 and JU2916. It would be helpful if the authors could add more discussion of the evidence that they feel that supports this region being involved in susceptibility.
Minor points
- In figure 1B it would be helpful to provide more information on the animals chosen to display. Are these representative examples or extreme examples?
- In figure 2B, adding a legend for the colored dots would be helpful.
- In figure 2C, the definitions for a strain to be labeled as belonging to each category should be provided.
- Could the data in figure 2 be used for genome-wide association mapping and compared to the RIL QTL experiments? Adding comment on this would be helpful to understanding the usefulness of this data.
- In figure 4b, in HK104 LRBV the numbers in top right corner are not defined.
- Line 1001 remove period from "LEBV.of" and add period after isolates.
Significance
Overall, this is an interesting and well-carried out study that describes a new system for understanding the genetic basis to viral infection. Using C. briggsae as a comparative system to C. elegans is likely to gain further insight into the specificity of viral infections and if mechanisms of resistance are unique or shared between these two nematodes. This study is likely to be interesting to virologists, evolutionary biologists, and those studying host-pathogen interactions.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary:
Alkan et al. investigate natural variation in the susceptibility of C. briggsae nematodes to two naturally occurring Noda-like RNA viruses, the Le Blanc (LEBV) and Santeuil (SANTV). Compared to the related nematode species, C. elegans, considerably less attention has been paid to immunity to viral infections, or causative genes, in other nematode species. Taking advantage of a large, globally distributed set of C. briggsae natural isolates, the authors infected these strains with LEBV, SANTV, or both viruses to comprehensively analyze natural variation in viral susceptibility. They generally find that strains isolated from temperate regions are sensitive to both viruses, while tropical strains are resistant. However, excitingly, they identify several strains (focusing specifically on HK104 from Japan) with virus-specific susceptibility. Using this observation, the authors rigorously investigate a suite of existing RILs and generate their own RILs/NILs to identify QTLs of chromosomes II, III, and IV with likely roles in LEBV and SANTV resistance. The authors could not narrow these QTLs to causative alleles in specific genes, but this work sets up future studies to further elucidate molecular mechanisms of resistance.
Additionally, the authors identify an interesting distinction between C. briggsae strains that are resistant to viruses compared to the more commonly studied C. elegans and its natural pathogen, the Orsay virus. Alkan et al. employ small RNA sequencing to demonstrate that LEBV and SANTV-resistant strains do not elicit a small RNA response. This suggests immunity occurs by blocking viral entry or early replication steps that precede RNAi induction. This contrasts with some C. elegans strains resistant to Orsay virus, like the N2 strain, in which a small RNA response is detected. Such a result highlights the value of investigating immune responses across distinct nematode species, as there are clearly different resistance mechanisms at play. Future work building on this study will further demonstrate the value of C. briggsae and other nematodes as valuable comparative models with C. elegans.
Major Comments:
Overall, I found this study's data convincing, statistically rigorous and well-executed. The author's conclusions are largely fair and supported by the presented data. I appreciated that the authors performed infection screens across multiple independently generated virus preps (a notoriously variable process) to increase confidence in the results. I have two suggestions that the authors should consider addressing before publication:
- Figures 1&4 focus on JU1264 as the primary double-sensitive strain. However, the authors built their RILs with HK104 by crossing with JU1498 in Figures 7&8. In the results section and/or methods, the authors should provide some justification for this strain switch. Alternatively, the equivalent analysis of Figure 1 focusing on JU1498 would be valuable to demonstrate that the effects of both viruses on fitness are similar to JU1264. I am not recommending that the JU1264xHK104 crosses be performed or that Figures 7&8 be repeated with JU1264xHK104 lines, but that more explanation for strain selection for RIL generation should be provided.
- The authors reasonably claim that the resistance of tropical strains like AF16 could be due to blocking viral entry or early inhibition of replication before the small RNA response is activated. Could the authors test this by directly microinjecting virus (in combination with a dye as a control for successful injection) into the intestine? I understand this could not be done on a scale that would allow for small RNA sequencing, but one could perform small-scale FISH to determine if LEBV or SANTV are replication-competent if the entry barrier is artificially overcome. Such an experiment may require considerable technical development. It may be beyond the scope/timing of this specific study, but it is worth considering to gain some insight into the possible resistance mechanisms observed.
Minor Comments:
Line 78 - provide the full genus name for Caenorhabditis elegans at first appearance, as done for Caenorhabditis briggsae
Line 117 - The description of cul-6 could also reference Bakowski et al. 2014. This study is referenced more generally as a player in proteostasis a few lines below but could be more explicitly tied to cul-6-mediated resistance to ORV (Bakowski et al. 2014 - see Fig. 7A)
Line 197-198 - The authors could consider adding sequences for FISH probes as part of Table S2. This information could add value to the present study even if previously listed in Frézal et al.
Line 263 - Were embryos obtained by bleaching of gravid adults, or was an egg lay performed, and the embryos were collected from plates? This is potentially an important distinction and should be clarified briefly in the methods.
Line 330 - Provide justification for using JU1498 to make these RILs (see comment above).
Line 446-Refer to the methods section for full clarity on the role of FISH in this set of experiments or reword for improved clarity. At first read-through, this phrasing made me expect some FISH experiments associated with Fig. 1, which does not appear to be the case.
Line 478 - The supplementary figure callouts are misaligned with the provided documents. S2A in the text appears to refer to S3A RT-qPCR results.
Line 483 - Similar to above, the text suggests serial dilutions should refer to S4, not S3.
Line 498 - Modify the text to 'Figure 2C and Figure 3' for clarity.
Line 531,535 - viRNAs are defined in line 535 but this should be moved to 531 above at first appearance in the text.
Line 593 - Typo in 'Logarithm of Odds?'
Line 621-624 - I recommend the authors include the data for the LEBV control experiments with NIL strains, either as a supplementary table, an additional panel for Fig. 6, or represented as done in Figure 8.
Line 625-632 - How many total genes are represented in the QTL on IV? The reasoning behind testing rde-11 and rsd-2 is sound, but readers might want to know other potential candidates within this region (perhaps something the authors could also speculate on in the discussion). A similar comment applies for # genes in the QTLs on II and III.
Line 991-992 - Figure 1B - LEBV, SANTV, and co-infection effects on body size are mentioned but not quantified. Has this phenotype been quantified elsewhere? If so, the authors should reference it in the results section or Fig. 1 legend. Alternatively, body size could be quantified as part of this study and added to Fig. 1.
Line 1001 - There is a typo in the first sentence; the period after LEBV should be removed. Small suggestion: Figure 2A - While described in the methods, I recommend that the authors briefly reiterate in the figure legend that the white/yellow boxes are intended to indicate serial chunking for clarity.
Line 1034 - Small formatting note for Figure 4B - percentages of reads mapping to RNA1 and RNA2 appear underneath gridlines for the graph which obscures visibility and is inconsistent with the other graphs presented.
Line 1094 - Figure S1 - this analysis could be strengthened by RT-qPCR represented as fold change in viral load instead of, or in addition to, the agarose gel image (like Fig. S3). Doing so would also allow for the normalization of eft-2 control across individual samples (e.g.: particularly low eft-2 amplification in ED3073). However, these results are sufficiently convincing that LEBV does not replicate in C. elegans, but a more quantitative approach is recommended if feasible for the authors. Alternatively, an additional figure panel and/or repeat of this analysis with C. elegans infected with ORV would also be beneficial as an additional control.
Line 1112 - "Experiments using RNA2 primers gave similar results" - if this data isn't included in the study, this text should be removed.
Line 1141 - Figure S6 - For full transparency, the authors could consider including HK104 infected with LEBV to show minimal (zero) reads align to the RNA1/RNA2 segments using scales consistent with JU1264 infected with LEBV (S6C)
Significance
C. elegans has received considerable attention as a model for host-natural pathogen interactions, including the Orsay virus, microsporidia species, oomycetes, and others. However, the field would benefit from increased diversification into related nematodes, as there is likely much more exciting biology to uncover beyond C. elegans. This study exemplifies the genetic advantages of nematodes for this purpose, given the diverse nematode strains available from the CaeNDR (Crombie et al. 2023, PMID: 37855690), rapid growth/genetics of nematodes, and ease of infection by naturally relevant pathogens. Anyone interested in innate immunity mechanisms to viruses or other intracellular pathogens will find this study valuable, as well as those generally interested in traits under selective pressures. My field of expertise is microsporidia as parasites of nematodes, which also act as intracellular pathogens of the intestine but are eukaryotic. Surprisingly, viruses and microsporidia overlap considerably in host immune response (Bakowski et al. 2014, Chen et al. 2017, Reddy et al. 2019 referenced in Alkan et al.). To date, this has been largely explored using C. elegans as a model, but microsporidia that infect C. elegans also infect C. briggsae (Wan et al. 2022 PMID:36534656, Wadi et al. 2023: 3741459). Thus, I view the work of Alkan et al. as opening the door to exciting new directions that could similarly be executed with microsporidia pathogens for comparative analysis in C. elegans, C. briggsae, and related nematodes.
-
- Apr 2024
-
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
The manuscript by Xie et al investigates the role of efemp1 in mediating ocular growth. Efemp1, a secreted extracellular matrix glycoprotein, was previously identified as a myopia-risk gene in human GWAS studies. Given that myopia is linked to aberrant eye shape, the authors investigated whether and how this gene mediates eye growth. Using a CRISPR based approach in zebrafish the authors knocked out efemp1 specifically in the retina and established that a myopic eye results. They went further and investigated visual function in these mutant fish using the optomotor response and electroretinograms. As dark-rearing in many animal models has been linked to the induction of myopia, the authors examined the effects of a dark-rearing regimen in efemp1 mutants and found surprisingly that they did not show signs of myopia. Lastly, the expression and distribution of several myopia-associated genes was investigated in the retina of efemp1 mutants and following dark-rearing.
- The starting point for this study was the generation of a "retina-specific knockout mutant of the efemp1 gene". However, evidence for a 'successful' knockout at the protein level is missing.
We have clarified the exact nature of our efemp12C-Cas9 model further. The mutants have mosaic genetic modification that do not simply lead to gene deletion (knockout). We have reworded throughout the manuscript to avoid statement indicating the efemp1 2C-Cas9 fish as a knockout model and instead used “genetic modification” or “genetic disruption”, etc:
“This gene editing system led to mosaic retinal mutations; each Cas9-expressing retinal cell that were driven by the rx2 promoter would perform its own CRISPR gene editing process, and as a result, even within an individual retina, there were different types of indels (e.g., loss- or gain-of-function mutations, or milder mutations that may cause mislocalization) in different cells.” (Line 104–108).
For the same reason, it is very challenging to show such a mosaic genetic editing in the protein level. First of all, we were not able to find commercial anti-EFEMP1 antibody for zebrafish that targets specifically the editing sites in our fish model. This means that mutated efemp1 DNAs that were transcribed and translated would produce mutant EFEMP1 protein that might still be recognized by an anti-EFEMP1 antibody, although their dysfunction might manifest as altered distribution and thus abnormal ocular development.
On the other hand, in this study we used a headloop PCR technique, a sensitive genotyping approach that specifically suppresses amplification of wild-type but not mutated efemp1 DNA to show that there were genetic modifications in our mutants. However, likely due to the patchy distribution of Cas9-expressing retinal cells (Fig 1A′) and the non-uniform nature of gene editing, our genotyping results showed weak mutant bands (Fig 1C–D), implicating low editing rates. The fact that only a proportion of mutations would result in loss of the protein would make it difficult to distinguish the gene editing in the retina via immunostaining or western blot.
We have added following in the Results section to indicate the difficulties in showing genetic modification at the protein level for the efemp12C-Cas9 model:
“On the other hand, due to the mosaic nature of the gene editing, the patchiness of Cas9-expressing retinal cells (Fig 1A′) and the potentially low editing rate, as well as the unavailability of commercial anti-EFEMP1 antibodies that targets specifically the CRISPR editing sites, efemp1 modification in our mutant model at the protein level is challenging to show.” (Line 125–128)
Immunostaining for Efemp1 in sections of the entire retina from control and mutant fish would have helped here. It is only in Figure 7 B, C that portions of the inner retina from control and efemp1 2c-Cas9 fish are shown with Efemp1 immunostaining. Control and mutant retinae show slight relative differences in Efemp1 fluorescence levels which are difficult to reconcile with a knock-out scenario.
As mentioned above, our model is not simply a knockout but a combination of a range of indels that may produce mutant proteins. At least some of them are therefore still likely to bind with the anti-EFEMP1 antibody used in the present study; the antibody does not bind to EFEMP1 regions corresponding to sgRNAs target sites on zebrafish efemp1 DNA. We have added this detail in the Methods to clarify.
“Noting that the anti-EFEMP1 antibody does not bind to EFEMP1 regions corresponding to sgRNAs target sites on zebrafish efemp1 DNA, thus mutant proteins (if any) may still be labeled by the antibody.” (Line 790–792)
Therefore, it makes sense that our result showed differences in relative EFEMP1 fluorescence between groups across the inner retina rather than complete loss of EFEMP1 immunostaining in mutant retinas.
resumably this phenotype is a result of the mosaic expression of Cas9 (GFP) shown in Fig 1? Can the authors explain the reason for this mosaicism?
We believe that the “mosaic expression of Cas9” the reviewer mentioned is the “patchy distribution of Cas9-expressing retinal cells” as we mentioned in the above response. Yes this is also partially the reason why mutant retinas still present EFEMP1 immunostaining. The patchy (or mosaic) Cas9 expression in the retina of our mutant model can be because we use the Gal4/UAS system to drive the 2C-Cas9 gene editing system. Mosaic expression has long been noticed as a drawback of the Gal4/UAS system. We have modified the manuscript to explain the mosaic Cas9 expression in the mutant retina:
“The patchiness of Cas9 expression in the mutant retina may attribute to the Gal4/UAS system (Halpern et al., 2008).” (Line 103–104)
Given this mosaic expression would one expect Efemp1 immunoreactive areas intermingled with areas devoid of Efemp1 in the mutant retina?
This happens only in cells that CRIPSR eliminates production of EFEMP1, but due to patchy Cas9 expression and perhaps only a little proportion of Cas9-positive cells will lose EFEMP1 protein, our immunostaining did not show apparent intermingling. Importantly, it is worth noting that as our explanation above, anti-EFEMP1 antibody may be able to bind with mutant EFEMP1 proteins and thus EFEMP1 immunostaining will still present in retinal cells with successful gene editing.
Further, do deficits in the various functional assays the authors perform correlate with the degree of mosaicism?
We appreciate the reviewer’s interesting idea. As primary goal of the present study is to determine whether retinal-specific efemp1 modification has any effect on ocular refraction, we aimed to use fish with as more Cas9-expressing cells as possible for functional analysis, and thus fish used were not expected to have discernible difference in degree of Cas9 expression mosaicism. Therefore, it is not known that whether there is a correlation between ocular deficits and Cas9 expression mosaicism. We thank the reviewer’s suggestion and will bear this idea in mind for future experimental design.
In the same vein, in Figure 2 the authors refer to variation in GFP levels in the efemp12c-Cas9. It is not clear whether the authors mean levels of GFP in individual cells or numbers of GFP+ cells. Presumably the latter. Could the authors clarify?
We have added details in the Methods of the manuscript to clarify:
“Post-hoc retinal histology indicated that intensity of eGFP fluorescence is corresponding to eGFP positive cell number; fish with higher eGFP fluorescence level had more eGFP positive cells.” (Line 723–725)
In my opinion understanding and characterizing the efemp12c-Cas9 fish thoroughly is key to interpreting the phenotypes the authors show subsequently.
We agree with the reviewer. Due to the characteristics of our 2C-Cas9 model mentioned above, headloop PCR, which is highly sensitive for determining occurrence of gene mutations regardless indel types, is so far the most practical approach for us to provide evidence of successful gene editing. Because there was limited means to show gene modification in the protein level for our mutant model (as mentioned above), we instead provided functional verification of gene modification using OMR. We showed that functionally our 2C-Cas9 model have comparable phenotype with efemp1-knockdown zebrafish that have robust gene disruption induced by morpholino. Overall, with this evidence we believe that there were efemp1 modification in our fish model. Given no other manipulations, the phenotypes are presumably due to the mosaic mutations generated here. We would speculate (though have no data to show this) that a more even and complete knockout of Efemp1 throughout all of the retinal neurons would increase the size of the phenotypic changes seen even more. It was important for us to target the eye to assess the role in the local emmetropisation processes rather than mixing it with possible other CNS defects confounding the phenotype. We were excited to be able to observe quantifiable phenotypes even with such a mosaic randomized mutation model shown here and believe it gives more strength to the role of Efemp1.
Reviewer #1 (Significance (Required)):
The wide range of assays the authors perform to assess visual deficits is commendable. Such a comprehensive approach ranging from anatomical, behavioral and electrophysiological assays is poised to identify changes that could otherwise be overlooked. Given the increasing use of zebrafish as models of ocular diseases, this study provides a solid roadmap of the types of analysis possible. This work should be interesting to researchers in the field of myopia research and to basic vision researchers interested in using the zebrafish as a model organism.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
Summary: In this study, the authors used the zebrafish model to study efemp1, a gene that was previously found to be associated with myopia. They used CRISPR-Cas9 to create specific efemp1 knockout in the retina in a mosaic manner. They used a few histological and physiological techniques to evaluate the resulting mutant and found that the efemp1 mutants developed symptoms that are consistent with myopia. The authors further quantified the expression of a few potential target genes in the eye that are potentially implicated in myopia phenotype. The authors also evaluated the differential phenotype of the efemp1 mutant grown in different light conditions that might contribute to myopia.
Major comments:
Overall, the authors have provided convincing evidence of the phenotype created by their efemp1 perturbation. Their experiments were thoroughly done and extensively analyzed. They even discussed some potential shortcomings of their study. Their study is a nice first step towards a better understanding of the efemp1 gene function in ocular growth and in myopia. All my comments below should be addressed by clarifications and discussions and not by any new experiments or projects.
Minor comments:
- Elaborate the rationale for choosing efemp1 from the original GWAS study for zebrafish investigation. The authors only mentioned that this gene is among the highest in the rank and its role in myopia is not clear. However, there are quite a few other genes in the GWAS study that were ranked as high, if not higher than efemp1.
We thank the reviewer for the suggestion. Firstly, in a previous study, we used the high-throughput zebrafish optomotor response assay coupled with morpholino gene knockdown to screen top-ranked myopia-risk genes from the GWAS study. To use zebrafish as a model, additionally we took into account several other factors including existence of zebrafish orthologues, gene expression in the eye, association of ocular phenotypes with risk genes shown in previous zebrafish studies, fatality of gene depletion and availability of characterized morpholinos to prioritize GWAS-associated risk genes for screening. With significant reduction of OMR responses in efemp1 morphants, efemp1 was selected as a gene of interest for investigation. As our pre-screen is currently an unpublished study, we were not showing the data in the manuscript, but we are happy to show relevant results to the reviewer if requested. To clarify the selection of this gene, we have added a brief statement in the Introduction:
“Our previous study (unpublished) screening GWAS-associated myopia-risk genes with high-throughput optomotor response measurement and morpholino gene knockdown indicated that knockdown of efemp1 in larval zebrafish reduced spatial-frequency tuning function, making efemp1 a candidate gene worth for further investigation for myopia development.” (Line 53–57)
On the other hand, in the Introduction of our manuscript, we indeed had covered that in humans, efemp1 disruptions, with either gain- or loss-of functions, would lead to visual disease, such as Malattia Leventinese, doyne honeycomb retinal dystrophy, juvenile-onset open-angle glaucoma, or high myopia. These also implicated the importance in understanding the role of efemp1 in ocular development.
Elaborate the rationale for choosing retina as the target tissue of efemp1 knockout, especially when the original GWAS study indicated the expression of EFEMP1 is in cornea, RPE, and sclera, but not in retinal cells.
Firstly, efemp1 is expressed in the retina as shown by our immunostaining in zebrafish and in situ hybridization in mouse in a previous study (PMID: 26162006). We have modified the manuscript to clarify this point:
“EFEMP1 is a secreted extracellular matrix glycoprotein widely expressed throughout the human body, especially in elastic fiber-rich tissues, for examples, the brain, lung, kidney and eye including the retina (Livingstone et al., 2020; Mackay et al., 2015).” (Line 51–53)
In future studies it will be interesting to perform similar somatic efemp1 manipulation in other ocular tissues to examine whether this gene has tissue-dependent functions for ocular growth. Nonetheless, our results demonstrated that at the very least retinal efemp1 is involved in ocular development.
Secondly, the rx2 gene is indeed also expressed in the RPE in zebrafish (PMID: 11180949), meaning that there were also RPE cells expressing Cas9 driven by rx2. We have added this detailed to the manuscript:
“In this transgenic zebrafish line, Tg(rx2:Gal4) is expressed specifically in the retina and the RPE (Chuang and Raymond, 2001), due to the retina-specific retinal homeobox gene 2 (rx2) promoter.” (Line 95–97)
Importantly, as myopia generally develops due to dysregulated gene-environment interactions, modification of efemp1 specifically in the light-sensing retina allowed us to investigate the interaction of efemp1 with visual environment. We have added this point to the manuscript:
“In order to investigate the role of the efemp1 gene and its interaction with visual environment, we first generated a zebrafish line with efemp1 modification specifically in the retina (efemp12C-Cas9; Fig 1A), the light-sensing tissue in the eye, using a 2C-Cas9 somatic CRISPR gene editing system (Di Donato et al., 2016).” (Line 92–95)
Discuss possible ways of modifying efemp1 gene in the retina that would be more uniform and would not create mosaicism and/or heterogenous mutations that can complicate downstream characterizations and interpretations as the authors currently experienced.
We appreciate the reviewer’s suggestion. One possible way of generating uniform tissue-specific gene modification is to use the Cre-loxP recombination system. We have modified the Discussion of manuscript as per reviewer’s suggestion:
“To avoid such heterogeneous tissue-specific gene editing, the Cre-LoxP system is an option: using tissue-specific driven Cre recombination to delete LoxP flanked exons of the target gene.” (Line 482–486)
- Added to discussion –
The authors should elaborate further on the effect of the mosaicism and heterogenous mutations on efemp1, a presumably excreted protein, on regulating the ocular growth.
We appreciate the reviewer’s interesting point of view. However, it is very difficult to identify a regionalized effect of mosaicism and heterogenous mutations of efemp1 on ocular growth even with dissected eyes. It is likely that distribution of Cas9-expressing cells was mosaic but still overall even across the retina. Perhaps in other models that allow controlled regional efemp1 manipulation in the eye, for sample, using gene promoters that present dorsal to ventral gradient, comparisons between modified and unmodified regions in the same eye will help to unravel whether efemp1 regulates eye growth only around the location where it was produced.
How did the downstream genes they studied affect by the messing up of the extracellular Efemp1? Is it through altering the Egf signal transduction?
Throughout the Discussion we have tried to cover how efemp1 disruption affect myopia-associated genes where it is possible by linking our results with literature. However, there were not enough details from the literature showing direct pathways between efemp1 and the tested myopia-risk genes. These will be interesting topics for further investigation. To our knowledge, there is no evidence that myopia-associated genes we analyzed in the study are transduced by Egf signaling.
If possible, discuss the original SNP that was associated with efemp1 and the potential mechanisms through which the SNP affects human EFEMP1; Then, discuss how the study of zebrafish efemp1 mutant can aid our understanding of the human's SNP.
Unfortunately, this information is not available. In the meta-analysis our work is based on Efemp1 ranked highly based on biological and statistical evidence. In figure 5 of Tedje et al., 2018, we can see Efemp1 in the first place. Where available, the annotation (light blue column) would indicate whether the variant was found in exonic, UTR or transcribing RNA. Nothing was identified for Efemp1 – which could mean that it is expressed in regulatory sequencing further away.
Typo: Page 15, Line 299: Loss of this gene "promotes".
Thanks to the reviewer, we have corrected the typo.
Reviewer #2 (Significance (Required)):
This study is an interesting and potentially significant addition to the ophthalmology field, as it conducted an initial characterization of a candidate gene for myopia in zebrafish and observed a relevant phenotype after the gene knockout. Colleagues in the myopia field will find the results interesting. In addition, colleagues in the zebrafish field will find the in-depth characterizations and tools used in the paper very informative.
I have conducted research in the human genetics of ophthalmology, gene expression analysis, zebrafish eye development and diseases. I believe my background allows me to effectively appreciate and evaluate the findings of this manuscript.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
Summary The authors use a retinal-specific promoter to target zebrafish efemp1 for inactivation to study its effects on the eye. Their use of the DiDonato/del Bene 2C-Cas9 system is a good method to target only cells that express a specific promoter i.e. rx2. Following this (mosaic and transient) targeting of efemp1, the authors describe enlarged eyes and myopia development, as well as reduced spatial visual sensitivity and altered retinal function by ERG analysis. Furthermore, expression levels of egr1, tgfb1a, vegfb, and rbp3 are altered, as well as Timp2 and Mmp2 proteins. Finally, dark-rearing of efemp1 mutant fish is reported to lead to emmetropization, rather than myopia.
Major comments
- The data presented by the authors are interesting, and likely due to efemp1 disruption in the eye. However, the authors should clarify or explain several points, and improve on experimental rigor. Figure 1 C, D- PCRs are not convincing for loss of efemp1. The authors should consider PCR reactions that would show deletion driven by both CRISPRs, or an RFLP reaction based on conventional PCR that would show differences if individual CRISPRs were effective.
Our zebrafish model is not simply a complete knockout model (please see response to reviewer 1’s comment 1 for details). In our model, even in a retina, there will be different indels in cells that expresses Cas9, including gain- or loss-of-function mutations, or mutations that do not even influence its function. In some cases, even with CRISPR cutting, DNA will recover to be wildtype. Thus, even with FACS to sort for Cas9+ (GFP+) cells, it is not possible to provide evidence for such gene modification using conventional PCR, because as long as there is a unmutated target sequence there will be PCR production. Because of this, headloop PCR as a well-established, highly sensitive approach is specifically suitable for our case.
There needs to be better evidence that efemp1 is being edited (e.g. Western blot, or qPCR).
As described in our response to reviewer 1’s comment 1, due the way efemp1 gene was modified in the retina in our model and the unavailability of suitable commercial antibodies, western blot is currently not an option for us. For qPCR, theoretically it is a way to show genetic modification at the transcriptional level, if combined with FACS from dissected eyes and sgRNA target sites specific primers. However, in reality it is not very practical to perform. First of all, even in our model with more Cas9+ cells, due to the patchy expression, the number of these cells are in fact low in a retina. This means that the number of fish to get enough cells for RNA isolation would be much higher, likely to be hundreds of fish. Moreover, in each clutch the number of fish with higher Cas9+ cell number is generally low, estimated to be only ~5%. Overall, this indicates that a large number of fish are required to even just get one sample for such an experiment. With evidence from headloop PCR and visual phenotype verification (OMR; Fig 1E–H and Fig S1), we believe it is certain that efemp1 gene has been modified. As mentioned also, the ability to identify quantifiable phenotypic differences in this model despite the mosaic Cas9 activity and random indels in different cells is highly suggestive of a full knockout of Efemp1 in the eye causing an even larger phenotype.
The data in Figure 7 are not convincing that EFEMP1 protein levels are substantially reduced in mutants.
This is expected. Please see response to reviewer 1’s comment 2.
Why are efemp12C-Cas9 eyes smaller with normal lighting? (Figure S2)
Fig S2 showed that efemp1*2C-Cas9 fish have smaller eye size than control fish only at 2 weeks of age. As shown by our survival data (Fig 2C), fish with more severe gene modification (implicated by more GFP+ cells, GFP+++ fish) are possibly died by 4 weeks of age, likely due to severe deficits in visually driven predation and subsequently nutrition deficiency. These fish thus gradually develop smaller size of the body including the eye with age, compared to control fish. Therefore, it makes senses that overall mutant fish have smaller eyes at 2 weeks of age but as GFP+++ fish die by 4 weeks, the group averaged eye size returned to a level similar to control fish. The fish survived are likely the ones that have mild mutations, which allow them to remain some levels of vision for feeding and develop without discernibly smaller eye size. Because there was variability of eye size in zebrafish caused by either development or gene manipulation, we used a relative calculation (ratio of retinal radius to lens radius) as a myopia index for comparison.
The clustering of datapoints in Figure 2B, 4B, overlaps extensively between control and mutant, and it is not easy to be sure that the high significance scores (***) are accurate.
We thank the reviewer for pointing out this concern. Though data points overlapped to some levels, in general difference between group means were apparent and the range that they deviate (i.e., mean ± SEM) were barely overlap. We realise it was difficult to see the SEM error bars, as they were so close to the mean, that they were hard to distinguish. We have adjusted our figures for clearer visualization of the error bars. Hopefully this will better show how far apart the data are as reflected by the significance scores.
The authors should consider discussing whether loss of efemp1 is developmental only, or sustained. rx2 is likely to be switched off after development, and retinal cells that arise after the rx2:Gal4 ceases to be active will have a normal quotient of efemp1.
Genetic modification in our mutant model is sustained. It is true that rx2 is only transiently expressed during early development, but once gDNA in a cell was modified by a CRISPR editing event driven by the 2C-Cas9 system, it remains throughout cell divisions (the same mutation would be copied during DNA synthesis) and cell lifetime. In addition, it has been showed that in adult teleost activation of rx2 in retinal stem cells in the retinal ciliary marginal zone determines its fate to form retinal neurons (PMID: 25908840). Therefore, in new neurons derived from retinal stem cells in the adult zebrafish retina, there is expression of rx2 to drive the 2C-Cas9 system for genetic modification. We have added relevant details to the Result section:
“Despite the mosaicism, the mutations resulted from the 2C-Cas9 system in retinal cells is expected to be sustained. Also, in adult teleost, activation of rx2 in retinal stem cells in the retinal ciliary marginal zone determines its fate to form retinal neurons (Reinhardt et al., 2015). This suggested that in new neurons derived from retinal stem cells in the adult zebrafish retina, there may be expression of rx2 to drive the 2C-Cas9 system for genetic modification.” (Line 108–116)
The authors should also consider a more detailed discussion of the mechanism mediated by/through efemp1 that alters retinal function and expression of other genes.
We appreciate the reviewer’s suggestion. It is possible to add more detailed discussion to the manuscript for potential mechanistic links, but ultimately such content would be highly speculative and may lead to over-interpretation of the data. Moreover, a comprehensive overview of detailed mechanisms of how efemp1 may alter retinal function and expression of relevant genes will require space and significantly lengthen the manuscript, with however only minimal improvement. Therefore, we believe it is reasonable to only touch the most relevant as we did for the manuscript.
Finally, since a full mouse knockout of efemp1 exists (Daniel et al, 2020), it is not clear why a retinal-specific zebrafish model would give better insight into the phenotype.
There are several advantages of our 2C-Cas9 zebrafish model. Firstly, with a retinal specific modification of the efemp1 gene, we are able to rule out systematic effect. Essentially our focus is the role of efemp1 in specifically ocular development. Secondly, with their smaller size, rapid development, high reproductivity, and ease of genetic and environmental manipulations, zebrafish allow us to perform large-scale high-throughput investigation with different genetic and environmental combinations. Furthermore, by changing the promoter that drives Gal4 expression in our model, we can target precisely different retinal neuron subtypes to characterize which and how different visual circuits are involved.
Minor comments
"Myopia is the most common ocular disorder" is overly broad and needs qualifiers.
We appreciate the reviewer’s rigorousness. However, myopia is in fact the most common ocular disorder around the world. We have mentioned in the Introduction that “Myopia (short-sightedness) is now the most common visual disorder, and is predicted to impact approximately half of the world population by 2050 (Holden et al., 2016).” Therefore, we believe a qualifier is appropriate.
Line 36 - what ocular changes cannot be easily managed?
We thank the reviewer’s suggestion. We have modified the Introduction manuscript to add some examples:
“Although considered manageable with optical correction, the development of high levels of myopia (or pathological myopia) brings with it ocular changes that promote eye diseases that cannot be easily managed (glaucoma, cataract, myopic maculopathy, etc.) (Hayashi et al., 2010; Ikuno, 2017; Marcus et al., 2011).” (Line 34–37)
Why does loss of retinal efemp1 cause reduced OMR response? Unlikely to be refractive error at this stage.
We have modified the Discussion as per the reviewer’s concern:
“We noticed that although 5 dpf efemp12C-Cas9 fish overall were not myopic relative to efemp1+/+ fish (Fig 2B), they showed reduced spatial-frequency tuning function (Fig 1E–H). This phenotype, if not due to refractive error, can be a result of altered visual processing, as aberrant extracellular matrix caused by efemp1 disruption may lead to dysfunctional synapses (Dityatev and Schachner, 2006).” (Line 491–494)
Which Timp2 (Timp2a or Timp2b) is visualized in Figure 7?
Thanks to the reviewer for raising this point. We have added relevant details to the Methods:
“The anti-TIMP2 antibody was developed based on human TIMP2. In a previous study this antibody was showed to label for zebrafish TIMP2a (Zhang et al., 2003). As similarity of zebrafish TIMP2b to human TIMP2 is much lower than that of zebrafish TIMP2a (60.55% vs. 71.23%), labelling of zebrafish TIM2b is less likely. Yet, we are not able to completely rule out this possibility due to lack of information of the exact immunogen.” (Line 790–794)
Why is the inner retina studied for altered protein expression, but not the rest of the eye? Myopia is primarily driven by growth of the outer retinal/sclera.
The reason why we focused on the inner retina is that in our study, prominent expression differences of our proteins of interest between groups were mainly noticed on the inner but not outer retina. We agree that the outer retina is a key driver for visually regulated ocular growth, yet the inner retina also plays a crucial role. There is abundant evidence that the inner retina is involved in development of ocular refraction. For examples, Cx36, Egr1 and dopamine pathways in the inner retina have been reported to be associated with regulation of ocular refraction (PMID: 10412059; PMID: 28602573; PMID: 25052990; PMID: 32547367). We believe it is reasonable to focus on the inner retina, were we observed robust quantifiable expression for the tested proteins in our case.
Reviewer #3 (Significance (Required)):
- General assessment: This study uses retinal-specific inactivation of efemp1 with a clever methodology to study its effects on the eye. However, the necessity of these experiments is not well explained, as a full mouse knockout line exists. • Advance: There are some interesting observations about gene expression following efemp1 inactivation, and useful experiments that look at the combination of genetics with environmental conditions on refractive error. This builds on studies by the Hulleman group on efemp1's role in the eye by adding functional information. • Audience: This will be of interest to both basic researchers and clinicians who study genetic influencers of the eye.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Summary
The authors use a retinal-specific promoter to target zebrafish efemp1 for inactivation to study its effects on the eye. Their use of the DiDonato/del Bene 2C-Cas9 system is a good method to target only cells that express a specific promoter i.e. rx2. Following this (mosaic and transient) targeting of efemp1, the authors describe enlarged eyes and myopia development, as well as reduced spatial visual sensitivity and altered retinal function by ERG analysis. Furthermore, expression levels of egr1, tgfb1a, vegfb, and rbp3 are altered, as well as Timp2 and Mmp2 proteins. Finally, dark-rearing of efemp1 mutant fish is reported to lead to emmetropization, rather than myopia.
Major comments
The data presented by the authors are interesting, and likely due to efemp1 disruption in the eye. However, the authors should clarify or explain several points, and improve on experimental rigor. Figure 1 C, D- PCRs are not convincing for loss of efemp1. The authors should consider PCR reactions that would show deletion driven by both CRISPRs, or an RFLP reaction based on conventional PCR that would show differences if individual CRISPRs were effective. There needs to be better evidence that efemp1 is being edited (e.g. Western blot, or qPCR). The data in Figure 7 are not convincing that EFEMP1 protein levels are substantially reduced in mutants. Why are efemp12C-Cas9 eyes smaller with normal lighting? (Figure S2) The clustering of datapoints in Figure 2B, 4B, overlaps extensively between control and mutant, and it is not easy to be sure that the high significance scores (***) are accurate. The authors should consider discussing whether loss of efemp1 is developmental only, or sustained. rx2 is likely to be switched off after development, and retinal cells that arise after the rx2:Gal4 ceases to be active will have a normal quotient of efemp1. The authors should also consider a more detailed discussion of the mechanism mediated by/through efemp1 that alters retinal function and expression of other genes. Finally, since a full mouse knockout of efemp1 exists (Daniel et al, 2020), it is not clear why a retinal-specific zebrafish model would give better insight into the phenotype.
Minor comments
"Myopia is the most common ocular disorder" is overly broad and needs qualifiers. Line 36 - what ocular changes cannot be easily managed? Why does loss of retinal efemp1 cause reduced OMR response? Unlikely to be refractive error at this stage. Which Timp2 (Timp2a or Timp2b) is visualized in Figure 7? Why is the inner retina studied for altered protein expression, but not the rest of the eye? Myopia is primarily driven by growth of the outer retinal/sclera.
Significance
- General assessment: This study uses retinal-specific inactivation of efemp1 with a clever methodology to study its effects on the eye. However, the necessity of these experiments is not well explained, as a full mouse knockout line exists.
- Advance: There are some interesting observations about gene expression following efemp1 inactivation, and useful experiments that look at the combination of genetics with environmental conditions on refractive error. This builds on studies by the Hulleman group on efemp1's role in the eye by adding functional information.
- Audience: This will be of interest to both basic researchers and clinicians who study genetic influencers of the eye.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Summary:
In this study, the authors used the zebrafish model to study efemp1, a gene that was previously found to be associated with myopia. They used CRISPR-Cas9 to create specific efemp1 knockout in the retina in a mosaic manner. They used a few histological and physiological techniques to evaluate the resulting mutant and found that the efemp1 mutants developed symptoms that are consistent with myopia. The authors further quantified the expression of a few potential target genes in the eye that are potentially implicated in myopia phenotype. The authors also evaluated the differential phenotype of the efemp1 mutant grown in different light conditions that might contribute to myopia.
Major comments:
Overall, the authors have provided convincing evidence of the phenotype created by their efemp1 perturbation. Their experiments were thoroughly done and extensively analyzed. They even discussed some potential shortcomings of their study. Their study is a nice first step towards a better understanding of the efemp1 gene function in ocular growth and in myopia. All my comments below should be addressed by clarifications and discussions and not by any new experiments or projects.
Minor comments:
- Elaborate the rationale for choosing efemp1 from the original GWAS study for zebrafish investigation. The authors only mentioned that this gene is among the highest in the rank and its role in myopia is not clear. However, there are quite a few other genes in the GWAS study that were ranked as high, if not higher than efemp1.
- Elaborate the rationale for choosing retina as the target tissue of efemp1 knockout, especially when the original GWAS study indicated the expression of EFEMP1 is in cornea, RPE, and sclera, but not in retinal cells.
- Discuss possible ways of modifying efemp1 gene in the retina that would be more uniform and would not create mosaicism and/or heterogenous mutations that can complicate downstream characterizations and interpretations as the authors currently experienced.
- The authors should elaborate further on the effect of the mosaicism and heterogenous mutations on efemp1, a presumably excreted protein, on regulating the ocular growth. How did the downstream genes they studied affect by the messing up of the extracellular Efemp1? Is it through altering the Egf signal transduction?
- If possible, discuss the original SNP that was associated with efemp1 and the potential mechanisms through which the SNP affects human EFEMP1; Then, discuss how the study of zebrafish efemp1 mutant can aid our understanding of the human's SNP.
- Typo: Page 15, Line 299: Loss of this gene "promotes".
Significance
This study is an interesting and potentially significant addition to the ophthalmology field, as it conducted an initial characterization of a candidate gene for myopia in zebrafish and observed a relevant phenotype after the gene knockout. Colleagues in the myopia field will find the results interesting. In addition, colleagues in the zebrafish field will find the in-depth characterizations and tools used in the paper very informative.
I have conducted research in the human genetics of ophthalmology, gene expression analysis, zebrafish eye development and diseases. I believe my background allows me to effectively appreciate and evaluate the findings of this manuscript.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
The manuscript by Xie et al investigates the role of efemp1 in mediating ocular growth. Efemp1, a secreted extracellular matrix glycoprotein, was previously identified as a myopia-risk gene in human GWAS studies. Given that myopia is linked to aberrant eye shape, the authors investigated whether and how this gene mediates eye growth. Using a CRISPR based approach in zebrafish the authors knocked out efemp1 specifically in the retina and established that a myopic eye results. They went further and investigated visual function in these mutant fish using the optomotor response and electroretinograms. As dark-rearing in many animal models has been linked to the induction of myopia, the authors examined the effects of a dark-rearing regimen in efemp1 mutants and found surprisingly that they did not show signs of myopia. Lastly, the expression and distribution of several myopia-associated genes was investigated in the retina of efemp1 mutants and following dark-rearing.
The starting point for this study was the generation of a "retina-specific knockout mutant of the efemp1 gene". However, evidence for a 'successful' knockout at the protein level is missing. Immunostaining for Efemp1 in sections of the entire retina from control and mutant fish would have helped here. It is only in Figure 7 B, C that portions of the inner retina from control and efemp12c-Cas9 fish are shown with Efemp1 immunostaining. Control and mutant retinae show slight relative differences in Efemp1 fluorescence levels which are difficult to reconcile with a knock-out scenario. Presumably this phenotype is a result of the mosaic expression of Cas9 (GFP) shown in Fig 1? Can the authors explain the reason for this mosaicism? Given this mosaic expression would one expect Efemp1 immunoreactive areas intermingled with areas devoid of Efemp1 in the mutant retina? Further, do deficits in the various functional assays the authors perform correlate with the degree of mosaicism? In the same vein, in Figure 2 the authors refer to variation in GFP levels in the efemp12c-Cas9. It is not clear whether the authors mean levels of GFP in individual cells or numbers of GFP+ cells. Presumably the latter. Could the authors clarify? In my opinion understanding and characterizing the efemp12c-Cas9 fish thoroughly is key to interpreting the phenotypes the authors show subsequently.
Significance
The wide range of assays the authors perform to assess visual deficits is commendable. Such a comprehensive approach ranging from anatomical, behavioral and electrophysiological assays is poised to identify changes that could otherwise be overlooked. Given the increasing use of zebrafish as models of ocular diseases, this study provides a solid roadmap of the types of analysis possible. This work should be interesting to researchers in the field of myopia research and to basic vision researchers interested in using the zebrafish as a model organism.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
General response of the authors to the editor and the reviewers:
We thank the reviewers for their feedback, input and questions as these have helped us to (hopefully) improve the manuscript. We have rewritten several sections of the manuscript, moved methodological descriptions from the Results to the Methods section, and added imaging data for two cytoskeletal proteins, Shot and Cofilin/Twinstar, which confirm the predicted differential DV expression. Because the changes to the text were extensive, we did not mark them by track changes (the manuscript would have been illegible), but would be happy to provide an additional version that includes the tracked changes.
We provide below the point-by-point response to each question and comment made by the reviewers. Our text is in blue.
__Reviewer #1 __
__Evidence, reproducibility and clarity __
__Summary __
This manuscript investigated changes in the proteome and phosphoproteome during dorsovental axis specification in the Drosophila embryo. To model the three regions in the embryo that are relevant for DV axis development, the authors used specific mutations to enrich for a single type of cells (ventral, lateral, or dorsal). The detected proteins and phosphopeptides were clustered according to the region of expression. There were differences between the protein and corresponding phosphopeptide abundance, suggesting that phosphorylation is a regulatory modification in DV axis establishment. Two different mutations that both result in a ventralized phenotype were found to change marker protein expression in different ways. Using inhibition of microtubule polymerization, this study also investigated the role of microtubules in epithelial folding.
__Major comments __
-
Generally, there is a lack of significance testing throughout the manuscript. Simply reporting fold changes can be misleading, if these changes are not significant. Examples:
-
Rigor of the proteomics evidence showing changes for the expected markers is insufficient because no statistical evaluation is provided. Specifically, in Fig. 1D and Suppl Fig 2: are the fold changes statistically significant?
- Data in Fig. 4F, 5F need to be assessed for significance. There are other instances in the manuscript where significance should be tested.
We did ANOVA testing for all proteome and phosphoproteome data, and the outcome of these analyses is reported in Supplementary Tables 2 and 3. We have added references to significance throughout, wherever possible and relevant and have included a table that summarizes all p values for all comparisons in all of the figures (Supplementary Table 2). However, note that we do our clustering independent of statistical significance, i.e., we include all values, as we explain in the manuscript.
It is difficult to see the value of the obtained dataset for the community, in part because the data are analyzed by a linear model and cluster assignment developed by the authors, which is a somewhat arbitrary representation. Perhaps the authors could explain how their data could be used by other researchers, and maybe even develop an accessible portal for interacting with the data.
We do provide the entire set of data in a formatted Excel Table as Supplementary Tables 3 and 4, which contain common pairwise comparisons and ANOVA tests that allow a researcher without a strong proteomics background to explore the data, and we also provide the raw proteomics datasets deposited in PRIDE, so any interested colleague can re-analyse them in the manner that suits their purposes best.
We analysed the data in the way we did because it takes account of the knowledge from genetics that we have of all these cell populations. This also allowed us to include the important set of proteins and phosphosites that are completely absent from all but one mutant genotype, and would therefore have dropped out of the statistical analyses.
For example, what does it mean biologically that a protein is a member of a specific cluster shown in Fig. 3C? Is there a predictive value in such an assignment, and how does it relate to the main question of DV axis regulation? An example of a novel insight obtained for specific protein(s) would be useful to illustrate the utility of this analysis.
The clusters represent groups of proteins that are present at higher or lower abundance in subsets of cell populations. So, for example, being present in cluster 5 means (Fig. 3C) that this protein is predicted to be more abundant in the mesoderm than elsewhere (which includes being detected ONLY in the mesoderm, like Snail). This clustering therefore is the way for us to find new proteins that conform to these groups.
We provide here the immunostainings of two cytoskeleton-associated proteins that our proteomic analyses predicted to be more abundant in the ectoderm (Cluster 6: dorsal+lateral):
- The actin-microtubule crosslinker Short-stop (Shot), which is seen to be reduced in the mesoderm.
- The actin-severing protein Cofilin/Twinstar, which was also found downregulated in the mesoderm in the work cited in Ref.:10 Gong L. et al., Development (2004). The staining shows that cofilin-GFP is abundant in the entire subapical region of ectodermal cells, but strongly reduced in ventral furrow cells, where it is only retained in a few apical membrane blebs. These proteins are targets for functional analyses in follow-up work.
[Imaging Data for Reviewers]
Figure: Physical cross-sections of fixed embryos showing the enrichment of proteins in the ectoderm (cluster 6: DL). Dorsal is top, ventral is bottom. Scale bar: 50 um Top panel: Staining for short-stop (shot; cyan / grayscale) and snail (yellow) in embryos expressing gap43-mCherry. Bottom panel: staining for discs large (dlg, magenta) and GFP (green / grayscale) in embryos expressing cofilin-GFP (Kyoto protein trap for Cofilin/Twinstar).
Overall, at present the study appears to have limited novelty and mechanistic insight. The data generally align with prior expectations, but it is unclear how this work advances the field.
We were reassured that the data align with previous studies, but as we state in the text, they go well beyond these valuable and important studies in several dimensions. We had made the following assumptions:
- DV patterning mutants recapitulate biological qualities of DV cell populations and the differential expression of DV fate determinants, as confirmed in Fig. 1 and Fig. 3D.
- The differential regulation of the proteomes and phosphoproteomes across DV patterning mutants recapitulates the abundances of proteins and phosphosites within DV cell populations of a wildtype embryo. We confirmed this in Fig. 3A and Fig. 5C with the implementation of a linear model for the abundances of detected proteins and phosphosites. The resulting analysis revealed new avenues for future functional studies, as intended. Most of the work on cell shape regulation at the gastrulation stage has focused on actomyosin and a subset of cell adhesion molecules. We have identified networks of proteins and phosphoproteins that may also control gastrulation (Fig. 6 and Supplementary Fig. 5), including microtubules, which were significantly enriched in networks of phosphoproteins (Fig. 7 and Supplementary Fig. 6).
For example, the observed differences between marker proteins in Toll10B vs. spn27A data seem to confirm previous suggestions that spn27A has a stronger ventralizing effect.
This suggestion was made by colleagues who had unpublished observations on a limited number of gene expression patterns that supported their contention. A correlation analysis (see figure below) of our results now shows that proteins with a restricted dorso-ventral pattern change more in spn27Aex mutants than in Toll10B. If we look at the known mesodermal genes such as Snail, Twist, Mdr49 and CG4500 we find them at higher abundance in spn27Aex than Toll10B , while the ectodermal genes Egr, Zen, Dtg, Tsg, Bsk, and Ptr are reduced more strongly in spn27Aex than in Toll10B. This takes the prior observation of a stronger ventralization of spn27Aex from an anecdotal to a systematic analysis.
[Correlation analyses available for reviewers]
Cross-correlation between the fold changes (FCs) in Toll10B/WT vs. spn27Aex/WT for all proteins detected in wildtype, Toll10B and spn27Aex. Each dot is a protein. The green line is the 'identity' function (slope = 1) that would be expected if the FCs for each protein in both ventralized mutants were exactly the same. A set of proteins with restricted dorso-ventral distribution are highlighted in yellow: mesodermal (ventral) and blue: ectodermal (dorsal).
The role of microtubules in epithelial folding in the embryo has also been demonstrated before.
The role of microtubules in epithelial folding in the *Drosophila *embryo has indeed been examined in three previous studies that studied dorsal fold formation (Ref.: 35, Takeda et al. NCB 2018), ventral furrow formation (VFF, Ref.: 36, Ko et al. JCB 2019), and salivary gland invagination (Booth et al. Dev Cell 2014). These data reveal diverse and non-conservative functional requirements, ranging from acto-myosin contractility during apical constriction (Booth et al. 2014), force transmission and repair of the supracellular contractile network (but not apical constriction per se, Ko et al 2019), to the generation of expansile forces during cell shape homeostasis (Takeda et al 2018). In light of this potentially broad functional spectrum, we sought to compare three epithelial folds that form within the context of gastrulation: ventral furrow, cephalic furrow and dorsal folds. We confirmed that the initiation of VFF was normal, but the final invagination failed, as per Ko et al. 2019, while dorsal fold initiation did not occur (extending conclusions from Takeda et al 2018). In contrast, cephalic furrow formation, though delayed, did not require microtubules. We also revealed a novel commonality of MT function. Specifically, prior to the initiation of all three epithelial folds, proper nuclear positioning requires MTs. We additionally discovered novel membrane abnormalities in two distinct types of blebs during ventral furrow and dorsal fold formation, respectively. Thus, our data provide insights into the roles of microtubules during epithelial folding that go beyond prior work.
The shown phosphorylation changes (if they are significant) for Toll and Cactus are difficult to explain. In Suppl Fig 2B, E: why is Toll more phosphorylated in the lateralized than in ventralized embryos? (the provided reference 20 does not seem to clarify this).
These changes are indeed significant (Toll-S871: Vtl vs. WT p = 0.01 , Vsp vs. WT p = 0.002; Cactus-S463: Vsp vs WT p = 0.03); see Supplementary Figure 2B and Supplementary Table 2). We have corrected Ref. 20 (Shen B. and Manley J.L., Development 1998). Ref. 20 only shows that Tl is phosphorylated by Pelle (Ref 20: Fig. 6A), although neither the exact position of Tl phosphosite(s) nor the function of Tl phosphorylation were explored in this article. A hallmark of Toll Like Receptor (TLR) regulation is these receptors are subject to tyrosine phosphorylation, which has been widely connected to the regulation of the binding of adaptor proteins to the cytoplasmic tail of TLRs. Both our finding of Serine phosphorylation in Tl, and the differential phosphorylation across cell populations is new, but since we do not know what this particular Serine phosphorylation site does in TLRs in general, we cannot speculate on the meaning of it occurring more in lateral than in ventral cells. In Ref. 20, the authors speculate that Tl phosphorylation by Pelle regulates the association between Tl and Pelle, which then enables Dorsal translocation to the nucleus. It might also be part of a feedback regulation loop, but this is entirely speculative.
Also, certain Cactus phosphorylations appear higher in dorsalized and ventralized embryos, but not in lateralized embryos. Are such changes expected and do they make sense biologically? It is unclear why these phosphorylation data are used to validate the success of the approach.
The three Cactus phosphosites S463, S467 and S468 were identified and characterised in the work cited in Ref. 19 (Liu Z.P. et al., Genes and Development, 1997), and we used these sites to validate that our approach was sensitive enough to detect known phosphosites in proteins that act on the dorso-ventral patterning pathway specifically at the point of gastrulation (Stage 6 of embryonic development). We also reported in this manuscript the detection of known phosphosites within the Rho-pathway (Fig. 5E,F, Myosin Light Chain: T21, S22; Cofilin: S3). Liu Z.P. et al. reported that these three sites map to the Cactus PEST domain, which is required for Cactus degradation in the mesoderm (Belvin M. et al, Genes and Development 1995). Liu Z.P. et al. also showed that mutating these phosphosites impairs Cactus turnover without affecting the ability of Cactus to bind Dorsal. We can only speculate that the differential phosphorylation across dorso-ventral embryonic cell populations is associated with the regulation of Cactus turnover. Consistent with this, we find Cactus downregulated 1.5 log2 fold in ventralized embryos derived from *spn27Aex/def* mothers. Furthermore, there are a number of signalling pathways that act both in the dorsal and the ventral-lateral domain (e.g., rhomboid/EGF), so it is not surprising to find modifications that are shared by these regions.
The rationale to use a diffusion algorithm for data analysis is not clear. How would the analysis differ if diffusion was not used?
Phosphoproteomics data are often sparse and noisy for a number of reasons (technical; low abundance of phosphorylated peptides compared to other peptides in the cell; biological: not all phosphosites are functional). Network diffusion is a common way used for various data types to boost the signal-to-noise ratio. For example, if from a list of 10 phosphosites, 5 all fall in the same network region or process, and the rest are randomly distributed in the network, chances are that the first region is more representative of the regulated process in that dataset. Using network propagation, the signal coming from the first 5 phosphosites would give a higher score to that network region, marking it as the predominant signal. Our specific implementation, which uses the semantic similarity between nodes to model the edges in the network, further boosts the functional signal by preferentially including nodes that have a higher functional similarity to the initial phosphosites. Our approach therefore allows us to identify the processes that are predominantly ‘active’ in our dataset. We refer the reviewer to our recent preprint for more evidence that this strategy boosts the signal-to-noise ratio in phosphoproteomic datasets and further prioritises more functional phosphosites (https://www.biorxiv.org/content/10.1101/2023.08.07.552249v1). If this approach was not used and we based the identification of relevant processes only on the list of phosphosites, we would have acquired more spurious terms in our functional enrichment analysis. The above preprint also shows that different methods such as the Prize Collecting Steiner Forest algorithm perform worse for phosphoproteomics data.
Generally, the discussion of enriched GO categories presented in Fig. 6 is not rigorous, and it is unclear what biological insight is provided by this figure, probably because the categories are extremely diverse and not clustered in a meaningful way. Despite stating that the work on microtubules came out as a result of proteomic analysis, there is no connection between proteomic data (e.g., data shown in Fig. 6) and microtubule analysis in Fig. 7.
The connection is between the __phosphoproteomic__ data and the microtubules. The reviewer is correct about the fact there is little connection at the proteomic level with microtubules. Only the diffused network analyses performed on the phosphoproteomic data pointed in this direction. We have improved the writing about this point.
The Discussion section touches on areas of differential protein degradation and mRNA regulation; however, these data are not presented in Results or Figures and so it is difficult to assess the relevance of this analysis.
We present these data in Figure 6A,B. The network analyses of the clusters showed significant enrichment of cellular component terms that are connected with protein turnover and mRNA regulation. We have added a reference to figure 6 in the Discussion for clarity.
There is insufficient citation of prior literature throughout the manuscript: many statements are lacking proper references.
We have corrected the mistakes and added missing references.
Proteomics data should be deposited into a standard repository that is a member of ProtomeXchange Consortium, such as PRIDE, etc.
All proteomics and phosphoproteomics data have been uploaded to PRIDE:
The raw files for the proteomics and phosphoproteomics experiments were deposited in PRIDE under separate identifiers:
Proteome: Identifier PXD046050 (Reviewer account details: reviewer_pxd046050@ebi.ac.uk, pw: coJ9otiX).
Phosphoproteome: Identifier PXD046192 (Reviewer account details: reviewer_pxd046192@ebi.ac.uk, pw: nvkbwClp).
We have included a statement of raw data availability in the revised version of the manuscript with the PRIDE access information.
__Minor comments __
The text has several typos and should be proof-read, and references to figures and tables should be checked, as some of these are not correct.
We have corrected typos, references to figures and tables in the revised version of the manuscript.
The genotypes for the mutations used in this study should be accompanied by citation describing identification of these mutations and the resulting phenotypes. It would also be helpful to describe the nature of these alleles (molecular lesion, gain vs loss of function, etc.). Some of this information is included in the Discussion, but it would be useful for the reader to learn this early on, when the chosen genotypes are presented.
All this information is and was provided in the methods section and in Table 1, including stock numbers and sources of the stocks. Please see 'Methods, Drosophila genetics and embryo collections'.
2G,H - the X axis should be clearly labeled as logarithmic.
We introduced the log2 label in the X-axis of Fig. 2G,H and any other panel in which this was not expressly made clear.
In Fig. 2G the locations of lines showing fold changes for Twist and Snail seem incorrect. In Fig. 2H the dotted line does not appear to correspond to 50% of the number of phosphosites.
We apologise for these errors, both have been corrected in the revised version of the manuscript.
5D can be improved by adding letters for the coloured clusters.
We have labelled the clusters in Fig. 3B and Fig. 5D. to ease the identification of biologically relevant clusters.
It is unclear if any specific additional insight was obtained using SILAC, the authors may want to discuss this approach and outcomes more.
SILAC has been widely used to deal with the inherent variability of proteomic analyses by introducing a standard that is metabolically labelled, in our case, w1118 flies fed with SILAC yeast were used as the standard. Because the inherent variability is larger in phosphoproteomic experiments (because protein identification is based on phosphorylated peptides only, see Methods), we used SILAC labelling only in the phosphoproteomic experiment.
__Reviewer #2 __
Evidence, reproducibility and clarity
The present article by Gomez et al describes a deep proteomics analysis of the proteome and phosphoproteome of embryos mutated for key genes involved in the dorso-ventral axis in Drosophila melanogaster. Overall, this is a nice article showing new insight in this development process. The results are mainly descriptive, yet identifies potential new players in the definition of the dorso-ventral axis.
The generation of mutants for genes found up- or down-regulated in each mutant strain would be a significant addition to this manuscript. But I think in its current form the data brings enough new information on this particular developmental step and would be of interest for the fly community.
My main concern is that the manuscript can be difficult to read and overly convoluted at times even for experts in the field. I would suggest the author move some methodological explanations from the results to the methods section to further detail the goals of some results sections.
We have followed these suggestions and hope we have made the manuscript more easily readable.
As an example, the goal of part 3) « A linear model for quantitative interpretation of the proteomes » is not clear to me. Are the authors comparing the abundance of a protein in the WT versus a theoretical WT in order to determine which fractions of mesoderm, lateral ectoderm and dorsal region are actually present in the WT? (...)
Yes, in part, but the main purpose was to compare how well the theoretical WT, as ‘reconstituted’ from the mutants, corresponds to the observed actual WT (for which we have at least approximate values).
The question that we faced when we started these calculations was: what is the ‘correct’ fraction (or proportion) we should use to weight each protein (or phosphosite) measurement in the mutants. Theoretically, these values should be those that result in the best match between the theoretical WT and the measured WT abundance of each protein (or phosphosite). We knew from actual measurements only the mesodermal fraction, which was determined to be ~20% of the cross-sectional area (Ref. 21: Rahimi, N., et al Dev. Cell. 2016). The neuroectoderm and ectoderm fractions were estimated to be approx. 40% each (Ref.: 22, Jazwinska, A et al. Development 1999), but we lacked an exact number. The systematic exploration of these proportions led us to conclude that indeed both the neuroectoderm and ectoderm fractions should be around 40% each, provided the mesoderm is fixed at 20%. Thus, we used these fractions: D: 0.4 L: 0.4 V: 0.2 for our follow-up analyses.
(...) Or are they using it as a reference to obtain a fold change for the different proteins quantified (in this case why not use the WT?)?
yes, again, in part: as a reference for the EXPECTED fold changes, as would be predicted from the WT.
Since we have moved some of the details of this approach from the main text to the methods section, we have also revised the remaining text and hope it is now clearer.
The proteomics data must be deposited in a public repository. I did not see it stated in the methods section.
All proteomics and phosphoproteomics data have been uploaded to PRIDE; see further comments above in response 13.
The version of the uniprot database is quite old (2016) so is the version of MaxQuant used in this study. Any reasons for that (other than that the analysis was performed in 2016)?
That is indeed the reason.
The data were run on different MS platforms, how did the authors account for the variability in MS signals? What samples were run on which MS platform? Were the WT embryos ran on both?
We measured three replicates, and all five genotypes (four mutant genotypes plus wildtype) for each of the replicates were measured on the same instrument. Specifically, for the whole proteome analyses, replicate one and three of all genotypes were measured on the QExactive Plus instrument and replicate 2 of all genotypes were measured on a QExactive HF-x instrument, as were the phosphoproteomes. So, indeed, the wildtype was measured on both instruments. We thus did not observe instrument-specific bias in the PCA analysis for the proteome data.
We have added this in more detail to the method section:
“Samples of replicate one and three were measured on the QE-Plus system and replicate two was measured on the QE-HF-x system.
For phosphoproteome analysis, (…) Samples of all three replicates were measured on the QEx-HFx system. We added trial samples measured on the QEx-Plus system to increase the phosphosite coverage using the match between runs algorithm.”
In the methods section the authors mention that a high-pH reverse phase fractionation was performed? How many fractions of High-pH reverse phase separation were injected per sample? Was this separation performed for all the samples?
We have adjusted the Methods section regarding the high-pH fractionation by adding the following sentence: “Fractions were collected every 60s in a 96 well plate over 60 min gradient time collecting a total number of 8 fractions per sample.“
Why did the authors used label-free (proteome) and SILAC (phosphoproteome) quantification methods?
See our response to reviewer #1, point 19.
Why is the threshold based on the Q3 of the standard deviation (if I got it right) ? Couldn't they be calculated directly on the distribution of the ratio?
We could also have done it that way.
However, we had wanted also to take into account the variation between the replicates, i.e., the quality of the individual measurements, and we therefore devised the procedure we used, by which the standard deviation of the individual technical replicates enters the calculation with the ratio of the averages, the variability between replicates would have been ignored and we considered it more appropriate to take the more conservative approach. But as it turns out, the cut-off would have ended up being very similar had we calculated it the way the referee suggests,
Page 6: The supplementary figure 2E refers to the protein Cactus and the text to CKII, please modify one or the other to avoid any confusion. Page 7: A dot is missing at the end of the following sentence « if used with the assumed weightings for the populations »
We have corrected these sentences.
Page 19: Replace SppedVac by SpeedVac
We have corrected the error in the manuscript and thank the reviewer for the detailed inspection.
Page 8: why not using a z-score with thresholds directly instead of a -1/+1/0 system and then using the z-score?
Because we wanted to compare the relative changes over wt between mutants (i.e. the similarity between 1 0 0 and 0 -1 -1) rather than the relationship of their absolute values to the wt, and to assign proteins with similar relationships into the same dorso-ventral regulation categories.
The text states this (previously in main text, now in methods):
“The reason for this is that this method takes into account that value sets that represent similar relative differences between the mutants (for example, 0 -1 -1 vs. 1 -1 -1 or 1, 0, 0) are biologically more similar to each other than the raw values indicate. The z-scores for all of these cases would be 1.1547 -0.5774 -0.5774.”
In the abstract it is mentioned that 3,399 proteins are differentially regulated at the proteome level versus 1,699 significantly deregulated at a 10 % FDR in the main text (page 5). Is there a reason for this discrepancy? Same comment for the phosphopeptides.
But we now also see the need to better clarify this point, and we have edited the text accordingly.
The second number refers to those proteins that show statistically significant changes based on ANOVA (1699 proteins).
The first number (3398; note that the number 3399 in the abstract was a typo, now corrected) includes all proteins that were detected in at least 1 replicate in the wildtype (5883/6111) minus those that do not change between the genotypes (2156/6111) and minus all those that change in the same direction in all mutants (329).
This includes proteins that are automatically excluded from ANOVA, i.e., those that are detected only in the wildtype (35/6111 proteins) or in two or more genotypes but only in 1 technical replicate ANOVA negative ones.
As we stated, we did this because it “allows us to include the important group of proteins that show a ‘perfect’ behaviour, like dMyc and WntD, in that they are undetectable in the mutants that correspond to the regions in the normal embryo where these genes are not expressed.”. This 'regulated' set consists of those proteins that exceed the |0.5| fold threshold.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
This review is a list of many individual critiques. It is unclear what the expertise of the reviewer is (they do not provide the answer to that question in the review form, unlike the other referees), but several of the criticisms are unfounded. Three of the PIs of this work are researchers with extensive experience in Drosophila genetics and early development but are nevertheless confounded by some of the comments made by this referee.
The mutants do not completely "flatten" the embryos.
We do not claim that they do. Nor are the ventral, lateral and dorsal regions in the normal embryo completely ‘flat’ or homogeneous. But the mutants are good representations of the major fates in these regions, as a wealth of published literature from the last 30 years indicates.
For instance, Tl10B broadly expresses snail but also expresses sog in the head. (i.e. Fig 1B - sog and sna expression in Figure 1B mutant backgrounds looks odd.) The sog expression likely relates to a deficiency specific effect.
This ‘sensitive’ area is well known also from other genetic conditions – e.g. partial loss of dorsal and indeed in Spn27A mutants. It is therefore not specific to the Tl10B deficiency but says something about gene interactions in this region. Thus, this cannot be a deficiency-specific effect.
Is sog seen in a Toll10B/+ mutant background?
Yes, it is, and more frequently than in Toll10B/Def.
The deficiency used for the Toll10B experiment is Df(3R)ro80b which is quite large and deletes 14+ genes.
True. However, this does not matter: the mothers are heterozygous, so the genes are not missing, they are present in one wildtype copy! And these mothers are then mated with wildtype fathers, so if expression of these genes were needed in the embryo, then there would be another full wt copy of each. We appreciate that maternal effect genetics can be difficult to follow, but this is all work that has been done a long time ago, and is not the point of this paper at all.
The deficiency used for the spn27A experiment is Df(2L)BSC7 and removes 4+ genes.
Again, this would only matter if these were maternal effect genes that were needed for the establishment of the dorso-ventral axis, and they are not.
Furthermore, the gd9 allele may not be a complete loss of function.
It may not be – but what matters is the well characterized phenotype which has been shown to represent dorsal cell types.
It is possible that the Toll10B allele picked up an accessory dominant mutation.
This again would only matter if it was a dominant AND maternal effect mutation that affects the DV axis in the embryo – and there are very few of these known. And nothing in our analysis of these embryos, with which we have been working on and off over 3 decades and therefore know very well, indicates that our current stock is any different from those we have seen in the past.
Unfortunately, these mutant phenotypes that affect DV and AP patterning mean that conclusions cannot be made that changes in protein relate to DV patterning.
We simply do not understand this statement.
Why do the mutant phenotypes (gene expression patterns and cell morphologies representative of the ventral, lateral and dorsal cell populations) not mean that the proteins downstream of the fate changes correspond to the cell fates?
To get a better view of the ventralized phenotype, the authors should repeat the analysis by ectopically expressing Toll10B using the Gal4-UAS system; UAS-activate Toll transgenes are available.
All Gal4-UAS maternal drivers, even the best and the strongest, result in mosaic expression. Our lab has extensive experience with this system and we know that, for example, the homogeneous, high levels of twist or snail expression that we see in spn or Tl10B embryos cannot be achieved with GAL4.
Fig 1C-F - due to combined AP and DV effects seen with ventralizing mutants, it is important that the authors confirm that cross-section views relate to the middle to posterior of the embryo.
We confirm this.
Costaining with anti-Kr or -Caudal would help to ensure they are assaying the correct AP domain for pure DV effects.
In our view, this is an unnecessary experiment. I know where the middle of the embryo is. If the reviewer does not believe when we say we are showing a section from the middle, they can see that the sections are not from the end region by, for example, the cell number, and the section angles.
The authors refer to reference [60] for stages but there is no information regarding morphological criteria used under the microscope to stage the embryos.
We have now added more detail in the methods section:
Briefly. using a Zeiss binocular, the embryos were individually hand-selected on wet agar which made the embryos semi-transparent, allowing the assessment of a range of morphological features, of which at least some are visible in each of the mutants:
- Yolk distance to embryonic surface: distinguishes between early (stage 5a) and late cellularisation (stage 5b).
- Yolk distribution within the embryo: identification of large embryonic movements of the germ band (e.g.: Initiation of germ band extension, marking the initiation of stage 7). In DV patterning mutants this is seen as twisting of the embryo.
- Change in the outline of the dorsal-posterior region: polar cell movement from the posterior most region of the embryo (stage 5a/b) to stage 6a/b.
- Formation of the cephalic and dorsal folds: identification of stage 6 (initiation of cephalic fold) and stage 7 (dorsal folds). The combined use of these morphological criteria, together with the synchronised egg collections allows accurate staging of wild type and mutant embryos.
Furthermore, what is stage 6a,b? Stage 6 is not typically divided in two stages nor is it clear what a,b relate to.
We used a generally accepted standard for staging embryos: Campos-Ortega J.A. and Hartenstein V. ‘The embryonic development of Drosophila melanogaster’ book (ref. Nº 60). In this book, they describe the morphological criteria that can be followed in living embryos for proper staging. These stages, with these exact names, are shown on pages 11 and 12 of the 1997 edition (2nd edition).
According to the published timetable of Drosophila development by Foe et al. 1993 (not cited), gastrulating embryos are 200 min or 3 hr 20'. It's unclear if this is the stage that was assayed.
Foe is a beautiful paper, but we did not cite it because the commonly used nomenclature predates it (Campos-Ortega and Hartenstein 1985).
In addition, timing depends on temperature whereas morphological criteria do not.
The mutant embryos likely develop at different rates relative to wildtype. It seems important to provide details about the staging of embryos. If the mutant embryos take longer to gastrulate, for instance, might that also be a factor that impacts the proteome.
As described above, we used a combination of criteria to accurately judge staging. DV patterning embryos could in principle develop faster or slower than wildtype. We performed synchronised egg collections (Methods: Embryo collections) for 15’. Therefore, any developmental timing defect would have become evident based on a difference in the number of embryos entering stage 6 and 7 at the point of visual inspection of the collections. This was not the case.
How many replicates for each genotype? In the text it states, "replicates from the same genotype clustered together (Fig. 2E)....." Similar vague reference for phosphoproteome follows (Fig 2F). It is then stated that it was impossible to determine the experimental source for this variation. Could it relate to differences in timing of samples?
We had given the numbers of replicates in the figure legend but have now also included them in the methods section for more clarity. We did 3 replicates for each genotype in each experiment, with the exception of gd9 and spn27aex mutants, for which we did 2 biological replicates each with 3 replicates, making a total of 6 replicates for these genotypes in the proteomic experiment. We have included an additional clarification in figure legend 2. The number of replicates per genotype per experiment can also be seen from the correlation matrices shown Fig. 2E and 2F, in which the replicates are shown individually. The measurements for each replicate for each genotype within each experiment were reported in Supplementary Tables 2 and 3, 'description' tabs of the worksheets.
The lengthy discussion of ratio estimation on page 7 should be streamlined and made more clear. Are the authors throwing out data and only keeping samples that support their model? This seems like overfitting - if I am understanding correctly, you are selecting the samples that support the "majority of proteins fit the linear model" but this isn't necessarily the case.
No, this is a misunderstanding. We do not select data.
We have rephrased this section, but to explain here briefly: We do not select any samples, we state that the majority of proteins fit the theoretical model (and that is not even surprising, because any protein that does not change across the populations will automatically fit the model). We then discuss why some might NOT fit the model. The model doesn’t need to be supported, it simply is a calculation that allows us to stratify the data.
They call this the 'correct' manner (see section 4 page 7) but it seems like a working model and presumptuous to imply that it is the correct way.
We explained in the text why we refer to this as ‘correct’. It is a matter or definition, not presumption, and we even used quotes to be clear about this. ’Correct’ indicates a combination of values that is consistent with the biological model that the DV mutants are good representations of the corresponding embryonic cell populations in a wild type embryo. We do not in any way ‘throw out’ other data, we just note they don’t fit that model. Clarifications on the concept for the model have been added in various places in the text
Figure 3C - it is confusing to use a circular diagram to show DV inferred position of the 14 clusters as their position on the circle does not correspond to where they are expressed on the embryos. Perhaps a stacked bar graph for 6 different domains would be better.
This figure does not show positions of clusters. It is simply a pie chart, as is stated in the figure legend and as can be seen by the numbers and the corresponding sizes of the sectors. We have tried a stacked representation (shown below), but find it no clearer and have therefore stuck with this very common way of representing quantities, and in particular, proportions. We use the same representation with the same colour schemes in all subsequent figures, so proportions can be compared across figures.
It is very hard to follow the text on page 9.
We have rephrased this section
It is very hard to see the gene expression patterns shown in Fig 4A with the color scheme/scale used.
We appreciate this colour scheme does not correspond to the commonly used dark colour on a light background which would mimic histochemistry to show gene expression. The ‘inferno’ colour scheme was used because it allows better quantitative comparisons between subtly different patterns. However, to make these figures more similar to the types of in situ hybridisations that embryologists are used to seeing, we now use a different representation.
In general, Figure 4 is uninterpretable - in particular, what do the numbers mean on the greyscale circle plots in panel D?
We apologize for having failed to explicitly include the explanation for this in the figure legend. The reader will notice that these numbers add up to the number in the circle to the left, and the numbers indicate the number of proteins showing perfect matches (white), partial overlaps (grey) and mismatches (black). We have improved the graphic representation and added an explanation in the figure legend.
Figure 5A. Why wasn't protein abundance and phosphosites identified from an individual, identical sample?
This was because of the way the project developed over the course of the research, and the protein part was originally intended only as a proof of concept, with the intended focus being the phosphoproteome. We later decided to include a full analysis of the proteome, but did not consider it worthwhile and necessary to repeat the entire laborious and expensive experiment with both analyses being done from the same samples.
How can one be sure that the phosphosites were correctly assigned if the proteins were not detected in the proteome but they were only identified in the phosphosite analysis?
We are not sure we understand this question. The phosphoproteomic analysis identifies phosphopeptides of proteins that in turn allow one to identify the protein itself and the amino acid in that peptide that is phosphorylated. So the identification is done only WITHIN the phosphoproteomic analysis and does not relate directly to the proteomic analysis. This explains why we found some phosphopeptides for which we did not detect the full host protein in the proteomic analysis.
Thus, if a protein was detected only in either of the experiments, this fact doesn’t modify the validity of the result, because the identification was done individually for each experiment.
Page 16 - much discussion about the difference between Spn27A and Toll10b/def mutant background. One has half as much Toll receptor. The phenotype of Toll10b/+ should be examined.
Both genotypes have been extensively examined in the past. Tl10B/def has only one copy of the gene from the mother, and the mutant protein is constitutively active. By putting it over a deficiency, we (and others in the past) made sure that the exclusive source for Tl signalling is from this gain of function Tl allele, and that the wildtype receptor, which would still be activated by the natural ligand in a graded pattern along the DV axis, does not confound the result.
The Tl10B/+ combination creates a less ventralized phenotype which is not more similar to that of spn27Aex/def but in fact less similar.
Page 12 - hard to follow the discussion of modeling (?) presented in Figure 6. The results (bottom of page 12 - #1 "most networks are enriched for cellular components associated with regulation of gene expression" and page 13 #2 - "cytoskleeton emerges as a major target of regulation") seem vague and unsubstantiated. Rhabdomere, P granule, micropyle, autophagosome?
We agree with the reviewer that there are many cellular components that are enriched in the diffused network analyses, many of them unrelated to morphogenesis. We had highlighted this finding on page 12, paragraph 3. Nevertheless, we have rephrased the statements as ‘the heat maps illustrate that most of the enriched cellular components in both experiments were highly enriched with cellular components associated with DNA and RNA metabolism or the regulation of gene expression.’ and have now included numbers.
We think ‘a major target’ for phosphorylation does in fact apply to the cytoskeleton, and we had already supplied the number to substantiate this in the manuscript (14/62).
Readers will be able to evaluate these network analyses based on their own fields of interest or particular questions they may wish to address. We haven’t excluded any cellular component terms.
Figure 7 seems like a separate study.
Why were the phosphopeptides investigated to determine if they relate to phosphorylated proteins? Phosphoantibodies could have been generated for a subset. Instead the manuscript pivots to analysis of microtubules.
We are reporting here one example of a proof-of-concept study that we carried out, chosen based on our own research interests and on available tools and reagents. There are clearly many other avenues that could have been explored and that others may want to explore, but that go well beyond this report. We have made this more explicit in the text.
Page 14 - discussion first paragraph. Please cite ref[10] when discussing the "previous study" otherwise the reader will not understand which study you are referring to until the next paragraph.
We have moved the reference from its current position to the one suggested by the reviewer.
-
In general, the study would benefit from more attention to references and citations of prior work. A comparison of this work to the Gong et al. Development 2004 study should be made earlier. This work is cited very early on, namely in the introduction.
-
The authors start off saying that no other study has looked at proteins from a spatial perspective. We are unsure what the reviewer refers to. We say precisely the opposite: we indicate that studies have been performed to look at differences in cell populations, including that by the lab of Jon Minden (Gong et al), a highly respected former co-author of one of the current authors (ML). We do state that the technologies at the time did not allow the same depth and temporal resolution as the methods that are available nowadays. For instance, Gong et al. used an excellent and original approach at the time, which however did not detect Snail and Twist in the ventralized mutants.
The only time we say ‘no other study’ is about ‘region-specific post-translational regulation of proteins’ - though we do state in the discussion that Gong et al would have detected some of these cases because they used 2D gels.
-
Along these lines, there is another more recent proteomic study from Beati et al. Fly 2020 using similarly staged embryos. How do these other experiments compare to the current ones? As they apparently analyzed proteome and phosphopeptides from an identical sample, are the authors' new data using separate samples consistent? This study is actually about a later stage (stage 8 embryos, post-gastrulation). Again, an excellent study, but not directly relevant to our current analysis. It validates the use of SILAC in Drosophila, although it is not the first study to do this. Furthermore, it looks at a different question and biological process using a mutant, htl, to understand the effect of FGF signalling.
-
Furthermore, Adam Martin's lab has been studying microtubule action along the dorsoventral axis (Denk-Lobnig et al 2021) and this work is not cited. Denk-Lobnig et al 2021 is about spatial patterns of myosin and actin and how that is governed genetically on the ventral side of the embryo, pertaining primarily to ventral furrow formation. It does not analyse microtubules nor dorsal-ventral cell populations.
It is possible there may be some confusion with another excellent study from Adam Martin’s lab, in which the role of microtubules is analysed. But this is exclusively in the ventral furrow, and the study did not look at the effect of microtubule depolymerisation on nuclear positioning nor membrane behaviour. We cite this work extensively (Ref.: 36, Ko et al. JCB 2019) and we compare our results to that paper. However, our work here goes beyond this study in that it looks at all cells along the DV axis.
General comments:
Typos throughout. For example, page .4 section heading "dorso-ventral cell..."
We have scanned the entire document for typos.
Font size extremely small - for example see Figure 1A gene names, and 1F magnified view.
We have adjusted the fonts in the main figures.
Scale bars not shown when showing magnified views. For example, see Fig 1E,
We have added these.
Reviewer #3 (Significance (Required)): This study by Gomez et al. uses a proteomic-centered approach to study proteomes associated with cell populations in the embryo that they argue relate to different positions along the dorso-ventral axis. They generate a proteomic resource, though it was unclear how anyone could use the data they produce. There is no searchable database and we have to trust that the authors will ultimately provide such a resource to the community.
All proteomics and phosphoproteomics data have been uploaded to PRIDE. Also see responses to the other referees’ queries about this point.
There is the potential for interesting insights but the work is not presented in a way that is accessible or useful. The presentation needs significant improvement.
We have improved the presentation and way the results are presented as per the suggestion of all reviewers.
-
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
The mutants do not completely "flatten" the embryos. For instance, Tl10B broadly expresses snail but also expresses sog in the head. (i.e. Fig 1B - sog and sna expression in Figure 1B mutant backgrounds looks odd.) The sog expression likely relates to a deficiency specific effect. Is sog seen in a Toll10B/+ mutant background? The deficiency used for the Toll10B experiment is Df(3R)ro80b which is quite large and deletes 14+ genes. The deficiency used for the spn27A experiment is Df(2L)BSC7 and removes 4+ genes. Furthermore, the gd9 allele may not be a complete loss of function. It is possible that the Toll10B allele picked up an accessory dominant mutation. Unfortunately, these mutant phenotypes that affect DV and AP patterning mean that conclusions cannot be made that changes in protein relate to DV patterning. To get a better view of the ventralized phenotype, the authors should repeat the analysis by ectopically expressing Toll10B using the Gal4-UAS system; UAS-activate Toll transgenes are available.
-
Fig 1C-F - due to combined AP and DV effects seen with ventralizing mutants, it is important that the authors confirm that cross-section views relate to the middle to posterior of the embryo. Costaining with anti-Kr or -Caudal would help to ensure they are assaying the correct AP domain for pure DV effects.
-
The authors refer to reference [60] for stages but there is no information regarding morphological criteria used under the microscope to stage the embryos. Furthermore, what is stage 6a,b? Stage 6 is not typically divided in two stages nor is it clear what a,b relate to. According to the published timetable of Drosophila development by Foe et al. 1993 (not cited), gastrulating embryos are 200 min or 3 hr 20'. It's unclear if this is the stage that was assayed.
-
The mutant embryos likely develop at different rates relative to wildtype. It seems important to provide details about the staging of embryos. If the mutant embryos take longer to gastrulate, for instance, might that also be a factor that impacts the proteome.
-
How many replicates for each genotype? In the text it states, "replicates from the same genotype clustered together (Fig. 2E)....." Similar vague reference for phosphoproteome follows (Fig 2F). It is then stated that it was impossible to determine the experimental source for this variation. Could it relate to differences in timing of samples?
-
The lengthy discussion of ratio estimation on page 7 should be streamlined and made more clear. Are the authors throwing out data and only keeping samples that support their model? This seems like overfitting - if I am understanding correctly, you are selecting the samples that support the "majority of proteins fit the linear model" but this isn't necessarily the case. They call this the 'correct' manner (see section 4 page 7) but it seems like a working model and presumptuous to imply that it is the correct way.
-
Figure 3C - it is confusing to use a circular diagram to show DV inferred position of the 14 clusters as their position on the circle does not correspond to where they are expressed on the embryos. Perhaps a stacked bar graph for 6 different domains would be better.
-
It is very hard to follow the text on page 9.
-
It is very hard to see the gene expression patterns shown in Fig 4A with the color scheme/scale used.
-
In general, Figure 4 is uninterpretable - in particular, what do the numbers mean on the greyscale circle plots in panel D?
-
Figure 5A. Why wasn't protein abundance and phosphosites identified from an individual, identical sample? How can one be sure that the phosphosites were correctly assigned if the proteins were not detected in the proteome but they were only identified in the phosphosite analysis?
-
Page 16 - much discussion about the difference between Spn27A and Toll10b/def mutant background. One has half as much Toll receptor. The phenotype of Toll10b/+ should be examined.
-
Page 12 - hard to follow the discussion of modeling (?) presented in Figure 6. The results (bottom of page 12 - #1 "most networks are enriched for cellular components associated with regulation of gene expression" and page 13 #2 - "cytoskleeton emerges as a major target of regulation" ) seem vague and unsubstantiated. Rhabdomere, P granule, micropyle, autophagosome?
-
Figure 7 seems like a separate study. Why were the phosphopeptides investigated to determine if they relate to phosphorylated proteins? Phosphoantibodies could have been generated for a subset. Instead the manuscript pivots to analysis of microtubules.
-
Page 14 - discussion first paragraph. Please cite ref[10] when discussing the "previous study" otherwise the reader will not understand which study you are referring to until the next paragraph. In general, the study would benefit from more attention to references and citations of prior work. A comparison of this work to the Gong et al. Development 2004 study should be made earlier. The authors start off saying that no other study has looked at proteins from a spatial perspective - but this other study from 2004 did just that. They compared ventralized to lateralized embryos. Along these lines, there is another more recent proteomic study from Beati et al. Fly 2020 using similarly staged embryos. How do these other experiments compare to the current ones? As they apparently analyzed proteome and phosphopeptides from an identical sample, are the authors' new data using separate samples consistent?
General comments:
-
Typos throughout. For example, page .4 section heading "dorso-ventral cell..."
-
Font size extremely small - for example see Figure 1A gene names, and 1F magnified view.
-
Scale bars not shown when showing magnified views. For example, see Fig 1E,F
Significance
This study by Gomez et al. uses a proteomic-centered approach to study proteomes associated with cell populations in the embryo that they argue relate to different positions along the dorso-ventral axis. They generate a proteomic resource, though it was unclear how anyone could use the data they produce. There is no searchable database and we have to trust that the authors will ultimately provide such a resource to the community. Furthermore, Adam Martin's lab has been studying microtubule action along the dorsoventral axis (Denk-Lobnig et al 2021) and this work is not cited. There is the potential for interesting insights but the work is not presented in a way that is accessible or useful. The presentation needs significant improvement.
-
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
The present article by Gomez et al describes a deep proteomics analysis of the proteome and phsophoproteome of embryos mutated for key genes involved in the dorso-ventral axis in Drosophila melanogaster. Overall this is a nice article showing new insight in this development process. The results are mainly descriptive yet identifies potential new players in the definition of the dorso-ventral axis. The generation of mutants for genes found up- or down-regulated in each mutant strain would be a significant addition to this manuscript. But I think in its current form the data brings enough new information on this particular developmental step and would be of interest for the fly community. My main concern is that the manuscript can be difficult to read and overly convoluted at times even for experts in the field. I would suggest the author move some methodological explanations from the results to the methods section to further detail the goals of some results sections. As an example, the goal of the part 3) « A linear model for quantitative interpretation of the proteomes » is not clear to me. Are the authors comparing the abundance of a protein in the WT versus a theoritical WT in order to determine which fractions of mesoderm, lateral ectoderm and dorsal region are actually present in the WT ? Or are they using it as a reference to obtain a fold change for the different proteins quantified (in this case why not use the WT?) ?
Other comments:
-
The proteomics data must be deposited in a public repository. I did not see it stated in the methods section.
-
The version of the uniprot database is quite old (2016) so is the version of MaxQuant used in this study. Any reasons for that (other than that the analysis was performed in 2016) ?
-
The data were run on different MS platforms, how did the authors accounted for the variability in MS signals ? What samples were run on which MS platform ? Where the WT embryos ran on both ?
-
In the methods section the authors mention that a high-pH reverse phase fractionation was performed ? How many fractions of High-pH reverse phase separation were injected per sample ? Was this separation performed for all the samples ?
-
Why did the authors used label-free (proteome) and SILAC (phosphoproteome) quantification methods ?
-
Why are the threshold based on the Q3 of the standard deviation (if I got if right) ? Couldn't they be calculated directly on the distribution of the ratio ?
-
Page 6 : The supplementary figure 2E refers to the protein Cactus and the text to CKII, please modify one or the other to avoid and confusion.
-
Page 7 : A dot is missing at the end of the following sentence « if used with the assumed weightings for the populations »
-
Page 19 : Replace SppedVac by SpeedVac
-
Page 8 : why not using a z-score with thresholds directly instead of a -1/+1/0 system and then using the z-score ?
-
In the abstract it is mentioned that 3,399 proteins are differentially regulated at the proteome level versus 1,699 significantly deregulated at a 10 % FDR in the main text (page 5). Is there a reason for this discrepancy ? Same comment for the phosphopeptides.
Significance
I think in its current form the data brings enough new information on this particular developmental step and would be of interest for the fly community. My main concern is that the manuscript can be difficult to read and overly convoluted at times even for experts in the field.
Reviewer experise: Drosophila proteomics
-
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary
This manuscript investigated changes in the proteome and phosphoproteome during dorsovental axis specification in the Drosophila embryo. To model the three regions in the embryo that are relevant for DV axis development, the authors used specific mutations to enrich for a single type of cells (ventral, lateral, or dorsal). The detected proteins and phosphopeptides were clustered according to the region of expression. There were differences between the protein and corresponding phosphopeptide abundance, suggesting that phosphorylation is a regulatory modification in DV axis establishment. Two different mutations that both result in a ventralized phenotype were found to change marker protein expression in different ways. Using inhibition of microtubule polymerization, this study also investigated the role of microtubules in epithelial folding.
Major comments
- Generally, there is a lack of significance testing throughout the manuscript. Simply reporting fold changes can be misleading, if these changes are not significant. Examples:
1) Rigor of the proteomics evidence showing changes for the expected markers is insufficient because no statistical evaluation is provided. Specifically, in Fig. 1D and Suppl Fig 2: are the fold changes statistically significant?
2) Data in Fig. 4F, 5F need to be assessed for significance. There are other instances in the manuscript where significance should be tested.
-
It is difficult to see the value of the obtained dataset for the community, in part because the data are analyzed by a linear model and cluster assignment developed by the authors, which is a somewhat arbitrary representation. Perhaps the authors could explain how their data could be used by other researchers, and maybe even develop an accessible portal for interacting with the data. For example, what does it mean biologically that a protein is a member of a specific cluster shown in Fig. 3C? Is there a predictive value in such an assignment, and how does it relate to the main question of DV axis regulation? An example of a novel insight obtained for specific protein(s) would be useful to illustrate the utility of this analysis.
-
Overall, at present the study appears to have limited novelty and mechanistic insight. The data generally align with prior expectations, but it is unclear how this work advances the field. For example, the observed differences between marker proteins in Toll10B vs. spn27A data seem to confirm previous suggestions that spn27A has a stronger ventralizing effect. The role of microtubules in epithelial folding in the embryo has also been demonstrated before.
-
The shown phosphorylation changes (if they are significant) for Toll and Cactus are difficult to explain. In Suppl Fig 2B, E: why is Toll more phosphorylated in the lateralized than in ventralized embryos? (the provided reference 20 does not seem to clarify this) Also, certain Cactus phosphorylations appear higher in dorsalized and ventralized embryos, but not in lateralized embryos. Are such changes expected and do they make sense biologically? It is unclear why these phosphorylation data are used to validate the success of the approach.
-
The rationale to use a diffusion algorithm for data analysis is not clear. How would the analysis differ if diffusion was not used? Generally, the discussion of enriched GO categories presented in Fig. 6 is not rigorous, and it is unclear what biological insight is provided by this figure, probably because the categories are extremely diverse and not clustered in a meaningful way.
-
Despite stating that the work on microtubules came out as a result of proteomic analysis, there is no connection between proteomic data (e.g. data shown in Fig. 6) and microtubule analysis in Fig. 7. Given the broad range of categories shown in Fig. 6, it is not obvious how the jump to tubulin post-translational modifications and microtubule behavior shown in Fig. 7 was made, which leaves Fig. 7 as a disconnected set of results.
-
The Discussion section touches on areas of differential protein degradation and mRNA regulation, however these data are not presented in Results or Figures and so it is difficult to assess the relevance of this analysis. There is insufficient citation of prior literature throughout the manuscript: many statements are lacking proper references. Proteomics data should be deposited into a standard repository that is a member of ProtomeXchange Consortium, such as PRIDE, etc.
Minor comments
-
The text has several typos and should be proof-read, and references to figures and tables should be checked, as some of these are not correct.
-
The genotypes for the mutations used in this study should be accompanied by citations describing identification of these mutations and the resulting phenotypes. It would also be helpful to describe the nature of these alleles (molecular lesion, gain vs loss of function, etc.). Some of this information is included in the Discussion, but it would be useful for the reader to learn this early on, when the chosen genotypes are presented.
-
Fig. 2G,H - the X axis should be clearly labeled as logarithmic. In Fig. 2G the locations of lines showing fold changes for Twist and Snail seem incorrect. In Fig. 2H the dotted line does not appear to correspond to 50% of the number of phosphosites. Fig. 5D can be improved by adding letters for the colored clusters.
-
It is unclear if any specific additional insight was obtained using SILAC, the authors may want to discuss this approach and outcomes more.
Significance
General assessment
Strengths: The study uses a good model system (mutations that enrich for a specific type of cells) to investigate the proteome during DV axis establishment. The technical approaches are sound and the raw data are mostly of high quality. Limitations: The lack of significance testing throughout the manuscript makes it difficult to determine whether the stated changes are meaningful. It is unclear how experiments with microtubules are connected to the rest of the story. In its present form, the utility of the data for a broader community is limited, because there is no data analysis portal developed for easy data visualization and interaction, and the data in the supplemental tables are not easily interpretable.
Advance: Overall, this study may serve as a resource for future functional investigation, however limitations in data analysis and presentation currently limit its impact. At present, the advance of this study appears incremental, as it largely agrees with prior observations and does not show novel mechanistic insights in our understanding of DV axis specification. Providing clear examples of how this analysis may result in new understanding and explaining the biological relevance of the findings would help to address this problem.
Audience: Researchers working in the fields of dorsoventral axis specification, Drosophila genetics, developmental biology, proteomics.
-
-
www.biorxiv.org www.biorxiv.org
-
Transparent Peer Review
Download the complete Review Process [PDF] including:
- reviews
- authors' reply
- editorial decisions
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Manuscript number: RC-2023-02154
Corresponding author(s): Marco, Galardini
- General Statements
We have carefully read the comments put forward by the two reviewers and we have produced a revised version of the manuscript that we believe addresses all the concerns expressed by the reviewers. In short, we have validated our approach against experimentally derived epistatic coefficients, compared our mutual information (MI) method against one that uses direct coupling analysis (DCA), and experimentally tested three interactions in the spike RBD that we have predicted and which emerged only in summer 2023, thus demonstrating the potential predictive power of this approach. We have also carefully reworded the manuscript to acknowledge the inherent limitation of a method based on MI to identify epistatic interactions. We believe that the revised manuscript is now more robust with these new in-silico and in-vitro validations, and more direct in exposing the advantages (speed) and caveats (higher false-positives) of this approach.
Note: the line numbers referenced in the responses to reviewers below refer to the document in which the changes are highlighted.
Point-by-point description of the revisions
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
Summary: The authors inferred the pairwise epistasis through the Mutual Information provided by the spydrpick algorithm. They claim that the MIs could serve as a real-time identification of the epistatic interactions with the SARS-CoV-2 genomes due to the fast inference and high sensitivities.
Major comments:
1.The authors take a data-driven approach to infer the Mutation Information as the epistatic interactions between the mutations over different sites over SARS-CoV-2 genomes. However, it would be better to specify why this metric is reliable to be used as the representation of the pairwise epistatic interactions, and any theoretical explanations to support this.
We agree that readers should be better informed on why MI can be used to estimate epistatic interactions from genomic data. We have therefore expanded the introduction (lines 93-98), methods (lines 540-543) and discussion (lines 453-457) sections to provide a proper theoretical and practical foundation on the use of a MI-based method. Furthermore, we have expanded the results section to add one additional in-silico validation (lines 244-249, Supplementary Figure 5, and updated Supplementary Figure 8) and an in-vitro one (Figure 5, see also reply to comment 2 from reviewer #2), which we believe give strong support to the MI-based method.
2.The authors claimed that the DCA method requires more computational resources and more time to complete. However, with a proper filtering procedure, the computational time could be reduced heavily. An example is Physical Review E 106 (4), 044409, 2002, in which the DCA was used to investigate the real-time pair-wise interactions (month-to-month). There the DCA results were compared with the correlation analysis. It would be nice to have comparisons of the inferred interactions between MIs and other methods.
We agree that our MI-based approach should be compared against DCA-based methods. The original manuscript had in fact one such comparison (for the 2023-03 dataset, Figure 3C), which indicated a strong correlation between the two methods. To make this result more robust we have computed the DCA values for the complete time-series dataset and measured the correlation with the MI values (Supplementary Figure 4)
We observed a relatively high correlation in estimated values between the two methods, with the exception of three time points, i.e., 2020-11, 2023-02 and 2023-03. We can explain these lower correlations with the low overall sequence diversity observed in the early phase of the pandemic (2020-11) and with the different weighting scheme of our approach, which would significantly alter the dataset when compared to the one used by the DCA method, especially towards the later timepoints (see also the reply to reviewer #2, comment 3, section iv). When those three timepoints are excluded, the two methods show a high degree of correlation, implying that they are comparably suitable in detecting coevolutionary signals.
We have also used the 2nd order coefficients derived from experimental data in Moulana et al., 2022 (10.1038/s41467-022-34506-z) to validate both approaches (see methods, lines 624-631).
The panels which we have combined to create the new Supplementary Figure 5, indicate how both approaches (MI for panel A and C, and DCA for panels B and D) correctly recover the interaction with 2nd order epistatic coefficient > 0.15, based on the odds-ratio metric. Our MI-based approach has, however, a higher recall across multiple time points, which is especially visible comparing panels A and B. The DCA-based method did correctly identify known epistatic interactions, but did so only in sporadic timepoints, even though the distribution of the underlying variants did not change significantly month to month. We believe that the higher recall of the MI-based method has a higher value for genomic epidemiology, at least for SARS-CoV-2.
3.In Figure 1C, the authors show that their spydrpick algorithm provides more pairwise MIs for longer distances, where the outliers are denser than those with short distances. How do we explain this phenomenon?
We thank the reviewer for bringing this point up; we actually think that our data shows the opposite, meaning that we observe a higher proportion of close interactions when normalizing by the number of possible interactions. If we take an arbitrary distance threshold of 1'000 bases to define "close" Vs. "distant" interactions, we observe 194 and 280 interactions, respectively. It is true that distant interactions would be more, but the space of possible interactions is orders of magnitude larger for "distant" interactions, simply by the fact that there are more sites from which interactions can originate. As a crude estimate we can use the combinations between 1,000 sites (499,500 possible interactions) Vs those between 28,903 sites (the full SARS-CoV-2 genome length 29,903 bp minus 1,000, 417,677,253). Based on these estimates we have indeed observed less "close" than "distant" interactions.
Minor comments:
4.The explanations of Fig. 1E could be in more detail. Say, the grey dots in Fig. 1E, which is marked as "other" and such "other"s are dominated here. Why?
We thank the reviewer for pointing out a section where more clarity was needed. We have added the following sentence to the figure legend: "The category "other" indicates positions which are not known to have an impact on affinity to ACE2, immune escape or otherwise flagged as MOI/MOC.". This indicates that predicted interactions involving a site classified as "other" are either false positives or previously undiscovered interactions.
5.On line 210, the authors mentioned that the weights of the old sequences are lower "at around six months (120 days)". It would be better to specify why six months is 120 days instead of 180 days,
We have corrected this mistake and indicated 4 months. We thank the reviewer for spotting this error.
Referees cross-commenting
I agree with what Reviewer #2 presented in the Consults Comments. The authors should present the reasons why MIs can be explained as the epistatic interations between sites as both of us mentioned this point. I checked the other revision points that raised by the Reviewer #2. They would be definetely helpful for enhancing the quality of the manuscript.
Reviewer #1 (Significance (Required)):
The work in the current manuscript is interesting and presented nicely. However, the theoretical foundations that the MIs could be explained as epistatic interactions should be illustrated. Otherwise, the tools would be useful for SARS-CoV-2 and other potential pandemics by different virus.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
The manuscript proposes an approach to identify epistatic interactions in the SRAR-CoV-2 genome using the large amount of genomic data which accumulated during the COVID pandemics. They argue that due to a relatively low computational cost, this can be done online in any ongoing pandemics nowadays (i.e. in the situation where the viral spreading and evolution are closely monitored by massive sequencing). In principle, this is interesting, but in my opinion the manuscript has some strong problems and will require major rewrighting:
1) In difference to the claims of the manuscript, detected correlation does not necessarily imply epistatic couplings:
-
Even in a totally neutral setting, mutations may occur by chance together, and expand due to genetic drift or when ecountering a susceptible population. Equally, to independent muations may spread in different geographic regions, without the double mutant ever arising. Both cases lead to non-zero mutual information.
-
In evolution, frequently driver and passenger mutations are observed, in particular in settings of relatively high mutation rate. The passenger will rise in frequency with the driver, without any epistatic coupling.
-
The very unequal sequencing across geographic areas will enhance certain variants and leave others undetected. Even if the authors avoid double counting of identical sequences, more small variation is detected when sequencing deeper. The Omicron variant illustrates an extreme case here: it combined a large number of mutations, never detected before, but epistasis is not the most likely explanation, but rather lack of monitoring of the evolutionary path from the ancestral variants to Omicron.
-
MI has been criticised because it overestimates the effect of indirecrt correlations in particular in dense epistatic networks. The situation in the spike protein in Fig. 1B seems very dense.
Currently the manuscript does not make any effort to disentangle any of these effects.
Following this (and reviewer 1) comments, we have made a number of changes to the manuscript in order to provide more context into how MI can be used to estimate epistatic interactions and the inherent limitations of this approach. In particular, we have expanded the introduction (lines 93-98), methods (lines 540-543) and discussion (lines 453-457) sections in a way that we believe exposes the limitations of the approach. Despite these limitations, we still believe that a MI-based approach strikes a good balance between speed, ease of implementation, and sensitivity. To further demonstrate this point we have added two additional validations to our results: the first one (in-silico) uses estimated 2nd order epistatic coefficients derived from experimental data (Moulana et al., 2022, 10.1038/s41467-022-34506-z), and the second (in-vitro) our own experimental data on three predicted interactions. The results of the new in-vitro validation have been described in the reply to comment #2 from reviewer 1; in short they show how the MI-based method has comparable sensitivity and specificity as the DCA-based method, and most importantly they allow the recovery of known epistatic interactions across the time period in which they have appeared. The results of the in-vitro validation are discussed in the reply to the next comment from this reviewer, as they directly address the predictive power of our approach: in short, we show how we could also validate these predictions. We think that these new results clearly show how, despite its limitations, the MI-based approach is able to identify bona-fide epistatic interactions, with the advantage of being a simple method to be implemented and with the possibility to be run in real time. For a more detailed discussion of the merits of the MI-based approach over DCA, see the reply to comment #3 from this reviewer.
2) What are the predictive capacities of the approach? Mutual information is bounded from above by the individual site entropies. So high MI can be detected only in highly mutated sites - i.e. in sides for sure already under monitoring. In fact, the sites in Fig. 1B with many links reflect the overall profile of variant frequencies in single sites (i.e. a totally non-epistatic measure) available on Nextstrain, and extracted from the same data sources.
The discussion of the results is very anecdotal and it is not clear to me in how far there is any real prediction in the paper, which might surprise and trigger observation or further analyses.
There is an entire line of related research in estimating and exploiting epistatic couplings in HIV evolution (A Chakraborty, M. Kardar, J. Barton, M MacKay and others) - not cited in the manuscript but relevant for the question how to detect epistatic couplings and what they are good for.
We thank the reviewer for pointing out relevant literature we had not covered in the original manuscript, and which can be used to indicate how epistatic interaction signals can be leveraged when studying viruses. We have added citations to these studies in the introduction (lines 76-78) to provide a better background for our own study. Regarding the broader concern of showing the predictive power of our approach, we had a similar concern after the manuscript was submitted, and we had already planned a "blind" in-vitro validation to put our approach to the test. In order to make this validation as "blind" as possible, we expanded the dataset to include sequences until August 2023. We then selected interactions within the spike RBD with confidence level O4 in at least the last 4 time points and with one position already flagged as either "affinity", "escape" or "other MOI/MOC"
We then selected the top three interactions (446-460, 446-486 and 452-490) for our validation, as they have an outlier confidence O4 in at least the 4 time points, and lower or no prediction before. We also added the known 498-501 interaction as a control (Figure 5, panel B)
We then focused on selecting a set of non-synonymous substitutions to test for their potential epistatic interactions. We decided to select 6 substitutions affecting the 3 predicted interactions based on their frequency in the time points after the cutoff of the original manuscript, shown in Figure 5, panel C.
Of those, L452R/F490S and G446S/F486V are anti-correlated in their frequency and virtually never observed together in our dataset, G446S/F486S is observed at low frequency (87 samples after 2023-05), and G446S/N460H is virtually never observed (5 samples). We chose the anti-correlated pairs to test the potential of the MI method to explain these "avoidance" phenomenon, and the low frequency pairs as a way to test an early warning system for mutation signatures that might rise in the future. We then planned to test the impact of the individual variants, the double variants, both in the wild-type background and in the Q498R/N501Y background as a crude model for the Omicron variant.
We then used a pseudovirus assay to test mutated RBDs across two phenotypes: infectivity (i.e. the ability to infect Vero B4 cells) and immune escape (i.e. antibody neutralization curves). We then tested for the presence of epistatic interactions for the double mutants in both backgrounds using a simple linear model (see Methods, lines 711-727). The results of these in-vitro assays are summarized below (Figure 5, panel E for infectivity, F for immune escape).
Double mutants with a significant (p-value -10) interaction have been highlighted with an asterisk. We confirmed the epistatic interaction for the Q498R/N501H, both for its effect on infectivity and immune escape. For both anti-correlated pairs we found a significant interaction for either the infectivity assay (both) and immune escape (G446S/F486V). In particular, we found that the one hand the G446S/F486V pair induced a large drop in infectivity in the Q498R/N501H background while the double mutant was fairly similar to the immune escape profile of the single G446S variant, thus compensating for the loss of escape shown by the F486V variant alone. We observed the opposite for the L452R/F490S pair in terms of infectivity, with the pair showing a large increase in infectivity in the Q498R/N501H background, an effect we found to be significant. The double mutant had a slightly better immune escape profile than the single mutants, although not significant. From these observations we can hypothesize that the G446S/F486V is anticorrelated for their strong defect in infectivity; we cannot apply the same reasoning for the L452R/F490S pair, whose absence from circulating variants could be ascribed to stochasticity in population dynamics or interactions with other variants. We observed a similar impact of the G446S/F486S and G446S/N460H pairs on infectivity as G446S/F486V; based on these results we could estimate that variants carrying these pairs might have a fitness disadvantage. The inability of unsupervised methods (MI or DCA based) to predict the direction of the effect of course makes it difficult to inform which of the two pairs should be added to a "watchlist", but it would potentially reduce the number of interactions to be tested. We believe that the results of this admittedly small scale in-vitro validation demonstrates the potential of the MI-based approach to flag emerging interactions worthy of further studying. Recent advances in scalability of molecular assays (e.g. 10.1101/2024.03.08.584176) could then be coupled with a real-time system as the one we describe in our manuscript to filter out the more relevant interactions. We have added this forward-looking observation in the discussion as well (lines 465-474).
3) The authors say that more involved methods like the Direct Coupling Analysis with Pseudolikelihood maximisation would be too slow for the analysis, but several papers show the contrary. The paper by Zeng et al. (Ref. [39]) does so very early in the pandemics in 2020, and another uncited paper of the same authors (Physical Review 2022) uses a nearly identical approach to study the time evolution of epistatic couplings (extractions from Gisaid at several times). As one of theit results, they show that their approach is not only feasible, but delivers more stable results than simpler correlation measures like MI.
We thank the reviewer for pointing out a relevant reference we had missed in the initial manuscript. At a general level Zeng et al. take a similar approach to what we have described, namely to divide the data according to the isolation date to look for temporal trends. We however see a few differences that we think are in favor of the approach we describe:
1- Our manuscript covers the time period after the emergence of the Omicron variant, in which epistatic interactions are known and have been characterized and validated experimentally, a crucial requirement for validation. We have also conducted an in-vitro validation on a selected set of predicted interactions (see the reply to the previous comment), which indicates that the method is sound and predictive.
2- We have prepared a cumulative time-series dataset, meaning that each month introduces new sequences on top of the ones already selected from the previous time points. To the best of our knowledge the Zheng et al. dataset has "insulated" sequences at each month. We believe our approach has the advantage of allowing for a higher recall, as it includes a representation of extinct lineages, which may increase diversity at key loci and thus boost the signal. As described in the original manuscript and in the reply to this reviewer's comments "iv" and "v", we have added a weighting scheme in order to reduce the influence of older sequences and increase the relevance of smaller lineages.
3- While we have not tested the DCA implementation used by Zeng et al., and we cannot therefore directly comment on its scalability, we have encountered serious limitations when scaling up the popular plmc C implementation developed by the lab of Deborah Marks. In particular we were unable to successfully run it for datasets with more than ~300k sequences, encountering segmentation faults.
Regarding the third point, while this meant that we could not test the DCA approach on the full dataset, we could still manage to apply it on the time series data, focusing exclusively on the spike (S) gene. As shown above in the reply to reviewer's 1 comment #2, the two methods have a high correlation and are both able to recover known interactions, although with the DCA method having a lower recall. Taken together we believe that the MI-based approach we describe is robust enough to be considered when a tradeoff between speed, ease of implementation and sensitivity has to be struck, which we believe may be the case for a rapid response during a potential future pandemic. We have added more details to the part of the discussion in which the comparison with the DCA-based methods was made to point out how those are still feasible with very large collections of sequences (lines 444-448).
It would therefore be essential that the authors strongly revise their manuscript to show the relaibility of the results, the predictive value of the predicted couplings, and the originality and robustness of the approach.
We believe that our response to both reviewers have addressed these concerns, and as a result we have provided a more nuanced view on the use of MI-based methods in the prediction of epistatic interactions in pandemic viruses. Our wording has been modified to make sure that readers interested in replicating our approach are aware of its strengths (speed, ease of implementation) and limitations.
Furthermore, there are some minor issues in the formulations, which should be corrected
i) "the virus has differentiated into a number of lineages, almost all of which have taken over the whole population..." This is wrong. SARS-CoV-2 has always been very heterogeneous, with diverse variants circulating (the authors use millions of non-redundant sequences), and only very few have become VOIs or VOCs at some point. This image of competition between multiple coexisting strains is much closer to clonal interference than what the authors describe (even if clonal interference does not rely on population structure, which has always been an important element in COVID).
We thank the reviewer for pointing out this error in our observation. We have changed "almost all" to "some", which we agree is more accurate.
ii) The authors say that pseudolikelihood methods would require "aggressive subsampling". This is not true, in machine learning massive training data are frequently used in the context of batch learning, i.e. in each learning epoch a "batch" is sampled from the full data. This leads to stochasticity in learning, but all data are eventually used.
We have reformulated this sentence (lines 85-90) to indicate how batch learning could also be used to make certain methods scalable, with the caveat that they would be more complicated to implement.
iii) The authors say that the download also a phylogenetic tree, but I do not see where it is used.
As indicated in the methods section, we have used the phylogenetic tree for two purposes:
1- To single out high quality sequences from the raw MSA (line 515)
2- To compute the weight of each sequence in the final MSA, as described in line 540-549
iv)The authors use sequence weights as implemented in Ref. [31]. There a weighting at sequence similarity threshold of 90% is used. I would expect that there are no SARS-CoV-2 genomes having accumulated more than 10% of nucleotide mutations, i.e. the weighting procedure would be without any effect.
We realized that the sequence weighting scheme we have used is not described in Pensar et al. (10.1093/nar/gkz656), but rather in the implementation of the spydrpick algorithm used by the panaroo software (Tonkin-Hill et al., 10.1186/s13059-020-02090-4). This weighting scheme is based on the more granular metric that is the patristic distance of each sequence from the root of the tree, divided at each branching point by the number of its terminal leaves. In practical terms this means that sequences belonging to smaller lineages (i.e. with fewer observed samples) will have a larger weight, regardless of a discrete sequence similarity threshold, as was done in the original implementation. We have updated the methods section to clearly indicate that the weighting scheme is that first shown in the panaroo software package (line 543).
v)The authors estimate that they need 10,000-100,000 sequences to estimate MI, but find the epistatic coupling in spike residues 498-501 as soon as 6 double mutants are present, which is a frequency of about 1e-4. The corresponding entropies should be low and in consequence the MI, too.
We thank the reviewer for raising this point, which prompted us to devise a way to better illustrate the sequence weighting scheme we have used. As a side note we also discovered that the number of Omicron sequences at the 2021-11 was actually 7, and not 6 as stated throughout the original manuscript, an error we have now fixed. As described in the methods section we have combined two weights in the time-series analysis: the first one, described in the response to the previous comment, is based on the "density" of the phylogenetic tree, which deflates the contribution of "denser" regions of the tree, and the second reduces the relevance of older sequences. The two weights are then combined multiplicatively. As a result the "real" (i.e. effective) number of sequences harboring a particular double mutation will be different than by just counting their occurrences.
As shown in Supplementary Figure 3, the combination of both weights (first column) leads to an increased effective number of sequences for "younger" samples and those that come from "sparser" regions of the overall phylogenetic tree. This is particularly evident for the middle row (2021-11); the light orange dot, which indicates sequences belonging to the first Omicron lineage to appear in the dataset (BA.1), has an actual N of 7, but an effective N of ~100 (exact value 86), thanks to its "novelty" both in the tree (middle panel) and in terms of time (right panel). We again thank the reviewer for raising this point, which led us to generate this visualization, which will hopefully clarify the rationale for the weighting strategy we have used for moist readers.
vi)The authors say that the public health toll of COVID has been "balanced" by scientific discovery - I would urge the authors to avoid such formulations, which sound cynical.
We agree with the reviewer that this comment might sound cynical and tone-deaf, and have reformulated to indicate that the impact of the pandemic has coincided with an accelerated pace of applied scientific discovery.
Referees cross-commenting
Both reports bring up very similar points (points 1 of both reports, point 2 of Reviewer #1 vs. my point 3) but add partially complementary questions (point 3 of Reviewer #1, my point 2), both related to the interpretation of the data. My report is more severe, but reading the ms I am convinced that the paper requires serious revision. So reports seem coherent but with different degrees of recommendations. However, none of the comments of one reviewer is contradiction to the other reviewer.
Reviewer #2 (Significance (Required)):
While the paper asks interesting questions and wants to make use of the quite unique data which have accumulated during the COVID pandemics, the above mentioned problems raise important questions about the manuscript. It would be essential that the authors strongly revise their manuscript to show the relaibility of the results, the predictive value of the predicted couplings, and the originality and robustness of the approach.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
The manuscript proposes an approach to identify epistatic interactions in the SRAR-CoV-2 genome using the large amount of genomic data which accumulated during the COVID pandemics. They argue that due to a relatively low computational cost, this can be done online in any ongoing pandemics nowadays (i.e. in the situation where the viral spreading and evolution are closely monitored by massive sequencing). In principle, this is interesting, but in my opinion the manuscript has some strong problems and will require major rewrighting:
- In difference to the claims of the manuscript, detected correlation does not necessarily imply epistatic couplings:
- Even in a totally neutral setting, mutations may occur by chance together, and expand due to genetic drift or when ecountering a susceptible population. Equally, to independent muations may spread in different geographic regions, without the double mutant ever arising. Both cases lead to non-zero mutual information.
- In evolution, frequently driver and passenger mutations are observed, in particular in settings of relatively high mutation rate. The passenger will rise in frequency with the driver, without any epistatic coupling.
- The very unequal sequencing across geographic areas will enhance certain variants and leave others undetected. Even if the authors avoid double counting of identical sequences, more small variation is detected when sequencing deeper. The Omicron variant illustrates an extreme case here: it combined a large number of mutations, never detected before, but epistasis is not the most likely explanation, but rather lack of monitoring of the evolutionary path from the ancestral variants to Omicron.
- MI has been criticised because it overestimates the effect of indirecrt correlations in particular in dense epistatic networks. The situation in the spike protein in Fig. 1B seems very dense.
Currently the manuscript does not make any effort to disentangle any of these effects. 2. What are the predictive capacities of the approach? Mutual information is bounded from above by the individual site entropies. So high MI can be detected only in highly mutated sites - i.e. in sides for sure already under monitoring. In fact, the sites in Fig. 1B with many links reflect the overall profile of variant frequencies in single sites (i.e. a totally non-epistatic measure) available on Nextstrain, and extracted from the same data sources.
The discussion of the results is very anecdotal and it is not clear to me in how far there is any real prediction in the paper, which might surprise and trigger observation or further analyses. There is an entire line of related research in estimating and exploiting epistatic couplings in HIV evolution (A Chakraborty, M. Kardar, J. Barton, M MacKay and others) - not cited in the manuscript but relevant for the question how to detect epistatic couplings and what they are good for. 3. The authors say that more involved methods like the Direct Coupling Analysis with Pseudolikelihood maximisation would be too slow for the analysis, but several papers show the contrary. The paper by Zeng et al. (Ref. [39]) does so very early in the pandemics in 2020, and another uncited paper of the same authors (Physical Review 2022) uses a nearly identical approach to study the time evolution of epistatic couplings (extractions from Gisaid at several times). As one of theit results, they show that their approach is not only feasible, but delivers more stable results than simpler correlation measures like MI.
It would therefore be essential that the authors strongly revise their manuscript to show the relaibility of the results, the predictive value of the predicted couplings, and the originality and robustness of the approach.
Furthermore, there are some minor issues in the formulations, which should be corrected
i) "the virus has differentiated into a number of lineages, almost all of which have taken over the whole population..." This is wrong. SARS-CoV-2 has always been very heterogeneous, with diverse variants circulating (the authors use millions of non-redundant sequences), and only very few have become VOIs or VOCs at some point. This image of competition between multiple coexisting strains is much closer to clonal interference than what the authors describe (even if clonal interference does not rely on population structure, which has always been an important element in COVID).
ii) The authors say that pseudolikelihood methods would require "aggressive subsampling". This is not true, in machine learning massive training data are frequently used in the context of batch learning, i.e. in each learning epoch a "batch" is sampled from the full data. This leads to stochasticity in learning, but all data are eventually used.
iii) The authors say that the download also a phylogenetic tree, but I do not see where it is used.
iv)The authors use sequence weights as implemented in Ref. [31]. There a weighting at sequence similarity threshold of 90% is used. I would expect that there are no SARS-CoV-2 genomes having accumulated more than 10% of nucleotide mutations, i.e. the weighting procedure would be without any effect.
v)The authors estimate that they need 10,000-100,000 sequences to estimate MI, but find the epistatic coupling in spike residues 498-501 as soon as 6 double mutants are present, which is a frequency of about 1e-4. The corresponding entropies should be low and in consequence the MI, too.
vi)The authors say that the public health toll of COVID has been "balanced" by scientific discovery - I would urge the authors to avoid such formulations, which sound cynical.
Referees cross-commenting
Both reports bring up very similar points (points 1 of both reports, point 2 of Reviewer #1 vs. my point 3) but add partially complementary questions (point 3 of Reviewer #1, my point 2), both related to the interpretation of the data. My report is more severe, but reading the ms I am convinced that the paper requires serious revision. So reports seem coherent but with different degrees of recommendations. However, none of the comments of one reviewer is contradiction to the other reviewer.
Significance
While the paper asks interesting questions and wants to make use of the quite unique data which have accumulated during the COVID pandemics, the above mentioned problems raise important questions about the manuscript. It would be essential that the authors strongly revise their manuscript to show the relaibility of the results, the predictive value of the predicted couplings, and the originality and robustness of the approach.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary The authors inferred the pairwise epistasis through the Mutual Information provided by the spydrpick algorithm. They claim that the MIs could serve as a real-time identification of the epistatic interactions with the SARS-CoV-2 genomes due to the fast inference and high sensitivities.
Major comments:
- The authors take a data-driven approach to infer the Mutation Information as the epistatic interactions between the mutations over different sites over SARS-CoV-2 genomes. However, it would be better to specify why this metric is reliable to be used as the representation of the pairwise epistatic interactions, and any theoretical explanations to support this.
- The authors claimed that the DCA method requires more computational resources and more time to complete. However, with a proper filtering procedure, the computational time could be reduced heavily. An example is Physical Review E 106 (4), 044409, 2002, in which the DCA was used to investigate the real-time pair-wise interactions (month-to-month). There the DCA results were compared with the correlation analysis. It would be nice to have comparisons of the inferred interactions between MIs and other methods.
- In Figure 1C, the authors show that their spydrpick algorithm provides more pairwise MIs for longer distances, where the outliers are denser than those with short distances. How do we explain this phenomenon?
Minor comments: 4.The explanations of Fig. 1E could be in more detail. Say, the grey dots in Fig. 1E, which is marked as "other" and such "other"s are dominated here. Why? 5.On line 210, the authors mentioned that the weights of the old sequences are lower "at around six months (120 days)". It would be better to specify why six months is 120 days instead of 180 days,
Referees cross-commenting
I agree with what Reviewer #2 presented in the Consults Comments. The authors should present the reasons why MIs can be explained as the epistatic interations between sites as both of us mentioned this point. I checked the other revision points that raised by the Reviewer #2. They would be definetely helpful for enhancing the quality of the manuscript.
Significance
The work in the current manuscript is interesting and presented nicely. However, the theoretical foundations that the MIs could be explained as epistatic interactions should be illustrated. Otherwise, the tools would be useful for SARS-CoV-2 and other potential pandemics by different virus.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Manuscript number: RC-2024-02371
Corresponding author(s): Elena, Rainero
1. General Statements
We would like to thank both reviewers, for highlighting that our work is a 'careful mechanistic and functional investigation' and that the data are 'clear, convincing and appropriately analysed'. We appreciated that our work was recognised to be important the 'cell signalling, ECM, and migration field' and 'may be translationally relevant'. Below we list how we have addressed or are planning to address all the concerns raised by the reviewers. All the changes are marked in blue in the text.
2. Description of the planned revisions
MAPK11 data in figure 1f (deconvolution).
We agree with the reviewer that this is an important point. MAPK11 was not initially included in the deconvolution list, as it was a weak hit from the screen. We have now used the 4 individual siRNAs which are the components of the smart pool used in the screen, and we measured collagen I internalisation in MDA-MB-231 breast cancer cells. Preliminary data indicate a statistically significant reduction in collagen I uptake in 3 out of 4 sequences tested. The efficiency of the siRNAs in reducing MAPK11 levels will be measured by qPCR.
Show p38 inhibition (WB) for the experiments in which the inhibitors were used.
To assess the efficacy of SB203580 at inhibiting p38 signalling, we will assess the phosphorylation of the p38 target ATF2, as previously described (Ivaska et al., 1999).
Is ECM endocytosis-driven migration linked to the ability of the cells to degrade the endocytosed material in their lysosomes? Or is it more a mechanism of ECM remodelling to enable invasion? [Reviewer 1]. Not clear whether ECM uptake actually fuels/is required for invasion, or whether it is simply a consequence [Reviewer 2].
We thank the reviewers for raising this important point. Indeed, it is possible that ECM uptake impacts on both these processes. To elucidate this, we will treat the cells with Bafilomycin A1, to prevent lysosomal acidification and degradation and assess the migratory ability of MDA-MB-231 cells. If ECM endocytosis-driven migration is an ECM-remodelling mechanism, we expect cell migration not to be affected by the presence of Bafilomycin A1; on the contrary, if ECM lysosomal degradation is required, we expect Bafilomycin A1 treatment to impair cell migration.
What is the faith of the integrin vs ECM ligand?
While we showed that internalised ECM components are degraded in the lysosomes, we do not know the faith of the integrin receptor. To measure integrin a2b1 degradation, we will monitor its levels by Western Blotting in the presence of cycloheximide on both plastic and 1mg/ml collagen I, which drives a2b1 internalisation. In addition, we will measure a2b1 internal pool in the presence of E64d, which we showed prevented the degradation of internalised collagen I.
Mechanistic insight into how these kinases and this specific regulatory subunit of the PP2 phosphatase is involved in this process. What are the targets of these kinases and phosphatase? Do they regulate a2b1-integrin phosphorylation or trafficking?
We don't believe that a2b1 is a target of p38, as we did not find any evidence of this in p38 phosphoproteomic studies, while a2b1 has been reported as an upstream regulator of p38. We agree with the reviewer that including more details on the potential p38 targets modulating ECM uptake and migration would be beneficial. We also agree with the reviewer that performing the extensive phospho-proteomic approach and target validation will constitute an entirely different project and this point should not preclude the publication of this paper. The sodium/proton channel NHE1 has been reported as a p38 target (Khadler et al., 2001; Grenier et al., 2008), and it is also a well-known regulator of macropinocytosis. Therefore, here we will investigate whether NHE1 is also phosphorylated by p38 in our system and whether it is required for ECM uptake and cell migration. We have already established that treatment with the NHE1 inhibitor EIPA significantly reduced ECM uptake in MDA-MB-231 cells (Nazemi et al., 2024). PP2A has been shown to dephosphorylate p38, therefore we will confirm this in our system by measuring p38 levels by western blotting.
3. Description of the revisions that have already been incorporated in the transferred manuscript
Controls for the silencing efficiency in the screen are missing.
We used integrin b1 and PAK1 as positive controls in the screen. We have now included the integrin b1 staining in the screening plate, to confirm the knock down efficiency (extended figure 2f). In addition, Western Blotting experiments confirmed a >75% reduction in PAK1 levels upon siRNA transfection (extended figure 2g).
Show p38 inhibition (WB) for the experiments in which the inhibitors were used.
Phospho-p38 WB has been extensively used to assess the efficiency of SB202190 treatment, therefore, we performed similar experiments in MDA-MB-231 and found that treatment with SB202190 almost completely abolished p38 phosphorylation induced collagen I adhesion (figure 3f).
Use more than 1 siRNA for PP2A.
We are now including a heatmap showing the effect of the knock down of the different PP2A subunits on ECM uptake (extended figure 3a,b), demonstrating that PPP2R1A has the strongest effect on ECM uptake. PPP2R1A is a core PP2A subunit and its loss has been shown to destabilise the whole PP2A complex (Kauko et al., 2020). In the deconvolution experiment (figure 1f), we are showing for individual siRNA sequences targeting PPP2R1A.
Okadaic acid has the tendency to detach cells from the ECM.
We agree with the reviewer that this effect could indeed affect the interpretation of our results. We'd like to point out that in this study, we used relatively low concentrations (50nM) compared to some published work (up to 300nM). To assess the effect of okadaic acid on cell morphology, we measure the aspect ratio of MDA-MB-231 and A2780-Rab25 cells migrating on CDM and found that okadaic acid treatment and PPP2R1A downregulation resulted in a similar reduction in aspect ratio, representative of more rounded cells (extended figure 3d-ga,b), but we did not detect cell-ECM detachment. To note, the effect on cell morphology was more profound in the cell migration experiments, where the cells are sparser, compared to the ECM uptake experiments, where the cells are more confluent.
It is quite an overstatement to conclude from a 1-to-1 comparison between NMuMG cells and one cell line derivative of PyMT tumour that "these data indicate that ECM internalisation and degradation is upregulated in invasive breast cancer." Either soften this statement (e.g. 'ECM internalisation was higher in PyMT cancer cells than NMuMG normal breast cells'), or provide experimental evaluation across a range of normal versus cancer cells in vitro and using in vivo systems.
We soften the statement, and we described in more details the evidence that we collected from the MCF10 series of cell lines (non-transformed, non-invasive and metastatic cell lines) in the results and discussion.
It is not clear that the authors are comparing like for like. In extended Data Figure 1A, B, In NMuMG cells, these are islands of cells with tight cell-cell compaction, whereas PyMT1 appear as less adherent and compact cells with discontinuous cell-cell adhesions. While it is still appropriate to compare uptake normalised by area of cells, can the authors provide examination of what the ECM update is upon similar cell states, i.e. when both cell types are colonies versus elongated single or chains of cells? This would delineate whether differences are due to cell-cell contact or not, or bona fide differences in ECM uptake despite such different morphologies.
Similar changes in ECM uptake were observed in the MCF10 series of cell lines, where there is no clear morphological difference between the cell lines, indicating that cell-cell adhesion or elongation do not play a significant role here. We have included a statement about this in the discussion.
Throughout, the authors use cartoons of 3D culture of NMuMG, PyMT1 cells, breast to indicate MDA-MB-231 cells, a picture of a mouse, and a pancreas in attempt to orient the reader. This is very confusing as, for example in Extended Data Fig. 1A, B, these suggest 3-Dimensional spheroid cultures, when these are actually isolated cells or, when what is being demonstrated are not 3-Dimensional, but rather are 2D cells inside ECM.
We apologise for creating confusion with the cartoons, we have now removed all the small diagrams, including cartoons representing normal, DCIS and invasive cells, as well as cartoons representing breast, ovarian, pancreatic and mouse cells. Diagrams have been replaced by adding the name of the cell line, where multiple cell lines are present in the same figure.
Why did the authors perform the screen only two times (not trying to diminish the effort here!), when thrice may have helped with statistical analyses? The authors provide significance values for Reactome pathway assessment. How appropriate it is for the presentation of these from only two independent replicates?
We have now clarified how hits were selected in the methods section, accompanied by references of impactful publication screenings where biological duplicates have been previously used, including Sharma and Rao, Nat Immunol 2009 and Chia et al., Nature 2010.
How have the authors assessed whether, and if so to what extent, their cell segmentation is accurate? Can the authors provide evidence for this? For instance, in Figure 2b, this appears to be error-prone, at least for MDA-MB-231 cells.
We apologise for the confusion caused, we have now clarified how cells are detected in the methods section: Cells were imaged using a 60x Nikon A1 confocal microscope. For these experiments, cells were stained for a membrane protein, which is not shown in the images for better visualisation of the uptake. For live imaging uptake, the outline of the cells was visible, therefore being used to calculate the cell area. Confocal experiments were analysed manually.
*The colour schemes that the authors use throughout are not colourblind friendly, and somewhat difficult to follow even for colour-able readers. *
We apologise that the colours chosen in the plots could be difficult to distinguish for colorblind people. We have now changed the colour from all the superplot graphs in the manuscript, so they are colourblind friendly, we have tested this by using an online website simulator (https://pilestone.com/pages/color-blindness-simulator-1#), which shows how graphs are visualised by the diverse spectrum of colorblind readers.
Extended Data Fig. 3 g,h (ITGA2+ITGB1 KD validation) are not mentioned in the main text.
Thank you for pointing this out. We have now included previous Extended Data Fig. 3g (currently 4g) in the result section. Extended data Fig 3h (β1 integrin knockdown) was mentioned together with Extended data Fig 3a (β1 integrin knockdown on matrigel uptake) to facilitate the reading in section 'ECM internalisation is dependent on α2β1 integrin'.
4. Description of analyses that authors prefer not to carry out
Is the ability to take up ECM dependent on ECM proteolytic degradation?
In our recent publication (Nazemi et al., 2024), we assessed the role of matrix metalloproteases (MMP) in ECM uptake and ECM-dependent cell proliferation by treating MDA-MB-231 cells with the broad spectrum MMP inhibitor GM6001. We found that MMP inhibition did not prevent ECM uptake nor ECM-dependent cell growth, consistent with previous findings in the literature (Yamazaki et al., 2020). We are currently characterising the role of secreted cathepsins in controlling ECM uptake as a separate project in our lab, and preliminary data suggest that they might be involved. We feel this point is outside the scope of the current manuscript.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Summary
The work presented by Martinez and colleagues encompasses a large-scale screen of kinases that regulate internalisation of fluorescently labelled extracellular matrix. The authors identify a requirement for the collagen receptor a2b1-integrin pair in uptake of fluorescently labelled collagen. From this screen, the authors identify that a2b1-integrin, MAP3K1, MAPK11, and PPP2R1A are required for fluorescently labelled collagen uptake and migration of cancer cells in matrix, suggesting that the process of ECM uptake and migration may perhaps be functionally interdependent, or at least co-occurrent. Data are presented suggesting that these components are also at a higher expression level in breast and pancreatic tumour tissues.
Major comments
General assessment
The work is a well-written and presented, gargantuan effort to identify novel kinase regulators of extracellular matrix internalisation. I want to state at the outset that the data are clear, convincing, and appropriately analysed. Claims of effect are supported by robust statistically quantified effects. Moreover, it is notable that the same kinases required for ECM uptake also are required for migration/invasion, suggesting a link between these. But what is lacking is any demonstration of whether ECM uptake actually fuels/is required for invasion, or whether it is simply a consequence.
That a2b1-integrin is involved suggests that this might be a target of these kinases/phosphatase. However, that a2b1-integrin is required for ECM uptake or migration/invasion is an expected, incremental advance. The identification of MAP3K1, MAPK11, and PPP2R1A provides potential novelty. Unfortunately, what is missing is any mechanistic insight into how these kinases and this specific regulatory subunit of the PP2 phosphatase is involved in this process. What are the targets of these kinases and phosphatase? Do they regulate a2b1-integrin phosphorylation or trafficking? And if so, how? Can you map the phosphorylation target sites, and use phosphomimetic sites on targets to overcome blocks? In the absence of such approaches, the work presents as a huge amount of list building (though extremely well done!), and more and more validation (also well done!) of 'hits', but no depth of how this matters for the cell. One can easily appreciate that such approaches constitute an entirely different project (and should not be used in any way to preclude publication of this paper). However, it does limit the novelty of the findings, beyond excellent validation of hits from a screen. But, work to this level should not simply be background findings for the start of a paper. I fully support the publication of this work as an excellent resource, upon addressing the points below.
It is quite an overstatement to conclude from a 1-to-1 comparison between NMuMG cells and one cell line derivative of PyMT tumour that "these data indicate that ECM internalisation and degradation is upregulated in invasive breast cancer." Either soften this statement (e.g. 'ECM internalisation was higher in PyMT cancer cells than NMuMG normal breast cells'), or provide experimental evaluation across a range of normal versus cancer cells in vitro and using in vivo systems.
It is not clear that the authors are comparing like for like. In extended Data Figure 1A, B, In NMuMG cells, these are islands of cells with tight cell-cell compaction, whereas PyMT1 appear as less adherent and compact cells with discontinuous cell-cell adhesions. While it is still appropriate to compare uptake normalised by area of cells, can the authors provide examination of what the ECM update is upon similar cell states, i.e. when both cell types are colonies versus elongated single or chains of cells? This would delineate whether differences are due to cell-cell contact or not, or bona fide differences in ECM uptake despite such different morphologies.
Throughout, the authors use cartoons of 3D culture of NMuMG, PyMT1 cells, breast to indicate MDA-MB-231 cells, a picture of a mouse, and a pancreas in attempt to orient the reader. This is very confusing as, for example in Extended Data Fig. 1A, B, these suggest 3-Dimensional spheroid cultures, when these are actually isolated cells or, when what is being demonstrated are not 3-Dimensional, but rather are 2D cells inside ECM.
Why did the authors perform the screen only two times (not trying to diminish the effort here!), when thrice may have helped with statistical analyses? The authors provide significance values for Reactome pathway assessment. How appropriate it is for the presentation of these from only two independent replicates?
How have the authors assessed whether, and if so to what extent, their cell segmentation is accurate? Can the authors provide evidence for this? For instance, in Figure 2b, this appears to be error-prone, at least for MDA-MB-231 cells.
Can the authors show in vivo that they can see internalised ECM, such as in sections of breast cancer models, internal pools of ECM in the invasive front of tumours?
Minor comments
The colour schemes that the authors use throughout are not colourblind friendly, and somewhat difficult to follow even for colour-able readers.
Extended Data Fig. 3 g,h (ITGA2+ITGB1 KD validation) are not mentioned in the main text.
Significance
Overall, this is a well performed and presented study, with clearly a huge amount of effort and investigation provided into doing such a screen. The data will be of excellent resource for the cell signalling, ECM, and migration field.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
In this manuscript that authors have investigated the link between cell motility in ECM matrix, cell-ECM adhesion signaling and the ability of cells to endocytose ECM proteins. Through careful mechanistic and functional investigation, including a kinase/phosphatase screen, the authors have uncovered a cancer-relevant a2b1-integrin/P38 MAPK/PP2A phosphatase axis responsible for ECM endocytosis and cell migration. Importantly, the authors demonstrate a role for this pathway in the collagen rich cancer type pancreatic cancer as well as chemotherapy resistant breast cancer. This manuscript has an impressive line up of carefully planned, executed and for the most part well controlled experiments. The data very convincingly demonstrate that ECM uptake via micropinocytosis of a2b1-integrin dependent on PP2A/P38 signaling and regulates migration and invasion in ECM. Importantly, these data seem to be applicable beyond breast cancer, based on the data from other tumor models. Figure 1. The authors have set up a very clever HTS screen looking at ECM uptake. The data look interesting but what seems to be lacking are controls for the silencing efficacy of the top targets in the screen. Alos what is the silencing efficacy of the their positive control PAK1? With the focus on P38 (MAPK11) would be good to have data on this also included in Fig. 1f Extended data fig 2g,h the authors have extended their investigation to the MAPK pathway linked kinases. The data are show for the screen replicates but would be good to show the results for the 2 independent siRNAs similar to fig1 Extended data fig 4. Would be important to show p38-inhibition (phospho-wb) for the experiments where inhibitors are used Extended data figure 5. Please use more than 1 siRNA for PP2A as well (similar to MAPK11). Is the ability of a2b1/p38 axis to take up ECM dependent of proteolytic degradation of the ECM? Is it ECM fragments that are macropinocytosed? Figure 4 and Fig 5. Ocadaic acid treatment has the tendency to detach cells from the ECM. Was this observed here/controlled for ? Figure 6. is the ECM endocytosis driven migration linked to the ability of the cells to degrade the endocytosed material in their lysosomes (to provide nutrients for the cell) ? Or is it more a mechanism of ECM remodeling to enable invasion? Finally, what is the faith of the integrin vs. the ECM ligand? Are both degraded or is the integrin recycled?
Significance
Cell migration and invasion are central regulators of cancer progression. While collagen is the most abundant ECM protein in the cancer stroma, the role of the collagen binding integrins remains poorly understood in the process as much of the works has focused on collagenases or fibronectin and its receptors. Here the authors have carried out an unbiased screen of kinases and phosphatases regulating ECM uptake and uncovered a role for ITGA2/PP2A/p38 signaling. Given the druggability of this pathway and the putative clinical relevance shown here, these data may be translationally relevant
-
-
www.biorxiv.org www.biorxiv.org
-
Transparent Peer Review
Download the complete Review Process [PDF] including:
- reviews
- authors' reply
- editorial decisions
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Response to reviewer comments on Ramesh et.al and Revision plan
Reviewer #1 (Evidence, reproducibility, and clarity (Required)):
In this study the Drosophila orthologue of OCRL, the gene mutated in Lowe syndrome, is knocked out and effects upon whole organism physiology and upon the specific function of nephrocytes, the equivalent of the vertebrate kidney, are analysed. The authors report decreased viability of KO animals, in agreement with previous work, and go on to show that nephrocytes are defective in clearance of material from the hemolymph (equivalent of blood). This is accompanied by altered PIP2 and PI4P levels and perturbed endolysosmal organelles. Nephrocyte-specific KO indicates these changes are cell autonomous. Importantly, the phenotypes can be rescued by re-expression of dOCRL, and the human OCRL also rescues, but not when containing mutations that abrogate lipid phosphatase activity or seen in a human Lowe syndrome patient.
The results are clear and convincing and indicate that the Drosophila OCRL KOs (global and nephrocyte-specific) are good models for understanding OCRL function in the kidney. The findings nicely recapitulate what has been shown in human cell lines and previously published zebrafish and mouse models. In that sense the findings are not unexpected and there is some lack of novelty. Nevertheless, the results here, showing the modelling of OCRL in flies, is important to publish. The fly model also offers certain advantages for future studies e.g. ease of genetics and lack of redundancy, which should prove valuable for such investigations. The paper serves as a very solid framework going forwards.
We thank the reviewer for their positive assessment of our manuscript. We would like to reiterate the novel aspects of our study:
- Lowe syndrome has three key clinical features: brain defect, renal dysfunction, and congenital cataract. Our work is a multiscale analysis of Lowe syndrome in a genetically tractable model organism, Drosophila including analysis of whole animal physiology, renal physiology, and the sub-cellular changes in Drosophila larval nephrocytes. As Drosophila nephrocytes are considered a good model of human renal function, we feel that our study lays the foundation for many future investigations of the renal aspects of the Lowe syndrome phenotype. Prior to this work, there was no Drosophila model of the renal phenotypes in Lowe syndrome.
- As the reviewer correctly points out, the cell biological defects we describe in Drosophila OCRL knockout nephrocytes largely overlaps with that reported in multiple model systems including patient samples, human kidney cell lines, zebrafish larvae and a previous study in Drosophila We feel this is an important strength of this paper as this model can then work overlapping with other existing models. This is important since the Drosophila model is the only one with a single gene encoding for the ocrl/Inpp5b subfamily of 5’-phosphatases (in contrast to humans, mouse, and zebrafish) thus avoiding the complications arising from genetic redundancy.
- Lastly, apart from a couple of studies from the Aguilar lab (done in cell lines), we believe that ours is the first study to look at patient derived mutations in an intact animal model. I only have a few suggestions for improving the manuscript, listed below:
1.) The referencing is quite minimal and more relevant references should be cited. An obvious one is Del Signore et al describing KO of OCRL in flies, and there are others on OCRL on endocytosis that were not cited e.g. Erdmann et al, Nandez et al, Choudhury et al.
There are almost 35 manuscripts on the cellular phenotypes of OCRL, many of them reporting cellular defects in various cell types and model system; indeed, there are 6 papers that mention Drosophila OCRL. It is hard to cite them all. Nevertheless, we will take on board the reviewer’s comment positively and try to cite several more. The paper of Signore et.al on Drosophila OCRL was omitted in error and will be included in the revision.
2.) The figure panels should be presented in the right order in the text, which matches their numbering in the figures.
This will be corrected where needed.
3.) Better description is required in a few places in the text so the reader can follow the experiments. For example, what cells are shown in figure 2? How were the PIP probes expressed? Is the imaging in vivo or ex vivo? In Fig 4, how ere the ex vivo experiments performed?
As already indicated in the figure legend, the cells shown in fig 2 are pericardial nephrocytes and this has been specifically stated at the beginning of the results at line 131. We will now also explicitly state in the fig legend that pericardial nephrocytes are being shown.
To measure the levels of PIP2 at the plasma membrane of pericardial nephrocytes we used the well-established PIP2 reporter, the PH domain of PLCδ tagged to mCherry (UAS PH-PLCδ::mCherry). These reporter probes were expressed in pericardial nephrocytes using Dot-Gal4. We dissected the nephrocytes from larvae and performed live imaging to measure the PIP2 levels. The intensity of these probes at the plasma membrane in the nephrocytes corresponds to the levels of the PIP2. The same strategy was used to measure the levels of PI4P, the probes for PI4P- P4M tagged to GFP were generated in our lab and previously published in Balakrishnan et al., J.Cell.Sci 2018- PMID: 29980590 and Basu et.al Dev.Biol, 2020- PMID: 32194035.
For mbsa and dextran uptake assays, these maybe considered as ex-vivo experiments. They have been described in detail in the materials and methods.
4.) The microscopy images in Figure 4 are too dark__.__
We will redo these images in grayscale to resolve this issue.
5.) Figure S2A needs some sort of schematic so the reader can understand what is being shown.
We will include in this manuscript a schematic showing the scheme used to generate the crispr deletion mutant. This has already been published in Trivedi et.al eLife 2020.
__ __6.) In Fig S2G the PIP2 distribution looks different in the nKO compared to the total KO- more on the PM. Is this a consistent result and what is the explanation if so?
We believe the reviewer is referring to Fig S2E as there is no Fig S2G. Yes, the reviewer is correct in noting that the levels of PIP2 at the plasma membrane are higher in the nephroKO compared to the germline KO. We believe that the reason for the higher levels of PIP2 in the Nephrocyte specific ko is that this is an acute depletion of OCRL whereas in the germline mutant, over time, adaptation through other mechanisms may have partly restored PIP2 levels. Acute depletion offers limited scope for compensation.
__ __7.) In Fig 7 the expression of phosphatase dead OCRL is barely detectable. This makes the functional data difficult to interpret with any certainty. The authors need to be more circumspect in their description of this data and change the writing accordingly.
It is not uncommon for kinase and phosphatase dead mutant proteins to be expressed at lower levels than their wild type counterpart; this has been reported many times in the literature. However, we will look through our collection of independent transgenic lines and try to find a line where the phosphatase dead mutant expresses at levels as close to the wild type protein as possible.
__
__Reviewer #1 (Significance (Required)):
The results are clear and convincing and indicate that the Drosophila OCRL KOs (global and nephrocyte-specific) are good models for understanding OCRL function in the kidney. The findings nicely recapitulate what has been shown in human cell lines and previously published zebrafish and mouse models. In that sense the findings are not unexpected and there is some lack of novelty. Nevertheless, the results here, showing the modelling of OCRL in flies, is important to publish. The fly model also offers certain advantages for future studies e.g. ease of genetics and lack of redundancy, which should prove valuable for such investigations. The paper serves as a very solid framework going forwards.
We thank the reviewer for their positive assessment of our manuscript. We would like to reiterate the novel aspects of our study:
- Lowe syndrome has three key clinical features: brain defect, renal dysfunction, and congenital cataract. Our work is a multiscale analysis of Lowe syndrome in a genetically tractable model organism, Drosophila including analysis of whole animal physiology, renal physiology, and the sub-cellular changes in Drosophila larval nephrocytes. As Drosophila nephrocytes are considered a good model of human renal function, we feel that our study lays the foundation for many future investigations of the renal aspects of the Lowe syndrome phenotype. Prior to this work, there was no Drosophila model of the renal phenotypes in Lowe syndrome.
- As the reviewer correctly points out, the cell biological defects we describe in Drosophila OCRL knockout nephrocytes largely overlaps with that reported in multiple model systems including patient samples, human kidney cell lines, zebrafish larvae and a previous study in Drosophila We feel this is an important strength of this paper as this model can then work overlapping with other existing models. This is important since the Drosophila model is the only one with a single gene encoding for the ocrl/Inpp5b subfamily of 5’-phosphatases (in contrast to humans, mouse, and zebrafish) thus avoiding the complications arising from genetic redundancy.
- Lastly, apart from a couple of studies from the Aguilar lab (done in cell lines), we believe that ours is the first study to look at patient derived mutations in an intact animal model.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
The researchers have generated an OCRL knockout Drosophila model and successfully used it to model the kidney dysfunction phenotypes of the rare genetic condition Lowe syndrome. They demonstrate endolysosomal phenotypes consistent with observations reported in other model systems, and illustrate that these translate to disrupted endocytic uptake, and clearing of ingested silver nitrate. In addition, there was a significant effect on growth and development of larvae. Phenotypes could be rescued by expression of human WT OCRL, but not by expression of a patient derived mutant version.
Major comments:
The experiments are generally well performed, logical and support the conclusions made by the authors. It would be nice to observe whether there is actin accumulation on the perturbed endosomal compartments described in Figure 4 as this is a common feature observed in other kidney model systems of the disease, although that is not an essential observation for the story outlined in the paper.
Thanks for the comment. We will attempt to do this subject to the availability of suitable fluorophore combinations.
The methods outlined are clear. N numbers and statistical results however are more opaquely reported. Although the number of replicates is mentioned in the material and methods, they are not mentioned in the figure legends, and at least for the silver nitrate uptake experiment, the N number reported does not seem to match the data points on the bar graph - the material and methods reports the experiment was done three times in triplicate, but there are only two individual data points on the bar graph itself. It is thus unclear what they represent. The colours are also not annotated.
This will be mentioned clearly in both the figure legends and the materials & methods.
With the phosphoinositide binding domain expression in Fig. 2, panel A image for dOCRL KO looks to be an outlier rather than a picture representing the mean.
Overall, N numbers should be added to all figure legends, specifying X of cells assessed from Y number of pupae. In terms of the statistical analysis, exact p-values should be reported. It should be indicated where any relevant comparisons made were not significant. In places the authors have done so, but not consistently. In particular, it is unclear whether the differences in Figure 7D were statistically tested - no p values are reported in the figure legend and no comparisons are indicated in the figure itself.
This will be done in the revised manuscript.__ __ In Figure 7B, it looks like hOCRL PD is barely expressed so it is hard to interpret the lack of rescue shown in panels C and D
It is not uncommon for kinase and phosphatase dead mutant proteins to be expressed at lower levels than their wild type counterpart; this has been reported many times in the literature. However, will look through our collection of independent transgenic lines and try to find a line where the phosphatase dead mutant expresses at levels as close to the wild type protein as possible.
Minor comments
The length of scale bars needs reporting in the figure legend (or on the figures themselves)
We will include the scale bars in the figure legend__ __ In figure 2A the cell in the control image is a substantially different shape to the other cells indicated in the figure: I assume this is just natural variation and bears no functional significance?
This is natural variation. Even in a single wild type larva, one typically sees variation in the shape of individual pericardial nephrocytes.
I was confused by what the difference between Sup Fig 2F vs Figure 6A was - is this reporting identical data for Control and Nephrocyte specific KO but just once on a log scale and once not (and in the supplemental with the addition of the whole organism knock-out)?
These are not identical data plotted using two different scales, rather separate data.
Were the authors surprised that the according to the data the nephrocyte specific knock-out elevated PI(4,5)P2 levels more than the whole organism knock-out?
Yes, the reviewer is correct in noting that the levels of PIP2 at the plasma membrane are higher in the nephroKO compared to the germline KO. We believe that the reason for the higher levels of PIP2 in the Nephrocyte specific ko is that this is an acute depletion of OCRL whereas in the germline mutant adaptation through other mechanisms may have partly restored PIP2 levels over time. Acute depletion offers limited scope for compensation.
__ __ For figures 6B-D and 7C-D representative examples of the images used to generate the data shown in the graphs should be added at least as a supplemental figure.
This will be provided
Line 196. Need to cite Sup Fig 1E-F in text Line 214 Need to cite Sup Fig 1I-J in text
We will include it
The figure legend for Figure 7 makes reference to a "Figure 7E" which is not present in the manuscript.
This will be corrected.
__Reviewer #2 (Significance (Required)):____ __ This paper describes a fly model that links nephrocyte physiology with molecular mechanism of rare disease significance. The paper characterises nephrocyte function by silver nitrate clearance and clathrin and bulk uptake pathways and links them to phosphoinositide lipid levels. Biosensor expression is used alongside lipid mass spectrometry measurements. The paper goes on to measure the effect of re-expression of the human gene and patient mutations. The paper reinforces existing understanding of the physiological and molecular basis of the human kidney disease.
The nephrocyte phenotype mirrors the proximal tubule kidney phenotype observed in a variety of other models, such as the mouse model. Previous work in Drosophila and in other models needs setting out more thoroughly in the introduction and the advantages of the current work made more obvious. Drosophila has the added advantage of being more genetically tractable as a model than for example the mouse model, and so the similarity of behaviour between the two makes this model useful for the field. However it comes across in the text that this is the first use of Drosophila to examine OCRL when this is not the case. The authors are missing some key references to other work to place their study in context. This is not the first Drosophila model of Lowe syndrome. The authors do mention a study by El Kadhi and colleagues (2011) in passing, however a study from Del Signore and colleagues (2017: PMID 29028801) is missing, as is Mondin et al 2019 PMID: 31118240). Whilst Del Signore et al primarily concerns hemocytes, rather than nephrocytes, several comparable observations were made to the submitted work. The Del Signore paper reports several disruptions to the endolysosomal system in hemocytes, which would be consistent with the observations here in nephrocytes, and it also reports the larval lethality after the 3rd instar stage, again consistent with this study. The authors need to set out how is this paper different to what has previously been done in fly.
We apologise for missing out on citing the work of Signore e.al 2017. This will be done in the revised version.
The discussion lacks sufficient detail on the work done in the humanised mouse model too (Festa et al , 2019). This study is mentioned in passing in the introduction, but needs fuller discussion compared to the fly model and mammalian cell culture and zebrafish larval models that the authors discuss.
We will present a comparative discussion of Festa e.al 2019 in the revised version.
The reviewer expertise is in cell biology of OCRL. Nephrocyte physiology and detailed fly issues are outside reviewer expertise.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
Summary:
This paper describes a function for the Lowe Syndrome phosphoinositide phosphatase OCRL in Drosophila kidney-like nephrocytes. The authors replicate previous findings that Drosophila ocrl null mutants are larval/pupal lethal, and further show that these null mutants fail to clear heavy metal from their nephrocytes. As previously shown in many cell types including in Drosophila, they find that ocrl mutant nephrocytes exhibit endocytic, endolysosomal, and autophagy defects. These defects are rescued by human OCRL but not an enzymatically inactive version or a patient mutation. Overall, this paper validates Drosophila as a model to explore the endocytic/endolysosomal basis of kidney defects in Lowe Syndrome.
Major comments:
For Figure 2E, ____please do not refer to a non-significant difference____ as a "trend". Trend is a statistical term that refers to patterns found in time series datasets. Datasets below the defined threshold of statistical significance are simply "not significantly different". Overall this figure shows a negative result (no change in PIP2 levels in whole animals, and no effect of rescue), and should be described as such. It is not surprising that whole animal PIP2 levels are unaltered in OCRL mutants as there are other phosphatases such as synaptojanin that may be more important in abundant cell types.
Thank you, we will correct this.
The dot-GAL4 driver used for CRISPR of OCRL is not nephrocyte-specific. It also expresses in salivary glands, lymph glands, and weakly in hemocytes (PMID 12324942). It is therefore possible that some of the phenotypes arise from non-cell-autonomous functions, notably hemocyte activation and systemic inflammatory responses as previously reported for Drosophila ocrl mutants (PMID 29028801). The conclusions about cell autonomy of the phenotype should either be softened, or additional experiments should be done with complementary drivers.
We propose to carry out key nephrocyte phenotypes such as dextran uptake using other Gal4 lines such as AB1 Gal4, Hml Gal4 to rule contributions from salivary glands, lymph gland and hemocytes to the phenotypes seen with Dot-GAL4. We will also check phenotypes with Sns-Gal4 which is also a nephrocyte specific GAL4. This will be included in the revised manuscript.
The very low expression level of the human phosphatase-dead mutant makes it impossible to assess if rescue is due to the mutation or simply to lack of protein. Do similarly low expression levels of the wild type protein rescue?
It is not uncommon for kinase and phosphatase dead mutant proteins to be expressed at lower levels than their wild type counterpart; this has been reported many times in the literature. However, will look through our collection of independent transgenic lines and try to find a line where the phosphatase dead mutant expresses at levels as close to the wild type protein as possible.
Minor comments:
- Specific experimental issues that are easily addressable.
__Additional information is required for image analysis methods to enable replication: __It's not clear what the authors mean by "estimating the ratio of plasma membrane/cytoplasmic fluorescence" (p5 line 132). Why estimating and not measuring? If measured (as suggested by the graphs), details of the image analysis method (eg definition of plasma membrane and cytoplasmic ROI) must be described in such a way that they could be replicated. The only method currently provided is "Raw data of imaging were processed and analyzed using Fiji ImageJ,"
Philosophically, all measurements are at some level an estimate; any measurement is the best estimate of what is under consideration, limited by the technical features of the measurement method being used. If the reviewer insists, we agree to change the word “estimating” to “measuring”. The Padinjat lab has published multiple times on the best possible way of estimating phosphoinositide levels at membranes including plasma membrane levels of PIP2 and PI4P. These methods consider various important factors such as the level of expression of the probe, the size of the cells being measured, method of imaging, plane of the cell being imaged, etc. These methods have been previously published in multiple peer-reviewed papers and described in detail in those studies including imaging parameters, sampling methods and data analysis approaches (Sharma et.al Cell.Reports 2019; PMID: 31091438-Star Methods and Basu et.al Dev.Biol 2020 PMID: 32194035). In this study we have used these methods. In view of the reviewer’s comments, we will cite these papers (one is already cited) and include them in the legends of the relevant figures.
__ __For immunofluorescence, the authors state that mean fluorescence intensity of "EEA-1 and Rab-7 staining was quantified after background subtraction from the maximum projections of the stacks and normalized to the area of nephrocytes." Please detail how background was identified and subtracted.
The steps were followed for the background subtraction in quantifying the MFI of EEA-1 and Rab7 staining:
- Open the Raw image in ImageJ Fiji.
- Make a maximum projections of all the stacks by selecting Image> stack>Z project>select maximum projection.
- Convert the Max Z projected image to HiLo mode by selecting LUT>HiLO.
- To subtract the background manually draw an ROI in the image on an area that is devoid of any nephrocytes by selecting the oval selection tool. Six such 6 ROIs were drawn in the background of the image.
- Now measure the MFI of these 6 background ROIs by selecting Analyze>Measure
- Copy the MFI of all these 6 backgrounds ROIs into the Excel file and calculate the average MFI of these backgrounds 7 Using this average value of the background MFI in ImageJ select Process>Math>Subtract>Enter the average MFI of the background>Click OK
You can always preview the image with background subtraction. This image has been background subtracted. Post the above streps, we drew an ROI around the nephrocyte border and measured the MFI of the EEA-1/Rab7 staining.
All the measurements with the ROIs have been stored in the server along with the Raw images__. __
__ __ For Figure 3C, 6B, 7D it is not clear why the authors have used the categorical measurement of % of cells with red pixels rather than simply measuring the continuous variable of mean pixel intensity. Can more explanation be provided for this choice?
Our goal here is quantifying the level of AgNO3 in nephrocytes. Since AgNO3 it is not a fluorochrome traditional methods of quantification used for fluorochromes are not applicable as one would encounter the problem of non-linearity and saturating images. Since it is difficult to assess the intensity values from the color brightfield images, we used the following method.
The raw brightfield images are opened in FIJI and are converted to 8-bit images (Image>type>8-bit). The images are then inverted using edit>invert and further converted to 16 color pixel LUT (Image>Lookup table> 16 colours) which shows the distribution and intensity of AgNO3 in the following order from white corresponding to the high intensity of AgNO3 and black being the least intense.
To validate our method, we tested it using Rab5-DN/Rab5-RNAi which shows no uptake of AgNO3 (previously published in PMID: PMC5429992). This experiment showed that our analysis works as expected. __ __ - Are prior studies referenced appropriately?
Referencing of prior studies is extremely inadequate, resulting in inflated claims of novelty. Comments can be found below in the significance section.
We will revise the referencing (more details below).
- Are the text and figures clear and accurate?
Text and figures are ok.
Reviewer #3 (Significance (Required)):
- General assessment: provide a summary of the strengths and limitations of the study. What are the strongest and most important aspects? What aspects of the study should be improved or could be developed?
The study provides a validated new system in which to study ocrl function in kidney-like cells in flies. There are a few technical and interpretation concerns that should be easily addressed. One main limitation of the study is that it does not provide new mechanistic or physiological insight into how OCRL regulates kidney function. A related major limitation is that the manuscript is not placed in its proper context in the field - these phenotypes have been previously observed in other animal models and also in other cell types in the fly, but the paper does not properly cite that previous literature.
We respectfully reiterate that the title of our paper “A genetic and physiological model of renal dysfunction in Lowe syndrome”
Further we would like to reiterate the last line of the abstract which typically sums up what the paper is about is as follows: “Overall, this work provides a model system to understand the mechanisms by which the sub-cellular changes from loss of OCRL leads to defects in kidney function in human patients.”
Nowhere in the manuscript, neither title, abstract or elsewhere have we claimed to have provided new mechanistic or physiological insight into how OCRL regulates kidney function. However, this study is a very detailed and in-depth description of a model system to stud the renal manifestations of Lowe syndrome using the genetically tractable model system, Drosophila. It will be a solid foundation on which many labs can base future studies, both basic and applied in relation to Lowe syndrome.
- Advance: compare the study to the closest related results in the literature or highlight results reported for the first time to your knowledge; does the study extend the knowledge in the field and in which way? Describe the nature of the advance and the resulting insights (for example: conceptual, technical, clinical, mechanistic, functional,...).
Referencing of prior studies is extremely inadequate, and many of the claims of novelty are incorrect. The introduction asserts that only cellular studies have been conducted in kidney cells and animals, and that "the relationship of the endolysosomal defects in OCRL depleted cells to the altered physiology of kidney cells of LS patients has not been completely determined". Some of the cited papers (e.g. PMID 30590522) did characterize renal physiology at the level of proteinuria, very similar to the silver clearance described in this paper. Additional but important uncited papers that correlate cellular defects with kidney function include PMID 31676724 and 22680056. The authors should thoroughly acknowledge and reference the previous literature on animal and cellular models of kidney dysfunction upon loss of OCRL.
There are almost 35 manuscripts on the cellular phenotypes of OCRL, many of them reporting cellular defects in various cell types and model system; indeed, there are 6 papers that mention Drosophila OCRL. It is hard to cite them all and, in some cases, reconcile findings between them. Nevertheless, we will take on board the reviewer’s comment positively and try to cite several more.
It is also essential to cite published Drosophila in vivo OCRL literature (PMID 29028801), which is completely omitted. A naïve reader would miss that fly OCRL null mutants have previously been characterized in vivo, and that many of the reported findings are duplicated in this paper, including lethal phase, transgene rescue, and most of the cellular phenotypes (PIP2 levels, endocytic and endosomal defects, lysotracker, and autophagy defects, though in hemocytes rather than nephrocytes, and with some interesting differences that are worth pursuing, such as Rab7 levels). The paragraph on p 9 discussing comparison of Drosophila to other systems completely ignores these previous findings. Further, the current manuscript uses specific fly OCRL tools (antibodies and transgenes) from the previous paper without citation, and the reader would not know to look up how these tools were generated and validated. I have signed this review to note that the previous Drosophila work happens to have been from my group, but objectively any knowledgeable reviewer would recognize that it should have been cited and discussed in this paper. Overall it is a disservice to the field to claim novelty by failing to cite the relevant literature. The introduction and discussion should be extensively revised to put the work in its proper context.
The introduction and discussion will be revised accordingly.
To summarize: previously it was known that defects in endosomal membrane traffic in kidney cells of "humanized" ocrl mice or of zebrafish correlated with defects in renal function. It was also known that Drosophila ocrl null mutants are larval/pupal lethal and that their blood cells exhibit endosomal trafficking defects similar to those shown in the current study. This paper shows for the first time that ocrl null mutants also have endosomal trafficking defects in kidney-like nephrocytes, and show defects in the physiological clearing functions of nephrocytes. Thus, this paper replicates the literature for ocrl function in other cell types in Drosophila and in other animal models, and provides a helpful new experimental system for future mechanistic or therapeutic tests of OCRL function in kidney-like cells. However, it does not provide a mechanistic advance into which of the many cellular phenotypes previously observed (and repeated here) lead to kidney dysfunction.
We would respectfully reiterate the title of our paper “A genetic and physiological model of renal dysfunction in Lowe syndrome”
Further we would like to reiterate the last line of the abstract which typically sums up what the paper is about: “Overall, this work provides a model system to understand the mechanisms by which the sub-cellular changes from loss of OCRL leads to defects in kidney function in human patients.”
Nowhere in the manuscript, neither title, abstract or elsewhere have we claimed to have provided new mechanistic or physiological insight into how OCRL regulates kidney function.
- Audience: describe the type of audience ("specialized", "broad", "basic research", "translational/clinical", etc...) that will be interested or influenced by this research; how will this research be used by others; will it be of interest beyond the specific field?
This paper will be of interest to researchers studying Lowe Syndrome or membrane traffic in Drosophila nephrocytes.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Summary:
This paper describes a function for the Lowe Syndrome phosphoinositide phosphatase OCRL in Drosophila kidney-like nephrocytes. The authors replicate previous findings that Drosophila ocrl null mutants are larval/pupal lethal, and further show that these null mutants fail to clear heavy metal from their nephrocytes. As previously shown in many cell types including in Drosophila, they find that ocrl mutant nephrocytes exhibit endocytic, endolysosomal, and autophagy defects. These defects are rescued by human OCRL but not an enzymatically inactive version or a patient mutation. Overall, this paper validates Drosophila as a model to explore the endocytic/endolysosomal basis of kidney defects in Lowe Syndrome.
Major comments:
For Figure 2E, please do not refer to a non-significant difference as a "trend". Trend is a statistical term that refers to patterns found in time series datasets. Datasets below the defined threshold of statistical significance are simply "not significantly different". Overall this figure shows a negative result (no change in PIP2 levels in whole animals, and no effect of rescue), and should be described as such. It is not surprising that whole animal PIP2 levels are unaltered in OCRL mutants as there are other phosphatases such as synaptojanin that may be more important in abundant cell types.
The dot-GAL4 driver used for CRISPR of OCRL is not nephrocyte-specific. It also expresses in salivary glands, lymph glands, and weakly in hemocytes (PMID 12324942). It is therefore possible that some of the phenotypes arise from non-cell-autonomous functions, notably hemocyte activation and systemic inflammatory responses as previously reported for Drosophila ocrl mutants (PMID 29028801). The conclusions about cell autonomy of the phenotype should either be softened, or additional experiments should be done with complementary drivers.
The very low expression level of the human phosphatase-dead mutant makes it impossible to assess if rescue is due to the mutation or simply to lack of protein. Do similarly low expression levels of the wild type protein rescue?
Minor comments:
- Specific experimental issues that are easily addressable.
Additional information is required for image analysis methods to enable replication: It's not clear what the authors mean by "estimating the ratio of plasma membrane/cytoplasmic fluorescence" (p5 line 132). Why estimating and not measuring? If measured (as suggested by the graphs), details of the image analysis method (eg definition of plasma membrane and cytoplasmic ROI) must be described in such a way that they could be replicated. The only method currently provided is "Raw data of imaging were processed and analyzed using Fiji ImageJ,"
For immunofluorescence, the authors state that mean fluorescence intensity of "EEA-1 and Rab-7 staining was quantified after background subtraction from the maximum projections of the stacks and normalized to the area of nephrocytes." Please detail how background was identified and subtracted.
For Figure 3C, 6B, 7D it is not clear why the authors have used the categorical measurement of % of cells with red pixels rather than simply measuring the continuous variable of mean pixel intensity. Can more explanation be provided for this choice? - Are prior studies referenced appropriately?
Referencing of prior studies is extremely inadequate, resulting in inflated claims of novelty. Comments can be found below in the significance section. - Are the text and figures clear and accurate?
Text and figures are ok.
Significance
- General assessment: provide a summary of the strengths and limitations of the study. What are the strongest and most important aspects? What aspects of the study should be improved or could be developed?
The study provides a validated new system in which to study ocrl function in kidney-like cells in flies. There are a few technical and interpretation concerns that should be easily addressed. One main limitation of the study is that it does not provide new mechanistic or physiological insight into how OCRL regulates kidney function. A related major limitation is that the manuscript is not placed in its proper context in the field - these phenotypes have been previously observed in other animal models and also in other cell types in the fly, but the paper does not properly cite that previous literature. - Advance: compare the study to the closest related results in the literature or highlight results reported for the first time to your knowledge; does the study extend the knowledge in the field and in which way? Describe the nature of the advance and the resulting insights (for example: conceptual, technical, clinical, mechanistic, functional,...).
Referencing of prior studies is extremely inadequate, and many of the claims of novelty are incorrect. The introduction asserts that only cellular studies have been conducted in kidney cells and animals, and that "the relationship of the endolysosomal defects in OCRL depleted cells to the altered physiology of kidney cells of LS patients has not been completely determined". Some of the cited papers (e.g. PMID 30590522) did characterize renal physiology at the level of proteinuria, very similar to the silver clearance described in this paper. Additional but important uncited papers that correlate cellular defects with kidney function include PMID 31676724 and 22680056. The authors should thoroughly acknowledge and reference the previous literature on animal and cellular models of kidney dysfunction upon loss of OCRL.
It is also essential to cite published Drosophila in vivo OCRL literature (PMID 29028801), which is completely omitted. A naïve reader would miss that fly OCRL null mutants have previously been characterized in vivo, and that many of the reported findings are duplicated in this paper, including lethal phase, transgene rescue, and most of the cellular phenotypes (PIP2 levels, endocytic and endosomal defects, lysotracker, and autophagy defects, though in hemocytes rather than nephrocytes, and with some interesting differences that are worth pursuing, such as Rab7 levels). The paragraph on p 9 discussing comparison of Drosophila to other systems completely ignores these previous findings. Further, the current manuscript uses specific fly OCRL tools (antibodies and transgenes) from the previous paper without citation, and the reader would not know to look up how these tools were generated and validated. I have signed this review to note that the previous Drosophila work happens to have been from my group, but objectively any knowledgeable reviewer would recognize that it should have been cited and discussed in this paper. Overall it is a disservice to the field to claim novelty by failing to cite the relevant literature. The introduction and discussion should be extensively revised to put the work in its proper context.
To summarize: previously it was known that defects in endosomal membrane traffic in kidney cells of "humanized" ocrl mice or of zebrafish correlated with defects in renal function. It was also known that Drosophila ocrl null mutants are larval/pupal lethal and that their blood cells exhibit endosomal trafficking defects similar to those shown in the current study. This paper shows for the first time that ocrl null mutants also have endosomal trafficking defects in kidney-like nephrocytes, and show defects in the physiological clearing functions of nephrocytes. Thus, this paper replicates the literature for ocrl function in other cell types in Drosophila and in other animal models, and provides a helpful new experimental system for future mechanistic or therapeutic tests of OCRL function in kidney-like cells. However, it does not provide a mechanistic advance into which of the many cellular phenotypes previously observed (and repeated here) lead to kidney dysfunction. - Audience: describe the type of audience ("specialized", "broad", "basic research", "translational/clinical", etc...) that will be interested or influenced by this research; how will this research be used by others; will it be of interest beyond the specific field?
This paper will be of interest to researchers studying Lowe Syndrome or membrane traffic in Drosophila nephrocytes. - Please define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate.
I am an expert in the cell biology of membrane traffic, Drosophila as a model system, and imaging and image analysis. Avital Rodal Professor of Biology Brandeis University
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
The researchers have generated an OCRL knockout Drosophila model and successfully used it to model the kidney dysfunction phenotypes of the rare genetic condition Lowe syndrome. They demonstrate endolysosomal phenotypes consistent with observations reported in other model systems, and illustrate that these translate to disrupted endocytic uptake, and clearing of ingested silver nitrate. In addition, there was a significant effect on growth and development of larvae. Phenotypes could be rescued by expression of human WT OCRL, but not by expression of a patient derived mutant version.
Major comments:
The experiments are generally well performed, logical and support the conclusions made by the authors. It would be nice to observe whether there is actin accumulation on the perturbed endosomal compartments described in Figure 4 as this is a common feature observed in other kidney model systems of the disease, although that is not an essential observation for the story outlined in the paper.
The methods outlined are clear. N numbers and statistical results however are more opaquely reported. Although the number of replicates is mentioned in the material and methods, they are not mentioned in the figure legends, and at least for the silver nitrate uptake experiment, the N number reported does not seem to match the data points on the bar graph - the material and methods reports the experiment was done three times in triplicate, but there are only two individual data points on the bar graph itself. It is thus unclear what they represent. The colours are also not annotated.
With the phosphoinositide binding domain expression in Fig. 2, panel A image for dOCRL KO looks to be an outlier rather than a picture representing the mean.
Overall, N numbers should be added to all figure legends, specifying X of cells assessed from Y number of pupae. In terms of the statistical analysis, exact p-values should be reported. It should be indicated where any relevant comparisons made were not significant. In places the authors have done so, but not consistently. In particular, it is unclear whether the differences in Figure 7D were statistically tested - no p values are reported in the figure legend and no comparisons are indicated in the figure itself.
In Figure 7B, it looks like hOCRL PD is barely expressed so it is hard to interpret the lack of rescue shown in panels C and D.
Minor comments
The length of scale bars needs reporting in the figure legend (or on the figures themselves)
In figure 2A the cell in the control image is a substantially different shape to the other cells indicated in the figure: I assume this is just natural variation and bears no functional significance?
I was confused by what the difference between Sup Fig 2F vs Figure 6A was - is this reporting identical data for Control and Nephrocyte specific KO but just once on a log scale and once not (and in the supplemental with the addition of the whole organism knock-out)? Were the authors surprised that the according to the data the nephrocyte specific knock-out elevated PI(4,5)P2 levels more than the whole organism knock-out?
For figures 6B-D and 7C-D representative examples of the images used to generate the data shown in the graphs should be added at least as a supplemental figure.
Line 196. Need to cite Sup Fig 1E-F in text
Line 214 Need to cite Sup Fig 1I-J in text
The figure legend for Figure 7 makes reference to a "Figure 7E" which is not present in the manuscript.
Significance
This paper describes a fly model that links nephrocyte physiology with molecular mechanism of rare disease significance. The paper characterises nephrocyte function by silver nitrate clearance and clathrin and bulk uptake pathways and links them to phosphoinositide lipid levels. Biosensor expression is used alongside lipid mass spectrometry measurements. The paper goes on to measure the effect of re-expression of the human gene and patient mutations. The paper reinforces existing understanding of the physiological and molecular basis of the human kidney disease.
The nephrocyte phenotype mirrors the proximal tubule kidney phenotype observed in a variety of other models, such as the mouse model. Previous work in Drosophila and in other models needs setting out more thoroughly in the introduction and the advantages of the current work made more obvious. Drosophila has the added advantage of being more genetically tractable as a model than for example the mouse model, and so the similarity of behaviour between the two makes this model useful for the field.
However it comes across in the text that this is the first use of Drosophila to examine OCRL when this is not the case. The authors are missing some key references to other work to place their study in context. This is not the first Drosophila model of Lowe syndrome. The authors do mention a study by El Kadhi and colleagues (2011) in passing, however a study from Del Signore and colleagues (2017: PMID 29028801) is missing, as is Mondin et al 2019 PMID: 31118240). Whilst Del Signore et al primarily concerns hemocytes, rather than nephrocytes, several comparable observations were made to the submitted work. The Del Signore paper reports several disruptions to the endolysosomal system in hemocytes, which would be consistent with the observations here in nephrocytes, and it also reports the larval lethality after the 3rd instar stage, again consistent with this study. The authors need to set out how is this paper different to what has previously been done in fly. The discussion lacks sufficient detail on the work done in the humanised mouse model too (Festa et al , 2019). This study is mentioned in passing in the introduction, but needs fuller discussion compared to the fly model and mammalian cell culture and zebrafish larval models that the authors discuss.
The reviewer expertise is in cell biology of OCRL. Nephrocyte physiology and detailed fly issues are outside reviewer expertise.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
In this study the Drosophila orthologue of OCRL, the gene mutated in Lowe syndrome, is knocked out and effects upon whole organism physiology and upon the specific function of nephrocytes, the equivalent of the vertebrate kidney, are analysed. The authors report decreased viability of KO animals, in agreement with previous work, and go on to show that nephrocytes are defective in clearance of material from the hemolymph (equivalent of blood). This is accompanied by altered PIP2 and PI4P levels and perturbed endolysosmal organelles. Nephrocyte-specific KO indicates these changes are cell autonomous. Importantly, the phenotypes can be rescued by re-expression of dOCRL, and the human OCRL also rescues, but not when containing mutations that abrogate lipid phosphatase activity or seen in a human Lowe syndrome patient.
The results are clear and convincing and indicate that the Drosophila OCRL KOs (global and nephrocyte-specific) are good models for understanding OCRL function in the kidney. The findings nicely recapitulate what has been shown in human cell lines and previously published zebrafish and mouse models. In that sense the findings are not unexpected and there is some lack of novelty. Nevertheless, the results here, showing the modelling of OCRL in flies, is important to publish. The fly model also offers certain advantages for future studies e.g. ease of genetics and lack of redundancy, which should prove valuable for such investigations. The paper serves as a very solid framework going forwards.
I only have a few suggestions for improving the manuscript, listed below:
- The referencing is quite minimal and more relevant references should be cited. An obvious one is Del Signore et al describing KO of OCRL in flies, and there are others on OCRL on endocytosis that were not cited e.g. Erdmann et al, Nandez et al, Choudhury et al.
- The figure panels should be presented in the right order in the text, which matches their numbering in the figures.
- Better description is required in a few places in the text so the reader can follow the experiments. For example, what cells are shown in figure 2? How were the PIP probes expressed? Is the imaging in vivo or ex vivo? In Fig 4, how ere the ex vivo experiments performed?
- The microscopy images in Figure 4 are too dark.
- Figure S2A needs some sort of schematic so the reader can understand what is being shown.
- In Fig S2G the PIP2 distribution looks different in the nKO compared to the total KO- more on the PM. Is this a consistent result and what is the explanation if so?
- In Fig 7 the expression of phosphatase dead OCRL is barely detectable. This makes the functional data difficult to interpret with any certainty. The authors need to be more circumspect in their description of this data and change the writing accordingly.
Significance
The results are clear and convincing and indicate that the Drosophila OCRL KOs (global and nephrocyte-specific) are good models for understanding OCRL function in the kidney. The findings nicely recapitulate what has been shown in human cell lines and previously published zebrafish and mouse models. In that sense the findings are not unexpected and there is some lack of novelty. Nevertheless, the results here, showing the modelling of OCRL in flies, is important to publish. The fly model also offers certain advantages for future studies e.g. ease of genetics and lack of redundancy, which should prove valuable for such investigations. The paper serves as a very solid framework going forwards.
-
-
www.biorxiv.org www.biorxiv.org
-
Transparent Peer Review
Download the complete Review Process [PDF] including:
- reviews
- authors' reply
- editorial decisions
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Reviewer #1
Evidence, reproducibility and clarity
Seleit and colleagues set out to explore the genetics of developmental timing and tissue size by mapping natural genetic variation associated with segmentation clock period and presomitic mesoderm (PSM) size in different species of Medaka fish. They first establish the extent of variation between five different Medaka species of in terms of organismal size, segmentation rate, segment size and presomitic mesoderm size, among other traits. They find that these traits are species-specific but strongly correlated. In a massive undertaking, they then perform developmental QTL mapping for segmentation clock period and PSM size in a set of ~600 F2 fish resulting from the cross of Orizyas sakaizumii (Kaga) and Orizyas latipes (Cab). Correlation between segmentation period and segment size was lost among the F2s, indicating that distinct genetic modules control these traits. Although the researchers fail to identify causal variants driving these traits, they perform proof of concept perturbations by analyzing F0 Crispants in which candidate genes were knocked out. Overall, the study introduces a completely new methodology (QTL mapping) to the field of segmentation and developmental tempo, and therefore provides multiple valuable insights into the forces driving evolution of these traits.
Major comments: - The first sentence in the abstract reads "How the timing of development is linked to organismal size is a longstanding question". It is therefore disappointing that organismal size is not reported for the F2 hybrids. Was larval length measured in the F2s? If so, it should be reported. It is critical to understand whether the correlation between larval size and segmentation clock period is preserved in F2s or not, therefore determining if they represent a single or separate developmental modules. If larval length data were not collected, the authors need to be more careful with their wording.
The question the reviewer raises here is indeed a very relevant one, and a question that we also were curious about ourselves. While it was not possible (logistically) to grow the 600 F2 fish to adulthood, we did measure larval length in a subset of F2 hatchling (n=72) to ask precisely the question the reviewer raises here. Our results (new Supplementary Figure 5) show that the correlation between larval length and segmentation timing (which we report across the Oryzias species) is absent in the F2s. This indeed argues that the traits represent separate developmental modules.
In the current version of the paper, organismal size is often incorrectly equated to tissue size (e.g. PSM size, segment size). For example, in page 3 lines 33-34, the authors state that faster segmentation occurred in embryos of smaller size (Fig. 1D). However, Fig. 1D shows correlation between segmentation rate and unsegmented PSM area. The appropriate data to show would be segmentation rate vs. larval or adult length.
The reviewer is correct. We have now linked the data more clearly to data we show in Supplementary Figure 1, which shows that adult length and adult mass are strongly correlated (S1A) and that adult mass is in turn strongly correlated with segmentation rate in the different Oryzias species (S1B). Additionally main Figure 1B shows that larval length is correlated with PSM length. We have corrected the main text to reflect these relationships more clearly.
- Is my understanding correct in that the her7-venus reporter is carried by the Cab F0 but not the Kaga F0? Presumably only F2s which carried the reporter were selected for phenotyping. I would expect the location of the reporter in the genome to be obvious in Figure 3J as a region that is only Cab or het but never Kaga. Can the authors please point to the location of the reporter?
The reviewer is correct. Indeed the location of our her7-venus KI is on chromosome 16 and the recombination patterns on this chromosome overwhelmingly show either Hom Cab (green) or Het Cab/Kaga (Black). This is expected as we selected fish carrying the her7-venus KI for phenotyping.
- devQTL mapping in this study seems like a wasted opportunity. The authors perform mapping only to then hand pick their targets based on GO annotations. This biases the study towards genes known to be involved in PSM development, when part of the appeal of QTL mapping is precisely its unbiased nature and the potential to discover new functionally relevant genes. The authors need to better justify their rationale for candidate prioritization from devQTL peaks. The GO analysis should be shown as supplemental data. What criteria were used to select genes based on GO annotations?
We have now commented on these valid points and outlined our rationale in more detail in the text (page 4, lines 20-30). Our rationale now also includes selection of differentially expressed genes (n=5 genes) that fall within segmentation timing devQTL hits (for more details see below). Essentially, while we indeed finally focused on the proof of principle using known genes, these genes were previously not known to play a role in either setting the timing of segmentation or controlling the size of the PSM. Hence, we do think our strategy demonstrates the "the potential to discover new functionally relevant genes", even though the genes themselves had been involved overall in somitogenesis. We added the GO analysis as supplemental data as requested (new Supplementary Figure 7E).
- Analysis of the predicted functional consequence of divergent SNPs (Fig. S6B, F) is superficial. Among missense variants, which genes harbor the most deleterious mutations? Which missense variants are located in highly conserved residues? Which genes carry variants in splice donors/acceptors? Carefully assessing the predicted effect of SNPs in coding regions would provide an alternative, less biased approach to prioritize candidate genes.
We now included our analysis of SNPs based on the Variant effect predictor (VEP) tool from ensembl. This analysis does rank the predicted severity of the SNP on protein structure and function (Impact: low, moderate, high) and does annotate which variants can affect splice donors/acceptors. The VEP analysis for both phenotypes is now added to the manuscript as supplemental data (new Supplementary Data S2, S5).
- Another potential way to prioritize candidate genes within devQTL peaks would be to use the RNA seq data. The authors should perform differential expression analysis between Kaga and Cab RNA-seq datasets. Do any of the differentially expressed genes fall within the devQTL peaks?
As suggested we have performed this additional experiment and report the RNAseq differential analysis in new Supplement Figure 7C-D. The analysis revealed 2606 differentially expressed genes in the PSM between Kaga and Cab, five of which were candidate genes from the devQTL analysis. We now tested all of these (5 in total, 4 new and 1 previously targeted adgrg1) for segmentation timing by CRISPR/Cas9 KO in the her7-venus background, none of which showed a timing phenotype (new Supplementary Figure 7F-F'). We provide the complete set of results in new Supplementary Figure 7 , Supplementary Data file 3 (DE-genes), all data were deposited on publicly available repository Biostudies under accession number: E-MTAB-13927.
- The use of crispants to functionally test candidate genes is inappropriate. Crispants do not mimic the effect of divergent SNPs and therefore completely fail to prove causality. While it is completely understandable that Medaka fish are not amenable to the creation of multiple knock-in lines where divergent SNPs are interconverted between species, better justification is needed. For instance, is there enough data to suggest that the divergent alleles for the candidate genes tested are loss of function? Why was a knockout approach chosen as opposed to overexpression?
We agree with the reviewer that we do not address the causality of SNPs with the CRISPR/Cas9 KO approach we followed. And medaka does offer the genome editing capabilities to create tailored sequence modifications. So in principle, this can be done. In practice, however, we reasoned that any given SNP will contribute only partially to the observed phenotypes and combinatorial sequence edits are simply very laborious given the current state of the art in genome editing technologies. We therefore opted for an alternative proof of principle approach that aims to "to discover new functionally relevant genes", not SNPs.
-Along the same line, now that two candidate genes have been shown to modulate the clock period in crispants (mespb and pcdh10b), the authors should at least attempt to knock in the respective divergent SNPs for one of the genes. This is of course optional because it would imply several months of work, but it would significantly increase the impact of the study.
As above, this is in principle the correct rationale to follow though very time, cost and labour intensive. It is for the later practical consideration that we decided not to follow this option.
Minor Comments - It would be highly beneficial to describe the ecological differences between the two Medaka species. For example, do the northern O. sakaizumii inhabit a colder climate than the southern O. latipes? Is food more abundant or easily accessible for one species compared to the other? What, if anything, has been described about each species' ecology?
There are indeed differences in the ecology of both species, with the northern O.sakaizumii inhabiting a colder climate than the southern O. latipes. In addition, it is known that the breeding season is shorter in the north than the south, and also there is the fact that northern species have been shown to have a faster juvenile growth rate than southern species. While it would be premature to link those ecological factors to the timing differences we observe, we can certainly speculate. A line to this effect has been added to the main text (Page 5, line 28-30).
- The authors describe two different methods for quantifying segmentation clock period (mean vs. intercept). It is still unclear what is the difference between Figs. 3A (clock period), S4A (mean period) and S4B (intercept period). Is clock period just mean period? Are the data then shown twice? How do Fig. 3A and S4A differ?
The clock period shown in all the main figures is the intercept period, which was also used for the devQTL analysis. Both measurements (mean and intercept) are indeed highly correlated and we include both in supplement for completeness.
- devQTL as shorthand for developmental QTL should be defined in page 4 line 1 (where the term first appears), not later in line 12 of the same page.
Noted and corrected, we thank the reviewer for spotting this error.
- Python code for period quantification should be uploaded to Github and shared with reviewers.
All period quantification code that was used in this study was obtained from the publicly available tool Pyboat (https://www.biorxiv.org/content/10.1101/2020.04.29.067744v3). All code that is used in PyBoat is available from the Github page of the creator of the tool (https://github.com/tensionhead/pyBOAT). Both are linked in the references and materials and methods sections.
- RNA-seq data should be uploaded to a publicly accessible repository and the reviewer token shared with reviewers.
We have uploaded all RNA-sequencing Data to public repository BioStudies under accession numbers : E-MTAB-13927, E-MTAB-13928. This information is now also added to material and methods in the manuscript text.
Why are the maintenance (27-28C) vs. imaging (30C) temperatures different?
Medaka fish have a wide range of temperatures they can physiologically tolerate, i.e. 17-33. The temperature 30C was chosen for practical reasons, i.e. a slightly faster developmental rate enables higher sample throughput in overnight real-time imaging experiments.
- For Crispants, control injections should have included a non-targeting sgRNA control instead of simply omitting the sgRNA.
We agree a non-targeting sgRNA control can be included, though we choose a different approach. For clarity, we now also include a control targeting Oca2, a gene involved in the pigmentation of the eye to probe for any injection related effect on timing and PSM size. As expected, 3 sgRNAs + Cas9 against Oca2 had no impact on timing or PSM size. This data is now shown in new Supplementary Figure 9 F-G'.
It is difficult to keep track of the species and strains. It would be most helpful if Fig. S1 appeared instead in main figure 1.
We agree and included an overview of the phylogenetic relationship of all species and their geographical locales in new Figure 1 A-B.
Significance
- The study introduces a new way of thinking about segmentation timing and size scaling by considering natural variation in the context of selection. This new framing will have an important impact on the field.
- Perhaps the most significant finding is that the correlation between segment timing and size in wild populations is driven not by developmental constraints but rather selection pressure, whereas segment size scaling does form a single developmental module. This finding should be of interest to a broad audience and will influence how researchers in the field approach future studies.
- It would be helpful to add to the conclusion the author's opinion on whether segmentation timing is a quantitative trait based on the number of QTL peaks identified.
- The authors should be careful not to assign any causality to the candidate genes that they test in crispants.
- The data and results are generally well-presented, and the research is highly rigorous.
- Please note I do have the expertise to evaluate the statistical/bioinformatic methods used for devQTL mapping.
Reviewer #2
Evidence, reproducibility and clarity
Seleit et al. investigate the correlation between segment size, presomitic mesoderm and the rhythm of periodic oscilations in the segmentation clock of developing medaka fish. Specifically, they aim to identify the genetic determinants for said traits. To do so, they employ a common garden approach and measure such traits in separate strains (F0) and in interbreedings across two generations (F1 and F2). They find that whereas presomitic mesoderm and segment size are genetically coupled, the tempo of her7 oscilations it is not. Genetic mapping of the F0 and F2 progeny allows them to identify regions associated to said traits. They go on an perturb 7 loci associated to the segmentation clock and X related to segment size. They show that 2/7 have a tempo defect, and 2/ affect size.
Major comments: The conclusions are convincing and well supported by the data. I think the work could be published as is in its current state, and no additional experiments that I can think of are needed to support the claims in the paper.
Minor comments: - The authors could provide a more detailed characterization of the identified SNPs associated to the clock and to PSM size. For the segmentation clock, the authors identify 46872 SNPs, most of which correspond to non-coding regions and are associated to 57 genes. They narrow down their approach to those expressed in the PSM of Cab Kaga. Was the RNA selected from F1 hybrids? I wonder if this would impact the analysis for tempo and or size in any way, as F2 are derived from these, and they show broader variability in the clock period than the F0 and F1 fishes.
The RNA was obtained from the pure F0 strains and we have now extended this analysis by deep bulk-RNA sequencing and differential gene expression analysis. As indicated also to reviewer 1, this revealed 2606 differentially expressed genes in the unsegmented tails of Kaga and Cab embryos, some of which occurred in devQTL peaks. Based on this information we expanded our list of CRISPR/Cas9 KOs by targeting all differentially expressed genes (5 in total, 4 new and 1 previously targeted) for segmentation timing, none of which showed a timing phenotype (new Supplementary figure 7C-D). We provide the complete set of results in new Supplementary Figure 7, Supplementary Data file 3 (DE-genes). All data were deposited on publicly available repository Biostudies under accession number: E-MTAB-13927.
It would be good if the authors could discuss if there were any associated categories or overall functional relationships between the SNPs/genes associated to size. And what about in the case of timing?
In the case of PSM size there were no clear GO terms or functional relationships between the genes that passed the significance threshold on chromosome 3.
For the 35 genes related to segmentation timing, there were a number of GO enrichment terms directly related to somitogenesis. We have included the GO analysis in the new Supplementary Figure 7E.
- Have any of the candidate genes or regulatory loci been associated to clock defects (57) or segment size (204) previously in the literature?
To the best of our knowledge none of the genes have been associated with clock or PSM size defects so far. It might be worthwhile using our results to probe their function in other systems enabling higher throughput functional analysis, such as newly developed organoid models.
- When the authors narrow down the candidate list, it is not clear if the genes selected as expressed in the PSM are tissue specific. If they are, I wonder if genes with ubiquitous expression would be more informative to investigate tempo of development more broadly. It would be good if the authors could specifically discuss this point in the manuscript.
We have not addressed the spatial expression pattern of the 35 identified PSM genes in this study, so we cannot speculate further. But the reviewer raises an important point, how timing of individual processes (body axis segmentation) are linked at organismal scale is indeed a fundamental, additional, question that will be addressed in future studies, indeed the in-vivo context we follow here would be ideal for such investigations.
Can the authors speculate mechanistically why mespb or pchd10b accelerates the period of her7 oscillations?
While we do not have a mechanistic explanation yet, an additional experiment we performed, i.e. bulk-RNAsequencing on WT and mespb mutant tails, provided additional insight, we now added this data to the manuscript . This analysis revealed 808 differentially expressed genes between wt and mespb mutants. Interestingly, many of these affected genes are known to be expressed outside of the mespb domain, i.e. in the most posterior PSM (i.e. tbxt, foxb1,msgn1, axin2, fgf8, amongst others). This indicates that the effect of mespb downregulation is widespread and possibly occurs at an earlier developmental stage. This requires more follow up studies. This data is now shown in new Supplementary figure 9A, Supplementary Data file S4. We now comment on this point in the revised manuscript.
- Are there any size difference associated to the functionally validated clock mutants?
We addressed this point directly and added this analysis as supplementary Figure 9H-H'. While pcdh10b mutants do not show any detectable difference in PSM size, we find a small, statistically significant reduction in PSM size (area but not length) in mespb mutants. All this data is now included in the revised manuscript.
-Ref 27 shows a lack of correlation between body size and the segmentation period in various species of mammals. The work supports their findings, and it would be good to see this discussed in the text.
We are not certain how best to compare our in-vivo results in externally developing fish embryos to in-vitro mammalian 2-D cell cultures. In our view, the correlation of embryo size, larval and adult size that we find in Oryzias might not necessarily hold in mammalian species, which would make a comparison more difficult. We do cite the work mentioned so the reader is pointed towards this interesting, complementary literature.
Significance
The work is quite remarkable in terms of the multigenerational genetic analysis performed. The authors have analysed >600 embryos from three separate generations to obtain quantitative data to answer their question (herculean task!). Moreover, they have associated this characterization to specific SNPs. Then, to go beyond the association, they have generated mutant lines and identified specific genes associated to the traits they set out to decipher.
To my knowledge, this is the first project that aims to identify the genetic determinants for developmental timing. Recent work on developmental timing in mammals has focused on interspecies comparisons and does not provide genetic evidence or insight into how tempo is regulated in the genome. As for vertebrates, recent work from zebrafish has profiled temperature effects on cell proportions and developmental timing. However, the genetic approach of this work is quite elegant and neat.
Conceptually, it is quite important and unexpected that overall size and tempo are not related. Body size, lifespan, basal metabolic rates and gestational period correlate positively and we tend to think that mechanistically they would all be connected to one another. This paper and Lazaro et al. 2023 (ref 27) are one of the first in which this preconception is challenged in a very methodical and conclusive manner. I believe the work is a breakthrough for the field and this work would be interesting for the field of biological timing, for the segmentation clock community and more broadly for all developmental biologists.
My field is quantitative stem cell biology and I work on developmental timing myself, so I acknowledge that I am biased in the enthusiasm for the work. It should be noted that as an expert on the field, I have identified instances where other work hasn't been as insightful or well developed in comparison to this piece. It is also worth noting that I am not an expert in fish development, phylogenetic studies or GWAS analyses, so I am not capable to asses any pitfalls in that respect.
__Reviewer #3 (Evidence, reproducibility and clarity (Required)): __
__Summary: __
This manuscript explores the temporal and spatial regulation of vertebrate body axis development and patterning. In the early stages of vertebrate embryo development, the axial mesoderm (presomitic mesoderm - PSM) undergoes segmentation, forming structures known as somites. The exact genetic regulation governing somite and PSM size, and their relationship to the periodicity of somite formation remains unclear.
To address this, the authors used two evolutionarily closely related Medaka species, Oryzias sakaizumii and Oryzias latipes, which, although having distinct characteristics, can produce viable offspring. Through analysis spanning parental (generation F0) and offspring (generations F1 and F2) generations, the authors observed a correlation between PSM and somite size. However, they found that size scaling does not correlate with the timing of somitogenesis.
Furthermore, employing developmental quantitative trait loci (devQTL) mapping, the authors identified several new candidate loci that may play a role during somitogenesis, influencing timing of segment formation or segment size. The significance of these loci was confirmed through an innovative CRISPR-Cas9 gene editing approach.
This study highlights that the spatial and temporal aspects of vertebrate segmentation are independently controlled by distinct genetic modular mechanisms.
__Major comments: __
1) In the main text page 3, lines 11 and 12, the authors state that the periodicity of the embryo clock of the F1 generation is the intermediate between the parental F0 lineages. However, the authors look only at the periodicity of the Cab strain (Oryzias latipes) segmentation clock. The authors should have a reporter fish line for the Kaga strain (Oryzias sakaizumii) to compare the segmentation clock of both parental strains and their offspring. Since it could be time consuming and laborious, I advise to alternatively rephrase the text of the manuscript.
We agree a careful distinction between segment forming rate (measured based on morphology) and clock period (measured using the novel reporter we generated) is essential. We show that both measures correlate very well in Cab, in both F0 and F1 and F2 carrying the Cab allele. For Kaga F0, we indeed can only provide the rate of somite formation, which nevertheless allows comparison due to the strong correlation to the clock period we have found. We have rephrased the text accordingly.
2) It is evident that only a few F0 and F1 animals were analyzed in comparison with the F2 generation. Could the authors kindly explain whether and how this could bias or skew the observed results?
We provide statistical evidence through the F-test of equality that the variances between the F0, F1 and F2 samples are equal. Additionally if we sub-sample and separate the F2 data into groups of 100 embryos (instead of all 638) we get the same distribution of the F2s. We therefore believe that this is sufficient evidence against a bias or skew in the results.
3) It would be interesting to create fish lines with the validated CRISPR-Cas9 gene manipulations in different genetic contexts (Cab or Kaga) to analyze the true impact on the segmentation clock and/or PSM & somite sizes.
We agree with the reviewer this would in principle be of interest indeed, please see our response to reviewer 1 earlier.
4) Please add the results of the Go Analysis as supplementary material.
We have added the GO analysis in new Supplementary Figure 7E.
__Minor comments: __
1) In the main text, page 2, line 29, Supplementary Figure 1D should be referenced.
We have added a clearer phylogeny and geographical location of the different species in new Figure 1 A-B. And reference it at the requested location.
2) In the main text, page 2, line 32, the authors refer to Figure 1B, but it should be 1C.
We have corrected the information.
3) Regarding the topic "Correlation of segmentation timing and size in the Oryzias genus" the authors should also give information on the total time of development of the different Oryzias species, as well as the total number of formed somites.
We follow this recommendation and have added this information in new Supplementary Figure 5. We also now include segment number measured in F2 embryos. We indeed view segmentation rate as a proxy for developmental rate, which however needs to be distinguished from total developmental time. The latter can be measured for instance by quantifying hatching time, which we did. These measurements show that Kaga, Cab and O.hubbsi embryos kept at constant 28 degrees started hatching on the same day while O.minutillus and O.mekongensis embryos started hatching one day earlier. We have not included this data in the manuscript because we think a distinction should be made between rate of development and total development time.
4) In Figures 3A and B, please add info on the F1 lines for comparison.
The information on F1 lines is provided in Supplementary Figure 3
5) Supplementary Figures 2F shows that the generation F1 PSM is similar to Cab F0, and not an intermediate between Kaga F0 and Cab F0. This is interesting and should be discussed.
We show that the F1 PSM is indeed closer to the PSM of Cab than it is to the Kaga PSM. This is indeed intriguing and we have now commented on this point directly in the text.
6) Supplementary Figures 6C to H are not mentioned either in the main text or in the extended information. Please add/mention accordingly.
We have added references to both in the text
7) The order of Supplementary Figure 8 E to H and A to D appears to be not correct and not following the flow of the text. Please update/correct accordingly.
We have updated the text accordingly.
8) The authors should choose between "Fig.", "Fig", "fig.", "fig" or "Figure". All 'variants' can be found in the text.
Noted, and updated. Fig. is used for main figures and fig. is used for supplementary figures.
9) The color scheme of several figures (graphs with colored dots) should be revised. Several appear to be difficult to discern and analyze.
We have enhanced the colours and increased the font on the figure panels. The colour panel was chosen to be colour-blind friendly.
10) Please address/discuss following questions: What are the known somitogenesis regulating genes in Medaka? How do they correlate with the new candidates?
The candidates we found and tested had not been implicated in regulating the tempo of segmentation or PSM size, while for some a role in somite formation had been previously established, hence the enrichment in GO analysis Somitogenesis.
Reviewer #3 (Significance (Required)):
General assessment:
This interesting manuscript describes a novel approach to study and find new players relevant to the regulation of vertebrate segmentation. By employing this innovative methodology, the authors could elegantly demonstrate that the segmentation clock periodicity is independent from the sizes of the PSM and forming somites. The authors were further able to find new genes that may be involved in the regulation of the segmentation clock periodicity and/or the size of the PSM & somites. A limitation of this study is the fact that the results mainly rely on differences between the two species. The integration of additional Medaka species would be beneficial and may help uncover relevant genes and genetic contexts.
Advance:
To my best knowledge this is the first time that such a methodology was employed to study the segmentation clock and axial development. Although the topic has been extensively studied in several model organisms, such as mice, chicken, and zebrafish, none of them correlated the size of the embryonic tissues and the periodicity of the embryo clock. This study brings novel technological and functional advances to the study of vertebrate axial development.
Audience:
This work is particularly interesting to basic researchers, especially in the field of developmental biology and represents a fresh new approach to study a core developmental process. This study further opens the exciting possibility of using a similar methodology to investigate other aspects of vertebrate development. It is a timely and important manuscript which could be of interest to a wider scientific audience and readership.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Summary:
This manuscript explores the temporal and spatial regulation of vertebrate body axis development and patterning. In the early stages of vertebrate embryo development, the axial mesoderm (presomitic mesoderm - PSM) undergoes segmentation, forming structures known as somites. The exact genetic regulation governing somite and PSM size, and their relationship to the periodicity of somite formation remains unclear.
To address this, the authors used two evolutionarily closely related Medaka species, Oryzias sakaizumii and Oryzias latipes, which, although having distinct characteristics, can produce viable offspring. Through analysis spanning parental (generation F0) and offspring (generations F1 and F2) generations, the authors observed a correlation between PSM and somite size. However, they found that size scaling does not correlate with the timing of somitogenesis.
Furthermore, employing developmental quantitative trait loci (devQTL) mapping, the authors identified several new candidate loci that may play a role during somitogenesis, influencing timing of segment formation or segment size. The significance of these loci was confirmed through an innovative CRISPR-Cas9 gene editing approach.
This study highlights that the spatial and temporal aspects of vertebrate segmentation are independently controlled by distinct genetic modular mechanisms.
Major comments:
- In the main text page 3, lines 11 and 12, the authors state that the periodicity of the embryo clock of the F1 generation is the intermediate between the parental F0 lineages. However, the authors look only at the periodicity of the Cab strain (Oryzias latipes) segmentation clock. The authors should have a reporter fish line for the Kaga strain (Oryzias sakaizumii) to compare the segmentation clock of both parental strains and their offspring. Since it could be time consuming and laborious, I advise to alternatively rephrase the text of the manuscript.
- It is evident that only a few F0 and F1 animals were analyzed in comparison with the F2 generation. Could the authors kindly explain whether and how this could bias or skew the observed results?
- It would be interesting to create fish lines with the validated CRISPR-Cas9 gene manipulations in different genetic contexts (Cab or Kaga) to analyze the true impact on the segmentation clock and/or PSM & somite sizes.
- Please add the results of the Go Analysis as supplementary material.
Minor comments:
- In the main text, page 2, line 29, Supplementary Figure 1D should be referenced.
- In the main text, page 2, line 32, the authors refer to Figure 1B, but it should be 1C.
- Regarding the topic "Correlation of segmentation timing and size in the Oryzias genus" the authors should also give information on the total time of development of the different Oryzias species, as well as the total number of formed somites.
- In Figures 3A and B, please add info on the F1 lines for comparison.
- Supplementary Figures 2F shows that the generation F1 PSM is similar to Cab F0, and not an intermediate between Kaga F0 and Cab F0. This is interesting and should be discussed.
- Supplementary Figures 6C to H are not mentioned either in the main text or in the extended information. Please add/mention accordingly.
- The order of Supplementary Figure 8 E to H and A to D appears to be not correct and not following the flow of the text. Please update/correct accordingly.
- The authors should choose between "Fig.", "Fig", "fig.", "fig" or "Figure". All 'variants' can be found in the text.
- The color scheme of several figures (graphs with colored dots) should be revised. Several appear to be difficult to discern and analyze.
- Please address/discuss following questions: What are the known somitogenesis regulating genes in Medaka? How do they correlate with the new candidates?
Significance
General assessment:
This interesting manuscript describes a novel approach to study and find new players relevant to the regulation of vertebrate segmentation. By employing this innovative methodology, the authors could elegantly demonstrate that the segmentation clock periodicity is independent from the sizes of the PSM and forming somites. The authors were further able to find new genes that may be involved in the regulation of the segmentation clock periodicity and/or the size of the PSM & somites. A limitation of this study is the fact that the results mainly rely on differences between the two species. The integration of additional Medaka species would be beneficial and may help uncover relevant genes and genetic contexts.
Advance:
To my best knowledge this is the first time that such a methodology was employed to study the segmentation clock and axial development. Although the topic has been extensively studied in several model organisms, such as mice, chicken, and zebrafish, none of them correlated the size of the embryonic tissues and the periodicity of the embryo clock. This study brings novel technological and functional advances to the study of vertebrate axial development.
Audience:
This work is particularly interesting to basic researchers, especially in the field of developmental biology and represents a fresh new approach to study a core developmental process. This study further opens the exciting possibility of using a similar methodology to investigate other aspects of vertebrate development. It is a timely and important manuscript which could be of interest to a wider scientific audience and readership.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Seleit et al. investigate the correlation between segment size, presomitic mesoderm and the rhythm of periodic oscilations in the segmentation clock of developing medaka fish. Specifically, they aim to identify the genetic determinants for said traits. To do so, they employ a common garden approach and measure such traits in separate strains (F0) and in interbreedings across two generations (F1 and F2). They find that whereas presomitic mesoderm and segment size are genetically coupled, the tempo of her7 oscilations it is not. Genetic mapping of the F0 and F2 progeny allows them to identify regions associated to said traits. They go on an perturb 7 loci associated to the segmentation clock and X related to segment size. They show that 2/7 have a tempo defect, and 2/ affect size.
Major comments:
The conclusions are convincing and well supported by the data. I think the work could be published as is in its current state, and no additional experiments that I can think of are needed to support the claims in the paper.
Minor comments:
-
The authors could provide a more detailed characterization of the identified SNPs associated to the clock and to PSM size. For the segmentation clock, the authors identify 46872 SNPs, most of which correspond to non-coding regions and are associated to 57 genes. They narrow down their approach to those expressed in the PSM of Cab Kaga. Was the RNA selected from F1 hybrids? I wonder if this would impact the analysis for tempo and or size in any way, as F2 are derived from these, and they show broader variability in the clock period than the F0 and F1 fishes.
-
It would be good if the authors could discuss if there were any associated categories or overall functional relationships between the SNPs/genes associated to size. And what about in the case of timing?
-
Have any of the candidate genes or regulatory loci been associated to clock defects (57) or segment size (204) previously in the literature?
-
When the authors narrow down the candidate list, it is not clear if the genes selected as expressed in the PSM are tissue specific. If they are, I wonder if genes with ubiquitous expression would be more informative to investigate tempo of development more broadly. It would be good if the authors could specifically discuss this point in the manuscript.
-
Can the authors speculate mechanistically why mespb or pchd10b accelerates the period of her7 oscillations?
-
Are there any size difference associated to the functionally validated clock mutants?
-
Ref 27 shows a lack of correlation between body size and the segmentation period in various species of mammals. The work supports their findings, and it would be good to see this discussed in the text.
Significance
The work is quite remarkable in terms of the multigenerational genetic analysis performed. The authors have analysed >600 embryos from three separate generations to obtain quantitative data to answer their question (herculean task!). Moreover, they have associated this characterization to specific SNPs. Then, to go beyond the association, they have generated mutant lines and identified specific genes associated to the traits they set out to decipher.
To my knowledge, this is the first project that aims to identify the genetic determinants for developmental timing. Recent work on developmental timing in mammals has focused on interspecies comparisons and does not provide genetic evidence or insight into how tempo is regulated in the genome. As for vertebrates, recent work from zebrafish has profiled temperature effects on cell proportions and developmental timing. However, the genetic approach of this work is quite elegant and neat.
Conceptually, it is quite important and unexpected that overall size and tempo are not related. Body size, lifespan, basal metabolic rates and gestational period correlate positively and we tend to think that mechanistically they would all be connected to one another. This paper and Lazaro et al. 2023 (ref 27) are one of the first in which this preconception is challenged in a very methodical and conclusive manner. I believe the work is a breakthrough for the field and this work would be interesting for the field of biological timing, for the segmentation clock community and more broadly for all developmental biologists.
My field is quantitative stem cell biology and I work on developmental timing myself, so I acknowledge that I am biased in the enthusiasm for the work. It should be noted that as an expert on the field, I have identified instances where other work hasn't been as insightful or well developed in comparison to this piece. It is also worth noting that I am not an expert in fish development, phylogenetic studies or GWAS analyses, so I am not capable to asses any pitfalls in that respect.
-
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Seleit and colleagues set out to explore the genetics of developmental timing and tissue size by mapping natural genetic variation associated with segmentation clock period and presomitic mesoderm (PSM) size in different species of Medaka fish. They first establish the extent of variation between five different Medaka species of in terms of organismal size, segmentation rate, segment size and presomitic mesoderm size, among other traits. They find that these traits are species-specific but strongly correlated. In a massive undertaking, they then perform developmental QTL mapping for segmentation clock period and PSM size in a set of ~600 F2 fish resulting from the cross of Orizyas sakaizumii (Kaga) and Orizyas latipes (Cab). Correlation between segmentation period and segment size was lost among the F2s, indicating that distinct genetic modules control these traits. Although the researchers fail to identify causal variants driving these traits, they perform proof of concept perturbations by analyzing F0 Crispants in which candidate genes were knocked out. Overall, the study introduces a completely new methodology (QTL mapping) to the field of segmentation and developmental tempo, and therefore provides multiple valuable insights into the forces driving evolution of these traits.
Major comments:
- The first sentence in the abstract reads "How the timing of development is linked to organismal size is a longstanding question". It is therefore disappointing that organismal size is not reported for the F2 hybrids. Was larval length measured in the F2s? If so, it should be reported. It is critical to understand whether the correlation between larval size and segmentation clock period is preserved in F2s or not, therefore determining if they represent a single or separate developmental modules. If larval length data were not collected, the authors need to be more careful with their wording. In the current version of the paper, organismal size is often incorrectly equated to tissue size (e.g. PSM size, segment size). For example, in page 3 lines 33-34, the authors state that faster segmentation occurred in embryos of smaller size (Fig. 1D). However, Fig. 1D shows correlation between segmentation rate and unsegmented PSM area. The appropriate data to show would be segmentation rate vs. larval or adult length.
- Is my understanding correct in that the her7-venus reporter is carried by the Cab F0 but not the Kaga F0? Presumably only F2s which carried the reporter were selected for phenotyping. I would expect the location of the reporter in the genome to be obvious in Figure 3J as a region that is only Cab or het but never Kaga. Can the authors please point to the location of the reporter?
- devQTL mapping in this study seems like a wasted opportunity. The authors perform mapping only to then hand pick their targets based on GO annotations. This biases the study towards genes known to be involved in PSM development, when part of the appeal of QTL mapping is precisely its unbiased nature and the potential to discover new functionally relevant genes. The authors need to better justify their rationale for candidate prioritization from devQTL peaks. The GO analysis should be shown as supplemental data. What criteria were used to select genes based on GO annotations?
- Analysis of the predicted functional consequence of divergent SNPs (Fig. S6B, F) is superficial. Among missense variants, which genes harbor the most deleterious mutations? Which missense variants are located in highly conserved residues? Which genes carry variants in splice donors/acceptors? Carefully assessing the predicted effect of SNPs in coding regions would provide an alternative, less biased approach to prioritize candidate genes.
- Another potential way to prioritize candidate genes within devQTL peaks would be to use the RNA seq data. The authors should perform differential expression analysis between Kaga and Cab RNA-seq datasets. Do any of the differentially expressed genes fall within the devQTL peaks?
- The use of crispants to functionally test candidate genes is inappropriate. Crispants do not mimic the effect of divergent SNPs and therefore completely fail to prove causality. While it is completely understandable that Medaka fish are not amenable to the creation of multiple knock-in lines where divergent SNPs are interconverted between species, better justification is needed. For instance, is there enough data to suggest that the divergent alleles for the candidate genes tested are loss of function? Why was a knockout approach chosen as opposed to overexpression?
- Along the same line, now that two candidate genes have been shown to modulate the clock period in crispants (mespb and pcdh10b), the authors should at least attempt to knock in the respective divergent SNPs for one of the genes. This is of course optional because it would imply several months of work, but it would significantly increase the impact of the study.
Minor Comments
- It would be highly beneficial to describe the ecological differences between the two Medaka species. For example, do the northern O. sakaizumii inhabit a colder climate than the southern O. latipes? Is food more abundant or easily accessible for one species compared to the other? What, if anything, has been described about each species' ecology?
- The authors describe two different methods for quantifying segmentation clock period (mean vs. intercept). It is still unclear what is the difference between Figs. 3A (clock period), S4A (mean period) and S4B (intercept period). Is clock period just mean period? Are the data then shown twice? How do Fig. 3A and S4A differ?
- devQTL as shorthand for developmental QTL should be defined in page 4 line 1 (where the term first appears), not later in line 12 of the same page.
- Python code for period quantification should be uploaded to Github and shared with reviewers.
- RNA-seq data should be uploaded to a publicly accessible repository and the reviewer token shared with reviewers.
- Why are the maintenance (27-28C) vs. imaging (30C) temperatures different?
- For Crispants, control injections should have included a non-targeting sgRNA control instead of simply omitting the sgRNA.
- It is difficult to keep track of the species and strains. It would be most helpful if Fig. S1 appeared instead in main figure 1.
Significance
- The study introduces a new way of thinking about segmentation timing and size scaling by considering natural variation in the context of selection. This new framing will have an important impact on the field.
- Perhaps the most significant finding is that the correlation between segment timing and size in wild populations is driven not by developmental constraints but rather selection pressure, whereas segment size scaling does form a single developmental module. This finding should be of interest to a broad audience and will influence how researchers in the field approach future studies.
- It would be helpful to add to the conclusion the author's opinion on whether segmentation timing is a quantitative trait based on the number of QTL peaks identified.
- The authors should be careful not to assign any causality to the candidate genes that they test in crispants.
- The data and results are generally well-presented, and the research is highly rigorous.
- Please note I do have the expertise to evaluate the statistical/bioinformatic methods used for devQTL mapping.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
Summary:* In this paper the authors explore the function of Syndecan in Drosophila stem cells focussing primarily on the intestinal stem cells. They use RNAi knockdown to conclude that Syndecan is required for long term stem cell maintenance as its knockdown results in apoptosis. They suggest that this effect is independent of LINC complex proteins but is associated with changes to nuclear morphology and DNA damage. They go on to show that a similar impact on nuclear shape can be seen in larval neuroblasts but not in stem cells of the female germline. *
Major Comments: *The key conclusion that underpins the paper is that reduced Syndecan causes loss of stem cells. This is based entirely on evidence from cell-type specific RNAi using 3 independent RNAi lines. Overexpression has no phenotype and there is no analysis of loss of function mutants. SdcRNAi3 gives strong phenotypes that are statistically significant and is used throughout the paper. SdcRNAi2 gives comparatively moderate phenotypes which trend in the same direction but it is not clear if these are statistically significant (Fig S1). SdcRNAi line 1 appears to have very little effect (and if anything trends in the opposite direction in S1A). In addition, the knockdown efficiency of the three lines has not been assessed. Another possible concern given the dependence on RNAi3 is that the RNAi control line used is not an ideal match for the VDRC GD RNAi lines as it is in a different genetic background. In order to robustly draw conclusions: the phenotypes with RNAi lines 1 and 2 should be tested for significance; the extent of knockdown in each should be quantified either by qPCR in whole tissue knockdown, or by staining for protein levels if possible, to assess whether the variation in phenotypes is due to different knockdown levels. The use of a loss of function mutant in clones or tissue specific CRISPR-Cas9 KO or KD would also significantly increase confidence in the findings. *
-
Our qPCR data indicate that SdcRNAi3 produces the most efficient knockdown, whilst SdcRNAi1 generates the weakest knockdown. The new manuscript version will incorporate this data in figure S1. Knockdown efficacy of SdcRNAi 3 has also been previously reported (Eveland et al., 2016).
-
We apologise for omitting to add the statistical tests on phenotypic categories in figure S1A, this will be revised. We confirm that all Sdc RNAi phenotypic distributions are significantly different to that seen for age-matched controls (p- It should also be noted that despite weaker knockdowns with SdcRNAi1 and 2, we still observed statistically significant ISC depletion after 28 days of RNAi expression - we will add this data in figure S1. Overall, we are confident about Sdc’s role in maintaining intestinal stem cells.
*Similarly, the evidence for a lack of LINC protein role in the phenotype relies on single RNAi lines without validation of knockdowns. The authors should ideally validate these lines in this system or reference other studies that have validated the lines in this or other contexts. *
-
The klarsicht RNAi line (BDSC 36721) and klaroid RNAi line (BDSC 40924) used in this study have been validated and used in other studies. (Falo-Sanjuan & Bray, 2022; Collins et al., 2017)
-
For Msp300 RNAi knockdown we have used two independent RNAi lines which gave similar results. We will amend the text to clarify these points. In addition, the line reported in the manuscript was previously validated (Dondi et al., 2021; Frost et al., 2016).
Minor Comments: *The figures are generally very clear but some of the IF image panels are very small and require significant on-screen enlargement to be legible. In particular in Figure 1B the cross section views make it difficult to assess expression in the different cell types (and don't show very many cells), could this be shown in wholemount or as separated channels in a supplementary figure? In addition, it would strengthen the argument to include counterstains for markers of the different cell types (particularly to distinguish ISC/EB from EE). This could include esg-lacZ to mark ISC/EBs or prospero for EEs. However, if a broader view of these panels makes it clearer that all epithelial cells are expressing Syndecan this may not be essential. *
- We are happy to incorporate larger fields of view, and co-immunostaining with different cell type markers.
*Syndecan is referred to throughout as a stem cell regulator. This implies that in certain contexts or in response to certain stimuli its expression may be altered to elicit a stem cell response but no examples of this are shown. Moreover, only knockdown and not overexpression gives phenotypes suggesting its role may be as a required protein than a regulator. Either examples of its expression being modulated in homeostasis or in response to a challenge could be included or the wording could be amended. *
- We agree with the reviewer and will amend the wording.
*Expression of Syndecan in neuroblasts is described as data not shown, it would be better to include this for completeness. *
- We will add this data in figure 4.
*In addition to the intestinal validation of the Syndecan RNAi lines, validation of knockdown in the germline would be valuable to support the conclusions of Fig S4 given differences of knockdown in the germline with some RNAi lines (although inclusion of Dicer in the driver line should have overcome this). *
-
Sdc expression is very low in the germline, compared to the surrounding somatic cells, therefore we are not confident that we can detect differences in expression level after knockdown. We suggest adding a panel in figure S4 to show the low expression and adding a comment in the text. Reviewer #1 (Significance (Required)): *The study describes a potentially very interesting, novel link between Syndecan, nuclear shape and apoptosis in cycling cells that could have broad relevance. If fully validated this could have implications for other stem cell populations, including those in mammals and disease relevance in the context of cancer. The paper is fundamentally descriptive in nature and so the level of significance hinges on the strength of evidence and how interesting the phenotype itself is. At this stage the audience will be primarily in the areas of fundamental research in biology of the nucleus and cytoskeleton. Defining the mechanistic link between Syndecan and nuclear morphology will be a critical next step and while not essential for this study would significantly increase the likely interest in the paper. *
-
We thank the reviewer for these constructive comments. We agree that discovering the mechanistic links between Syndecan and nuclear morphology in future studies, in this and other model systems, will be relevant to many areas of biological research.
*In terms of significance in stem cell biology the distinction between a regulator and a requirement to prevent stem cell apoptosis is important and the lack of evidence for a context in which Syndecan plays a regulatory role somewhat detracts from the breadth of impact. My field of expertise is in epithelial stem cell biology. *
- We agree and will amend our wording.
Reviewer #2 *(Evidence, reproducibility and clarity (Required)): ** Summary: Stem cell (SC) maintenance and proliferation are necessary for tissue morphogenesis and homeostasis. The basement membrane (BM) has been shown to play a key role in regulating stem cell behavior. In this work, the authors unravel a new connection between the receptor for BM components Syndecan (Sdc) and SC behavior, using Drosophila as model system. They show that Sdc is required for intestine stem cell (ISC) maintenance, as Sdc depletion results in their progressive loss. At a cellular level, they also find that Sdc depletion in ISCs affects cell survival, cell and nuclear shape, nuclear lamina and DNA damage. In addition, they show that the defects in shape are not related to cell death. They also find that Sdc depletion in neural stem cells also results in nuclear envelope remodeling during cell division. This is in contrast to what happens in female germline stem cells where Sdc does not seem to be required for their survival or maintenance. In general, I believe that this work unravels a connection between Sdc and stem cell behavior. However, I think the study is still at a preliminary stage, as how Sdc regulates different facets of stem cell behavior remains unclear.
Major comments: 1. To clearly show that the cellular changes produced by loss of Sdc are not due to cell death, one should quantify the ISC area and shape of Sdc-depleted ISCs expressing DIAP1 and compare it to that of Sdc-depleted ISCs. As DIAP1 overexpression only partially rescues ISC loss due to Sdc depletion, one should show that the Sdc-depleted ISCs expressing DIAP1 that still show cellular changes are not dying, as overexpression of Diap1 might not be sufficient to completely rescue cell death in all Sdc-depleted ISCs. In fact, apoptosis in Sdc depleted guts and the ability of Diap1 overexpression to rescue cell death should be analyzed using markers of caspase activity, this will provide a better idea of the contribution of apoptosis to the phenotypes associated to Sdc depletion. *
-
We can, as suggested by the reviewer, quantify the area and shape of Sdc-depleted ISCs expressing DIAP1 and compare it to that of Sdc-depleted ISCs. However, our immunostainings with anti-Caspase 3 or Drice do not pick up apoptotic cells in the fly gut. This is not entirely unexpected, as apoptosis is unfortunately not easily detected in this tissue. In the absence of a positive readout of apoptosis, we will not be able to discriminate between apoptotic and non-apoptotic stem cells when quantifying area and shape and will only have global quantifications.
-
The authors show that ISC loss is associated with reduced cell density, suggesting that this is most likely due to failure in new cell production. What do they mean with cell production? Is this related to a problem in regulating cell division or to the fact that as some ISCs are lost by apoptosis there is progressively less ISCs or to a combination of both? I think that cell division should be monitored throughout time as well as cell death in ISCs.*
-
Based on esgF/O experiments (fig. 1D-F and S1C) where we can trace the production of new cells with GFP, we know that Sdc RNAi expression (i) impairs the appearance of newly differentiated cells in the tissue and (ii) results in the disappearance of progenitor cells (fig. S1C). Supporting these points, (i) we have observed PH3+ mitotic stem cells upon Sdc RNAi, so we are confident the cells are able to initiate cell division (see also fig. 2G), and (ii) we have occasionally noted in fixed samples stem cells looking like they were in the process of delaminating. Overall, the failure of cell production is likely related to problems with both completion of cell division and progressive stem cell loss. High resolution live imaging will in future give us a better insight into stem cell division dynamics/behaviour, however, the technical improvements required are beyond the scope of this project. In the meantime, we propose to clarify our statement in the text.
-
The authors report that in contrast to what happens when Sdc is eliminated from ISCs, its elimination from EEs results in an increase in the number of these cells. An explanation for this result is missing.*
-
Based on known roles of Syndecan in other Drosophila tissues (Johnson et al., 2004; Steigemann et al., 2004; Chanana et al., 2009; Schulz et al., 2011), we speculate that Syndecan may contribute to robo/slit signalling, which is an important regulator of EE activity in the Drosophila gut (Biteau & Jasper 2014; Zeng et al., 2015). We propose to amend the text to express this hypothesis.
-
The authors suggest that "Sdc function is unlikely to be fully accounted for by individual LINC complex proteins, although these proteins might act redundantly". Checking redundancy seems a straight forward experiment, which only requires the simultaneous expression of RNAis against several of these proteins. This would help to settle the implication of LINC complex proteins on Sdc function.*
-
To check redundancy, we propose to combine Klaroid RNAi with Msp300 or Klarsicht RNAis, and express two RNAis at a time in ISCs. We will then measure stem cell proportions and the proportion of ISCs with DNA damage.
-
Although quantification of DNA damage, by immunolabelling with gH2Av, reveals that knockdown of individual LINC complex components did not recapitulate the damage observed upon Sdc depletion (Fig.3G), the image shown in Fig.3F reflects much higher levels of gH2Av in Msp300 RNAi cells compared to Sdc RNAi cells. Authors should clarify this. *
-
Like the reviewer, we are intrigued by the higher levels of H2Av staining in the tissue, despite Msp300 knockdown in stem cells only (fig. 3F). It is worth noting that we observed this with two independent RNAi lines (we showed only one RNAi in the manuscript, but we will amend the text to indicate this). In fig. 3F, we will indicate with an arrow the only ISC that is H2Av positive, and mention in the text that the majority of DNA damage signal observed in the Msp300 RNAi condition is in enterocytes, not ISCs. We currently do not have an explanation for why loss of Msp300 in ISCs should cause DNA damage in neighboring cells.
*In addition, the consequences of the simultaneous elimination of more than one component of the LINC complex on DNA damage should be analyzed. *
-
We agree, and as we check for redundancy (as in point 4), we will also immunostain the tissues for H2Av.
-
The authors claim that the fact that "DNA damage was found more frequently in Sdc-depleted ISCs with lamina invaginations compared to those without (Figure 3H), supports a model whereby the development of nuclear lamina invaginations precedes the acquisition of DNA damage". However, to me, these results show that there is a relation between these two phenotypes, but not that one precedes the other. In order to show which one is the possible cause and which the consequence, the authors should perform a time course of the appearance of each of these phenotypes.*
-
We agree with the reviewer that we should rephrase our statement to indicate a relationship between lamina invaginations and DNA damage, rather than a causality (as stated in fig. 3H).
(In terms of performing a time course analysis, the difficulty is that after 3 days of Sdc RNAi expression, the apparent DNA damage (fig. 3G) corresponds to a very small proportion of stem cells, meaning that an exceptionally large sample size would be required to achieve robust statistical analysis.)
-
When studying the role of Sdc in neural stem cells, the authors show that elimination of Sdc in neuroblasts also affect nuclear envelope and shape. Furthermore, in this case, they also show that Sdc elimination affects cell division. To look for a more conserved role of Sdc in stem cell behavior, I believe the authors should also analyze whether Sdc elimination in neural stem cells results in an increase in DNA damage, as it is the case in ISCs.*
-
We will stain larval brains for H2Av to see if DNA damage is also observed following Sdc knockdown in neuroblasts.
-
When analyzing a possible role of Sdc in fGSCs, quantification of germline stem cells and gH2Av levels in control nosGal4 and nos>Sdc RNAi germaria should be done. In addition, it is not clear to me whether Sdc is in fact expressed in fGSCs.*
-
*
-
As mentioned in comments to reviewer 1, we will add a panel in figure S4 to show the low Sdc expression in fGSCs. We will also clarify in the text that we do not see any H2Av staining in the fGSCs (thus, there is nothing to quantify in this case).
* The authors should show presence of Sdc in neuroblasts.*
- Yes, we agree, as also mentioned in comments to reviewer 1.
Reviewer #2 (Significance (Required)): *In general, although this work reveals that elimination of Sdc affects different aspects of intestinal and neural stem cell behavior, including cell survival, cell production, nuclear shape, nuclear lamina or DNA damage, their contribution to stem cell loss and interactions between them have not been analyzed in detail. The role of the basement membrane in stem cell behavior has been extensively studied. In particular, the role of syndecan in stem cell regulation has been primarily confined to cancer, muscle, neural and hematopoietic stem cells. Thus, the study here presented could extend the role of Sdc to intestinal stem cells and could potentially reveals a conserved role for Sdc in neural stem cell behavior. However, the problem with the data mentioned above, hinders the assessment of the significance of this work. *
- We thank the reviewer for their assessment and are glad that they also find that our study provides novel connections between Syndecan and the regulation of intestinal and neural stem cell behaviors. To strengthen our conclusions, we will include additional experiments or amend the text, as indicated above.
Reviewer #3* (Evidence, reproducibility and clarity (Required)): ** Peer-review: The transmembrane protein Syndecan regulates stem cell nuclear properties and cell maintenance.
In this work, the authors investigate the role of the transmembrane protein Syndecan (Sdc) in nuclear organisation and stem cell maintenance. Theys show that Sdc knockdown in intestinal stem cells (ISCs) results in a reduction of the ISC pool as well as of their progeny. They hypothesise that these ISCs might get eliminated via cell death, however, expression of the apoptotic inhibitor DIAP1 only rescued ISC loss by 50%. Hence, they suggest that apoptosis can not account for the total decrease in ISCs observed upon Sdc loss. ISCs depleted from Sdc exhibited abnormal cytoplasmic and nuclear morphologies. As Sdc has previously been implicated in the abscission machinery in mammalian cultured cells, they tested if Sdc could be playing a similar role in the abscission of ISCs. However, ISCs were capable of undergoing cytokinesis. Next, they tested if Sdc depletion could be altering the linkage between the plasma membrane and the nucleus mediated by the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. However, individual knockdowns of the different components of the complex did not disrupt the nuclear morphology to the same extent as Sdc knockdown, suggesting that Sdc function may be independent of the LINC complex. Finally, they observed that Sdc-depleted ISCs exhibited DNA damage, suggesting that Sdc may play a role in DNA protection. The authors next tested if Sdc played similar roles in other stem cell types such as the female germline stem cells (fGSCs) and larval neural stem cells (NSCs). While Sdc depletion appeared dispensable for fGSC maintenance, it prolonged NSC divisions and altered the nuclear morphology of NSCs. Upon further investigations, they observed that the NSC's nuclear envelope was disrupted upon division, hence causing defects in the nuclear size ratio of NSC and their progeny. This study provides with interesting findings in the field and proves a new role for Sdc in the regulation of intestinal and neural stem cell maintenance. I would recommend this manuscript to be accepted if the authors address the following comments.
__Major comments: __ 1. In Figure 2 A-B, Sdc RNAi should ideally have a UAS control transgene to match the number of UAS being expressed to that of Sdc RNAi, DIAP1. Otherwise, it is plausible that reduced RNAi expression of Sdc RNAi, DIAP1 animals is the cause of the partial rescue. Staining against cell death markers such as Dcp-1 or TUNEL might also quantify the number of cells undergoing cell death in each of the genotypes. *
-
As mentioned in comments to reviewer 2 (point 1), it is difficult to label apoptotic cells in the fly gut. However, we could set up an additional control to test that the partial rescue observed upon DIAP1 expression is not a result of Gal4 dilution.
-
" These phenotypes were observed both with and without DIAP1 expression (Figure 2C), indicating that these cell shapes are not caused by apoptosis."Misleading, as DIAP overexpression in Sdc knockdown background only rescued apoptosis by 50%. Hence, it is possible that those cells undergoing morphological defects, protrusions and blebbing might still undergo death - also considering those morphological changes are typically observed in apoptotic cells...Therefore, to rule apoptosis out, these cells should be shown to be negative for cell death markers. *
-
We agree, however, it is difficult to label apoptotic cells. We think that the quantification of shape and area (as suggested by reviewer 2, point 1) will clearly show that the cell shapes resulting from Sdc depletion are not caused by apoptosis.
-
Show if Sdc is expressed in fGSCs - the lack of phenotype caused by Sdc knockdown might be due to lack of expression of Sdc.*
-
As mentioned in comments to reviewers 1&2, we will add a panel in figure S4 to show the low sdc expression in fGSCs.
-
"After confirming the presence of Sdc in neuroblasts (data not shown)."Data should be shown. It would be of great interest for researchers if you showed a staining of different brain cell types (NBs, glia, neurons) and the Sdc expression patterns.*
-
As mentioned in comments to reviewers 1&2, we will add a panel in figure 4 to show sdc expression in NBs and the overall expression pattern.
-
You show how Slc-depleted NBs have disrupted nuclear morphologies. However, does Slc KD in NB lineages affect their ability to self-renew and generate differentiated progeny? Is the number of NBs and of their progeny cells altered as it is for ISCs?*
-
We propose to knockdown Sdc in NBs and quantify brain size in 3rd instar larvae to test if the ability to generate progeny is affected.
-
Does protection against DNA damage in an Slc knockdown background prevent the defects observed with the single knockdown and ISC elimination?*
-
This is a good question, and we should emphasize this point in the discussion. However, because of the multiple routes of DNA damage response, and the multiple lines needed to explore this connection, we feel that investigating this question is beyond this project.
-
Any idea the similarities between ISC and NBs that can account for why Sdc knockdown has effects in those systems, while no effect was observed in the germ cells?*
-
Besides the differences in expression level, we speculate that GSCs may have a different nuclear / lamina architecture which might reflect differences in how GSCs control the physical integrity of their nuclei. It is also possible that the differences observed between tissues reflect the way stem cells connect to their microenvironment. Notably, fGSCs rely extensively on E-Cadherin mediated adhesion with neighbouring cells, and it is possible that contact with the extracellular matrix is dispensable. We will consider these possibilities in the discussion.
Minor comments:* ** 8. Lamina invaginations, for example in Figure 3 A, could be indicated with an arrow for easier detection. *
- Thanks for this suggestion, we will amend the figure.
Specify the type and location of NB imaged during live cell experiments.
- The NBs were imaged in the brain lobes, and we did not distinguish between type I and II NBs. We will add a sentence in the method section to clarify.
*Reviewer #3 (Significance (Required)): Expertise: Drosophila stem cells *
- Many thanks for the constructive comments.
-
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
The transmembrane protein Syndecan regulates stem cell nuclear properties and cell maintenance.
In this work, the authors investigate the role of the transmembrane protein Syndecan (Sdc) in nuclear organisation and stem cell maintenance. Theys show that Sdc knockdown in intestinal stem cells (ISCs) results in a reduction of the ISC pool as well as of their progeny. They hypothesise that these ISCs might get eliminated via cell death, however, expression of the apoptotic inhibitor DIAP1 only rescued ISC loss by 50%. Hence, they suggest that apoptosis can not account for the total decrease in ISCs observed upon Sdc loss. ISCs depleted from Sdc exhibited abnormal cytoplasmic and nuclear morphologies. As Sdc has previously been implicated in the abscission machinery in mammalian cultured cells, they tested if Sdc could be playing a similar role in the abscission of ISCs. However, ISCs were capable of undergoing cytokinesis. Next, they tested if Sdc depletion could be altering the linkage between the plasma membrane and the nucleus mediated by the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. However, individual knockdowns of the different components of the complex did not disrupt the nuclear morphology to the same extent as Sdc knockdown, suggesting that Sdc function may be independent of the LINC complex. Finally, they observed that Sdc-depleted ISCs exhibited DNA damage, suggesting that Sdc may play a role in DNA protection. The authors next tested if Sdc played similar roles in other stem cell types such as the female germline stem cells (fGSCs) and larval neural stem cells (NSCs). While Sdc depletion appeared dispensable for fGSC maintenance, it prolonged NSC divisions and altered the nuclear morphology of NSCs. Upon further investigations, they observed that the NSC's nuclear envelope was disrupted upon division, hence causing defects in the nuclear size ratio of NSC and their progeny. This study provides with interesting findings in the field and proves a new role for Sdc in the regulation of intestinal and neural stem cell maintenance. I would recommend this manuscript to be accepted if the authors address the following comments.
Major comments:
- In Figure 2 A-B, Sdc RNAi should ideally have a UAS control transgene to match the number of UAS being expressed to that of Sdc RNAi, DIAP1. Otherwise, it is plausible that reduced RNAi expression of Sdc RNAi, DIAP1 animals is the cause of the partial rescue.
Staining against cell death markers such as Dcp-1 or TUNEL might also quantify the number of cells undergoing cell death in each of the genotypes. 2. " These phenotypes were observed both with and without DIAP1 expression (Figure 2C), indicating that these cell shapes are not caused by apoptosis."
Misleading, as DIAP overexpression in Sdc knockdown background only rescued apoptosis by 50%. Hence, it is possible that those cells undergoing morphological defects, protrusions and blebbing might still undergo death - also considering those morphological changes are typically observed in apoptotic cells... Therefore, to rule apoptosis out, these cells should be shown to be negative for cell death markers. 3. Show if Sdc is expressed in fGSCs - the lack of phenotype caused by Sdc knockdown might be due to lack of expression of Sdc. 4. "After confirming the presence of Sdc in neuroblasts (data not shown)."
Data should be shown. It would be of great interest for researchers if you showed a staining of different brain cell types (NBs, glia, neurons) and the Sdc expression patterns. 5. You show how Slc-depleted NBs have disrupted nuclear morphologies. However, does Slc KD in NB lineages affect their ability to self-renew and generate differentiated progeny? Is the number of NBs and of their progeny cells altered as it is for ISCs? 6. Does protection against DNA damage in an Slc knockdown background prevent the defects observed with the single knockdown and ISC elimination? 7. Any idea the similarities between ISC and NBs that can account for why Sdc knockdown has effects in those systems, while no effect was observed in the germ cells?
Minor comments:
- Lamina invaginations, for example in Figure 3 A, could be indicated with an arrow for easier detection.
- Specify the type and location of NB imaged during live cell experiments.
Significance
Expertise: Drosophila stem cells
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Summary
Stem cell (SC) maintenance and proliferation are necessary for tissue morphogenesis and homeostasis. The basement membrane (BM) has been shown to play a key role in regulating stem cell behavior. In this work, the authors unravel a new connection between the receptor for BM components Syndecan (Sdc) and SC behavior, using Drosophila as model system. They show that Sdc is required for intestine stem cell (ISC) maintenance, as Sdc depletion results in their progressive loss. At a cellular level, they also find that Sdc depletion in ISCs affects cell survival, cell and nuclear shape, nuclear lamina and DNA damage. In addition, they show that the defects in shape are not related to cell death. They also find that Sdc depletion in neural stem cells also results in nuclear envelope remodeling during cell division. This is in contrast to what happens in female germline stem cells where Sdc does not seem to be required for their survival or maintenance.
In general, I believe that this work unravels a connection between Sdc and stem cell behavior. However, I think the study is still at a preliminary stage, as how Sdc regulates different facets of stem cell behavior remains unclear.
Major comments:
- To clearly show that the cellular changes produced by loss of Sdc are not due to cell death, one should quantify the ISC area and shape of Sdc-depleted ISCs expressing DIAP1 and compare it to that of Sdc-depleted ISCs. As DIAP1 overexpression only partially rescues ISC loss due to Sdc depletion, one should show that the Sdc-depleted ISCs expressing DIAP1 that still show cellular changes are not dying, as overexpression of Diap1 might not be sufficient to completely rescue cell death in all Sdc-depleted ISCs. In fact, apoptosis in Sdc depleted guts and the ability of Diap1 overexpression to rescue cell death should be analyzed using markers of caspase activity, this will provide a better idea of the contribution of apoptosis to the phenotypes associated to Sdc depletion.
- The authors show that ISC loss is associated with reduced cell density, suggesting that this is most likely due to failure in new cell production. What do they mean with cell production? Is this related to a problem in regulating cell division or to the fact that as some ISCs are lost by apoptosis there is progressively less ISCs or to a combination of both? I think that cell division should be monitored throughout time as well as cell death in ISCs.
- The authors report that in contrast to what happens when Sdc is eliminated from ISCs, its elimination from EEs results in an increase in the number of these cells. An explanation for this result is missing.
- The authors suggest that "Sdc function is unlikely to be fully accounted for by individual LINC complex proteins, although these proteins might act redundantly". Checking redundancy seems a straight forward experiment, which only requires the simultaneous expression of RNAis against several of these proteins. This would help to settle the implication of LINC complex proteins on Sdc function.
- Although quantification of DNA damage, by immunolabelling with H2Av, reveals that knockdown of individual LINC complex components did not recapitulate the damage observed upon Sdc depletion (Fig.3G), the image shown in Fig.3F reflects much higher levels of H2Av in Msp300 RNAi cells compared to Sdc RNAi cells. Authors should clarify this. In addition, the consequences of the simultaneous elimination of more than one component of the LINC complex on DNA damage should be analyzed.
- The authors claim that the fact that "DNA damage was found more frequently in Sdc-depleted ISCs with lamina invaginations compared to those without (Figure 3H), supports a model whereby the development of nuclear lamina invaginations precedes the acquisition of DNA damage". However, to me, these results show that there is a relation between these two phenotypes, but not that one precedes the other. In order to show which one is the possible cause and which the consequence, the authors should perform a time course of the appearance of each of these phenotypes.
- When studying the role of Sdc in neural stem cells, the authors show that elimination of Sdc in neuroblasts also affect nuclear envelope and shape. Furthermore, in this case, they also show that Sdc elimination affects cell division. To look for a more conserved role of Sdc in stem cell behavior, I believe the authors should also analyze whether Sdc elimination in neural stem cells results in an increase in DNA damage, as it is the case in ISCs.
- When analyzing a possible role of Sdc in fGSCs, quantification of germline stem cells and H2Av levels in control nosGal4 and nos>Sdc RNAi germaria should be done. In addition, it is not clear to me whether Sdc is in fact expressed in fGSCs.
- The authors should show presence of Sdc in neuroblasts.
Significance
In general, although this work reveals that elimination of Sdc affects different aspects of intestinal and neural stem cell behavior, including cell survival, cell production, nuclear shape, nuclear lamina or DNA damage, their contribution to stem cell loss and interactions between them have not been analyzed in detail. The role of the basement membrane in stem cell behavior has been extensively studied. In particular, the role of syndecan in stem cell regulation has been primarily confined to cancer, muscle, neural and hematopoietic stem cells. Thus, the study here presented could extend the role of Sdc to intestinal stem cells and could potentially reveals a conserved role for Sdc in neural stem cell behavior. However, the problem with the data mentioned above, hinders the assessment of the significance of this work.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary
In this paper the authors explore the function of Syndecan in Drosophila stem cells focussing primarily on the intestinal stem cells. They use RNAi knockdown to conclude that Syndecan is required for long term stem cell maintenance as its knockdown results in apoptosis. They suggest that this effect is independent of LINC complex proteins but is associated with changes to nuclear morphology and DNA damage. They go on to show that a similar impact on nuclear shape can be seen in larval neuroblasts but not in stem cells of the female germline.
Major Comments
The key conclusion that underpins the paper is that reduced Syndecan causes loss of stem cells. This is based entirely on evidence from cell-type specific RNAi using 3 independent RNAi lines. Overexpression has no phenotype and there is no analysis of loss of function mutants. SdcRNAi3 gives strong phenotypes that are statistically significant and is used throughout the paper. SdcRNAi2 gives comparatively moderate phenotypes which trend in the same direction but it is not clear if these are statistically significant (Fig S1). SdcRNAi line 1 appears to have very little effect (and if anything trends in the opposite direction in S1A). In addition, the knockdown efficiency of the three lines has not been assessed. Another possible concern given the dependence on RNAi3 is that the RNAi control line used is not an ideal match for the VDRC GD RNAi lines as it is in a different genetic background. In order to robustly draw conclusions: the phenotypes with RNAi lines 1 and 2 should be tested for significance; the extent of knockdown in each should be quantified either by qPCR in whole tissue knockdown, or by staining for protein levels if possible, to assess whether the variation in phenotypes is due to different knockdown levels. The use of a loss of function mutant in clones or tissue specific CRISPR-Cas9 KO or KD would also significantly increase confidence in the findings.
Similarly, the evidence for a lack of LINC protein role in the phenotype relies on single RNAi lines without validation of knockdowns. The authors should ideally validate these lines in this system or reference other studies that have validated the lines in this or other contexts.
Minor Comments
The figures are generally very clear but some of the IF image panels are very small and require significant on-screen enlargement to be legible. In particular in Figure 1B the cross section views make it difficult to assess expression in the different cell types (and don't show very many cells), could this be shown in wholemount or as separated channels in a supplementary figure? In addition, it would strengthen the argument to include counterstains for markers of the different cell types (particularly to distinguish ISC/EB from EE). This could include esg-lacZ to mark ISC/EBs or prospero for EEs. However, if a broader view of these panels makes it clearer that all epithelial cells are expressing Syndecan this may not be essential.
Syndecan is referred to throughout as a stem cell regulator. This implies that in certain contexts or in response to certain stimuli its expression may be altered to elicit a stem cell response but no examples of this are shown. Moreover, only knockdown and not overexpression gives phenotypes suggesting its role may be as a required protein than a regulator. Either examples of its expression being modulated in homeostasis or in response to a challenge could be included or the wording could be amended.
Expression of Syndecan in neuroblasts is described as data not shown, it would be better to include this for completeness.
In addition to the intestinal validation of the Syndecan RNAi lines, validation of knockdown in the germline would be valuable to support the conclusions of Fig S4 given differences of knockdown in the germline with some RNAi lines (although inclusion of Dicer in the driver line should have overcome this).
Significance
The study describes a potentially very interesting, novel link between Syndecan, nuclear shape and apoptosis in cycling cells that could have broad relevance. If fully validated this could have implications for other stem cell populations, including those in mammals and disease relevance in the context of cancer.
The paper is fundamentally descriptive in nature and so the level of significance hinges on the strength of evidence and how interesting the phenotype itself is. At this stage the audience will be primarily in the areas of fundamental research in biology of the nucleus and cytoskeleton. Defining the mechanistic link between Syndecan and nuclear morphology will be a critical next step and while not essential for this study would significantly increase the likely interest in the paper. In terms of significance in stem cell biology the distinction between a regulator and a requirement to prevent stem cell apoptosis is important and the lack of evidence for a context in which Syndecan plays a regulatory role somewhat detracts from the breadth of impact.
My field of expertise is in epithelial stem cell biology.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
RC-2023-02105R: Brunetta et al.,
IF1 is a cold-regulated switch of ATP synthase to support thermogenesis in brown fat
We are happy to submit our revised manuscript after considering the suggestions made by reviewers. The comments were overall positive, and the changes requested were mostly editorial. We have, nevertheless, added new experiments as quality controls. These experiments did not affect the main conclusions of our work. In addition, we also included two in vivo experimental models of gain and loss-of-function, to further address the physiological relevance of IF1 in BAT thermogenesis. We believe with these additional experiments, quality controls as well as in vivo models, our study has improved considerably. We hope our efforts will be appreciated by the reviewers and we make ourselves available to answer any further questions.
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
Summary: In the present manuscript, the authors present data in support of their primary discovery that "IF1 controls UCP1-dependent mitochondrial bioenergetics in brown adipocytes". The opening figure convincingly demonstrates that IF1 expression is cold-exposure dependent. They then go on to show that loss of IF1 has functional consequences that would be predicted based on IF1's know role as a regulator of ATP hydrolysis by CV. They go on to make a few additional claims, succinctly detailed in the Discussion section. Specific claims include the following: 1) IF1 is downregulated in cold-adapted BAT, allowing greater hydrolytic activity of ATP synthase by operating in the reverse mode; 2) when IF1 is upregulated in brown adipocytes in vitro mitochondria unable to sustain the MMP upon adrenergic stimulation, 3) IF1 ablation in brown adipocytes phenocopies the metabolic adaptation of BAT to cold, and 4) IF1 overexpression blunts mitochondrial respiration without any apparent compensator response in glycolytic activity. The claims described above are well supported by the evidence. The manuscript is very well written, figures are clear and succinct. Overall, the quality of the work is very high. Given that IF1 is implicated across many fields of study, the novel discovery of IF1 as a regulator of brown adipose mitochondrial bioenergetics will be of significance across several fields. That said, a few areas of concern were apparent. Concerns are detailed in the "Major" and "Minor" comments section below. Additional experiments do not appear to be required, assuming the authors adequately acknowledge the limitations of the study and either remove or qualify speculative claims.
Major Comments:
- The authors convincingly demonstrate that IF1 expression is specifically down-regulated in BAT upon cold-exposure. These data strongly implicate a role for IF1 in BAT bioenergetics, a major claim of the authors and a novel finding herein. Additional major strengths of the paper, which provide excellent scientific rigor include the use of both loss of function and gain of function approaches for IF1. In addition, the mutant IF1 experiments are excellent, as they convincingly show that the effects of IF1 are dependent on its ability to bind CV. RESPONSE: We thank the reviewer for the positive feedback on our work.
Regarding Figure 1 - Did the content of ATP synthase change? In figure 1A-B, the authors show that ATPase activity of CV is higher in cold-adapted mice. While this result could be due to a loss of IF1, it could also be due to a higher expression of CV. To control for this, the authors should consider blotting for CV, which would allow for ATPase activity to be normalized to expression.
RESPONSE: Thank you for this suggestion. We have now determined complex V subunit A in our experimental protocol. We found that cold exposure does not impact complex V protein levels. Given the importance of this control, we have now included it in Figure 1 (Please, see the revised version) alongside the IF1/complex V ratio. In addition, we have now performed WBs in the BAT from mice exposed for 3 and 7 days to thermoneutrality (~28°C). We found that IF1 is not reduced following whitening of BAT by this approach whilst UCP1 and other mitochondrial proteins are reduced. This set of data is now included in Figure 1I,K,L.
Regarding MMP generated specifically by ATP hydrolysis at CV, the reversal potential for ANT occurs at a more negative MMP than that of CV (PMID: 21486564). Because reverse transport of ATP (cytosol to matrix) via ANT will also generate a MMP, it is speculative to state that the MMP in the assay is driven by ATP hydrolysis at CV. It is possible and maybe even likely that the majority of the MMP is driven by ANT flux, which in turn limits the amount of ATP hydrolyzed by CV. Admittedly, it is very challenging to different MMP from ANT vs that from CV, thus the authors simply need to acknowledge that the specific contribution of ATP hydrolysis to MMP remains to be fully determined. That said, the fact that ATP-dependent MMP tracks with IF1 expression does certainly implicate a role for ATP hydrolysis in the process. The authors should consider including a discussion of the ambiguity of the assay to avoid confusion. A role for ANT likely should be incorporated in the Fig. 1J cartoon.
RESPONSE: Thank you for bringing the ANT contribution to MMP to our attention. The effects of ATP in the real-time MMP measurements were totally abolished by the addition of oligomycin in BAT-derived isolated mitochondria, thus suggesting dependency of complex V in this process. However, the assessment of MMP in intact cells is much more challenging given cytosolic vs. mitochondrial contribution to ATP pool, and ATP synthase vs. ANT reversal capacity depending on MMP. Nevertheless, we have addressed these points in the discussion section as well as added to our schematic cartoon in Figure 1m.
Regarding the lack of effect of IF1 silencing on MMP, it is possible that IF1 total protein levels are simply lower in cultured brown fat cells relative to tissue? The authors could consider testing this by blotting for IF1 and CV in BAT and brown fat cells. The ratio of IF1/ATP5A1 in tissue versus cells may provide some amount of mechanistic evidence as to their findings.
RESPONSE: We have now blotted for complex V and IF1 in both differentiated primary brown adipocytes and BAT homogenates derived from mice kept at room temperature (~22°C). We found the levels of complex V in primary brown adipocytes are higher than BAT homogenates. Therefore, IF1/complex V ratio is different between these two systems. This has indeed the potential to influence our gain and loss-of-function experiments. We have added these results alongside their interpretation in the revised manuscript.
The calculation of ATP synthesis from respiration sensitive to oligomycin has many conceptual flaws. Unlike glycolysis, where ATP is produced via substrate level phosphorylation, during OXPHOS, the stoichiometry of ATP produced per 2e transfer is not known in intact brown adipose cells. This is a major limitation of this "calculated ATP synthesis" approach that is beginning to become common. Such claims are speculative and thus likely do more harm than good. In addition to ANT and CV, there are many proton-consuming reactions driven by the proton motive force (e.g., metabolite transport, Ca2+ cycling, NADPH synthesis). Although it remains unclear how much proton conductance is diverted to non-ATP synthesis dependent processes, it seems highly likely that these processes contribute to respiratory demand inside living cells. Moreover, just as occurs with UCP1 in response to adrenergic stimuli, proton conductance across the various proton-dependent processes likely changes depending on the cellular context, which is another reason why using a fixed stoichiometry to calculate how much ATP is produced from oxygen consumption is so highly flawed. Maximal P/O values that are often used for NAD/FAD linked flux are generated using experimental conditions that favor near complete flux through the ATP synthesis system (supraphysiological substrate and ADP levels). The true P/O value inside living cells is likely to be lower.
RESPONSE: We agree with the reviewer regarding the limitations on calculating ATP production in intact cells based on respiration and proton flux. However, this was only one experiment on which we based our conclusions, as these were also supported by i.e. ATP/ADP ratio measurements and oxygen consumption using different substrates. Therefore, we do not rely exclusively on the ATP production estimative, rather we use this experiment to support complementary methodologies. Nevertheless, we have now better detailed our experimental protocol as well as acknowledged the limitations of the method, so the reader is aware of our procedure and its limitations. We hope the reviewer understands our motivation to perform these experiments and the contribution to our study.
Why are the results in Figure 3K expressed as a % of basal? Could the authors please normalize the OCR data to protein and/or provide a justification for why different normalization strategies were used between 3K and 3M?
RESPONSE: We apologize for the lack of consistency. We have now updated Figure 3 to show all the data in absolute values divided by protein content. This change does not affect the overall interpretation of the findings.
The authors claim that IF1 overexpression lowers ATP production via OXPHOS. However, given the major limitations of this assay (ass discussed above), these claims should be viewed as speculation. This needs to be addressed by the authors as a major limitation. The fact that the ATP/ADP levels did not change do not support of reduction in ATP production, as claimed in the title of Figure 4.
RESPONSE: The reduction in ATP levels and mitochondrial respiration (independent of the substrate offered) suggests a reduction in ATP production rather than an increase in ATP consumption. Moreover, the maintenance of ATP/ADP ratio suggests the existence of a compensatory mechanism to avoid cellular energy crises, which we interpreted as reduced metabolic activity of the cells. Nevertheless, we have now reworded our statements to address the limitations of the methods and our interpretation of the data.
In the discussion, the authors state "However, considering that IF1 inhibits F1-ATP synthase in a 1:1 stoichiometric ratio, the relatively higher expression of IF1 in BAT at room temperature could represent an additional inhibitory factor for ATP synthesis in this tissue." This does not appear to be correct. Although IF1 has been suggested to partially lower maximal rates of ATP synthesis rates, most of this evidence comes from over-expression experiments. According to the current understanding of IF1-CV interaction, the protein is expelled from the complex during rotation in favor of ATP synthesis (PMID: 37002198). It is far more likely that ATP synthesis is low in BAT mitochondria due to the low CV expression. Relative to heart and when normalized to mitochondrial content, CV expression in BAT mitochondria is about 10% that of heart (PMID: 33077793).
RESPONSE: We agree with the reviewer and removed this sentence.
The last sentence of the manuscript states, "Given the importance of IF1 to control brown adipocyte energy metabolism, lowering IF1 levels therapeutically might enhance approaches to enhance NST for improving cardiometabolic health in humans." This sentence seems at odds with the evidence that IF1 levels go up, not down, in human BAT upon cold exposure.
RESPONSE: In light of our new experiments, we have now updated our conclusions.
Minor Comments:
The term "anaerobic glycolysis" is used throughout. All experiments were performed under normoxic conditions, thus the correct term is "aerobic glycolysis.
RESPONSE: Thank you for this comment and we have replaced this term as suggested.
Only male mice were used in the study, could the authors please provide a justification for this?
RESPONSE: Given we devoted most of our efforts to the manipulation of IF1 in vitro, we have used the mouse model as a proof-of-principle on the impact of IF1 in adrenergic-induced thermogenesis. We have now included IF1 KO male and female mice to address the role of IF1 in adrenergic-induced thermogenesis. However, due to the limitation of material, we could only perform AAV in vivo gain-of-function in male mice, therefore, our results cannot be immediately transferred to both sexes, unfortunately.
Reviewer #1 (Significance (Required)):
Overall, the quality of the work is very high. Given that IF1 is implicated across many fields of study, the novel discovery of IF1 as a regulator of brown adipose mitochondrial bioenergetics will be of significance across several fields.
My expertise is in mitochondrial thermodynamics; thus, I do not feel there are any parts of the paper that I do not have sufficient expertise to evaluate.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
Summary
The manuscript by Brunetta and colleagues conveys the message that the ATPase inhibitory factor 1 (IF1) protein, a physiological inhibitor of mitochondrial ATP synthase, is expressed in BAT of C57BL/6J mice. Moreover, upon cold-adaption of mice they report that the content of IF1 in BAT is downregulated to sustain the mitochondrial membrane potential (MMP) as a result of reverse functioning of the enzyme. In experiments of loss and gain of function of IF1 in cultured brown adipocytes and WT cells they further stress that IF1 silencing promotes metabolic reprogramming to an enhanced glycolysis and lipid oxidation, whereas IF1 overexpression blunts ATP production rendering a quiescent cellular state of the adipocytes.
RESPONSE: We appreciate the time the reviewer invested in our work. Please, see our responses below in a point-by-point manner.
Reviewer #2 (Significance (Required)):
Claims and conclusions:
I have been surprised by the claim that IF1 protein is expressed in BAT under basal conditions and that its expression is downregulated in the cold-adapted tissue. In a previously published work by Forner et al., (2009) Cell Metab 10, 324-335 (reference 43), using a quantitative proteomic approach, it is reported that the mitochondrial proteome of mouse BAT under basal conditions contains a low content of IF1 (at level comparable to the background of the analysis). Remarkably, in the same study they show that there is roughly a 2-fold increase in the content of IF1 protein in mitochondria of BAT at 4d and 24d of cold-adaptation of mice. In other words, just the opposite of what is being reported in the Brunetta study.
RESPONSE: We are aware of the inconsistencies between our findings and Forner et al. (2009). We would like to point out that we have determined IF1 levels in BAT in two separate cohorts with the same findings, and in a third cohort, we observed IF1 mRNA levels to be downregulated in a much shorter timeframe. Our functional analysis is line with this pattern of regulation. A closer look at the supplementary table provided by Forner et al. (2009), shows that the increase in IF1 content following cold exposure is not supported and since we do not have further insight into the methods and analysis employed by the Forner et al. group, we believe a direct comparison should be avoided at the moment. Regarding the baseline levels of IF1 in BAT, the relatively high abundance of IF1 in BAT was also found by another independent group (https://doi.org/10.1101/2020.09.24.311076).
Importantly, the last paragraph of the discussion needs to be amended when mentioning the work of Forner et al. (ref.43). The mentioned reference studied changes in the mouse mitochondrial proteome not in human mitochondria, as it is stated in the alluded paragraph.
RESPONSE: We apologize for this overlook; we have now reworded our statement.
More puzzling are the western blots in Figures 1E, 1H, Supp. Fig. 1C, D were IF1 (ATP5IF1) is identified by a 17kDa band. However, in other Figures (Fig. 2, Fig. 3, Fig. 4, Supp Fig. 2) IF1 is identified by its well-known 12kDa band. What is the reason for this change in labeling of the IF1 band? The reactivity of the anti-IF1 antibody used? It has been previously documented that liver of C57BL/6J and FVB mouse strains do not express IF1 to a significant level when compared to heart IF1 levels (Esparza-Molto (2019) FASEB J. 33, 1836-1851). However, in Fig. 1E they show opposite findings, much higher levels of IF1 in liver than in heart as reveal by the 17kDa band. Moreover, in Fig. 1H they show the vanishing of the 17 kDa band under cold adaptation, which is not the migration of IF1 in gels as shown in their own figures (see Fig. 2, Fig. 3, Fig. 4, Supp Fig. 2). I am certainly reluctant to accept that the 17kDa band shown in Figures 1E, 1H, Supp. Fig. 1C, D is indeed IF1. Most likely it represents a non-specific protein recognized by the antibody in the tissue extracts analyzed. Cellular overexpression experiments of IF1 in WT1 cells (Fig. 2E) and primary brown adipocytes (Fig. 4B) also support this argument. Overall, I do not support publication of this study for the reasons stated above.
RESPONSE: We understand the concerns raised by the reviewer and apologize for the lack of details in our experimental procedures. While we used the same antibody in the study (Cell Sig. cat. Num. 8528, 1:500), we used two different types of gels. The difference in the molecular weight appearance of IF1 is likely through the migration of the protein in the agarose gel. By using custom-made gels, we observe the protein ~17kDa (Fig. 1 and 5), whereas by using commercial gels (Fig. 2, 3, and 4), we observe the protein closer to the predicted molecular weight (i.e. ~12kDa). Of note, gain and loss-of-function experiments, both in vivo as well as in vitro confirm this statement and the specificity of the antibody (Fig. 2, 3, 4, 5, Fig. EV2). In addition, when we ran a custom-made gel with primary BAT cells, we observed again the ~17kDa band (see Figure for the reviewer below). These experiments alongside the absence of other bands in the gels (see uncropped membranes in Supplementary Figure 1) make us conclude that the band we observe is indeed IF1. Nevertheless, we have now updated our methods section, so the reader is aware of our approaches. We hope the reviewer is satisfied with our additional experiments and editions throughout the manuscript.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
Summary:
In this manuscript, Brunneta et al describe the role of IF1 in brown adipose tissue activation using in vivo and in vitro experimental models. They observed that cold adaptation promotes a reduction in IF1 expression and an increase in the reverse activity of mitochondrial ATPase or Complex V. Based on these results, the authors explore the contribution of IF1 in this metabolic pathway by modeling the thermogenic process in differentiated primary brown adipocytes. They silenced and overexpressed IF1 in culture and studied their adrenergic stimulation under norepinephrine.
Major comments:
The experiments are well explained and the manuscript flows very well. There are several comments that should be addressed.
RESPONSE: We thank the reviewer for the kind words regarding our work.
- The authors measure ATP hydrolysis in isolated mitochondria from BAT in Figure 1. They observed that IF1 is decreased upon cold exposure and that ATP hydrolysis is increased. They assess protein levels of different OXPHOS proteins, including IF1 but not other proteins of Complex V (ATP5A) as they do in Figures 3 and 4. It is important to see that cold exposure only affects IF1 levels but not other proteins from Complex V. Does IF1/Complex V ratio change? RESPONSE: We thank the reviewer for this suggestion which was also raised by Reviewer #1. We have now measured complex V subunit A in our experimental protocol. We found that cold exposure does not impact complex V protein levels. Given the importance of this information, we have now included it in Figure 1 (Please, see the revised version) alongside the IF1/complex V ratio. In addition, we have now performed WBs in the BAT exposed for 3 and 7 days to thermoneutrality (~28°C) where we found that IF1 is not reduced following whitening of BAT by this approach whilst UCP1 and other mitochondrial proteins are reduced.
This set of data is now included in Figure 1I,K,L.
In Figure 2J, the drop in MMP is lower upon adrenergic stimulation than in Figure 2E. The same observation applies to other results when the reduction in MMP after NE addition is minimal. Why do the authors remove TMRM for the measurements of membrane potential? TMRM imaging is normally done in the presence of the dye in non-quenching mode. Treatments should be done prior to the addition of the dye and then TMRM should be added and left during the imaging analysis and measure in non-quenching mode. This might explain some of the above-mentioned points regarding the MMP data. Alternatively, if the dye is removed before the measurements, they should let the cells to adapt and so the dye equilibrates between mitochondria and cytosol. A more elegant method to measure membrane potential could be live-cell imaging. In addition, authors propose that mitochondrial membrane potential upon NE stimulation is maintained by reversal of ATP synthase. If this is the case, one would expect that addition of oligomycin in NE treated adipocytes would cause depolarization. However, in FigS2A this is not the case. Authors should comment on this in addition to considering more elegant approach to measure MMP.
RESPONSE: We apologize for the lack of details in the methods. All treatments (i.e., transfection and norepinephrine stimulation) were performed before the addition of TMRM. Indeed, this approach does not have the resolution compared to safranine in isolated mitochondria (Fig. 1D), which limits our interpretation regarding the dynamic role of IF1 on MMP in brown adipocytes. We have taken care to state the limitations of our method throughout the entire paper to avoid overinterpretation of our data. Regarding the removal of the dye before the measurements, our internal controls indicate that this procedure does not change the ability of our method to detect fluctuations in MMP (i.e., oligomycin and FCCP as internal controls). Nevertheless, as suggested by the reviewer, to test the time effect of the probe equilibrium (i.e., mitochondria versus cytosol) in our method, we loaded cells with TMRM 20 nM for 30 min and measured the fluorescence right after the removal of the probe/washing steps for another 10 min. We were not able to detect differences in the fluorescence in a time-dependent manner (see below). Therefore, we conclude the removal of TMRM does not influence the fluorescence of the probe in differentiated brown adipocytes.
+NE
-NE
In addition, we performed a similar experiment using TMRM in the quenching mode (200 nM), however, after the removal of TMRM, we added FCCP (1 mM) to the cells for 10 min under constant agitations at 37°C. This approach aimed to expel all TMRM that accumulated within the mitochondria in an MMP-dependent manner. Therefore, excluding the dynamic Brownian movement that we could have caused by the removal of the dye before the measurement mentioned by the reviewer. By doing this, we found the same effect of IF1 overexpression in the reduction of MMP in the presence of norepinephrine.
Protocol:
-
Transfection (24h) on day 4 of differentiation + 24h just normal media
-
30 min norepinephrine 10 µM
-
200 nM TMRM on top of NE
-
Washing step
-
Add FCCP 1 µM for 10 min, and read (The aim here was to release all TMRM accumulated inside of mitochondria in a MMP-dependent manner)
In summary, the data suggests the removal of the dye from the cells does not influence the fluorescence of TMRM, therefore, enabling us to make conclusions regarding the biological effects of IF1 manipulation in the MMP of brown adipocytes. Regarding the reverse mode of ATP synthase and the absence of effects with oligomycin, given oligomycin inhibits both rotation of ATP synthase and even uncoupled brown adipocytes respond to oligomycin (i.e. reduction in O2 consumption), the prediction of lowering MMP in the presence of oligomycin due to inhibition of the reserve mode of ATP synthase is more complicated than anticipated. Nevertheless, we have now addressed this topic in the discussion section. Lastly, we generally observe a reduction in MMP around 10-25% in differentiated adipocytes upon NE treatment (30 minutes, 10mM). However, due to the differentiation state of the cells, MMP response from norepinephrine fluctuated from experiment to experiment. Therefore, we did not compare experiments performed on different days or batches, but only within the same differentiation batch to reduce variability.
In Figure 2, in the model of siIF1, there is baseline more phosphorylation of AMPK than in the scramble control (pAMPK). However, this is not the case of p-p38MAPK. Do the authors have any explanation for those differences in baseline activation of the stress kinases when IF1 is silenced? In the same experimental group, addition of NE seems to have more effect in the scrambled than in siIF1, but the plotted data does not reflect these differences. In contrast, increase in pAMPK upon NE is higher in IF1 overexpressing cells compared to EV (Figure 2H), but again this is not reflected in western blot quantification (Figure 2I).
RESPONSE: Although some differences in pAMPK in the treatments were observed as gathered by the representative blots, these changes were not confirmed later in different biological replicates, therefore, the overall effect of IF1 manipulation in pAMPK does not change. Given we used this approach as quality control for our experiments to guarantee norepinephrine treatment works, we removed the pAMPK data from the study and kept p38 as a marker of adrenergic signaling activation (please see revised Fig. 2 in the main file).
Does NE promote decrease of IF1 expression in control (siScramble and EV) adipocytes? The authors should test it and see whether it goes in the same direction as the observations derived from the experiments in cold exposed mice. This is very important point, as it could explain the lack of an additional effect of IF1 silencing on NE-induced depolarization (Figure 2E).
RESPONSE: We thank the reviewer for this suggestion. In line, with the in vivo data, acute NE treatment in differentiated brown adipocytes does not change IF1 mRNA and protein levels. We have now added this information and the corresponding interpretation to the updated manuscript.
Does NE promote decrease of IF1 expression in the scramble and EV adipocytes? The authors should test it and see whether it goes in the same direction as the observations derived from the experiments in cold exposed mice.
RESPONSE: As this question is the same as #4, we believe the reviewer may have erroneously pasted this here.
For MMP data in Fig2, they should include significance between non treated and NE-treated groups. They say: "While UCP1 ablation did not cause any effect on MMP upon adrenergic stimulation...", but NE caused (probably significant) depolarization in siUCP1, which seems even stronger than depolarization in EV. This is opposite to what you would expect. They also didn't confirm UCP1 silencing with western blot.
RESPONSE: We thank the reviewer for this suggestion. We have now included the expected statistical main effect of NE upon MMP. Although the effects of IF1 overexpression were blunted when Ucp1 was silenced, we indeed still observed the same degree of reduction in MMP in brown adipocytes. This finding has two possible explanations, one is the effectiveness of the silencing protocol, therefore, residual Ucp1 expression may still play a role in this experiment; second, other ATP-consuming processes are able to lower MMP in a UCP1-independent manner. We have added this information to the updated manuscript to make the reader aware of our findings as well as the limitations of the method. Unfortunately, we were not able to detect UCP1 protein levels due to technical issues. Given the effects of IF1 overexpression were blunted when Ucp1 was silenced, we believe this functional outcome is sufficient, alongside mRNA levels, to demonstrate the effectiveness of our silencing protocol.
It has been established that decreased expression of IF1 promotes increase in the reverse activity of Complex V, ATP hydrolytic activity. Increase in ATP hydrolysis also affects ECAR. The authors should consider this when calculating the contribution of ATP glycolysis versus ATP OXPHOS since the ATP hydrolysis is also playing a role in the ECAR increase. The data should be reinterpreted. ATP hydrolysis should be measured in the situation where IF1 is silenced and overexpressed. These measurements can be done in cells using the seahorse.
RESPONSE: The only differences we observed in MMP are in the presence of norepinephrine (i.e. UCP-1-dependent proton conductance), which is not present during the estimation of ATP production by Seahorse analysis. Nevertheless, we have now improved the description of our experimental protocol and limitations to estimate ATP production to make it as clear as possible to the reader. Lastly, given the addition of in vivo gain-of-function experiments, we have now determined the ATP hydrolytic activity in this model, which offers a better understanding of the in vivo modulation of IF1 levels affecting ATP synthase activity (reverse mode). We hope the reviewer understands our motivation to focus on the in vivo model of gain-of-function regarding ATP synthase activity.
The authors use GAPDH as loading control in western blots. They should use another protein since GAPDH is part of the intermediary metabolism and plays a role in glycolysis.
RESPONSE: We understand the concern of the reviewer regarding the use of GAPDH as a loading control for the studies of metabolism. However, as can be observed by the western blot images, GAPDH levels do not change in our experimental models, therefore, we feel confident that our loading is homogeneous throughout our gels.
The authors show that reduction of IF1 involves more lipid utilization. They should include more experiments showing the connection of the metabolic adaptation in the absence of IF1 and some lipid imaging.
RESPONSE: We appreciate this suggestion. We have now performed Oil Red O staining in differentiated adipocytes following ablation of IF1. However, we did not observe any effect on lipid accumulation in primary brown adipocytes following IF1 knockdown. Therefore, the effects of IF1 ablation on lipid mobilization are not due to lipid content or reflected in lipid accumulation. We have now added this new information to the manuscript (please, see the revised form Fig. EV3).
In the text, "Despite this adjustment of experimental conditions, we did not detect any effect of IF1 ablation on mitochondrial oxygen consumption (Supplementary Fig. 3A,B)", this is true for baseline, NE-driven and ATP-linked respiration, but what about maximal respiration? There is a huge increase in IF1 knockdown... They should explain these results.
RESPONSE: We perform this experiment to address the question of whether the lipid mobilization induced by norepinephrine would uncouple mitochondria in a UCP1-independent manner. Given the absence of effect between scrambled and IF1 ablated cells in mitochondrial respiration in the presence of norepinephrine and following the addition of oligomycin, we concluded no effect of lipolysis-induced UCP1-independent uncoupling. However, as observed by the reviewer and consistent with other data within the study, the interaction between lipid metabolism and IF1 knockdown seems to affect maximal electron transport chain activity, which although interesting, was not the focus of the present study. Nevertheless, we have now acknowledged these findings and a possible explanation for them in the revised manuscript.
In Figure 3K they present OCR as % of baseline, but in a similar experiment in Figire 4G it is OCR/protein, they should make the Y axis consistent across experiments.
RESPONSE: We apologize for this overlook. We have now edited all the axes and labels for consistency.
The graphical abstract is confusing. In BAT there are two populations of mitochondria, the cytosolic and the mitochondria attached to the lipid droplet, peridroplet mitochondria (PDM). Upon adrenergic stimulation, PDM leave the lipid droplet and lipolysis takes place. The authors propose that upon adrenergic stimulation, IF1 is reduced and there is lipid mobilization. The part of the scheme where it says "fully recruited" should be removed or rewritten, since adrenergic stimulation is not compatible with mitochondria recruitment around the lipid droplet.
RESPONSE: Thank you for this input. Given the addition of new experiments and interpretation, we have now redrawn the graphical abstract and addressed this topic in the discussion section.
The title should be rewritten to better reflect the research presented in the manuscript.
RESPONSE: Thank you for this input. Given the addition of new experiments, we have now rewritten the title accordingly.
Minor comments:
Some of the Y axis should be corrected. For example, in Figure 2J, L and M should say % of EV untreated, Similarly, in Figure 2E, it should say % of scramble untreated. In Figure 3N, the Y axis is misspelled. All the Y axis referring to percentages should have the same scale for comparison purposes.
RESPONSE: Thank you for the proofreading. We have now edited the scales and labels to keep consistency.
The authors should describe better the results corresponding to Figure 2. There is a lot of information and they should improve the description pertaining the connection between the different pieces of data relating the different signaling pathways that are shown. For westerns in this Figure, they should provide some rationale (one to two sentences in the results section) as to why they are checking the expression of pAMPK and p38-MAPK.
RESPONSE: We have now edited the description of our results to make them as clear as possible.
Here are some comments referring to the methods section:
For Complex V hydrolytic activity, the reaction buffer contains 10mM Na-azide. I guess this is to inhibit respiration, but wouldn't azide also inhibit complex V at this concentration?
RESPONSE: We thank the reviewer for this question. To test that, we performed complex V activity in buffers containing or not 10 mM sodium azide. As demonstrated below, the presence of sodium azide in the buffer does not influence complex V activity in two different tissues with low and high complex V activity (BAT and heart, respectively).
Table 1. ATP synthase hydrolytic activity in the presence or absence of Na-azide.
BAT
Heart
+Na-azide
100 ± 43.01
100 ± 39.36
-Na-azide
82.6 ± 4.33
111.3 ± 43.32
+Na-azide + oligomycin
15.3 ± 4.32*
13.8 ± 14.01*
-Na-azide + oligomycin
14.2 ± 3.53*
11.9 ± 2.88*
Data presented as % of control (i.e. presence of Na-azide and absence of oligomycin) for both tissues independently. N = 2-3/condition. Statistical test: two-way ANOVA. * main effect of oligomycin (p In the mitochondrial isolation protocol, they say "mitochondria were centrifuged at 800g for 10min..." Will this speed pellet the mitochondria? I think this is a mistake in writing.
RESPONSE: We apologize for the lack of clarity. What was centrifuged at 800 g was the whole-tissue homogenate to discard cellular debris, before pelleting mitochondria at 5000 g. We have now corrected this mistake in the methods section.
For the safranin-O experiment, they don't mention mitochondrial substrate used, probably it's in the reference that they provide, but I think it should be included in the text.
RESPONSE: We did not use any substrate because our goal was to test the contribution of ATP synthase to mitochondrial membrane potential. For that, we inhibited proton movement within the ETC with antimycin A and through UCP1 with GDP (see Methods). We have now edited our Method’s description to make sure the reader is aware of our approach.
Reviewer #3 (Significance (Required)):
The manuscript is well written, and it flows well when reading. However, there are some additional experiments that need to be performed to reach the conclusions the authors claim.
RESPONSE: We thank the reviewer for the positive commentaries regarding our work and hope to have answered the open questions with the edits and new experiments.
The role of ATP hydrolysis in BAT thermogenesis is novel and interesting as it can sed some light onto potential approaches to promotes BAT activation.
Reviewer #4 (Evidence, reproducibility and clarity (Required)):
This is an interesting investigation into the activity of IF1 in brown adipocytes. The findings are innovative and the conclusion is well-supported by the data. The conclusion is in line with previous reports on IF1 activities in other cell types, particularly in terms of its regulation of FoF1-ATPase. The authors have executed an exceptional job in designing the study, preparing the figures, and writing the manuscript. Overall, this study significantly contributes to the understanding of IF1 activity in brown adipocytes and its role in thermogenesis.
RESPONSE: We thank the reviewer for the kind words. Please, find below our answers in a point-by-point manner.
Reviewer #4 (Significance (Required)):
The study demonstrates involvement of IF1 in regulating thermogenesis in brown adipocytes, which is a unique aspect not covered in existing literature. Advantage of the study is well-designed cellular studies. The major weakness is lack of proof of conclusion in vivo. There are a few minor concerns that should be addressed to further enhance quality of the manuscript.
RESPONSE: We have now included two in vivo models, whole-body IF1 KO mice and BAT-injected IF1 overexpression to test the role of IF1 in BAT biology. The whole dataset is included in the main manuscript, where we conclude the BAT IF1 overexpression partially suppresses b3-adrenergic induction of thermogenesis alongside a reduction (overall and UCP1 dependent) in mitochondrial oxygen consumption. Also, similar to our in vitro experiments, IF1 KO mice did not present any difference in adrenergic-stimulated oxygen consumption.
- Current discussion does not mention the regulation of IF1 protein by the cAMP/PKA pathway. This point should be included to provide a comprehensive understanding of the regulatory mechanisms of IF1 protein. RESPONSE: Thank you for this suggestion. We have now added this topic to the discussion.
It has been reported that IF1 also influences the structure of mitochondrial crista. Considering the observed changes with IF1 knockdown, it would be valuable to discuss this activity in relation to the findings of the study.
RESPONSE: We discussed the implications of IF1 modulation in mitochondrial morphology in the revised manuscript.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #4
Evidence, reproducibility and clarity
This is an interesting investigation into the activity of IF1 in brown adipocytes. The findings are innovative and the conclusion is well-supported by the data. The conclusion is in line with previous reports on IF1 activities in other cell types, particularly in terms of its regulation of FoF1-ATPase. The authors have executed an exceptional job in designing the study, preparing the figures, and writing the manuscript. Overall, this study significantly contributes to the understanding of IF1 activity in brown adipocytes and its role in thermogenesis.
Significance
The study demonstrates involvement of IF1 in regulating thermogenesis in brown adipocytes, which is a unique aspect not covered in existing literature.Advantage of the study is well-designed cellular studies. The major weakness is lack of proof of conclusion in vivo. There are a few minor concerns that should be addressed to further enhance quality of the manuscript.
- Current discussion does not mention the regulation of IF1 protein by the cAMP/PKA pathway. This point should be included to provide a comprehensive understanding of the regulatory mechanisms of IF1 protein.
- It has been reported that IF1 also influences the structure of mitochondrial crista. Considering the observed changes with IF1 knockdown, it would be valuable to discuss this activity in relation to the findings of the study.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Summary:
In this manuscript, Brunneta et al describe the role of IF1 in brown adipose tissue activation using in vivo and in vitro experimental models. They observed that cold adaptation promotes a reduction in IF1 expression and an increase in the reverse activity of mitochondrial ATPase or Complex V. Based on these results, the authors explore the contribution of IF1 in this metabolic pathway by modeling the thermogenic process in differentiated primary brown adipocytes. They silenced and overexpressed IF1 in culture and studied their adrenergic stimulation under norepinephrine.
Major comments:
The experiments are well explained and the manuscript flows very well. There are several comments that should be addressed.
- The authors measure ATP hydrolysis in isolated mitochondria from BAT in Figure 1. They observed that IF1 is decreased upon cold exposure and that ATP hydrolysis is increased. They assess protein levels of different OXPHOS proteins, including IF1 but not other proteins of Complex V (ATP5A) as they do in Figures 3 and 4. It is important to see that cold exposure only affects IF1 levels but not other proteins from Complex V. Does IF1/Complex V ratio change?
- In Figure 2J, the drop in MMP is lower upon adrenergic stimulation than in Figure 2E. The same observation applies to other results when the reduction in MMP after NE addition is minimal. Why do the authors remove TMRM for the measurements of membrane potential? TMRM imaging is normally done in the presence of the dye in non-quenching mode. Treatments should be done prior to the addition of the dye and then TMRM should be added and left during the imaging analysis and measure in non-quenching mode. This might explain some of the above-mentioned points regarding the MMP data. Alternatively, if the dye is removed before the measurements, they should let the cells to adapt and so the dye equilibrates between mitochondria and cytosol. A more elegant method to measure membrane potential could be live-cell imaging. In addition, authors propose that mitochondrial membrane potential upon NE stimulation is maintained by reversal of ATP synthase. If this is the case, one would expect that addition of oligomycin in NE treated adipocytes would cause depolarization. However, in FigS2A this is not the case. Authors should comment on this in addition to considering more elegant approach to measure MMP
- In Figure 2, in the model of siIF1, there is baseline more phosphorylation of AMPK than in the scramble control (pAMPK). However, this is not the case of p-p38MAPK. Do the authors have any explanation for those differences in baseline activation of the stress kinases when IF1 is silenced? In the same experimental group, addition of NE seems to have more effect in the scrambled than in siIF1, but the plotted data does not reflect these differences. In contrast, increase in pAMPK upon NE is higher in IF1 overexpressing cells compared to EV (Figure 2H), but again this is not reflected in western blot quantification (Figure 2I).
- Does NE promote decrease of IF1 expression in control (siScramble and EV) adipocytes? The authors should test it and see whether it goes in the same direction as the observations derived from the experiments in cold exposed mice. This is very important point, as it could explain the lack of an additional effect of IF1 silencing on NE-induced depolarization (Figure 2E).
- Does NE promote decrease of IF1 expression in the scramble and EV adipocytes? The authors should test it and see whether it goes in the same direction as the observations derived from the experiments in cold exposed mice.
- For MMP data in Fig2, they should include significance between non treated and NE-treated groups. They say: "While UCP1 ablation did not cause any effect on MMP upon adrenergic stimulation...", but NE caused (probably significant) depolarization in siUCP1, which seems even stronger than depolarization in EV. This is opposite to what you would expect. They also didn't confirm UCP1 silencing with western blot.
- It has been establish that decreased expression of IF1 promotes increase in the reverse activity of Complex V, ATP hydrolytic activity. Increase in ATP hydrolysis also affects ECAR. The authors should consider this when calculating the contribution of ATP glycolysis versus ATP OXPHOS since the ATP hydrolysis is also playing a role in the ECAR increase. The data should be reinterpreted. ATP hydrolysis should be measured in the situation where IF1 is silenced and overexpressed. These measurements can be done in cells using the seahorse.
- The authors use GAPDH as loading control in western blots. They should use another protein since GAPDH is part of the intermediary metabolism and plays a role in glycolysis.
- The authors show that reduction of IF1 involves more lipid utilization. They should include more experiments showing the connection of the metabolic adaptation in the absence of IF1 and some lipid imaging.
- In the text, "Despite this adjustment of experimental conditions, we did not detect any effect of IF1 ablation on mitochondrial oxygen consumption (Supplementary Fig. 3A,B)", this is true for baseline, NE-driven and ATP-linked respiration, but what about maximal respiration? There is a huge increase in IF1 knockdown... They should explain these results.
- In Figure 3K they present OCR as % of baseline, but in a similar experiment in Figire 4G it is OCR/protein, they should make the Y axis consistent across experiments.
- The graphical abstract is confusing. In BAT there are two populations of mitochondria, the cytosolic and the mitochondria attached to the lipid droplet, peridroplet mitochondria (PDM). Upon adrenergic stimulation, PDM leave the lipid droplet and lipolysis takes place. The authors propose that upon adrenergic stimulation, IF1 is reduced and there is lipid mobilization. The part of the scheme where it says "fully recruited" should be removed or rewritten, since adrenergic stimulation is not compatible with mitochondria recruitment around the lipid droplet.
- The title should be rewritten to better reflect the research presented in the manuscript.
Minor comments:
- Some of the Y axis should be corrected. For example, in Figure 2J, L and M should say % of EV untreated, Similarly, in Figure 2E, it should say % of scramble untreated. In Figure 3N, the Y axis is misspelled. All the Y axis referring to percentages should have the same scale for comparison purposes.
- The authors should describe better the results corresponding to Figure 2. There is a lot of information and they should improve the description pertaining the connection between the different pieces of data relating the different signaling pathways that are shown. For westerns in this Figure, they should provide some rationale (one to two sentences in the results section) as to why they are checking the expression of pAMPK and p38-MAPK.
Here are some comments referring to the methods section:
- For Complex V hydrolytic activity, the reaction buffer contains 10mM Na-azide. I guess this is to inhibit respiration, but wouldn't azide also inhibit complex V at this concentration?
- In the mitochondrial isolation protocol, they say "mitochondria were centrifuged at 800g for 10min..." Will this speed pellet the mitochondria? I think this is a mistake in writing.
- For the safranin-O experiment, they don't mention mitochondrial substrate used, probably it's in the reference that they provide, but I think it should be included in the text.
Significance
The manuscript is well written, and it flows well when reading. However, there are some additional experiments that need to be performed to reach the conclusions the authors claim.
The role of ATP hydrolysis in BAT thermogenesis is novel and interesting as it can sed some light onto potential approaches to promotes BAT activation.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Summary
The manuscript by Brunetta and colleagues conveys the message that the ATPase inhibitory factor 1 (IF1) protein, a physiological inhibitor of mitochondrial ATP synthase, is expressed in BAT of C57BL/6J mice. Moreover, upon cold-adaption of mice they report that the content of IF1 in BAT is downregulated to sustain the mitochondrial membrane potential (MMP) as a result of reverse functioning of the enzyme. In experiments of loss and gain of function of IF1 in cultured brown adipocytes and WT cells they further stress that IF1 silencing promotes metabolic reprogramming to an enhanced glycolysis and lipid oxidation, whereas IF1 overexpression blunts ATP production rendering a quiescent cellular state of the adipocytes.
Significance
Claims and conclusions:
I have been surprised by the claim that IF1 protein is expressed in BAT under basal conditions and that its expression is downregulated in the cold-adapted tissue. In a previously published work by Forner et al., (2009) Cell Metab 10, 324-335 (reference 43), using a quantitative proteomic approach, it is reported that the mitochondrial proteome of mouse BAT under basal conditions contains a low content of IF1 (at level comparable to the background of the analysis). Remarkably, in the same study they show that there is roughly a 2-fold increase in the content of IF1 protein in mitochondria of BAT at 4d and 24d of cold-adaptation of mice. In other words, just the opposite of what is being reported in the Brunetta study. Importantly, the last paragraph of the discussion needs to be amended when mentioning the work of Forner et al. (ref.43). The mentioned reference studied changes in the mouse mitochondrial proteome not in human mitochondria, as it is stated in the alluded paragraph.
More puzzling are the western blots in Figures 1E, 1H, Supp. Fig. 1C, D were IF1 (ATP5IF1) is identified by a 17kDa band. However, in other Figures (Fig. 2, Fig. 3, Fig. 4, Supp Fig. 2) IF1 is identified by its well-known 12kDa band. What is the reason for this change in labeling of the IF1 band? The reactivity of the anti-IF1 antibody used? It has been previously documented that liver of C57BL/6J and FVB mouse strains do not express IF1 to a significant level when compared to heart IF1 levels (Esparza-Molto (2019) FASEB J. 33, 1836-1851). However, in Fig. 1E they show opposite findings, much higher levels of IF1 in liver than in heart as reveal by the 17kDa band. Moreover, in Fig. 1H they show the vanishing of the 17 kDa band under cold adaptation, which is not the migration of IF1 in gels as shown in their own figures (see Fig. 2, Fig. 3, Fig. 4, Supp Fig. 2). I am certainly reluctant to accept that the 17kDa band shown in Figures 1E, 1H, Supp. Fig. 1C, D is indeed IF1. Most likely it represents a non-specific protein recognized by the antibody in the tissue extracts analyzed. Cellular overexpression experiments of IF1 in WT1 cells (Fig. 2E) and primary brown adipocytes (Fig. 4B) also support this argument.
Overall, I do not support publication of this study for the reasons stated above.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary: In the present manuscript, the authors present data in support of their primary discovery that "IF1 controls UCP1-dependent mitochondrial bioenergetics in brown adipocytes". The opening figure convincingly demonstrates that IF1 expression is cold-exposure dependent. They then go on to show that loss of IF1 has functional consequences that would be predicted based on IF1's know role as a regulator of ATP hydrolysis by CV. They go on to make a few additional claims, succinctly detailed in the Discussion section. Specific claims include the following: 1) IF1 is downregulated in cold-adapted BAT, allowing greater hydrolytic activity of ATP synthase by operating in the reverse mode; 2) when IF1 is upregulated in brown adipocytes in vitro mitochondria unable to sustain the MMP upon adrenergic stimulation, 3) IF1 ablation in brown adipocytes phenocopies the metabolic adaptation of BAT to cold, and 4) IF1 overexpression blunts mitochondrial respiration without any apparent compensator response in glycolytic activity. The claims described above are well supported by the evidence. The manuscript is very well written, figures are clear and succinct. Overall, the quality of the work is very high. Given that IF1 is implicated across many fields of study, the novel discovery of IF1 as a regulator of brown adipose mitochondrial bioenergetics will be of significance across several fields. That said, a few areas of concern were apparent. Concerns are detailed in the "Major" and "Minor" comments section below. Additional experiments do not appear to be required, assuming the authors adequately acknowledge the limitations of the study and either remove or qualify speculative claims.
Major Comments:
- The authors convincingly demonstrate that IF1 expression is specifically down-regulated in BAT upon cold-exposure. These data strongly implicate a role for IF1 in BAT bioenergetics, a major claim of the authors and a novel finding herein. Additional major strengths of the paper, which provide excellent scientific rigor include the use of both loss of function and gain of function approaches for IF1. In addition, the mutant IF1 experiments are excellent, as they convincingly show that the effects of IF1 are dependent on its ability to bind CV.
- Regarding Figure 1 - Did the content of ATP synthase change? In figure 1A-B, the authors show that ATPase activity of CV is higher in cold-adapted mice. While this result could be due to a loss of IF1, it could also be due to a higher expression of CV. To control for this, the authors should consider blotting for CV, which would allow for ATPase activity to be normalized to expression.
- Regarding MMP generated specifically by ATP hydrolysis at CV, the reversal potential for ANT occurs at a more negative MMP than that of CV (PMID: 21486564). Because reverse transport of ATP (cytosol to matrix) via ANT will also generate a MMP, it is speculative to state that the MMP in the assay is driven by ATP hydrolysis at CV. It is possible and maybe even likely that the majority of the MMP is driven by ANT flux, which in turn limits the amount of ATP hydrolyzed by CV. Admittedly, it is very challenging to different MMP from ANT vs that from CV, thus the authors simply need to acknowledge that the specific contribution of ATP hydrolysis to MMP remains to be fully determined. That said, the fact that ATP-dependent MMP tracks with IF1 expression does certainly implicate a role for ATP hydrolysis in the process. The authors should consider including a discussion of the ambiguity of the assay to avoid confusion. A role for ANT likely should be incorporated in the Fig. 1J cartoon.
- Regarding the lack of effect of IF1 silencing on MMP, it is possible that IF1 total protein levels are simply lower in cultured brown fat cells relative to tissue? The authors could consider testing this by blotting for IF1 and CV in BAT and brown fat cells. The ratio of IF1/ATP5A1 in tissue versus cells may provide some amount of mechanistic evidence as to their findings.
- The calculation of ATP synthesis from respiration sensitive to oligomycin has many conceptual flaws. Unlike glycolysis, where ATP is produced via substrate level phosphorylation, during OXPHOS, the stoichiometry of ATP produced per 2e transfer is not known in intact brown adipose cells. This is a major limitation of this "calculated ATP synthesis" approach that is beginning to become common. Such claims are speculative and thus likely do more harm than good. In addition to ANT and CV, there are many proton-consuming reactions driven by the proton motive force (e.g., metabolite transport, Ca2+ cycling, NADPH synthesis). Although it remains unclear how much proton conductance is diverted to non ATP synthesis dependent processes, it seems highly likely that these processes contribute to respiratory demand inside living cells. Moreover, just as occurs with UCP1 in response to adrenergic stimuli, proton conductance across the various proton-dependent processes likely changes depending on the cellular context, which is another reason why using a fixed stoichiometry to calculate how much ATP is produced from oxygen consumption is so highly flawed. Maximal P/O values that are often used for NAD/FAD linked flux are generated using experimental conditions that favor near complete flux through the ATP synthesis system (supraphysiological substrate and ADP levels). The true P/O value inside living cells is likely to be lower.
- Why are the results in Figure 3K expressed as a % of basal? Could the authors please normalize the OCR data to protein and/or provide a justification for why different normalization strategies were used between 3K and 3M?
- The authors claim that IF1 overexpression lowers ATP production via OXPHOS. However, given the major limitations of this assay (ass discussed above), these claims should be viewed as speculation. This needs to be addressed by the authors as a major limitation. The fact that the ATP/ADP levels did not change do not support of reduction in ATP production, as claimed in the title of Figure 4.
- In the discussion, the authors state "However, considering that IF1 inhibits F1-ATP synthase in a 1:1 stoichiometric ratio, the relatively higher expression of IF1 in BAT at room temperature could represent an additional inhibitory factor for ATP synthesis in this tissue." This does not appear to be correct. Although IF1 has been suggested to partially lower maximal rates of ATP synthesis rates, most of this evidence comes from over-expression experiments. According to the current understanding of IF1-CV interaction, the protein is expelled from the complex during rotation in favor of ATP synthesis (PMID: 37002198). It is far more likely that ATP synthesis is low in BAT mitochondria due to the low CV expression. Relative to heart and when normalized to mitochondrial content, CV expression in BAT mitochondria is about 10% that of heart (PMID: 33077793).
- The last sentence of the manuscript states, "Given the importance of IF1 to control brown adipocyte energy metabolism, lowering IF1 levels therapeutically might enhance approaches to enhance NST for improving cardiometabolic health in humans." This sentence seems at odds with the evidence that IF1 levels go up, not down, in human BAT upon cold exposure.
Minor Comments:
- The term "anaerobic glycolysis" is used throughout. All experiments were performed under normoxic conditions, thus the correct term is "aerobic glycolysis.
- Only male mice were used in the study, could the authors please provide a justification for this?
Significance
Overall, the quality of the work is very high. Given that IF1 is implicated across many fields of study, the novel discovery of IF1 as a regulator of brown adipose mitochondrial bioenergetics will be of significance across several fields.
My expertise is in mitochondrial thermodynamics; thus, I do not feel there are any parts of the paper that I do not have sufficient expertise to evaluate.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Manuscript number: RC-2023-02218R
Corresponding author(s): Steven, McMahon
1. General Statements [optional]
*We were pleased to receive the encouraging critiques and very much appreciate the Reviewer's specific comments and suggestions. In this revised version of our manuscript, we have made a number of substantive additions and modifications in response to these comments/suggestions. We hope you agree that the study is now improved to the point where it is suitable for publication. *
2. Point-by-point description of the revisions
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
Summary This study describes efforts to characterize differences in the roles of the two related human decapping factors Dcp1a and Dcp1b by assessing mRNA decay and protein associations in knockdown and knockout cell lines. The authors conclude that these proteins are non-redundant based on the observations that loss of DCp1a versus Dcp1b impacts the decapping complex (interactome) and the transcriptome differentially.
Major comments • While the experiments appear to be well designed and executed and the data of generally high quality, the conclusions are drawn without sufficient consideration for the fact that these two proteins form a heterotrimeric complex. The authors assume that there are distinct homotrimeric complexes rather than a single complex with both proteins in. Homotrimers may have new/different functions not normally seen when both proteins are expressed. Thus while it is acceptable to infer that the functions of these two proteins within the decapping complex are distinct, it is not clear that they act separately, or that complexes naturally exist without one or the other. A careful evaluation of the relative ratios of Dcp1a and b overall and in decapping complexes would be informative if the authors want to make stronger statements about the roles of these two factors.
RESPONSE: Thank you for this valuable comment. We have substantially edited the manuscript to incorporate these points. Examples include a detailed analysis of iBAQ values for the DDX6, DCP1a, and DCP1b interactomes (which now allows us to estimate the ratios of DCP1a and DCP1b in these complexes) and cellular fractionation to interrogate complex integrity (using Superose 6).
- The concept of buffering is not adequately introduced and the interpretation of observations that RNAs with increased half life do not show increased protein abundance - that Dcp1a/b are involved in transcript buffering is nebulous. In order to support this interpretation, the mRNA abundances (NOT protein abundances) should be assessed, and even then, there is no way to rule out indirect effects. RESPONSE: Thank you for this comment. In the revised version of the manuscript, we introduced the concept of transcript buffering at an earlier stage as one of the potential explanations for our findings. We were also able to use a new algorithm (grandR) to estimate half-lives and synthesis rates from our data. These new data add strength to the argument that DCP1a and DCP1b are linked to transcript buffering pathways.
• It might be interesting to see what happens when both factors are depleted to get an idea of the overall importance of each one.
RESPONSE: In our work we tried to emphasize the differences between the two paralogs. We believe that doing double knockout or knockdown would mask the distinct impacts of the paralogs. In data not included in this study, we have shown that cells lacking both DCP1a and DCP1b are viable. We did check PARP cleavage in the CRISPR generated cell pools of DCP1a KO, DCP1b KO, and the double KO. The WB measuring the PARP cleavage is shown in the supplemental material (Supplementary Material: Replicates)
• The algorithms etc used for data analysis should be included at the time of publication. Version number and settings used for SMART to define protein domains, and webgestalt should be indicated
RESPONSE: We apologize for this oversight. Version number and settings used for the webtools (SMART, Webgestalt) are now included. The analysis pipeline for half-lives and synthesis rates estimation as well as all the files and the code needed to generate the figures in the paper are available on zenodo (https://zenodo.org/records/10725429).
• Statistical analysis is not provided for the IP experiments, the number of replicates performed is not indicated and quantification of KD efficiency are not provided.
RESPONSE: The number of replicates performed in each experiment is now clearly indicated and quantifications of knockdown efficiency are provided (Supplemental Figure 3A and 3B, Figure 3A, Figure 3B).
• The possibility that the IP Antibody interferes with protein-protein interactions is not mentioned.
RESPONSE: Thank you for this comment. The revised manuscript includes a discussion of the antibody epitope location and the potential for impact on protein-protein interactions.
Minor comments • P4 - "This translational repression of mRNA associated with decapping can be reversed, providing another point at which gene expression can be regulated (21)" - implies that decapping can be reversed or that decapped RNAs are translated. I don't think this is technically true.
RESPONSE: There have been several studies that document the reversal of decapping. These findings are summarized in the following reviews.
Schoenberg, D. R., & Maquat, L. E. (2009). Re-capping the message. Trends in biochemical sciences, 34(9), 435-442.
Trotman, J. B., & Schoenberg, D. R. (2019). A recap of RNA recapping. Wiley Interdisciplinary Reviews: RNA, 10(1), e1504.
-
P11 - how common is it for higher eukaryotes to have 2 DCP genes? *RESPONSE: Metazoans have 2 DCP1 genes. *
-
Fig S1 - says "mammalian tissues" in the text but the data is all human. The statement that "expression analyses revealed that DCP1a and DCP1b have concordant rather than reciprocal expression patterns across different mammalian tissues (Supplemental Figure 1)" is a bit misleading as no evidence for correlation or anti-correlation is provided. Also co-expression is not strong support for the idea that these genes have non-redundant functions. Both genes are just expressed in all tissues - there's no evidence provided that they are concordantly expressed. In bone marrow it may be worth noting that one is high and the other low - i.e. reciprocal. *RESPONSE: We appreciate this comment. We have corrected the interpretation of the aforementioned dataset. We have also incorporated a more detailed discussion in the text of the paper. As the Reviewer pointed out, there are a subset of tissues where their expression appears to be reciprocal. *
-
Fig 1A - it is not clear what the different colors mean. Does Sc DCP1 have 1 larger EVH or 2 distinct ones. Are the low complexity regions in Sc DCP2 the SLiMs. *RESPONSE: Thank you for this comment. We have corrected this ambiguity to reflect that Sc DCP1 has one EVH1 domain that is interconnected by a flexible hinge. The low-complexity regions typically contain short linear motifs (SLIMs), however, not all low-complexity regions have been verified to contain them. In the figure, only low-complexity regions are shown. The text of the paper refers only to verified SLIMs . *
-
P11 - why were HCT116 cells selected? RESPONSE: HCT116 cells are an easily transfectable human cell line and have been widely used in biochemical and molecular studies, including studies of mRNA decapping (see references below). Since decapping is impacted by viral proteins we avoided the use of other commonly used cell models such as HEK293T or HeLa.
https://pubmed.ncbi.nlm.nih.gov/?term=decapping+hct116&sort=date&size=200
-
Fig 1B - what are the asterisks by the RNA names? Might be worth noting that over-expression of DCP1b reduced IP of DCP1a. There's no quantification and no indication of the number of times this experiment was repeated. Data from replicates and quantification of the knockdown efficiency in each replicate would be nice to see. *RESPONSE: Thank you for this comment. Asterisks indicate that those bands were from a second gel, as DCP1a and DCP1b run at approximately the same molecular weight. We have now included a note in our figure legend to indicate this. The knockdown efficiency is provided (Figure 3 and Supplemental Figure 3). We also noted the number of replicas for each IP in figure 1. The replicas are provided as supplementary material (Supplementary Materials: Replicates). *
-
Fig 1C/1D - why are there 3 bands in the DCP1a blot? Quantification of the IP bands is necessary to say whether there is an effect or not of over-expression/KO. RESPONSE: The additional bands in DCP1a blots are background. When we stained the whole blot for DCP1a, in cells which with complete DCP1a KO cells (clone A3), these bands still appear (Supplementary Material: Validation of the KO clones). Quantifications of the bands in the overexpression experiments is now provided.
-
Fig 3 - is it possible that differences are due to epitope positions for the antibodies used for IP? RESPONSE: We do not believe so. DCP1a antibody binds roughly 300-400 residues on DCP1a, and DCP1b antibody binds around Val202. Antibodies therefore do not bind DCP1a or DCP1b low-complexity regions (which are largely responsible for interacting with the decapping complex interactome). Antibodies don't bind the EVH1 domains or the trimerization domain, which are needed for their interaction with DCP2 and each other.
-
Fig 5A - the legend doesn't match the colors in the figure. It is not clear how the pRESPONSE: Thank you for this comment. We have corrected this issue in the revised version of the paper. High-confidence proteins are those with pRESPONSE: Thank you for this comment. We have corrected this issue in the revised version of the paper.*
-
There are a few more recent studies on buffering that should be cited and more discussion of this in the introduction is necessary if conclusions are going to be drawn about buffering. *RESPONSE: We have included a discussion of transcript buffering in the introduction. *
-
The heatmaps in figure 2 are hard to interpret. RESPONSE: To clarify the heatmaps, we included a more detailed description in the figure legends, have enlarged the heatmaps themselves, and have added more extensive labeling.
Reviewer #1 (Significance (Required)):
• Strengths: The experiments appear to be done well and the datasets should be useful for the field. • Limitations: The results are overinterpreted - different genes are affected by knocking down one or other of these two similar proteins but this does not really tell us all that much about how the two proteins are functioning in a cell where both are expressed. • Audience: This study will appeal most to a specialized audience consisting of those interested in the basic mechanisms of mRNA decay. Others may find the dataset useful. • This study might complement and/or be informed by another recent study in BioRXiv - https://doi.org/10.1101/2023.09.04.556219 • My field of expertise is mRNA decay - I am qualified to evaluate the findings within the context of this field. I do not have much experience of LC-MS-MS and therefore cannot evaluate the methods/analysis of this part of the study.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
The authors provide evidence that Dcp1a and Dcp1b - two paralogous proteins of the mRNA decapping complex - may have divergent functions in a cancer cell line. In the first part, the authors show that interaction of Dcp2 with EDC4 is diminished upon depletion of Dcp1a but not affected by depletion of Dcp1b. The results have been controlled by overexpression of Dcp1b as it may be limiting factor (i.e. expression levels too low to compensate for depletion of Dcp1a reduced interaction with EDC3/4 while depletion of Dcp1b lead to opposite and increase interactions). They then defined the protein interactome of DDX6 in parental and Dcp1a or Dcp1b depleted cells. Here, the authors show some differential association with EDC4 again, which is along results shown in the first part. The authors further performed SLAM-seq and identified subsets of mRNA whose decay rates are common but also different upon depletion with Dcp1a and Dcp1b. Interestingly, it seems that Dcp1a preferentially targets mRNAs for proteins regulating lymphocyte differentiation. To further test whether changes in RNA decay rates are also reflected at the protein levels, they finally performed an MS analysis with Dcp1a/b depleted cells. However no significant overlap with mRNAs showing altered stability could be observed; and the authors suggested that the lack of congruence reflects translational repression.
Major comments: 1. While functional difference between Dcp1a and Dcp1b are interesting and likely true, there are overinterpretations that need correction or further evidence for support. Sentences like "DCP1a regulates RNA cap binding proteins association with the decapping complex and DCP1b controls translational initiation factors interactions (Figure 2E)" sound misleading. While differential association with proteins has been recognised with MS-data, it does not necessary implement an active process of control/regulation. To make the claim on 'control/regulation', and inducible system or introduction of mutants would be required.
RESPONSE: This set of comments were particularly useful in helping us refine the presentation of our findings. We have edited our manuscript to be more specific about the limits of our data.
- The MS analysis is not clearly described in the text and it is unclear how authors selected high-confident proteins. The reader needs to consider the supplemental tables to find out what controls were used. Furthermore, the authors should show correlation plots of MS data between replicates. For instance, there seems to be limited correlation among some of the replicates (e.g. Dcp1b_ko3 sample, Fig. 2c). Any explanation in this variance?
*RESPONSE: We have now included a clear description of how all high-confidence proteins were selected in the Methods and Results sections. The revised manuscript also includes a more thorough description of the controls used and the number of replicates for individual experiments. The PCA plots have now been included where appropriate. The variance in this sample is likely technical. *
- GO analysis for the proteome analysis should consider the proteome and not the genome as the background. The authors should also indicate the corrected P-values (multiple testing) FDRs.
*RESPONSE: Webgestalt uses a reference set of IDs to recognize the input IDs, and it does not use it for the background analysis in the classical sense. We repeated a subset of our proteome analyses using the 'genome-protein coding' as background and obtained the same result as in our original analysis. All ontology analyses now include raw p-values and/or FDRs when appropriate. *
- Fig 2E. The figures display GO enrichments needs better explanation and additional data can be added. The enrichment ratio is not explained (is this normalised?) and p-values and FDRs, number of proteins in respective GO category should be added. *RESPONSE: More thorough explanations of the GO enrichments are now included. The supplemental data contains all p-values (raw and adjusted), as well as the number of proteins in each GO category. The Enrichment ratio is normalized and contains information about the number of proteins that are redundant in multiple groups. GO Ontology analyses are now displayed with p-values and/or FDR values, and in this case the enrichment ratio contains information regarding the number of proteins found in our input set and the number of expected proteins in the GO group. The network analysis shows the FDR values and the number of proteins found in the groups compared. *
Minor: 5. These studies were performed in a colorectal carcinoma cell line (HCT116). The authors should justify the choice of this specialised cell line. Furthermore, one wonders whether similar conclusions can be drawn with other cell lines or whether findings are specific to this cancer line.
RESPONSE: The study that is currently in pre-print in BioRxiv (https://doi.org/10.1101/2023.09.04.556219*) utilized HEK293Ts and found similar results to ours when examining the various relationships between the core decapping core members. *
-
Fig. 1B. It is unclear what DCP1b* refers to? There are bands of different size that are not mentioned by the authors - are those protein isoforms or what are those referring to? A molecular marker should be added to each Blots. Uncropped Western images and markers should be provided in the Supplement. *RESPONSE: The asterisk indicates that these images came from a second western blot gel (DCP1a and DCP1b have a similar molecular weight and cannot be probed on the same membrane). Uncropped western blot images and markers (as available) are provided in the supplement. *
-
MS data submitted to public repository with access. No. indicated in the manuscript.
RESPONSE: MS data is submitted as supplementary datasets to the paper. It contains the analyzed data as well as the LCMSMS output. We are in the process of submitting the raw LSMSMS data to a public repository.
Fig 3. A Venn Diagram displaying the overlap of identified proteins should be added. GO analysis should be done considering the proteome as background (as mentioned above).
*RESPONSE: A Venn diagram showing the overlap among the proteins identified is now included in the revised version. *
Reviewer #2 (Significance (Required)):
Overall, this is a large-scale integrative -omics study that suggest functional difference between Dcp1 paralogues. While it seems clear that both paralogous have some different functions and impact, there are overinterpretations in place and further evidence would to be provided to substantiate conclusions made in the paper. For instance, while the interactions with Dcp2/Ddx6 in the absence of Dcp1a,b with EDC4/3 may be altered (Fig. 1, 2), the functional implications of this changed associations remains unresolved and not further discussed. As such, it remains somehow disconnected with the following experiments and compromises the flow of the study. The observed differences in decay-rates for distinct functionally related sets of mRNAs is interesting; however, it remains unclear whether those are direct or rather indirect effects. This is further obscured by the absence of any correlation to changes in protein levels, which the authors interpreted as 'transcriptional buffering'. In this regard, it is puzzling how the authors can make a statement about transcriptional buffering? While this may be an interesting aspect and concept of the discussion, there is no primary data showing such a functional impact.
As such, the study is interesting as it claims functional differences between DCP1a/b paralogous in a cancer cell line. Nevertheless, I am not sure how trustful the MS analysis and decay measurements are as there is not further validation. It woudl be interesting if the authors could go a bit further and draw some hypothesis how the selectivty could be achieved i.e interaction with RNA-binding proteins that may add some specificity towards the target RNAs for differential decay. As such, the study remains unfortunately rather descriptive without further functional insight.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
Review on "Non-redundant roles for the human mRNA decapping cofactor paralogs DCP1a and DCP1b" by Steven McMahon and co-workers mRNA decay is a critical step in the regulation of gene expression. In eukaryotes, mRNA turnover typically begins with the removal of the poly(A) tail, followed by either removal of the 5' cap structure or exonucleolytic 3'-5' decay catalyzed by the exosome. The decapping enzyme DCP2 forms a complex with its co-activator DCP1, which enhances decapping activity. Mammals are equipped with two DCP1 paralogs, namely DCP1a and DCP1b. Metazoans' decapping complexes feature additional components, such as enhancer of decapping 4 (EDC4), which supports the interaction between DCP1 and DCP2, thereby amplifying the efficiency of decapping. This work focuses on DCP1a and DCP1b and investigates their distinct functions. Using DCP1a- and DCP1a-specific knockdowns as well as K.O. cell lines, the authors find surprising differences between the DCP1 paralogs. While DCP1a is essential for the assembly of EDC4-containig decapping complexes and interactions with mRNA cap binding proteins, DCP1b mediates interactions with the translational machinery. Furthermore, DCP1a and DCP1b target different mRNAs for degradation, indicating that they execute non-overlapping functions. The findings reported here expand our understanding of mRNA decapping in human cells, shedding light on the unique contributions of DCP1a and DCP1b to mRNA metabolism. The manuscript tackles an interesting subject. Historically, the emphasis has been on studying DCP1a, while DCP1b has been deemed a functionally redundant homolog of DCP1a. Therefore, it is commendable that the authors have taken on this topic and, with the help of knockout cell lines, aimed to dissect the function of DCP1a and DCP1b. Despite recognizing the significance of the subject and approach, the manuscript falls short of persuading me. Following a promising start in Figure 1 (which still has room for improvement), there is a distinct decline in overall quality, with only relatively standard analyses being conducted. However, I do not want to give the authors a detailed advice on maximizing the potential of their data and presenting it convincingly. So, here are just a few key points for improvement: Figure 1C: Upon closer examination, a faint band is still visible at the size of DCP1a in the DCP1a knockout cells. Could this be leaky expression of DCP1a? The authors should provide an in-depth characterization of their cells (possibly as supplementary material), including identification of genomic changes (e.g. by sequencing of the locus) and Western blots with longer exposure, etc.
*RESPONSE: Thank you for this comment. The in-depth characterization of our cells is now included in the Supplementary Material. DCP1a KO cells and DCP1b KO cells indicated as single cell clones have been confirmed to have no DCP1a or DCP1b expression. In Figure 1D and Figure 3, polyclonal pool cells were used as indicated (only for DCP1a KO). *
Figure 2: It is great to see that the effects of the KOs are also visible in the DDX6 immunoprecipitation. However, I wonder if the IP clearly confirms that the KO cells indeed do not express DCP1a or DCP1b. In the heatmap in Figure 2B, it appears as if the proteins are only reduced by a log2-fold change of approximately 1.5? Additionally, Figure 2 shows a problem that persists in the subsequent figures. The visual presentation is not particularly appealing, and essential details, such as the scale of the heatmap in 2B (is it log2 fold?), are lacking.
*RESPONSE: The in-depth characterization of our cells is included in the Supplementary Materials and confirms the presence of single-cell clones where indicated. As noted above, only Figure 1D and Figure 3 used DCP1a KO pooled cells. The heatmap in Figure 2B is scaled by row using the pheatfunction in R studio. The actual data for the heatmap comes from protein intensities from the LC-MS/MS analysis. We have improved the visual presentation in the revised manuscript. *
Figure 3: I wonder why there are no primary data shown here, only processed GO analyses. Wouldn't one expect that DCP2 interacts mainly with DCP1a, but less with DCP1b? Is this visible in the data? Moreover, such analyses are rather uninformative (as reflected in the GO terms themselves, for instance, "oxoglutarate dehydrogenase complex" doesn't provide much meaningful insight). The authors should rather try to derive functional and mechanistic insights from their data.
RESPONSE: We have now revised this Figure to include primary data as well as the IP of DCP1a in DCP1b KO cells (single cell clones) and the IP of DCP1b in DCP1a KO cells (pooled cells). We identified EDC3 in the high-confidence protein pool. The EDC3:DCP1a interaction is enhanced in DCP1b KO cells. We also found that the EDC3:DCP1b interaction is less abundant in DCP1a KO cells. This is consistent with our data in Figures 1 and 2. DCP2 was not identified in the interactomes of either DCP1a or DCP1b. This is not unusual as DCP2 is highly flexible and the association between DCP1s with DCP2 is transient and facilitated by other proteins.
In Fig. 4 the potential of the approach is not fully exploited. Firstly, I would advocate for omitting the GO analyses, as, in my opinion, they offer little insight. Again, crucial information is missing to assess the results. While 75 nt reads are mentioned in the methods, the sequencing depth remains unspecified. Figure 4b should be included in the supplements. Furthermore, I strongly recommend concentrating on insights into the mechanisms of DCP1a and DCP1b-containing complexes. E.g. what characteristics distinguish DCP1a and DCP1b-dependent mRNAs? Are these targets inherently unstable? Why are they degraded? Are they known decapping substrates?
*RESPONSE: Thank you for this comment. We have now revised this figure and have included information about sequencing depth and other pertinent information. We have been able to use a newly available algorithm (grandR) and were able to estimate half-lives and synthesis rates. This is a significant addition to the paper. We were also able to compare significantly impacted mRNAs (by DCP1a or DCP1b loss) to the established DCP2 target list. *
In general, I suggest the authors revise the manuscript with a focus on the potential readers. Reduce Gene Ontology (GO) analyses and heatmaps, and instead, incorporate more analyses regarding the molecular processes associated with the different decapping complexes.
*RESPONSE: We removed selected GO analyses and heatmaps from the main body of the manuscript (included as Supplementary Figures instead). For our LC-MS/MS datasets, we added iBAQ analyses of the DDX6 IP, DCP1a IP, and DCP1b IP in the control conditions. Cellular fractionation studies (using Superose 6 chromatography) were also added to the paper and allow us to interrogate decapping complex composition in more detail. The revised version of the manuscript includes a new 4SU labeling experiment (pulse-chase) as well as estimation of half-lives and synthesis rates in our conditions. Also included is relevant information about DCP1b transcriptional regulation. *
Reviewer #3 (Significance (Required)):
The manuscript in its current form could benefit from substantial revisions for it to be considered impactful for researchers in the field.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Review on "Non-redundant roles for the human mRNA decapping cofactor paralogs DCP1a and DCP1b" by Steven McMahon and co-workers
mRNA decay is a critical step in the regulation of gene expression. In eukaryotes, mRNA turnover typically begins with the removal of the poly(A) tail, followed by either removal of the 5' cap structure or exonucleolytic 3'-5' decay catalyzed by the exosome. The decapping enzyme DCP2 forms a complex with its co-activator DCP1, which enhances decapping activity. Mammals are equipped with two DCP1 paralogs, namely DCP1a and DCP1b. Metazoans' decapping complexes feature additional components, such as enhancer of decapping 4 (EDC4), which supports the interaction between DCP1 and DCP2, thereby amplifying the efficiency of decapping.
This work focuses on DCP1a and DCP1b and investigates their distinct functions. Using DCP1a- and DCP1a-specific knockdowns as well as K.O. cell lines, the authors find surprising differences between the DCP1 paralogs. While DCP1a is essential for the assembly of EDC4-containig decapping complexes and interactions with mRNA cap binding proteins, DCP1b mediates interactions with the translational machinery. Furthermore, DCP1a and DCP1b target different mRNAs for degradation, indicating that they execute non-overlapping functions.
The findings reported here expand our understanding of mRNA decapping in human cells, shedding light on the unique contributions of DCP1a and DCP1b to mRNA metabolism. The manuscript tackles an interesting subject. Historically, the emphasis has been on studying DCP1a, while DCP1b has been deemed a functionally redundant homolog of DCP1a. Therefore, it is commendable that the authors have taken on this topic and, with the help of knockout cell lines, aimed to dissect the function of DCP1a and DCP1b.
Despite recognizing the significance of the subject and approach, the manuscript falls short of persuading me. Following a promising start in Figure 1 (which still has room for improvement), there is a distinct decline in overall quality, with only relatively standard analyses being conducted. However, I do not want to give the authors a detailed advice on maximizing the potential of their data and presenting it convincingly. So, here are just a few key points for improvement:
Figure 1C: Upon closer examination, a faint band is still visible at the size of DCP1a in the DCP1a knockout cells. Could this be leaky expression of DCP1a? The authors should provide an in-depth characterization of their cells (possibly as supplementary material), including identification of genomic changes (e.g. by sequencing of the locus) and Western blots with longer exposure, etc.
Figure 2: It is great to see that the effects of the KOs are also visible in the DDX6 immunoprecipitation. However, I wonder if the IP clearly confirms that the KO cells indeed do not express DCP1a or DCP1b. In the heatmap in Figure 2B, it appears as if the proteins are only reduced by a log2-fold change of approximately 1.5? Additionally, Figure 2 shows a problem that persists in the subsequent figures. The visual presentation is not particularly appealing, and essential details, such as the scale of the heatmap in 2B (is it log2 fold?), are lacking.
Figure 3: I wonder why there are no primary data shown here, only processed GO analyses. Wouldn't one expect that DCP2 interacts mainly with DCP1a, but less with DCP1b? Is this visible in the data? Moreover, such analyses are rather uninformative (as reflected in the GO terms themselves, for instance, "oxoglutarate dehydrogenase complex" doesn't provide much meaningful insight). The authors should rather try to derive functional and mechanistic insights from their data.
In Fig. 4 the potential of the approach is not fully exploited. Firstly, I would advocate for omitting the GO analyses, as, in my opinion, they offer little insight. Again, crucial information is missing to assess the results. While 75 nt reads are mentioned in the methods, the sequencing depth remains unspecified. Figure 4b should be included in the supplements. Furthermore, I strongly recommend concentrating on insights into the mechanisms of DCP1a and DCP1b-containing complexes. E.g. what characteristics distinguish DCP1a and DCP1b-dependent mRNAs? Are these targets inherently unstable? Why are they degraded? Are they known decapping substrates?
In general, I suggest the authors revise the manuscript with a focus on the potential readers. Reduce Gene Ontology (GO) analyses and heatmaps, and instead, incorporate more analyses regarding the molecular processes associated with the different decapping complexes.
Significance
The manuscript in its current form could benefit from substantial revisions for it to be considered impactful for researchers in the field.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
The authors provide evidence that Dcp1a and Dcp1b - two paralogous proteins of the mRNA decapping complex - may have divergent functions in a cancer cell line. In the first part, the authors show that interaction of Dcp2 with EDC4 is diminished upon depletion of Dcp1a but not affected by depletion of Dcp1b. The results have been controlled by overexpression of Dcp1b as it may be limiting factor (i.e. expression levels too low to compensate for depletion of Dcp1a reduced interaction with EDC3/4 while depletion of Dcp1b lead to opposite and increase interactions). They then defined the protein interactome of DDX6 in parental and Dcp1a or Dcp1b depleted cells. Here, the authors show some differential association with EDC4 again, which is along results shown in the first part. The authors further performed SLAM-seq and identified subsets of mRNA whose decay rates are common but also different upon depletion with Dcp1a and Dcp1b. Interestingly, it seems that Dcp1a preferentially targets mRNAs for proteins regulating lymphocyte differentiation. To further test whether changes in RNA decay rates are also reflected at the protein levels, they finally performed an MS analysis with Dcp1a/b depleted cells. However no significant overlap with mRNAs showing altered stability could be observed; and the authors suggested that the lack of congruence reflects translational repression.
Major comments:
- While functional difference between Dcp1a and Dcp1b are interesting and likely true, there are overinterpretations that need correction or further evidence for support. Sentences like "DCP1a regulates RNA cap binding proteins association with the decapping complex and DCP1b controls translational initiation factors interactions (Figure 2E)" sound misleading. While differential association with proteins has been recognised with MS-data, it does not necessary implement an active process of control/regulation. To make the claim on 'control/regulation', and inducible system or introduction of mutants would be required.
- The MS analysis is not clearly described in the text and it is unclear how authors selected high-confident proteins. The reader needs to consider the supplemental tables to find out what controls were used. Furthermore, the authors should show correlation plots of MS data between replicates. For instance, there seems to be limited correlation among some of the replicates (e.g. Dcp1b_ko3 sample, Fig. 2c). Any explanation in this variance?
- GO analysis for the proteome analysis should consider the proteome and not the genome as the background. The authors should also indicate the corrected P-values (multiple testing) FDRs.
- Fig 2E. The figures display GO enrichments needs better explanation and additional data can be added. The enrichment ratio is not explained (is this normalised?) and p-values and FDRs, number of proteins in respective GO category should be added.
Minor:
- These studies were performed in a colorectal carcinoma cell line (HCT116). The authors should justify the choice of this specialised cell line. Furthermore, one wonders whether similar conclusions can be drawn with other cell lines or whether findings are specific to this cancer line.
- Fig. 1B. It is unclear what DCP1b* refers to? There are bands of different size that are not mentioned by the authors - are those protein isoforms or what are those referring to? A molecular marker should be added to each Blots. Uncropped Western images and markers should be provided in the Supplement.
- MS data submitted to public repository with access. No. indicated in the manuscript.
- Fig 3. A Venn Diagram displaying the overlap of identified proteins should be added. GO analysis should be done considering the proteome as background (as mentioned above).
Significance
Overall, this is a large-scale integrative -omics study that suggest functional difference between Dcp1 paralogues. While it seems clear that both paralogous have some different functions and impact, there are overinterpretations in place and further evidence would to be provided to substantiate conclusions made in the paper. For instance, while the interactions with Dcp2/Ddx6 in the absence of Dcp1a,b with EDC4/3 may be altered (Fig. 1, 2), the functional implications of this changed associations remains unresolved and not further discussed. As such, it remains somehow disconnected with the following experiments and compromises the flow of the study. The observed differences in decay-rates for distinct functionally related sets of mRNAs is interesting; however, it remains unclear whether those are direct or rather indirect effects. This is further obscured by the absence of any correlation to changes in protein levels, which the authors interpreted as 'transcriptional buffering'. In this regard, it is puzzling how the authors can make a statement about transcriptional buffering? While this may be an interesting aspect and concept of the discussion, there is no primary data showing such a functional impact.
As such, the study is interesting as it claims functional differences between DCP1a/b paralogous in a cancer cell line. Nevertheless, I am not sure how trustful the MS analysis and decay measurements are as there is not further validation. It woudl be interesting if the authors could go a bit further and draw some hypothesis how the selectivty could be achieved i.e interaction with RNA-binding proteins that may add some specificity towards the target RNAs for differential decay. As such, the study remains unfortunately rather descriptive without further functional insight.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary
This study describes efforts to characterize differences in the roles of the two related human decapping factors Dcp1a and Dcp1b by assessing mRNA decay and protein associations in knockdown and knockout cell lines. The authors conclude that these proteins are non-redundant based on the observations that loss of DCp1a versus Dcp1b impacts the decapping complex (interactome) and the transcriptome differentially.
Major comments
- While the experiments appear to be well designed and executed and the data of generally high quality, the conclusions are drawn without sufficient consideration for the fact that these two proteins form a heterotrimeric complex. The authors assume that there are distinct homotrimeric complexes rather than a single complex with both proteins in. Homotrimers may have new/different functions not normally seen when both proteins are expressed. Thus while it is acceptable to infer that the functions of these two proteins within the decapping complex are distinct, it is not clear that they act separately, or that complexes naturally exist without one or the other. A careful evaluation of the relative ratios of Dcp1a and b overall and in decapping complexes would be informative if the authors want to make stronger statements about the roles of these two factors.
- The concept of buffering is not adequately introduced and the interpretation of observations that RNAs with increased half life do not show increased protein abundance - that Dcp1a/b are involved in transcript buffering is nebulous. In order to support this interpretation, the mRNA abundances (NOT protein abundances) should be assessed, and even then, there is no way to rule out indirect effects.
- It might be interesting to see what happens when both factors are depleted to get an idea of the overall importance of each one.
- The algorithms etc used for data analysis should be included at the time of publication. Version number and settings used for SMART to define protein domains, and webgestalt should be indicated
- Statistical analysis is not provided for the IP experiments, the number of replicates performed is not indicated and quantification of KD efficiency are not provided.
- The possibility that the IP Antibody interferes with protein-protein interactions is not mentioned.
Minor comments - P4 - "This translational repression of mRNA associated with decapping can be reversed, providing another point at which gene expression can be regulated (21)" - implies that decapping can be reversed or that decapped RNAs are translated. I don't think this is technically true. - P11 - how common is it for higher eukaryotes to have 2 DCP genes?<br /> - Fig S1 - says "mammalian tissues" in the text but the data is all human. The statement that "expression analyses revealed that DCP1a and DCP1b have concordant rather than reciprocal expression patterns across different mammalian tissues (Supplemental Figure 1)" is a bit misleading as no evidence for correlation or anti-correlation is provided. Also co-expression is not strong support for the idea that these genes have non-redundant functions. Both genes are just expressed in all tissues - there's no evidence provided that they are concordantly expressed. In bone marrow it may be worth noting that one is high and the other low - i.e. reciprocal. - Fig 1A - it is not clear what the different colors mean. Does Sc DCP1 have 1 larger EVH or 2 distinct ones. Are the low complexity regions in Sc DCP2 the SLiMs.<br /> - P11 - why were HCT116 cells selected? - Fig 1B - what are the asterisks by the RNA names? Might be worth noting that over-expression of DCP1b reduced IP of DCP1a. There's no quantification and no indication of the number of times this experiment was repeated. Data from replicates and quantification of the knockdown efficiency in each replicate would be nice to see. - Fig 1C/1D - why are there 3 bands in the DCP1a blot? Quantification of the IP bands is necessary to say whether there is an effect or not of over-expression/KO. - Fig 3 - is it possible that differences are due to epitope positions for the antibodies used for IP? - Fig 5A - the legend doesn't match the colors in the figure. It is not clear how the p<0.05 high confident genes are identified - only some of the genes with p<0.05 are colored red. - Fig 5E and F - x-axis should be log2 fold change - There are a few more recent studies on buffering that should be cited and more discussion of this in the introduction is necessary if conclusions are going to be drawn about buffering. - The heatmaps in figure 2 are hard to interpret.
Significance
- Strengths: The experiments appear to be done well and the datasets should be useful for the field.
- Limitations: The results are overinterpreted - different genes are affected by knocking down one or other of these two similar proteins but this does not really tell us all that much about how the two proteins are functioning in a cell where both are expressed.
- Audience: This study will appeal most to a specialized audience consisting of those interested in the basic mechanisms of mRNA decay. Others may find the dataset useful.
- This study might complement and/or be informed by another recent study in BioRXiv - https://doi.org/10.1101/2023.09.04.556219
- My field of expertise is mRNA decay - I am qualified to evaluate the findings within the context of this field. I do not have much experience of LC-MS-MS and therefore cannot evaluate the methods/analysis of this part of the study.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Revision Plan
Manuscript number: RC-2024-02385
Corresponding author(s): Jennifer R. Kowalski
1. General Statements [optional]
Our manuscript describes a novel role for the conserved glycoprotein hormone receptor, FSHR-1, in regulating C. elegans neuromuscular function through an inter-tissue, gut-brain signaling pathway. FSHR-1 is the sole C. elegans homolog of a family of vertebrate glycoprotein receptors that includes FSHR, TSHR, and LHR, and has previously been shown to regulate body size, germline differentiation, lipid homeostasis, and various stress responses in the worm (Kenis at al 2023; Cho et al 2007; Torzone et al 2023; Powell et al 2009; Miller et al 2015; Robinson and Powell 2016; Wei and Kowalski, 2018; Kim and Sieburth 2020; Wang et al 2023) but its role in neuromuscular regulation, although identified in a 2005 RNA interference screen (Sieburth et al 2005), has not been previously explored. Here, through a combination of genetic, behavioral, and fluorescence imaging approaches, we demonstrate that FSHR-1 is both necessary and sufficient in the intestine of the worm (and may also act in several other distal tissues, including glia and head neurons) to promote muscle excitation through effects on active zone protein localization and synaptic vesicle release from cholinergic motor neurons. Additionally, we identify the FSHR-1 ligands, glycoproteins GPLA-1 and GPLB-1, as well as several known downstream effectors of FSHR-1 in other contexts, GSA-1/GalphaS, ACY-1/adenylyl cyclase, and the lipid kinase SPHK-1, as interactors in the FSHR-1 pathway for neuromuscular control. This work represents a detailed description of the ability of this conserved and multi-functional receptor in inter-tissue coordination that may ultimately be connected to its functions in other physiological processes, such as the stress response, and may also prove relevant for understanding roles for FSHR-1 homologs in humans.
We greatly appreciate the thoughtful and constructive feedback provided by each of the three reviewers of this manuscript. We are pleased that all three reviewers noted the novelty of the mechanisms of cross-tissue regulation of neuromuscular function by FSHR-1 that we uncovered. Reviewer 1 comments, "They demonstrate a novel phenomenon of cross-tissue regulation by restoring FSHR-1 in neurons, intestines, or glia to restore NMJ function." Reviewer 2 echoes this sentiment, also noting, "The data is well presented, compelling and the conclusions are well supported by the data. . .. [T]his study provides a solid foundation to address many interesting questions regarding the role of fshr-1 signaling in regulating neuronal function." Reviewer 3 adds "This is a highly worthy contribution to the field of cell non-autonomous signaling and neuromodulation, and specifically synaptic transmission modulation. The study deepens and enhances the understanding of fshr-1 function within the C. elegans intestine and adds in several molecular components into the signaling pathway, acting both upstream and downstream. . . While this work relies on an invertebrate system of C. elegans, all components have vertebrate counterparts, so findings are likely of broader interest."
As described below, we are working to address many of the comments made by the reviewers and have already made some of the suggested minor changes to the manuscript. We are hopeful that, given the reviewers' excitement about this work, the changes we have already made, and the additional revisions we intend to make in the coming months, including the completion of several new experiments we propose in the revision plan below, our manuscript will be of interest to a broad genetics audience.
2. Description of the planned revisions
Planned Revisions based on comments from Reviewer #1
-
__The authors found that expressing FSHR-1 in intestinal cells was sufficient to compensate for the fshr-1 mutation phenotype, suggesting that intestinal cell FSHR-1 can regulate neuromuscular junction (NMJ) function across tissues. However, the molecular mechanism remains unexplored. Since the downstream signaling pathways of FSHR-1 are clear, analyzing the gain-of-function (gf) mutations of gsa-1 and acy-1 in different tissues can help elucidate the signaling pathways transmitted across tissues. __ We completely agree that tissue-specific pathway analysis is important for understanding the molecular mechanism underlying the ability of FSHR-1 to control neuromuscular function from its location in distal tissues, like the intestine. Because of the complexity of these questions and the time required for us to generate strains to perform tissue-specific protein depletion or overexpression experiments, we intend these studies to be the focus of a future manuscript However, in lieu of performing a full suite of tissue-specific analyses of FSHR-1 downstream components, we will perform intestine-specific RNA interference experiments (as we did for fshr-1 in Figure 4B) of gsa-1, acy-1, and sphk-1 in wild type worms and in animals overexpressing fshr-1 in the intestine (which causes increased swimming behavior, Figure 3A) to determine if these downstream players are required for the effects of intestinal fshr-1 on the NMJ. __ __We appreciate the reviewer's suggestion to address these important questions regarding the site of action of the downstream players.
-
The images of neurons should be presented in higher resolution and magnification to provide clearer visualization. __ We appreciate the reviewer's request for increased visualization of the neurons; however, because the current larger, lower resolution images show several release sites and were used for the quantitative analyses we present, we would like to keep the images as they are. __However, *we will provide higher resolution insets for the images in Figures 2A, 2C-F, and 4C, as requested. *
-
It is unclear whether the glycoprotein subunit orthologs act in the intestine to regulate NMJ function with FSHR-1. This should be investigated and clarified in the manuscript. __ We fully agree that determining where and how the glycoproteins GPLA-1 and GPLB-1 interact with FSHR-1 - and if this is happening at the level of the intestine - is an important outstanding question. Based on prior work, it is known that these subunits are not expressed in intestinal cells, but they are found in several gut-associated neurons and tissues. Specifically, gpla-1 is expressed in neurons of the gastrointestinal tract, including M1, M5, I5 and NSM pharyngeal motor neurons, as well the AVL and DVB excitatory motor neurons that control defecation contractions in the hindgut. gplb-1 is also expressed in the DVB neuron, as well as in non-neuronal tissues (head mesodermal cells and the hindgut enteric muscles), and both glycoprotein genes show reporter expression in the RME motor neurons in the head (Kenis et al 2023). We will complete experiments testing whether the effects of intestinal FSHR-1 overexpression require the ligands, as suggested by Reviewer #2. __We intend that our future work will explore the glycoprotein-FSHR-1 interactions more deeply in a variety of contexts.
-
__In Figure 4C, there are no error bars, and individual values should be shown in all statistical analyses to provide a complete representation of the data and its variability. __ We again thank the reviewer for catching this error in Figure 4C. We have replaced the graph with the complete one that includes error bars. We will replace the graphs in 1B, 1C, 3D, 4A, 4C, 5A, 5B, and 6E, as well as Supplemental Figure 5A, 5B, 6A, 6B, 7A, and 7C with bars overlaid with the individual data points. We are unable to do this for Figures 2A-F or Supplemental Figures 2A-C, 7B or 7D because these analyses were run using Custom-written Igor software (Burbea et al 2002) that does not provide individual values, only mean values and cumulative probability plots of the datasets. We recently showed consistency between the Igor analysis program and the newer Fiji plug-in we used for our more recent imaging data, supporting concordance of results despite not having the individual data points in Igor (Hulsey-Vincent et al 2023).
Planned Revisions based on comments from Reviewer #2
-
__Fig 4B: An intestinal site of action seems likely for fshr-1 and is nicely supported by the intestine-specific RNAi experiment in Fig 4B. Does intestine-specific knockdown of fshr-1 also cause the aldicarb and SNB-1 defects seen in the mutant? Including this data especially for the synaptic markers would strengthen the gut to neuron inter-tissue signaling model that is proposed here (OPTIONAL). __ We appreciate the reviewer's suggestion to include additional intestine-specific knockdown data for the aldicarb, SNB-1::GFP, and other imaging data. We have the reagents to perform the intestine-specific knockdown of fshr-1 in the aldicarb assay and will complete these experiments as part of our revision plan. Although performing the same experiments in the imaging strains requires first crossing each imaging line to the intestine-specific RNAi line, which may may prove challenging, we are currently working to cross the intestinal RNAi line with nuIs152, the cholinergic SNB-1::GFP line and, assuming the cross goes well, will include results in our revised manuscript.
-
Fig 5A: The authors show that G alpha s and adenylyl cyclase function downstream of fshr-1, but it is unclear whether these are direct fshr-1 effectors or whether they function less directly. Does expressing gsa-1(gf) or acy-1(gf) transgenes specifically in the intestine (or neurons) suppress the fshr-1 defects? (OPTIONAL) __ As stated in our response to Reviewer #1, we completely agree that tissue-specific pathway analysis is important for understanding the molecular mechanism underlying the ability of FSHR-1 to control neuromuscular function from its location in distal tissues, like the intestine. While the complexity of these questions and the time required for us to generate strains to perform tissue-specific protein depletion or overexpression experiments is likely more than is suitable for the revision time frame of this manuscript (and will be the focus of future work), in lieu of these experiments we will perform intestine-specific RNA interference experiments (as we did for fshr-1 in Figure 4B) of gsa-1, acy-1, and sphk-1 in wild type worms and in animals overexpressing fshr-1 in the intestine (which causes increased swimming behavior, Figure 3A) to determine if these downstream players are required for the effects of intestinal fshr-1 on the NMJ. __We appreciate the reviewer's suggestion to address these important questions regarding the site of action of the downstream players.
-
__Fig 6A-D: The authors propose that fshr-1 is activated by its ligands for locomotion, but no evidence is presented to support this. This could be experimentally addressed with the reagents that are used in this study by determining whether the increased locomotion caused by overexpressing fshr-1 in the intestine (reported in Fig 3A), is dependent upon gpla-1 and/or gplb-1 activity. This experiment would help to distinguish whether gpla-1 and/or gplb-1 indeed are fshr-1 ligands or whether fshr-1 functions in a ligand-independent manner, and would justify the sentence on line 526 "...ligands...act upstream in this context..." __ We agree with the reviewer that the question of GP ligand activation of FSHR-1 in this context is an important and interesting question. We plan to cross the intestinal fshr-1 transgene into the gpla-1, gplb-1, and gpla-1gplb-1 mutants, as suggested and then will test their swimming behavior to see if the overexpression effect depends upon the ligands. We thank the reviewer for this experimental suggestion.
Planned Revisions based on comments from Reviewer #3
-
__Within Figure 6, the authors state that an experiment was run 2-3X which seems inconsistent with other figure panels. It would be better if three times was consistently used. Adding in another run seems appropriate. To add another experimental run where needed within Figure 6 A-D seems realistic. The strains, reagents and skills are all in place, so the only significant investment is time. These experiments should be able to be completed in a few weeks/months. __ We appreciate the reviewer's desire for consistency in terms of the number of replicates. We will ensure all swimming experiments, which were the experiments in question in Figure 6, have been completed at least 3 times as part of our revision plan.
-
The authors findings would be strengthened by doing further work to delineate in which tissues the downstream factors act, by doing tissue specific epistasis basically for gsa-1, acy-1 etc. This would entail a lot of work and would delay publication significantly. I do not see this as necessary unless the authors wish for a big impact journal publication. __ As stated in our response to Reviewers #1 and 2, we agree that tissue-specific pathway analysis is important for understanding the molecular mechanism underlying the ability of FSHR-1 to control neuromuscular function from its location in distal tissues, like the intestine. While the complexity of these questions and the time required for us to generate strains to perform tissue-specific protein depletion or overexpression experiments is likely more than is suitable for the revision time frame of this manuscript (and will be the focus of future work), in lieu of these experiments we will perform intestine-specific RNA interference experiments (as we did for fshr-1 in Figure 4B) of gsa-1, acy-1, and sphk-1 in wild type worms and in animals overexpressing fshr-1 in the intestine (which causes increased swimming behavior, Figure 3A) to determine if these downstream players are required for the effects of intestinal fshr-1 on the NMJ. __We appreciate the reviewer's suggestion to address these important questions regarding the site of action of the downstream players.
-
__Figures:____ Overall the authors have presented everything in a clear and thorough manner. Some modification of the Y-axes on several aldicarb resistance graphs & body bend bar graphs could improve the clarity. Trying to standardize the Y axis range and the tick mark locations would make it easier to read and compare between figures and panels. __ We appreciate the reviewer's attention to detail here and will work to further standardize the Y-axes on the graphs as requested.
3. Description of the revisions that have already been incorporated in the transferred manuscript
Revisions made to the manuscript in response to comments by Reviewer #1
-
__The authors should demonstrate the expression of FSHR-1 in various tissues, as this is essential for analyzing its function. __ We appreciate the reviewer's request for additional clarity regarding the sites of tissue-specific FSHR-1 expression and agree that this information was not sufficiently clear in the text. It is already known that FSHR-1 is expressed in various tissues (e.g., head neurons, glia, intestine) from prior studies (Cho et al, 2007; Kenis et al 2023; Hammarlund et al 2018); thus, we would like to defer to Reviewer #3's suggestion about the expression information and have added a description of FSHR-1 expression patterns to lines 129 -130 within the Introduction of the paper. (Reviewer #3: "In the discussion there is a section about the reported areas of endogenous fshr-1 expression. I would have appreciated knowing that information much earlier in the paper. Without being reminded of the reported normal expression pattern it is difficult to fully appreciate why how the neuronal and glial expression could be at work") This expression information is also mentioned in the Results section lines 420-421 when we first discuss the tissue-specific rescue experiments.
-
__Figure 4A appears to be the same as Figure S5B. The authors should ensure that the figures are correctly labeled and distinct from each other. __ We thank the reviewer for noticing this oversight. We apologize for the inadvertent duplication. We have replaced the graphs in Figure 4A with the correct rescue experiment using the Pges-1, ibtEx35-expressing strain.
Revisions made to the manuscript in response to comments by Reviewer #2
-
Fig 3: Using transgenic rescue experiments the authors observe rescue when expressing fshr-1 under promoters for the intestine as well as glia and neurons. Is it possible that the apparent rescue using glia and neuronal promoters may arise from leaky expression of these transgenes in the intestine? Leaky intestinal expression is a reported caveat for rescue experiments. This possibility should be discussed. We appreciate the reviewer's note regarding the potential caveat of leaky intestinal expression. We have added a mention of this possibility to the discussion (lines 612-616) where we outline other potential explanations for the ability of multiple transgenes to rescue the neuromuscular phenotype. This possibility is why we feel most confident in the intestine site of action given that we have intestine-specific RNA interference data showing fshr-1 necessity in this tissue. We also acknowledge the need for tissue-specific depletion studies to address requirements for fshr-1 in the other distal tissues. We hope to be able to address these other potential sites of action in our future work.
-
__Fig 4B: Please clarify at what stage the intestine-specific knockdown of fshr-1 was conducted. It would be informative to treat animals with fshr-1 RNAi at various developmental stages to distinguish whether fshr-1 plays a developmental or post-developmental role in this process (OPTIONAL). __ We thank the reviewer for bringing to our attention the omission of details regarding the feeding RNA interference experiments. We have added an "RNA Interference" subsection with this information to the Materials and Methods section of the manuscript. Briefly, the intestine-specific knockdown was performed by feeding worms at the L4 stage HT115(DE) bacteria containing L4440 empty plasmid or one targeting fshr-1. Worms were grown for 4 days on NGM agar plates containing Ampicillin and IPTG, then offspring of the treated worms were assayed at the young adult stage. Thus, the knockdown animals we tested had been exposed to the RNAi for their lifetime. We are very interested in exploring the developmental timing of fshr-1 expression and function in future work; thus, we thank the reviewer for this suggestion. However, we feel that a detailed panel of developmental knockdown effects of fshr-1 is beyond the scope of the current study.
-
Fig 4C: Is rescue significant? p values are not shown. In figure 4C, p-values are only shown for statistically significant differences, as noted in the figure legend. A Tukey's post-hoc test indicates that the Intestinal Rescue strain is not significantly different from either the wild type or the fshr-1 mutants, indicating partial rescue. While we cannot fully explain the discrepancy between the partial rescue of the SNB-1::GFP phenotype in light of the full behavioral rescue in the swimming, aldicarb, and crawling assays, we suspect it may be due to the fact that synaptic vesicle release has been sufficiently restored to recover neuromuscular signaling even though synaptic vesicle localization is not fully returned to wild type levels, given the variable and likely non-endogenous levels of fshr-1 re-expression from the tissue-specific transgenes. We have noted this discrepancy in the Discussion (lines 633-639) when considering the levamisole and SNB-1::GFP data in light of the aldicarb and swimming results. * "*For some tissue-specific fshr-1 expression experiments, we observed partial rescue of the swimming and crawling fshr-1 mutant phenotypes without a restoration of normal synaptic vesicle localization (e.g., cholinergic motor neurons, GABAergic motor neurons, glial cells, Supplemental Figures 6 and 7). We conclude that GFP::SNB-1 accumulation may not solely report on rates of synaptic vesicle release and/or that there are compensatory mechanisms for increasing muscle excitation (e.g. upregulation of postsynaptic ACh receptors or muscle excitatory machinery."
-
__Fig 6E. There are two bars in this graph labeled gpla-1; gplb-1 that show significantly different amplitudes. Please clarify and define the different colors that each graph is outlined with. __ We thank the reviewer for catching this error. The third bar from the left should say "gpla-1;fshr-1". We have corrected this in the manuscript. We have also added descriptions of the colors to the figure legend indicating the following: dark blue = wild type, yellow = fshr-1; green = glycopeptide mutants; blue = glycopeptide;fshr-1 mutants. Similar clarification has been added to the legend for the bar graph in Figure 3D.
Revisions made to the manuscript in response to comments by Reviewer #3
Suggested Text Revisions: I have some suggestions to consider.
-
In the abstract the term expression analysis is used to analyses of areas of FSHR-1 function using tissue specific rescue experiments. Expression analysis often means directly exploring mRNA, localization, or levels using transcriptomic approaches or reporter genes so some revision of language could improve accuracy in the abstract. We appreciate the reviewer's point and have removed the phrase "expression analysis" from the summary at the end of the Introduction section where it initially appeared.
-
__In Figure 1, the authors do not comment on the overexpression phenotype or why this strain was included. __ We thank the reviewer for noticing this oversight. We have added a sentence describing the overexpression experiment and its implications in our description of Figure 1 in the Results section (lines 337-339).
-
__In the discussion there is a section about the reported areas of endogenous fshr-1 expression. I would have appreciated knowing that information much earlier in the paper. Without being reminded of the reported normal expression pattern it is difficult to fully appreciate why how the neuronal and glial expression could be at work. __ We appreciate the reviewer's request for additional clarity regarding the sites of tissue-specific FSHR-1 expression and agree that this information was not sufficiently clear in the text prior to the discussion. We have added a description of FSHR-1 expression patterns to lines 129 -130 within the Introduction of the paper. It is also mentioned in Results section lines 420-421 when we first discuss the tissue-specific rescue experiments.
-
__The section on tissue specific rescue could be written more strongly. The use of many "transition" phrases dilutes the importance of the findings in this paragraph. __ We are grateful for the reviewer's suggestions to improve the clarity of the text, specifically regarding the tissue-specific rescue section. We have tightened up the text in this section of the Discussion (lines 547-621) to remove some of the transitional phrases. We believe this has enhanced the readability of the manuscript and the impact of our findings.
-
Figures: __ 3 panel D: it is not clear what the last 2 bars (Neuronal rescues) are being compared to, its it w.t.? Were the differences between fshr-1 and these rescues not significantly different? __ We appreciate the reviewer bringing this point of confusion to our attention with Figure 3D. We have clarified in the figure legend that the Neuronal rescue bars are compared to wild type and that there is no significant difference from the fshr-1 mutants for these two lines, further supporting our central focus on the intestine as the best-supported site of FSHR-1 action.
4. Description of analyses that authors prefer not to carry out
Comment from Reviewer #1
-
__The article concludes that the fshr-1 mutation affects the release of acetylcholine vesicles. However, using fluorescent proteins to label key proteins released by vesicles may introduce artifacts. Therefore, electron microscopy should be used to analyze vesicle accumulation for more reliable results. __ We thank the reviewers for this suggestion and acknowledge the potential value of EM to definitively show vesicle accumulation in fshr-1 mutants. However, these experiments are technically demanding, involve specialized high-pressure freezing, and would require us to establish new collaborations to complete; thus, we would not be able to be complete such experiments in a timeframe reasonable for revision. While the fluorescence microscopy experiments admittedly offer less resolution, this approach has been used with great success in numerous other studies to identify alterations in synaptic vesicle localization in motor neurons that correlate with electron microscopy, electrophysiology, and aldicarb data that more directly measure numbers of synaptic vesicles and synaptic function (Jorgensen et al 1995; Jin et al 1999; Nonet et al 1999). Thus, we believe that the pHluorin experiments, coupled with the SNB-1::GFP imaging, are sufficient to demonstrate defects in vesicle release, regardless of the specific effects on vesicle clustering. We have been mindful not to overstate our conclusions (lines 371-372: "Together, these data demonstrate that FSHR-1 signaling promotes the localization and/or release of cholinergic synaptic vesicles.") We hope the reviewer will agree that our analysis provides meaningful information about SV organization in the absence of EM level experiments.
-
__The authors analyzed the release of vesicles from GABA and acetylcholine (Ach) neurons separately to demonstrate that the fshr-1 mutation specifically affects Ach neuron vesicle release. However, while GFP::SNB-1 and GFP::SYD-1 accumulated in GABA neurons, mCherry::UNC-10 did not change significantly in GABA neurons. To fully understand vesicle release, the authors should also use synaptopHluroin (SpH) to analyze GABA neuron vesicle release. __ We agree that our data indicate that, in addition to effects on cholinergic synaptic vesicle release, there may be effects on release of vesicles from GABAergic neurons, and we acknowledge this in the manuscript. However, while we are interested in potentially exploring the effects of fshr-1 in GABAergic neurons, we believe this question requires extensive additional work that is beyond the scope of this manuscript, which is focused on fshr-1 effects on cholinergic signaling. Moreover, given that fshr-1-deficient animas are aldicarb resistant (Figure 1A), it is unlikely that GABA release is decreased. If GABA release was decreased, we would expect hypersensitivity to aldicarb. Thus, while it is still possible there are different effects on GABA vesicles, our data suggest the most physiological relevant effect is on cholinergic signaling. We do acknowledge in the Discussion that it will be of interest to determine the relevance of effects in the GABA neurons (lines 649-651).
-
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
The authors investigate fshr-1's role in regulation of NMJ signaling using a variety of assays within C. elegans. The power of epistatic analyses is employed to fill in the upstream and downstream signaling components of this non-cell autonomous signaling pathway. The study is strengthened by the inclusion of assays that allow multiple levels of functionality to be assessed, including pharmacological sensitivities, vesicle fusion, locomotory traits and synaptic marker protein distributions.
The study shows that fshr-1 acts within the intestine to set off a signaling cascade that alters NMJ function and aspects of synaptic transmission. Intestinal activity is both necessary and sufficient. Expression of fshr-1 in other areas, while not necessarily linked to endogenous expression, can rescue many NMJ functional activities and some SV localization markers. Ligands for FSHR-1, GPLA-1A and GPLA-1B, were identified using epistasis, as were several downstream signaling components, namely GSA-1, ACY-1 and SPHK-1. The key conclusions are convincing and the authors have stayed truthful and circumspect in their experimental interpretations.
Within Figure 6, the authors state that an experiment was run 2-3X which seems inconsistent with other figure panels. It would be better if three times was consistently used. Adding in another run seems appropriate. To add another experimental run where needed within Figure 6 A-D seems realistic. The strains, reagents and skills are all in place, so the only significant investment is time. These experiments should be able to be completed in a few weeks/months.
The authors findings would be strengthened by doing further work to delineate in which tissues the downstream factors act, by doing tissue specific epistasis basically for gsa-1, acy-1 etc. This would entail a lot of work and would delay publication significantly. I do not see this as necessary unless the authors wish for a big impact journal publication.
Smaller comments for improvement:
Text: I have some suggestions to consider. In the abstract the term expression analysis is used to analyses of areas of FSHR-1 function using tissue specific rescue experiments. Expression analysis often means directly exploring mRNA, localization, or levels using transcriptomic approaches or reporter genes so some revision of language could improve accuracy in the abstract.
In Figure 1, the authors do not comment on the overexpression phenotype or why this strain was included.
In the discussion there is a section about the reported areas of endogenous fshr-1 expression. I would have appreciated knowing that information much earlier in the paper. Without being reminded of the reported normal expression pattern it is difficult to fully appreciate why how the neuronal and glial expression could be at work.
The section on tissue specific rescue could be written more strongly. The use of many "transition" phrases dilutes the importance of the findings in this paragraph.
Figures: Overall the authors have presented everything in a clear and thorough manner. Some modification of the Y-axes on several aldicarb resistance graphs & body bend bar graphs could improve the clarity. Trying to standardize the Y axis range and the tick mark locations would make it easier to read and compare between figures and panels.
Fig. 3 panel D: it is not clear what the last 2 bars (Neuronal rescues) are being compared to, its it w.t.? Were the differences between fshr-1 and these rescues not significantly different?
Significance
This is a highly worthy contribution to the field of cell non-autonomous signaling and neuromodulation, and specifically synaptic transmission modulation. The study deepens and enhances the understanding of fshr-1 function within the C. elegans intestine and adds in several molecular components into the signaling pathway, acting both upstream and downstream. The authors were able to define the output of intestinal fshr-1 function in relation to synaptic vesicle localization and fusion using the pHlourin assay which significantly extends our understanding of the mechanistic dissection of the non-autonomous regulation of Ach synaptic transmission. The manuscript is written with care and insight. The discussion contextualizes the study's findings in relation to the prior studies with care and attempts to elucidate how their findings interrelate.
This would be of high interest to those focused on neuromodulation, synaptic function, and signaling. While this work relies on an invertebrate system of C. elegans, all components have vertebrate counterparts, so findings are likely of broader interest.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
In this study Buckley et al. examine the role of the follicle stimulating hormone receptor homolog FSHR-1 in regulating excitatory neurotransmission at worm neuromuscular junctions (NMJs). They showed that mutations in fshr-1 impair neuromuscular function as measured by aldicarb sensitivity, movement, and abundance of presynaptic markers. They show that these defects can be rescued by expressing fshr-1 in the intestine, glia and neurons to varying extents. Using genetic epistasis analysis, they identify two potential FSHR-1 effectors that function downstream of fshr-1 to control locomotion. Finally, they show that mutations in genes that share homology to mammalian FSH ligands function in a common genetic pathway with fshr-1 to promote locomotion. The authors propose that fshr-1 is part of an inter tissue signaling pathway by which tissues such as the intestine can regulate cholinergic function. The authors have presented a clear story by utilizing genetics, behavioral analysis, and synaptic imaging to demonstrate that intestinal fshr-1 positively regulates cholinergic signaling. The data is well presented, compelling and the conclusions are well supported by the data. The study reinforces prior studies that implicate fshr-1 in positively regulating cholinergic signaling, and the authors use largely indirect assays (movement) to evaluate NMJ function, limiting conceptual and mechanistic advances. However, this study provides a solid foundation to address many interesting questions regarding the role of fshr-1 signaling in regulating neuronal function.
Comments:
- Fig 3: Using transgenic rescue experiments the authors observe rescue when expressing fshr-1 under promoters for the intestine as well as glia and neurons. Is it possible that the apparent rescue using glia and neuronal promoters may arise from leaky expression of these transgenes in the intestine? Leaky intestinal expression is a reported caveat for rescue experiments. This possibility should be discussed.
- Fig 4B: An intestinal site of action seems likely for fshr-1, and is nicely supported by the intestine-specific RNAi experiment in Fig 4B. Does intestine-specific knockdown of fshr-1 also cause the aldicarb and SNB-1 defects seen in the mutant? Including this data especially for the synaptic markers would strengthen the gut to neuron inter-tissue signaling model that is proposed here (OPTIONAL).
- Fig 4B: Please clarify at what stage the intestine-specific knockdown of fshr-1 was conducted. It would be informative to treat animals with fshr-1 RNAi at various developmental stages to distinguish whether fshr-1 plays a developmental or post-developmental role in this process (OPTIONAL).
- Fig 5A: The authors show that G alpha s and adenylyl cyclase function downstream of fshr-1, but it is unclear whether these are direct fshr-1 effectors or whether they function less directly. Does expressing gsa-1(gf) or acy-1(gf) transgenes specifically in the intestine (or neurons) suppress the fshr-1 defects? (OPTIONAL)
- Fig 6A-D: The authors propose that fshr-1 is activated by its ligands for locomotion, but no evidence is presented to support this. This could be experimentally addressed with the reagents that are used in this study by determining whether the increased locomotion caused by overexpressing fshr-1 in the intestine (reported in Fig 3A), is dependent upon gpla-1 and/or gplb-1 activity. This experiment would help to distinguish whether gpla-1 and/or gplb-1 indeed are fshr-1 ligands or whether fshr-1 functions in a ligand-independent manner, and would justify the sentence on line 526 "...ligands...act upstream in this context..."
- Fig 4C: Is rescue significant? p values are not shown.
- Fig 6E. There are two bars in this graph labeled gpla-1; gplb-1 that show significantly different amplitudes. Please clarify and define the different colors that each graph is outlined with.
Significance
The authors have presented a clear story by utilizing genetics, behavioral analysis, and synaptic imaging to demonstrate that intestinal fshr-1 positively regulates cholinergic signaling. The data is well presented, compelling and the conclusions are well supported by the data. The study reinforces prior studies that implicate fshr-1 in positively regulating cholinergic signaling, and the authors use largely indirect assays (movement) to evaluate NMJ function, limiting conceptual and mechanistic advances. However, this study provides a solid foundation to address many interesting questions using a powerful genetic model organism regarding the role of fshr-1 signaling in regulating neuronal function.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
In this manuscript, the authors investigate the role of the glycoprotein hormone receptor FSHR-1 in regulating cholinergic neurotransmission. They first demonstrate that fshr-1 mutants exhibit strong resistance to the acetylcholine esterase inhibitor aldicarb, consistent with previous findings (Sieburth et al., 2005). The authors further analyze other behaviors of the fshr-1 mutant and conclude that the fshr-1 gene affects neuromuscular regulation.
Next, the authors use GFP::SNB-1 to label acetylcholine neuron vesicles and observe a significant accumulation of GFP::SNB-1 in neurons of the fshr-1 mutant. Using fluorescence recovery after photobleaching (FRAP) experiments with synaptopHluroin (SpH) to label vesicle release, they find a reduction in vesicle release in the fshr-1 mutant.
Furthermore, the authors re-express fshr-1 in the intestine, glia, or neurons of fshr-1 mutants and find that this restoration restores neuromuscular function. They focus on intestinal fshr-1 re-expression for further study, showing that it partially restores the aberrant synaptic vesicle accumulation seen in fshr-1 mutants. Lastly, the authors investigate the involvement of GPLA-1 and GPLB-1, the ligands of FSHR-1, and GSA-1, ACY-1, and SPHK-1, downstream factors of FSHR-1, in the same signaling pathway as fshr-1 in regulating neuromuscular function.
In summary, the authors explore the phenotypes of aldicarb resistance in fshr-1 mutants and confirm the reduction of acetylcholine release in the fshr-1 mutant by labeling the process of acetylcholine neuronal vesicle release. They also analyze the involvement of FSHR-1 ligands and downstream factors in its regulation of the neuromuscular junction (NMJ). Furthermore, they demonstrate a novel phenomenon of cross-tissue regulation by restoring FSHR-1 in neurons, intestines, or glia to restore NMJ function. However, the underlying mechanisms of this cross-tissue regulation remain unexplored.
Major point:
- The article concludes that the fshr-1 mutation affects the release of acetylcholine vesicles. However, using fluorescent proteins to label key proteins released by vesicles may introduce artifacts. Therefore, electron microscopy should be used to analyze vesicle accumulation for more reliable results.
- The authors analyzed the release of vesicles from GABA and acetylcholine (Ach) neurons separately to demonstrate that the fshr-1 mutation specifically affects Ach neuron vesicle release. However, while GFP::SNB-1 and GFP::SYD-1 accumulated in GABA neurons, mCherry::UNC-10 did not change significantly in GABA neurons. To fully understand vesicle release, the authors should also use synaptopHluroin (SpH) to analyze GABA neuron vesicle release.
- The authors found that expressing FSHR-1 in intestinal cells was sufficient to compensate for the fshr-1 mutation phenotype, suggesting that intestinal cell FSHR-1 can regulate neuromuscular junction (NMJ) function across tissues. However, the molecular mechanism remains unexplored. Since the downstream signaling pathways of FSHR-1 are clear, analyzing the gain-of-function (gf) mutations of gsa-1 and acy-1 in different tissues can help elucidate the signaling pathways transmitted across tissues.
- The images of neurons should be presented in higher resolution and magnification to provide clearer visualization.
Minor point:
- The authors should demonstrate the expression of FSHR-1 in various tissues, as this is essential for analyzing its function.
- It is unclear whether the glycoprotein subunit orthologs act in the intestine to regulate NMJ function with FSHR-1. This should be investigated and clarified in the manuscript.
- Figure 4A appears to be the same as Figure S5B. The authors should ensure that the figures are correctly labeled and distinct from each other.
- In Figure 4C, there are no error bars, and individual values should be shown in all statistical analyses to provide a complete representation of the data and its variability.
Significance
They demonstrate a novel phenomenon of cross-tissue regulation by restoring FSHR-1 in neurons, intestines, or glia to restore NMJ function.
However, the underlying mechanisms of this cross-tissue regulation remain unexplored.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
*Reviewer #1 (Evidence, reproducibility and clarity (Required)):
I have trialled the package on my lab's data and it works as advertised. It was straightforward to use and did not require any special training. I am confident this is a tool that will be approachable even to users with limited computational experience. The use of artificial data to validate the approach - and to provide clear limits on applicability - is particularly helpful.
The main limitation of the tool is that it requires the user to manually select regions. This somewhat limits the generalisability and is also more subjective - users can easily choose "nice" regions that better match with their hypothesis, rather than quantifying the data in an unbiased manner. However, given the inherent challenges in quantifying biological data, such problems are not easily circumventable.
*
* I have some comments to clarify the manuscript:
- A "straightforward installation" is mentioned. Given this is a Method paper, the means of installation should be clearly laid out.*
__This sentence is now modified. In the revised manuscript we now describe how to install the toolset and we give the link to the toolset website if further information is needed. __On this website, we provide a full video tutorial and a user manual. The user manual is provided as a supplementary material of the manuscript.
* It would be helpful if there was an option to generate an output with the regions analysed (i.e., a JPG image with the data and the drawn line(s) on top). There are two reasons for this: i) A major problem with user-driven quantification is accidental double counting of regions (e.g., a user quantifies a part of an image and then later quantifies the same region). ii) Allows other users to independently verify measurements at a later time.*
We agree that it is helpful to save the analyzed regions. To answer this comment and the other two reviewers' comments pointing at a similar feature, we have now included an automatic saving of the regions of interest. The user will be able to reopen saved regions of interest using a new function we included in the new version of PatternJ.
* 3. Related to the above point, it is highlighted that each time point would need to be analysed separately (line 361-362). It seems like it should be relatively straightforward to allow a function where the analysis line can be mapped onto the next time point. The user could then adjust slightly for changes in position, but still be starting from near the previous timepoint. Given how prevalent timelapse imaging is, this seems like (or something similar) a clear benefit to add to the software.*
We agree that the analysis of time series images can be a useful addition. We have added the analysis of time-lapse series in the new version of PatternJ. The principles behind the analysis of time-lapse series and an example of such analysis are provided in Figure 1 - figure supplement 3 and Figure 5, with accompanying text lines 140-153 and 360-372. The analysis includes a semi-automated selection of regions of interest, which will make the analysis of such sequences more straightforward than having to draw a selection on each image of the series. The user is required to draw at least two regions of interest in two different frames, and the algorithm will automatically generate regions of interest in frames in which selections were not drawn. The algorithm generates the analysis immediately after selections are drawn by the user, which includes the tracking of the reference channel.
* Line 134-135. The level of accuracy of the searching should be clarified here. This is discussed later in the manuscript, but it would be helpful to give readers an idea at this point what level of tolerance the software has to noise and aperiodicity.
*
We agree with the reviewer that a clarification of this part of the algorithm will help the user better understand the manuscript.__ We have modified the sentence to clarify the range of search used and the resulting limits in aperiodicity (now lines 176-181). __Regarding the tolerance to noise, it is difficult to estimate it a priori from the choice made at the algorithm stage, so we prefer to leave it to the validation part of the manuscript. We hope this solution satisfies the reviewer and future users.
*
**Referees cross-commenting**
I think the other reviewer comments are very pertinent. The authors have a fair bit to do, but they are reasonable requests. So, they should be encouraged to do the revisions fully so that the final software tool is as useful as possible.
Reviewer #1 (Significance (Required)):
Developing software tools for quantifying biological data that are approachable for a wide range of users remains a longstanding challenge. This challenge is due to: (1) the inherent problem of variability in biological systems; (2) the complexity of defining clearly quantifiable measurables; and (3) the broad spread of computational skills amongst likely users of such software.
In this work, Blin et al., develop a simple plugin for ImageJ designed to quickly and easily quantify regular repeating units within biological systems - e.g., muscle fibre structure. They clearly and fairly discuss existing tools, with their pros and cons. The motivation for PatternJ is properly justified (which is sadly not always the case with such software tools).
Overall, the paper is well written and accessible. The tool has limitations but it is clearly useful and easy to use. Therefore, this work is publishable with only minor corrections.
*We thank the reviewer for the positive evaluation of PatternJ and for pointing out its accessibility to the users.
*
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
# Summary
The authors present an ImageJ Macro GUI tool set for the quantification of one-dimensional repeated patterns that are commonly occurring in microscopy images of muscles.
# Major comments
In our view the article and also software could be improved in terms of defining the scope of its applicability and user-ship. In many parts the article and software suggest that general biological patterns can be analysed, but then in other parts very specific muscle actin wordings are used. We are pointing this out in the "Minor comments" sections below. We feel that the authors could improve their work by making a clear choice here. One option would be to clearly limit the scope of the tool to the analysis of actin structures in muscles. In this case we would recommend to also rename the tool, e.g. MusclePatternJ. The other option would be to make the tool about the generic analysis of one-dimensional patterns, maybe calling the tool LinePatternJ. In the latter case we would recommend to remove all actin specific wordings from the macro tool set and also the article should be in parts slightly re-written.
*
We agree with the reviewer that our initial manuscript used a mix of general and muscle-oriented vocabulary, which could make the use of PatternJ confusing especially outside of the muscle field. To make PatternJ useful for the largest community, we corrected the manuscript and the PatternJ toolset to provide the general vocabulary needed to make it understandable for every biologist. We modified the manuscript accordingly.
* # Minor/detailed comments
# Software
We recommend considering the following suggestions for improving the software.
## File and folder selection dialogs
In general, clicking on many of the buttons just opens up a file-browser dialog without any further information. For novel users it is not clear what the tool expects one to select here. It would be very good if the software could be rewritten such that there are always clear instructions displayed about which file or folder one should open for the different buttons.*
We experienced with the current version of macOS that the file-browser dialog does not display any message; we suspect this is the issue raised by the reviewer. This is a known issue of Fiji on Mac and all applications on Mac since 2016. We provided guidelines in the user manual and on the tutorial video to correct this issue by changing a parameter in Fiji. Given the issues the reviewer had accessing the material on the PatternJ website, which we apologize for, we understand the issue raised. We added an extra warning on the PatternJ website to point at this problem and its solution. Additionally, we have limited the file-browser dialog appearance to what we thought was strictly necessary. Thus, the user will experience fewer prompts, speeding up the analysis.
*
## Extract button
The tool asks one to specify things like whether selections are drawn "M-line-to-M-line"; for users that are not experts in muscle morphology this is not understandable. It would be great to find more generally applicable formulations. *
We agree that this muscle-oriented vocabulary can make the use of PatternJ confusing. We have now corrected the user interface to provide both general and muscle-specific vocabulary ("center-to-center or edge-to-edge (M-line-to-M-line or Z-disc-to-Z-disc)").*
## Manual selection accuracy
The 1st step of the analysis is always to start from a user hand-drawn profile across intensity patterns in the image. However, this step can cause inaccuracy that varies with the shape and curve of the line profile drawn. If not strictly perpendicular to for example the M line patterns, the distance between intensity peaks will be different. This will be more problematic when dealing with non-straight and parallelly poised features in the image. If the structure is bended with a curve, the line drawn over it also needs to reproduce this curve, to precisely capture the intensity pattern. I found this limits the reproducibility and easy-usability of the software.*
We understand the concern of the reviewer. On curved selections this will be an issue that is difficult to solve, especially on "S" curved or more complex selections. The user will have to be very careful in these situations. On non-curved samples, the issue may be concerning at first sight, but the errors go with the inverse of cosine and are therefore rather low. For example, if the user creates a selection off by 5 degrees, which is visually obvious, lengths will be affected by an increase of only 0.38%. The point raised by the reviewer is important to discuss, and we therefore added a paragraph to comment on the choice of selection (lines 94-98) and a supplementary figure to help make it clear (Figure 1 - figure supplement 1).*
### Reproducibility
Since the line profile drawn on the image is the first step and very essential to the entire process, it should be considered to save together with the analysis result. For example, as ImageJ ROI or ROIset files that can be re-imported, correctly positioned, and visualized in the measured images. This would greatly improve the reproducibility of the proposed workflow. In the manuscript, only the extracted features are being saved (because the save button is also just asking for a folder containing images, so I cannot verify its functionality). *
We agree that this is a very useful and important feature. We have added ROI automatic saving. Additionally, we now provide a simplified import function of all ROIs generated with PatternJ and the automated extraction and analysis of the list of ROIs. This can be done from ROIs generated previously in PatternJ or with ROIs generated from other ImageJ/Fiji algorithms. These new features are described in the manuscript in lines 120-121 and 130-132.
*
## ? button
It would be great if that button would open up some usage instructions.
*
We agree with the reviewer that the "?" button can be used in a better way. We have replaced this button with a Help menu, including a simple tutorial showing a series of images detailing the steps to follow by the user, a link to the user website, and a link to our video tutorial.
* ## Easy improvement of workflow
I would suggest a reasonable expansion of the current workflow, by fitting and displaying 2D lines to the band or line structure in the image, that form the "patterns" the author aims to address. Thus, it extracts geometry models from the image, and the inter-line distance, and even the curve formed by these sets of lines can be further analyzed and studied. These fitted 2D lines can be also well integrated into ImageJ as Line ROI, and thus be saved, imported back, and checked or being further modified. I think this can largely increase the usefulness and reproducibility of the software.
*
We hope that we understood this comment correctly. We had sent a clarification request to the editor, but unfortunately did not receive an answer within the requested 4 weeks of this revision. We understood the following: instead of using our 1D approach, in which we extract positions from a profile, the reviewer suggests extracting the positions of features not as a single point, but as a series of coordinates defining its shape. If this is the case, this is a major modification of the tool that is beyond the scope of PatternJ. We believe that keeping our tool simple, makes it robust. This is the major strength of PatternJ. Local fitting will not use line average for instance, which would make the tool less reliable.
* # Manuscript
We recommend considering the following suggestions for improving the manuscript. Abstract: The abstract suggests that general patterns can be quantified, however the actual tool quantifies specific subtypes of one-dimensional patterns. We recommend adapting the abstract accordingly.
*
We modified the abstract to make this point clearer.
* Line 58: Gray-level co-occurrence matrix (GLCM) based feature extraction and analysis approach is not mentioned nor compared. At least there's a relatively recent study on Sarcomeres structure based on GLCM feature extraction: https://github.com/steinjm/SotaTool with publication: *https://doi.org/10.1002/cpz1.462
- *
We thank the reviewer for making us aware of this publication. We cite it now and have added it to our comparison of available approaches.
* Line 75: "...these simple geometrical features will address most quantitative needs..." We feel that this may be an overstatement, e.g. we can imagine that there should be many relevant two-dimensional patterns in biology?!*
We have modified this sentence to avoid potential confusion (lines 76-77).
-
*
-
Line 83: "After a straightforward installation by the user, ...". We think it would be convenient to add the installation steps at this place into the manuscript. *
__This sentence is now modified. We now mention how to install the toolset and we provide the link to the toolset website, if further information is needed (lines 86-88). __On the website, we provide a full video tutorial and a user manual.
* Line 87: "Multicolor images will give a graph with one profile per color." The 'Multicolor images' here should be more precisely stated as "multi-channel" images. Multi-color images could be confused with RGB images which will be treated as 8-bit gray value (type conversion first) images by profile plot in ImageJ. *
We agree with the reviewer that this could create some confusion. We modified "multicolor" to "multi-channel".
* Line 92: "...such as individual bands, blocks, or sarcomeric actin...". While bands and blocks are generic pattern terms, the biological term "sarcomeric actin" does not seem to fit in this list. Could a more generic wording be found, such as "block with spike"? *
We agree with the reviewer that "sarcomeric actin" alone will not be clear to all readers. We modified the text to "block with a central band, as often observed in the muscle field for sarcomeric actin" (lines 103-104). The toolset was modified accordingly.
* Line 95: "the algorithm defines one pattern by having the features of highest intensity in its centre". Could this be rephrased? We did not understand what that exactly means.*
We agree with the reviewer that this was not clear. We rewrote this paragraph (lines 101-114) and provided a supplementary figure to illustrate these definitions (Figure 1 - figure supplement 2).
* Line 124 - 147: This part the only description of the algorithm behind the feature extraction and analysis, but not clearly stated. Many details are missing or assumed known by the reader. For example, how it achieved sub-pixel resolution results is not clear. One can only assume that by fitting Gaussian to the band, the center position (peak) thus can be calculated from continuous curves other than pixels. *
Note that the two sentences introducing this description are "Automated feature extraction is the core of the tool. The algorithm takes multiple steps to achieve this (Fig. S2):". We were hoping this statement was clear, but the reviewer may refer to something else. We agree that the description of some of the details of the steps was too quick. We have now expanded the description where needed.
* Line 407: We think the availability of both the tool and the code could be improved. For Fiji tools it is common practice to create an Update Site and to make the code available on GitHub. In addition, downloading the example file (https://drive.google.com/file/d/1eMazyQJlisWPwmozvyb8VPVbfAgaH7Hz/view?usp=drive_link) required a Google login and access request, which is not very convenient; in fact, we asked for access but it was denied. It would be important for the download to be easier, e.g. from GitHub or Zenodo.
*
We are sorry for issues encountered when downloading the tool and additional material. We thank the reviewer for pointing out these issues that limited the accessibility of our tool. We simplified the downloading procedure on the website, which does not go through the google drive interface nor requires a google account. Additionally, for the coder community the code, user manual and examples are now available from GitHub at github.com/PierreMangeol/PatternJ, and are provided as supplementary material with the manuscript. To our knowledge, update sites work for plugins but not for macro toolsets. Having experience sharing our codes with non-specialists, a classical website with a tutorial video is more accessible than more coder-oriented websites, which deter many users.
* Reviewer #2 (Significance (Required)):
The strength of this study is that a tool for the analysis of one-dimensional repeated patterns occurring in muscle fibres is made available in the accessible open-source platform ImageJ/Fiji. In the introduction to the article the authors provide an extensive review of comparable existing tools. Their new tool fills a gap in terms of providing an easy-to-use software for users without computational skills that enables the analysis of muscle sarcomere patterns. We feel that if the below mentioned limitations could be addressed the tool could indeed be valuable to life scientists interested in muscle patterning without computational skills.
In our view there are a few limitations, including the accessibility of example data and tutorials at sites.google.com/view/patternj, which we had trouble to access. In addition, we think that the workflow in Fiji, which currently requires pressing several buttons in the correct order, could be further simplified and streamlined by adopting some "wizard" approach, where the user is guided through the steps.
*As answered above, the links on the PatternJ website are now corrected. Regarding the workflow, we now provide a Help menu with:
- __a basic set of instructions to use the tool, __
- a direct link to the tutorial video in the PatternJ toolset
- a direct link to the website on which both the tutorial video and a detailed user manual can be found. We hope this addresses the issues raised by this reviewer.
*Another limitation is the reproducibility of the analysis; here we recommend enabling IJ Macro recording as well as saving of the drawn line ROIs. For more detailed suggestions for improvements please see the above sections of our review. *
We agree that saving ROIs is very useful. It is now implemented in PatternJ.
We are not sure what this reviewer means by "enabling IJ Macro recording". The ImageJ Macro Recorder is indeed very useful, but to our knowledge, it is limited to built-in functions. Our code is open and we hope this will be sufficient for advanced users to modify the code and make it fit their needs.*
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
Summary In this manuscript, the authors present a new toolset for the analysis of repetitive patterns in biological images named PatternJ. One of the main advantages of this new tool over existing ones is that it is simple to install and run and does not require any coding skills whatsoever, since it runs on the ImageJ GUI. Another advantage is that it does not only provide the mean length of the pattern unit but also the subpixel localization of each unit and the distributions of lengths and that it does not require GPU processing to run, unlike other existing tools. The major disadvantage of the PatternJ is that it requires heavy, although very simple, user input in both the selection of the region to be analyzed and in the analysis steps. Another limitation is that, at least in its current version, PatternJ is not suitable for time-lapse imaging. The authors clearly explain the algorithm used by the tool to find the localization of pattern features and they thoroughly test the limits of their tool in conditions of varying SNR, periodicity and band intensity. Finally, they also show the performance of PatternJ across several biological models such as different kinds of muscle cells, neurons and fish embryonic somites, as well as different imaging modalities such as brightfield, fluorescence confocal microscopy, STORM and even electron microscopy.
This manuscript is clearly written, and both the section and the figures are well organized and tell a cohesive story. By testing PatternJ, I can attest to its ease of installation and use. Overall, I consider that PatternJ is a useful tool for the analysis of patterned microscopy images and this article is fit for publication. However, i do have some minor suggestions and questions that I would like the authors to address, as I consider they could improve this manuscript and the tool:
*We are grateful to this reviewer for this very positive assessment of PatternJ and of our manuscript.
* Minor Suggestions: In the methodology section is missing a more detailed description about how the metric plotted was obtained: as normalized intensity or precision in pixels. *
We agree with the reviewer that a more detailed description of the metric plotted was missing. We added this information in the method part and added information in the Figure captions where more details could help to clarify the value displayed.
* The validation is based mostly on the SNR and patterns. They should include a dataset of real data to validate the algorithm in three of the standard patterns tested. *
We validated our tool using computer-generated images, in which we know with certainty the localization of patterns. This allowed us to automatically analyze 30 000 images, and with varying settings, we sometimes analyzed 10 times the same image, leading to about 150 000 selections analyzed. From these analyses, we can provide with confidence an unbiased assessment of the tool precision and the tool capacity to extract patterns. We already provided examples of various biological data images in Figures 4-6, showing all possible features that can be extracted with PatternJ. In these examples, we can claim by eye that PatternJ extracts patterns efficiently, but we cannot know how precise these extractions are because of the nature of biological data: "real" positions of features are unknown in biological data. Such validation will be limited to assessing whether a pattern was found or not, which we believe we already provided with the examples in Figures 4-6.
* The video tutorial available in the PatternJ website is very useful, maybe it would be worth it to include it as supplemental material for this manuscript, if the journal allows it. *
As the video tutorial may have been missed by other reviewers, we agree it is important to make it more prominent to users. We have now added a Help menu in the toolset that opens the tutorial video. Having the video as supplementary material could indeed be a useful addition if the size of the video is compatible with the journal limits.
* An example image is provided to test the macro. However, it would be useful to provide further example images for each of the three possible standard patterns suggested: Block, actin sarcomere or individual band.*
We agree this can help users. We now provide another multi-channel example image on the PatternJ website including blocks and a pattern made of a linear intensity gradient that can be extracted with our simpler "single pattern" algorithm, which were missing in the first example. Additionally, we provide an example to be used with our new time-lapse analysis.
* Access to both the manual and the sample images in the PatternJ website should be made publicly available. Right now they both sit in a private Drive account. *
As mentioned above, we apologize for access issues that occurred during the review process. These files can now be downloaded directly on the website without any sort of authentication. Additionally, these files are now also available on GitHub.
* Some common errors are not properly handled by the macro and could be confusing for the user: When there is no selection and one tries to run a Check or Extraction: "Selection required in line 307 (called from line 14). profile=getProfile( ;". A simple "a line selection is required" message would be useful there. When "band" or "block" is selected for a channel in the "Set parameters" window, yet a 0 value is entered into the corresponding "Number of bands or blocks" section, one gets this error when trying to Extract: "Empty array in line 842 (called from line 113). if ( ( subloc . length == 1 ) & ( subloc [ 0 == 0) ) {". This error is not too rare, since the "Number of bands or blocks" section is populated with a 0 after choosing "sarcomeric actin" (after accepting the settings) and stays that way when one changes back to "blocks" or "bands".*
We thank the reviewer for pointing out these bugs. These bugs are now corrected in the revised version.
* The fact that every time one clicks on the most used buttons, the getDirectory window appears is not only quite annoying but also, ultimately a waste of time. Isn't it possible to choose the directory in which to store the files only once, from the "Set parameters" window?*
We have now found a solution to avoid this step. The user is only prompted to provide the image folder when pressing the "Set parameter" button. We kept the prompt for directory only when the user selects the time-lapse analysis or the analysis of multiple ROIs. The main reason is that it is very easy for the analysis to end up in the wrong folder otherwise.
* The authors state that the outputs of the workflow are "user friendly text files". However, some of them lack descriptive headers (like the localisations and profiles) or even file names (like colors.txt). If there is something lacking in the manuscript, it is a brief description of all the output files generated during the workflow.*
PatternJ generates multiple files, several of which are internal to the toolset. They are needed to keep track of which analyses were done, and which colors were used in the images, amongst others. From the user part, only the files obtained after the analysis All_localizations.channel_X.txt and sarcomere_lengths.txt are useful. To improve the user experience, we now moved all internal files to a folder named "internal", which we think will clarify which outputs are useful for further analysis, and which ones are not. We thank the reviewer for raising this point and we now mention it in our Tutorial.
I don't really see the point in saving the localizations from the "Extraction" step, they are even named "temp".
We thank the reviewer for this comment, this was indeed not necessary. We modified PatternJ to delete these files after they are used.
* In the same line, I DO see the point of saving the profiles and localizations from the "Extract & Save" step, but I think they should be deleted during the "Analysis" step, since all their information is then grouped in a single file, with descriptive headers. This deleting could be optional and set in the "Set parameters" window.*
We understand the point raised by the reviewer. However, the analysis depends on the reference channel picked, which is asked for when starting an analysis, and can be augmented with additional selections. If a user chooses to modify the reference channel or to add a new profile to the analysis, deleting all these files would mean that the user will have to start over again, which we believe will create frustration. An optional deletion at the analysis step is simple to implement, but it could create problems for users who do not understand what it means practically.
* Moreover, I think it would be useful to also save the linear roi used for the "Extract & Save" step, and eventually combine them during the "Analysis step" into a single roi set file so that future re-analysis could be made on the same regions. This could be an optional feature set from the "Set parameters" window. *
We agree with the reviewer that saving ROIs is very useful. ROIs are now saved into a single file each time the user extracts and saves positions from a selection. Additionally, the user can re-use previous ROIs and analyze an image or image series in a single step.
* In the "PatternJ workflow" section of the manuscript, the authors state that after the "Extract & Save" step "(...) steps 1, 2, 4, and 5 can be repeated on other selections (...)". However, technically, only steps 1 and 5 are really necessary (alternatively 1, 4 and 5 if the user is unsure of the quality of the patterning). If a user follows this to the letter, I think it can lead to wasted time.
*
We agree with the reviewer and have corrected the manuscript accordingly (line 119-120).
- *
*I believe that the "Version Information" button, although important, has potential to be more useful if used as a "Help" button for the toolset. There could be links to useful sources like the manuscript or the PatternJ website but also some tips like "whenever possible, use a higher linewidth for your line selection" *
We agree with the reviewer as pointed out in our previous answers to the other reviewers. This button is now replaced by a Help menu, including a simple tutorial in a series of images detailing the steps to follow, a link to the user website, and a link to our video tutorial.
* It would be interesting to mention to what extent does the orientation of the line selection in relation to the patterned structure (i.e. perfectly parallel vs more diagonal) affect pattern length variability?*
As answered to reviewer 1, we understand this concern, which needs to be clarified for readers. The issue may be concerning at first sight, but the errors grow only with the inverse of cosine and are therefore rather low. For example, if the user creates a selection off by 3 degrees, which is visually obvious, lengths will be affected by an increase of only 0.14%. The point raised by the reviewer is important to discuss, and we therefore have added a comment on the choice of selection (lines 94-98) as well as a supplementary figure (Figure 1 - figure supplement 1).
* When "the algorithm uses the peak of highest intensity as a starting point and then searches for peak intensity values one spatial period away on each side of this starting point" (line 133-135), does that search have a range? If so, what is the range? *
We agree that this information is useful to share with the reader. The range is one pattern size. We have modified the sentence to clarify the range of search used and the resulting limits in aperiodicity (now lines 176-181).
* Line 144 states that the parameters of the fit are saved and given to the user, yet I could not find such information in the outputs. *
The parameters of the fits are saved for blocks. We have now clarified this point by modifying the manuscript (lines 186-198) and modifying Figure 1 - figure supplement 5. We realized we made an error in the description of how edges of "block with middle band" are extracted. This is now corrected.
* In line 286, authors finish by saying "More complex patterns from electron microscopy images may also be used with PatternJ.". Since this statement is not backed by evidence in the manuscript, I suggest deleting it (or at the very least, providing some examples of what more complex patterns the authors refer to). *
This sentence is now deleted.
* In the TEM image of the fly wing muscle in fig. 4 there is a subtle but clearly visible white stripe pattern in the original image. Since that pattern consists of 'dips', rather than 'peaks' in the profile of the inverted image, they do not get analyzed. I think it is worth mentioning that if the image of interest contains both "bright" and "dark" patterns, then the analysis should be performed in both the original and the inverted images because the nature of the algorithm does not allow it to detect "dark" patterns. *
We agree with the reviewer's comment. We now mention this point in lines 337-339.
* In line 283, the authors mention using background correction. They should explicit what method of background correction they used. If they used ImageJ's "subtract background' tool, then specify the radius.*
We now describe this step in the method section.
*
Reviewer #3 (Significance (Required)):
- Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field. Being a software paper, the advance proposed by the authors is technical in nature. The novelty and significance of this tool is that it offers quick and simple pattern analysis at the single unit level to a broad audience, since it runs on the ImageJ GUI and does not require any programming knowledge. Moreover, all the modules and steps are well described in the paper, which allows easy going through the analysis.
- Place the work in the context of the existing literature (provide references, where appropriate). The authors themselves provide a good and thorough comparison of their tool with other existing ones, both in terms of ease of use and on the type of information extracted by each method. While PatternJ is not necessarily superior in all aspects, it succeeds at providing precise single pattern unit measurements in a user-friendly manner.
- State what audience might be interested in and influenced by the reported findings. Most researchers working with microscopy images of muscle cells or fibers or any other patterned sample and interested in analyzing changes in that pattern in response to perturbations, time, development, etc. could use this tool to obtain useful, and otherwise laborious, information. *
We thank the reviewer for these enthusiastic comments about how straightforward for biologists it is to use PatternJ and its broad applicability in the bio community.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Summary
In this manuscript, the authors present a new toolset for the analysis of repetitive patterns in biological images named PatternJ. One of the main advantages of this new tool over existing ones is that it is simple to install and run and does not require any coding skills whatsoever, since it runs on the ImageJ GUI. Another advantage is that it does not only provide the mean length of the pattern unit but also the subpixel localization of each unit and the distributions of lengths and that it does not require GPU processing to run, unlike other existing tools. The major disadvantage of the PatternJ is that it requires heavy, although very simple, user input in both the selection of the region to be analyzed and in the analysis steps. Another limitation is that, at least in its current version, PatternJ is not suitable for time-lapse imaging.
The authors clearly explain the algorithm used by the tool to find the localization of pattern features and they thoroughly test the limits of their tool in conditions of varying SNR, periodicity and band intensity. Finally, they also show the performance of PatternJ across several biological models such as different kinds of muscle cells, neurons and fish embryonic somites, as well as different imaging modalities such as brightfield, fluorescence confocal microscopy, STORM and even electron microscopy.
This manuscript is clearly written, and both the section and the figures are well organized and tell a cohesive story. By testing PatternJ, I can attest to its ease of installation and use. Overall, I consider that PatternJ is a useful tool for the analysis of patterned microscopy images and this article is fit for publication. However, i do have some minor suggestions and questions that I would like the authors to address, as I consider they could improve this manuscript and the tool:
Minor Suggestions:
In the methodology section is missing a more detailed description about how the metric plotted was obtained: as normalized intensity or precision in pixels. The validation is based mostly on the SNR and patterns. They should include a dataset of real data to validate the algorithm in three of the standard patterns tested. The video tutorial available in the PatternJ website is very useful, maybe it would be worth it to include it as supplemental material for this manuscript, if the journal allows it. An example image is provided to test the macro. However, it would be useful to provide further example images for each of the three possible standard patterns suggested: Block, actin sarcomere or individual band. Access to both the manual and the sample images in the PatternJ website should be made publicly available. Right now they both sit in a private Drive account. Some common errors are not properly handled by the macro and could be confusing for the user: When there is no selection and one tries to run a Check or Extraction: "Selection required in line 307 (called from line 14). profile=getProfile( <)>;". A simple "a line selection is required" message would be useful there. When "band" or "block" is selected for a channel in the "Set parameters" window, yet a 0 value is entered into the corresponding "Number of bands or blocks" section, one gets this error when trying to Extract: "Empty array in line 842 (called from line 113). if ( ( subloc . length == 1 ) & ( subloc [ 0 <]> == 0) ) {". This error is not too rare, since the "Number of bands or blocks" section is populated with a 0 after choosing "sarcomeric actin" (after accepting the settings) and stays that way when one changes back to "blocks" or "bands".<br /> The fact that every time one clicks on the most used buttons, the getDirectory window appears is not only quite annoying but also, ultimately a waste of time. Isn't it possible to choose the directory in which to store the files only once, from the "Set parameters" window? The authors state that the outputs of the workflow are "user friendly text files". However, some of them lack descriptive headers (like the localisations and profiles) or even file names (like colors.txt). If there is something lacking in the manuscript, it is a brief description of all the output files generated during the workflow. I don't really see the point in saving the localizations from the "Extraction" step, they are even named "temp". In the same line, I DO see the point of saving the profiles and localizations from the "Extract & Save" step, but I think they should be deleted during the "Analysis" step, since all their information is then grouped in a single file, with descriptive headers. This deleting could be optional and set in the "Set parameters" window. Moreover, I think it would be useful to also save the linear roi used for the "Extract & Save" step, and eventually combine them during the "Analysis step" into a single roi set file so that future re-analysis could be made on the same regions. This could be an optional feature set from the "Set parameters" window. In the "PatternJ workflow" section of the manuscript, the authors state that after the "Extract & Save" step "(...) steps 1, 2, 4, and 5 can be repeated on other selections (...)". However, technically, only steps 1 and 5 are really necessary (alternatively 1, 4 and 5 if the user is unsure of the quality of the patterning). If a user follows this to the letter, I think it can lead to wasted time. I believe that the "Version Information" button, although important, has potential to be more useful if used as a "Help" button for the toolset. There could be links to useful sources like the manuscript or the PatternJ website but also some tips like "whenever possible, use a higher linewidth for your line selection" It would be interesting to mention to what extent does the orientation of the line selection in relation to the patterned structure (i.e. perfectly parallel vs more diagonal) affect pattern length variability? When "the algorithm uses the peak of highest intensity as a starting point and then searches for peak intensity values one spatial period away on each side of this starting point" (line 133-135), does that search have a range? If so, what is the range? Line 144 states that the parameters of the fit are saved and given to the user, yet I could not find such information in the outputs. In line 286, authors finish by saying "More complex patterns from electron microscopy images may also be used with PatternJ.". Since this statement is not backed by evidence in the manuscript, I suggest deleting it (or at the very least, providing some examples of what more complex patterns the authors refer to). In the TEM image of the fly wing muscle in fig. 4 there is a subtle but clearly visible white stripe pattern in the original image. Since that pattern consists of 'dips', rather than 'peaks' in the profile of the inverted image, they do not get analyzed. I think it is worth mentioning that if the image of interest contains both "bright" and "dark" patterns, then the analysis should be performed in both the original and the inverted images because the nature of the algorithm does not allow it to detect "dark" patterns. In line 283, the authors mention using background correction. They should explicit what method of background correction they used. If they used ImageJ's "subtract background' tool, then specify the radius.
Significance
- Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field. Being a software paper, the advance proposed by the authors is technical in nature. The novelty and significance of this tool is that it offers quick and simple pattern analysis at the single unit level to a broad audience, since it runs on the ImageJ GUI and does not require any programming knowledge. Moreover, all the modules and steps are well described in the paper, which allows easy going through the analysis.
- Place the work in the context of the existing literature (provide references, where appropriate). The authors themselves provide a good and thorough comparison of their tool with other existing ones, both in terms of ease of use and on the type of information extracted by each method. While PatternJ is not necessarily superior in all aspects, it succeeds at providing precise single pattern unit measurements in a user-friendly manner.
- State what audience might be interested in and influenced by the reported findings. Most researchers working with microscopy images of muscle cells or fibers or any other patterned sample and interested in analyzing changes in that pattern in response to perturbations, time, development, etc. could use this tool to obtain useful, and otherwise laborious, information.
- Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate. I am a biologist with extensive experience in confocal microscopy and image analysis using classical machine vision tools, particularly using ImageJ and CellProfiler.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Summary
The authors present an ImageJ Macro GUI tool set for the quantification of one-dimensional repeated patterns that are commonly occurring in microscopy images of muscles.
Major comments
In our view the article and also software could be improved in terms of defining the scope of its applicability and user-ship. In many parts the article and software suggest that general biological patterns can be analysed, but then in other parts very specific muscle actin wordings are used. We are pointing this out in the "Minor comments" sections below. We feel that the authors could improve their work by making a clear choice here. One option would be to clearly limit the scope of the tool to the analysis of actin structures in muscles. In this case we would recommend to also rename the tool, e.g. MusclePatternJ. The other option would be to make the tool about the generic analysis of one-dimensional patterns, maybe calling the tool LinePatternJ. In the latter case we would recommend to remove all actin specific wordings from the macro tool set and also the article should be in parts slightly re-written.
Minor/detailed comments
Software
We recommend considering the following suggestions for improving the software.
File and folder selection dialogs
In general, clicking on many of the buttons just opens up a file-browser dialog without any further information. For novel users it is not clear what the tool expects one to select here. It would be very good if the software could be rewritten such that there are always clear instructions displayed about which file or folder one should open for the different buttons.
Extract button
The tool asks one to specify things like whether selections are drawn "M-line-to-M-line"; for users that are not experts in muscle morphology this is not understandable. It would be great to find more generally applicable formulations.
Manual selection accuracy
The 1st step of the analysis is always to start from a user hand-drawn profile across intensity patterns in the image. However, this step can cause inaccuracy that varies with the shape and curve of the line profile drawn. If not strictly perpendicular to for example the M line patterns, the distance between intensity peaks will be different. This will be more problematic when dealing with non-straight and parallelly poised features in the image. If the structure is bended with a curve, the line drawn over it also needs to reproduce this curve, to precisely capture the intensity pattern. I found this limits the reproducibility and easy-usability of the software.
Reproducibility
Since the line profile drawn on the image is the first step and very essential to the entire process, it should be considered to save together with the analysis result. For example, as ImageJ ROI or ROIset files that can be re-imported, correctly positioned, and visualized in the measured images. This would greatly improve the reproducibility of the proposed workflow. In the manuscript, only the extracted features are being saved (because the save button is also just asking for a folder containing images, so I cannot verify its functionality).
? button
It would be great if that button would open up some usage instructions.
Easy improvement of workflow
I would suggest a reasonable expansion of the current workflow, by fitting and displaying 2D lines to the band or line structure in the image, that form the "patterns" the author aims to address. Thus, it extracts geometry models from the image, and the inter-line distance, and even the curve formed by these sets of lines can be further analyzed and studied. These fitted 2D lines can be also well integrated into ImageJ as Line ROI, and thus be saved, imported back, and checked or being further modified. I think this can largely increase the usefulness and reproducibility of the software.
Manuscript
We recommend considering the following suggestions for improving the manuscript. Abstract: The abstract suggests that general patterns can be quantified, however the actual tool quantifies specific subtypes of one-dimensional patterns. We recommend adapting the abstract accordingly.
Line 58: Gray-level co-occurrence matrix (GLCM) based feature extraction and analysis approach is not mentioned nor compared. At least there's a relatively recent study on Sarcomeres structure based on GLCM feature extraction: https://github.com/steinjm/SotaTool with publication: https://doi.org/10.1002/cpz1.462
Line 75: "...these simple geometrical features will address most quantitative needs..." We feel that this may be an overstatement, e.g. we can imagine that there should be many relevant two-dimensional patterns in biology?!
Line 83: "After a straightforward installation by the user, ...". We think it would be convenient to add the installation steps at this place into the manuscript.
Line 87: "Multicolor images will give a graph with one profile per color." The 'Multicolor images' here should be more precisely stated as "multi-channel" images. Multi-color images could be confused with RGB images which will be treated as 8-bit gray value (type conversion first) images by profile plot in ImageJ.
Line 92: "...such as individual bands, blocks, or sarcomeric actin...". While bands and blocks are generic pattern terms, the biological term "sarcomeric actin" does not seem to fit in this list. Could a more generic wording be found, such as "block with spike"?
Line 95: "the algorithm defines one pattern by having the features of highest intensity in its centre". Could this be rephrased? We did not understand what that exactly means.
Line 124 - 147: This part the only description of the algorithm behind the feature extraction and analysis, but not clearly stated. Many details are missing or assumed known by the reader. For example, how it achieved sub-pixel resolution results is not clear. One can only assume that by fitting Gaussian to the band, the center position (peak) thus can be calculated from continuous curves other than pixels.
Line 407: We think the availability of both the tool and the code could be improved. For Fiji tools it is common practice to create an Update Site and to make the code available on GitHub. In addition, downloading the example file (https://drive.google.com/file/d/1eMazyQJlisWPwmozvyb8VPVbfAgaH7Hz/view?usp=drive_link) required a Google login and access request, which is not very convenient; in fact, we asked for access but it was denied. It would be important for the download to be easier, e.g. from GitHub or Zenodo.
Significance
The strength of this study is that a tool for the analysis of one-dimensional repeated patterns occurring in muscle fibres is made available in the accessible open-source platform ImageJ/Fiji. In the introduction to the article the authors provide an extensive review of comparable existing tools. Their new tool fills a gap in terms of providing an easy-to-use software for users without computational skills that enables the analysis of muscle sarcomere patterns. We feel that if the below mentioned limitations could be addressed the tool could indeed be valuable to life scientists interested in muscle patterning without computational skills.
In our view there are a few limitations, including the accessibility of example data and tutorials at sites.google.com/view/patternj, which we had trouble to access. In addition, we think that the workflow in Fiji, which currently requires pressing several buttons in the correct order, could be further simplified and streamlined by adopting some "wizard" approach, where the user is guided through the steps. Another limitation is the reproducibility of the analysis; here we recommend enabling IJ Macro recording as well as saving of the drawn line ROIs. For more detailed suggestions for improvements please see the above sections of our review.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
I have trialled the package on my lab's data and it works as advertised. It was straightforward to use and did not require any special training. I am confident this is a tool that will be approachable even to users with limited computational experience. The use of artificial data to validate the approach - and to provide clear limits on applicability - is particularly helpful.
The main limitation of the tool is that it requires the user to manually select regions. This somewhat limits the generalisability and is also more subjective - users can easily choose "nice" regions that better match with their hypothesis, rather than quantifying the data in an unbiased manner. However, given the inherent challenges in quantifying biological data, such problems are not easily circumventable.
I have some comments to clarify the manuscript:
- A "straightforward installation" is mentioned. Given this is a Method paper, the means of installation should be clearly laid out.
- It would be helpful if there was an option to generate an output with the regions analysed (i.e., a JPG image with the data and the drawn line(s) on top). There are two reasons for this: i) A major problem with user-driven quantification is accidental double counting of regions (e.g., a user quantifies a part of an image and then later quantifies the same region). ii) Allows other users to independently verify measurements at a later time.
- Related to the above point, it is highlighted that each time point would need to be analysed separately (line 361-362). It seems like it should be relatively straightforward to allow a function where the analysis line can be mapped onto the next time point. The user could then adjust slightly for changes in position, but still be starting from near the previous timepoint. Given how prevalent timelapse imaging is, this seems like (or something similar) a clear benefit to add to the software.
- Line 134-135. The level of accuracy of the searching should be clarified here. This is discussed later in the manuscript, but it would be helpful to give readers an idea at this point what level of tolerance the software has to noise and aperiodicity.
Referees cross-commenting
I think the other reviewer comments are very pertinent. The authors have a fair bit to do, but they are reasonable requests. So, they should be encouraged to do the revisions fully so that the final software tool is as useful as possible.
Significance
Developing software tools for quantifying biological data that are approachable for a wide range of users remains a longstanding challenge. This challenge is due to: (1) the inherent problem of variability in biological systems; (2) the complexity of defining clearly quantifiable measurables; and (3) the broad spread of computational skills amongst likely users of such software.
In this work, Blin et al., develop a simple plugin for ImageJ designed to quickly and easily quantify regular repeating units within biological systems - e.g., muscle fibre structure. They clearly and fairly discuss existing tools, with their pros and cons. The motivation for PatternJ is properly justified (which is sadly not always the case with such software tools).
Overall, the paper is well written and accessible. The tool has limitations but it is clearly useful and easy to use. Therefore, this work is publishable with only minor corrections.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Reviewer #1
Evidence, reproducibility and clarity
The manuscript by Barba-Aliaga and colleagues describe a potential function of eIF5A for the control of TIM50 translation. The authors showed that in temperature-sensitive mutants of eIF5A several mitochondrial proteins are decreased including OXPHOS subunits, proteins of the TCA cycle and some components of protein translocases. Some precursor proteins appear to localize into the cytosol. As consequent of mitochondrial dysfunction, the expression of some stress components is induced. The idea is that eIF5A ribosome-stalling of the proline-rich Tim50 of the TIM23 complex and thereby controls mitochondrial protein set-up.
The findings are potentially interesting. However, some control experiments are required to substantiate the findings.
- To support their conclusion the authors should show whether Tim50 levels are affected in the eIF5A-ts mutants used. Tim50 protein half-life is approximately 9.6 h (Christiano et al, 2014), which makes difficult to measure large differences in new protein synthesis upon eIF5A depletion. However, we used different approaches to show that reduction in eIF5A provokes a reduction in Tim50 protein levels and synthesis. 1) The steady-state levels of Tim50 protein (genomic HA-tagged version) are shown by western blotting analysis in Fig. S4B and confirm a significant drop of approximately 20% in the tif51A-1 mutant at restrictive temperature. 2) The use of a construct in which Tim50 is fused to a nanoluciferase reporter under the control of a tetO7 inducible promoter shows a significant 3-fold reduction in Tim50 protein synthesis in the tif51A-1 mutant compared to wild-type (Fig. 4C). In addition, the protein synthesis time is calculated and indicates that it takes the double time for the tif51A-1 strain to synthesize Tim50 protein than the wild-type (Fig. 4E). 3) The expression of a FLAG-TIM50-GFP version under a GAL inducible system also shows a significant reduction in Tim50 protein synthesis in the two eIF5A temperature-sensitive strains (Fig. S4C). 4) The proteomic analysis performed at 41ºC showed a 20% reduction in Tim50 protein levels in the two eIF5A temperature-sensitive strains, although not being statistically significant (Table S1). Furthermore, TIM50 mRNA levels were determined by RT-qPCR across all the experiments mentioned to confirm that the low levels of Tim50 protein were not due to decreased transcription or increased mRNA degradation. 5) An additional experiment of polysome profiling has been included in Fig. R1 (Figure for Reviewers) showing a higher TIM50 mRNA abundance at low polysomal fractions and a lower mRNA abundance at heavy polysomal fractions upon eIF5A depletion. This indicates that the TIM50 mRNA abundance is significantly shifted to earlier fractions and translation of Tim50 is reduced in the tif51A-1 mutant at restrictive temperature but not at permissive temperature. Altoghether, all these experiments confirm a significant reduction of Tim50 protein levels upon eIF5A depletion and conclusions are supported on these results.
How are the levels of TOM and TIM23 subunits?
Response: Our proteomic analysis shows that the protein levels of Tom70 and Tom20 receptor subunits of the TOM complex are significantly decreased in the two eIF5A temperature-sensitive strains (Table S1). These results are in agreement with the polysome profiling results, where it is seen a significant reduction of TOM70 and TOM20 mRNAs in the heavy polysomal fractions while a significant increase of these mRNAs is observed in the light fractions of eIF5A-depleted cells (Fig. 2C and Fig. S2D). Apart from Tim50, no other proteins of the Tim23 translocase complex were detected in the proteomic analysis.
Furthermore, how are the levels of the Tim50 variant that lack the proline residues? Is the stability or function of Tim50 affected by these mutations?
Although we did not specifically analysed the Tim50ΔPro protein levels, a quantification of the Tim50ΔPro fluorescent signal has been performed to address this matter and is shown in Fig. R2 and mentioned in the corresponding Results section. Results indicate that the Tim50 variant lacking the proline residues has similar protein levels to the wild-type version and therefore, it is tempting to say that its stability should also be similar. However, if Reviewers consider this to be essential for publishing, additional experiments using cycloheximide could be conducted in order to better assess the stability and half-life of this Tim50 version.
Additionally, functional levels of Tim50ΔPro protein is shown by the fact that wild-type cells carrying this Tim50 protein version as the only copy of Tim50 grew well in glycerol media, where Tim50 is essential for the mitochondrial function (Fig. 5A). However, we suspect that Tim50ΔPro is a bit less efficient protein since a double mutant tif51A-1 Tim50ΔPro shows even reduced growth than the single tif51A-1 mutant (Fig. 5A). This information also responds to the comments made by Reviewer #2.
How specific is the effect of eIF5A on Tim50? Is there any other mitochondrial substrate of eIF5A? It is not so clear to the reviewer why the authors focused on Tim50.
Response: eIF5A has been shown to be necessary for the translation of mRNA codons encoding for consecutive prolines and, consequently, lack of eIF5A causes ribosome stalling in these polyproline motifs (Gutierrez et al., 2013; Pelechano and Alepuz, 2017; Schuller et al., 2017). In our manuscript we showed: 1) using an artificial tetO7-TIM50-nanoLuc genomic construct we demonstrate that the synthesis of Tim50 protein (measured as appearance of luciferase activity upon induction of tetO promoter) is significantly reduced by 3-fold under eIF5A depletion only when Tim50 contains the stretch of 7 consecutive prolines (Fig. 4A-D); 2) genomic Tim50-HA and plasmid FLAG-TIM50-GFP protein levels are significantly reduced upon eIF5A depletion (Fig. S4B); 3) calculation of the time for translation elongation of Tim50 mRNA shows that this time is double in cells with eIF5A depletion than in cells containing normal eIF5A levels (Fig. 4E); and 4) analysis of published ribosome profiling data shows a precipitous drop-off in ribosome density exactly where the stretch of polyprolines is located in Tim50 (540-561bp) upon eIF5A depletion but not in the control strain (Fig. 4F). This result is indicative of ribosome stalling at Tim50 polyproline motif upon eIF5A depletion. Altogether, our results strongly support a direct and specific role of eIF5A in Tim50 protein synthesis. However, as we discuss in relation to Fig. 5 and in the Discussion section, Tim50 does not seem to be the only mitochondrial substrate of eIF5A, since recovery of Tim50 protein synthesis does not rescue the growth of eIF5A mutants under respiratory conditions. In this line, we have added further data pointing to ribosome stalling for other co-translationally inserted mitoproteins which are potential substrates of eIF5A (Table S6). Accordingly, this has also been included in the Discussion section. This information also responds to the comments made by Reviewer #4.
Our focus on Tim50 in this manuscript resides in that we found a global downregulation of mitochondrial protein synthesis (Fig.1 and 2) in parallel to the accumulation of mitochondrial precursor proteins in the cytoplasm and induction of the mitoCPR response (Fig.3). All these data were pointing to a mitochondrial protein import defect. Since Tim50 is an essential component of the Tim23 translocase complex, its protein levels are reduced in eIF5A mutants and Tim50 contains a polyproline motif, all these data were pointing towards a Tim50-dependent effect in mitochondrial protein import upon eIF5A depletion, which we addressed in the manuscript.
Figure 1A: Which tif51A strain was used?
Response: The proteomic analysis was performed with tif51A-1 and tif51A-3 temperature-sensitive strains (see Table S1) and Fig.1A shows the average of the values obtained for the two mutants (proteins detected as down-regulated in these two samples and from 3 different biological replicates). This is now clarified in the Figure 1A legend. A similar approach was also followed in Pelechano and Alepuz, 2017. Additionally, the ratios between the protein level in the temperature-sensitive mutant respect wild-type for each protein and for each eIF5A mutant are also shown in Table S1. This information also responds to the comments made by Reviewer #2.
Figure 1C: The authors should show the steady state levels of some OXPHOS/TCA components to confirm the findings of Figure 1A.
Response: Proteomic findings have been confirmed for several proteins. The steady state levels of Por1 and Hsp60 proteins were investigated by western blotting (Figs. 1C,D) and results show a significant down-regulation on the two eIF5A temperature-sensitive strains at 41ºC, which confirms the findings of Fig. 1A. Additionally, we have included the same experiment performed at 37ºC (Fig. S1E), which also confirms the same conclusion.
Furthermore, the steady-state levels of Tim50 protein were also investigated by western blotting (Fig. S4B), and results also showed a significant down-regulation in the tif51A-1 mutant at restrictive temperature (37ºC), compared to wild-type. This result also confirms the findings of Fig. 1A.
However, if Reviewers consider that additional confirmation for OXPHOS/TCA proteins to be essential for publishing, additional experiments could be conducted to assess the protein levels of other OXPHOS/TCA proteins.
The manuscript contains several quantifications. However, central information like number of repeats or whether a standard deviation or S.E.M. is depicted are missing.
Response: Clear information on the number of repeats, type of graphical representation and statistical analysis is now included for all figures in the corresponding figure legends and also detailed in the Materials and Methods section. This information also responds to the comments made by Reviewer #2.
Figure 3: The authors propose that precursor form aggregates outside mitochondria. To assess the data, a quantification should address in how many cells are protein aggregates.
Response: The quantification of cytoplasmic Yta12 aggregates is now included in Fig.3E, which shows significant differences between the tif51A-1 mutant and the wild-type strain. In addition, quantification of cytosolic Tim50 aggregates was already included in Fig. 4H, which also shows significant differences between the tif51A-1 mutant and the wild-type strain. These two figures include the individual values from three biological replicates (at least 150 cells were analyzed), mean, standard deviation and statistical analysis.
Do the observed aggregated proteins interact with Hsp104? recycled?
Response: Yes, the cytoplasmic mitochondrial precursor aggregated proteins co-localize with Hsp104 as shown in Fig. 3I for Cyc1 and in Fig. 4J for Tim50. The quantification of Cyc1 and Tim50 co-localization with Hsp104 is shown in Fig S5D.
Significance
See above
Reviewer #2
Evidence, reproducibility and clarity
The authors report here novel findings concerning the role of eIF5A in mediating protein import to mitochondria in the model eukaryote Saccharomyces cerevisiae. It was previously known from structural and other studies that the translation factor eIF5A binds to the E-site of stalled ribosomes to help promote peptide bond formation. It was inferred by ribosome footprinting and reporter studies assessing the impact of eIF5A depletion that eIF5A is particularly needed to translate several specific amino acid motifs including polyproline stretches. However additional target sequences are known.
Here a proteomics approach reveals clear evidence that mitochondrially targeted proteins are impacted by temperature sensitive mutations in eIF5A that deplete the factor, including those without polyprolines. The authors then use a range of molecular and cell biology to focus on the role of mitochondrial signal sequences/mitochondrial protein import and the mitochondrial stress response, before highlighting a role for poly-prolines in Tim50, a major mitochondrial protein import factor. Consistent with the ribosome footprinting done previously it is shown that a stretch of 7 prolines limit its translation when eIF5A is depleted and studies shown here are consistent with the idea that this has wider consequences for mitochondrial protein import and hence translation/stability of other proteins. However improved Tim50 translation alone, by eliminating the poly-proline motif, is not sufficient to overcome all consequences of eIF5A depletion for mitochondrial protein import and for viability, suggesting a wider role.
In general the text flows nicely, this could be a study that explains why a large number of mitochondrially targeted proteins are impacted by depletion of eIF5A in yeast. As the poly Pro sequence in Tim50 is not conserved in higher eukaryotes it is unclear how this observation will scale to other systems, but it provides an example of how studies in a relatively simple system can trace wide-spread impact of the loss of one component of a central pathway-here protein synthesis to altered translation of a key component of another process-mitochondrial protein import. Given that eIF5A and its hypusine modifying enzymes are mutated in rare human disorders, it is likely there will be interest in this study.
However, while the conclusions may be justified, there are significant deficiencies in how the experiments have been analysed and presented in this version of the manuscript that impact every figure shown, coupled with deficiencies in the methods section that all need to be addressed. Thus, we have here the basis of what should be a very interesting paper here, but there is a lot of work to do to remedy perceived weaknesses. It may be that the overall conclusions are entirely sound and appropriate, but I suspect that performing the statistics in less biased ways may change some of the significant differences claimed. Some explanations concerning how data analyses were conducted and the reasons for specific analysis decisions being made would also improve the narrative. These points are expanded on below.
All the edits suggested here are aimed at improving the rigor of reporting in this study. Depending on how they are answered some may become major issues, or they could all be minor.
1 Figure 1 shows proteomic data for response to heat shock at 41{degree sign}C. In the text it is made clear that two different temperature sensitive missense alleles the 51A-1 and 51A-3 were analysed, but the single volcano plot in Figure 1A does not say whether it is reporting one of these experiments compared to WT (which one) or some other analysis (ie have data from the 2 mutants been amalgamated somehow?). I would assume only one, but which one, and why only one plot? How different is the other experiment? Why does the Figure title say the experiment is an eIF5A deletion when it is not this?
Response: The data shown in Figure 1A corresponds to the average values obtained in the proteomic analysis for the two temperature-sensitive mutants tif51A-1 and tif51A-3 (with data for each mutant obtained from 3 different biological replicates). Highly reproducible proteomic results and similar between the two mutants were obtained (see in Fig. S1A the MDS-plot showing all replicates for each strain and condition studied in the proteomic analysis). In addition, the proteomic data showing the protein 41°C/25°C ratio for each eIF5A temperature-sensitive mutant with respect to wild-type is shown in the Table S1. This is now clarified in the Figure 1A legend. A similar approach using the mean values of the two mutants was followed in the analysis of ribosome footprintings made in Pelechano and Alepuz, 2017. Additionally, the ratios between the protein level in the temperature-sensitive mutant respect wild-type for each protein and for each eIF5A mutant are also shown in Table S1. This information also responds to the comments made by Reviewer #1.
Reviewer #2 is right with his/her comment and there was a mistake in the Fig.1 title. Now it is corrected and written “depletion” instead of the wrong “deletion”.
2 Why were the experiments shown in Figure 1 done at 41{degree sign}C when all other experiments are done at 37{degree sign}C? This experimental difference is ignored in the text and no comparison of the impact of 37 vs 41 is made anywhere in the manuscript. For example it would be straightforward to perform a comparison of eIF5A depletion (by western blot), polyribosome profiles, strain growth/inhibition at both temperatures.
Response: Our aim carrying out a proteomic experiment after 4 hours of incubation of the temperature-sensitive strains at 41°C was to get a more profound depletion of the eIF5A protein, which is very abundant and stable at normal conditions, in order to get clear proteomic results. The proteomic results were pointing to a reduction in the levels of many mitochondrial proteins, corroborating previous results obtained in murine embryonic fibroblasts upon depletion of active eIF5A conditions (https://doi.org/10.1016/j.cmet.2019.05.003). From this starting point we tried to find out the molecular mechanism involved and all the rest of experiments are done with temperature sensitive eIF5A mutants under restrictive temperature of 37°C that is the most common conditions used in yeast by us and others, and in which wild-type yeast cells still grow vigorously.
In our previous manuscript version, the depletion of eIF5A after growing the cells at 41ºC for 4 h was shown in Fig. 1C. These data has been expanded and we have now included in Fig. S1E a western blotting analysis that shows the depletion of eIF5A after incubating the cells at 37ºC and 41 ºC for 4 h (Fig. S1E). The steady state level of the mitochondrial Por1 protein was investigated by western blotting (Figs. 1C,D) and results show a significant down-regulation in the two eIF5A temperature-sensitive strains at 41ºC. We have now included the same experiment performed at 37ºC (Fig. S1E), which also confirms the same conclusion. In addition, following Reviewer #2 suggestions, growth of the wild-type and tif51A-1 strains was tested by serial drop assays conducted at 25ºC, 37ºC and 41ºC and results confirm that both 37ºC and 41ºC temperatures impair the growth of the tif51A-1 strain but not the wild-type (Fig.S1B). The new information included in Figure S1 is now explained in the Results section. This information also responds to the comments made by Reviewer #4.
3 Western blot quantification. In Figure 1D and E the authors present western blot quantification. However they have chosen to normalise every panel to the signal in lane 1. This means that there is no variation at all in that sample as every replicate is =1. This completely skews the statistical assumptions made (because there will be variation in that sample) and effectively invalidates all the statistics shown. An appropriate approach to use is to normalise the signal in each lane to the mean signal across all lanes in a single blot. That way if all are identical they remain at 1, but importantly variation across all samples is captured. This should be done to the loading controls as well before working out ratios or performing any statistical analyses.
Response: Following Reviewer #2 suggestions we have changed the normalization methodology for the Western blots and we have now normalized the signal in each lane to the mean signal across all lanes in each single blot, and do so also for the loading controls. We have conducted this analysis in every western blotting experiment shown in the manuscript (Figs. 1D, S4B and S4C) and statistical analyses have been performed again to capture variation across all samples. In addition, this is also included in the Materials and Methods section (“Western blotting” subsection). Results obtain are similar to previous ones but we agree that this new approach improves the data presentation.
For this type of experiment it is more appropriate to use Anova than a T-test. This advice applies to every western data analysis figure in the whole manuscript and so all associated statistics need to be done again from the original quantification values. If T-test is justified then a correction for multiple hypothesis testing should be applied.
Response: After reviewing a large number of publications analysing similar data, and also following the recommendations of our statistical department, we have retained the statistics used in our previous version (with the new data normalisation as explained above, following the recommendations of Reviewer #2). This is because for each western blot figure shown, we have performed experiments with two different biological samples, wild-type cells and eIF5A mutant cells, and compared results for a single variable (Por1 protein level; eIF5A protein level or Hsp60 protein level) using three or more biological replicates. In this context, we compare the mean of the protein levels obtained from the biological replicate for two groups: wild-type and eIF5A mutant. Therefore, we believe that the statistical T-test is more appropriate. However, we could repeat the statistic if it is finally considered more appropriate.
In all bar chart figures in addition to showing the mean and SD, each replicate value should be shown (eg as done in Fig 2C). Graphpad allows individual points to be plotted easily.
Response: All Figures along the manuscript now include individual values from each replicate, in addition to showing the mean, SD and statistical analysis. All figure legends have been corrected accordingly.
5 Figure 2. Polysome profiles. The impact of translation elongation stalls on global polysome profiles is complex, but a global run off is highly unlikely. Stalls later in the coding region would be anticipated to cause an increase in ribosome density as more ribosomes accumulate (like cars queueing held at a red light). However where a stall is early in a longer ORF, for example at a signal sequence, then there is less opportunity for ribosomes to join and so for those mRNAs moving to lighter points in the gradient may be observed. This may also cause knock on effects on AUG clearance and initiation which the authors appear to see as there may be an increased 60S peak in the traces shown. Are there differences in overall -low vs high polysomes, the traces shown suggest there may be? Discussion of these points is merited in the results section given the subsequent qPCR experiment.
Response: The comments made by the Reviewer #2 are very interesting and we have made changes accordingly. First, we now show in Fig. 2A,B and Fig.S2B,C the quantification of polysomal and monosomal fractions in wild-type and tif51A-1 mutants at permissive and restrictive temperatures. It can be appreciated that there is no impact on global polysomal and monosomal fractions under eIF5A depletion. This result does not support a global stall at 3’ region of the ORF, because then an increase in polysomal fractions should be detected; nor a global stall at the 5’ region of the ORF, because then a decrease in polysomal fractions should be detected. However, with respect to individual mRNAs, our data show a significant reduction in the heavier polysomal fractions and a significant increase in lighter polysomal fractions for mRNAs encoding mitochondrial proteins, while no significant changes were observed for mRNAs encoding cytoplasmic proteins (Fig. 2C and Fig. S2D-I). These results could be interpreted as a result of ribosome stalls in the 5’ ORF regions, for example at the signal sequence, according to Reviewer #2 comments.
We have now introduced this comment in the Results and Discussion sections.
Figure 2 qPCR. Using qPCR to analyse RNA levels across polysome gradients is tricky for multiple reasons including that the total RNA level varies across fractions that can impact recovery efficiencies following precipitation of gradient fractions. Often investigators use a spike in control to act as a normalising factor. Here it is completely unclear what analysis was done because details are not stated anywhere. How were primers optimized, was amplification efficiency determined? Or are they assumed to be 100%, which they will not be? A detailed description or reference to a study where that is written is needed.
Response: The RNA extraction and analyses by RT-qPCR of the mRNA levels in the polysomal gradients was done as in previous studies of our lab (Romero et al. Sci Rep. 2020;10(1):233. doi: 10.1038/s41598-019-57132-0; Ramos-Alonso et al. PLoS Genet. 2018;14(6):e1007476. doi: 10.1371/journal.pgen.1007476; van Wijlick et al. PLoS Genet. 2016;12(10):e1006395. doi: 10.1371/journal.pgen.1006395; Garre et al., 2012 Mol Biol Cell. ;23(1):137-50. doi: 10.1091/mbc.E11-05-0419.). Three independent replicates were analyzed and results were reproducible and statistically significant, as shown in Fig. S2. Total RNA was extracted from each fraction using the SpeedTools Total RNA Extraction kit (Biotools B&M Labs). In the first replicate a spike in RNA control (Phenylalanine) was added and tested that no significant differences in the results were obtained when using or not the spike in control (see below Figure R3 for referees). mRNA relative values are always obtained from qPCR using a calibrating efficiency standard curve for each pair of oligos, after the initial set up of the qPCR for this specific pair of oligos. Therefore, slight differences in amplification efficiencies for each oligo pair are taken into account. More details about qPCR are now included in the Materials and Methods section (“Polyribosome profile analysis” subsection) and one additional reference is also included for the processing of polysomal gradient fractions.
It would be helpful to state how long CDS are for these mRNAs and where 2-3/2-8 cut off made is what for determining what is 'short' vs 'long' and the scientific basis for selecting 2-3 vs 2-8, why 8? Were M fractions also used in qPCR, they appear to be ignored in the analysis as currently presented?
Response: The CDS lengths of the mRNAs analyzed by polysome profiling and other important features are now included in new Table S5. We decided to classify as short length mRNAs those with a length below 600 bp, while mRNAs with lengths above 600 bp were classified as long length mRNAs. This classification was made on the basis of specific mRNA profiles obtained by qPCR analysis. mRNAs with short lengths behaved similarly and we selected 2n-3n fractions since the main polysomal peak under normal conditions appeared among 4n-5n fractions. In this line, long length mRNAs also behaved similarly between them, and we selected 2n to 8n fractions since the main polysomal peak under normal conditions appeared right after the 8n fraction. This information is now included in the Results and Materials and Methods sections.
Regarding the use of the Monosomal fractions, yes, they were used as it can be seen in Fig. S2 which includes the distribution in Monosomal (M), lighter (2n-3n/2n-8n) or heavier (n>3/n>8, P) polysomal fractions. In the polysomal profiles we can be see that depletion of eIF5A causes a reduction in the amount of mitochondrial mRNAs in the heavier fractions and a corresponding increase in the amount of mRNAs in the lighter polysomal fractions, while no significant changes are found in the monosomal fractions. Therefore, the statistically significant change in the heavier/lighter polysomal fraction ratio is indicative of the translation down-regulation and these ratios are shown in Fig. 2C. As the Reviewer #2 commented in point 5, the change in mRNA distribution to lighter polysomal fractions may be indicative or ribosome stalling at the 5’ ORF region, compatible with a stall at the mitochondrial target signal (MTS), and this discussion is now included in the Results and Discussion section.
Which transcripts studied here encode proteins with signal sequences? As Signal sequence pauses early in translation should impact ribosome loading this is potentially important here as discussed above.
Response: Yes, we agree with Reviewer #2 that this information may be relevant according to the hypothesis of ribosome stall at the MTS. Therefore, a score value of probability of harbouring an MTS presequence (Fukasawa et al., 2015) is now included in Table S5 for each of the mRNAS analyzed by polysome profiling. The discussion of this point has also been included in the Results and Discussion sections.
While it has been shown that SRP recognition is able to slow and even arrest translation of ER signal recognition peptides, there is currently no known direct SRP like correlate for mitochondrial signal sequences. We are therefore unaware of literature showing that mitochondrial signal sequences pause translation in a manner similar to ER signal sequences. We have previously found that downstream translational slowing is important for mitochondrial mRNA targeting (Tsuboi et al 2020, Arceo et al 2022), but we believe that to be distinct to what the Reviewer #2 is addressing.
Figures 3-5. Microscopy. The false green color images in Figure 3B do not show up well. They may be better shown in grayscale, with only the multiple overlays in color.
Response: False color for fluorescent microscopy images are widely used because they help to visualize the results to the readers and also facilitate the interpretation of multiple overlays. The use of false color is also suggested by Reviewer #4.
Figure 3C should show the data spread for all 150 cells and normalise differently as discussed above for westerns. I do not believe that all 150 WT cells have exactly the same GFP intensity, which is what the present plot claims.
Response: As answered to point 3 made by this Reviewer, now all figures, including Fig. 3C, are made with Graphpad and scatter plot with all individual points plotted, additionally to showing the mean, SD and statistical analysis. Results correspond to three independent experiments and show a statistically significant difference in Pdr5-GFP intensity signal between wild-type and tif51A-1 mutant. Figure legend has been corrected accordingly.
For panels 3D-F image quantification should be shown so that the variation across a population is clear. Eg in violin plots, or showing every point. It should be clear what proportion of cells have GFP aggregates and what the variation in number of granules is.
Response: The quantification of cytoplasmic Yta12 aggregates is now included in Fig.3E, which shows significant differences between the tif51A-1 mutant and the wild-type strain. Results show the individual values from three independent experiments with a minimum of 150 cells counted. We used a bar graph in which the values (% of cells with 0, 1, 2 or 3 aggregates) for each independent experiment are shown together with the mean, SD and statistical analysis. Figure legend has been corrected accordingly. This information also responds to the comments made by Reviewer #1.
Figure 4H has no error bars.
Response: New Fig.4H now shows the individual values of each of the three independent replicates, mean and error bars (SD). Figure legend has been corrected accordingly.
Figure 5C normalises 2 WTs to 1 as in Figure 3C. Both would be better as violin plots.
Response: Results in Fig. 5C are now shown using Graphpad and scatter plot in which all individual values are plotted (not normalized wild-type to 1), and also mean, SD and statistical significance. Results correspond to three independent replicates with the fluorescence intensity measured in more than 150 cells.
Figure 5D/E shows 37{degree sign}C data only. Do tif51A-1 cells have aggregates at 25{degree sign}C?There are no error bars in Figure 5E or any indication of how many cells/replicates were quantified.
Response: Figures 5D and 5E only show data at 37ºC since there are no Tim50-GFP aggregates, nor aggregates of other mitochondrial proteins, in tif51A-1 mutants at 25ºC, as shown in Fig. S3C-F and Fig. S5C.
New Fig. 5E shows individual values from each of the three independent experiments, mean, SD and statistical significance. Results correspond to the measurement of Tim50 protein aggregates in more than 150 cells. Figure legend has been corrected accordingly.
There are no sizing bars on any of the micrographs.
Response: Now, all sets of microscopy figures contain a size bar and this is indicated in the corresponding Figure legend.
The methods states that all quantification was done using ImageJ, but there is no detail given about how this was done. There are lots of ways to use ImageJ.
Response: A detailed description of the quantifications made using ImageJ is now included in the Materials and Methods section (“Fluorescent microscopy and analysis” subsection).
Figure 4. Luciferase assay. It is clear that there are differences in Tim50 vs Tim50∆7pro signal over time from the primary plots. It is not clear why the quantification plots on the right are from 2 selected time points. It is more typical to calculate the rate of increase in RLU per min in the linear portion of the plot, for these examples it would be approximately 30-40 mins.
Response: As luciferase mRNA level is also increasing with time, the total amount of luciferase protein will increase exponentially. At some point mRNA levels will reach a steady state and for a brief period there could be a linear portion of RLU increase, but that will be different for each condition and reporter as ribosome quality control can have a direct impact on mRNA half-life. We have instead chosen two time points to show that statistical differences in Tim50 protein expression upon eIF5A depletion are not dependent on the time point chosen. We have also included the full data plots for readers to view the raw data.
Figure 4F. The text on p6 states Fig 4F is evidence of RQC induction. This is an overstatement. There are no data presented relating to RQC.
Response: Ribosome-associated quality control (RQC) is a mechanism by which elongation-stalled ribosomes are sensed in the cell, and then removed from the stall site by ribosomal subunit dissociation. This is the definition of RQC. With high levels of RQC this will cause a drop in ribosome density downstream of the stall site because of ribosome removal. While we would agree that most studies do not show actual buildup of ribosomes at ribosome stalls, and removal after the stall, we do. Our ribosome profiling analysis shows in vivo distribution of ribosome density across the TIM50 mRNA in wild-type and upon eIF5A depletion. We show that in the eIF5A depletion the ribosome density is similar to wild-type for the first ~200 bp, then there is a buildup of ribosomes for ~300 bps up to the stretch of polyproline residues, indicative of slowed ribosome movement. This slowed ribosome movement is further supported by our translation duration measurements in Fig. 4E. Then the transcript is almost completely devoid of ribosomes after the stretch of proline residues, indicating the ribosomes are removed at the proline stretch. This combination of ribosome stalling (Fig. 4E,4F) and subsequent ribosome removal (Fig 4F) is the textbook definition of RQC, so we indicate this as evidence for RQC.
Figure 5G. It is not clear to this reviewer why the CYC1 reporter is impacted by Tim50∆pro at 25{degree sign}C. Can the authors comment?
Response: This is also not clear to us, however, no differences are seen with and without eIF5A depletion, supporting the interpretation that Cyc1 translation is not affected by eIF5A depletion when Tim50 protein levels are restored in the Tim50∆pro strain. However, in order to clarify this point, we propose, if it is considered necessary, to remake the Tim50∆pro CYC1 reporter strain.
Does ∆pro impact Tim50 function or is there possibly some other off target impact of integrating the reporter in this strain?
Response: As answered to Reviewer #1 in her/his point 1, the functionality of Tim50ΔPro is shown by the fact that wild-type cells carrying this Tim50 protein version as the only copy of Tim50 grew well in glycerol media, where Tim50 is essential for the mitochondrial function (Fig. 5A). However, we suspect that Tim50ΔPro is a bit less efficient protein since a double mutant tif51A-1 Tim50ΔPro shows even reduced growth than the single tif51A-1 mutant (Fig. 5A). We do not expect off target impact in this Tim50ΔPro strains, although we cannot exclude this 100%, as in any other yeast strain obtained by transformation.
Significance
Strengths and Limitations:
Strengths are that the study uses a wide range of molecular approaches to address the questions and that the results present a clear story.
Limitations are that the poly-proline residues identified in yeast Tim50 are not conserved through to humans, so the direct relevance to higher organisms is unclear. However there are many more poly-proline proteins in human genes than in yeast and there are rare genetic conditions affecting eIF5A and its hypusination
Advance. provides a clear link between dysregulation of eIF5A, Tim50 expression and wider impact on mitochondria.
Audience. Scientists interested in protein synthesis, mitochondrial biology and clinicians investigating rare human disorders of eIF5A and hypusination.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
eIF5A is required to mediate efficient translation elongation of some amino-acid sequences like polyproline motifs, and eIF5A depletion was reported to impair mitochondrial respiration functions, decreasing mitochondrial protein levels. In this study, Barba-Aliaga et al. showed that eIF5A is important for the translation of the Pro-repeat containing protein, Tim50, an essential subunit of the TIM23 complex, the presequence translocase in the mitochondrial inner membrane. eIF5A ts mutants caused ribosome stalling of Tim50 mRNA on the mitochondrial surface at non-permissive temperature, and the removal of the Pro-repeat from Tim50 (Tim50-delta7Pro mutant) made its translation independent of eIF5A. However, the replacement of endogenous Tim50 with Tim50-delta7Pro did not recover the cell growth defects of eIF5A ts mutant on respiration medium at semi-permissive temperature, suggesting that Tim50 is not the only reason for the global mitochondrial defects caused by defective eIF5A.
(1) I am wondering why the authors mainly used the eIF5A ts mutant strains instead of the eIF5A degron strain since, for example, the decrease in the level of Tim50 was only marginal (Fig. EV4A).
Response: eIF5A is a very abundant protein and with high stability (SGD data: 273594 molecules/cell in YPD and 9.1 h protein half-life). We have used temperature-sensitive strains, tif51A-1, instead of eIF5A-degron because eIF5A is depleted much quicker in the first than the second system. As it can be seen in Schuller et al., Mol Cell. 2017;66(2):194-205.e5. doi: 10.1016/j.molcel.2017.03.003, with the eIF5A-degron system the addition of auxin was made in parallel to a transcriptional shut off using GAL promoter to express eIF5A-degron, changing the media from galactose to glucose and incubating the cells for 10 hours. With our approach using temperature-sensitive proteins, almost full depletion (without affecting viability, see Li et al., Genetics 2014; 197(4):1191-200 doi: 10.1534/genetics.114.166926) can be done after 4-6 h incubation at 37ºC or 4 h incubation at 41ºC (Fig. 1C and Fig. S1E, almost no signal is detected by western blotting). Therefore, we chose to use eIF5A depletion with temperature-sensitive yeast strains to achieve stronger protein depletion with shorter times and avoid secondary effects. In addition, the two eIF5A temperature-sensitive strains used in this study have been widely used by us and others (Pelechano and Alepuz, 2017; Zanelli and Valentini, 2005; Zanelli et al., 2006; Dias et al., 2008; Muñoz-Soriano et al., 2017; Rossi et al., 2014; Li et al., 2014; Xiao et al., 2024).
(2) To show that the compromised translation of Tim50 in the absence of functional eIF5A causes defects in the mitochondrial protein import by clogging the import channels, the authors should directly observe the accumulation of the precursor forms of several matrix-targeting proteins by immunoblotting. In this sense, the results in Fig. 1C for Hsp60 do not fit the interpretation of import channel clogging.
Response: We did not see precursor mitochondrial proteins by Western blot upon eIF5A depletion possibly because: 1) the mature protein form is more abundant and stable; 2) the precursor mito-protein appears in cytoplasmic aggregates and this may not be easily extracted during preparation of proteins for Western blot analysis. In the work by Weidberg and Amon, 2018, who described the mitoCPR response; Krämer et al., 2023, who described mitostores; and others (Wrobel et al., 2015; Boos et al., 2019) the authors use extreme over-expression of mitoproteins or mutations in essential proteins for mitochondrial biogenesis to induce clogging of translocases and accumulation of precursors in the cytosol. However, we are using and detecting proteins at their physiological levels, expressed under their native promoters, what may explain why we do not detect precursor mito-proteins. We are using what we believe to be a much more physiologically relevant system, where we use endogenous expression of mitochondrially imported proteins. Yet we see similar transcriptional induction of mitoCPR targets (CIS1, PDR5, PDR15) and mislocalization of mitochondrial proteins to Hsp104 marked aggregates (MitoStores).
(3) The authors speculated in the Discussion section that import defects caused by compromised translation of Tim50 could cause down-regulation of translation through prolonged mitochondrial stress. However, this lacks experimental evidence.
Response: We do see that depletion of eIF5A causes import defects through Tim50 and correlates with the down-regulation of translation of mRNAs encoding mitoproteins as shown in Fig. 2C and Fig. S2. In these figures it can be seen that mito-mRNAs move from heavier to lighter polysomal fractions upon eIF5A depletion, indicating that less ribosomes are bound to these mRNAs. Importantly, synthesis of Cyc1 and Cox5A mitochondrial proteins is recovered when TIM50 gene is replaced by an eIF5A-translation independent TIM50ΔPro gene, arguing in favor of a translation defect caused by eIF5A depletion through the collapse of import systems produced by the ribosome stalling in TIM50 mRNA.
As discussed by Reviewer #2 and in our answers to his/her points 5 and 6, the reduction in the number of ribosomes bound to mito-mRNAs upon eIF5A depletion may be a consequence of the stall of ribosomes after the mRNA 5’ coding region encoding the MTS. This discussion has now been introduced in the Discussion section. This information also responds to the comments made by Reviewer #2.
(4) The authors stated that human Tim50 does not have Pro-repeat motif, but how about other organisms (like other fungi species)? Is the present observation specific only to S. cerevisiae?
Response: We have now included a sequence alignment of the Tim50 protein sequences of different yeast species (Saccharomyces cerevisiae, Candida albicans, Candida glabrata, Candida lipolytica, Schizzosaccharomyces pombe, Schizzosaccharomyces jamonicus), mouse and human (Fig. S4A). The resulting alignment shows that S. cerevisiae is the only organism presenting the seven consecutive proline residues. Still, C. albicans and C. glabrata conserve five consecutive prolines while C. lipolytica conserves five non-consecutive prolines. Furthermore, S. pombe and S. jamonicus, and mouse and human, conserve three and four non-consecutive prolines respectively. This means that the observations presented in this manuscript could be extended to other fungi species as well since most of the proline residues are conserved and are predicted to behave as eIF5A-dependent motifs for translation. Moreover, the described eIF5A-dependent tripeptide motif PDP is found in humans, mice and S. pombe at the Tim50 region where we found the PPP motif inducing ribosome stalling in S. cerevisiae (Fig S4A). This may confer eIF5A-dependent ribosome stall since as we showed in our previous ribosome footprinting (Pelechano et al., 2017), this PDP motif causes a similar high ribosome stall as the PPP motif. This discussion has now been introduced in the Results and Discussion sections.
(5) Two references in the text are marked with "?", which should be corrected.
Response: We thank you the Reviewer #3 for noticing this, references have been corrected in the text.
__Reviewer #3 (Significance (Required)): __
The essence of this work, the role of eIF5A in the efficient translation of Pro-repeat containing Tim50 (Figs. 4 and 5), is important and worth publication. However, the results of the effects of defective eIF5A on the levels and localization of mitochondrial proteins (Figs.1-3) can be even deleted to make clear the point of this work.
Reviewer #4 (Evidence, reproducibility and clarity (Required)):
The manuscript submitted by Barba-Aliaga et al. aims to understand on the molecular level how eIF5A influences mitochondrial function. elF5A promotes translation elongation at stretches prone to translational stalling like e.g. polyproline sequence. The finding that eIF5a influences mitochondrial function has been previously reported by the same group and by others. In this context, it was suggested that eIF5a promotes translation of N-terminal mitochondrial targeting signals. Here, the authors propose an alternative mechanism and suggest that "eIF5a directly controls mitochondrial protein import through alleviation of ribosome stalling along TIM50 mRNA." Using luciferase reporter assay, the authors indeed convincingly show that the speed of Tim50 translation is dependent on the presence of functional TIF51A, the major eIF5a in yeast, and that this dependence comes from the presence of the polyproline stretch in Tim50. The rest of the manuscript is unfortunately less clear and it is very hard, if not impossible, to sort out direct from secondary effects and compensations. The authors use proteomics, biochemical methods, RNAseq and fluorescence microscopy to analyze the temperature sensitive tif51A mutant but the conditions used in the manuscript are non-consistent between various experiments presented, in respect to the medium, temperature, preculture condition and the length of treatment used.
Response: We do not agree with this Reviewer #4 appreciation. We used different molecular approaches to investigate different questions. Indeed, this is one of the Strengths that is highlighted by Reviewer 2 as it reads above: “Strengths are that the study uses a wide range of molecular approaches to address the questions and that the results present a clear story.” All the experiments presented in the manuscript, apart from proteomics analysis (Fig. 1), have been performed in the same conditions respect to the medium (SGal), temperature (25ºC/37ºC), preculture condition (SGal, 25ºC) and length of treatment used (4 h of depletion at 37ºC). This is already clearly specified in every Figure legend along the whole manuscript and also in the Materials and Methods section. In addition, individual values from each replicate, mean, standard deviation and statistical tests are shown for every Figure in the manuscript. Therefore, we do believe that conditions are consistent between experiments and conclusions are made based on different experiments and different scientific approaches.
We agree with Reviewer #4 in that depletion of eIF5A protein in the temperature sensitive tif51A-1 mutant was done in the proteomic at 41°C for 4 h, whereas in the rest of experiments depletion is made at 37°C for 4 h. As answered to Reviewer #2 (see answer to point 2), stronger depletion conditions were used to get clear proteomic results, and in order to compare both temperatures we have added now some controls showing eIF5A depletion and growth of tif51A-1 mutant at 41°C and 37°C; importantly, we also show the reduction in mito-protein levels upon eIF5A depletion at 37°C (Fig. S1B and E).
In some cases, the genetic background of the yeast strains and plasmids used are also unclear (e.g. pYES2-pGAL-FLAG-TIM50-GFP-URA3 - based on the provided description, TIM50 was inserted between FLAG and GFP tags; if so, mitochondrial targeting signal of Tim50 would be masked making its import into mitochondria impossible).
Response: We do not agree with this appreciation. The genetic background of the yeast strains is always the same along the whole manuscript (BY4741 background) and is clearly specified in Table S2. In this line, all the information regarding the plasmids used can be found at Table S3 and plasmids construction is extensively detailed in the Materials and Methods section (“Yeast strains, plasmids, and growth conditions” subsection).
Regarding the pYES2-pGAL-FLAG-TIM50-GFP-URA3 plasmid and as already mentioned in the text, we only used this plasmid to analyze by western blotting the protein synthesis of Tim50 independently of its subcellular localization. Our results (Fig. S4C) confirm that the synthesis defect of this Tim50 version upon eIF5A depletion is only due to the presence of the polyproline region. Importantly, we did not make any conclusion regarding import defects or protein localization based on these results.
I have no doubt that upon exposure of tif51A cells to 41{degree sign}C for 4h cells initiate a number of cellular responses including mitoCPR and formation of MitoStores, however, I don´t think that the authors convincingly show that these are initiated by reduced levels of Tim50 - on the contrary, the authors show that levels of Tim50 are actually not significantly changed. This can hardly be reconciled with the model proposed. In addition, should the effect of Tif51A on mitochondria primarily be due to its effect on Tim50, then Tim50deltaPro should rescue the phenotype of tif51a mutant but it didn´t; if anything, it made it worse (see Fig 5A - the double mutant grows worse than the single ones). Furthermore, expression of Cyc1 luciferase reporter is reduced in Tim50deltaPro strain even at permissive temperature, Figure 5G. Since cytochrome c is not a substrate of the presequence pathway this again points to the secondary effects that are being observed.
Response: We believe that our main results, summarized next and all performed at 37°C, do show that translation defects in TIM50 mRNA are the cause of the mitoCPR induction and formation of MitoStores. First, Tim50 protein levels are significantly reduced upon eIF5A depletion, as shown in Fig. S4A and S4B. Although being statistically significant, we agree that the reduction in Tim50 protein level is quantitatively low. This can be explained by the high stability of Tim50 protein, with a half-life of approximately 9.6 h (Christiano et al, 2014), which makes it more difficult to measure large differences in new protein synthesis. This is why we additionally used an accurate and quantitative test for showing the eIF5A-dependency for TIM50 mRNA translation: the fusion of the TIM50 DNA sequence to a TetO7-inducible nLuc reporter, which allows to monitor the appearance of new Tim50 protein and to estimate the translation elongation rate (Fig.4C-E). The ribosome stalling at TIM50 mRNA provoked by eIF5A depletion, where this mRNA is located at the mitochondrial surface to promote the import of nascent Tim50 protein during translation (Fig. S5B), may cause by itself the clogging of the protein import system even though yields only a slight reduction in total Tim50 cellular protein. Second, as Reviewer #4 pointed with our model, Tim50deltaPro should rescue the phenotype of tif51A-1 mutant and it does it: no mitoCPR induction and no mito-protein cytoplasmic aggregation are observed (Fig. 5D-F). Moreover, no differences in Cyc1- and Cox5a-nanoLuc synthesis are observed in the tif51A-1 Tim50ΔPro strain between depletion and not depletion conditions (Fig. 5E). These results strongly suggest that the mitochondrial protein import defects (and consequently the mitoCPR induction and mito-protein cytoplasmic aggregation) caused by eIF5A depletion are a consequence of ribosome stalling during TIM50 mRNA translation. However, Reviewer #4 is right in that mitochondrial respiration and growth in glycerol are not restored in the tif51A-1 Tim50ΔPro strain, even though Tim50 protein levels have been restored under eIF5A depletion conditions. As we discuss in the manuscript, we expect that there are additional mitochondrial proteins as targets of eIF5A, such as Yta12 and/or others. We have added further data pointing to ribosome stalling and RQC for other cotranslationally inserted mitochondrial proteins (Table S6). Accordingly, this has also been included in the Discussion section. However, the identification and study of these other mitochondrial targets goes beyond the aim of our current study.
Minor comments
- Page 1, mitochondrial proteins cross do not the intermembrane space through Tom40 but rather the outer membrane Response: We think the Reviewer #4 misunderstood the sentence because we are saying exactly what he/she states: mitoproteins cross the outer membrane to the intermembrane space through Tom40. Thus our sentence is:
“Usually, mitoproteins contact the central receptor Tom20 and cross to the intermembrane space (IMS) through Tom40, the β-barrel pore-forming subunit.”
Therefore, we kept the sentence.
Page 4, ATP1 is present in the matrix and not the inner membrane
Response: This has been corrected. We thank the Reviewer for pointing this.
The citations are missing at several places - they are left as "?"
Response: References have been corrected in the text.
It would be nice if microscopy images were colored in magenta and cyan, rather than red and green, to make them accessible to a wider audience.
Response: Green and red colors for fluorescent microscopy images are widely used in high-impact journals, especially when showing mitochondrial proteins and mitochondrial marker Su9-mCherry (Hughes et al., 2016, eLife, doi: 10.7554/eLife.13943; Kakimoto et al., 2018, Scientific Reports, doi: 10.1038/s41598-018-24466-0; Kreimendahl et al, 2020, BMC Biology, doi: 10.1186/s12915-020-00888-z). However, if the Reviewers think this is essential for publication, microscopy images can be colored in magenta and cyan instead.
Formally speaking, Tim50 is not per se a translocase, it is either a component of the translocase or, more precisely, a receptor of the translocase. Similarly, Tom20 and Tom70 are not membrane transporters but rather receptors of the TOM complex.
Response: We have changed the title and text to be more precise in the description of the components of the mitochondrial import systems as suggested by Reviewer #4.
Reviewer #4 (Significance (Required)):
This is a potentially interesting story, however, the conditions used for the analysis of the temperature sensitive mutants were either too harsh or these mutants are in general impossible to control, making the manuscript, in my opinion, unfortunately too premature for publication.
Response: We do not agree with the Reviewer #4 opinion, all experiments were done at 37ºC except the proteomic analysis that it is also confirmed further for Tim50 and Por1 proteins at 37ºC. We want to stress that we show all experiments with at least three biological replicates, individual values for each measurement are included now in the graphics as recommended by Reviewer #2, and the mean, SD and statistical tests are included. We make conclusions based in statistical significant differences along the manuscript. The temperature-sensitive yeast mutants used show reproducible analysis, they behave as expected in the controlled conditions used and they have been widely used in our lab and others (Pelechano and Alepuz, 2017; Zanelli and Valentini, 2005; Zanelli et al., 2006; Dias et al., 2008; Muñoz-Soriano et al., 2017; Rossi et al., 2014; Li et al., 2014; Xiao et al., 2024).
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #4
Evidence, reproducibility and clarity
The manuscript submitted by Barba-Aliaga et al. aims to understand on the molecular level how eIF5A influences mitochondrial function. elF5A promotes translation elongation at stretches prone to translational stalling like e.g. polyproline sequence. The finding that eIF5a influences mitochondrial function has been previously reported by the same group and by others. In this context, it was suggested that eIF5a promotes translation of N-terminal mitochondrial targeting signals. Here, the authors propose an alternative mechanism and suggest that "eIF5a directly controls mitochondrial protein import through alleviation of ribosome stalling along TIM50 mRNA." Using luciferase reporter assay, the authors indeed convincingly show that the speed of Tim50 translation is dependent on the presence of functional TIF51A, the major eIF5a in yeast, and that this dependence comes from the presence of the polyproline stretch in Tim50. The rest of the manuscript is unfortunately less clear and it is very hard, if not impossible, to sort out direct from secondary effects and compensations. The authors use proteomics, biochemical methods, RNAseq and fluorescence microscopy to analyze the temperature sensitive tif51A mutant but the conditions used in the manuscript are non-consistent between various experiments presented, in respect to the medium, temperature, preculture condition and the length of treatment used. In some cases, the genetic background of the yeast strains and plasmids used are also unclear (e.g. pYES2-pGAL-FLAG-TIM50-GFP-URA3 - based on the provided description, TIM50 was inserted between FLAG and GFP tags; if so, mitochondrial targeting signal of Tim50 would be masked making its import into mitochondria impossible). I have no doubt that upon exposure of tif51A cells to 41{degree sign}C for 4h cells initiate a number of cellular responses including mitoCPR and formation of MitoStores, however, I don´t think that the authors convincingly show that these are initiated by reduced levels of Tim50 - on the contrary, the authors show that levels of Tim50 are actually not significantly changed. This can hardly be reconciled with the model proposed. In addition, should the effect of Tif51A on mitochondria primarily be due to its effect on Tim50, then Tim50deltaPro should rescue the phenotype of tif51a mutant but it didn´t; if anything, it made it worse (see Fig 5A - the double mutant grows worse than the single ones). Furthermore, expression of Cyc1 luciferase reporter is reduced in Tim50deltaPro strain even at permissive temperature, Figure 5G. Since cytochrome c is not a substrate of the presequence pathway this again points to the secondary effects that are being observed.
Minor comments
- Page 1, mitochondrial proteins cross do not the intermembrane space through Tom40 but rather the outer membrane
- Page 4, ATP1 is present in the matrix and not the inner membrane
- The citations are missing at several places - they are left as "?"
- It would be nice if microscopy images were colored in magenta and cyan, rather than red and green, to make them accessible to a wider audience
- Formally speaking, Tim50 is not per se a translocase, it is either a component of the translocase or, more precisely, a receptor of the translocase. Similarly, Tom20 and Tom70 are not membrane transporters but rather receptors of the TOM complex.
Significance
This is a potentially interesting story, however, the conditions used for the analysis of the temperature sensitive mutants were either too harsh or these mutants are in general impossible to control, making the manuscript, in my opinion, unfortunately too premature for publication.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
eIF5A is required to mediate efficient translation elongation of some amino-acid sequences like polyproline motifs, and eIF5A depletion was reported to impair mitochondrial respiration functions, decreasing mitochondrial protein levels. In this study, Barba-Aliaga et al. showed that eIF5A is important for the translation of the Pro-repeat containing protein, Tim50, an essential subunit of the TIM23 complex, the presequence translocase in the mitochondrial inner membrane. eIF5A ts mutants caused ribosome stalling of Tim50 mRNA on the mitochondrial surface at non-permissive temperature, and the removal of the Pro-repeat from Tim50 (Tim50-delta7Pro mutant) made its translation independent of eIF5A. However, the replacement of endogenous Tim50 with Tim50-delta7Pro did not recover the cell growth defects of eIF5A ts mutant on respiration medium at semi-permissive temperature, suggesting that Tim50 is not the only reason for the global mitochondrial defects caused by defective eIF5A.
- I am wondering why the authors mainly used the eIF5A ts mutant strains instead of the eIF5A degron strain since, for example, the decrease in the level of Tim50 was only marginal (Fig. EV4A).
- To show that the compromised translation of Tim50 in the absence of functional eIF5A causes defects in the mitochondrial protein import by clogging the import channels, the authors should directly observe the accumulation of the precursor forms of several matrix-targeting proteins by immunoblotting. In this sense, the results in Fig. 1C for Hsp60 do not fit the interpretation of import channel clogging.
- The authors speculated in the Discussion section that import defects caused by compromised translation of Tim50 could cause down-regulation of translation through prolonged mitochondrial stress. However, this lacks experimental evidence.
- The authors stated that human Tim50 does not have Pro-repeat motif, but how about other organisms (like other fungi species)? Is the present observation specific only to S. cerevisiae?
- Two references in the text are marked with "?", which should be corrected.
Significance
The essence of this work, the role of eIF5A in the efficient translation of Pro-repeat containing Tim50 (Figs. 4 and 5), is important and worth publication. However, the results of the effects of defective eIF5A on the levels and localization of mitochondrial proteins (Figs.1-3) can be even deleted to make clear the point of this work.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
The authors report here novel findings concerning the role of eIF5A in mediating protein import to mitochondria in the model eukaryote Saccharomyces cerevisiae. It was previously known from structural and other studies that the translation factor eIF5A binds to the E-site of stalled ribosomes to help promote peptide bond formation. It was inferred by ribosome footprinting and reporter studies assessing the impact of eIF5A depletion that eIF5A is particularly needed to translate several specific amino acid motifs including polyproline stretches. However additional target sequences are known.
Here a proteomics approach reveals clear evidence that mitochondrially targeted proteins are impacted by temperature sensitive mutations in eIF5A that deplete the factor, including those without polyprolines. The authors then use a range of molecular and cell biology to focus on the role of mitochondrial signal sequences/mitochondrial protein import and the mitochondrial stress response, before highlighting a role for poly-prolines in Tim50, a major mitochondrial protein import factor. Consistent with the ribosome footprinting done previously it is shown that a stretch of 7 prolines limit its translation when eIF5A is depleted and studies shown here are consistent with the idea that this has wider consequences for mitochondrial protein import and hence translation/stability of other proteins. However improved Tim50 translation alone, by eliminating the poly-proline motif, is not sufficient to overcome all consequences of eIF5A depletion for mitochondrial protein import and for viability, suggesting a wider role.
In general the text flows nicely, this could be a study that explains why a large number of mitochondrially targeted proteins are impacted by depletion of eIF5A in yeast. As the poly Pro sequence in Tim50 is not conserved in higher eukaryotes it is unclear how this observation will scale to other systems, but it provides an example of how studies in a relatively simple system can trace wide-spread impact of the loss of one component of a central pathway-here protein synthesis to altered translation of a key component of another process-mitochondrial protein import. Given that eIF5A and its hypusine modifying enzymes are mutated in rare human disorders, it is likely there will be interest in this study.
However, while the conclusions may be justified, there are significant deficiencies in how the experiments have been analysed and presented in this version of the manuscript that impact every figure shown, coupled with deficiencies in the methods section that all need to be addressed. Thus, we have here the basis of what should be a very interesting paper here, but there is a lot of work to do to remedy perceived weaknesses. It may be that the overall conclusions are entirely sound and appropriate, but I suspect that performing the statistics in less biased ways may change some of the significant differences claimed. Some explanations concerning how data analyses were conducted and the reasons for specific analysis decisions being made would also improve the narrative. These points are expanded on below.
All the edits suggested here are aimed at improving the rigor of reporting in this study. Depending on how they are answered some may become major issues, or they could all be minor.
1 Figure 1 shows proteomic data for response to heat shock at 41{degree sign}C. In the text it is made clear that two different temperature sensitive missense alleles the 51A-1 and 51A-3 were analysed, but the single volcano plot in Figure 1A does not say whether it is reporting one of these experiments compared to WT (which one) or some other analysis (ie have data from the 2 mutants been amalgamated somehow?). I would assume only one, but which one, and why only one plot? How different is the other experiment? Why does the Figure title say the experiment is an eIF5A deletion when it is not this?
2 Why were the experiments shown in Figure 1 done at 41{degree sign}C when all other experiments are done at 37{degree sign}C? This experimental difference is ignored in the text and no comparison of the impact of 37 vs 41 is made anywhere in the manuscript. For example it would be straightforward to perform a comparison of eIF5A depletion (by western blot), polyribosome profiles, strain growth/inhibition at both temperatures.
3 Western blot quantification. In Figure 1D and E the authors present western blot quantification. However they have chosen to normalise every panel to the signal in lane 1. This means that there is no variation at all in that sample as every replicate is =1. This completely skews the statistical assumptions made (because there will be variation in that sample) and effectively invalidates all the statistics shown. An appropriate approach to use is to normalise the signal in each lane to the mean signal across all lanes in a single blot. That way if all are identical they remain at 1, but importantly variation across all samples is captured. This should be done to the loading controls as well before working out ratios or performing any statistical analyses. For this type of experiment it is more appropriate to use Anova than a T-test. This advice applies to every western data analysis figure in the whole manuscript and so all associated statistics need to be done again from the original quantification values. If T-test is justified then a correction for multiple hypothesis testing should be applied.
- In all bar chart figures in addition to showing the mean and SD, each replicate value should be shown (eg as done in Fig 2C). Graphpad allows individual points to be plotted easily.
5 Figure 2. Polysome profiles. The impact of translation elongation stalls on global polysome profiles is complex, but a global run off is highly unlikely. Stalls later in the coding region would be anticipated to cause an increase in ribosome density as more ribosomes accumulate (like cars queueing held at a red light). However where a stall is early in a longer ORF, for example at a signal sequence, then there is less opportunity for ribosomes to join and so for those mRNAs moving to lighter points in the gradient may be observed. This may also cause knock on effects on AUG clearance and initiation which the authors appear to see as there may be an increased 60S peak in the traces shown. Are there differences in overall -low vs high polysomes, the traces shown suggest there may be? Discussion of these points is merited in the results section given the subsequent qPCR experiment.
- Figure 2 qPCR. Using qPCR to analyse RNA levels across polysome gradients is tricky for multiple reasons including that the total RNA level varies across fractions that can impact recovery efficiencies following precipitation of gradient fractions. Often investigators use a spike in control to act as a normalising factor. Here it is completely unclear what analysis was done because details are not stated anywhere. How were primers optimized, was amplification efficiency determined? Or are they assumed to be 100%, which they will not be? A detailed description or reference to a study where that is written is needed.
It would be helpful to state how long CDS are for these mRNAs and where 2-3/2-8 cut off made is what for determining what is 'short' vs 'long' and the scientific basis for selecting 2-3 vs 2-8, why 8? Were M fractions also used in qPCR, they appear to be ignored in the analysis as currently presented?
Which transcripts studied here encode proteins with signal sequences? As Signal sequence pauses early in translation should impact ribosome loading this is potentially important here as discussed above.
- Figures 3-5. Microscopy. The false green color images in Figure 3B do not show up well. They may be better shown in grayscale, with only the multiple overlays in color. Figure 3C should show the data spread for all 150 cells and normalise differently as discussed above for westerns. I do not believe that all 150 WT cells have exactly the same GFP intensity, which is what the present plot claims. For panels 3D-F image quantification should be shown so that the variation across a population is clear. Eg in violin plots, or showing every point. It should be clear what proportion of cells have GFP aggregates and what the variation in number of granules is. Figure 4H has no error bars. Figure 5C normalises 2 WTs to 1 as in Figure 3C. Both would be better as violin plots. Figure 5D/E shows 37{degree sign}C data only. Do tif51A-1 cells have aggregates at 25{degree sign}C? There are no error bars in Figure 5E or any indication of how many cells/replicates were quantified.
There are no sizing bars on any of the micrographs The methods states that all quantification was done using ImageJ, but there is no detail given about how this was done. There are lots of ways to use ImageJ.
-
Figure 4. Luciferase assay. It is clear that there are differences in Tim50 vs Tim50∆7pro signal over time from the primary plots. It is not clear why the quantification plots on the right are from 2 selected time points. It is more typical to calculate the rate of increase in RLU per min in the linear portion of the plot, for these examples it would be approximately 30-40 mins.
-
Figure 4F. The text on p6 states Fig 4F is evidence of RQC induction. This is an overstatement. There are no data presented relating to RQC.
-
Figure 5G. It is not clear to this reviewer why the CYC1 reporter is impacted by Tim50∆pro at 25{degree sign}C. Can the authors comment? Does ∆pro impact Tim50 function or is there possibly some other off target impact of integrating the reporter in this strain?
Significance
Strengths and Limitations:
Strengths are that the study uses a wide range of molecular approaches to address the questions and that the results present a clear story.
Limitations are that the poly-proline residues identified in yeast Tim50 are not conserved through to humans, so the direct relevance to higher organisms is unclear. However there are many more poly-proline proteins in human genes than in yeast and there are rare genetic conditions affecting eIF5A and its hypusination
Advance. provides a clear link between dysregulation of eIF5A, Tim50 expression and wider impact on mitochondria.
Audience.
Scientists interested in protein synthesis, mitochondrial biology and clinicians investigating rare human disorders of eIF5A and hypusination.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
The manuscript by Barba-Aliaga and colleagues describe a potential function of eIF5A for the control of TIM50 translation. The authors showed that in temperature-sensitive mutants of eIF5A several mitochondrial proteins are decreased including OXPHOS subunits, proteins of the TCA cycle and some components of protein translocases. Some precursor proteins appear to localize into the cytosol. As consequent of mitochondrial dysfunction, the expression of some stress components is induced. The idea is that eIF5A ribosome-stalling of the proline-rich Tim50 of the TIM23 complex and thereby controls mitochondrial protein set-up.
The findings are potentially interesting. However, some control experiments are required to substantiate the findings.
- To support their conclusion the authors should show whether Tim50 levels are affected in the eIF5A-ts mutants used. How are the levels of TOM and TIM23 subunits? Furthermore, how are the levels of the Tim50 variant that lack the proline residues? Is the stability or function of Tim50 affected by these mutations?
- How specific is the effect of eIF5A on Tim50? Is there any other mitochondrial substrate of eIF5A? It is not so clear to the reviewer why the authors focused on Tim50.
- Figure 1A: Which tif51A strain was used?
- Figure 1C: The authors should show the steady state levels of some OXPHOS/TCA components to confirm the findings of Figure 1A.
- The manuscript contains several quantifications. However, central information like number of repeats or whether a standard deviation or S.E.M. is depicted are missing.
- Figure 3: The authors propose that precursor form aggregates outside mitochondria. To assess the data, a quantification should address in how many cells are protein aggregates.
- Do the observed aggregated proteins interact with Hsp104?
Significance
The manuscript by Barba-Aliaga and colleagues describe a potential function of eIF5A for the control of TIM50 translation. The authors showed that in temperature-sensitive mutants of eIF5A several mitochondrial proteins are decreased including OXPHOS subunits, proteins of the TCA cycle and some components of protein translocases. Some precursor proteins appear to localize into the cytosol. As consequent of mitochondrial dysfunction, the expression of some stress components is induced. The idea is that eIF5A ribosome-stalling of the proline-rich Tim50 of the TIM23 complex and thereby controls mitochondrial protein set-up.
The findings are potentially interesting. However, some control experiments are required to substantiate the findings.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
__Below is our point-by-point reply to the reviewer's comments __
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
PNKP is one of critical end-processing enzymes for DNA damage repair, mainly base excision & single strand break repair, and double strand break repair to a certain extent. This protein has dual enzyme function: 3' phosphatase and 5' kinase to make DNA ends proper for ligation. It has been demonstrated that PTM of PNKP (e.g., S114, S126), particularly phosphorylation by either ATM or DNAPK, is important for PNKP function in DNA damage repair. The authors found a new phosphorylation site, T118, of PNKP which might be modified by CDK1 or 2 during S phase. This modification of phosphorylation is involved in maintenance and stability of the lagging strand, particularly Okazaki fragments. Loss of this phosphorylation could result in increased single strand gaps, accelerated speed of fork progression, and eventually genomic instability. And for this process, PNKP enzyme activity is not that important. And the authors concluded that PNKP T118 phosphorylation is important for lagging strand stability and DNA damage repair.
Major comments
In general, enzymes have protein interactions with its/their substrates. If PNKP is phosphorylated by either/both CDK1/2, the protein interaction between these would be expected. However, the authors did not provide any protein interactions in PNKP and CDKs. *Thank you for your suggestion. We will perform GFP-pulldown assays using cell extracts from HEK293 cells expressing GFP-WT-PNKP, GFP-T118A-PNKP. And then to confirm the interaction of PNKP and CDK1/2, we will blot with CDK1 and CDK2 antibodies. *
It is not clear how T118 phosphorylation is involved in DNA damage repair itself as the authors suggested. The data presenting the involvement of T118 phosphorylation in this mechanism are limited. This claim opens more questions than answers. CDK1/2 still phosphorylates T118 in this DNA damage repair process? What would happen to DNA damage repair in which PNKP involves outside of S phase in terms of T118 phosphorylation?
Thank you for your comment. We have investigated how T118 phosphorylation is important in DNA damage repair by several experiments. In figure S8, we tested SSB and DSB repair abilities of PNKP KO cells expressing PNKP T118A mutant, in which PNKP T118 phosphorylation has critical roles in both SSB and DSB repair pathways. Interestingly, the result of SSB repair assay (figure S8A & B) may indirectly indicate that T118 phosphorylation is important for SSB repair throughout cell cycle as these SSBs are instantly induced by IR exposure and recovered only for 30 mins that is presumably not enough time for cells to go through cell cycle. Along with the repair abilities, we also analyzed a recruitment kinetics/ability to DNA damage in PNKP T118A and T118D mutants using laser micro-irradiation assay in figure S9. This result indicates that the phosphorylation of PNKP at T118 is controlling its recruitment to at least laser-induced DNA damage sites. Moreover, we have analyzed recruitment of PNKP to a single-strand DNA gap structure, which mimics intermediates of some DNA repair pathways and incomplete Okazaki fragment maturation, using cell extracts from PNKP KO cells expressing PNKP T118A and T118D mutants and biochemical assay in figure 4H. This assay is much cleaner and shows that loss of T118 phosphorylation impairs PNKP recruitment to the ssDNA gap structure. We believe that these data sufficiently support our model that the phosphorylation of T118 on PNKP is involved in DNA repair in general. However, we agree with that we have not yet directly tested DNA repair ability of PNKP T118A in outside of S-phase. Therefore, in addition to these data, we will perform H2O2-induced SSB and IR-induced DSB repair assay using EdU (S phase) pulse labelling in PNKP KO cells expressing PNKP T118A mutant, then we will measure the ADP-ribose intensity and pH2AX foci in EdU negative cells (outside of S phase as the reviewer suggested).
Along the same line with #1/2 comments, the recruitment of PNKP to the damage sites is XRCC1 dependent. Is not clear whether PNKP recruitment to gaps on the lagging strand is XRCC1 independent or dependent. It might be interesting to examine (OPTIONAL)
*Thank you for an important suggestion. XRCC1 acts as a scaffold of PNKP and is required for recruitment of PNKP for canonical SSB repair, although we propose that PNKP is involved in two pathways in DNA replication: PARP1-XRCC1-dependent ssDNA gap filling pathway and Okazaki fragment maturation pathway working with FEN1. It is still important to address how XRCC1 is required for PNKP recruitment to the single-strand gaps on nascent DNA. Therefore, we will perform iPOND analysis in XRCC1 knock down + GFP-WT-PNKP expressed HEK293 cells. *
Minor comments
In results: 'Generation of PNKP knock out U2OS cell line' - In figure S2A; There are no data regarding diminishing the phosphorylation of g-H2AX.
Thank you for your suggestion. We will add pH2AX blot data in fig S2A (all reviewers requested).
- By showing data in figure S2B/C/D/E, the authors describe 'PNKP KO cells impaired the SSBs repair activity'. However, as the authors mentioned in this manuscript, PNKP could bind to either XRCC1 or XRCC4. Also for this experiment, IR had been applied, which induces DNA double strand breaks. Therefore, it is not certain that the authors' description is fully supported by these data presented. Perhaps, SSB inducing reagents should be used instead of IR.
In figure S2B/C/D/E, we used gamma-ray as IR source, which classified as low energy transfer irradiation. which mainly act as indirect effect to the DNA. It is estimated gamma-ray induce DNA damage as 60-80% SSBs and 20-40 % DSBs. We believe our results are reasonable. In addition to these results, we will perform poly-ADP-ribose assay with H2O2 treatment to more specifically assess SSBs repair activity.
- Is there any FACS analysis data to support the description of the last sentence 'especially the phosphorylation of PNKP T118, is required for S phase progression and proper cell proliferation'?
Thank you for your suggestion. We will add the FACS analysis data of cell cycle profiles in PNKP KO cells expressing GFP, GFP-PNKP WT, T118A.
In results: 'CDKs phosphorylate T118 of PNKP ~~~ replication forks'
- In figure 3A, Is there any change in total PNKP (both GFP-tagged & endogenous) level?
*Thank you for your suggestion. We agree with your comment. We will add the PNKP expression analysis in different cell cycle population in asynchronized and synchronized cells (G1, S, G2/M samples). *
In results: 'Phosphorylation of PNKP at T118 ~~~ between Okazaki fragments'
- In figure 4D, What happens in the ADP-ribose level, when T118D PNKP is expressed?
*Thank you for your suggestion. This is interesting question. We will perform ADP-ribosylation assay in PNKP KO cells and PNKP KO cells expressing PNKP WT and T118D, and add data of ADP-ribose levels in those cells. *
In results: 'PNKP is involved in postreplicative single-strand DNA gap-filling pathway'
-
The description regarding data presented in figure 6 is not clear enough. These data might suggest that wildtype U2OS does not have SSB which is a substrate for S1 nuclease (except under FEN1i and PARPi treatment), whereas PNKP KO has SSB during both IdU and CIdU incorporation, so that S1 nuclease treatment dramatically reduces the speed of fork formation in PNKP KO cells. Also In figure 6B/C/D, adding an experimental group of PNKP KO with S1 nuclease + PARPi might help to understand the role of PNKP during replication better. Also these additional data could support the description in discussion 'Furthermore, PNKP is required for the PARP1-dependent single-strand gap-filling pathway ~~~ DNA gap structure'.
-
*
*We agree with reviewer's comment and suggestion. Since this point is also raised by reviewer 3, we will add the rationale of the experiment and more detailed description about the results, which would substantially improve this manuscript. We will also revise our representation in text followed by the comment. In addition to revising the text, we will add experiment groups of PNKP KO with S1 nuclease with/without PARPi as the reviewer suggested. *
In results: 'Phosphorylation of PNKP at T118 is essential for genome stability'
- In figure S8C, Did you measure g-H2AX foci disappearance for later time point, such as 24 hrs after DNA damage? Is not clear whether non-phosphorylated PNKP at T118 inhibit DNA damage repair or make it slower? How does T114A-PNKP behave in this experimental condition? T114 is well known target of ATM/DNAPK for DDR & DSB repair.
Thank you for your suggestion. We agree with your point. It is very important to analyze whether T118A mutant shows delayed or total loss of DSB repair ability. We will add the measurement of pH2AX foci at 24 hrs after IR in PNKP KO cells expressing GFP, WT-PNKP, T118A-PNKP. Although the analysis of pS114 PNKP is previously reported (Segal-Raz et al., EMBO reports, 2011 and Zolner et al., Nucleic Acids Research, 2011), we will also perform pH2AX assay in PNKP KO cells expressing S114A-PNKP as a control.
The result shown in figure S9 should be described in the result section, not in the discussion section.
Thank you for your suggestion. This is a point also raised by Reviewer 3. Since we are going to re-consider the layout of the manuscript upon the planned revision (as reviewer 3 suggested), we will move these points to the appropriate result section from the discussion.
**Referees cross-commenting**
I could see a similar degree of positive tendency toward the manuscript. I agree with the comments and suggestions in additional experiments made by reviewers 2 and 3. Those suggestions will improve an impact of the manuscript in the DNA damage repair field.
Reviewer #1 (Significance (Required)):
Significance
The authors discovered new phosphorylation site (T118) of PNKP which is an important DNA repair protein. This modification seems to play a role in maintenance of the lagging strand stability in S phase. This discovery is something positive in DNA repair field to expand the canonical and non-canonical functions of DNA repair factors.
The data presented to support PNKP functions and T118 phosphorylation in S phase seem solid in general, yet it is not sure how much PNKP is critical in the Okazaki fragment maturation process which is known that several end processing enzymes (like FEN1, EXO1, DNA2 etc which leave clean DNA ends.) are involved.
These finding might draw good attentions from researchers interested broadly in cell cycle, DNA damage repair, replication, and possibly new tumor treatment.
My field and research interest: DNA damage response (including cell cycle arrest and programmed cell death), DNA damage repair (including BER, SSBR, DSBR)
Thank you very much for your positive comment. As you mentioned, there are several other end processing enzymes that seem to be involved in Okazaki fragment maturation, however, none of those enzymes is reported as a protein involved in the gap-filling pathway as well. Therefore, the role(s) of PNKP in DNA replication are very outstanding as PNKP could be involved in two separate pathways, Okazaki fragment maturation and a back-up gap-filling repair process. As you suggested, we will add several experiments such as iPOND experiments using XRCC1-depleted cells, analysis of DNA repair ability of PNKP T118A mutant throughout cell cycle and S1 nuclease DNA fiber assays in PNKP KO cells with/without PARP inhibitor treatment, to reveal how much PNKP is critical in the Okazaki fragment maturation. We believe that performing those experiments makes the conclusion and this manuscript more solid and convincing.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
Polynucleotide kinase phosphatase (PNPK) participates in multiple DNA repair processes, where it acts on DNA breaks to generate 5'-phosphate and 3'-OH ends, facilitating the downstream activities of DNA ligases or polymerases.
This manuscript identifies a CDK-dependent phosphorylation site on threonine 118 in PNKP's linker region. The authors provide some convincing evidence that this modification is important to direct the activity of PNPK towards ssDNA gaps between Okazaki fragments during DNA replication. The authors monitored protein expression levels, enzymatic activity, the growth rate and replication fork speed, as well as the presence of ssDNA damage to make a comprehensive overview of the features of PNKP necessary for its function.
Overall, the conclusions are sufficiently supported by the results and this manuscript is relevant and of general interest to the DNA repair and genome stability fields. Some level of revision to the experimental data and text would help strengthen its message and conclusions.
Major points:
In an iPOND experiment the authors detect the wt PNKP and the T118 phosphorylated form at the forks and conclude that this phosphorylation promotes interaction with nascent DNA (Figure 3E). An informative sample to include here would have been the T118A mutant. Based on the model proposed, the prediction would be that it would not be associated with the forks, or at least, associated at reduced levels compared to the wt. *Thank you for your suggestion. We agree with your comment. We will add the iPOND analysis in PNKP KO cells expressing T118A mutant to confirm that pT118 is important for recruitment of PNKP at nascent DNA. *
The quality of the gels showing the phosphatase and kinase assays in Figure 5 could be improved to facilitate quantification of the results. The gel showing the phosphatase activity has a deformed band corresponding to K378A mutant. The gel showing the kinase activity seems to be hitting the detection limits, and the overall high background might influence the quantification of D171A mutant in the area of interest. The authors should provide a better quality of these gels, focusing on better separation (running them longer, eventually with a slightly increased electric current) and higher signal of the analyzed bands (longer incubation phosphatase/kinase prior to quenching or loading higher amount of DNA).
We agree with your suggestion. This phosphatase and kinase assay could be improved. We will perform this assay again followed by reviewer's suggestions.
The authors sometimes make statements like: "a slight increase, slightly increased, relatively high" without an evaluation of the statistical significance for the presented data. An example of such a statement is: "T118A mutant-expressing cells exhibited a marked delay in cell growth, which was not observed for S114A, although T122A, S126A, and S143A were slightly delayed," based on the figure 2E. A similar comment applies also to figures 4A, 5A, 5E. Whenever possible, the authors should include also an evaluation of the statistical significance in the statement.
Thank you for your suggestion. We will check manuscript and revise representation as reviewer's suggestion.
Minor revisions:
I could not find a gH2AX blot for figure S2A.
Thank you for your suggestion. We will add pH2AX blot data in fig S2A.
The authors established two PNKP-/- clones and supported it with sequencing and several functional observations However, the C-terminal antibody appears to detect lower-intensity bands (Figure 1A). Can authors comment on those bands?
Thank you for your comment. One possibility of this band is artificially recognized bands. To improve this problem, we will try electrophoresis for longer time to separate this band.
Why the S1 nuclease data on DNA fibers do not show the same level of epistasis with the Fen1i, as do those on ADP-ribosylation?
Because FEN1 dependent Okazaki fragment maturation and PARP1-XRCC1 dependent gap-filling pathway are different pathways, FEN1i and PARPi treatment resulted in an additive effect in S1 nuclease data in PNKP WT cells. To facilitate better understanding, we will add graphical scheme in figure 6 (a similar problem was raised by Reviewer 3 below) and revise the description of the result.
**Referees cross-commenting**
I agree with all the comments from the reviewers 1 and 3.
Reviewer #2 (Significance (Required)):
Significance:
The manuscript identifies a CDK phosphorylation site in a relevant DNA repair protein. The experiments on this part are elegant and convincing. It seems that this phosphorylation is important during DNA replication and there is some supporting evidence in this point, although not as robust, meaning that it is not clear whether this phosphorylation is controlling specifically the recruitment to Okazaki fragments, or a general role in DNA repair. Maybe if they see a reduced recruitment of the T118A mutant to the forks (iPOND experiment) this would further increase the impact.
This work will be relevant to the basic research, especially in the fields of DNA repair and DNA replication.
My expertise: DNA replication, genome stability, telomere biology.
Thank you very much for your positive comment. As you suggested, we will perform an iPOND assay using PNKP T118A mutant. In addition of the T118A iPOND assay, we will also analyze the DNA repair function of PNKP T118A mutant throughout cell cycle as reviewer 1 suggested. We believe that results of these experiments will pin down whether the phosphorylation of PNKP on T118 is controlling its recruitment to Okazaki fragments specifically or single-strand DNA gaps in general, and solidify the conclusion of the manuscript.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
Tsukada and colleagues studied the role of PNKP phosphorylation in processing single-strand DNA gaps and its link to fork progression and processing of Okazaki fragments.
They generated two PNKP KO human clonal cell lines and described defects in cell growth, accumulation in S-phase, and faster fork progression. With some elegant experiments, they complement the KO cell lines with deletion and point mutants for PNKP, identifying a critical phosphorylation site (T118) in the linker regions, which is important for cell growth and DNA replication.
They show that phosphorylation of PNKP peaks in the mid-S phase. CDK1 and CDK2/ with Cyclin A2 are the two main CDK complexes responsible for this modification. With the IPOND experiment, the author shows that PNKP is recruited at nascent DNA during replication.
They described increased parylation activity in PNKP KO cells, and by using HU and emetin, they concluded that this increased activity depends on replication and synthesis of Okazaki fragments.
Interfering with Okazaki fragment maturation by FEN1 inhibition is epistatic with PNKP KO (and T118A) in influencing parylation activity in the S phase and fork progression. The authors try to understand by mutant complementation which of the two functions (Phosphatase vs Kinase) is important in processing OF, and they propose a primary role for the phosphatase activity of PNKP. They also show that T118 is important in controlling genome stability following different genotoxic stress. Finally, by coupling the measurement of fork progression with PARP/FEN1 inhibitors and S1 treatment, they propose a role of PNKP in the post-replicative repair of single-strand gaps due to unligated OF.
Here are my major points:
The authors use a poly ADP ribose deposition measurement to estimate SSB nick/gap formation. Even if PARP activity is strictly linked to SSB repair, ADP ribosylation does not directly estimate SSB/nick gap formation. In addition, in Figs S2A, B, and C, the authors use IR and PARG inhibition to measure poly-ADP ribosylation in WT and PNKP KO cells. IR produces both SSB and DSB. A better and cleaner experiment would be to directly measure SSB formation (with alkaline comet assay, for example) in combination with treatments that are known to mainly cause SSB (H2O2, or low doses of bleomycin). Thank you for your suggestion. The main purpose of this manuscript is to clarify the potential role of PNKP in DNA replication. Therefore, we generated PNKP KO human cells and figure S2 showed confirmation of function of established role of PNKP in SSBs and DSBs repair. In addition, previous our report published in EMBO Journal (Shimada et al., 2015), we showed SSBs and DSBs repair defect in PNKP KO MEF with comet assay (both alkaline and neutral) after IR and H2O2 treatment. In addition to those observations, we will also perform BrdU incorporation assay in PNKP WT and KO cells treated with H2O2. BrdU staining under an undenatured condition has now been commonly used and is a more direct method to detect ssDNA nick/gap formation. We believe that the importance of PNKP in SSB repair is sufficiently supported by all data such as previous comet assays in PNKP KO MEF cells and two SSB repair assays in human cells using ADP-ribose staining or BrdU incorporation, which will be provided in the revised manuscript.
The manuscript would benefit from substantially restructuring the figures' order and panels. Before starting the T118 part, the authors could create several figures to explain the main consequences of the loss of PNKP. A figure could be focused on DSB-driven genome instability (fig1 + fig S8 and S9). Then, a figure for the single-strand break and link to the S-phase. For example, by using data from Figure 6 and showing only WT vs PNKP KO +- Nuclease S1 (without FEN1 or PARP inhibitors), the authors could easily convince the readers that loss of PNKP leads to the accumulation of single-strand gaps. Only in the second part of the manuscript could they introduce all the T118 parts. Thank you for your suggestion. The layout of this manuscript makes reviewers feeling confusing. After performing all planned experiments, we will carefully re-consider the total layout of the revised manuscript.
I understand the use of a FEN1 inhibitor to link the PNKP KO phenotype to OF processing, but this drug does not either rescue or exacerbate any of the phenotypes described by the authors. It seems to have just an epistatic effect everywhere. So, what other conclusion can we have if not that PNKO has a similar effect to FEN1? I think that the presence of this inhibitor in many plots complicates the digestion of several figures a little bit. Maybe clustering the data in a different way (DMSO on one side FEN1i on the other) would help. Thank you for your suggestion. We agree that this data set is complicate. To facilitate better understanding, we will change organization of the data according to your suggestion and add graphical scheme in figure 6.
In terms of the other conclusion we can have from those experiments, the other conclusion is that PNKP might plays two important roles in DNA replication: Okazaki fragment maturation, which seems an epistatic effect with FEN1, and PARP1-XRCC1 dependent single-strand gap filling pathway, which is required for repairing single-strand gaps between Okazaki fragments when Okazaki fragment maturation pathway does not work properly (e.g., loss of FEN1 or PNKP). In figure 6D, we show that a double treatment of FEN1i and PARPi in PNKP WT cells with S1 nuclease treatment shows extensive amount of digested DNA fibers, although a single treatment of either FEN1i or PARPi in PNKP WT cells with S1 nuclease treatment leads to only limited amount of digested DNA fibers, which indicates that two pathways regulated by FEN1 or PARP are coordinately required for preventing eruption of ssDNA gaps in DNA replication. On the other hand, PNKP KO cells with S1 nuclease treatment cause extensive amount of digested DNA fibers even without FEN1i and PARP1i treatments, also it is not further increased by FEN1i and PARPi treatment. Those results indicate that PNKP itself is involved in two pathways mentioned above. Therefore, loss of PNKP has a similar phenotype with loss of FEN1 in terms of Okazaki fragment maturation, but also there is an additional effect in repairing ssDNA nicks/gaps, which is created in FEN1 loss condition, but FEN1 seems not dealing with it.
Fig S9 should be removed from the discussion. Additionally, the authors should consider whether they want to keep that piece of data in a manuscript that is already pretty dense. Why should we focus on additional linker residues and microirradiation data at the end of this manuscript? *Thank you for your suggestion. This is a point also raised by Reviewer 1. Since we are going to re-consider the layout of the manuscript upon the planned revision, we will move these points to the appropriate result section from the discussion. *
I suggest using a free AI writing assistant. I think this manuscript would substantially benefit from one. As a non-native English speaker, I personally use one of them and find it extremely useful. Thank you for your suggestion. Our manuscript was revised by a native speaker from an English correction company. However, for revised manuscript, we will discuss with native speakers as well as use a free AI writing assistant to improve the quality of the manuscript.
Minor points:
In Figure S1A, the author refers to P-H2AX, but I do not see this marker in the western blot. Thank you for your suggestion. We will add pH2AX blot data in fig S2A.
**Referees cross-commenting**
I agree with all comments from reviewer 1 and 2.
Reviewer #3 (Significance (Required)):
This is an interesting paper with generally solid data and proper statistical analysis. The figures are pretty straightforward. Unfortunately, the manuscript is dry, and the reader needs help to follow the logical order and the rationale of the experiments proposed. This is also complicated by the enormous amount of data the authors have generated. The authors should improve their narrative, explaining better why they are performing the experiment and not simply referring to a previous citation. Reordering panels and figures would help in this regard. Overall, with some new experiments, tone-downs over strong claims and a better explanation of the rationale behind experiments the authors could create a fascinating paper.
Thank you very much for your positive comment about the data/analysis and the logic behind the experiments provided in the manuscript. We agree with that a manner and a structure of the manuscript could be improved by reordering figures, cutting down some redundant experiments, adding better explanation of the rationale behind experiments, and toning-down some claims. With rewriting the manuscript as stated above and performing several additional experiments suggested by the reviewers, we believe that the revised manuscript will be more convincing and fascinating.
1. Description of the revisions that have already been incorporated in the transferred manuscript
Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. If no revisions have been carried out yet, please leave this section empty.
-
*
-
*
Reviewer #1:
Minor comments
- Is there any difference (except for PARGi exposure time?!) between figure S2B/C and S2D/E? Both data show increased ADP ribose after IR. It seems redundancy. Also it is hard to imagine that there is absolutely no sign of ADP ribose after IR w/o PARGi treatment (figure S2D).
Figure S2B/C show spontaneous single strand DNA breaks (SSBs) in PNKP KO cells, on the other hand, figure 2S/E show ectopic SSBs induced by IR exposure in PNKP KO cells. We believe these data help for readers to understand the effect of endo or exo damage in PNKP KO cells. Poly-ADP ribosylations are immediately removed from SSB sites after repair as demonstrated previously (Tsukada, et al., PLoS One 2019, Kalasova et al., Nucleic Acids Research, 2020), although not zero (low level), it is very difficult to detect without PARGi treatment.
- *
Legend for figure S3 - typo!
Thank you for your suggestion about typo. The legend for figure S3 is corrected as "Protein expression of PNKP mutants in U2OS cells".
-
*
-
In figure S3A/B, it is quite interesting that the PNKP antibody used for this analysis can detect all truncated and alanine substituted PNKP proteins. It might be helpful to indicate for other researchers which antibody used (Novus; epitope - 57aa to 189 aa or Abcam; epitope not revealed).
In S3A/B, Novus PNKP antibody was used for all blots. We indicated this in the figure legend as "PNKP antibody (Novus: NBP1-87257) was used for comparing expression levels of endogenous and exogenous PNKP".
- *
In results: 'PNKP phosphorylation, especially of T118 ~~~ proliferation'
- In the fork progression experiment (figure 2C), is there any statistical difference between D2 and D3/4 expressing cells?
*Thank you for your suggestion. We performed statistical analysis as the reviewer suggested. Statistical analysis shows that there are no significant differences between D2 and D3/D4. Meanwhile, there are significant differences between WT and D3(P- What is the basis of the description 'Since the linker region of PNKP is considered to be involved in fork progression'? Any reference?
This sentence was considered based on the above sentences "Furthermore, D2 mutant-expressing cells also showed an increased speed of the replication fork compared to WT and D1 mutant-expressing cells, although D3 and D4 showed mildly high-speed fork progression.". The D2 mutant lacks a whole linker region, which shows increased speed of DNA fiber in figure 2C. Therefore, we originally explained as the sentence above. We have revised the sentence to "Since these results may indicate the linker region of PNKP is involved in proper fork progression".
-
*
-
In figure 3B: pS114-PNKP (also pS15-p53) is DNA damage inducible. In this experiment, was DNA damage introduced? Roscovitine could hinder DNA repair process, but not inducing DNA damage itself.
Thank you for your suggestion. DNA damage induction was not applied in this experiment. We agree that this panel makes confusing. We think that endogenously S114-PNKP (also S15-p53) might be phosphorylated slightly but not significant, although this is not the scope of this manuscript. This result showing that phosphorylated-T118 is reduced by Roscovitine treatment maybe redundant as we also have a result of in vitro phosphorylation assay using several combinations of CDKs and Cyclin proteins, which is a cleaner experiment to prove which CDK/Cyclin complex is directly controlling the T118 phosphorylation. Since the manuscript already contains enough amount of data to support the conclusion (as reviewer 3 also stated), we removed those blots result from the panel to avoid complicating the conclusion.
- *
In results: 'Phosphatase activity of PNKP is ~~~ of Okazaki fragments'
- In figure 5C, any statistical analysis between WT-PNKP KO vs D171A-PNKP KO or K378A-PNKP KO has been done?
Thank you for your comment. Statistical analysis shows P *
In discussion, 'In contrast, the T118A mutants showed the absence of both SSBs and DSBs repair (Fig. S7) : figure S7 does not indicate what the authors describe.
Thank you for pointing out this. This should refer to figure S8 instead of figure S7. We have corrected this error.
In addition, the same sentence in discussion: No evidence demonstrate that 'the absence of both SSBs and DSBs repair', and the following sentence is not clear.
*This is same point with above. We have corrected this mis-referencing and revised the sentence to "In contrast, the T118A mutants showed the impaired abilities of both SSBs and DSBs repair (Fig. S8).". We also revised the following sentence to "However, residual SSBs due to impaired SSB repair ability (e.g., in PARPi-treated cells and T118A cells) sometimes cause DNA replication-coupled DSBs formation in S phase, and the phenotype in DSB repair assay of the T118A mutant may be caused by an accumulated formation of DNA replication-coupled DSBs. Future works will be needed to distinguish whether the T118 phosphorylation directly regulate PNKP recruitment to DSBs as well as SSBs." for better explanation of the result. *
- *
In discussion, 'Because both CDK1/cyclin A2 and CDK2/cyclin A2 are involved in PNKP phosphorylation, cyclin A2 is likely important for these activities': It is not clear what this description intends? Is 'cyclin A2' important in what stance?
This description is coming from Fig3C observation. Since both CDK1 and CDK2 activities are cyclin A2 dependent, we speculated cyclin A2 is important for CDK1/CDK2 dependent PNKP T118 phosphorylation. We revised the description to "Since both CDK1/Cyclin A2 and CDK2/Cyclin A2 phosphorylate T118 of PNKP, we speculated that PNKP T118 is phosphorylated in S phase to G2 phase in CDK1/Cyclin A2- and CDK2/Cyclin A2-dependent manner (Fig. 3B and C)".
- *
In discussion, 'This may be explained by the fact that mutations in the phosphorylated residue in the linker region are embryonic lethal': any reference to support this embryonic lethality?
Thank you for your suggestion. We agree with that this sentence is overwriting. We revise the sentence to "This observation may indicate that mutations in the phosphorylated residue (T118) in the linker region are potentially embryonic lethal due to the importance of T118 in DNA replication, which is revealed in the present study.".
-
*
-
*
Reviewer #2:
Minor comments
Sometimes there are incorrect references to the figures in the discussion (e.g. FigS9A, B, and C, are called out instead of E, F and G), a similar issue is found 4 lines below in the same page.
Thank you for pointing out these errors. We checked the references in the discussion and corrected to the appropriate references.
Based on the data in Figure 3A the authors suggest that pT118-PNKP follows Cyclin A2 levels, but this does not appear very clearly in the gel, especially for the last point. Even though the results are convincing, the authors should rephrase the conclusions of Figure 3A to reflect better the results.
Thank you for your suggestion. We agree that this phrase is overwriting. We revised the conclusion to "pT118-PNKP was detected in asynchronized cells but increased particularly in the S phase, similar to Cyclin A2 expression levels, although the reduction of pT118, possibly dephosphorylation of T118, seems not as robust as the reduction of the Cyclin A2 expression level at the 12 hours time point. However, this effect was very weak during mitosis, suggesting that T118 phosphorylation plays a specific role in the S phase.".
I did not find a reference to what seems to be a relevant work in this topic: PMID: 22171004
Thank you for your suggestion. We have added the ref (Coquelle et al., PNAS, 2011) in Introduction section.
Reviewer #3:
Major comments
The authors should consider and discuss the potential role of PNKP KO outside of the S-phase. In Figure 4C, while it is clear that poly ADP ribosylation is higher in S-phase, the effects of PNKP KO and complementation by WT or T118A are equally present. This would be more immediate if comparison, fold change, and statistical significance calculation were done within the same cell cycle phase instead of between cell stages. This is also clear by IF in Figure 4B. How do the authors explain this? Thank you for your suggestion. We agree with reviewer's suggestion. We compared intensities of ADP-ribose between cell lines in same cell cycle rather than between different cell cycles in a same cell line and added the respective statistics in figure 4C. Also, we agree with that poly ADP-ribose intensity is changed outside of S phase between WT and T118A PNKP expressing PNKP KO cells. As shown in figure S8, PNKP pT118 is also involved in DNA repair. These results might reflect of PNKP function outside of S phase. We have added the sentence "Of note, PNKP−/−*cells and PNKP T118A cells showed markedly higher ADP-ribose intensity in outside the S phase as well, which indicate that PNKP and T118 may have an endogenous role to prevent SSBs formation in outside the S phase. Since FEN1 has been reported to function in R-loop processing, PNKP could also be involved in this process. Future studies of a role of PNKP in different cell cycle will be able to address this question." to discuss about the function of PNKP outside the S phase. We have added the ref (Cristini et al., Cell Reports, 2019, and Laverde et al., Genes, 2022). *
-
*
-
*
In connection with the previous point, can the author provide the same quantification in Figure 4E also for G2/M and not only the S phase? This should give an estimate of the activity of FEN1 outside the S-phase. This is important because FEN1 has other functions apart from OF maturation, such as R loop processing (Cristini 2019; Laverde 2023) Thank you for your suggestion. Here attached is the data of ADP-ribose intensity in cells outside the S phase as you suggested. FEN1i treatment still induces increased ADP-ribose intensity in outside the S phase as well, although the difference between with/without FEN1i treatment is much smaller than that in S phase, indicating that FEN1 has other functions outside the S phase. This finding is very interesting. However, the function of FEN1 in outside the S phase is outside the scope of this manuscript. Therefore, we would like to not put this data in the manuscript to avoid complicating the conclusion (as reviewer 3 also suggested).
- *
Why does FEN1 inhibition induce a faster fork progression in Fig4 but not in Fig5 and Fig6? Yes, it does in figure 4 and figure 5. In PNKP WT cells, FEN1i-treated fibers (CldU) show an increased speed of forks compared to non-treated fibers (IdU). However, loss of PNKP and T118 phosphorylation themselves cause a faster fork progression even if without FEN1i treatment, therefore the difference of speeds of forks before/after FEN1i treatment in PNKP KO and T118A cells is disappeared as both fibers grow faster than intact fibers in normal cells. In regard to figure 6, as you mentioned in a latter comment about figure 6, the title of vertical axis of the graph showing CldU length should not be speeds of replication forks as those DNA fibers are potentially digested by S1 nuclease, which is modified in the revised manuscript. Even so, DNA fibers from FEN1i-treated cells (CldU) with S1 nuclease shows similar length with fibers from untreated cells with S1 nuclease, whereas FEN1 inhibitor treatment accelerates a speed of forks in general (figure 4 and figure 5, assays without S1 nuclease), indicating that FEN1i treatment induces remaining of some ssDNA nicks/gaps which are substrates of S1 nuclease.
- *
How do the authors explain the impaired DNA gap binding activity of the phospho-mimetic T118D? Thank you for your suggestion. We think that the appropriate timing of phosphorylation of PNKP T118 is important, while the phosphor-mimetic mutant T118D mimics consecutively phosphorylated situation that may result in incomplete complementation of PNKP function.
- *
I would like to see a representative fiber image from Fig 6. Additionally, in Figure 6, the author should not label the y-axis as CldU-fork speed. Nuclease S1 treatment destroys single-strand gaps (in vitro) and does not affect the fork speed (in vivo) Thank you for your suggestion. We have added a representative fiber image. We also agree with that CldU fork speed is not a right label of y-axis as CldU fibers are potentially digested by S1 nuclease. We changed the y-axis label to "CldU tract length [kb/min]" in figure 6.
- *
Figure 5E: both mutants (kinase vs phosphatase) increase polyADP ribose intensity, while the title of this figure only emphasizes the phosphatase activity. We agree with your comment. We have changed this subtitle to "Enzymatic activities of PNKP is important for the end-processing of Okazaki fragments".
-
*
-
*
Minor comments
- *
The authors refer to Hoch Nature 2017 when referring to polyADP ribose IF + PARG inhibition. Should they not refer to Hanzlikova Mol Cell 2018?
Thank you for your suggestion. We have added the ref (Hanzlikova et al., Mol Cell 2018).
Statistical analysis should be performed on the cell cycle profile in Figure 1B * *
We performed statistical analysis to check whether there are significant differences of S phase population between WT and PNKP KO cells. There were significant differences between WT vs PNKP KO C1 (PThe authors should not refer to fork degradation or protection as a given fact without assessing it in these conditions. Thank you for your suggestion. We assume that this comment refers to the result section of figure 1 and figure 4. We have added a sentence "although future studies will be needed to investigate whether PNKP−/− cells has the fork protection phenotype" in the result section of figure 1. We have changed representation in the section according to the reviewer's suggestion in the result section of figure 4.*
-
*
-
*
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Tsukada and colleagues studied the role of PNKP phosphorylation in processing single-strand DNA gaps and its link to fork progression and processing of Okazaki fragments.
They generated two PNKP KO human clonal cell lines and described defects in cell growth, accumulation in S-phase, and faster fork progression. With some elegant experiments, they complement the KO cell lines with deletion and point mutants for PNKP, identifying a critical phosphorylation site (T118) in the linker regions, which is important for cell growth and DNA replication.
They show that phosphorylation of PNKP peaks in the mid-S phase. CDK1 and CDK2/ with Cyclin A2 are the two main CDK complexes responsible for this modification. With the IPOND experiment, the author shows that PNKP is recruited at nascent DNA during replication.
They described increased parylation activity in PNKP KO cells, and by using HU and emetin, they concluded that this increased activity depends on replication and synthesis of Okazaki fragments.
Interfering with Okazaki fragment maturation by FEN1 inhibition is epistatic with PNKP KO (and T118A) in influencing parylation activity in the S phase and fork progression. The authors try to understand by mutant complementation which of the two functions (Phosphatase vs Kinase) is important in processing OF, and they propose a primary role for the phosphatase activity of PNKP. They also show that T118 is important in controlling genome stability following different genotoxic stress. Finally, by coupling the measurement of fork progression with PARP/FEN1 inhibitors and S1 treatment, they propose a role of PNKP in the post-replicative repair of single-strand gaps due to unligated OF.
Here are my major points:
- The authors use a poly ADP ribose deposition measurement to estimate SSB nick/gap formation. Even if PARP activity is strictly linked to SSB repair, ADP ribosylation does not directly estimate SSB/nick gap formation. In addition, in Figs S2A, B, and C, the authors use IR and PARG inhibition to measure poly-ADP ribosylation in WT and PNKP KO cells. IR produces both SSB and DSB. A better and cleaner experiment would be to directly measure SSB formation (with alkaline comet assay, for example) in combination with treatments that are known to mainly cause SSB (H2O2, or low doses of bleomycin).
- The manuscript would benefit from substantially restructuring the figures' order and panels. Before starting the T118 part, the authors could create several figures to explain the main consequences of the loss of PNKP. A figure could be focused on DSB-driven genome instability (fig1 + fig S8 and S9). Then, a figure for the single-strand break and link to the S-phase. For example, by using data from Figure 6 and showing only WT vs PNKP KO +- Nuclease S1 (without FEN1 or PARP inhibitors), the authors could easily convince the readers that loss of PNKP leads to the accumulation of single-strand gaps. Only in the second part of the manuscript could they introduce all the T118 parts.
- The authors should consider and discuss the potential role of PNKP KO outside of the S-phase. In Figure 4C, while it is clear that poly ADP ribosylation is higher in S-phase, the effects of PNKP KO and complementation by WT or T118A are equally present. This would be more immediate if comparison, fold change, and statistical significance calculation were done within the same cell cycle phase instead of between cell stages. This is also clear by IF in Figure 4B. How do the authors explain this?
- In connection with the previous point, can the author provide the same quantification in Figure 4E also for G2/M and not only the S phase? This should give an estimate of the activity of FEN1 outside the S-phase. This is important because FEN1 has other functions apart from OF maturation, such as R loop processing (Cristini 2019; Laverde 2023)
- I understand the use of a FEN1 inhibitor to link the PNKP KO phenotype to OF processing, but this drug does not either rescue or exacerbate any of the phenotypes described by the authors. It seems to have just an epistatic effect everywhere. So, what other conclusion can we have if not that PNKO has a similar effect to FEN1? I think that the presence of this inhibitor in many plots complicates the digestion of several figures a little bit. Maybe clustering the data in a different way (DMSO on one side FEN1i on the other) would help.
- Why does FEN1 inhibition induce a faster fork progression in Fig4 but not in Fig5 and Fig6?
- How do the authors explain the impaired DNA gap binding activity of the phospho-mimetic T118D?
- Fig S9 should be removed from the discussion. Additionally, the authors should consider whether they want to keep that piece of data in a manuscript that is already pretty dense. Why should we focus on additional linker residues and microirradiation data at the end of this manuscript?
- I would like to see a representative fiber image from Fig 6. Additionally, in Figure 6, the author should not label the y-axis as CldU-fork speed. Nuclease S1 treatment destroys single-strand gaps (in vitro) and does not affect the fork speed (in vivo)
- Figure 5E: both mutants (kinase vs phosphatase) increase polyADP ribose intensity, while the title of this figure only emphasizes the phosphatase activity.
- I suggest using a free AI writing assistant. I think this manuscript would substantially benefit from one. As a non-native English speaker, I personally use one of them and find it extremely useful.
Minor points:
- In Figure S1A, the author refers to P-H2AX, but I do not see this marker in the western blot.
- The authors refer to Hoch Nature 2017 when referring to polyADP ribose IF + PARG inhibition. Should they not refer to Hanzlikova Mol Cell 2018?
- Statistical analysis should be performed on the cell cycle profile in Figure 1B
- The authors should not refer to fork degradation or protection as a given fact without assessing it in these conditions.
Referees cross-commenting
I agree with all comments from reviewer 1 and 2.
Significance
This is an interesting paper with generally solid data and proper statistical analysis. The figures are pretty straightforward. Unfortunately, the manuscript is dry, and the reader needs help to follow the logical order and the rationale of the experiments proposed. This is also complicated by the enormous amount of data the authors have generated. The authors should improve their narrative, explaining better why they are performing the experiment and not simply referring to a previous citation. Reordering panels and figures would help in this regard. Overall, with some new experiments, tone-downs over strong claims and a better explanation of the rationale behind experiments the authors could create a fascinating paper.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Polynucleotide kinase phosphatase (PNPK) participates in multiple DNA repair processes, where it acts on DNA breaks to generate 5'-phosphate and 3'-OH ends, facilitating the downstream activities of DNA ligases or polymerases.
This manuscript identifies a CDK-dependent phosphorylation site on threonine 118 in PNKP's linker region. The authors provide some convincing evidence that this modification is important to direct the activity of PNPK towards ssDNA gaps between Okazaki fragments during DNA replication. The authors monitored protein expression levels, enzymatic activity, the growth rate and replication fork speed, as well as the presence of ssDNA damage to make a comprehensive overview of the features of PNKP necessary for its function.
Overall, the conclusions are sufficiently supported by the results and this manuscript is relevant and of general interest to the DNA repair and genome stability fields. Some level of revision to the experimental data and text would help strengthen its message and conclusions.
Major points:
- In an iPOND experiment the authors detect the wt PNKP and the T118 phosphorylated form at the forks and conclude that this phosphorylation promotes interaction with nascent DNA (Figure 3E). An informative sample to include here would have been the T118A mutant. Based on the model proposed, the prediction would be that it would not be associated with the forks, or at least, associated at reduced levels compared to the wt.
- The quality of the gels showing the phosphatase and kinase assays in Figure 5 could be improved to facilitate quantification of the results. The gel showing the phosphatase activity has a deformed band corresponding to K378A mutant. The gel showing the kinase activity seems to be hitting the detection limits, and the overall high background might influence the quantification of D171A mutant in the area of interest. The authors should provide a better quality of these gels, focusing on better separation (running them longer, eventually with a slightly increased electric current) and higher signal of the analyzed bands (longer incubation phosphatase/kinase prior to quenching or loading higher amount of DNA).
- The authors sometimes make statements like: "a slight increase, slightly increased, relatively high" without an evaluation of the statistical significance for the presented data. An example of such a statement is: "T118A mutant-expressing cells exhibited a marked delay in cell growth, which was not observed for S114A, although T122A, S126A, and S143A were slightly delayed," based on the figure 2E. A similar comment applies also to figures 4A, 5A, 5E. Whenever possible, the authors should include also an evaluation of the statistical significance in the statement.
Minor revisions:
- I could not find a gH2AX blot for figure S2A.
- Sometimes there are incorrect references to the figures in the discussion (e.g. FigS9A, B, and C, are called out instead of E, F and G), a similar issue is found 4 lines below in the same page.
- The authors established two PNKP-/- clones and supported it with sequencing and several functional observations However, the C-terminal antibody appears to detect lower-intensity bands (Figure 1A). Can authors comment on those bands?
- Based on the data in Figure 3A the authors suggest that pT118-PNKP follows Cyclin A2 levels, but this does not appear very clearly in the gel, especially for the last point. Even though the results are convincing, the authors should rephrase the conclusions of Figure 3A to reflect better the results.
- Why the S1 nuclease data on DNA fibers do not show the same level of epistasis with the Fen1i, as do those on ADP-ribosylation?
- I did not find a reference to what seems to be a relevant work in this topic: PMID: 22171004
Referees cross-commenting
I agree with all the comments from the reviewers 1 and 3.
Significance
The manuscript identifies a CDK phosphorylation site in a relevant DNA repair protein. The experiments on this part are elegant and convincing. It seems that this phosphorylation is important during DNA replication and there is some supporting evidence in this point, although not as robust, meaning that it is not clear whether this phosphorylation is controlling specifically the recruitment to Okazaki fragments, or a general role in DNA repair. Maybe if they see a reduced recruitment of the T118A mutant to the forks (iPOND experiment) this would further increase the impact.
This work will be relevant to the basic research, especially in the fields of DNA repair and DNA replication.
My expertise: DNA replication, genome stability, telomere biology.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary
PNKP is one of critical end-processing enzymes for DNA damage repair, mainly base excision & single strand break repair, and double strand break repair to a certain extent. This protein has dual enzyme function: 3' phosphatase and 5' kinase to make DNA ends proper for ligation. It has been demonstrated that PTM of PNKP (e.g., S114, S126), particularly phosphorylation by either ATM or DNAPK, is important for PNKP function in DNA damage repair. The authors found a new phosphorylation site, T118, of PNKP which might be modified by CDK1 or 2 during S phase. This modification of phosphorylation is involved in maintenance and stability of the lagging strand, particularly Okazaki fragments. Loss of this phosphorylation could result in increased single strand gaps, accelerated speed of fork progression, and eventually genomic instability. And for this process, PNKP enzyme activity is not that important. And the authors concluded that PNKP T118 phosphorylation is important for lagging strand stability and DNA damage repair.
Major comments
- In general, enzymes have protein interactions with its/their substrates. If PNKP is phosphorylated by either/both CDK1/2, the protein interaction between these would be expected. However, the authors did not provide any protein interactions in PNKP and CDKs.
- It is not clear how T118 phosphorylation is involved in DNA damage repair itself as the authors suggested. The data presenting the involvement of T118 phosphorylation in this mechanism are limited. This claim opens more questions than answers. CDK1/2 still phosphorylates T118 in this DNA damage repair process? What would happen to DNA damage repair in which PNKP involves outside of S phase in terms of T118 phosphorylation?
- Along the same line with #1/2 comments, the recruitment of PNKP to the damage sites is XRCC1 dependent. Is not clear whether PNKP recruitment to gaps on the lagging strand is XRCC1 independent or dependent. It might be interesting to examine (OPTIONAL)
Minor comments
- In results: 'Generation of PNKP knock out U2OS cell line'
- In figure S2A; There are no data regarding diminishing the phosphorylation of g-H2AX.
- Is there any difference (except for PARGi exposure time?!) between figure S2B/C and S2D/E? Both data show increased ADP ribose after IR. It seems redundancy. Also it is hard to imagine that there is absolutely no sign of ADP ribose after IR w/o PARGi treatment (figure S2D).
- By showing data in figure S2B/C/D/E, the authors describe 'PNKP KO cells impaired the SSBs repair activity'. However, as the authors mentioned in this manuscript, PNKP could bind to either XRCC1 or XRCC4. Also for this experiment, IR had been applied, which induces DNA double strand breaks. Therefore, it is not certain that the authors' description is fully supported by these data presented. Perhaps, SSB inducing reagents should be used instead of IR.
- Legend for figure S3 - typo!
- In figure S3A/B, it is quite interesting that the PNKP antibody used for this analysis can detect all truncated and alanine substituted PNKP proteins. It might be helpful to indicate for other researchers which antibody used (Novus; epitope - 57aa to 189 aa or Abcam; epitope not revealed).
- In results: 'PNKP phosphorylation, especially of T118 ~~~ proliferation'
- In the fork progression experiment (figure 2C), is there any statistical difference between D2 and D3/4 expressing cells?
- What is the basis of the description 'Since the linker region of PNKP is considered to be involved in fork progression'? Any reference?
- Is there any FACS analysis data to support the description of the last sentence 'especially the phosphorylation of PNKP T118, is required for S phase progression and proper cell proliferation'?
- In results: 'CDKs phosphorylate T118 of PNKP ~~~ replication forks'
- In figure 3A, Is there any change in total PNKP (both GFP-tagged & endogenous) level?
- In figure 3B: pS114-PNKP (also pS15-p53) is DNA damage inducible. In this experiment, was DNA damage introduced? Roscovitine could hinder DNA repair process, but not inducing DNA damage itself.
- In results: 'Phosphorylation of PNKP at T118 ~~~ between Okazaki fragments'
- In figure 4D, What happens in the ADP-ribose level, when T118D PNKP is expressed?
- In results: 'Phosphatase activity of PNKP is ~~~ of Okazaki fragments'
- In figure 5C, any statistical analysis between WT-PNKP KO vs D171A-PNKP KO or K378A-PNKP KO has been done?
- In results: 'PNKP is involved in postreplicative single-strand DNA gap-filling pathway'
- The description regarding data presented in figure 6 is not clear enough. These data might suggest that wildtype U2OS does not have SSB which is a substrate for S1 nuclease (except under FEN1i and PARPi treatment), whereas PNKP KO has SSB during both IdU and CIdU incorporation, so that S1 nuclease treatment dramatically reduces the speed of fork formation in PNKP KO cells. Also In figure 6B/C/D, adding an experimental group of PNKP KO with S1 nuclease + PARPi might help to understand the role of PNKP during replication better. Also these additional data could support the description in discussion 'Furthermore, PNKP is required for the PARP1-dependent single-strand gap-filling pathway ~~~ DNA gap structure'.
- In results: 'Phosphorylation of PNKP at T118 is essential for genome stability'
- In figure S8C, Did you measure g-H2AX foci disappearance for later time point, such as 24 hrs after DNA damage? Is not clear whether non-phosphorylated PNKP at T118 inhibit DNA damage repair or make it slower? How does T114A-PNKP behave in this experimental condition? T114 is well known target of ATM/DNAPK for DDR & DSB repair.
- The result shown in figure S9 should be described in the result section, not in the discussion section.
- In discussion, 'In contrast, the T118A mutants showed the absence of both SSBs and DSBs repair (Fig. S7) : figure S7 does not indicate what the authors describe.
- In addition, the same sentence in discussion: No evidence demonstrate that 'the absence of both SSBs and DSBs repair', and the following sentence is not clear.
- In discussion, 'Because both CDK1/cyclin A2 and CDK2/cyclin A2are involved in PNKP phosphorylation, cyclin A2 is likely important for these activities': It is not clear what this description intends? Is 'cyclin A2' important in what stance?
- In discussion, 'This may be explained by the fact that mutations in the phosphorylated residue in the linker region are embryonic lethal': any reference to support this embryonic lethality?
Referees cross-commenting
I could see a similar degree of positive tendency toward the manuscript. I agree with the comments and suggestions in additional experiments made by reviewers 2 and 3. Those suggestions will improve an impact of the manuscript in the DNA damage repair field.
Significance
The authors discovered new phosphorylation site (T118) of PNKP which is an important DNA repair protein. This modification seems to play a role in maintenance of the lagging strand stability in S phase. This discovery is something positive in DNA repair field to expand the canonical and non-canonical functions of DNA repair factors.
The data presented to support PNKP functions and T118 phosphorylation in S phase seem solid in general, yet it is not sure how much PNKP is critical in the Okazaki fragment maturation process which is known that several end processing enzymes (like FEN1, EXO1, DNA2 etc which leave clean DNA ends.) are involved. These finding might draw good attentions from researchers interested broadly in cell cycle, DNA damage repair, replication, and possibly new tumor treatment.
My field and research interest: DNA damage response (including cell cycle arrest and programmed cell death), DNA damage repair (including BER, SSBR, DSBR)
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
Summary: In this manuscript, the authors investigated the role of Erk signaling in the transition from naïve to formative pluripotency. They found that Erk activation eliminates Nanog to allow naïve state exit. However, when Nanog is knocked down in the absence of Erk activation, ESCs exit the naïve state, and enter an indetermined state, unable to proceed to the formative state. The authors further claimed that the failure to the formative state is due to lack of Oct4 expression. In conclusion, Erk signaling is required for the exit from the naïve state and the entry to the formative state.
Major comments: - Are the key conclusions convincing? Most of the key conclusions are convincing, except for the conclusion "ERK activity is required to maintain Oct4 expression in the naïve to formative pluripotency transition". The authors showed that Oct4 expression is diminished under the MEK(i)+siNanog condition, while Oct4 is expressed in N2B27+siNeg (Figure 4C). With these experimental setting, the conclusion that ERK activity is required to maintain Oct4 expression in the naïve to formative pluripotency transition, cannot be reached, because two variations, MEK(i) and siNanog, rather than one variation MEK(i), are there. The experiment should be designed as adding MEK(i) into N2B27+siNeg at various time points, to test whether MEK(i) is able to down-regulate Oct4 expression in the naïve to formative pluripotency transition.
We appreciate this point. We have now included data (figure 4C, 4E and S5B) to address this issue. As suggested, we performed exit experiments in MEK(i) only, and found that by 36hrs, a substantial proportion of cells have lost Oct4, unlike cells in N2B27 only. Down-regulation of Oct4 is later than in cells treated with MEK(i) + siNanog because of the delayed exit from the naïve state (in which Oct4 expression is independent of ERK). These data support the proposition that ERK activity is required to maintain Oct4 expression in the formative transition. We previously tried adding MEK(i) at various points in N2B27+siNeg conditions but the lack of synchrony made results impossible to interpret. As long as some Nanog positive cells remained, cells would re-activate the naïve network in the presence of MEK(i) and therefore maintain Oct4.
-
Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether? No.
-
Would additional experiments be essential to support the claims of the paper? Request additional experiments only where necessary for the paper as it is, and do not ask authors to open new lines of experimentation. The suggested experiment was described above.
-
Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated cost and time investment for substantial experiments. It should not cost too much in terms of funding and time.
-
Are the data and the methods presented in such a way that they can be reproduced? Yes.
-
Are the experiments adequately replicated and statistical analysis adequate? Statistical analysis is lacking for Figure 3E and Figure 4.
We performed statistical analyses between key comparisons and have added details to the figures and captions.
Minor comments: - Specific experimental issues that are easily addressable. No.
-
Are prior studies referenced appropriately? Yes.
-
Are the text and figures clear and accurate? Yes.
-
Do you have suggestions that would help the authors improve the presentation of their data and conclusions? No.
Reviewer #1 (Significance (Required)):
This work characterized the role of ERK signaling in the transition between naïve and formative pluripotency. The function of ERK in ESC self-renewal and differentiation has been well recognized. Thus, this work provides new discoveries, but no conceptual advances. It should be of interest to a specialized audience in the pluripotency field, which is my expertise.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
Summary: In the present manuscript, Mulas and colleagues address the question how ERK signaling orchestrates the transition from naïve to formative pluripotency in mouse embryonic stem cells. Combining pharmacological MEK inhibition with siRNA knockdown of candidate transcription factors, they conclude that downregulation of Nanog is an immediate function of ERK signaling that underlies exit from the naïve state. Later on they show that ERK signaling has additional functions beyond downregulating Nanog that are required to make cells competent for formative pluripotency and lineage progression, such that Nanog knockdown cells enter a new indeterminate state in the absence of ERK signaling. Finally, they show that Oct4 is a central mediator of this second function of ERK signaling, since forced Oct4 expression rescues the expression of formative markers even in the presence of MEK inhibitors. They also present time-lapse imaging data of a Spry4- and a Nanog-reporter, based on which they propose that metachronous ERK activity is reflected in metachronous NANOG downregulation. The experiments dissecting the two different functions of ERK signaling in the pluripotency transition are well performed and provide some new interesting perspectives. Overall, the manuscript is well written. I have major concerns regarding the interpretation of the time-lapse imaging experiments (see major point 2 below) that unfortunately feature very prominently in the title of the manuscript.
Major points:
- In lines 174 and 175, the authors write that "acute ERK activation ... [reduces] NANOG protein, which in turn dimishes Esrrb transcription". Although I am aware that this picture is supported by previous literature (e.g. PMID: 23040477), the author's data do not fully support this conclusion. In Fig. 1G for example, Esrrb is downregulated even though Nanog expression is maintained. This discrepancy needs to be discussed.
There is no real discrepancy because we are not claiming that Nanog is the only factor that regulates Esrrb. However, we recognise the potential for confusion. We have clarified our description of the results and included the statement: “Esrrb down-regulation can occur in part independently of Erk or Nanog.”. This does not invalidate the summary conclusion that “the proximal effect of acute ERK activation on the naïve transcription factor network is to reduce Nanog protein, which in turn diminishes Esrrb transcription.”
- The imaging data and analysis presented in Fig. 2 do not support the conclusion that heterogeneous ERK dynamics underlies metachronous pluripotency exit. There are several problems with this section:
a. As far as I can see, the reporter line used in this study has not been previously used (at least there is no reference to a previous publication), and it has also not been properly validated in the present manuscript. One would for example like to know if the Spry4-FLuc allele encodes for a fusion protein, or whether it disrupts the Spry4 coding sequence. What is the half-life of the Spry4-Fluc protein? A proper description how the line has been generated, as well as an in-depth characterization are essential to evaluate the data.
We apologise for not providing full information. Both reporters have been previously published and validated. The Spry4 reporter is not a fusion protein. The Fluc is translated from an IRES. We have amended the text to include details of the construction of all the reporters, references and half-life measurements in the methods section that now reads: “Calibration cells (PGK-Nluc-Fluc - (Mandic et al., 2017) and cells carrying Spry4-Fluc transcriptional reporter (Phillips et al., 2019) and Nanog::Nluc fusion were routinely cultured in 2i/LIF as described above. The Spry4-FLuc construct contains a splice acceptor site, followed by an IRES and an Bsd/F2A/NLSluc cassette and has a half-life of 1.56hrs (Phillips et al., 2019). The Nanog:Nluc targeting construct was generating using the previously validated targeting construct for Sox2 (Strebinger et al., 2019) in which 5’ and 3’ homology arms flank a Nluc-loxP-P2A-Puro-sfGFP-loxP cassette. Integration of Nanog::Nluc was initially verified by GFP and Nluc expression, and finally by PCR following excision of the loxP cassette. Using cycloheximide treatment we determined that the reporter had a half-life of 3.02hrs.”
b. It is not clear that dynamic expression of a Spry4 reporter reflects dynamic ERK signaling. It has been shown that cumulative transcription from the Spry4 locus correlates with long-term ERK activity (e.g. PMID: 29964027), but short-term Spry4-FLuc dynamics could well be driven by other mechanisms, such as transcriptional bursting. Co-staining of ppERK and reporter expression in single cells would be required to address this issue.
This is a valid point of discussion. Comparing between reporter systems is difficult since the Spry4 reporter used in PMID: 29964027 is fluorescent protein based and is therefore dependent on the time of protein maturation (although very fast compared to other fluorescent proteins) and a half-life of 9hrs as reported by the authors. The bioluminescent reporter requires no maturation time and has a half-life of 1.65hrs (PMID: 28456689).
Below are our considerations for the choice of reporter and the interpretation of results:
- We previously showed that during exit from the naïve state, at the bulk level, pERK activity and some pERK transcriptional targets show dynamic patterns of activity (PMID: 29895711). Therefore, a dynamic pattern of Spry4 expression is not unexpected.
- We initially tested different means of measuring ERK activity more directly (ERK-KTR and EKAREV-NLS and EKAREV-NES) but the imaging frequency (
c. Why is the Spry4-FLuc signal higher at the start of the recording (when cells come out of MEK inhibition and should not have transcribed the reporter) compared to times > 7.5 h, when continuous ERK signaling in N2B27 should drive reporter expression?
After media change, we typically allowed cells to equilibrate for 30min in the incubator before setting up the imaging. Therefore, there is a ~45min window in which we lack data. From experience (Nett*, Mulas* et al 2018), we know that pERK activity increases within 5-10min after MEK(i) withdrawal and that explains why Spry4-Fluc signal is high as soon as we start the recording. We have now included this clarification in the methods (line 392).
d. What is the evidence for temporally heterogeneous ERK activation? The authors only show one single trace in Fig. 2B, in which the Spry4-FLuc signal peaks right after release from 2i, as would be expected. Another study using a more direct ERK activity sensor (PMID: 31064783) indicated that this initial ERK activity peak after release from 2i is synchronous in all cells in a population. The authors would need to show several or all Spry4-FLuc traces from their experiment to demonstrate the opposite, otherwise one needs to assume synchronous ERK activation upon release from 2i in the author's experiments as well.
Following the reviewer’s suggestion, we now provide an additional supplementary figure with all the traces (Supporting Figure 1). This demonstrates asynchrony in the response. Moreover, as per the reviewer’s suggestion, we have now included immunostainings of the first wave of pERK response (In addition, Deathridge et al. included serum in all ESC culture conditions (according to their Methods) which creates a more complex signalling environment.
e. Why does the cross-correlation of the Spry-FLuc promoter activity (which should go up upon ERK signaling) with the NANOG-NLuc signal (which should go down upon ERK signaling) give positive values? Does this positive correlation reflect the transient nature of Spry4-FLuc expression, thus giving a positive value when Spry4-FLuc promoter activity decays? In this case, what is the meaning of the delay? Overall I found the explanation of this cross-correlation analysis very confusing. Given these problems, I recommend the authors to strongly tone down their conclusions or remove this section altogether, since addressing this multitude of problems might be out of scope for the present manuscript.
Cross-correlation explicitly includes an analysis of the changes in correlation when a lag (meaning a shift in time) is applied to one of the signals. Therefore, there is no “positive correlation” but rather “positive correlation with a given lag applied”. An example is cross-correlation between a sine wave and a cosine wave (which are going in opposite directions for half the points in any given period and so show a positive correlation with a time lag). In our case, if we time shift the Spry4 signal, it will cross-correlate with the Nanog signal. It is possible we are misunderstanding the point of confusion, but we have reviewed our analysis of the data and believe it to be sound. Moreover, in our opinion the findings represent an important component of our paper and add weight to the conclusions drawn.
However, we agree that the analysis could be better explained. We have substantially re-written the section with this aim. The main text now reads:
“We examined the relationship between Spry4 activation and Nanog protein downregulation. After smoothing to remove noise, we used a simple set of ordinary differential equations to calculate the Spry4 promoter activity for each Spry4-Fluc trace (Figure S2C, see methods for details). We created continuous traces by adding the measurements made from each cell end-to-end (Figure S2D). We then measured the cross-correlation between activity of the Spry4 promoter and Nanog protein level. As controls we randomised the Spry4 signal in two ways: first, we randomised the Spry4 signals to measure correlations between Spry4 promoter activity and Nanog downregulation that could be attributable to noise; second, we assigned random time shifts to the Spry4 traces recorded (schematic diagrams shown in Figure S2D). Cross-correlation for the real data is higher than for either of the controls, meaning that the measured Spry4 and Nanog signals are correlated above noise levels and there is a consistent time delay between the two signals. We repeated the analysis for individual traces and observed the same trend (Figure S2F-G, 2D-E). The average lag time is ~80min, indicating that activation of the Spry4 promoter precedes Nanog downregulation. We repeated the analysis for RSK(i) treated cells and observed a stronger correlation at the level of the combined dataset (Figure 2F) as well as in individual cells (Figure 2G, S2H). Interestingly, RSK(i) treatment, which leads to a more sustained peak of pERK1/2 activity (Figure S2B), decreased the average delay (lag) between Spry4promoter activation and Nanog downregulation to 20 min (Figure 2H, S2I). The fact that the lag is short, and not evident in all cells, suggests that Nanog downregulation might not require transcriptional activation.”
Overall we observe a significant cross-correlation between the rise in Spry-Fluc promoter activity (indicating active ERK-signalling) and the fall in Nanog-Nluc signal.
However, we agree that this is not the most decisive result in the study and have changed the title of the paper to “Erk signalling eliminates Nanog and maintains Oct4 to drive the formative pluripotency transition”.
- In line 217 (section title), the authors write that "failure to transition is not due to genome-wide chromatin dysregulation". It is true that the changes upon MEK inhibition reported in this section are small, but there are some changes, and it is ultimately difficult to know which ones are essential. I suggest to rephrase this section title.
We have adjusted the section title.
- The main finding of Fig. 4 - that Oct4 expression enables formative capacity - is very interesting. One problem throughout this figure is that the authors contrast the control case (N2B27/DMSO + siNeg) with a double perturbation (MEKi + siNanog), making it difficult to demonstrate whether it is the loss of Nanog or the loss of ERK signaling (or both) that results in loss of Oct4 expression. If I have missed something here please clarify.
We agree with this comment (also pointed out by the other reviewer). We have now included a new figure, showing that treatment with MEK(i) alone leads to loss of Oct4 expression after naïve state exit (updated figure 4E and S5B).
- Can the authors speculate, or perhaps even experimentally explore, why Oct4 re-expression enables formative capacity? Oct4 positively regulates Fgf4 expression (PMID: 9814708), raising the possibility that the indeterminate state is caused by insufficient paracrine FGF4 signaling once cells have reached this indeterminate state. Alternatively, Oct4-mediated regulation of a broader set of lineage specifiers might be required to establish formative pluripotency. The authors could explore these possibilities by supplementing cultures with recombinant FGF ligands. While these experiments are not essential for to corroborate conclusions in the present manuscript, could allow the authors to follow up upon what I think is their most interesting finding, and thereby give the manuscript a lift.
The reviewer raises an interesting point of discussion. In our study transgene driven Oct4 expression was able to induce formative gene expression in MEK(i) conditions, which block FGF/ERK signalling (Figure 4F). Previous studies have shown that relocation of Oct4 to multiple gene loci is instrumental in the formative transition (PMID: 24905168 and PMID: 23271975) and it is known that Oct4 is an essential factor for formative stem cells (PMID: 33271069) and primed EpiSCs (PMID: 29915126).
Nonetheless we performed experiments to test whether addition of FGF could help rescue expression of formative genes after MEK(i) withdrawal (not shown). However, addition of FGF reduced neural differentiation in control cells and further reduced Sox1 expression in MEK(i)/siNanog treated cells (not shown). Moreover, we saw no significant upregulation of formative genes with addition of FGF (not shown). We decided not to include these results since the literature on the essential role of Oct4 throughout pluripotency is extensive.
Minor points: 6. Please explain in the methods how gates for identifying RGd2-positive and -negative cells in Fig. 1 B, E have been determined from the FACS plots in Fig. S1C/1B.
We have added a section in the methods to explain how this is done (Methods section “Flow Cytometry”), and we have now included a representative example in Figure S1C.
- For the categorization of marker-positive and -negative cells in immunofluorescence images, the authors should explain in more detail according to which criterion a threshold was determined by ROC analysis. Which positive and negative controls were used in each case?
We have added the information to the methods section (Immunostaining and quantification).
- Does a statistical test on the data in Fig. S1A,B reveal significant differences?
We have now performed appropriate statistical tests and have added them to both plots to show that there is indeed a significant difference.
- Please give units on the x-axis in Fig. 2C?
Amended.
- Fig. 3E: Consider re-arranging. It is not immediately clear that all five bar charts belong to this panel.
The experiments were carried out in parallel so we feel that the best way to present them is as currently shown.
- There is a typo in Fig. S4A - mainteined
Amended.
- Methods, lines 408 - 410: Please state units of the parameters used to estimate promoter activity.
Amended.
**Referee Cross-Commenting**
I agree with reviewer #1's assessment of significance and their reservation regarding the conclusion "ERK activity is required to maintain Oct4 expression in the naïve to formative pluripotency transition". The experiment that the reviewer suggests is reasonable and doable (see also my major point 4.). Even though reviewer #1 has not explicitly commented on the conclusions drawn from Fig. 2, I disagree with their assessment that these conclusions are convincing (see my major point 2.).
Reviewer #2 (Significance (Required)):
The control of pluripotency transitions by signaling mechanisms as well as transcription factor circuits have been mapped in quite some detail over the last decade. The main advance of this manuscript is that it looks at the interaction between these two levels and thereby provides some new and interesting links. These results will mainly be of interest to a large community of researchers working with pluripotent stem cells. To me, the most intriguing finding of the paper is the indeterminate cell state that the authors detect upon combined Nanog knockdown and MEK inhibition. To my knowledge, such a dead end of differentiation has not been reported before, at least not with pluripotent cells. This result could be a starting point for further investigation, and is of potential interest to a broader stem cell community.
Expertise: As a stem cell biologist I have the expertise to evaluate all parts of the paper.
-
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Summary:
In the present manuscript, Mulas and colleagues address the question how ERK signaling orchestrates the transition from naïve to formative pluripotency in mouse embryonic stem cells. Combining pharmacological MEK inhibition with siRNA knockdown of candidate transcription factors, they conclude that downregulation of Nanog is an immediate function of ERK signaling that underlies exit from the naïve state. Later on they show that ERK signaling has additional functions beyond downregulating Nanog that are required to make cells competent for formative pluripotency and lineage progression, such that Nanog knockdown cells enter a new indeterminate state in the absence of ERK signaling. Finally, they show that Oct4 is a central mediator of this second function of ERK signaling, since forced Oct4 expression rescues the expression of formative markers even in the presence of MEK inhibitors. They also present time-lapse imaging data of a Spry4- and a Nanog-reporter, based on which they propose that metachronous ERK activity is reflected in metachronous NANOG downregulation.
The experiments dissecting the two different functions of ERK signaling in the pluripotency transition are well performed and provide some new interesting perspectives. Overall, the manuscript is well written. I have major concerns regarding the interpretation of the time-lapse imaging experiments (see major point 2 below) that unfortunately feature very prominently in the title of the manuscript.
Major points:
- In lines 174 and 175, the authors write that "acute ERK activation ... [reduces] NANOG protein, which in turn dimishes Esrrb transcription". Although I am aware that this picture is supported by previous literature (e.g. PMID: 23040477), the author's data do not fully support this conclusion. In Fig. 1G for example, Esrrb is downregulated even though Nanog expression is maintained. This discrepancy needs to be discussed.
- The imaging data and analysis presented in Fig. 2 do not support the conclusion that heterogeneous ERK dynamics underlies metachronous pluripotency exit. There are several problems with this section:
- a. As far as I can see, the reporter line used in this study has not been previously used (at least there is no reference to a previous publication), and it has also not been properly validated in the present manuscript. One would for example like to know if the Spry4-FLuc allele encodes for a fusion protein, or whether it disrupts the Spry4 coding sequence. What is the half-life of the Spry4-Fluc protein? A proper description how the line has been generated, as well as an in-depth characterization are essential to evaluate the data.
- b. It is not clear that dynamic expression of a Spry4 reporter reflects dynamic ERK signaling. It has been shown that cumulative transcription from the Spry4 locus correlates with long-term ERK activity (e.g. PMID: 29964027), but short-term Spry4-FLuc dynamics could well be driven by other mechanisms, such as transcriptional bursting. Co-staining of ppERK and reporter expression in single cells would be required to address this issue.
- c. Why is the Spry4-FLuc signal higher at the start of the recording (when cells come out of MEK inhibition and should not have transcribed the reporter) compared to times > 7.5 h, when continuous ERK signaling in N2B27 should drive reporter expression?
- d. What is the evidence for temporally heterogeneous ERK activation? The authors only show one single trace in Fig. 2B, in which the Spry4-FLuc signal peaks right after release from 2i, as would be expected. Another study using a more direct ERK activity sensor (PMID: 31064783) indicated that this initial ERK activity peak after release from 2i is synchronous in all cells in a population. The authors would need to show several or all Spry4-FLuc traces from their experiment to demonstrate the opposite, otherwise one needs to assume synchronous ERK activation upon release from 2i in the author's experiments as well.
- e. Why does the cross-correlation of the Spry-FLuc promoter activity (which should go up upon ERK signaling) with the NANOG-NLuc signal (which should go down upon ERK signaling) give positive values? Does this positive correlation reflect the transient nature of Spry4-FLuc expression, thus giving a positive value when Spry4-FLuc promoter activity decays? In this case, what is the meaning of the delay? Overall I found the explanation of this cross-correlation analysis very confusing. Given these problems, I recommend the authors to strongly tone down their conclusions or remove this section altogether, since addressing this multitude of problems might be out of scope for the present manuscript.
- In line 217 (section title), the authors write that "failure to transition is not due to genome-wide chromatin dysregulation". It is true that the changes upon MEK inhibition reported in this section are small, but there are some changes, and it is ultimately difficult to know which ones are essential. I suggest to rephrase this section title.
- The main finding of Fig. 4 - that Oct4 expression enables formative capacity - is very interesting. One problem throughout this figure is that the authors contrast the control case (N2B27/DMSO + siNeg) with a double perturbation (MEKi + siNanog), making it difficult to demonstrate whether it is the loss of Nanog or the loss of ERK signaling (or both) that results in loss of Oct4 expression. If I have missed something here please clarify.
- Can the authors speculate, or perhaps even experimentally explore, why Oct4 re-expression enables formative capacity? Oct4 positively regulates Fgf4 expression (PMID: 9814708), raising the possibility that the indeterminate state is caused by insufficient paracrine FGF4 signaling once cells have reached this indeterminate state. Alternatively, Oct4-mediated regulation of a broader set of lineage specifiers might be required to establish formative pluripotency. The authors could explore these possibilities by supplementing cultures with recombinant FGF ligands. While these experiments are not essential for to corroborate conclusions in the present manuscript, could allow the authors to follow up upon what I think is their most interesting finding, and thereby give the manuscript a lift.
Minor points:
- Please explain in the methods how gates for identifying RGd2-positive and -negative cells in Fig. 1 B, E have been determined from the FACS plots in Fig. S1C/1B.
- For the categorization of marker-positive and -negative cells in immunofluorescence images, the authors should explain in more detail according to which criterion a threshold was determined by ROC analysis. Which positive and negative controls were used in each case?
- Does a statistical test on the data in Fig. S1A,B reveal significant differences?
- Please give units on the x-axis in Fig. 2C?
- Fig. 3E: Consider re-arranging. It is not immediately clear that all five bar charts belong to this panel.
- There is a typo in Fig. S4A - mainteined
- Methods, lines 408 - 410: Please state units of the parameters used to estimate promoter activity.
Referee Cross-Commenting
I agree with reviewer #1's assessment of significance and their reservation regarding the conclusion "ERK activity is required to maintain Oct4 expression in the naïve to formative pluripotency transition". The experiment that the reviewer suggests is reasonable and doable (see also my major point 4.). Even though reviewer #1 has not explicitly commented on the conclusions drawn from Fig. 2, I disagree with their assessment that these conclusions are convincing (see my major point 2.).
Significance
The control of pluripotency transitions by signaling mechanisms as well as transcription factor circuits have been mapped in quite some detail over the last decade. The main advance of this manuscript is that it looks at the interaction between these two levels and thereby provides some new and interesting links. These results will mainly be of interest to a large community of researchers working with pluripotent stem cells. To me, the most intriguing finding of the paper is the indeterminate cell state that the authors detect upon combined Nanog knockdown and MEK inhibition. To my knowledge, such a dead end of differentiation has not been reported before, at least not with pluripotent cells. This result could be a starting point for further investigation, and is of potential interest to a broader stem cell community.
Expertise: As a stem cell biologist I have the expertise to evaluate all parts of the paper.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary:
In this manuscript, the authors investigated the role of Erk signaling in the transition from naïve to formative pluripotency. They found that Erk activation eliminates Nanog to allow naïve state exit. However, when Nanog is knocked down in the absence of Erk activation, ESCs exit the naïve state, and enter an indetermined state, unable to proceed to the formative state. The authors further claimed that the failure to the formative state is due to lack of Oct4 expression. In conclusion, Erk signaling is required for the exit from the naïve state and the entry to the formative state.
Major comments:
- Are the key conclusions convincing? Most of the key conclusions are convincing, except for the conclusion "ERK activity is required to maintain Oct4 expression in the naïve to formative pluripotency transition". The authors showed that Oct4 expression is diminished under the MEK(i)+siNanog condition, while Oct4 is expressed in N2B27+siNeg (Figure 4C). With these experimental setting, the conclusion that ERK activity is required to maintain Oct4 expression in the naïve to formative pluripotency transition, cannot be reached, because two variations, MEK(i) and siNanog, rather than one variation MEK(i), are there. The experiment should be designed as adding MEK(i) into N2B27+siNeg at various time points, to test whether MEK(i) is able to down-regulate Oct4 expression in the naïve to formative pluripotency transition.
- Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether?
No. - Would additional experiments be essential to support the claims of the paper? Request additional experiments only where necessary for the paper as it is, and do not ask authors to open new lines of experimentation.
The suggested experiment was described above. - Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated cost and time investment for substantial experiments.
It should not cost too much in terms of funding and time. - Are the data and the methods presented in such a way that they can be reproduced?
Yes. - Are the experiments adequately replicated and statistical analysis adequate?
Statistical analysis is lacking for Figure 3E and Figure 4.
Minor comments:
- Specific experimental issues that are easily addressable.
No. - Are prior studies referenced appropriately?
Yes. - Are the text and figures clear and accurate?
Yes. - Do you have suggestions that would help the authors improve the presentation of their data and conclusions?
No.
Significance
This work characterized the role of ERK signaling in the transition between naïve and formative pluripotency. The function of ERK in ESC self-renewal and differentiation has been well recognized. Thus, this work provides new discoveries, but no conceptual advances. It should be of interest to a specialized audience in the pluripotency field, which is my expertise.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Dear Dr. Sara Monaco,
Thank you very much for your kind e-mail dated 1-Feb-2024. Please find enclosed our revised version and our point-by-point reply to the comments from the reviewers. We have answered all major and minor points raised by the reviewers. Original Figures and Supplementary Figures were revised and renamed as follows.
Figure 1 -> Figure 1 and Revised Figure 2
Figure 2 -> Revised Figure 3 and Supplementary Figure 7
Figure 3 -> Revised Figure 4
Figure 4 -> Revised Figure 5 and 6
Figure 5 -> Revised Figure 7
Figure 6 -> Revised Figure 8
Supplementary Figure 1 -> Supplementary Figure 1
Supplementary Figure 2 -> Revised Supplementary Figure 3
Supplementary Figure 3 -> Revised Supplementary Figure 4
Supplementary Figure 4 -> Revised Figure 2
Supplementary Figure 5 -> Revised Supplementary Figure 6
Supplementary Figure 6 -> Revised Supplementary Figure 9
Supplementary Figure 7 -> Revised Supplementary Figure 10
Supplementary Figure 8 -> Revised Supplementary Figure 11
Supplementary Figure 9 -> Revised Supplementary Figure 12
We believe that our revised manuscript has been significantly improved thanks to your help. Thank you very much again for your help.
Yours sincerely,
Yosuke Mai and Ken Natsuga
*Reviewer #1 (Evidence, reproducibility and clarity (Required)):
SUMMARY In this study, the researchers investigate the spontaneous patterning of keratinocytes. As model they use HaCaT cells, an immortalized keratinocyte line. The cells exhibit a self-organized pattern of high and low cell density, which is disrupted by medium changes but reappear over time. The researchers find that serum starvation and high calcium concentration are crucial for the formation of these keratinocyte patterns. RNA sequencing analysis of regions of high vs low density indicates enrichment in gene ontology terms related to cell-cell adhesion, mainly adherens junctions (AJs), and keratinocyte differentiation. Experimental manipulations, such as inhibiting E-cadherin- or α-catenin-mediated adhesion, and disrupting myosin-II activity, all interfer with the formation of keratinocyte patterns, emphasizing the importance of AJs. Mathematical modeling suggests that cell-cell adhesion alone is sufficient for the emergence of density patterns. Keratinocyte patterns have spatial regulation of keratinocyte differentiation and proliferation. Differentiated cells are abundant in areas of high cell density, while proliferative cells are in areas of low cell density. The authors verify that YAP activity regulates pattern-dependent differentiation and proliferation. The role of serum starvation and cell-cell adhesion through AJs in the differentiation of keratinocytes are supported by epidermal stratification experiments in 3D culture, and ex vivo experiments on mouse skin suction blister wounds. In conclusion, the study provide insights into the spatial regulation of differentiation and proliferation in epidermal cells. MAJOR COMMENTS Although not novel, given that it has been already demonstrated with several other epithelial cell monolayers and in vivo in Drosophila, the conclusions that serum starvation facilitates epidermal stratification through cell-cell adhesion is convincing. It is unclear whether the cell patterning the authors are describing is a real patterning, defined in biology as any regularly repeated cell or structural arrangement or simply an inhomogeneous distribution of cell densities.*
We have addressed this issue by analyzing our images with the autocorrelation function (see Fig. 1g, 1h, and Supplementary Fig. 5) and confirmed that the distribution of high/low cell density is patterned with the average nearest neighbor distance between areas of high cell density being approximately 300 µm. We have incorporated these new data into the revised manuscript.
The conclusion that the cell-cell adhesion signaling pathway identified in the paper "might promote wound healing in clinical settings" (last sentence of the abstract) is not substantiated by the results.
We agree with the reviewer's point and have deleted the sentence in the abstract, accordingly.
It would be opportune to better describe the type of "cell patterning" that the authors are seeing in their experiments. In my opinion the effect seen in the described experiment is not a "patterning" but a difference in cell density which can be less or more homogeneous in an HaCat monolayer.
Please see the answer above on our analysis using the autocorrelation function.
Importantly, it is unclear whether the "cell patterning" is a subsequent consequence or proceed stratification.
As the mathematical modeling indicated patterning without the need for stratification steps, we believe that cell patterning is not a direct consequence of stratification. However, it is technically difficult to differentiate whether patterning developed prior to stratification in our experimental settings. We have added this limitation to the Discussion of the revised manuscript.
It is unclear how starvation relates to the increased adhesions and YAP signaling.
As the reviewer pointed out, we could not address what molecules in the serum are responsible because the serum is a complex mixture of biomolecules that includes hormones, growth factors, vitamins, and other nutrients. We have added this limitation of our study to the revised manuscript.
The authors conclude the discussion section proposing "that molecules involved in cell-cell adhesion-induced patterning are suitable target candidates to facilitate wound healing". None the experiments done in the wound healing setting are addressing the role of any molecules described in the paper. I would suggest the authors to remove this last claim from the manuscript. Alternatively, the authors should provide evidence that targeting some of the molecules described in the manuscript are accelerating wound healing in a clinically relevant model of wound healing.
We agree with the reviewer's point and have deleted the passage in the revised manuscript, accordingly.
I would request the authors to provide the following essential data to substantiate their experiments: - Provide a full gene list related to Figure 2a.
We have provided the gene list (Supplementary Table 1), accordingly.
- In relation to Figure 2c, stain for a-catenin and quantify the intensity ration of a-catenin vs a-18-catenin as proper readout of adhesion strength (see Yonemura et al., Nat Cell Biol 2010).
As the reviewer pointed out, the intensity ratio of α-catenin vs. α18 is a general readout of cell adhesion strength. However, this ratio should be based on similar intensity of alpha catenin between two groups for comparison. In contrast, the intensity of α-catenin itself was weaker in the area with low cell density compared with in that with high cell density in our experimental setting (Supplementary Fig. 8d, e, g), which could greatly affect the ratio. To overcome this problem, we have reanalyzed line plots of α-catenin immunofluorescence, picked up the α18 intensity at the peaks (corresponding to cell-cell adhesion) of α-catenin, and compared that of high and low cell density area. As expected, α18 was more pronounced in the area with high cell density. We have added the data to Supplementary Fig. 8d-h in the revised manuscript.
- Properly quantify nuclear vs cytoplasmic localization of YAP in low vs high density areas in Figure 4f.
According to the reviewer's suggestion, we have quantified nuclear/cytoplasmic YAP and added the data (Revised Fig. 6b (original Fig. 4)) to the revised manuscript.
- The nuclear localization of YAP is not sufficient to demonstrate activation of the YAP signaling. The authors should provide evidence of YAP activity in low vs high density areas looking for example at known downstream target genes in epithelial cells (see Zhao et al., Genes Dev 2007; Yu et al., Cell 2012; Aragona et al., Cell 2013).
We have analyzed ANKRD1 (Yu et al., Cell 2012) as a YAP readout molecule and confirmed that, in line with YAP dynamics, ANKRD1 was localized in the nucleus of high cell density area. We have provided the data (Revised Fig. 6c, d (original Fig. 4)) for the revised manuscript.
- The activity of PY-60 in Figure 4g and XAV939 in Figure 4i as YAP activator and repressor respectively, should be controlled against YAP localization and activity.
We have quantitatively analyzed YAP and ANKRD1 localization upon chemical treatment and added the data (Supplementary Fig. 1a-d, g-j (original Supplementary Fig. 8)) to the revised manuscript.
- In Figure 5a a quantification of the numbers of cell layers should be used instead of the thickness and a staining and quantification of K14 and K10 should be added to formally address stratification.
As expected, the number of K10-positive cell layers was larger in serum-starved conditions than in serum-rich conditions, while the number of K14-positive cell layer was comparable between the two groups. We have provided the quantification data (Supplementary Fig. 12 c-e (original Supplementary Fig. 9)) to the revised manuscript accordingly.
*Most of the proposed experiments are simply additional quantifications of images or adjustments of data that are already available to the authors. I estimate that the remaining experiments can be done in less than a month and will not require additional expertise.
The methods, figures presentation and legends, and the statistical analysis are adequate, clear and accurate.
MINOR COMMENTS There are three fundamental studies that the authors should discuss: - Saw, Doostmohammadi et al., Nature 2017. Topological defects in epithelia govern cell death and extrusion. Here, the role of topological defects (see also Bonn et al., Phys Res E 2022) and a-catenin-dependent cell-cell interactions are connected to cell extrusion and Yap activity in epithelial monolayers including HaCat cells. - Miroshnikova et al., Nat Cell Biol 2018. Adhesion forces and cortical tension couple cell proliferation and differentiation to direct epidermal stratification. Here, the authors demonstrated that the increase of cell-cell adhesion couples with a decrease of cortical tension triggers stratification in the skin epidermis. - Boocock et al., Nature Physics 2021. Theory of mechanochemical patterning and optimal migration in cell monolayers. Here, cell density and ERK activity are formalized to be key players in patterning formation in a cell monolayer. In addition, several components of the Hippo-YAP pathway are known regulators of cell-cell adhesion (e.g. AMOT and NF2) and should be discussed (for reference see reviews on the topic Zheng & Pan, Dev Cell 2019; Karaman & Halder Cold Spring Harb Perspect Biol 2018; Gumbiner & Kim, J Cell Sci 2014) as important molecules implicated in the biological phenomena described in the manuscript.0*
We appreciate the reviewer's suggestion and have cited and discussed these seminal papers in the revised manuscript.
Reviewer #1 (Significance (Required)):
The study aims at understanding spontaneous patterning of keratinocytes. The authors nicely employ various experimental approaches, including cell imaging, RNA sequencing, cell manipulation by genetic engineering and pharmacological treatments, and mathematical modeling, to elucidate the underlying cellular and molecular mechanisms regulating this proces. However, several of the conclusions presented in the manuscript do not present any conceptual advance to the field of self-organization of cell density patterns or epithelial biology.
The role of starvation in effecting epithelial growth is very well known. The role of AJ in pattern formation has been described previously in epithelial monolayers (Saw, Doostmohammadi et al., Nature 2017) and in vivo in Drosophila (Mao et al., Genes Dev 2011; Mao et al., EMBO J 2013). The effect of cell density on YAP signaling is known (Zhao et al., Genes Dev 2007; Aragona et al., Cell 2013). The importance of AJ for keratinocytes differentiation and stratification has been demonstrated in vitro and in vivo (Miroshnikova et al., Nat Cell Biol 2018). The role of a-catenin upstream of YAP activity in regulating interfollicular epidermis stem cells self-renewal and wound healing has been demonstrated in vitro and in vivo by the group of Fernando Camargo in Cell 2011.
The manuscript could be of interest for researchers interested in basic cell biology and a specialised audience in cell self-organisation.
My field of expertise: epithelial biology, stem cell biology, skin homeostasis and wound healing, mechanobiology, YAP signaling. I do not have sufficient expertise to evaluate the mathematical modelling.
We appreciate the reviewer's constructive comments.
*Reviewer #2 (Evidence, reproducibility and clarity (Required)):
Summary:
Mai et al. reported an interesting observation that serum starvation induced the keratinocytes, a type of epithelial cells, to form a pattern characterized by regions with high and low densities. They showed that this patterning processing depends on cell-cell adhesion using a series of pharmacological treatment and a CRISPR knockout of alpha-catenin. They used mathematical modeling to demonstrate that cell-density dependent stress can sufficiently generate patterns of high and low cell densities, but the interpretation of the modeling is questionable (see below). They showed correlation of a differentiated keratinocyte marker, keratin 10, with the high-density region, but over claimed this result as patterning modulates differentiation. They also showed correlation of YAP activity (cytoplasmic to nuclear ratio) to the high vs. low-density regions. Interestingly, treatment with a YAP activator PY-60 disrupted pattern formation, while the YAP inhibitor XAV939 barely affected pattern formation. Finally, the authors demonstrated that serum starvation increased the thickness of keratinocytes cultured in a trans-well system (which they called 3D culture), and a mouse back skin explant compared to serum-rich culture conditions. In the former system, they showed dependence on alpha-catenin using the CRISPR knockout.
Major comments:
The conclusion that "mathematical modeling indicates that cell-cell adhesion alone is sufficient to form regions with high/low cell density" is misleading. The key assumption of the modeling is that the time derivative of stress (d_sigma/dt) is proportional to the cell density (rho), where the proportion parameter (beta) was interpreted as cell adhesion strength. However, beta could be interpreted as any general attractor proportional to the cell density, such as a chemoattractant.*
Our purpose here is to demonstrate that the model based on the assumption of cell-cell adhesion as a mere source of attractive forces can reproduce the experimentally observed spatial patterning. As the referee rightly points out, the term beta*rho in the second equation allows different interpretations such as the effect of attractant proportional to cell density. Therefore, our mathematical model cannot be used as a proof of the existence of cell-cell adhesion. We have reduced the tone in the revised manuscript.
In addition, it is unclear why the time derivative of stress (d_sigma/dt) instead of stress itself (sigma) proportional to the cell density. The authors should further clarify the meanings of modeling parameters and be more careful with their conclusions.
If the system is in the steady state (d_sigma/dt = 0) with no spatial variations (nabla^2 \sigma = 0), then the second equation reduces to sigma = (beta/alpha) rho, namely that the cell density is proportional to stress, as pointed out by the referee.
Our model, which describes temporal and spatial variations, generalizes this situation. The spatial dependence represented by nabla^2 sigma was introduced according to the Reference 72 (original Reference 51). Furthermore, we introduced the time derivative d_sigma/dt to account for the fact that the system should relax into the steady state described above. We have included these into the revised manuscript.
Related to above, the authors should revise the title to reflect that the patterning depends on cell-cell adhesion instead of claiming that cell-cell adhesion drives patterning. This would require experimentally demonstrating sufficiency, for example, showing that increasing adhesion in a cell line with low adhesion that does not show patterning can sufficiently induce patterning.
We agreed with the reviewer and have revised the title into "Patterning in stratified epithelia depends on cell-cell adhesion" and reduce the tone of the final sentence of the Discussion section accordingly.
The conclusion that "patterning modulates differentiation" is not supported by evidence. Differentiation as evidenced by the presence of keratin 10 occurred as early as day 2 before any signs of patterning (Fig. 4A). When patterning was completely disrupted by alpha-catenin KO, there are still many keratin 10 positive cells. The apparent higher proportion of keratin 10+ cells in the wild type seems to be merely reflecting the higher cell density - if the quantification were normalized by the cell number, they are probably comparable. Overall, the presented data only supports a correlation of the differentiation marker keratin 10 with high-density regions.
According to the reviewer's suggestion, we have reduced the tone of the title of Revised Fig. 4 (original Fig. 3) and changed it into "Patterning correlates with differentiation and proliferation markers in keratinocytes".
The choice of RNA-seq comparison groups (high-density vs. low-density culture) is puzzling, since the effects caused by culture density changes may not be related to the high vs. low-density regions in the patterned cultures. There are so many changes there and the rationale of following up on cell adhesion was unclear. In fact, it seems that the RNA-seq data didn't help the logic flow of the paper at all.
Although we believe that comparison between high-density and low-density culture partly recapitulates high/low cell density regions in our study, the comparison is not identical to patterned cultures as the reviewer pointed out. We have moved RNA-seq data to the Supplementary Information (Supplementary Fig. 7) and added more analysis to address that cell adhesion and differentiation are major differences between high-density and low-density culture, supporting further analysis on this matter in our study.
The claim of 3D culture of keratinocytes is confusing. The culture in the trans-well insert is still on the flat 2D surface, why should it be called 3D culture? If the point is to culture at air/liquid interface, that should instead be emphasized instead of calling it 3D.
We have changed "3D culture" into air-liquid interface culture, accordingly.
Reviewer #2 (Significance (Required)):
The observation that serum starvation and replenishment induced reversible patterning of the keratinocytes is quite interesting. However, the biological relevance is unclear - isn't all skin stratified? The evidence supporting the dependence of this patterning on adherens junction by disrupting E-cadherin, myosin, or alpha-catenin is convincing, although not surprising. The involvement of YAP in differentiation vs. proliferation is interesting, but it's in line with the known functions of YAP. The modeling part, with some clarification, can be quite insightful. Overall, this research could be interesting to those working in epithelial morphogenesis, if further developed.
My expertise is in epithelial tissue morphogenesis, mechanobiology, and extracellular matrix biology.
We appreciate the reviewer's constructive and thoughtful comments.
*Reviewer #3 (Evidence, reproducibility and clarity (Required)):
In this manuscript the authors aim to understand the signals that coordinate spatial patterns of keratinocyte proliferation and differentiation. To address this question the authors use the HaCaT keratinocyte cell line that upon serum starvation forms spatially separated domains of proliferation and differentiation. The data presented in this manuscript potentially suggest that serum starvation works through adherens junctions to create differentially dense fields within the cultures which determines whether cells proliferate or differentiate. The authors then perform experiments to show that junction formation with starvation drive keratinocyte differentiation potentially through YAP signaling. However, these experiments are rather loosely connected and their results often do not support the conclusions drawn by the authors. However, the not well supported conclusion the form the basis for a fact statement, but their data really did not show that. For example, the authors state: "By contrast, YAP inhibition by a tankyrase inhibitor, XAV939, suppressed pattern-dependent proliferation (Fig. 4i, j)," . However, their data do not show that proliferation is pattern-dependent but is nevertheless used to connect to and draw a conclusion about YAP signaling. The data itself appear to be of high quality, figures are well organized and statistics of quantification seem appropriate, but it somewhat problematic that throughout the manuscript it remains unclear if certain statements are hypotheses or conclusions on real data. Pattern formation as a requirement for differentiation is an interesting concept. However, the presented study lacks proper conclusive data how these patterns may contribute to proliferation and differentiation and remains rather short on what exactly is the instructive nature of these patterns, as they only use high density and are not generating own patterns with defined cues that explore what cues contribute. Major points: The statement "According to the RNA-seq data, AJ molecules, such as E-cadherin and actin, were localized at intercellular junctions in areas of high cell density" is not correct. RNA-seq does not allow conclusions about protein localization. Instead, the GO-Term analysis shown in Figure 2b shows downregulation of "cell-adhesion" in dense areas. *
According to the reviewer's suggestion, we have corrected the sentence. We have reanalyzed our RNA-seq data and confirmed that GO-term "cell-adhesion" was in the top list of both high and low cell density regions. We have provided more data to the revised manuscript (Supplementary Fig. 7 and Supplementary Table 1).
*Consistently the E-cadherin staining presented in Figure2c suggest lower intercellular E-cadherin levels in the most dense areas. However, any statement about junctional localization of adhesion components requires e.g. intensity quantification at junctions vs. cytoplasm or else to discriminate from intense overall staining due to high cell density and thus high overall junction numbers. *
Actually, junctional E-cadherin was more pronounced in the high cell density area. We have provided line plot data to confirm this and also added a quantification data (Supplementary Fig. 8).
Hence, even though potentially true, the statement: "These data suggest that cells in regions of high cell density form AJs in response to intercellular forces" is not fully supported by the data shown so far.
Please see the answer to the comments of Reviewer 1 on the quantification of α18. We believe that, as α18 intensity is more pronounced in the cell-cell junction of high cell density area compared with low cell density regions, our claim is experimentally supported.
The authors suggest a pattern of high and low density that is formed over time. However, at the same time high density areas show formation of a second layer. Hence, "denser" areas as observed by phase contrast images or DAPI positive nuclei may either represent dense or stratified cells. What is missing is an analysis of cell density before cells started to stratify making sure only cells in the basal layer are analyzed. Otherwise, density and stratification which are perhaps interdependent in this system cannot be discriminated.
As the reviewer pointed out, the patterning was analyzed at the level of basal layer. In addition to Figure 1c, we have provided another plane cut immunofluorescence data (Supplementary Fig. 2) to the revised manuscript to address this issue.
*The mathematical model does not include stratification and it is thus not clear to what extend it may explain the observed patterns. *
It is true that the model does not account for stratification. It focuses solely on the patterning of cell density in the basal layer. We have incorporated this notion into the revised manuscript as a limitation of this study.
*Moreover, the model appears to assume variables that have not been determined or cited. This reviewer is not an expert in modeling and thus cannot fully judge the math behind the model. However, the model appears to be biased if it assumes, as mentioned, that cell-adhesion increases with density. *
The first equation, describing the time evolution of rho (the cell density), incorporates diffusion, collective cell movement due to stress from adjacent cells, and random fluctuations. Each of these terms comes from a general consideration of density dynamics. The second equation, describing stress balance, is a generalization of Reference 72 (originally Reference 51). The crucial assumption here is that the cell-cell adhesion increases with density, which corresponds to the experimental findings (Revised Fig. 3a, b, Supplementary Figure 8a-h).
What we have demonstrated here is that we only need cell-cell adhesion as a source of attractive interactions for cells to form the density patterning as observed in the experiment. Since it is not self-evident whether the assumption of the density-dependent adhesion entail the emergence of density patterns, we do not believe that our model is begging the question or biased.
*If low adhesion forces do not produce patterns, what is the counterforce in the model? Are cells allowed to change size to enable low density areas or do cells lose contact with neighbors despite high adhesion strength? *
Our model does not have a variable corresponding to cell-shape change, which is considered only implicitly: Cells in the low density region (small rho) are regarded as flattened, whereas those in the high density region (large rho) as compressed (though not stratified) (Fig 1c).
The behavior of the model is controlled by the parameter beta: a smaller beta means that density variations have little effect on stress, whereas a larger beta leads to significant stress changes with density variation. Since stress increases as beta*rho (in the second equation), stress in the low density region remains low even when the parameter beta is large.
Overall, it appears that the model is set up such, that it tends to reproduce what was observed in experiment. This conclusion, however, may result of an incomplete understanding of the model parameters.
The model setup, the assumption on the relationship between density and cell-cell adhesion in particular, does not inherently dictate the emergence of high/low density patterns: It might be the case that cell density is uniformly distributed everywhere with uniformly strong adhesion among cells. What our computer simulations have shown, however, is that the model exhibits spatially heterogeneous density patterns for sufficiently high beta values. The emergence of such spatial patterns is not a predefined aspect of the mathematical model itself.
In the revised manuscript, the non-triviality of the spatial patterning has been made clear in the Results, and more explanations on the mathematical model to address the above points have been added to the Methods section.
If dense areas do actually represent stratified areas it may not be surprising that the GO analysis indicates an increase in differentiation. A requirement for AJ or intercellular junctions in general is less surprising as stratification requires cell-cell adhesion. The observation that AJ are essential for intercellular junction formation in keratinocytes or in other epithelial cells is not new (e.g. Michels et al. JID 2009).
We agree with the reviewer in the point that the role of AJ is not new. We have incorporated the notion into the Discussion of the revised manuscript and cited the paper the reviewer indicated.
The part of the paper addressing the role of YAP suffers from a number of potentially mislead assumptions/conclusions based on a previous experiment which then did not properly supported that conclusion (see also overall comments). For example, the statement "YAP inhibition by a tankyrase inhibitor, XAV939, suppressed pattern-dependent proliferation" contains interdependencies that have not been show [sic]. XAV939 may just inhibit proliferation which is not necessarily pattern dependent. Too much speculation confuses data and hypotheses.
We agree with the reviewer to point out that pattern-dependency was not supported by our results. We have reduced the tones and corrected these terms in the revised manuscript.
The 3D HaCaT cultures are performed on transwell filters with medium supply above and below cells, with the assumption that organizing patterns are also formed under these conditions. However, this has not been shown by the authors. Their suggestion that serum starvation may increases thickness of cultures through alterations in the organization of [sic]
We showed the patterning in air-liquid interface culture in the Supplementary Data (Supplementary Fig. 12a, b, original Supplementary Fig. 9a, b), which presents starvation-induced pattering even in such condition.
Reviewer #3 (Significance (Required)):
The mechanisms that drive self-organization of epithelial cells to spatially separate domains of proliferation and differentiation is in principle a very interesting topic of high interest to the cell and mechanobiology community, [sic]
We appreciate the reviewer's constructive and thoughtful comments.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
In this manuscript the authors aim to understand the signals that coordinate spatial patterns of keratinocyte proliferation and differentiation. To address this question the authors use the HaCaT keratinocyte cell line that upon serum starvation forms spatially separated domains of proliferation and differentiation. The data presented in this manuscript potentially suggest that serum starvation works through adherens junctions to create differentially dense fields within the cultures which determines whether cells proliferate or differentiate. The authors then perform experiments to show that junction formation with starvation drive keratinocyte differentiation potentially through YAP signaling. However, these experiments are rather loosely connected and their results often do not support the conclusions drawn by the authors. However, the not well supported conclusion the form the basis for a fact statement, but their data really did not show that. For example, the authors state: "By contrast, YAP inhibition by a tankyrase inhibitor, XAV939, suppressed pattern-dependent proliferation (Fig. 4i, j)," . However, their data do not show that proliferation is pattern-dependent but is nevertheless used to connect to and draw a conclusion about YAP signaling. The data itself appear to be of high quality, figures are well organized and statistics of quantification seem appropriate, but it somewhat problematic that throughout the manuscript it remains unclear if certain statements are hypotheses or conclusions on real data. Pattern formation as a requirement for differentiation is an interesting concept. However, the presented study lacks proper conclusive data how these patterns may contribute to proliferation and differentiation and remains rather short on what exactly is the instructive nature of these patterns, as they only use high density and are not generating own patterns with defined cues that explore what cues contribute.
Major points:
The statement "According to the RNA-seq data, AJ molecules, such as E-cadherin and actin, were localized at intercellular junctions in areas of high cell density" is not correct. RNA-seq does not allow conclusions about protein localization. Instead, the GO-Term analysis shown in Figure 2b shows downregulation of "cell-adhesion" in dense areas. Consistently the E-cadherin staining presented in Figure2c suggest lower intercellular E-cadherin levels in the most dense areas. However, any statement about junctional localization of adhesion components requires e.g. intensity quantification at junctions vs. cytoplasm or else to discriminate from intense overall staining due to high cell density and thus high overall junction numbers. Hence, even though potentially true, the statement: "These data suggest that cells in regions of high cell density form AJs in response to intercellular forces" is not fully supported by the data shown so far. The authors suggest a pattern of high and low density that is formed over time. However, at the same time high density areas show formation of a second layer. Hence, "denser" areas as observed by phase contrast images or DAPI positive nuclei may either represent dense or stratified cells. What is missing is an analysis of cell density before cells started to stratify making sure only cells in the basal layer are analyzed. Otherwise, density and stratification which are perhaps interdependent in this system cannot be discriminated. The mathematical model does not include stratification and it is thus not clear to what extend it may explain the observed patterns. Moreover, the model appears to assume variables that have not been determined or cited. This reviewer is not an expert in modeling and thus cannot fully judge the math behind the model. However, the model appears to be biased if it assumes, as mentioned, that cell-adhesion increases with density. If low adhesion forces do not produce patterns, what is the counterforce in the model? Are cells allowed to change size to enable low density areas or do cells lose contact with neighbors despite high adhesion strength? Overall, it appears that the model is set up such, that it tends to reproduce what was observed in experiment. This conclusion, however, may result of an incomplete understanding of the model parameters. If dense areas do actually represent stratified areas it may not be surprising that the GO analysis indicates an increase in differentiation. A requirement for AJ or intercellular junctions in general is less surprising as stratification requires cell-cell adhesion. The observation that AJ are essential for intercellular junction formation in keratinocytes or in other epithelial cells is not new (e.g. Michels et al. JID 2009).
The part of the paper addressing the role of YAP suffers from a number of potentially mislead assumptions/conclusions based on a previous experiment which then did not properly supported that conclusion (see also overall comments). For example, the statement "YAP inhibition by a tankyrase inhibitor, XAV939, suppressed pattern-dependent proliferation" contains interdependencies that have not been show. XAV939 may just inhibit proliferation which is not necessarily pattern dependent. Too much speculation confuses data and hypotheses.
The 3D HaCaT cultures are performed on transwell filters with medium supply above and below cells, with the assumption that organizing patterns are also formed under these conditions. However, this has not been shown by the authors. Their suggestion that serum starvation may increases thickness of cultures through alterations in the organization of
Significance
The mechanisms that drive self-organization of epithelial cells to spatially separate domains of proliferation and differentiation is in principle a very interesting topic of high interest to the cell and mechanobiology community,
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Summary:
Mai et al. reported an interesting observation that serum starvation induced the keratinocytes, a type of epithelial cells, to form a pattern characterized by regions with high and low densities. They showed that this patterning processing depends on cell-cell adhesion using a series of pharmacological treatment and a CRISPR knockout of alpha-catenin. They used mathematical modeling to demonstrate that cell-density dependent stress can sufficiently generate patterns of high and low cell densities, but the interpretation of the modeling is questionable (see below). They showed correlation of a differentiated keratinocyte marker, keratin 10, with the high-density region, but over claimed this result as patterning modulates differentiation. They also showed correlation of YAP activity (cytoplasmic to nuclear ratio) to the high vs. low-density regions. Interestingly, treatment with a YAP activator PY-60 disrupted pattern formation, while the YAP inhibitor XAV939 barely affected pattern formation. Finally, the authors demonstrated that serum starvation increased the thickness of keratinocytes cultured in a trans-well system (which they called 3D culture), and a mouse back skin explant compared to serum-rich culture conditions. In the former system, they showed dependence on alpha-catenin using the CRISPR knockout.
Major comments:
The conclusion that "mathematical modeling indicates that cell-cell adhesion alone is sufficient to form regions with high/low cell density" is misleading. The key assumption of the modeling is that the time derivative of stress (d_sigma/dt) is proportional to the cell density (rho), where the proportion parameter (beta) was interpreted as cell adhesion strength. However, beta could be interpreted as any general attractor proportional to the cell density, such as a chemoattractant. In addition, it is unclear why the time derivative of stress (d_sigma/dt) instead of stress itself (sigma) proportional to the cell density. The authors should further clarify the meanings of modeling parameters and be more careful with their conclusions.
Related to above, the authors should revise the title to reflect that the patterning depends on cell-cell adhesion instead of claiming that cell-cell adhesion drives patterning. This would require experimentally demonstrating sufficiency, for example, showing that increasing adhesion in a cell line with low adhesion that does not show patterning can sufficiently induce patterning.
The conclusion that "patterning modulates differentiation" is not supported by evidence. Differentiation as evidenced by the presence of keratin 10 occurred as early as day 2 before any signs of patterning (Fig. 4A). When patterning was completely disrupted by alpha-catenin KO, there are still many keratin 10 positive cells. The apparent higher proportion of keratin 10+ cells in the wild type seems to be merely reflecting the higher cell density - if the quantification were normalized by the cell number, they are probably comparable. Overall, the presented data only supports a correlation of the differentiation marker keratin 10 with high-density regions.
The choice of RNA-seq comparison groups (high-density vs. low-density culture) is puzzling, since the effects caused by culture density changes may not be related to the high vs. low-density regions in the patterned cultures. There are so many changes there and the rationale of following up on cell adhesion was unclear. In fact, it seems that the RNA-seq data didn't help the logic flow of the paper at all.
The claim of 3D culture of keratinocytes is confusing. The culture in the trans-well insert is still on the flat 2D surface, why should it be called 3D culture? If the point is to culture at air/liquid interface, that should instead be emphasized instead of calling it 3D.
Significance
The observation that serum starvation and replenishment induced reversible patterning of the keratinocytes is quite interesting. However, the biological relevance is unclear - isn't all skin stratified? The evidence supporting the dependence of this patterning on adherens junction by disrupting E-cadherin, myosin, or alpha-catenin is convincing, although not surprising. The involvement of YAP in differentiation vs. proliferation is interesting, but it's in line with the known functions of YAP. The modeling part, with some clarification, can be quite insightful. Overall, this research could be interesting to those working in epithelial morphogenesis, if further developed.
My expertise is in epithelial tissue morphogenesis, mechanobiology, and extracellular matrix biology.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary
In this study, the researchers investigate the spontaneous patterning of keratinocytes. As model they use HaCaT cells, an immortalized keratinocyte line. The cells exhibit a self-organized pattern of high and low cell density, which is disrupted by medium changes but reappear over time. The researchers find that serum starvation and high calcium concentration are crucial for the formation of these keratinocyte patterns. RNA sequencing analysis of regions of high vs low density indicates enrichment in gene ontology terms related to cell-cell adhesion, mainly adherens junctions (AJs), and keratinocyte differentiation. Experimental manipulations, such as inhibiting E-cadherin- or α-catenin-mediated adhesion, and disrupting myosin-II activity, all interfer with the formation of keratinocyte patterns, emphasizing the importance of AJs. Mathematical modeling suggests that cell-cell adhesion alone is sufficient for the emergence of density patterns. Keratinocyte patterns have spatial regulation of keratinocyte differentiation and proliferation. Differentiated cells are abundant in areas of high cell density, while proliferative cells are in areas of low cell density. The authors verify that YAP activity regulates pattern-dependent differentiation and proliferation. The role of serum starvation and cell-cell adhesion through AJs in the differentiation of keratinocytes are supported by epidermal stratification experiments in 3D culture, and ex vivo experiments on mouse skin suction blister wounds.
In conclusion, the study provide insights into the spatial regulation of differentiation and proliferation in epidermal cells.
Major comments
Although not novel, given that it has been already demonstrated with several other epithelial cell monolayers and in vivo in Drosophila, the conclusions that serum starvation facilitates epidermal stratification through cell-cell adhesion is convincing. It is unclear whether the cell patterning the authors are describing is a real patterning, defined in biology as any regularly repeated cell or structural arrangement or simply an inhomogeneous distribution of cell densities. The conclusion that the cell-cell adhesion signaling pathway identified in the paper "might promote wound healing in clinical settings" (last sentence of the abstract) is not substantiated by the results.
It would be opportune to better describe the type of "cell patterning" that the authors are seeing in their experiments. In my opinion the effect seen in the described experiment is not a "patterning" but a difference in cell density which can be less or more homogeneous in an HaCat monolayer.
Importantly, it is unclear whether the "cell patterning" is a subsequent consequence or proceed stratification. It is unclear how starvation relates to the increased adhesions and YAP signaling. The authors conclude the discussion section proposing "that molecules involved in cell-cell adhesion-induced patterning are suitable target candidates to facilitate wound healing". None the experiments done in the wound healing setting are addressing the role of any molecules described in the paper. I would suggest the authors to remove this last claim from the manuscript. Alternatively, the authors should provide evidence that targeting some of the molecules described in the manuscript are accelerating wound healing in a clinically relevant model of wound healing.
I would request the authors to provide the following essential data to substantiate their experiments:
- Provide a full gene list related to Figure 2a.
- In relation to Figure 2c, stain for a-catenin and quantify the intensity ration of a-catenin vs a-18-catenin as proper readout of adhesion strength (see Yonemura et al., Nat Cell Biol 2010).
- Properly quantify nuclear vs cytoplasmic localization of YAP in low vs high density areas in Figure 4f.
- The nuclear localization of YAP is not sufficient to demonstrate activation of the YAP signaling. The authors should provide evidence of YAP activity in low vs high density areas looking for example at known downstream target genes in epithelial cells (see Zhao et al., Genes Dev 2007; Yu et al., Cell 2012; Aragona et al., Cell 2013).
- The activity of PY-60 in Figure 4g and XAV939 in Figure 4i as YAP activator and repressor respectively, should be controlled against YAP localization and activity.
- In Figure 5a a quantification of the numbers of cell layers should be used instead of the thickness and a staining and quantification of K14 and K10 should be added to formally address stratification.
Most of the proposed experiments are simply additional quantifications of images or adjustments of data that are already available to the authors. I estimate that the remaining experiments can be done in less than a month and will not require additional expertise.
The methods, figures presentation and legends, and the statistical analysis are adequate, clear and accurate.
Minor comments
There are three fundamental studies that the authors should discuss:
- Saw, Doostmohammadi et al., Nature 2017. Topological defects in epithelia govern cell death and extrusion. Here, the role of topological defects (see also Bonn et al., Phys Res E 2022) and a-catenin-dependent cell-cell interactions are connected to cell extrusion and Yap activity in epithelial monolayers including HaCat cells.
- Miroshnikova et al., Nat Cell Biol 2018. Adhesion forces and cortical tension couple cell proliferation and differentiation to direct epidermal stratification. Here, the authors demonstrated that the increase of cell-cell adhesion couples with a decrease of cortical tension triggers stratification in the skin epidermis.
- Boocock et al., Nature Physics 2021. Theory of mechanochemical patterning and optimal migration in cell monolayers. Here, cell density and ERK activity are formalized to be key players in patterning formation in a cell monolayer.
In addition, several components of the Hippo-YAP pathway are known regulators of cell-cell adhesion (e.g. AMOT and NF2) and should be discussed (for reference see reviews on the topic Zheng & Pan, Dev Cell 2019; Karaman & Halder Cold Spring Harb Perspect Biol 2018; Gumbiner & Kim, J Cell Sci 2014) as important molecules implicated in the biological phenomena described in the manuscript.
Significance
The study aims at understanding spontaneous patterning of keratinocytes. The authors nicely employ various experimental approaches, including cell imaging, RNA sequencing, cell manipulation by genetic engineering and pharmacological treatments, and mathematical modeling, to elucidate the underlying cellular and molecular mechanisms regulating this proces. However, several of the conclusions presented in the manuscript do not present any conceptual advance to the field of self-organization of cell density patterns or epithelial biology.
The role of starvation in effecting epithelial growth is very well known. The role of AJ in pattern formation has been described previously in epithelial monolayers (Saw, Doostmohammadi et al., Nature 2017) and in vivo in Drosophila (Mao et al., Genes Dev 2011; Mao et al., EMBO J 2013). The effect of cell density on YAP signaling is known (Zhao et al., Genes Dev 2007; Aragona et al., Cell 2013). The importance of AJ for keratinocytes differentiation and stratification has been demonstrated in vitro and in vivo (Miroshnikova et al., Nat Cell Biol 2018). The role of a-catenin upstream of YAP activity in regulating interfollicular epidermis stem cells self-renewal and wound healing has been demonstrated in vitro and in vivo by the group of Fernando Camargo in Cell 2011.
The manuscript could be of interest for researchers interested in basic cell biology and a specialised audience in cell self-organisation.
My field of expertise: epithelial biology, stem cell biology, skin homeostasis and wound healing, mechanobiology, YAP signaling. I do not have sufficient expertise to evaluate the mathematical modelling.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
We thank all reviewers for their thorough assessment and constructive comments. We are glad that the reviewers appreciate that our findings are of interest to the nuclear transport field and that our extension of the use of the RITE methodology can be a valuable tool for the further characterization of NPCs that differ in composition and potentially function. In response to the reviewers’ comments, we have revised the text to incorporate their suggestions and improve overall readability and clarity. Furthermore, we propose to perform a set of additional experiments to address the reviewers’ most important critiques. Below we list our response with the reviewer comments reprinted in dark grey and our response in blue for easier orientation. We have added numbering of the comments for easier orientation.
Many of the comments made by the reviewers have already been implemented, additional points will be addressed in a revised version of the manuscript as detailed below.
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
The authors extended the existing recombination-induced tag exchange (RITE) technology to show that they can image a subset of NPCs, improving signal-to-noise ratios for live cell imaging in yeast, and to track the stability or dynamics of specific nuclear pore proteins across multiple cell divisions. Further, the authors use this technology to show that the nuclear basket proteins Mlp1, Mlp2 and Pml39 are stably associated with "old NPCs" through multiple cell cycles. The authors show that the presence of Mlp1 in these "old NPCs" correlates with exclusion of Mlp1-positive NPCs from the nucleolar territory. A surprising result is that basket-less NPCs can be excluded from the non-nucleolar region, an observation that correlates with the presence of Nup2 on the NPC regardless of maturation state of the NPC. In support of the proposal that retention of NPCs via Mlp1 and Nup2 in non-nucleolar regions, simulation data is presented to suggest that basket-less NPCs diffuse faster in the plane of the nuclear envelope.
However, there are some points that do need addressing:
Major Points 1. Taking into account that the Nup2 result in Figure 4B forms the basis for one half of the proposed model in Figure 6 regarding the exclusion of NPCs from the nucleolar region of the NE, there is a relatively small amount of data in support of this finding and this proposed model. For example, the only data for Nup2 in the manuscript is a column chart in Figure 4B with no supporting fluorescence microscopy examples for any Nup2 deletion. Further, the Nup60 deletion mutant will have zero basket-containing NPCs, whereas the Nup2 deletion will be a mixture of basket-containing and basket-less NPCs. The only support for the localization of basket-containing NPCs in the Nup2 deletion mutant is through a reference "Since Mlp1-positive NPCs remain excluded from the nucleolar territory in nup2Δ cells (Galy et al., 2004), the homogenous distribution observed in this mutant must be caused predominantly by the redistribution of Mlp-negative NPCs into the nucleolar territory."
We have already added fluorescent images of the nup2d strain to figure 4A in the preliminary revision.
In addition, we will repeat the experiment from Galy et al. 2004 to test whether Mlp-positive NPCs are excluded from nucleoli in our hands as well.
Furthermore, we propose to carry out more experiments to pinpoint which domains of Nup2 contribute to nucleolar exclusion, which will provide more insight into the mechanism behind this effect. We propose to do this by analyzing NPC localization in mutants expressing truncations of Nup2 with deletions for individual domains as their only copy of Nup2. Regardless of whether we find a single domain of Nup2 responsible of a combinatorial action, this experiment will indicate a potential molecular mechanism for nucleolar exclusion.
- The authors could consider utilizing this opportunity to discuss their technological innovations in the context of the prior work of Onischenko et al., 2020. This work is referenced for the statement "RITE can be used to distinguish between old and new NPCs" Page 2, Line 43. However, it is not referenced for the statement "We constructed a RITE-cassette that allows the switch from a GFP-labelled protein to a new protein that is not fluorescently labelled (RITE(GFP-to-dark))" despite Onischenko et al., 2020 having already constructed a RITE-cassette for the GFP-to-dark transition. The authors could consider taking this opportunity to instead focus on their innovative approach to apply this technology to decrease the number of fluorescently-tagged NPCs by dilution across multiple cell divisions and to interpret this finding as a measure of the stability of nuclear pore proteins within the broader NPC.
We apologize for this imprecise citation. We have modified the text to indicate that our RITE cassette was previously used in two publications. It now reads: “We used a RITE-cassette that allows the switch from a GFP-labelled protein to a new protein that is not fluorescently labelled (RITE(GFP-to-dark)) (Onischenko et al., 2020, Kralt et al., 2022). “
- The authors could also consider taking this opportunity to discuss their results in the context of the Saccharomyces cerevisiae nuclear pore complex structures published e.g. in Kim et al., 2018, Akey et al., 2022, Akey et al., 2023 in which the arrangement of proteins in the nuclear basket is presented, and also work from the Kohler lab (Mészáros et al., 2015) on how the basket proteins are anchored to the NPC. There is additional literature that also might help provide some perspective to the findings in the current manuscript, such as the observation that a lesser amount of Mlp2 to Mlp1 observed is consistent with prior work (e.g. Kim et al., 2018) and that intranuclear Mlp1 foci are also formed after Mlp1 overexpression (Strambio-de-Castillia et al., 1999).
Following the reviewer’s suggestion, we extended our discussion of basket Nup stoichiometry and organization in the discussion section including several of the citations mentioned. At this point, we did not see a good way to incorporate discussion about the nuclear Mlp1 foci formed after Mlp1 overexpression. However, this observation is in line with the foci formed in cells lacking Nup60, suggesting that Mlp1 that cannot be incorporated into NPCs forms nuclear foci.
Minor Points 1. What is the "lag time" of the doRITE switching? Do the authors believe that it is comparable to the approximate 1-hour timeframe following beta-estradiol induction as shown previously in Chen et al. Nucleic Acids Research, Volume 28, Issue 24, 15 December 2000, Page e108, https://doi.org/10.1093/nar/28.24.e108
Our data (e.g. newRITE, Figure S3B) suggest that the switch occurs on a similar timeframe at
- The authors could consider a brief explanation of radial position (um) for the benefit of the reader, in Figures 1E (right panel) and 2B (right panel), perhaps using a diagram to make it easier to understand the X-axis (um).
To address this, we have now included a diagram and refer to it in the figure legend.
- In Figure 1G, would the authors consider changing the vertical axis title and the figure legend wording from "mean number of NPCs per cell" to "mean labeled NPC # per cell" to reflect that what is being characterized are the remaining GFP-bearing NPCs over time?
Thank you for spotting this inaccuracy. We have changed the label to “mean # of labeled NPCs per cell”.
- In Figure 2C, the magenta-labeled protein in the micrographs is not described in the figure or the legend.
As requested, a description has been added in figure and legend.
- In Figure S2A, there is an arrow indicating a Nup159 focus, but this is not described in the figure legend, as is done in Figure 2C.
A description has been added to the legend.
- In Figure S3C, the figure legend does not match the figure. Was this supposed to be designed like Figure 3C and is missing part of the figure? Or is the legend a typographical error?
We apologize for this error and thank the reviewer for spotting it. The legend has been corrected.
- In Figure S4B, the spontaneously recombined RITE (GFP-to-dark) Nup133-V5 appears in the western blot as equally abundant to pre-recombined Nup133-V5-GFP. In the figure legend, this is explained as cells grown in synthetic media without selection to eliminate cells that have lost their resistance marker from the population. In Cheng et al. Nucleic Acids Res. 2000 Dec 15; 28(24): e108, Cre-EBD was not active in the absence of B-estradiol, despite galactose-induced Cre-EBD overexpression. Would the authors be able to comment further on the Cre-Lox RITE system in the manuscript?
We note that also in the cited publication, cells are grown in the presence of selection to select (as stated in this publication) “against pre-excision events that occur because of low but measurable basal expression of the recombinase”. Although the authors report that spontaneous recombination is reduced with the b-estradiol inducible system (compared to pGAL expression control of the recombinase only), they show negligible spontaneous recombination only within a two-hour time window. Indeed, we also observe low levels of uninduced recombination on a short timeframe, but occasional events can become significant in longer incubation times (e.g. overnight growth) in the absence of selection. It should be noted that in our system, Cre expression is continuously high (TDH3-promoter) and not controlled by an inducible GAL promoter. We have added the information about the promoter controlling Cre-expression in the methods section.
- In Figure 6, the authors may want to consider inverting the flow of the cartoon model to start from the wild type condition and apply the deletion mutations at each step to "arrive" at the mutant conditions, rather than starting with mutant conditions and "adding back" proteins.
Following the suggestions of the reviewer, we have modified our model to more clearly represent the contributions of the different basket components.
Reviewer #1 (Significance (Required)):
Recent work has drawn attention to the fact that not all NPCs are structurally or functionally the same, even within a single cell. In this light, the work here from Zsok et al. is an important demonstration of the kind of methodologies that can shed light on the stability and functions of different subpopulations of NPCs. Altogether, these data are used to support an interesting and topical model for Nup2 and nuclear-basket driven retention of NPCs in non-nucleolar regions of the nuclear envelope.
We thank the reviewer for this positive assessment of our work.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
In this study, Zsok et al. develop innovative methods to examine the dynamics of individual nuclear pore complexes (NPCs) at the nuclear envelope of budding yeast. The underlying premise is that with the emergence of biochemically distinct NPCs that co-exist in the same cell, there is a need to develop tools to functionally isolate and study them. For example, there is a pool of NPCs that lack the nuclear basket over the nucleolus. Although the nature of this exclusion has been investigated in the past, the authors take advantage of a modification of recombination induced tag exchange (RITE), the slow turnover of scaffold nups, the closed mitosis of budding yeast, and extensive high quality time lapse microscopy to ultimately monitor the dynamics of individual NPCs over the nucleolus. By leveraging genetic knockout approaches and auxin-induced degradation with sophisticated quantitative and rigorous analyses, the authors conclude that there may be two mechanisms dependent on nuclear basket proteins that impact nucleolar exclusion. They also incorporate some computational simulations to help support their conclusions. Overall, the data are of the highest quality and are rigorously quantified, the manuscript is well written, accessible, and scholarly - the conclusions are thus on solid footing.
We thank the reviewer for this assessment.
Reviewer #2 (Significance (Required)):
I have no concerns about the data or the conclusions in this manuscript. However, the significance is not overly clear as there is no major conceptual advance put forward, nor is there any new function suggested for the NPCs over nucleoli. As NPCs are immobile in metazoans, the significance may also be limited to a specialized audience.
We respectfully disagree with this assessment. It is becoming increasingly clear that NPC variants are also present in other model systems. We characterize the interaction between conserved nuclear components, the NPC, the nucleolus and chromatin. While the specific architecture of the nucleus varies between species, many of these interactions are conserved. For example, Nup50, the homologue of Nup2, interacts with chromatin also in other systems including mammalian cells and thus may contribute to regulating the interplay between the nuclear basket and adjoining chromatin. Furthermore, our work demonstrates the use of a novel approach in the application of RITE that can be useful for other researchers in the field of NPC biology and beyond. For example, doRITE could be applied to study the properties of aged NPCs in the context of young cells. In the revised manuscript, we attempt to better highlight and discuss the conceptual advances of our manuscript.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
The manuscript of Zsok et al. describes the role of nuclear basket proteins in the distribution and mobility of nuclear pore complexes in budding yeast. In particular, the authors showed that the doRITE approach can be used for the analysis of stable and dynamically associated NUPs. Moreover, it can distinguish individual NUPs and follow the inheritance of individual NPCs from mother to daughter cells. The author's findings highlight that Mlp1, Mlp2, and Pml39 are stably associated with the nuclear pore; deletion of Mlp1-Mlp2 and Nup60 leads to the higher NPC density in the nucleolar territory; and NPCs exhibit increased mobility in the absence of the nuclear basket components.
The manuscript contains most figures supporting the data, and data supports the conclusions. However, authors need to include better explanations for figures in the text and figure legends. Lack of detailed explanation can pose challenges for non-experts. In addition, the authors jump over figures and shuffle them through the manuscript, which disrupts the flow and coherence of the manuscript.
We thank the reviewer for pointing this out. We have modified the figure legends throughout the manuscript in an attempt to make them more accessible to the reader. In addition, we will revise the figure order and text as suggested to improve the flow of the manuscript.
Major comments: 1) The nuclear basket contains Nup1, Nup2, Nup60, Mlp1, and Mlp2 in yeast. Nup60 works as a seed for Mlp1/Mlp2 and Nup2 recruitment and plays a key role in the assembly of nuclear pore basket scaffold (PMID: 35148185). Logically, the authors focused primarily on Nup60 in the current manuscript. However, NUP153 has another ortholog of yeast - Nup1, which has not been studied in this work. I recommend adjusting the title of the manuscript to: Nup60 and Mlp1/Mlp2 regulate the distribution and mobility of nuclear pore complexes in budding yeast. I also suggest discussing why work on Nup1 was not included/performed in the manuscript.
We have changed the title to “Nuclear basket proteins regulate the distribution and mobility of nuclear pore complexes in budding yeast”. We think that this better captures the essence of our manuscript than listing all four proteins (Mlp1/2, Nup60 and Nup2) in the title.
We initially focused on the network that is involved in Mlp1/2 interaction at the NPC. However, we agree that it would be interesting to test, whether Nup1 plays a role in the analyzed processes as well. Since Nup1 is essential in our yeast background, we will use auxin-inducible degradation of Nup1 to test its involvement in NPC distribution.
2) Figure 2B: I suggest choosing a more representative image for Pml39. It looks not like a stable component but rather dynamic as NUP60 or Gle1 based on figure showed in Figure 2B.
Due to its lower copy number, Pml39 is much more difficult to visualize than the other Nups. To guide the reader, we have now added arrow heads to point to remaining Pml39 foci at the 14 hour timepoint. The 11 hour time point most clearly show that Pml39 is less dynamic than other Nups such as Nup116, Nup60 or Gle1. At this time point, clear dots for Pml39 can be detected, while e.g. Nup116 in the same figure exhibits a more distributed signal and the signal for Nup60 and Gle1 is no longer visible. We will describe this more clearly in our revised manuscript as well.
3) Depletion of AID-tagged proteins needs to be supported by Western blot analysis with protein-specific antibodies, and PCR results should be included in supplementary data to demonstrate the homozygosity of the strains.
The correct genomic tagging of the depleted proteins by AID was confirmed by PCR. We will include this PCR analysis in the supplemental data. Please note that we are working with haploid yeast cells. Therefore, all strains only carry a single copy of the genes. Unfortunately, we do not have protein-specific antibodies against the depleted proteins. However, the Mlp1-mislocalization phenotype demonstrates that depletion of Nup60 is successful and the depletion strain for PolII depletion was used and characterized previously (PMID: 31753862, PMID: 36220102).
4) Figure 5B: Snapshots of images from the movie are required. There are no images, only quantifications.
We have replaced the supplemental movie with a movie showing the detection by Trackmate as well as overlaid tracks. As requested, a snapshot of this movie was inserted in figure 5B. We have also moved the example tracks from the supplement to the main figure. Furthermore, we will deposit the tracking dataset in the ETH Research Collection to make it available to the community.
5) Description of figure legends is more technical than supporting/explaining the figure. For example, below my suggestions for Figure 1D. Please, consider more detailed explanation for other figures. (D) Left: Schematic of the RITE cassette. NUP of interest is tagged with V5 tag and eGFP fluorescent protein where LoxP sites flank eGFP. Before the beta-estradiol-induced recombination, the old NPCs are marked with eGFP signal, whereas new NPCs lack an eGFP signal after the recombination. ORF: open reading frame; V5: V5-tag; loxP: loxP recombination site; eGFP: enhanced green fluorescent protein. Right: doRITE assay schematic of stable or dynamic Nup behavior over cell divisions in yeast after the recombination.
We have modified the figure legends throughout the manuscript to make them more explanatory and helpful for the reader.
In addition, I recommend highlighting the result in the title of the figures. Please, re-consider titles for Figure S3.
We have revised the title for Figure S3 to state a result. It now reads: “Mlp1 truncations localize preferentially to non-nucleolar NPCs.”
Minor: i) P.1 Line 31. Extra period symbol before the "(Figure 1A)".
Fixed
ii) P.2 Line 10. Inconsistent writing of PML39 and MLP1. Both genes are capitalized. The same for P.4 Line 16. In some cases all letters are capitalized in other only the first one.
We are following the official yeast gene nomenclature by spelling gene names in italicized capitals and protein names with only the first letter capitalized. We are sorry that this can be confusing for readers more familiar with other model systems but we adhere to the accepted yeast nomenclature standards.
iii) P.2 Line 18-22. The sentence is too long and hard to read. I recommend splitting it into two sentences.
We agree and have fixed this.
iv) P.2-3 Line 46-47. The sentence is unclear. Suggestion: We expected that successive cell divisions would dilute the signal of labelled and stably associated with the NPC nucleoporins. By contrast, ...
We have modified the sentence to read: “When tagging a Nup that stably associates with the NPC, we expected that successive cell divisions would dilute labelled NPCs by inheritance to both mother and daughter cells leading to a low density of labelled NPCs. By contrast,…”
v) P.4 Line 17-21. Please, consider adding extra information and clarifying lines 19-21. For example, in Line 19 Figure 2B you can add that the reader needs to compare row 1 and row 4.
Thank you, we have fixed this as suggested.
vi) P. 5 Line 15. When a number begins a sentence, that number should always be spelled out. You can pe-phrase the sentence to avoid it. Also, I recommend adding an explanation/hypothesis of why new NPCs are less frequently detected in nucleolar territory.
We have formatted the text. Interestingly, new NPCs are more frequently detected in the nucleolar territory. We have reformulated this section to make it clearer, also in response to the next comment.
vii) P.5 Line 17-22. I recommend re-phrasing these two sentences. Logically, it is clear that Mlp1/Mlp2 loss mimics "old NPCs" to look more like "new NPCs", and for that reason, they are more frequently included in the nucleolar territory, but it is not clear when you read these two sentences from the first time.
We have reformulated this section to make it clearer.
viii) P6. Line 16. No figure supporting data on graph (Figure 3B).
We have added fluorescent images of the nup2d strain to figure 4A.
ix) P.7 Line 10-13. The sentence is unclear.
We have shortened the sentence and moved part of the content to the discussion in the next paragraph.
x) P.13,14 etc. If 0h timepoint has been used for normalization, why is it present on the graph?
The 0h timepoint is shown for comparison and to illustrate the standard deviation in the data.
xi) P.15. Line 32-33. There is no image here. Potentially wrong description of the figure.
Thank you for spotting this. This was fixed.
xii) Figures: - Inconsistent labeling of figures. For example, Fig.1, Fig.1S, Figure 2 etc.
Thank you, this has been corrected.
- Inconsistent labeling of figures. For example, Fig.1 G "mean number of NPCs per cell" - no capitalization of the first letter. Fig.1S "Fraction in population" is capitalize d. In general, titles of axis should be capitalized.
Thank you for spotting this. This was fixed.
Suggestions for Figure 1D and Figure 6 are attached as a separate file.
We thank the reviewer for their suggestions to improve these figures. We have taken their recommendation and revised the figures accordingly (see also response to reviewer 1, minor point 8).
Reviewer #3 (Significance (Required)):
Zsok et al. used the recombination-induced tag exchange (RITE) approach, which is an interesting and powerful method to follow individual NUPs over time with respect to their localization and abundance. This approach has been used before in PMID: 36515990 to distinguish pre-existing and newly synthesized Nup2 populations and has been extended to other basket NUPs in this work. Using this method, the authors support the earlier data on basket nucleoporins and highlight new insights on how basket nucleoporins regulate NPCs distribution and mobility. Overall, the manuscript provides new details on the stability of nucleoporins in yeast and how these data align with the mass spectrometry and FRAP data performed earlier in other studies. The limitation of this study is the absence of data on Nup1. It was unclear why these data were not present. Additional data can be included on the dynamics of Pml39, for example, using the FRAP method. The dynamic of Pml39 at the pore was shown only using the doRITE method.
As suggested, we propose to test whether Nup1 influences NPC organization (see also above). Unfortunately, we are not able to provide orthologous data for the dynamics of Pml39. As we have discussed in the manuscript, FRAP is not suitable for the analysis of the dynamics of most nucleoporins in yeast due to the high lateral mobility of NPCs in the nuclear envelope and has previously generated misleading results for Mlp1. Furthermore, the low expression levels of Pml39 will make it difficult to obtain reliable FRAP curves for this protein. We therefore do not think that adding FRAP experiments with Pml39 will provide valuable insight.
However, in addition to the Pml39 doRITE result itself, our observation that the Pml39-dependent pool of Mlp1 exhibits stable association with the NPC supports the interpretation of Pml39 as a stable protein as well.
In general, this study represents a unique research study of basic research on nuclear pore proteins that will be of general interest to the nuclear transport field.
Field of expertise: nuclear-cytoplasmic transport, nuclear pore, inducible protein degradation. I do not have sufficient expertise in ExTrack.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
The manuscript of Zsok et al. describes the role of nuclear basket proteins in the distribution and mobility of nuclear pore complexes in budding yeast. In particular, the authors showed that the doRITE approach can be used for the analysis of stable and dynamically associated NUPs. Moreover, it can distinguish individual NUPs and follow the inheritance of individual NPCs from mother to daughter cells. The author's findings highlight that Mlp1, Mlp2, and Pml39 are stably associated with the nuclear pore; deletion of Mlp1-Mlp2 and Nup60 leads to the higher NPC density in the nucleolar territory; and NPCs exhibit increased mobility in the absence of the nuclear basket components.
The manuscript contains most figures supporting the data, and data supports the conclusions. However, authors need to include better explanations for figures in the text and figure legends. Lack of detailed explanation can pose challenges for non-experts. In addition, the authors jump over figures and shuffle them through the manuscript, which disrupts the flow and coherence of the manuscript.
Major comments:
- The nuclear basket contains Nup1, Nup2, Nup60, Mlp1, and Mlp2 in yeast. Nup60 works as a seed for Mlp1/Mlp2 and Nup2 recruitment and plays a key role in the assembly of nuclear pore basket scaffold (PMID: 35148185). Logically, the authors focused primarily on Nup60 in the current manuscript. However, NUP153 has another ortholog of yeast - Nup1, which has not been studied in this work. I recommend adjusting the title of the manuscript to: Nup60 and Mlp1/Mlp2 regulate the distribution and mobility of nuclear pore complexes in budding yeast. I also suggest discussing why work on Nup1 was not included/performed in the manuscript.
- Figure 2B: I suggest choosing a more representative image for Pml39. It looks not like a stable component but rather dynamic as NUP60 or Gle1 based on figure showed in Figure 2B.
- Depletion of AID-tagged proteins needs to be supported by Western blot analysis with protein-specific antibodies, and PCR results should be included in supplementary data to demonstrate the homozygosity of the strains.
- Figure 5B: Snapshots of images from the movie are required. There are no images, only quantifications.
- Description of figure legends is more technical than supporting/explaining the figure. For example, below my suggestions for Figure 1D. Please, consider more detailed explanation for other figures. (D) Left: Schematic of the RITE cassette. NUP of interest is tagged with V5 tag and eGFP fluorescent protein where LoxP sites flank eGFP. Before the beta-estradiol-induced recombination, the old NPCs are marked with eGFP signal, whereas new NPCs lack an eGFP signal after the recombination. ORF: open reading frame; V5: V5-tag; loxP: loxP recombination site; eGFP: enhanced green fluorescent protein. Right: doRITE assay schematic of stable or dynamic Nup behavior over cell divisions in yeast after the recombination.
In addition, I recommend highlighting the result in the title of the figures. Please, re-consider titles for Figure S3.
Minor:
P.1 Line 31. Extra period symbol before the "(Figure 1A)".
P.2 Line 10. Inconsistent writing of PML39 and MLP1. Both genes are capitalized. The same for P.4 Line 16. In some cases all letters are capitalized in other only the first one.
P.2 Line 18-22. The sentence is too long and hard to read. I recommend splitting it into two sentences.
P.2-3 Line 46-47. The sentence is unclear. Suggestion: We expected that successive cell divisions would dilute the signal of labelled and stably associated with the NPC nucleoporins. By contrast, ...
P.4 Line 17-21. Please, consider adding extra information and clarifying lines 19-21. For example, in Line 19 Figure 2B you can add that the reader needs to compare row 1 and row 4.
P. 5 Line 15. When a number begins a sentence, that number should always be spelled out. You can pe-phrase the sentence to avoid it. Also, I recommend adding an explanation/hypothesis of why new NPCs are less frequently detected in nucleolar territory.
P.5 Line 17-22. I recommend re-phrasing these two sentences. Logically, it is clear that Mlp1/Mlp2 loss mimics "old NPCs" to look more like "new NPCs", and for that reason, they are more frequently included in the nucleolar territory, but it is not clear when you read these two sentences from the first time.
P6. Line 16. No figure supporting data on graph (Figure 3B).
P.7 Line 10-13. The sentence is unclear.
P.13,14 etc. If 0h timepoint has been used for normalization, why is it present on the graph?
P.15. Line 32-33. There is no image here. Potentially wrong description of the figure.
Figures:
- Inconsistent labeling of figures. For example, Fig.1, Fig.1S, Figure 2 etc.
- Inconsistent labeling of figures. For example, Fig.1 G "mean number of NPCs per cell" - no capitalization of the first letter. Fig.1S "Fraction in population" is capitalized. In general, titles of axis should be capitalized.
Suggestions for Figure 1D and Figure 6 are attached as a separate file.
Significance
Zsok et al. used the recombination-induced tag exchange (RITE) approach, which is an interesting and powerful method to follow individual NUPs over time with respect to their localization and abundance. This approach has been used before in PMID: 36515990 to distinguish pre-existing and newly synthesized Nup2 populations and has been extended to other basket NUPs in this work. Using this method, the authors support the earlier data on basket nucleoporins and highlight new insights on how basket nucleoporins regulate NPCs distribution and mobility. Overall, the manuscript provides new details on the stability of nucleoporins in yeast and how these data align with the mass spectrometry and FRAP data performed earlier in other studies. The limitation of this study is the absence of data on Nup1. It was unclear why these data were not present. Additional data can be included on the dynamics of Pml39, for example, using the FRAP method. The dynamic of Pml39 at the pore was shown only using the doRITE method.
In general, this study represents a unique research study of basic research on nuclear pore proteins that will be of general interest to the nuclear transport field.
Field of expertise: nuclear-cytoplasmic transport, nuclear pore, inducible protein degradation. I do not have sufficient expertise in ExTrack.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
In this study, Zsok et al. develop innovative methods to examine the dynamics of individual nuclear pore complexes (NPCs) at the nuclear envelope of budding yeast. The underlying premise is that with the emergence of biochemically distinct NPCs that co-exist in the same cell, there is a need to develop tools to functionally isolate and study them. For example, there is a pool of NPCs that lack the nuclear basket over the nucleolus. Although the nature of this exclusion has been investigated in the past, the authors take advantage of a modification of recombination induced tag exchange (RITE), the slow turnover of scaffold nups, the closed mitosis of budding yeast, and extensive high quality time lapse microscopy to ultimately monitor the dynamics of individual NPCs over the nucleolus. By leveraging genetic knockout approaches and auxin-induced degradation with sophisticated quantitative and rigorous analyses, the authors conclude that there may be two mechanisms dependent on nuclear basket proteins that impact nucleolar exclusion. They also incorporate some computational simulations to help support their conclusions. Overall, the data are of the highest quality and are rigorously quantified, the manuscript is well written, accessible, and scholarly - the conclusions are thus on solid footing.
Significance
I have no concerns about the data or the conclusions in this manuscript. However, the significance is not overly clear as there is no major conceptual advance put forward, nor is there any new function suggested for the NPCs over nucleoli. As NPCs are immobile in metazoans, the significance may also be limited to a specialized audience.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
The authors extended the existing recombination-induced tag exchange (RITE) technology to show that they can image a subset of NPCs, improving signal-to-noise ratios for live cell imaging in yeast, and to track the stability or dynamics of specific nuclear pore proteins across multiple cell divisions. Further, the authors use this technology to show that the nuclear basket proteins Mlp1, Mlp2 and Pml39 are stably associated with "old NPCs" through multiple cell cycles. The authors show that the presence of Mlp1 in these "old NPCs" correlates with exclusion of Mlp1-positive NPCs from the nucleolar territory. A surprising result is that basket-less NPCs can be excluded from the non-nucleolar region, an observation that correlates with the presence of Nup2 on the NPC regardless of maturation state of the NPC. In support of the proposal that retention of NPCs via Mlp1 and Nup2 in non-nucleolar regions, simulation data is presented to suggest that basket-less NPCs diffuse faster in the plane of the nuclear envelope.
However, there are some points that do need addressing:
Major Points
- Taking into account that the Nup2 result in Figure 4B forms the basis for one half of the proposed model in Figure 6 regarding the exclusion of NPCs from the nucleolar region of the NE, there is a relatively small amount of data in support of this finding and this proposed model. For example, the only data for Nup2 in the manuscript is a column chart in Figure 4B with no supporting fluorescence microscopy examples for any Nup2 deletion. Further, the Nup60 deletion mutant will have zero basket-containing NPCs, whereas the Nup2 deletion will be a mixture of basket-containing and basket-less NPCs. The only support for the localization of basket-containing NPCs in the Nup2 deletion mutant is through a reference "Since Mlp1-positive NPCs remain excluded from the nucleolar territory in nup2Δ cells (Galy et al., 2004), the homogenous distribution observed in this mutant must be caused predominantly by the redistribution of Mlp-negative NPCs into the nucleolar territory."
- The authors could consider utilizing this opportunity to discuss their technological innovations in the context of the prior work of Onischenko et al., 2020. This work is referenced for the statement "RITE can be used to distinguish between old and new NPCs" Page 2, Line 43. However, it is not referenced for the statement "We constructed a RITE-cassette that allows the switch from a GFP-labelled protein to a new protein that is not fluorescently labelled (RITE(GFP-to-dark))" despite Onischenko et al., 2020 having already constructed a RITE-cassette for the GFP-to-dark transition. The authors could consider taking this opportunity to instead focus on their innovative approach to apply this technology to decrease the number of fluorescently-tagged NPCs by dilution across multiple cell divisions and to interpret this finding as a measure of the stability of nuclear pore proteins within the broader NPC.
- The authors could also consider taking this opportunity to discuss their results in the context of the Saccharomyces cerevisiae nuclear pore complex structures published e.g. in Kim et al., 2018, Akey et al., 2022, Akey et al., 2023 in which the arrangement of proteins in the nuclear basket is presented, and also work from the Kohler lab (Mészáros et al., 2015) on how the basket proteins are anchored to the NPC. There is additional literature that also might help provide some perspective to the findings in the current manuscript, such as the observation that a lesser amount of Mlp2 to Mlp1 observed is consistent with prior work (e.g. Kim et al., 2018) and that intranuclear Mlp1 foci are also formed after Mlp1 overexpression (Strambio-de-Castillia et al., 1999).
Minor Points
- What is the "lag time" of the doRITE switching? Do the authors believe that it is comparable to the approximate 1-hour timeframe following beta-estradiol induction as shown previously in Chen et al. Nucleic Acids Research, Volume 28, Issue 24, 15 December 2000, Page e108, https://doi.org/10.1093/nar/28.24.e108
- The authors could consider a brief explanation of radial position (um) for the benefit of the reader, in Figures 1E (right panel) and 2B (right panel), perhaps using a diagram to make it easier to understand the X-axis (um).
- In Figure 1G, would the authors consider changing the vertical axis title and the figure legend wording from "mean number of NPCs per cell" to "mean labeled NPC # per cell" to reflect that what is being characterized are the remaining GFP-bearing NPCs over time?
- In Figure 2C, the magenta-labeled protein in the micrographs is not described in the figure or the legend.
- In Figure S2A, there is an arrow indicating a Nup159 focus, but this is not described in the figure legend, as is done in Figure 2C.
- In Figure S3C, the figure legend does not match the figure. Was this supposed to be designed like Figure 3C and is missing part of the figure? Or is the legend a typographical error?
- In Figure S4B, the spontaneously recombined RITE (GFP-to-dark) Nup133-V5 appears in the western blot as equally abundant to pre-recombined Nup133-V5-GFP. In the figure legend, this is explained as cells grown in synthetic media without selection to eliminate cells that have lost their resistance marker from the population. In Cheng et al. Nucleic Acids Res. 2000 Dec 15; 28(24): e108, Cre-EBD was not active in the absence of B-estradiol, despite galactose-induced Cre-EBD overexpression. Would the authors be able to comment further on the Cre-Lox RITE system in the manuscript?
- In Figure 6, the authors may want to consider inverting the flow of the cartoon model to start from the wild type condition and apply the deletion mutations at each step to "arrive" at the mutant conditions, rather than starting with mutant conditions and "adding back" proteins.
Significance
Recent work has drawn attention to the fact that not all NPCs are structurally or functionally the same, even within a single cell. In this light, the work here from Zsok et al. is an important demonstration of the kind of methodologies that can shed light on the stability and functions of different subpopulations of NPCs. Altogether, these data are used to support an interesting and topical model for Nup2 and nuclear-basket driven retention of NPCs in non-nucleolar regions of the nuclear envelope.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
We thank the reviewers for their time and effort in assessing our preprint. We have revised our manuscript and addressed their comments in our point-by-point response as follows:
Reviewer 1
The authors should cite the existing mCherry-transgenic quail lines reported by Huss et al. (2015) to compare their performance. The lines developed by Huss et al. carry multiple transgenes, and the transgene-derived fluorescence is detectable under a fluorescent stereomicroscope, which indicates that the expression of substantially high levels of fluorescent proteins in quail cells does not affect quail embryogenesis or growth.
We have now cited the transgenic mCherry line reported by Huss et al, 2015 as an example of using live imaging of avian embryos to study development but we feel that a direct comparison between the line is invalid as the Tg(PGK1:H2B-chFP) line they report has a nuclear localised fluorescent protein and ours expresses an actin-binding fluorescent protein.
We note that Huss et al generated three independent transgenic quail lines (Q1-3), but each only contained a single copy of the transgene (as shown in their Fig S2).
Finally, we would like to highlight that the transgene-derived fluorescence of our Lifeact-EGFP quail line is also easily detectable under a stereomicroscope and we use this method to screen for positive Lifeact-EGFP embryos for experiments. As we show in Figure 1, the Lifeact-EGFP expression does not affect quail embryogenesis or growth.
Here, the authors developed only a single line of single copy integration of a transgene using a weak promoter. This suggests that the procedure used by the authors to produce transgenic quail may be inefficient and that the transgene expression level is lower. The authors should present an objective measure of the transgene expression levels.
To generate the transgenic line, we used transfection of primordial germ cells as described previously (Barzilai-Tutsch, Hila et al., eLife, 2022; Serralbo, O et al., eLife, 2020). We deliberately chose to use a UbC promoter to drive moderate expression of Lifeact to avoid potential artifacts relating to Lifeact overexpression (Courtemanche, N. et al., Nature Cell Biology, 2016; Flores, L. R. et al., Sci Rep, 2019; Spracklen, A. J. et al., Developmental Biology, 2014; Xu, R. and Du, S., Front Cell Dev Biol, 2021).
This methodology not only generates a line with no defects in growth but it also allows us to perform high-resolution imaging and to computationally segment and quantify actin in live embryos. To objectively evaluate the transgene expression level, we have now measured the signal-to-noise ratio of Lifeact-EGFP expression and found it does not differ from that of the standard actin stain Phalloidin. We have included these measurements in Figure S1.
Although the authors attempted to record philopodial dynamics, the images of philopodia are fuzzy. Sharper philopodial images have been published using the Huss et al. transgenic quail embryos (Sato et al., 2017), where mCherry fluorescence is widespread in the cytoplasm, which indicates no advantage of actin-associated fluorescence. (Sato Y, Nagatoshi K, Hamano A, Imamura Y, Huss D, Uchida S, Lansford R. Basal filopodia and vascular mechanical stress organize fibronectin into pillars bridging the mesoderm-endoderm gap. Development 2017; 144(2):281-291. doi.org/10.1242/dev.141259)
The mCherry transgenic line reported by Huss et al, 2015 and used by Sato et al, 2017 ubiquitously expresses nuclear-localized mCherry fluorescent protein (Tg(PGK1:H2B-chFP)). It does not label the cytoplasm or the membrane and was used to follow cell nuclei in one set of experiments (Sato et al, 2017, Figure 6).
The mCherry labelling of filopodia in Sato et al, 2017 was performed by DNA electroporation into wildtype embryos. Our Lifeact-EGFP transgenic line confers an advantage over this approach by 1) removing the need for electroporation to label filopodia and 2) labelling the endogenous actin that forms the filopodial structure. Although we have not optimised the imaging conditions to visualise the somitic filopodia described by Sato et al, nevertheless, we can see them quite clearly in the cross-section of our live imaging of the Lifeact-EGFP quail as demonstrated in the attached response to reviewers document.
These filopodia, also referred to as filopodia-like protrusions (Sagar et al., Development, 2015), extend from the dorsal surface of the somites towards the ectoderm and can be seen in fixed embryos stained with Phalloidin in Figure S1 in the paper by Sato et al.
The feasibility of live imaging is, of course, the advantage of Lifeact-EGFP; however, the actin fiber images using Lifeact-EGFP are unclear, partially because Lifeact binds to G-actin with a greater affinity than to F-actin. The authors should compare phalloidin-staining and Lifeac-EGFP on the same high-power fields of fixed specimens. The current manuscript compares staining with Lifeact-EGFP and Phalloidin-568 only under low-power magnification (Figure 1).
We thank the reviewer for the suggestion. Although the data presented in Figure 1 are tiled images of Phalloidin-568 and Lifeact-EGFP taken on the same fixed specimens on a confocal microscope, we now also include a higher magnification image. This data clearly demonstrates the extensive overlap between Phalloidin, Lifeact-EGFP and SPY650 FastAct dye labelling (Figure 1E).
Furthermore, we found no significant difference in signal-to-noise ratio of Lifeact-EGFP fluorescence compared to Phalloidin-568 staining (Figure S1).
Data concerning the apical constriction indicated the versatility and limitations of the Lifeact-EGFP transgenic quail line. The transgenic mouse line carrying ZO1-EGFP transgene, better suited for analyzing the apical constriction issue and employed by Francou et al. (2023), provided cleaner data.
The dynamics of actin during apical constriction have mostly been studied in invertebrate models where it was revealed that pulsed contractions of a medioapical actomyosin network form a ratchet-like mechanism to drive shrinkage of the apical cell area (Martin, A. C. et al., Nature, 2009; Solon, J. et al., Cell, 2009). More recently, a similar process of pulsatile apical constriction has been demonstrated in Xenopus (Christodoulou, N. and Skourides, P. A., Cell Rep, 2015) and mouse embryos (Francou, A. et al., eLife, 2023). However, the ZO1-EGFP transgenic mouse line labels tight junctions, so the dynamics of actin were inferred from staining of fixed samples by Francou et al. The Lifeact-EGFP transgenic quail line enabled us to both segment the cells and directly measure the intensity and localisation of actin as cells underwent apical constriction in a higher vertebrate embryo, providing direct information about the actin dynamics driving apical area change.
The significance of the FRAP analysis presented in Figure 4 (F to I) is questionable. (1) The FRAP of Lifeact-EGFP that jumps between G-actin and F-actin was measured. Therefore, the data are a composite of G-actin-bound, F-actin-bound, and free transitory Lifeact-EGFP; the data do not directly reflect actin dynamics. (2) The authors should have measured FRAP at different positions in cells using smaller ROIs at the cell junction, next to the cell junction, and remote from the cell junction. (3) Because the FRAP of their measurements involves different molecular states, the recovery curve should be decomposed into individual components before discussing the difference in the recovery rates. (4) The wide range fluctuation of fluorescence intensity during the recovery process, even using a wide (4 µm × 4 µm) ROI, suggests that the fluorescence level before photobleaching was very low, which indicates a limitation in the use of the transgenic quail line with a single copy of Lifeact-EGFP.
We apologise if the text was not clear. We did not intend to measure actin dynamics directly, but rather to compare the stability of actin at the vertices of multicellular rosettes of different orders. We used a relatively large ROI (to encompass the vertex) and measured fluorescence recovery at the vertices of lower-order (5-cell) rosettes vs higher-order (8-cell) rosettes to understand if actin stability at the vertex changes as the rosette increases in order. The fluorescence intensity level of the Lifeact-EGFP is high at the vertices of the rosettes (see Fig 4F) and the fluctuation range of fluorescence intensity during recovery was in line with what we have observed previously performing FRAP measurements in living mouse embryos (Samarage*, C.R., White*, M.D., Alvarez*, Y.A et al., Developmental Cell, 2015; Zenker*, J., White*, M. D. et al., Cell, 2018).
To our knowledge, these are the first FRAP measurements of actin at rosette vertices.
We have updated the text to clarify as follows:
"To examine the stability of the actin remaining at the centre of the multicellular rosettes following contraction of the supracellular cables we used Fluorescence Recovery After Photobleaching (FRAP)."
The authors used three wavelengths to detect fluorescence: DAPI (blue), EGFP (green), and Phaloidin-568 (red). Oddly, the authors presented the EGFP fluorescence in orange and Phaloidin-568 in gray in the pseudocolors.
We chose to pseudocolour the images to make them accessible to people with colour blindness in accordance with current conventions.
The data presented indicates that although Lifeact-EGFP-dependent actin labeling is useful for live imaging, its efficacy is restricted by elevated levels of background fluorescence.
We do not find the live imaging to be restricted by high levels of background noise. Our imaging reveals an average Signal-to-Noise ratio of 1.83 +/- 0.17 (mean +/- sem) in fixed samples in Figure 1. The live imaging revealed a Signal-to-Noise ratio of 1.92 +/- 0.13 for embryos imaged in Figures 2, 3 and 4 which is comparable to the signal in the fixed embryos for both Lifeact-EGFP and Phalloidin-568.
We can live-image the Lifeact-EGFP embryos at high resolution for extended periods (for example, tiled z-stacks at 40x magnification every 6 - 20 minutes for 4 - 10 hours) with the laser power low enough to avoid phototoxicity. Our imaging data is also of sufficient quality to allow computational segmentation with a high degree of accuracy (as demonstrated in Figures 3 and 4).
Reviewer 2
Alvarez and colleagues have generated a transgenic quail line expressing the popular Lifeact-eGFP reporter. This is the first actin reporter line in quail, and enables visualization and characterization of cell shapes and behaviors by following actin-rich structures. The reporter is ubiquitously expressed, and of sufficient brightness to enable high resolution live imaging. To demonstrate its usability, the authors visualized cellular protrusions and actin-rich structures during neural tube closure, migration of cardiac progenitor cells, and examined pulsatile apical constriction in the developing neuroepithelium. These results serve more as a proof-of-principle for the utility of the line rather than an in-depth analysis of any particular cell biology/mechanism, but do contain some insights and avenues for further follow-up. In general this is a nice characterization of a line that I am sure people in the avian embryo field have long been waiting for, and will be in high demand in the future.
We thank the reviewer for their positive comments and recognition of the usefulness of the Lifeact-EGFP quail as a new model system.
I have a few minor comments/suggestions:
1) It would be good if the authors could elaborate on the relative photostability of the line - does it bleach quickly? Show any signs of phototoxicity?
The photostability is dependent on the imaging conditions. In general, we have not noticed significant bleaching and there are no bleach corrections performed on the movies we show. We do not see signs of phototoxicity with the imaging conditions we are using.
To address the photostability in more depth we examined our most challenging imaging set-ups. The high spatiotemporal imaging of lamellipodia and actin flow in Figure 1 was performed by imaging a single z-plane at 60x magnification every 5 seconds for 17.25 mins. Despite acquiring over 200 images, there was only a 9.26% loss of Lifeact-EGFP intensity during this intensive imaging.
For the imaging of apically constricting cells in Figure 3, 4 tiled z-stacks containing 62 z-planes each were taken at 63x magnification every 5.5 mins for 110 mins. We observed an 11.8% loss of Lifeact-EGFP intensity during this time.
This photostability is comparable to the other transgenic quail lines in our lab (Serralbo, O et al., eLife, 2020) and superior to several zebrafish and genetically modified cell lines we have imaged.
Additionally, can the animals be maintained as homozygotes?
The Lifeact-EGFP quails can be maintained as homozygotes and we have now indicated this in the text as follows:
"The TgT2[UbC:Lifeact-EGFP] quails are viable, phenotypically normal and fertile and can be maintained as heterozygotes or homozygotes."
2) Did the authors check or are they planning to verify that they did indeed have a single-integration event? Or have bred a sufficient number of generations to eliminate any potential off-target integrations?
We have bred the Lifeact-EGFP line for enough generations that we are confident we have a single integration event that produces positive transgenics at the expected Mendelian ratio.
3) In Figure 3: Did Lifeact-eGFP intensity and apical cell area show correlated pulsatile dynamics? They are currently shown separately over the course of constriction but it may be more convincing to show correlation analysis.
We thank the reviewer for this excellent suggestion. We have revised Figure 3 to overlay the mean Lifeact-EGFP intensity at the apical cortex relative to the cell junctions (medial/junctional Lifeact-EGFP) and apical cell area over time for each embryo. The original separate graphs are still available in the new Figure S3A. We first established that there is a highly significant inverse correlation between medial Lifeact-EGFP intensity and apical cell area in constricting cells in each embryo (Figure S3B). We next examined the correlation between the change in medial Lifeact-EGFP intensity and the change in apical cell area for each constricting cell (Figure S3C). Although there is a high degree of variability between cells, on average we find a moderate, but highly significant correlation of 0.37 +/- 0.05, pWe have now included these results in the new Figure S3 and the text as follows:
"Measuring the ratio of Lifeact-EGFP signal at the apical cortex relative to the cell junctions revealed an average increase of 71.7%+/- 2.9 % during the first 25% of the reduction in apical cell area (Figs. 3C, S3A-B). The inverse correlation between mean Lifeact-EGFP intensity at the apical cortex and mean apical cell area is highly significant (Fig. S3B). Furthermore, the identified cells did not undergo a constant decrease in apical cell area but instead showed a more pulsatile pattern consistent with a ratchet-like mechanism (Figs. 3C, D). There was a moderate, but highly significant correlation between the rate of change in Lifeact-EGFP intensity at the apical cortex and the change in apical cell area for individual cells (Fig. S3C)."
4) Did they check for integrins at the filopodia tips?
We did not check for integrins at the tips of the cardiac progenitor cell filopodia, however, we do see integrins at the tips of filopodia in other cells and these data are part of an ongoing study in our lab.
5) In Figure 4B it is too hard for the reader to verify that these are indeed actin cables - the overlay interferes with the visualization. Could just be 10 cells coincidentally aligned. Same with Figure 4 J/K
We have made the overlay partially transparent so that the cables are more visible. The same cable structures are also highlighted without overlays in the blue boxes in Figures 4A and 4J.
6) Figure 4C and 4L are confusing - what is the repeated number of rosette cells mean? Are these different regions cropped out? What are the rows/columns?
The images show the computational segmentation of the regions shown in 4A and 4J. Each panel shows the number of rosettes identified of each order (containing 5, 6, 7 or 8 cells) at t = 0h (on the left) and t = 2h (on the right).
We initially displayed all of the rosettes on a single computational segmentation but felt it was much easier to appreciate the relative number of rosettes of each order when they are presented individually. We have updated the Figure Legend to specify that 4C and 4L show computational segmentations of the images in 4A and 4J.
7) Time stamps on supplementary movies could be made more visible/better labelled.
We have enlarged the timestamps on the movies.
8) Would be helpful to include movies of the processes studied in Figures 3 and 4.
We have now included movies showing apical constriction (Supplementary Movie 5) and rosette formation (Supplementary Movie 6).
Reviewer 3
The manuscript is well-written. The Lifeact-EGFP transgenic quail will be a valuable new amniote model system for in vivo investigations of the actin cytoskeleton to promote cell shape changes and tissue morphogenesis. I recommend that this manuscript be accepted with minor revisions.
We thank the reviewer for their positive comments and are pleased they view the Lifeact-EGFP quail as a valuable new model system.
Minor suggestions
-Please include how many transgenic males and females were obtained from the 50 injections.
We have now included this in the text as follows:
"One male and one female founder were identified and mated with wild-type quails to establish lines. After further breeding the lines were indistinguishable and the line from the male founder was selected for long-term maintenance."
-The authors state, "Cardiac progenitor cell filopodia are on average 9.1μm +/- 0.5μm long and highly dynamic with an average persistence time of 389.1 s +/- 22.9 s (n = 86 filopodia, 4 embryos). Filopodia that contact the surrounding tissues are significantly longer and more persistent than those that do not make contact (11.2μm +/- 0.7μm, n = 42 and 523.6 s +/-34.5 s, n = 37, compared to 7.2μm +/- 0.4μm, n = 44 and 276.0 s +/-20.5 s, n = 44, Fig 2C - E)."
How does this compare to other similar cells? Does this suggest attraction, repulsion, or nothing? Does the higher filopodia persistence correlate with the cell's persistence, migration velocity or direction?
The cardiac progenitor cell filopodia are slightly longer and more persistent on average than filopodia detected in other migrating cell types in vivo. For example, neural crest cells form filopodia that are on average 5 - 6um long and persist for 121 s in chick (Genuth, M. A. et al., Developmental Biology, 2018; McLennan, R. et al., Development, 2020) or 10um in length in zebrafish (Boer, E. F. et al., PLoS Genet, 2015). Primordial germ cells in zebrafish extend filopodia which are on average 3.4um long and persist for only 33 +/- 2.5 s (Meyen, D. et al., eLife, 2015). In Xenopus retinal ganglion cells, filopodia were on average 6.7um long and persisted for just 19 s (Blake, T. C. A. et al., Journal of cell science, 2024).
However, the modes of migration of these cell types are quite distinct with neural crest cells collectively migrating as transiently contacting mesenchymal cells whereas primordial germ cells and retinal ganglion cells migrate individually during the embryonic stages examined. The cardiac progenitor cells form a collectively migrating epithelium which maintains cell-cell contacts and migrates over the endoderm at a speed of 4,99 +/-0.09 um min-1, so it is difficult to draw conclusions about their filopodial dynamics by comparison with other cell types characterised to date.
The reviewer raises a very interesting question about the relationship between filopodial persistence and the migration behaviour of the individual cell. As the cardiac progenitor cells are migrating as a tightly packed collective, resolving individual cell migration behaviours is very challenging when they are homogenously labelled. To accurately correlate filopodia dynamics with individual cell migration would require highly technically demanding experiments to mosaically label the cardiac progenitor cells and track them and their filopodia dynamics live. While this would undoubtedly be an interesting experiment, we feel it is beyond the scope of the current tools manuscript.
It is well-known that filopodia are sensors for chemotactic and haptotactic signals, and they set the direction of motility for cells. The authors rightly suggest that actin containing filopodia contact ECM components, but do not support this with any experiments.
We agree that it would be interesting to investigate the molecular components of the filopodia more thoroughly. However, as a tools paper, our primary motivation was to present the Lifeact-EGFP transgenic quail as a new resource for the scientific community and demonstrate different applications it could be useful for - including as a new model to study filopodia dynamics in vivo.
Significance
The manuscript is lacking any novel insights regarding actin dynamics. In general, it would be helpful if the authors discuss the significance of their observations in more detail, especially in their Conclusion, which is brief. By carrying out more creative and insightful experiments, the authors would have offered stronger evidence for the value of the Lifeact-EGFP line to other investigators.
The primary purpose of this manuscript was to present the Lifeact-EGFP transgenic quail as a new resource for the scientific community and demonstrate different applications it could be useful for. However, we did also make some novel insights:
- Although neural tube protrusions have been visualised in fixed embryos for many decades, the Lifeact-EGFP transgenic quail enabled us to image them live in high spatiotemporal resolution. This revealed that they are highly dynamic, reach across the open lumen to contact each other and appear to assist in pulling the neural folds together. We also found that neural tube zippering proceeded faster in embryos with more protrusions.
- We demonstrated that cells in the avian neuroepithelium undergo pulsatile apical constriction associated with the enrichment of medioapical actin.
- We performed, to our knowledge, the first FRAP of actin at the vertices of multicellular rosettes and found that actin stability increases with higher rosette order.
- Finally, we confirmed that supracellular actin cable contraction and rosette formation contribute to anisotropic bending of the neural plate during neural tube formation - a prediction made previously based on fixed tissue sections (Nishimura, T. et al., Cell, 2012) but not investigated in living avian embryos. We believe that the range of novel insights we present here demonstrates the significance of the Lifeact-EGFP transgenic quail line as a new tool for investigating vertebrate cytoskeletal dynamics and morphogenesis in vivo.
References
An, Y., Xue, G., Shaobo, Y., Mingxi, D., Zhou, X., Yu, W., Ishibashi, T., Zhang, L. and Yan, Y. (2017). Apical constriction is driven by a pulsatile apical myosin network in delaminating Drosophila neuroblasts. Development 144, 2153-2164.
Barzilai-Tutsch, H., Morin, V., Toulouse, G., Chernyavskiy, O., Firth, S., Marcelle, C. and Serralbo, O. (2022). Transgenic quails reveal dynamic TCF/β-catenin signaling during avian embryonic development. eLife 11, e72098.
Blake, T. C. A., Fox, H. M., Urbancic, V., Ravishankar, R., Wolowczyk, A., Allgeyer, E. S., Mason, J., Danuser, G. and Gallop, J. L. (2024). Filopodial protrusion driven by density-dependent Ena-TOCA-1 interactions. Journal of cell science 137.
Boer, E. F., Howell, E. D., Schilling, T. F., Jette, C. A. and Stewart, R. A. (2015). Fascin1-dependent Filopodia are required for directional migration of a subset of neural crest cells. PLoS Genet 11, e1004946.
Christodoulou, N. and Skourides, P. A. (2015). Cell-Autonomous Ca(2+) Flashes Elicit Pulsed Contractions of an Apical Actin Network to Drive Apical Constriction during Neural Tube Closure. Cell Rep 13, 2189-202.
Courtemanche, N., Pollard, T. D. and Chen, Q. (2016). Avoiding artefacts when counting polymerized actin in live cells with LifeAct fused to fluorescent proteins. Nature Cell Biology 18, 676-83.
Flores, L. R., Keeling, M. C., Zhang, X., Sliogeryte, K. and Gavara, N. (2019). Lifeact-GFP alters F-actin organization, cellular morphology and biophysical behaviour. Sci Rep 9, 3241.
Francou, A., Anderson, K. V. and Hadjantonakis, A. K. (2023). A ratchet-like apical constriction drives cell ingression during the mouse gastrulation EMT. eLife 12.
Genuth, M. A., Allen, C. D. C., Mikawa, T. and Weiner, O. D. (2018). Chick cranial neural crest cells use progressive polarity refinement, not contact inhibition of locomotion, to guide their migration. Developmental Biology 444 Suppl 1, S252-S261.
Martin, A. C., Kaschube, M. and Wieschaus, E. F. (2009). Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457, 495-9.
McLennan, R., McKinney, M. C., Teddy, J. M., Morrison, J. A., Kasemeier-Kulesa, J. C., Ridenour, D. A., Manthe, C. A., Giniunaite, R., Robinson, M., Baker, R. E. et al. (2020). Neural crest cells bulldoze through the microenvironment using Aquaporin 1 to stabilize filopodia. Development 147.
Meyen, D., Tarbashevich, K., Banisch, T. U., Wittwer, C., Reichman-Fried, M., Maugis, B., Grimaldi, C., Messerschmidt, E. M. and Raz, E. (2015). Dynamic filopodia are required for chemokine-dependent intracellular polarization during guided cell migration in vivo. eLife 4.
Nishimura, T., Honda, H. and Takeichi, M. (2012). Planar cell polarity links axes of spatial dynamics in neural-tube closure. Cell 149, 1084-97.
Sagar, Prols, F., Wiegreffe, C. and Scaal, M. (2015). Communication between distant epithelial cells by filopodia-like protrusions during embryonic development. Development 142, 665-71.
Samarage*, C. R., White*, M.D., Alvarez*, Y. D., Fierro-Gonzalez, J. C., Henon, Y., Jesudason, E. C., Bissiere, S., Fouras, A. and Plachta, N. (2015). Cortical Tension Allocates the First Inner Cells of the Mammalian Embryo. Developmental Cell 34, 435-47.
Serralbo, O., Salgado, D., Véron, N., Cooper, C., Dejardin, M., Doran, T., Gros, J. and Marcelle, C. (2020). Transgenesis and web resources in quail. eLife 9.
Solon, J., Kaya-Copur, A., Colombelli, J. and Brunner, D. (2009). Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137, 1331-42.
Spracklen, A. J., Fagan, T. N., Lovander, K. E. and Tootle, T. L. (2014). The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis. Developmental Biology 393, 209-226.
Xu, R. and Du, S. (2021). Overexpression of Lifeact-GFP Disrupts F-Actin Organization in Cardiomyocytes and Impairs Cardiac Function. Front Cell Dev Biol 9, 746818.
Zenker*, J., White*, M. D., Gasnier*, M., Alvarez*, Y. D., Lim, H. Y. G., Bissiere, S., Biro, M. and Plachta, N. (2018). Expanding Actin Rings Zipper the Mouse Embryo for Blastocyst Formation. Cell 173, 776-791 e17.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Alvarez et al. report the generation of a transgenic Lifeact-EGFP quail line to study actin organization and dynamics in living embryos. The authors use the Lifeact-EGFP line to visualize how actin filaments guide coordinate cellular movements across tissues. Their example studies of heart and neural tube morphogenesis reveal the dynamics of cells undergoing apical constriction and the emergence of large-scale actin structures, such as supracellular cables and rosettes within the neuroepithelium.
The manuscript is well-written. The Lifeact-EGFP transgenic quail will be a valuable new amniote model system for in vivo investigations of the actin cytoskeleton to promote cell shape changes and tissue morphogenesis. I recommend that this manuscript be accepted with minor revisions.
Minor suggestions
- Please include how many transgenic males and females were obtained from the 50 injections.
- The authors state, "Cardiac progenitor cell filopodia are on average 9.1μm +/- 0.5μm long and highly dynamic with an average persistence time of 389.1 s +/- 22.9 s (n = 86 filopodia, 4 embryos). Filopodia that contact the surrounding tissues are significantly longer and more persistent than those that do not make contact (11.2μm +/- 0.7μm, n = 42 and 523.6 s +/-34.5 s, n = 37, compared to 7.2μm +/- 0.4μm, n = 44 and 276.0 s +/-20.5 s, n = 44, Fig 2C - E)."
How does this compare to other similar cells? Does this suggest attraction, repulsion, or nothing? Does the higher filopodia persistence correlate with the cell's persistence, migration velocity or direction?
"The tissues surrounding the cardiac progenitor cells are covered in an extracellular matrix rich in fibronectin, which also extends along some of the filopodia (Fig. S2). As integrins are known to be present at filopodial tips (Lagarrigue et al., 2015, Galbraith et al., 2007), the higher persistence of filopodia in contact with surrounding tissues may indicate a force-dependent stabilisation of the filopodia (Alieva et al., 2019). This indicates these filopodia could have signalling roles as proposed previously (Francou et., 2014) and/or mechanical roles during cardiac progenitor cell migration."
It is well-known that filopodia are sensors for chemotactic and haptotactic signals, and they set the direction of motility for cells. The authors rightly suggest that actin containing filopodia contact ECM components, but do not support this with any experiments.
Significance
The manuscript is lacking any novel insights regarding actin dynamics. In general, it would be helpful if the authors discuss the significance of their observations in more detail, especially in their Conclusion, which is brief. By carrying out more creative and insightful experiments, the authors would have offered stronger evidence for the value of the Lifeact-EGFP line to other investigators.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Alvarez and colleagues have generated a transgenic quail line expressing the popular Lifeact-eGFP reporter. This is the first actin reporter line in quail, and enables visualization and characterization of cell shapes and behaviors by following actin-rich structures. The reporter is ubiquitously expressed, and of sufficient brightness to enable high resolution live imaging. To demonstrate its usability, the authors visualized cellular protrusions and actin-rich structures during neural tube closure, migration of cardiac progenitor cells, and examined pulsatile apical constriction in the developing neuroepithelium. These results serve more as a proof-of-principle for the utility of the line rather than an in-depth analysis of any particular cell biology/mechanism, but do contain some insights and avenues for further follow-up. In general this is a nice characterization of a line that I am sure people in the avian embryo field have long been waiting for, and will be in high demand in the future.
I have a few minor comments/suggestions:
- It would be good if the authors could elaborate on the relative photostability of the line - does it bleach quickly? Show any signs of phototoxicity? Additionally, can the animals be maintained as homozygotes?
- Did the authors check or are they planning to verify that they did indeed have a single-integration event? Or have bred a sufficient number of generations to eliminate any potential off-target integrations?
- In Figure 3: Did Lifeact-eGFP intensity and apical cell area show correlated pulsatile dynamics? They are currently shown separately over the course of constriction but it may be more convincing to show correlation analysis.
- Did they check for integrins at the filopodia tips?
- In Figure 4B it is too hard for the reader to verify that these are indeed actin cables - the overlay interferes with the visualization. Could just be 10 cells coincidentally aligned. Same with Figure 4 J/K
- Figure 4C and 4L are confusing - what is the repeated number of rosette cells mean? Are these different regions cropped out? What are the rows/columns?
- Time stamps on supplementary movies could be made more visible/better labelled.
- Would be helpful to include movies of the processes studied in Figures 3 and 4.
Significance
Transgenic quail models are still in their relative infancy compared to more traditional/well-established model organisms, yet quail has proven to offer many new insights into developmental processes, and with its flat geometry often offers up a view of tissues and cell behaviors that can be hidden in other species. A live reporter line for actin structures is thus keenly needed by the avian developmental biology field, and this new transgenic model reported here should fill that niche nicely.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary
In this study, the authors produced a Lifeact-EGFP transgenic quail line to investigate the cellular event dynamics that involve F-actin bundles. No perfect reagents exist to specifically label F-actin in live cells at high sensitivity; currently, Lifeact peptide may be the primary option to label actins using transgenic animals. However, it has the drawback of binding to G-actin in addition to F-actin, which results in a high background of Lifeact-EGFP fluorescence in the cytoplasm.
A transgenic quail line was produced by lipofection of circulating PGCs with Tol2 transposon-based expression vector and Tol2 transposase expression vector; a single founder male harboring a single copy of the transgene was crossed with wild-type females to generate a transgenic colony.
To demonstrate the utility of Lifeact-EGFP quail embryos, the authors performed the following descriptive studies: (1) filopodia extrusion; (2) actin bundle dynamics during apical constriction; (3) formation of actin bundles and multicellular rosettes; (4) FRAP analysis of actin mobility at the cellular vertices; and (5) the effect of actin polymerization inhibitors on the multicellular rosettes. The data presented demonstrate the range of utility as well as the limitations of the author's transgenic system.
Major comments
The authors should cite the existing mCherry-transgenic quail lines reported by Huss et al. (2015) to compare their performance. The lines developed by Huss et al. carry multiple transgenes, and the transgene-derived fluorescence is detectable under a fluorescent stereomicroscope, which indicates that the expression of substantially high levels of fluorescent proteins in quail cells does not affect quail embryogenesis or growth. Here, the authors developed only a single line of single copy integration of a transgene using a weak promoter. This suggests that the procedure used by the authors to produce transgenic quail may be inefficient and that the transgene expression level is lower. The authors should present an objective measure of the transgene expression levels. (Huss D, Benazeraf B, Wallingford A, Filla M, Yang J, Fraser SE, Lansford R. A transgenic quail model that enables dynamic imaging of amniote embryogenesis. Development 2015; 142:2850-9. doi: 10.1242/dev.121392.)
Although the authors attempted to record philopodial dynamics, the images of philopodia are fuzzy. Sharper philopodial images have been published using the Huss et al. transgenic quail embryos (Sato et al., 2017), where mCherry fluorescence is widespread in the cytoplasm, which indicates no advantage of actin-associated fluorescence. (Sato Y, Nagatoshi K, Hamano A, Imamura Y, Huss D, Uchida S, Lansford R. Basal filopodia and vascular mechanical stress organize fibronectin into pillars bridging the mesoderm-endoderm gap. Development 2017; 144(2):281-291. doi.org/10.1242/dev.141259)
The feasibility of live imaging is, of course, the advantage of Lifeact-EGFP; however, the actin fiber images using Lifeact-EGFP are unclear, partially because Lifeact binds to G-actin with a greater affinity than to F-actin. The authors should compare phalloidin-staining and Lifeac-EGFP on the same high-power fields of fixed specimens. The current manuscript compares staining with Lifeact-EGFP and Phalloidin-568 only under low-power magnification (Figure 1).
Data concerning the apical constriction indicated the versatility and limitations of the Lifeact-EGFP transgenic quail line. The transgenic mouse line carrying ZO1-EGFP transgene, better suited for analyzing the apical constriction issue and employed by Francou et al. (2023), provided cleaner data.
The significance of the FRAP analysis presented in Figure 4 (F to I) is questionable. (1) The FRAP of Lifeact-EGFP that jumps between G-actin and F-actin was measured. Therefore, the data are a composite of G-actin-bound, F-actin-bound, and free transitory Lifeact-EGFP; the data do not directly reflect actin dynamics. (2) The authors should have measured FRAP at different positions in cells using smaller ROIs at the cell junction, next to the cell junction, and remote from the cell junction. (3) Because the FRAP of their measurements involves different molecular states, the recovery curve should be decomposed into individual components before discussing the difference in the recovery rates. (4) The wide range fluctuation of fluorescence intensity during the recovery process, even using a wide (4 µm × 4 µm) ROI, suggests that the fluorescence level before photobleaching was very low, which indicates a limitation in the use of the transgenic quail line with a single copy of Lifeact-EGFP.
Minor comment
The authors used three wavelengths to detect fluorescence: DAPI (blue), EGFP (green), and Phaloidin-568 (red). Oddly, the authors presented the EGFP fluorescence in orange and Phaloidin-568 in gray in the pseudocolors.
Significance
The single Lifeact-EGFP transgenic quail line developed in this study may be useful in certain contexts; however, better lines may be obtained by checking additional lines for higher levels of transgene expression.
The data presented indicates that although Lifeact-EGFP-dependent actin labeling is useful for live imaging, its efficacy is restricted by elevated levels of background fluorescence.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
Summary:
In this study the authors apply a rigorous and thorough combination of approaches including sequence analysis, deep-learning structure predictions, molecular dynamics, cell imaging and mutagenic analyses to identify a short MIM2-mimicking motif in the C-terminal region of the pUL71 protein of HCMV (and homologues in other beta-herpesviruses) that is necessary and sufficient for interaction with the ESCRT terminal ATPase VPS4A. pUL71 uses this motif to recruit, or sequester, VPS4A to the HCMV cytoplasmic viral assembly complex, though this process is dispensable for HCMV morphogenesis or replication. The identified pUL71 sequence functions as a mimic of the MIM2 motif of cellular CHMP subunits since, like MIM2, it directly binds the groove in the MIT domain found at the N-terminus of VPS4.
Major comments:
1). There appears to be some confusion in the coip experiment in Figure 5D. From the upper blot in 5D, the "+" above each lane suggests there should be VPS4A-FLAG protein in every sample other than the two lanes at the very left of the gel, however the anti-FLAG ip does not pull down VPS4A-FLAG from every "+" lane, but from alternating ones (and from the next to the leftmost lane, which should lack VPS4A-FLAG). Similarly, the lower "Input" blot shows VPS4A-FLAG present in alternating lanes across the blot, which does not match the "+" and "-" labeling at the top of the figure. Conversely, there is anti-HA signal in most input lanes (lower blot) though the HA-tagged pUL71 homologues should be absent from alternate lanes (top of upper blot).
We apologise and thank the reviewer for spotting this annotation error. Figure 5D has been updated to correctly show the samples used for each lane of the IP.
2). The Discussion is an excellent, comprehensive and scholarly assessment of the implications of this work. One appealing hypothesis is that pUL71 may be sequestering VPS4A rather than using it for envelope scission. In this regard, the authors point out that VPS4A sequestration is supported by the finding that the VPS4A MIT domain binds the isolated pUL71 vMIM2 more tightly (~ 5 fold lower Kd) than the MIM2 of CHMP6, and that pUL71 and homologues are highly abundant at later stages of viral infection, allowing them to compete effectively with endogenous CHMP6 for VPS4A. I like the sequestration model very much, but could the authors comment on the fact that this apparent sequestration is seen even in the transfection experiments in Fig. 2A and 3G, where essentially 100% of transfected WT VPS4A-FLAG is recruited to the pUL71 compartment. Even given the increased binding affinity to pUL71, this suggests that in these transfection studies pUL71 must be in excess over the sum of both endogenous and transfected VPS4. Do the authors know if this is the case, and do cells transfected with pUL71 in these experiments exhibit any cytotoxicity, or cell cycle arrest, indicative of a block in normal ESCRT function/cytokinesis?
*With regards to the transfection experiment, the levels of pUL71 and VPS4A-FLAG expression varied across the fields of view. It is therefore hard to make a definitive statement regards the level of pUL71 expression that gives complete sequestration of VPS4A-FLAG. In transient expression experiment, cells were transfected with equal amounts of DNA for VPS4A-FLAG and pUL71 expression vectors and analysed 20 to 24 hours after transfection. Sequestration of VPS4A-FLAG by pUL71, or lack of sequestration due to mutations, was consistently observed and was thus the predominant phenotype. However, degrees in the appearance of this phenotype were noted, which were likely caused by differences in expression levels. The images in Figs. 1, 2, 3 and 5 are confocal images of selected cells that represented the predominant phenotype. In our opinion, no clear statements can be made about expression levels and their relationship with respect to sequestration of VPS4A, as transient expression gives considerable cell-to-cell variability in expression levels. *
In MRC-5 cells transiently expressing VPS4A-FLAG under doxycycline control and infected with different strains of HCMV we see strong sequestration of VPS4A-FLAG (Fig. 6B). While VPS4A-FLAG sequestration is not always complete in the context of infection (compare WT infection in Fig. 6C and Fig. 6D), presumably because of differing VPS4A-FLAG levels, it is reasonable to assume that ectopic VPS4A-FLAG expression increases the total pool of VPS4A available. Thus, in the context of infected cells we would expect the vast majority of cellular VPS4A to be sequestered by pUL71, also considering the strong expression of pUL71 during infection. However, we note that evenly distributed signals in the cytoplasm are more difficult to visualize than concentrated signals (such as localization at the Golgi), especially in confocal images, which could contribute to the impression that almost 100% of VPS4A-FLAG is sequestered by pUL71. We have therefore added the following three sentences to the third paragraph of the discussion:
“In the context of infection, pUL71 yields strong sequestration of ectopically expressed VPS4A-FLAG (Fig. 7A–C). As ectopic expression would be expected to increase the total pool of VPS4A present in cells, we anticipate extensive pUL71-mediated sequestration of endogenous VPS4A in HCMV-infected cells. However, we note that diffuse cytoplasmic signals are more difficult to visualise than organelle-associated signals in confocal microscopy, and it is therefore possible that some VPS4A remains free in the cytoplasm even in the presence of abundant pUL71.”
Unfortunately, we are unaware of a high quality VPS4A antibody suitable for immunofluorescence microscopy that would allow us to probe the localisation of endogenous VPS4A directly.
*The reviewer raises an interesting point with regard to the potential blocking of cellular ESCRT functions in the presence of transfected pUL71. We did not find indications of a block in ‘normal’ ESCRT functions like cytokinesis in cells expressing pUL71 (or mutant versions thereof). We therefore investigated the function of ESCRT in pUL71-expressing cells by assessing whether expression of pUL71 can inhibit the function of VPS4 in the release of HIV Gag virus like particles (VLPs). The results of these studies have been added to the manuscript as supplemental figure 7 – they show no evidence for a functional inhibition of VPS4 by co-expression of pUL71. We have added a section to the results describing this experiment, plus the following section in the discussion: *
“We did not observe any defect in ESCRT-mediated Gag VLP production in the presence of pUL71 (Fig. S7), suggesting that transient expression of pUL71 is not sufficient to inhibit cellular ESCRT activity. However, we note that studies analysing the role of VPS4 in ESCRT-mediated virus budding generally exploit dominant-negative forms of VPS4A or VPS4B (Corless et al., 2010; Horii et al., 2006; Pawliczek and Crump, 2009; Taylor et al., 2007). As human VPS4A and VPS4B interact with each other (Scheuring et al., 2001), overexpressing dominant-negative mutants of either protein would be expected to poison the activity of both via formation of heteromeric APTase hexamers. Studies using CRISPR/Cas9 gene editing show only modest defects in VLP budding when VPS4A or VPS4B are deleted individually, with the VPS4B deletion causing a greater VLP budding defect than VPS4A deletion (Harel et al., 2022), and the MIM2 of CHMP6 has higher affinity for the MIT domain of VPS4A than of VPS4B (Wenzel et al., 2022). While we have not investigated the interaction between pUL71 and the VPS4B MIT domain in this study, it is possible that pUL71 has higher affinity for VPS4A than VPS4B and pUL71 expression may thus lead to selective sequestration of only one VPS4 isoform.”
*In light of the above new results and discussion, we can neither confirm nor rule out that pUL71 modulates ESCRT functions by sequestration of VPS4. We agree with the reviewer that it is an extremely interesting hypothesis but addressing it properly would require thorough experimental investigation, which we feel is a substantial study in its own right and is beyond the scope of this manuscript. Lastly, we apologise that we had inadvertently included the affinity of GST-tagged pUL71(300–325) for VPS4A in the discussion text, not the data for the pUL71(300–325) peptide. We have updated the text accordingly and confirm that all the data in Table 2 are correct. *
Minor comments:
In general, the text and figures are very clear and accurate, the Results section is careful to walk the reader though these studies in a clear and well written fashion and prior studies are referenced appropriately. There are some minor issues that are listed below.
i). For clarity, please direct the reader to panel 1B when referring to the pp28 data (line 11 of Results section).
Done
ii). At the bottom of the page 4, the Results section states "immunoprecipitation experiments show VPS4A-FLAG to be robustly co-precipitated by wild-type pUL71 but not by the PPAA and V317D mutants". However, from Fig. 1E it appears to be the reverse. The wild type pUL71 (but not mutants) is being co-precipitated by VPS4A-FLAG, using an anti-FLAG antibody.
Corrected – we apologise for this error and thank the reviewer for spotting it.
iii). In Fig.1D the localization of WT pUL71 and the PPAA and V317D mutants to a juxtanuclear compartment provides a nice internal control demonstrating that the mutant proteins are at least partially functional (able to localize correctly), and the fluorescence intensities of the WT and mutant pUL71 proteins appear comparable. However, do the authors have any additional quantitative or semi-quantitative data (such as from a Western) to confirm similar expression levels for the pUL71 WT and PPAA/V317D mutant proteins?
The relevant data is shown in Fig. 1E. Specifically, the immunoblot of the input samples shows that pUL71 mutants are expressed at similar levels to the wild-type protein. We have added a note to this effect to the Results.
“Inspection of the immunoprecipitation input samples confirms that pUL71 mutants are expressed at similar levels to the wild-type protein.”
*Furthermore, we added to methods following statement: “equal volumes of lysate were used for all samples”, to confirm that the signals in Co-IPs stem from equal amounts of lysates. *
iv). In Fig. 4, An OPTIONAL experiment, which would add to the paper, would be to test the ability (or rather, lack of the ability) of the pUL71 I307R mutant to coip VPS4A from infected or transfected cells. Such a study would extend the predictive power of the elegant MD simulations and ITC studies to the "gold standard" of testing the phenotype in vivo.
While we appreciate that this additional experiment would provide further confirmation of our computational analysis in the cellular context, we would argue that ITC is the ‘gold standard’ when it comes to the measurement of protein interaction affinities. We show in Figure 1 that ITC, coIP and immunofluorescence experiments yield the same result (compare WT and PPAA pUL71 in panels D, E and G). We have thus respectfully declined to perform this additional IP experiment as we feel that the ITC data included in the manuscript, combined with the coIP data for the P315A and P318A mutants, are sufficient to prove the predictive power of the model.
v). The Fig. 6B TB71stop pp28 panel is not referred to in the Fig. 6 legend.
We apologise for this oversight. We have added a description of this experiment to the Fig. 6 legend:
“Cells infected with TBstop71 were also stained for tegument protein pp28 to confirm successful cVAC formation (bottom).”
We have also added the relevance of this image in the Results:
“Formation of perinuclear cVAC in cells infected with TBstop71 was confirmed via immunostaining for pp28 (Fig. 6C) (Sanchez et al., 2000b; Seo and Britt, 2007).”
vi). In the second paragraph of the Discussion it is stated that "The pUL71 vMIM2 is necessary and sufficient to recruit VPS4A to specific membranes in co-transfected cells (Fig. 5) and to sites of virus assembly in HCMV infection (Fig. 6)". Strictly speaking, Fig. 5 (panel 5F) shows that the HCMV pUL71 region 283-361 is sufficient to localize VPS4A to a compact juxtanuclear structure in transfected cells, and Fig. 6 (panel 6C) shows that pUL71 residues 315-326 (and the two conserved prolines in this region) are necessary for VPS4A localization to a structure that appears to be the HCMV assembly compartment.
We thank the reviewer for highlighting that we been imprecise when describing the implications of our results. We have updated the relevant sentence as follows:
“The pUL71 vMIM2 is necessary and sufficient to recruit VPS4A to juxtanuclear structures in co-transfected cells (Fig. 5) and is necessary for VPS4A recruitment to pUL71-positive structures that have been identified as sites of virus assembly during HCMV infection (Fig. 6) (Dietz et al., 2018).”
Reviewer #1 (Significance (Required)):
This is the first report of a virus encoding a MIM-like domain, and of a viral motif that directly binds the VPS4A MIT domain. This will be of broad interest to those studying the cell biology of virus assembly and mechanisms of virus-host cell interaction, as well as to cell biologists and structural biologists studying the ESCRT apparatus. It is striking, and will be illuminating to virologists and ESCRT biologists, that viruses have evolved to mimic MIM2 with a motif that has a lower Kd than a conventional cellular MIM2 motif. The possibility, addressed in the Discussion, that pUL71 may be sequestering VPS4A (rather than using it) is an important issue that virologists should consider.
This is a rigorous, thorough and well controlled basic science study that elegantly combines a variety of approaches to provide important new insights concerning the biology of pUL71 in HCMV, other human beta-herpesviruses and a large number of mammalian and rodent cytomegaloviruses. The claims and conclusions are thoughtful and measured, and supported by the data. Data and methods are presented in such a way that they can be reproduced, and experiments are adequately replicated with appropriate statistical analyses.
Reviewers fields of interest: Cell biology, ESCRT function, Virus assembly
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
Summary
The manuscript from Butt et al. entitled "Human cytomegalovirus deploys molecular mimicry to recruit VPS4A to sites of virus assembly" addresses the potential role of ESCRT components in the biogenesis of HCMV virions. The topic is relevant since the ESCRT machinery has been implicated in the propagation of various herpesviruses. However, conflicting results are present in the literature regarding its role and relevance. In the present study, the authors focus on HCMV pUL71, which plays a role during the final envelopment of the viral capsids, and explore the possibility that it acts as an ESCRT-III component by recruiting the VPS4A ATPase (which induces membrane deformation and scission). To this end, they identified a motif in the C-terminal region of HCMV pUL71 that resembles the cellular type 2 MIM (MIM2) consensus sequence that is present in ESCRT-III proteins such as CHMP4B and CHMP6. They show substantial data that delineate an interaction between that pUL71 motif and the cellular ATPase using a panoply of tools (co-IF, co-IP, ITC, bimolecular fluorescence and markerless BAC mutagenesis). They also show that this interaction in present across a wide range of HCMV strains, but is absent in the case of the HSV-1 pUL51 homolog.
Main Comments
The manuscript is very well written, albeit line numbers would facilitate reviewing. The plethora of assays used convincingly show an interaction between pUL71 and VPS4A. They also indicate that this interaction relocalizes VPS4A to the TGN and likely the VAC. However, I do have some issues. For instance, using another viral marker, instead of only pUL71, would have been a good idea to distinguish the TGN from the VAC. This is not trivial given the reorganization of the cellular organelles by the virus. For this reason, looking at tegument and envelope viral proteins may not be optimal for this task since potentially on both compartments. However, viral capsid proteins or the viral genome may be useful here. Immuno-EM against VPS4A could also be a useful experiment to show a potential link between the ATPase and re-envelopment.
It is well established that pUL71 is present at the cVAC of HCMV-infected cells. We apologise that we did not make this clearer in the introduction. We have now updated a sentence in the penultimate paragraph of the introduction to clarify this:
“pUL71 and pUL103 are present at the cVAC (Ahlqvist and Mocarski, 2011; Dietz et al., 2018; Read et al., 2019; Womack and Shenk, 2010) and deficiencies in these proteins result in an accumulation of nucleocapsids at various advanced stages of envelopment (Ahlqvist and Mocarski, 2011; Schauflinger et al., 2013, 2011; Womack and Shenk, 2010), which is consistent with impaired envelopment and a block in membrane scission at the end of the envelopment process.”
*Additionally, we have added confocal images of infected cells showing co-staining of pUL71, capsid associated tegument protein pp150, and Golgi maker GM130 in a new figure (Fig. 6A). *
We are unaware of any commercial antibodies that recognise VPS4A and are suitable for immuno-EM, making such analysis unfeasible. However, we note that our study concurs with the data from Streck et al (2018) that VPS4 activity is not required for virus envelopment (although we do not rule out a contributory role).
Another issue is the actual pUL71 residues interacting with VPS4A. While substantial efforts were made to map them (truncated constructs, bimolecular assay, viral mutants), the data do not always point toward the exact same residues (for example aa 314-320 by co-IF but aa 300-310 by ITC). This suggests potentially multiple binding sites or conformational issues. Hence, the statement on page 5 "that pUL71 residues 300-310 are necessary for the VPS4A interaction, in addition to the potential MIM2" may be misleading. What happens if one deleted aa 314-320 in the ITC assay? Or aa 300-310 by IF? These findings are further confounded by the lack of impact of the mutations of aa 315 and 318, predicted to be important in silico (p. 6). Moreover, in figure 7, the mutants made were a deletion 315-326 or the double point mutant P315A and P318A (not clear why in light of above results). Would a deletion of aa 300-320 not be a more appropriate and safer one to test for viral propagation?
We are afraid that the reviewer may have misinterpreted several of our results. In Fig. 2 we demonstrate that residues 1–320 are sufficient for co-localisation of pUL71 with VPS4A-FLAG, but residues 1–314 are not. This implies that residues 314–320 are necessary for the interaction, but it is not evidence that they are sufficient. Similarly, our ITC data shows that a purified peptide spanning residues 300–325 is sufficient for the interaction, but a peptide spanning residues 310–325 is not. From this we can clearly infer that residues 300–310 are necessary for the interaction, as we state on page 5. We have expanded the sentence in question to further clarify our reasoning:
“Further ITC analysis of pUL71 truncations purified as GST fusions (Fig. S1 and Table 1) demonstrated that pUL71 residues 300–310 are necessary for the VPS4A interaction, in addition to the potential MIM2, as GST-pUL71(300–325) was capable of binding VPS4A while GST-pUL71(310–336) was not.”
We agree that residues 300–320 might be sufficient for the interaction, as indicated by the immunofluorescence analysis (Fig. 2A). However, out of an abundance of caution we included residues 300–325, spanning the entire MIM2-like sequence, in all of our biophysical analyses as the dynamic range of immunofluorescence experiments is limited and we wanted to avoid removal of residues that are not necessary but nonetheless contribute to the interaction. The similar affinity of GST-pUL71(283–361) and GST-pUL71(300–325) for VPS4A (2.8 and 2.3 µM, respectively) confirms that residues 300–325 contain all residues that contribute to the interaction (Figs 1 and S1, Table 1).
With regards the mutational data presented in Fig. 4, our molecular dynamics analysis indicates (Fig. 4A–C) that single point mutations P315A and P318A do not disrupt the interaction between pUL71 and VPS4, only the double mutation (P315A+P318A; PPAA) disrupts the interaction. This is consistent with the immunoprecipitation presented in Fig. 4E: The pUL71(P315A) and pUL71(P318A) proteins are efficiently immunoprecipitated by VPS4A-FLAG, while the pUL71(PPAA) mutant is not. We have updated the penultimate sentence of the section “Model of the HCMV pUL71 in complex with VPS4A MIT” to explain this in more detail:
“Immunoprecipitation of co-transfected pUL71 and VPS4A-FLAG confirmed this surprising result, showing that pUL71(P315A) and pUL71(P318A) are efficiently immunoprecipitated by VPS4A-FLAG whereas pUL71(PPAA) is not (Fig. 4E).”
Regarding the choice of mutant viruses, we wanted to make the smallest change possible to pUL71 to avoid inadvertent removal of additional (potentially unknown) functional motifs. Both of the viruses we have used show an absence of VPS4A recruitment to the pUL71-positive cVAC in immunofluorescence (Fig. 6D) and, in the case of pUL71(PPAA), we have also shown an absence of VPS4A binding to this mutant in ITC (Fig. 1G) and coIP (Figs 1E and 4E). We feel this is sufficient evidence to confirm that these mutations either severely impair or completely abolish recruitment of VPS4A.
Given the above, we don’t believe there is any need for additional experimentation or consideration of confounding variables when it comes to the definition of the vMIM2 motif or mutations introduced into HCMV for functional analysis.
As the identification of the VPS4A binding motif in other herpesviruses appears to only be detected by manual inspection of the protein sequences, I wonder if other HCMV proteins or alpha/gamma viral proteins may interact with VPS4A. A good way to address this would be to do a VPS4A affinity column to see if any other viral proteins can bind. MS analyses may be required to identify the bound viral proteins. This could be a good follow-up paper...
We thank the reviewer for suggestion and agree that it would form the basis for a good follow-up study.
I am unfortunately unable to evaluate the outcome of the in silico analyses and cannot therefore judge their relevance or accuracy. Other reviewers can hopefully access this portion of the manuscript.
Unless mistaken, previous work (Albecka A et al, 2017, JVI) has shown that HSV-1 pUL51 does not require its binding partner pUL7 to reach the TGN. Given that HSV-1 pUL51 does not seem to recruit VPS4A, could the pUL7/pUL51 complex be required for the recruitment of VPS4A to the TGN or VAC? Alternatively, could the lack of pUL51 binding to VPS4A reflect a different re-envelopment mechanism (absence of the CMV onion ring VAC)? These possibilities should be addressed in the manuscript.
The reviewer is correct that, like pUL71, the HSV-1 protein pUL51 associates with TGN membranes as both proteins are N-terminally palmitoylated. Inspection of HSV-1 pUL7 does identify a potential vMIM2 sequence, spanning residues 221–232 (sequence LANnPpPVlsaL). However, these residues lie in a well-structured region at the interface with pUL51 (helices α8 and α9; see Fig. 2B of Butt et al (2020)) and would thus be unavailable to bind VPS4A. If the pUL7:pUL51 complex were required for VPS4A recruitment to sites of HSV-1 assembly, which has not been shown, then a different mechanism would be required. To test if this was the case, we performed a transfection experiment where pUL51-mCherry, or mTurquoise2-pUL7 +pUL51-mCherry, were co-transfected with GFP-VPS4A into U2-OS cells. As a positive control, we co-transfected pUL71-mCherry and GFP-VPS4A. As shown below, we observe recruitment of GFP-VPS4A to pUL71-mCherry positive membranes but do not see recruitment of GFP-VPS4A to pUL51-mCherry positive TGN membranes in the presence or absence of mTurquoise2-pUL7.
This experiment has been performed twice with identical results. However, we have declined to include the above figure in the manuscript because our study focusses on the vMIM2 motif and the betaherpesviruses in which it is conserved. We already show that the pUL71 homologue in HSV (pUL51) does not recruit VPS4A to membranes (Fig. 5E). We believe that additional negative data on the lack of VPS4A recruitment by this HSV-1 complex complicates the story and would distract the reader. Identifying and characterising mechanisms via which other herpesvirus subfamilies may (or may not) specifically recruit VPS4A to sites of virus assembly is interesting, but it lies outside the scope of this current manuscript.
We agree with the reviewer that the HCMV secondary envelopment pathway likely differs from that of HSV. For example, HSV envelopment is severely restricted by dominant negative VPS4 whereas HCMV is not. This indicates that, at a minimum, HCMV must have additional/redundant mechanisms that drive envelopment in the absence of a functioning ESCRT machinery. We have added a comment to this effect to the second paragraph of the discussion:
“This lack of requirement for ESCRT activity during HCMV secondary envelopment contrasts with the situation for HSV-1, where expression of dominant-negative VPS4 (Calistri et al., 2007; Crump et al., 2007) or CHMP proteins (Calistri et al., 2007; Pawliczek and Crump, 2009) severely restricts virion production. We therefore conclude that either HCMV and HSV-1 utilise different molecular mechanisms for secondary envelopment, or HCMV can exploit additional (redundant) pathways in addition to ESCRT-mediated membrane remodelling to ensure assembly of mature virus particles.”
Minor
Fig 3S: I would suggest highlighting the central P residue in the aligned sequence and consensus sequence.
We thank the reviewer for this helpful suggestion. We have highlighted both the central ‘P’ plus the other conserved hydrophobic residues of the vMIM2 in the aligned and consensus sequence in Figures 5, S3 and S4.
Reviewer #2 (Significance (Required)):
Not surprisingly, the biggest issue in the manuscript is that perturbing pUL71 / VPS4A binding has no detectable positive or negative impact on VAC assembly, secondary viral envelopment or viral spread (titre, plaque size). This raises the question as to the relevance of VPS4A for the virus. As mentioned above, it could be relevant to test a viral mutant lacking pUL71 aa 300-320, which may lead to different results.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
Summary
In this study the authors investigate mechanisms by which human cytomegalovirus (HCMV) modulates ESCRT III to facilitate virus maturation. The viral protein pUL71 has been shown previously to be an important viral mediator of the so called "secondary envelopment", that is the process in which the viral capsid is budding into Golgi-derived membranes to acquire its envelope.
pUL71 was previously shown to recruit VPS4 to the trans-Golgi upon co-transfection. In this study, the authors investigate the structural requirements for this interaction. Sequence comparison prompted the investigation of a short motif in the C-terminus of pUL71 with homology to the Type 2 MIT-Interacting Motif (MIM2) of CHMP6 that is known to bind the MIT of VPS4. Using co-localization, co-immunoprecipitation and isothermal titration calorimetry they show clearly that a peptide spanning amino acids 300-325 of pUL71 is required and sufficient for binding of VPS4A. State of the art modeling of the protein complex identifies the crucial amino acids that define the interaction on both sides. The authors validate these predictions experimentally in transfection and with purified peptides as well as in the context of HCMV infection using bimolecular fluorescence complementation. Furthermore, the authors demonstrate that not only the other human betaherpesviruses but also closely related CMVs of rat and mouse encode viral MIM2-like motifs (vMIM2)that are able to interact with VPS4A. Unexpectedly, albeit in line with previous reports, they find that mutation of this highly conserved vMIM2 domain did not alter viral progeny and focus size largely. The authors further confirm by quantification of high quality electron micrographs, that a large portion of capsids is able to complete the process of budding into and scission from cellular membranes, demonstrating that the ability of pUL71 to bind VPS4A is dispensable for secondary envelopment.
Taken together, this study demonstrates clearly that a newly defined vMIM2 in the HCVM pUL71 protein binds cellular VPS4A. Yet, it remains unclear in which context the virus requires this novel form of molecular mimicry.
While we thank the reviewer for summarising our study, highlighting the careful attention they paid to our work, we would like to emphasise that we are unaware of any previous study showing that pUL71 recruits VPS4 to the trans-Golgi upon co-transfection. __It had previously been observed that VPS4 is present at the cytoplasmic virus assembly compartment (cVAC) during infection – as we state in paragraph 4 of the introduction (first sentence). However, none of these studies identified the virus protein responsible for this recruitment nor did they identify the viral motif that mediated this recruitment. __Our identification of pUL71 as the HCMV protein that recruits VPS4A to the cVAC is novel.
Major comments:
- Despite the very thorough analysis and conduction of the study, the presented work does not reveal a phenotype in virus infection. The authors would need to find out what the functional relevance of their discovery is.
As described by reviewer 1, our data confirms with and extends previous studies to show that ESCRT activity seems not to be essential for HCMV secondary envelopment. This is different from other herpesviruses such as HSV-1, showing that the secondary envelopment process is not universally conserved across the herpesviruses (or that additional redundant processes are encoded by HCMV). We also identify a novel virus-encoded VPS4 recruitment motif, the vMIM2. The fact that this sequence is conserved across beta-herpesvirus pUL71 homologues strongly suggests that it has a conserved and important function in the virus lifecycle, even if we haven’t identified that function in this study. In the discussion we posit multiple hypotheses for how this motif may function during infection, including sequestration of VPS4. As reviewer 1 states, VPS4 sequestration “is an important issue that virologists should consider”. We feel that additional experiments to tease out the precise function conferred by this motif represent important future work but are beyond the scope of this current study.
Please include statistical analysis of virus release, spread and envelopment (Figure 7 and Table 2). It would be helpful to see if the small differences observed are likely to be random or not.
We thank the reviewer for this suggestion. We have performed relevant statistical tests for the virus growth data and virus spread (plaque size) assays.
*A repeated measures two-way ANOVA test of the high MOI (single step) virus growth data shows that there is no significant difference between the viruses tested (P = 0.5824). A repeated measures two-way ANOVA test of the low MOI (multi-step) virus growth shows that there is a difference between viruses. A Dunnett’s multiple comparison test shows that there is no significant difference between the TB71revPPAA and wild-type virus at any time point. There are significant differences between the TB71mutPPAA virus and wild-type at 15 dpi (P “While two-way ANOVA analysis showed significant differences between wild-type and mutant virus yields at late time points in the multi-step growth curve, the TB71mutPPAA mutant had higher titres at 15 dpi whereas TB71del315-326 had lower titres at 15 and 18 dpi. Given the divergence in observed effect between the two mutants, and the fact that these differences were observed only at very late times post-infection, we do not believe they represent biologically meaningful differences in virus release.”
A Mann Whitney test of the focus expansion assay data, performed instead of a t test because a D'Agostino & Pearson test showed the WT plaque data to not be normally distributed, showed no significant difference between the WT and TB71 mutPPAA virus (P = 0.489), which would agree with our notion that there is no in change in virus growth when interaction with VPS4A is disrupted.
Concerning quantitative evaluation of secondary envelopment, we have respectfully declined to include statistical analysis in the manuscript. This is because quantitative analysis of virus envelopment via electron microscopy has multiple caveats that complicate robust statistical analysis. The numbers of virus particles in the area of the cVAC in the individual cells is subject to stark variation, only a small part of the cell or the cVAC is analysed, and naked capsids are only rarely observed. Defects in HCMV secondary envelopment, as has been published for pUL71 knock-out viruses, manifest as strong shifts in the proportions of the envelopment stages; see for example Schauflinger et al. (2013). We did perform a two-way ANOVA with Dunnett’s multiple comparison test, which shows that there are significantly fewer enveloped particles (P In summary, none of our data consistently and robustly show involvement of VPS4A for HCMV assembly that could explain the conservation of this interaction among betaherpesviruses, which is consistent with previous publications indicating that HCMV secondary envelopment does not require the cellular ESCRT machinery.*
One caveat is that the presented study investigates the impact of VPS4A on HCMV only in fibroblasts. However, other studies used epithelial cells to investigate the impact of VPS4 knockout on HCMV and also did not see a reduction in virus titers. Yet, the authors could significantly improve the manuscript by testing for a cell type specific requirement of the vMIM2. The replication of the PPAA mutant virus could be analyzed in additional cell types such as macrophages or endothelial cells and using different experimental systems.
*We thank the reviewer for this comment. We have evaluated viral growth of the PPAA mutant virus in monocyte-derived macrophages, similar to our analysis of a pp65 stop mutant (Chevillotte et al., JVirol 2009). We specifically tested macrophages as this cell type appears to restrict HCMV growth when compared to released virus yield from fibroblasts and endothelial cells. However, viral growth of the PPAA mutant is similar to that of parental and revertant virus, verifying our growth analysis in fibroblasts. Furthermore, we investigated virion morphogenesis of the PPAA mutant in macrophages by electron microscopy because pUL71 plays an important role in HCMV secondary envelopment. Consistent with our growth analysis, we could not find evidence for a role of VPS4 recruitment by pUL71 for virion morphogenesis. We have added this additional data as a new supplementary figure (Fig. S6). *
Consider discussing if other viral and cellular proteins could compensate the loss of interaction between pUL71 and VPS4. Is a similar motif found in any other HCMV protein? Could redundancy explain the lack of a consequences for viral growth?
The short answer is no, it is unlikely that any other HCMV protein could compensate for the loss of pUL71 binding and efficiently recruit VPS4A to the cVAC because we see a complete loss of VPS4A-FLAG recruitment to the cVAC when pUL71 is either absent (Fig. 6C) or has a defective vMIM2 (Fig. 6D). However, it is possible that additional HCMV proteins could interact with VPS4A, for example to enhance its retention at the cVAC by increasing the avidity of binding.
We used the ScanProsite web server to identify additional proteins encoded by HCMV with the vMIM2 sequence [YLM]-{P}-{P}-x-P-x-[AVP]-[VP]-x-x-x-[LVP]. This sequence corresponds to the residues observed at each position in the vMIM2s of betaherpesvirus pUL71 homologues presented in Figures 5, S3 and S4, where proline is disallowed at the second and third position because of our identification that the first residues of the vMIM2 form an α-helix (proline residues being incompatible with α-helix formation).
*We identified eight additional HCMV proteins with potential vMIM2 sequences: pUL31, pUL57, pUL72, pp28 (a.k.a. pUL99), pUL141, pUS22, pUS29 and pUS30. Of these, pUL141 could be immediately discounted because the vMIM2 sequence is located in an extracellular portion of the protein and thus would be incapable of binding the cytosolic VPS4A MIT domain. pUL31, pUL57 and pUS22 could similarly be discounted because inspection of AlphaFold2 models of these proteins (https://www.bosse-lab.org/herpesfolds/) reveal the potential vMIM2 sequences to lie within regions of the protein that are predicted to be well-ordered and are buried and/or form secondary structures incompatible with binding the VPS4A MIT domain. The vMIM2 motifs of the remaining four proteins were in regions of the proteins that lacked tertiary structure and were predicted with low confidence, indicating that these regions are likely to have little intrinsic structure in the absence of a binding partner. Additionally, we observed that the potential vMIM2 sequences of pUL72 and pUS29 were predicted to have a helix-then-extended conformation, like pUL71. *
To probe whether the pUL72, pp28, pUS29 and pUS30 sequences that matched the vMIM2 consensus were likely to bind VPS4A, we used AlphaFold2 to predict structures of the relevant 26 amino acid regions from these proteins in complex with the VPS4A MIT domain. Analysis of the pLDDT scores show that the interaction between VPS4A and pUL72 is plausible, although this interaction is predicted with less confidence than the VPS4A:pUL71(300–325) interaction. The other models are predicted with very low confidence, suggesting that these regions are unlikely to interact. This agrees with our data for pp28, where we demonstrated using transient expression experiments that pUL71 but not pp28 could sequester VPS4A (Fig. 1B).
Further inspection of the VPS4A:pUL72(potential vMIM2) prediction showed that several residues in the potential interacting region are predicted to contribute to the pUL72 folded domain, forming the final strand of a β-sheet. AlphaFold-Multimer prediction of a complex between the VPS4A MIT domain and full-length pUL72 failed to yield models where the potential vMIM2 interacted with VPS4A, suggesting that steric clashes between VPS4A and the globular domain of pUL72 would prevent pUL72 from binding VPS4A in cells.
While it is theoretically possible that the potential vMIM2 motifs identified above could interact with VPS4A, the interaction is clearly not sufficient to effectively recruit VPS4A to the cVAC in the absence of pUL71 or in the presence of a pUL71 mutant with a defective vMIM2 (Fig. 6C,D). There are also several HCMV proteins that have ‘late domains’ and could in theory compensate for the absence of pUL71 via recruitment of ‘upstream’ ESCRT machinery components (Streck 2020), but these are similarly incapable of efficiently recruiting VPS4A in the absence of pUL71. It is possible that a small amount of residual VPS4 recruitment via late domain containing proteins could functionally compensate for the absence of the vMIM2 but, given the published evidence that VPS4 activity is dispensable for virus envelopment, it is more likely in our opinion that an alternative non-ESCRT mechanism drives HCMV envelopment.
We have added a paragraph at the end of the results section “VPS4A binding is conserved amongst cytomegaloviruses and human β-herpesviruses” and a new supplemental figure (Fig. S5) describing the other potential vMIM2 sequences in HCMV. We have also added a section to the discussion where we describe our interpretation of these results, outlining our reasons for concluding that other HCMV sequences that match the vMIM2 consensus are very unlikely to play a role in envelopment (although we admit that we cannot entirely discount this hypothesis):
“While other HCMV proteins have sequences that match the vMIM2 consensus, none are able to recruit VPS4A to the cVAC when pUL71 is absent (Fig. 6C) or has a defective vMIM2 (Fig. 6D). It is therefore unlikely that these sequences are functionally redundant to the pUL71 vMIM2, although we cannot formally discount this hypothesis.”
We thank the reviewer for asking this interesting question.
Would the small differences (if significant) in virus titer be sufficient to provide enough of an evolutionary advantage to explain the sequence conservation? It would be interesting to try an in vitro selection assay and test if wildtype would outcompete the PPAA mutant after some passages.
This is an interesting suggestion, but it is not really supported by our data, as all our data indicate that sequestration of VPS4 by pUL71 has no growth advantage (see also answer to point 3). This is further supported by our results from electron microscopy. Even the minimal differences in growth are not significant at most time points. In addition, to our knowledge, there is no established assay for HCMV for the proposed analysis and therefore no reliable data regarding the significance.
Albeit far beyond the original scope of the study:
In the very thoughtful discussion, the option is discussed that other MIT domain containing proteins could be the actual targets of the pUL71 MIM2-domain. It would be interesting to use the generated expression constructs to identify other cellular targets by co-IP and mass spectrometry.
We agree this would be an interesting avenue of future work and it is one we intend to pursue in the future. However, identification of novel binding partners for the vMIM2 and biochemical plus functional characterisation of these interactions is a large study and is thus outside the scope of this current manuscript.
Minor comments: None, the presented experiments are well conducted and presented. The work is adequately discussed.
Reviewer #3 (Significance (Required)):
Significance section
General assessment:
The performed experiments are well described and the high quality is revealed by the abundant primary data shown. Multiple independent methods were used to investigate the central findings. The claims made are therefore well supported. Especially the data supporting the direct interaction between the MIM2-like domain and the MIT of VPS4 are excellent and unequivocally demonstrate a direct interaction. On the other hand, the lack of effect of this interaction in the context of viral infection questions the significance of the finding. Possibly, by testing additional cell lines to assess virus spread, the authors could increase relevance of the findings.
Advance:
The impact of VPS4 and the ESCRT machinery on HCMV secondary envelopment has been a matter of debate since a study by Tandon et al. in 2009 seemed to contradict the first publication on the topic by Fraile-Ramos et al in 2007. The current study by Butt et al. now supports a more recent report by Streck et al., which suggested that VPS4 is not required for secondary envelopment. The fact that the two studies use different experimental systems with similar outcome, suggests that virus maturation is indeed independent of VPS4. However, Streck et al. observe an effect of dominant negative ESCRT mutants on virus spread, suggesting that the interaction of the HCMV tegument with ESCRT is required only under special conditions, which still remain to be defined. Albeit the present study cannot fill all the gaps of our understanding of this topic, the high quality of the data is a good basis for further investigations.
In addition, the description of a viral MIM2-like motifs might spur the investigation of similar motifs in other viruses, potentially bringing more cases of molecular mimicry to light.
Audience:
This study is of interest to basic researchers investigating aspects of modulation of cellular membranes by viruses or interested the cellular components and interactors of the ESCRT complexes.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Summary
In this study the authors investigate mechanisms by which human cytomegalovirus (HCMV) modulates ESCRT III to facilitate virus maturation. The viral protein pUL71 has been shown previously to be an important viral mediator of the so called "secondary envelopment", that is the process in which the viral capsid is budding into Golgi-derived membranes to acquire its envelope.
pUL71 was previously shown to recruit VPS4 to the trans-Golgi upon co-transfection. In this study, the authors investigate the structural requirements for this interaction. Sequence comparison prompted the investigation of a short motif in the C-terminus of pUL71 with homology to the Type 2 MIT-Interacting Motif (MIM2) of CHMP6 that is known to bind the MIT of VPS4. Using co-localization, co-immunoprecipitation and isothermal titration calorimetry they show clearly that a peptide spanning amino acids 300-325 of pUL71 is required and sufficient for binding of VPS4A. State of the art modeling of the protein complex identifies the crucial amino acids that define the interaction on both sides. The authors validate these predictions experimentally in transfection and with purified peptides as well as in the context of HCMV infection using bimolecular fluorescence complementation. Furthermore, the authors demonstrate that not only the other human betaherpesviruses but also closely related CMVs of rat and mouse encode viral MIM2-like motifs (vMIM2)that are able to interact with VPS4A. Unexpectedly, albeit in line with previous reports, they find that mutation of this highly conserved vMIM2 domain did not alter viral progeny and focus size largely. The authors further confirm by quantification of high quality electron micrographs, that a large portion of capsids is able to complete the process of budding into and scission from cellular membranes, demonstrating that the ability of pUL71 to bind VPS4A is dispensable for secondary envelopment. <br /> Taken together, this study demonstrates clearly that a newly defined vMIM2 in the HCVM pUL71 protein binds cellular VPS4A. Yet, it remains unclear in which context the virus requires this novel form of molecular mimicry.
Major comments:
- Despite the very thorough analysis and conduction of the study, the presented work does not reveal a phenotype in virus infection. The authors would need to find out what the functional relevance of their discovery is.
- Please include statistical analysis of virus release, spread and envelopment (Figure 7 and Table 2). It would be helpful to see if the small differences observed are likely to be random or not.
- One caveat is that the presented study investigates the impact of VPS4A on HCMV only in fibroblasts. However, other studies used epithelial cells to investigate the impact of VPS4 knockout on HCMV and also did not see a reduction in virus titers. Yet, the authors could significantly improve the manuscript by testing for a cell type specific requirement of the vMIM2. The replication of the PPAA mutant virus could be analyzed in additional cell types such as macrophages or endothelial cells and using different experimental systems.
- Consider discussing if other viral and cellular proteins could compensate the loss of interaction between pUL71 and VPS4. Is a similar motif found in any other HCMV protein? Could redundancy explain the lack of a consequences for viral growth?
- Would the small differences (if significant) in virus titer be sufficient to provide enough of an evolutionary advantage to explain the sequence conservation? It would be interesting to try an in vitro selection assay and test if wildtype would outcompete the PPAA mutant after some passages.
Albeit far beyond the original scope of the study: 6. In the very thoughtful discussion, the option is discussed that other MIT domain containing proteins could be the actual targets of the pUL71 MIM2-domain. It would be interesting to use the generated expression constructs to identify other cellular targets by co-IP and mass spectrometry.
Minor comments: None, the presented experiments are well conducted and presented. The work is adequately discussed.
Significance
General assessment:
The performed experiments are well described and the high quality is revealed by the abundant primary data shown. Multiple independent methods were used to investigate the central findings. The claims made are therefore well supported. Especially the data supporting the direct interaction between the MIM2-like domain and the MIT of VPS4 are excellent and unequivocally demonstrate a direct interaction. On the other hand, the lack of effect of this interaction in the context of viral infection questions the significance of the finding. Possibly, by testing additional cell lines to assess virus spread, the authors could increase relevance of the findings.
Advance:
The impact of VPS4 and the ESCRT machinery on HCMV secondary envelopment has been a matter of debate since a study by Tandon et al. in 2009 seemed to contradict the first publication on the topic by Fraile-Ramos et al in 2007. The current study by Butt et al. now supports a more recent report by Streck et al., which suggested that VPS4 is not required for secondary envelopment. The fact that the two studies use different experimental systems with similar outcome, suggests that virus maturation is indeed independent of VPS4. However, Streck et al. observe an effect of dominant negative ESCRT mutants on virus spread, suggesting that the interaction of the HCMV tegument with ESCRT is required only under special conditions, which still remain to be defined. Albeit the present study cannot fill all the gaps of our understanding of this topic, the high quality of the data is a good basis for further investigations.<br /> In addition, the description of a viral MIM2-like motifs might spur the investigation of similar motifs in other viruses, potentially bringing more cases of molecular mimicry to light.
Audience:
This study is of interest to basic researchers investigating aspects of modulation of cellular membranes by viruses or interested the cellular components and interactors of the ESCRT complexes.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Summary
The manuscript from Butt et al. entitled "Human cytomegalovirus deploys molecular mimicry to recruit VPS4A to sites of virus assembly" addresses the potential role of ESCRT components in the biogenesis of HCMV virions. The topic is relevant since the ESCRT machinery has been implicated in the propagation of various herpesviruses. However, conflicting results are present in the literature regarding its role and relevance. In the present study, the authors focus on HCMV pUL71, which plays a role during the final envelopment of the viral capsids, and explore the possibility that it acts as an ESCRT-III component by recruiting the VPS4A ATPase (which induces membrane deformation and scission). To this end, they identified a motif in the C-terminal region of HCMV pUL71 that resembles the cellular type 2 MIM (MIM2) consensus sequence that is present in ESCRT-III proteins such as CHMP4B and CHMP6. They show substantial data that delineate an interaction between that pUL71 motif and the cellular ATPase using a panoply of tools (co-IF, co-IP, ITC, bimolecular fluorescence and markerless BAC mutagenesis). They also show that this interaction in present across a wide range of HCMV strains, but is absent in the case of the HSV-1 pUL51 homolog.
Main Comments
The manuscript is very well written, albeit line numbers would facilitate reviewing. The plethora of assays used convincingly show an interaction between pUL71 and VPS4A. They also indicate that this interaction relocalizes VPS4A to the TGN and likely the VAC. However, I do have some issues. For instance, using another viral marker, instead of only pUL71, would have been a good idea to distinguish the TGN from the VAC. This is not trivial given the reorganization of the cellular organelles by the virus. For this reason, looking at tegument and envelope viral proteins may not be optimal for this task since potentially on both compartments. However, viral capsid proteins or the viral genome may be useful here. Immuno-EM against VPS4A could also be a useful experiment to show a potential link between the ATPase and re-envelopment.
Another issue is the actual pUL71 residues interacting with VPS4A. While substantial efforts were made to map them (truncated constructs, bimolecular assay, viral mutants), the data do not always point toward the exact same residues (for example aa 314-320 by co-IF but aa 300-310 by ITC). This suggests potentially multiple binding sites or conformational issues. Hence, the statement on page 5 "that pUL71 residues 300-310 are necessary for the VPS4A interaction, in addition to the potential MIM2" may be misleading. What happens if one deleted aa 314-320 in the ITC assay? Or aa 300-310 by IF? These findings are further confounded by the lack of impact of the mutations of aa 315 and 318, predicted to be important in silico (p. 6). Moreover, in figure 7, the mutants made were a deletion 315-326 or the double point mutant P315A and P318A (not clear why in light of above results). Would a deletion of aa 300-320 not be a more appropriate and safer one to test for viral propagation?
As the identification of the VPS4A binding motif in other herpesviruses appears to only be detected by manual inspection of the protein sequences, I wonder if other HCMV proteins or alpha/gamma viral proteins may interact with VPS4A. A good way to address this would be to do a VPS4A affinity column to see if any other viral proteins can bind. MS analyses may be required to identify the bound viral proteins. This could be a good follow-up paper...
I am unfortunately unable to evaluate the outcome of the in silico analyses and cannot therefore judge their relevance or accuracy. Other reviewers can hopefully access this portion of the manuscript.
Unless mistaken, previous work (Albecka A et al, 2017, JVI) has shown that HSV-1 pUL51 does not require its binding partner pUL7 to reach the TGN. Given that HSV-1 pUL51 does not seem to recruit VPS4A, could the pUL7/pUL51 complex be required for the recruitment of VPS4A to the TGN or VAC? Alternatively, could the lack of pUL51 binding to VPS4A reflect a different re-envelopment mechanism (absence of the CMV onion ring VAC)? These possibilities should be addressed in the manuscript.
Minor
Fig 3S: I would suggest highlighting the central P residue in the aligned sequence and consensus sequence.
Significance
Not surprisingly, the biggest issue in the manuscript is that perturbing pUL71 / VPS4A binding has no detectable positive or negative impact on VAC assembly, secondary viral envelopment or viral spread (titre, plaque size). This raises the question as to the relevance of VPS4A for the virus. As mentioned above, it could be relevant to test a viral mutant lacking pUL71 aa 300-320, which may lead to different results.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary:
In this study the authors apply a rigorous and thorough combination of approaches including sequence analysis, deep-learning structure predictions, molecular dynamics, cell imaging and mutagenic analyses to identify a short MIM2-mimicking motif in the C-terminal region of the pUL71 protein of HCMV (and homologues in other beta-herpesviruses) that is necessary and sufficient for interaction with the ESCRT terminal ATPase VPS4A. pUL71 uses this motif to recruit, or sequester, VPS4A to the HCMV cytoplasmic viral assembly complex, though this process is dispensable for HCMV morphogenesis or replication. The identified pUL71 sequence functions as a mimic of the MIM2 motif of cellular CHMP subunits since, like MIM2, it directly binds the groove in the MIT domain found at the N-terminus of VPS4.
Major comments:
- There appears to be some confusion in the coip experiment in Figure 5D. From the upper blot in 5D, the "+" above each lane suggests there should be VPS4A-FLAG protein in every sample other than the two lanes at the very left of the gel, however the anti-FLAG ip does not pull down VPS4A-FLAG from every "+" lane, but from alternating ones (and from the next to the leftmost lane, which should lack VPS4A-FLAG). Similarly, the lower "Input" blot shows VPS4A-FLAG present in alternating lanes across the blot, which does not match the "+" and "-" labeling at the top of the figure. Conversely, there is anti-HA signal in most input lanes (lower blot) though the HA-tagged pUL71 homologues should be absent from alternate lanes (top of upper blot).
- The Discussion is an excellent, comprehensive and scholarly assessment of the implications of this work. One appealing hypothesis is that pUL71 may be sequestering VPS4A rather than using it for envelope scission. In this regard, the authors point out that VPS4A sequestration is supported by the finding that the VPS4A MIT domain binds the isolated pUL71 vMIM2 more tightly (~ 5 fold lower Kd) than the MIM2 of CHMP6, and that pUL71 and homologues) are highly abundant at later stages of viral infection, allowing them to compete effectively with endogenous CHMP6 for VPS4A. I like the sequestration model very much, but could the authors comment on the fact that this apparent sequestration is seen even in the transfection experiments in Fig. 2A and 3G, where essentially 100% of transfected WT VPS4A-FLAG is recruited to the pUL71 compartment. Even given the increased binding affinity to pUL71, this suggests that in these transfection studies pUL71 must be in excess over the sum of both endogenous and transfected VPS4. Do the authors know if this is the case, and do cells transfected with pUL71 in these experiments exhibit any cytotoxicity, or cell cycle arrest, indicative of a block in normal ESCRT function/cytokinesis?
Minor comments:
In general, the text and figures are very clear and accurate, the Results section is careful to walk the reader though these studies in a clear and well written fashion and prior studies are referenced appropriately. There are some minor issues that are listed below.
i). For clarity, please direct the reader to panel 1B when referring to the pp28 data (line 11 of Results section).
ii). At the bottom of the page 4, the Results section states "immunoprecipitation experiments show VPS4A-FLAG to be robustly co-precipitated by wild-type pUL71 but not by the PPAA and V317D mutants". However, from Fig. 1E it appears to be the reverse. The wild type pUL71 (but not mutants) is being co-precipitated by VPS4A-FLAG, using an anti-FLAG antibody.
iii). In Fig.1D the localization of WT pUL71 and the PPAA and V317D mutants to a juxtanuclear compartment provides a nice internal control demonstrating that the mutant proteins are at least partially functional (able to localize correctly), and the fluorescence intensities of the WT and mutant pUL71 proteins appear comparable. However, do the authors have any additional quantitative or semi-quantitative data (such as from a Western) to confirm similar expression levels for the pUL71 WT and PPAA/V317D mutant proteins?
iv). In Fig. 4, An OPTIONAL experiment, which would add to the paper, would be to test the ability (or rather, lack of the ability) of the pUL71 I307R mutant to coip VPS4A from infected or transfected cells. Such a study would extend the predictive power of the elegant MD simulations and ITC studies to the "gold standard" of testing the phenotype in vivo.
v). The Fig. 6B TB71stop pp28 panel is not referred to in the Fig. 6 legend.
vi). In the second paragraph of the Discussion it is stated that "The pUL71 vMIM2 is necessary and sufficient to recruit VPS4A to specific membranes in co-transfected cells (Fig. 5) and to sites of virus assembly in HCMV infection (Fig. 6)". Strictly speaking, Fig. 5 (panel 5F) shows that the HCMV pUL71 region 283-361 is sufficient to localize VPS4A to a compact juxtanuclear structure in transfected cells, and Fig. 6 (panel 6C) shows that pUL71 residues 315-326 (and the two conserved prolines in this region) are necessary for VPS4A localization to a structure that appears to be the HCMV assembly compartment.
Significance
This is the first report of a virus encoding a MIM-like domain, and of a viral motif that directly binds the VPS4A MIT domain. This will be of broad interest to those studying the cell biology of virus assembly and mechanisms of virus-host cell interaction, as well as to cell biologists and structural biologists studying the ESCRT apparatus. It is striking, and will be illuminating to virologists and ESCRT biologists, that viruses have evolved to mimic MIM2 with a motif that has a lower Kd than a conventional cellular MIM2 motif. The possibility, addressed in the Discussion, that pUL71 may be sequestering VPS4A (rather than using it) is an important issue that virologists should consider.
This is a rigorous, thorough and well controlled basic science study that elegantly combines a variety of approaches to provide important new insights concerning the biology of pUL71 in HCMV, other human beta-herpesviruses and a large number of mammalian and rodent cytomegaloviruses. The claims and conclusions are thoughtful and measured, and supported by the data. Data and methods are presented in such a way that they can be reproduced, and experiments are adequately replicated with appropriate statistical analyses.
Reviewers fields of interest: Cell biology, ESCRT function, Virus assembly
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
We thank the reviewers for their valuable comments that we have followed to highly improve our manuscript.
REVIEWER 1
Major Comments:
While the evidence presented supports the application of machine learning in predicting RNA editing events, the paper falls short in justifying its significance within the scope of RNA editing in non-coding regions and Alu repeats, which are typically characterized by low conservation. The paper should provide a more compelling rationale for the method's necessity and potential uses. While it is true that the databases used in mouse and human, as well as the procedures used for the obtention of the mackerel RNA-editing data are rich in Alu repeats and non-coding regions, that is not our focus. We gathered all the available A-to-I editing sites and feed them to our algorithms without distinction. In addition, we are not looking for conservation of the sites themselves yet, but if there is a conservation of the mechanism. This is attempted by assessing the ability of the algorithm trained in one species to predict the editing sites in a different species, a.k.a. cross-training. We already state this in the introduction but we have added an extra sentence in the last paragraph of the introduction.
A significant limitation of this study is the lack of a thorough comparison with existing methodologies and traditional statistical approaches. Incorporating such analyses would substantially strengthen the validity of the findings.
We would like the reviewer for pointing this limitation. We have updated the manuscript with a new table in results, and a new discussion segment.
The descriptions of the machine learning algorithms are insufficiently detailed for replication or thorough comparison. A more comprehensive explanation of the algorithms' parameters and configurations is critical.
While the main manuscript methods section is short to avoid it to over encumber the manuscript, there is a whole extended methods section with step-by-step instructions to replicate the results, as well as full documentation available in the github at https://github.com/cherrera1990/RNA-editing-pred.
- The paper lacks detailed analysis of the prediction accuracy, particularly concerning non-human data and the implications of false positives in unbalanced datasets. A more nuanced interpretation is essential for a comprehensive understanding.
We have added two discussion segments to address this point. We thank the reviewer for notice this and help us to improve our manuscript.
The discussion on the evolutionary conservation of RNA editing needs to more explicitly highlight potential practical applications and future research directions. The current treatment of this topic does not offer clear actionable insights.
While true, we believe that what the reviewer suggests is not the main scope of the paper. We have added and extra sentence at the end to suggests possible doors this work can open.
Minor Comments:
The manuscript is marred by grammatical errors and awkward phrasing, including unnecessary references to historical figures like Charles Darwin. A thorough editing and proofreading process would greatly enhance readability. We removed the Charles Darwin reference and proofread the manuscript to correct grammatical errors.
- The justification for the selection of statistical tests is unclear, and a more detailed explanation of their relevance to the study's findings would improve the paper's analytical rigor. Incorporating descriptions of the statistical descriptors directly into the main text would remedy this issue.
We don't exactly know to what the reviewer means with this point. The descriptors used for the random forest are thoroughly described in the extended methods. Besides the tests used for assessing prediction accuracies which are listed in the extended methods section as well as in github, we don't use any other statistical analysis. Nonetheless, we have improved the general methods with an extra paragraph for RF and added reminders of the availability of the extended methods.
REVIEWER 2
The main problem of this study is its dependence on computationally predicted RNA secondary structures. To date, algorithms for inferring the secondary structures of polynucleotide chains are affected by considerable errors in several cases. Therefore, there is a high probability that at least part of the training data is largely biased. In this sense it would be appropriate to correlate the performance of the model to that of linearfold used to obtain the secondary structure data. While this is completely true for the RF algorithm and probably the cause of the low accuracy achieved, compared with other methods, that is not the case for the biLSTM algorithm. As we can see in Figure 3 A and Figure 3 B (and Supp. Figure 8 A and 8 B), the accuracy obtained using sequence alone is almost identical to the one obtained using both channels, while the accuracy obtained using just secondary structure is noticeably lower. This most probably means that the biLSTM algorithm is just ignoring the secondary structure channel, so no bias is being introduced in the training dataset.
Furthermore, it is known that bi-LSTMs trained on large datasets tend to be affected by catastrophic forgetting, therefore it should be evaluated to what extent the performances can be improved by expanding the dataset.
While true, this can be deal with an attention layer such as the one we use. In addition, we can see (Supp. Figure 5) how the mackerel prediction accuracy decrease when we reduce the database size. This can be marginally observed in human as well.
It is also notable an inconsistency between the performance summary table and the confusion matrices to which it refers.
We have corrected Figure 6 showing the proper percentages (the confusion matrices were correct) as well as reordered Supp. Figure 3 in order to be more similar to the Table 2.
In the end the 3' enrichment of guanosines, which is the typical of the consensus recognized by the ADARs, does not appear to emerge from the sequence logo relating to the training data.
We did notice this, and while we had already a small comment in the discussion, we expanded it further.
Point-by-point description of the revisions
__ Figures and Tables__ - Figure 6 has been corrected with the proper accuracies.
-
Supp. Figure 3 has been reordered to mirror the Table 2 design.
-
Table 1 has been renamed to Table 2.
-
A new table has been added as Table 1 with other analysis of RNA-editing predictions by machine learning.
__ Introduction__ - Charles Darwin reference has been removed (L11).
- "independently of the conservation of editing sites" added to last paragraph (L117).
__ Results__ - New section "Benchmarking the algorithms with previous RNA-editing prediction attempts based on machine learning" added including a new table as Table 1 (L170-178).
__ Discussion__ - "Random forest" section expanded at the end (L254-258).
-
"biLSTM algorithm" section expanded at the end of paragraph 1 and paragraph 2 (L274-280; L289-295).
-
"Differences in accuracy between human and non-human data" section expanded at the end (L313-316).
-
Additional sentence added at the end of "Cross-training and mechanism conservation" section (L353-355).
__ Methods__ __- __Reminders of availability of extended methods added at the end of "Origin of the RNA-editing and genomic data", "General pipeline for constructing the Random Forest and Neural networks datasets", and "biLSTM" sections (L375; L390; L429-430).
- Extra paragraph added for "RF" section (L408-413).
__ Proofreading and correction of typos__
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
This study describes Deep Learning applications aimed at identifying edited sites in different organisms. The method is able, starting from the knowledge of the transcriptome of one organism, to predict RNA editing in another, exploiting the functional conservation of ADAR enzymes throughout the animal kingdom. This study concludes that this approach, within certain limits, is a feasible option and worthy of further development.
The main problem of this study is its dependence on computationally predicted RNA secondary structures. To date, algorithms for inferring the secondary structures of polynucleotide chains are affected by considerable errors in several cases. Therefore there is a high probability that at least part of the training data is largely biased. In this sense it would be appropriate to correlate the performance of the model to that of linearfold used to obtain the secondary structure data. Furthermore, it is known that bi-LSTMs trained on large datasets tend to be affected by catastrophic forgetting, therefore it should be evaluated to what extent the performances can be improved by expanding the dataset. It is also notable an inconsistency between the performance summary table and the confusion matrices to which it refers. In the end the 3' enrichment of guanosines, which is the typical of the consensus recognized by the ADARs, does not appear to emerge from the sequence logo relating to the training data.
Significance
Advance: compare the study to existing published knowledge: does it fil a gap? what kind of advance does it make (conceptual, fundamental, methodological, incremental, ...) The study, although the critical remarks addressed above represents a conceptual advancement
Audience: which communities will be interested in/influenced, what kind of audience (broad, specialised, clinical, basic research, applied sciences, fields and subfields, ...) This contributions targets a specialised audience even if the potential applications are broad
Describe your expertise
Comparative Genomics and Bioinformatics
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary: This manuscript presents an approach for assessing the conservation of RNA editing, with a particular focus on non-coding regions and Alu repeats, using machine learning techniques. The goal is to forecast RNA editing occurrences and their evolutionary conservation across different species. However, the paper does not convincingly argue for the importance or the necessity of this method, especially considering the anticipated low conservation levels in the targeted regions.
Major Comments:
- While the evidence presented supports the application of machine learning in predicting RNA editing events, the paper falls short in justifying its significance within the scope of RNA editing in non-coding regions and Alu repeats, which are typically characterized by low conservation. The paper should provide a more compelling rationale for the method's necessity and potential uses.
- A significant limitation of this study is the lack of a thorough comparison with existing methodologies and traditional statistical approaches. Incorporating such analyses would substantially strengthen the validity of the findings.
- The descriptions of the machine learning algorithms are insufficiently detailed for replication or thorough comparison. A more comprehensive explanation of the algorithms' parameters and configurations is critical.
- The paper lacks detailed analysis of the prediction accuracy, particularly concerning non-human data and the implications of false positives in unbalanced datasets. A more nuanced interpretation is essential for a comprehensive understanding.
- The discussion on the evolutionary conservation of RNA editing needs to more explicitly highlight potential practical applications and future research directions. The current treatment of this topic does not offer clear actionable insights.
Minor Comments:
- The manuscript is marred by grammatical errors and awkward phrasing, including unnecessary references to historical figures like Charles Darwin. A thorough editing and proofreading process would greatly enhance readability.
- The justification for the selection of statistical tests is unclear, and a more detailed explanation of their relevance to the study's findings would improve the paper's analytical rigor. Incorporating descriptions of the statistical descriptors directly into the main text would remedy this issue.
Significance
Summary: The manuscript introduces a method to explore the functional conservation of RNA editing. However, it does not adequately justify its significance or practical applicability, particularly in the context of non-coding regions characterized by low conservation. The lack of comparative analysis with existing methods and detailed machine learning methodology explanations detracts from its potential impact. Addressing these issues would greatly enhance the paper's contribution to the scientific community.
General Assessment: The cornerstone of this study is its approach towards the prediction and evolutionary conservation analysis of RNA-editing events using machine learning techniques. Despite these technical achievements, the study falls short in adequately highlighting the biological significance of RNA editing within non-coding regions and Alu repeats. Additionally, the absence of a comprehensive comparative analysis with pre-existing methods and the lack of detailed algorithmic descriptions somewhat diminish the study's potential influence and applicability in the wider scientific domain. Moreover, there are grammatical errors and awkward phrasings that disrupt the flow of the text (e.g. why are we talking about Charles Darwin?) Please just focus on the method and RNA editing improve the overall readability of the paper!
Advance: The research notably progresses the field of genomics by harnessing machine learning to investigate RNA editing prediction and conservation, a subject not thoroughly examined in existing literature. Its innovative utilization of advanced computational models sets a new precedent, offering fresh perspectives on the mechanisms of RNA editing and their evolutionary contexts. This study enriches our understanding of genomics by illustrating the applicability of machine learning in unraveling the complexities of biological phenomena, such as RNA editing, thereby expanding the frontier of knowledge in both theoretical and practical aspects of genomics research.
Audience: A niche audience comprising bioinformatics experts focused on RNA editing, computational biology, and evolutionary genetics.
My proficiency centers on human genomics, RNA editing biology, and computational methodologies.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
'The authors do not wish to provide a response at this time.'
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #4
Evidence, reproducibility and clarity
Summary:
In this work, Zemlianski and colleagues exploit S. pombe mutations responsible for catastrophic mitoses, in particular those leading to a cut / cut-like phenotypes, whereby cytokinesis takes place without proper DNA segregation, trapping DNA molecules by septum formation in between the two separating cells. The work builds on the team's previous observation that these defects can be alleviated when cells are grown in a nitrogen-rich medium, and motivate their efforts to understand this better. The manuscript is written in a concise, neat and informative manner, and the results are presented clearly, with consistence in the format and the style all along. The analyses appear to have been, in general, conducted under the best standards. The findings are important and the data are of good quality. I have, however, important concerns that will be detailed below, and which, as I hope will be made clear, question the pertinence of including "TOR signaling" in the title, and making a distinction between "good" and "poor" nitrogen sources in the abstract.
Major comments:
Results
The conclusion that the phenotype is suppressed by "good" but not "poor" nitrogen sources is not sufficiently supported. First, this interpretation is based on comparing only two or three sources of each type; Second, the "good" source glutamate needed to be raised for it to have a significant effect; 3) there is a strange datum, as Glu 100 mM in Graph 1D looks exactly the same as Glu 50 mM in Graph 1E, I guess there is a mistake in the plotting; 4) and, more important, the fact that the authors had the nice initiative of reproducing their YES medium experiments for every graph led to the inevitable fact that slightly different values were obtained every time, which is normal. While the values yield very similar data for panels 1B, 1C and even 1D, the frequency of catastrophic mitoses for the cbf11 mutant in YES in panel 1E is much lower than in panel Figure 1B, for example. This has the consequence of making the suppression obtained when adding 'poor' sources, such as proline or uracil, non-significantly different. Thus, the authors conclude that 'poor' nitrogen sources are not good at suppressing the phenotype. I suggest that the authors pool all their YES data (they will have 12 repeats of their experiment) and plot, in a single graph, all the other treatments. By performing the analyses again, using the appropriate statistical test for that, perhaps they will have a surprise. After which, the question is, is it so important to put the emphasis on whether the source is good or poor? The incontestable observation is that, in general, there is clear trend of suppression of the phenotype.
In Figure 2, images should be shown as an example of what was seen, what was quantified, how the "decrease in nuclear cross-section area" looked like indeed.
Also, important for Figure 2, the authors used the nuclear cross-section area as a readout for nuclear envelope expansion versus shrinkage. For that, they did not use a fluorescent marker for the nuclear envelope that is continuous, but a nucleoporin (Cut11-GFP). In my experience, nucleoporins being discontinuously distributed throughout the nuclear envelope, the area encompassed by the signal may be underestimated in the event of a strong nuclear envelope deformation, as I have tried to illustrate in the scheme below: I WILL SEND THE SCHEME BY MAIL TO THE EDITOR, AS I CANNOT COPY-PASTE IT IN THE SYSTEM BOX Given that the photos from which the data were retrieved have not been shown, I cannot at present judge whether the use of a nuclear envelope marker providing continuous signals is absolutely necessary or not, and whether this consideration will affect (or not at all) the conclusions.
The authors do not seem to comment or pay any attention to a very crucial result they obtain: the addition of ammonium to the WT strain has the effect of also restricting the nuclear cross-section area. They indeed say in their text "we did not observe any differences between cultures grown with or without ammonium supplementation (Fig.2)". I guess they refer here to the cbf11 mutant, in which case the sentence is true (although unfair to the WT). But by neglecting that the supplementation with ammonium had the power of reducing the cross-section area of WT nuclei, they are misled (or misleading) in their interpretation. The same, although milder, is true for Figure 5C, where the addition of ammonium to the WT culture does not alter the median value of prophase + metaphase duration, however has the virtue of very much rendering sharp (less scattered) the population of values, suggesting that the accuracy / control of the process is enhanced. What does this mean? I think it should be carefully thought about and considered as a whole.
In the same line as above, the authors omit the RNA-seq analysis concerning the treatment of the WT with ammonium (Figure 3). This is very important to understand the standpoint of what this treatment elicits. It would also help unravel the observations I mentioned above that the authors did not assess in their descriptions. Also regarding Figure 3, it is completely obscure why the authors decided to show the genes on the right axis, and not others. Knowing how vast the lipid pathways are, there are likely many other hits that could be relevant. A particular thought goes for the proteins in charge of filling lipid droplets, such as sterol- and fatty acid-esterifying enzymes. Unless a very justified reason is provided, the choice at present seems arbitrary and it would be better to show a more unbiased data representation.
In the same vein, related to the effect of ammonium onto the WT, in Figure S1 (I want to congratulate the authors for showing their 3 experimental replicates), the results very neatly show that ammonium supplementation to the WT leads to a neat and reproducible increase in TAG, a fact on which the authors do not comment. In the mutant, irrespective of ammonium presence or absence, a huge increase in squalene and steryl esters (SE) are seen. I think the work would benefit from actually quantifying the intensity of these bands and thus materializing this in the form of values. TAG, squalene and SE are all neutral lipids, and are all stored within LD to prevent lipotoxicity if accumulated in the endoplasmic reticulum. While ammonium elicits strong TAG accumulation in the WT, this is not the case in the mutant, likely because the massive occupation of LD storage capacity is overwhelmed with squalene and SE. Could this have something to do with the suppression they are studying?
In the section of results where the authors comment the TLC analysis, they write "suggesting failed coordination between sterol and TAG lipid metabolism pathway". As it stands, the sentence is rather devoid of real meaning and may be even misleading, when considering what I wrote before.
My biggest concern has to do with the very last part, when they explore the implications of TOR:
- First, all the data presented in the two concerned panels of Figure 7 (B and C) and of Figure S3 lack the values obtained for the single mutants with which cbf11 was combined. This is not acceptable from a genetic point of view, and may prevent us from having important information. For example: if the authors were right that Tor2/TORC1 is ensuring successful progression through closed mitosis (last sentence of results), then one would predict that the tor2-S allele leads to an increase, already per se, of the frequency of catastrophic mitoses. However, at present, I cannot check that.
- the authors turn to use a ∆ssp2 mutant to "increase Tor2 activity". However, this is a pleiotropic strategy, as AMP-kinase is the major sensor and responder to energy depletion, frequently triggered by glucose shortage, thus I am not sure the effects associated to its absence can be unequivocally be ascribed to a Tor2 raise.
- there is a counterintuitive observation: rapamycin, which mimics nitrogen shortage, has the same effect than ammonium supplementation. This is strangely bypassed in the discussion, where the authors wrote "we showed increased mitotic fidelity in cbf11 cells when the stress-response branch of the TOR network was suppressed, either by ablation of Tor1/TORC2 or by boosting the activity of the pro-growth Tor2/TORC1 branch. These data are in agreement with previous findings that Tor2/TORC1 inhibition mimics nitrogen starvation".
- last, and irrespective of what was said above, the authors conclude that the phenotype suppression is due to "a role for Tor2/TORC1 in ensuring successful progression through mitosis". If, as stated by the authors, Tor1/TORC2 absence not only abrogates Tor1/TORC2 activity, but it simultaneously raises Tor2/TORC1 activity, and if reciprocally Tor2/TORC1 increased activity concurs with Tor1/TORC2 attenuation, it cannot therefore be discerned if the suppression is due to Tor2/TORC1 raise or to Tor1/TORC2 dampening.
Discussion
The authors invoke that TOR controls lipin, despite what they go on to dismiss the link between TOR and lipids by saying "we did not observe any major changes in phospholipid composition when cells were grown in ammonium-supplemented YES medium compared to plain YES (Figure S2)", with this reinforcing their conclusion that ammonium does not suppress lipid-related cut mutants through directly correcting lipid metabolism defects. While I agree with that reasoning, I invoke again that they nevertheless neglected the clear change observed in their three replicates (Figure S2) that ammonium addition to WT cells strongly increases the amount of TAG (esterified fatty acids). Since lipin activity promotes DAG formation, which then leads to TAG accumulation, this aspect should not be neglected.
The emphasis on TOR, which expands several paragraphs of the Discussion, should be revisited if the evidence provided for this part of the data is not reinforced.
To finish, if I may provide some personal thoughts that may be useful for the authors, I would first remind that TAG storage prevents the channeling of phosphatidic acid towards novel phospholipid synthesis thus antagonizes NE expansion, which agrees with their neglected observation for the WT in Figure 2A. The antagonization of NE expansion can be achieved through autophagy (DOI 10.1038/s41467-023-39172-3; DOI 10.1177/25152564231157706), and indeed rapamycin addition (a very potent inducer of autophagy) also suppressed the cut phenotype (Figure 7A). What is more, in S. cerevisiae, autophagy has been shown as important to transition through mitosis conveniently and to prevent mitotic aberrations (DOI 10.1371/journal.pgen.1003245), and to impose a "genome instability" intolerance threshold by restricting NE expansion (DOI 10.1177/25152564231157706). In the first mentioned work, the authors proposed that autophagy may help raising aminoacid levels, which could assist cell cycle progression. This would have the virtue of reconciling the otherwise counterintuitive observation of the authors that rapamycin, which mimics nitrogen shortage, has the same effect than ammonium supplementation. It could be that ammonium supplementation mimics the downstream signal of a complex cascade initiated by actual aminoacid shortage, known to elicit autophagy-like processes (thus explaining why TAG raise, why the NE does not expand), and may culminate with launching a program for more accurate mitosis and genome segregation. In further support, TORC1 inhibition (as elicited by +rapamycin) is a central node that integrates multiple cues, not only nitrogen availability, but also carbon shortage (DOI 10.1016/j.molcel.2017.05.027), and even genetic instability cues (DOI 10.1016/j.celrep.2014.08.053), perhaps helping unravel why ammonium (via TOR) suppresses very diverse cut mutants, irrespective of whether they stem from lipid or chromatid cohesion deficiencies. These previous works should be considered by the authors.
Minor
There was no speculation about why the suppressions are partial.
Reference 15, cited in the text, is absent from the references list.
An explanation of which statistical tests were chosen and why they were chosen would be necessary.
In particular, for the analyses performed for Figure 5, one-way ANOVA should be applied instead of several t-tests.
A small section in M&M about how data in general was acquired, quantified, plotted and analyzed would be appropriate.
In the discussion, the sentence "this could mean that the signaling of availability of a good nitrogen source is by itself more important for mitotic fidelity than the actual physical presence of the nutrients" is a rather void sentence. Because, from the point of view of how a cell "works", the signal is important for the basic reason that it is supposed to represent the actual real cue eliciting it.
In the second part of Results, when the phenotype of cbf11 mutants concerning LD is mentioned, the authors said "aberrant LD content". It would be good if they can mention already at this stage which type of aberration this was: more LD? less LD? bigger? smaller?
What is the difference between the two SE bands in Figure S2? What exactly does SE-1 and SE-2 mean?
In Figure 2, the two graphs, presented side by side, would be more easily comparable if they could be plotted with the same y-axis scale.
In Figure 1A, it would be useful for non-specialists of this phenotype and non-pombe readers to show a control of how it looks to be "normal".
Referees cross-commenting
Overall, there is a striking consensus on the need to either address experimentally or remove the emphasis put on the TOR/mitotic fidelity connection, and of clarifying the counter-intuitive notions associated to the results obtained with rapamycin. Also, the need for revisiting / improving / justifying the means by which nuclear envelope deformation is assessed has been raised at least twice. I therefore guess that the common guidelines for improving this manuscript are clearly established.
Significance
In view of all of the above, my feeling is that the authors have put the accent on the TOR message, which is weak, while they have less put the accent on very strong and elegant findings they do: The authors discover that the suppression of cut(-like) mutant phenotype by addition of NH4 is not due to a correction in lipid metabolism defects, suggesting that the effect is indirect. In support, cut-like mutants whose molecular defect stems from lipid-unrelated defects are also suppressed by ammonium addition. What is more, the authors refine the type of cut-like mutants susceptible of being "corrected" by ammonium addition, finding a "novel definition of cuts" that invoke a temporal rule. This important observation has relevant implications:
- the long-standing interpretation (commented by the authors) that lipid-related cut mutants are defective because of insufficient synthesis of lipids to be able to grow their nuclear envelope membranes seems now inappropriate in light of their data;
- this has the immediate implication that perhaps the importance of nitrogen supplementation for accurate mitosis is no longer a fact that may apply only to (yeast) organisms performing closed mitosis, which may broaden the implications of their finding substantially;
- the nature of the temporal ruler they discover that makes defects appearing early susceptible of being suppressed by nitrogen supplementation deserves analysis in further works, thus opening an immediate perspective.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
In this manuscript, Zemlianski et al conducted careful analysis of a group of lipid metabolism mutants exhibiting mitotic defects. They demonstrate that supplementing a good nitrogen source in the medium can rescue the mitotic defects in these mutants. Notably, this rescue occurs independently of addressing lipid composition defects or altering the expression of lipid metabolism genes. Furthermore, the study implicates TORC1 activity as a key player in integrating nitrogen availability for the effective execution of mitosis. Despite well-controlled and meticulously executed experiments, the overall study lacks comprehensiveness and appears to add to the list of existing reports without offering mechanistic insights into the unexplained impact that the TOR pathway (or nitrogen source) has on mitosis.
Major Comments:
- The discussed link between Tor and mitosis is not a novel finding. An yet unexplained link between mitosis and the tor pathway has been previously reported by Yanagida lab and several years later by the Hauf Lab. Recent reports from the Hauf lab suggest that the relation of Tor to mitotic fidelity could be associated with the translational sensitivity of mitotic proteins to tor pathway or more directly to translational response to nitrogen availability for growth. Therefore, based on these leads it would be informative to see if the authors could expand on this idea and explore more on the mechanistic aspect of how nitrogen availability which feeds into tor functionality can influence mitotic progression.
Based on the results presented here, it is reasonable to assume that in the lipid metabolism mutants which are rescued on nitrogen supplementation, TORC1 would be rendered inactivate as these cells are apparently nitrogen starved. TORC1 inactivation is known to downregulate translation and could impact the levels of critical mitotic genes. Therefore, it warrants the testing of this possibility. 2. TORC1 is known to restrain mitotic progression by opposing securin-separase and TORC2 to aid G2 to M transition by regulating the timing of Cdc2 de-phosphorylation. Earlier studies have seen rescue of mitotic defects in securin and separase by tor2 mutants (TORC1). However, here the rescue is executed by increasing the activity of TORC1 or impairing the TORC2 pathway by mutations in tor1. It might be good to present this result in context of previous reports and discuss how mitotic defects exhibited by lipid metabolism defects differ from those of mutants in core mitotic pathway such as separase and securin. The current discussion section does not explicitly explain this difference.
Significance
The inquiry central to the present study, namely the investigation into the impact of the TOR pathway on the proficient execution of mitosis, holds significant scientific relevance. Unraveling the mechanisms through which TOR enhances mitotic fidelity has the potential to enhance current drug interventions and pave the way for the development of informed and efficient therapeutic strategies, particularly in cancer.However, in the current form, the study lacks mechanistic insights and does not add much to the already known literature as I have detailed above in my comment.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Zemlianski et al. present an analysis of the interaction between various mitotic phenotypes and Tor1-dependent nitrogen signaling in fission yeast. They make two interesting observations. First, the mitotic disruption caused by defects in lipid metabolism are not due to direct effects of such defects on mitotic mechanisms because the mitotic phenotypes can be suppressed by nitrogen supplementation without resolving the lipid metabolism defects. Second, the effects of nitrogen supplementation are due to nitrogen's effect on TOR signaling, not to the direct effect of the nutrient, because TOR mutants have similar effects. The work is straight forward, appears to be well done, and the conclusions are well supported by the data.
The one part of the manuscript that I do not understand is the effect of rapamycin on mitotic fidelity. The presented genetics suggest that nitrogen increases mitotic fidelity by activating TORC1. However, rapamycin inhibits TORC1, yet also increases mitotic fidelity. The authors need to state and address this apparent contradiction much more directly than they currently do (unless I badly misunderstand something, and then they need only explain it to me).
Referees cross-commenting
I agree with the comments of the other reviews. They all seem reasonable and addressable by the authors.
Significance
The significance of the work is limited by the lack of mechanistic insight or even a plausible hypothesis as to how TOR-dependent nitrogen signaling is affecting mitotic fidelity. In something of an understatement, the authors note that "the exact mechanism of the nitrogen-mediated rescue of mitotic fidelity remains to be characterised in detail". Until that mechanism can be at least suggested, these observation do not provide much biological insight into the question of mitotic regulation.
The work will be of interest to workers specifically involved in the regulation of mitotic fidelity in yeast, but, until more mechanistic insight can be generated, not much beyond that group.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
The authors show that mitotic fidelity can be improved by a good nitrogen source. Such 'rescue' applies to a range of unrelated mitotic mutants in fission yeast (S.pombe). Rescue appears not to be achieved by restoring lipid metabolism. Instead they argue for an indirect mechanism of suppression, and find that the TOR signalling network is involved. The paper is well written and the data clearly presented.
Major comments:
- most claims and conclusions are supported by the data. The catastrophic mitosis (Fig 1A) should be better described in this manuscript, rather than referring the reader to Ref. 18.
- 'rescue' is often used in figure legends and text (eg. Fig 5-7 titles). Is this the most appropriate word? In most cases this rescue is partial. Perhaps 'suppresses' is more appropriate?
- The authors write in the results: "taken together the ammonium-mediated rescue of mitotic defects.........seems to operate early in the cell cycle, prior to anaphase." Can they be more precise here? If cell cycle checkpoints were activated, to lengthen G2 or early M, this may not always help reduce chromosome mis-segregation. The authors have previously shown that combining a sac mutation with cbf11 did not rescue mitotic defects (ref 18). Have the authors tested these double mutants to see if the prolonged mitosis observed in cbf11 is shortened? Have other checkpoints been tested, apart from the sac?
- "Figure 7. The TOR network is critical for the ammonium-mediated rescue of Δcbf11 mitotic defects." The data shows that inhibiting the TOR network (rapamycin) has a similar impact to ammonia. These are not additive, and it is argued that both rapamycin and ammonium must affect the same pathway. However, they do not test the impact of nitrogen sources in the genetic tor mutant backgrounds. Where is the mechanistic evidence that tor signalling is required for the ammonium-mediated rescue?
- Optional: can the authors support their interpretation by providing some biochemical evidence that the tor signalling pathway is active in relevant conditions. For example, is tor signalling reduced when a good nitrogen source is added? Is tor signalling enhanced in a cbf11 mutant?
Minor comments:
- Methods: how was the area of nuclear cross-section measured (for Figure 2)?
- I question whether the statistical t-tests used are always appropriate. In some experiments (eg. Fig2 and 4C) should ANOVA be performed? I am no expert in this, but the authors should get advice.
Significance
The data presented will be of interest to those studying cell division, lipid homeostasis and TOR signalling networks. However, in my opinion the mechanistic link with TOR signalling (Fig 7) should be strengthened.
I am an expert on mitotic regulation and chromosome segregation in yeast.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
__Reviewer #1 (Evidence, reproducibility and clarity (Required)): __ Summary In this manuscript the authors address the largely unexplored role of micro RNAs (miRNAS) in Drosophila melanogaster brain development, in particular in neural stem cell lineages. The authors for the first time adapt the Ago protein Affinity Purification by Peptides (AGO-APP) technology for Drosophila. They show that this technique works efficiently in neural stem cell lineages and identify several cell type specific active miRNAs. Through a series of bioinformatic analysis the authors identify candidate mRNA targets for these miRNAs. The authors then functionally analyse the role of some of the identified miRNAs, focusing on miRNAs significantly over-represented in neuroblasts.
By overexpressing Mir-1, the authors demonstrate that this miRNA effectively targets the UTR of Prospero, resulting in the overproliferation of neuroblasts. In a parallel experiment, overexpression of Mir-9c causes neuroblast differentiation defects, similar to the phenotype caused by nerfin-1 mutants, a previously validated target. Loss of function analyses show that knock down of single miRNAs has little functional effects in neuroblast size, showing that the individual effect caused by miRNAs knock down is likely compensated. In contrast, a sponge against a selected group of miRNAs leads to a reduction in poxn positive neuroblasts. Overall these results validate the approach and support the theory that miRNAs cooperate in functional modules during stem cell differentiation.
We thank Reviewer 1 for its overall positive review. We are grateful for the useful suggestions and we believe the additional experiments we have performed and added strongly improve the quality of the study and will hopefully satisfy the reviewer's concerns.
Comments
Title: As the authors do not really explore exit from neural stem cell state this should be altered. The authors do not assess for the levels of any temporal genes, nor other markers of neural stem cell state exit (e.g. nuclear Pros).
We now have further evidence that the identified microRNA module preserves neuroblasts, in particular in the optic lobe. We have modified the title accordingly: "In vivo AGO-APP identifies a module of microRNAs cooperatively preserving neural progenitors"
The observed effects, with the available experiments, rather say that neural stem cell state is not maintained in general, not being clear what mechanistically happens to these cells expressing Cluster 2 sponges. The described phenotype caused by the expression of sponges against individual miRNAs also rather shows a blockage in differentiation.
-The miRNAs analysed were found in Ago-APP to be predominantly active in neuroblasts, but was there any phenotypes of OE or KD in neurons or glial cells?
Since the analyzed miRNAs were either not or poorly expressed in neurons or glia overall, it seemed less essential to investigate potential phenotypes in these cells. However, we did mis-expressed miR-cluster1sponge and miR-cluster2sponge in neurons and in glial cells (using elav-GAL4 and Repo-GAL4, respectively) throughout development, and did not observe any major impact on viability. All pupae were able to hatch.
In addition, we show now that mis-expression of the miR-cluster2sponge (that induces strong phenotypes in neuroblasts) specifically in the wing pouch throughout development did not lead to any phenotype in the adult (e.g. wing size (tissue growth), patterning defects (cell differentiation)) (Fig6K,L). Importantly, this experiment rules out unspecific effects of the sponge construct on cell fitness, and highlight the tissue-specificity of the phenotype.
- The authors obtained a phenotype when using a sponge against Cluster 2 in poxn neuroblasts. Is this specific for these 6 neuroblasts? What happens if this sponge is expressed with a pan-neuroblast driver in central brain/VNC/optic lobe? These experiments should be included as they would show if these are conserved effects for all neuroblasts.
We already showed in Fig.4B of the first version of the manuscript (using a flip-out approach in clones) that miR-cluster1sponge or miR-cluster2sponge expression leads to an overall reduction in the neuroblast size in the VNC and CB.
We have now added four more experiments, all suggesting that these sponges specifically affect type I neuroblasts:
- using the pan-neuroblast driver nab-GAL4, we show that neuroblasts in the VNC and CB expressing these sponges are significantly smaller in late L3. Also, their number is reduced, indicated that some neuroblasts are eliminated (Fig.4C-G).
- Using pox-GAL4 (already in first version) and eagle-GAL4, we show that different subset of type I neuroblasts in the VNC exhibit different sensitivities to the sponges (from light/medium - neuroblast shrinkage, to high - neuroblast elimination) (Fig.4H-J, S6C-E)
- using the dpnOL-GAL4 driver, that is specific and strongly active in medulla neuroblasts in the optic lobe, we demonstrate that both, miR-cluster1sponge and miR-cluster2sponge, induce neuroblast shrinking. In addition, we find that the width of the medulla neuroblast stripe is strongly reduced when using the miR-cluster2sponge, providing further evidence for precocious neuroblast elimination (6C,D). Importantly, this leads to a smaller medulla in late L3 (Fig 6F), implying that in these conditions, medulla neuroblasts produce fewer neuronal progeny. Because medulla neuroblasts generate GMCs that undergo a single division, they are also considered as type I neuroblasts
- using a worniu-GAL4, ase-GAL80 driver, that is specifically active in type II neuroblasts, we show that expression of miR-cluster1sponge and miR-cluster2sponge does not affect neuroblast size and the number of intermediate progenitors (Fig 6H-J). Together, these additional experiments in different types of neuroblasts and in non-neural tissue (the wing pouch, see above) demonstrate a type I neuroblast-specific effect. Our new results also imply that the microRNA module is active in most, if not all type I neuroblasts. In contrast, it is not present or not affecting differentiation genes in type II neuroblasts. Importantly, in Type II lineages, intermediate progenitors produced by neuroblasts undergo themselves a few rounds of divisions before differentiating, unlike GMCs that give rise to two differentiated progeny after a single division. Therefore, the dynamics of differentiation is different in the two lineages, involving a distinct sequential expression of differentiation factors, and possibly different miRNAs.
The authors do different analyses in different brain regions, making also a hard to conclude if all brain regions behave the same way. As authors show that some miRNAs are only expressed in sub-sets of cells, this becomes particularly relevant.
The new set of experiments in different types of type I neuroblasts and in type II neuroblasts, presented above, addresses the points on the specificity of the microRNA module.
Could sponge of cluster 1 cause a phenotype if it had been expressed in other neuroblast lineages?
Yes, it can. See our new experiments discussed above.
__ __In addition, a discussion of the results obtained from sponge 1 should be included and put in context with miRNA function, technical limitations, levels/cell, targets, pitfalls of analyses, sponges, etc.
We have more carefully acknowledge that sponge mediated knock-down is not very efficient and dose-dependent. We also clarified that other approaches will be required in the future to rigorously assess the specificity of each miRNA/mRNA interaction as well as their cooperativity.
For example: "In contrast to genetic miR-1KO (Fig. 3O), we found that sponge mediated knock-down of this miRNA, or of other individual miRNAs in the module, had never a significant effect on neuroblast size (Fig. 4B), likely because the inhibition induced by sponges is incomplete. However, expression of either multi-sponge 1 or multi-sponge 2 significantly reduced neuroblast size in a dose dependent manner - two copies of the transgene exacerbate the phenotype (Fig. 4B)."
We also state at the end of the discussion: "In the future, the combination of Ago-APP with complementary genetic strategies will be required to rigorously assess the specificity of each miRNA/mRNA interaction as well as their cooperativity."
It would also be interesting to further explore the phenotypes caused by Mir-1 sp expression - are there any milder lineage defects?
We observed an increase in Prospero expression and a decrease of the neuroblast size in miR-1null mutant neuroblast clones (Fig.3L-O). These phenotypes are not observed when miR-1sponge is mis-expressed. This is probably due to the fact that miR-1sponge expression leads to only a partial knock -down of miR-1. Moreover, we have added data about the expression of miR-1sponge in medulla neuroblasts in the optic lobe, showing an absence of obvious phenotype when assessing neuroblast size and neuroblast maintenance. This contrasts with expression of miR-cluster1sponge and miR-cluster2sponge (Fig. 4F,G). This new data is in line with our hypothesis that the knockdown of miRNAs of a common module synergize/cooperate to produce the phenotype expected from the deregulation of their common target mRNAs.
Any defects in other brain regions/lineages, like in type 2 neuroblasts that usually do not express Pros?
As suggested by the reviewer, and discussed above, we tested expression of miR-cluster1sponge and miR-cluster2sponge in type-II neuroblasts using the worniu-GAL4, asense-GAL80 driver (Neumüller et al., 2011). Interestingly, in contrast to type I neuroblasts in VNC, CB and OL regions, we did not observe neuroblast shrinking or changes in INP numbers. This suggests that either the self-renewing state is more robust in Type II than in Type I neuroblasts, or that that the uncovered miRNA module is more specific to type I neuroblasts than to type II. We have added and discussed these important data in Fig 6H-J in the revised version.
Ago-APP identifies cell type specific miRNAs in larval neurogenesis section: - "...29oC... allows Gal4-dependent expression (Fig.1B,C)" - this description of Gal80ts/Gal4 works is not correct, expression is not prevented.
Gal80 directly binds to Gal4 carboxy terminus and prevents Gal4-mediated transcriptional activation.
We have tried to clarify this point in the revised version.
"Thus, when x-GAL4, tub-GAL80ts, UAS-T6B animals are maintained at 18{degree sign}C (restrictive temperature), GAL80 binds to Gal4 and inhibits its activity. *Switching to 29{degree sign}C (permissive temperature) for 24 hours inactivates GAL80, allowing for GAL4-mediated transcriptional activation of UAS-T6B" *
- Fig S1 - nab-Gal4 also drives expression in GMCs and neurons, rephrase text. Is nab-Gal4 expressed in optic lobe, VNC and central brain neuroblasts?
nab-GAL4 drives UAS-T6B expression in neuroblasts (in the VNC and in the CB), but also at lower levels in the medulla neuroblasts of the OL.
We now describe this expression more precisely in the text and in Fig.S1C:
"nab-GAL4 was used for T6B expression in all neuroblasts. However, because GAL4 is inherited by neuroblast progeny, T6B will also be present in GMCs and a few immature neurons (Fig.S1A,C)24. Of note, nab-GAL4 is highly expressed in the neuroblasts of the ventral nerve cord (VNC) and of the central brain (CB), and weaker in the neuroblasts of the optic lobe (OL) (Fig. S1C)".
- "20 late larval CNS" - mention the exact stage
We mention now the precise stage: the wandering stage.
- Providing a more detailed and interpretive description of Figures 1D and 1E would greatly enhance their clarity. Currently, the descriptions of these pannels resemble typical figure legends.
We now provide a more detailed description of the data, emphasizing that they are consistent with previous studies on specific miRNAs.
- Fig. 1F,G,H - It is not clear why the authors sometimes use the optic lobe, other ventral nerve cord as both regions have both neuroblasts, neurons and glia. Are the drivers used for Ago-APP not expressed in all brain regions?
We now document the activity of the GAL4 drivers used for AGO-APP throughout the entire larval central nervous system in Fig.S1B-D. We also show images of the entire larval central nervous system for the different reporter lines (Fig S1E-K) and focus on regions of interest in the main Fig 1F-M with quantitative measurement of reporter gene expression.
- Show "data not shown" for 1H.
It is now shown in Fig. 1M'.
- Fig. 1F, G, H - Please quantify intensity levels in the different cell types to facilitate comparison with Ago-APP graphs. Include in figure legend what is "cpm".
Quantification of intensity levels is now represented in Fig. 1F,I and L. Cpm means "counts per millions". We added this in the figure legend.
A regulatory module controlling neuroblast-to-neuron transition section: - Fig. 2C - A more detailed explanation in text is required in addition to what is mentioned in the figure legend. Including a brief summary/conclusion of the results would be helpful. If possible, add in X-axis 1, 2, 3.
We clarified this point in the text:
"We used the Targetscan algorithm1 to determine the predicted target genes of each neuroblast-enriched miRNA. Next, we investigated the correlation between the identified miRNAs and the presence of their targets, based on independently generated mRNA expression data44.
*This analysis showed that neuroblast-enriched miRNAs predominantly target mRNAs that are normally highly expressed in neurons (Fig. 2C), consistent with a differentiation inhibiting function." *
- Figure S2B - as mentioned in the text elav is expressed from the neuroblast, although this is not represented in the figure.
I In this scheme, we depict the expression of proteins, not the presence of mRNAs. elav mRNA is indeed present at low levels in neuroblasts but the protein is absent from both neuroblasts and GMCs (as shown by all our immunostainings against Elav). This fact strongly suggests post-transcriptional repression of elav mRNA (possibly by miRNAs). This likely explains why the elav-GAL4 is also active in neuroblasts. It also suggests some post-transcriptional mechanisms to silence elav in the neuroblasts/GMCs (miRNAs?)
It is hard to tell what are young vs maturing neurons in the cartoon, pls add a label/legend.
We added new labels in Fig S2B to uncouple neuronal maturation from temporal identity. We hope it is clearer now.
- Fig.3I - please shown a control brain. The merge images are not easy to see. I think it would be nicer to change the figures to be color-blind friendly.
We added the control brain in Fig 3I for VNC clones, and Fig S3A for OL clones.
We also changed all the figures to be color-blind friendly.
- Fig. 3K,L - why is this now done in the VNC?
We now focus on the VNC in the main Figure 3 (Fig.3I,J,K,L,N), and show similar phenotypes in the OL in the Supplemental Figure S3 (Fig.S3A-C).
- Are there any lineage defects when Mir-1 sp is expressed?
See previous comment on miR-1sponge.
- Based on which parameters/variables of the predicted targets was the Hierarchical clustering done? A brief explanation would help the interpretation of the results and of the choice of the clusters that were further analysed.
Hierarchical clustering is now explained in the "Bioinformatics analysis" section of the Material & Methods section with an additional matrix available in Table S1.
- "revealed the presence of three main groups" - this should be rephrased as this "grouping" was done arbitrarily by the authors and not by hclust. Hclust is set to merge individual clusters/sub-trees up to 1. Furthermore, a more detailed explanation that supported this decision of choosing this 3 large clusters should be included.
See previous question.
- Fig. 4B, S4B - please include in legend how were these clones generated. S4B - scale bars missing.
We included the missing information and added the missing scale bars.
- Fig. 4H - was the ratio of UAS/Gal4 kept in both experimental conditions? Increasing the number of UAS/Gal4 leads to weaker expression of UAS and thus could lead to a weaker phenotype. Including in legends genotype details would help.
This is a very good point as the number of copies of the UAS and/or GAL4 can influence transgene expression and consequently the phenotype observed. We indeed kept the ratio of UAS/GAL4 in both experimental conditions. The exact genotypes for the experiments are:
Hs-FLP/+; act>stop>Gal4, UAS-GFP/+; UAS-RFP/UAS-miR-1
Hs-FLP/+; act>stop>Gal4, UAS-GFP/UAS-cluster2sp; UAS-miR-1/+.
To address this important issue in the manuscript, we added a table (Table S3) listing the precise genotypes for each experiment.
Minor - Abstract: "a defined group of miRNAs that are predicted to redundantly target all..." This is only predicted, not experimentally shown, this should be modified accordingly.
Although the request here is not clear to us, we made a few minor changes to the abstract that we hope will satisfy the reviewer.
- Intro: "Elav, an RNA binding protein, is expressed as soon as post-mitotic neurons..." - Elav is expressed already in neuroblasts, as also mentioned by the authors in the result section. Correct, add references.
elav is indeed already transcribed in neuroblasts and GMCs. However, the protein is absent in the two cell types (as shown by all our immunostainings), and only present in neurons. Thus, there is a level of post-transcriptional regulation that prevents elav mRNA translation in neuroblasts and GMCs (likely at least partly mediated by miRNAs). This also explains why in elav-GAL4; UAS-T6B brains T6B is expressed in neuroblasts and GMCs, as the GAL4 mRNA transgene is not submitted to the same post-transcriptional regulation.
- Last paragraph of Intro (Bioinformatic analyses...) - it is not easy to understand the content of this paragraph. Rewrite to improve clarity.
The paragraph has been rewritten for more clarity with the addition of Table S1
- All legends: Please mention which developmental stage is being analysed in each panel (i.e. wandering 3IL, hours After Larval Hatching, hours After Puparium Formation, or other), in which brain region the analyses/images are being done.
The CNS regions are now systematically annotated in the figures. All experiments have been done in wandering L3 (except for the new Fig.6 K,L, where the experiment is done in the adult wing). We now systematically mention in the text and legend the developmental stage at which the experiment is performed.
Please include more detailed information about the genetics in figure legends.
We added Table S3 that describes the exact genotype of all crosses done in this study.
- Please include brief explanation of the genetics of miR-10KOGal4 line.
This is now also explained in the new Table S3.
- Why are miRNAs sometimes referred as (e.g.) "miR-1" and others "miR-1-3p"?
The miRNA found enriched (and thus active) in the neuroblast is the miR-1-3p strand. The UAS-miR-1-sponge has been designed to be complementary to the miR-1-3p strand, and is then referred as miR-1-3psp in the text and figure legend. The miR-1 null clones have been made using the miR-1KO allele, which inactivates the entire locus and therefore both, the miR-1-3p and miR-1-5p strands. This is referred to as miR-1KO or miR-1 in the text. Finally, constructions used to mis-expressed miR-1 and other miRNAs are made with the pre-miRNA, meaning that both strands of the miRNA are mis-expressed. This is then referred as miR-1 in the text.
- Fig. 3I-M - stage of the animal? 3M - in which brain region is this?
We have systematically mentioned the brain region on panels on all figures.
- Fig. 3N - can actual sizes be additionally shown, or at least averages mentioned in text?
Average sizes are indicated in the legend of new Fig. 4F.
- If non differentially expressed miRNAs, or miRNA with other expression patterns, had been analysed to determine their targets in the sub-set of genes expressed in neuroblasts (from the transcriptome) would different targets been found? Meaning, how specific are these binding patterns for the selected miRNA?
This is an interesting and important point. To answer, we added a new analysis (Fig.S2C), where the total number of target sites in the 3'UTR of the pro-differentiation/temporal network genes are shown for different categories of miRNAs: neuroblast-enriched miRNAs (analysed in this study), neuron-enriched miRNAs, glia-enriched miRNAs, and random miRNAs not expressed in the brain. This analysis shows that neuroblast-enriched miRNAs exhibits a higher level of promiscuity with the iconic pro-differentiation/temporal genes than other identified or random miRNAs, arguing for functional relevance.
**Referees cross-commenting**
*think this study is very interesting as it optimizes a novel technique in Drosophila for the investigation of cell-specific active miRNAs, and it globally addresses the role of miRNAs in neural stem cell lineages. Although the authors do not explore deeply the biological effect of these miRNAs in neural lineages, I think that the technical contribution and the identification of some miRNA targets is relevant on its own. The authors use Prospero as an example, which is very interesting, as this gene is required to be lowly expressed in Neuroblasts and then upregulated during differentiation. Which the authors propose can be regulated by miRNAs, identifying a novel player in this differentiation mechanism. I do not feel the authors need to perform additional experiments to corroborate their findings, as they are well supported by the experiments presented. I do agree that the authors did not explore deeply the biological effect in neural lineages, and the claims regarding premature terminal differentiation, nerfin, etc need to be toned down accordingly.
* Reviewer #1 (Significance (Required)):
This study is both a technical and conceptual advance. It is very interesting as it optimizes a novel technique in Drosophila for the investigation of cell-specific active miRNAs, and it globally addresses the role of miRNAs in neural stem cell lineages. However, the text, especially in the results section, could benefit from increased detail to enhance the comprehension of the experiments, results, and conclusions. Given that the functional analyses were not conducted at a very detailed level, there exist certain instances of over-interpretation, which could be easily addressed either by revising the text or by incorporating additional experiments, as elaborated upon below. This manuscript will be interesting for research fields interested in stem cell differentiation, brain development, micro RNAs, both for Drosophilists and scientists working with other animal models. I am an expert in Drosophila brain development.
__Reviewer #2 (Evidence, reproducibility and clarity (Required)): __ Summary MicroRNAs (miRNAs) have a well-established role in fine-tuning gene expression. Because the mechanisms by which miRNAs recognize specific target transcripts are poorly understood, their functionally relevant targets in the physiological context are mostly poorly defined. Studies in vertebrates have suggested that miRNAs play a prominent role in regulating cell type specification during brain development. Insight into miRNA regulation of target selection will improve our understanding of neural development. Cell type-specific gene expression patterns and functions in the neural stem cell (neuroblast) lineage in the fly larval brain are well characterized. The fly genome is compact, and gene redundancy including miRNAs is significantly less than vertebrates. For these reasons, the authors chose to investigate how miRNAs regulate cell-state transitions by first establishing a comprehensive miRNA expression profile for major cell types in the fly larval brain. They combined the AGO-APP strategy and the GAL4-UAS inducible expression system to pull-down cell type-specific miRNAs from fly larval brain. The authors focused on miRNAs that are enriched in neuroblasts and examine how multi-miRNA modules regulate the maintenance of an undifferentiated state in neuroblasts. The cell type-specific inducible AGO-APP system introduced in this study is innovative and allows for systematic identification of miRNAs that most standard RNA-sequencing techniques missed in previously published datasets. The technological note sets high promise for this study, but the findings appear tame. It is my opinion that there are a number of shortcomings that can improve the rigor of this study. For example, strategies used to determine spatial expression patterns of miRNAs as well as to validate miRNA target genes are indirect with high likelihood of caveats. The choices of candidate target genes to assess the function of miRNAs in the cell state transition appear counterintuitive.
We thank the reviewer for qualifying our study as "technologically excellent" and for emphasizing the "innovative character of AGO-APP" and the potential of such studies to "be hugely significant to the general audience".
We are aware that there could be ways to more rigorously and systematically investigate the interactions between miRNAs and their targets and assess their cooperativity. Beyond in vitro luciferase assays (an approach we have used in this study), this would ideally involve multiple new transgenic assays, with point mutations in various miRNA sites in the 3'UTR of predicted target genes as proposed by Reviewer 2. Also, measuring the direct effect of miRNA knockdown on its target is notoriously difficult as it can be modest (and only be revealed through the cooperative action with other miRNAs, as proposed in this study), and sometimes not detected by measuring mRNA levels (e.g. by transcriptomic approaches or FISH).
One of our aims in the future is to develop such non-trivial approaches, which will take a considerable amount of time and work. At this stage we believe that it would go beyond the scope of the present study which aims at illustrating how introducing a new technology for miRNA isolation (AGO-APP) can help to reassess important questions on miRNA biology and function (e.g. miRNA cooperation within in the context of developmental transitions). We discuss this point now in the last paragraph of the discussion in the revised version.
Our unbiased AGO-APP results reveal a group of neuroblast enriched miRNAs that are predicted to target multiple times pro-differentiation genes (prospero, elav, nerfin-1, brat) while not targeting stemness genes such as miranda, worniu, inscuteable, deadpan, grainyhead. Mutation in pro-differentiation genes are known to either promote neuroblast tumors (prospero, nerfin-1, brat ) (https://doi.org/10.1016/j.cell.2006.01.03; 10.1101/gad.250282.114) or perturb neuronal differentiation (elav) (https://doi.org/10.1002/neu.480240604). On the other hand, mis-expression of these genes in neuroblasts often promotes shrinkage, precocious differentiation and /or cell cycle-exit (10.1016/j.cell.2008.03.034 ; 10.7554/eLife.03363 ; 10.1101/gad.250282.114). Therefore, bioinformatic prediction and previous studies made it likely that GOF of the neuroblast-enriched miRNAs would lead to neuroblast expansion or differentiation defects, and that LOF would lead to neuroblast shrinkage, cell cycle exit or differentiation. All these predictions are experimentally validated in our study. To reinforce our data, we have performed a number of additional experiments that are described below.
Furthermore, the authors provided no rationale as to why they chose cell types that are not in the brain (such as wing cells and cells in the optic lobe) to assess the phenotypic effect of manipulating miRNAs.
All our analysis were done either in the different types of neuroblasts found in the central nervous system (CNS) composed of the ventral nerve cord (VNC) (equivalent to vertebrate spinal cord) and brain (comprising the central brain (CB) and the optic lobes (OL) (10.1016/j.neuron.2013.12.017) - not to be confused with eye imaginal discs that produce the retina but do not contain neuroblasts. We tested the role of the neuroblast-enriched miRNAs in all neuroblasts of the CNS based on the pan-neuroblast activity of the nab-GAL4 driver used for the AGO-APP experiment. We then focused on different types of neuroblasts using lineage specific GAL4 drivers (poxn-GAL4, eagle-GAL4, dpnOL-GAL4, type II-GAL4). This is shown in the entirely revisited last paragraph of the results (Fig 4, 5, 6, S6 and S7). These experiments demonstrate that sponges simultaneously targeting several miRNAs of the module only affect type I neuroblasts but not type II neuroblasts.
To investigate whether miR-1 directly regulates prospero mRNA in vivo, we used a tissue where prospero is not normally expressed (the wing pouch of the wing imaginal disc in late l3 larvae), allowing us to test how over-expressing miR-1 post-transcriptionally affects versions of prospero mRNAs that either possess or not its endogenous 3'UTR. The obtained results are consistent with in vitro luciferase assays, and miR-1 gain-of function in neuroblasts and GMCs, supporting the hypothesis that prospero mRNA is a direct target of miR-1 via its 3'UTR. We have clarified these points in the revised version of the manuscript.
Using solely a reduced cell size as the functional readout for "precocious differentiation" is not rigorous and should be complemented with additional measures.
Reduced neuroblast size always precedes neuroblast differentiation and has been widely used as functional readout of precocious differentiation (this is more clearly emphasized and referenced in the revised version). We have now also observed this phenotype in the neuroblasts of the optic lobe (Fig 6), together with precocious "plunging" of old neuroblasts in the deep layer of the medulla (Fig S7G), another sign of differentiation. These experiments show that the shrinkage phenotype is robust to all type I neuroblasts (medulla neuroblasts of the optic lobe can also be considered as type I neuroblasts because they generate GMCs that undergo a single division).
Moreover, opposite to precocious differentiation induced by the simultaneous knockdown of multiple miRNAs of the neuroblast module, we now show that mis-expression of many of the miRNAs of the module prevents proper neuronal differentiation (miR-1, miR-9, miR-92a, miR-8) (Fig S5). Taken together, these experiments strongly suggest that the miRNAs of the module have the ability to block neuronal differentiation and that they represent a functional module in type I neuroblasts.
Major concern: 1. The authors should use a direct method to confirm the expression pattern of identified miRNAs such as miRNA scope (ACD) in the whole mount brain instead of indirect methods such as reporters.
Such techniques are not trivial and do not represent a standard in Drosophila. Instead, the reporter genes we have used in our study have been already validated in other studies to reflect the expression of particular miRNAs in different tissues. We thus have taken advantages of these available lines to correlate expression patterns as reflected by transgenics with our AGO-APP experiment. All reporter lines tested quantitatively support the AGO-APP data as now shown in the revised Fig 1F,I,L.
The entire figure 3 aims to provide evidence to support that prospero mRNA is a direct target of miR-1-3p. These convoluted experiments with significant caveats should be replaced with mutating the endogenous miR-1-3p binding sites in the 3'UTR of the prospero reading frame, and demonstrate that the endogenous prospero transcript level is increased by sm-FISH. The authors could also use this novel allele to assess the phenotypic effect of "unregulated prospero" in the larval brain.
It would indeed be an interesting experiment to perform to show that miR-1 directly regulates pros RNA in vivo. However, our miR-1 mutant clones suggests that miR-1 on its own has only a small contribution to prospero mRNA regulation during the neuroblast-to-neuron transition. This could be due to the low physiological levels of miR-1-3p in neuroblasts and to the fact that several miRNAs of the module may act partly redundantly and collaboratively to maintain the correct level of prospero mRNA. Thus, in this case, it is well possible that changes in the endogenous prospero mRNA transcript may not be significant and detected by smFISH, unless more miRNA sites are mutated. Such an experiment would involve the generation of several new transgenic lines using the CRISPR technology, which represents a long-term project.
Again, these approaches are powerful and we agree that they would represent a more rigorous assessment of miRNA cooperation. But we feel that it goes beyond the scope of this article, as mentioned above.
The effect of overexpressing mir-1 on the prospero transgene with its 3'UTR vs without 3'UTR cannot easily compared since the UTR might be regulated by other regulatory mechanisms in addition to mir-1.
To minimize the potential effect of other regulators, we only compare conditions where the only difference is the presence or absence of miR-1. We do not directly compare levels of Prospero with its 3'UTR vs without 3'UTR. However, there is indeed still the possibility that miR-1 overexpression would change the expression of a protein that regulates prospero mRNA via its 3'UTR.
Considering this we have tuned-down our conclusion concerning this part in the revised version of the manuscript and now used the sentence:
"These experiments performed in two different cellular contexts strongly suggest that prospero mRNA is a direct target of miR-1-3p."
How could the author use evidence-based strategy to demonstrate that massive amplification of Mira-expressing cells induced by overexpressing mir-1 in the optic lobe is indeed due to mis-regulation of prospero instead of mimicking the prospero-mutant phenotype?
First, we noted that miR-1 overexpression in neuroblast clones causes neuroblast amplification in all regions of the CNS (not only in the optic lobe) at the expense of neuronal differentiation. This is now shown in Fig 3 and S3.
Second, multiple chemical or genome-wide RNAi screens have been performed (Gould lab, Chia lab, Knoblich lab, etc) to identify genes whose downregulation causes efficient neuroblast amplification (10.1186/1471-2156-7-33 ; 10.1016/j.stem.2011.02.022). In VNC type I neuroblasts, only inactivation of prospero or miranda can lead to efficient neuroblast amplification in late larvae, generating tumour-like structures devoid of neurons. We find that while Miranda is highly expressed in neuroblast clones overexpressing miR-1 (Fig 3J), Prospero is completely absent, suggesting that it is efficiently silenced by miR-1 overexpression, and therefore responsible for the observed phenotype. This new result is now added in Fig.S3D. It is very unlikely that the down-regulation of another gene is responsible for this phenotype. However, we cannot exclude that other genes are deregulated that contribute to this phenotype in addition to prospero knockdown.
Similarly, what is the evidence that the phenotype associated with mir-9a knockout is due to mis-regulation of nerfin-1?
In contrast to prosperoKD clones that are devoid of neurons, nerfin-1 mutant clones are known to be composed of a mix of neuroblasts and neurons (Fig S4E,G) (10.1101/gad.250282.114 ). When over-expressing miR-9 in neuroblast clones in the VNC, we observed a strong downregulation of nerfin-1 (Fig S4A, C) showing that nerfin-1 is a likely target of miR-9. However, downregulation is not complete which could explain why we do not see neuroblast amplification in the VNC (Fig 4F). Together with the significant up-regulation of nerfin-1 upon miR-9sponge expression, and the results of our luciferase assays, these data are consistent with nerfin-1 being a direct target of miR-9. Finally, the fact that overexpression of miR-9 in the optic lobes triggers phenotypes very similar to loss of function of nerfin-1 (but different from loss of function of prospero which is upstream of Nerfin-1 in epistatic tests) suggests that down-regulation of nerfin-1 is at least partially responsible for the phenotype (Fig S4D,E).
Again, we cannot exclude that other deregulated targets contribute to the phenotype.
Most of look-alike mutant phenotypes presented by the authors appear to occur in the OL. Is there any reason why cells in the visual center, which is not a part of the brain, appears to be more suspectable to loss of function of miRNAs? This is particularly important when manipulating the same miRNAs appear to have very subtle effects on VNC neuroblasts.
Optic lobes (OL) are a part of the brain (10.1016/j.neuron.2013.12.017). Indeed, each OL constitutes a large region located on both sides of the central brain that integrates signals from retinal photoreceptors coming from the retina in the eyes. Moreover, medulla neuroblasts in the OL can be considered as type I neuroblasts because they generate GMCs that undergo a single division, in contrast to intermediate progenitors (INPs) produced by type II neuroblasts.
In the original version of our manuscript, we mainly showed gain-of-function in the OL , as for some of the miRNAs the phenotypes were more striking than elsewhere. We have now more systematically tested our gain-of-function and loss-of-function in both the VNC (type-I neuroblasts) (Fig 3, 4, 5, S3, S4, S6) and in the OL (medulla neuroblasts) (Fig 6, S4, S5, S7).
Results in the VNC are presented generally in the main figures, while results in the OL are presented mainly in supplemental figures; but phenotypes obtained in both parts are now clearly described in the text of the revised version.
How do the authors know that multi-sponge 2 expression leads to loss of stemness potential in neuroblasts? Any additional evidence that supports precocious differentiation but not death or cell cycle exit?
This is indeed an important point which we have investigated further in the new version. We now show that inhibiting apoptosis partially rescues neuroblast elimination but not shrinkage when miR-cluster2sponge is expressed in the poxn lineage in the VNC (Fig.4L,M). This shows that VNC neuroblast can disappear by apoptosis upon miR-cluster2sponge, but that shrinkage precedes apoptosis. We also show that optic lobe neuroblasts also shrink upon miR-cluster2sponge and are precociously eliminated as indicated by the thinner neuroblast stripe, by a mechanism independent of apoptosis (Fig 6C,D, S7F). Indeed, the neuroblast stripe in the optic lobe remains free of anti-activated caspase 1 (Dcp1), a widely used label of apoptotic cells, upon miR-cluster2sponge (Fig S7F). Finally, we also show precocious "plunging" of the old OL neuroblasts deep in the medulla, another sign of precocious differentiation (Fig S7G).
Therefore, these experiments reinforce the conclusion that the neuroblast-enriched miRNA module is involved in neuroblast maintenance and that down-regulation of this module leads to the progressive loss of the neuroblast state.
Lastly, we show that miR-cluster2sponge has no effect on type II neuroblasts or wing imaginal discs arguing for a specific type I neuroblast effect (including VNC, CB and medulla neuroblasts).
Again, how do the authors know that mir-1 overexpression efficiently silenced prospero mRNA in neuroblasts and GMCs in Fig. 4F?
This relevant question is addressed in our response to questions 2 and 3.
Have the authors considered other targets to better assess the function of these miRNAs enriched in neuroblasts. For example, could these miRNAs function to dampen the expression of genes that are required for maintaining these cells in an undifferentiated state? Several studies using the neuroblast model suggest that the expression of these genes needs to be downregulated at the transcriptional and post-transcriptional levels. Perhaps, these miRNAs might target these "stemness" transcripts instead of "differentiation" transcripts. Is there evidence for or against this possibility?
This is definitely a good point that we have now discussed in the revised version. We found that neuroblast identity genes (e.g. Mira, Dpn, Insc, etc) are not targeted by the miRNA module. However, the module of miRNA in late L3 neuroblasts also appears to target the early temporal genes (Chinmo, Imp), that are strongly oncogenic and stemness promoting. These need to be silenced in late L3 to ensure that neuroblasts stop dividing during metamorphosis ( 10.7554/eLife.13463). Therefore, there is indeed a strong possibility that the miRNA module we have identified in late L3 both maintains stemness by inhibiting differentiation genes and dampens stemness by silencing early temporal genes ensuring timely elimination in pupal stage. We are actively working on the regulation of temporal genes by microRNAs along development and will describe this in details in another study.
This point was clarified in the discussion as followed:
"In this context it is interesting to note that, in addition to differentiation factors, the early temporal factors Chinmo and Imp are predicted to be highly targeted by the neuroblast-enriched miRNA module. Given the strong oncogenic potential of these genes30*, it possible that the microRNA module not only protects neuroblasts against precocious differentiation but also protects against uncontrolled self-renewal. Therefore, in principle the same miRNA module could control neuroblast activity through the control of both self-renewal and differentiation, two seemingly opposing biological activities." *
Minor point 1. There are a number of mis-leading statements throughout the manuscript. -In the abstract, the authors indicated "isolate actively inhibiting miRNAs from different neural cell populations in the larval Drosophila central nervous system". For example, the expression patterns of Nub-Gal4 an Elav-Gal4 drivers appear to be partially overlapping in multiple cell types and might be active in the visual center (optic lobe). If true, it was unclear to me what neural cell types were actually used in their analyses and how they could confidently indicate that cell types in the central nervous system were used in their study. Aren't there more specific Gal4 drivers or more sophisticated genetic tools available to increase the purity of cell types? If not, the alternative could be a much more precise secondary screening step to directly determine where these miRNAs are actually detected instead of relying on indirect readouts of where they might be expressed.
The expression patterns with additional figures are now more clearly described in the main text and in Fig.S1C,D.
We are in the process of using other GAL4 drivers that target more specific populations of neurons. But this is beyond the scope of this first study and will be published later.
-The statement "GMCs lacking Prospero, Nerfin-1 or Brat fail to differentiate and reacquire a neuroblast identity" is very problematic. Nerfin-1 does not appear to be expressed in GMCs according to Fig. S2B. Furthermore, Froldi et al., 2015 suggested that Nerfin-1 appears to prevent activated Notch from reverting neurons to ectopic neuroblasts.
Indeed, Nerfin-1 is not expressed in GMCs but in immature neurons to stabilize neuronal identity and prevent reversion as shown by Froldi et al. and other studies (DOI: 10.1101/gad.250282.114 ; https://doi.org/10.1242/dev.141341). We have now clarified this point in the introduction: "This process involves the sequential activity of key cell fate determinants such as the transcription factor Prospero and the RNA-binding protein Brat in the GMCs followed by the transcription factor Nerfin-1 and the RNA-binding protein Elav in the maturing neurons20-23. GMCs lacking Prospero, or immature post-mitotic progeny lacking Nerfin-1, fail to initiate or maintain differentiation respectively, and progressively reacquire a neuroblast identity, leading to neuroblast amplification 21,23-25."
-The statement on page 6 "Strikingly, the group of genes ... contained all iconic genes known to induce neuron differentiation after neuroblast asymmetric division, including nerfin-1, prospero, elav and brat" is problematic. Again, Nerfin-1 probably functions to maintain a neuronal state rather to induce differentiation. Is there evidence that Elav induces neuron differentiation after neuroblast asymmetric division? Brat seems to downregulate Notch signaling in neuroblast progeny rather than instructing neuron differentiation. Furthermore, previous studies suggested that loss of brat function does not affect identity of GMCs and their symmetric division to generate neurons. A similar statement is used at the end of this same paragraph to reiterates mis-leading messages.
Prospero and Nerfin-1 are sequentially expressed in maturing neurons. Nerfin-1 shares many similar targets as Prospero. It has been proposed that Nerfin-1 prolonged the action of Prospero, allowing stabilisation/maintenance of the differentiated neuronal state (10.1101/gad.250282.114 ; 10.1016/j.celrep.2018.10.038)
Brat is also involved in the sequence of events needed to produce neurons upon neuroblast asymmetric division. However, the mode of action of Brat in GMCs from type-I neuroblasts and in INPs from type-II neuroblasts is unclear. It was shown that Brat is an RNA-binding protein that has multiple targets. For example, it can bind and silence Myc, Zelda and Deadpan, and promote neuroblast-to-INP differentiation. It may also inhibit Notch signaling which is required for neuroblast-to-INP differentiation (https://doi.org/10.1016/j.devcel.2006.01.017; 10.1016/j.devcel.2008.03.004 ; https://doi.org/10.15252/embr.201744188; https://doi.org/10.1158/0008-5472.CAN-15-2299)
We have clarified the difference between Type I and Type II neuroblasts in the introduction: "A sparse subset of neuroblasts (Type II) generate intermediate progenitors (INPs) that can undergo a few more asymmetric divisions, allowing for larger lineages to be produced. The neuroblast-to-neuron process in Type II lineages involves a slightly different sequential expression of differentiation factors21,24."
We have also added a new reference describing that neuronal differentiation and maintenance are severely affected upon elav loss of function:
Yao, K.-M., Samson, M.-L., Reeves, R. & White, K. Gene elav of Drosophila melanogaster: A prototype for neuronal-specific RNA binding protein gene family that is conserved in flies and humans. J. Neurobiol. 24, 723-739 (1993).
**Referees cross-commenting**
My main concern about data in this study remains direct vs. indirect effects of manipulating miRNA functions and the corresponding phenotype in various cell types in flies. The authors focused most of their effort on using genes that promote GMC differentiation in order to establish the role of neuroblast-specific miRNAs. Most of the experiments were not rigorously performed to the level that eliminates obvious caveats and suggests their interpretation is the most likely possibility. It is a technologically excellent study but lacks in-depth analyses in biological effects.
Reviewer #2 (Significance (Required)):
I believe there is a strong general interest in better appreciating how miRNAs regulate precise gene expression. Deriving some sort of rules such as the specificity of target selection or the efficiency of downregulating gene expression will be hugely significant to the general audience
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Summary
MicroRNAs (miRNAs) have a well-established role in fine-tuning gene expression. Because the mechanisms by which miRNAs recognize specific target transcripts are poorly understood, their functionally relevant targets in the physiological context are mostly poorly defined. Studies in vertebrates have suggested that miRNAs play a prominent role in regulating cell type specification during brain development. Insight into miRNA regulation of target selection will improve our understanding of neural development. Cell type-specific gene expression patterns and functions in the neural stem cell (neuroblast) lineage in the fly larval brain are well characterized. The fly genome is compact, and gene redundancy including miRNAs is significantly less than vertebrates. For these reasons, the authors chose to investigate how miRNAs regulate cell-state transitions by first establishing a comprehensive miRNA expression profile for major cell types in the fly larval brain. They combined the AGO-APP strategy and the GAL4-UAS inducible expression system to pull-down cell type-specific miRNAs from fly larval brain. The authors focused on miRNAs that are enriched in neuroblasts and examine how multi-miRNA modules regulate the maintenance of an undifferentiated state in neuroblasts.
The cell type-specific inducible AGO-APP system introduced in this study is innovative and allows for systematic identification of miRNAs that most standard RNA-sequencing techniques missed in previously published datasets. The technological note sets high promise for this study, but the findings appear tame. It is my opinion that there are a number of shortcomings that can improve the rigor of this study. For example, strategies used to determine spatial expression patterns of miRNAs as well as to validate miRNA target genes are indirect with high likelihood of caveats. The choices of candidate target genes to assess the function of miRNAs in the cell state transition appear counterintuitive. Furthermore, the authors provided no rationale as to why they chose cell types that are not in the brain (such as wing cells and cells in the optic lobe) to assess the phenotypic effect of manipulating miRNAs. Using solely a reduced cell size as the functional readout for "precocious differentiation" is not rigorous and should be complemented with additional measures.
Major concern:
- The authors should use a direct method to confirm the expression pattern of identified miRNAs such as miRNA scope (ACD) in the whole mount brain instead of indirect methods such as reporters.
- The entire figure 3 aims to provide evidence to support that prospero mRNA is a direct target of miR-1-3p. These convoluted experiments with significant caveats should be replaced with mutating the endogenous miR-1-3p binding sites in the 3'UTR of the prospero reading frame, and demonstrate that the endogenous prospero transcript level is increased by sm-FISH. The authors could also use this novel allele to assess the phenotypic effect of "unregulated prospero" in the larval brain. The effect of overexpressing mir-1 on the prospero transgene with its 3'UTR vs without 3'UTR cannot easily compared since the UTR might be regulated by other regulatory mechanisms in addition to mir-1.
- How could the author use evidence-based strategy to demonstrate that massive amplification of Mira-expressing cells induced by overexpressing mir-1 in the optic lobe is indeed due to mis-regulation of prospero instead of mimicking the prospero-mutant phenotype? Similarly, what is the evidence that the phenotype associated with mir-9a knockout is due to mis-regulation of nerfin-1?
- Most of look-alike mutant phenotypes presented by the authors appear to occur in the OL. Is there any reason why cells in the visual center, which is not a part of the brain, appears to be more suspectable to loss of function of miRNAs? This is particularly important when manipulating the same miRNAs appear to have very subtle effects on VNC neuroblasts.
- How do the authors know that multi-sponge 2 expression leads to loss of stemness potential in neuroblasts? Any additional evidence that supports precocious differentiation but not death or cell cycle exit?
- Again, how do the authors know that mir-1 overexpression efficiently silenced prospero mRNA in neuroblasts and GMCs in Fig. 4F?
- Have the authors considered other targets to better assess the function of these miRNAs enriched in neuroblasts. For example, could these miRNAs function to dampen the expression of genes that are required for maintaining these cells in an undifferentiated state? Several studies using the neuroblast model suggest that the expression of these genes needs to be downregulated at the transcriptional and post-transcriptional levels. Perhaps, these miRNAs might target these "stemness" transcripts instead of "differentiation" transcripts. Is there evidence for or against this possibility?
Minor point
- There are a number of mis-leading statements throughout the manuscript. -In the abstract, the authors indicated "isolate actively inhibiting miRNAs from different neural cell populations in the larval Drosophila central nervous system". For example, the expression patterns of Nub-Gal4 an Elav-Gal4 drivers appear to be partially overlapping in multiple cell types and might be active in the visual center (optic lobe). If true, it was unclear to me what neural cell types were actually used in their analyses and how they could confidently indicate that cell types in the central nervous system were used in their study. Aren't there more specific Gal4 drivers or more sophisticated genetic tools available to increase the purity of cell types? If not, the alternative could be a much more precise secondary screening step to directly determine where these miRNAs are actually detected instead of relying on indirect readouts of where they might be expressed. -The statement "GMCs lacking Prospero, Nerfin-1 or Brat fail to differentiate and reacquire a neuroblast identity" is very problematic. Nerfin-1 does not appear to be expressed in GMCs according to Fig. S2B. Furthermore, Froldi et al., 2015 suggested that Nerfin-1 appears to prevent activated Notch from reverting neurons to ectopic neuroblasts. -The statement on page 6 "Strikingly, the group of genes ... contained all iconic genes known to induce neuron differentiation after neuroblast asymmetric division, including nerfin-1, prospero, elav and brat" is problematic. Again, Nerfin-1 probably functions to maintain a neuronal state rather to induce differentiation. Is there evidence that Elav induces neuron differentiation after neuroblast asymmetric division? Brat seems to downregulate Notch signaling in neuroblast progeny rather than instructing neuron differentiation. Furthermore, previous studies suggested that loss of brat function does not affect identity of GMCs and their symmetric division to generate neurons. A similar statement is used at the end of this same paragraph to reiterates mis-leading messages.
Referees cross-commenting
My main concern about data in this study remains direct vs. indirect effects of manipulating miRNA functions and the corresponding phenotype in various cell types in flies. The authors focused most of their effort on using genes that promote GMC differentiation in order to establish the role of neuroblast-specific miRNAs. Most of the experiments were not rigorously performed to the level that eliminates obvious caveats and suggests their interpretation is the most likely possibility. It is a technologically excellent study but lacks in-depth analyses in biological effects.
Significance
I believe there is a strong general interest in better appreciating how miRNAs regulate precise gene expression. Deriving some sort of rules such as the specificity of target selection or the efficiency of downregulating gene expression will be hugely significant to the general audience
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary
In this manuscript the authors address the largely unexplored role of micro RNAs (miRNAS) in Drosophila melanogaster brain development, in particular in neural stem cell lineages. The authors for the first time adapt the Ago protein Affinity Purification by Peptides (AGO-APP) technology for Drosophila. They show that this technique works efficiently in neural stem cell lineages and identify several cell type specific active miRNAs. Through a series of bioinformatic analysis the authors identify candidate mRNA targets for these miRNAs. The authors then functionally analyse the role of some of the identified miRNAs, focusing on miRNAs significantly over-represented in neuroblasts.
By overexpressing Mir-1, the authors demonstrate that this miRNA effectively targets the UTR of Prospero, resulting in the overproliferation of neuroblasts. In a parallel experiment, overexpression of Mir-9c causes neuroblast differentiation defects, similar to the phenotype caused by nerfin-1 mutants, a previously validated target. Loss of function analyses show that knock down of single miRNAs has little functional effects in neuroblast size, showing that the individual effect caused by miRNAs knock down is likely compensated. In contrast, a sponge against a selected group of miRNAs leads to a reduction in poxn positive neuroblasts. Overall these results validate the approach and support the theory that miRNAs cooperate in functional modules during stem cell differentiation.
Comments
Title: As the authors do not really explore exit from neural stem cell state this should be altered. The authors do not assess for the levels of any temporal genes, nor other markers of neural stem cell state exit (e.g. nuclear Pros). The observed effects, with the available experiments, rather say that neural stem cell state is not maintained in general, not being clear what mechanistically happens to these cells expressing Cluster 2 sponges. The described phenotype caused by the expression of sponges against individual miRNAs also rather shows a blockage in differentiation.
- The miRNAs analysed were found in Ago-APP to be predominantly active in neuroblasts, but was there any phenotypes of OE or KD in neurons or glial cells?
- The authors obtained a phenotype when using a sponge against Cluster 2 in poxn neuroblasts. Is this specific for these 6 neuroblasts? What happens if this sponge is expressed with a pan-neuroblast driver in central brain/VNC/optic lobe? These experiments should be included as they would show if these are conserved effects for all neuroblasts. The authors do different analyses in different brain regions, making also a hard to conclude if all brain regions behave the same way. As authors show that some miRNAs are only expressed in sub-sets of cells, this becomes particularly relevant. Could sponge of cluster 1 cause a phenotype if it had been expressed in other neuroblast lineages? In addition, a discussion of the results obtained from sponge 1 should be included and put in context with miRNA function, technical limitations, levels/cell, targets, pitfalls of analyses, sponges, etc. It would also be interesting to further explore the phenotypes caused by Mir-1 sp expression - are there any milder lineage defects? Any defects in other brain regions/lineages, like in type 2 neuroblasts that usually do not express Pros?
Ago-APP identifies cell type specific miRNAs in larval neurogenesis section: - "...29oC... allows Gal4-dependent expression (Fig.1B,C)" - this description of Gal80ts/Gal4 works is not correct, expression is not prevented. - Fig S1 - nab-Gal4 also drives expression in GMCs and neurons, rephrase text. Is nab-Gal4 expressed in optic lobe, VNC and central brain neuroblasts? - "20 late larval CNS" - mention the exact stage - Providing a more detailed and interpretive description of Figures 1D and 1E would greatly enhance their clarity. Currently, the descriptions of these pannels resemble typical figure legends. - Fig. 1F,G,H - It is not clear why the authors sometimes use the optic lobe, other ventral nerve cord as both regions have both neuroblasts, neurons and glia. Are the drivers used for Ago-APP not expressed in all brain regions? - Show "data not shown" for 1H. - Fig. 1F, G, H - Please quantify intensity levels in the different cell types to facilitate comparison with Ago-APP graphs. Include in figure legend what is "cpm".
A regulatory module controlling neuroblast-to-neuron transition section: - Fig. 2C - A more detailed explanation in text is required in addition to what is mentioned in the figure legend. Including a brief summary/conclusion of the results would be helpful. If possible, add in X-axis 1, 2, 3. - Figure S2B - as mentioned in the text elav is expressed from the neuroblast, although this is not represented in the figure. It is hard to tell what are young vs maturing neurons in the cartoon, pls add a label/legend. - Fig.3I - please shown a control brain. The merge images are not easy to see. I think it would be nicer to change the figures to be color-blind friendly. - Fig. 3K,L - why is this now done in the VNC? - Are there any lineage defects when Mir-1 sp is expressed? - Based on which parameters/variables of the predicted targets was the Hierarchical clustering done? A brief explanation would help the interpretation of the results and of the choice of the clusters that were further analysed. - "revealed the presence of three main groups" - this should be rephrased as this "grouping" was done arbitrarily by the authors and not by hclust. Hclust is set to merge individual clusters/sub-trees up to 1. Furthermore, a more detailed explanation that supported this decision of choosing this 3 large clusters should be included. - Fig. 4B, S4B - please include in legend how were these clones generated. S4B - scale bars missing. - Fig. 4H - was the ratio of UAS/Gal4 kept in both experimental conditions? Increasing the number of UAS/Gal4 leads to weaker expression of UAS and thus could lead to a weaker phenotype. Including in legends genotype details would help.
Minor
- Abstract: "a defined group of miRNAs that are predicted to redundantly target all..." This is only predicted, not experimentally shown, this should be modified accordingly.
- Intro: "Elav, an RNA binding protein, is expressed as soon as post-mitotic neurons..." - Elav is expressed already in neuroblasts, as also mentioned by the authors in the result section. Correct, add references.
- Last paragraph of Intro (Bioinformatic analyses...) - it is not easy to understand the content of this paragraph. Rewrite to improve clarity.
- All legends: Please mention which developmental stage is being analysed in each panel (i.e. wandering 3IL, hours After Larval Hatching, hours After Puparium Formation, or other), in which brain region the analyses/images are being done. Please include more detailed information about the genetics in figure legends.
- Please include brief explanation of the genetics of miR-10KOGal4 line.
- Why are miRNAs sometimes referred as (e.g.) "miR-1" and others "miR-1-3p"?
- Fig. 3I-M - stage of the animal? 3M - in which brain region is this?
- Fig. 3N - can actual sizes be additionally shown, or at least averages mentioned in text?
- If non differentially expressed miRNAs, or miRNA with other expression patterns, had been analysed to determine their targets in the sub-set of genes expressed in neuroblasts (from the transcriptome) would different targets been found? Meaning, how specific are these binding patterns for the selected miRNA?
Referees cross-commenting
I think this study is very interesting as it optimizes a novel technique in Drosophila for the investigation of cell-specific active miRNAs, and it globally addresses the role of miRNAs in neural stem cell lineages. Although the authors do not explore deeply the biological effect of these miRNAs in neural lineages, I think that the technical contribution and the identification of some miRNA targets is relevant on its own. The authors use Prospero as an example, which is very interesting, as this gene is required to be lowly expressed in Neuroblasts and then upregulated during differentiation. Which the authors propose can be regulated by miRNAs, identifying a novel player in this differentiation mechanism.
I do not feel the authors need to perform additional experiments to corroborate their findings, as they are well supported by the experiments presented.
I do agree that the authors did not explore deeply the biological effect in neural lineages, and the claims regarding premature terminal differentiation, nerfin, etc need to be toned down accordingly.
Significance
This study is both a technical and conceptual advance. It is very interesting as it optimizes a novel technique in Drosophila for the investigation of cell-specific active miRNAs, and it globally addresses the role of miRNAs in neural stem cell lineages. However, the text, especially in the results section, could benefit from increased detail to enhance the comprehension of the experiments, results, and conclusions. Given that the functional analyses were not conducted at a very detailed level, there exist certain instances of over-interpretation, which could be easily addressed either by revising the text or by incorporating additional experiments, as elaborated upon below.
This manuscript will be interesting for research fields interested in stem cell differentiation, brain development, micro RNAs, both for Drosophilists and scientists working with other animal models. I am an expert in Drosophila brain development.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
- General Statements__: The manuscript entitled "__Dual antiviral mechanisms of Herbacetin and Caffeic acid phenethyl ester against Chikungunya and Dengue viruses with insights into Dengue methyltransferase-CAPE crystal structure" is the first report of broad spectrum alphavirus and flavivirus inhibitors with dual roles that efficiently inhibit virus replication by diminishing the levels of polyamines in the host cells as well as inhibit the enzymatic activity of the virus-specific methyltransferase (MTases). Chikungunya virus (CHIKV) and Dengue virus (DENV) are re-emerging alpha- and flaviviruses respectively. Until now, no antivirals are commercially available to combat these two viral infections. This study delves into the antiviral mechanisms of Herbacetin (HC) and Caffeic acid phenethyl ester (CAPE) against DENV and CHIKV. Treatment of Vero cells with these compounds resulted in polyamine depletion. However, adding exogenous polyamines did not completely rescue the virus, suggesting alternative antiviral mechanisms. Interestingly, these compounds exhibited anti-MTase activity against purified viral MTases of CHIKV and DENV. The crystal structure of the DENV 3 MTase in complex with CAPE revealed its binding site within the GTP-binding region of DENV MTase. This study presents the novel dual inhibition mechanism of HC and CAPE, offering promising prospects for developing broad-spectrum antivirals.
2. Point-by-point description of the revisions
We express our gratitude to the reviewers for their time and insightful comments, which have significantly contributed to the improvement of the manuscript. We believe that the thoughtful critiques and suggestions have significantly enhanced the overall quality of our work. Below, we provide a point-by-point response to each comment, addressing the concerns raised by the reviewers.
Reviewer 1: -
Comment 1: My main concern is that the depletion of polyamines is likely to have broad implications for host cell metabolism. Polyamines are critical for genome folding and stability. Hence, polyamine depletion will likely compromise cellular metabolic homeostasis. My suggestion is to perform a literature survey on this topic, identify appropriate assays of cellular homeostasis, and add at least one such assay in the relevant HC and CAPE concentration range to address my question..
I also suggest adding the potential negative effects of polyamine depletion on host cell metabolism in the discussion section
- Response: We appreciate the reviewer's constructive feedback for their insightful remarks on the potential extensive influence of polyamine depletion on host cell metabolism. We acknowledge the critical role polyamines play in genome folding and stability, and their depletion could indeed disrupt cellular homeostasis. In response to this valuable feedback, we conducted a comprehensive literature review. This literature review uncovered studies investigating the targeting of the polyamine biosynthetic pathway as a potential therapeutic strategy for combating various infections and diseases. Additionally, DFMO , a drug that targets polyamine biosynthetic pathway enzyme is an FDA-approved drug for African sleeping sickness and high-risk neuroblastoma (Bouteille & Dumas, 2003; Nazir et al., 2024) indicating that despite the critical role of polyamines in cellular metabolic homeostasis, the host polyamine pathway can also be successfully targeted for antiviral drug discovery. As recommended, we have added this information in the revised manuscript. * Additionally, ribavirin, an FDA-approved antiviral agent, employs various mechanisms to inhibit viral replication, including the reduction of polyamine levels (Tate et al., 2019). Furthermore, we have also examined the protocols available in the literature for CAPE, HC, and DFMO treatment. Most of these studies have employed MTT assay, as illustrated in the research conducted by Arisan et al. 2012 and Shen et al. 2013 (Arisan et al., 2012; Shen et al., 2013). Notably, Aljabr et al.,2016 also employed the MTT assay for viability testing, underscoring its relevance (Aljabr et al., 2016). Similarly, our manuscript employed the MTT assay at various compound concentrations to ensure the utilization of non-cytotoxic concentrations for antiviral activity testing. *
As per reviewer's recommendation, we have discussed the potential adverse effects of polyamine depletion on cellular processes in the revised manuscript's discussion section.
*Line no.s 513 – 523 of the revised manuscript have the revised text as per the suggestion. *
Reviewer 2:-
Comment 1:- Authors describe anti-CHIKV and anti-DENV activities of herbacetin and caffeic acid phenyl ester (CAPE). The antiviral effect is not reversed buy exogenous polyamines suggesting multiple mechanisms of action. NS5-Met complex with caffeic acid phenyl ester was obtained and its structure resolved at high resolution. The resolved structure reveals two binding sites for antiviral compound overlapping with that of GTP and possibly with a site involved in binding of RNA
Other than analysis of crystal structure of NS5/CAPE complex the provided data is of low quality and is not analyzed properly. There is no evidence that data is reproducible. Authors have calculated significance from "experimental repeats" which, based on the description of experiments, are not independent experiments but technical replicates. Some key technical details are missing and some experiments are not described at all. The writing can be vastly improved and figures be made a lot more easier to understand.
-
*Response :-We appreciate the reviewer's positive feedback of on the crystal structure and as pointed out towards data quality and analysis, we have tried and made significant improvements, including enhancing data representation and providing detailed protocols in the supplementary materials where necessary. Additionally, we have addressed key technical details that were previously missing and ensured that all experiments are described adequately. We acknowledge the need for clearer writing and have now mentioned clearly that independent experiments have been carried out in the study. We have made suggested revisions to the revised manuscript. *
Comment 2:- Bad writing lines 64-65 . Viral genomes lack protein synthesis machinery. Basically correct but no genome has protein synthesis machinery
-
Response:-We thank the reviewer for pointing this out. We have modified the text as follows: lines 64-65 "Viral genomes lack protein synthesis machinery, and the ability to hijack the host cell's resources for replication is crucial for all viruses". to lines 65-67 "Viral particles lack essential protein synthesis machinery. Consequently, viruses rely on the host cell's resources to replicate effectively."
Comment 3:- line 137 flavonoids play a role in reducing the levels of nsP1 in CHIKV - what can this possibly mean? Are shown to reduce the level of nsP1 in CHIKV-infected cells?
-
Response: We appreciate the reviewer for bringing this to our attention, and we acknowledge that it was due to a writing issue in English. This has now been rectified. A dose-dependent reduction of the CHIKV E2, nsP1, and nsP3 proteins was observed upon treatment with baicalein and fisetin. This finding would suggest that baicalein and fisetin might inhibit the production of CHIKV protein, especially the proteins involved in the negative-strand synthesis and part of the replicase unit (Lani et al., 2016). To account for this suggestion, we have modified the text in the revised manuscript to (line 145-147): " Moreover, flavonoids treatment has demonstrated the dose-dependent decrease in CHIKV titer due to reduced levels of CHIKV viral proteins, including nsP1*. *
__Comment 4 :-__line 250-251 - RNA was isolated from the infected cells' supernatant, used for cloning, and inserted between the NheI and XhoI restriction sites... …..It should be impossible as one cannot insert RNA into bacterial plasmid DNA.
- Response:- We thank the reviewer for pointing this out. line 250-251 – "RNA was isolated from the infected cells' supernatant……..". This has been changed to line 267-271
" RNA was isolated from the supernatant of the cells infected with DENV 3, and used for cDNA preparation, cloning of the MTase gene fragment into the pET28c (+) vector using NheI and XhoI restriction sites."
__Comment 5 :-__Missing parts. Examples
the source of nsP1 of CHIKV is not indicated, True, there are references to previous studies, but this is extremely important point and it should have been clearly stated that it was obtained from E. coli. The issue is that authors made some predictions and modelling based on structure of nsP1 from eukaryotic expression system. It is not known does the enzyme purified from bacteria have similar structure (actually, in cited Nature paper - doi: 10.1038/s41586-020-3036-8 - attempts to purify nsP1 from bacteria were made. The protein was monomeric and had no activity)
- Response:- We thank the reviewer for the comments. In response to the reviewer's concern regarding the source of the nsP1 protein from CHIKV, we would like to clarify that the recombinant protein was expressed and purified from E. coli Rossetta cells in our laboratory. We acknowledge the importance of this point and apologize for any oversight in not explicitly stating it in the manuscript. In response to the reviewer's suggestion, we have incorporated a detailed expression and purification protocol into the manuscript supplementary methodology (line number 1068-1091).
- Response:- Alphaviruses share a high degree of sequence similarity (>80%), particularly within the nsP1 protein, with conserved active site residues (Supplementary Figure 2). Several studies investigating nsP1 proteins from alphaviruses, including Sindbis virus, Semliki Forest virus, and Venezuelan equine encephalitis virus, have successfully employed E. coli Rosetta cells for protein expression, followed by enzyme activity assays (Abdelnabi et al., 2020; Li et al., 2015; Tomar et al., 2011). Our laboratory is working on this protein for more than a decade and have conducted extensive assays on the activity of nsP1 protein purified from bacterial expression system. Our results are reproducible. These studies have been published in reputed peer reviewed research articles, including (Kaur et al., 2018; Mudgal et al., 2020). Additionally, similar assays have been demonstrated in the study by Bullard-Feibelman et al., 2016. We trust that this clarification resolves the reviewer's concern, and we are delighted to address any further inquiries.
Comment 6:- Figure lacks quality (and figure legends are unclear) Examples:
-
it is impossible to understand what exactly is shown in Figure 1J
-
important information is missing, for example, it is not clear what were concentrations of antiviral compounds for panels 1F and 1I
- Response :- We thank the reviewer for the constructive comments that has helped us to improve the revised manuscript. We have revised Figure 1J and as suggested we have updated the legends accordingly. Similar revisions have been made in the revised manuscript to the TLC protocol and results to ensure clarity. We thank the reviwer for pointing out the missing information regarding the concentrations of the antiviral compounds used in panels 1F and 1I. As per your suggestion, we added the antiviral compounds concentrations for these experiments in figure legends.
Comment 7:- 4. wrong data - line 478 it is stated that there is no vaccine for DENV or CHIKV. It is correct, DENV vaccine has been in use for several years and CHIKV vaccine was approved at 2023 - line 476 refers to family alphaviridae. This does not exist, family is Togaviridae
- Response:- We appreciate the reviewer for bringing this to our attention. We have accordingly revised the sentences for accuracy. "Although human viruses belong to several viral families, Alphaviridae and Flaviviridae are the most significant burden on public health" changed to line number 505-506 "Although human viruses belong to several viral families, Togaviridae and Flaviviridae impose one of the most significant burdens on public health"
- *
Line no.. 478 “ Neither commercially available drugs nor vaccines are available for these viruses.” Changed to line number 508 to 509 “Although FDA-approved vaccines for Dengue and Chikungunya viruses are available, no antiviral therapies have been approved against these viral infections.”
Comment 8: ____5. unjustified conclusions. Example
- authors have analyzed sequences of nsP1 of alphaviruses and made conclusions regarding conservation of active site. It is probably correct but the analyzed viruses do not represent all diversity of alphaviruses, insect specific members and aquatic alphaviruses should also be analyzed (same problem with analysis performed for flaviviruses)
- Response:-Following the reviewer's recommendation, we have included Salmonid alphavirus, an aquatic virus, and Eilat virus, an insect-specific virus, in our comparison along with other human-infecting alphaviruses. Additionally, for flaviviruses, we have incorporated Palm Creek virus, an insect-specific virus, and Wenzhou shark flavivirus, an aquatic virus. As suggested, the relevant modifications have been done to the MSA protocol, results, and figure legends.
Comment 9:- 6. Insufficient analysis of data. In some cases, there is a significant discrepancy between the results of different assays. For example, CAPE inhibits DENV at 2.5 microM (Fig 1H) but in test tube assay only small inhibition was observed even at 1000 microM. Authors should provide plausible explanation for this and similar discrepancies.
(CE and ELISA-based assays shown on figure 6 also resulted in drastically different inhibitions). It is expected assays would produce different results but there should also be explanation for this. If this is not provided one can assume that it is due to experimental errors.
-
Response:- We thank the reviewers for their valuable comments. We acknowledge the importance of providing plausible explanations for such variations and are committed to addressing these concerns in our revised analysis. * Our explanation: Capillary electrophoresis (CE) offers a direct approach for detecting S-adenosylhomocysteine (SAH), the product of the methyltransferase reaction. However, this assay has a limitation in sensitivity, it is only able to detect SAH concentrations above ~ 300 µM. A previously validated CE-based assay for Chikungunya virus (CHIKV) nsP1 by Mudgal et al.,2020 addresses this limitation. Their work demonstrates that using specific concentrations of S-adenosylmethionine (SAM) at 0.3 mM and guanosine triphosphate (GTP) at 4 mM enables reliable detection of SAH in the reaction. However, *CAPE is observed to inhibit DENV at ~2.5 micro, supporting that viral inhibition not only is due to MTase inhibition but through other mechanism i.e. host cells polyamine depletion.
-
*
-
Therefore, this presents one plausible explanation, although we cannot currently dismiss the possibility of other mechanisms that could also contribute to viral inhibition by CAPE.*
The established ELISA assay of nsP1 utilizes an indirect detection method, which exhibits higher sensitivity. Additionally, previously published studies on alphaviral nsP1 inhibitors also report nsP1 enzyme activity inhibition by compounds at concentrations several folds higher than their respective active doses in cell culture-based studies (Delang et al., 2016; Mudgal et al., 2020; Kovacikova et al., 2020).Therefore, differing substrate concentrations and CE-based assay limitations may be attributed to discrepancies between the capillary electrophoresis (CE) and ELISA assays. Numerous studies have utilized the CE-based assay or equivalent assays based on similar principles as qualitative tools for evaluating enzyme activity.
In the revised manuscript, Figures 6B and 6C graphical representation has been transitioned from a dose-response curve IC50 format to a bar chart for enhanced clarity. This bar chart effectively conveys the key finding of a dose-dependent decrease in activity observed for both HC and CAPE.
Similarly, we again tried to reoptimize the MTase CE-based assay by reducing the GTP concentration in enzyme reaction from 4 mM to 0.3 mM. This modification resulted in slight improvement and shows clear (~50%) decrease in enzyme activity at the highest concentration, as shown in Fig. 6 F and G. Furthermore, our approach with CE based assay is centered around detecting inhibition rather than conducting quantitative analyses.
- *
The discrepancy in the in vitro vs the enzyme test tube assay could be attributed to HC and CAPE's multifaceted mechanism of action when used in vitro (i.e polyamine depletion and anti methyltransferase activity). However, only methyltransferase inhibition has been assessed in enzymatic assay. Following the reviewer's suggestion, we have revised the methyltransferase assay protocol, results, and figure legends for clarifications. Additionally, the results have been appropriately discussed in the discussion section.
- *
Comment 10 :-6. Discussion is essentially missing, it is just list of statements mostly repeating what was said in other sections
> Response: We appreciate the reviewer's suggestion regarding the discussion section; we have incorporated a comprehensive discussion in the revised manuscript.
3rd reviewer :-
The manuscript submitted by Bhutkar M. et al. details the antiviral properties of two compounds, herbacetin (HC) and caffeic acid phenethyl ester (CAPE), against Chikungunya virus (CHIKV) and Dengue virus (DENV) through cellular, bioinformatics, biochemical, biophysical, and structural studies. The authors propose a dual antiviral mechanism of action exhibited by these compounds, beginning with an evaluation of their cytotoxicity. Subsequent assessments of their antiviral efficacy against CHIKV and DENV are addressed using plaque reduction assay and other orthogonal assays such as qRT-PCR, and Immunofluorescence assay (IFA). Further, authors performed thin layer chromatography (TLC) to monitor polyamine levels in the cells treated with these compounds and concluded that these compounds leads to polyamine depletion which is also supported by previous studies. These experiments included DFMO as a control which is well established for its role in this regulation. Beyond their impact on cellular polyamine levels, the authors propose a role for these compounds in the inhibition of MTase domains in CHIKV and DENV, supported by the crystal structure of the DENV-3 NS5 MTase domain in complex with CAPE.
Comment 1:-
__Major points:- __ While the manuscript presents promising findings regarding the dual antiviral effects of the tested compounds, the authors fall short of demonstrating direct inhibition of MTase activity as a meaningful and complementary effect to polyamine depletion. Being only indirect, the enzyme inhibition data is not convincing, and the measured indirect inhibition is not precise enough in the case of CHIK nsp1 and too weak in the case of DENV NS5 (detailed below).
Conceptually, the organization of the results should be changed to first data (structural data of DENV MTase in complex with CAPE, which is a significant achievement), then interpretation/discussion with modeling, and not the other way around.
The discussion section requires more elaborate scientific justification than simply re-reporting the results.
- Response:- We express our gratitude to the reviewers for their time and insightful comments, which have significantly contributed to in the improvement of our manuscript. We believe that the thoughtful critiques and suggestions have substantially improved the overall quality of our work. The changes made in the revised manuscript are highlighted in red. Below, we provide a point-by-point response to each comment, addressing the concerns raised by the reviewers.
Comment 2:-
It would be best to organize the ms as follows: - Crystal structure of DENV MTase in complex with CAPE - Building of a model of nsp1 by superimposition with NS5 MTase - Modeling compound binding - Inhibition assays using enzyme assays at least in the case of NS5 MTase. The direct enzyme assays are well described in the literature.
- Response :- We appreciate the reviewer's suggestion regarding the manuscript organization. We understand the value of presenting the data in a logical flow. For this study, our initial investigations focused on the polyamine depletion ability of HC and CAPE, followed by antiviral activity assays. Based on the preliminary data from cell-based polyamine depletion assay and antiviral assays, the identified molecules were used for in silico investigations, followed by biochemical and biophysical validation. the crystal structure studies were performed to gain a deeper understanding of the inhibition mechanism. Therefore, we believe this flow, approach and the current structure have merit and is request to be considered.
Comment 3:- Inhibition assays using enzyme assays at least in the case of NS5 MTase. The direct enzyme assays are well described in the literature.
- If there is no inhibition, then discussion about possible reasons would be interesting and help the AV field. For example, CAPE could bind to other enzyme or sites, etc...
Figure 5 is problematic.
-
When presenting an y IC50 data, care should be taken that the IC50 inflexion point is preceded and followed by at least two experimental points, which is not the case. The IC50 value of 7.082 and 5.156 µM are too imprecise (and there is no need to give digits after the value). Please add more low concentration experimental points.
-
Panel F and G: A reduction of 25 % at the highest inhibitor concentration is a strong indication that there is no effect.
- Response:- We sincerely thank the reviewers for their valuable comments and insights regarding the discrepancies observed in our data. We acknowledge the importance of providing plausible explanations for such variations and are committed to addressing these concerns in our revised analysis. * Capillary electrophoresis (CE) offers a direct approach for detecting S-adenosylhomocysteine (SAH), the product of the methyltransferase reaction. However, this assay has a limitation in sensitivity, typically only detecting SAH concentrations exceeding ~300 µM. *
*A previously validated CE-based assay for Chikungunya virus (CHIKV) nsp1 by Rajat et al. addresses this limitation and has been mentioned in the revised manuscript with the reference. Their work demonstrates that using specific concentrations of S-adenosylmethionine (SAM) at 0.3 mM and guanosine triphosphate (GTP) at 4 mM enables reliable detection of SAH in the reaction. The established ELISA assay utilizes an indirect detection method and exhibits higher sensitivity. Also, previous studies on alphaviral nsP1 inhibitors have also reported nsP1 enzyme activity inhibition by compounds at concentrations several folds higher than their respective active doses in cell culture-based studies (Delang et al., 2016; Mudgal et al., 2020; Kovacikova et al., 2020). *
Hence, differing substrate concentrations may be attributed to discrepancies between the capillary electrophoresis (CE) and ELISA assays. Numerous studies have utilized the CE-based assay or equivalent assays based on similar principles as qualitative tools for evaluating enzyme activity.
- *In response to the reviewer's suggestion to test compounds at lower dilutions, we acknowledge that we are currently unable to perform an assay for lower dilutions as recommended due to time constraints and limited availability (screen shot below) of "MABE419 Sigma-Aldrich (Merk), Anti-m3G-cap, m7G-cap Antibody, clone H-20 antibody" used as the primary antibody (Kaur et al., 2018). Our attempts to procure this antibody from Sigma were unsuccessful.For India it shows limted availability and the vendor has given the estimated shipment time of more than 7 weeks. As per reviewers suggestion and the current limitations in the IC50 data, we have revised the graphical representation from a non-linear regression format (which estimates IC50) to a bar chart format. In the revised manuscript, Figures 6B and 6C graphical representation has been transitioned from a dose-response IC50 format to a bar chart for clarity. This bar chart effectively conveys the key finding of inhibitory activity observed for both HC and CAPE.
We tried to reoptimize the Dengue virus MTase CE-based assay by reducing the GTP concentration from 4 mM to 0.3 mM. This modification resulted in slight improvement and shows clear (~50%) decrease in enzyme activity at the highest concentration, as shown in Fig. 6 F and G. The CE-based assay for HC and CAPE data clearly indicates inhibition above >50%. Our approach with this assay is centered around detecting inhibition rather than conducting quantitative analyses. Following the reviewer's suggestion, we have revised the methyltransferase assay protocol, results, and figure legends. Additionally, the results have been appropriately discussed in the discussion section.
Comment 4- Please describe more panel D in the legend.
- Response :-We sincerely appreciate your suggestion and wish to express our gratitude. We have revised figure legend 6 D from. Line no. 791 "The CE based HC and CAPE Methyltransferase inhibition activity assay CHIKV nsP1" changed to line no. 884 to 886 "CE-based nsP1 MTase activity inhibition assay as described previously by Mudgal et al. 2020". HC and CAPE compounds were tested at a concentration of 200 µM and CAPE 1000 µM respectively.
Minor Points/Comments/ Suggestions:
Comment 1:-
In the Introduction section, line 58: Are DENV infection numbers representative of worldwide distribution, please clarify. Also, in the case of CHIKV infection, the most affected countries are mentioned, why not follow the same pattern for DENV, please consider homogenizing the text.
Response:- Thank you for your suggestion; we have revised the text accordingly. Line no. 58 "It is estimated that ~100-400 million DENV infections occur annually" changed to line no. 58 to 61 "It is estimated that annually ~100-400 million DENV infections occur worldwide. The Philippines and Vietnam are among the most affected countries. Moreover, dengue is endemic in India, Indonesia, Myanmar, Sri Lanka, and Thailand (Bhatt et al., 2013; Lobo et al., 2011, National Center for Vector Borne Diseases Control Report 2022 (NCVBDC)."
__Comment 2:- __B. Before p. 4 (line 91), alphaviruses were not introduced. Please consider introducing them.
Response :- Thank you for your feedback; brief introduction of alphaviruses have been added.
-
- 4 (line 92) Alphaviruses belonging to the Togaviridae family include viruses such as Chikungunya, Eastern equine encephalitis, Venezuelan equine encephalitis, etc.*
- *
Comment 3:- C. Consider introducing Dengue serotypes to help readers understand the significance of DENV-2 and DENV-3.
Additionally, ensure uniformity by referring to these serotypes as DENV-2, DENV-3 throughout. There are inconsistencies in the current text, such as 'DENV 3' in lines 39 and 152, and 'DENV3' in lines 249 and 250, among others.
-
Response:-Thank you for your valuable input. Dengue serotypes have been introduced, and we have meticulously reviewed and rectified all inconsistencies regarding their nomenclature. Line no. 120 to 123 "Flaviviruses are classified within the Flaviviridae family and encompass viruses like Dengue, Zika, Japanese encephalitis, etc. Dengue virus consists of four distinct antigenic types: DENV 1, DENV 2, DENV 3, and DENV 4. DENV 2 has been India's most prevalent serotype for the past 50 years, however serotypes 3 and 4 have also appeared in some recent epidemics (Kalita et al., 2021)."
Comment 4:- D. P. 4, 5 lines 91-134: Consider rephrasing/reorganizing the methylation process: conventional and unconventional. The current introduction doesn't clearly indicate the difference between the cap-0 capping in alphaviruses and cap-1 in flaviviruses.
-
Response:-Line 100 changed from "Cellular enzyme capping mechanisms usually involve the methylation of guanosine triphosphate (GTP) after transferring it to the 5' end of the RNA. However, the molecular mechanism of viral mRNA capping in alphaviruses is distinct." To line no. 102 to 108 "Cellular enzymes use conventional capping mechanisms, usually where GTP is first transferred to RNA's 5' end, followed by its methylation. On the other hand, viral capping in the case of alphaviruses is unconventional, where GTP is first methylated, followed by the guanyltion of viral RNAs. Furthermore, Cap 0 alphaviruses feature monomethylation at the N7 position of the guanosine nucleotide, while Cap 1 in flaviviruses has additional methylation at both the N7 and 2'O positions."
Comment 5:-
-
Please consider citing the article instead of the referred link, wherever possible, for e.g., for ref. 22 PMID: 28218572 (a more recent reference for Flaviviridae taxonomy available than that mentioned in the current manuscript.)
-
Response :- We have addressed the reviewer's insightful suggestion regarding the citation and included the references accordingly.
Comment 6:- F. Homogenize the writing of taxonomic names (viral families) in the text. For example, in line 126 change Flaviviridae to Flaviviridae, and line 476 (Discussion section), alphaviridae to Alphaviridae, flaviviridae to Flaviviridae and so on. For further clarification on addressing this, one can also refer to https://ictv.global/faq/names.
-
Response :-We sincerely appreciate the reviewer's input. We have incorporated the suggested changes as follows : In line 126, we changed "Flaviviridae" to "Flaviviridae".
In line 476 (Discussion section), we corrected "alphaviridae" to "Togaviridae".
We ensured consistency in the formatting of taxonomic names throughout the manuscript.
Comment 7:-
- Please make sure to appropriately reference the corresponding supplementary information (text or figures) in the main text wherever necessary to avoid the impression of missing information. For instance, in none of the sub-sections of Materials and Methods (M&M), it is being indicated to refer to the suppl. experimental procedures for more details. Also consider not repeating the same information between the main experimental procedures text and the supplementary text.
-
Response :-The reviewer's feedback has been invaluable, and we've acted upon it accordingly. In response to the suggestion, we've made it clear in the manuscript to refer to the supplementary experimental procedures for detailed protocols where appropriate. Additionally, we've listed certain protocols exclusively in the supplementary material to enhance clarity and avoid repetition.
Comment 8:-
-
M&M sub-section. 2, line 163: Which specific culture media is being referred to here? Could you provide additional details? On line 164, it mentions that polyamines were diluted in water. Is this water sterile tissue culture-grade water as indicated in line 161?
-
Response :-We appreciate the reviewer's attention to detail. At the time of usage, further dilutions were prepared in 2% DMEM media. Additionally, individual polyamines (putrescine, spermidine, and spermine) stocks were diluted in sterile tissue culture-grade water from Alfa-Aeser, USA, and used as indicated. As such, we have revised the sentence to enhance clarity. Line number 173 to 175 "At the time of usage, further dilutions were prepared in culture media. Similarly, individual polyamines (put, spm, and spd) (Alfa-Aeser, USA) stocks were diluted in water and used as designated." changed to this "At the time of usage, further dilutions were prepared in 2 % DMEM media. Similarly, individual polyamines (put, spm, and spd) (Alfa-Aeser, USA) stocks were diluted in sterile tissue culture grade water and used as designated."
-
*
Comment 9:-
-
M&M, line 274: What is CE? Please expand the term before using the abbreviation.
-
Response :- Thank you for bringing that to our attention. CE mentioned in line 294 stands for Capillary electrophoresis__.__
Comment 10:-
line 306. Ref. 53: This is not a reference.
-
Response :-Thank you for bringing this to our attention. We understand that reference 53 does not correspond to a valid source. We acknowledge this and want to clarify that due to the unavailability of the proper reference, we included this reference. We have now changed the reference to the Crysalis Pro software.
Comment 11:-
-
Results. 1: Didn't understand the relevance of Fig. 1C, as this data is already included in Fig. 1B.
-
Response :-Thank you for bringing this to our attention. We apologize for any confusion caused by including Fig. 1C, especially since the data it presents overlaps with that of Fig. 1B. To ensure clarity, we have made modifications accordingly. Figures (A) and (C) depict the viability of Vero cells measured by an MTT assay after a total incubation of 134 hours. This protocol involved a 12-hour pre-treatment with either HC (A) or CAPE (C), followed by additional incubation steps as detailed in the legend. In contrast, figure (B) shows the cell viability of Vero cells treated with CAPE only, measured after a total incubation of 38 hours.
- To avoid further confusion figure legend has been changed from "(A) and (C) depicts the percent cell viability of Vero cells treated with HC and CAPE for 12 hr pre-treatment and 24 hr post-treatment and incubated in maintenance media for 4 days, (B) shows the percent cell viability of Vero cells treated with CAPE for 12 hr pre-treatment and 24 hr post-treatment. " to "(A) and (C) depicts the percent cell viability of Vero cells treated with HC and CAPE for 12 hr pre-treatment followed by a 2-hour incubation with maintenance media, 24 hr post-treatment, and incubated in maintenance media for 4 days, (B) shows the percent cell viability of Vero cells treated with CAPE for 12 hr pre-treatment, followed by a 2-hour incubation with maintenance media and 24 hr post-treatment."
Comment 12:-
Fig. 1G and H are not referred to in the result text.
- Response :-Thank you for pointing out the oversight regarding Fig. 1G and H not being referred to in the results text. We have added following statement Results p.1 Line no. 354 "Likewise, HC and CAPE treatment to Vero cells has shown a decrease in viral titer DENV-infected cells in a dose-dependent manner (Figure 1 G-H)."
- *
Comment 12:-
Lines 342, 343: 'At the mentioned concentrations', where are these concentrations mentioned?
- Response:-*Thank you for bringing this to our attention. We acknowledge this mistake regarding the mentioned concentrations at lines 342 and 343. RT-PCR was conducted for CHIKV using concentrations of 200 µM for HC, 25 µM for CAPE, and 1000 µM for DFMO. Similarly, for DENV, RT-PCR was performed with concentrations of 200 µM for HC, 2.5 µM for CAPE, and 1000 µM for DFMO. To avoid further confusion, Figure legends were revised and line no. 846 to 848 "(1F) RT-PCR for CHIKV with HC 200 µM, CAPE 25 µM, DFMO 1000 µM concentration (1I) RT-PCR for DENV with HC 200 uM, CAPE 2.5 uM and DFMO 1000 µM" *
- *
Comment 13:-
qRT-PCR data is not very clear. Please consider elaborating on some details. Why were the statistics only performed between HC and DFMO and not with CAPE? How the fold reduction is being calculated? For example, the fold difference of 97 is not visibly evident.
- Response:- We regret that the clarity of the qRT-PCR data was not satisfactory. We acknowledge your feedback and understand the importance of elaborating on certain details. The statistics were performed for all treatment groups, including HC, CAPE, and DFMO. However, the representation in the graph was adjusted by replacing the "top square bracket" with a "line" to avoid confusion. The y-axis of the graph depicts the log10 fold change in target gene expression relative to a designated virus control (VC). A value of ~ -2 on this axis corresponds to a significant downregulation, reflecting a 97-fold decrease in expression compared to the VC. A comparable graphical depiction is also evident in the work by Mudgal et al. (2022).
Comment 14:-
Line 375: 'SAM is lined by residues ... would be more appropriate than 'formed'
- Response :-Done as suggested. We have revised the sentence in question and similar ones accordingly. "In CHIKV nsP1, SAM is formed by residues Gly65, Ser66, Ala67, Pro83, Arg85, Ser86, Asp89, Thr137, Asp138…" changed to line no. 393 "In CHIKV nsP1, SAM binding site is lined by,….."
Comment 15:-
Fig. 1J. For TLC results, consider using the term panel (left, center, right) to navigate within this figure. The representation of this result is not uniform, as the time course is shown for HC while it is not shown for DFMO and CAPE. The treatment time is not indicated for DFMO and CAPE. For better representation and significant differences, one can consider quantifying these TLC results.
- Response:- Thank you for bringing these points to our attention. Done as suggested. We have simplified the presentation of the TLC results to enhance clarity and revised the methodology, results, figure, and legend accordingly. Also, we have quantified the TLC results. * -*Polyamine determination by Thin-layer chromatography (TLC)
-Vero cells were treated with HC, CAPE and DFMO, as mentioned in the antiviral assay protocol. Similarly, HC-treated cells were collected after 12, 24, and 36 hr of treatment." Revised to " Vero cells were treated with CAPE (25 µM), HC (200 µM), and DFMO (1000 µM) for 36 hr …… Further, TLC images were quantified utilizing ImageJ software." *Figure legend 1:- (J) depicts the effect of polyamines level after treating with HC (200 µM) and CAPE (25 µM). Polyamine level of Vero treated cells at 12, 24, and 36 hr for HC and pre (12 hr) and post-treatment (24 h) for CAPE and DEMO, using untreated cells as a cell control (CC) for both of the conditions. 0.1 μM putrescine (put), spermine (spm), and spermidine (spd) as a positive control marker. changed to *
"(J) the chromatographic analysis of polyamine levels in Vero cells after 36 hr treatment with (from left) CAPE (25 µM), HC (200 µM), DFMO(1000 µM), and cell control (CC), 0.1 μM putrescine (Put), spermine (Spm), and spermidine (Spd) as a positive control marker. "
Results: Line no. 351 "Polyamine levels in cells treated with CAPE were significantly lower as compared to DFMO treatment (Figure 1J). Meanwhile, HC showed a reduction in polyamine levels with the initial 12 hr treatment; later, polyamine levels elevated gradually with time."
Revised to line no. 371 to 373"After treatment with CAPE, HC, and DFMO to Vero cells, overall residual polyamine levels are 28.33%, 29.67 %, and 46 %, respectively, compared to cell control."
Comment 16:-
Fig. 1, figure legend, lines 750-751: instead of 'Panels D-G depicts the inhibitory effect of CHIKV and DENV infected cells on different concentrations of HC and CAPE' should be
'Panels D-G depicts the inhibitory effect of different concentrations of HC and CAPE on CHIKV and DENV infected cells'
- Response:-Thank you for the suggestion. We have updated the figure legend to ensure clarity based on your recommendation. (D,E,G,H) depicts the inhibitory effect of different concentrations of HC and CAPE on CHIKV and DENV infected cells'.
Comment 17:-
Line 755: DFMO is wrongly written as 'DEMO'
- Response:- Thank you for bringing that to our attention. We have corrected the typo, changing Line 845 'DEMO' to 'DFMO' as appropriate.
Comment 18:-
Fig.2. IFA. Authors must consider on elaborating the IFA data. One can also consider quantifying these data for better comparison with other assays.
- Response:- We thank reviewer for your input. As per the suggestion we have elaborated the results on IFA. The qualitative application of IFA was chosen because of the absence of dedicated paid software/hardware for image quantification on the Thermofisher EVOS platform, thereby impeding our quantification efforts.
Comment 19:-
Result 1 (Suppl. Fig. 1). Line 359: 'After infection': please indicate the time here.
- Response:- Thank you for the feedback. Line no. 377:We have updated the line to specify the time as “ after 2 h of virus infection," and we have also revised this in the methodology section for clarity.
Comment 20:-
Suppl. Fig.1: How was the concentration of these polyamines chosen to be 1µM?
What will be the effect on increasing concentrations?
Why were all these three polyamines added together?
What is the effect of addition of individual polyamine in the rescue of viral titer?
Will this effect vary if cells are pre-treated with these polyamines and compounds in question are added post viral infection or if both are added simultaneously?
Response:- We thank the reviewer, for raising these insightful questions. We performed an Exogenous polyamine addition assay as per Mounce et al. 2016 to maintain consistency with established practices and the research focus. The concentration of 1 µM biogenic polyamines (Putrescine, Spermidine, and Spermine) was chosen based on the findings of Mounce et al. (2016), where viral titers were restored to levels comparable to non-treated conditions at this concentration (Mounce, Cesaro, et al., 2016; Mounce, Poirier, et al., 2016)*. Furthermore, increasing the concentration of these polyamines did not yield significant additional effects on viral titer rescue, as observed in their study. *
The potential influence of pre-treating cells with the biogenic polyamines (putrescine, spermidine, spermine) prior to viral infection, compared to simultaneous addition with the compound in question, is an interesting point. While Mounce et al. (2016) suggest this order may not significantly impact the rescue effect (Mounce, Poirier, et al., 2016)*. Further investigations are warranted to address this question definitively within the context of our specific experimental design. *
Comment 20:-
It is understandable that from the data of Suppl Fig.1, authors became keen on exploring the 'other' antiviral target, but then conclusions from Fig. 1J and Suppl. Fig. 1 are contradictory. As from Fig. 1J, it is being conveyed that the tested compounds depletes polyamines level better than the control. On the other hand, in suppl fig.1, when these polyamines are supplemented, the viral titer is not rescued. Of course this might be related to the time of addition of polyamines and compounds. Authors should consider discussing these results in details.
- Response:-Thank you for your insightful suggestion. We have addressed these results in detail in the discussion section of the manuscript. We conducted an Exogenous Polyamine Addition Assay following the methodology outlined by Mounce et al. (2016) to adhere to established procedures and align with our research objectives. Treatment with DFMO in the presence of exogenous polyamines, as well as treatment with DFMO followed by polyamine addition, led to the rescue of virus titers, as indicated by Mounce et al. (2016). Therefore, according to the data, the timing of exogenous polyamine addition may not be a significant factor. In our manuscript, the timing of polyamine and compound addition was consistent across all treatments (HC, CAPE, and DFMO).
Comment 21:-
Result 2. Suppl fig. 2. MSA. Provide complete information in the figure legend: indicate virus names to the corresponding Accession numbers and GenBank ID.
- Response:-Thank you for bringing this to our attention. We have updated the figure legend in Supplementary Figure 2 to include complete information, indicating the virus names corresponding to the Accession numbers and GenBank IDs.
Comment 22:-
Line 392: '2 dimensions' ?
- Response:-Thank you for bringing this to our attention. As suggested, we have made the change, replacing "2 dimensions" with "2D" for clarity.
Comment 23:-
Result 3. Authors didn't comment/discuss on the significance of these tests with GTP, SAM and difference in the Kd values: for CHIKV and DENV and other details
- Response:- We appreciate the reviewer's feedback. We have expanded upon these results in more detail in the discussion section. Discussion p.4 line no. 512 "Biophysical interactions by TFS indicate distinct red shift for nsP1 and NS5 MTase, with each compound displaying specific affinities toward the target proteins." revised to line no. 551 to 557 "The binding affinities of SAM and GTP with CHIKV nsP1 and DENV NS5 MTase were investigated and used as a reference to compare with HC and CAPE. HC has a high binding affinity for both enzymes, as evidenced by the Kd values. Conversely, CAPE demonstrates a more selective binding profile, exhibiting a significantly stronger affinity towards nsP1 than NS5 MTase. Significantly, both HC and CAPE have demonstrated a dose-dependent red shift, indicating structural changes upon interaction (Figure 5 and Supplimentary figure 5)."
- *
Comment 25 Result 4. Fig. 6A and 6E: The text does not report this result (SDS-PAGE). Fig. 6
- Response We appreciate the reviewer for bringing this to our attention. As per suggestion, we have incorporated the SDS-PAGE results in Fig. 6 in the text.line no. 467 to 468 "Single band at ~ 56 and ~ 32 kDa was observed in 12% SDS-PAGE for purified nsP1 and NS5 MTase, respectively ( Figure 6A and 6E)."
Comment 24:-
Did authors also perform the enzymatic assays (inhibition assays) with DFMO?
- Response:- Thank you for your intriguing question. We appreciate the reviewer's interest. We opted not to conduct enzymatic assays (inhibition assays) with DFMO, as it is a known analog of ornithine, a well-established inhibitor of the polyamine pathway (ornithine decarboxylase inhibitor). This decision was made as it was deemed outside the scope of our study.
Comment 25:-
Typographic errors: ml to mL, µl to µL, E. coli to E. coli (line 956), in multiple figures: chose titre or titer
- Response:- We thank the reviewer for their meticulous attention to detail. As per your observation, we have carefully reviewed the manuscript and made the necessary corrections, including changing "ml" to "mL", "µl" to "µL", and "E. coli" to " coli" (line no.. 1042). Additionally, we have standardized the usage of "titre" to "titer" across multiple figures. __References: __
Aljabr, W., Touzelet, O., Pollakis, G., Wu, W., Munday, D. C., Hughes, M., Hertz-Fowler, C., Kenny, J., Fearns, R., Barr, J. N., Matthews, D. A., & Hiscox, J. A. (2016). Investigating the Influence of Ribavirin on Human Respiratory Syncytial Virus RNA Synthesis by Using a High-Resolution Transcriptome Sequencing Approach. Journal of Virology, 90(10), 4876. https://doi.org/10.1128/JVI.02349-15
Arisan, E. D., Obakan, P., Coker, A., & Palavan-Unsal, N. (2012). Inhibition of ornithine decarboxylase alters the roscovitine-induced mitochondrial-mediated apoptosis in MCF-7 breast cancer cells. Molecular Medicine Reports, 5(5), 1323–1329. https://doi.org/10.3892/MMR.2012.786
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF. The global distribution and burden of dengue. Nature. 2013 Apr 25;496(7446):504-7.
Bouteille, B., & Dumas, M. (2003). Human African Trypanosomiasis. Encyclopedia of the Neurological Sciences, 587–594. https://doi.org/10.1016/B0-12-226870-9/00431-7
DENGUE/DHF SITUATION IN INDIA :: National Center for Vector Borne Diseases Control (NCVBDC). [cited 2022 Jan 15].
https://nvbdcp.gov.in/index4.php?lang=1&level=0&linkid=431&lid=3715
Kalita, J. M., Aggarwal, A., Yedale, K., Gadepalli, R., & Nag, V. L. (2021). A 5-year study of dengue seropositivity among suspected cases attending a teaching hospital of North-Western region of India. Journal of Medical Virology, 93(6), 3338–3343. https://doi.org/10.1002/JMV.26592
Lani, R., Hassandarvish, P., Shu, M. H., Phoon, W. H., Chu, J. J. H., Higgs, S., Vanlandingham, D., Abu Bakar, S., Zandi, K., R, L., P, H., MH, S., WH, P., JJ, C., S, H., D, V., S, A. B., & K, Z. (2016). Antiviral activity of selected flavonoids against Chikungunya virus. Antiviral Research, 133, 50–61. https://doi.org/10.1016/J.ANTIVIRAL.2016.07.009
Lobo DA, Velayudhan R, Chatterjee P, Kohli H, Hotez PJ. The neglected tropical diseases of India and South Asia: review of their prevalence, distribution, and control or elimination. PLoS neglected tropical diseases. 2011 Oct 25;5(10):e1222.
Logiudice, N., Le, L., Abuan, I., Leizorek, Y., & Roberts, S. C. (2018). medical sciences Alpha-Difluoromethylornithine, an Irreversible Inhibitor of Polyamine Biosynthesis, as a Therapeutic Strategy against Hyperproliferative and Infectious Diseases. https://doi.org/10.3390/medsci6010012
Mounce, B. C., Cesaro, T., Moratorio, G., Hooikaas, P. J., Yakovleva, A., Werneke, S. W., Smith, E. C., Poirier, E. Z., Simon-Loriere, E., Prot, M., Tamietti, C., Vitry, S., Volle, R., Khou, C., Frenkiel, M.-P., Sakuntabhai, A., Delpeyroux, F., Pardigon, N., Flamand, M., … Vignuzzi, M. (2016). Inhibition of Polyamine Biosynthesis Is a Broad-Spectrum Strategy against RNA Viruses. Journal of Virology, 90(21), 9683–9692. https://doi.org/10.1128/JVI.01347-16
Mounce, B. C., Poirier, E. Z., Passoni, G., Simon-Loriere, E., Cesaro, T., Prot, M., Stapleford, K. A., Moratorio, G., Sakuntabhai, A., Levraud, J. P., & Vignuzzi, M. (2016). Interferon-Induced Spermidine-Spermine Acetyltransferase and Polyamine Depletion Restrict Zika and Chikungunya Viruses. Cell Host & Microbe, 20(2), 167–177. https://doi.org/10.1016/J.CHOM.2016.06.011
Mudgal, R., Bharadwaj, C., Dubey, A., Choudhary, S., Nagarajan, P., Aggarwal, M., Ratra, Y., Basak, S., & Tomar, S. (2022). Selective Estrogen Receptor Modulators Limit Alphavirus Infection by Targeting the Viral Capping Enzyme nsP1. Antimicrobial Agents and Chemotherapy, 66(3). https://doi.org/10.1128/AAC.01943-21/ASSET/CFFD4322-C11C-41A1-9D51-7D0C3242FA63/ASSETS/IMAGES/LARGE/AAC.01943-21-F006.JPG
Nazir, A., Nazir, A., & Kandel, K. (2024). Advancing neuroblastoma care: Future horizons after approval of eflornithine by FDA. International Journal of Surgery (London, England). https://doi.org/10.1097/JS9.0000000000001182
Pegg, A. E., & Casero, R. A. (n.d.). Current Status of the Polyamine Research Field. https://doi.org/10.1007/978-1-61779-034-8_1
Rao, J. N., Rathor, N., Zhuang, R., Zou, T., Liu, L., Xiao, L., Turner, D. J., & Wang, J. Y. (2012). Polyamines regulate intestinal epithelial restitution through TRPC1-mediated Ca2+ signaling by differentially modulating STIM1 and STIM2. American Journal of Physiology - Cell Physiology, 303(3), C308. https://doi.org/10.1152/AJPCELL.00120.2012
Shen, H., Yamashita, A., Nakakoshi, M., Yokoe, H., & Sudo, M. (2013). Inhibitory Effects of Caffeic Acid Phenethyl Ester Derivatives on Replication of Hepatitis C Virus. PLoS ONE, 8(12), 82299. https://doi.org/10.1371/journal.pone.0082299
Tate, P. M., Mastrodomenico, V., & Mounce, B. C. (2019). Ribavirin Induces Polyamine Depletion via Nucleotide Depletion to Limit Virus Replication. Cell Reports, 28(10), 2620-2633.e4. https://doi.org/10.1016/J.CELREP.2019.07.099
Terui, Y., Yoshida, T., Sakamoto, A., Saito, D., Oshima, T., Kawazoe, M., Yokoyama, S., Igarashi, K., & Kashiwagi, K. (2018). Polyamines protect nucleic acids against depurination. The International Journal of Biochemistry & Cell Biology, 99, 147–153. https://doi.org/10.1016/J.BIOCEL.2018.04.008
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
The manuscript submitted by Bhutkar M. et al. details the antiviral properties of two compounds, herbacetin (HC) and caffeic acid phenethyl ester (CAPE), against Chikungunya virus (CHIKV) and Dengue virus (DENV) through cellular, bioinformatics, biochemical, biophysical, and structural studies. The authors propose a dual antiviral mechanism of action exhibited by these compounds, beginning with an evaluation of their cytotoxicity. Subsequent assessments of their antiviral efficacy against CHIKV and DENV are addressed using plaque reduction assay and other orthogonal assays such as qRT-PCR, and Immunofluorescence assay (IFA). Further, authors performed thin layer chromatography (TLC) to monitor polyamine levels in the cells treated with these compounds and concluded that these compounds leads to polyamine depletion which is also supported by previous studies. These experiments included DFMO as a control which is well established for its role in this regulation. Beyond their impact on cellular polyamine levels, the authors propose a role for these compounds in the inhibition of MTase domains in CHIKV and DENV, supported by the crystal structure of the DENV-3 NS5 MTase domain in complex with CAPE.
Major points
While the manuscript presents promising findings regarding the dual antiviral effects of the tested compounds, the authors fall short of demonstrating direct inhibition of MTase activity as a meaningful and complementary effect to polyamine depletion. Being only indirect, the enzyme inhibition data is not convincing, and the measured indirect inhibition are not precise enough in the case of CHIK nsp1, and too weak in the case of DENV NS5 (detailed below).
Conceptually, the organization of the results should be changed to first data (structural data of DENV MTase in complex with CAPE, which is a significant achievement), then interpretation/discussion with modeling, and not the other way around.
The discussion section requires more elaborate scientific justification rather than simply re-reporting the results.
Specific major remarks:
It would be best to organize the ms as follows: - Crystal structure of DENV MTase in complex with CAPE - Building of a model of nsp1 by superimposition with NS5 MTase - Modeling compound binding - Inhibition assays using enzyme assays at least in the case of NS5 MTase. The direct enzyme assays are well described in the literature. - If there is no inhibition, then discussion about possible reasons would be interesting and help the AV field. For example, CAPE could bind to other enzyme or sites, etc...
Figure 5 is problematic. - When presenting an y IC50 data, care should be taken that the IC50 inflexion point is preceded and followed by at least two experimental points, which is not the case. The IC50 value of 7.082 and 5.156 µM are too imprecise (and there is no need to give digits after the value). Please add more low concentration experimental points. - Please describe more panel D in the legend. - Panel F and G: A reduction of 25 % at the highest concentration of inhibitor is a strong indication that there is no effect.
Minor Points/Comments/ Suggestions:
A. In the Introduction section, line 58: Are DENV infection numbers representative of worldwide distribution, please clarify. Also, in the case of CHIKV infection, the most affected countries are mentioned, why not follow the same pattern for DENV, please consider homogenizing the text.
B. Before p. 4 (line 91), alphaviruses were not introduced. Please consider introducing them.
C. Consider introducing Dengue serotypes to help readers understand the significance of DENV-2 and DENV-3. Additionally, ensure uniformity by referring to these serotypes as DENV-2, DENV-3 throughout. There are inconsistencies in the current text, such as 'DENV 3' in lines 39 and 152, and 'DENV3' in lines 249 and 250, among others.
D. P. 4, 5 lines 91-134: Consider rephrasing/reorganizing the methylation process: conventional and unconventional. The current introduction doesn't clearly indicates the difference between the cap-0 capping in alphaviruses and cap-1 in flaviviruses.
E. Please consider citing the article instead of the referred link, wherever possible, for e.g., for ref. 22 PMID: 28218572 (a more recent reference for Flaviviridae taxonomy available than that mentioned in the current manuscript.)
F. Homogenize the writing of taxonomic names (viral families) in the text. For example, in line 126 change Flaviviridae to Flaviviridae, and line 476 (Discussion section), alphaviridae to Alphaviridae, flaviviridae to Flaviviridae and so on. For further clarification on addressing this, one can also refer to https://ictv.global/faq/names.
G. Please make sure to appropriately reference the corresponding supplementary information (text or figures) in the main text wherever necessary to avoid the impression of missing information. For instance, in none of the sub-sections of Materials and Methods (M&M), it is being indicated to refer to the suppl. experimental procedures for more details. Also consider not repeating the same information between the main experimental procedures text and the supplementary text.
H. M&M sub-section. 2, line 163: Which specific culture media is being referred to here? Could you provide additional details? On line 164, it mentions that polyamines were diluted in water. Is this water sterile tissue culture-grade water as indicated in line 161?
I. M&M, line 274: What is CE? Please expand the term before using the abbreviation.
J. line 306. Ref. 53: This is not a reference.
K. Results. 1: Didn't understand the relevance of Fig. 1C, as this data is already included in Fig. 1B. Fig. 1G and H are not referred to in the result text. Lines 342, 343: 'At the mentioned concentrations', where are these concentrations mentioned? qRT-PCR data is not very clear. Please consider elaborating on some details. Why the statistics were only performed between HC and DFMO and not with CAPE? How the fold reduction is being calculated? For example, the fold difference of 97 is not visibly evident. Line 375: 'SAM is lined by residues ... would be more appropriate than 'formed' Fig. 1J. For TLC results, consider using the term panel (left, center, right) to navigate within this figure. The representation of this result is not uniform, as the time course is shown for HC while it is not shown for DFMO and CAPE. The treatment time is not indicated for DFMO and CAPE. For better representation and significant differences, one can consider quantifying these TLC results. Fig. 1, figure legend, lines 750-751: instead of 'Panels D-G depicts the inhibitory effect of CHIKV and DENV infected cells on different concentrations of HC and CAPE' should be 'Panels D-G depicts the inhibitory effect of different concentrations of HC and CAPE on CHIKV and DENV infected cells'. Line 755: DFMO is wrongly written as 'DEMO' Fig.2. IFA. Authors must consider on elaborating the IFA data. One can also consider quantifying these data for better comparison with other assays.
Result 1 (Suppl. Fig. 1). Line 359: 'After infection': please indicate the time here. Suppl. Fig.1: How was the concentration of these polyamines chosen to be 1µM? What will be the effect on increasing concentrations? Why were all these three polyamines added together? What is the effect of addition of individual polyamine in the rescue of viral titer? Will this effect vary if cells are pre-treated with these polyamines and compounds in question are added post viral infection or if both are added at the same time? It is understandable that from the data of Suppl Fig.1, authors became keen on exploring the 'other' antiviral target, but then conclusions from Fig. 1J and Suppl. Fig. 1 are contradictory. As from Fig. 1J, it is being conveyed that the tested compounds depletes polyamines level better than the control. On the other hand, in suppl fig.1, when these polyamines are supplemented, the viral titer is not rescued. Of course this might be related to the time of addition of polyamines and compounds. Authors should consider discussing these results in details.
Result 2. Suppl fig. 2. MSA. Provide complete information in the figure legend: indicate virus names to the corresponding Accession numbers and GenBank ID. Line 392: '2 dimensions' ?
Result 3. Authors didn't comment/discuss on the significance of these tests with GTP, SAM and difference in the Kd values: for CHIKV and DENV and other details
Result 4. Fig. 6A and 6E: This result (SDS-PAGE) is not reported in the text. Fig. 6
Did authors also perform the enzymatic assays (inhibition assays) with DFMO?
Typographic errors: ml to mL, µl to µL, E. coli to E. coli (line 956), in multiple figures: chose titre or titer
Significance
This a body of work that is very interesting and has good potential, however it lacks the correct demonstration of the additive effect of MTase inhibition to polyamine depletion.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Authors describe anti-CHIKV and anti-DENV activities of herbacetin and caffeic acid phenyl ester (CAPE). The antiviral effect is not reversed buy exogenous polyamines suggesting multiple mechanisms of action. NS5-Met complex with caffeic acid phenyl ester was obtained and its structure resolved at high resolution. The resolved structure reveals two binding sites for antiviral compound overlapping with that of GTP and possibly with site involved in binding of RNA
Other than analysis of crystal structure of NS5/CAPE complex the provided data is of low quality and is not analyzed properly. There is no evidence that data is reproducible. Authors have calculated significance from "experimental repeats" which, based on the description of experiments, are not independent experiments but technical replicates. Some key technical details are missing and some experiments are not described at all. The writing can be vastly improved and figures be made a lot more easier to understand.
There are several points that need to be addressed, so here I provide some examples:
- Bad writing lines 64-65 . Viral genomes lack protein synthesis machinery. Basically correct but no genome has protein synthesis machinery line 137 flavonoids play role in reducing of the levels of nsP1 in CHIKV - what this can possibly mean? Are shown to reduce level of nsP1 in CHIKV infected cells? line 250-251 - RNA was isolated from the infected cells' supernatant, used for cloning, an inserted between the NheI and XhoI restriction sites... It should be impossible as one cannot insert RNA into bacterial plasmid DNA
- Missing parts. Examples
- the source of nsP1 of CHIKV is not indicated, True, there are references to previous studies but this is extremely important point and it should have been clearly stated that it was obtained from E. coli. The issue is that authors made some predictions and modelling based on structure of nsP1 from eukaryotic expression system. It is not known does the enzyme purified from bacteria have similar structure (actually, in cited Nature paper - doi: 10.1038/s41586-020-3036-8 - attempts to purify nsP1 from bacteria were made. The protein was monomeric and had no activity)
- description of experiment shown on Figure 4 is missing
- Figure lacks quality (and figure legends are unclear) Examples:
- it is impossible to understand what exactly is shown on Figure 1J
- important information is missing, for example it is not clear what were concentrations of antiviral compounds for panels 1F and 1I
- wrong data
- line 478 it is stated that there is no vaccine for DENV or CHIKV. It is correct, DENV vaccine has been in use for several years and CHIKV vaccine was approved at 2023
- line 476 refers to family alphaviridae. This does not exist, family is Togaviridae
- unjustified conclusions. Example
- authors have analyzed sequences of nsP1 of alphaviruses and made conclusions regarding conservation of active site. It is probably correct but the analyzed viruses do not represent all diversity of alphaviruses, insect specific members and aquatic alphaviruses should also be analyzed (same problem with analysis performed for flaviviruses)
- Insufficient analysis of data. Some cases there is significant discrepancy between results of different assays. For example, CAPE inhibits DENV at 2.5 microM (Fig 1H) but in test tube assay only small inhibition was observed even at 1000 microM. Authors should provide plausible explanation for this and similar discrepancies (CE and ELISA based assays shown on figure 6 also resulted in drastically different inhibitions). It is expected assays would produce different results but there should also be explanation for this. If this is not provided on can assume that it is due to experimental errors.
- Discussion is essentially missing, it is just list of statements mostly repeating what was said in other sections
The reviewer is sorry for not being able to provide more specific and useful comments and suggestions. To my opinion, manuscript should have been better prepared before submitting for review. Multiple mistakes, discrepancies and lack of clarity makes it difficult (for me nearly impossible) to focus on scientific value of study and provide constructive comments
Significance
It is difficult to assess the significance of the studys findings as the data presented and writing lacks sufficient quality and depth. While some experiments that can be understood (crystal structure, some antiviral assays) show potentially interesting scientific findings, the manuscript needs a major overhaul before it can be considered relevant for the scientific community.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
In this manuscript, the authors use structural and functional approaches to investigate the potential anti-DENV and anti-CHIKV activity of HC and CAPE, two naturally occurring compounds. They find that these compounds reduce cellular polyamine levels and specifically inhibit the viral methyltransferase (MTase) activity. Hence, the authors propose that HC and CAPE have anti-viral potential against DENV and CHIKV, which have been implicated in severe disease in humans.
Overall, this is a straightforward investigation and is quite suitable for publication as a "first report" on the anti-MTase activity of these compounds. The data support the conclusions. This will be of interest to researchers in the anti-virals field. A strength of this investigation is the multi-faceted approach to get to the target of these compounds, i.e., the viral MTase enzymes. This is commendable.
My main concern is that the depletion of polyamines is likely to have broad implications for host cell metabolism. Polyamines are critical for genome folding and stability. Hence, polyamine depletion will likely compromise cellular metabolic homeostasis. My suggestion is to perform a literature survey on this topic, identify appropriate assays of cellular homeostasis, and add at least one such assay in the relevant HC and CAPE concentration range to address my question.
I also suggest adding the potential negative effects of polyamine depletion on host cell metabolism in the discussion section.
Significance
Strengths- multi-faceted approach
Target audience- researchers interested in anti-virals
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
We would like to express our gratitude to the reviewers for their comments, which helped us to improve the quality of our manuscript. Below are the responses to each comment. We hope that these responses will satisfy the reviewers.
Reviewer #1
Evidence, reproducibility and clarity
Summary: The nonsense-mediated mRNA decay (NMD) is and RNA quality pathway that eliminates mRNAs containing premature termination codons. Its mechanism has been studied for several decades but despite enormous progress we still don't have a satisfactory model that would explain most of the published observations. In particular, the mechanism has been proposed to differ substantially between yeast and metazoa. Yeast Nmd4 protein was previously shown to be involved in NMD, to interact with UPF1 and exhibit similarities with metazoan SMG6 and SMG5/7, that are normally believed to be specific for metazoan NMD (Dehecq et al., EMBO J, 2018). Barbarin-Bocahu et al now describe the crystal structure of the complex between the yeast UPF1 RNA helicase and Nmd4. Importantly, the authors show that interaction is required for NMD activity and increases the ATPase activity of UPF1. Barbarin-Bocahu et al equally show that this interaction and its role in NMD is conserved in the human UPF1-SMG6 complex, thus providing additional novel evidence for universal conservation of the NMD mechanism in eukaryotes. The manuscript carefully combines biochemistry, biophysics with functional in vivo studies. In my opinion, all the experiments are very well executed, generally convincing and interpretations appear correct, so the manuscript is certainly suitable for publication. I have included some suggestions below that I believe could strengthen the manuscript and enhance our confidence in the findings.
We are grateful for the useful suggestions that have enabled us to improve our manuscript.
Major comments:*
*Page 7 - "Since the D1353A mutation completely abolishes the enzymatic activity of SMG6 (34), this strongly suggests that the PIN domain of Nmd4 is not endowed with endonucleolytic activity. " Could/was the endonucleolytic activity of NMD4 be tested?
We agree with this important point. Our statement is based on previous site directed mutagenesis experiments on the PIN domain of human SMG6 (Galvan et al; 2006; EMBO Journal; PMID : 17053788 / Eberle et al; 2008; Nat. Struct. Mol. Biol.; PMID : 19060897), which showed that D1353 is the critical residue of SMG6 active site involved in the endonuclease enzymatic activity. Given that in yeast Nmd4 proteins, the corresponding residue is hydrophobic (Leu112 in S. cerevisiae Nmd4 and Phe114 in Kluyveromyces lactis Nmd4) and therefore cannot participate directly in catalysis, we assume that yeast Nmd4 proteins have no endonucleolytic activity.
Furthermore, despite decades of research in this field, no endonucleolytic activity has been described as being involved in the NMD pathway of S. cerevisiae (the model system in which the NMD mechanism was discovered in the 1970's), whereas it has been well characterized in the NMD pathway of metazoans for more than twenty years (Gatfield and Izaurralde; Nature; 2004; PMID : 15175755 / Huntzinger et al; RNA; 2008; PMID : 18974281 / Eberle et al; Nat. Struct. Mol. Biol.; 2009; PMID : 19060897 / Lykke-Andersen et al; Genes Dev.; 2014; PMID : 25403180). Our attempts to demonstrate an endonucleolytic activity of purified Nmd4 in vitro were not successful. This negative result could be due to many reasons, including loss of enzymatic activity in the tested buffer, the absence of an important cofactor or the choice of the tested RNA. For these reasons, we prefer not to include this type of negative result in the current manuscript.
We hope that, on the basis of the above informations, the reviewer will agree that further substantial efforts to demonstrate a hypothetical endonucleolytic activity of Nmd4 are unlikely to be fruitful. Moreover, we believe that even if yeast Nmd4 turns out to behave as an endonuclease, this fact does not change the main message of the manuscript.
Page 10 - The two proteins bind RNA with reasonable affinity. The complex binds polyU RNA with Kd of 0.44 μM . The authors suggest, based on structure superpositions, that RNA fragments bound to the PIN domain and Upf1-HD have opposite orientations. But since they have the complex ready to crystallize, did they attempt to determine the structure with of the complex with RNA? The complex is quite small (~100 kDa with RNA) but it could be even visible by cryo-EM. I don't insist that such a structure needs to be included but it might perhaps be easy to do and would surely strengthen the story. If it is too difficult, it could at least be mentioned that it was tried?
We agree that it would be interesting to determine the crystal structure of the complex with a short RNA fragment. Unfortunately, despite extensive efforts, we could not obtain crystals of the complex in the presence of RNA. This is probably due to the large movements of the RecA2 and 1B domains relative to the RecA1 domain observed in former studies upon RNA binding to Upf1. We have mentioned that we tried to crystallize this complex in the absence or the presence of a short oligonucleotide in our revised manuscript.
As far as single-particle cryo-EM is concerned, we are aware that recent advances in this field should make it possible to determine the structure of the Nmd4-Upf1-RNA complex, but we do not yet have the necessary expertise in this technique. Despite the interesting information that such a structure could provide, we therefore consider that this would require a very significant investment and that it is beyond the scope of this manuscript.
I think it is important to demonstrate that the structure-based mutants don't significantly impact the overall structure of the proteins (e.g. glycine residues are mutated within helices). At least gel filtration profiles with gels of the WT and mutated proteins should be shown in SI.
Thank you very much for highlighting this point. We fully agree that it is important to demonstrate that the Upf1 and Nmd4 mutants used in the in vitro experiments (pull-down and ATPase assays) are not affected in their overall folding. As suggested by the reviewer, we have included gel filtration chromatograms for WT and mutant proteins (Figures S2A for Upf1-HD proteins and S2B for His6-ZZ-Nmd4 proteins). These chromatograms clearly show that the different mutants behave very similarly to the WT proteins during purification, demonstrating that the overall structures of the mutants are very similar to those of the wild-type proteins. We have also included the Coomassie blue stained SDS-PAGE analysis of the proteins present in the main peak to show the purity of the final proteins.
Perhaps the main finding of this manuscript is the conservation of the UPF1-Nmd4 interaction in human UPF1-SMG6. But the interaction is only demonstrated by co-IP with ectopically expressed human proteins in human cells that contain all the other human proteins as well. It would probably be more convincing to demonstrated the interaction in pull-downs with purified proteins as done for the yeast complex.
Thank you for highlighting what we consider to be one of the most interesting findings presented in our manuscript. We agree that pull-down experiments using pure protein fragments expressed in E. coli would have been ideal to further confirm our co-IP results and to validate that mutations do not affect the overall structure of SMG6. Unfortunately, despite considerable efforts, we were unable to express sufficient quantities of the SMG6-[207-580] fragment or shorter versions as soluble proteins in E. coli. Indeed, Elena Conti's laboratory had the same experience according to a statement in a paper on SMG6 (Chakrabarti et al; 2014 Nucleic Acids Research; PMID: 25013172), indicating that this region protein is very difficult to work with. As we have not yet set up protein over-expression techniques in human cells or baculovirus-infected insect cells in our laboratory, we have not been able to try these expression systems to express these SMG6 domains. These are the reasons why we decided to demonstrate this interaction by co-IP experiment using ectopically expressed tagged proteins in human cells and all appropriate controls.
In addition, using purified proteins would enable testing whether the mutations in SMG6 don't affect the overall structure of the mutants compared to the WT.
We agree that this is an important issue. Several bioinformatics tools, including AlphaFold2 (identifier: AF-Q86US8-F1), predict that the human SMG6-[207-580] fragment is largely unstructured (see panel A of figure below). Furthermore, the pLDDT values or confidence scores for this region in the AlphaFold2 model are very low (below 50), indicating that the structure of this region is poorly predicted (see panel B of figure below). Therefore, biophysical techniques to assess that the overall structure of this fragment is not affected by the introduced mutations are very limited. However, we did not observe reduced levels of SMG6 mutants compared with WT in human cells expressing these variants (Fig. 4B and S4), so we believe that these mutants behave similarly to the wild-type fragment, as is often postulated by scientists for in cellulo studies. Furthermore, if these mutants drastically affect the overall structure of SMG6, we would expect NMD to be strongly affected, resulting in a notable accumulation of NMD RNA substrates in our in cellulo experiments when the effect of the double mutant (M2) is compared to that of the SMG6 WT protein (Fig. 4C). This was not the case. On the basis of all these elements, we assume that the overall structure of the SMG6 protein is not affected by these mutations.
Figure for reviewing purpose : Model of the three-dimensional structure of human SMG6 protein generated by AlphaFold2.
A. Model of human SMG6 protein (green) with the region 207-580 used in our study colored in red.
B. Model of human SMG6 protein (green) colored according to the pLDDT values. Orange : pLDDT 90.
Since the detected similarity to Nmd4 is only in a region covering residues 440-470, why is the tested construct much larger (207-580) including extra, large disordered regions.
For in cellulo studies, it has previously been shown that the SMG6-[207-580] fragment is expressed as a stable protein in human cells and is responsible for the phospho-independent interaction between UPF1 and SMG6 (Chakrabarti et al; 2014; Nucleic Acids Research; PMID: 25013172). As our aim was not to reduce this SMG6 region to a shorter peptide but to conduct an amino acid-level analysis by site-directed mutagenesis, we decided to perform our experiments using the same SMG6 domain as Conti's laboratory and to mutate conserved residues on this fragment.
Finally, the most convincing way to show and characterize the human UPF1-SMG6 interaction would be an X-ray structure. It might be feasible to crystallize human UPF1 HD domain with a SMG6 peptide. Or at least an Alphafold model could be included? I had a quick try just with the Colabfold and using the HD domain and the SMG6 peptide, Alphafold can predict convincingly the binding of the region around W456 and in some models even around R448. I think that this would strengthen the conclusions in this part of the manuscript.
We agree that determination of the crystal structure of human UPF1 HD linked to this region of SMG6 protein interaction would have further supported our conclusions on the conservation of UPF1-Nmd4 interaction in human UPF1-SMG6. However, due to the SMG6 expression problems mentioned above, we were unable to reconstitute the human complex in vitro, which precluded crystallization assays.
Based on this suggestion, we generated a model of human UPF1-HD bound to the 421-480 region of human SMG6 using AlphaFold2 Colabfold. Of the various models proposed (25 in total), most are very similar and show that the side chains of R448 and W456 of SMG6 bind to regions of human UPF1 corresponding to the region of the yeast protein that interacts with R210 and W216 of Nmd4. This model is consistent with our hypothesis and we have decided to include it in the revised manuscript as suggested (Fig. EV6). We thank the reviewer for this constructive comment.
We have added the following text to mention this model : « Based on this observation, we generated a model of the complex between human UPF1-HD and the region 421-480 of SMG6 using AlphaFold2 software (1,2). In this model, the SMG6 fragment binds to the same region of UPF1-HD as the Nmd4 « arm » (Fig. EV6). In particular, the R448 and W456 side chains of SMG6 match almost perfectly with R210 and W216 side chains of S. cerevisiae Nmd4, suggesting that this conserved region from SMG6 is involved in the interaction between the SMG6 and UPF1-HD proteins. »
Does the SMG6 addition also increases the ATPase activity of UPF1?
This is a very good point and we agree that the results of such an experiment may have further supported our conclusions about the conservation of the Upf1-Nmd4 interaction in human UPF1-SMG6. Unfortunately, due to the SMG6 protein expression problems mentioned above, we could not perform these in vitro experiments.
Minor comments: Examples of electron density omit maps of the key interaction interfaces should be shown in Supplementary Information for the reader to be able to judge the crystallography data quality.
Following this suggestion, we have added two panels showing electron density omit maps of residues at the interface in Fig. S1. We hope that this will convince the reader of the quality of our crystallographic data. We have also added the following sentence to the main text : « The overall quality of the electron density map allowed us to unambiguously identify the residues of the two proteins involved in the formation of the complex (Fig. S1A-B). »
I suggest to add the Kd values to ITC panels for clarity in main and EV figures.
We have taken this suggestion into account for figures 2A and EV5.
On page 10: What experiment is this referring to : "This is in agreement with our ITC experiments (carried out in the absence of a non-hydrolyzable ATP analog), which revealed no major synergistic effect between the two proteins for RNA binding." Results in EV4A? Or some other not shown data? The results in EV4A do show an increase in RNA binding when both proteins are in a complex.
Thank you for your comment. We realize that this sentence was not clear. We refer to the ITC data for the interaction of Upf1-HD, Nmd4 or the complex with RNA (Fig. EV5A). These data show a 2.3-fold increase in the affinity of Upf1 for RNA in the presence of Nmd4, which we consider to be a notable effect but not a major one. Based on the second reviewer's comments that our comparison between Nob1 and the PIN domain of Nmd4 is not convincing, we have decided to delete this speculative section, which did not address an important point in our current study. We will address this point using more direct and sophisticated methods in future work.
On page 16, "organsms" should be" organisms"
Typo corrected.
In certain figure legends the panel labels (A,B,C..) are missing (e.g. Fig 3, EV1, EV5).
We apologize for this problem ,which was due to a conversion problem when preparing the PDF file of the submitted article. This problem has now been corrected.
The PIN domain structure was solved only to determine the structure of the complex? I only found it mentioned in the methods and no other mention of this structure in the main text. Maybe one sentence could be added to the results to explain why this structure was solved and how it compares to the complex structure.
We agree that we forgot to explain why we solved the structure of the PIN domain of Nmd4. The point was to help in the determination of the structure of the complex. We have added the following sentence to the main text to explain this point: « We also determined the 1.8 Å resolution crystal structure of the PIN domain of Nmd4 (residues 1 to 167) to help us determine the structure of the Nmd4/Upf1-HD complex. As this structure is virtually identical to the structure of the PIN domain of Nmd4 in the complex (rmsd of 0.5 Å over 163 C𝛼 atoms between the two structures), we will only describe the structure of this domain in the Upf1-Nmd4 complex. »
Significance
This is a important study, providing detailed insight into the function on Nmd4, SMG6 and UPF1 NMD. The results also point towards a conserved mechanism on NMD between yeast and human. I would like to highlight the quality of the experiments. This study will be of great interest to people working on NMD but also more broadly to scientists working on RNA, helicases and structural biologists.
We are very grateful for the reviewer's comments about the broad interest and overall quality of our work.
Reviewer #2
Evidence, reproducibility and clarity
In this study, the authors solved the crystal structure of the UPF1 helicase domain in complex with Nmd4. Through the structure and biochemical studies, they uncovered a region responsible for Nmd4 binding to UPF1, also important for their function in NMD. In the end, the authors also extended their findings to the human SMG6, proposing a conserved mechanism for Nmd4 and SMG6.
The mechanism of UPF1 functioning during NMD is a long-existing question. For decades, people have been trying to find out the roles of all the NMD factors during this process. This study visualized the first direct connection between UPF1 and the putative SMG6 homolog, Nmd4. Undoubtedly, it will aid our understanding of how the whole process works.
One of the limitations of this study is the conservation between Nmd4 and SMG6. Although they both have a PIN domain, Nmd4 is inactive while SMG6 is active. During NMD, SMG6 is thought to work to cut the mRNA, thus promoting the degradation of the non-functional mRNA. Therefore, Nmd4 and SMG6 may only share a similar binding mode with UPF1, however, they do not share similar functions. This study might only apply to yeast study.
We respectfully disagree with this comment. The role of SMG6 in NMD cannot be attributed solely to the endonuclease activity of the SMG6 PIN domain alone. Indeed, recruitment of the SMG6 PIN domain alone to an mRNA is not sufficient to destabilize it (Nicholson et al; 2014; Nucleic Acids Research; PMID: 25053839). This clearly indicates that other regions of SMG6 are critical for NMD. In our manuscript, we unveil the conservation of the Upf1-Nmd4 interaction in human UPF1-SMG6 (and probably more generally in metazoans) and show that this interaction plays a role in the optimal removal of NMD substrates. We strongly believe that our results are not only applicable to the study of yeast, but will fuel future studies in human cells aimed at describing the mechanistic details of the human NMD pathway.
comments: the study write in a very clear way, and most of the experiments are clear and sound. I do not have any major comments. I only have a few minor comments, listed below:
We are very grateful for the reviewer's comments about the overall quality of our manuscript and of the experimental work.
1:The authors also solved the PIN domain of the SMG6. This is a result worth showing in the main figure.
In our study, we did not solve the structure of the human SMG6 PIN domain. This was done by Dr. Conti's group in 2006 (Galvan et al; 2006; EMBO Journal; PMID : 17053788). This is the reason why we do not include this in the main figure. However, we have solved the crystal structure of Nmd4 PIN domain alone to help us determine the structure of the complex. Since it is very similar to the structure of the Nmd4 PIN domain in the complex with Upf1, we do not describe this structure in details. Following up the suggestion from another reviewer, we have included the following sentence mentioning that we have also determined the structure of Nmd4 PIN domain in the main text : « We also determined the 1.8 Å resolution crystal structure of the PIN domain of Nmd4 (residues 1 to 167) to help us determine the structure of the Nmd4/Upf1-HD complex. As this structure is virtually identical to the structure of the PIN domain of Nmd4 in the complex (rmsd of 0.5 Å over 163 C𝛼 atoms between the two structures), we will only describe the structure of this domain in the Upf1-Nmd4 complex. »
2:It would be easier to read if the authors could add all the binding constants directly into the ITC panels.
We have taken this suggestion into account for figures 2A and EV5.
3:I am confused with His6-ZZ. Is ZZ a protein tag?
The ZZ protein is a tag consisting of a tandem of the Z-domain from Staphylococcus aureus protein A. This domain binds to the Fc region of IgG and has been shown to improve expression levels and stability of recombinant proteins. In our case, it proved crucial to obtain mg amounts of the yeast Nmd4 protein and to enhance considerably its stability. We have added the following sentence in the « Materials and methods » section of the manuscript : « The ZZ-tag consists in a tandem of the Z-domain from Staphylococcus aureus protein A and was used as an enhancer of protein expression and stability. »
4:The comparison between Nob1 and the PIN domain of Nmd4 is not convincing for me. Since the PIN domain is not required for the binding between Nmd4 and UPF1, the conformation of the PIN domain could be a result of the crystal packing. Thus, it is still possible that Nmd4 and UPF1 bind to the same RNA. To this end, I challenge the conclusion the authors have made on the mRNA binding part.
We agree with your comment. Since this comparison is purely speculative and is not a major focus of our study, we decided to remove this section. We will address this point using more direct and sophisticated methods in future work aimed at elucidating this aspect.
5: "Showing that Nmd4 stabilizes Upf1-HD on RNA in the absence of ATP and that Upf1 is the main RNA binding factor in the Nmd4/Upf1-HD complex." As mentioned above, I don't think one can make the conclusion UPF1 is the main RNA binding factor; there shouldn't be a main and minor. Meanwhile, what will happen if you add ATP in? Or AMPPNP? Or ADP?
We agree with your comment that our current data do not allow to conclude precisely about the role of Upf1 as major RNA binding factor. We have replaced this sentence by the following one : « Whether this increase in affinity is due to a synergistic effect between both proteins or to an allosteric stimulation of one partner on the RNA binding property of the second partner remains to be clarified. ».
Regarding the role of the nucleotides on RNA binding properties of the Upf1 helicase domain or the complex, we faced precipitation problems when mixing high concentrations Upf1 and nucleotides for ITC experiments, making difficult to determine Kd values for the interaction between Upf1 and RNA in the presence of nucleotides. However, in a previous study (Dehecq et al; 2018; EMBO J; PMID : 30275269), we observed that AMPPNP did not affect the amount of Nmd4 and Upf1-HD co-precipitated by an RNA oligonucleotide, indicating that nucleotide does not significantly affect the interaction of the complex with RNA.
6: "But also that a physical interaction between Upf1-HD and the PIN domain exists in vitro, although we were unable to detect it using our various interaction assays." This also confused me, since one cannot detect the interaction in any assay, how could you be so confident there is a physical interaction? Have you tested assays which are good for weak binding?
We understand that this sentence may be confusing. The tests we have used to determine whether there is a physical interaction between the PIN domain of Nmd4 and Upf1-HD are ITC and pull-down. These are excellent methods for detecting stable interactions with dissociation constants (Kd) in the nanomolar to tens of micromolar range. These two methods did not indicate any direct interaction between the PIN domain of Nmd4 and Upf1-HD. However, we observed that the PIN domain of Nmd4 stimulates the ATPase activity of Upf1-HD to the same extent as the « arm » of Nmd4. This is an indirect indication that the Nmd4 PIN may interact with Upf1-HD, otherwise a stimulatory effect would not be expected. Our radioactivity-based ATPase assay is very sensitive, allowing the detection of a stimulatory effect due to a transient interaction between the PIN domain of Nmd4 and Upf1-HD, which, as indicated above, could not be detected with the interaction assays used. We would also like to point out that in our ATPase conditions, Upf1-HD (0.156 µM) is incubated with a 20-fold molar excess (3.12 µM) of its partners (Nmd4-FL, Nmd4 « arm » or Nmd4 PIN). Such an excess cannot be used in our interaction tests. This could explain the stimulatory effect detected for the PIN domain of Nmd4 in our ATPase assay.
We have clarified this section by adding the following sentences: « We were unable to detect such an interaction using our different interaction assays (pull-down and ITC), which are optimal for studying interactions with dissociation constants (Kd) in the nanoM to tens of microM range. We therefore assume that a transient low-affinity interaction (high Kd value not detected by our binding assays) exists between Upf1-HD and PIN Nmd4 and can only be detected by highly sensitive assays such as our radioactivity-based ATPase assay, which was performed with a 20-fold molar excess of PIN Nmd4 domain over Upf1-HD. »
7: Figure 4B should be done in the context of the full length of SMG6 and UPF1.
**Referees cross-commenting**
*This session contains comments from both Rev1 and Rev2*
Rev1:
There seems to be a contradiction in comments on Figure 4B. I agree with Reviewer 2 that using FL proteins will be informative to see whether the FL proteins indeed interact (or not in the case of the mutants).
If one wants to use this experiment to map the interacting regions, then I think that the UPF1 HD domain and the short conserved region of SMG6 should be used. The long fragment SMG6 207-580 is not ideal for either. The short constructs would be more suited for a pull-down experiments (like done for the yeast proteins).
Rev2
Response to reviewer #1, It is necessary to use the full-length protein (FL protein) to map the interface unless they have pre-existing information to support mapping down to short fragments.
In addition, performing further structural work would be beyond the scope of this study. Given the additional time and effort required, I do not recommend doing so for this study.
Rev1:
As I said, I agree with using the FL proteins. The pre-existing information supporting the mapping comes from sequence alignments with the yeast structure and the mutagenesis. This is further confirmed by Alphafold modeling which in my opinion should be included. As I mentioned in my review, I don't insist on further structural work
Thank you very much for this comment and the discussions between reviewers, which show that we didn't explain our experimental strategy clearly. Human UPF1 has been shown to interact with SMG6 in both phospho-dependent and phospho-independent modes. In our manuscript, we focus on characterizing the phospho-independent interaction. For this reason, we cannot perform this experiment using the full-length version of SMG6 and UPF1, otherwise the effects of our point mutants on the UPF1-SMG6 interaction could be masked by the phospho-dependent interaction occurring between domain 14.3.3 of SMG6 and the C-terminus of Upf1. To circumvent this problem, we were inspired by former in cellulo studies, which have shown that the SMG6-[207-580] fragment is expressed as a stable protein in human cells and is responsible for the phospho-independent interaction between UPF1 and SMG6 (Chakrabarti et al; 2014; Nucleic Acids Research; PMID: 25013172). Similarly, the helicase domain of UPF1 was found to be sufficient for this phospho-independent interaction with human SMG6 (Nicholson et al; 2014; Nucleic Acids Research; PMID: 25053839). These are the reasons why we decided to use this protein domains in our in cellulo studies to test the effect of our point mutants on the interaction. As indicated above in an answer to one comment to reviewer #1, as our aim was not to reduce this SMG6 region to a shorter peptide but to conduct an amino acid-level analysis by site-directed mutagenesis, this is also why we decided to perform our experiments using the same SMG6 domain as Conti's laboratory and to mutate conserved residues on this fragment. We have also included the AlphaFold2 model of the complex between human UPF1 and SMG6 in our revised version.
To clarify this point, we have amended the relevant section as follows: « To determine whether this motif might be involved in the interaction between SMG6 and UPF1-HD proteins, we ectopically expressed the region comprising residues 207-580 of human SMG6 fused to a C-terminal HA tag (SMG6-[207-580]-HA) and human UPF1-HD (residues 295-921 fused to a C-terminal Flag tag; UPF1-HD-Flag) in human HEK293T cells, as these regions have previously been shown to be responsible for the phosphorylation-independent interaction between these two proteins. Compared to the full-length UPF1 and SMG6 proteins, these constructs also preclude our findings of any interference from the phosphorylation-dependent interaction occurring between the C-terminus of UPF1 and the 14-3-3 domain of SMG6. »
8: "The NMD mechanism not only targets mRNAs but also small nucleolar RNAs (snoRNAs) and long noncoding RNAs (lncRNAs) harboring bona fide stop codons but in a specific context such as short upstream open reading frame (uORF), long 3'-UTRs, low translational efficiency or exon-exon junction located downstream of a stop codon." "First, for mRNAs with long 3'-UTRs, the 3'-faux UTR model posits that a long 3 spatial distance between a stop codon and the mRNA poly(A) tail destabilizes NMD substrates by preventing the interaction between the eRF1-eRF3 translation termination complex bound to the A- site of a ribosome recognizing a stop codon and the poly(A)-binding protein (Pab1 or PABP in S. cerevisiae and human, respectively)." These are difficult to read.
Thank you for this suggestion to improve the clarity of our manuscript. We have tried to make these sentences easier to read as follow:
« The NMD mechanism also targets mRNAs, small nucleolar RNAs (snoRNAs) and long noncoding RNAs (lncRNAs) carrying normal stop codons located in a specific context (short upstream open reading frame or uORF, long 3'-UTRs, low translational efficiency or exon-exon junction located downstream of a stop codon (3-11)). »
« The first model, the 3'-faux UTR model posits that for mRNAs with long 3'-UTRs, a long spatial distance between a stop codon and the mRNA poly(A) tail destabilizes NMD substrates. Indeed, it would prevent the physical interaction between the eRF1-eRF3 translation termination complex recognizing a stop codon in the A-site of the ribosome and the poly(A)-binding protein (Pab1 or PABP in S. cerevisiae and human, respectively) bound to the 3' poly(A) tail (12-14). »
9: please add the Ramachandran plot values.
Thank you for pointing out this omission. These values have been included in Table EV1.
__Significance __
NMD is one of the major topics in the field of gene translational regulation research. this study will be of interest to a broad audience. i am an expert in the structure study in translation. However, I have limited experience in the in vivo study of NMD substrates.
We are very grateful for the reviewer's comments about the broad interest and the overall quality of our work.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
In this study, the authors solved the crystal structure of the UPF1 helicase domain in complex with Nmd4. Through the structure and biochemical studies, they uncovered a region responsible for Nmd4 binding to UPF1, also important for their function in NMD. In the end, the authors also extended their findings to the human SMG6, proposing a conserved mechanism for Nmd4 and SMG6.
The mechanism of UPF1 functioning during NMD is a long-existing question. For decades, people have been trying to find out the roles of all the NMD factors during this process. This study visualized the first direct connection between UPF1 and the putative SMG6 homolog, Nmd4. Undoubtedly, it will aid our understanding of how the whole process works.
One of the limitations of this study is the conservation between Nmd4 and SMG6. Although they both have a PIN domain, Nmd4 is inactive while SMG6 is active. During NMD, SMG6 is thought to work to cut the mRNA, thus promoting the degradation of the non-functional mRNA. Therefore, Nmd4 and SMG6 may only share a similar binding mode with UPF1, however, they do not share similar functions. This study might only apply to yeast study.
comments: the study write in a very clear way, and most of the experiments are clear and sound. I do not have any major comments. I only have a few minor comments, listed below:
1:The authors also solved the PIN domain of the SMG6. This is a result worth showing in the main figure.
2:It would be easier to read if the authors could add all the binding constants directly into the ITC panels.
3:I am confused with His6-ZZ. Is ZZ a protein tag?
4:The comparison between Nob1 and the PIN domain of Nmd4 is not convincing for me. Since the PIN domain is not required for the binding between Nmd4 and UPF1, the conformation of the PIN domain could be a result of the crystal packing. Thus, it is still possible that Nmd4 and UPF1 bind to the same RNA. To this end, I challenge the conclusion the authors have made on the mRNA binding part.
5: "Showing that Nmd4 stabilizes Upf1-HD on RNA in the absence of ATP and that Upf1 is the main RNA binding factor in the Nmd4/Upf1-HD complex." As mentioned above, I don't think one can make the conclusion UPF1 is the main RNA binding factor; there shouldn't be a main and minor. Meanwhile, what will happen if you add ATP in? Or AMPPNP? Or ADP?
6: "But also that a physical interaction between Upf1-HD and the PIN domain exists in vitro, although we were unable to detect it using our various interaction assays." This also confused me, since one cannot detect the interaction in any assay, how could you be so confident there is a physical interaction? Have you tested assays which are good for weak binding?
7: Figure 4B should be done in the context of the full length of SMG6 and UPF1.
8: "The NMD mechanism not only targets mRNAs but also small nucleolar RNAs (snoRNAs) and long noncoding RNAs (lncRNAs) harboring bona fide stop codons but in a specific context such as short upstream open reading frame (uORF), long 3'-UTRs, low translational efficiency or exon-exon junction located downstream of a stop codon." "First, for mRNAs with long 3'-UTRs, the 3'-faux UTR model posits that a long 3 spatial distance between a stop codon and the mRNA poly(A) tail destabilizes NMD substrates by preventing the interaction between the eRF1-eRF3 translation termination complex bound to the A- site of a ribosome recognizing a stop codon and the poly(A)-binding protein (Pab1 or PABP in S. cerevisiae and human, respectively)." These are difficult to read.
9: please add the Ramachandran plot values.
Significance
NMD is one of the major topics in the field of gene translational regulation research. this study will be of interest to a broad audience. i am an expert in the structure study in translation. However, I have limited experience in the in vivo study of NMD substrates.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary:
The nonsense-mediated mRNA decay (NMD) is and RNA quality pathway that eliminates mRNAs containing premature termination codons. Its mechanism has been studied for several decades but despite enormous progress we still don't have a satisfactory model that would explain most of the published observations. In particular, the mechanism has been proposed to differ substantially between yeast and metazoa. Yeast Nmd4 protein was previously shown to be involved in NMD, to interact with UPF1 and exhibit similarities with metazoan SMG6 and SMG5/7, that are normally believed to be specific for metazoan NMD (Dehecq et al., EMBO J, 2018). Barbarin-Bocahu et al now describe the crystal structure of the complex between the yeast UPF1 RNA helicase and Nmd4. Importantly, the authors show that interaction is required for NMD activity and increases the ATPase activity of UPF1. Barbarin-Bocahu et al equally show that this interaction and its role in NMD is conserved in the human UPF1-SMG6 complex, thus providing additional novel evidence for universal conservation of the NMD mechanism in eukaryotes. The manuscript carefully combines biochemistry, biophysics with functional in vivo studies. In my opinion, all the experiments are very well executed, generally convincing and interpretations appear correct, so the manuscript is certainly suitable for publication. I have included some suggestions below that I believe could strengthen the manuscript and enhance our confidence in the findings.
Major comments:
Page 7 - "Since the D1353A mutation completely abolishes the enzymatic activity of SMG6 (34), this strongly suggests that the PIN domain of Nmd4 is not endowed with endonucleolytic activity. " Could/was the endonucleolytic activity of NMD4 be tested?
Page 10 - The two proteins bind RNA with reasonable affinity. The complex binds polyU RNA with Kd of 0.44 μM . The authors suggest, based on structure superpositions, that RNA fragments bound to the PIN domain and Upf1-HD have opposite orientations. But since they have the complex ready to crystallize, did they attempt to determine the structure with of the complex with RNA? The complex is quite small (~100 kDa with RNA) but it could be even visible by cryo-EM. I don't insist that such a structure needs to be included but it might perhaps be easy to do and would surely strengthen the story. If it is too difficult, it could at least be mentioned that it was tried?
I think it is important to demonstrate that the structure-based mutants don't significantly impact the overall structure of the proteins (e.g. glycine residues are mutated within helices). At least gel filtration profiles with gels of the WT and mutated proteins should be shown in SI.
Perhaps the main finding of this manuscript is the conservation of the UPF1-Nmd4 interaction in human UPF1-SMG6. But the interaction is only demonstrated by co-IP with ectopically expressed human proteins in human cells that contain all the other human proteins as well. It would probably be more convincing to demonstrated the interaction in pull-downs with purified proteins as done for the yeast complex. In addition, using purified proteins would enable testing whether the mutations in SMG6 don't affect the overall structure of the mutants compared to the WT. Since the detected similarity to Nmd4 is only in a region covering residues 440-470, why is the tested construct much larger (207-580) including extra, large disordered regions. Finally, the most convincing way to show and characterize the human UPF1-SMG6 interaction would be and X-ray structure. It might be feasible to crystallize human UPF1 HD domain with a SMG6 peptide. Or at least an Alphafold model could be included? I had a quick try just with the Colabfold and using the HD domain and the SMG6 peptide, Alphafold can predict convincingly the binding of the region around W456 and in some models even around R448. I think that this would strengthen the conclusions in this part of the manuscript.
Does the SMG6 addition also increases the ATPase activity of UPF1?
Minor comments:
Examples of electron density omit maps of the key interaction interfaces should be shown in Supplementary Information for the reader to be able to judge the crystallography data quality.
I suggest to add the Kd values to ITC panels for clarity in main and EV figures.
On page 10: What experiment is this referring to : "This is in agreement with our ITC experiments (carried out in the absence of a non-hydrolyzable ATP analog), which revealed no major synergistic effect between the two proteins for RNA binding." Results in EV4A? Or some other not shown data? The results in EV4A do show an increase in RNA binding when both proteins are in a complex.
On page 16, "organsms" should be" organisms"
In certain figure legends the panel labels (A,B,C..) are missing (e.g. Fig 3, EV1, EV5).
The PIN domain structure was solved only to determine the structure of the complex? I only found it mentioned in the methods and no other mention of this structure in the main text. Maybe one sentence could be added to the results to explain why this structure was solved and how it compares to the complex structure.
Referees cross-commenting
This session contains comments from both Rev1 and Rev2
Rev1:
There seems to be a contradiction in comments on Figure 4B. I agree with Reviewer 2 that using FL proteins will be informative to see whether the FL proteins indeed interact (or not in the case of the mutants). If one wants to use this experiment to map the interacting regions, then I think that the UPF1 HD domain and the short conserved region of SMG6 should be used. The long fragment SMG6 207-580 is not ideal for either. The short constructs would be more suited for a pull-down experiments (like done for the yeast proteins).
Rev2
Response to reviewer #1, It is necessary to use the full-length protein (FL protein) to map the interface unless they have pre-existing information to support mapping down to short fragments. In addition, performing further structural work would be beyond the scope of this study. Given the additional time and effort required, I do not recommend doing so for this study.
Rev1:
As I said, I agree with using the FL proteins. The pre-existing information supporting the mapping comes from sequence alignments with the yeast structure and the mutagenesis. This is further confirmed by Alphafold modeling which in my opinion should be included. As I mentioned in my review, I don't insist on further structural work
Significance
This is a important study, providing detailed insight into the function on Nmd4, SMG6 and UPF1 NMD. The results also point towards a conserved mechanism on NMD between yeast and human. I would like to highlight the quality of the experiments. This study will be of great interest to people working on NMD but also more broadly to scientist working on RNA, helicases and structural biologists.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
In the present manuscript, the authors analyzed diel oscillations in the brain and olfactory organs' transcriptome of Aedes aegypti and Anopheles culicifacies. The analysis of their RNAseq results showed an effect of time of day on the expression of detoxification genes involved in oxidoreductase and monooxygenase activity. Next, they investigated the effect of time of day on the olfactory sensitivity of Ae. aegypti and An. gambiae and identified the role of CYP450 in odor detection in these species using RNAi. In the last part of the study, they used RNAi to knock down the expression of one of the serine protease genes and observed a reduction in olfactory sensitivity. Overall, the experiments are well-designed and mostly robust (see comment regarding the sample size and data analysis of the EAG experiments) but do not always support the claims of the authors. For example, since no experiments were conducted under constant conditions, the circadian (i.e., driven by the internal clocks) effects are not being quantified here. In addition, knocking down the expression of a gene showing daily variations in its expression and observing an effect on olfactory sensitivity is not sufficient to show its role in the daily olfactory rhythms. Knowledge gaps are not well supported by the literature, and overstatements are made throughout the manuscript. Our detailed comments are listed below.
We sincerely thank the reviewer for their time and consideration, and appreciate the thorough review of our manuscript. Their insightful comments have greatly enriched our work. We also apologies for instances of overinterpreting the data. Your feedback has helped us recognize areas where clarity and caution are needed, and we are committed to addressing these concerns in our revisions. Thank you for your valuable input and guidance.
Major comments
Introduction
- Several statements made in the introduction are misleading and suggest that authors are trying to exaggerate the impact of their work. For example, "Furthermore, different species of mosquitoes exhibit plasticity and distinct rhythms in their daily activity pattern, including locomotion, feeding, mating, blood-feeding, and oviposition, facilitating their adaptation into separate time-niches (7, 8), but the underlying molecular mechanism for the heterogenous temporal activity remains to be explored." is not accurate since daily rhythms in mosquitoes' transcriptomes, behavior, and olfactory sensitivity have been the object of several publications. Even though some of them are listed later in the introduction, they contradict the claim made about the knowledge gap. See:
Rund, S. S., Gentile, J. E., & Duffield, G. E. (2013). Extensive circadian and light regulation of the transcriptome in the malaria mosquito Anopheles gambiae. BMC genomics, 14(1), 1-19
Rund, S. S., Hou, T. Y., Ward, S. M., Collins, F. H., & Duffield, G. E. (2011). Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proceedings of the National Academy of Sciences, 108(32), E421-E430
Rund, S. S., Bonar, N. A., Champion, M. M., Ghazi, J. P., Houk, C. M., Leming, M. T., ... & Duffield, G. E. (2013). Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae. Scientific reports, 3(1), 2494
Rund, S. S., Lee, S. J., Bush, B. R., & Duffield, G. E. (2012). Strain-and sex-specific differences in daily flight activity and the circadian clock of Anopheles gambiae mosquitoes. Journal of insect physiology, 58(12), 1609-1619
Leming, M. T., Rund, S. S., Behura, S. K., Duffield, G. E., & O'Tousa, J. E. (2014). A database of circadian and diel rhythmic gene expression in the yellow fever mosquito Aedes aegypti. BMC genomics, 15(1), 1-9
Eilerts, D. F., VanderGiessen, M., Bose, E. A., Broxton, K., & Vinauger, C. (2018). Odor-specific daily rhythms in the olfactory sensitivity and behavior of Aedes aegypti mosquitoes. Insects, 9(4), 147
Rivas, G. B., Teles-de-Freitas, R., Pavan, M. G., Lima, J. B., Peixoto, A. A., & Bruno, R. V. (2018). Effects of light and temperature on daily activity and clock gene expression in two mosquito disease vectors. Journal of Biological Rhythms, 33(3), 272-288
Response: We apologies for this oversight. In the revised manuscript, we have added these references and made changes to the text as suggested by the reviewer.
The knowledge gap brought up in the next paragraph of the introduction doesn't reflect the questions asked by the experiments: "But, how the pacemaker differentially influences peripheral clock activity present in the olfactory system and modulates olfactory sensitivity has not been studied in detail." Specifically, the control of peripheral clocks by the central pacemaker has not been evaluated here.
Response: This statement has been modified in the revised manuscript.
"In vertebrates and invertebrates, it is well documented that circadian phase-dependent training can influence olfactory memory acquisition and consolidation of brain functions" should also cite work on cockroaches and kissing bugs:
Lubinski, A. J., & Page, T. L. (2016). The optic lobes regulate circadian rhythms of olfactory learning and memory in the cockroach. Journal of Biological Rhythms, 31(2), 161-169
Page, T. L. (2009). Circadian regulation of olfaction and olfactory learning in the cockroach Leucophaea maderae. Sleep and Biological Rhythms, 7, 152-161
Vinauger, C., & Lazzari, C. R. (2015). Circadian modulation of learning ability in a disease vector insect, Rhodnius prolixus. Journal of Experimental Biology, 218(19), 3110-3117
Response: These references have been added in the revised manuscript as suggested by the reviewer.
The sentence: "Previous studies showed that synaptic plasticity and memory are significantly influenced by the strength and number of synaptic connections (43, 44)." should be nuanced as the role of neuropeptides such as dopamine has also been showed to influence learning and memory in mosquitoes:
Vinauger, C., Lahondère, C., Wolff, G. H., Locke, L. T., Liaw, J. E., Parrish, J. Z., ... & Riffell, J. A. (2018). Modulation of host learning in Aedes aegypti mosquitoes. Current Biology, 28(3), 333-344 Wolff, G. H., Lahondère, C., Vinauger, C., Rylance, E., & Riffell, J. A. (2023). Neuromodulation and differential learning across mosquito species. Proceedings of the Royal Society B, 290(1990), 20222118
Response: We agree with the reviewer. We have modified this statement and added the references in the revised manuscript.
Overall, the paragraph dealing with the idea that "circadian phase-dependent training can influence olfactory memory acquisition and consolidation of brain functions" is very confusing. This paragraph discusses mechanisms of learning-induced plasticity but seems to ignore the simplest (most parsimonious) explanations for the circadian regulation of learning (e.g., time-dependent expression of genes involved in memory consolidation). In addition, the sentence quoted above is circumvoluted to simply say that training at different times of the day affects memory acquisition and consolidation. Although the authors did look at one gene involved in neural function, learning, memory, or circadian effects were not analysed in this study. Please reconsider the relevance of the paragraph.
Response: We have modified this paragraph as per the suggestions of the reviewer in the revised manuscript.
The sentence: "But, how the brain of mosquitoes entrains circadian inputs and modulates transcriptional responses that consequently contribute to remodel plastic memory, is unknown." should be rephrased. First, it should be "entrains TO circadian inputs", and second, it suggests that the study will be investigating circadian modulation of learning and memory, which is not the case. Furthermore, the term "remodel plastic memory" is unclear and doesn't seem to relate to any specific cellular or neural processes.
Response: This statement has been removed from the revised manuscript.
Given the differences in mosquito chronobiology observed even between strains, why perform the RNAi and EAGs on a different species of Anopheles than the one used for the RNAseq (or vice versa)?
Response: We agree with the reviewer that there are differences in mosquito chronobiology between different strains and therefore species variation may be challenging for data interpretation. Considering the strict nocturnal behavioral pattern of An. culicifacies and dirurnal behavior of Aedes aegypti, we performed RNA-Seq study with these respective species. However, 1) due to unavailability of EAG facility at ICMR-National Institute of Malaria Research, India (only where An. culicifacies colony is available), 2) challenges in rearing and adaptation of An. culicifacies in a new environment/laboratory, 3) to validate the proof-of-concept of CYP450 function in odorant detection and olfactory sensitivity, we opt for the current collaborative study. We are also aware that species variation of Anopheles for electroantennographic study would be difficult to correlate with the molecular data on An. culicifacies. Thus, we consider An. gambiae (not other Anopheles mosquitoes like An. stephensi, An. coluzzii etc.) because of the availability of diel rhythm associated molecular data for An. gambiae (6–8). For better interpretation we also compare expression profiling of CYP450 and OBP genes between An. culicifacies and An. gambiae (Supplemental file 3). Importantly, we found similar expression pattern of several CYP450 and OBP/CSP genes between An. culicifacies and An. gambiae. Furthermore, please note that the primary focus of the current MS is to highlight the role of peri-receptor proteins in olfactory sensitivity and odor detection. And, as a proof-of-concept, we validate this hypothesis both in An. gambiae and Aed. aegypti. We believe that the basic mechanism of odor detection and peri-receptor events are similar/conserved from insects to higher vertebrates, therefore, the arguments for species difference can be overruled.
S. S. C. Rund, J. E. Gentile, G. E. Duffield, Extensive circadian and light regulation of the transcriptome in the malaria mosquito Anopheles gambiae. BMC Genomics. 14 (2013), doi:10.1186/1471-2164-14-218. S. S. C. Rund, T. Y. Hou, S. M. Ward, F. H. Collins, G. E. Duffield, Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proc. Natl. Acad. Sci. U. S. A. 108 (2011), doi:10.1073/pnas.1100584108. S. S. C. Rund, N. A. Bonar, M. M. Champion, J. P. Ghazi, C. M. Houk, M. T. Leming, Z. Syed, G. E. Duffield, Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae. Sci. Rep. 3, 2494 (2013).
Results
- "As reported earlier, a significant upregulation of period and timeless during ZT12-ZT18 was observed in both species (Figure 1C)." Please provide effect size and summary statistics.
Response: The statistics are provided in the Figure S2 in the revised manuscript.
"Next, the distribution of peak transcriptional changes in both An. culicifacies and Ae. aegypti was assessed through differential gene-expression analysis. Noticeably, An. culicifacies showed a higher abundance of differentially expressed olfactory genes (Figure 1D)" Please provide effect size and summary statistics.
Response: The statistics are provided in the Table 1 in the revised manuscript.
"Taken together, the data suggests that the nocturnal An. culicifacies may possess a more stringent circadian molecular rhythm in peripheral olfactory and brain tissues." What do the authors mean by "stringent"? At this point, this should be stated as a working hypothesis, as the statement is not backed up by the data. It is possible that the fewer differentially expressed genes of Aedes aegypti are more central to regulatory networks and cascade into more "stringent" rhythmic control of activities and rhythms.
Response: We thank the reviewer for this suggestion. We have modified this statement as suggested by the reviewer.
The section title: "Circadian cycle differentially and predominantly expresses olfaction-associated detoxification genes in Anopheles and Aedes" doesn't make sense. The expression of genes can be modulated by circadian rhythms, but cycles don't express genes. Please rephrase. In addition, this whole section deals with "circadian rhythms" while no experiment has been conducted under constant conditions. The observed daily variations are therefore diel rhythms until their persistence under constant conditions is established.
Response: We agree with the reviewer and changed the statement accordingly.
"The downregulated genes of Ae. aegypti did not show any functional categories probably due to the limited transcriptional change." Could the authors explain if this is actually the phenomenon or due to a lack of temporal resolution in the study design (i.e., 4 time points)?
Response: We do not agree with the reviewer’s comments about the lack of temporal resolution in the current study. The functional categories of differentially expressed genes are deduced by gene set enrichment analysis, which identify the classes of genes that are overrepresented in a large set of genes. The statistical significance value is dependent on the abundance of query and background genes. In our experiments, as the number of queries (i.e. number of downregulated genes) is limited, the enrichment tool, i.e. shinyGo didn’t able to show significant enrichment of downregulated genes with FDR cut-off 0.05 and top 10 pathways were selected. Though we have selected 4 time points, previous study by Rund et al. (BMC Genomics 2013) also showed that compared to Aed. aegypti, An. gambiae possess higher number of rhythmic genes (2.6 fold higher). Therefore, it can be stated that the data that we received is not due to the pitfalls of study design, but probably the physiological difference between Anopheles and Aedes mosquitoes.
"a GO-enrichment analysis was unable to track any change in the response-to-stimulus or odorant binding category of genes (including OBPs, CSPs, and olfactory receptors)." This finding doesn't corroborate the statements made previously and doesn't align with previously published studies. Is it due to pitfalls in the study design?
Response: The functional categories of differentially expressed genes are deduced by gene set enrichment analysis, which identify the classes of genes that are overrepresented in a large set of genes. The statistical significance value is dependent on the abundance of query and background genes. Though, differential expression analysis revealed a significant upregulation of a subset of CSPs (~ 5-fold) and OBP6 (~3.3-fold) transcripts in An. culicifacies mosquitoes during ZT12, as the number of queries (i.e. number of chemosensory genes) is limited (i.e. 3), the enrichment tool, i.e. shinyGo didn’t able to show significant enrichment of these categories of genes when FDR cut-off 0.05 and top 10 pathways were selected.
Moreover, we do not agree with the reviewer regarding the comment on pitfalls of study design because our previous experiments with An. culicifacies according to diel rhythm, considering more extended time points, also revealed similar expression pattern of chemosensory genes (Das De et.al., 2018).
"In contrast, three different clusters of OBP genes in Ae. aegypti showed a time-of-day dependent distinct peak in expression starting from ZT0-ZT12 (Figure 2F)." Please provide summary statistics.
Response: Please find the table for summary statistics in the supplemental file 1.
"In the case of An. gambiae, the amplitudes of odor-evoked responses were significantly influenced by the doses of all the odorants tested (repeated measure ANOVA, p {less than or equal to} 2e-16) (Figure S4B)." Did the authors use a positive control for the EAGs? How did the authors normalize the responses across the two species? Given the way the data is presented, how were the data normalized to allow inter-species comparisons? In addition, It is highly unlikely that all the mosquito preps used in the EAG assay responded to all the odors tested. If that was the case, then the dataset includes missing data for certain odors and time points. We believe the authors have ensured there are at least a certain number of responses per odor and time point combinations. If this is true, repeated measures ANOVA is not suited for analyzing this data because this statistical technique requires all repeated measures within and across preps without missing values. Also, the authors need to correct the summary statistics for multiple comparisons within this framework to avoid inflating type-I errors. Has this been done?
Response: In our study involving An. gambiae, we observed significant influences of odorant doses on the amplitudes of odor-evoked responses (repeated measure ANOVA, p ≤ 2e-16) (Figure S4B). It's important to note that we did not employ a separate positive control for the electroantennogram (EAG) assays, as the compounds utilized in our research are already known to be EAG active in at least one of the mosquito species under investigation (mentioned in supplementary file 3).
Our primary objective for performing EAG studies is to correlate the diel-rhythmic molecular data with the diel-rhythmic electroantennographic response in nocturnal and diurnal mosquitoes. To address the normalization of responses across the two species, we opted to control for dose and time rather than normalizing using one of the EAG active compounds. Further, the EAG responses were measured in relation to solvent control. In our experimental design, we utilized different batches of mosquitoes from the same cohort to test each odorant at various time points. EAG responses were acquired using the same mosquito across different dilutions for a single odor or volatile compound, rather than across time points. Hence, we didn’t end up with missing values.
For individual species analysis, we performed repeated measures ANOVA for each compound's EAG response, considering dose and time as variables. This enabled not only enabled us select compounds which where ‘Time’ or its interaction terms were found to be significant. Subsequently, for compounds showing significance, we conducted a basic one-way ANOVA using only time as a variable, segregating the data by each individual dose. Post-hoc Tukey tests were then carried out to compare between time points. When comparing between species, we generated a dataset by combining both species and adding species as a variable as well. Repeated measures ANOVA for each compound's EAG response, considering species, dose, and time as variables, was applied. This enabled us select compounds which where ‘Time’ or its interaction terms were found to be significant. For significant compounds, a two-way ANOVA was performed using time and species as variables. Data were segregated by each individual dose, and post-hoc Tukey tests were employed to compare between time points. It's worth mentioning that our analysis aims to account for repeated measures within and across preparations. Additionally, we have implemented post-hoc Tukey tests to correct for multiple comparisons within this framework, ensuring that we avoid inflating type-I errors in our statistical interpretations.
"Ae. aegypti was found to be most sensitive to all the odorants (4-methylphenol, β-ocimine, E2-nonenal, benzaldehyde, nonanal, and 3-octanol) during ZT18-20 except sulcatone (Figure 3C - 3H)." Although some of these chemicals are associated with plants and Ae. aegypti is suspected to sugar feed at night, how do the authors explain that the peak olfactory sensitivity occurs at night for compounds such as nonanal? It would be interesting to discuss how these results compare to previous studies such as:
Eilerts, D. F., VanderGiessen, M., Bose, E. A., Broxton, K., & Vinauger, C. (2018). Odor-specific daily rhythms in the olfactory sensitivity and behavior of Aedes aegypti mosquitoes. Insects, 9(4), 147
Response: The possible explanations have been added in the revised MS.
"Additionally, our principal components analysis also illustrates that most loadings of relative EAG responses are higher towards the Anopheles observations (Figure S4C)." The meaning of this sentence is unclear? Please clarify.
Response: Considering the limited clarity of the statement we have removed it from the revised manuscript.
"Taken together these data indicate that An. gambiae may exhibit higher antennal sensitivity to at least five different odorants tested, as compared to Ae. aegypti." As mentioned above, how did the authors normalized across species to allow comparisons? If not normalized, how do you ensure that higher response magnitudes correlate with higher olfactory sensitivity, given potential differences in the morphology or size differences between the two species? Furthermore, An. gambiae has been exclusively used in the EAG assay. Besides the lack of a justification for using a species other than An. culicifacies, the authors have interpreted the EAG results under the assumption that the olfactory sensitivities of An. gambiae and An. culicifacies are comparable. This, however, is a major caveat in the experiment design, given previous studies (indicated below) have reported species-specific variations in olfactory sensitivity. In its present form, the EAG data from An. gambiae is not a piece of appropriate evidence that the authors could use to complement or substantiate the findings from other aspects of this study on An. culicifacies.
Wheelwright, M., Whittle, C. R., & Riabinina, O. (2021). Olfactory systems across mosquito species. Cell and Tissue Research, 383(1), 75-90. Wooding, M., Naudé, Y., Rohwer, E., & Bouwer, M. (2020). Controlling mosquitoes with semiochemicals: a review. Parasites & Vectors, 13, 1-20.
iii. Gupta, A., Singh, S. S., Mittal, A. M., Singh, P., Goyal, S., Kannan, K. R., ... & Gupta, N. (2022). Mosquito Olfactory Response Ensemble enables pattern discovery by curating a behavioral and electrophysiological response database. Iscience, 25(3).
Response: The data is normalized as described above in the point 15. Also, it is technical limitation that we had to use multiple species of the mosquito for this study (please refer to the point 7).
The reviewer’s statement “Besides the lack of a justification for using a species other than An. culicifacies, the authors have interpreted the EAG results under the assumption that the olfactory sensitivities of An. gambiae and An. culicifacies are comparable” is not true, as we never assume similar olfactory sensitivity between An. culicifacies and An. gambiae. We only consider nocturnal activity for both the mosquito species. Moreover, we are aware that species variation of Anopheles for electroantennographic study would be difficult to correlate with the molecular data on An. culicifacies. Thus, we consider An. gambiae (no other Anopheles mosquitoes like An. stephensi, An. coluzzii etc.) because of the availability of diel rhythm associated molecular data for An. gambiae (6–8). For better interpretation we also compare expression profiling of CYP450 and OBP genes between An. culicifacies and An. gambiae (Supplemental file 3). Importantly, we found similar expression pattern of several CYP450 and OBP/CSP genes between An. culicifacies and An. gambiae. Furthermore, we would like to emphasize that the primary focus of the current manuscript is to highlight the role of peri-receptor proteins in olfactory sensitivity and odor detection. And, as a proof-of-concept, we validated this hypothesis both in An. gambiae and Aed. aegypti. We believe that the basic mechanism of odor detection and peri-receptor events are similar/conserved from insects to higher vertebrates.
"Similar to An. gambiae, a comparatively high amplitude response was also observed in An. stephensi (Figure S4D)." This is interesting but what would be even more relevant to the present study is to discuss how the time-dependent responses compare between the two Anopheles species.
Response: We agree that it will be interesting to compare time-dependent response between the two Anopheles species. However, it is not our primary interest and objectives, and is beyond the scope of the current manuscript. Thus, we remove the data from the revised MS.
The paragraph titled "Daily temporal modulation of neuronal serine protease impacts mosquito's olfactory sensitivity" is confusing because the authors move on to test the effect of knocking down a serine protease gene (found to be differentially expressed throughout the day) on olfactory sensitivity. While this is interesting in and of itself, the link between the role of this gene in learning-induced plasticity, the circadian modulation of "brain functions" and olfactory sensitivity is 1) unclear and 2) not explicitly tested. We agree with the authors that what has been tested is "the effect of neuronal serine protease on circadian-dependent olfactory responses," but the two paragraphs leading to it seem to be extrapolating functional links that have yet to be determined. In this context, their conclusions that "Our finding highlights that daily temporal modulation of neuronal serine-protease may have important functions in the maintenance of brain homeostasis and olfactory odor responses." is misleading because although they used the hypothetical "may", the link between the temporal modulation of one serine protease gene and the maintenance of brain homeostasis is not explicitly tested here.
Response: Though, we strongly believe that neuronal serine protease are involved in remodelling of extracellular matrix and the maintenance of brain homeostasis, the limitation of experimental validation by neuroimaging (out of the scope of the current manuscript), restricting us to draw the conclusion. Therefore, we have modified our conclusions based on the available data as suggested by the reviewer.
Discussion
- The first sentence of the discussion: "In this study, we provide initial evidence that the daily rhythmic change in the olfactory sensitivity of mosquitoes is tuned with the temporal modulation of molecular factors involved in the initial biochemical process of odor detection i.e., peri-receptor events" is not true since studies from Rund and Duffield previously revealed the daily modulation of OBP gene expression. It also contradicts the next sentence: "The findings of circadian-dependent elevation of xenobiotic metabolizing enzymes in the olfactory system of both Ae. aegypti and An. culicifacies are consistent with previous literature (26, 31), and we postulate that these proteins may contribute to the regulation of odorant detection in mosquitoes."
Response: This statement is modified in the revised manuscript.
The use of "circadian" in the discussion of the results is also misleading as only diel rhythms were evaluated in the present study.
Response: This is changed in the revised manuscript.
"Given the potentially larger odor space in mosquitoes (like other hematophagous insects) (16, 58)." This is not really what these references show.
Response: The statement and the references have been changed in the revised manuscript.
"Given the potentially larger odor space in mosquitoes (like other hematophagous insects) (16, 58), it can be hypothesized that detection of any specific signal in such a noisy environment, mosquitoes may have evolved a sophisticated mechanism for rapid (i) odor mobilization and (ii) odorant clearance, to prevent anosmia (24)." One could argue that this is a requirement for all insects, regardless of the size of their olfactory repertoire.
Response: We agree with the reviewer and modified the text accordingly.
"Taken together, we hypothesize that circadian-dependent activation of the peri-receptor events may modulate olfactory sensitivity and are key for the onset of peak navigation time in each mosquito species." This is not entirely accurate since spontaneous locomotor activity rhythms are also observed in the absence of olfactory stimulation. While "navigation" does imply olfactory-guided behaviors, "peak navigation time" appears to be driven by other processes. See, for example, all studies testing mosquito activity rhythms in locomotor activity monitors. Response: Considering the concern of the reviewer, we have modified the text.
"Due to technical limitations, and considering the substantial data on the circadian-dependent molecular rhythmicity" please clarify what the technical limitations were. Is this something that prevented the authors specifically, or something tied to mosquito biology and would prevent anybody from doing it? Also, why couldn't the transcriptomic analysis be performed on An. gambiae?
Response: As previously mentioned, primarily, unavailability of EAG facility at ICMR-National Institute of Malaria Research, India (only where An. culicifacies colony is available) is the major challenge for us to proof our hypothesis. Secondly, transportation of An. culicifacies was not possible due to Govt. regulations and also adaptation and establishment of the colony of An. culicifacies take long time as it is not easily adapted (Adak T, Kaur S, Singh OP. Comparative susceptibility of different members of the Anopheles culicifacies complex to Plasmodium vivax. Trans R Soc Trop Med Hyg. 1999;93:573–577) in a new environment/laboratory. Thirdly, An. culicifacies colony was not available at our collaborative laboratory. These are the major technical limitations.
Therefore, to validate the hypothesis of CYP450 function in odorant detection and olfactory sensitivity, we opt for the current collaborative study. We are also aware that species variation of Anopheles for electroantennographic study would be difficult to correlate with the molecular data on An. culicifacies. Thus, we consider An. gambiae (not other Anopheles mosquitoes like An. stephensi, An. coluzzii etc.) because of the availability of diel rhythm associated molecular data for An. gambiae (6–8). For better interpretation we also compare expression profiling of CYP450 and OBP genes between An. culicifacies and An. gambiae (Supplemental file 3). Importantly, we found similar expression pattern of several CYP450 and OBP/CSP genes between An. culicifacies and An. gambiae. Performing another RNA-Seq study with An. gambiae would not be possible for the current MS. Furthermore, please note that the primary focus of the current MS is to highlight the role of peri-receptor proteins in olfactory sensitivity and odor detection. And, as a proof-of-concept, we validate this hypothesis both in An. gambiae and Aed. aegypti. We believe that the basic mechanism of odor detection and peri-receptor events are similar/conserved from insects to higher vertebrates.
"In contrast to An. gambiae, the time-dose interactions had a higher significant impact on the antennal sensitivity of Ae. aegypti. An. gambiae showed a conserved pattern in the daily rhythm of olfactory sensitivity, peaking at ZT1-3 and ZT18-20." These two sentences are very confusing. Doesn't it simply mean that the co-variation is not linear or not the same across odors? In addition, what does it mean for a pattern to be more conserved? How can one conclude about the "conserved" nature of a pattern by looking at time-dependent variations in dose-response curves?
Response: This section of discussion is re-written in the revised version of the manuscript.
"Together these data, we interpret that mosquito's olfactory sensitivity possibly does not follow a fixed temporal trait" is unclear and suggests that the authors are discussing global versus odor-specific rhythms. Please rephrase.
Response: This section of discussion is re-written in the revised version of the manuscript.
"Moreover, we hypothesize that under standard insectary conditions, mosquitoes may not need to exhibit foraging flight activity either for nectar or blood, and during the time course, it may minimize their olfactory rhythm, which is obligately required for wild mosquitoes." This hypothesis is not supported by the results of the study and contradicts work by others (Rund et al., Eilerts et al., Gentile et., etc).
Response: This section of discussion is re-written in the revised version of the manuscript.
The same comment applies to "Therefore, it is reasonable to think that the mosquitoes used for EAG studies may have adapted well under insectary settings and, hence carry weak olfactory rhythm." as this statement is not supported by results of the present study or comparisons of the results to previous studies based on field-caught mosquitoes. Although it is an interesting question to ask in the future, it should be stated as a future research avenue rather than a working hypothesis that results from the present study.
This section of discussion is re-written in the revised version of the manuscript.
"Aedes aegypti displayed a peak in antennal sensitivity at ZT18-20 to the higher concentrations of plant and vertebrate host-associated odorants tested. Given the time-of-day dependent multiple peaks (at ZT6-8 and ZT18-20 for benzaldehyde and at ZT12-14 and ZT18-20 for nonanal) in antennal sensitivity to different odorants, our data supports the previous observation of bimodal activity pattern of Ae. aegypti (50)." Rephrase by saying that results are "aligned with the previous observations of bimodal activity". Olfactory rhythms don't "support" the activity patterns because olfactory processes and spontaneous locomotor activity are independent processes.
Response: We have made these changes in the revised manuscript as per the suggestions of the reviewer.
"our preliminary data indicate that Anopheles spp. may possess comparatively higher olfactory sensitivity to a substantial number of odorants as compared to Aedes spp." Consider removing this sentence unless the way the data has been normalized to allow for comparisons between species is clarified.
Response: This statement is removed from the revised manuscript.
In "A significant decrease in odorant sensitivity for all the volatile odors tested in the CYP450-silenced Ae. aegypti," please change "silenced" to "reduced" because RNAi doesn't silence (i.e. knockout) gene expression.
Response: It has been modified as per the suggestions of the reviewer.
The title "Neuronal serine protease consolidates brain function and olfactory detection" is extremely misleading. Do the authors refer to memory consolidation, which has not been tested here? What is brain function consolidation??
Response: We agree with the reviewer. The title has been modified in the revised manuscript.
The reference used in "Despite their tiny brain size, mosquitoes, like other insects, have an incredible power to process and memorize circadian-guided olfactory information (7)." is not appropriate. Also, "circadian-guided" is unclear. Consider replacing it with "circadian-gated".
Response: It has been modified as per the suggestions of the reviewer.
What is the "the homeostatic process of the brain"?
Response: The process of maintaining a stable state can be defined as homeostasis. Here, the statement "the homeostatic process of the brain" is used to convey that after the active host-seeking/olfaction phase of mosquitoes during which the co-ordinated and integrated functions of both olfactory and neuronal system is required for crucial decision-making events, brain may undergo a homeostatic process (comes down from excitatory state to stable state) during the resting period. However, in view of reviewer’s concern we have modified the statement.
"the temporal oscillation of the sleep-wake cycle of any organism is managed by the encoding of experience during wake, and consolidation of synaptic change during inactive (sleep) phases, respectively (70)." By experience, do the authors refer to learning? This seems out of topic as this process has not been evaluated here.
Response: It has been modified as per the suggestions of the reviewer.
"We speculate that after the commencement of the active phase (ZT6-ZT12), the serine peptidase family of proteins in the brain of Ae. aegypti mosquitoes may play an important function in consolidating brain actions (after ZT12) and aid circadian-dependent memory formation." The value of this statement is unclear. Circadian-dependent memory formation is not being evaluated here, and the results from the present study do not directly support this speculation, also because other processes involved in memory formation are not evaluated here. This seems at odds with the literature on learning and memory.
Response: We have modified these statements in the revised manuscript and mentioned it as future research hypothesis.
"Subsequent work on electrophysiological and neuro-imaging studies are needed to demonstrate the role of neuronal-serine proteases in the reorganization of perisynaptic structure." Sure. But the link between "the role of neuronal-serine proteases in the reorganization of perisynaptic structure" and rhythms in olfactory sensitivity is unclear.
Response: It has been modified as per the suggestions of the reviewer.
As a general comment, EAGs seem inappropriate to evaluate the effect of the central-brain processing in the regulation of peripheral olfactory processes. This is a critical comment that needs to be considered by the authors and clarified in the manuscript. If rhythms of central brain processes are important for olfactory-guided behaviors, these should be evaluated at the level of the central brain or via behavioral metrics. The effect of the RNAi knockdowns on peripheral sensitivity is interesting, but its link with central processes is unclear and doesn't support the speculations made by the authors about learning and memory.
Response: We agree with the reviewer that EAG study is not enough/appropriate to comment on the effect of central-brain processing in the regulation of olfactory processes. Further validation by either neuroimaging or behavioral studies are needed to make any conclusion. We clearly mention in the manuscript that our data indirectly indicating this function of serine protease and further confirmatory studies are needed to prove this hypothesis.
Methods
- No explanations are provided for how the EAG data are normalized to allow comparisons between species.
Response: Please refer to the response of the point no. 15 of the reviewer 1.
Figures 42. Figure 1: The daily rhythm depicted in A, are not representative of the actual profiles. See: Benoit, J. B., & Vinauger, C. (2022). Chapter 32: Chronobiology of blood-feeding arthropods: influences on their role as disease vectors. In Sensory ecology of disease vectors (pp. 815-849). Wageningen Academic Publishers. Or any other paper on mosquito activity rhythms.
Response: Considering the reviewer’s concern we have revised the figure.
Figure 3 and 4: The EAG results are plotted twice. This is redundant and misleading as it makes the reader think there is more data than actually presented.
Response: Considering the reviewer’s comment we shifted figure 4 into the supplemental file.
Figure 5: Please clarify the sample size for each panel. In C - F, what would be used as a reference? In other words, what is a Relative EAG Response of 1? And if it is "relative", are the units really mV? In E and F, it would be great to show how the Ethanol control compares to the no solvent condition. This could be placed in supplementary materials.
Response: The sample size was mentioned in the figure legends. However, for the reviewer’s clarification, the odor response was tested with 40 individual mosquitoes of control and dsrRNA-treated groups. Therefore, sample size N=40 for Fig. 5C.
Respective solvent control (hexane solvent) used as a reference to calculate the relative EAG response for both the dsrLacZ and dsrCYP450 group. As it is relative EAG amplitude we have removed the unit in the revised MS.
Figures 5 and 6, given the dispersion in the EAG data, the treatments where N=40 appear robust, but the interpretation of results from treatments where N=6 may be limited due to the low sample size. This limitation is visible in Figure 5F, for example, where ABT-Aceto is different from Cont-Aceta but not PBO-Aceto because one individual shows a higher response.
Response: We agree that probably, by increasing the sample size for inhibitor treatment experiment, may decrease these inter-individual differences and increase the overall significance value. However, our robust knock-down data showed significant results and simultaneously it complements the inhibitor study in Ae. aegypti, we do not think of any disparity in the data. Moreover, EAG response to human blend, nonanal and benzaldehyde showed similar significant results in both RNAi and inhibitor studies. Accounting, the different knock-down efficiency in dsRNA injected mosquitoes, the phenotypic assays (EAG recordings) were carried out with 40 control and 40 dsRNA-treated mosquitoes. And, we observed significant reduction in EAG response following inhibitor treatment in An. gambiae, when we tested for 6 ethanol and 6 inhibitor treated mosquitoes. Thus, we followed the similar protocol for Ae. aegypti also. However, inter-individual difference in response is affecting the significance value.
Figure S6: how does this support that synaptic plasticity is influenced by "Time-of-day dependent modulation of serine protease genes in the brain"?
Response: We agree with the reviewer’s concern that with only EAG data it is not possible to comment on synaptic plasticity. We apologize for it and revised the statement in the MS.
Minor comments
What do the authors mean by "consolidation of brain functions"? Memory consolidation? Please clarify.
Response: The consolidation of brain function or memory consolidation means to the process of stabilizing the memory that an organism gains through the process of experience or training/learning phase. Memory consolidation initiates with rapid change in de-novo gene expression regulated by several transcription factors, effector genes and non-coding RNAs, known as molecular consolidation followed by cellular consolidation that involves cellular signal transmission within the neurons in the brain. The molecular and cellular consolidation are the basis for system level consolidation which is a slow process and involves communication among neurons located different regions of the brain. The system level consolidation is very important for the reorganization of the brain circuits to maintain long-term memory. The concept of system consolation is very much well evident in humans. Additionally, several studies in Drosophila also showed that fruit fly develop olfactory memories after classical conditioning or olfactory training through system consolidation process.
Moreover, accumulating data from humans suggest that sleep helps in memory consolidation. Sleep is basic drive for all animals that help to build memories. There are two hypothesis and respective compelling evidences for that. First hypothesis and the supporting molecular and electrophysiological data convey that sleep facilitate the homeostatic processes of the brain involving loosening of synaptic connections between the overactive neurons, structural modification of synapse which consequently help in memory formation. The second hypothesis state the important contribution of sleep in system consolidation and long-term memory potentiation. Studying the electrical activity of the brain and the recent advancement of fMRI scan indicate reorganization of neural activity between brain regions during sleep-related memory consolidation.
There are several experimental evidences in support of both the theory for humans as well as in fruit fry Drosophila melanogaster. In mosquitoes, the studies related to the function of brain are primarily restricted to the mechanism of odor coding and memory formation has been correlated with Dopamine neurotransmitter signalling. In view of the rapid adaptation potential, change in host-preference and evolution of temporal host-seeking behaviour, it can be hypothesized that mosquito brain also undergo the process of memory consolidation (either following any of the two hypothesized path or cumulatively apply the both) to learn new information in order to effectively shape future actions.
Furthermore, according to the fundamental principle of modern neuroscience learning and memory are achieved either by the formation of new synaptic connections or changing in existing connections between neurons. The ability of synapses to either strengthen or weaken the communications is called plasticity which is influenced by learning and experience and facilitate organism’s adaptation and survival.
Reference:
- Cervantes-Sandova, A. Martin-Peña, J. A. Berry, R. L. Davis, System-like consolidation of olfactory memories in Drosophila. J. Neurosci. 33, 9846–9854 (2013).
- In "Similar to previous studies (26), the expression of a limited number of rhythmic genes was visualized in Ae. aegypti" please replace "visualized" with "observed".
- Marshall, N. Cross, S. Binder, T. T. Dang-Vu, Brain rhythms during sleep and memory consolidation: Neurobiological insights. Physiology. 35, 4–15 (2020).
- Brendon O. Watson and György Buzsáki. Sleep, Memory & Brain Rhythms. Daedalus, 144(1): 67–82 (2015). doi:10.1162/DAED_a_00318
Figure 2A, please clarify in the caption what FDR stands for.
Response: FDR stands for “false discovery rate”. FDR is an adjusted p-value to trim false positive results.
In "To further establish this proof-of-concept in An. gambiae, three potent CYP450 inhibitors, aminobenzotriazole(52), piperonyl butoxide(53), and schinandrin A (54), was applied topically on the head capsule of 5-6-day-old female mosquitoes" replace "was applied" with "were applied".
Response: These changes are made in the revised manuscript.
"Interestingly, our species-time interaction studies revealed that An. gambiae exhibits time-of-day dependent significantly high antennal sensitivity to at least four chemical odorants compared to Ae. aegypti, except phenol." is unclear. Please reword.
Response: The statement has been revised in the MS.
In "Similar observations were also noticed with An. stephensi." replace "noticed" with "made". Response: We have modified the statement in the revised version of the manuscript.
Reviewer #1 (Significance (Required)):
Such a study has the potential to be valuable for the field, but its value and significance are hindered by an accumulation of overstatements, the fact that prior work in the field has been minimized or omitted, and a lack of support for the stated conclusions.
In this context, the advances are only slightly incremental compared to the work produced by Rund et al., and the mechanistic hypotheses emitted to link the genes selected for knockdown experiments and olfactory sensitivity are not clearly supported by the evidence presented here. The main strength of the paper is to show the role of CYP450 in olfactory sensitivity.
The audience is fairly broad and includes insect neuro-ethologists, molecular biologists, and chronobiologists.
Our field of expertise:
-
Mosquito chemosensation
-
Learning and memory
-
Chronobiology
-
Electrophysiology
-
Medical entomology
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
This report combines an examination of peripheral transcriptomes and general olfactory sensitivity in an effort to underscore the importance of peri-receptor components in circadian-directed modulation of olfaction across both Aedine and Anopheline mosquitoes. While the authors do a nice job of raising the importance of the often-underappreciated spectrum of insect olfactory peri-receptor proteins, the impact of their study is undercut by technical concerns regarding methods and data presentation. That several of these concerns (detailed below) are explicitly acknowledged by the authors as limitations of this study does not mitigate their impact in eroding confidence in these data and this study.
All in all, as a result of these concerns, I am unconvinced as to the overall merits of this somewhat interesting but generally uneven study.
We sincerely thank the reviewer for their time and consideration, and appreciate the thorough review of our manuscript. Their insightful comments have greatly enriched our work. We also apologies for instances of overinterpreting the data. Your feedback has helped us recognize areas where clarity and caution are needed, and we are committed to addressing these concerns in our revisions. Thank you for your valuable input and guidance.
Major concerns:
- That the authors use An. culicifacies for their transcriptome studies and An. gambiae (G3) for the olfactory physiology does not work. The 'technical limitations' (read studies done at two different locations) make this report an unwelcome melding of what should perhaps be two distinct studies. In order to maintain this forced marriage as a single report I would suggest the authors utilize An. culicifacies for both components. Alternatively, they can do both parts with An. gambiae but here I would strongly urge them to use any strain other than G3 which as a result of its now decades-long laboratory residence has long since lost its relevance to natural populations of Anopheline vectors. Response: We agree with the reviewer that there is significant species-specific variation in olfactory sensitivity of mosquitoes. Considering the strict nocturnal behavioral pattern of An. culicifacies and dirurnal behavior of Aedes aegypti, we performed RNA-Seq study with these respective species. However, 1) due to unavailability of EAG facility at ICMR-National Institute of Malaria Research, India (only where An. culicifacies colony is available), 2) challenges in rearing and adaptation of An. culicifacies in a new environment/laboratory (An. culicifacies take long time as it is not easily adapted, Ref: Adak T, Kaur S, Singh OP. Comparative susceptibility of different members of the Anopheles culicifacies complex to Plasmodium vivax. Trans R Soc Trop Med Hyg. 1999;93:573–577), 3) An. culicifacies colony was not available at our collaborative laboratory, 4) to validate our hypothesis of CYP450 function in odorant detection and olfactory sensitivity of mosquitoes, we opt for the current collaborative study.
We are also aware that species variation of Anopheles for electroantennographic study would be difficult to correlate with the molecular data on An. culicifacies. Thus, we consider An. gambiae (not other Anopheles mosquitoes like An. stephensi, An. coluzzii etc.) because of the availability of diel rhythm associated molecular data for An. gambiae (6–8). For better interpretation we also compare expression profiling of CYP450 and OBP genes between An. culicifacies and An. gambiae (Supplemental file 3). Importantly, we found similar expression pattern of several CYP450 and OBP/CSP genes between An. culicifacies and An. gambiae. Performing another RNA-Seq study with An. gambiae would not be possible for the current MS. Furthermore, please note that the primary focus of the current MS is to highlight the role of peri-receptor proteins in olfactory sensitivity and odor detection. And, as a proof-of-concept, we validate this hypothesis both in An. gambiae and Aed. aegypti. We believe that the basic mechanism of odor detection and peri-receptor events are similar/conserved from insects to higher vertebrates.
The 70-80% alignment rate reported to the An. culicifacies reference genome significantly erodes this reader's confidence in the integrity of their analyses. That low level of alignment can have dramatic impacts on the estimation of transcript abundance has been repeated demonstrated (see, Srivastava, A., Malik, L., Sarkar, H. et al.. Genome Biol 21, 239, 2020, https://doi.org/10.1186/s13059-020-02151-8). This may (in part) explain why olfactory receptors have been largely absent from this data set.
Response: We agree with the reviewer that alignment rate could have been better but this should not affect the quantitative information we are referring to in this manuscript. The alignment rates could have impacted the qualitative information which can vary due to multiple reasons including the quality of the reference genome. As it is evident from the analysis that in Ae. aegypti 90% of the reads are aligned to the reference genome, still we did not observe any difference in the abundancy of olfactory receptor genes. Previous microarray analysis in An. gambiae by Rund et.al. 2013, also did not show diel rhythmic expression of any OR genes.
The issue of species choice is further complicated by questions regarding the An. culicifacies species complex which contains 5 cryptic species. How did the authors confirm they are indeed working with An. culicifacies species A -there is no mention regarding the molecular identification.
Response: The An. culcifacies species A colony has been colonized at NIMR since 1999, with routine checks performed to verify its purity of species by analyzing inversion genotypes on chromosomes for the presence of sibling species (see the references). But at that time, we had three sibling species--A, B, C; subsequently, we lost B and C. Giving old references will not serve the purpose. Later we verified sibling species A by inversion genotype on chromosome and molecular tools. However, we do not have any published reference for that verified data.
The species can be identified by performing 28S rDNA-based PCR (Singh et al, 2004) and cytochrome oxidase II-based PCR (Goswami et al 2006). Sequencing can also serve the purpose.
Singh OP, Goswami G, Nanda N, Raghavendra K, Chandra D, Subbarao SK. An allele-specific polymerase chain reaction assay for the identification of members of Anopheles culicifacies complex. J Biosci. 2004; 29: 275—280 10.1007/bf02702609
Goswami G, Singh OP, Nanda N, Raghavendra K, Gakhar SK, Subbarao SK. Identification of all members of the Anopheles culicifacies complex using allele-specific polymerase chain reaction assays. Am J Trop Med Hyg. 2006; 75: 454-460. doi: 10.4269/ajtmh.2006.75.454
Adak T, Kaur S, Singh OP. Comparative susceptibility of different members of the Anopheles culicifacies complex to Plasmodium vivax. Trans R Soc Trop Med Hyg. 1999;93:573–577
The switch from dsRNAi studies in Aedes to protease inhibitor studies in Anopheles adds to the interspecies confusion.
Response: Our main goal in this study was to evaluate the function of CYP450 in mosquito’s odor detection and olfactory sensitivity. Our data as well as previous data (Rund et.al. 2011, Rund et.al. 2013) suggesting that the basic mechanism of odor detection and peri-receptor events are similar for both An. gambiae, An. culicifacies and Ae. aegypti, and the role of detoxification genes are very much evidenced from these data. Based on our RNA-Seq data on Ae. aegypti, we shortlisted one CYP450 gene for functional knockdown assays. However, for Anopheles we used An. gambiae for functional validation. Thus, it was not possible for us to select appropriate CYP450 gene from An. gambiae. That is why, we plan for using CYP450 protein inhibitors which block the function of all the CYP450 expressing in the olfactory system of mosquitoes. Expectedly, we also observed much more pronounced reduction of olfactory sensitivity when inhibitors were applied compared to dsRNAi mediated knock-down the function of only one CYP450 protein. These data indicate that Anopheles also possess similar mechanism of perireceptor events for odor detection and CYP450 plays an important role in it.
The olfactory shifts presented in Fig 3 are somewhat underwhelming. In An. gambiae this mostly seen at very high (to my eyes, non-biologically relevant) 10-1 dilutions. In Aedes, while statistically significant, the EAG values (especially for 4MePhenol) are very low and therefore suspect and unconvincing. It is also unclear how 'Relative EAG Responses' were derived?? Does this mean relative to solvent alone controls??
Response: Yes, relative EAG response means relative to respective solvent control. We also make necessary changes in the text as well as in the figures for better understanding and representation.
The same data set seems to have been presented in Figures 3 and 4, with the latter's absence of salient details e.g. haphazard odor concentrations which are seen only when legend is examined). These factors make the inclusion of Figure 4 less obvious.
Response: Depending on the reviewer’s concern we shifted the Figure 4 into the supplemental data and we are sorry for the miscommunication.
I am concerned that the data in Figure 5B is derived from only those samples with altered EAGs. I believe that all injected mosquitoes should be assayed in order to better understand the actual efficacy of the treatment. The cherry picking of samples is troubling.
Response: We pooled five heads for each replicate and we performed the assay with three replicates. That mean we have taken heads from 15 mosquitoes for each experimental setup (control vs knock-down). It is true that we did not consider all the 40 mosquitoes that we used for EAG-recordings. However, we believe that 15 mosquitoes will be a good representation of the population. And the error bars among replicates of the knock-down mosquitoes, compared to the dsLacZ group, clearly indicates the disparity in knock-down efficiency among individuals.
As is true for earlier figures, Figure 5c-f is lacking critical information about concentration (also not presented in figure legend) and should be done within the context of a multi-point dose response study. The data in its current form is not acceptable.
Response: We apologize for the mistake for not mentioning the concentration of the inhibitors. Now, we added this information in the revised manuscript.
The same data concerns apply to Figure 6d-g.
Response: We apologize for the mistake for not mentioning the concentration of the inhibitors. Now, we added this information in the revised manuscript.
The inclusion of An. stephensi data Figure S4D seems thrown in as an after-thought and without good reason.
Response: Our RNA-Seq data on An. culicifacies and Aedes aegypti revealed similar abundance and expression pattern of rhythmic transcripts specifically for peri-receptor transcripts, as reported before by Rund et. al. 2011 & 2013 for Aedes aegypti and Anopheles gambiae. Moreover, we observed significant difference in EAG response between Aedes aegypti and Anopheles gambiae, we hypothesized that higher abundance of rhythmic peri-receptor transcripts possibly has correlation with high EAG response in Anopheles. Therefore, to get an idea about the EAG response for other Anopheles sp. we used An. stephensi, and observed similar difference in EAG response. Though, it will be interesting to compare time-dependent response between the two Anopheles species, it is not our primary interest and objectives, and is beyond the scope of the current MS and the objective can be elaborated further in future.
I am unsure how shifts in CNS levels of P450 or serine proteases impact peripheral EAG recordings? This is especially so given that any effects on synaptic plasticity/efficacy that might occur are expected to be downstream of the peripheral antennae being recorded in EAGs. The authors do not do a great job explaining away that paradox even though that section in the discussion seems overly speculative.
Response: We agree with the reviewer that EAG study is not enough/appropriate to comment on the effect of central-brain processing in the regulation of olfactory processes. Further validation by either neuroimaging or beavioral studies are needed to make any conclusion. And we clearly mention in the MS that our data indirectly indicating this function of serine protease and further confirmatory studies are needed to proof this hypothesis. However, it is not possible for us to perform all the experiments now, due to technical and infrastructural limitations. Thus, we hypothesized it as future research endeavour. Moreover, considering the reviewer’s concern we have modified the text and removed the overstatements and speculations.
The authors discussion on peri-receptor protein oscillation seems premature given the data that is presented (regardless of the caveats discussed above) center on transcript abundance. There is no data on protein abundance, which while related, is an entirely different question/issue.
Response: Yes, we agree that our hypothesis of peri-receptor protein oscillation is based on our RNA-Seq data. However, later we validated our hypothesis by knock-down studies in mosquitoes as well as we used CYP450 protein inhibitors, where also we observed significant results of decrease in olfactory sensitivity. It is true that we do not have any data on protein abundance, but several previous studies along with our data showed the similar expression profiling of peri-receptor genes, which clearly indicates that the rhythmic expression pattern of these genes are conserved among mosquitoes. None of the previous studies address the hypothesis regarding the peri-receptor events and possible function of XMEs in odorant detection, which is the uniqueness of our study. Therefore, we believe that after functional validation by dsRNAi and inhibitor study, we are able to validate our hypothesis for scientific acceptance. While, CYP450 has been reported to have crucial role in xenobiotic detoxification, its role in odor detection has not been explored yet. We agree that further biochemical validation is required to see the interaction between CYP450 and odor molecules, and how CYP450 is modifying the odorant chemicals either for its detection or for its inactivation. But, such study is out of the scope of the MS and will be our future research endeavour. However, our current data and the MS will have large impact for designing of strategies for application of insecticides, as overlapping the timing of application of insecticide and rhythmic expression/natural upregulation of XMEs could accelerate the inactivation of insecticides and rapid generation of resistant mosquitoes. Thus, we believe that the current revised MS have potential data and would be valuable for publication.
Minor concerns:
- The authors routinely confuse transcript abundance derived from their RNAseq data with gene expression. The former reflects the steady-state snapshot levels of transcripts encompassing\ synthesis, use and decay while the latter is limited to the rate of transcription requiring nuclear run on or single-nucleus RNAseq approaches. Response: Thank you for your insightful comment. We appreciate your clarification regarding the distinction between transcript abundance and gene expression. In the revised manuscript, we have included a clarification stating that 'transcript abundance is referred to as gene expression, unless explicitly stated otherwise”.
There are numerous typos, spelling errors and other grammatical mistakes-a copy editor is needed.
Response: In the revised manuscript, we have carefully corrected the spelling errors and other grammatical mistakes.
Many of the supplemental figures are error filled, lacking sufficient details and otherwise difficult to parse/understand. I recommend revisiting/removing many of these/
Response: We have improvised on the supplementary figures in the revised manuscript as suggested by the reviewer.
__ Reviewer #2 (Significance (Required)):__
In light of the serious concerns described above there is limited significance to this study. Similarly these concerns erode almost all of any advance to the field this study might have offered. The audience of interest would be highly specialized
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
This report combines an examination of peripheral transcriptomes and general olfactory sensitivity in an effort to underscore the importance of peri-receptor components in circadian-directed modulation of olfaction across both Aedine and Anopheline mosquitoes. While the authors do a nice job of raising the importance of the often-underappreciated spectrum of insect olfactory peri-receptor proteins, the impact of their study is undercut by technical concerns regarding methods and data presentation. That several of these concerns (detailed below) are explicitly acknowledged by the authors as limitations of this study does not mitigate their impact in eroding confidence in these data and this study.
All in all, as a result of these concerns, I am unconvinced as to the overall merits of this somewhat interesting but generally uneven study.
Major concerns:
- That the authors use An. culicifacies for their transcriptome studies and An. gambiae (G3) for the olfactory physiology does not work. The 'technical limitations' (read studies done at two different locations) make this report an unwelcome melding of what should perhaps be two distinct studies. In order to maintain this forced marriage as a single report I would suggest the authors utilize An. culicifacies for both components. Alternatively, they can do both parts with An. gambiae but here I would strongly urge them to use any strain other than G3 which as a result of its now decades-long laboratory residence has long since lost its relevance to natural populations of Anopheline vectors.
- The 70-80% alignment rate reported to the An. culicifacies reference genome significantly erodes this reader's confidence in the integrity of their analyses. That low level of alignment can have dramatic impacts on the estimation of transcript abundance has been repeated demonstrated (see, Srivastava, A., Malik, L., Sarkar, H. et al.. Genome Biol 21, 239, 2020, https://doi.org/10.1186/s13059-020-02151-8). This may (in part) explain why olfactory receptors have been largely absent from this data set.
- The issue of species choice is further complicated by questions regarding the An. culicifacies species complex which contains 5 cryptic species. How did the authors confirm they are indeed working with An. culicifacies species A -there is no mention regarding the molecular identification.
- The switch from dsRNAi studies in Aedes to protease inhibitor studies in Anopheles adds to the interspecies confusion.
- The olfactory shifts presented in Fig 3 are somewhat underwhelming. In An. gambiae this mostly seen at very high (to my eyes, non-biologically relevant) 10-1 dilutions. In Aedes, while statistically significant, the EAG values (especially for 4MePhenol) are very low and therefore suspect and unconvincing. It is also unclear how 'Relative EAG Responses' were derived?? Does this mean relative to solvent alone controls??
- The same data set seems to have been presented in Figures 3 and 4, with the latter's absence of salient details e.g. haphazard odor concentrations which are seen only when legend is examined). These factors make the inclusion of Figure 4 less obvious.
- I am concerned that the data in Figure 5B is derived from only those samples with altered EAGs. I believe that all injected mosquitoes should be assayed in order to better understand the actual efficacy of the treatment. The cherry picking of samples is troubling.
- As is true for earlier figures, Figure 5c-f is lacking critical information about concentration (also not presented in figure legend) and should be done within the context of a multi-point dose response study. The data in its current form is not acceptable.
- The same data concerns apply to Figure 6d-g.
- The inclusion of An. stephensi data Figure S4D seems thrown in as an after-thought and without good reason.
- I am unsure how shifts in CNS levels of P450 or serine proteases impact peripheral EAG recordings? This is especially so given that any effects on synaptic plasticity/efficacy that might occur are expected to be downstream of the peripheral antennae being recorded in EAGs. The authors do not do a great job explaining away that paradox even though that section in the discussion seems overly speculative.
- The authors discussion on peri-receptor protein oscillation seems premature given the data that is presented (regardless of the caveats discussed above) center on transcript abundance. There is no data on protein abundance, which while related, is an entirely different question/issue.
Minor concerns:
- The authors routinely confuse transcript abundance derived from their RNAseq data with gene expression. The former reflects the steady-state snapshot levels of transcripts encompassing\ synthesis, use and decay while the latter is limited to the rate of transcription requiring nuclear run on or single-nucleus RNAseq approaches.
- There are numerous typos, spelling errors and other grammatical mistakes-a copy editor is needed.
- Many of the supplemental figures are error filled, lacking sufficient details and otherwise difficult to parse/understand. I recommend revisiting/removing many of these/
Significance
In light of the serious concerns described above there is limited significance to this study. Similarly these concerns erode almost all of any advance to the field this study might have offered. The audience of interest would be highly specialized
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
In the present manuscript, the authors analyzed diel oscillations in the brain and olfactory organs' transcriptome of Aedes aegypti and Anopheles culicifacies. The analysis of their RNAseq results showed an effect of time of day on the expression of detoxification genes involved in oxidoreductase and monooxygenase activity. Next, they investigated the effect of time of day on the olfactory sensitivity of Ae. aegypti and An. gambiae and identified the role of CYP450 in odor detection in these species using RNAi. In the last part of the study, they used RNAi to knock down the expression of one of the serine protease genes and observed a reduction in olfactory sensitivity. Overall, the experiments are well-designed and mostly robust (see comment regarding the sample size and data analysis of the EAG experiments) but do not always support the claims of the authors. For example, since no experiments were conducted under constant conditions, the circadian (i.e., driven by the internal clocks) effects are not being quantified here. In addition, knocking down the expression of a gene showing daily variations in its expression and observing an effect on olfactory sensitivity is not sufficient to show its role in the daily olfactory rhythms. Knowledge gaps are not well supported by the literature, and overstatements are made throughout the manuscript. Our detailed comments are listed below.
Major comments
Introduction
Several statements made in the introduction are misleading and suggest that authors are trying to exaggerate the impact of their work. For example, "Furthermore, different species of mosquitoes exhibit plasticity and distinct rhythms in their daily activity pattern, including locomotion, feeding, mating, blood-feeding, and oviposition, facilitating their adaptation into separate time-niches (7, 8), but the underlying molecular mechanism for the heterogenous temporal activity remains to be explored." is not accurate since daily rhythms in mosquitoes' transcriptomes, behavior, and olfactory sensitivity have been the object of several publications. Even though some of them are listed later in the introduction, they contradict the claim made about the knowledge gap. See:
Rund, S. S., Gentile, J. E., & Duffield, G. E. (2013). Extensive circadian and light regulation of the transcriptome in the malaria mosquito Anopheles gambiae. BMC genomics, 14(1), 1-19
Rund, S. S., Hou, T. Y., Ward, S. M., Collins, F. H., & Duffield, G. E. (2011). Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proceedings of the National Academy of Sciences, 108(32), E421-E430
Rund, S. S., Bonar, N. A., Champion, M. M., Ghazi, J. P., Houk, C. M., Leming, M. T., ... & Duffield, G. E. (2013). Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae. Scientific reports, 3(1), 2494
Rund, S. S., Lee, S. J., Bush, B. R., & Duffield, G. E. (2012). Strain-and sex-specific differences in daily flight activity and the circadian clock of Anopheles gambiae mosquitoes. Journal of insect physiology, 58(12), 1609-1619
Leming, M. T., Rund, S. S., Behura, S. K., Duffield, G. E., & O'Tousa, J. E. (2014). A database of circadian and diel rhythmic gene expression in the yellow fever mosquito Aedes aegypti. BMC genomics, 15(1), 1-9
Eilerts, D. F., VanderGiessen, M., Bose, E. A., Broxton, K., & Vinauger, C. (2018). Odor-specific daily rhythms in the olfactory sensitivity and behavior of Aedes aegypti mosquitoes. Insects, 9(4), 147
Rivas, G. B., Teles-de-Freitas, R., Pavan, M. G., Lima, J. B., Peixoto, A. A., & Bruno, R. V. (2018). Effects of light and temperature on daily activity and clock gene expression in two mosquito disease vectors. Journal of Biological Rhythms, 33(3), 272-288
The knowledge gap brought up in the next paragraph of the introduction doesn't reflect the questions asked by the experiments: "But, how the pacemaker differentially influences peripheral clock activity present in the olfactory system and modulates olfactory sensitivity has not been studied in detail." Specifically, the control of peripheral clocks by the central pacemaker has not been evaluated here.
"In vertebrates and invertebrates, it is well documented that circadian phase-dependent training can influence olfactory memory acquisition and consolidation of brain functions" should also cite work on cockroaches and kissing bugs:
Lubinski, A. J., & Page, T. L. (2016). The optic lobes regulate circadian rhythms of olfactory learning and memory in the cockroach. Journal of Biological Rhythms, 31(2), 161-169
Page, T. L. (2009). Circadian regulation of olfaction and olfactory learning in the cockroach Leucophaea maderae. Sleep and Biological Rhythms, 7, 152-161
Vinauger, C., & Lazzari, C. R. (2015). Circadian modulation of learning ability in a disease vector insect, Rhodnius prolixus. Journal of Experimental Biology, 218(19), 3110-3117
The sentence: "Previous studies showed that synaptic plasticity and memory are significantly influenced by the strength and number of synaptic connections (43, 44)." should be nuanced as the role of neuropeptides such as dopamine has also been showed to influence learning and memory in mosquitoes:
Vinauger, C., Lahondère, C., Wolff, G. H., Locke, L. T., Liaw, J. E., Parrish, J. Z., ... & Riffell, J. A. (2018). Modulation of host learning in Aedes aegypti mosquitoes. Current Biology, 28(3), 333-344
Wolff, G. H., Lahondère, C., Vinauger, C., Rylance, E., & Riffell, J. A. (2023). Neuromodulation and differential learning across mosquito species. Proceedings of the Royal Society B, 290(1990), 20222118
Overall, the paragraph dealing with the idea that "circadian phase-dependent training can influence olfactory memory acquisition and consolidation of brain functions" is very confusing. This paragraph discusses mechanisms of learning-induced plasticity but seems to ignore the simplest (most parsimonious) explanations for the circadian regulation of learning (e.g., time-dependent expression of genes involved in memory consolidation). In addition, the sentence quoted above is circumvoluted to simply say that training at different times of the day affects memory acquisition and consolidation. Although the authors did look at one gene involved in neural function, learning, memory, or circadian effects were not analyzed in this study. Please reconsider the relevance of the paragraph.
The sentence: "But, how the brain of mosquitoes entrains circadian inputs and modulates transcriptional responses that consequently contribute to remodel plastic memory, is unknown." should be rephrased. First, it should be "entrains TO circadian inputs", and second, it suggests that the study will be investigating circadian modulation of learning and memory, which is not the case. Furthermore, the term "remodel plastic memory" is unclear and doesn't seem to relate to any specific cellular or neural processes.
Given the differences in mosquito chronobiology observed even between strains, why perform the RNAi and EAGs on a different species of Anopheles than the one used for the RNAseq (or vice versa)?
Results
"As reported earlier, a significant upregulation of period and timeless during ZT12-ZT18 was observed in both species (Figure 1C)." Please provide effect size and summary statistics.
"Next, the distribution of peak transcriptional changes in both An. culicifacies and Ae. aegypti was assessed through differential gene-expression analysis. Noticeably, An. culicifacies showed a higher abundance of differentially expressed olfactory genes (Figure 1D)" Please provide effect size and summary statistics.
"Taken together, the data suggests that the nocturnal An. culicifacies may possess a more stringent circadian molecular rhythm in peripheral olfactory and brain tissues." What do the authors mean by "stringent"? At this point, this should be stated as a working hypothesis, as the statement is not backed up by the data. It is possible that the fewer differentially expressed genes of Aedes aegypti are more central to regulatory networks and cascade into more "stringent" rhythmic control of activities and rhythms.
The section title: "Circadian cycle differentially and predominantly expresses olfaction-associated detoxification genes in Anopheles and Aedes" doesn't make sense. The expression of genes can be modulated by circadian rhythms, but cycles don't express genes. Please rephrase. In addition, this whole section deals with "circadian rhythms" while no experiment has been conducted under constant conditions. The observed daily variations are therefore diel rhythms until their persistence under constant conditions is established.
"The downregulated genes of Ae. aegypti did not show any functional categories probably due to the limited transcriptional change." Could the authors explain if this is actually the phenomenon or due to a lack of temporal resolution in the study design (i.e., 4 time points)?
"a GO-enrichment analysis was unable to track any change in the response-to-stimulus or odorant binding category of genes (including OBPs, CSPs, and olfactory receptors)." This finding doesn't corroborate the statements made previously and doesn't align with previously published studies. Is it due to pitfalls in the study design?
"In contrast, three different clusters of OBP genes in Ae. aegypti showed a time-of-day dependent distinct peak in expression starting from ZT0-ZT12 (Figure 2F)." Please provide summary statistics.
"In the case of An. gambiae, the amplitudes of odor-evoked responses were significantly influenced by the doses of all the odorants tested (repeated measure ANOVA, p {less than or equal to} 2e-16) (Figure S4B)." Did the authors use a positive control for the EAGs? How did the authors normalize the responses across the two species? Given the way the data is presented, how were the data normalized to allow inter-species comparisons? In addition, It is highly unlikely that all the mosquito preps used in the EAG assay responded to all the odors tested. If that was the case, then the dataset includes missing data for certain odors and time points. We believe the authors have ensured there are at least a certain number of responses per odor and time point combinations. If this is true, repeated measures ANOVA is not suited for analyzing this data because this statistical technique requires all repeated measures within and across preps without missing values. Also, the authors need to correct the summary statistics for multiple comparisons within this framework to avoid inflating type-I errors. Has this been done?
"Ae. aegypti was found to be most sensitive to all the odorants (4-methylphenol, β-ocimine, E2-nonenal, benzaldehyde, nonanal, and 3-octanol) during ZT18-20 except sulcatone (Figure 3C - 3H)." Although some of these chemicals are associated with plants and Ae. aegypti is suspected to sugar feed at night, how do the authors explain that the peak olfactory sensitivity occurs at night for compounds such as nonanal? It would be interesting to discuss how these results compare to previous studies such as:
Eilerts, D. F., VanderGiessen, M., Bose, E. A., Broxton, K., & Vinauger, C. (2018). Odor-specific daily rhythms in the olfactory sensitivity and behavior of Aedes aegypti mosquitoes. Insects, 9(4), 147
"Additionally, our principal components analysis also illustrates that most loadings of relative EAG responses are higher towards the Anopheles observations (Figure S4C)." The meaning of this sentence is unclear? Please clarify.
"Taken together these data indicate that An. gambiae may exhibit higher antennal sensitivity to at least five different odorants tested, as compared to Ae. aegypti." As mentioned above, how did the authors normalized across species to allow comparisons? If not normalized, how do you ensure that higher response magnitudes correlate with higher olfactory sensitivity, given potential differences in the morphology or size differences between the two species? Furthermore, An. gambiae has been exclusively used in the EAG assay. Besides the lack of a justification for using a species other than An. culicifacies, the authors have interpreted the EAG results under the assumption that the olfactory sensitivities of An. gambiae and An. culicifacies are comparable. This, however, is a major caveat in the experiment design, given previous studies (indicated below) have reported species-specific variations in olfactory sensitivity. In its present form, the EAG data from An. gambiae is not a piece of appropriate evidence that the authors could use to complement or substantiate the findings from other aspects of this study on An. culicifacies.
i. Wheelwright, M., Whittle, C. R., & Riabinina, O. (2021). Olfactory systems across mosquito species. Cell and Tissue Research, 383(1), 75-90.
ii. Wooding, M., Naudé, Y., Rohwer, E., & Bouwer, M. (2020). Controlling mosquitoes with semiochemicals: a review. Parasites & Vectors, 13, 1-20.
iii. Gupta, A., Singh, S. S., Mittal, A. M., Singh, P., Goyal, S., Kannan, K. R., ... & Gupta, N. (2022). Mosquito Olfactory Response Ensemble enables pattern discovery by curating a behavioral and electrophysiological response database. Iscience, 25(3).
"Similar to An. gambiae, a comparatively high amplitude response was also observed in An. stephensi (Figure S4D)." This is interesting but what would be even more relevant to the present study is to discuss how the time-dependent responses compare between the two Anopheles species.
The paragraph titled "Daily temporal modulation of neuronal serine protease impacts mosquito's olfactory sensitivity" is confusing because the authors move on to test the effect of knocking down a serine protease gene (found to be differentially expressed throughout the day) on olfactory sensitivity. While this is interesting in and of itself, the link between the role of this gene in learning-induced plasticity, the circadian modulation of "brain functions" and olfactory sensitivity is 1) unclear and 2) not explicitly tested. We agree with the authors that what has been tested is "the effect of neuronal serine protease on circadian-dependent olfactory responses," but the two paragraphs leading to it seem to be extrapolating functional links that have yet to be determined. In this context, their conclusions that "Our finding highlights that daily temporal modulation of neuronal serine-protease may have important functions in the maintenance of brain homeostasis and olfactory odor responses." is misleading because although they used the hypothetical "may", the link between the temporal modulation of one serine protease gene and the maintenance of brain homeostasis is not explicitly tested here.
Discussion
The first sentence of the discussion: "In this study, we provide initial evidence that the daily rhythmic change in the olfactory sensitivity of mosquitoes is tuned with the temporal modulation of molecular factors involved in the initial biochemical process of odor detection i.e., peri-receptor events" is not true since studies from Rund and Duffield previously revealed the daily modulation of OBP gene expression. It also contradicts the next sentence: "The findings of circadian-dependent elevation of xenobiotic metabolizing enzymes in the olfactory system of both Ae. aegypti and An. culicifacies are consistent with previous literature (26, 31), and we postulate that these proteins may contribute to the regulation of odorant detection in mosquitoes."
The use of "circadian" in the discussion of the results is also misleading as only diel rhythms were evaluated in the present study.
"Given the potentially larger odor space in mosquitoes (like other hematophagous insects) (16, 58)." This is not really what these references show.
"Given the potentially larger odor space in mosquitoes (like other hematophagous insects) (16, 58), it can be hypothesized that detection of any specific signal in such a noisy environment, mosquitoes may have evolved a sophisticated mechanism for rapid (i) odor mobilization and (ii) odorant clearance, to prevent anosmia (24)." One could argue that this is a requirement for all insects, regardless of the size of their olfactory repertoire.
"Taken together, we hypothesize that circadian-dependent activation of the peri-receptor events may modulate olfactory sensitivity and are key for the onset of peak navigation time in each mosquito species." This is not entirely accurate since spontaneous locomotor activity rhythms are also observed in the absence of olfactory stimulation. While "navigation" does imply olfactory-guided behaviors, "peak navigation time" appears to be driven by other processes. See, for example, all studies testing mosquito activity rhythms in locomotor activity monitors.
"Due to technical limitations, and considering the substantial data on the circadian-dependent molecular rhythmicity" please clarify what the technical limitations were. Is this something that prevented the authors specifically, or something tied to mosquito biology and would prevent anybody from doing it? Also, why couldn't the transcriptomic analysis be performed on An. gambiae?
"In contrast to An. gambiae, the time-dose interactions had a higher significant impact on the antennal sensitivity of Ae. aegypti. An. gambiae showed a conserved pattern in the daily rhythm of olfactory sensitivity, peaking at ZT1-3 and ZT18-20." These two sentences are very confusing. Doesn't it simply mean that the co-variation is not linear or not the same across odors? In addition, what does it mean for a pattern to be more conserved? How can one conclude about the "conserved" nature of a pattern by looking at time-dependent variations in dose-response curves?
"Together these data, we interpret that mosquito's olfactory sensitivity possibly does not follow a fixed temporal trait" is unclear and suggests that the authors are discussing global versus odor-specific rhythms. Please rephrase.
"Moreover, we hypothesize that under standard insectary conditions, mosquitoes may not need to exhibit foraging flight activity either for nectar or blood, and during the time course, it may minimize their olfactory rhythm, which is obligately required for wild mosquitoes." This hypothesis is not supported by the results of the study and contradicts work by others (Rund et al., Eilerts et al., Gentile et., etc).
The same comment applies to "Therefore, it is reasonable to think that the mosquitoes used for EAG studies may have adapted well under insectary settings and, hence carry weak olfactory rhythm." as this statement is not supported by results of the present study or comparisons of the results to previous studies based on field-caught mosquitoes. Although it is an interesting question to ask in the future, it should be stated as a future research avenue rather than a working hypothesis that results from the present study.
"Aedes aegypti displayed a peak in antennal sensitivity at ZT18-20 to the higher concentrations of plant and vertebrate host-associated odorants tested. Given the time-of-day dependent multiple peaks (at ZT6-8 and ZT18-20 for benzaldehyde and at ZT12-14 and ZT18-20 for nonanal) in antennal sensitivity to different odorants, our data supports the previous observation of bimodal activity pattern of Ae. aegypti (50)." Rephrase by saying that results are "aligned with the previous observations of bimodal activity". Olfactory rhythms don't "support" the activity patterns because olfactory processes and spontaneous locomotor activity are independent processes.
"our preliminary data indicate that Anopheles spp. may possess comparatively higher olfactory sensitivity to a substantial number of odorants as compared to Aedes spp." Consider removing this sentence unless the way the data has been normalized to allow for comparisons between species is clarified.
In "A significant decrease in odorant sensitivity for all the volatile odors tested in the CYP450-silenced Ae. aegypti," please change "silenced" to "reduced" because RNAi doesn't silence (i.e. knockout) gene expression.
The title "Neuronal serine protease consolidates brain function and olfactory detection" is extremely misleading. Do the authors refer to memory consolidation, which has not been tested here? What is brain function consolidation??
The reference used in "Despite their tiny brain size, mosquitoes, like other insects, have an incredible power to process and memorize circadian-guided olfactory information (7)." is not appropriate. Also, "circadian-guided" is unclear. Consider replacing it with "circadian-gated".
What is the "the homeostatic process of the brain"?
"the temporal oscillation of the sleep-wake cycle of any organism is managed by the encoding of experience during wake, and consolidation of synaptic change during inactive (sleep) phases, respectively (70)." By experience, do the authors refer to learning? This seems out of topic as this process has not been evaluated here.
"We speculate that after the commencement of the active phase (ZT6-ZT12), the serine peptidase family of proteins in the brain of Ae. aegypti mosquitoes may play an important function in consolidating brain actions (after ZT12) and aid circadian-dependent memory formation." The value of this statement is unclear. Circadian-dependent memory formation is not being evaluated here, and the results from the present study do not directly support this speculation, also because other processes involved in memory formation are not evaluated here. This seems at odds with the literature on learning and memory.
"Subsequent work on electrophysiological and neuro-imaging studies are needed to demonstrate the role of neuronal-serine proteases in the reorganization of perisynaptic structure." Sure. But the link between "the role of neuronal-serine proteases in the reorganization of perisynaptic structure" and rhythms in olfactory sensitivity is unclear.
As a general comment, EAGs seem inappropriate to evaluate the effect of the central-brain processing in the regulation of peripheral olfactory processes. This is a critical comment that needs to be considered by the authors and clarified in the manuscript. If rhythms of central brain processes are important for olfactory-guided behaviors, these should be evaluated at the level of the central brain or via behavioral metrics. The effect of the RNAi knockdowns on peripheral sensitivity is interesting, but its link with central processes is unclear and doesn't support the speculations made by the authors about learning and memory.
Methods
No explanations are provided for how the EAG data are normalized to allow comparisons between species.
Figures
Figure 1: The daily rhythm depicted in A, are not representative of the actual profiles. See: Benoit, J. B., & Vinauger, C. (2022). Chapter 32: Chronobiology of blood-feeding arthropods: influences on their role as disease vectors. In Sensory ecology of disease vectors (pp. 815-849). Wageningen Academic Publishers. Or any other paper on mosquito activity rhythms.
Figure 3 and 4: The EAG results are plotted twice. This is redundant and misleading as it makes the reader think there is more data than actually presented.
Figure 5: Please clarify the sample size for each panel. In C - F, what would be used as a reference? In other words, what is a Relative EAG Response of 1? And if it is "relative", are the units really mV? In E and F, it would be great to show how the Ethanol control compares to the no solvent condition. This could be placed in supplementary materials.
Figures 5 and 6, given the dispersion in the EAG data, the treatments where N=40 appear robust, but the interpretation of results from treatments where N=6 may be limited due to the low sample size. This limitation is visible in Figure 5F, for example, where ABT-Aceto is different from Cont-Aceta but not PBO-Aceto because one individual shows a higher response.
Figure S6: how does this support that synaptic plasticity is influenced by "Time-of-day dependent modulation of serine protease genes in the brain"?
Minor comments
What do the authors mean by "consolidation of brain functions"? Memory consolidation? Please clarify.
In "Similar to previous studies (26), the expression of a limited number of rhythmic genes was visualized in Ae. aegypti" please replace "visualized" with "observed".
Figure 2A, please clarify in the caption what FDR stands for.
In "To further establish this proof-of-concept in An. gambiae, three potent CYP450 inhibitors, aminobenzotriazole(52), piperonyl butoxide(53), and schinandrin A (54), was applied topically on the head capsule of 5-6-day-old female mosquitoes" replace "was applied" with "were applied".
"Interestingly, our species-time interaction studies revealed that An. gambiae exhibits time-of-day dependent significantly high antennal sensitivity to at least four chemical odorants compared to Ae. aegypti, except phenol." is unclear. Please reword.
In "Similar observations were also noticed with An. stephensi." replace "noticed" with "made".
Significance
Such a study has the potential to be valuable for the field, but its value and significance are hindered by an accumulation of overstatements, the fact that prior work in the field has been minimized or omitted, and a lack of support for the stated conclusions.
In this context, the advances are only slightly incremental compared to the work produced by Rund et al., and the mechanistic hypotheses emitted to link the genes selected for knockdown experiments and olfactory sensitivity are not clearly supported by the evidence presented here. The main strength of the paper is to show the role of CYP450 in olfactory sensitivity.
The audience is fairly broad and includes insect neuro-ethologists, molecular biologists, and chronobiologists.
Our field of expertise:
- Mosquito chemosensation
- Learning and memory
- Chronobiology
- Electrophysiology
- Medical entomology
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Overall comments
We are pleased by the reviewers' comments and appreciate their suggestions for improvements. In addition to correcting small typos throughout the manuscript, we have made the following additions or changes in response to reviewer comments and suggestions:
- New complementation experiments to verify the impacts of mgtA and PA4824 on bacterial fitness in fungal co-culture.
- New experiments to measure intracellular Mg2+ levels in corA or mgtE mutants to strengthen our conclusion that neither of these constitutive Mg2+ transporters is required for maintaining intracellular Mg2+ levels in co-culture.
- New experiments to confirm that the * cerevisiae mnr2D mutant does not have a fitness defect compared to WT in co-culture. This finding rules out the possibility that metabolic defects in the mnr2D mutant restore the fitness of bacterial mgtA* mutant in co-culture and strengthens our hypothesis that Mg2+ sequestration by fungal vacuole triggers Mg2+ nutritional competition with bacteria.
- Clarification of bacterial species we tested in our study as suggested by Reviewer #3.
- Revised discussion to highlight how our findings relate to any fungal-bacterial interaction both in ecological and infection contexts and any known role of mgtA in antibiotic susceptibility, as suggested by Reviewer #2. All changes in response to the reviewer's comments have been detailed in our point-by-point response (below).
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
This manuscript investigates polymicrobial interactions between two clinically relevant species, Pseudomonas aeruginosa and Candida albicans. The findings that C. albicans mediates P. aeruginosa tolerance to antibiotics through sequestration of magnesium provides insight into a specific interaction at play between these two organisms, and the underlying mechanism. The manuscript is well composed and generally the claims throughout are supported by the provided evidence. As a result, most comments are either for clarification, or minor in nature.
We thank the reviewer for their positive comments and their suggestions for improvement.
Major comments:
1) For their experiments, the authors frequently switch between 30C and 37C, but there is no rationale for why a specific temperature was used, or both were. E.g. some of the antibiotic survival assays, and fungal-bacterial co-culture assays were performed at both temperatures, while the colistin resistance, fitness competition and RNA sequencing were performed at 30C. Given the fact that the two organisms are both human pathogens and co-exist in human infections, it is not clear why 30C was used. The authors should provide clarity for why these two temperatures were used.
We thank the reviewer for raising this point. Fungal-bacterial interactions occur in a range of temperatures in ecological contexts (e.g., in soil or on plants) or during infection in animal hosts. Both 30oC and 37oC degree temperatures are used in C. albicans studies whereas 37oC is most preferred for P. aeruginosa studies. By providing data from both temperatures for critical experiments, we demonstrate that our findings are not dependent on temperature. Our studies also allow for an easy comparison to previously published studies performed at both temperatures. We chose to screen initial co-culture conditions showing fungal antagonism at 30oC, as C. albicans cells can reach higher CFUs than at 37oC due to growth in the single-celled yeast form.
We agree with the reviewer that 37oC is more physiologically relevant for conditions under which these two species coexist in animal hosts. Thus, we tested our findings of Mg2+ competition and antibiotic survival at 37oC.
We now clarify our reasoning in the revised Materials and Methods section as follows: "We chose 30oC for the initial co-culture assays for two reasons. First, C. albicans cells reached higher CFU at 30oC than 37oC, which would impose a stronger competition with bacteria. Second, C. albicans cells form hyphae at 37oC, which can have multiple cells in one filament and thus confound CFU measurements. We further confirmed that our findings of Mg2+ competition are independent of temperatures by setting up co-culture assays at both 30oC and 37oC."
2) Lines 184-191: It would be useful to measure intracellular Mg2+ (using the Mg sensor) in the corA and mgtB tn mutants in media as well as the fungal spent media, to provide stronger support for the claim that "MgtA is a key bacterial Mg2+ transporter that is highly induced under low Mg2+ conditions".
We thank the reviewer for this suggestion. Based on our experiments, neither CorA or MgtE are induced (in RNA-seq analyses) nor required in co-culture (in Tn-seq analyses), suggesting neither is involved in Mg2+ competition with C. albicans. In contrast, MgtA is highly induced in co-culture. Loss of mgtA significantly reduces bacterial fitness in co-culture and intracellular Mg2+ levels only in C. albicans-spent BHI, but not fresh BHI. These results suggest that MgtA is the key Mg2+ transporter required for bacterial Mg2+ uptake and fitness in co-culture.
Nevertheless, we agree with the reviewer that despite being constitutively expressed, CorA or MgtE might play an important role in importing Mg2+ in BHI and C. albicans-spent BHI. To test this possibility, we performed a new experiment suggested by the reviewer (now included in the revised manuscript) in which we measured intracellular Mg2+ levels in corA or mgtE loss-of-function mutants in BHI versus C. albicans-spent BHI, and compared them to intracellular Mg2+ levels in a mgtA loss-of-function mutant strain. We find that lack of either corA or mgtE does not significantly reduce bacterial Mg2+ levels in C. albicans-spent BHI compared to DmgtA mutant (Fig. S7C). Thus, our results strengthen our conclusion that MgtA is the key Mg2+ transporter that gram-negative bacteria use to overcome fungal-mediated Mg2+ sequestration.
3) Line no. 276. Does the mnr2∆ S. cerevisiae mutant have a growth defect compared to the WT? This would test whether the effect of the mnr2 mutant on P. aeruginosa fitness is strictly due to Mg2 and not due to reduced growth or metabolism of the mutant.
We agree with the possibility raised by the reviewer. In new experiments included with our revision as Figure S10, we find that the S. cerevisiae mnr2 deletion mutant exhibits similar CFU as WT in monoculture as well as co-culture. Thus, the rescuing effect of mnr2D is less likely due to reduced growth or metabolism.
4) The authors use the term 'antibiotic resistance' throughout the manuscript. However, the assays they perform do not directly test for antibiotic resistance which is defined as the ability to grow at higher concentrations of antibiotics (e.g. as measured by MIC tests). The authors should rephrase their phenotype as antibiotic survival or antibiotic tolerance.
We agree with the reviewer and thank them for raising this point. We replaced the phrase 'antibiotic resistance' with 'antibiotic survival' throughout the revised manuscript. We also accordingly changed our title to 'Widespread fungal-bacterial competition for magnesium lowers antibiotic susceptibility'
5) Also, the authors have two different assays, both measuring survival in antibiotic, but one is called a colistin resistance assay (line 508) and the other a colistin survival assay (line 523). It's not obvious what is the difference between what is being assayed in the two experiments, except perhaps the growth phase of the cells when they are exposed to the antibiotic? The authors should explain the difference, and the rationale for using two different assays.
We thank the reviewer for raising this point. In the revised manuscript, we explain the rationale of our two assays. The first assay measures the bacterial survival after colistin treatment in C. albicans-spent BHI, and the second measures the bacterial survival after colistin treatment in co-culture with C. albicans. We performed both assays because C. albicans-spent BHI mimics Mg2+-depleted conditions by C. albicans but might not represent all aspects of fungal presence in co-culture. To make sure our findings are consistent across these two experiments, we specify the difference in these two assays in the revised manuscript as the following: "Since fungal spent media cannot fully recapitulate fungal presence in co-culture conditions, we tested whether fungal co-culture also conferred increased colistin survival."
Minor comments:
- For almost all the figures, blue and orange dots are used for 'monoculture' and 'coculture' respectively, while orange and black dots are used for WT and the mgtA mutant. However, the black and blue dots are hard to tell apart, and for several figure sub-panels, the legends are not provided (e.g. figures 2D, 2F, S9H), making it a little confusing to figure out what is being shown. It would be best if the WT and mgtA symbols were in colors completely different from the monoculture/co-culture colors, making it easier to tell those apart.
We have updated these figures as the reviewer suggested.
Line no 122 and Figure 1A. The term "defense genes" in bacteria typically refers to genes conferring protection against phage infections. Perhaps the authors can use a different term (e.g. 'protective genes').
We agree with the reviewer. We have changed "defense genes" to "fungal-defense genes" to disambiguate the terms.
Line no 186. 'However, neither MgtA...' should be 'However, neither MgtE...'
We thank the reviewer for pointing out this typo. We have fixed this in our revision.
Line no 268. Does fungal-mediated Mg2+ competition extend to Gram positive bacteria?
We thank the reviewer for raising this interesting point. MgtA is prevalent in diverse gram-negative bacteria but rare in gram-positive bacteria. Using the fitness effect of mgtA mutants in co-culture vs monoculture allowed us to infer Mg2+ competition easily for diverse gram-negative bacteria. Currently, we do not have the experimental tools to extend this finding to gram-positive bacteria. Co-culture growth kinetics for gram-positive bacteria are also likely to be different from gram-negative bacteria in a way that makes direct comparisons challenging. We have clarified our writing in the revised manuscript: "This mode of competition might be highly specific between fungi and diverse gram-negative g-proteobacteria we have tested.... Whether fungi can suppress gram-positive bacteria through the same mechanism of Mg2+ competition remains an open question."
Line no 314. It is unclear whether the 'transient co-culture' is the same or a different assay as the colistin survival assay.
We apologize for the confusion and have removed the word 'transient' for clarity. The assays is the same as the 'colistin survival assay in fungal co-culture,' where we co-cultured log-phase P. aeruginosa cells with C. albicans for 5 hours and treated them with colistin.
Line no 316. For the bacterial survival assays shown in figures 3 and 4 (and other supplementary figures), please provide absolute numbers as cfu (as in figures 1 and 2), as opposed to a percentage, for cell counts. This will allow readers to appropriately interpret the data.
We thank the reviewer for this suggestion. We now include the raw CFU counts of colistin survival assays in Fig 3 and 4 and other supplementary figures in new supplementary figures (Fig. S11, S13, S14, S15, and S17) in our revision.
Line no 934-5: Italicize P. aeruginosa.
This typo has been fixed in our revision.
Reviewer #1 (Significance (Required)):
This study identifies a novel interaction between two the co-infecting human pathogens Pseudomonas aeruginosa and Candida albicans, where C. albicans causes Mg2+ limitation for P. aeruginosa. Further, the authors show that this interaction affects levels of antibiotic resistance, as well as the adaptive mutations seen during the evolution of antibiotic resistance. This advances the field by delineating how microbial interactions can affect clinically relevant phenotypes, and potentially clinical outcomes. The study should be of interest to a broad audience of researchers studying microbial ecology, evolutionary biology, microbiology, and infectious diseases.
We are grateful for the reviewer's positive appraisal.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
This paper looks at the interaction between the fungus Candida albicans (Ca) and the bacterium Pseudomonas aeruginosa (Pa), which are found together in some environments. Co-culture experiments showed that Ca can inhibit the growth of Pa. The goal of this study is to determine the reason for this phenomenon and how widespread it is. This was performed by Tnseq analysis of Pa that identified 3 genes which showed significant decreases in the presence of Ca. Interestingly these were all in an operon that was recognized by the authors as being induced by RNAseq during co-culture. One of these genes, mgtA is a known Mg2+ transporter and therefore the remainder of the paper discusses the importance of competition for Mg2+.
The experiments seem to be well carried out and appropriately controlled.
We thank the reviewer's appreciation of our science and the rigor of our experiments.
The use of the Mg2+ genetic sensor reporter in Pa is an interesting approach to determine the intracellular Mg2+ concentrations, however how these levels relate to one another between different experiments is not clear. In Fig. S5, the levels are 5 AU for growth in minimal media +low (10uM) Mg2+ and 38 AU for growth in minimal media+high (10mM) Mg2+. But the levels seen in Figure 1E are all much lower. With such low levels, it is difficult to determine if the impact of ∆PA4824 and ∆mgtA (while perhaps additive) are relevant. Would differences be seen with these various strains grown under different conditions?
We thank the reviewer for this query. The reviewer is right in that we do not use absolute quantification of intracellular Mg2+ levels. While our Mg2+ genetic sensor assay does not facilitate comparison of absolute Mg2+ levels across experiments, it provides a robust comparative measurement of relative intracellular Mg2+ levels in mutants versus WT cells, or between two different media conditions.
Using this Mg2+ genetic sensor assay, we tested intracellular Mg2+ levels of WT P. aeruginosa under various media conditions. We found that lower intracellular Mg2+ levels in P. aeruginosa cells and the requirement of mgtA in these media are well-correlated at lower total Mg2+ levels in media (Fig. S9A-E). In contrast, there are no significant differences in intracellular Mg2+ levels between DmgtA (or DPA4824) and WT cells in BHI media, which has higher total Mg2+ levels than fungal-spent BHI media. Our experiments reveal that the lack of mgtA or PA4824 only affects intracellular Mg2+ levels when P. aeruginosa is cultured in media below a threshold level of Mg2+ concentration in media.
The experiments suggesting that the protein PA4824 is also a Mg2+ transporter seem to be related only to alpha fold predictions.
We clarify that our speculation that PA4824 encodes a potential novel Mg2+ transporter was first motivated by finding that it is induced in low Mg2+ conditions, its genetic importance in Tn-seq experiments independent of mgtA, and our finding that cells with loss-of-function mutations in PA4824 experience lower intracellular Mg2+ than WT cells. However, the reviewer is correct that this statement is speculative based on the Alphafold prediction. In the revised manuscript, we have clarified this point as the following: "Based on our co-culture RNA-seq and Tn-seq experiments, results from the Mg2+ genetic sensor assay, and the Alphafold prediction of PA4824 protein structure, we speculate that PA4824 potentially acts as a novel Mg2+ transporter."* * Is the statement in line 186 a typo? It is stated that "neither MgtA nor CorA was implicated in competition". Do the authors actually mean "MgtE"?
It is a typo. We thank the reviewer for pointing this out and have changed this to "MgtE".
Reviewer #2 (Significance (Required)):
Ca and Pa are known to inhabit the same niches and previous studies have shown both can have antagonist effects on one another. Nutritional competition is one mechanism of antagonism that has not been that well studied between these two genera. That makes the finding of some significance and relevant to those with an interest in either of these microbes and co-infections. The authors also found that it was not just Ca that had this effect, but other fungi as well. And this effect was not just reserved to effect Pa, but also other bacteria, suggesting a more global impact.
We thank the reviewer for an accurate summary of our findings.
However, diminishing the impact of this finding is the question as to whether this is simply a phenomena seen under the very specific laboratory conditions tested here. Furthermore how these findings exactly relate to any infection environment is not clear.
Fungal-bacterial interactions occur in a variety of broad biological contexts, including during infection in animal hosts or in environmental-associated microbial communities. Our study is the first to identify nutritional competition for Mg2+ as one of the most important axes of competition between fungi and bacteria. Our study also identifies MgtA as one of the key bacterial genes that mediates this interaction. MgtA is only induced upon experiencing low Mg2+ conditions; the fact that most gram-negative bacteria encode MgtA implies they must encounter low Mg2+ conditions and face fitness consequences in those conditions. To address the reviewer's concerns, we also highlight three additional points in our revised Discussion:
- Fungal-bacterial competition for Mg2+ is not restricted only to BHI media alone. We also found the same phenomenon in TSB media medium. Indeed, we show (Fig. S9F) also that Mg2+ competition occurs whenever the environmental Mg2+ level is lower than 0.45mM, a critical threshold for fungi and bacteria to compete for this vital ion.
- During infection in cystic fibrosis airways, proteomic experiments and Mg2+ measurement in CF sputum both suggest that * aeruginosa* experiences Mg2+ restriction.
- Many previous studies have shown that many Gram-negative bacteria, including Salmonella Typhimurium, encounter reduced magnesium concentrations upon infection of hosts (PMID: 29118452). Our discovery that fungal co-culture may generally exacerbate fitness challenges associated with low magnesium levels is of high importance to all studies of gram-negative bacteria, not just to Pa.
- In addition to infections in animal hosts, low Mg2+ is associated with worse outcomes of infections in plants. Our study suggests the importance of studying the role of Mg2+ competition in various infection contexts and the strategies of manipulating Mg2+ levels or fungal-bacterial interactions to constrain polymicrobial infectious diseases in diverse eukaryotic hosts and ecological conditions. The authors also seem to vastly overinterpret the significance of their findings; the impact on Pa is only to slow growth, not necessarily effect fitness, per se. The final number of bacteria appears to be the same, it just takes slightly longer to get there.
We are puzzled by this comment from the reviewer; slow growth IS a fitness effect! Although we agree with the reviewer's point that C. albicans is more likely to inhibit bacterial growth rate than viability (bacteriostatic, not bacteriocidal), there are many bacteriostatic antibiotic mechanisms.
In our co-culture assay, bacterial CFUs after 40 hours in co-culture are 10-100 times lower than in monoculture (this is not a subtle effect!). After 40 hours, bacterial cultures have already reached the stationary phase, which is why even slower growing bacterial cells in co-culture can 'catch up' (they are still lower by nearly 10-fold), despite fungal inhibition. Moreover, the co-culture condition provided enough of a fitness challenge to allow us to identify bacterial protective genes even in a pooled assay.
The authors speculate that that since Mg2+ supplementation did not totally restore growth to Pa during co-culture, that other Mg2+ independent "axes of antagonism" must exist. This also tends to diminish the significance of these finding.
Again, we are puzzled by this comment from the reviewer. Fungal-bacterial competition, like all microbial competition, is a multifactorial process, so we should not be surprised that Mg2+ isn't the only axis of competition. Indeed, our study reinforces the importance of investigating all potential axes of competition to get a complete understanding of the mechanisms of fungal-bacterial competition.
The importance of mgtA on antibiotic susceptibility has been well studied in a number of bacteria including Pa making these findings generally confirmatory.
We would like to clarify this comment. To the best of our knowledge, mgtA in P. aeruginosa has not been reported in antibiotic susceptibility studies. Instead, P. aeruginosa mgtE is induced upon treatment with aminoglycoside antibiotics, but its expression does not change antibiotic resistance (PMID: 24162608).
The reviewer may be referring to studies in S. Typhimurium, where the DmgtA mutant shows increased susceptibility to nitrooxidative stress (PMID: 29118452) and to cyclohexane (PMID: 18487336), suggesting Mg2+ homeostasis might be generally important for bacterial survival to antimicrobial treatments. Although this is not the main focus of our study, we now include these references in our revised discussion to provide readers with more background on the relevance of our work: "Mg2+ has been implicated in altering the susceptibility of gram-negative bacteria to antibiotics other than colistin. For instance, in S. Typhimurium, impaired mgtA or Mg2+ homeostasis increases susceptibility to cyclohexane or nitrooxidative stress. In line with these observations, our study also highlights the importance of studying how Mg2+ homeostasis broadly impacts antimicrobial resistance in gram-negative bacteria."
The importance of different mutations that emerge in Pa during mono vs. co-culture in the presence of colistin is not clearly explained. Why should co-culture inhibit the emergence of hypermutator Pa strains?
We thank the reviewer for the opportunity to clarify this important point. Previous studies have shown, both in Pa as well as other bacteria, that hypermutator strains often arise when bacteria adapt to strong and continuous antibiotic stress (PMID: 28630206) to maximize exploration of mutation space necessary to acquire beneficial resistance mutations even though hypermutation itself is inherently deleterious to bacterial fitness. We show that fungal co-culture protects P. aeruginosa from high concentrations of colistin by sequestering the Mg2+ co-factor required for colistin action (Fig. 4C). Thus, under co-culture conditions, bacteria experience lower levels of colistin than the levels administered and are subject to less severe fitness challenges, allowing them to eschew the deleterious route of acquiring adaptive mutations with hypermutation.
Our discovery that bacteria have an entirely different means of enhancing colistin resistance under fungal co-culture (or low Mg2+) conditions is one of the highlights of our study. Understanding the biological basis of this novel model of colistin resistance will be an active area of investigation to pursue in the future.
No additional experiments are likely needed but the authors should be encouraged to place their findings more clearly in what is already known in the field as well as articulate the limitations of their study.
We thank the reviewer for their detailed comments and suggestions. We hope our revisions have both clarified the importance and limitations of our study and provided the right context sought by the reviewer.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
In this study, Hsieh et al. find a critical axis of competition between Pseudomonas aeruginosa and Candida albicans is Mg2+ sequestered by Candida. The authors find that use of BHI, which is has lower Mg2+ levels compared to other media, allowed this discovery. The authors further demonstrate critical genes for this axis in multiple gammaproteobacteria and fungal species. The authors further show that fungal Mg2+ sequestration promotes polymyxin resistance in multiple gammaproteobacteria and show that it alters the course of Pseudomonas aeruginosa evolution of polymyxin resistance. Finally, they show that for populations evolved polymyxin resistance in the presence of Candida, removal of Candida by antifungal treatment re-induces sensitivity to polymyxins.
We thank the reviewer for a concise and accurate summary of our study.
Major comments: -The claims and conclusions are generally supported; however, a key phenotype of the ∆mgtA and ∆PA4824 mutants should be complemented in trans or in a second site of the chromosome.
We thank the reviewer for this comment and agree with the suggestion. In our revised manuscript, we now provide results of new complementation experiments recommended by the reviewer, which find that expression of PA4824 or mgtA in trans restore the fitness cost of either deletion mutant (Fig. S4C and S4D).
-The authors note that "This mode of competition appears to be highly specific between fungi and gram-negative bacteria." However, it does not appear that gram-positive bacteria were tested in competition with fungi. Additionally, the only gram-negative tested were gammaproteobacteria (although do represent diverse gammaproteobacteria). This could be addressed by clarifying the text or OPTIONAL additional experimentation.
We agree with the reviewer. We had intended to highlight that we had only tested this mode of competition between fungi and gram-negative bacteria, but inadvertently phrased this to suggest that gram-positive bacteria are not subject to this competition. As we highlight in our response to Reviewer 1, we are unable to test this (so far) for gram-positive bacteria. We clarify this in our revision: ""This mode of competition might be highly specific between fungi and diverse gram-negative g-proteobacteria we have tested.... Whether fungi can suppress gram-positive bacteria through the same mechanism of Mg2+ competition remains an open question."
-Figure 3A: is this depiction of modifications on the O-antigen correct? PhoQ- and PmrB-activated enzymes seem to modify the lipid A portion of LPS (eg PMID: 31142822)
We thank the reviewer for noting this error, which we have now fixed in the revision.
- For many of the figures, multiple t-tests are used and it seems like perhaps an ANOVA with multiple comparisons would be more appropriate
We thank the reviewer for this feedback. In our revision, we now use Dunnett's one-way ANOVA test for figures with multiple comparisons; our conclusions are unchanged.
Minor comments: - The text and figures are clear and accurate
We thank the reviewer for this feedback.
-the cited nutritional immunity reviews are out of date (e.g. reference 37) and there are more recent reviews on the topic (e.g. PMID: 35641670)
We have added the suggested reference in our revision.
-Line 293: Unclear why polymyxin resistance would be "unexpected" following the explanation of why Mg2+ depletion might confer it
We agree and have removed 'unexpected.'
-Line 318: "antibitoics" typo
We thank the reviewer for pointing out this typo, which we have now corrected.
Reviewer #3 (Significance (Required)):
The following aspects are important:
- General assessment: This study is very mechanistic, identifying the role of Mg2+ sequestration by fungi that limit gram-negative bacterial growth in Mg2+ deplete environments. The strengths are that relevant Mg2+ acquisition genes are identified or tested in Pseudomonas aeruginosa, the main test organism, as well as Salmonella enterica and Escherichia coli. Additionally, the authors identify a relevant Mg2+ mechanism in fungal species tested, including showing the importance with a genetic knockout. The limitations are relatively minor, and include lack of complementation, potential issues in model figure depiction of LPS modifications, and potential minor issues in statistical tests used. Future directions discussed include expanding analysis to clinical isolates, which is outside the scope of this manuscript which already showed the same mechanism in diverse gammaproteobacterial.
We thank the reviewer for their positive appraisal.
- Advance: This study has two major advances: The first is uncovering this critical Mg2+ sequestration axis in competition between fungal species and gammaproteobacteria. The second is the finding that the Mg+ sequestration induces polymyxin resistance and alters the evolutionary path to further polymyxin resistance. While nutrient metals as an axis of competition is not a conceptual advance, the specific role of Mg2+ and its affect on evolution of polymyxin antibiotic resistance is a conceptual advance.
- Audience: I think this study would be of interest to a relatively broad audience. The study itself touches on multiple fields including intermicrobial competition, nutritional immunity, antimicrobial resistance, and microbial evolution. Additionally, there are clinical implications for the potential to use antifungals to resensitize polymyxin-resistant P. aeruginosa to polymyxins.
- My field of expertise is bacterial genetics and physiology, nutritional immunity, and bacterial cell envelope. I do not have expertise in fungus.
We appreciate the reviewer's positive and constructive feedback on our study and for highlighting the relevance of our research to a broader audience in microbiology and evolution. We do hope our mechanistic understanding of fungal-bacterial competition will spark further conversation or collaboration between evolutionary microbiologists and physician-scientists.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
In this study, Hsieh et al. find a critical axis of competition between Pseudomonas aeruginosa and Candida albicans is Mg2+ sequestered by Candida. The authors find that use of BHI, which is has lower Mg2+ levels compared to other media, allowed this discovery. The authors further demonstrate critical genes for this axis in multiple gammaproteobacteria and fungal species. The authors further show that fungal Mg2+ sequestration promotes polymyxin resistance in multiple gammaproteobacteria and show that it alters the course of Pseudomonas aeruginosa evolution of polymyxin resistance. Finally, they show that for populations evolved polymyxin resistance in the presence of Candida, removal of Candida by antifungal treatment re-induces sensitivity to polymyxins.
Major comments:
- The claims and conclusions are generally supported; however, a key phenotype of the ∆mgtA and ∆PA4824 mutants should be complemented in trans or in a second site of the chromosome.
- The authors note that "This mode of competition appears to be highly specific between fungi and gram-negative bacteria." However, it does not appear that gram-positive bacteria were tested in competition with fungi. Additionally, the only gram-negative tested were gammaproteobacteria (although do represent diverse gammaproteobacteria). This could be addressed by clarifying the text or OPTIONAL additional experimentation.
- Figure 3A: is this depiction of modifications on the O-antigen correct? PhoQ- and PmrB-activated enzymes seem to modify the lipid A portion of LPS (eg PMID: 31142822)
- For many of the figures, multiple t-tests are used and it seems like perhaps an ANOVA with multiple comparisons would be more appropriate
Minor comments:
- The text and figures are clear and accurate -the cited nutritional immunity reviews are out of date (e.g. reference 37) and there are more recent reviews on the topic (e.g. PMID: 35641670)
- Line 293: Unclear why polymyxin resistance would be "unexpected" following the explanation of why Mg2+ depletion might confer it
- Line 318: "antibitoics" typo
Significance
The following aspects are important:
- General assessment: This study is very mechanistic, identifying the role of Mg2+ sequestration by fungi that limit gram-negative bacterial growth in Mg2+ deplete environments. The strengths are that relevant Mg2+ acquisition genes are identified or tested in Pseudomonas aeruginosa, the main test organism, as well as Salmonella enterica and Escherichia coli. Additionally, the authors identify a relevant Mg2+ mechanism in fungal species tested, including showing the importance with a genetic knockout. The limitations are relatively minor, and include lack of complementation, potential issues in model figure depiction of LPS modifications, and potential minor issues in statistical tests used. Future directions discussed include expanding analysis to clinical isolates, which is outside the scope of this manuscript which already showed the same mechanism in diverse gammaproteobacterial.
- Advance: This study has two major advances: The first is uncovering this critical Mg2+ sequestration axis in competition between fungal species and gammaproteobacteria. The second is the finding that the Mg+ sequestration induces polymyxin resistance and alters the evolutionary path to further polymyxin resistance. While nutrient metals as an axis of competition is not a conceptual advance, the specific role of Mg2+ and its affect on evolution of polymyxin antibiotic resistance is a conceptual advance.
- Audience: I think this study would be of interest to a relatively broad audience. The study itself touches on multiple fields including intermicrobial competition, nutritional immunity, antimicrobial resistance, and microbial evolution. Additionally, there are clinical implications for the potential to use antifungals to resensitize polymyxin-resistant P. aeruginosa to polymyxins.
- My field of expertise is bacterial genetics and physiology, nutritional immunity, and bacterial cell envelope. I do not have expertise in fungus.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
This paper looks at the interaction between the fungus Candida albicans (Ca) and the bacterium Pseudomonas aeruginosa (Pa), which are found together in some environments. Co-culture experiments showed that Ca can inhibit the growth of Pa. The goal of this study is to determine the reason for this phenomenon and how widespread it is. This was performed by Tnseq analysis of Pa that identified 3 genes which showed significant decreases in the presence of Ca. Interestingly these were all in an operon that was recognized by the authors as being induced by RNAseq during co-culture. One of these genes, mgtA is a known Mg2+ transporter and therefore the remainder of the paper discusses the importance of competition for Mg2+.
The experiments seem to be well carried out and appropriately controlled.
The use of the Mg2+ genetic sensor reporter in Pa is an interesting approach to determine the intracellular Mg2+ concentrations, however how these levels relate to one another between different experiments is not clear. In Fig. S5, the levels are 5 AU for growth in minimal media +low (10uM) Mg2+ and 38 AU for growth in minimal media+high (10mM) Mg2+. But the levels seen in Figure 1E are all much lower. With such low levels, it is difficult to determine if the impact of ∆PA4824 and ∆mgtA (while perhaps additive) are relevant. Would differences be seen with these various strains grown under different conditions?
The experiments suggesting that the protein PA4824 is also a Mg2+ transporter seem to be related only to alpha fold predictions.
Is the statement in line 186 a typo? It is stated that "neither MgtA nor CorA was implicated in competition". Do the authors actually mean "MgtE"?
Significance
Ca and Pa are known to inhabit the same niches and previous studies have shown both can have antagonist effects on one another. Nutritional competition is one mechanism of antagonism that has not been that well studied between these two genera. That makes the finding of some significance and relevant to those with an interest in either of these microbes and co-infections.
The authors also found that it was not just Ca that had this effect, but other fungi as well. And this effect was not just reserved to effect Pa, but also other bacteria, suggesting a more global impact. However diminishing the impact of this finding is the question as to whether this is simply a phenomena seen under the very specific laboratory conditions tested here. Furthermore how these findings exactly relate to any infection environment is not clear.
The authors also seem to vastly overinterpret the significance of their findings; the impact on Pa is only to slow growth, not necessarily effect fitness, per se. The final number of bacteria appears to be the same, it just takes slightly longer to get there.
The authors speculate that that since Mg2+ supplementation did not totally restore growth to Pa during co-culture, that other Mg2+ independent "axes of antagonism" must exist. This also tends to diminish the significance of these finding.
The importance of mgtA on antibiotic susceptibility has been well studied in a number of bacteria including Pa making these findings generally confirmatory.
The importance of different mutations that emerge in Pa during mono vs. co-culture in the presence of colistin is not clearly explained. Why should co-culture inhibit the emergence of hypermutator Pa strains?
No additional experiments are likely needed but the authors should be encouraged to place their findings more clearly in what is already known in the field as well as articulate the limitations of their study.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
This manuscript investigates polymicrobial interactions between two clinically relevant species, Pseudomonas aeruginosa and Candida albicans. The findings that C. albicans mediates P. aeruginosa tolerance to antibiotics through sequestration of magnesium provides insight into a specific interaction at play between these two organisms, and the underlying mechanism. The manuscript is well composed and generally the claims throughout are supported by the provided evidence. As a result, most comments are either for clarification, or minor in nature.
Major comments:
- For their experiments, the authors frequently switch between 30C and 37C, but there is no rationale for why a specific temperature was used, or both were. E.g. some of the antibiotic survival assays, and fungal-bacterial co-culture assays were performed at both temperatures, while the colistin resistance, fitness competition and RNA sequencing were performed at 30C. Given the fact that the two organisms are both human pathogens and co-exist in human infections, it is not clear why 30C was used. The authors should provide clarity for why these two temperatures were used.
- Lines 184-191: It would be useful to measure intracellular Mg2+ (using the Mg sensor) in the corA and mgtB tn mutants in media as well as the fungal spent media, to provide stronger support for the claim that "MgtA is a key bacterial Mg2+ transporter that is highly induced under low Mg2+ conditions".
- Line no. 276. Does the mnr2∆ S. cerevisiae mutant have a growth defect compared to the WT? This would test whether the effect of the mnr2 mutant on P. aeruginosa fitness is strictly due to Mg2 and not due to reduced growth or metabolism of the mutant.
- The authors use the term 'antibiotic resistance' throughout the manuscript. However, the assays they perform do not directly test for antibiotic resistance which is defined as the ability to grow at higher concentrations of antibiotics (e.g. as measured by MIC tests). The authors should rephrase their phenotype as antibiotic survival or antibiotic tolerance.
- Also, the authors have two different assays, both measuring survival in antibiotic, but one is called a colistin resistance assay (line 508) and the other a colistin survival assay (line 523). It's not obvious what is the difference between what is being assayed in the two experiments, except perhaps the growth phase of the cells when they are exposed to the antibiotic? The authors should explain the difference, and the rationale for using two different assays.
Minor comments:
- For almost all the figures, blue and orange dots are used for 'monoculture' and 'coculture' respectively, while orange and black dots are used for WT and the mgtA mutant. However, the black and blue dots are hard to tell apart, and for several figure sub-panels, the legends are not provided (e.g. figures 2D, 2F, S9H), making it a little confusing to figure out what is being shown. It would be best if the WT and mgtA symbols were in colors completely different from the monoculture/co-culture colors, making it easier to tell those apart.
Line no 122 and Figure 1A. The term "defense genes" in bacteria typically refers to genes conferring protection against phage infections. Perhaps the authors can use a different term (e.g. 'protective genes').
Line no 186. 'However, neither MgtA...' should be 'However, neither MgtE...'
Line no 268. Does fungal-mediated Mg2+ competition extend to Gram positive bacteria?
Line no 314. It is unclear whether the 'transient co-culture' is the same or a different assay as the colistin survival assay.
Line no 316. For the bacterial survival assays shown in figures 3 and 4 (and other supplementary figures), please provide absolute numbers as cfu (as in figures 1 and 2), as opposed to a percentage, for cell counts. This will allow readers to appropriately interpret the data.
Line no 934-5: Italicize P. aeruginosa.
Significance
This study identifies a novel interaction between two the co-infecting human pathogens Pseudomonas aeruginosa and Candida albicans, where C. albicans causes Mg2+ limitation for P. aeruginosa. Further, the authors show that this interaction affects levels of antibiotic resistance, as well as the adaptive mutations seen during the evolution of antibiotic resistance. This advances the field by delineating how microbial interactions can affect clinically relevant phenotypes, and potentially clinical outcomes. The study should be of interest to a broad audience of researchers studying microbial ecology, evolutionary biology, microbiology, and infectious diseases.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
1. Point-by-point description of the revisions
Reviewer #1:
Evidence, reproducibility and clarity (Required):
In this manuscript Czajkowski et al explore the role of the doublecortin-family kinase ZYG-8 during meiosis in C. elegans Oocytes. First by studying available temperature-sensitive mutants and then by generating their own strain expressing ZYG-8 amenable to auxin-inducible degradation, they establish that defects in ZYG-8 lead to defects in spindle assembly, such as the formation of multipolar spindles, and spindle maintenance, in which spindles elongate, fall apart, and deform in meiosis. Based on these observations the authors conclude that ZYG-8 depletion leads to excessive outward force. As the lab had previously found that the motor protein KLP-18 generates outside directed forces in meiosis, Czajkowski et al initially speculate that ZYG-8 might regulate KLP-18. KLP-18 depletion generally leads to the formation of monopolar spindles in meiosis. Intriguingly, when the authors co-deplete ZYG-8 they find that in some cases bipolarity was reestablished. This led to the hypothesis that yet another kinesin, BMK-1, the homolog of the mammalian EG-5, could provide redundant outward directed forces to KLP-18. The authors then study the effect of ZYG-8 and KLP-18 co-depletion in a BMK-1 mutant background strain and observe that bipolarity is no longer reestablished under these conditions, suggesting that BMK-1 generates additional outward directed forces. The authors also conclude that ZYG-8 inhibits BMK-1. To follow up on this Czajkowski et al generate a ZYG-8 line that carries a mutation in the kinase domain, which should inhibit its kinase activity. This line shows similar effects in terms of spindle elongation but reduced impact on spindle integrity, reflected in minor effects on the number of spindle poles and spindle angle. The authors conclude that ZYG-8's kinase activity is required for the function of ZYG-8 in meiosis and mitosis. Overall, the paper is well written, and the data is presented very clearly and reproducible. The experiments are adequately replicated, and statistical analysis are adequate. *The observations are very interesting. However, the authors could provide some additional insight into the function of ZYG-8. This paper is strongly focused on motor generated forces within the spindle and tries to place ZYG-8 within this context, but there is compelling evidence from other studies that ZYG-8 also affects microtubule dynamics, which would have implications for spindle assembly and structure. The paper would strongly benefit from the authors exploring this role of ZYG-8 in the context of meiosis further. If the authors feel that this would extend beyond the scope of this paper, I would suggest that the authors rephrase some of their introduction and discussion to reflect the possibility that changes in microtubule growth and nucleation rates could explain some of the phenotypes (think of katanin) and effects and that therefore it can not necessarily be concluded that BMK-1 is inhibited by ZYG-8. *
We thank the reviewer for these positive comments on our manuscript and on the rigor of our data. We also thank them for the excellent suggestion to explore a potential role for microtubule dynamics. As detailed below in response to the specific points, we performed new experiments to explore this possibility, and found via FRAP analysis that there were substantial changes in microtubule dynamics upon ZYG-8 depletion. We have therefore added these new data and have re-written major parts of the manuscript to incorporate a discussion of microtubule dynamics throughout the paper (introduction, results, model, discussion). Our data now support two roles for ZYG-8 in regulating acentrosomal spindle assembly and stability - one in modulating microtubule dynamics and the other in tuning forces (either directly or indirectly). We are grateful to the reviewer for motivating us to do these experiments, as they have added a whole new angle to the manuscript and have greatly increased its impact, as we now have a fuller understanding of how ZYG-8 contributes to oocyte meiosis.
Major points:
*1.) Zyg-8, as well as the mammalian homolog DCLK-1, has been reported to play an important role for microtubule dynamics. While the introduction mentions its previously shown role in meiosis and mitosis, it is totally lacking any background on the effect on microtubule dynamics. The authors mention these findings in the discussion, but it would be helpful to incorporate this in the introduction as well. As an example, Goenczy et al 2001 demonstrated that ZYG-8 is involved in spindle positioning but also showed its ability to bind microtubules and promote microtubule assembly. Interestingly, like the authors here, Goenczy et al concluded that while the kinase domain contributes to, it is not essential ZYG-8's function. Also, Srayko et al 2005 (PMID 16054029) demonstrated that ZYG-8 depletion led to reduced microtubule growth rates and increased nucleation rates in C. elegans mitotic embryos. And in mammalian cells DCLK-1 was shown to increase microtubule nucleation rate and decrease catastrophe rate, leading to a net stabilization of microtubules (Moores et al 2006, PMID: 16957770). It would be great if the authors could add to the introduction that ZYG-8 has been suggested to affect microtubule dynamics. *
We agree that this is a great idea. As the reviewer suggested, we decided to explore the possibility that ZYG-8 impacts microtubule dynamics within the oocyte spindle. We depleted ZYG-8 and performed FRAP experiments to determine if there were effects on microtubule turnover. We found that loss of ZYG-8 caused a dramatic decrease in the spindle's ability to recover tubulin, both at the spindle center and at the spindle poles (shown in a new Figure 7). We made substantial changes to the manuscript when adding these new data - the manuscript now discusses ZYG-8's role in modulating microtubule dynamics in the introduction, results, discussion, and model (Figure 9), and we added all of the references suggested by the reviewer. We think that the manuscript is greatly improved due to these additions and changes.
*2a.) The authors initially study two different ts alleles, or484ts and b235ts. The experiments clearly show a significant increase in spindle length in both strains. However, the or484 strain had been previously studied (McNally et al 2016, PMID: 27335123), and only minor effects on spindle length were reported (8.5µm in wt metaphase and 10µm in zyg-8 (or484)). How do the authors explain these differences in ZYG-8 phenotype. Even though the ZYG-8 phenotype is consistent throughout this paper it would be good to explain why the authors observe spindle elongation, fragmentation and spindle bending in contrast to previous observations. *
The reviewer is correct that McNally et.al. (2016) noted only minor effects on spindle length and did not report observing spindle bending or pole defects. However, the images presented in their paper of spindles in the zyg-8(or484) mutant (in Figure 8B) only showed spindles after they had already shrunk in preparation for anaphase; it is possible that these spindles had pole or midspindle defects prior to this shrinking, and that the authors did not note those phenotypes because their analysis focused on anaphase. In contrast, since the goal of our study focused on how ZYG-8 impacts spindle assembly and maintenance, we looked carefully at spindle morphology and quantified a larger number of metaphase spindles (in their study, only 12 metaphase spindles were measured, since metaphase was not the focus of their manuscript). Recently (after we submitted our manuscript), another study from the McNally lab was published, where they did note metaphase defects following ZYG-8 inhibition (though they did not describe the defects in detail or explore why they happened). We now mention and cite this new paper (Li et.al., 2023) in our manuscript, to show that our findings are consistent with the work of others in the field.
*2b.) As a general note, it would be helpful if the authors could indicate if the spindles are in meiosis I or II. The only time where this is specifically mentioned is in Video 7, showing a Meiosis II spindle, which makes me assume all other data is in Meiosis I. Adding this to the figures would also help to distinguish if some of the images, i.e. Figure 1B, show multipolar spindles due to failed polar body extrusion. If this is the case then the quantification of number of poles should maybe reflect different possibilities, such as fragmented poles vs. multiple poles because two spindles form around dispersed chromatin masses. *
We agree that it is a good idea to clarify this issue. For all of our experiments, we analyzed both MI and MII spindles. However, there were no noticeable differences in phenotype between MI and MII spindles for any of our mutant/depletion conditions - we observed bent spindles, elongated spindles, and extra poles in both MI and MII following ZYG-8 inhibition. Therefore, for the quantifications presented in the manuscript (spindle length, spindle angle, number of poles), we pooled our MI and MII data. We have now added this information to the manuscript for clarity (lines 97-99 and 139-141). In addition, we have added new images to Figure 1B that show examples of MII spindles (both at the permissive and restrictive temperature), to show that the phenotypes are indistinguishable between MI and MII.
We agree with the reviewer that one of the spindles in the original Figure 1B looked like it could have resulted from failed polar body extrusion (the chromosomes appeared to be in two masses, something we did not originally notice, so theoretically each mass could have organized its own spindle). To determine if this was the case, we looked closely at the chromosomes in this image; we confirmed that there were only 6 chromosomes, and that all were bivalents (these can be distinguished from MII chromosomes based on size). Therefore, this spindle was not multipolar due to an issue with polar body extrusion. However, to prevent future confusion, we picked a different representative spindle (where the bivalents we not grouped into two masses), and we added a new column to the figure that shows the DNA channel in grayscale (so it is easier to see and count the chromosomes). We also now note in the materials and methods how we were able to distinguish between MI and MII in our experiments (chromosome count, size, presence of polar bodies), so that it is clear that none of our phenotypes result from failed polar body extrusion (lines 600-603).
*3) The authors generate a line that carries a mutation leading to a kinase dead version of ZYG-8. It would be great if the authors could further test if this version is truly kinase dead. What is interesting is that the kinase dead version the authors create has less effect on the numbers of pole than the zyg-8 (b235)ts strain, which carries a mutation in a less conserved kinase region. Overall, it seems that the phenotypes are very similar, independent on mutations in the microtubule binding area, kinase area or after AID. This could of course be due to all regions being important, i.e. microtubule binding is required for localizing kinase-activity. Generating mutant versions of the target proteins, for example here BMK-1, that can not be phosphorylated or are constitutively active as well as assessment of changes in protein phosphorylation levels in the kinase dead strain would be helpful to provide deeper insight into potential regulation of proteins by ZYG-8. *
We agree that it would be ideal to test whether the D604N mutant is truly kinase dead. However, in the interest of time, we ask to be allowed to skip that experiment. The analogous residue has been mutated in mammalian ZYG-8 (DCLK1), and has been shown to cause DCLK1 to be kinase dead in vitro; this is a highly conserved aspartic acid in the central part of the catalytic domain, so we infer that the mutation we made in ZYG-8 should be kinase dead as well. However, since we did not test this directly, we softened our language in the manuscript, explaining that we "infer" that it is kinase dead rather than stating definitively that it is. With regard to the zyg-8(b235)ts mutant having a stronger phenotype, we think that it is possible that this mutation destabilizes a larger portion of the protein (rather than just affecting the catalytic activity), since the phenotypes in this mutant are similar to depletion of the protein in the ZYG-8 AID strain. Therefore, we think that our D604N mutant reveals new information about the role of kinase activity, since it is a more specific mutation that should likely only affect catalytic activity and not the rest of the protein (based on the previous work on DCLK1).
While we appreciate the suggestion from the reviewer to generate mutant versions of potential target proteins, we ask that this be considered beyond the scope of the study. Now that we know that ZYG-8 not only affects forces within the spindle (maybe BMK-1) but also microtubule dynamics, there are many potential targets - it would require a lot of work to figure out what the relevant targets are. Instead of exploring this experimentally in this manuscript, we added a new section to the discussion where we speculate on what some of these targets could be, to motivate future studies.
*4a) The authors state that "BMK-1 provides redundant outward force to KLP18". Redundancy usually suggests that one protein can take over the function of another one when the other is not there. In these scenarios a phenotype is often only visible when both proteins are depleted as each can take over the function of the other one. Here however the situation seems slightly different, as depletion of BMK-1 has no phenotype while depletion of KLP-18 leads to monopolar spindles. If BMK-1 would normally provide outward directed forces, would this not be visible in KLP-18 depleted oocytes if they were truly redundant? I assume the authors hypothesize that ZYG-8 inhibits BMK-1 and thus it can not generate outward directed forces. In this case, do the authors envision that ZYG-8 inhibits BMK-1 prior to or in metaphase or only in anaphase or throughout meiosis? Do they speculate, that BMK-1 is inhibited in anaphase and only active in metaphase? *
The reviewer makes an excellent point - we agree that we should not use the word "redundant" in this context, so we have removed this phrasing from the manuscript. We hypothesize that BMK-1 can provide outward forces during spindle assembly but is not capable of providing as much force as KLP-18 (the primary force-generating motor). We infer this based on our experiments where we co-deplete KLP-18 and ZYG-8 (using long-term depletion). Although BMK-1 is presumably activated under these conditions, it is not able to restore spindle bipolarity (there are outward forces generated, which results in minus ends being found at the periphery of the monopolar spindle, but spindles are not bipolar).
Therefore, BMK-1 is not able to fully replace the function of KLP-18 during spindle assembly. Interestingly, our experiments imply that BMK-1 can better substitute for KLP-18 later on (when ZYG-8 is inhibited); when we remove ZYG-8 from formed monopolar spindles, bipolarity can be restored (an activity dependent on BMK-1). These findings suggest that ZYG-8 plays a more important role in suppressing BMK-1 activity after the spindle forms, to prevent spindle overelongation in metaphase. We have edited the manuscript to better explain these points.
*4b) In addition, Figure S4 somewhat argues against a role for ZYG-8 in regulating BMK-1. ZYG-8 depletion supposedly leads to increased outward forces due to loss of BMK-1 inhibition, thus co-depletion of ZYG-8 with BMK-1 should rescue the increased spindle size at least to some extent, however neither increase in spindle length nor increase in additional spindle pole formation are prevented by co-depletion of BMK-1 suggesting that BMK-1 is not generating the forces leading to spindle length increase. Thus, arguing that after all ZYG-8 does not regulate BMK-1. This should be discussed further in the paper and the authors should consider changing the title. At this point the provided evidence that ZYG-8 is regulating motor activity is not strong enough to make this claim. *
The reviewer is correct that Figure S4 shows that the effects of depleting ZYG-8 on bipolar spindles (spindle elongation and pole/midspindle defects) cannot solely be explained by a role for ZYG-8 in regulating BMK-1 - this was the point that we were trying to make when we included this data in the original manuscript. However, we previously did not know what this other role could be, and therefore we only speculated on other potential roles in the discussion. Now that we have done FRAP experiments and have found that ZYG-8 also affects microtubule dynamics in the oocyte spindle, we now have a better explanation for the data presented in Figure S4 - it makes sense that deleting BMK-1 would not rescue the effects of ZYG-8 depletion, since we have evidence that ZYG-8 also regulates microtubule dynamics. We now clearly explain this in the revised manuscript and we have changed the title to make it clear that ZYG-8 plays multiple roles in oocytes.
*5) The authors are proposing that ZYG-8 regulates/ inhibits BMK-1, however convincing evidence for an inhibition is not provided in my opinion and the effect of ZYG-8 on BMK-1 could be indirect. To make a compelling argument for a regulation of BMK-1 the authors would have to investigate if ZYG-8 interacts and/ or phosphorylates BMK-1 (see 7) and if this affects its dynamics. In addition, given the reported role of ZYG-8 on microtubule dynamics it would be very important that the authors consider studying the effect of ZYG-8 degradation on microtubule dynamics. Tracking of EBP-2 would be good, however this is very difficult to do inside meiotic spindles due to their small size. In addition, the authors could maybe consider some FRAP experiments, which could provide insights into microtubule dynamics and motions, which could be indicative of outward directed forces/ sliding. *
We thank the reviewer for these comments as they motivated us to explore a role for ZYG-8 in modulating microtubule dynamics. The reviewer is correct that tracking EBP-2 in the very small meiotic spindle is not possible due to technical limitations, so we took the suggestion to perform FRAP. These experiments revealed that microtubule turnover in the spindle is greatly slowed following ZYG-8 depletion, suggesting a global stabilization of microtubules (data presented in a new Figure 7). This change in dynamics could contribute to the observed spindle phenotypes, which we now explain in detail in the manuscript. Given these new findings, we also now note that the effects we see on BMK-1 activity could be indirect (i.e. maybe increasing the stability of microtubules allows motors to exert excess forces). We now clearly discuss these various possibilities in the discussion.
Summary: Additional requested experiments:
- Interaction/ phosphorylation of BMK-1 by ZYG-8, i.e. changes of BMK-1 phosphorylation in absence of ZYG-8, BMK-1 mutations that may prevent phosphorylation by ZYG-8.
- Assessment of microtubule dynamics (EBP-2, FRAP, length in monopolar spindles...)
- Kinase activity of the kinase dead ZYG-8 strain (OPTIONAL) We assessed the role of ZYG-8 in microtubule dynamics (bullet point #2). Because this new analysis revealed that ZYG-8 plays multiple roles in the spindle, we decided not to further investigate whether ZYG-8 phosphorylates BMK-1, since the manuscript now no longer argues that this is ZYG-8's major function. We also did not assess the kinase activity of the D604N mutant since this has been done previously for DCLK1, and instead we softened the language in manuscript when describing this mutant.
Minor points:
*1) In Figure 4C it seems that the ZYG-8 AID line as well as the zyg-8 (or848)ts already have a phenotype (increased ASPM-1 foci) in absence of auxin/ at the permissive temperature. Does this suggest that the ZYG-8 AID as well as the zyg-8 (or848) strains are after all slightly defective (even if Figure 1, S1 and S2 argue otherwise) and thus more responsive to the loss of KLP-18? *
The reviewer is correct that the ZYG-8 AID strain (without auxin) and zyg-8(or848)ts strain (at the permissive temperature) are slightly defective in the klp-18(RNAi) monopolar spindle assay. To more rigorously determine whether these strains were also defective in other assays, we generated new graphs comparing the spindle lengths and angles of the two temperature sensitive strains at the permissive temperature to wild-type (N2) worms. These data are now shown in Figure S1 (new panels F and G). A comparison of our ZYG-8 AID strain to a control strain (both in the absence of auxin) are shown in Figure S2 (panels C and D). In this analysis, there wasn't a significant difference for either of these comparisons (i.e. the spindle lengths and angles were all equivalent). We do not know why these strains appear to be slightly defective in the monopolar spindle assay, though perhaps this assay is more sensitive and can detect very mild defects in protein function.
*2) The authors observe that in preformed monopolar spindles degradation of ZYG-8 can sometimes restore bipolarity. This observation is very interesting but why do the authors not observe a similar phenotype in long-term ZYG-8 AID; klp-18 (RNAi) or zyg-8(or484)ts; klp-18(RNAi). In the latter conditions bipolarity does not seem to occur at all. Do the authors think this is due to differences in timing of events? *
We thank the reviewer for highlighting this point. We do think that our data suggest that ZYG-8 plays a more important role maintaining the spindle that it does in spindle formation; we have now more clearly explained this in the manuscript (detailing the differences in phenotypes we observe when we deplete ZYG-8 prior to spindle assembly or after the spindle has already formed, lines 180-189 and 227-231). To emphasize this point further, we have also included a graph in Figure S3G that directly compares the number of poles per spindle in long-term auxin treated spindles to short-term auxin treated spindles (with and without metaphase arrest).
*3) Based on the Cavin-Meza 2022 paper it looks like depletion of KLP-18 in a BMK-1 mutant background does not look different from klp-18 (RNAi) alone. However, looking at Video 8, it looks like spindles "shrink" in absence of KLP-18 and BMK-1. Or is this due to any effects from the ZYG-8 AID strain? This can also be seen in Video 9. *
The reviewer highlights a fair point that was not clearly explained in our manuscript. In normal monopolar anaphase, chromosomes move in towards the center pole as the spindle gets smaller (C. elegans oocyte spindles shrink in both bipolar and monopolar anaphase); this was previously described in Muscat et.al. 2015, and, as the reviewer noted, in Cavin-Meza et.al. 2022 (in a strain with the bmk-1 mutation). We see this same monopolar anaphase behavior in the ZYG-8 AID strain (Figure 6). We have now better explained normal monopolar anaphase progression and we have cited the Muscat et.al. paper in the relevant sections of the manuscript (lines 221-223 and 714-717).
*4) Line 311: " ZYG-8 loads onto the spindle along with BMK-1, and functions to inhibit BMK-1 from over elongating microtubules during metaphase." Maybe this sentence could be re-phrased as it currently sounds like BMK-1 elongates (polymerizes) microtubules. *
In re-writing the manuscript and emphasizing that there are multiple for ZYG-8 (in addition to regulating forces within the spindle), we removed this sentence.
*5) Line 313: "Intriguingly, in C. elegans oocytes and mitotically-dividing embryos, BMK-1 inhibition causes faster spindle elongation during anaphase, suggesting that BMK-1 normally functions as a brake to slow spindle elongation (Saunders et al., 2007; Laband et al., 2017). Further, ZYG-8 has been shown to be required for spindle elongation during anaphase B (McNally et al., 2016). Our findings may provide an explanation for this phenotype, since if ZYG-8 inhibits BMK-1 as we propose, then following ZYG-8 depletion, BMK-1 could be hyperactive, slowing anaphase B spindle elongation." This paragraph could be modified for better clarity. It is not clear how the findings of the authors, BMK-1 provides outward force but is normally inhibited by ZYG-8, align with the last sentence saying "following zyg-8 depletion, BMK-1 could be hyperactive slowing anaphase B spindle elongation", should it not increase elongation according to the authors observations? *
In re-writing the manuscript to incorporate our new data showing that ZYG-8 plays a role in modulating microtubule dynamics, we also re-wrote this discussion so that there would be less emphasis on the potential connection between ZYG-8 and BMK-1. In making these edits to expand the focus of the manuscript, we removed this section of the discussion.
Reviewer #1 (Significance (Required)): *In this manuscript Czajkowski et al explore the role of the doublecortin-family kinase ZYG-8 during meiosis in C. elegans Oocytes. The authors conclude that BMK-1 generates outward directed force, redundant to forces generated by KLP-18, and that ZYG-8 inhibits BMK-1. The authors conclude that ZYG-8's kinase activity is required for the function of ZYG-8 in meiosis and mitosis. This research is interesting and provides some novel insight into the role of ZYG-8. In particular the observed spindle elongation and subsequent spindle fragmentation are novel and had not yet been reported. Also, the observation that degradation of ZYG-8 in monopolar klp-18(RNAi) spindles can restore bipolarity is novel and interesting, as well as the observation that this is somewhat dependent on the presence of BMK-1. This will be of interest to a broad audience and provides some new insight into the role of importance of ZYG-8 and BMK-1. The limitation of the study is the interpretation of the results and the lack of solid evidence that the observed phenotypes are due to ZYG-8 regulation motor activity, as the title claims. To support this some more experiments would be required. In addition, ZYG-8 has been reported to affect microtubule dynamics, which can certainly affect the action of motors on microtubules. This line of research is not explored in the paper but would certainly add to its value.
Field of expertise: Research in cell division *
We thank the reviewer for their positive comments on the impact and novelty of our findings. We hope that the additional experiments we performed and the revisions we made to the text thoroughly address the reviewer's concerns and that they deem the revised manuscript ready for publication.
Reviewer #2 (Evidence, reproducibility and clarity (Required)): *In this manuscript, the authors explore the requirement for doublecortin kinase Zyg8 in C elegans oocytes. Oocytes build meiotic spindles in the absence of centrosomes, and therefore unique regulation occurs during this process. Therefore, how spindles are built and its later stability are an area of active investigation in the field. Using mutant alleles of Zyg8 and auxin-induced degron alleles, the authors demonstrate that this kinase is required to negatively regulate outward pole forces through BMK1 kinesin and that it has other functions to still explore. Overall, I find that this study takes an elegant genetic approach to tackling this important question in oocyte biology. I have some comments to consider for making the MS clear to a reader. *
We thank the reviewer for these positive comments on our approach and the importance of our research question. We have attempted to address all of the reviewer's suggestions and we think that they increase the clarity of the manuscript.
Major Comments:
*1.) Although I like the graphs describing the altered angles of the spindles, it falls short in fully assessing the phenotype in a meaningful statistical way. Could the authors also graph the data to show statistical significance in the angles between conditions? Perhaps by grouping them into angle ranges and performing an Anova test? This is important in Figure 2E where it is not obvious that there is a difference. *
The reviewer makes a good point - we have now addressed this concern by performing ANOVA tests to compare conditions on each of the angle graphs. Results of these tests have been reported in the corresponding figure legends. This analysis has confirmed all of the statements we made in the original manuscript. In Figure 1D and S1D, spindle angles were significantly different in the zyg-8 temperature sensitive mutants at the restrictive temperature, and in Figure 2, the angles were significantly different between the "minus auxin" and "plus auxin" conditions. This differs from Figure 7, where there was no significant difference in spindle angle between control spindles and kinase dead mutant spindles (p-value >0.1).
*2.) The authors do not discuss the significance of the altered spindle angles which I think is an interesting phenotype. Would this be a problem upon Anaphase onset? What is known about spindle angle and aneuploidy or cell viability? Has this phenotype been described before in oocytes or somatic cells? Does depletion of other kinesin motors cause this? *
The reviewer brings up a good point that warrants more discussion in the manuscript. We agree that the angled spindles are an interesting phenotype; we believe that they could be a result of the spindle elongating to a point where the spindle center becomes weakened, suggesting that the severity of the angle is representative of the severity of spindle elongation. Alternatively, the angled spindles could be a result of the loss of spindle stability factors, such as the doublecortin domain of ZYG-8. This domain is known to have microtubule binding activity; this could be required to maintain stable crosslinked microtubules in the spindle center, such that when ZYG-8 is depleted, the spindle more easily comes apart as the spindle elongates. We now discuss these possibilities in the revised manuscript.
To the reviewer's second point, we did not examine anaphase outcomes in our manuscript. However, this was recently explored by another lab (in a study that was published after we submitted our manuscript). This study showed that spindles lacking ZYG-8 were able to initiate anaphase and segregate chromosomes (McNally et.al., 2023, https://doi.org/10.1371/journal.pgen.1011090). Perhaps when the spindle shrinks at anaphase onset, the spindle is able to reorganize and largely correct the angle defect, enabling bi-directional chromosome segregation. Interestingly, however, McNally et.al. did report conditions under which spindle bending in anaphase resulted in polar body extrusion errors. The authors reported that BMK-1, which is known to act as a brake to prevent spindle oveelongation in anaphase, is required to prevent bent spindles during anaphase by resisting the forces of cortical myosin on the spindle. Thus, there is precedence for the idea that spindle needs to remain straight throughout anaphase, to ensure proper chromosome segregation.
*3.) How is embryo spindle positioning determined? It is not clear from the images that there is a defect so I'm not sure what to look for. Is there a way to quantify this? *
In the original manuscript, spindle positioning within the embryo was determined qualitatively by eye, which we agree was not a precise measure. To address the reviewer's comment, we re-analyzed our images and assessed the position of the spindle within each embryo quantitatively - these data are now shown in Figure 8H and Figure S2B. Spindle position was quantified by analyzing images using Imaris software. The center of the spindle was set by creating a Surface of the DNA signal, and finding the center of that signal. The cell center was determined by measuring the length of the embryo along the long axis and the width of the embryo along the short axis, and setting the center as the halfway point of the total length and width of the embryo. Distance from spindle center to cell center was then measured and graphed. This quantification confirmed the claims we made in our original manuscript - both auxin-treated ZYG-8 AID spindles and ZYG-8 kinase-dead mitotic spindles were significantly mispositioned. The details of how we performed this quantification have been added to the materials and methods.
*4.) In Figure 1, it appears that there are 2 spindles. Are these MI and MII spindles or ectopic spindles? How do the authors know which one to measure? *
We thank the reviewer for pointing this out. Reviewer 1 had a similar comment, and we now understand that using that image was misleading, as it looked like as if were two separate MII spindles formed following a failed polar body extrusion event. We have gone through all of our images to stage the oocytes by looking at their chromosome morphology (i.e., to distinguish MI and MII) - the image in question had 6 bivalents and was therefore in Meiosis I; we think that this was a single spindle where the chromosomes happened to cluster into two masses. However, to prevent further confusion, we have replaced this image with a different representative image. In spindles like this with multiple poles, we measure the dominant axis of the spindle (if there are multiple poles, we pick the most prominent ones for the angle measurement). For additional details please see our response to Reviewer 1 major point #2b.
*5.) The authors show depletion of Zyg8 by western (long) and loss of Gfp (long and short), but don't do so for the acute treatment. I'm guessing this is because the Gfp tag is taken by the spindle marker. The authors should either demonstrate or explain how they know that the acute depletion is effective in removing Zyg8 protein. *
The reviewer makes a valid point. However, we are unable to see ZYG-8 depletion via acute auxin treatment using live imaging, as ZYG-8 localization is too dim and diffuse to see on the spindle using our typical live imaging parameters (we attempted to do this in a version of the ZYG-8 AID strain that has mCherry::tubulin and GFP::ZYG-8, so that there was no other spindle protein tagged with GFP). To see any GFP::ZYG-8 signal, we had to increase the laser power and exposure time well above what we typically use for live imaging - in doing this, we noticed that there was a limit to how high we could go before the cell began dying during the imaging time course, evident by a lack of chromosome movement, lack of tubulin turnover, and a general increase in tubulin signal throughout the cytoplasm. We do believe that ZYG-8 is being depleted using acute auxin treatment, however, as we see spindle defects very quickly upon dissection of the oocytes into auxin - we just unfortunately don't have a good way of quantifying this given these technical limitations. We have now added information to the materials and methods noting that we cannot see GFP::ZYG-8 under our live imaging conditions (lines 552-561), so that the reader better understands this caveat.
*6.) In video 2, the chromosome signal is dimmer in the auxin treatment compared to video 1. Why is this? Is it just an experimental artifact or is there something significant about this? If it is because of video choice, consider replacing this one. *
We thank the reviewer for their keen observations. The chromosome signal being dimmer in the auxin treatment is an experimental artifact - the brightness of the signal can vary depending on how far the spindle is from the slide (this can vary from video to video, and can also change over the time course of one video if the spindle moves during filming). Because of this, movies taken at the same intensity and exposure conditions may appear to have varying levels of brightness. So that readers of the manuscript can better see the chromosomes in this video, we have brightened the chromosome channel in this movie and noted this in the materials and methods (lines 549-551).
7.) Please consider color palette changes for color-blind readership.
We agree that it is important to present data in a way that can be appreciated by color-blind readers. Although we would prefer not to have to alter every image in our paper at this point, we have provided all important individual channels in grey scale. We are also planning to adopt a change in color palette for future papers.
Reviewer #2 (Significance (Required)):
*The strengths of this manuscript include use of multiple genetic approaches to establish temporal requirements of ZYG8 and which pathway it is acting through. Additionally, the videos and images make the phenotypes clear to evaluate. A minor limitation is that we don't know if the ZYG8 and BMK1 genetic interaction is a direct phosphorylation or not. This MS is an advancement to the field of spindle building and stability, and is particularly relevant to human oocyte quality and fertility. Previous work has shown that human oocyte spindles are highly unstable, but it is challenging to dissect genetic interactions and to conduct mechanistic studies in human oocytes. Therefore, the work here, although conducted in a nematode, can shed light on mechanism as to why human oocyte spindles are unstable and associated with high aneuploidy rates. Based on my expertise in mammalian oocyte biology, I am confident that work presented here will be of high interest to people in the field of meiotic spindle building, aneuploidy and fertility. It also will have broader interest to folks in the areas of kinesin biology, general microtubule and spindle biology. *
We thank the reviewer for these positive comments on the strength of our data and the significance of our findings reported in our original manuscript. We think that the improvements that we have made in response to suggestions from all three reviewers has further increased this impact.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
*Summary: The focus of this paper is the function of a relatively understudied (at least in meiosis) kinase in acentrosomal spindle assembly (Zyg-8, or DCLK1 in mammals) in C. elegans oocytes. The authors use existing ts alleles and a newly generated GFP-Auxin fusion protein, and find that the ts alleles and auxin degron have similar phenotypes. They also examine the interaction with two related kinesins, KLP-18 and BMK-1 in order to investigate the mechanism behind the zyg-8 mutant phenotype. One can probably debate the significance and focus of their conclusions (force balance on the spindle). However, this is an important study because its the first on the meiotic function of a ZYG-8 kinase, and it may open the way to further studies of this kinase and how it regulates multiple kinesins and meiotic spindle assembly. *
We thank the reviewer for these positive comments and for pointing out the potential future impacts of our work. In revising the manuscript, we have broadened the focus of the manuscript - we no longer solely focus on force balance within the spindle. Thus, our revisions have substantially increased the significance and impact of our work, since the manuscript is no longer narrowly focused.
Major points:
*1.) The main concern is the focus that the main defect in zyg-8 depleted oocytes is on outward forces (eg line 134, 277, but many other places in Results and Discussion). The arguments in favor (eg line 269-271) are reasonable. However, these data are not conclusive, and do not rule out regulation of other motor activities, such as bundling, depolymerization or chromosome movement. These are complex phenotypes, and a kinase could have multiple targets and there are often multiple interpretations. This is briefly alluded to in line 372-373 but the authors could do more. Spindle length changes could be caused by different rates of depolymerization or polymerization at the poles or chromosomes. Its not clear how poleward force regulation explains the multiple pole phenotype, although a lack of central spindle integrity could do that. In most of the Results and Discussion, it is not clearly stated on what structures these outward forces are acting. Are these forces effecting kinetochore associated microtubules, or antiparallel overlap microtubules? What do the authors mean by proper force balance? Figure 8 suggests the defect is associated with the amount of overlap and force among antiparallel microtubules - that the forces effected are from the sliding of these microtubules. *
We agree that our original manuscript was too narrowly focused on the idea of force balance and that we did not discuss other potential roles for ZYG-8 in enough detail (except for briefly in our discussion). In response to both this comment and to a suggestion by Reviewer #1, we decided to investigate a potential role for ZYG-8 in modulating microtubule dynamics (which could be another explanation for some of the phenotypes we observed). We performed FRAP to measure the rate of tubulin turnover within the spindle near the center and at the poles. Interestingly, these experiments revealed that loss of ZYG-8 slows the rate of tubulin turnover, suggesting a general stabilization of microtubules. Thus, we have re-written our manuscript to clearly explain that ZYG-8 plays multiple roles in oocyte spindles - with these changes throughout the manuscript (in the introduction, results, and discussion), the paper is now no longer focused primarily on forces. We hypothesize in the discussion that the phenotypes we observe could be a combination of the effects on microtubule dynamics and spindle forces; if microtubules become more stable and motors produce excess outward forces, this may cause stress on the spindle structure that could cause the midspindle to bend and the poles to split (lines 379-382). We also now more clearly explain that the effect ZYG-8 has on spindle forces could be either direct or indirect (e.g., ZYG-8 could directly regulate motors or, by affecting the microtubule tracks themselves, it could affect their ability to exert forces). As for which population of microtubules are affected, we hypothesize that the excess forces act primarily on overlapping antiparallel microtubules (these microtubules run laterally alongside chromosomes in this system), as is represented in the model figure (Figure 9); we attempted to more clearly explain this in the re-written manuscript.
*2.) Based on differences between the long term and short term knockdown phenotypes, the authors suggest ZYG-8 is more important for spindle maintenance. For example, in line 299 the authors note that there is a more severe phenotypes with zyg-8 removed from pre-formed spindles. The authors could improve the presentation of this to allow the reader to appreciate this observation. The data is spread between Figures 2 and 3 without a direct comparison of the data. One solution would be to graph the data (eg # of poles) together in one graph and indicate if there is statistical significance. In the Discussion, the authors could refer to specific figure panels. *
The reviewer is correct that our data suggests that ZYG-8 is more important for spindle maintenance than it is for assembly. As suggested, we made a graph that includes all the pole data from Figures 2 and 3 (long-term auxin, short-term auxin, and metaphase-arrested short-term auxin) - this is now shown in Figure S3D. This makes it easier for the reader to compare these data and appreciate this point. In addition, we added text to the results section, to more clearly explain our rationale for thinking that ZYG-8 plays a more prominent role in spindle maintenance than in assembly (lines 180-189 and 227-231).
*3.) What is the practical difference between acute and short term depletion. Does acute show weaker phenotypes because there is more residual protein? Unfortunately, the effectiveness of Auxin treatment does not appear to be measured for acute or short term. If the acute depletion adds little to Figure 3, or is not much different than long term, then its not clear what it adds to the paper. Later, in Figure 6, why is only short term and acute analyzed. In general, the authors need to provide better rationale for the different auxin conditions, particularly acute and short term (eg. line 135). If they don't add anything, they should consider not presenting them because readers may get confused by the different conditions, why they were done, and what is learned from each one. *
The reviewer brings up a fair point that we agree requires clarification. Descriptions of the different types of auxin experiments is provided in Figure 1A. Long-term AID depletes proteins overnight, so the protein of interest is already missing from the oocyte when the spindle begins to form - this allows us to assess whether the protein is required for spindle assembly. However, to determine if a protein is required to stabilize pre-formed spindles, we need to remove the protein quickly after the spindle forms (using either acute or short-term AID). Acute AID is performed by dissecting oocytes directly into auxin-containing media; this allows us to watch what happens to the spindle live, as the protein is being depleted. However, one limitation is that we can only film for a short time before the oocytes begin to die (oocytes become unhappy with extended light exposure, so we cut off the videos after 15 minutes or so, to ensure that we are not filming past the point where they begin to arrest or die). Therefore, to assess what happens to spindles beyond this point, we perform short-term auxin treatment, where whole worms are soaked in auxin containing solution for 30-45 minutes and then the oocytes are dissected for immunofluorescence; this technique allows us to look at what happens to the spindle after more extended protein depletion (since we are not limited to the 10-15 minute window of filming). We have now clarified this in the manuscript by adding these details to the materials and methods. Unfortunately, it is not technically possible to quantify the extent of protein depletion in acute AID via western blotting since we would not be able to easily collect enough dissected oocytes to make a protein sample. (It is also technically challenging to quantify this via imaging; see our response to Reviewer #2, point #5). However, we assume that we are depleting ZYG-8 since we see dramatic spindle defects immediately upon dissection into auxin.
Minor points:
*3.) I am a little confused about imaging for GFP::tubulin in auxin experiments. Doesn't the ZYG-8 protein also have GFP? Should this be visible in controls? Is it measurable in the experiments? *
The reviewer is correct that the ZYG-8 protein is also tagged with GFP in the GFP::tubulin; mCherry::histone live imaging experiments. However, we found that the GFP::ZYG-8 signal is undetectable using the live imaging conditions we are using. We determined this by analyzing a version of the ZYG-8 AID strain in which tubulin was tagged with mCherry (and thus the only GFP-tagged protein was ZYG-8). Using the same live imaging parameters we use for our movies of GFP::tubulin (same exposure time, laser power, etc), we did not detect any GFP::ZYG-8. We have now added this information to the materials and methods (lines 552-561) to clarify these points for the reader, to prevent further confusion.
*4.) It is nice that the authors validated the results in an emb-30 background with unarrested oocytes. The authors note that the wild-type oocytes undergo anaphase (line 150). The images seem to suggest the auxin treated oocytes do not. Can the authors comment on anaphase in the depletion experiments. Even better, would be to comment on the accuracy of chromosome alignment and segregation. If zyg-8 mutant oocytes complete meiosis, is there any aneuploidy? These are important questions because otherwise the defects in zyg-8 mutants have less significance. *
We thank the reviewer for their comment. Previous work on ZYG-8 in C. elegans examined a role for ZYG-8 in anaphase and showed that this protein is required for anaphase B spindle elongation (McNally et.al. 2016); because this was known when we launched our study, we purposely did not extensively study ZYG-8 in anaphase and instead focused on understanding how ZYG-8 contributes to spindle formation and stability. Our fixed imaging long-term AID experiments revealed that spindles were able to go through anaphase and segregate chromosomes bidirectionally despite the metaphase spindle phenotypes, consistent with this previous work (McNally et.al. 2016) and with another recent paper from the same lab (McNally et.al. 2023). However, we did not examine whether there were chromosome segregation errors. Given that anaphase is not the focus of our paper, we ask that this be deemed beyond the scope of our study.
5.) Later, in line 184, the authors indicate that zyg-8 bipolar spindles "segregate chromosomes". Which images show anaphase I? As noted above, a limitation of these studies is not knowing the outcome of meiosis in these Zyg-8 depletions.
We agree that in the original manuscript it was difficult to see that chromosomes were segregating bidirectionally in our movies and in the still timepoint images presented in Figure 5. Therefore, we brightened the chromosome channel in the relevant videos to make it easier to see the segregating chromosomes. Video 6 shows an oocyte in Meiosis II, as the first polar body can be seen near the spindle in this movie. At 2 minutes, the monopolar spindle becomes bipolar and begins to shrink as it goes into anaphase. Chromosomes begin to move apart and then the spindle elongates. At 11 minutes, you can see that the chromosomes have segregated bidirectionally. Thus, when monopolar spindles reorganize into bipolar spindles under these conditions, they can drive bidirectional chromosome segregation. We did not assess the fidelity of chromosome segregation under these conditions (i.e., whether chromosomes segregated accurately), as the question we were trying to answer in this experiment was whether outward forces sufficient to re-establish bipolarity could be activated upon ZYG-8 depletion (as explained above in response to point #4, we focused our study on trying to understand the effects of ZYG-8 depletion on the spindle, rather than on anaphase). We agree that analyzing anaphase outcomes would be interesting, but we ask that it be considered beyond the scope of this study.
*6.) Line 206 suggests that ZYG-8 inhibits BMK-1. Is a simple explanation that BMK-1 is required for the bipolar spindles observed in the klp-18 zyg-8 AID oocytes? *
Yes, the reviewer is correct that BMK-1 is required for the generation of bipolar spindles in the klp-18(RNAi) ZYG-8 AID conditions. In the original manuscript we extrapolated this result to propose that ZYG-8 regulates BMK-1. However, this comment, as well as feedback from the other reviewers and our new experiments (showing that ZYG-8 also modulates microtubule dynamics) has made us re-think the way we discuss this result, as we now agree that it does not prove this regulation (it is only suggestive). Therefore, in the revised manuscript, we no longer definitely claim that ZYG-8 regulates BMK-1 - we have switched to softer language (stating that ZYG-8 "may regulate" BMK-1, etc.). In the results section we now describe our conclusions as follows: "These data demonstrate that BMK-1 produces the outward forces that are activated upon ZYG-8 and KLP-18 co-depletion and raise the possibility that ZYG-8 regulates BMK-1 either directly or indirectly" (lines 250-252).
*7.) Given that many mitotic and meiotic kinases are localized to specific regions or domains of the spindle, there is only limited discussion of the ZYG-8 localization pattern. Does the ZYG-8 localization pattern provide any insights into its mechanism of promoting spindle assembly? *
The reviewer makes a good point - while we did report ZYG-8 localization, the discussion on the importance of its localization pattern was limited. To address this, we now remind readers in the discussion that ZYG-8 and BMK-1 co-localize throughout meiosis, consistent with the possibility that ZYG-8 could regulate BMK-1. Notably, this localization pattern is also consistent with the observation that ZYG-8 modulates microtubule dynamics across the spindle; this is now also noted in the discussion (lines 358-361).
*8.) Line 96-97 - how much is the ZYG-8 depletion? *
To address this question, we have quantified the amount of ZYG-8 protein in our ZYG-8 AID strain in control, long-term, and short-term auxin treated conditions. The western blot was quantified by comparing the raw intensity of the bands and subtracting the background signal. Short-term auxin depletion resulted in an ~63% reduction in ZYG-8 GFP signal, and long-term depletion resulted in an ~93% reduction in ZYG-8 GFP signal. This has now been reported in the manuscript on lines 785-786.
*9.) Line 140: the authors say spindle length could not be measured, but perhaps it makes more sense to measure half spindle (chromosome to spindle pole). The images do give the impression that the chromosome to pole distance is shorter. *
While we liked this idea and tried to perform these measurements, it turned out to be difficult in practice, since the spindle length measurements are obtained by finding the distance from pole (center of the ASPM-1 staining) to center of the chromosome signal. If you look carefully at our images you will notice that the chromosomes lose alignment following short-term AID; therefore, the chromosomes do not form one mass, which made it very difficult to determine an accurate "center" of the DNA signal. Additionally, in most cases the poles are disrupted such that ASPM-1 is found in many separate masses and/or is diffusely localized around the periphery of the spindle. Because of this, we unfortunately felt that these measurements would not be very accurate and would be hard to interpret.
*10.) Don't see the point of lines 323-330. Could be deleted? *
In revising our manuscript, we have rephrased these lines in an attempt to provide more context. Because DCLK1 has been shown to be upregulated in a wide variety of cancers, there are ongoing efforts to find chemical inhibitors that specifically block the kinase activity of this protein to be used as cancer therapeutics. However, no one has previously shown that the kinase activity of DCLK1 is important for its in vivo function (in any organism). Therefore, we were trying to make the point that, since we demonstrated that kinase activity is important for the functions of a DCLK1 family member in vivo, this suggests that these kinase inhibitors may in fact be beneficial in knocking down DCLK1 activity.
11.) Figure 1: Because ts alleles could have a defective phenotype at "permissive" temperature, a wild-type control should be included. This data does appear in a later figure.
The reviewer is correct that this data does appear in a later figure, but we agree this direct comparison would provide clarity to the reader. To address this comment, we compared the spindle lengths and angles of the two temperature-sensitive (TS) strains (at both the permissive and restrictive temperatures) to wild-type (N2) worms - these data have been added to Figure S1 (new panels F and G). The spindle lengths of both TS strains at the permissive temperature did not significantly differ from wild-type spindle lengths (p>0.1), while both TS strains at the restrictive temperature were significantly different than wild-type (p0.1), but there was a significant difference between wild-type spindles and the TS mutants at the restrictive temperature (doublecortin domain mutant (p Reviewer #3 (Significance (Required)): The strengths of this paper are the novelty of studying Zyg-8. It also addresses important questions regarding acentrosmal spindle assembly in oocytes. The weakness is mostly in the limited interpretation of results and not enough consideration of alternative interpretations. Related to this, the authors only test the force balance hypothesis with the knockout of two related kinesins. They don't experimentally investigate other mechanisms for the zyg-8 phenotype. This research should be of broad interest to anyone interested in oocyte spindle assembly, and also in a more specialized way to those who study kinases or Zyg-8 homologs in other cell types or organisms.
We thank the reviewer for these positive comments on the strengths and novelty of our manuscript. We also appreciate the constructive suggestions of all three reviewers, which motivated us to perform new experiments that revealed additional functions for ZYG-8 - these revisions have greatly improved the manuscript and have broadened its impact.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Summary:
The focus of this paper is the function of a relatively understudied (at least in meiosis) kinase in acentrosomal spindle assembly (Zyg-8, or DCLK1 in mammals) in C. elegans oocytes. The authors use existing ts alleles and a newly generated GFP-Auxin fusion protein, and find that the ts alleles and auxin degron have similar phenotypes. They also examine the interaction with two related kinesins, KLP-18 and BMK-1 in order to investigate the mechanism behind the zyg-8 mutant phenotype. One can probably debate the significance and focus of their conclusions (force balance on the spindle). However, this is an important study because its the first on the meiotic function of a ZYG-8 kinase, and it may open the way to further studies of this kinase and how it regulates multiple kinesins and meiotic spindle assembly.
Major:
1) The main concern is the focus that the main defect in zyg-8 depleted oocytes is on outward forces (eg line 134, 277, but many other places in Results and Discussion). The arguments in favor (eg line 269-271) are reasonable. However, these data are not conclusive, and do not rule out regulation of other motor activities, such as bundling, depolymerization or chromosome movement. These are complex phenotypes, and a kinase could have multiple targets and there are often multiple interpretations. This is briefly alluded to in line 372-373 but the authors could do more. Spindle length changes could be caused by different rates of depolymerization or polymerization at the poles or chromosomes. Its not clear how poleward force regulation explains the multiple pole phenotype, although a lack of central spindle integrity could do that. In most of the Results and Discussion, it is not clearly stated on what structures these outward forces are acting. Are these forces effecting kinetochore associated microtubules, or antiparallel overlap microtubules? What do the authors mean by proper force balance? Figure 8 suggests the defect is associated with the amount of overlap and force among antiparallel microtubules - that the forces effected are from the sliding of these microtubules.
2) Based on differences between the long term and short term knockdown phenotypes, the authors suggest ZYG-8 is more important for spindle maintenance. For example, in line 299 the authors note that there is a more severe phenotypes with zyg-8 removed from pre-formed spindles. The authors could improve the presentation of this to allow the reader to appreciate this observation. The data is spread between Figures 2 and 3 without a direct comparison of the data. One solution would be to graph the data (eg # of poles) together in one graph and indicate if there is statistical significance. In the Discussion, the authors could refer to specific figure panels.
3) What is the practical difference between acute and short term depletion. Does acute show weaker phenotypes because there is more residual protein? Unfortunately, the effectiveness of Auxin treatment does not appear to be measured for acute or short term. If the acute depletion adds little to Figure 3, or is not much different than long term, then its not clear what it adds to the paper. Later, in Figure 6, why is only short term and acute analyzed. In general, the authors need to provide better rationale for the different auxin conditions, particularly acute and short term (eg. line 135). If they don't add anything, they should consider not presenting them because readers may get confused by the different conditions, why they were done, and what is learned from each one.
Minor:
1) I am a little confused about imaging for GFP::tubulin in auxin experiments. Doesn't the ZYG-8 protein also have GFP? Should this be visible in controls? Is it measurable in the experiments?
2) It is nice that the authors validated the results in an emb-30 background with unarrested oocytes. The authors note that the wild-type oocytes undergo anaphase (line 150). The images seem to suggest the auxin treated oocytes do not. Can the authors comment on anaphase in the depletion experiments. Even better, would be to comment on the accuracy of chromosome alignment and segregation. If zyg-8 mutant oocytes complete meiosis, is there any aneuploidy? These are important questions because otherwise the defects in zyg-8 mutants have less significance.
3) Later, in line 184, the authors indicate that zyg-8 bipolar spindles "segregate chromosomes". Which images show anaphase I? As noted above, a limitation of these studies is not knowing the outcome of meiosis in these Zyg-8 depletions.
4) Line 206 suggests that ZYG-8 inhibits BMK-1. Is a simple explanation that BMK-1 is required for the bipolar spindles observed in the klp-18 zyg-8 AID oocytes?
5) Given that many mitotic and meiotic kinases are localized to specific regions or domains of the spindle, there is only limited discussion of the ZYG-8 localization pattern. Does the ZYG-8 localization pattern provide any insights into its mechanism of promoting spindle assembly?
6) Line 96-97 - how much is the ZYG-8 depletion?
7) Line 140: the authors say spindle length could not be measured, but perhaps it makes more sense to measure half spindle (chromosome to spindle pole). The images do give the impression that the chromosome to pole distance is shorter.
8) Don't see the point of lines 323-330. Could be deleted?
9) Figure 1: Because ts alleles could have a defective phenotype at "permissive" temperature, a wild-type control should be included. This data does appear in a later figure.
Significance
The strengths of this paper are the novelty of studying Zyg-8. It also addresses important questions regarding acentrosmal spindle assembly in oocytes. The weakness is mostly in the limited interpretation of results and not enough consideration of alternative interpretations. Related to this, the authors only test the force balance hypothesis with the knockout of two related kinesins. They don't experimentally investigate other mechanisms for the zyg-8 phenotype. This research should be of broad interest to anyone interested in oocyte spindle assembly, and also in a more specialized way to those who study kinases or Zyg-8 homologs in other cell types or organisms.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
In this manuscript, the authors explore the requirement for doublecortin kinase Zyg8 in C elegans oocytes. Oocytes build meiotic spindles in the absence of centrosomes, and therefore unique regulation occurs during this process. Therefore, how spindles are built and its later stability are an area of active investigation in the field. Using mutant alleles of Zyg8 and auxin-induced degron alleles, the authors demonstrate that this kinase is required to negatively regulate outward pole forces through BMK1 kinesin and that it has other functions to still explore. Overall, I find that this study takes an elegant genetic approach to tackling this important question in oocyte biology. I have some comments to consider for making the MS clear to a reader.
Major Comments:
-
Although I like the graphs describing the altered angles of the spindles, it falls short in fully assessing the phenotype in a meaningful statistical way. Could the authors also graph the data to show statistical significance in the angles between conditions? Perhaps by grouping them into angle ranges and performing an Anova test? This is important in Figure 2E where it is not obvious that there is a difference.
-
The authors do not discuss the significance of the altered spindle angles which I think is an interesting phenotype. Would this be a problem upon Anaphase onset? What is known about spindle angle and aneuploidy or cell viability? Has this phenotype been described before in oocytes or somatic cells? Does depletion of other kinesin motors cause this?
-
How is embryo spindle positioning determined? It is not clear from the images that there is a defect so I'm not sure what to look for. Is there a way to quantify this?
-
In Figure 1, it appears that there are 2 spindles. Are these MI and MII spindles or ectopic spindles? How do the authors know which one to measure?
-
The authors show depletion of Zyg8 by western (long) and loss of Gfp (long and short), but don't do so for the acute treatment. I'm guessing this is because the Gfp tag is taken by the spindle marker. The authors should either demonstrate or explain how they know that the acute depletion is effective in removing Zyg8 protein.
-
In video 2, the chromosome signal is dimmer in the auxin treatment compared to video 1. Why is this? Is it just an experimental artifact or is there something significant about this? If it is because of video choice, consider replacing this one.
-
Please consider color palette changes for color-blind readership.
Significance
The strengths of this manuscript include use of multiple genetic approaches to establish temporal requirements of ZYG8 and which pathway it is acting through. Additionally, the videos and images make the phenotypes clear to evaluate. A minor limitation is that we don't know if the ZYG8 and BMK1 genetic interaction is a direct phosphorylation or not.
This MS is an advancement to the field of spindle building and stability, and is particularly relevant to human oocyte quality and fertility. Previous work has shown that human oocyte spindles are highly unstable, but it is challenging to dissect genetic interactions and to conduct mechanistic studies in human oocytes. Therefore, the work here, although conducted in a nematode, can shed light on mechanism as to why human oocyte spindles are unstable and associated with high aneuploidy rates.
Based on my expertise in mammalian oocyte biology, I am confident that work presented here will be of high interest to people in the field of meiotic spindle building, aneuploidy and fertility. It also will have broader interest to folks in the areas of kinesin biology, general microtubule and spindle biology.
-
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
In this manuscript Czajkowski et al explore the role of the doublecortin-family kinase ZYG-8 during meiosis in C. elegans Oocytes. First by studying available temperature-sensitive mutants and then by generating their own strain expressing ZYG-8 amenable to auxin-inducible degradation, they establish that defects in ZYG-8 lead to defects in spindle assembly, such as the formation of multipolar spindles, and spindle maintenance, in which spindles elongate, fall apart, and deform in meiosis. Based on these observations the authors conclude that ZYG-8 depletion leads to excessive outward force. As the lab had previously found that the motor protein KLP-18 generates outside directed forces in meiosis, Czajkowski et al initially speculate that ZYG-8 might regulate KLP-18. KLP-18 depletion generally leads to the formation of monopolar spindles in meiosis. Intriguingly, when the authors co-deplete ZYG-8 they find that in some cases bipolarity was reestablished. This led to the hypothesis that yet another kinesin, BMK-1, the homolog of the mammalian EG-5, could provide redundant outward directed forces to KLP-18. The authors then study the effect of ZYG-8 and KLP-18 co-depletion in a BMK-1 mutant background strain and observe that bipolarity is no longer reestablished under these conditions, suggesting that BMK-1 generates additional outward directed forces. The authors also conclude that ZYG-8 inhibits BMK-1. To follow up on this Czajkowski et al generate a ZYG-8 line that carries a mutation in the kinase domain, which should inhibit its kinase activity. This line shows similar effects in terms of spindle elongation but reduced impact on spindle integrity, reflected in minor effects on the number of spindle poles and spindle angle. The authors conclude that ZYG-8's kinase activity is required for the function of ZYG-8 in meiosis and mitosis.
- Overall, the paper is well written, and the data is presented very clearly and reproducible. The experiments are adequately replicated, and statistical analysis are adequate. The observations are very interesting. However, the authors could provide some additional insight into the function of ZYG-8. This paper is strongly focused on motor generated forces within the spindle and tries to place ZYG-8 within this context, but there is compelling evidence from other studies that ZYG-8 also affects microtubule dynamics, which would have implications for spindle assembly and structure. The paper would strongly benefit from the authors exploring this role of ZYG-8 in the context of meiosis further. If the authors feel that this would extend beyond the scope of this paper, I would suggest that the authors rephrase some of their introduction and discussion to reflect the possibility that changes in microtubule growth and nucleation rates could explain some of the phenotypes (think of katanin) and effects and that therefore it can not necessarily be concluded that BMK-1 is inhibited by ZYG-8.
Major comments:
1) Zyg-8, as well as the mammalian homolog DCLK-1, has been reported to play an important role for microtubule dynamics. While the introduction mentions its previously shown role in meiosis and mitosis, it is totally lacking any background on the effect on microtubule dynamics. The authors mention these findings in the discussion, but it would be helpful to incorporate this in the introduction as well. As an example, Goenczy et al 2001 demonstrated that ZYG-8 is involved in spindle positioning but also showed its ability to bind microtubules and promote microtubule assembly. Interestingly, like the authors here, Goenczy et al concluded that while the kinase domain contributes to, it is not essential ZYG-8's function. Also, Srayko et al 2005 (PMID 16054029) demonstrated that ZYG-8 depletion led to reduced microtubule growth rates and increased nucleation rates in C. elegans mitotic embryos. And in mammalian cells DCLK-1 was shown to increase microtubule nucleation rate and decrease catastrophe rate, leading to a net stabilization of microtubules (Moores et al 2006, PMID: 16957770).
It would be great if the authors could add to the introduction that ZYG-8 has been suggested to affect microtubule dynamics.
2) The authors initially study two different ts alleles, or484ts and b235ts. The experiments clearly show a significant increase in spindle length in both strains. However, the or484 strain had been previously studied (McNally et al 2016, PMID: 27335123), and only minor effects on spindle length were reported (8.5µm in wt metaphase and 10µm in zyg-8 (or484)). How do the authors explain these differences in ZYG-8 phenotype. Even though the ZYG-8 phenotype is consistent throughout this paper it would be good to explain why the authors observe spindle elongation, fragmentation and spindle bending in contrast to previous observations.
As a general note, it would be helpful if the authors could indicate if the spindles are in meiosis I or II. The only time where this is specifically mentioned is in Video 7, showing a Meiosis II spindle, which makes me assume all other data is in Meiosis I. Adding this to the figures would also help to distinguish if some of the images, i.e. Figure 1B, show multipolar spindles due to failed polar body extrusion. If this is the case then the quantification of number of poles should maybe reflect different possibilities, such as fragmented poles vs. multiple poles because two spindles form around dispersed chromatin masses.
3) The authors generate a line that carries a mutation leading to a kinase dead version of ZYG-8. It would be great if the authors could further test if this version is truly kinase dead. What is interesting is that the kinase dead version the authors create has less effect on the numbers of pole than the zyg-8 (b235)ts strain, which carries a mutation in a less conserved kinase region. Overall, it seems that the phenotypes are very similar, independent on mutations in the microtubule binding area, kinase area or after AID. This could of course be due to all regions being important, i.e. microtubule binding is required for localizing kinase-activity. Generating mutant versions of the target proteins, for example here BMK-1, that can not be phosphorylated or are constitutively active as well as assessment of changes in protein phosphorylation levels in the kinase dead strain would be helpful to provide deeper insight into potential regulation of proteins by ZYG-8.
4) The authors state that "BMK-1 provides redundant outward force to KLP18". Redundancy usually suggests that one protein can take over the function of another one when the other is not there. In these scenarios a phenotype is often only visible when both proteins are depleted as each can take over the function of the other one. Here however the situation seems slightly different, as depletion of BMK-1 has no phenotype while depletion of KLP-18 leads to monopolar spindles. If BMK-1 would normally provide outward directed forces, would this not be visible in KLP-18 depleted oocytes if they were truly redundant? I assume the authors hypothesize that ZYG-8 inhibits BMK-1 and thus it can not generate outward directed forces. In this case, do the authors envision that ZYG-8 inhibits BMK-1 prior to or in metaphase or only in anaphase or throughout meiosis? Do they speculate, that BMK-1 is inhibited in anaphase and only active in metaphase? In addition, Figure S4 somewhat argues against a role for ZYG-8 in regulating BMK-1. ZYG-8 depletion supposedly leads to increased outward forces due to loss of BMK-1 inhibition, thus co-depletion of ZYG-8 with BMK-1 should rescue the increased spindle size at least to some extent, however neither increase in spindle length nor increase in additional spindle pole formation are prevented by co-depletion of BMK-1 suggesting that BMK-1 is not generating the forces leading to spindle length increase. Thus, arguing that after all ZYG-8 does not regulate BMK-1. This should be discussed further in the paper and the authors should consider changing the title. At this point the provided evidence that ZYG-8 is regulating motor activity is not strong enough to make this claim.
5) The authors are proposing that ZYG-8 regulates/ inhibits BMK-1, however convincing evidence for an inhibition is not provided in my opinion and the effect of ZYG-8 on BMK-1 could be indirect. To make a compelling argument for a regulation of BMK-1 the authors would have to investigate if ZYG-8 interacts and/ or phosphorylates BMK-1 (see 7) and if this affects its dynamics. In addition, given the reported role of ZYG-8 on microtubule dynamics it would be very important that the authors consider studying the effect of ZYG-8 degradation on microtubule dynamics. Tracking of EBP-2 would be good, however this is very difficult to do inside meiotic spindles due to their small size. In addition, the authors could maybe consider some FRAP experiments, which could provide insights into microtubule dynamics and motions, which could be indicative of outward directed forces/ sliding.
Summary:
Additional requested experiments:
- Interaction/ phosphorylation of BMK-1 by ZYG-8, i.e. changes of BMK-1 phosphorylation in absence of ZYG-8, BMK-1 mutations that may prevent phosphorylation by ZYG-8. -Assessment of microtubule dynamics (EBP-2, FRAP, length in monopolar spindles...) -Kinase activity of the kinase dead ZYG-8 strain (OPTIONAL)
Minor comments:
1) In Figure 4C it seems that the ZYG-8 AID line as well as the zyg-8 (or848)ts already have a phenotype (increased ASPM-1 foci) in absence of auxin/ at the permissive temperature. Does this suggest that the ZYG-8 AID as well as the zyg-8 (or848) strains are after all slightly defective (even if Figure 1, S1 and S2 argue otherwise) and thus more responsive to the loss of KLP-18?
2) The authors observe that in preformed monopolar spindles degradation of ZYG-8 can sometimes restore bipolarity. This observation is very interesting but why do the authors not observe a similar phenotype in long-term ZYG-8 AID; klp-18 (RNAi) or zyg-8(or484)ts; klp-18(RNAi). In the latter conditions bipolarity does not seem to occur at all. Do the authors think this is due to differences in timing of events?
3) Based on the Cavin-Meza 2022 paper it looks like depletion of KLP-18 in a BMK-1 mutant background does not look different from klp-18 (RNAi) alone. However, looking at Video 8, it looks like spindles "shrink" in absence of KLP-18 and BMK-1. Or is this due to any effects from the ZYG-8 AID strain? This can also be seen in Video 9.
4) Line 311: " ZYG-8 loads onto the spindle along with BMK-1, and functions to inhibit BMK-1 from over elongating microtubules during metaphase." Maybe this sentence could be re-phrased as it currently sounds like BMK-1 elongates (polymerizes) microtubules.
5) Line 313: "Intriguingly, in C. elegans oocytes and mitotically-dividing embryos, BMK-1 inhibition causes faster spindle elongation during anaphase, suggesting that BMK-1 normally functions as a brake to slow spindle elongation (Saunders et al., 2007; Laband et al., 2017). Further, ZYG-8 has been shown to be required for spindle elongation during anaphase B (McNally et al., 2016). Our findings may provide an explanation for this phenotype, since if ZYG-8 inhibits BMK-1 as we propose, then following ZYG-8 depletion, BMK-1 could be hyperactive, slowing anaphase B spindle elongation." This paragraph could be modified for better clarity. It is not clear how the findings of the authors, BMK-1 provides outward force but is normally inhibited by ZYG-8, align with the last sentence saying "following zyg-8 depletion, BMK-1 could be hyperactive slowing anaphase B spindle elongation", should it not increase elongation according to the authors observations?
Significance
In this manuscript Czajkowski et al explore the role of the doublecortin-family kinase ZYG-8 during meiosis in C. elegans Oocytes. The authors conclude that BMK-1 generates outward directed force, redundant to forces generated by KLP-18, and that ZYG-8 inhibits BMK-1. The authors conclude that ZYG-8's kinase activity is required for the function of ZYG-8 in meiosis and mitosis. This research is interesting and provides some novel insight into the role of ZYG-8. Inm particular the observed spindle elongation and subsequent spindle fragmentation are novel and had not yet been reported. Also, the observation that degradation of ZYG-8 in monopolar klp-18(RNAi) spindles can restore bipolarity is novel and interesting, as well as the observation that this is somewhat dependent on the presence of BMK-1. This will be of interest to a broad audience and provides some new insight into the role of importance of ZYG-8 and BMK-1. The limitation of the study is the interpretation of the results and the lack of solid evidence that the observed phenotypes are due to ZYG-8 regulation motor activity, as the title claims. To support this some more experiments would be required. In addition, ZYG-8 has been reported to affect microtubule dynamics, which can certainly affect the action of motors on microtubules. This line of research is not explored in the paper but would certainly add to its value.
Field of expertise: Research in cell division
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
The authors sincerely appreciate the editors’ and the reviewers’ dedication in providing constructive and insightful comments aimed at enhancing the quality of the manuscript. In response to the valuable feedback received, we have implemented significant revisions to the manuscript, including the addition of key experiments, reorganization of the figures as well as providing detailed point-to-point responses to address the reviewers’ concerns. With these changes, we are confident that we have effectively addressed the comments raised by all three reviewers and have strengthened the overall quality of the manuscript.
Below are the major improvements we have made in the revised manuscript:
- Figure 4 new figure with polysome profiling assay to strengthen the link between translational regulation and mitochondrial defects.
- Figure 7 added confocal images showing the transfer of mitochondria into recipient cells.
- Figure S2 added RER data further supporting a shift of metabolism to favor fatty acid oxidation as shown by proteomics data.
- Figure S4 added WB data showing that protein degradation was not affected, strengthening a protein synthesis defect due to Fam210a KO.
- Figure S5B, S6C added quantification to the staining and blots.
1. Point-by-point description of the revisions
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
In the manuscript entitled "FAM210A mediates an inter-organelle crosstalk essential for protein synthesis and muscle growth in mouse", Chen et al, found that knocking out of FAM210A specifically in muscle using Myl Cre resulted in abnormal mitochondria, hyperacetylation of cytosolic proteins, and translation defects. The manuscript uncovered the new functions of FAM210A in regulating metabolism and translation. I have the following the concerns about the manuscript.
Comments
One of the major phenotypes of FAM210A is the decrease of muscle mass after 6 weeks after birth. Is this phenotype caused by the accumulation of progressive loss of muscle mass from birth? Are the body weight and muscle mass reduced in FAM210A knocking out new-born mice? Is the muscle mass growth curve the same in FAM210A and WT mice from birth to 6 weeks after birth? These results will reveal more mechanism of FAM210A mediated muscle mass control. Answer: Indeed, the phenotype of the Fam210aMKO was caused by the progressive loss of muscle mass. The body weight of the mice was not different before 3-weeks of age (Figure 2B). We reasoned that myonuclei accretion occurred before Myl1Cre induced knockout of Fam210a, accounting for the relative normal muscle development and nuclei accretion prior to 21 days after birth (refer to Response Figure 2). However, due to the small muscle mass, it is hard to accurately evaluate whether the muscle mass in very young mice. Regardless, we believe that body weight and muscle weight closely mimic each other and exhibit similar slopes in WT and KO mice (Response Figure 1).
Beyond 21 days, muscle growth is mainly attributed to hypertrophy of myofibers, a process that relies on protein synthesis. Yet the Fam210aMKO myofibers has defects in protein synthesis, explaining why the muscles cannot gain weight after 3 weeks and started to lose weight. We have shown that at 4 weeks the TA muscle weight was 13 mg in Fam210aMKO compared to 25 mg in WT control. At 6-weeks, the TA weight in the Fam210aMKO mouse was 10 mg compared to 28 mg in the WT control. Furthermore, the TA weight of the Fam210aMKO mouse was 8.7 mg compared to 36mg in the WT control. These results provide compelling evidence that the Fam210aMKO muscles are progressively wasted.
Response Figure 1. Changes of body weights and TA muscle weights during postnatal growth. The muscle weights increased (in wildtype mice) or decreased (in KO mice) with body weights at similar trends.
Does the muscle mass continue to decrease after 8 weeks?
Answer: Based on the trend (see Response Figure 1), we believe the answer is “yes”. However, we were not allowed to monitor the Fam210aMKO mice after 8 weeks of age, as they were severely lethargic and can barely move, reaching the humane endpoint determined by the IACUC guidelines.
FAM210A knockout mice displayed high lethal rate. Is there any potential mechanism for the high lethality?
Answer: We performed extensive necropsy and could not identify a direct cause. The potential cause for the lethality could be the difficulty of breathing as the diaphragm muscle was very thin in the Fam210aMKO mouse compared to the WT control. Besides, the diminished muscle contraction force (Figure 3) might have prohibited normal activities (including eating), leading to exhaustive death.
In Figure 2, the muscle mass decreased significantly, while the fat mass only decreased slightly in FAM210A knockout mice. However, the ratio of the lean mass and fat mass to body mass did not change in FAM210A knockout mice compared to WT mice. How do the authors reconcile this?
Answer: Just to clarify, Figure 2D-E shows that fat mass was significantly reduced at 4-week old but not reduced at 6-week old. We interpret the significant reduction of the mass but not the ratio (to body weight) as the result of the concomitant reduction of the body weight in the Fam210aMKO mice.
Are there changes of the number of nuclei per myotube? Is the muscle atrophy in FAM210A knockout mice caused by the defects of fusion, or the degradation of protein, or both?
Answer: We thank the reviewer for this question. To answer this question, we isolated myofibers from WT and Fam210aMKO mouse at 4-week-old and quantify the myonuclei number. We did not observe a significant reduction of myonuclei number per myofiber in the Fam210aMKO mouse, suggesting that the myoblast fusion into myofibers was not affected in the Fam210aMKO model. (Response Figure 2)
Response Figure 2. DAPI staining and quantification in the single myofiber isolated from WT and Fam210aMKO mice.
The number of myonuclei in the WT and Fam210aMKO was not different, suggesting normal fusion of satellite cells in Fam210aMKO mice.
We also did western blot to check the atrophy related protein expression in WT and Fam210aMKO mouse at different ages. Interestingly, we did not observe a significant induction of these proteins (Atrogin-1, MuRF1) in the Fam210aMKOmuscle. Therefore, we conclude that the muscle atrophy was due to protein translation defects in the Fam210aMKO, independent of myoblast fusion and protein degradation (Figure S4C).
Are the growth curves of muscle mass growth in EDL and SOL the same in FAM210A knockout mice?
Answer: We thank the reviewer for the question. In the Myl1Cre mediated Fam210a KO model, Fam210a was deleted in both fast (EDL) and slow (SOL) muscles (see response to Reviewer 3, second point). We think that the “growth curve” of the EDL and SOL muscle should be same (stagnant and even reduced) upon Fam210a KO as the mouse grows from 4-week to 8-week.
The oxygen consumption and carbon dioxide production are higher in FAM210A knockout mice, suggesting a high metabolism rate. In contrast, the heat production of FAM210A knockout mice is lower, suggesting a low metabolism rate. Any explanation?
Answer: The VCO2 and VO2 values were normalized to the body weight, and the KO value appeared high because their body weights were much lower at the time of test. While for heat production (unit: Kcal/hr), body weight was not a factor in the calculation. The seemingly contradicting/surprising result that a weak KO mouse could have higher VCO2 and VO2could be recapitulated in other mouse models (for example PMID: 22307625).
Given the high glucose consumption in FAM210A, why is the clearance rate of blood glucose low?
Answer: We believe there is a misunderstanding here. A smaller AUC (as seen in the KO) suggest faster blood glucose clearance. The circulating glucose level after fasting is lower in the KO mice, which suggests that the Fam210aMKO mice were consuming more glucose compared to the WT mice. In the GTT test, the Fam210aMKO mice showed a lower AUC after the injection of glucose, implying that the Fam210aMKO mice cleared the injected glucose at a faster rate, probably due to a pseudo-fasting state which would promote the uptake of circulating glucose when available.
Are there any changes of the abilities for the FAM210A knockout mice in running endurance?
Answer: Indeed, the Fam210aMKO mice ran less distance, shorter time, and at a lower speed when tested on a treadmill endurance running program (Figure 3)
In page 5, the last sentence of the 2nd paragraph, the authors concluded "There results suggest that Fam210aMKO induces a metabolic switch to a more oxidative state." It is better to describe it as muscle metabolic since the whole-body metabolism has not been carefully examined.
Answer: We thank the reviewer for pointing this out, we will change the wording to better reflect the changes observed in the Fam210aMKO mouse regarding the metabolism.
In Fig. 6, what is the link between increased transcription level of Fgf21 and the elevated level of aberrant acetylation of proteins?
Answer: We thank the reviewer for this interesting question! However, we did not pursue a direct causal relationship between Fgf21 level and aberrant protein acetylation. In our model, we are proposing that mitochondrial defects in the Fam210aMKO model can trigger the integrated stress response which leads to a higher Fgf21 transcript level in the muscle. This is coinciding with the acetylation increase in the muscle due to the excessive production of acetyl-CoA. A potential relationship between Fgf21 and protein acetylation warrant examination in a future study.
After careful considerations on the mechanism proposed in the study, we decided to remove qPCR data showing the modest increase of Fgf21 mRNA level. The removal of this data will not change the conclusions we draw nor lessen the significance of the mitochondria transfer experiment.
Is there any link between the increased acetylation level of rebolsome proteins and the translation defects?
Answer: Indeed, there are ample studies showing that ribosomal proteins can be acetylated, and that the acetylation of ribosomal proteins can affect the protein synthesis process, for example in PMID: 35604121 and PMID: 37742082. Here in this paper, we showed by ribosome profiling assay that the muscle has defects in the polysome formation (at 4-week and 6-week), when the protein acetylation was significantly increased in the Fam210aMKO mice (Figure 4D-4G).
How do the abnormal mitochondria lead to increased protein acetylation? And how do these defects further cause translation problem?
Answer: As elaborated in the discussion, we propose that upon Fam210a KO in mature myofiber, the TCA cycle in the mitochondria was disrupted, blocking utilization of acetyl-CoA and resulting in the accumulation of acetyl-CoA in the muscle. The excess acetyl-CoA lead to increased protein acetylation in the cytosol. We identified that ribosomal proteins are hyperacetylated in the muscle. We also observed that the polysome formation in the muscle was impaired, which exacerbates the translation efficiency.
Consistently, when we treated C2C12 during in vitro culture with sodium acetate to mimic the increase of acetylation of proteins, we showed that excessive levels of acetyl-CoA can block the differentiation of C2C12 cells (Response Figure 3).
Response Figure 3. The effect of sodium acetate on the differentiation of C2C12 myoblasts.
The differentiation of C2C12 myoblasts into myotubes were probed by the protein abundance of Myog and MF20, which showed a decrease in the expression level when sodium acetate was added in increasing amounts.
The defects in translation will cause general problems besides mitochondria defects. Are there any phenotypes related to the overall translation inhibition observed? If not, why?
Answer: Just to clarify, our model suggests that mitochondrial defects in the Fam210a KO causes cytosolic translation defects, not the other way around. We showed by SUnSET experiment that the global translation was indeed reduced in the Fam210aMKO muscle at 4-week. We also observed that the p-S6 level which indicates the global protein translation was decreased. It is also true that the global translational arrest can exacerbate the mitochondrial defects and fewer mitochondrial proteins can be synthesized. This feed forward loop can explain the aggravating phenotype in the Fam210aMKO mouse as the mouse gets older.
Are the abnormal mitochondria, increased protein acetylation, and translation inhibition observed in 2-6 weeks old mice? When were these defects first found? Are they correlated with muscle atrophy?
Answer: At 2-week-old, the protein synthesis or degradation was not changed between WT and Fam210aMKO mice (Figure S4C). The mitochondria abnormality was first observed at 4 weeks of age, concomitant with the decrease of protein translation (decreased p-S6), polysome formation, and protein hyperacetylation. The acetylation increase was apparent at 6-week together with decreased p-S6 level, polysome assembly and mitochondrial defects. Decreased protein translation has been shown to cause muscle atrophy (PMID: 19046572).
Reviewer #1 (Significance (Required)):
This manuscript described many interesting phenotypes of Fam210a knockout mice. However, the links between these phenotypes are obscure. The logic of the manuscript will be greatly improved if the authors could provide explanations to logically link the phenotypes.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
Summary: In this manuscript, Chen et al., investigate the functions of FAM210A in skeletal muscle physiology and metabolism. FAM210A is a mitochondria-localized protein in which mutations have been associated with sarcopenia and osteoporosis. Using publicly available gene expression datasets from human skeletal muscle biopsies the authors first demonstrate that the expression of FAM210 is reduced in muscle atrophy-associated diseases and increased in muscle hypertrophy conditions. Based on this, they show that a muscle specific Fam210a deletion leads to muscle atrophy/weakness, systemic metabolic defects, and premature lethality in mouse. Further examination of the knockout myofibers reveals impaired mitochondrial respiration and translation program. Additionally, the authors demonstrate that the flow of TCA cycle is disrupted in the FAM210A-deleted myofibers, which causes abnormal accumulation of acetyl-coA and hyperacetylation of a subset of proteins. The authors claim that Fam210a deletion in skeletal muscle induces the hyper-acetylation of several small ribosomal proteins that leads to ribosomal disassembly and translational deficiency. However, this conclusion is not supported by adequate experimentation and rigorous analysis of ribosomal proteins acetylation and ribosome assembly.
Major comments:
-In general, figure legends are lacking information regarding number of biological replicates used and details about statistical analysis. What does three * vs. one * mean in terms of p-value? Exact p-values should be indicated.
Answer: We thank the reviewer for pointing this out, we have added the information to the revised figure legends.
-The mechanistic studies linking muscle phenotypes with ribosomal protein hyperacetylation and mRNA translation defects are underdeveloped and not rigorously carried.
Answer: We agree with the reviewer and have added new data in the revised manuscript to strengthen this link. For example, we have now provided direct evidence on the defective polysome assembly in the Fam210a KO muscles (Figure 4D-4G), which should profoundly impact mRNA translation. In addition, other groups have also shown that ribosomal protein acetylation can impact mRNA translation and polysome formation (PMID: 35604121).
We also explored the effect of acetylation on differentiation (a process accompanied by extensive protein synthesis) related to our mouse model. We used sodium acetate to elevate acetylation during C2C12 differentiation. We found that increased acetylation indeed impaired the differentiation as can be seen by the reduced expression of MF20 (myosin protein) by WB and IF. The differentiation marker Myogenin was also reduced (Response Figure 3, 4).
Response Figure 4. Immunofluorescence staining of Myog and MF20 in the differentiated C2C12 myotubes treated with different amounts of sodium acetate.
The number of MF20 (green) positive myotubes and Myog (red) positive nuclei was significantly reduced in the cells treated with 15mM and 30mM sodium acetate.
-Fig S1: The validation WB of FAM210A KO is not the most convincing. Why are the FAM210A levels so low in TA compared to other tissues?
Answer: This is due to the insufficient proteins loaded as it was obvious from the Tubulin marker. We have replaced the WB blot with more convincing blots as requested (Figure S1C).
-Fig 2G: The authors state "Hematoxylin and eosin (H&E) staining did not reveal any obvious myofiber pathology in the Fam210a KO mice up to 8 weeks". However there seems to be a progressive increase in nuclei up to 8-weeks in the KO. What is the significance of this?
Answer: Thank you for pointing this out. We have now changed the wording and quantified the myonuclei number per myofiber. The increase of myonuclei in the H&E images is likely due to the smaller myofiber size in the Fam210aMKOmouse compared to the WT (Response Figure 5).
Response Figure 5. Quantification of the myonuclei number in the H&E images.
-IP-MS analysis for FAM210A interacting proteins requires validation with IP and reverse IP + WB experiment.
Answer: We did perform the co-IP with SUCLG2 and FAM210A antibodies to try to confirm the interaction. To be more specific, we transduced C2C12 myoblasts cells with an Fam210a overexpression virus and differentiated the cells for 3 days. The myotubes were used to test the interaction by pulling down Fam210a with a myc antibody (FAM210A has a myc tag) and blot with SUCLG2 antibody. Unfortunately, the results were not promising (Response Figure 6). We reasoned that the interaction might be indirect or too transient to be reliably detected.
Response Figure 6. co-IP of SUCLG2 and FAM210A.
- Figure 4A requires quantification of the SDH signals from multiple samples.
Answer: We thank the reviewer for this suggestion. We have added the quantification of the staining (Figure S5B).
- Figure 6F: To clearly demonstrate an increase in protein acetylation in the FAM210 MKO, the authors must provide quantification data generated with more then N=1. Please add the molecular weights markings on the side of the blots.
Answer: We thank the reviewer for this suggestion, we have provided the quantification of the Acetylated-lysine blots, and added the molecular weight markers (Figure 6F, Figure S6C).
- Figure 6H and S5: The mitochondria transfer experiment appears to be quite efficient compared to previously published studies. It would be important to control that the signal observed in the recipient cells is not due to the leakage of the MitoTracker dye from the donor mitochondria.
Answer: This is an interesting point though MitoTracker dye is not supposed to leak as it covalently binds to mitochondrial proteins. Even though the dye may leak to mark the endogenous mitochondrial, it does not affect our goal to demonstrate that transfer of Fam210aMKO mitochondria into healthy cells can induce protein hyperacetylation. Additional evidence argues against the leakiness of Mitotracker dye to subsequently mark other mitochondria in the recipient cells: 1) mtDNA and MitoTracker signal both increase linearly with the increasing amounts of mitochondria transferred (Figure S7A); 2) We have now also included confocal images to show the presence of both MitoTracker labeled and non-labeled mitochondria in the recipient cells. We reason that if MitoTracker leaks within a cell then it would have labeled all mitochondrial in that cell (Figure 7C).
- Figure 6J: The increase in Fgf21 is modest. Although the difference is statistically significant, is it biologically important?
Answer: We thank the reviewer for this question; indeed, the increase is modest. We think the reason of the modest increase compared to the drastic increase seen in vivo was because when we transplanted the WT and Fam210aMKOmitochondria to the recipient cell, the original mitochondria in the recipient were not depleted, which could explain the milder effect. However, we were able to show that the recipient cells readily increase the acetylation of proteins after receiving the Fam210aMKO mitochondria, recapitulating the phenotype we saw in the Fam210aMKO muscle.
After careful considerations on the mechanism proposed in the study, we decided to remove qPCR data showing the modest increase of Fgf21 mRNA level. The removal of this data will not change the conclusions we draw nor lessen the significance of the mitochondria transfer experiment.
- Figure 6C: How significant is the difference in acetylation of RPL30 in WT vs. KO. RPS13 was not found in the WT MS? Was this normalized to Input?
Answer: the MS was performed with same loading. The mass spectrometry results for protein identification after AcK-IP were from pooled samples from 3 independent replicates (as the KO muscles are very scarce). Therefore, there was not a significance test.
- Figure 7D: What are the MW of the bands shown on this blot? This experiment is by no means sufficient to demonstrate and confirm that ribosomal proteins are acetylated. An increase in RPL30 and RPS13 acetylation must be directly assessed.
Answer: We thank the reviewer for suggesting the more direct assays to look at RPL30 and RPS13 acetylation. We have shown that the ribosome fractions were indeed hyperacetylated in the Fam210aMKO mouse compared to the WT control (Figure S6D). We agree that this result cannot lead to the conclusion that the RPL30 and RPS13 are specifically hyperacetylated. Indeed, we have tried to use Acetylated lysine antibody pull down and RPS13/RPL30 blot to show the increase in the acetylated RPS13/RPL30 protein. However, we cannot show a robust increase in the acetylation, potentially due to the low number of acetylation sites on RPS13 and RPL30 protein. We therefore have reworded the conclusion in the revised manuscript to better reflect the results.
- Fig7E: This experiment is not properly executed and in its current state does not rigorously support that "hyper-acetylation of several small ribosomal proteins leads to ribosomal disassembly". A) UV profiles of the fractionation must be provided to assess the quality of the profile. B) Provide MW markers. Which band is RPL30? The Input and free fraction bands are not at the same size. RPL30 should at least be visible on the 60S and polysomes from the WT. C) These results do not match the acetylation MS data, which seem to show that the increase in acetylation is much greater for RPS13. However, RPS13 presence on polysomes (assuming they are polysomes) is not affected in the KO. D) This type of experiment must be done for three independent biological replicates, blots from single lanes must be quantified and normalized to total signal (from all the lanes) for the same antibody.
Answer: we appreciate the great advice on improving the experiment. As suggested, we have now added proper experimentation (UV profile, and better WB), with the help of Dr. Kotaro Fujii (included as co-author in the revised manuscript). The following results showed that in the 4-week sample, there was a decrease in the 80S monosome and polysome in the Fam210aMKO mice compared to the WT. The change was more drastic at 6-week (Figure 4D-4G). Similarly, due to the scarce amount of muscle in the KO mice, we need to pool samples from the 6-week-old mice for the experiment, and hope the reviewer can understand the situation. With the clear peaks shown in the UV profile as well as the WB results, we provide more convincing evidence that the polysome assembly was indeed impaired in the Fam210aMKO (Figure 4D-4G).
- Fig 7F: Global translation rates are assessed by puro incorporation at week 4, a time point when differences in protein acetylation were not observed. This does not support the hypothesis that increased acetylation of ribosomal proteins causes defect in protein translation. (Referencing the authors statement p.7 lines 321-24.).
Answer: We thank the reviewer for this question. When we quantified the protein acetylation increase in the muscle at 4-weeks, we showed that there was a significant increase. But like the reviewer said, the ribosomal fractions were not significantly acetylated by WB at 4-week. We reasoned that, at early stages (4-weeks), the ISR signaling can lead to the translational arrest, along with the polysome formation defects, leading to the decreased protein translation. These are included in the discussion.
- Other studies have implicated Fam210A in the regulation of mitochondrial protein synthesis through an interaction with EF-Tu. The authors also identified EF-Tu as an interactor in their LC-MS analysis (FigS4). A role for this interaction accounting for mitochondrial and translation defects seems to be underestimated and unexplored here.
Answer: We agree with this point and believe the cytoplasmic translation defects are in addition to the mitochondrial translational defects. We have shown that FAM210A KO leads to the decrease of the MTCO1 which is encoded by the mitochondrial genome. Besides, we also showed by mitochondrial proteomics that TUFM was reduced in the KO, which also contributed to translational arrest in the mitochondria (Figure 5J). To answer whether mitochondrial encoded proteins are decreased in upon Fam210a KO, we blotted the protein lysates at different stages with antibodies for a few mitochondrial encoded proteins and showed that they decreased with ages (Response Figure 7).
Response Figure 7. WB analysis and quantification of mitochondrial encoded proteins in WT and Fam210aMKO muscle at different ages.
The mitochondrial proteins were indeed decreased in Fam210aMKO starting from 6-weeks of age compared to the WT.
Minor comments:
-What is known about FAM210A, other studies assessing its role, and the rational for studying its function should be better introduced.
Answer: We thank the reviewer for the suggestion to have more information of FAM210A functions/mechanisms in the introduction. We have added more background to the introduction.
-In the discussion the authors states: "Moreover, when the proportion of ribosomal protein phosphorylation buildup in the Fam210aMKO, the assembly of the translational machinery is impaired therefore further dampen the cellular translation". Do they mean acetylation and not phosphorylation?
Answer: We are sorry about the typo and have changed it. We thank the reviewer for catching this.
- Please use the term "mRNA translation" or "protein synthesis" instead of "protein translation" in the text.
Answer: We thank the reviewer for the suggestion to properly refer to these processes. We have changed the terms in the manuscript.
-The methods section for RT-qPCR: It should ne M-MLV RT and not M-MLC. If the qPCR data was normalized with 18S, please provide the sequence of the primers in the table. Information on how primer efficiency was tested must be included in the method section.
Answer: We thank the reviewer for pointing this out. We have changed the texts. We also have provided 18S sequence and provide texts about how primer efficiency was tested.
Reviewer #2 (Significance (Required)):
General assessment: Previous genome-wide association studies have found that mutations in FAM210A were associated with sarcopenia and osteoporosis. Because FAM210A is not expressed in the bone and highly expressed in skeletal muscle, it suggests that FAM210A likely plays an important role in muscle, which could also affect bone regulation. The authors here provide further evidence of an important role for FAM210A in diseases affecting muscle function by demonstrating that the expression of FAM210A decreases with age and in patients affected by Pompe disease, Duchenne muscular dystrophy and hereditary recessive myopathy. FAM210A is a mitochondria-localized protein and given the crucial role of mitochondria in supporting muscle metabolism, elucidating the molecular function of FAM210A may provide important insights into diseases biology that could lead to the development of therapeutic approaches. Thus, a significant protein and regulatory pathway are explored in this study that can potentially impact human health. In this manuscript, the authors provide compelling evidence of the importance of Fam210a in muscle homeostasis with their newly generate mouse model. The experiments looking at muscle physiology, function and metabolism are well-executed and for the most part rigorous, which are the strengths of this manuscript. However, the conclusion that Fam210a deletion in skeletal muscle induces the hyper-acetylation of several small ribosomal proteins, which leads to ribosomal disassembly and translational deficiency is not supported by the data presented here. As noted in the comments above, these experiments need major improvement. Additionally, there are other concerns about general scientific rigor and conclusions inconsistent with the data presented as also noted in the comments section.
Advance: Although a previous study explored the role of FAM210A using a skeletal muscle-specific KO induced at postnatal 28 days under a HSA promoter, the model used by the authors here provide a cleaner approach and more insights into the molecular functions of FAM210A in muscle physiology. The findings that Fam210a MKO disrupts the flow of TCA cycle, which leads to an abnormal accumulation of acetyl-CoA is interesting and provide new conceptual advance on the roles of FAM210A in mitochondria function in muscle. Acetyl-CoA production is an important source of acetyl-group that can be transferred to proteins and regulate gene expression programs. Thus, this is an important finding. However, molecular mechanism by which FAM210A regulates this process through an interaction with SUCLG2 is not provided and the nature this interaction is superficially explored.
Audience: Findings from this manuscript are likely to interest both basic research and translational/clinical audiences as it explores the physiological and molecular function of a disease-linked protein. The findings are also likely to impact the fields of metabolism, mitochondria function and regulation of gene expression by protein acetylation (if concerns raised regarding these experiments are addressed).
The fields of expertise of this reviewer are protein and RNA modifications, ribosome biogenesis and mRNA translation.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
The authors state that in their manuscript "the role of mitochondria in regulating cytosolic protein translation in skeletal muscle cells (myofibers)" has been explored (Line 19-20). As experimental model, they used mice expressing Cre recombinase under the control of the myosin light chain 1 promoter. The first conclusion was that "FAM210A is positively associated with muscle mass in mice and humans". The authors say that the presented data "reveal a novel crosstalk between the mitochondrion and ribosome mediated by FAM210A".
I recognize the potential of this work since the role of FAM210a has been more deeply investigated in skeletal muscle. In fact, the study by Tanaka et al, 2018 presented only a preliminary characterization of the role of FAM210a in muscle. However, I think that this work is not complete and each aspect that has been investigated is not well connected with each other. In particular, it is not clear whether the disrupted ribosomal assembly by hyperacetylation causes muscle atrophy or it is altered under catabolic states during atrophy (primary cause or consequence of?).
Answer: We thank the reviewer for recognizing the importance of the study that characterizes the effect of FAM210A in muscle mass maintenance. In this study, we have shown that polysome formation was impaired at 4-week and therefore the translational efficiency was reduced in the muscle. This translational decrease coincides with the acetylation increase. Moreover, we showed by mitochondrial transfer experiment that the mitochondria from the Fam210aMKO mice can carry the phenotype and lead to acetylation increase in the recipient cells. Since muscle protein synthesis defects have been known to lead to muscle dystrophy, and we have shown that in the Fam210aMKO model, protein synthesis was indeed defective while there was not an induction of atrophy. Therefore, we conclude that the in the KO model, the protein synthesis defects lead to muscle atrophy.
The other major point is represented by the fact that the Myl1-CRE expressing model provides selectivity in fast muscle fibers (see for example Barton PJR, Harris AJ, Buckingham M. Myosin light chain gene expression in developing and denervated fetal muscle in the mouse. Development. 1989;107: 819-824). Then the authors knocked out FAM210a only in fast fibers and they never take in consideration this key point! This is crucial since fast and slow muscles have different content of mitochondria with different size, shape, and metabolism! The muscle fibers can be classified based on the mitochondrial metabolism (see for example Chemello et al., 2019; PMID: 30917329).
Regarding this point, they simply wrote at Line 75-76 "using a skeletal muscle specific Myl1 (myosin, light polypeptide 1) driven Cre recombinase specifically expressed in post-differentiation myocytes and multinucleated myofibers,...". It would be more correct to write multinucleated type 2 myofibers showing the reduction of FAM210a in different fiber types.
I think that the authors must solve these aspect and then organize the findings accordingly. The data are in general interesting for broad type of audience.
Answer:
We appreciate the reviewer’s comment on the Myl1 knock-in Cre (Myl1Cre) model, which prompted us to more explicitly clarify some of the confusions around this model. We fully respect the validity of the 1989 study by Dr. Buckingham and other studies showing fast muscle specific expression of Myl1. However, we and others have shown that Myl1 not only mark the fast but also the slow myofibers (elaborated below). The discrepancy can be explained by the fact that using the Myl1Cre as a lineage marker is different from directly examining Myl1 expression at static timepoints by in situ hybridization (ISH). This is because Cre recombinase can accumulate and diffuse to all the myonuclei in a multinucleated myofiber, subsequently leading to deletion of LoxP-flanked DNA in all nuclei. Also, in the Cre/LoxP system, only a small amount of Cre recombinase is needed to induce the recombination of the target loxP sites and lead to gene KO. Another example of the discrepancy between the static mRNA pattern and the dynamic gene expression during development is the Hox gene expression. When the corresponding author (SK) of this manuscript was trained with Dr. Joshua R Sanes, he developed 3 Cre lines driven by three different Hox genes– that have been shown by ISH to be expressed in a specific rostral to caudal domain in the spinal cord during development. However, each of these Cre model ended up marking all the spinal cord without any domain specificity. In the case of Myl1Cre mouse model, we have previously published a paper on the lineage-tracing results using the Myl1Cre and showed that Myl1Cre marked all fast AND slow myofibers in mice (Wang et al, 2015, PMID: 25794679). In another lineage tracing study using nuclear GFP reporter, we report that Myl1Cre marks 96% nuclei in myofibers regardless of fiber types (Bi et al., 2016, PMID: 27644105), the remainder 4% non-marked nuclei potentially represent satellite cells. Other groups have also used the Myl1Cre model to induce KO in both fast and slow muscles (Pereira et al, 2020, PMID: 31916679). Therefore, we believe that the Myl1Cre mouse model allows us to efficiently knockout the Fam210a gene in both slow and fast muscle.
To directly confirm that Fam210a was efficiently knocked out in both slow and fast muscles using the Myl1Cre mouse model, we isolated different muscle groups (Soleus and diaphragm that contains a large fraction of slow myofibers, TA and EDL that contain predominantly fast myofibers) and checked the expression level and the KO efficiency of Fam210a by WB. We have shown that even in slow muscles like diaphragm and SOL, the KO was very efficient, as there were no visible FAM210A bands in the WB (Figure S1C).
In more detail:
The data must be analyzed and discussed based on the fact that FAM210a has been deleted specifically in fast fibers. First the authors must show the protein levels of FAM210a in both fast, slow and mixed fast-slow muscles. Then for example in Figure S1C EDL, GAS and SOL muscles must be included.
Answer: This is related to the misunderstanding of the Myl1Cre model. We understand the reviewer’s concern and therefore isolated proteins from different muscles in WT and Fam210aMKO mice at 4-weeks and checked the expression level of FAM210A. We have shown that regardless of fast or slow muscles, FAM210A was deleted.
The blot in general must be repeated since it has poor quality (continuum of FAM210a band in the samples).
Answer: We thank the reviewer for this suggestion and increase the data quality. We have changed the original blot with the following blots showing that FAM210A was not deleted in other non-muscle tissues (Figure S1C).
Please provide staining of TA, GAS and SOL muscles to show how Myl1CRE-directed deletion of FAM210a affect the different myofibers.
Answer: This point is also related to assumption that Myl1Cre only induce deletion in fast myofibers. We have done staining in both EDL and SOL muscle to show the relative changes in myofiber compositions. We found that the myofibers in EDL and SOL muscle have shifted to a more oxidative type upon Fam210a KO (Figure S3).
In Figure 2F where decreased TA muscle weight was showed in the Fam210aMKO mice, the authors must include also the other muscles (EDL, GAS and SOL).
Answer: We thank the reviewer for helping us be more rigorous on the phenotype examination. We understand that the reviewer initially raised this question because of the concern on Myl1Cre model. Now that we have shown the MylCremarks both the fast and slow muscles, we believe this question is no longer a concern. Besides, to indirectly answer the question, we would like for the reviewer to appreciate the size difference of the EDL as well as the SOL muscle in Figure S3 in the manuscript. As can be seen from the images, the size of the SOL muscles in the KO was significantly reduced compared to the WT, speaking in favor of the KO effect on slow muscles.
In general, since the HSA-CRE model is generally used for gene manipulation in skeletal muscles the authors must characterize their model considering that the myosin light chain 1 promoter Myl1-Cre is mainly active in postmitotic type II myofibers. The last model can also give advantage for mosaic gene manipulation in muscles with mixed fiber types.
Answer: We thank the reviewer for bringing this point up. We hope by the multiple lines of evidence that we provided in the previous questions, we can convince the reviewer that the KO model using the Myl1Cre does not lead to a mosaic gene manipulation in the muscle. On the contrary, the KO model is a homogeneous KO in both fast and slow muscles.
Line 118-119 Fam210a level is positively corelated with muscle mass, as it is reduced in muscle atrophy conditions and increased in muscle hypertrophy conditions. Fig 1: I don't like since there are many different models in which the muscle mass reduction is associated with different mechanisms. Then independently of mechanisms associated with changes in muscle mass Fam210a is always linked to? Which common mechanism can explain this?
Answer: We understand that the reviewer would like to pursue a conserved mechanism governing muscle mass maintenance, however, we by no means wanted to make a direct causal relationship between FAM210A level and different muscle disease/atrophy conditions. Indeed, the atrophic conditions presented have different mechanisms leading to muscle mass reduction, yet we wanted to present the possible connection that Fam210a level and muscle mass are co-regulated, and we later confirmed by KO mouse model that FAM210A KO indeed reduces muscle mass.
Line 144-146 Hematoxylin and eosin (H&E) staining did not reveal any obvious myofiber pathology in the Fam210aMKO mice up to 8 weeks (Figure 2G). I totally disagree! It seems that there is more inflammation upon deletion of Fam210aMKO. Please check it.
Answer: We thank the reviewer for pointing this out to help us more rigorously describe our results. We have changed the wording to better reflect the changes observed with H&E images.
Fig3E-L there is a huge difference between EDL and SOL. The authors can't avoid to discuss their data considering the real expression of CRE upon Myl promoter: specific deletion in fast fibers. I think that the data in FIGS3 are very important and must be linked to data in Fig3. Organize in a different way all the presented data to really describe what is happening upon deletion of Fam210a.
Again, the authors MUST organize better their data in the manuscript: to each paragraph must correspond data in the main figures. For example: at Line 189 Fam210aMKO mice exhibit systemic metabolic defects and at Line 208 Fam210aMKO increases oxidative myofibers and decreases glycolytic myofibers. These two paragraphs discuss data showed only in supplementary figures.
Answer: We thank the reviewer for this suggestion. As shown in the previous responses, the Myl1Cre indeed induce efficient deletion of Fam210a in slow muscles. Therefore, we did not consider this to be a myofiber-specific deletion model. We consider these two results as the effect of a mitochondrial protein (FAM210A) on the myofiber metabolism (independent of myofiber type specific deletion), and that the deletion of Fam210a results in mitochondrial stress, which can lead to myofiber switch (Figure S3).
Physical activity mast be monitored. Show respiratory exchange ratio (RER = VCO2/VO2) and discuss the results.
Answer: We thank the reviewer for this suggestion. By these results, we would like to demonstrate that muscle homeostasis is important for the systemic metabolism, disruption of muscle mass maintenance in the Fam210aMKO mice leads to defects in the whole-body metabolism. We have now included the RER results (Figure S2F, S2G). The results show that the Fam210aMKO mice had significantly lower RER (VCO2/VO2) value at daytime, indicating that the mice rely more on utilizing fat as the fuel source. This is consistent with the proteomics results (Figure 5K) that the Fam210aMKOmice have increased FAO pathway. Unfortunately, our metabolic chamber does not have the capacity to monitor activity. We instead include data on heat production (Figure S2E).
"Fam210aMKO increases oxidative myofibers and decreases glycolytic myofibers". The data mast be associated with the evaluation of the expression levels of FAM210 in different fiber type to really understand what is happening upon FAM210a loss.
Answer: We understand the reviewer’s concern on the different expression level of Fam210a as well as the KO efficiency using the Myl1Cre model. We have shown that Fam210a is knocked out in fast and slow muscles, therefore, we did not consider the effects on fast and slow myofibers separately.
As SDH activity in type 1 fibers is higher than type 2 the and since the authors are using a model in which Fam210a is deleted only in type 2 fiber they should understand what is happening: fiber 1
Answer: We agree with the reviewer that the SDH activity is different in different myofibers. We have shown by western blot that FAM210A was similarly KO in both fast and slow muscles. When we performed fiber type staining in EDL and SOL muscle, we saw that there was a shift towards the slower myofiber types both in the EDL and SOL muscle, due to mitochondrial defects.
Associate a cox assay with the sdh assay
Answer: We thank the reviewer for this suggestion. We have shown by SDH staining as well as seahorse experiments using isolated mitochondria that the complex II activity was impaired in the muscle. We understand the reviewer would like to see a COX assay to show the defects of the mitochondrial function. Though we were not able to perform the COX assay, we showed from other aspects that the mitochondrial function was impaired by running WB of the mitochondrial encoded proteins (ATP6, MTCO2, mtCYB) and showed these proteins were decreased with ages. Along with the morphological changes of the mitochondria shown by electron microscope (Figure 5 and Figure S5), we conclude that these changes must have impacted mitochondrial function.
Figure 4b blot tubulin and FAM210a look strange. Look especially at first and second and fourth form the left side.
Answer: We are sorry about the mistake in the images, we have changed the Tubulin blot in the Oxphos blots.
Figure 4B OXPHOS protein levels look similar between wt and KO. Include the quantification with the significance (min 3-5 mice per genotype).
Answer: we have quantified the change between WT and KO on different proteins (Reponse Figure 8).
Response Figure 8. Quantification of the OxPHOS proteins in WT and Fam210aMKO muscle at different ages.
Quantification of the blots showed that indeed the mitochondrial proteins were decreased in the Fam210aMKO. The change of mitochondrial encoded protein MTCO1 was earlier detected in the Fam210aMKO.
Provide TEM analysis for SOL muscle. I would understand whether mitochondria are differently affected in fast and slow muscles.
Answer: We understand the reviewer was originally concerned about the KO efficiency of Fam210a in fast and slow muscles, based on the assumption about the MylCre model. We have shown that the FAM210A protein was similarly depleted in both fast and slow muscles by western blot. In this case, we would speculate that the mitochondrial change in fast and slow muscles would be similar because the mitochondrial changes were due to the inherent defects in the mitochondria.
In all experiments must be clear which muscle type or types was/were used:
Line 268: "isolated from WT and Fam210aMKO muscles at 6 weeks of age".
Line 587 "Muscle lysate acetyl-CoA contents"
For Seahorse Mitochondrial Respiration Analysis at Line 599 "isolated mitochondria from muscle"
For TCA cycle metabolomics at Line 615 "muscle tissue was weighed and homogenized"
For SCS activity assay at Line 632 "mitochondria from muscles were isolated"
For LC-MS/MS at Line 647 "Mitochondria were purified from skeletal muscles and subjected to proteomics analysis".
For Ribosome isolation at Line 676 "Skeletal muscle from mice"
For Polysome profiling experiment at Line 696 "muscle tissues from mice were dissected"
It is important to know which muscles were used since confounding effects of the specific deletion of FAM210a in type 2 fibers must be identified and discussed.
Answer: We thank the reviewer for considering the different muscle groups in our mouse model. For experiments requiring a large amount of muscle tissue, such as ribosome isolation, mitochondrial isolation and polysome profiling, we used all the muscles from the mouse. For WB experiments, we used the TA muscle. We have included this information in the method section in the manuscript. Since we have shown that FAM210A was similarly depleted in different muscles (see previous responses), we think it is justified to pool muscles from the same mouse.
Line 296-297 The authors wrote "Consistently, the mRNA levels of Atf4, Fgf21 and the associated transcripts were highly induced in the Fam210aMKO 296 both in the 4-week and 6-week-old muscle samples". Is Fgf21 responsible for the reduction of body weight? (see for example PMID: 28552492, PMID: 28607005 and PMID: 33944779). Measure the circulating Fgf21 protein in Ko and wt mice.
Answer: We thank the reviewer for this great suggestion. Indeed, Fgf21 can potentially lead to body weight reduction, and this can explain the smaller body weight in our mouse model as well. However, we are more concerned about the muscle changes in our mouse model, therefore we did not further validate the changes of Fgf21 in the circulation.
After careful considerations on the mechanism proposed in the study, we decided to remove qPCR data showing the modest increase of Fgf21 mRNA level. The removal of this data will not change the conclusions we draw nor lessen the significance of the mitochondria transfer experiment.
Moreover the authors must check Opa1 total protein level and also the ratio between long and short isoforms. Is Fam210a interacting with Opa1?
Answer: We thank the reviewer for this interesting question. Another publication from our lab has shown that Fam210a can modulate the cleavage of OPA1 in brown adipose tissue and influence the cold-induced thermogenesis (PMID: 37816711). Indeed, OPA1 deletion in muscle can lead to muscle atrophy and postnatal death at about day 10 (PMID: 28552492) through the induction of UPR (ISR) and the induction of Fgf21. We did not check the interaction between FAM210A and OPA1 in the muscle context, and FAM210A was not found to be interacting with OPA1 in brown adipose tissue (PMID: 37816711). However, the focus of this study was the acetylation change and the FAM210A effect on muscle mass maintenance. Therefore, we did not pursue the OPA1 related mechanism in skeletal muscle.
The final part of the paper is really interesting but need to be discussed knowing exactly the used experimental model. Then check in which fiber types FAM210a is loss.
Answer: We thank the reviewer for the stringency on the model used. Indeed, the mitochondria can be different from different muscle groups. However, since the muscle isolated from WT and KO mice was properly controlled and therefore can balance the effects of different mitochondria. We have consistently observed the increased acetylation when mutant mitochondria were transferred.
Regarding the mitochondrial transplantation I'm surprise to see that it happens in the direction of unhealthy mitochondria to healthy cells. Are you able to rescue the phenotype of Fam210a KO cells with healthy mitochondria?
Answer: We thank the reviewer for bringing this interesting yet important question up! Our mitochondrial transfer results support a “gain-of-function” model where excessive Acetyl CoA produced by the Fam210a-KO mitochondrial induces hyperacetylation. Regarding the question to transfer healthy mitochondria to rescue the KO cells, we reason that even when we transfer the healthy mitochondria to the KO cells, the healthy mitochondria will not stop the mutant mitochondria from making excessive amounts of acetyl-CoA and thus protein acetylation. A clean transfer would require depletion of the mitochondria in the KO cells and concomitant restoring FAM210A level in the KO cells (as the lack of Fam210a gene in the KO cells will eventually convert the transferred mitochondrial into mutants with the normal turnover of FAM210A). This is technically highly challenging and nearly impossible to do. We hope that the reviewer can understand the difficulties.
Reviewer #3 (Significance (Required)):
In conclusion, the strength of the presented paper is the novelty: the authors explored the role of FAM210a in skeletal muscle. However, the major limitation is represented by the fact that they did not show in which fiber types Fam210a is knocked out. In fact, the used CRE recombinase expressing model is well-known to be specific for type 2 fibers. Then since mitochondria and metabolism are central in this manuscript and they are different in the fast and slow fiber types, the authors must dissect in details this point.
Moreover, there are many data but they are not linked each other and discussed properly. The paper must be completely re-organized.
This manuscript can be interesting for a broad type of audience.
I'm an expert on mitochondria, metabolism and skeletal muscle.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
The authors state that in their manuscript "the role of mitochondria in regulating cytosolic protein translation in skeletal muscle cells (myofibers)" has been explored (Line 19-20). As experimental model, they used mice expressing Cre recombinase under the control of the myosin light chain 1 promoter. The first conclusion was that "FAM210A is positively associated with muscle mass in mice and humans". The authors say that the presented data "reveal a novel crosstalk between the mitochondrion and ribosome mediated by FAM210A".
I recognize the potential of this work since the role of FAM210a has been more deeply investigated in skeletal muscle. In fact, the study by Tanaka et al, 2018 presented only a preliminary characterization of the role of FAM210a in muscle. However, I think that this work is not complete and each aspect that has been investigated is not well connected with each other. In particular, it is not clear whether the disrupted ribosomal assembly by hyperacetylation causes muscle atrophy or it is altered under catabolic states during atrophy (primary cause or consequence of?).
The other major point is represented by the fact that the Myl1-CRE expressing model provides selectivity in fast muscle fibers (see for example Barton PJR, Harris AJ, Buckingham M. Myosin light chain gene expression in developing and denervated fetal muscle in the mouse. Development. 1989;107: 819-824). Then the authors knocked out FAM210a only in fast fibers and they never take in consideration this key point! This is crucial since fast and slow muscles have different content of mitochondria with different size, shape, and metabolism! The muscle fibers can be classified based on the mitochondrial metabolism (see for example Chemello et al., 2019; PMID: 30917329).
Regarding this point, they simply wrote at Line 75-76 "using a skeletal muscle specific Myl1 (myosin, light polypeptide 1) driven Cre recombinase specifically expressed in post-differentiation myocytes and multinucleated myofibers,...". It would be more correct to write multinucleated type 2 myofibers showing the reduction of FAM210a in different fiber types.
I think that the authors must solve these aspect and then organize the findings accordingly. The data are in general interesting for broad type of audience.
In more detail:
The data must be analyzed and discussed based on the fact that FAM210a has been deleted specifically in fast fibers. First the authors must show the protein levels of FAM210a in both fast, slow and mixed fast-slow muscles. Then for example in Figure S1C EDL, GAS and SOL muscles must be included. The blot in general must be repeated since it has poor quality (continuum of FAM210a band in the samples). Please provide staining of TA, GAS and SOL muscles to show how Myl1CRE-directed deletion of FAM210a affect the different myofibers. In Figure 2F where decreased TA muscle weight was showed in the Fam210aMKO mice, the authors must include also the other muscles (EDL, GAS and SOL). In general, since the HSA-CRE model is generally used for gene manipulation in skeletal muscles the authors must characterize their model considering that the myosin light chain 1 promoter Myl1-Cre is mainly active in postmitotic type II myofibers. The last model can also give advantage for mosaic gene manipulation in muscles with mixed fiber types. Line 118-119 Fam210a level is positively corelated with muscle mass, as it is reduced in muscle atrophy conditions and increased in muscle hypertrophy conditions. Fig 1: I don't like since there are many different models in which the muscle mass reduction is associated with different mechanisms. Then independently of mechanisms associated with changes in muscle mass Fam210a is always linked to? Which common mechanism can explain this? Line 144-146 Hematoxylin and eosin (H&E) staining did not reveal any obvious myofiber pathology in the Fam210aMKO mice up to 8 weeks (Figure 2G). I totally disagree! It seems that there is more inflammation upon deletion of Fam210aMKO. Please check it. Fig3E-L there is a huge difference between EDL and SOL. The authors can't avoid to discuss their data considering the real expression of CRE upon Myl promoter: specific deletion in fast fibers. I think that the data in FIGS3 are very important and must be linked to data in Fig3. Organize in a different way all the presented data to really describe what is happening upon deletion of Fam210a. Again, the authors MUST organize better their data in the manuscript: to each paragraph must correspond data in the main figures. For example: at Line 189 Fam210aMKO mice exhibit systemic metabolic defects and at Line 208 Fam210aMKO increases oxidative myofibers and decreases glycolytic myofibers. These two paragraphs discuss data showed only in supplementary figures. Physical activity mast be monitored. Show respiratory exchange ratio (RER = VCO2/VO2) and discuss the results. "Fam210aMKO increases oxidative myofibers and decreases glycolytic myofibers". The data mast be associated with the evaluation of the expression levels of FAM210 in different fiber type to really understand what is happening upon FAM210a loss. As SDH activity in type 1 fibers is higher than type 2 the and since the authors are using a model in which Fam210a is deleted only in type 2 fiber they should understand what is happening: fiber 1 Associate a cox assay with the sdh assay Figure 4b blot tubulin and FAM210a look strange. Look especially at first and second and fourth form the left side. Figure 4B OXPHOS protein levels look similar between wt and KO. Include the quantification with the significance (min 3-5 mice per genotype). Provide TEM analysis for SOL muscle. I would understand whether mitochondria are differently affected in fast and slow muscles. In all experiments must be clear which muscle type or types was/were used: Line 268: "isolated from WT and Fam210aMKO muscles at 6 weeks of age". Line 587 "Muscle lysate acetyl-CoA contents" For Seahorse Mitochondrial Respiration Analysis at Line 599 "isolated mitochondria from muscle" For TCA cycle metabolomics at Line 615 "muscle tissue was weighed and homogenized" For SCS activity assay at Line 632 "mitochondria from muscles were isolated" For LC-MS/MS at Line 647 "Mitochondria were purified from skeletal muscles and subjected to proteomics analysis". For Ribosome isolation at Line 676 "Skeletal muscle from mice" For Polysome profiling experiment at Line 696 "muscle tissues from mice were dissected" It is important to know which muscles were used since confounding effects of the specific deletion of FAM210a in type 2 fibers must be identified and discussed. Line 296-297 The authors wrote "Consistently, the mRNA levels of Atf4, Fgf21 and the associated transcripts were highly induced in the Fam210aMKO 296 both in the 4-week and 6-week-old muscle samples". Is Fgf21 responsible for the reduction of body weight? (see for example PMID: 28552492, PMID: 28607005 and PMID: 33944779). Measure the circulating Fgf21 protein in Ko and wt mice. Moreover the authors must check Opa1 total protein level and also the ratio between long and short isoforms. Is Fam210a interacting with Opa1? The final part of the paper is really interesting but need to be discussed knowing exactly the used experimental model. Then check in which fiber types FAM210a is loss. Regarding the mitochondrial transplantation I'm surprise to see that it happens in the direction of unhealthy mitochondria to healthy cells. Are you able to rescue the phenotype of Fam210a KO cells with healthy mitochondria?
Significance
In conclusion, the strength of the presented paper is the novelty: the authors explored the role of FAM210a in skeletal muscle. However, the major limitation is represented by the fact that they did not show in which fiber types Fam210a is knocked out. In fact, the used CRE recombinase expressing model is well-known to be specific for type 2 fibers. Then since mitochondria and metabolism are central in this manuscript and they are different in the fast and slow fiber types, the authors must dissect in details this point. Moreover, there are many data but they are not linked each other and discussed properly.The paper must be completely re-organized.
This manuscript can be interesting for a broad type of audience.
I'm an expert on mitochondria, metabolism and skeletal muscle.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Summary: In this manuscript, Chen et al., investigate the functions of FAM210A in skeletal muscle physiology and metabolism. FAM210A is a mitochondria-localized protein in which mutations have been associated with sarcopenia and osteoporosis. Using publicly available gene expression datasets from human skeletal muscle biopsies the authors first demonstrate that the expression of FAM210 is reduced in muscle atrophy-associated diseases and increased in muscle hypertrophy conditions. Based on this, they show that a muscle specific Fam210a deletion leads to muscle atrophy/weakness, systemic metabolic defects, and premature lethality in mouse. Further examination of the knockout myofibers reveals impaired mitochondrial respiration and translation program. Additionally, the authors demonstrate that the flow of TCA cycle is disrupted in the FAM210A-deleted myofibers, which causes abnormal accumulation of acetyl-coA and hyperacetylation of a subset of proteins. The authors claim that Fam210a deletion in skeletal muscle induces the hyper-acetylation of several small ribosomal proteins that leads to ribosomal disassembly and translational deficiency. However, this conclusion is not supported by adequate experimentation and rigorous analysis of ribosomal proteins acetylation and ribosome assembly.
Major comments:
- In general, figure legends are lacking information regarding number of biological replicates used and details about statistical analysis. What does three * vs. one * mean in terms of p-value? Exact p-values should be indicated.
- The mechanistic studies linking muscle phenotypes with ribosomal protein hyperacetylation and mRNA translation defects are underdeveloped and not rigorously carried.
- Fig S1: The validation WB of FAM210A KO is not the most convincing. Why are the FAM210A levels so low in TA compared to other tissues?
- Fig 2G: The authors state "Hematoxylin and eosin (H&E) staining did not reveal any obvious myofiber pathology in the Fam210a KO mice up to 8 weeks". However there seems to be a progressive increase in nuclei up to 8-weeks in the KO. What is the significance of this?
- IP-MS analysis for FAM210A interacting proteins requires validation with IP and reverse IP + WB experiment.
- Figure 4A requires quantification of the SDH signals from multiple samples.
- Figure 6F: To clearly demonstrate an increase in protein acetylation in the FAM210 MKO, the authors must provide quantification data generated with more then N=1. Please add the molecular weights markings on the side of the blots.
- Figure 6H and S5: The mitochondria transfer experiment appears to be quite efficient compared to previously published studies. It would be important to control that the signal observed in the recipient cells is not due to the leakage of the MitoTracker dye from the donor mitochondria.
- Figure 6J: The increase in Fgf21 is modest. Although the difference is statistically significant, is it biologically important?
- Figure 6C: How significant is the difference in acetylation of RPL30 in WT vs. KO. RPS13 was not found in the WT MS? Was this normalized to Input?
- Figure 7D: What are the MW of the bands shown on this blot? This experiment is by no means sufficient to demonstrate and confirm that ribosomal proteins are acetylated. An increase in RPL30 and RPS13 acetylation must be directly assessed.
- Fig7E: This experiment is not properly executed and in its current state does not rigorously support that "hyper-acetylation of several small ribosomal proteins leads to ribosomal disassembly". A) UV profiles of the fractionation must be provided to assess the quality of the profile. B) Provide MW markers. Which band is RPL30? The Input and free fraction bands are not at the same size. RPL30 should at least be visible on the 60S and polysomes from the WT. C) These results do not match the acetylation MS data, which seem to show that the increase in acetylation is much greater for RPS13. However, RPS13 presence on polysomes (assuming they are polysomes) is not affected in the KO. D) This type of experiment must be done for three independent biological replicates, blots from single lanes must be quantified and normalized to total signal (from all the lanes) for the same antibody.
- Fig 7F: Global translation rates are assessed by puro incorporation at week 4, a time point when differences in protein acetylation were not observed. This does not support the hypothesis that increased acetylation of ribosomal proteins causes defect in protein translation. (Referencing the authors statement p.7 lines 321-24.).
- Other studies have implicated Fam210A in the regulation of mitochondrial protein synthesis through an interaction with EF-Tu. The authors also identified EF-Tu as an interactor in their LC-MS analysis (FigS4). A role for this interaction accounting for mitochondrial and translation defects seems to be underestimated and unexplored here.
Minor comments:
- What is known about FAM210A, other studies assessing its role, and the rational for studying its function should be better introduced.
- In the discussion the authors states: "Moreover, when the proportion of ribosomal protein phosphorylation buildup in the Fam210aMKO, the assembly of the translational machinery is impaired therefore further dampen the cellular translation". Do they mean acetylation and not phosphorylation?
- Please use the term "mRNA translation" or "protein synthesis" instead of "protein translation" in the text.
- The methods section for RT-qPCR: It should ne M-MLV RT and not M-MLC. If the qPCR data was normalized with 18S, please provide the sequence of the primers in the table. Information on how primer efficiency was tested must be included in the method section.
Significance
General assessment: Previous genome-wide association studies have found that mutations in FAM210A were associated with sarcopenia and osteoporosis. Because FAM210A is not expressed in the bone and highly expressed in skeletal muscle, it suggests that FAM210A likely plays an important role in muscle, which could also affect bone regulation. The authors here provide further evidence of an important role for FAM210A in diseases affecting muscle function by demonstrating that the expression of FAM210A decreases with age and in patients affected by Pompe disease, Duchenne muscular dystrophy and hereditary recessive myopathy. FAM210A is a mitochondria-localized protein and given the crucial role of mitochondria in supporting muscle metabolism, elucidating the molecular function of FAM210A may provide important insights into diseases biology that could lead to the development of therapeutic approaches. Thus, a significant protein and regulatory pathway are explored in this study that can potentially impact human health. In this manuscript, the authors provide compelling evidence of the importance of Fam210a in muscle homeostasis with their newly generate mouse model. The experiments looking at muscle physiology, function and metabolism are well-executed and for the most part rigorous, which are the strengths of this manuscript. However, the conclusion that Fam210a deletion in skeletal muscle induces the hyper-acetylation of several small ribosomal proteins, which leads to ribosomal disassembly and translational deficiency is not supported by the data presented here. As noted in the comments above, these experiments need major improvement. Additionally, there are other concerns about general scientific rigor and conclusions inconsistent with the data presented as also noted in the comments section.
Advance: Although a previous study explored the role of FAM210A using a skeletal muscle-specific KO induced at postnatal 28 days under a HSA promoter, the model used by the authors here provide a cleaner approach and more insights into the molecular functions of FAM210A in muscle physiology. The findings that Fam210a MKO disrupts the flow of TCA cycle, which leads to an abnormal accumulation of acetyl-CoA is interesting and provide new conceptual advance on the roles of FAM210A in mitochondria function in muscle. Acetyl-CoA production is an important source of acetyl-group that can be transferred to proteins and regulate gene expression programs. Thus, this is an important finding. However, molecular mechanism by which FAM210A regulates this process through an interaction with SUCLG2 is not provided and the nature this interaction is superficially explored.
Audience: Findings from this manuscript are likely to interest both basic research and translational/clinical audiences as it explores the physiological and molecular function of a disease-linked protein. The findings are also likely to impact the fields of metabolism, mitochondria function and regulation of gene expression by protein acetylation (if concerns raised regarding these experiments are addressed). The fields of expertise of this reviewer are protein and RNA modifications, ribosome biogenesis and mRNA translation.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
In the manuscript entitled "FAM210A mediates an inter-organelle crosstalk essential for protein synthesis and muscle growth in mouse", Chen et al, found that knocking out of FAM210A specifically in muscle using Myl Cre resulted in abnormal mitochondria, hyperacetylation of cytosolic proteins, and translation defects. The manuscript uncovered the new functions of FAM210A in regulating metabolism and translation. I have the following the concerns about the manuscript.
Comments
- One of the major phenotypes of FAM210A is the decrease of muscle mass after 6 weeks after birth. Is this phenotype caused by the accumulation of progressive loss of muscle mass from birth? Are the body weight and muscle mass reduced in FAM210A knocking out new born mice? Is the muscle mass growth curve the same in FAM210A and WT mice from birth to 6 weeks after birth? These results will reveal more mechanism of FAM210A mediated muscle mass control.
- Does the muscle mass continue to decrease after 8 weeks?
- FAM210A knockout mice displayed high lethal rate. Is there any potential mechanism for the high lethality?
- In Figure 2, the muscle mass decreased significantly, while the fat mass only decreased slightly. In FAM210A knockout mice. However, the ratio of the lean mass and fat mass to body mass did not change in FAM210A knockout mice compared to WT mice. How do the authors reconcile this?
- Are there changes of the number of nuclei per myotube? Is the muscle atrophy in FAM210A knockout mice caused by the defects of fusion, or the degradation of protein, or both?
- Are the growth curves of muscle mass growth in EDL and SOL the same n FAM210A knockout mice?
- The oxygen consumption and carbon dioxide production are higher in FAM210A knockout mice, suggesting a high metabolism rate. In contrast, the heat production of FAM210A knockout mice is lower, suggesting a low metabolism rate. Any explanation?
- Given the high glucose consumption in FAM210A, why is the clearance rate of blood glucose low?
- Are there any changes of the abilities for the FAM210A knockout mice in running endurance?
- In page 5, the last sentence of the 2nd paragraph, the authors concluded "There results suggest that Fam210aMKO induces a metabolic switch to a more oxidative state." It is better to describe it as muscle metabolic since the whole body metabolism has not been carefully examined.
- In Fig. 6, what is the link between increased transcription level of Fgf21 and the elevated level of aberrant acetylation of proteins?
- Is there any link between the increased acetylation level of rebolsome proteins and the translation defects?
- How do the abnormal mitochondria lead to increased protein acetylation? And how do these defects further cause translation problem?
- The defects in translation will cause general problems besides mitochondria defects. Are there any phenotypes related to the overall translation inhibition observed? If not, why?
- Are the abnormal mitochondria, increased protein acetylation, and translation inhibition observed in 2-6 weeks old mice? When were these defects first found? Are they correlated with muscle atrophy?
Significance
This manuscript described many interesting phenotypes of Fam210a knockout mice. However, the links between these phenotypes are obscure. The logic of the manuscript will be greatly improved if the authors could provide explanations to logically link the phenotypes.
-
- Mar 2024
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
__Reviewer #1 (Evidence, reproducibility and clarity (Required)):____ __ Deka and colleagues report that a non-canonical NFKb signaling operates in DCs in the context of inflammation and inhibits a tolerogenic mechanism driven by b-catenin-Raldh2. The following comments are made to clarify the findings presented.
-
The authors re-analyzed published scRNAseq data from DSS colitis to identify the expression of Relb and NFKB2 in myeloid cells. 1a- The authors are encouraged to expand this analysis to other published datasets.
We sincerely appreciate the comment from the knowledgeable reviewer. Unfortunately, we did not find any other publicly available scRNAseq dataset from DSS-treated mice. To circumvent this problem, we instead examined a previously published microarray-based bulk transcriptomic dataset obtained using FACS-sorted DCs isolated from the mouse colon (GSE58446, Muzaki et al. 2016; doi:10.1038/mi.2015.64). We consistently found an increased expression of Relb, and to some extent Nfkb2, mRNAs in intestinal DCs upon DSS treatment (Fig R1). Because microarray analysis lacks the quantitative attributes that scRNAseq offers, we provided this newly analysed dataset for reviewer's eyes and refrained from including this data in the manuscript per se. Of note, we have also provided our own experimental data directly demonstrating p100 processing in DC isolated from colitogenic gut. (Fig 1F)
Importantly, we could identify an additional scRNAseq dataset derived colitogenic human ulcerative colitis patients (GSE162335, Devlin et al. 2021, doi.org/10.1053/j.gastro. 2020.12.030). Interrogation of this dataset indeed confirmed that RELB and NFKB2 mRNAs were majorly expressed in intestinal DCs and not in intestinal macrophages and that IBD was associated with increased expression of multiple RelB-important genes in intestinal DCs. These analyses further supported the notion that heightened non-canonical NF-kB signalling in DCs could be fuelling aberrant gut inflammation. We have now incorporated this newly acquired data in the supplementary Figure S5A-S5C. (line# 456-460)
1b. Additionally, the expression of Relb and NFKB2 in other cells - especially other myeloid cells -should be explored and included, even if then the authors later choose to test their function in DCs.
Adhering to this brilliant suggestion, we have now further interrogated the mouse scRNAseq dataset (GSE148794 ; Ho et al., 2021) to compare macrophages and DCs for the expression of the non-canonical signal transducers. Indeed, we found a relatively insignificant level of Relb and Nfkb2 mRNAs in intestinal macrophages in comparison to intestinal DCs. Our data suggested that the non-canonical NF-kB pathway is likely to play a more prominent role in DCs than in macrophages in the gut. This new analysis has now been presented in the revised draft in Figure 1B. (revised text line#136-140) This comparison indeed proved useful in motivating subsequent in-depth analyses of the non-canonical NF-kB pathway in DCs in the context of experimental colitis.
1c. Please note that there is a transition from Fig 1A to Fig 1B to focus on DCs, which is not apparent from the figure.
Please find our response to #1b.
Please include scale bars for all histological analyses.
We thank the reviewer for alerting us. The scale bars were already included in the histological analyses; we have now appropriately highlighted them in this revised version for better visual clarity.
In Fig S1I, the authors show that loss of body weight upon DSS treatment in Nfkb2DCD11c is indistinguishable from control. Why is the starting weight at 110%? Please clarify.
We sincerely apologize for this inadvertent error. We have now rectified the axis label, representing the starting weight at day 0 as 100% (currently Figure S1J).
In Figure 2, please indicate the database/s used for the identification of top biological pathways.
We used "WikiPathways subset of cellular processes" available at www.gsea-msigdb.org/gsea/msigdb/mouse/collections.jsp?targetSpeciesDB=Mouse#M8 for the pathway enrichment analysis presented in Figure 2B. We also utilized a previously published RA-target gene set for the gene set enrichment analysis presented in Figure 2C (Balmer and Blomhoff, 2002; 10.1194/jlr.r100015-jlr200). While this information was included in the materials and methods section in the original draft, we have now included these descriptions in the figure legend for further clarity. (please see revised figure legends 2B and 2C)
The authors show a more significant expansion in Tregs upon DSS treatment when non-canonical NFKb is ablated in DCs. Is this at the expense of a reduction of specific Th cells? Can the authors also report the number of cells beyond the % of cells?
In response to the reviewer's comment, we have examined the abundance of Th17 cells in the colon of our knockout mice. As also observed earlier upon DC-specific ablation of NIK function (Jie et al., 2018), disruption of non-canonical NF-kB signaling in DCs in RelbDDC or Nfkb2DDC mice led to a reduced frequency of RoRgt+ Th17 cells in the LP (Figure S3F, new data). Our in vitro (Figure 2I) and in vivo (Figure 3F-G, 6B-6C) studies conclusively linked DC-intrinsic non-canonical NF-kB signaling to intestinal Treg via the RA pathway. Therefore, we conjectured that the observed decline in the Th17 compartment in our knockouts could be secondary to Treg expansion. We have now further discussed this point in the revised manuscript. (line#296-300)
As the reviewer suggested, in addition to the Treg frequency, we have also presented the number of intestinal FoxP3+ CD4 T cells in the supplement (Figure S3E). Our data revealed a similar increase in the total Treg numbers in the mouse colon upon ablation of the non-canonical NF-kB pathway in DCs. (line#296-300)
In figure 6A, it appears that not only the amount of beta-catenin expressed but also the percentage of beta-catenin positive MNL DCs is significantly expanded upon ablation of non-canonical NFkb. Please verify and if so, include.
We thank the reviewer for this very insightful comment. We have now catalogued MLN DCs into b-cateninlow and b-cateninhigh compartments. Indeed, we found a substantial more than two-fold increase in the frequency of b-cateninhigh DCs in RelbDDC mice. Accordingly, we have revised Figure 6A and emphasised this point in the text.
(line#428-430)
In analogy to comment #1 above, please expand the analyses in human samples to include the expression of Relb and Nfkb2 to other myeloid cells.
Adhering to the valuable suggestion by the reviewer, we have now analysed the scRNAseq dataset (SCP 259) comparing DCs, macrophages, and inflammatory and cycling monocytes present in the human gut for the expression of RELB and NFKB2 mRNA (Figure 7B). Consistent with our observation involving the mouse colon, we found that mRNAs encoding these non-canonical signal transducers were mostly expressed in DCs among various MNPs. This point has also been emphasized in the revised draft. (line#446-448)
Reviewer #1 (Significance (Required)):
Strengths of the manuscript include the conceptual novelty of the intersection between non-canonical NFkb and the tolerogenic b-catenin-Raldh2 axis. And additional strength is the methodical approach, which includes various immunological and biochemical assessments as well as genetic perturbations to dissect such relationships. While it remains unknown the relevant triggers for the non-canonical axis described, this study advances our mechanistic understanding on how activation of this axis overrides regulatory mechanisms in DCs. As such, this manuscript should be of broad interest to immunologists and in particular mucosal immunologists. We sincerely thank the reviewer for lauding our work as conceptually novel and methodical. The encouragement from the knowledgeable reviewer would certainly motivate us further to identify the relevant trigger of this pathway in the gut.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
The following issues are noted.
- all animal strains and their provenance should be described and properly referenced (for example, there are at least two CD11c-Cre strains with different specificity). Along the same lines, the specificity of Cre recombination should be confirmed, at least in major cell types (DCs vs T effector or regulatory cells).
We sincerely appreciate the reviewer's attention to these important details. We would like to point out that in our original draft, Table 1 in the Materials and Methods section provides information on the source and the identifier of all mouse strains used. In particular, we utilized CD11c-Cre mice with the identifier 008068 from the Jackson Laboratories. Alternately known as B6.Cg-Tg (Itgax-cre)1-1Reiz/J, this strain displays Cre-mediated recombination in more than 95% of conventional DCs while exhibiting only minor recombination in lymphocytes (low-activated T cells (www.jax.org/strain/008068). Importantly, our immunoblot analyses revealed efficient depletion of RelB in specifically splenic CD11c+ cells of RelbDDC mice with only a negligible reduction in CD11c- cells (Figure S1E). Our analyses involving Nfkb2DDC mice also assured of similar gene disruption specificity (Figure S1H). Notably, our results were consistent with those documented on RelbDDC and Nfkb2DDC strains earlier (Andreas et al., 2019). To further address the reviewer's concern pertaining to the T-cell compartment, we have now compared splenic CD4+ cells from Nfkb2fl/fl and Nfkb2DDC mice for the expression of p100 (Figure S1I, newly added in the revised draft). Our results confirmed that CD11c-Cre-driven ablation of the non-canonical NF-kB pathway did not perturb p100 expressions in T cells. Taken together, these allow us to emphasize that knockout phenotypes observed in our study were attributed to non-canonical NF-kB deficiency in DCs. We have accordingly modified the text to highlight gene deletion specificities in our knockouts. (line#166-167, 180-182)
- the DSS model is prone to "batch effects" of individual cages, and proper comparison between genotypes is possible only if mice of different genotypes (eg littermates) are housed together in the same cages. The authors should clearly confirm whether this was the case, and if not, key experiments should be repeated in this setting.
As mentioned in the materials and methods section of the original draft, littermate male mice of indicated genotypes were indeed cohoused for at least one week prior to experiments. We have now further emphasised this point in the legend of Figure 1.
- BMDCs represent a heterogeneous mixture of DCs and macrophages (Helft et al., Immunity 2015). These populations should be clearly defined and compared between genotypes, to make sure that they do not underlie the observed gene expression differences.
The knowledgeable reviewer has raised a very pertinent issue. We would like to emphasize that instead of generating BMDCs using GM-CSF alone following the protocol prescribed by Helft et al. (2015), we differentiated bone marrow cells to BMDCs using a cocktail of GM-CSF+IL4 adhering to the protocol published by Jin and Sprent (2018). Following the reviewer's suggestion, we have now compared BMDCs generated in these two protocols in our laboratory. As reported earlier (Jin and Sprent, 2018), unlike BMDCs generated using GM-CSF alone, BMDCs generated using the GM-CSF+IL4 cocktail did not contain CD115high macrophage-like cells (Figure S2C). (line#230-232) However, they displayed equivalent expressions of the DC marker CD135 on their surface. Moreover, when we compared BMDCs derived from Relbfl/fl and RelbDCD11c mice in flow cytometry analyses, we found comparable surface expression of CD135, assuring intact BMDC generation from bone marrow cells ex vivo in spite of the absence of RelB (Figure S2I). (line#266-268) These studies argue that macrophage-like cells did not contribute to the observed gene expression differences between WT and RelB-deficient BMDCs.
- the analysis of DCs in mutant strains (e.g. in Fig. 3) would benefit from a better definition of populations, e.g. resident vs migratory DCs in the MLN, the Notch2-dependent CD103+ CD11b+ DCs in the LP and MLN, etc. Again, this would be important to justify differences in gene expression (e.g. Fig. 3D).
We sincerely appreciate the comment from the knowledgeable reviewer. In a landmark paper from Prof. Fiona Powrie's group (Coombes et al., 2007), it was earlier demonstrated that CD103+ DCs present in the intestine migrate to local MLNs and play a key role in producing RA and supporting Tregs. While our BMDC data strongly supported a cell-intrinsic mechanism underlying Raldh2 upregulation upon non-canonical NF-kB deficiency (Figure 2F), our in vivo studies (Figure 3D-3E) did not entirely rule out also a possible expansion of RA-producing CD103+ DC compartment in our knockout mice. Although the proposition that non-canonical NF-kB signaling regulates the generation of specific intestinal DC subsets seems attractive, we must point out that previous studies showed a relatively unaltered frequency of CD103+ cells among steady-state migratory DCs in skin-draining lymph nodes (Döhler et al., 2017). Nevertheless, following the reviewer's suggestion, we now plan to perform advanced flow cytometry analyses to compare Relbfl/fl and RelbDCD11c mice for the frequency of CD103+CD11b-, CD103+CD11b+ and CD103-CD11b+ DCs in the intestine. To this end, we have already optimized our experimental protocol for staining intestinal DCs with anti-CD103 antibody (BD Bioscience). In the coming weeks, we are expecting to gather adequate numbers of littermate knockout mice to perform a side-by-side comparison. [NOTE: also the section - "Description of the planned revisions"]
- the analysis of b-catenin protein expression and cellular localization at the single-cell level (e.g. by IF) would greatly strengthen the mechanistic connection between NF-kB and Wnt/b-catenin pathways.
Adhering to the reviewer's suggestion, we have now performed immunofluorescence assay (IFA) to capture the impact of RelB deficiency on b-catenin expression and cellular localization. Because BMDCs pose challenges for IFA owing to their non-adherent nature, we instead examined mouse embryonic fibroblasts (MEFs), which provide for a genetically amenable model cell system. As presented below (Figure R2), our IFA data conclusively demonstrated an increased cellular abundance and nuclear localization of b-catenin in Relb-/- MEFs. While we are truly excited to find that our proposed mechanism is functional in another cell type, we feel that the inclusion of MEF data in the main manuscript, which describes DC-mediated immune controls, may cause significant distractions for the general audience. Accordingly, we have provided this data for the reviewer's eyes only.
Minor: - The reanalysis of previous single-cell data is in Figs. 1 and 7 are much less convincing or exciting than the new experimental data relegated to the supplements. The distribution of the results between main and experimental figures may be reconsidered in this light.
We concur with the knowledgeable reviewer that our scRNAseq analyses may have appeared less convincing in the original draft. In response to comments by reviewer-1 and reviewer-3, we have now added additional data panels (Figure 1B, Figure 7B and Figure 7G) and examined additional publicly available datasets (Figure S5). In the revised draft, these analyses helped us to more firmly establish a link between non-canonical NF-kB signaling in DCs to aberrant intestinal inflammation in mice and humans.
However, we slightly diverge that many key experimental datasets were relegated to the supplement. Except for the FITC-dextran experiment, data from all other experimental analyses were presented in the main text (Figure 1). To suitably manage space in our figure panels, we opted to present quantified data averaged from experimental replicates in the main text while providing representative raw data in the supplement. Besides, immunoblot analyses confirming DC-specific ablation of target genes in our knockouts were placed in the supplement. Notably, these knockout strains were also examined earlier (Andreas et al., 2019). Those studies, along with our own analyses (Figure S1E, S1H and S1I - additional data), confirmed the most efficient gene deletion in CD11c+ cells. While maintaining these data in the supplement for want of space, we have now cited this reference in the main text to emphasize that knockout phenotypes observed in our study were attributed to non-canonical NF-kB dysfunctions in DCs.
Reviewer #2 (Significance (Required)):
The manuscript by Deka et al. explores the role of the non-canonical NF-kB pathway, specifically of its key mediators RelB and NF-kB2, in dendritic cells (DCs) during intestinal inflammation. The key strength of the paper is the demonstration that DC-specific deletion of RelB or NF-kB2 leads to improved acute or chronic DSS colitis. It is also shown that reducing the dose of b-catenin rescues the phenotype of RelB deletion, providing an important genetic connection between NF-kB and Wnt/b-catenin pathways. As such, the work is novel, important and of potential significance to the field.
We express our deepest gratitude to the reviewer for his/her valuable time and insightful comments. We are indeed extremely excited that the knowledgeable reviewer finds our work novel, important and of potential significance to the field. These positive comments would inspire us to look further into potential interventions targeting the non-canonical NF-kB pathway in human ailments.
__ Reviewer #3 (Evidence, reproducibility and clarity (Required)):__
Summary:
This manuscript from Deka et al. investigates the role of dendritic cell noncanonical NFκB signaling on intestinal inflammation. Based on prior data showing altered DC function in intestinal inflammation, they interrogated existing scRNAseq data and found that DSS treatment (which yields chemical colitis) increased the expression of non-canonical NFkB family members in dendritic cells. This led to the generation of a DC-specific RelB deficient mouse and use of a DC specific NFkB2 deficient mouse, each of which showed varying degrees of protection from chemical colitis.
Overall, they do a very nice job identifying a mechanism by which noncanonical NFκB signaling in dendritic cells contributes to intestinal inflammation via transcriptional regulation of Axin1, downregulation of β-catenin, restraint of Raldh2 synthesis, impaired retinoic acid synthesis and subsequent decrease in protective Tregs, IgA+ B cells, and microbial dysbiosis. The importance of this pathway is well supported by their focused targeting of β-catenin. After pharmacologic inhibition of β-catenin showed restoration of Raldh2 abundance, they made a DC-specific β-catenin haploinsufficiency RelBDCD11c mouse which showed impaired Raldh2 activity with restoration of colonic Tregs and fecal sIgA. When challenged with DSS, the protective phenotype seen with the RelBDCD11c was lost and the colitis phenotype returned to that of the Relbfl/fl control, further solidifying the role of β-catenin, Raldh2 and RA on intestinal inflammation. Additionally, the discussion provides a robust mechanistic explanation for the phenotypic differences between the RelB and Nfkb2 genotypes, drawing on the authors' deep knowledge of the non-canonical NFκB pathway.
Major comments:
-
Although they propose a novel mechanism by which dendritic cells can contribute to intestinal inflammation, it is in a model of acute epithelial injury that accentuates the contribution of the innate immune system. Would recommend including a discussion of the limitations of this model.
We most sincerely thank the knowledgeable reviewer for raising this important issue. We argue that while erosive epithelial injury initiates colitis in the DSS model, T cells were shown to aggravate intestinal pathologies, particularly at DSS doses used in our study (Kim et al., 2006; doi: 10.3748/wjg.v12.i2.302). Furthermore, our chemically-induced colitis model offered a convenient tool for genetically dissecting the DC-intrinsic role of the non-canonical NF-kB pathway in the intestine. However, we agree entirely that no single animal model fully captures the clinical complexities of human IBD and that other models of experimental colitis should also be employed in the future to assess the generalisability of the proposed DC mechanism in regulating intestinal inflammation. In particular, future studies ought to examine composite knockout strains in the T-cell transfer model of experimental colitis to establish further the role of non-canonical NF-kB signaling in DCs in alleviating intestinal inflammation. As suggested by the reviewer, we have now articulated this point in the discussion section. (line# 553-557)
The human work (Figure 7) shows solid evidence of heightened non-canonical NFκB signaling in DCs via abundance of RELB and NFKB2 along with a few RelB important genes, however, the RA-specific pathway identified in the mouse work is not strongly corroborated by the human data. There is demonstration of one β-activated gene (CCND1) showing decreased expression in IBD patients, however no other gene along with RA pathway was clearly identified to be differentially expressed as one would predict from the mouse work.
We sincerely thank the knowledgeable reviewer for articulating this deficiency in our analyses of single-cell RNA-seq data derived from IBD patients (SCP259, Smillie et al., 2019). We would like to clarify that many well-known b-catenin target genes, including MYC, were not detectable in this dataset. Nevertheless, to address the reviewer's concern, we subjected this dataset to GSEA using a previously published list of RA target genes (Balmer et al., 2002). Our analyses revealed a significant enrichment of RA targets among genes that were downmodulated in DCs derived from inflamed colonic tissues of IBD patients as compared to those from non-inflamed tissues (Figure 7G, newly added in the revised version). We have now discussed this data in the result section. (line#470-475) These studies further substantiated the inverse correlation between noncanonical NF-kB signalling and the RA pathway in DCs in the inflamed human gut.
Minor comments: 1. Their NFκB2DCD11c mouse underwent a regimen of chronic DSS treatment after acute DSS treatment only displayed subtle phenotypic changes. Was the same chronic colitis regimen also tested in the RelBDCD11c ?
Indeed, we also examined RelbDCD11c mice in the chronic DSS treatment regime. As compared to Relbfl/fl mice, these knockout mice displayed significantly less bodyweight changes upon chronic DSS challenge. Because RelbDCD11c mice readily showed acute DSS phenotype, we did not further pursue investigations involving this strain in the chronic DSS settings and rather focused on Nfkb2DCD11c mice to illustrate chronic DSS phenotypes.
In the introduction, it was stated that patients with UC have a marked reduction in intestinal DCs. If DCs (particularly non-canonical NFκB signaling) promote inflammation, how do you explain a decrease in this cell type in patients with active disease?
Depending on the expression of immunogenic or tolerogenic factors, DCs may both promote or subdue inflammation in the colon. We have now revisited the relevant reference published by Magnusson et al., (2016). Indeed, the authors noted a marked reduction in the intestine of the CD103+ DC subset, which has been majorly linked to tolerogenic RA synthesis. While it is generally thought that aberrant inflammation promotes the death of mononuclear phagocytes in the intestine, it seems that either a contraction of the tolerogenic DC compartment or downmodulation of tolerogenic pathways in DCs incites gut inflammation in IBD patients. We have now revised the text in the introduction section to clarify this point. (line#81-83)
The focus on retinoic acid is interesting, however may be oversimplifying the role of non-canonical NFκB in DCs on the mucosal immune system. It must also be mentioned that there is crosstalk between the non-canonical and canonical NFκB signaling systems, for example Nfkb2 is capable of functioning as a IkB protein and inhibiting RelA-p50 (from the last author's prior work - Basak et al, Cell, 2007). Thus would include some mention of possible effects on the canonical system that contribute to intestinal inflammation.
We thank the reviewer for raising this important point. As mentioned in the introduction section of our original draft, the canonical NF-kB pathway in DCs aggravates experimental colitis mice (Visekruna, A. et al. 2015). Indeed, Nfkb2-dependent crosstalk was shown to modulate inflammatory RelA activity in a variety of cell types (Basak et al., 2007; Shih et al., 2009; Chawla et al., 2021). Although such cross-regulatory RelA controls by non-canonical NF-kB signaling are yet to be established in DCs, our studies involving RelB-deficient cells confirmed an essential role of p100-mediated RelB regulations in DC functions. We admit that further studies are required to determine if, independent of RelB, p100 directs immunogenic DC attributes via also RelA or another factor. We have now elaborated on p100-mediated crosstalks in the discussion section. (line#561-562)
In the single-cell DSS data they analyzed, there was a distinct DC population seen with DSS colitis treatment. Although they are categorized as cDC2s, what genes separate them from the other DC populations?
We curated a list of genes from Brown et al., (2019) to categorize cDC1 and cDC2 subsets in our study. We would like to clarify that the list was provided in Supplementary Table 1 in our original draft. In view of the reviewer's comment, we have now referred to this Table in the legend of Supplementary Figure 1 and also in the main text. (line#153)
Why was the RNAseq work on BMDCs (that identified RA metabolism as a top-ranking differentially expressed pathway) done only on Nfkb2-/- BMDCs and not RelB-/-? RelB-/- had a more pronounced protected phenotype in the cell type-specific knockout and is a cleaner target (does not have the IkB capability of Nfkb2).
We broadly agree with the knowledgeable reviewer that comparing WT and Relb-/- BMDCs for global gene expressions could have been worthwhile. We would like to clarify that we initially utilized a dataset derived using Nfkb2-/- BMDCs already available in the laboratory. These analyses were instrumental in developing a notion that non-canonical NF-kB signalling could be modulating Radh2 expression in DCs. Because previous studies involving germline Relb-/- mice suggested a role of RelB in the nonhematopoietic niche in instructing myeloid development (Briseño et al., 2017), we focused our subsequent analyses on BMDCs generated using bone marrow cells from cell type-specific knockouts. Indeed, we could confirm elevated Raldh2 expressions in BMDCs generated from both RelbDDC and Nfkb2DDC mice. Taken together, our studies suggested that Nfkb2-encoded p100 controlled Raldh2 expressions in DCs by providing RelB:p52 and less so as a regulator of the RelA activity. Although we admit that further studies are required to determine if, independent of RelB, p100 directs immunogenic DC attributes via also RelA or another factor. We have now deliberated this point in the discussion section. (line#566-567)
Reviewer #3 (Significance (Required): As a physician-scientist who clinically cares for patients with inflammatory bowel disease, and scientifically studies signaling within innate immune cells, this manuscript does a rigorous job of identifying a mechanism by which canonical NFκB signaling in dendritic cells contributes to intestinal inflammation. This study would be very informative for both basic and translational researchers as it identifies a clear pathway by which the innate immune system contributes to intestinal inflammation, and opens up room for inquiry into triggers of non-canonical NFκB in IBD and modulation of the RA pathway as a potential novel therapeutic target.
We are humbled that the knowledgeable reviewer finds our work to be informative for basic and translational research. These encouragements would undoubtedly motivate us further to identify the relevant trigger of this pathway in the gut and explore potential interventions.
-
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Summary:
This manuscript from Deka et al. investigates the role of dendritic cell noncanonical NFκB signaling on intestinal inflammation. Based on prior data showing altered DC function in intestinal inflammation, they interrogated existing scRNAseq data and found that DSS treatment (which yields a chemical colitis) increased expression of non-canonical NFkB family members in dendritic cells. This led to the generation of a DC specific RelB deficient mouse and use of a DC specific NFkB2 deficient mouse, each of which showed varying degrees of protection from chemical colitis. Overall, they do a very nice job identifying a mechanism by which noncanonical NFκB signaling in dendritic cells contributes to intestinal inflammation via transcriptional regulation of Axin1, downregulation of β-catenin, restraint of Raldh2 synthesis, impaired retinoic acid synthesis and subsequent decrease in protective Tregs, IgA+ B cells, and microbial dysbiosis. The importance of this pathway is well supported by their focused targeting of β-catenin. After pharmacologic inhibition of β-catenin showed restoration of Raldh2 abundance, they made a DC specific β-catenin haploinsufficiency RelBCD11c mouse which showed impaired Raldh2 activity with restoration of colonic Tregs and fecal sIgA. When challenged with DSS, the protective phenotype seen with the RelBCD11c was lost and the colitis phenotype returned to that of the Relbfl/fl control, further solidifying the role of β-catenin, Raldh2 and RA on intestinal inflammation. Additionally, the discussion provides a robust mechanistic explanation for the phenotypic differences between the RelB and Nfkb2 genotypes, drawing on the authors' deep knowledge of the non-canonical NFκB pathway.
Major comments:
- Although they propose a novel mechanism by which dendritic cells can contribute to intestinal inflammation, it is in a model of acute epithelial injury that accentuates the contribution of the innate immune system. Would recommend including a discussion of the limitations of this model.
- The human work (Figure 7) shows solid evidence of heightened non-canonical NFκB signaling in DCs via abundance of RELB and NFKB2 along with a few RelB important genes, however the RA specific pathway identified in the mouse work is not strongly corroborated by the human data. There is demonstration of one β-activated gene (CCDN1) showing decreased expression in IBD patients, however no other gene along with RA pathway was clearly identified to be differentially expressed as one would predict from the mouse work.
Minor comments:
- Their NFκB2CD11c mouse underwent a regimen of chronic DSS treatment after acute DSS treatment only displayed subtle phenotypic changes. Was the same chronic colitis regimen also tested in the RelBCD11c ?
- In the introduction, it was stated that patients with UC have a marked reduction in intestinal DCs. If DCs (particularly non-canonical NFκB signaling) promote inflammation, how do you explain a decrease in this cell type in patients with active disease?
- The focus on retinoic acid is interesting, however may be oversimplifying the role of non-canonical NFκB in DCs on the mucosal immune system. It must also be mentioned that there is crosstalk between the non-canonical and canonical NFκB signaling systems, for example Nfkb2 is capable of functioning as a IkB protein and inhibiting RelA-p50 (from the last author's prior work - Basak et al, Cell, 2007). Thus would include some mention of possible effects on the canonical system that contribute to intestinal inflammation.
- In the single cell DSS data they analyzed, there was a distinct DC population was seen with DSS colitis treatment. Although they are categorized as cDC2s, what genes separate them from the other DC populations?
- Why was the RNAseq work on BMDCs (that identified RA metabolism as a top ranking differentially expressed pathway) done only on Nfkb-/- BMDCs and not RelB-/-? The RelB-/- had a more pronounced protected phenotype in the cell type specific knockout, and is a cleaner target (does not have the IkB capability of Nfkb2).
Significance
As a physician scientist who clinically cares for patients with inflammatory bowel disease, and scientifically studies signaling within innate immune cells, this manuscript does a rigorous job of identifying a mechanism by which canonical NFκB signaling in dendritic cells contributes to intestinal inflammation. This study would be very informative for both basic and translational researchers as it identifies a clear pathway by which the innate immune system contributes to intestinal inflammation, and opens up room for inquiry into triggers of non-canonical NFκB in IBD and modulation of the RA pathway as a potential novel therapeutic target.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
The following issues are noted.
- all animal strains and their provenance should be described and properly referenced (for example, there are at least two CD11c-Cre strains with different specificity). Along the same lines, the specificity of Cre recombination should be confirmed, at least in major cell types (DCs vs T effector or regulatory cells).
- the DSS model is prone to "batch effects" of individual cages, and proper comparison between genotypes is possible only if mice of different genotypes (eg littermates) are housed together in the same cages. The authors should clearly confirm whether this was the case, and if not, key experiments should be repeated in this setting.
- BMDCs represent a heterogeneous mixture of DCs and macrophages (Helft et al., Immunity 2015). These populations should be clearly defined and compared between genotypes, to make sure that they do not underlie the observed gene expression differences.
- the analysis of DCs in mutant strains (e.g. in Fig. 3) would benefit from better definition of populations, e.g. resident vs migratory DCs in the MLN, the Notch2-dependent CD103+ CD11b+ DCs in the LP and MLN, etc. Again, this would be important to justify differences in gene expression (e.g. Fig. 3D).
- the analysis of b-catenin protein expression and cellular localization at single-cell level (e.g. by IF) would greatly strengthen the mechanistic connection between NF-kB and Wnt/b-catening pathways.
Minor:
- the reanalyses of previous single-cell data in Figs. 1 and 7 are much less convincing or exciting than the new experimental data relegated to the supplements. The distribution of the results between main and experimental figures may be reconsidered in this light.
Significance
The manuscript by Deka et al. explores the role of the non-canonical NF-kB pathway, specifically of its key mediators RelB and NF-kB2, in dendritic cells (DCs) during intestinal inflammation. The key strength of the paper is the demonstration that DC-specific deletion of RelB or NF-kB2 lead to improved acute or chronic DSS colitis. It is also shown that reducing the dose of b-catenin rescues the phenotype of RelB deletion, providing an important genetic connection between NF-kB and Wnt/b-catenin pathways. As such, the work is novel, important and of potential significance to the field.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Deka and colleagues report that a non-canonical NFKb signaling operates in DCs in the context of inflammation and inhibits a tolerogenic mechanism driven by b-catenin-Raldh2. The following comments are made to clarify the findings presented.
- The authors re-analyzed published scRNAseq data from DSS colitis to identify the expression of Relb and NFKB2 in myeloid cells.
- a. The authors are encouraged to expand this analysis to other published datasets.
- b. Additionally, the expression of Relb and NFKB2 in other cells - especially other myeloid cells -should be explored and included, even if then the authors later choose to test their function in DCs.
- c. Please note the there is a transition from Fig 1A to Fig1B to focus on DCs, which is not apparent from the figure.
- Please include scale bars for all histological analyses.
- In Fig S1I, the authors show that loss of body weight upon DSS treatment in Nfkb2deltaCD11c is indistinguishable from control. Why is the starting weight at 110%? Please clarify.
- In Figure 2, please indicate the database/s used for identification of top biological pathways.
- The authors show a more significant expansion in Tregs upon DSS treatment when non-canonical NFKb is ablated in DCs. Is this at the expense of a reduction of specific Th cells? Can the authors also report the number of cells, beyond the % of cells?
- In figure 6A, it appears that not only the amount of beta-catenin expressed, but also the percentage of beta-catenin positive MNL DCs is significantly expanded upon ablation of non-canonical NFkb. Please verify and if so, include.
- In analogy to the comment #1 above, please expand the analyses in human samples to include the expression of Relb and Nfkb2 to other myeloid cells.
Significance
Strengths of the manuscript include the conceptual novelty of the intersection between non-canonical NFkb and the tolerogenic b-catenin-Raldh2 axis. And additional strength is the methodic approach, which includes various immunological and biochemical assessments as well as genetic perturbations to dissect such relationships. While it remains unknow the relevant triggers for the non-canonical axis described, this study advances our mechanistic understanding on how activation of this axis overrides regulatory mechanisms in DCs. As such, this manuscript should be of broad interest to immunologists and in particular mucosal immunologists.
- The authors re-analyzed published scRNAseq data from DSS colitis to identify the expression of Relb and NFKB2 in myeloid cells.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
We thank all the reviewers for their comments on our manuscript. We have attempted to address all the points raised by the reviewers and are happy to note that the manuscript is significantly strengthened with the additional experiments that we have performed and from significant restructuring of the manuscript.
Reviewer #1
Major Comments
- The choice of cells looks confusing. Drosophila are indeed widely used in research of neurodegeneration mechanisms, since they well reflect the behavioral characteristics of a wide range of brain diseases, but why authors used insect immune cells to study the effect of mHTT on cellular processes? Huntington's disease has a well-established site of origin, in the spiny neurons of the striatum, and they certainly have a different protein context than in insect cells. __Author's response: __We thank the reviewer for this comment. Patients with Huntington's disorder display a variety of symptoms affecting peripheral, non-neuronal cells, including alterations in the function of immune cells. Hemocytes isolated from Drosophila expressing pathogenic forms of Huntingtin also display altered immune responses. Through our manuscript we explore the effect of Huntingtin aggregates on cellular functions of hemocytes. Additionally, we have now included data showing that we are able to observe similar phenotypes in mammalian cells such as neuronal SHSY5Y and HEK293T (Supp. Fig. 3). This is indicative of similar effects being exerted by Huntingtin aggregates across cell types and organisms. Finally, we demonstrate that we are able to rescue neurodegeneration in the fly eye upon overexpression of either Hip1 or components of the Arp2/3 complex (Fig. 4F), further solidifying our results that Huntingtin aggregates alter CME in an actin-dependent manner and that this largely is responsible for the toxicity. This validates our observations that effects on CME appear to be independent of cell type and that non-neuronal cells such as hemocytes can also be used to study the effects of pathogenic aggregates.
The interrelationship between mutant huntingtin and actin cytoskeleton and clathrin-mediated endocytosis that are convincingly demonstrated in other earlier studies in the m/s are described in rather morphological level and there is no description of molecular interactions of proteins belonging to three systems considered, Htt (control vs mutant), actin cytoskeleton and CME. Lack of these data renders the morphological observations unsupported
__Author's response: __Previous data shown in Hosp et al, 2017 indicates that a large number of proteins involved in both actin remodelling and clathrin mediated endocytosis are sequestered within Huntingtin aggregates. While the mechanism of sequestration remains unknown, is has also been observed that loss of Huntingtin results in altered organization of the actin cytoskeleton. We have now added points discussing this in the results section.
Three last figures of total eight demonstrate the effect of proteins, responsible for the initiation of certain neurodegenerative pathologies, on the activity of clathrin-mediated endocytosis, and on the properties of actin cytoskeletal system, however neither in the abstract nor in the introduction there is no any word about these proteins; in the discussion only a few words are devoted to one of these proteins TDP-43. When starting the article, did the authors plan to enter this data into the manuscript?
__Author's response: __We have now amended this by revising the abstract and the text.
It is important to work on the style of the manuscript, the article is difficult to read, it is a collection of data that does not seem related to each other.
__Author's response: __We have reorganized the manuscript and have improved on the flow to make it easier for the reader. We apologize for the rather tedious and confusing flow in the previous draft.
Reviewer #2
This manuscript endeavours to explore the link between mutant Huntingtin, clathrin-mediated membrane transport and the actin cytoskeleton: both its dynamics and overall mechanics. As I read it, it carries the interesting idea that pathogenic protein aggregates alter actin cytoskeletal dynamics by sequestering Arp2/3 nucleator. This has two consequences in the authors' experiments: disruption of clathrin-coated vesicle movement and an increase in cellular stiffness. An interesting question is whether these two effects are related: Is the disruption of vesicular movement due to the change in cytoplasmic stiffness? Or could they be features that both reflect the underlying change in actin dynamics. This may be hard to tease apart and beyond the purview of this manuscript.
I have some suggestions that could strengthen the MS.
Major Comments
- Further characterizing Arp2/3 sequestration. The notion seems to be that actin nucleators would be sequestered (and inactivated) by mutant protein aggregates, as supported by co-localization studies. In addition, could the authors:
-
a) Test if the dynamics of Arp2/3 are altered, comparing e.g. Arp3-GFP FRAP in the aggregates vs that elsewhere. Author's response: We indeed attempted the FRAP experiment. However due to some technical difficulties we were not convinced by the extent of FRAP in the transgenic fly line. It appeared as an artifact and we were not comfortable including the data in the manuscript. We have instead provided example files for the reviewer to examine.
-
b) Test more directly if actin nucleation is altered in cells that have pathogenic mutant aggregates. This could be done by barbed-end labelling (e.g. measuring incorporation of labelled actin in live cells that are lightly permeabilized with saponin). __Author's response: __We have performed barbed-end labeling for HTT Q15 and HTT Q138 expressing cells. Images and quantification have now been added to the revised manuscript as Figures 2H and 2I. While this was a challenging experiment, it was deeply satisfying to observe such dramatic changes indicating a change in the state of the actin cytoskeleton.
Does manipulating actin nucleation alter cellular mechanics as it does for clathrin-coated vesicle transport? For example, does inhibition of Arp2/3 (e.g. with CK666) increase cellular stiffness and would stiffness be amelioriated in mutant cells if Arp3 is overexpressed?
__Author's response: __We have used LatA to look at whether alteration in the actin cytoskeleton affects cellular stiffness. We found that disruption of the actin cytoskeleton leads to a decrease in cellular stiffness in WT as well as in HTT Q138 expressing cells (shown in Figure 5 and discussed in the results section). We have also now performed AFM on CK666 treated cells and showed that treatment of CK666 leads to a decrease in cellular stiffness similar to LatA treated cells. This further strengthens our hypothesis that a 'Goldilocks' state of actin remodeling and consequently cellular stiffness is required for CME to proceed. We have not performed AFM on cells overexpressing Arp2/3 in HTT Q138 background. However, we believe that it will rescue cellular stiffness as overexpression of Arp2/3 rescues filopodia formation in HTT Q138 expressing cells (Figure 4E) as well as neurodegeneration. AFM data obtained from CK666 treated cells is now added in Supplementary figure 8.
Although it may be difficult to determine if the defect in vesicle transport is due to the change in rheology, I wonder if the authors could reinforce their analysis by showing the overall relationship between the two features. It would be interesting if they could plot CCV velocity against elasticity for all the various conditions that they have tested. Would this cumulative analysis be informative?
__Author's response: __This data is already present across the manuscript as part of different figures. We are not sure whether we can reuse the same data to put it as part of a different figure which plots the relationship between elasticity and CCS velocity. We would be grateful for advice on whether this is allowed and how to mention that the data is also part of different figures.
Focus of the MS. I think that the MS is a little longer and more discursive than it needs to be. I rather struggled to find the focus of the story (which could well be me). There is a deal of repetition that could be profitably cut (the reader may actually find it easier to follow). As well, some anticipation and summaries could be shortened. The final paragraph of the introduction largely summarizes the paper; it could be shortened quite considerably, so that the reader can get directly into the Results themselves. Similarly, the final paragraph of the results is a summary which could work better elsewhere - perhaps, e.g. at the beginning of the discussion.
__Author's response: __We have now trimmed and rearranged the text in the manuscript. We have reorganized the manuscript and have improved on the flow to make it easier for the reader. We apologize for the rather tedious and confusing flow in the previous draft. We are open to further suggestions to improve the writing style.
Specific points
i) Fig 3E. The changes in F-actin flow revealed by PIV are quite dramatic. How reproducible are these changes. (The data presented were from single cells?) __Author's response: __ Changes in F- actin flow obtained from PIV analysis (now figure 2J, 7E in MS) were performed on atleast 5 cells of each type, and the results were observed to be consistent across all. The representative figure is a true representative of the data observed.
- ii) If TPD43, does it also affect Arp2/3? Author's response: __We thank the reviewer for this comment. Unfortunately, __we could not perform this experiment due to the unavailability of a fluorescently tagged TDP43 fly line which which would enable us to visualize whether Arp3 was sequestered within the aggregates.
Minor points:
- a) Fig 5a, b - why change the order on the x-axis? __Author's response: __We have fixed this now. We have removed figure 5b, since, in the revised MS we are only talking about stiffness instead of viscoelastic properties of the cells.
Reviewer #2
Overall, I think that the significance of the MS lies in its evidence that sequestration of actin nucleators may be a key effect of mutant protein aggregation, with implications for cellular function. This would provide a useful conceptual framework to understand the cell biological consquences of creating pathogenic protein aggregates.
__Reviewer #3 __
Summary
In the paper, the authors showed that huntingtin aggregates, which play a critical role in initiating neurodegenerative diseases, impair clathrin-mediated endocytosis (CME). Using live cell imaging and AFM, the authors demonstrated that CME is affected by the alteration in actin cytoskeletal organization and cellular viscosity. Further, the authors concluded that there was a strong link between dynamic actin organization and functional CME in the context of neurodegeneration. While the data is interesting and novel, the study in its current form needs major revision before it is accepted.
Major comments:
1) Figure 2: The authors should show the compromised actin cytoskeleton structure after Lat A and cytoD treatment to back up the findings.
__Author's response: __We have included the representative micrographs of compromised cytoskeleton in terms of filopodia formation upon treatment of LatA and CytoD in Supplementary figure 3E.
2) Figure 2g and 2h: Quantification data of filopodia must be supported with representative images.
__Author's response: __Figure number has been changed to 2D and 2E. Representative image for the quantification of filopodia has been now included in supplementary figure 3D.
3) RNAi studies must be performed using control siRNA to check off-target effects.
__Author's response: __Luc VAL10 was used as a control for all the RNAi experiments. However, data for RNAi is not shown as the phenotype for Luc VAL10 was comparable to WT. We have included Luc VAL10 as a control for Profilin RNAi in the FRAP experiment (Supplementary figure 4C).
4) The result section needs to be reorganized to maintain flow. In the current format, the results of a similar set of experiments are spread across different figures, making it a bit difficult to understand.
__Author's response: __We apologize for the inconvenience. This issue has been addressed now.
5) Figure 3d: The expression level and spatial distribution of HTTQ138 transfection were not convincing compared to the httQ15 expression level and the distribution.
Author's response Figure 3D (Figure 3A in this MS) shows the data obtained from hemocytes isolated from third instar larva of the same age. These are not transfected cells and are obtained from Drosophila larvae using the same Gal4 driver, Cg-Gal4. Thus, the level of expression will be same. However, the distribution may show a change due to the aggregating nature of HTT Q138, while HTT Q15 is non-aggregating and therefore remains diffused.
6) Suppl Fig 2a data must be supported using images showing myosin VI distribution in wild-type vs. HTTQ138 transfected cells.
__Author's response: __This data (Supplementary figure 4D in present MS) has been obtained from genetic knockdown of myosin VI. The aim of the experiment was to show that we see similar effects on CCSs movement as we see upon disruption of the actin cytoskeleton.
7) Suppl movie videos are not labeled correctly in the source. It is not possible to locate them and know which videos are referred to in the manuscript.
__Author's response: __We apologize for the inconvenience. This issue has been fixed now.
8) Page 8: How do HTT aggregates sequester the actin-binding proteins? An explanation should be provided in the result section.
__Author's response: __Previous data shown in Hosp et al, 2017 indicates that a large number of proteins involved in both actin remodelling and clathrin mediated endocytosis are sequestered within Huntingtin aggregates. While the mechanism of sequestration remains unknown, the types of proteins involved in actin remodelling are diverse and do not represent specific types or classes. We have now added points discussing this in the results section.
9) Page 10: The authors concluded that "increasing the availability of proteins involved in actin reorganization is capable of restoring CME even in the presence of pathogenic aggregates." Since several actin-associated proteins are involved in actin reorganization, which types/classes of proteins are involved in CME restoration? The authors should expand it in the discussion.
__Author's response: __As we have only investigated the roles of Hip1 and the Arp2/3 complex, we are confident of only reporting their roles in the context of this manuscript. However, previous data shown in Hosp et al, 2017 indicates that a large number of proteins involved in both actin remodelling and clathrin mediated endocytosis are sequestered within Huntingtin aggregates. While the mechanism of sequestration remains unknown, the types of proteins involved in actin remodelling are diverse and do not represent specific types or classes. Therefore this indicates that modulation of actin, through the sequestration of proteins involved in this process is affected in the presence of Huntingtin aggregates. We have added points detailing this in the results and discussion sections.
10) The schematic of the proposed model depicting critical steps by which pathogenic proteins inhibit CME is required. It will help readers to understand the molecular mechanism easily.
Author's response: We have now included a model in the manuscript (Fig. 8B).
Minor:
1) Figure panel referencing in the text needs to be more consistent, for example, fig 3e is referred to before fig 3d., and fig 2 panels are referred to before fig. 3 panels.
__Author's response: __We have reordered the figures and maintained a consistent order throughout.
2) The authors should use similar phrasing throughout the manuscript to avoid confusion. For instance, either use 'HTTQ138' or 'htt Q138'.
__Author's response: __We apologize for this. We have now maintained uniform nomenclature through the text.
3) Page 10: AFM indentation experimental part and its discussion in the result section is unnecessary. Shift it to the 'Materials and Method' section.
__Author's response: __We have now trimmed this portion and we are now only showing elasticity data and not viscoelasticity.
4) This statement looks a bit exaggerated. There is not sufficient evidence to support the statement- "It can be said that the cells in general behave like a soft glass. The presence of aggregates lowers the effective temperature pushing it nearer to the glass transition, affecting transport."
__Author's response: __We have now removed all figures resulting from an analysis that assumes glassy behaviour. Instead, we have now provided a more conventional and well-established analysis to obtain Young's modulus of cells exhibiting different transport properties.
5) Page 12: What is the basis for selecting proteins Aβ-42, FUSR521C, αSynA30P, αSynA53T, and TDP-43 over other proteins? An explanatory sentence must be added to support the selection.
__Author's response: __We have modified the text to clarify this point.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Summary
In the paper, the authors showed that huntingtin aggregates, which play a critical role in initiating neurodegenerative diseases, impair clathrin-mediated endocytosis (CME). Using live cell imaging and AFM, the authors demonstrated that CME is affected by the alteration in actin cytoskeletal organization and cellular viscosity. Further, the authors concluded that there was a strong link between dynamic actin organization and functional CME in the context of neurodegeneration. While the data is interesting and novel, the study in its current form needs major revision before it is accepted.
Major comments:
- Figure 2: The authors should show the compromised actin cytoskeleton structure after Lat A and cytoD treatment to back up the findings.
- Figure 2g and 2h: Quantification data of filopodia must be supported with representative images.
- RNAi studies must be performed using control siRNA to check off-target effects.
- The result section needs to be reorganized to maintain flow. In the current format, the results of a similar set of experiments are spread across different figures, making it a bit difficult to understand.
- Figure 3d: The expression level and spatial distribution of HTTQ138 transfection were not convincing compared to the httQ15 expression level and the distribution.
- Suppl Fig 2a data must be supported using images showing myosin VI distribution in wild-type vs. HTTQ138 transfected cells.
- Suppl movie videos are not labeled correctly in the source. It is not possible to locate them and know which videos are referred to in the manuscript.
- Page 8: How do HTT aggregates sequester the actin-binding proteins? An explanation should be provided in the result section.
- Page 10: The authors concluded that "increasing the availability of proteins involved in actin reorganization is capable of restoring CME even in the presence of pathogenic aggregates." Since several actin-associated proteins are involved in actin reorganization, which types/classes of proteins are involved in CME restoration? The authors should expand it in the discussion.
- The schematic of the proposed model depicting critical steps by which pathogenic proteins inhibit CME is required. It will help readers to understand the molecular mechanism easily.
Minor:
- Figure panel referencing in the text needs to be more consistent, for example, fig 3e is referred to before fig 3d., and fig 2 panels are referred to before fig. 3 panels.
- The authors should use similar phrasing throughout the manuscript to avoid confusion. For instance, either use 'HTTQ138' or 'htt Q138'.
- Page 10: AFM indentation experimental part and its discussion in the result section is unnecessary. Shift it to the 'Materials and Method' section.
- This statement looks a bit exaggerated. There is not sufficient evidence to support the statement- "It can be said that the cells in general behave like a soft glass. The presence of aggregates lowers the effective temperature pushing it nearer to the glass transition, affecting transport."
- Page 12: What is the basis for selecting proteins Aβ-42, FUSR521C, αSynA30P, αSynA53T, and TDP-43 over other proteins? An explanatory sentence must be added to support the selection.
Significance
- Fundamental study in neurogenerative diseases explaining the mechanobiological aspects of the diseases
- The audience will be interested in knowing the mechanobiological aspects (altered actin cytoskeleton) of the neurogenerative disease.
- Field of reviewer expertise: mechanobiology; mechanotransduction; cell-ECM interactions
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
This manuscript endeavours to explore the link between mutant Huntingtin, clathrin-mediated membrane transport and the actin cytoskeleton: both its dynamics and overall mechanics. As I read it, it carries the interesting idea that pathogenic protein aggregates alter actin cytoskeletal dynamics by sequestering Arp2/3 nucleator. This has two consequences in the authors' experiments: disruption of clathrin-coated vesicle movement and an increase in cellular stiffness. An interesting question is whether these two effects are related: Is the disruption of vesicular movement due to the change in cytoplasmic stiffness? Or could they be features that both reflect the underlying change in actin dynamics. This may be hard to tease apart and beyond the purview of this manuscript.
I have some suggestions that could strengthen the MS.
- Further characterizing Arp2/3 sequestration. The notion seems to be that actin nucleators would be sequestered (and inactivated) by mutant protein aggregates, as supported by co-localization studies. In addition, could the authors:
- a) Test if the dynamics of Arp2/3 are altered, comparing e.g. Arp3-GFP FRAP in the aggregates vs that elsewhere.
- b) Test more directly if actin nucleation is altered in cells that have pathogenic mutant aggregates. This could be done by barbed-end labelling (e.g. measuring incorporation of labelled actin in live cells that are lightly permeabilized with saponin).
- Does manipulating actin nucleation alter cellular mechanics as it does for clathrin-coated vesicle transport? For example, does inhibition of Arp2/3 (e.g. with CK666) increase cellular stiffness and would stiffness be amelioriated in mutant cells if Arp3 is overexpressed?
- Although it may be difficult to determine if the defect in vesicle transport is due to the change in rheology, I wonder if the authors could reinforce their analysis by showing the overall relationship between the two features. It would be interesting if they could plot CCV velocity against elasticity for all the various conditions that they have tested. Would this cumulative analysis be informative?
- Focus of the MS. I think that the MS is a little longer and more discursive than it needs to be. I rather struggled to find the focus of the story (which could well be me). There is a deal of repetition that could be profitably cut (the reader may actually find it easier to follow). As well, some anticipation and summaries could be shortened. The final paragraph of the introduction largely summarizes the paper; it could be shortened quite considerably, so that the reader can get directly into the Results themselves. Similarly, the final paragraph of the results is a summary which could work better elsewhere - perhaps, e.g. at the beginning of the discussion.
Specific points
- i) Fig 3E. The changes in F-actin flow revealed by PIV are quite dramatic. How reproducible are these changes. (The data presented were from single cells?)
- ii) If TPD43, does it also affect Arp2/3?
Minor points
a) Fig 5a, b - why change the order on the x-axis?
Significance
Overall, I think that the significance of the MS lies in its evidence that sequestration of actin nucleators may be a key effect of mutant protein aggregation, with implications for cellular function. This would provide a useful conceptual framework to understand the cell biological consquences of creating pathogenic protein aggregates.
- Further characterizing Arp2/3 sequestration. The notion seems to be that actin nucleators would be sequestered (and inactivated) by mutant protein aggregates, as supported by co-localization studies. In addition, could the authors:
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
The manuscript "Pathogenic aggregates alter actin organization and cellular viscosity resulting in stalled clathrin mediated endocytosis" by Singh at al attempts to examine the relationship between the mutant huntington aggregates formation, vesicular transport and cytoskeletal rearrangements in cells bearing mHTT aggregates. The authors did a lot of work, used modern methods and obtained a large amount of data, but the purpose of this work remained unclear.
The information that during the aggregates' formation a huge number of cellular proteins playing an important role in cell physiology are involved into aggregates, and that many processes, including vesicle transport, are disrupted in cells carrying mHTT, is not new. Many details of the study, such as demonstration that HIP1 colocalizes with markers of clathrin-mediated endocytosis in neuronal cells and is highly enriched on clathrin-coated vesicles (CCVs) also was already published (e.g. doi: 10.1074/jbc.C100401200). The m/s itself is not well written, and I was not able to understand what specific neurodegenerative process the authors are studying. I believe that the current version of the requires major revisions in its scientific content as well as its writing.
Major:
- The choice of cells looks confusing. Drosophila are indeed widely used in research of neurodegeneration mechanisms, since they well reflect the behavioral characteristics of a wide range of brain diseases, but why authors used insect immune cells to study the effect of mHTT on cellular processes? Huntington's disease has a well-established site of origin, in the spiny neurons of the striatum, and they certainly have a different protein context than in insect cells.
- The interrelationship between mutant huntingtin and actin cytoskeleton and clathrin-mediated endocytosis that are convincingly demonstrated in other earlier studies in the m/s are described in rather morphological level and there is no description of molecular interactions of proteins belonging to three systems considered, Htt (control vs mutant), actin cytoskeleton and CME. Lack of these data renders the morphological observations unsupported
- Three last figures of total eight demonstrate the effect of proteins, responsible for the initiation of certain neurodegenerative pathologies, on the activity of clathrin-mediated endocytosis, and on the properties of actin cytoskeletal system, however neither in the abstract nor in the introduction there is no any word about these proteins; in the discussion only a few words are devoted to one of these proteins TDP-43. When starting the article, did the authors plan to enter this data into the manuscript? In addition, the authors did not show at what level these proteins are expressed in transgenic flies or in cells derived from flies.
- It is important to work on the style of the manuscript, the article is difficult to read, it is a collection of data that does not seem related to each other. Since the manuscript needs a major overhaul, I consider discussing minor comments unnecessary.
Significance
The manuscript "Pathogenic aggregates alter actin organization and cellular viscosity resulting in stalled clathrin mediated endocytosis" by Singh at al attempts to examine the relationship between the mutant huntington aggregates formation, vesicular transport and cytoskeletal rearrangements in cells bearing mHTT aggregates. The authors did a lot of work, used modern methods and obtained a large amount of data, but the purpose of this work remained unclear.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Reply to Reviewers
We are grateful to the three reviewers for their careful and constructive critiques of our preprint. We will address all of their comments and suggestions, which help to make our paper more precise and understandable. In our replies, we use 'Patterson, eLife (2021)' as shorthand for Patterson, Basu, Rees & Nurse, eLife 2021:10.
Reviewer #1 (Evidence, reproducibility and clarity (Required)): Novák and Tyson present a model-based analysis of published data that had claimed to demonstrate bistable activation of CDK at the G2/M transition in fission yeast. They point out that the published data does not distinguish between ultra-sensitive (switch-like, but reversible) and bistable (switch-like, but irreversible) activation. They back up their intuition with robust quantitative modeling. They then point out that, with a simple experimental modification, the published experiments could be repeated in a way that would test between the ultra-sensitive and bistable possibilities.
This is an accurate and concise summary of our paper.
Therefore, this is a rare paper that makes a specific modeling-based prediction and proposes a straightforward way to test it. As such, it will be of interest to a broad range of workers involved in the fields cell cycle and regulatory modeling.
We agree that our work will be of interest to a broad range of scientists studying cell cycle regulation and mathematical modeling of bistable control systems.
Nonetheless, attention to the following points would improve the manuscript. The authors should be more careful about how they describe protein abundance. They often refer to protein level. I believe in every case they mean protein concentration, but this is not explicitly stated; it could be interpreted as number of protein molecules per cell. The authors should either explicitly state that level means concentration or, more simply, use concentration instead of level.
A valid criticism that has been addressed in the revised version.
The authors should explain why they include stoichiometric inhibition of CDK by Wee1 in their model. Is it required to make the model work in the wild-type case, or only in the CDK-AF case? My intuition is it should only be required in the AF case, but I would like to know for sure. Also, they should state if there is any experimental data for such regulation.
Bistability of the Tyr-phosphorylation switch requires 'sufficient' nonlinearity, which may come from the phosphorylation and dephosphorylation reactions that interconvert Cdk1, Wee1 and Cdc25. The easiest way to model these interconversion reactions is to use Hill- or Goldbeter-Koshland functions for the phosphorylation and dephosphorylation of Wee1 and Cdc25, but this approach is not appropriate for Gillespie SSA, which assumes elementary reactions. Both Wee1 and Cdc25 are phosphorylated on multiple sites, which we approximate by double phosphorylation; but this level of nonlinearity is not sufficient to make the switch bistable. In addition, stochiometric inhibition is a well-known source of nonlinearity, and in the Wee1:Cdk1 enzyme:substrate complex, Cdk1 is inhibited because Wee1 binds to Cdk1 near its catalytic site. In our model, stoichiometric inhibition of Cdk1 by Wee1 is required for bistability even in the wild-type case because the regulations of Wee1 and Cdc25 by phosphorylation are not nonlinear enough. There is experimental evidence that stoichiometric inhibition of Cdk1 by Wee1 is significant: mik1D wee1ts double mutant cells at the restrictive temperature (Lundgren, Walworth et al. 1991) are less viable than AF-Cdk1 (Gould and Nurse 1989). Furthermore, Patterson (eLife, 2021) found weak 'bistability' when they used AF-Cdk1 to induce mitosis. This puzzling observation suggests a residual feedback mechanism in the absence of Tyr-phosphorylation. Our model accounts for this weak bistability by assuming that free CDK1 can phosphorylate and inactivate the Wee1 'enzyme' in the Wee1:Cdk1 complex, which makes CDK1 and Wee1 mutual antagonists. This reaction is based on formation of a trimer, Cdk1:Wee1:Cdk1, which is possible since CDK1 phosphorylation of Wee1 occurs in its N-terminal region, which lies outside the C-terminal catalytic domain of Wee1 (Tang, Coleman et al. 1993). These ideas have been incorporated into the text in the subsection describing the model (see lines120-125).
The authors should explicitly state, on line 131, that the fact that "the rate of synthesis of C-CDK molecules is directly proportional to cell volume" results in a size-dependent increase in the concentration of C-CDK.
The accumulation of C-CDK molecules in fission yeast cells is complicated. In general, we may assume that larger cells have more ribosomes and make all proteins faster than do smaller cells. Absent other regulatory effects, the number of protein molecules is proportional to cell volume, and the concentration is constant. But, in Patterson's experiments, the number of C-CDK molecules is zero at the start of induction and rises steeply thereafter (see lines 147-148), and the rate of increase (#molec/time) is proportional to the size of the growing cell.
The authors should explain, on line 100, why they are "quite sure the bistable switch is the correct interpretation".
Line 105-106: "Although we suspect that the mitotic switch is bistable,.."
On line 166, include the units of volume.
Done
On lines 152 and 237, "smaller protein-fusion levels "should be replaced with "lower protein-fusion concentrations".
Done
**Referee cross-commenting** *I concur with the other two reviews. *
Reviewer #1 (Significance (Required)): *The paper is significant in that it points out an alternative interpretation for an important result in an important paper. Specifically, it points out that the published data is consistent with activation of CDK at the G2/M transition in fission yeast could be ultra-sensitive (switch-like, but reversible) instead of bistable (switch-like, but irreversible). The distinction is important because it has been claimed, by the authors of the submitted manuscript among others, that bistability is required for robust cell-cycle directionality. *
We agree with this assessment.
However, activation of CDK at the G2/M transition in other species has been shown to be bistable and the authors state that they are "quite sure the bistable switch is the correct interpretation". So, the paper is more likely an exercise in rigor than an opportunity to overturn a paradigm.
We were the first authors to predict that the G2/M switch is bistable (J. Cell Sci., 1993) and among the first to prove it experimentally in frog egg extracts (PNAS, 2004). Our models (Novak and Tyson 1995, Novak, Pataki et al. 2001, Tyson, Csikasz-Nagy et al. 2002, Gerard, Tyson et al. 2015) of fission yeast cell-cycle control rely on bistability of the G2/M transition; so, understandably, we believe that the transition in fission yeast is a bistable switch. But the 'bistable paradigm' has never been directly demonstrated by experimental observations in fission yeast cells. The Patterson paper (eLife, 2021) claims to provide experimental proof, but we demonstrate in our paper that Patterson's experiments are not conclusive evidence of bistability. Furthermore, we suggest that a simple change to Patterson's protocol could provide convincing evidence that the G2/M switch is either monostable or bistable. We are not proposing that the switch is monostable; we would be quite surprised if the experiment, correctly done, were to indicate a reversible switch. Our point is simply that the published experiments are inconclusive. The point we are making is neither a mere 'exercise in rigor' nor a suggestion to 'overturn a paradigm.' Rather it is a precise theoretical analysis of a central question of cell cycle regulation that should be of interest to both experimentalists and mathematical modelers.
Reviewer #2 (Evidence, reproducibility and clarity (Required)): Summary: The manuscript asks whether the data reported in Patterson et al. (2021) is consistent with a bistable switch controlling the G2/M transition in fission yeast. Patterson et al. (2021) use an engineered system to decouple a non-degradable version of Cyclin-dependent kinase (CDK) from cell growth and concomitantly measure CDK activity (by the nuclear localization of a downstream target, Cut3p). They observe cells with indistinguishable CDK levels but two distinct CDK activities, which they posit shows bistable behavior. In this study, the authors ask if other models can also explain this data. The authors use both deterministic and Gillespie based stochastic simulations to generate relationships between CDK activities and protein levels for various cell sizes. They conclude that the experiments performed in Patterson et al. are insufficient to distinguish between a bistable switch and a reversible ultrasensitive switch. They propose additional experiments involving the use a degradable CDK construct to also measure the inactivation kinetics.
This is an accurate summary of our paper.
They propose that a bistable switch will have different forward (OFF->ON) and backward (ON->OFF) switching rates. A reversible ultrasensitive switch will have indistinguishable switching rates.
Our analysis of Patterson's (2021) experiments is based on the well-known fact that the threshold for turning a bistable switch on is significantly different from the threshold for turning it off (in Patterson's case, the 'threshold' is the level of fusion protein in the cell when CDK is activated), whereas for a reversible, ultrasensitive switch, the two thresholds are nearly indistinguishable. The 'rate' at which the switch is made is a different issue, which we do not address explicitly. In the experiments and in our model, the switching rates are fast, whether the switch is bistable or monostable. The results are interesting and worth publication in a computational biology specific journal, as they might only appeal to a limited audience.
We think our results should also be brought to the attention of experimentalists studying cell cycle regulation, because Patterson's paper (eLife, 2021) presents a serious misunderstanding of the existence and implications of 'bistability' of the G2/M transition in fission yeast. Whereas Patterson's work is an elegant and creative application of genetics and molecular biology to an important problem, it is not backed up by quantitative mathematical modeling of the experimental results. In that sense, Patterson's work is incomplete, and its shortcomings need to be addressed in a highly respected journal, so that future cell-cycle experimentalists will not make the same-or similar-mistakes.
Several ideas need to be clarified and additional information needs to be provided about the specific parameters used for the simulations: Major comments: #1 The parameters need to be made more accessible by means of a supplementary table and appropriate references need to be cited.
Two new supplementary tables (S1 and S2) summarize the dynamic variables and parameter values.
It is not clear why Michaelis Menten kinetics will not be applicable to this system. Has it been demonstrated that the Km s of the enzymes are much greater than the substrate concentrations for all the reactions? If yes, please cite.
MM kinetics are not appropriate for such protein interaction networks because one protein may be both an enzyme and a substrate for a second protein (e.g., Wee1 and CDK, or Cdc25 and CDK). So, the condition for validity of MM kinetics (enzyme concen ≪ substrate concen) cannot be satisfied for both reactions. Indeed, enzyme concen ≈ substrate concen is probably true for most reactions in our network. Hence, it is advisable to stick with mass-action rate laws. Furthermore, MM kinetics are a poor choice for 'propensities' in Gillespie SSA calculations, as has been shown by many authors (Agarwal, Adams et al. 2012, Kim, Josic et al. 2014, Kim and Tyson 2020).
It will not be surprising if the simulation with Michaelis Menten would alter the dynamics shown in this study. A reversible switch with two different enzymes (catalyzing the ON->OFF and OFF->ON transitions) having different kinetics can give asymmetric switching rates. This would directly contradict what has been shown in Figure 7A-D.
We don't follow the reviewer's logic here. The two transitions, off → on and on → off, are already driven by different molecular processes (dephosphorylation of inactive CDK-P by Cdc25 and phosphorylation of active CDK by Wee1, respectively). Positive feedback of CDK activity on Cdc25 and Wee1 (++ and −−, respectively) causes bistability and asymmetric switching thresholds. Switching rates, which are determined by the kinetic rate constants of the up and down processes, are of secondary importance to the primary question of whether the switch is monostable or bistable.
#2 Line 427: The authors use a half-time of 6 hours in their model as Patterson et al. used a non-degradable construct. It is not clear why dilution due to cell growth has not been considered. The net degradation rate of a protein is the sum of biochemical degradation rate and growth dilution rate. The growth dilution rate seems significant (140 mins doubling time or 0.3 h-1 dilution rate) relative to assumed degradation rate (0.12 h-1). Please clarify why was the effect of dilution neglected in the model or show by sensitivity analysis this does not change the predicted CDK activation thresholds.
The reviewer highlights an important effect, but it is not relevant to our calculations. In the deterministic model used to calculate the bifurcation diagrams, both cell volume and the concentration of the non-degradable Cdc13:Cdk1 dimer are kept constant; therefore, there is no dilution effect. The stochastic model deals with changing numbers of molecules per cell; the dilution effect is taken into account by the appearance of cell volume, V(t), at appropriate places in the propensity functions. In other words: in the deterministic model, which is written for concentration changes, the dilution term, −(x/V)(dV/dt), is zero because V=constant; in the stochastic model, written in terms of numbers of molecules, dilution effects are implicit in the propensity functions.
*#3 Line 402 The authors state that the production rate of the Cdk protein is 'assumed' proportional to the cell volume. The word 'assumed' is incorrect here as a simple conversion of concentration-based differential equation (with constant production rate) to molecular numbers would show that production rate is proportional to the volume. This is not an assumption. *
Correct; we modified the text (see line 450-462). The role of cell volume in production rate is more relevant to the case of Cdc25, where we assume that its production rate, Δconcentration/Δt, is proportional to V, because the concentration of Cdc25 in the cell increases as the cell grows. We added two references (Keifenheim, Sun et al. 2017, Curran, Dey et al. 2022) to justify this assumption. In the stochastic code, the propensity for synthesis of Cdc25 molecules is proportional to V2.
#4 Line 423 Please cite the appropriate literature that shows that fission yeast growth during cell division is exponential. If the dynamics are more complicated, involving multiple phases of growth during cell division, please state so.
We now acknowledge that volume growth in fission yeast, rather than exponential, is bilinear with a brief non-growing phase at mitosis (Mitchison 2003). However, we suggest that our simplifying assumption of exponential growth is appropriate for the purposes of these calculations. See line 473-476: "In our stochastic simulations, we assume that cell volume is increasing exponentially, V(t) = V0eμt. Although fission yeast cells actually grow in a piecewise linear fashion (Mitchison 2003), the simpler exponential growth law (with doubling time @ 140 min) is perfectly adequate for our purposes in this paper.."
*#5 Line 250 The authors convert the bistable version of the CDK switch to reversible sigmoidal by assuming that Wee1 and Cdc25 phosphorylation is proportional to the CDK level rather than activity, which seems biochemically unrealistic. This invokes an altered circuit architecture where inactive CDK has enough catalytic activity to phosphorylate the two modifying enzymes (Wee1/Cdc25) but not enough to drive mitosis. This might be possible if the Km of CDK for Wee1/Cdc25 is lower relative to other downstream substrates that drive mitosis. The authors can reframe this section of the paper to state this possibility, which might be interesting to experimentalists. *
The reviewer is correct that the molecular biology underlying our 'reversible sigmoidal' model is biochemically unrealistic. But, in our opinion, this is the simplest way to convert our bistable model into a monostable, ultrasensitive switch while maintaining the basic network structure in Fig. 1. Our purpose is to show that a monostable model-only slightly changed from the bistable model-can account for Patterson's experimental data equally well. If Nurse's group modifies the experimental protocol as we suggest and their new results indicate that the G2/M transition in fission yeast is bistable, then our reversible sigmoidal model, having served its purpose, can be forgotten. If they show that the transition is not bistable, then both experimentalists and theoreticians will have to think about biochemically realistic mechanisms that can account for the new data...and everything else we already know about the G2/M transition in fission yeast.
#6 It is difficult to phenomenologically understand a bistable switch just based on differences in activation and inactivation thresholds. For example, a reversible ultrasensitive switch also shows a difference in activation and inactivation thresholds (Figure 7D). How much of a difference should be expected of a bistable switch versus reversible switch?
We show how much of a difference can be expected by contrasting Fig. 7 to Fig. 8. For the largest cells (panel D of both figures), the difference is small and probably undetectable experimentally. For medium-sized cells (panel C), the difference is larger but probably difficult to distinguish experimentally. Only the smallest cells (panel B) provide an opportunity for clearly distinguishing experimentally between monostable and bistable switching.
*Moreover, as the authors clearly understand (line 275), time-delays in activation and inactivation reactions can inflate these differences. In the future, if the authors can convert the equations to potential energy space as done in Acar et al. 2005 (Nature 435:228) in Figure 3c-d, it will be useful. Also, predicting the distribution of switching rates from the Gillespie simulation might be informative and can be directly compared to experimental measurements in the future (if the Cut3p levels in nucleus and cytosol equilibrates fast enough or other CDK biosensors are developed). *
The famous paper by Acar et al. (2005) is indeed an elegant experimental and theoretical study of bistability ('cellular memory') in the galactose-signalling network of budding yeast. We have included a comparison of Patterson et al. with Acar et al. in our Conclusions section (lines 353-368):
"It is instructive, at this point, to compare the work of Patterson et al. (2021) to a study by Acar et al. (Acar, Becskei et al. 2005) of the galactose-signaling network of budding yeast. Combining elegant experiments with sophisticated modeling, Acar et al. provided convincing proof of bistability ('cellular memory') in this nutritional control system. They measured PGAL1-YFP expression (the response) as a function of galactose concentration in the growth medium (the signal), analogous to Patterson's measurements of CDK activity as a function of C-CDK concentration in fission yeast cells. In Acar's experiments, the endogenous GAL80 gene was replaced by PTET-GAL80 in order to maintain Gal80 protein concentration at a constant value determined by doxycycline concentration in the growth medium. The fixed Gal80p concentration in Acar's cells is analogous to cell volume in Patterson's experiments. In Fig.3b of Acar's paper, the team plotted the regions of monostable-off, monostable-on and bistable signaling in dependence on their two control parameters, external galactose concentration and intracellular Gal80p concentration, analogous to our Fig.4. Because Acar's experiments explored both the off → on and on → off transitions, they could show that their observed thresholds (the red circles) correspond closely to both saddle-node bifurcation curves predicted by their model. On the other hand, Patterson's experiments (as analyzed in our Fig.4) probe only the off → on transition."
The purpose of our paper is to show that Patterson-type experiments can and should be done so as to probe both thresholds, as was done by van Oudenaarden's team. They went further to characterize their bistable switch in terms of 'the concept of energy landscapes'. We think it is premature to pursue this idea in the context of the G2/M transition in fission yeast until there is firm, quantitative data characterizing the nature of the 'presumptive' bistable switch in fission yeast.
Minor comments: #1 Line 2: Please replace "In most situations" to "In favorable conditions"
Done.
**Referee cross-commenting** I agree with Reviewer 1 that this falls more under pointing out an alternative interpretation of a single experiment than challenging widely supported orthodoxy about how the eukaryotic cell cycle leaves mitosis.
As we said earlier, our 1993 paper in J Cell Sci is the source of this orthodox view, and it is widely supported at present because there is convincing experimental evidence for bistability in frog egg extracts, budding yeast cells and mammalian cells. Patterson's paper is not sound evidence for bistability of the G2/M transition in fission yeast cells. It is important for experimentalists to know why the experiments fail to confirm bistability, and important for someone to do the experiment correctly in order to confirm (or, what would be really interesting, to refute) the expectation of bistability at the G2/M transition in fission yeast cells.
Reviewer #2 (Significance (Required)): Suitable for specialist comp bio journal eg PLoS Comp Bio
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
The paper by Novak and Tyson revisits a recent paper from Nurse group on the bistability of mitotic switch in fission yeast using mathematical modelling. The authors extend their older models of mitotic entry check point and implement both deterministic and stochastic version of new model. They show this model does indeed possess bistability and show that combined with stochastic fluctuations the model can show bimodality for the cyclin-CDK activity at a particular cell size consistent with the recent experimental data. However, the authors also show alternative model that has mono-stable ultrasensitivity can also explain the data and suggest experiments that can prove the existence of hysteresis and therefore bistability.
Right on.
While the biological implication of the study is well explained, the authors can improve the presentation of their model and the underlying assumptions. I have the following comments and suggestions for improvement of the paper.
-
- The cartoon of the mathematical model is confusing at places, for example the wee1-CDK complex according to the equations either dissociates back to wee1 and CDK or gives rise to pCDK and wee1, the arrow below is confusing as it implies it can also give rise to wee1p, the CDK phosphorylation of wee1 is already included in the diagram. Also, the PP2A is put on the arrow for all reactions but for wee1p2 to wee1p its action shown with a dashed line. Also, I wondered if wee1p and wee1p2 can also bind CDK and sequester or phosphorylate CDK?* We are sorry for the confusion and have improved Fig. 1.
-
The rates and variables in the ODEs are not fully described. Also sometimes unclear what is parameter and what is a variable, I had to look at the code.*
We now include tables of variables and parameter values, with explanatory notes.
- The model has quite a few parameters, but these are not at all discussed in the paper. How did the authors come up with these particular set of parameters, has there been some systematic fitting, or tuning by hand to produce a good fit to the data? I could only see the value of the parameters in the code, but perhaps a table with the parameters of the model, what they mean and their value (and perhaps how the values is obtained) is missing.*
The parameters were tuned by hand to fit Patterson's data, based, of course, on our extensive experience fitting mathematical models to myriad data sets on the cell division cycles of fission yeast, budding yeast, and frog egg extracts. We now provide a table of parameter values.
- The authors are using the Gillespie algorithm with time varying parameters (as some rates depend on volume and volume is not constant). Algorithm needs to be modified slightly to handle this (see for example Shahrezaei et al Molecular Systems Biology 2008). *
A valid criticism, but the rate of cell volume increase is very slow compared to the propensities of the biochemical reactions. We write (lines 492-498):
"In each step of the SSA, the volume of the cell is increasing according to an exponential function, and, consequently, the propensities of the volume-dependent steps are, in principle, changing with time; and this time-dependence could be taken into account explicitly in implementing Gillespie's SSA (Shahrezaei, Ollivier et al. 2008). However, the step-size between SSA updates is less than 1 s compared to the mass-doubling time (140 min) of cell growth. So, it is warranted to neglect the change in V(t) between steps of the SSA, as in our code."
- The authors correctly point out, ignoring mRNA has resulted in underestimation of noise, however another point is that mRNA life times are short and that also affects the timescale of fluctuations and this may be relevant to the switching rates between the bistable states. *
A valid point, but to include mRNA's would double the size of the model. Furthermore, we have little or no data about mRNA fluctuations in fission yeast cells, so it would be impossible to estimate the values of all the new parameters introduced into the model. Finally, the switching rates between bistable states (or across the ultrasensitive boundary) are not the primary focus of Patterson's experiments or our theoretical investigations. So, we propose to delay this improvement to the model until the relevant experimental data is available.
- In the introduction add, "In this study" to "Intrigued by these results, we investigated their experimental observations with a model of bistability in the activation of cyclin-CDK in fission yeast." *
Done
Reviewer #3 (Significance (Required)): Overall, this is an interesting study that revisits an old question and some recent experimental data. The use of stochastic modelling in explaining variability and co-existence of cell populations in the context of cell cycle and comparison to experimental data is novel and of interest to the communities of cell cycle researchers, systems biologists and mathematical biologists.
We agree. Thanks for the endorsement
References
Acar, M., A. Becskei and A. van Oudenaarden (2005). "Enhancement of cellular memory by reducing stochastic transitions." Nature 435(7039): 228-232.
Agarwal, A., R. Adams, G. C. Castellani and H. Z. Shouval (2012). "On the precision of quasi steady state assumptions in stochastic dynamics." J Chem Phys 137(4): 044105.
Curran, S., G. Dey, P. Rees and P. Nurse (2022). "A quantitative and spatial analysis of cell cycle regulators during the fission yeast cycle." Proc Natl Acad Sci U S A 119(36): e2206172119.
Gerard, C., J. J. Tyson, D. Coudreuse and B. Novak (2015). "Cell cycle control by a minimal Cdk network." PLoS Comput Biol 11(2): e1004056.
Gould, K. L. and P. Nurse (1989). "Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis." Nature 342(6245): 39-45.
Keifenheim, D., X. M. Sun, E. D'Souza, M. J. Ohira, M. Magner, M. B. Mayhew, S. Marguerat and N. Rhind (2017). "Size-Dependent Expression of the Mitotic Activator Cdc25 Suggests a Mechanism of Size Control in Fission Yeast." Curr Biol 27(10): 1491-1497 e1494.
Kim, J. K., K. Josic and M. R. Bennett (2014). "The validity of quasi-steady-state approximations in discrete stochastic simulations." Biophys J 107(3): 783-793.
Kim, J. K. and J. J. Tyson (2020). "Misuse of the Michaelis-Menten rate law for protein interaction networks and its remedy." PLoS Comput Biol 16(10): e1008258.
Lundgren, K., N. Walworth, R. Booher, M. Dembski, M. Kirschner and D. Beach (1991). "mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of cdc2." Cell 64(6): 1111-1122.
Mitchison, J. M. (2003). "Growth during the cell cycle." Int Rev Cytol 226: 165-258.
Novak, B., Z. Pataki, A. Ciliberto and J. J. Tyson (2001). "Mathematical model of the cell division cycle of fission yeast." Chaos 11(1): 277-286.
Novak, B. and J. J. Tyson (1995). "Quantitative Analysis of a Molecular Model of Mitotic Control in Fission Yeast." J Theor Biol 173: 283-305.
Patterson, J. O., S. Basu, P. Rees and P. Nurse (2021). "CDK control pathways integrate cell size and ploidy information to control cell division." Elife 10.
Shahrezaei, V., J. F. Ollivier and P. S. Swain (2008). "Colored extrinsic fluctuations and stochastic gene expression." Mol Syst Biol 4: 196.
Tang, Z., T. R. Coleman and W. G. Dunphy (1993). "Two distinct mechanisms for negative regulation of the Wee1 protein kinase." EMBO J 12(9): 3427-3436.
Tyson, J. J., A. Csikasz-Nagy and B. Novak (2002). "The dynamics of cell cycle regulation." Bioessays 24(12): 1095-1109.
-
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
The paper by Novak and Tyson revisits a recent paper from Nurse group on the bistability of mitotic switch in fission yeast using mathematical modelling. The authors extend their older models of mitotic entry check point and implement both deterministic and stochastic version of new model. They show this model does indeed possess bistability and show that combined with stochastic fluctuations the model can show bimodality for the cyclin-CDK activity at a particular cell size consistenent with the recent experimental data. However, the authors also show alternative model that has mono-stable ultrasensitivity can also explain the data and suggest experiments that can prove the existence of hysteresis and therefore bistability.
While the biological implication of the study is well explained, the authors can improve the presentation of their model and the underlying assumptions. I have the following comments and suggestions for improvement of the paper. <br /> 1. The cartoon of the mathematical model is confusing at places, for example the wee1-CDK complex according to the equations either dissociates back to wee1 and CDK or gives rise to pCDK and wee1, the arrow below is confusing as it implies it can also give rise to wee1p, the CDK phosphorylation of wee1 is already included in the diagram. Also, the PP2A is put on the arrow for all reactions but for wee1p2 to wee1p its action shown with a dashed line. Also, I wondered if wee1p and wee1p2 can also bind CDK and sequester or phosphorylate CDK? 2. The rates and variables in the ODEs are not fully described. Also sometimes unlcear what is parameter and what is a variable, I had to look a the code. 3. The model has quite a few parameters, but these are not at all discussed in the paper. How did the authors come up with these particular set of parameters, has there been some systematic fitting, or tuning by hand to produce a good fit to the data? I could only see the value of the parameters in the code, but perhaps a table with the parameters of the model, what they mean and their value (and perhaps how the values is obtained) is missing. 4. The authors are using the Gillespie algorithm with time varying parameters (as some rates depend on volume and volume is not constant). Algorithm needs to be modified slightly to handle this (see for example Shahrezaei et al Molecular Systems Biology 2008). 5. The authors correctly point out, ignoring mRNA has resulted in underestimation of noise, however another point is that mRNA life times are short and that also affects the timescale of fluctuations and this may be relevant to the switching rates between the bistable states. 6. In the introduction add, "In this study" to "Intrigued by these results, we investigated their experimental observations with a model of bistability in the activation of cyclin-CDK in fission yeast.
Significance
Overall, this is an interesting study that revisits an old question and some recent experimental data. The use of stochastic modelling in explaining variability and co-existence of cell populations in the context of cell cycle and comparison to experimental data is novel and of interest to the communities of cell cycle researchers, systems biologists and mathematical biologists.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Summary: The manuscript asks whether the data reported in Patterson et al. (2021) is consistent with a bistable switch controlling the G2/M transition in fission yeast. Patterson et al. (2021) use an engineered system to decouple a non-degradable version of Cyclin-dependent kinase (CDK) from cell growth and concomitantly measure CDK activity (by the nuclear localization of a downstream target, Cut3p). They observe cells with indistinguishable CDK levels but two distinct CDK activities, which they posit shows bistable behavior. In this study, the authors ask if other models can also explain this data. The authors use both deterministic and Gillespie based stochastic simulations to generate relationships between CDK activities and protein levels for various cell sizes. They conclude that the experiments performed in Patterson et al. are insufficient to distinguish between a bistable switch and a reversible ultrasensitive switch. They propose additional experiments involving the use a degradable CDK construct to also measure the inactivation kinetics. They propose that a bistable switch will have different forward (OFF->ON) and backward (ON->OFF) switching rates. A reversible ultrasensitive switch will have indistinguishable switching rates.
The results are interesting and worth publication in a computational biology specific journal, as they might only appeal to a limited audience. Several ideas need to be clarified and additional information needs to be provided about the specific parameters used for the simulations:
Major comments:
- The parameters need to be made more accessible by means of a supplementary table and appropriate references need to be cited. It is not clear why Michaelis Menten kinetics will not be applicable to this system. Has it been demonstrated that the Km s of the enzymes are much greater than the substrate concentrations for all the reactions? If yes, please cite. It will not be surprising if the simulation with Michaelis Menten would alter the dynamics shown in this study. A reversible switch with two different enzymes (catalyzing the ON->OFF and OFF->ON transitions) having different kinetics can give asymmetric switching rates. This would directly contradict what has been shown in Figure 7A-D.
- Line 427: The authors use a half-time of 6 hours in their model as Patterson et al. used a non-degradable construct. It is not clear why dilution due to cell growth has not been considered. The net degradation rate of a protein is the sum of biochemical degradation rate and growth dilution rate. The growth dilution rate seems significant (140 mins doubling time or 0.3 h-1 dilution rate) relative to assumed degradation rate (0.12 h-1). Please clarify why was the effect of dilution neglected in the model or show by sensitivity analysis this does not change the predicted CDK activation thresholds.
- Line 402 The authors state that the production rate of the Cdk protein is 'assumed' proportional to the cell volume. The word 'assumed' is incorrect here as a simple conversion of concentration-based differential equation (with constant production rate) to molecular numbers would show that production rate is proportional to the volume. This is not an assumption.
- Line 423 Please cite the appropriate literature that shows that fission yeast growth during cell division is exponential. If the dynamics are more complicated, involving multiple phases of growth during cell division, please state so.
- Line 250 The authors convert the bistable version of the CDK switch to reversible sigmoidal by assuming that Wee1 and Cdc25 phosphorylation is proportional to the CDK level rather than activity, which seems biochemically unrealistic. This invokes an altered circuit architecture where inactive CDK has enough catalytic activity to phosphorylate the two modifying enzymes (Wee1/Cdc25) but not enough to drive mitosis. This might be possible if the Km of CDK for Wee1/Cdc25 is lower relative to other downstream substrates that drive mitosis. The authors can reframe this section of the paper to state this possibility, which might be interesting to experimentalists.
- It is difficult to phenomenologically understand a bistable switch just based on differences in activation and inactivation thresholds. For example, a reversible ultrasensitive switch also shows a difference in activation and inactivation thresholds (Figure 7D). How much of a difference should be expected of a bistable switch versus reversible switch? Moreover, as the authors clearly understand (line 275), time-delays in activation and inactivation reactions can inflate these differences. In the future, if the authors can convert the equations to potential energy space as done in Acar et al. 2005 (Nature) in Figure 3c-d, it will be useful. Also, predicting the distribution of switching rates from the Gillespie simulation might be informative and can be directly compared to experimental measurements in the future (if the Cut3p levels in nucleus and cytosol equilibrates fast enough or other CDK biosensors are developed).
Minor comments:
- Line 2: Please replace "In most situations" to "In favorable conditions"
Referee cross-commenting
I agree with Reviewer 1 that this falls more under pointing out an alternative interpretation of a single experiment than challenging widely supported orthodoxy about how the eukaryotic cell cycle leaves mitosis.
Significance
Suitable for specialist comp bio journal eg PLoS Comp Bio
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Novák and Tyson present a model-based analysis of published data that had claimed to demonstrate bistable activation of CDK at the G2/M transition in fission yeast. They point out that the published data does not distinguish between ultra-sensitive (switch-like, but reversible) and bistable (switch-like, but irreversible) activation. They back up their intuition with robust quantitative modeling. They then point out that, with a simple experimental modification, the published experiments could be repeated in a way that would test between the ultra-sensitive and bistable possibilities. Therefore, this is a rare paper that makes a specific modeling-based prediction and proposes a straightforward way to test it. As such, it will be of interest to a broad range of workers involved in the fields cell cycle and regulatory modeling. Nonetheless, attention to the following points would improve the manuscript.
The authors should be more careful about how they describe protein abundance. They often refer to protein level. I believe in every case they mean protein concentration, but this is not explicitly stated; it could be interpreted as number of protein molecules per cell. The authors should either explicitly state that level means concentration or, more simply, use concentration instead of level.
The authors should explain why they include stoichiometric inhibition of CDK byWee1 in their model. Is it required to make the model work in the wild-type case, or only in the CDK-AF case. My intuition is it should only be required in the AF case, but I would like to know for sure. Also, they should state if there is any experimental data for such regulation.
The authors should explicitly state, on line 131, that the fact that "the rate of synthesis of C-CDK molecules is directly proportional to cell volume" results in a size-dependent increase in the concentration of C-CDK.
The authors should explain, on line 100, why they are "quite sure the bistable switch is the correct interpretation".
On line 166, include the units of volume.
On lines 152 and 237, "smaller protein-fusion levels "should be replaced with "lower protein-fusion concentrations".
Referee cross-commenting
I concur with the other two reviews.
Significance
The paper is significant in that it points out a alternative interpretation for an important result in an important paper. Specifically, it points out that the published data is consistent with activation of CDK at the G2/M transition in fission yeast could be ultra-sensitive (switch-like, but reversible) instead of bistable (switch-like, but irreversible). The distinction is important because it has been claimed, by the authors of the submitted manuscript among others, that bistability is required for robust cell-cycle directionality. However, activation of CDK at the G2/M transition in other species has been shown to be bistable and the authors state that they are "quite sure the bistable switch is the correct interpretation". So, the paper is more likely an exercise in rigor than an opportunity to overturn a paradigm.
-
-
www.biorxiv.org www.biorxiv.org
-
Transparent Peer Review
Download the complete Review Process [PDF] including:
- reviews
- authors' reply
- editorial decisions
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Please see attached point-by-point response file, it contains essential figures and formatting that cannot be pasted here.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Summary:
Bataclan et al. provide extensive in vitro work on Regnase1/3 function in mast cells. They make use of in vitro differentiated mast cells from bone marrow (BMMC) and in vitro cultures from primary peritoneal mast cells from mice. They show robustly Reg1/3 upregulation by transcript and protein upon activation stimulation in these cultured mast cells. Knockdown and CRISPR editing of Reg1/3 show enhanced inflammatory signaling. TNF is identified as a direct target of Reg1/3 nuclease activity. Reg3 is implicated as a negative regulator of Reg1. Overall, this work highlights Reg1/3 as novel players in mast cell biology that control inflammatory signaling including TNF.
Major comments:
- The result section requires more consistent & sufficient information on the assays (in vitro, ex vivo, species, etc.) particularly for the meta-analysis in the beginning. Relatedly, can the authors assume cross-species conservation of Reg1/3 in mast cells across mammals to make general conclusions on the functions or should this be limited mostly to mouse observations? It would be helpful to mention the species studied in the abstract.
- Reg1 protein levels appear to be more stable than Reg3 protein levels (mirroring the transcript) Fig1a+c. Is the half-life of Reg3 shorter than Reg1? What is functional impact of Reg1 regulation at the transcriptional level considering the protein half-lives?
- MFI comparisons can only be used on unimodal populations (not bimodal i.e. Fig3b). Also, contour flow plots should show outliers.
- Is TNF functionally secreted from WT vs KD/KO mast cells under these in vitro conditions? This is not shown and seems quite an important aspect given the focus on TNF regulation (other secreted factors could also be considered). Degranulation appears to be lower in Fig5g. Does Reg1 overexpression reduces TNF expression and secretion?
- Catalytic variants of Reg1/3 appear to be only tested in WT cells. Wouldn't it be worthwhile to test these in KO cells? The absolute protein levels of ectopic and endogenous are not entirely clear and only shown for WT Reg3 in Fig4b.
- Fig2b shows upregulation of Reg1 transcript is not enhanced upon Reg3 knockdown, but it is enhanced in Fig4a? How are these assays different?
- The authors implicate Reg3 to regulate Reg1 by transcript. What is the role of the protein interaction between Reg1 and 3? Why is the protein interaction not seen in the IF experiments? Would other cell systems (maybe mouse) be more suitable.
- Cell death increases after Reg1/3 knockdowns; can this be rescued with Reg1/3 reinstation? Is the protein level of Reg1 important for this; can this be dosed? Are the assays for cell death/proliferation done in comparison to unstimulated resting cells, cultured conditions and IgE stimulated mast cells? Minor point: A single assay of cell death is sufficient in the main figures; same for proliferation assays.
- It is not entirely clear how the RNA-seq data with CRISPR KO in Fig6 is different than the nanostring data with Knockdowns shown earlier in Fig2? Were unstimulated cells not used as a control before? A floxed mouse model for Reg1 is introduced at the end, but would have been useful for many assays. OPTIONAL: are in vivo experiments of interest to confirm the findings? The conclusions that Reg1/3 regulates physiological mast cell responses might be a reach otherwise.
Minor comments:
- Some of the Knockdown and CRISPR validation main figures are redundant and might be better suited for the supplement.
- The MW in the western blot requires lines to indicate the exact location of the ladder.
- Fig2 title refers as loss of Reg1/3 using siRNA. The term is typically used in the context of genetic ablation and not for knockdowns.
- Gene locus figures of Reg1/3 are confusing why are only E3 and E6 shown and not all Exons (Fig2a et al)?
- Are biological replicates or technical replicates used in Fig1?
- Is a student's t test the appropriate statistical analysis for most of the analyses?
- An explanation why nanostring and RNA-seq are both used would be helpful.
Significance
Bataclan et al investigate Reg1/3 function in mast cells, that are of interest to elucidate the regulation of mast cell effector functions. Reg1/3 were identified as novel regulators of murine mast cells. Independent and complementary use of Knockdowns and CRISPR deletions provide robust data. Also, the use of two independent mast cell populations and different stimuli is of interest, albeit they are not used in every assay. Altogether, the in vitro data are robust and rigorous. On the flipside, in vivo data is not provided. The translational impact would be higher if findings are tested in in vivo models including preclinical applications (as discussed in text). Mouse studies are often indicative of mechanisms in higher mammals, but it would help to lay this out more clearly. Therefore, the connection to humans is less clear. The type of work presented here would be best described as basic research. This review has been assessed with the following expertise: mouse/human immunology, mouse models, immune cell signaling, immune effector functions, flow cytometry.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Summary:
Bataclan et al. studied the role of Regnase-1 and -3 in the mast cell (MC) function in vitro. Using siRNA, CRISPR-mediated depletion, and overexpression models in, mainly, IL-3-cultured bone-marrow-derived mast cells, they beautifully demonstrated that Regnase-1 and, to a lesser extent, Regnase-3 suppressed the expression of TNF in MCs in response to IgE-stimulation. Regnase-1 also had roles in MC survival and IgE-stimulation-induced degranulation. Regnase-3 seems to have mixed effects on MC functions as the protein's primary targets include both TNF and Regnase-1 mRNAs.
Major comments:
- The authors mainly used BMMCs generated by four weeks of cultivation of bone marrow cells with IL-3; at this point, MCs are considered "less mature". Could the authors reproduce the primary data (the role of Regnase-1 on TNF, cell survival, and degranulation) even if they used more mature MCs (e.g., extended cultivation with IL-3 (6-7 weeks))?
- TNF mRNA is not considered a primary target for Regnase-1 in other cell types, such as macrophages or fibroblasts. Although this reviewer does not doubt that the TNF expression level is controlled by Regnase-1 in MCs, more evidence is needed to conclude that TNF is a "primary target" for Regnases. They can determine the stability of "endogenous" TNF mRNA in Regnase-depleted cells, as in Figure 4d.
- The role of Regnase-1 on the MC degranulation is less pronounced. Could the authors show the same result using another assay, such as a FACS-based assay excluding dead or dying cells?
- Have the authors had a chance to look into which protease(s) cleaved Regnase-1 in IgE-stimulated MCs?
Significance
General assessment:
This study investigated the role of Regnase-1 and -3 in the mast cell (MC) function in vitro. The strength of the study is that they used several methods to manipulate the expression levels of Regnases in the cells (siRNA, CRISPR, and Regnase-1 overexpression) and obtained consistent results. Although the study is well designed and the results are beautiful, the BMMCs the authors used are less mature MCs and do not represent the cells in the mammalian body well. Also, this study only focused on in vitro mouse-derived MCs, and human MCs or in vivo roles of MC Regnases were not studied.
Advance:
The role of Regnase-1 in several cell types has already been shown, including the populations involved in type-2 immunity (Th2 and ILC2). However, this study might be the first to investigate the role of Regnases in MCs. The roles of Regnases in MCs (control of mRNA stability through the RNase activity) presented are in line with the previous studies.
Audience:
The primary audience of this study may be basic researchers studying type-2 immunity or MC biology. Because MCs are an essential cell population in several allergic disorders, some clinicians who care for allergic patients might also be interested in this study. However, main audiences may be relatively limited to specific fields like immunology and allergology.
This reviewer's main field of expertise is basic research in immunology and allergology. More specific keywords are MCs, ILC2, IgE, type-2 cytokines, and mouse models.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary:
Mast cells play a role in exerting effector functions in the immune response. However, the functioning of RNA-binding proteins (RBPs) in the mast cells is not well understood. The authors focused on the Regnase family of RNA-degrading enzymes and worked towards unraveling their functions. Upon activating mast cells, the authors observed a significant induction of Regnase-3 among RBPs. Furthermore, they found that Regnase-3 directly controls the well-known Regnase-1, revealing its role in regulating homeostasis and inflammatory responses in mast cells.
Major comments:
This experiment has been meticulously designed, and the reliability of the presented data is quite high. While the observations are specific to mast cells, the insights gained could provide valuable information about the interrelation within the Regnase family across other immune cell types. However, there are three main concerns raised by the reviewer:
The first concern revolves around the use of the IVT system for the expression of Regnase-1 and Regnase-3. Is there evidence confirming the expression of Regnase-3 as a full-length protein, as shown in Figures 3g and 3h? The APC-HA signal by FACS could be positive even for degradation products alone. Assuming Regnase-3 is not expressed in its full-length, it might lead to results similar to the control. Given the larger molecular weight of Regnase-3 compared to Regnase-1, it is crucial to demonstrate sufficient expression through IVT. In particular, the Western blot data for Regnase-3 in some cases confirm the full length of the product, while in other cases more degradation products appear.
The second concern arises from the co-immunoprecipitation experiment in Figure 4i. While the experiment detects Regnase-1 co-precipitating with Regnase-3, the reverse-precipitating Regnase-1 with Regnase-3 shows a signal comparable to IgG, indicating background noise. Further improvement is needed in this aspect.Is it possible that your antibody against Regnase-1 also binds to Regnase-3?
The third concern is related to the evaluation of Regnase-1 degranulation in Figure 5g, where there appears to be some variability. Including Regnase-3 and conducting mutual evaluations could enhance the reliability of the results, possibly addressing this variability.
Minor comments:
Figure 6e-g also seems to vary, and the effects on cell death and cell proliferation tend to be somewhat milder.
Certainly, their IF images (Figure S2 and Figure S5) suggests that Regnase-1 and Regnase-3 have no or only a weak interaction.
Is the input to the immunoprecipitation from whole cell lysate or is it cleared with a low-speed (or high-speed) centrifugation?
Significance
The following aspects are important: Understanding the regulatory mechanisms mediated by RNA-binding proteins (RBPs) has gained significant attention in recent years. While it is inferred that RBPs control specific RNAs, many uncertainties remain about how they function in various RNA metabolism processes. The Regnase family is known to operate within the mechanism of RNA stability. While lower organisms have only one type, mammals have evolved to have four types. Understanding the implications of this family expansion is highly valuable, shedding light on how the RNA within our body's cells is regulated.
- Advance: In this study, a strength lies in the meticulous examination of the relationship between Regnase-1 and Regnase-3 by handling them similarly in the context of mast cells. However, because of the multifaceted effects of Regnase-1 on cell proliferation, cell death, and the cell cycle, significant progress in understanding it has yet to be made. Going forward, the replication of immune responses in mast cells at the animal level holds the potential to further deepen our comprehension of RBPs through the Regnase family. This study complements two previous investigations on Regnase-3 (PMID: 34215755, 31126966) while specifically focusing on mast cells. The findings align with the prevailing perspective that emphasizes the significance of Regnase-1 among the Regnase family.
- Audience: Basic research
- Immunology, Molecular Biology, Genetic Engineering
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Dear Editor,
We have addressed the points and concerns raised by the reviewers and wish to thank them for their effort and time. We agree with all the comments and suggestions, which resulted in a significant improvement of the manuscript. Below, we provide a point-by-point response to all comments.
Sincerely,
Anders Hofer, corresponding author
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
In their paper Ranjbarian and colleagues provide a tour de force at characterizing dAK from G. intestinalis using both enzymology and structural biology. G. intestinalis does not have RNR and therefore this organism relies on dAK which catalyzes formation of dAMP and ADP from deoxyadenosine and ATP (among other substrate pairs). The authors performed a terrific job at testing this reaction in depth using a recombinant dAK and a battery of various co-substrates (both natural as well as synthetic ones, Table 1). Extensive structural information on dAK was obtained using a combination of X-ray crystallography and cryo-EM. Overall, this work will be paramount aid in better understanding of the reaction mechanism, especially in the context of molecules which can be used as inhibitors of such a crucial enzyme (metabolic vulnerability for this parasite).
This manuscript, in its current form does not require additional experiments but I would like to have a few aspects corrected/clarified, before it can be accepted for publication:
Line 30: "whereas the affinities for deoxyguanosine, deoxyinosine and deoxycytidine were 400-2000 times lower." Better not to use term "affinity" when KM or kcat/KM are implied (unless ITC was used to measure true Kds).
-This is a good point, and we are now using KM values in all instances were actual numbers are implied and only kept the word affinity in cases where it is discussed in more general terms.
Line 31: "Deoxyadenosine analogues halogenated at the 2- and/or 2´-positions were also potent substrates, with comparable EC50 values as the main drug used today, metronidazole, but with the advantage of being usable on metronidazole-resistant parasites." Not sure this sentence is clear as written.
-We have now rewritten the sentence as follows: "Deoxyadenosine analogues halogenated at the 2- and/or 2´-positions were also potent substrates with comparable EC50 values on cultured G. intestinalis cells as metronidazole, the first line treatment today, with the additional advantage of being effective against metronidazole-resistant parasites."
Line 55: "..G. intestinalis (synonymous to G. lamblia and G. duodenalis)..". Very nice that authors provide this information as it is usually a point of confusion i.e. multiple names for the same organism.
-Thanks a lot, we are happy that you liked it.
Line 61 and above as well: "Treatment regimes are mainly based on metronidazole and to a lesser extent other 5-nitroimidazoles...". MT is introduced a bit sporadically, and not completely clear which enzyme it inhibits and its mode of action." Common knowledge is that MT is known for its action in aerobic parasites/bacteria and known as Flagyl, where it is mode of action was linked to "activation" due to microaerophilic conditions. Maybe MT can be introduced after text starting from Line 71?
-The description of metronidazole is adjusted as following: "Metronidazole (Flagyl) is the most commonly used drug to treat giardiasis and selectively kills the parasite and other anaerobic organisms by forming free radicals under oxygen-limited conditions, but it has side effects such as nausea, abdominal pain, diarrhea, and in some cases neurotoxicity reactions."
Line 70: what is "cyst-wall"?
-It is a cell wall consisting of three major cyst wall proteins and N-acetylgalactosamine. We have adjusted the sentence to the following to make the term clearer: The trophozoites can also secrete material to form a cyst wall and go through two rounds of DNA replication to form cysts, which contain four nuclei and a 16N genome per cell (4N in each nucleus).
Line 90: "The reaction is catalyzed by deoxyribonucleoside kinases (dNKs), which are.." I really do not like when in order to find a reaction which is catalyzed by an enzyme in a particular study one needs to dive into the literature, sometimes it requires a lot of time as in most of recent papers on the subject reactions catalyzed are not listed. Please add a Figure or a panel with reactions catalyzed by both dNKs families.
-It is a good idea and we have now added a figure (Fig. 1), which compares the deoxyribonucleotide metabolism of G. intestinalis with mammalian cells. The different deoxyribonucleoside kinases in the parasite and mammalian cells are included in the figure.
Line 96: "..was found to have a ~10-fold higher affinity to thymidine.." as I mentioned above I really do not like the usage of "affinity", when actually low KM is implied.
-It is corrected now (see above).
Line 113: "This does not match the current knowledge that there are three dNKs in total whereof one completely specific for thymidine. The lack of knowledge about these essential enzymes in the parasite has hampered the understanding of Giardia deoxyribonucleoside metabolism and hence its exploitation as a target for antiparasitic drugs." Very good rationale, as I mentioned above, I think a Figure needs to be introduced that depicts different enzymes involved in deoxyribonucleoside metabolism (both TK1 and non- TK1 members) in Giardia with clearly labeled all known paralogs and corresponding enzymatic reactions.
-Thanks a lot for the suggestion. Information about the different dNKs in G. intestinalis with mammalian cells for comparison is included in the new figure (Fig. 1).
Line 132: Odd designation of supplementary figures, usually it is "Fig. S1" etc. The legend for Fig. S1 is not adequate, please add description of species and name of enzymes for all sequences shown. Also each sequences in alignment should start with number (a.a. number) as it is not clear if a full sequence is shown or not. Overall comment about the multiple sequence alignment (relevant to Fig. S1): with such a small number of sequences it is very hard to make any substantial predictions about conserved regions etc.
-Thanks for the suggestions. We have now included more sequences, sequence numbering, and description of species as well as enzyme names. Some other changes are also that we have now used the same G. intestinalis dAK sequence in the alignment as in the experiments (same strain and accession number), and that we have made a realignment using Clustal W instead of Clustal Omega (gives better alignment of the termini). The designation of supplementary figures is according to the style of PLoS journals.
Fig. 1 and elsewhere: I will prefer that all bar graphs show individual values + the error bar (if possible);
-We have now added individual values to the bar graphs.
I do not have any issues with X-ray data and cryo-EM studies (refinement statistics, particles classification etc).
**Referees cross-commenting**
I also agree with all the comments provided by Reviewer 2 and very pleased to see that we were very similar in our evaluations.
Reviewer #1 (Significance (Required)):
In their paper Ranjbarian and colleagues provide a tour de force at characterizing dAK from G. intestinalis using both enzymology and structural biology. G. intestinalis does not have RNR and therefore this organism relies on dAK which catalyzes formation of dAMP and ADP from deoxyadenosine and ATP (among other substrate pairs). The authors performed a terrific job at testing this reaction in depth using a recombinant dAK and a battery of various co-substrates (both natural as well as synthetic ones, Table 1). Extensive structural information on dAK was obtained using a combination of X-ray crystallography and cryo-EM. Overall, this work will be paramount aid in better understanding of the reaction mechanism, especially in the context of molecules which can be used as inhibitors of such a crucial enzyme (metabolic vulnerability for this parasite).
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
Summary:
Ranjbarian et al. investigated a non-TK1-Like deoxyribonucleoside kinase (dNK) found in the protozoan parasite Giardia intestinalis. They used enzyme kinetic assays on heterologously expressed Gi dNK in E. coli to determine which deoxyribonucleotides were most likely physiological substrates for the enzyme. Their characterization revealed that this Gi dNK has a strong affinity to deoxyadenosine. They further investigated the affinity and activity of the dNK on deoxyadenosine analogues, some of which have known pharmaceutical utility. Finally, using a combination of crystallography, cryo-EM, chromatography, and mass photometry, they reveal that unlike other dNKs, Gi dNK forms a tetramer. They characterize important regions required for tetramerization and postulate that this tetramerization evolved to provide Gi dNK with a heightened affinity for deoxyadenosine.
Major comments and questions:
- The claims in this manuscript are well-supported, and I found no major issues with experimental methods. • The authors provide a structure of tetrameric dNK and suggest that this tetramer leads to the increased affinity to substrate compared to non-giardia dNKs. They also show through mutations that removing the novel dimerization regions decreases substrate affinity by 100-fold. However, I was left unclear about why the tetramer would lead to such high affinity for substrate compared to two dimers. This is especially notable, since the authors state that there are no signs of cooperativity, which is a common way that oligomerization may lead to heightened affinity. If the authors have no current evidence explaining this, they can consider adding a short amount of discussion speculating on the mechanism and future directions of study. -Thanks for this suggestion. We have now added a section in the last paragraph of the discussion where we speculate on the subject.
Minor comments and questions:
-
The authors state that dATP acts as a mixed inhibitor and not a simple competitive inhibitor, and that previous studies have shown that this is because the dNTP competes in two locations (line 163). Is it also possible that competitive inhibition + allosteric regulation could be causing this behavior instead? -It is true that this can be theoretically explained in many ways. In fact, many allosteric regulators affect both the Vmax and Km values. However, in all studied dNKs, the dNTP acts as a dual competitor and no proper allosteric regulation with a separate allosteric site has ever been observed so far. We have rephrased this part as following to make it clear: "Mixed inhibition is often the result of allosteric regulation but studies of other dNKs have shown that this is not the case [17]. Instead, the far-end dNTP product gives a dual inhibition where the deoxyribonucleoside moiety competes with the substrate and the phosphate groups mimic those of ATP but coming from the opposite direction."
-
In the introduction (line 93), non-TK1-like dNKs are described as "not structurally related to TK1-like". This left me unclear, are they still interrelated among themselves? -We have added the following sentence for clarification: "The non-TK1-like dNKs are further subdivided into a monophyletic group of canonical non-TK1-like dNKs and a second group with thymidine kinases from Herpesviridae, which are structurally related to the canonical group but share very little amino acid sequence homology."
-
I was left confused by lines 106-116 in the introduction, where the specificities of dNKs in giardia are discussed. This is touched upon again in the discussion, but it was not clear here that there are several deoxyribonucleotides unaccounted for. -We think this should be clear now with the added Fig. 1 where the dNKs are shown.
-
When describing enzyme assays (Line 145), the authors say there is no salt dependence, but there looks to be MgCl2 always included in the assays (presumably for the ATP). -This is a good point and something we have overlooked when the sentence was written (Mg2+ is required). We have now corrected the sentence as follows: "Based on initial enzyme activity studies, it was confirmed that the assay did not have any specific requirements regarding K+, Na+, NH4+, acetate or reducing agents, and that it was linear with respect to time (S2 Fig)."
-
I was confused by the y-axis of Fig 2. How is enzyme activity lower when dAdo is added? I think I read "enzyme activity" as total substrate depleted, when it is actually referring exclusively to the given non-dAdo substrate in each column. -This is a very good point that we seem to have overlooked. We have now adjusted the y-axis title to "Indicated enzyme activity" and added the following sentence to the figure legend: "The recorded enzyme activities are for the substrates indicated on the x-axis (excluding the activity with the competing substrate)."
-
Lines 239 - 255 and Figure 3 were a little unclear to me. Specifically, I was having trouble following in the text which dimer is in the ASU, which is symmetry related, and matching those terms with which are canonical and non-canonical. -We agree with the reviewer and thank them for their comment. In order to improve the presentation of these results, we chose to extensively rearrange the figures and accompanying text. We now present the initial X-ray data together with the cryo-EM data in a new Figure 4 that focuses on the overall architecture of the tetramer. We realize that some of the nomenclature previously used in that figure was, as the reviewer pointed out, confusing and superfluous, and we have now simplified and unified it. The structural details of how the extended N- and C-termini interact with the neighboring subunit have been moved to the new figure 6 in order to present them just before the functional analyses of the consequences of truncating the termini. As a consequence of these changes to the figure layout, we made substantial changes in the organization of the text surrounding these figures, which also led to a clearer presentation. Since the changes to the figures and text are quite substantial, we would like to point out that they are only changes to the presentation, not to the data shown.
-
The authors suggest that in the experiment shown in Figure S9 (Line 285), low activity may be caused by minor impurities. I'm not sure why impurities would lower activity significantly. Could there be other differences in experimental conditions that are at play instead? -The sentence refers to a side activity (dATP dephosphorylation) which is not the normal reaction of deoxyadenosine kinase. We have rephrased the sentence to make it clearer: "The dATP-dephosphorylating activity was several orders of magnitude lower than the regular dAK activity (to phosphorylate deoxyadenosine) and was possibly catalyzed by other enzymes present as minor impurities in the protein preparation."
-
(Optional) From looking at the crystallography stats, I think the authors can potentially push the resolution more. At higher resolutions, Rmerge may become high, but depending on the data collection strategy, Eiger detectors can lead to high Rmerge just out of sheer data redundancy. Cc 1/2 can be a more useful metric in these contexts. -This is a good point and well spotted by the reviewer. Indeed, a CC1/2 of 0.802 suggests that the resolution can be pushed further. However, due to contaminating spots at higher resolutions the statistics significantly worsen when trying to push the resolution beyond 2.1 A, which is why we did not process the data to a higher resolution.
-
For Figure S8, the Polder map feature in Phenix is another option for showing ligand occupancy in an unbiased way. Did the authors try this? -We want to thank the reviewer for suggesting this. We have calculated a polder map using the Polder map feature in Phenix and both the resulting map and correlation coefficients support the presence of a dADP in the active site of monomer I. We added a section to the relative paragraph to include these new findings: "To increase our confidence that dADP was correctly placed within active site I, we calculated a polder map for dADP to test whether the b-phosphate density is correctly attributed or if it rather belongs to the bulk solvent. The resulting polder map and statistics support the placement of dADP in active site I with correlation coefficients of CC1,2=0.7627, CC1,3=0.9424, and CC2,3=0.7423 suggesting that the density does belong to dADP as CC1,3 > CC1,2 and CC1,3 > CC2,3 (S8 Fig.)."
-
It's disappointing that the tetramers show so much preferred orientation in the cryo-EM. With that said, while the nominal resolution is 4.8 Å, I think that with the streakiness the EM structure looks to have worse resolution than that. -We agree that the streakiness of the map is substantial. This is simply a result of the severe anisotropy of the map, which means that the resolution is probably worse than 4.8 Å in the "bad directions" of the map. The supplementary material (S9 Fig) clearly shows the preferred orientations leading to this problem. In the course of this study, we tried several methods to lessen the preferred orientation problem such as using graphene oxide-coated grids and collecting tilted data. However, when we got the crystal structure we saw no point in continuing these efforts. To address the comment of the reviewer, we extended the description of the EM map in the main text to say:
"Due to strong preferred orientations, it was not possible to get an isotropic, high-resolution 3D structure of dAK using cryo-EM. The resulting 3D map had a nominal resolution of 4.8 Å, but a clearly anisotropic appearance probably reflecting lower resolution in the poorly resolved direction (S9 Fig)."
**Referees cross-commenting**
Overall, I agree with Reviewer #1's evaluation, and don't have any further suggestions or thoughts at this time.
Reviewer #2 (Significance (Required)):
Medical relevance: G. intestinalis is a parasite that causes 190 million cases of giardiasis per year. While treatable, there is evidence that giardia are developing a resistance to the main treatment at the moment, metronidazole. Thus, the authors provide a compelling case for the medical relevance of their investigation of Gi dNK for further pharmaceutical development. They provide further evidence for this by showing that several deoxyadenosine analogs bind the dNK and inhibit giardia growth. This work represents a very useful first step into a potential avenue for medical development. It's important to note that clinical studies are not within the purview of this research. However, in the discussion, the authors provide several comments on the promise of this avenue for future research.
Conceptual, technical, and mechanistic relevance: Through biochemical and structural study, the authors provide a compelling framework to understand an enzyme that is very important to the unique lifestyle of giardia parasites. From an evolutionary standpoint, the authors provide insight into how giardia can survive even without major components of de novo DNA synthesis. The authors principally use well-established tools and techniques of the enzymology field. but do so to characterize a unique and previously uncharacterized enzyme system. This enzyme proves to be notable not just for its medical significance, but because it is unique among its family (non-TK1-like deoxynucleotide kinases) in its strong affinity for substrate and tetrameric quaternary structure. One relatively novel technique used in the study is mass photometry, which is a relatively new and exciting way to characterize native proteins at very low concentrations. Using this technique helps the authors overcome a common criticism of structural studies in which the high concentrations or crowding conditions of techniques like crystallography and cryo-EM may be inducing non-physiological oligomers.
In summary, this work represents a meaningful addition to the protein structure-function literature. While it will principally be of interest to basic/fundamental researchers who study the mechanistic detail of protein function and evolution, it also provides a foundation for future translational work and antiparasitic drug design.
Reviewer's background: I received my PhD in chemistry studying the structure and function of another enzyme key to DNA metabolism (except in giardia), ribonucleotide reductase. My background is in structural biology and biochemistry. I do not have sufficient expertise to comment on studies performed on G. intestinalis growth and susceptibility to deoxyadenosine analogs.
- *
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Summary:
Ranjbarian et al. investigated a non-TK1-Like deoxyribonucleoside kinase (dNK) found in the protozoan parasite Giardia intestinalis. They used enzyme kinetic assays on heterologously ex-pressed Gi dNK in E. coli to determine which deoxyribonucleotides were most likely physiological substrates for the enzyme. Their characterization revealed that this Gi dNK has a strong affinity to deoxyadenosine. They further investigated the affinity and activity of the dNK on deoxyadenosine analogues, some of which have known pharmaceutical utility. Finally, using a combination of crys-tallography, cryo-EM, chromatography, and mass photometry, they reveal that unlike other dNKs, Gi dNK forms a tetramer. They characterize important regions required for tetramerization and pos-tulate that this tetramerization evolved to provide Gi dNK with a heightened affinity for deoxy-adenosine.
Major comments and questions:
- The claims in this manuscript are well-supported, and I found no major issues with experi-mental methods.
- The authors provide a structure of tetrameric dNK and suggest that this tetramer leads to the increased affinity to substrate compared to non-giardia dNKs. They also show through mu-tations that removing the novel dimerization regions decreases substrate affinity by 100-fold. However, I was left unclear about why the tetramer would lead to such high affinity for substrate compared to two dimers. This is especially notable, since the authors state that there are no signs of cooperativity, which is a common way that oligomerization may lead to heightened affinity. If the authors have no current evidence explaining this, they can con-sider adding a short amount of discussion speculating on the mechanism and future direc-tions of study.
Minor comments and questions:
- The authors state that dATP acts as a mixed inhibitor and not a simple competitive inhibitor, and that previous studies have shown that this is because the dNTP competes in two loca-tions (line 163). Is it also possible that competitive inhibition + allosteric regulation could be causing this behavior instead?
- In the introduction (line 93), non-TK1-like dNKs are described as "not structurally related to TK1-like". This left me unclear, are they still interrelated among themselves?
- I was left confused by lines 106-116 in the introduction, where the specificities of dNKs in giardia are discussed. This is touched upon again in the discussion, but it was not clear here that there are several deoxyribonucleotides unaccounted for.
- When describing enzyme assays (Line 145), the authors say there is no salt dependence, but there looks to be MgCl2 always included in the assays (presumably for the ATP).
- I was confused by the y-axis of Fig 2. How is enzyme activity lower when dAdo is added? I think I read "enzyme activity" as total substrate depleted, when it is actually referring ex-clusively to the given non-dAdo substrate in each column.
- Lines 239 - 255 and Figure 3 were a little unclear to me. Specifically, I was having trouble following in the text which dimer is in the ASU, which is symmetry related, and matching those terms with which are canonical and non-canonical.
- The authors suggest that in the experiment shown in Figure S9 (Line 285), low activity may be caused by minor impurities. I'm not sure why impurities would lower activity sig-nificantly. Could there be other differences in experimental conditions that are at play in-stead?
- (Optional) From looking at the crystallography stats, I think the authors can potentially push the resolution more. At higher resolutions, Rmerge may become high, but depending on the data collection strategy, Eiger detectors can lead to high Rmerge just out of sheer data redundancy. Cc 1/2 can be a more useful metric in these contexts.
- For Figure S8, the Polder map feature in Phenix are another option for showing ligand oc-cupancy in an unbiased way. Did the authors try this?
- It's disappointing that the tetramers show so much preferred orientation in the cryo-EM. With that said, while the nominal resolution is 4.8 Å, I think that with the streakiness the EM structure looks worse resolution than that.
Referees cross-commenting
Overall, I agree with Reviewer #1's evaluation, and don't have any further suggestions or thoughts at this time.
Significance
Medical relevance: G. intestinalis is a parasite that causes 190 million cases of giardiasis per year. While treatable, there is evidence that giardia are developing a resistance to the main treatment at the moment, metronidazole. Thus, the authors provide a compelling case for the medical relevance of their investigation of Gi dNK for further pharmaceutical development. They provide further evi-dence for this by showing that several deoxyadenosine analogs bind the dNK and inhibit giardia growth. This work represents a very useful first step into a potential avenue for medical develop-ment. It's important to note that clinical studies are not within the purview of this research. Howev-er, in the discussion, the authors provide several comments on the promise of this avenue for future research.
Conceptual, technical, and mechanistic relevance: Through biochemical and structural study, the authors provide a compelling framework to understand an enzyme that is very important to the unique lifestyle of giardia parasites. From an evolutionary standpoint, the authors provide insight into how giardia can survive even without major components of de novo DNA synthesis.
The authors principally use well-established tools and techniques of the enzymology field. but do so to characterize a unique and previously uncharacterized enzyme system. This enzyme proves to be notable not just for its medical significance, but because it is unique among its family (non-TK1-like deoxynucleotide kinases) in its strong affinity for substrate and tetrameric quater-nary structure. One relatively novel technique used in the study is mass photometry, which is a relatively new and exciting way to characterize native proteins at very low concentrations. Using this technique helps the authors overcome a common criticism of structural studies in which the high concentrations or crowding conditions of techniques like crystallography and cryo-EM may be inducing non-physiological oligomers.
In summary, this work represents a meaningful addition to the protein structure-function literature. While it will principally be of interest to basic/fundamental researchers who study the mechanistic detail of protein function and evolution, it also provides a foundation for future transla-tional work and antiparasitic drug design.
Reviewer's background: I received my PhD in chemistry studying the structure and function of another enzyme key to DNA metabolism (except in giardia), ribonucleotide reductase. My back-ground is in structural biology and biochemistry. I do not have sufficient expertise to comment on studies performed on G. intestinalis growth and susceptibility to deoxyadenosine analogs.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
In their paper Ranjbarian and colleagues provide a tour de force at characterizing dAK from G. intestinalis using both enzymology and structural biology. G. intestinalis does not have RNR and therefore this organism relies on dAK which catalyzes formation of dAMP and ADP from deoxyadenosine and ATP (among other substrate pairs). Authors performed a terrific job at testing this reaction in depth using a recombinant dAK and a battery of various co-substrates (both natural as well as synthetic ones, Table 1). Extensive structural information on dAK was obtained using a combination of X-ray crystallography and cryo-EM. Overall, this work will be paramount aid in better understanding of reaction mechanism, especially in the context of molecules which can be used as inhibitors of such crucial enzyme (metabolic vulnerability for this parasite).
This manuscript, in its current form does not require additional experiments but I would like to have a few aspects corrected/clarified, before it can be accepted for publication:
Line 30: "whereas the affinities for deoxyguanosine, deoxyinosine and deoxycytidine were 400-2000 times lower." Better not to use term "affinity" when KM or kcat/KM are implied (unless ITC was used to measure true Kds).
Line 31: "Deoxyadenosine analogues halogenated at the 2- and/or 2´-positions were also potent substrates, with comparable EC50 values as the main drug used today, metronidazole, but with the advantage of being usable on metronidazole-resistant parasites." Not sure this sentence is clear as written.
Line 55: "..G. intestinalis (synonymous to G. lamblia and G. duodenalis)..". Very nice that authors provide this information as it is usually a point of confusion i.e. multiple names for the same organism.
Line 61 and above as well: "Treatment regimes are mainly based on metronidazole and to a lesser extent other 5-nitroimidazoles...". MT is introduced a bit sporadically, and not completely clear which enzyme it inhibits and its mode of action." Common knowledge is that MT is known for its action in aerobic parasites/bacteria and known as Flagyl, where it is mode of action was linked to "activation" due to microaerophilic conditions. Mayve MT can be introduced after text starting from Line 71?
Line 70: what is "cyst-wall"?
Line 90: "The reaction is catalyzed by deoxyribonucleoside kinases (dNKs), which are.." I really do not like when in order to find a reaction which is catalyzed by an enzyme in a particular study one needs to dive into the literature, sometimes it requires a lot of time as in most of recent papers on the subject reactions catalyzed are not listed. Please add a Figure or a panel with reactions catalyzed by both dNKs families.
Line 96: "..was found to have a ~10-fold higher affinity to thymidine.." as I mentioned above I really do not like the usage of "affinity", when actually low KM is implied.
Line 113: "This does not match the current knowledge that there are three dNKs in total whereof one completely specific for thymidine. The lack of knowledge about these essential enzymes in the parasite has hampered the understanding of Giardia deoxyribonucleoside metabolism and hence its exploitation as a target for antiparasitic drugs." Very good rationale, as I mentioned above, I think a Figure needs to be introduced that depicts different enzymes involved in deoxyribonucleoside metabolism (both TK1 and non- TK1 members) in Giardia with clearly labeled all known paralogs and corresponding enzymatic reactions.
Line 132: Odd designation of supplementary figures, usually it is "Fig. S1" etc. The legend for Fig. S1 is not adequate, please add description of species and name of enzymes for all sequences shown. Also each sequences in alignment should start with number (a.a. number) as it is not clear if a full sequence is shown or not. Overall comment about the multiple sequence alignment (relevant to Fig. S1): with such a small number of sequences it is very hard to make any substantial predictions about conserved regions etc.
Fig. 1 and elsewhere: I will prefer that all bar graphs show individual values + the error bar (if possible);
I do not have any issues with X-ray data and cryo-EM studies (refinement statistics, particles classification etc).
Referees cross-commenting
I also agree with all the comments provided by Reviewer 2 and very pleased to see that we were very similar in our evaluations.
Significance
In their paper Ranjbarian and colleagues provide a tour de force at characterizing dAK from G. intestinalis using both enzymology and structural biology. G. intestinalis does not have RNR and therefore this organism relies on dAK which catalyzes formation of dAMP and ADP from deoxyadenosine and ATP (among other substrate pairs). Authors performed a terrific job at testing this reaction in depth using a recombinant dAK and a battery of various co-substrates (both natural as well as synthetic ones, Table 1). Extensive structural information on dAK was obtained using a combination of X-ray crystallography and cryo-EM. Overall, this work will be paramount aid in better understanding of reaction mechanism, especially in the context of molecules which can be used as inhibitors of such crucial enzyme (metabolic vulnerability for this parasite).
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Response and revision plan
Manuscript number: RC- 2024-02380
Corresponding author(s): Emma R Andersson
1. General Statements
We sincerely appreciate the thorough and positive review provided by all reviewers. Their comments have provided valuable suggestions to improve and enhance clarity of our study on the role of Jag1-mediated Notch signaling in cochlear development, and its implications for Alagille syndrome. Furthermore, their feedback has underscored the significance of our study in elucidating patterning and hearing deficits, and its relevance for therapeutic considerations*. *
2. Description of the planned revisions
Comment from BioRxiv
In addition to comments from appointed reviewers, Jaime García-Añoveros emailed us with a comment on our BioRxiv preprint. Professor García-Añoveros was interested in our finding thatTbx2 is expressed in OHC-like cells (Fig5), because his lab has shown that Tbx2 is an inner hair cell determinant (García-Añoveros et al., 2022). Fig 5 shows quantifications of Tbx2 RNAscope punctae in sections, showing that Tbx2 is expressed in Jag1Ndr/Ndr outer hair cell-like cells, in the inner hair cell compartment, at similar levels to that expressed by the extra inner hair cells also present in Jag1Ndr/Ndr mice. He suggested we perform RNAscope for Tbx2 on wholemount cochlear preparations, to confirm the Fig 5 data from cross sections. While we are confident of our quantifications, which were based on optical slice sections Reviewer comments
We have already implemented some of the reviewer suggestions, as detailed under point 3, and the list below is therefore discontinuously numbered.
Reviewer 1
*Comments regarding quality of images: the picture quality for Figure 4b is low, especially for F-actin staining. Please enhance the intensity. (check image). Fig. 1g, poor quality. The WT cochlea looks severely disorganized. (replace image) *
Response
Figure 4b and Fig1g images will be improved or replaced. We plan a more extensive analysis of the adult phenotype, to also address comment #1 from Reviewer 2 (described below in response to Reviewer 2, #1).
Reviewer 2
Fig1g shows a very abnormal cross section through the cochlear duct. There are no clearly visible Deiters' cells. Is this the case? Loss of outer hair cell function should only increase thresholds about 40dB, and there are increased thresholds reported here of 60+, despite remaining outer hair cells. This could be accounted for by the conduction defects, but also, there may be defects in the adult ear not observed earlier. Is there any inner hair cell loss? Deiter cell loss? Are inner and outer hair cell stereocilia normal? These may account for the severe hearing loss.
- *
Response
To further characterize the adult cochlear phenotype, we will quantify the number of IHCs, OHCs and SCs with immunohistological staining of cryosections from adult Jag1Ndr/Ndr mice, and address in the Discussion section how this phenotype relates to the observed hearing loss. Additionally, we plan to analyze ABR wave-I characteristics of existing recordings to further study auditory nerve fiber responses and IHC function.
We have added a discussion of the relative contribution of middle and inner ear defects to the overall hearing loss in the Discussion section (lines 385-399), to also address comment #3 from reviewer 1 (below in section 3 "revisions that have been already incorporated in transferred manuscript").
Reviewer 2
*What is the rationale for reporting differences in the p-value that are not significant at the adjusted p-value? Since these are whole genome analysis it is only appropriate to report significance by adjusted p-values. *
*One of the novel aspects of this study is the finding that Notch components are upregulated in the Jag1Ndr/Ndr mutants (although some of these results are not significant at the adjusted p value). Given the potential significance that these results would indicate (including c-inhibition), it would be important to confirm upregulation of key Notch components in situ using RNA-scope or immunohistochemistry. *
Response
We agree that multiple hypothesis testing should be corrected for (with adjusted p values), which we have done in all analyses. However, we considered it relevant to report enriched or depleted genes that reached a meaningful fold difference and p-value threshold, even though the adjusted p-value threshold was not met. Our hope was that this would provide transparency and allow for consideration of the different sample sizes (different abundance of specific cell types), allowing the reader to explore the data. For further transparency, a distinction in labelling of significant adj. p-values and p-values was previously made in the original manuscript.
We thank the reviewer for pointing out that the Notch target gene upregulation is an interesting and novel finding. We will perform RNAscope experiments to validate the upregulation of Notch components and target genes at P5, including Jag1, Jag2, Hes5, Nrarp, Tns1 and Cxcl12. Quantification of the RNA scope signal will also provide an alternative approach to testing whether the enrichment/upregulation of Notch target genes is statistically significant.
__Reviewer 1 __
Text and figure comments: Scale bar missing in Figure1b and Figure1h. Please mention the scale bar presented mm in the figure legends for Figure 2; Figure 3; SFigure 6.
Response
Scale bar information will be added to the specified figures.
3. Description of the revisions that have already been incorporated in the transferred manuscript
Reviewer 1
Developmentally hair cells develop from the base to the apex starting from the IHC to OHC. The observation of the changes in HC pattern indicates the impact of Notch in timing and maturation status of HC differentiation. Likely by the time when OHCs are supposed to be developed, which is dictated by the suppression of IHC and the activation of OHC signals, due to the dysregulation of Jag1, the IHC signaling cannot be sufficiently suppressed, whereas the OHC signaling cannot be sufficiently activated. This has a positional effect as further it is from the IHCs, more mature OHC can develop. Could the authors dig deeper into the scRNAseq data to see if they can isolate the profile of extra IHCs in the JagNdr/Ndr mouse, to see if they can detect the expression of some OHC genes albeit at much lower levels?
Response
There were no significant gene expression differences between Jag1Ndr/Ndr and Jag1+/+ IHCs. As we expect the Jag1Ndr/Ndr IHC pool to contain similar numbers of de facto IHCs and ectopic IHCs, failure to detect any differences suggests that the ectopic IHCs are transcriptionally similar to de facto IHCs. To further address the ectopic IHC signature, we subsetted, renormalized and reclustered the Jag1Ndr/Ndr and Jag1+/+ IHCs. No Jag1Ndr/Ndr-specific clusters were identified in this analysis (new Supplementary Fig 4c). In addition, we analysed the expression of IHC- and OHC-specific markers to assess the faithfulness of Jag1Ndr/Ndr IHCs and OHCs. As reported in our original manuscript, Jag1Ndr/Ndr OHCs expressed lower levels of OHC markers. However, Jag1Ndr/Ndr IHCs were indistinguishable from *Jag1+/+ * IHCs (new Supplementary Fig 4b). These new analyses also address comment #2 by Reviewer 2 (see below).
As the reviewer pointed out that development of HCs occurs from base to apex, we have added a quantification of apex and base regions of the P5 phenotype to Sfig5 and described this data in the Results section (lines 230-231).
- *
Reviewer 1
It is difficult to dissect the contribution of middle ear malformation and inner ear defects to hearing loss in Alagille syndrome with the current model. For the development of any therapy, the two main factors have to be analyzed separately. One option is to generate an inner ear-specific JagNdr/Ndr model to bypass the middle ear issue, which can be evaluated for potential therapy. This part should be discussed.
Response
We agree that the relative contribution of middle and inner ear defects to hearing loss in a Jag1-compromised setting cannot be assessed with Jag1Ndr/Ndr mice. Generation of an inner-ear specific Jag1 Nodder model to bypass middle ear defects and address the relative contribution of middle and inner ear defects, would be technically challenging/impossible since the Nodder mouse model carries a single missense mutation in Jag1 and must be carefully maintained on a mixed genetic background to fully recapitulate Alagille syndrome. However, previous elegant work from other groups has dissected the function of Jag1 in supporting cells and neural crest, and how defects in each of these systems contribute to hearing loss. We therefore now comprehensively discuss this work by others (lines 385-399).
Reviewer 1
*In Figure 1, the author mentioned the major defects found in the vestibular system. Is there any difference in the vestibular system at the cellular level? Some evidence will be informative. *
Jag1Ndr/Ndr mice completely lack the posterior semicircular canal, which explains the head nodding behavior observed in our model, since the posterior semicircular canal detects head-tilting towards the shoulders. We have no data on the hair cells located in the saccule or utricle. Since the paper focusses on patterning and hearing, rather than balance, we consider further analysis of the vestibular system at cellular level outside of the scope of our paper.
Reviewer 2
From the UMAP plot in Fig 2b, it seems that the scRNA-seq data did not reveal any change in cell identities in the Jag1Ndr/Ndr ears. This result is not really discussed in the results or discussion-particularly why the OHC-like cells, extra IHCs, and absent Hensen's cells are not revealed in this analysis.
Response
In our scRNAseq dataset we were unable to identify, with certainty, an OHC-like population. After subsetting HCs, we did observe an additional OHC population exclusive to homozygous animals. However, after RNAscope validation, this population might have arisen from contamination with PCs. IHCs were transcriptionally similar between wildtype and homozygous animals, and we were unable to identify the ectopic IHCs. We additionally reported fewer to almost absent HeCs in the homozygous dataset. This data has been shown in the Results section (Fig2b) and in Supplementary Table 8 (number of cells per cell type) and has been discussed in the Discussion section. To further address the lack of separation of IHCs and ectopic IHCs, and failure to identify OHC-like cells, we have added additional panels assessing IHCs and OHC gene expression to SFigure4. This also addressed comments #2 addressed by Reviewer 1 (see above).
Reviewer 2
*It is difficult to know which cells are extra (+1), including inner hair cells. Since scRNAseq did not reveal a different gene signature for these 'extra' cells, it is more appropriate to just count them all together. *
Response
We have merged the quantification of IHCs and +1 IHCs to total IHCs in Fig4c. Separate original quantification of IHCs and +1 IHCs is reported in SFigure5, since the data presented in this way reflect a doubling of the IHC row.
Reviewer 2
Additionally, a previous report has suggested that JAG1 mediates cis-inhibition in the medial region of the cochlea. The data presented here do not show an upregulation of Notch signaling in the medial supporting cells, suggesting this is not the case. This should be discussed.
Response
It is indeed interesting to note that, although with comparable sample size for medial and lateral populations, upregulation of Notch activation is restricted to lateral SCs, and not, despite previous indications (Basch et al., 2016), observed in medial SC populations. We have discussed the possibility for cis-inhibition to a greater extent in the Discussion section (lines 310-311).
Reviewer 2 and Reviewer 3
*Pg 9 Discussion: The sentence: "The JAG1NDR missense mutant is expressed in vivo, and traffics normally, but does not bind or activate NOTCH1", is somewhat misleading because it suggests this allele has no function. Based on the milder ear phenotype to null alleles as well as survival suggests that this allele is hypomorphic. This should be clarified and discussed. *
- *
The authors should provide a more detailed description of the Nodder mice (the nature of the mutation and how it may effect Notch1 and Notch2 receptor activation) in the introduction.
Response
We now introduce the Nodder mouse model (Hansson et al., 2010) and signaling defects to a greater extent in the Introduction section (lines 66-68).
Reviewer 2
Pg 5 third paragraph, "Differential gene expression analysis identified 40 up- and 42-downregulated genes in Jag1Ndr/Ndr versus Jag1+/+ IPhCs, with pathway dysregulation similar to the pseudobulk analyses (Fig3c, Supp.Table 5,6)"-should be 40 downregulated and 42 upregulated. Similarly: Pg 6 second paragraph: Differential gene expression analysis identified 1 up and* 42-downregulated genes in Jag1Ndr/Ndr DCs versus Jag1+/+ DCs-should be 1 down and 42 up. *
Response
Thank you for catching our accidental inversion here. The text has been corrected accordingly.
4. Description of analyses that authors prefer not to carry out
Please include a point-by-point response explaining why some of the requested data or additional analyses might not be necessary or cannot be provided within the scope of a revision. This can be due to time or resource limitations or in case of disagreement about the necessity of such additional data given the scope of the study. Please leave empty if not applicable.
- *
Reviewer 1
To study how Jag1 insufficiency affects the development, the authors included the JagNdr/Ndr mouse model. To fully understand the characteristics of the Nodder mouse model, it's necessary to include the direct age-dependent comparison of the Jag1 level (by qPCR/and or Western blot) between Jag1+/+ v.s. from JagNdr/Ndr in Figure 1 at some selected stages to correlate the Jag1 insufficiency with the "Nodder" model. A spatial expression comparison of Jag1 between Jag1+/+ v.s. from JagNdr/Ndr from different the main age groups should be included in SFigure 2, together with Notch target genes.
The JAG1 Nodder mutation results in a hypomorphic ligand that is unable to bind and activate the Notch1 receptor (Hansson et al., 2010). The ligand itself, however, is still expressed, and its protein expression can even be upregulated in vivo (Hansson et al., 2010). Therefore, performing quantitative expression analysis of JAG1 expression (by qPCR or immunohistochemistry) would not provide insights into the levels of JAG1 activity. Instead, we show that there is decreased Notch target gene expression at the prosensory domain stage, as a proxy for Notch activation levels (SFigure2. A more detailed introduction of the model is provided in the Introduction (lines66-68), to also address a comment from Reviewer 2, #7 and Reviewer 3 comment #2.
Reviewer 3
The mutant form of Jagged1 in Nodder mice is trafficked to the cell surface, and while this mutant form of Jagged1 is incapable of activating the Notch1 receptor it may interact with "new" proteins, gaining new functions. My recommendation to the authors is to determine whether similar defects occur in conditional Jag1 knockout mice (increased Notch signaling in lateral supporting cells and presence of ectopic outer-hair cell like cells). The ability to disrupt Jag1 function at different stages of development may also help to determine why Jag1 deficiency renders some outer hair cells insensitive to Tbx2. If this is not possible due to time constrains, I would recommend a more in-depth discussion of the limitations of using Nodder mice.
Jag1 conditional knockout at various stages, has not been reported to result in ectopic OHC-like cells (Brooker et al., 2006; Chrysostomou et al., 2020; Gilels et al., 2022). However, two other Jag1 missense mutants display atypical hair cells in the IHC compartment, which could be the OHC-like cells we report here (Kiernan et al., 2001; Tsai et al., 2001). Taken together, these data would suggest that Jag1 loss of function in supporting cells is not sufficient to result in OHC-like cells, but that constitutive Jag1 insufficiency can drive OHC-like cell formation. We now cite these data and discuss possible interpretations, as suggested (lines 324-331).
References
Basch, M. L., Brown, R. M., Jen, H.-I., Semerci, F., Depreux, F., Edlund, R. K., Zhang, H., Norton, C. R., Gridley, T., Cole, S. E., Doetzlhofer, A., Maletic-Savatic, M., Segil, N., & Groves, A. K. (2016). Fine-tuning of Notch signaling sets the boundary of the organ of Corti and establishes sensory cell fates. ELife, 5, 841-850. https://doi.org/10.7554/eLife.19921
Brooker, R., Hozumi, K., & Lewis, J. (2006). Notch ligands with contrasting functions: Jagged1 and Delta1 in the mouse inner ear. Development, 133(7), 1277-1286. https://doi.org/10.1242/dev.02284
Chrysostomou, E., Zhou, L., Darcy, Y. L., Graves, K. A., Doetzlhofer, A., & Cox, B. C. (2020). The notch ligand jagged1 is required for the formation, maintenance, and survival of Hensen's cells in the mouse cochlea. Journal of Neuroscience, 40(49). https://doi.org/10.1523/JNEUROSCI.1192-20.2020
García-Añoveros, J., Clancy, J. C., Foo, C. Z., García-Gómez, I., Zhou, Y., Homma, K., Cheatham, M. A., & Duggan, A. (2022). Tbx2 is a master regulator of inner versus outer hair cell differentiation. Nature, 605(7909). https://doi.org/10.1038/s41586-022-04668-3
Gilels, F. A., Wang, J., Bullen, A., White, P. M., & Kiernan, A. E. (2022). Deletion of the Notch ligand Jagged1 during cochlear maturation leads to inner hair cell defects and hearing loss. Cell Death and Disease, 13(11). https://doi.org/10.1038/s41419-022-05380-w
Hansson, E. M., Lanner, F., Das, D., Mutvei, A., Marklund, U., Ericson, J., Farnebo, F., Stumm, G., Stenmark, H., Andersson, E. R., & Lendahl, U. (2010). Control of Notch-ligand endocytosis by ligand-receptor interaction. Journal of Cell Science, 123(Pt 17), 2931-2942. https://doi.org/10.1242/jcs.073239
Kiernan, A. E., Ahituv, N., Fuchs, H., Balling, R., Avraham, K. B., Steel, K. P., & Hrabé de Angelis, M. (2001). The Notch ligand Jagged1 is required for inner ear sensory development. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 3873-3878. https://doi.org/10.1073/pnas.071496998
Tsai, H., Hardisty, R. E., Rhodes, C., Kiernan, A. E., Roby, P., Tymowska-Lalanne, Z., Mburu, P., Rastan, S., Hunter, A. J., Brown, S. D. M., & Steel, K. P. (2001). The mouse slalom mutant demonstrates a role for Jagged1 in neuroepithelial patterning in the organ of Corti. Hum Mol Genet, 10(5), 507-512. https://doi.org/10.1093/hmg/10.5.507
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Summary:
Patients with Alagille syndrome have impaired Notch signaling (~94% with JAG1 mutations) resulting in sensorineural and conductive hearing loss. To gain a better understanding of the genesis of these functional defects, the authors conduct a detailed examination of a mouse model of Alagille syndrome, called Nodder mice (Jag1 Ndr/Ndr). Consistent with previously reported phenotypes for Jag1 mutant mice, the authors observed severe vestibular and auditory defects that were accompanied by semicircular canal abnormalities, and defects in the patterning of the auditory sensory epithelium (medial boundary defect causing duplication of inner hair cells and inner phalangeal cells and reduction in outer hair cells and lateral supporting cells). What makes this study stand out from previous studies is the elegant use of single cell RNA-sequencing technology. Their scRNA_seq data suggest that 1) Jag1 lowers Notch signaling in lateral supporting cells and 2) Jag1 regulates the gene expression of outer hair cells. Further marker analysis revealed ectopic outer hair cell-like cells in the medial compartment and pillar cell region of Jag1 Ndr/Ndr mice. Surprisingly the outer hair cell-like cells closest to inner hair cells expressed Tbx2. Previous studies have shown that ectopic activation of Tbx2 is sufficient to convert outer hair cells into inner hair cells, suggesting that Jag1 deficiency may render these outer hair cells insensitive to Tbx2.
Overall, this is a very well-designed and executed study. The main conclusions of the study are well supported by the presented data and both data and methods are presented in a clear and detailed manner. I have only few suggestions for improvement:
Major comment:
The mutant form of Jagged1 in Nodder mice is trafficked to the cell surface, and while this mutant form of Jagged1 is incapable of activating the Notch1 receptor it may interact with "new" proteins, gaining new functions. My recommendation to the authors is to determine whether similar defects occur in conditional Jag1 knockout mice (increased Notch signaling in lateral supporting cells and presence of ectopic outer-hair cell like cells). The ability to disrupt Jag1 function at different stages of development may also help to determine why Jag1 deficiency renders some outer hair cells insensitive to Tbx2. If this is not possible due to time constrains I would recommend a more in-depth discussion of the limitations of using Nodder mice.
Minor comment:
The authors should provide a more detailed description of the Nodder mice (the nature of the mutation and how it may effect Notch1 and Notch2 receptor activation) in the introduction.
Significance
Strength of the study: The establishment and in-depth characterization of a Jag1 homozygous mutant mouse model (Nodder mice) to study the effects of Alagille syndrome on the auditory and vestibular system. Another strength is the characterization of the cell-type specific effects of Jag1 mutations using single cell transcriptomics.
Limitation of the study: It is unclear if the missense mutation in Jag1 that is present in Nodder mice causes "only" a loss of function. It is possible that a mutant form of Jag1 protein gains new functions (see also major comment).
Advance: This study demonstrates a novel role for the Notch ligand Jag1 in repressing Notch activation in lateral supporting cells and uncovers an involvement for Jag1-activated Notch signaling in inner versus outer hair cell specification and positioning.
Audience: This study will be of interest for both clinical and basic scientist as it provides novel insights into how Alagille syndrome effects the auditory system and novel mechanistic insights into the complex and cell-type specific role Notch signaling.
My field of expertise is: inner ear/ cochlea development, Notch signaling, cell fate specification and differentiation of cochlear supporting cells.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Alagille's syndrome is a developmental disorder in which the vast majority of patients have heterozygote mutations in the gene for the Notch ligand Jagged1. Patients with Alagille's have developmental defects in the heart, liver, eye and ear. This manuscript describes a hypomorphic new allele of Jag1 (Ndr mutation), in which homozygotes animals survive, allowing analysis of the postnatal and adult inner ear. The authors show that Jag1Ndr/Ndr mutants demonstrate hearing loss, vestibular defects, and patterning defects in the cochlea. Similar to previous studies of Jag1 in the ear, the authors find a decrease of outer hair cells, an increase of inner hair cells, and misplaced outer hair cells in the inner hair cell region. The authors perform scRNA-seq and analyze transcriptional effects in different cell populations. Interestingly, the authors present data that shows that the Notch pathway is upregulated in supporting cells at postnatal day 5, suggesting Jag1 may be playing an inhibitory role during postnatal maturation. The authors also show intriguing expression data regarding the OHC-like cells in the OHC region. Overall the study is well-performed and provides new information regarding the hair cell and supporting cell patterning defects caused by a reduction of Jag1-Notch signaling. However, most of the histological analysis was performed during development, and thus the origin of the severe hearing loss is not completely clear.
Comments
Major:
Fig1g shows a very abnormal cross section through the cochlear duct. There are no clearly visible Deiters' cells. Is this the case? Loss of outer hair cell function should only increase thresholds about 40dB, and there are increased thresholds reported here of 60+, despite remaining outer hair cells. This could be accounted for by the conduction defects, but also, there may be defects in the adult ear not observed earlier. Is there any inner hair cell loss? Deiter cell loss? Are inner and outer hair cell stereocilia normal? These may account for the severe hearing loss.
From the UMAP plot in Fig 2b, it seems that the scRNA-seq data did not reveal any change in cell identities in the Jag1Ndr/Ndr ears. This result is not really discussed in the results or discussion-particularly why the OHC-like cells, extra IHCs, and absent Hensen's cells are not revealed in this analysis.
It is difficult to know which cells are extra (+1), including inner hair cells and inner phalangeal cells. Since scRNAseq did not reveal a different gene signature for these 'extra' cells, it is more appropriate to just count them all together.
What is the rationale for reporting differences in the p-value that are not significant at the adjusted p-value? Since these are whole genome analysis it is only appropriate to report significance by adjusted p-values.
One of the novel aspects of this study is the finding that Notch components are upregulated in the Jag1Ndr/Ndr mutants (although some of these results are not significant at the adjusted p value). Given the potential significance that these results would indicate (including c-inhibition), it would be important to confirm upregulation of key Notch components in situ using RNA-scope or immunohistochemistry.
Additionally, a previous report has suggested that JAG1 mediates cis-inhibition in the medial region of the cochlea. The data presented here do not show an upregulation of Notch signaling in the medial supporting cells, suggesting this is not the case. This should be discussed.
Pg 9 Discussion: The sentence: "The JAG1NDR missense mutant is expressed in vivo, and traffics normally, but does not bind or activate NOTCH1", is somewhat misleading because it suggests this allele has no function. Based on the milder ear phenotype to null alleles as well as survival suggests that this allele is hypomorphic. This should be clarified and discussed.
Minor:
Pg 5 third paragraph, "Differential gene expression analysis identified 40 up- and 42-downregulated genes in Jag1Ndr/Ndr versus Jag1+/+ IPhCs, with pathway dysregulation similar to the pseudobulk analyses (Fig3c, Supp.Table 5,6)"-should be 40 downregulated and 42 upregulated.
Similarly: Pg 6 second paragraph: Differential gene expression analysis identified 1 up and 42-downregulated genes in Jag1Ndr/Ndr DCs versus Jag1+/+ DCs-should be 1 down and 42 up
Significance
This study corroborates and extends previous studies of the role of JAG1 in the inner ear. The role of JAG1 in cochlear development is not well understood compared to other Notch ligands, because it is expressed in the supporting cells and not the hair cells. The single cell RNAseq analysis presented here sheds new light on how JAG1 may be functioning postnatally. In addition, because this is a novel allele of JAG1 in which the homozygotes survive, we can further understand how the phenotype may affect hearing and balance in Alagille syndrome patients. This study will be interesting to those who study developmental biology, Notch signaling and the inner ear.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Notch signaling regulates inner and middle ear morphogenesis and establishes a strict pattern of sensory cells in the organ of Corti in the mammalian cochlea. In the paper, the authors investigate the function of Jag1-mediated Notch activation in cochlear patterning and signaling using a novel Jag1 "Nodder" (Jag1Ndr/Ndr) mouse model of Alagille syndrome. In the transgenic mouse model, they found that the mice exhibited severe vestibular and auditory defects including an increase in ectopic inner hair cells, and a reduction in outer hair cells. By single-cell RNA study of the organ of Corti, the authors demonstrated a global dysregulation of genes associated with inner ear development and deafness. They observed that the role of Tbx2 in IHC specification is likely influenced by Notch signaling. This was a well-designed study with quality data that provided valuable information on the effect of dysregulated Jag1 on human Alagille syndrome. Given the recent success of a gene therapy clinical trial for human genetic hearing loss, this study helps to answer some key questions related to hearing, which should be of significance guiding future development of potential therapy.
To study how Jag1 insufficiency affects the development, the authors included the JagNdr/Ndr mouse model. To fully understand the characteristics of the Nodder mouse model, it's necessary to include the direct age-dependent comparison of the Jag1 level (by qPCR/and or Western blot) between Jag1+/+ v.s. from JagNdr/Ndr in Figure 1 at some selected stages to correlate the Jag1 insufficiency with the "Nodder" model. A spatial expression comparison of Jag1 between Jag1+/+ v.s. from JagNdr/Ndr from different the main age groups should be included in SFigure 2, together with Notch target genes.
Developmentally hair cells develop from the base to the apex starting from the IHC to OHC. The observation of the changes in HC pattern indicates the impact of Notch in timing and maturation status of HC differentiation. Likely by the time when OHCs are supposed to be developed, which is dictated by the suppression of IHC and the activation of OHC signals, due to the dysregulation of Jag1, the IHC signaling cannot be sufficiently suppressed, whereas the OHC signaling cannot be sufficiently activated. This has a positional effect as further it is from the IHCs, more mature OHC can develop. Could the authors dig deeper into the scRNAseq data to see if they can isolate the profile of extra IHCs in the JagNdr/Ndr mouse, to see if they can detect the expression of some OHC genes albeit at much lower levels?
It is difficult to dissect the contribution of middle ear malformation and inner ear defects to hearing loss in Alagille syndrome with the current model. For the development of any therapy, the two main factors have to be analyzed separately. One option is to generate an inner ear-specific JagNdr/Ndr model to bypass the middle ear issue, which can be evaluated for potential therapy. This part should be discussed.
In Figure 1, the author mentioned the major defects found in the vestibular system. Is there any difference in the vestibular system at the cellular level? Some evidence will be informative.
Scale bar missing in Figure1b and Figure1h.
The picture quality for Figure 4b is low, especially for F-actin staining. Please enhance the intensity.
Please mention the scale bar presented m in the figure legends for Figure 2; Figure 3; SFigure 6.
Fig. 1g, poor quality. The WT cochlea looks severely disorganized.
Significance
Notch signaling regulates inner and middle ear morphogenesis and establishes a strict pattern of sensory cells in the organ of Corti in the mammalian cochlea. In the paper, the authors investigate the function of Jag1-mediated Notch activation in cochlear patterning and signaling using a novel Jag1 "Nodder" (Jag1Ndr/Ndr) mouse model of Alagille syndrome. In the transgenic mouse model, they found that the mice exhibited severe vestibular and auditory defects including an increase in ectopic inner hair cells, and a reduction in outer hair cells. By single-cell RNA study of the organ of Corti, the authors demonstrated a global dysregulation of genes associated with inner ear development and deafness. They observed that the role of Tbx2 in IHC specification is likely influenced by Notch signaling. This was a well-designed study with quality data that provided valuable information on the effect of dysregulated Jag1 on human Alagille syndrome. Given the recent success of a gene therapy clinical trial for human genetic hearing loss, this study helps to answer some key questions related to hearing, which should be of significance guiding future development of potential therapy.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
Summary: This work focuses on two small molecule inhibitors of the Arp2/3 complex, CK-666 and CK-869. Previous studies have shown that although the Arp2/3 complex is well conserved in eukaryotes, the inhibitory effect of these molecules is highly species dependent. However, it has been unclear whether these drugs act equally well on Arp2/3 iso-complexes (complexes composed of subunit isoforms from the same species). This paper fills that gap. Using human Arp2/3 iso-complexes, it shows that the inhibitory effect of these two drugs depends on the subunit composition of the complex. In addition, this work shows that these drugs do not systematically and equally inhibit the ability of these Arp2/3 complexes to nucleate linear or branched filaments.
We thank the reviewer for their positive comments.
Major comments:
1/ Regarding the first part on vaccinia-induced actin polymerization The first paragraph of the Results section is difficult to follow for those who have not read the previous papers from this lab. I would recommend changing the text so that any reader can understand from the start the experimental system and the goal of the experiment.
As requested, we have expanded the first section to better allow the reader to understand vaccinia actin-based motility as a model system to understand Arp2/3 iso-complex function.
The data analysis of Figure 1C is not satisfactory. It is not very informative to statistically compare the effect of the two drugs at similar concentration. However, it is necessary to perform statistical tests to compare the different conditions with drug with the control condition (DMSO). By eye, I see a difference between DMSO and CK-666, so it is difficult to understand why the authors claim that CK-666 has no effect on actin polymerization.
We are claiming that CK-869 but not CK-666 fully inhibits the ability of Vaccinia virus to stimulate Arp2/3 dependent actin polymerisation. We agree that CK-666 partially inhibits Vaccinia induced actin polymerization and have changed the text accordingly to reflect this. In contrast to CK-869 this level of inhibition does change from that seen with 50 µM when CK-666 is increased up to 300 µM. We believe this partial ~30% inhibition reflects the impact of CK-666 inhibiting ArpC1A containing Arp2/3 from generating actin filaments. These inhibited ArpC1A containing Arp2/3 complexes are able to bind the VCA domain of N-WASP (see figure 4) which will block its interaction with ArpC1B containing complexes. We now have provided the requested statistical analysis between drug and DMSO and also retained our original statistical analysis between the drugs.
Images with CK-869 have a lower overall cortactin signal, which could indicate that immunolabeling was not very effective in this condition. This could affect the analysis of the data in Figure 1C.
In the figure we used cortactin as a marker for branched actin filaments to assess the impact of CK-666 and CK-869 on the ability of individual vaccinia viruses to induce actin polymerization rather than the extent of actin assembly. In general, CK-869 does not impact on cortactin signal, however, the differences the reviewer is referring to are probably due to cell-to-cell variability. Moreover, we have now provided the corresponding image of the actin visualized with phalloidin as supplementary figure 1. In these images the same virus induced actin structures are visible.
The authors mention that the exact levels of the 8 different Arp2/3 iso-complexes are not known in these HeLa cells, but it should be fairly easy (e.g. mass spectrometry) to quantify the expression level of ArpC1, ArpC5 and Arp3 in these cells and verify that it is consistent with the rest of the story.
This information about the expression level of ArpC1, ArpC5 and Arp3 in HeLa cells is also very important because a large community of researchers use CK-666 and HeLa cells. There are actually quite few papers that draw conclusions from the use of CK-666 in HeLa cells, and the authors should discuss the limitations of these studies much more clearly.
In Abella et al. NCB 2016 we quantified the amounts of ARPC1 and ARPC5 isoforms in our HeLa cell. ArpC1A is 0.3 {plus minus} 0.02 ng/µg cells; ArpC1B is 0.7 {plus minus} 0.05 ng/µg cells; ArpC5 is 0.46 {plus minus} 0.03 ng/µg cells; ArpC5L is 0.27 {plus minus} 0.03 ng/µg cells. Thus, ArpC1B is approximately twice that of ARPC1A which fits with the ~30 % level of inhibition we see with CK-666 in figure 1C. Unfortunately, we do not have a specific antibody against Arp3B, so have not been able to use the same approach to quantify the level of this isoform. However, Arp3B is 18.5-fold less abundant than Arp3 in HeLa cells according to Hein et al., 2015 (PMID: 26496610 DOI: 10.1016/j.cell.2015.09.053). In an early study (Kulak et al., 2014 PMID: 24487582 DOI: 10.1038/nmeth.2834, the same group reported that Arp3 was 61.5 X more abundant than Arp3B in HeLa cells. These two papers illustrate the difficulty in using mass spec to determine absolute protein concentrations, which is why we prefer quantitative western blotting as done in Abella et al., 2016.
2/ The pyrene assays are disappointing because they are performed with only one concentration of CK-666 and CK-869. This is especially true for the VCA data, where the effect of the drugs is not always "on"/"off" as naively presented in the text, but highly concentration dependent. The authors should definitely provide several drug concentrations for each condition, up to saturation levels, to provide a clear quantification of the drug concentrations needed to reach half inhibition.
Following the reviewer's advice, we now have performed the pyrene and TIRF assays in the presence of a range of drug concentrations (see individual figures). These new data have allowed us to calculate the half-maximal inhibitory concentration values (IC50) which strengthen our previous conclusions. CK-666 can prevent ArpC1A (IC50 = 20 µM) but not ArpC1B (IC50 undetectable) from generating branches. Meanwhile, CK-869 can inhibit both ArpC1 isoforms efficiently with IC50
3/ Similarly, the pull-down experiments performed at a single protein concentration are inconclusive. They cannot tell us whether the affinity of the Arp2/3 isoforms for these targets is altered in the presence of the small molecule inhibitors because we do not know the degree of saturation of the ligands. Given that some of the reported differences in inhibition of filament nucleation are modest, it is not possible at this stage to link these different data.
Following the reviewer's advice, we repeated the pull down Arp2/3 at a higher F-actin concentration. In the initial submission we said we used 7.5 µM F-actin, however, we discovered a miscalculation, so it was actually 3 µM, which would explain the lower levels of Arp2/3 co-pelleting. In Hetrick et al 2013 (PMID: 23623350 DOI: 10.1016/j.chembiol.2013.03.019), the binding of Arp2/3 to F actin reaches a plateau at 15 µM F-actin. We therefore used 15 µM F-actin for the additional pull down experiments (Figure 4). The new results with 15 µM F-actin agree with our previous observations at 3 µM F-actin concentration.
We do not feel it is necessary to repeat the pull down of Arp2/3 by GST-VCA at different concentrations. This is because Arp2/3 binds VCA with high affinity (0.9 µM) Marchand et al. NCB 2001 (PMID: 11146629 DOI: 10.1038/35050590). Thus in our initial experimental conditions (5 µM VCA), the binding is already saturated. In addition, we did not see a difference in binding between Arp2/3 iso-complexes.
Reviewer #1 (Significance (Required)):
The subunit composition of the Arp2/3 complex is cell-type dependent, so these data will be important for the many cell biologists using these molecules. In particular, it calls for caution in the use of these drugs and in the interpretation of the data.
The writing is very clear, but the manuscript seems quite rushed. Many experiments need to be analyzed in much more detail to clarify the conclusions.
We thank the reviewer for their positive comments and suggestions to improve our study.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
The manuscript 'CK-666 and CK-869 differentially inhibit Arp2/3 iso-complexes' addresses how commonly used Arp2/3 complex inhibitors differentially inhibit Arp2/3 complex activity based on the subunit isoforms making up the Arp2/3 complex. This work directly tests how each inhibitor affects different iso-complexes, which may affect different cell types based on the predominant iso-complex present in the cell. The manuscript is well written, with experiments both in cell culture and with purified proteins in reconstitution and biochemical assays to establish that these small molecule inhibitors have different effects based on the iso-complex of Arp2/3 present. There are several points in the manuscript that if addressed would improve and support the conclusions presented.
We thank the reviewer for their comments and suggestions.
In Figure 1B, looking at the images of the CK-666 treated verses the DMSO, it looks like the actin structures in the DMSO-treated cells are potentially larger than those in the CK666 cells, but because only an inset of drug-treated is shown, and an inset of the DMSO-treated is not shown it is hard to compare. Are the size of the virus-associated structures affected in the CK-666 treated cells versus the DMSO-treated cells? This might indicate that CK-666 has some effect on actin polymerization, even if it is not as drastic as the CK-869.
The reviewer is right that actin tails are shorter in CK-666 treated cells. This is because CK-666 does partially inhibit actin polymerisation induced by the virus. In contrast to CK-869, this level of inhibition does change with increasing concentration of CK-666. We believe this partial inhibition reflects the impact of CK-666 inhibiting ArpC1A containing Arp2/3 from generating actin filaments. These inhibited complexes will bind the VCA domain of N-WASP (see figure 4) blocking its interaction with ArpC1B containing complexes.
In Figure 2 comparing the pyrene curves in figure 1A, it appears that CK-869 has a different effect on C1B/C5+VCA versus C1B/C5L+VCA (green curves as compared to no activation control, grey curves), but this is not commented on. Addressing the differing effects would strengthen the authors conclusions- namely, that CK-869 inhibits both iso-complexes better than CK-666, but there may be some differences on each isoform. It is unclear if the differences in the branching rate (Figure 2B) is also reflective of this. The authors should address these results.
This is a very good point. We have now performed more detailed analysis, measuring the branching rate of C1B/C5 and C1B/C5L complexes in TIRF assays in different concentrations of CK-869 (Supplementary figure 2B). By comparing the half-maximal inhibitory concentration values (IC50) of CK-869 on the two different complexes, we found CK-869 inhibits C1B/C5 slightly better than C1B/C5L (1.8 µM as compared to 3.6 µM) as the reviewer suggested.
For Figure 4, it is somewhat unexpected that inhibition of the Arp2/3 complex increases macrophage motility as compared to control, unless the reader is familiar with the 2017 Rotty et al paper. The manuscript may benefit from a sentence or two explaining this result in light of the findings of the 2017 Rotty paper beyond simply mentioning that the increase in motility is dependent on myosin II.
As requested, we have provided more information.
The Spin90 data looks good, clear, and consistent.
We thank reviewer for the positive comments.
In Figure 7, given that pyrene was used in all the previous assessments of drug treatment on arp2/3 isoforms, it seems appropriate for these assays to be performed for Arp3B/C1B/C5L in comparison with Arp3/C1B/C5L and between the different drug treatments. Likewise, this should be done for the Spin90 also. It is difficult to compare between the figures for Arp3b vs. Arp3C (Figures 2 and 3 vs. Figure 7), although this may require a repetition of data presented.
We have now provided quantification of the maximum actin polymerization rate induced by Arp3B/C1B/C5L complexes obtained in pyrene assembly assays over a range of drug concentrations (requested by reviewer 1) (Figure 6C). These new data confirm that Arp3B is not inhibited by CK-869. We did not feel it was necessary to perform a side-by-side comparison with Arp3/C1B/C5L complexes but have provided quantification of the branching rate of Arp3/C1B/C5L complexes over a range of drug concentrations using TIRF assays (see Figure 2D).
Minor issues: It would be helpful if the labels for what is labeled in the micrograph were on the images (Figure 1B, Figure 3B, Figure 7A).
We have provided the requested labels.
In Figure 1-B, the 200uM CK-869 cell image looks less representative of the data in Figure 1C than other cells in the figure. Perhaps there is higher background in this micrograph, but it might be clearer if a cell with similar background actin signal to the other CK-869 was used.
As we responded to reviewer 1: In the figure we used cortactin as a marker for branched actin filaments to assess the impact of CK-666 and CK-869 on the ability of individual vaccinia viruses to induce actin polymerization rather than the extent of actin assembly. In general, CK-869 does not impact on cortactin signal, however, the differences the reviewer is referring to are probably due to cell-to-cell variability. Moreover, we have now provided the corresponding image of the actin channel visualised with phalloidin as supplementary figure 1. In these images the same virus induced actin structures are visible.
Figure 4: Where is the mean thickness of the cell measured? In figure 4D, it would be helpful if the error bars could be in the color of the line, as it is hard to distinguish the range of the data for each condition because the error bars are overlapping and the same color for all.
We used the Phasefocus Livecyte to imagine and quantify the morphology and behaviour of live cells. The mean thickness of the cell is quantified from the whole cell area based on the method described in Marrison et al. Scientific reports 2013 (PMID: 23917865 DOI: 10.1038/srep02369). We have clarified this fact in the figure legend. We have also corrected the colour issue with the error bars.
Figure 5: In Figure 5A, the labeling of the gels (KDa, S and P) do not line up correctly. The legend for the quantification should indicate what bands were quantified- all the arp2/3 bands or just the isoforms? It is unclear what is being quantified in the graph in C. The pull-down results in C should be quantified via quantitative western blot if possible.
We have provided new F-actin pulldown gels and have made sure the labels are aligned. The level of Arp2/3 binding to F-actin was determined by quantifying the level of bound ArpC3. This subunit was chosen as it is well removed from the other bands on the gel. We have now also provided quantification of the VCA pulldowns assays as requested.
The statement in line 170- 'indicate' seems a bit strong based on the results presented. 'Suggests' might work better here.
We have changed the text as suggested by the reviewer.
Reviewer #2 (Significance (Required)):
It is of general interest to members of the actin field as well as cell-biologists who routinely use either CK-666 or CK-869 to inhibit Arp2/3 complex activity in cells, and specifically in mammalian cells.
We thank the reviewer for their positive comments and suggestions.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
Summary: Cao et al combine in vitro and cellular work to show that neither of the two distinct and frequently used Arp2/3 inhibitors is truly pan-selective, at least when considering distinct classes of activators. Using in vitro assays, they show that CK-666 cannot inhibit ARPC1B iso-complexes when activated by class I nucleation promoting factors. Similarly, Arp2/3 complexes containing Arp3B are refractory to inhibition by CK-869. The latter is likely the result of substitutions at the inhibitor-binding site. They go on to show that these differences correlate with differential effects of CK-666 and -869 on Vaccinia tail formation and macrophage cell shape and motility at the cellular level.
Major comments:
Figure1: The authors state that "...even at 300 μM, the number of virus-induced actin polymerisation events were not diminished (Figure 1B, C)..." The figure shows that CK-666 does indeed not fully abolish cortactin colocalization. However, there seems to still be a significant effect that is not tested for. Statistical tests were only used to compare the two inhibitors at the same concentration. I suggest also testing for significant differences to the DMSO control and reporting p-values, because CK-666 seems to still have an effect. Along the same vein, it seems that valuating the fraction of virus with cortactin co-localization as the only metric for branched actin nucleation downplays the effects of CK-666. Can the authors consider additional other metrics such as the amount of polymerized actin in individual tails or the tail length, which were extensively used in previous publications?
This point was also raised by the two other reviewers (see above). We have now provided the requested statistical tests. In our study we used Vaccinia as a model to examine whether there were differences between the impact of CK-666 and CK-869 on Arp2/3 dependent actin polymerization in cells. This is clearly the case, so we focused on in vitro assays where we can do experiments with defined Arp2/3 iso-complexes to better understand what was going on. Given the complexity of cellular systems, we feel that additional analysis of the changes to the actin tails will not provide additional molecular insights, especially as the factors the determine actin tail lengths are still not fully understood.
Figure2/3: The authors claim that "...the ArpC5/ArpC5L isoforms are not differentially impacted by either CK-666 or CK-869..." I am not convinced that this conclusion can be drawn based on the data. Figure 2 shows that the inhibitory effect of CK-869 seems to be less pronounced for C5L-containing complexes (about 10-fold reduced branching rate) compare to C5-containing ones (about 100-fold reduction). This is in line with the pyrene assays, in which C5L-containing complexes (in contrast to C-5) appear to retain at least some activity. Differences should be quantified relative to the corresponding controls and then statistically tested for using appropriate tests.
This point was also raised by reviewer 2. We have now performed more detailed analysis, measuring the branching rate of C1B/C5 and C1B/C5L complexes in TIRF assays in different concentrations of CK-869 (Supplementary figure 2B). By comparing the half-maximal inhibitory concentration values (IC50) of CK-869 on the two different complexes, we found CK-869 inhibits C1B/C5 slightly better than C1B/C5L (1.8 µM as compared to 3.6 µM) as the reviewer suggested.
Figure 4: Cell metrics such as aspect ratio (A), thickness (A) and speed (C) are expressed as means from five independent experiments. It is not clear how many individual cells were scored per experiment per condition. Similarly, it is unclear at which time (or time window) after inhibitor addition these parameters were scored. Claiming that the authors "...observed that the morphology of macrophages treated with CK-869 changed significantly, with cells rounding up to become less spread..." is a slight over-interpretation, because these metrics have not been quantified in a time-resolved manner but only as a snapshot of the population mean.
We have now provided the number of cells analysed in the individual experiments in figure 4. All measurements were taken after incubating cells for 1 hour with the Arp2/3 inhibitors, which is commonly used for cell-based experiments. We have now also provided a movie (Phase and GFP-LifeAct) covering 5 hours immediately after treating cells with DMSO or 100 µM CK-666 / CK-869 for 1 hour showing that the cell morphology does not change during the imaging period.
Minor: Figure 2/3: In my opinion, separating the in vitro data for ARPC1A/B containing sub-complexes and starting with B does not work particularly well for the flow paper. The results for the C1A containing Arp2/3 complexes (Figure 3) essentially confirm that both inhibitors work at least on some, but not all iso-complexes, as they should. These experiments are -in a way- necessary controls for those shown in the previous figure (Figure 2). I would suggest merging the two figures and starting with the less surprising findings with 1A before showing differential inhibition on 1B.
We have now merge both figure 2 and 3, with some of the original pyrene panels being moved into supplemental figure 2. The new figure 2 also contains quantification of the branching rate in different drug concentrations.
Figure 2/3: Inhibitor concentrations should be stated in the figure and not only in the legend.
This information has been added to the figure.
Figure 4B: The macrophages shown for the CK-869 treatment appear less spread and more round already at t=0 (before inhibitor application), although this is hard to tell for the low contrast PC images. I would recommend showing either images of comparable contrast and cell spread area at t=0 or change to live cell marker and fluorescence imaging.
T=0 is at the point of live cell imaging of cells which have already been treated with the Arp2/3 inhibitors for 1 hour. Consequently, the cells will never appear spread in the CK-869 treated sample. We have provided the fluorescent channel (GFP-LifeAct) in the movie.
Figure 5A: Left and right sub-panels should contain clear labels on top indicating which iso-complexes are being examined (1A left, 1B right). Please also clearly state the total concentrations of actin and Arp2/3 complex used in the figure legend. The low fraction (Thank reviewer for this suggestion and the requested information is provided. The reviewer is totally correct as we found that there was calculation error and the final actin concentration was actually 3 µM and not 7.5 µM as we originally thought.
In Hetrick at al 2013 (PMID: 23623350 DOI: 10.1016/j.chembiol.2013.03.019), the binding of Arp2/3 to F actin reaches a plateau at 15 µM F-actin. We therefore used 15 µM F-actin for the additional pull down experiments requested by reviewer 1 (Figure 4). The new results with 15 µM F-actin agree with our previous observations at 3 µM F-actin concentration.
**Referee Cross-commenting**
The reviews appear to be quite consistent, highlighting several critical issues mentioned by multiple referees. While all referees appreciate the topic/focus of the manuscript, they criticize its preliminary nature.
I anticipate that this would lead to a "major revision" decision at a traditional journal. The numerous constructive comments should enable the authors to significantly enhance the paper if taken seriously.
All three reviewers had similar issues, which we believe we have now fully addressed.
Reviewer #3 (Significance (Required)):
Significance: Small molecule inhibitors such as CK-666 and -869 have been (and still are) widely utilized in the cytoskeleton community as straightforward tools to suppress Arp2/3 activity. However, the results presented here emphasize the need for caution in drawing simplistic conclusions. Hence, future interpretations must adopt a more nuanced perspective. The manuscript therefore makes an important, timely contribution and will be of great interest to a large community.
We thank the reviewer for their positive assessment.
In terms of its potential impact, it reminds me of the recent cautionary tale showing that small molecule formin inhibitors have significant off-target effects (Nishimura et al JCS 2021). However, it is crucial to note that isoform specificity differs from off-target effects, and this doesn't necessarily implicate CK-666 and -869 as inadequate inhibitors.
We agree with the reviewer that these are still useful inhibitors.
While the manuscript is technically sound, with carefully conducted experiments, the presentation and writing seem rushed at times, warranting improvement before publication. The points highlighted above are intended to enhance the overall quality.
The reviewer's points and comments have definitely helped improve the study.
Conceptually, one central weakness is that the reason for the differential inhibition remains ultimately unclear at least in some cases. Specifically, why ARPC1B complexes are refractory to CK-666 inhibition when activated by class I NPFs is not known. Similarly, why activation by different inputs (SPIN90 vs NPFs) is differentially sensitive to different inhibitors remains unclear. Addressing these gaps through additional experiments would strengthen the study. A more insightful discussion, drawing on existing structural and biochemical data, even if speculative, would also be helpful in this regard.
We agree that we still lack a full molecular understanding for the differences but feel that getting to that point will require a substantial amount of work and new Xtal structures that are beyond the scope of the current work. However, we have updated our discussion drawing on existing data as requested by the reviewer.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Summary:
Cao et al combine in vitro and cellular work to show that neither of the two distinct and frequently used Arp2/3 inhibitors is truly pan-selective, at least when considering distinct classes of activators. Using in vitro assays, they show that CK-666 cannot inhibit ARPC1B iso-complexes when activated by class I nucleation promoting factors. Similarly, Arp2/3 complexes containing Arp3B are refractory to inhibition by CK-869. The latter is likely the result of substitutions at the inhibitor-binding site. They go on to show that these differences correlate with differential effects of CK-666 and -869 on Vaccinia tail formation and macrophage cell shape and motility at the cellular level.
Major comments:
Figure1: The authors state that "...even at 300 μM, the number of virus-induced actin polymerisation events were not diminished (Figure 1B, C)..." The figure shows that CK-666 does indeed not fully abolish cortactin colocalization. However, there seems to still be a significant effect that is not tested for. Statistical tests were only used to compare the two inhibitors at the same concentration. I suggest also testing for significant differences to the DMSO control and reporting p-values, because CK-666 seems to still have an effect. Along the same vein, it seems that valuating the fraction of virus with cortactin co-localization as the only metric for branched actin nucleation downplays the effects of CK-666. Can the authors consider additional other metrics such as the amount of polymerized actin in individual tails or the tail length, which were extensively used in previous publications?
Figure2/3: The authors claim that "...the ArpC5/ArpC5L isoforms are not differentially impacted by either CK-666 or CK-869..." I am not convinced that this conclusion can be drawn based on the data. Figure 2 shows that the inhibitory effect of CK-869 seems to be less pronounced for C5L-containing complexes (about 10-fold reduced branching rate) compare to C5-containing ones (about 100-fold reduction). This is in line with the pyrene assays, in which C5L-containing complexes (in contrast to C-5) appear to retain at least some activity. Differences should be quantified relative to the corresponding controls and then statistically tested for using appropriate tests.
Figure 4: Cell metrics such as aspect ratio (A), thickness (A) and speed (C) are expressed as means from five independent experiments. It is not clear how many individual cells were scored per experiment per condition. Similarly, it is unclear at which time (or time window) after inhibitor addition these parameters were scored. Claiming that the authors "...observed that the morphology of macrophages treated with CK-869 changed significantly, with cells rounding up to become less spread..." is a slight over-interpretation, because these metrics have not been quantified in a time-resolved manner but only as a snapshot of the population mean.
Minor:
Figure 2/3: In my opinion, separating the in vitro data for ARPC1A/B containing sub-complexes and starting with B does not work particularly well for the flow paper. The results for the C1A containing Arp2/3 complexes (Figure 3) essentially confirm that both inhibitors work at least on some, but not all iso-complexes, as they should. These experiments are -in a way- necessary controls for those shown in the previous figure (Figure 2). I would suggest merging the two figures and starting with the less surprising findings with 1A before showing differential inhibition on 1B.
Figure 2/3: Inhibitor concentrations should be stated in the figure and not only in the legend. Figure 4B: The macrophages shown for the CK-869 treatment appear less spread and more round already at t=0 (before inhibitor application), although this is hard to tell for the low contrast PC images. I would recommend showing either images of comparable contrast and cell spread area at t=0 or change to live cell marker and fluorescence imaging.
Figure 5A: Left and right sub-panels should contain clear labels on top indicating which iso-complexes are being examined (1A left, 1B right). Please also clearly state the total concentrations of actin and Arp2/3 complex used in the figure legend. The low fraction (<20%) of Arp2/3 complex co-sedimenting with actin filaments is rather surprising considering the high concentrations used here. 7.5uM actin should be well above the KD for this interaction (compare to data of the Nolen lab such as Hetrick at al 2013). Please comment.
Referee Cross-commenting
The reviews appear to be quite consistent, highlighting several critical issues mentioned by multiple referees. While all referees appreciate the topic/focus of the manuscript, they criticize its preliminary nature.
I anticipate that this would lead to a "major revision" decision at a traditional journal. The numerous constructive comments should enable the authors to significantly enhance the paper if taken seriously.
Significance
Small molecule inhibitors such as CK-666 and -869 have been (and still are) widely utilized in the cytoskeleton community as straightforward tools to suppress Arp2/3 activity. However, the results presented here emphasize the need for caution in drawing simplistic conclusions. Hence, future interpretations must adopt a more nuanced perspective. The manuscript therefore makes an important, timely contribution and will be of great interest to a large community.
In terms of its potential impact, it reminds me of the recent cautionary tale showing that small molecule formin inhibitors have significant off-target effects (Nishimura et al JCS 2021). However, it is crucial to note that isoform specificity differs from off-target effects, and this doesn't necessarily implicate CK-666 and -869 as inadequate inhibitors.
While the manuscript is technically sound, with carefully conducted experiments, the presentation and writing seem rushed at times, warranting improvement before publication. The points highlighted above are intended to enhance the overall quality.
Conceptually, one central weakness is that the reason for the differential inhibition remains ultimately unclear at least in some cases. Specifically, why ARPC1B complexes are refractory to CK-666 inhibition when activated by class I NPFs is not known. Similarly, why activation by different inputs (SPIN90 vs NPFs) is differentially sensitive to different inhibitors remains unclear. Addressing these gaps through additional experiments would strengthen the study. A more insightful discussion, drawing on existing structural and biochemical data, even if speculative, would also be helpful in this regard.
Own expertise: cytoskeleton, actin, biochemistry, in vitro reconstitution, fluorescence microscopy, structural biology
Signed: Peter Bieling, MPI Dortmund
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
The manuscript 'CK-666 and CK-869 differentially inhibit Arp2/3 iso-complexes' addresses how commonly used Arp2/3 complex inhibitors differentially inhibit Arp2/3 complex activity based on the subunit isoforms making up the Arp2/3 complex. This work directly tests how each inhibitor affects different iso-complexes, which may affect different cell types based on the predominant iso-complex present in the cell. The manuscript is well written, with experiments both in cell culture and with purified proteins in reconstitution and biochemical assays to establish that these small molecule inhibitors have different effects based on the iso-complex of Arp2/3 present. There are several points in the manuscript that if addressed would improve and support the conclusions presented.
In Figure 1B, looking at the images of the CK-666 treated verses the DMSO, it looks like the actin structures in the DMSO-treated cells are potentially larger than those in the CK666 cells, but because only an inset of drug-treated is shown, and an inset of the DMSO-treated is not shown it is hard to compare. Are the size of the virus-associated structures affected in the CK-666 treated cells versus the DMSO-treated cells? This might indicate that CK-666 has some effect on actin polymerization, even if it is not as drastic as the CK-869.
In Figure 2 comparing the pyrene curves in figure 1A, it appears that CK-869 has a different effect on C1B/C5+VCA versus C1B/C5L+VCA (green curves as compared to no activation control, grey curves), but this is not commented on. Addressing the differing effects would strengthen the authors conclusions- namely, that CK-869 inhibits both iso-complexes better than CK-666, but there may be some differences on each isoform. It is unclear if the differences in the branching rate (Figure 2B) is also reflective of this. The authors should address these results.
For Figure 4, it is somewhat unexpected that inhibition of the Arp2/3 complex increases macrophage motility as compared to control, unless the reader is familiar with the 2017 Rotty et al paper. The manuscript may benefit from a sentence or two explaining this result in light of the findings of the 2017 Rotty paper beyond simply mentioning that the increase in motility is dependent on myosin II.
The Spin90 data looks good, clear, and consistent.
In Figure 7, given that pyrene was used in all the previous assessments of drug treatment on arp2/3 isoforms, it seems appropriate for these assays to be performed for Arp3B/C1B/C5L in comparison with Arp3/C1B/C5L and between the different drug treatments. Likewise, this should be done for the Spin90 also. It is difficult to compare between the figures for Arp3b vs. Arp3C (Figures 2 and 3 vs. Figure 7), although this may require a repetition of data presented.
Minor issues:
It would be helpful if the labels for what is labeled in the micrograph were on the images (Figure 1B, Figure 3B, Figure 7A). In Figure 1-B, the 200uM CK-869 cell image looks less representative of the data in Figure 1C than other cells in the figure. Perhaps there is higher background in this micrograph, but it might be clearer if a cell with similar background actin signal to the other CK-869 was used.
Figure 4: Where is the mean thickness of the cell measured? In figure 4D, it would be helpful if the error bars could be in the color of the line, as it is hard to distinguish the range of the data for each condition because the error bars are overlapping and the same color for all.
Figure 5: In Figure 5A, the labeling of the gels (KDa, S and P) do not line up correctly. The legend for the quantification should indicate what bands were quantified- all the arp2/3 bands or just the isoforms? It is unclear what is being quantified in the graph in C. The pull-down results in C should be quantified via quantitative western blot if possible.
The statement in line 170- 'indicate' seems a bit strong based on the results presented. 'Suggests' might work better here.
Significance
It is of general interest to members of the actin field as well as cell-biologists who routinely use either CK-666 or CK-869 to inhibit Arp2/3 complex activity in cells, and specifically in mammalian cells.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary:
This work focuses on two small molecule inhibitors of the Arp2/3 complex, CK-666 and CK-869. Previous studies have shown that although the Arp2/3 complex is well conserved in eukaryotes, the inhibitory effect of these molecules is highly species dependent. However, it has been unclear whether these drugs act equally well on Arp2/3 iso-complexes (complexes composed of subunit isoforms from the same species). This paper fills that gap. Using human Arp2/3 iso-complexes, it shows that the inhibitory effect of these two drugs depends on the subunit composition of the complex. In addition, this work shows that these drugs do not systematically and equally inhibit the ability of these Arp2/3 complexes to nucleate linear or branched filaments.
Major comments:
- Regarding the first part on vaccinia-induced actin polymerization
The first paragraph of the Results section is difficult to follow for those who have not read the previous papers from this lab. I would recommend changing the text so that any reader can understand from the start the experimental system and the goal of the experiment.
The data analysis of Figure 1C is not satisfactory. It is not very informative to statistically compare the effect of the two drugs at similar concentration. However, it is necessary to perform statistical tests to compare the different conditions with drug with the control condition (DMSO). By eye, I see a difference between DMSO and CK-666, so it is difficult to understand why the authors claim that CK-666 has no effect on actin polymerization.
Images with CK-869 have a lower overall cortactin signal, which could indicate that immunolabeling was not very effective in this condition. This could affect the analysis of the data in Figure 1C.
The authors mention that the exact levels of the 8 different Arp2/3 iso-complexes are not known in these HeLa cells, but it should be fairly easy (e.g. mass spectrometry) to quantify the expression level of ArpC1, ArpC5 and Arp3 in these cells and verify that it is consistent with the rest of the story.
This information about the expression level of ArpC1, ArpC5 and Arp3 in HeLa cells is also very important because a large community of researchers use CK-666 and HeLa cells. There are actually quite few papers that draw conclusions from the use of CK-666 in HeLa cells, and the authors should discuss the limitations of these studies much more clearly. 2. The pyrene assays are disappointing because they are performed with only one concentration of CK-666 and CK-869. This is especially true for the VCA data, where the effect of the drugs is not always "on"/"off" as naively presented in the text, but highly concentration dependent. The authors should definitely provide several drug concentrations for each condition, up to saturation levels, to provide a clear quantification of the drug concentrations needed to reach half inhibition. 3. Similarly, the pull-down experiments performed at a single protein concentration are inconclusive. They cannot tell us whether the affinity of the Arp2/3 isoforms for these targets is altered in the presence of the small molecule inhibitors because we do not know the degree of saturation of the ligands. Given that some of the reported differences in inhibition of filament nucleation are modest, it is not possible at this stage to link these different data.
Significance
The subunit composition of the Arp2/3 complex is cell-type dependent, so these data will be important for the many cell biologists using these molecules. In particular, it calls for caution in the use of these drugs and in the interpretation of the data.
The writing is very clear, but the manuscript seems quite rushed. Many experiments need to be analyzed in much more detail to clarify the conclusions.
-
-
www.biorxiv.org www.biorxiv.org
-
Transparent Peer Review
Download the complete Review Process [PDF] including:
- reviews
- authors' reply
- editorial decisions
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Reviewer_01
Major comments:
- The authors cite that acetylated and tyrosinated microtubules have different spatial and compartmental distribution in dendrites and axons and investigate the distribution in the AIS of nonAcD cells and AcD cells, as well as the stem dendrites. However, they just show one example of two different cells (Figure 2D and E) without any statistical analysis. Either, they should remove this part or provide a thorough quantification. Reply: The spatial and compartmentalized distribution of stable and dynamic MTs in the dendrites and axons of nonAcD neurons has been extensively studied and reviewed (see Kapitein & Hoogenraad, 2011; Katrukha et al., 2021; Tas et al., 2017 for reference). However, the organization of the MT cytoskeleton in AcD neurons is still unknown. Here, we provide the very first evidence on the distribution of tyrosinated and acetylated MTs in AcD neurons, as well as data on MT orientations. We agree with the reviewer that to make our results on the spatial organization of these post-translational modifications in AcD neurons more complete, we need to provide a more thorough quantification analysis.
To achieve this, we plan to perform immunostainings on DIV10 neurons using antibodies against tyrosinated (tyr) and acetylated (ac-) tubulin to label dynamic and stable MTs, respectively. Subsequently, we will conduct high-resolution 3D confocal imaging and measure fluorescent intensity to illustrate the abundance and staining patterns of tyr- and ac- MTs in the axons and dendrites of AcD neurons. Since the spatial distribution of tyr- and ac-MTs is distinguishable with confocal microscopy, we will retain STED examples in the figures but conduct new analyses on confocal imaging data. We will measure the total fluorescent intensity of tyr- and ac- MTs in different compartments of AcD neurons and normalize it to the size of the measured area. We will then compare the normalized intensity values between the axons and dendrites of AcD neurons to examine whether there is a specific distribution pattern of stable and dynamic MTs. We will analyse at least 3 independent primary culture preparations with a minimum of 30 cells. Using the same dataset, we will also quantify the percentage of AcD neurons with ac-MTs specifically elongating into the axon compared to AcD.
The authors use EGFP-Rab3A vesicle to investigate anterograde transport at the axon and dendrites. They find a slightly faster transport of these vesicles at the AIS of AcD cells and conclude the axonal cargos in general are transported faster across the AIS in AcD cells. In my opinion, this generalization based on one type of vesicle is too farfetched.
Reply: The Rab3A protein is associated with pre-synaptic vesicles that are transported by KIF1A and KIF1Bβ, members of the kinesin-3 family, towards pre-synaptic buttons (see Guedes-Dias & Holzbaur, 2019; Niwa et al., 2008 for reference). Since KIF1A and KIF1Bβ are common motor proteins that mediate MT-based transport of different types of vesicles (e.g., synaptic vesicles and dense-core vesicles, see Carabalona et al., 2016; Helmer & Vallee, 2023 for reference), we reasoned that Rab3A should be a representative marker for an axonal cargo. However, this indeed does not rule out whether the faster trafficking effect we saw is specific to presynaptic vesicles, as different types of vesicles tend to recruit different modulators that could lead to different trafficking features.
To address this question, we will perform a live-imaging experiment including two additional organelle marker proteins, Neuropeptide Y (NPY) and Lysosome-associated membrane protein 1 (Lamp1). NPY is transported into the axon via KIF1A and KIF1Bβ-mediated dense-core vesicles (see Helmer & Vallee, 2023; Lipka et al., 2016 for reference). Lamp1 is associated with lysosomes and a range of endocytic organelles that recruit both kinesin-1 and kinesin-3, and are transported into both axons and dendrites (as reviewed in Cabukusta & Neefjes, 2018). By introducing two additional types of vesicles, we should be able to answer whether AcD neurons, in general, tend to transport cargoes into the axon faster than nonAcD neurons.
__Minor comments: __
In the introduction, the authors describe how synaptic inputs are received at the dendrites and propagated to the soma in the form of membrane depolarizations. They should add 'excitatory' to synaptic inputs or also describe the impact of inhibitory synaptic inputs at the dendrites.
In my opinion, Figure 2 could be presented in a slightly better way. The lower part of panel A better fits to panel B, which is next to the upper part of panel A. I understand that the authors systematically present their data first for nonAcD cells and then for AcD cells. However, in this special case it is a little bit more difficult to read the current figure in that order. The results displayed in Figure 4 are presented in a slightly confusing order. The authors jump from 4D to 4G, then to 4I and 4E, 4H, 4F. Similarly, 4M and N are addressed before 4O and P to finally get to 4K and L. It would be beneficial to present and address the data in a stringent way.
Reply: Thank you for the suggestions on how to improve the data representation in the figures. We will change Figures 2 and 4 and make adjustments in the text upon revision since we also plan to include additional data.
Reviewer_02
Major comments:
- The authors suggest that there is reduced Na+ channel density at AcD AIS compared to other AIS arising from the cell body. This is not convincing. Immunostaining for Na+ channels is notoriously difficult and sensitive to fixation since the epitopes of the anti-Pan Nav antibodies are highly sensitive to fixation. In addition, this is based on immunofluorescence intensity quantification. Since the mechanism of localization is through binding to AnkG, the authors should also measure other AIS proteins like AnkG, b4 spectrin, and Nfasc. Do these change? If all uniformly change I would be much more inclined to accept the conclusion. If they do not change, it still doesn't rule out the concern about fixation conditions and slight differences in the cultures. The authors indicate there is about a 40% reduction in fluorescence intensity. That is quite large. This big difference should also be confirmed in brain sections. Reply: The potential fixation issue and antibody sensitivity on Na+ channel staining are indeed valid considerations, and we are aware of them. However, it should be noted that we used pan-Na+ channel antibodies that were previously characterised and widely used in literature (see Solé et al., 2019; Yang et al., 2020 for references). Furthermore, our samples underwent the same fixation and staining protocol, and comparable numbers of AcD and nonAcD neurons were imaged from the same preparation and coverslip for each experiment. Imaging settings were also kept constant. Any loss of Na+ channel staining at the AIS due to fixation should affect both neuron types and therefore our conclusion is justified. Nevertheless, the reviewer's point regarding other AIS components is valid and will be investigated further in the revised manuscript.
Following the reviewer's suggestion to further strengthen our conclusion, we will measure the intensity of AnkG, βIV-spectrin, and neurofascin in DIV21 AcD and nonAcD neurons. We will compare a minimum of 3 independent cultures, each containing at least 10 cells of each type per culture.
We agree with the reviewer that confirming observed differences in Na+ channel staining using brain slices would be beneficial. However, conducting such experiments presents several challenges. Firstly, one approach could involve immunostaining with antibodies against AIS marker AnkG, in combination with somatodendritic marker MAP2 and pan-Nav. However, this method lacks the advantage of clearly identifying neuronal morphology as seen in dissociated cultures, making the outcome unclear and difficult for analysis and interpretation. Alternatively, the use of Thy1-GFP rats, where a subset of neurons is labelled with GFP, could allow for morphological studies. Unfortunately, we do not have access to this rat line, and the process of importing it, obtaining permits, and establishing a colony is beyond the timeframe for manuscript revision. Additionally, while pan-Nav antibodies have shown reliability in dissociated cultures, their efficacy in tissue staining is less certain. We could provide example images upon request. Secondly, endogenously labelling of Na+ channels is another option, but remains a significant challenge. Recent developments in endogenous labelling, such as the CRISPR/Cas9-based method using pORANGE by Fréal et al. (Fréal et al., 2023), and the generation of Scn1a-GFP transgenic mice by Yamagata et al. (Yamagata et al., 2023), offer potential solutions. However, the labelling efficiency of pORANGE is uncertain, and both methods are time-consuming and cannot be completed within the three-month revision period.
As an alternative, we propose emphasising that our results are based on in vitro experiments and discussing the advantages and limitations of this approach in the discussion section.
The analysis of inhibitory synapse differences at the AIS are also not compelling - this is a limitation of the culture system. The authors have no control over the density of inhibitory neurons in the culture well. This interaction is not intrinsic to the AcD neuron, but rather a feature of neuron-neuron interactions which should only be modelled in the animal.
Reply: The reviewer is correct in pointing out that establishing inhibitory synapses at the AIS is not an intrinsic feature of AcD neurons; it depends on the network and should be modelled in animals. We will include this limitation of the cell culture model in the discussion section in the revised manuscript. We also understand the reviewer's concern that the lower amount of inhibitory synapses at AcD neuron AIS might be due to uneven density of inhibitory neurons between cultures. Nonetheless, assuming that the number of inhibitory neurons is constant between preparations, it is an interesting observation that AcD neurons form fewer inhibitory synapses at the AIS. This may be related to the features of the AIS and its morphology and should be further investigated.
To make our study more comprehensive and also address the reviewer's concern regarding the presence of inhibitory neurons, we will perform immunostainings in dissociated cultures (40.000 cells per 18 mm coverslip, same as in experiments with synapse quantification) with antibodies against pCaMKIIa, an excitatory neuron marker, and GAD1, a marker for inhibitory neurons. Then, we will quantify the density of inhibitory neurons in the culture. We will perform measurements from 3-6 independent cultures by analysing large fields of view in different areas of a coverslip (20-30 neurons per area) to determine if the density of inhibitory neurons varies between cultures as well as preparations. Furthermore, as also requested by reviewer 4, we will perform new immunostainings where pre- and post-synaptic markers (VGAT and Gephyrin) will be included in the same sample together with the AIS (AnkG or Neurofascin) and dendritic marker (MAP2). Synapses that contain pre- and post-synaptic components will be analysed and included in the revised version of the manuscript.
Finally, the major limitation of this study is that it is performed in vitro. Surprisingly, the authors actually argue this is a feature of their system. While it is true some of the questions can be addressed perfectly well in vitro, many cannot. In the first paragraph of the results the authors state an advantage of their system is that there are no microenvironments to influence the development of the AcDs. I'm afraid I view this as a drawback. The authors suggest this is an opportunity to examine intrinsic mechanisms of development - true, but it also foregoes the opportunity to determine if the outcomes are different from what occurs in vivo. To this point, the authors report that only 15-20% of the population of hippocampal neurons in culture are AcD neurons. But in their introduction they cite other literature indicating 50% of hippocampal neurons in vivo are AcD neurons - this suggests that the environment of the hippocampus in vivo influences whether a neuron becomes an AcD neuron or not.
Reply: The reviewer is right in pointing that the in vivo environment could indeed affect AcD neuron development, and we also find this to be a very interesting topic to investigate in the future. Even more intriguingly, as shown in a preprint by Lehmann et al. (doi: https://doi.org/10.1101/2023.07.31.551236), network activity stimulates neurons to acquire AcD morphology. While it is true that the impact of the microenvironment on AcD neuron development cannot be studied in dissociated cultures, our in vitro data undoubtedly support the fact that hippocampal neurons can intrinsically develop into AcD morphology independent of the in vivo environment. As also mentioned in the next point, our statement "...their development must be driven by genetically encoded factors rather than specific..." might sound too definitive and therefore eliminate possible effects from the microenvironment. We will revise this part. Although it is highly desirable to move cell biological studies from neuronal cell cultures to tissue, to date, it is still very challenging to perform many of experiments which we did in this study in slices or living animals due to a lack of appropriate technologies and tools. We are convinced that many basic biological questions can be and should be studied in simplified culturing models because they are truly fundamental, they should also be reproducible in these models.
To address the reviewer's question regarding the percentage difference between our data and the previous study by Thome et al. (2014), several factors should be considered. First, as noted by the reviewer, our results were obtained from an in vitro system, which is not directly comparable to the in vivo model system used in Thome et al.'s study (Thome et al., 2014). Second, the age of the neurons quantified in our developmental experiments is DIV5 and DIV7. This young age disparity could contribute to the percentage difference, as Thome et al. analyzed neurons from P28-35 adult animals, where 50% of the AcD neuron population was observed, specifically in the CA1 region. Third, it's important to note that in other hippocampal regions, the percentage of AcD neurons is lower (approximately 20-30%). Since our hippocampal primary cultures contain neurons from all hippocampal regions, this may have averaged out our quantification of AcD neuron percentage. Additionally, in the study by Benavides-Piccione et al. (Benavides-Piccione et al., 2020), they reported 20% AcD neurons in the CA1 region of hippocampi isolated from 8-week-old mouse pups, a number similar to what we observed in vitro. Interestingly, Thome et al. reported that in P8 pups, AcD neuron population in hippocampal CA1 region is 30%. This number increased to 50% in adult animals at age of P28-35, suggesting there is perhaps an age dependent increase of AcD neuron population. This could be an additional reason of why we only saw 15-20% of AcD neurons in our in vitro system, regardless of the in vivo environment.
In the revised version, we will clarify these points in the introduction and discussion sections. Additionally, we will quantify the proportion of AcD neurons in mature DIV21 dissociated hippocampal cultures and compare it to DIV7 cultures to assess whether there is an increase in the AcD population over time. We believe that this experiment, combined with the explanations provided above, will sufficiently address the reviewer's question. However, it is important to acknowledge that the establishment of neuronal networks in vitro differ from those in vivo. Therefore, there may be potential differences in the outcomes.
I appreciated the balanced discussion of whether this is a stochastic or genetically programmed process. This could have been emphasized earlier in the results since the authors invoke the concept that "...their development must be driven by genetically encoded factors rather than specific...". The authors have not shown this and cannot show it in this system. Indeed, as stated in point 4 above, I think their data argue against a simple genetic program.
Reply: As suggested by the reviewer and noted in point 4, we will revise the section on AcD neuron development in our manuscript to emphasize that hippocampal neurons may adopt AcD morphology through genetic or stochastic mechanisms. While we acknowledge that environmental and activity factors may also influence this process, particularly in mature neurons, our study focuses on developing neurons where genetic and stochastic factors are likely to be predominant. This conclusion is supported by the observation that neurons develop into AcD morphology in vitro, where environmental and activity patterns do not mimic those of in vivo systems.
Indeed, our current manuscript does not explore genetic factors involved in AcD neuron development. To address this question, one approach could be to label AIS markers endogenously in dissociated cultures using the PORANGE method (see Willems et al., 2020 for reference) or utilize AnkG-GFP transgenic mice (Fréal et al., 2023; Thome et al., 2023) along with a volume marker like mRuby or GFP. This would allow for the identification of AcD and nonAcD neurons in vivo and in vitro, followed by single-cell transcriptomics analysis to uncover potential genetic factors. Subsequently, candidate genes could be manipulated to demonstrate their essential role in AcD neuron development. However, such experiments require significant time and resources beyond the scope of our current revision timeframe. Nonetheless, this question presents an exciting direction for future research.
Reviewer 3
Major comments:
- The authors classify neurons into axon-carrying dendrite (AcD) and non-AcD neurons by measuring the stem dendrite length (> 3 µm). I could not find the validity for this cut-off. The non-AcD neurons in Fig. 6B appear more AcD to this reviewer, and, in addition, other researchers have proposed a third category of 'shared root' neurons (doi: 10.7554/eLife.76101). For purposes of reproducibility and transparency, please provide first a comprehensive overview of the entire population of morphologies (i.e. all cells in control conditions). The distances from the soma could be plotted in histogram (etc.) and authors may want to think about independent supporting evidence for the cut-off to classify AcD and non-AcD neurons. Reply: Concerning the validity of AcD neuron classification, we did measure the length of the stem dendrite, as shown in Figure S4G, with an average distance of around 10 µm. However, we admit that this information is presented relatively late in the manuscript. To address the reviewer's criticism, in the revised version, we will include a supplementary figure displaying a gallery of representative images of both AcD and nonAcD neurons analyzed in our study (please refer to Hodapp et al., 2022; Fig S1 C&D; Fig S3 as an example). Given the sample size of AcD and nonAcD neurons in our study, including all images would result in a very large figure (for example, Figure 1: DIV5: 83 AcD neurons out of 427 cells, DIV7: 47 AcD neurons out of 387 cells). We will only show representative examples of AcD neurons in the gallery. Additionally, as suggested, we will plot the length of the stem dendrite (or axon distance) of AcD neurons as a histogram to demonstrate that the AcD neurons included in our study indeed have a stem dendrite longer than 3 µm. To further validate the used classification method, we will measure the diameter of the stem dendrite in all analyzed AcD neurons and then compare the distance between the soma and the start of the axon in each analyzed AcD neuron to the diameter of its stem dendrite. As described by Hodapp et al. (Hodapp et al., 2022; Fig S1A), AcD neurons are expected to have a stem dendrite longer than their diameter.
We have considered having independent evidence to support the classification of nonAcD and AcD neurons. However, the method used by Thome et al. and Wahle et al. for AcD and nonAcD neuron classification is well established and widely accepted (see Thome et al., 2014; Wahle et al., 2022 for references). Similar standards were also employed by Benavides-Piccione et al. (Benavides-Piccione et al., 2020). Introducing independent evidence could potentially raise further doubts, so we have chosen to maintain consistency with previous studies.
As for the "shared root" neurons described by Wahle et al., we did not analyze this category separately and included them in the nonAcD subtype. Nonetheless, it is an interesting direction to explore in the future. For completeness, we will discuss this point in the revised manuscript.
Related to point #1 the primary hippocampal neuron system is excellent for cell biological questions but comes with the drawback of imaginative morphologies including neurons with multiple axons and AISs. It is not mentioned here but literature indicates up to 20% of neurons have two axons (e.g. doi: 10.1007/s12264-017-0169-3, 10.1083/jcb.200707042). How did the authors classify the double axon cells? Since the main hypothesis is the existence of an intrinsic program for AcD neurons (p. 5 top), the two axons from one neuron should develop similarly. The authors can easily test this with the data.
Reply: We appreciate the reviewer's comment regarding the choice of the model system for this type of study. Indeed, as they pointed out, in primary cultures, some neurons develop more than one axon. Since we did not find any supporting evidence from the literature reporting that hippocampal neurons have multiple axons in vivo, we only analyzed neurons with one axon for both AcD and nonAcD neurons. We will clarify this in our method section of the revised manuscript.
Some interpretations about function are not correct and the authors should reconsider these. A role of cisternal organelles on neuronal excitability remains to be demonstrated (and see doi.org/10.1002/cne.21445 showing there is none). In addition, the statement that lower fluorescence intensity of Pan-Nav1 is indicating reduced excitability is flawed. Antibody staining does not scale linearly with voltage-gated sodium channel density and since the AIS of AcD neurons is further from the soma it is most likely smaller in diameter which may account for apparent fluorescent differences. For biophysical reasons (for details I refer to 10.3389/fncel.2019.00570, 10.1016/j.conb.2018.02.016 and 10.7554/eLife.53432) smaller diameter axons will be easier to depolarize by depolarizing voltage-gated channels or excitatory synapses. Finally, in AcD neurons the AIS distance from the soma poses all sorts of interesting cable properties with the soma and the local dendritic membrane and the electrotonic properties alone suffice to make these neurons more excitable.
Reply: The reviewer brings up very valid and important points that we will address in the revised manuscript. First, we will rephrase and adjust our interpretations regarding the functions of the cisternal organelle in the AIS. As also mentioned by reviewer #2, we are aware that antibody staining does not properly reflect Na+ channel density. As discussed above, we will also measure other AIS proteins that anchor Na+ channels to see if there are any correlations in fluorescence intensity between them and Nav1. We agree with the reviewer that AcD neuron's AIS could have a smaller diameter, resulting in fewer Na+ channels. Indirect evidence is already available in the study of Benavides-Piccione et al., showing a smaller axon diameter in AcD neurons compared to nonAcD neurons in both human and mouse brain sections (Figure S4). To test this in our model system, we propose to measure the AIS diameter in AcD neurons. If this is indeed the case, we will indicate it in our revised manuscript and edit the section on Na+ channels.
Exploring the biophysical properties of the AIS and axons of AcD neurons is indeed a highly interesting direction to pursue and is the project in its own. It would necessitate the use of computational modeling approaches, which require considerable time and resources that are not feasible within the timeframe of this revision.
Comparing AcD and non-AcD neurons for AIS plasticity is an excellent idea but the present statistical design is not suitable for answering this question. The authors should directly compare non-AcD and AcD neurons within a two-way ANOVA design, asking the question whether the independent variable axon type is significantly different and interacts with plasticity.
Related points: 'AIS distance' in Figure 7 seems to refer to something else than distance from soma (Figure 1). Please clarify. What were the absolute distances from the soma for the AcD neurons and was this dependent on treatment?
Reply: We appreciate reviewer's comment and in the revised version we will perform the analysis using two-way ANOVA.
Regarding the terminology and definitions used in our manuscript, the "AIS distance" refers to the measurement between the start of the AIS and the axon initiating point, as depicted in Figure S4 of the manuscript. We adopted this parameter from the previous study by Grubb et al. (Grubb & Burrone, 2010), ensuring consistency in our investigation of AIS plasticity. For AcD neurons, where the axon branches out from the dendrite, we defined the AIS distance as the length between the start of the AIS and the border of the stem dendrite, as illustrated in Figure S4B.
In Figure 1, the term "distance from soma" represents the length of stem dendrite and used for AcD and nonAcD neuron classification. As shown in Figure S4G, the absolute distance from the soma for AcD neurons is approximately 10 µm and remains consistent across treatments. We will explain these points more clearly in the revised manuscript.
Minor comments:
- At p. 7 is stated that "The percentage of none-AcD forming collaterals at DIV1 is much lower than for AcD neurons" but statistical support is lacking. The conclusion in the next line is that "AcD neurons follow consensus development". That is puzzling given the difference just mentioned before. Please clarify. Reply: We will provide statistical support for comparing collateral formation between nonAcD and AcD neurons at DIV1.
Regarding the second point concerning consensus development, we were referring to the general developmental sequence of AcD neurons, as described by Dotti et al. (see Dotti et al., 1988 for reference), where neurons typically first establish an axon and then dendrites. This sequence is not necessary related to collateral formation, which indeed differs between nonAcD and AcD neurons. The ability to form collaterals may come from local differences in microtubule (MT) and actin dynamics at AcD neuron precursor axons, but it does not alter the fact that AcD neurons initially establish an axon and subsequently dendrites. We will clarify it in the revised manuscript.
A study not cited in this manuscript showed distinct dendritic morphologies (doi: 10.1073/pnas.1607548113) and AcD interneurons are different for their axonal arborization (doi: 10.1242/dev.202305). Differences in growth of branch arborization could hint to subtypes. Are the AcD and non-AcD neurons different in their adult morphology? A detailed account of the axonal and dendritic trees would strengthen the data.
Reply: Thank you for pointing this out. We will include this citation. In the study by Hodapp et al., it was shown that AcD and nonAcD neurons exhibit similar dendritic morphology and do not differ in spine density, number of dendritic branches, and total dendritic length. However, in hippocampal AcD neurons, the AcD occupies 35% of the total basal dendrite length, which is larger than basal dendrites in nonAcD neurons, suggesting that AcD neurons do possess specific features in their dendritic trees.
Regarding the axons of AcD neurons, there is currently no detailed study available, and it would be more appropriate to investigate neuronal connectivity through tracing studies in animals rather than in primary cultures. Therefore, this question falls outside the scope of the current manuscript.
Some key references are not included here, and a number of these are mentioned above. In the context of the detailed MT and Rab3A vesicle and cargo transport studies, please acknowledge some of the pioneering work of Alan Peters revealing the ultrastructure of axons emerging from dendrites. See Figs. 5-7 in Peters, Proskauer and Kaiserman-Abramof IR., J Cell Biol 39:604 (1968). What is the identity of the neurons? It makes a difference if the cells are interneurons or pyramidal neurons, CA1 or CA3-like. For plasticity experiments the authors uses cells as independent measurements, but this is inflating the power. How many cultures were used?
Reply: Thank you for pointing this out; we will include the suggested references in the revised manuscript. In our study, we focused on excitatory neurons from the hippocampus. We distinguished neuron types morphologically or with the inhibitory neuron marker GAD1. Identifying CA1, CA2, CA3, and DG subtypes in dissociated culture is more challenging, and this would be an interesting avenue to explore in an in vivo system. Here, we focused on fundamental cell biology aspects related to the AIS structure and its trafficking barrier function, which should be similar in all these neuron types. While there may be subtype-specific differences in AIS plasticity, investigating this is beyond the scope of our manuscript.
For the plasticity experiments, we used a total of 3 independent cultures, from which we collected a comparable number of neurons. In response to the reviewer's concern, we will also plot the mean of each culture to illustrate the variability of our data points.
Reviewer 4
Major comments:
- A general limitation of this study is the low N for some critical experiments. In several experiments, individual cells become an N, therefore boosting the power of the analysis when in reality, due to the known heterogeneity of AIS length, position, and general cell morphology in vitro, the aim should be to compare means across animals / preparations, each consisting of a comparable number of individual cells. This is especially important for the analyses of COs, axo-axonic synapses and channel expression at the AIS. Reply: We would like to mention that this is a cell biological study where neurons are grown in dissociated cultures. To prepare one such culture, we typically use hippocampi from 6-8 E18 rat embryos, which are then mixed in one suspension before plating. The cells are then plated on coverslips in a 12-well plate format. When referring to replicates, for all experiments except for the longitudinal study of 5-day-long time-lapse imaging of developmental sequences (Figure 1), we used between 3 to 6 independent preparations. From each preparation, we took a comparable number of cells derived from 4-6 different coverslips. For each experiment, we measured more than a hundred cells, which is standard practice in the field. To address the issue with individual measurements, in the revised manuscript, we will additionally plot the means of each independent preparation.
Such critical parameters as e.g. synaptic innervation at the AIS are investigated in a way that does not support the clear statements given, e.g. "The AIS of AcD neurons receives fewer inhibitory inputs" (Highlights statement) or "AcD neurons have less inhibitory synapses at the AIS" (header of Fig. 6). The overall number of analyzed cells is low (3 and 4 preparations, respectively and approximately 50-cells for each marker). The combination of a pre- and postsynaptic marker for inhibitory / excitatory neurons is a solid decision, but the analysis is not done based on the close approximation of these markers, in 3D, along an AIS, but rather in maxIPs and without any regard of whether pre-and postsynaptic markers are actually close to each other not. The expression of these markers alone just points towards the epitopes being expressed, but are they localized to each other in such a manner that they could form bona fide synapses? The methods are not totally clear on the image depth (tile scans with 5 µm in z will not provide the detail of information to resolve synapses, so how did the authors address the subcellular analysis here and for the CO and VGSCs?). And generally, were Nyquist conditions taken into consideration throughout the study? This can be clarified in text and does not require additional experiments.
Reply: The overall number of cells for quantifying inhibitory synapses along the AIS was approximately 80 cells for each synaptic marker. To clarify this, we will indicate the number of cells in the figure legend of our revised manuscript and will additionally plot mean values across independent preparations.
In the current manuscript, our main goal was to provide an initial quantitative measurement of AIS features in AcD neurons to see if they differ from nonAcD neurons. Hence, maxIPs are sufficient for this purpose as they summarize the 3D information. To make our study more comprehensive, following the reviewer's suggestion, we will conduct additional experiments to co-label pre- and post-inhibitory synapses at the AIS with VGAT and gephyrin, respectively. Then, we will image samples in 3D to measure the density as well as the distance between pre- and post-synapses at the AIS of AcD neurons and compare them to nonAcD neurons.
The Nyquist condition was taken into consideration throughout the study. The pixel size of our data collection was 0.081 µm for the laser scanning microscope, as indicated in our methods section. Given the optical setup of our microscope and the fluorophores used to label target proteins (information available in the methods section of our manuscript), the acceptable Nyquist lateral sampling size (or pixel size, in other words) for confocal images is between 0.083 to 0.093 µm and 0.2 µm in the z-plane. In our data collection for laser scanning confocal images, the z-step size was 0.5 µm (see methods section of our manuscript), which is indeed undersampling the data. However, this should not significantly affect our analysis based on maxIPs. The new stainings with matched pre- and post-synaptic markers will be imaged with a smaller z-step (0.2 µm) and then reconstructed in 3D.
The chapter on AIS plasticity is certainly an interesting addition to the study, but is a bit superficial, yet reaches strong conclusions ("More importantly, it further indicates that the AIS of AcD neurons is insensitive to activity changes"). This is based on un-physiological concentrations of KCl, and certainly not on network manipulation that truly tests synaptic activity. It also comes back to the 1st point above. A suggestion would be to edit the conclusion.
Reply: KCl treatment globally depolarizes the membrane potential of neurons, leading to an increase in intracellular calcium via voltage-sensitive calcium channels as well as NMDA and AMPA receptors (Rienecker et al., 2020). This protocol has been used in several initial studies describing the plasticity of the AIS (see Evans et al., 2013, 2017; Grubb & Burrone, 2010; Jamann et al., 2021; Muir & Kittler, 2014; Wefelmeyer et al., 2015 for references). Moreover, as shown by Evans et al. and Grubb et al. (see Evans et al., 2013; Grubb & Burrone, 2010 for references), AIS plasticity is not abolished by TTX, which blocks Na+ channels, but is prevented by L-type calcium channel blockers. This suggests that the occurrence of AIS plasticity is independent of action potentials but more sensitive to calcium-related pathways downstream of membrane potential depolarization and post-synaptic activation. Hence, we believe our results are indicative of how the AIS would react when calcium signaling pathways are altered by activity levels. To address the reviewer's concern, we will focus our conclusion more on membrane potential depolarization and calcium signalling and edit out statements.
As discussed above in response to reviewer #3, the quantification of AIS plasticity includes 3 independent preparations, comprising approximately 200 neurons in total. To prevent inflation of statistical power in the analysis, we will also plot the means and standard error of the mean (SEM) for each independent experiment and assess whether any differences persist.
The rationale behind looking at the cisternal organelle (CO) in this study is outlined in the Introduction, where the authors state that "...... and is responsible for calcium handling". What is "calcium-handling" and where is the evidence cited? Furthermore, in the Results, they state that "...both compounds (VGSCs and COs) are critical for the AIS to regulate neuronal excitability". While this is the case for VGSCs, there is no conclusive evidence in the literature whether of not the CO is "critical" for neuronal excitability. In fact, a number of neurons have no CO in the AIS (as much as 50% of all AIS in mouse primary visual cortex for example do not express synpo at the AIS at all, Schlüter et al., 2017). The CO can therefore not be as critical for AP initiation as the authors state. Furthermore, the authors state that "AIS plasticity in excitatory neurons is triggered by calcium signaling". While certainly shown and adequately cited here, other factors (independent of calcium) can also play a role, therefore this statement is a bit absolute and should be edited accordingly.
Reply: Thank you for constructive editorial suggestions. Regarding the first question on calcium handling, we were referring to Ca2+ storage and release mechanisms. Benedeczky et al. already showed the existence of SERCA-type Ca2+ pumps at the membrane of the cisternal organelle (CO) to demonstrate the involvement of Ca2+ sequestering/storage by the CO at the AIS (Benedeczky et al., 1994). Although indirect, Sánchez-Ponce et al. showed the presence of IP3R, which promotes Ca2+ release from internal storage, at the AIS and partially colocalizes with synaptodin (Sánchez-Ponce et al., 2011). This is also the same case for the Ca2+-binding protein annexin 6. Together, this evidence indicates a putative role of the CO in regulating Ca2+ dynamics (storage/release) at the AIS. Since Ca2+ levels have a significant impact on action potential generation and timing at the AIS (see Bender & Trussell, 2009; Yu et al., 2010 for references), and therefore should be strictly regulated, it is likely that the CO at the AIS is important for regulating neuronal excitability by controlling Ca2+ dynamics. However, as mentioned by the reviewer, there are no conclusive pieces of evidence showing the relationship between the CO and neuron excitability regulation. We will edit our statement accordingly.
In contrast to the findings of Schlüter et al. (Schlüter et al., 2019), which were conducted in the mouse primary visual cortex, Sánchez-Ponce et al. showed that nearly 90% of hippocampal neurons contain synaptopodin, the CO marker protein, at the AIS. Furthermore, Schlüter et al. also demonstrated that in the other 50% of neurons containing COs at the AIS, the COs change size during visual deprivation, and their presence correlates with AIS length changes as well as eye-opening. These observations do suggest that COs are related to neuronal activity. However, this correlation and the formation of COs may be specific to neuro subtypes or require certain triggers. This is another interesting direction to explore, and we will include it in the discussion of the revised manuscript.
Regarding the last point on Ca2+ and AIS plasticity, we were not excluding other factors that could potentially participate in AIS plasticity and will also discuss it in the revised version.
The Introduction ends with the rationale of the study, namely that the authors seek to ....."provide a detailed characterization of the AIS, including its structural and functional properties....". Structure is investigated, but function is limited to the barrier function of the AIS. Since the authors provide no electrophysiology that would really dissect AIS function, I suggest to rephrase this part and focus on transport.
Reply: As suggested, we will certainly emphasize the cargo barrier function of the AIS in AcD neurons in our introduction. But we would like to keep the term "AIS function", because it has already been nicely demonstrated electrophysiologically by previous studies that the plasticity effect of the AIS is very important for maintaining cellular homeostasis.
The Discussion is more a list of future plans than a context to current data. The authors could move some of the new questions they identify into an "outlook" section at the end? Also, again have a critical look at the literature that is cited and which statements are accurate.
For example, the 2nd phrase in the Discussion states that is was shown that AcD neurons have a "role in memory consolidation", referenced to Hodapp et al., 2022. However, that paper does not provide direct evidence of such a role for AcD neurons. The statement "Collectively, our data provide new insights into the development of AcD neurons and demonstrate that there are differences in AIS functionality between AcD and nonAcD neurons", is not correct. AIS function was not investigated outside of the axonal barrier, and here, the AcD and nonAcD cells do not differ. Also, although the Discussion is geared towards excitatory / glutamatergic neurons, it has been shown by others that interneurons show an even stronger trend to exhibit AcD morphology (work by the Wahle lab and others). This is not clear from the current text (also compare "...AcD neurons being a different subtype if pyramidal neuron").
Further original publications should be included in the paragraph highlighting patch-clamp recordings (see above). In the same context, the statement "...showed that rapid AID plasticity occurs mainly in hippocampal dentate gyrus cells but not in principal excitatory neurons" is not accurate (see Kim, Kuba, Jamann and others). Generally, the Introduction and Discussion would benefit from a very clear distinction between studies done in vitro versus those done ex vivo or in vivo. This needs to be stated in the Abstract as well.
Methods: For the imaging of synapses, the CO and VGSCs, it is not clear to me from the methods whether Nyquist conditions were applied to produce data that can support the quantification of nanoscale structures. Basing the analysis and interpretation of channel expression on fluorescence intensity profiles is problematic (variance in staining quality from samples to sample, lack of an internal standard). This should be noted in the text. In the text, the first two references given for "Induction of plasticity" do not reference the correct papers.
Reply: Thank you for the valuable suggestions; we will incorporate them into the revised version of the manuscript. The structure will undoubtedly benefit from these improvements. We will also have a further look into our interpretation of the literatures as well as citations during our revision time frame.
Regarding methods, as stated in response to the second point raised by this reviewer, we ensured that the Nyquist condition was adhered to throughout the study. The pixel size, z-step size, and optical setup of the microscopes used were already indicated in our methods section. With respect to Na+ channel staining, we were indeed aware of the potential issues posed by the experimental setup, and we will explicitly mention this in our revised manuscript. Additionally, we plan to measure other AIS scaffolding and membrane proteins that anchor Na+ channels to assess for potential changes, which could indirectly support our Na+ channel staining results.
Finally, the text is lacking a discussion of limitations of the study, especially from a methodological point of view. In the Abstract/Summary already, the authors could point out that this is a pure in vitro study. Interestingly, to this day, AIS relocation during plasticity events has only been shown in cell culture systems, and not in vivo. Therefore, this needs to be put into context here - the chosen system is great for the type of imaging approach presented here, but may look at a type of AIS plasticity that is not seen in vivo.
Reply: These are very good points. We will include the limitations of the study in the discussion. Indeed, due to technical and methodological challenges, the relocation of the AIS has not yet been demonstrated using animal models. However, in the study by Wefelmeyer et al. (Wefelmeyer et al., 2015), a similar relocation of the AIS resulting from chronic stimulation was observed in hippocampal organotypic slices, and it was accompanied by reduced excitability of neurons. Furthermore, in the same study, neurons with axons/AIS originating from basal dendrites were also mentioned. However, the measurement of chronic AIS plasticity in their study was not performed based on different classes of neuron types. Hence, our work complements their results. Given that the network connectivity of organotypic slices is much closer to real physiological conditions, it is likely that similar plastic adaptations could occur in vivo.
__Minor comments __
- How does intrinsic neuronal activity play into developmental programs in vitro? Electrical activity in maturing neurons is a major part of how networks are shaped, and cells differentiate. This is not genetically encoded per se, but has been shown to be a major driving force of neuronal development in vivo. Is this reflected in the culture setting in any way? And have the authors considered testing early changes in activity patterns in their cultures to see whether AcDs and nonAcDs develop in similar percentages? To clarify, I am not asking for additional experiments. Reply: It is indeed a valid point that activity can influence neuronal morphology. Lehmann et al. (pre-print, doi: https://doi.org/10.1101/2023.07.31.551236) have recently demonstrated that increased network activity leads to more excitatory principal neurons adopting AcD morphology. However, our developmental data were collected from DIV0 to DIV5, an age at which dissociated neurons do not yet form functional excitatory synapses. Therefore, it is highly unlikely that network activity plays a role in shaping AcD neuron development during this early stage.
The authors may want to add a bit of a technical discussion on the choice of KCl and TTX as triggers for plasticity, especially at the non-physiological concentrations offered here and elsewhere (15 mM KCl).
Reply: We appreciate the reviewer for pointing this out. We will add this in our revised manuscript.
Some key statements would benefit from citing the appropriate original literature (some examples would be the original work by Kole, Bender and Brette on the role of the AIS in AP initiation; original work by D'Este and Letterier on the dendritic and axonal scaffold using nanoscopy; work by Kim, Kuba and Jamann on AIS plasticity in vitro and in vivo that is critical for a more informed discussion of AIS plasticity here, and others)
Reply: These are very good points, we will make suggested edits in the revised version.
In the Introduction, the authors word their text explicitly for excitatory neurons. However, AIS plasticity has also been observed in interneurons (work by the Grubb lab for example), and axo-axonic synapses are in fact not all inhibitory - this is in important factor to consider given the embryonic state of the culture material. Does the DIV maturation reflect how axo-axonic synapses "switch" from excitatory to inhibitory in vivo (also see work of the Burrone lab)? Can the conclusions form the paper really be drawn based on this type of system?
Reply: The AIS plasticity was indeed also observed in inhibitory interneurons (see Chand et al., 2015 for reference) and show opposite phenotypes compared to excitatory neurons. Also related to major comment #5, we did take the potential influence of AcD interneurons on the outcome of AIS plasticity experiment into consideration. Therefore, we also did a control experiment where inhibitory interneurons were labelled with GAD1 after chronic KCl treatment and these neurons were excluded from the analysis. Consistently, we got the same results that excitatory AcD neurons do not undergo chronic AIS plasticity. We will include this data in our revised manuscript. Further, in our current manuscript, we decided to focus on excitatory AcD neurons not only because they are the major functional unit in neuronal circuits, but also because the majority of the electrophysiological features were studied in excitatory AcD neurons. But we agree with the reviewer that AcD interneuron is definitely an interesting subject for follow up research in the future.
As mentioned by the reviewer, Pan-Vazquez et al. (Pan-Vazquez et al., 2020) nicely showed that axo-axonic synapses made by GABAergic Chandelier cells (ChCs) depolarise neurons in brain slices obtained from P12-18 animals. But this effect is reversed in slices obtained from older animals (>>P40). Of note, their results were based on cortical neurons but not hippocampal neurons, hence cell type specificity should be considered. More importantly, previous study reported that this conversion or switch of GABAergic interneurons from excitatory to inhibitory occurs on hippocampal neurons in P12-13 animals (Leinekugel et al., 1995). In dissociated hippocampal neurons from E18 rat embryos, this switch of GABAergic interneurons takes place on DIV9-11 and completes on DIV19, which should have a comparable neuronal developmental stage as the P12-13 in in vivo system (see Ganguly et al., 2001 for reference). Therefore, the conclusion could be drawn in an in vitro system, but it certainly needs to be validated in in vivo system.
The authors state that "less COs account for higher intrinsic excitability". Why is that the case?
Reply: According to Yu et al. and Bender et al., Ca2+ transient at the AIS regulates the generation of action potentials (APs). For instance, reducing Ca2+ transient at the AIS by blocking Ca2+ channels with either mibefradil (a T-type Ca2+ channel antagonist) or Ni2+ (which blocks R- and T-type channels) decreased the number of spikelets evoked by EPSP-like current injection and delayed the timing of spike generation (please see Bender & Trussell, 2009 for details). Therefore, we speculate that Ca2+ transients are less affected when there are fewer cisternal organelles (COs) at the AIS, which could have a more direct impact on AP initiation. However, this is just our hypothesis, and there is indeed no direct evidence showing that COs regulate Ca2+ dynamics. We will discuss this in the revised manuscript.
Last but not least, some very recent studies on AcD biology (Stevens, Thome, Lehmann, Wahle) is available online also on preprint servers and may provide additional support for the current study.
Reply: We will check these pre-prints and include relevant information into the revised version.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #4
Evidence, reproducibility and clarity
Summary
Han and colleagues present cell biological data on the development of axon-carrying dendrite (AcD) neurons - cells, in which the axon emerges from a dendrite and not as is more common, from the soma. This particular morphological feature is not new; Cajal already described AcD neurons and since then, their existence was demonstrated in a number of CNS and PNS neurons and across species. However, more recent work from the rodent hippocampus ex vivo and in vivo has pointed towards an interesting functional consequence of AcD morphology, in that these cells can circumvent perisomatic inhibition during network oscillations. Han and colleagues therefore investigate one of the core questions that arises from these previous studies: How is the AcD configuration achieved during development?
The authors utilize an in vitro model (isolated hippocampal neurons from E18 rat) and investigate core parameters of axonal maturation, especially the cytoskeleton, membrane-associated proteins and intra-axonal calcium stores of the axon initial segment (AIS), where action potentials are generated and which contributes to neuronal polarity at different days in vitro (= maturation states). Using a combination of immunofluorescence, confocal, spinning disk and STED microscopy, and plasticity protocols, the authors present evidence indicating that during development in vitro, AcD neurons follow an intrinsically encoded developmental program, the AIS in nonAcD and AcD cells has comparable cytoskeletal features and retains cellular polarity in both configurations. Using culture conditions to elicit AIS plasticity, the authors then find differences in that AcD neurons do not seem to undergo AIS plasticity and generally show a reduced number of intra-axonal calcium stores. Also, AcD neurons are shown to have fewer axo-axonic synapses at the AIS than nonAcD neurons.
Major comments
This study aims at investigating an important question in AcD biology, and uses an easily-accessible model system (E18 rat derived hippocampal neurons in vitro). In this, the study follows previous work in vitro, and nicely reproduces some data, which is a strength of this current study in my opinion. That said, the system is, by nature, artificial and the emergence of axons in vitro often deviates from data obtained in vivo.
Throughout the manuscript, the authors often draw clear-cut conclusions which require a far more critical reflection of what their model can actually accomplish. Thus, a number of statements are not supported by the data (see below). The presentation of the data in the Supplements needs to reflect data distribution, which they currently do not. Likewise, showing S.E.M. instead of S.D. needs to be looked at critically. Otherwise, the data and methods are presented in such a way that they can be reproduced. The quality of the micrographs and videos is excellent and convey the main messages of the study in a very accessible way. I do not see the need for additional experiments, but would ask the authors to critically look at the following issues:
- A general limitation of this study is the low N for some critical experiments. In several experiments, individual cells become an N, therefore boosting the power of the analysis when in reality, due to the known heterogeneity of AIS length, position, and general cell morphology in vitro, the aim should be to compare means across animals / preparations, each consisting of a comparable number of individual cells. This is especially important for the analyses of COs, axo-axonic synapses and channel expression at the AIS.
- Such critical parameters as e.g. synaptic innervation at the AIS are investigated in a way that does not support the clear statements given, e.g. "The AIS of AcD neurons receives fewer inhibitory inputs" (Highlights statement) or "AcD neurons have less inhibitory synapses at the AIS" (header of Fig. 6). The overall number of analyzed cells is low (3 and 4 preparations, respectively and approximately 50-cells for each marker). The combination of a pre- and postsynaptic marker for inhibitory / excitatory neurons is a solid decision, but the analysis is not done based on the close approximation of these markers, in 3D, along an AIS, but rather in maxIPs and without any regard of whether pre-and postsynaptic markers are actually close to each other not. The expression of these markers alone just points towards the epitopes being expressed, but are they localized to each other in such a manner that they could form bona fida synapses? The methods are not totally clear on the image depth (tile scans with 5 µm in z will not provide the detail of information to resolve synapses, so how did the authors address the subcellular analysis here and for the CO and VGSCs?). And generally, were Nyquist conditions taken into consideration throughout the study? This can be clarified in text and does not require additional experiments.
- The chapter on AIS plasticity is certainly an interesting addition to the study, but is a bit superficial, yet reaches strong conclusions ("More importantly, it further indicates that the AIS of AcD neurons is insensitive to activity changes"). This is based on unphysiological concentrations of KCl, and certainly not on network manipulation that truly tests synaptic activity. It also comes back to the 1st point above. A suggestion would be to edit the conclusion.
- The rationale behind looking at the cisternal organelle (CO) in this study is outlined in the Introduction, where the authors state that "...... and is responsible for calcium-handling". What is "calcium-handling" and where is the evidence cited? Furthermore, in the Results, they state that "...both compounds (VGSCs and COs) are critical for the AIS to regulate neuronal excitability". While this is the case for VGSCs, there is no conclusive evidence in the literature whether of not the CO is "critical" for neuronal excitability. In fact, a number of neurons have no CO in the AIS (as much as 50% of all AIS in mouse primary visual cortex for example do not express synpo at the AIS at all, Schlüter et al., 2017). The CO can therefore not be as critical for AP initiation as the authors state. Furthermore, the authors state that "AIS plasticity in excitatory neurons is triggered by calcium signaling". While certainly shown and adequately cited here, other factors (independent of calcium) can also play a role, therefore this statement is a bit absolute and should be edited accordingly.
- The Introduction ends with the rationale of the study, namely that the authors seek to ....."provide a detailed characterization of the AIS, including its structural and functional properties....". Structure is investigated, but function is limited to the barrier function of the AIS. Since the authors provide no electrophysiology that would really dissect AIS function, I suggest to rephrase this part and focus on transport.
- The Discussion is more a list of future pans than a context to current data. The authors could move some of the new questions they identify into an "outlook" section at the end? Also, again have a critical look at the literature that is cited and which statements are accurate. For example, the 2nd phrase in the Discussion states that is was shown that AcD neurons have a "role in memory consolidation", referenced to Hodapp et al., 2022. However, that paper does not provide direct evidence of such a role for AcD neurons. The statement "Collectively, our data provide new insights into the development of AcD neurons and demonstrate that there are differences in AIS functionality between AcD and nonAcD neurons", is not correct. AIS function was not investigated outside of the axonal barrier, and here, the AcD and nonAcD cells do not differ. Also, although the Discussion is geared towards excitatory / glutamatergic neurons, it has been shown by others that interneurons show an even stronger trend to exhibit AcD morphology (work by the Wahle lab and others). This is not clear from the current text (also compare "...AcD neurons being a different subtype if pyramidal neuron"). Further original publications should be included in the paragraph highlighting patch-clamp recordings (see above). In the same context, the statement "...showed that rapid AID plasticity occurs mainly in hippocampal dentate gyrus cells but not in principal excitatory neurons" is not accurate (see Kim, Kuba, Jamann and others). Generally, the Introduction and Discussion would benefit from a very clear distinction between studies done in vitro versus those done ex vivo or in vivo. This needs to be stated in the Abstract as well.
Methods: For the imaging of synapses, the CO and VGSCs, it is not clear to me from the methods whether Nyquist conditions were applied to produce data that can support the quantification of nanoscale structures. Basing the analysis and interpretation of channel expression on fluorescence intensity profiles is problematic (variance in staining quality from samples to sample, lack of an internal standard). This should be noted in the text. In the text, the first two references given for "Induction of plasticity" do not reference the correct papers.
Finally, the text is lacking a discussion of limitations of the study, especially from a methodological point of view. In the Abstract/Summary already, the authors could point out that this is a pure in vitro study. Interestingly, to this day, AIS relocation during plasticity events has only been shown in cell culture systems, and not in vivo. Therefore, this needs to be put into context here - the chosen system is great for the type of imaging approach presented here, but may look at a type of AIS plasticity that is not seen in vivo.
Minor comments
- How does intrinsic neuronal activity play into developmental programs in vitro? Electrical activity in maturing neurons is a major part of how networks are shaped, and cells differentiate. This is not genetically encoded per se, but has been shown to be a major driving force of neuronal development in vivo. Is this reflected in the culture setting in any way? And have the authors considered testing early changes in activity patterns in their cultures to see whether AcDs and nonAcDs develop in similar percentages? To clarify, I am not asking for additional experiments.
- The authors may want to add a bit of a technical discussion on the choice of KCl and TTX as triggers for plasticity, especially at the non-physiological concentrations offered here and elsewhere (15 mM KCl).
- Some key statements would benefit from citing the appropriate original literature (some examples would be the original work by Kole, Bender and Brette on the role of the AIS in AP initiation; original work by D'Este and Letterier on the dendritic and axonal scaffold using nanoscopy; work by Kim, Kuba and Jamann on AIS plasticity in vitro and in vivo that is critical for a more informed discussion of AIS plasticity here, and others)
- In the Introduction, the authors word their text explicitly for excitatory neurons. However, AIS plasticity has also been observed in interneurons (work by the Grubb lab for example), and axo-axonic synapses are in fact not all inhibitory - this is in important factor to consider given the embryonic state of the culture material. Does the DIV maturation reflect how axo-axonic synapses "switch" from excitatory to inhibitory in vivo (also see work of the Burrone lab)? Can the conclusions form the paper really be drawn based on this type of system?
- The second header in Results is not clearly formulated. What is meant by "consensus developmental sequence"?
- The authors state that "less COs account for higher intrinsic excitability". Why is that the case?
- Last but not least, some very recent studies on AcD biology (Stevens, Thome, Lehmann, Wahle) is available online also on preprint servers and may provide additional support for the current study.
Referees cross-commenting
In my opinion, the comments by the other three reviewers are clear, insightful and supportive of / complementary to my own. There are some strong leads within the revisions that the authors hopefully find helpful in the preparation of their final manuscript. I have no doubt that the final publication will be viewed as an important and significant finding in the field of axon onset biology.
Significance
The study by Han and colleagues addresses a timely and relevant question and provides excellent quality imaging data (fixed cells and live imaging), as well as convincing superresolution. The authors also provide a solid methods section that will aid others in repeating these experiments. The central question of how AcD neurons develop is of great interest and the study highlights novel findings especially regarding the detailed analysis of axonal and dendritic transport features in AcD cells. The authors also point out a number of questions that arise from their data and that can provide helpful insight for other researchers in the field. The study has limitations in that it is a pure in vitro study, and some data are based on a low sample number as well as superficial expression analysis (synapses, channels). A number of conclusions made by the authors are therefore not really supported by the current data. The discussion would benefit from a more detailed analysis of the current literature in the field and needs critical reflection on what the shown data really support in form of a section on "limitations".
The study is of broader interest for numerous research fields (developmental neurobiology, axon biology, AIS biology, neuronal plasticity). Given the focus that AcD neurons have received recently in the field of learning and memory consolidation, this study also provides interesting future questions for researchers with a background in network function and behavior.
Reviewer's expertise: Developmental neurobiology, axonal plasticity, AcD neuron morphology and development, in vivo rodent behavior, human slices, confocal and superresolution microscopy, patch-clamp electrophysiology
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
In this manuscript Han and colleagues report about structural and functional studies on the development of axons originating from dendrites. Leveraging the primary hippocampal neuron preparation, they investigated fundamental cell biological questions including microtubule organization, cargo transport and the early neurite development. I am impressed by the timelapse movies with live AIS labels providing, to the best of my knowledge, the first glance into the development of an axon emerging from a dendrite. The study is technically very good, a pleasure to read, and the results are well described. While conclusions about structure are well supported by their data, the claims about 'function' are weak and speculative. I have listed some issues and by improving clarity the study could become a valuable resource for the field.
- The authors classify neurons into axon-carrying dendrite (AcD) and non-AcD neurons by measuring the stem dendrite length (> 3 µm). I could not find the validity for this cut-off. The non-AcD neurons in Fig. 6B appear more AcD to this reviewer, and, in addition, other researchers have proposed a third category of 'shared root' neurons (doi: 10.7554/eLife.76101). For purposes of reproducibility and transparency, please provide first a comprehensive overview of the entire population of morphologies (i.e. all cells in control conditions). The distances from the soma could be plotted in histogram (etc.) and authors may want to think about independent supporting evidence for the cut-off to classify AcD and non-AcD neurons.
- Related to point #1 the primary hippocampal neuron system is excellent for cell biological questions but comes with the drawback of imaginative morphologies including neurons with multiple axons and AISs. It is not mentioned here but literature indicates up to 20% of neurons have two axons (e.g. doi: 10.1007/s12264-017-0169-3, 10.1083/jcb.200707042). How did the authors classify the double axon cells? Since the main hypothesis is the existence of an intrinsic program for AcD neurons (p. 5 top), the two axons from one neuron should develop similarly. The authors can easily test this with the data.
- Some interpretations about function are not correct and the authors should reconsider these. A role of cisternal organelles on neuronal excitability remains to be demonstrated (and see doi.org/10.1002/cne.21445 showing there is none). In addition, the statement that lower fluorescence intensity of Pan-Nav1 is indicating reduced excitability is flawed. Antibody staining does not scale linearly with voltage-gated sodium channel density and since the AIS of AcD neurons is further from the soma it is most likely smaller in diameter which may account for apparent fluorescent differences. For biophysical reasons (for details I refer to 10.3389/fncel.2019.00570, 10.1016/j.conb.2018.02.016 and 10.7554/eLife.53432) smaller diameter axons will be easier to depolarize by depolarizing voltage-gated channels or excitatory synapses. Finally, in AcD neurons the AIS distance from the soma poses all sorts of interesting cable properties with the soma and the local dendritic membrane and the electrotonic properties alone suffice to make these neurons more excitable.
- Comparing AcD and non-AcD neurons for AIS plasticity is an excellent idea but the present statistical design is not suitable for answering this question. The authors should directly compare non-AcD and AcD neurons within a two-way ANOVA design, asking the question whether the independent variable axon type is significantly different and interacts with plasticity. Related points: 'AIS distance' in Figure 7 seems to refer to something else than distance from soma (Figure 1). Please clarify. What were the absolute distances from the soma for the AcD neurons and was this dependent on treatment?
Minor comments
At p. 7 is stated that "The percentage of none-AcD forming collaterals at DIV1 is much lower than for AcD neurons" but statistical support is lacking. The conclusion in the next line is that "AcD neurons follow consensus development". That is puzzling given the difference just mentioned before. Please clarify. A study not cited in this manuscript showed distinct dendritic morphologies (doi: 10.1073/pnas.1607548113) and AcD interneurons are different for their axonal arborization (doi: 10.1242/dev.202305). Differences in growth of branch arborization could hint to subtypes. Are the AcD and non-AcD neurons different in their adult morphology? A detailed account of the axonal and dendritic trees would strengthen the data.
Some key references are not included here, and a number of these are mentioned above. In the context of the detailed MT and Rab3A vesicle and cargo transport studies, please acknowledge some of the pioneering work of Alan Peters revealing the ultrastructure of axons emerging from dendrites. See Figs. 5-7 in Peters, Proskauer and Kaiserman-Abramof IR., J Cell Biol 39:604 (1968).
What is the identity of the neurons? It makes a difference if the cells are interneurons or pyramidal neurons, CA1 or CA3-like.
For plasticity experiments the authors uses cells as independent measurements, but this is inflating the power. How many cultures were used?
Referees cross-commenting
When reading the other reviews I feel they are constructive and providing sufficient conceptual and technical insight to prepare a revision. Although some concerns are overlapping, with 4 independent review reports perhaps not all issues can be addressed within the estimated time frame of 3 months.
Significance
That axons originate from dendrites dates back to the 19th century drawings of Ramón y Cajal but today most textbook and schematic drawings of the neuron still show polarized axons and dendrites both emerging from the soma. Since a few years this specific morphological arrangement begins to receive attention and many fundamental cell biological questions remain to be answered. Leveraging the primary hippocampal neuron preparation, the authors use technically clever experiments to generate new insight into the microtubule organization, cargo transport and the early neurite development. The live imaging of fluorescent labelled axon initial segments is elegant, and an important conclusion is that the stem process, carrying dendrite and axon, grows at a later stage in development. Limitations of the primary neurons should be discussed, however, and the functional consequences of positioning axons on dendrites are not as simple as described by the authors. The study could become a valuable resource for those working in basic research, providing new technical directions.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
The manuscript by Han et al. investigates the properties of AIS along axon carrying dendrites (AcDs). These are enigmatic structures with at present poorly defined features. Han et al. work to further characterize the nature of these AIS. Overall, the data are mostly compelling and the reveal that AIS at AcDs are mostly like those of AIS arising from the cell body. Many features were examined and shown not to differ. There were a few instances where the authors claim differences, and this reviewer is not convinced - see comments below. Overall, I think with bit more careful examination of the main differences this could be a nice descriptive paper reporting features of AIS along AcDs.
Major questions:
- The authors suggest that there is reduced Na+ channel density at AcD AIS compared to other AIS arising from the cell body. This is not convincing. Immunostaining for Na+ channels is notoriously difficult and sensitive to fixation since the epitopes of the anti-Pan Nav antibodies are highly sensitive to fixation. In addition, this is based on immunofluorescence intensity quantification. Since the mechanism of localization is through binding to AnkG, the authors should also measure other AIS proteins like AnkG, b4 spectrin, and Nfasc. Do these change? If all uniformly change I would be much more inclined to accept the conclusion. If they do not change, it still doesn't rule out the concern about fixation conditions and slight differences in the cultures. The authors indicate there is about a 40% reduction in fluorescence intensity. That is quite large. This big difference should also be confirmed in brain sections.
- The analysis of inhibitory synapse differences at the AIS are also not compelling - this is a limitation of the culture system. The authors have no control over the density of inhibitory neurons in the culture well. This interaction is not intrinsic to the AcD neuron, but rather a feature of neuron-neuron interactions which should only be modeled in the animal.
- Finally, this reviewer is also skeptical of the chronic plasticity changes in AIS 'distance.' The authors claim their results are consistent with prior reports, but they see about a 1.5 um shift. Prior studies (Grubb et al.) report 15-17 um change - a full order of magnitude larger than what is reported here. The authors also show no differences in other previously described changes at the AIS. Together with the other results showing AcD neurons and non- AcD neuron AIS are mostly the same, the conclusion that one behaves differently is not compelling with the tiny shift reported.
- Finally, the major limitation of this study is that it is performed in vitro. Surprisingly, the authors actually argue this is a feature of their system. While it is true some of the questions can be addressed perfectly well in vitro, many cannot. In the first paragraph of the results the authors state an advantage of their system is that there are no microenvironments to influence the development of the AcDs. I'm afraid I view this as a drawback. The authors suggest this is an opportunity to examine intrinsic mechanisms of development - true, but it also foregoes the opportunity to determine if the outcomes are different from what occurs in vivo. To this point, the authors report that only 15-20% of the population of hippocampal neurons in culture are AcD neurons. But in their introduction they cite other literature indicating 50% of hippocampal neurons in vivo are AcD neurons - this suggests that the environment of the hippocampus in vivo influences whether a neuron becomes an AcD neuron or not.
- I appreciated the balanced discussion of whether this is a stochastic or genetically programmed process. This could have been emphasized earlier in the results since the authors invoke the concept that "...their development must be driven by genetically encoded factors rather than specific...". The authors have not shown this and cannot show it in this system. Indeed, as stated in point 4 above, I think their data argue against a simple genetic program.
Significance
interesting subject, timely as features of AIS are of great interest now - especially as a relatively new form of neuronal plasticity. Highly descriptive paper, but emphasizes in this reviewer's opinion that AcD neurons and non AcD neurons have AIS that are essentially the same.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary:
The manuscript by Han et al. describes the structural and functional differences between pyramidal cells in which the axon emanates from a basal dendrite (axon-carrying dendrite cell, AcD cell) and cells with a 'canonical', i.e. somatic origin of the axon (nonAcD cells). They investigate how pyramidal neurons develop into AcD or nonAcD cells during cell development and characterize the cytoskeletal architecture in the two cell classes. Additionally, they examine whether and how axon initial segments, the most important structure for action potential generation, change upon varying activity of the neuron.
The major claims of the paper are:
i) The formation into an AcD or nonAcD cell is intrinsically encoded by a developmental program.
ii) The cytoskeletal structure of AcD and nonAcD cells is similar. However, the stem dendrite inherent only to AcD cells is structurally more similar to an axon than to a dendrite
iii) Axon initial segments of AcD cells contain less cisternal organelles and show less homeostatic plasticity The authors make use of primary cell cultures from rat hippocampus which are a standard model to investigate developmental questions of single cells and neuronal networks. The manuscript is well structured and in general reads well and the data and conclusions are convincing. I have only a few major comments.
Major comments:
The authors cite that acetylated and tyrosinated microtubules have different spatial and compartmental distribution in dendrites and axons and investigate the distribution in the AIS of nonAcD cells and AcD cells, as well as the stem dendrites. However, they just show one example of two different cells (Figure 2D and E) without any statistical analysis. Either, they should remove this part or provide a thorough quantification. The authors use EGFP-Rab3A vesicle to investigate anterograde transport at the axon and dendrites. They find a slightly faster transport of these vesicles at the AIS of AcD cells and conclude the axonal cargos in general are transported faster across the AIS in AcD cells. In my opinion, this generalization based on one type of vesicle is too far-fetched. As stated above, the manuscript is well structured and generally reads well. However, throughout the text there are always small mistakes that should be corrected by careful proofreading. Examples are
Page 6, last paragraph: ...AcD neurons generated [a] collateral...
Page 24, last paragraph: ... line was then drew [drawn] along ...
Page 24, last paragraph: Neurons with ... was consider [were considered] as ...
Page 25, first paragraph: Antibodies ... was [were]
Page 41, (E) Percentage of AcD neurons [that] generate [a] collateral or bifurcate
Minor comments:
In the introduction, the authors describe how synaptic inputs are received at the dendrites and propagated to the soma in the form of membrane depolarizations. They should add 'excitatory' to synaptic inputs or also describe the impact of inhibitory synaptic inputs at the dendrites.
In my opinion, Figure 2 could be presented in a slightly better way. The lower part of panel A better fits to panel B, which is next to the upper part of panel A. I understand that the authors systematically present their data first for nonAcD cells and then for AcD cells. However, in this special case it is a little bit more difficult to read the current figure in that order.
The results displayed in Figure 4 are presented in a slightly confusing order. The authors jump from 4D to 4G, then to 4I and 4E, 4H, 4F. Similarly, 4M and N are addressed before 4O and P to finally get to 4K and L. It would be beneficial to present and address the data in a stringent way.
Significance
General assessment:
This study addresses a very important and timely question about structural and functional cell diversity of cortical pyramidal neurons. The specific function of AcD cells is currently mostly unknown, which is astonishing given their abundance of 15-50% of pyramidal neurons in cortical structures.
Advance:
This study presents a significant step forward in comprehending the structural and functional relationship of signal computation in single neurons.
Audience:
The study will be important for a wide readership working on very different levels including cellular, network, and behavioral neuroscience.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
The authors do not wish to provide a response at this time.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Angara et al describe a secreted Coxiella burnetii effector with an FFAT motif, which they name CbEPF1, that localizes to host cell LDs and is able to interact with VAP domain containing host proteins. Furthermore, this interaction is able to impact LD size. The study has several interesting findings that suggest that this protein can impact ER structuring around lipid droplets. The use of bacterial 2-hybrid approach to demonstrate binding between CbEPF1 and VAP domain containing proteins is convincing, further supported by co-ip experiments that go on to establish specificity of each of the FFAT motifs for distinct VAP domain containing proteins. However, the relationship between LD localization of the protein and ER-restructuring to the outcome of infection is not clear from the data presented here. In addition, there are many analyses that need to be performed for the data to convincingly support the claims made in the manuscript.
My major concerns are:
- The authors claim that CbEPF1 localizes to lipid droplets in Coxiella burnetii infected epithelial cells. Towards this, the authors express CbEPF1-GFP in C. burnetii infected cells expressing BFP-KDEL. The data in Figure 1B and 1C indicate that the protein localizes to lipid droplets in oleic acid treated cells. It is interesting to note that without addition of oleic acid, the protein localizes to the ER. What is surprising is that the BFP-KDEL signal is also localizing to the LD surface (Figure 1B and 2A). While in this section it seems that the protein migrates from ER to LDs, in the later sections, similar data is used to make the claim that the protein induces ER apposition to the LD and localizes to regions of LD-ER contact. Therefore, it raises several questions about the localization of the protein: (i) is it an ER-localized protein that migrates to LDs. In that case, what features of the protein enable its LD binding? In addition, the authors must perform LD isolation to validate that the protein indeed localizes to lipid droplets. (ii) Is it an ER-localized protein, that like BFP-KDEL has the ability to localize to ER-LD contact sites, but remains on the ER membrane? Again, biochemical evidence supporting membrane specification is important to understand the localization of the protein. The authors have focussed only on the FFAT motifs of CbEPF1 and not described the overall domain analysis of the protein. It is therefore difficult to understand at this point how the protein localizes to the ER and the ER-LD junction or LD.
- Quantitative image analysis:
(i) Authors must perform colocalization analyses to substantiate the claims for ER/LD localization. The authors refer to "extended ER-LD contacts" in figure 2B and the text. These data need to be supported with colocalization analysis between BFP-KDEL and the GFP channel.
(ii) Related to Figure 4A: Mander's Colocalization analyses with Costes correction are required to convincingly demonstrate that the dual FFAT motif is required for ER-LD contacts.
(iii) Related to Figure 4B: Please show the LD phenotype of untransfected, and CbEPF1-GFP transfected cells also. Can the authors provide a means to quantify the clustering of LDs.
(iv) Figure 5A and B. It is not clear from the figure legend whether the data are pooled from multiple experiments or a single experiment. Experimental replicates must be incorporated in the final analysis. 3. The data presented in this manuscript depends largely on overexpression of the protein in uninfected cells. Given that C. burnetii induces LD formation, there are three main areas that need clarity:
(i) What is the localization of the protein in infected cells without the addition of oleic acid under conditions where infection itself induces LD biogenesis.
(ii) What happens to ER-LD contacts upon infection with C. burnetii?
(iii) Does the presence of CbEPF1 play any role in infection induced LD biogenesis? This may be an optional experiment to undertake at this point as this would involve significant amount of time investment in generating bacterial strains.
Minor comments:
- Line 36: "maintain" instead of "maintains"
- The introduction cites mainly reviews with overlapping concepts but does not cite primary literature in the area of organelle-organelles contacts and inter-organelle communication (lines 39-40 and line 49). It would be good to cite key primary research articles in these areas.
- There are some crucial references related to bacterial secreted effectors that target host lipid droplets, that are missing from the introduction. For example, Chlamydia trachomatis is known to secrete effectors that localize to host lipid droplets (PMID: 18591669). Legionella pneumophila secretes a small GTPase LegA15 to lipid droplets impacting vesicle secretion of the host cell (PMID:36525490).
- For all figures, please show all individual channels in monochrome and a merge of BFP-KDEL+LD marker and merge of CbEPF1-GFP+LD marker and/or BFP-KDEL+CbEPF1 (wherever appropriate).
Significance
The study by Angara et al reports a dual FFAT motif containing protein of Coxiella burnetii that impacts ER-LD association. The strengths of the study lie in characterization of the FFAT motifs in VAP domain binding, and the role of these FFAT motifs in mediating ER-LD contacts. However, the claims made towards LD localization versus localization to ER-LD contact sites by this protein are not well supported by the data. In addition, the relevance of these findings in infected cells are not addressed in this study as the data presented here pertain to an over-expression system.
Bacterial proteins that exit the bacterial containing vacuole and impact organelles outside the endocytic compartments are fascinating as they have the potential to impact global processes such as transcription, metabolism, and protein secretion. Lipid droplet (LD) homeostasis is dysregulated in many bacterial infections and also plays a crucial role in host defense against infection. Therefore, the knowledge of bacterial effectors in this dysregulation will also potentially provide means of countering bacterial strategies to affect host LD homeostasis. Therefore, the findings presented by Angara et al will provide conceptual and mechanistic advances to the specialized audience in infection and immunity. However, I can foresee that the findings have the potential for interesting tools to be developed for organelle-organelle contacts to be studied, provided there is more clarity on how the protein localizes to the ER/ER-LD contacts/LDs.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
This is a strong manuscript about the existence of proteins coded by intracellular parasites (here Coxiella) that have evolved to parasitise the lipid transport machinery of their hosts. This is a first in that the parasite protein acts at a distance from the parasite itself, manipulating two of the host organelles - and not acting at their site of contact with PVs. There is considerable research into one protein and its effect when expressed by itself.
Despite all the advances there are a couple of areas where the manuscript can be improved, and a few extra fairly straightforward experiments added about the amphipathic helix. Even though these are unlikely change the overall message, they would make the story more complete.
Major points
More details are required about the amphipathic helix. Check that the AH does target LDs by expression of the AH alone in a GFP chimera +/- oleate and then mutagenesis. Also show the AH in a helical wheel projection (eg by Heliquest) and say if it aligns with similar AHs in homologs (see my point below)
Fig 1B: In infected cells, do the affected LDs tend to be close to the PVs?
Also in Fig 1B: highlight small KDEL+ve ER rings around LDs here. Study whether LDs have these in infected cells without the confounder (?artefact) of EPF1 over-expression
Fig 2A the ER looks quite different here from Fig 1B, even at t0. Grossly the strands are spaced wider apart. In detail there are no rings around LDs. Can the authors explain this? Which morphology is common, especially in cells early in infection without co-expressed protein?
Fig 6 & Line 237: "As the N-terminal region of CbEPF1 is undefined": I suggest that the authors could do more here. At minimum change model to highlight the strong probability that the N term is a globular domain that functions at the LD ER interface. (What are three other unidentified LD proteins? I suggest omitting them).
Although the Alphafold prediction for EPF1 is low confidence only, in a few minutes of BLAST searching I found the homolog A0A1J8NR10_9COXI (also FFAT+ve) which has a moderately confident structural prediction for its N terminus. This model has a quite large internal hydrophobic cavity, indicating lipid transfer capability and function similar to known LTPs. This means that action as a "tether" possibly results from experiments with viral promoters (see minor point on terminology).
Minor:
Fig 2B: add more arrowheads/arrows to fit legend (says they are both multiple)
FFAT selectivity for MOSPD2: say if this fits the di Mattia or (as appears likely) it extends the known differences between VAPA/B and MOSPD2. Also say if VAPA is expected to behave as VAPB
Explain how "Mutations in the CbEPF1 FFAT motif(s) did not influence CbEPF1-GFP localization to either the host ER (Supplementary Fig. 1)". In F3mt this shows that EPF1 has a way to target ER other than FFAT/VAP. Discuss if that is via AH insertion in ER.
Also, the (admittedly low) level of ER targeting is possibly slightly reduced by F3mt, as shown by greater GFP in the nucleus in the single cells shown. If this is a feature of the whole field of cells, it implies that the FFATs normally work with the AHs to target EPF1 to the ER.
"clustering" LDs w F3mt: could this indicate dimer formation by CbEPF1? Note: to me it appears wrong to describe fig 4A as showing ER exclusion. LD proximities to each other dominate. It's not 100% clear that LDs cluster as their proximities are not universal: "LD-LD interactions" may be (very) weak.
Fig 5: can levels of EPF1 here be compared to those in cells undergoing natural infection(approximate comparison by qPCR better than nothing if no antibodies are available)? Fig 5a: would it be possible to increase the number of cells counted to attempt to make the reduced number of LD in F3mt significant?
Minor
Line 226: no sequence homology: misses the point- there is the common feature of an AH
Issue to be discussed, as probably too difficult to experiment on: when EPF1 is on the ER does it engage vap only weakly (implying a means to mask its motifs), since if the interaction is strong vap is then unable to bind other partners?
Line 245: "MOSPD2, a sole VAP that is known to localize on LD surfaces" (worth citing Zouiouich again here). Do the cells/tissues infected by Coxiella express MOSPD2?
Line 259/260: this "suggestion" about cholesterol should be toned down. It is a speculation that could be tested in future, but the data here do not suggest it.
'Tether' this word implies more than just bridging but also a role in the physical formation of the contact. Since EPF1 most likely has an LTP domain, it seems linguistically confusing to refer to it as a tether, especially since the experiments that physically later LD-ER contact involve probable over-expression.
Discuss whether it is 100% certain that EPF1 is in the host cytosol or whether some experiment(s) at a future date (proteomic/western blotting) will be needed to make that conclusion 100% secure.
Referees cross-commenting
COMMENT 1
I realise that both reviewer 1 and reviewer 3 have considered this MS carefully, but I think that their reviews could be improved in some respects. I will add two comments, one for each of the other reviews.
Reviewer 1. The review poses multiple questions to the authors suggesting that answering these questions experimentally would strengthen the paper. Some of the points seem to misunderstand what is the accepted standard for membrane cell biological research into membrane contact sites. While it might be that the authors can rebut these points, I think it is preferable to use Cross Commenting as an opportunity to address these issues beforehand.
Major Comment 1: CbEPF1 and ER-LD contact
Looking at endogenous proteins: I wondered about the same point, but I concluded that this is not likely to be possible in the scope of this submission. If it were possible then I guess the authors would have attempted it. Looking on Google Scholar I could find no example of an endogenous Coxiella proteins being tagged in the bacterial genome. So the only way to find the portion is via an antibody. Assuming the authors do not have one, I do not think we should ask for one at this stage in the publication process.
Electron microscopy: the reviewer is incorrect to say that this is necessary. It may be the gold standard, but it is a huge amount of extra work. Furthermore it is not at all necessary when the protein in question localises clearly to the interface between organelles identified by confocal microscopy.
Can a specific CbEPF1 domain be identified? Here a Amphipathic Helix has been identified, but the lack of dissection of that region by the authors explains this question by the reviewer, which is also shared by Reviewer 3. I agree with the implication that more should be done to dissect that.
Major Comment 2: CbEPF1 FFAT motifs and VAP binding
Are the two FFAT motifs redundant or synergistic? I would say that the authors have addressed that to a reasonable extent
CbEPF1 binding specificity towards a VAP/MOSPD2 Ditto
Major Comment 3: LD clustering
Since this is an effect of mutated protein only, I think that the 3 questions posed at the end here need only be addressed in Discussion.
Major Comment 4: CbEPF1-mediated increase in LD number and size
less LD upon expression of F1mt or F2mt, compared to WT: this seems wrong. The numbers are the same. The comment about IF images are unjustified as they have been quantified and do show a difference. I agree that the biological relevance is unclear, and that this might be addressed. That would require making a mutant Coxiella strain. While that would make a big different to this work, my feeling is that this is well over a year's work.I would be guided by the authors on that and I would not suggest it as required for this MS.
De novo LD production at the ER is unlikely: This statement is ill-considered as the FFAT motifs ARE required (Fig 5). Furthermore, in all systems ever reported de novo LD production takes place at the ER, so any alternative would be quite extraordinary.
Altogether, strengthening this aspect of the study: In my view, this area does not need more work and it would not be constructive to ask for more.
Major Comment 5: Functional relevance
assessing the phenotype of a Coxiella CbEPF1 mutant I agree that this would be good, but it mightn't be feasible within the confines of this one paper. In the various projects that have made transposon mutants of Coxiella, has a strain been made that affects EPF1? If not, then the authors should state this and discuss it as work for the future. The reviewers cannot expect any experiments!
Is VAP required for Coxiella intracellular growth/vacuole maturation? On the surface this suggestion seems to offer an experimental route to understanding EPF1. However, VAP binds to >100 cellular proteins, many relating to lipids traffic and a considerable number of these already lcoalised to lipids droplets (ORP2, MIGA2, VPS13A/C). It is therefore unlikely that such an experiment would be interpretable, and I recommend that this request be reconsidered.
Are LD formation induced upon infection? Are ER-LD contact increased upon infection? These are very reasonable ideas and the results would be interesting additions to this paper.
COMMENT 2 I have given one set of comments already. Here are my comments for Reviewer 3.
The review makes a few assumptions that I question. While it might be that the authors can rebut these assumptions, I think it is preferable to use Cross Commenting as an opportunity to address these issues beforehand.
Major Point 1: What is surprising is that the BFP-KDEL signal is also localizing to the LD surface: "Surprising" is misguided, as it seems to deny the probability that there is a class of proteins that sit at organelle interfaces binding to both partners simultaneously. Maybe the reviewer means "significant" here, in which case I would agree.
The authors must perform LD isolation the reviewer is incorrect to say that this must be done. It is a huge amount of extra work. Furthermore it is not at all necessary when the protein in question localises clearly to the structures, and its may not even work as the protein may need a reasonably high general concentration to avoid gradual dissociation (wit any re-association) during organelle purification.
what features of the protein enable its LD binding? Here an Amphipathic Helix has been identified, but the lack of dissection of that region by the authors explains this question by the reviewer, which is also shared by Reviewer 1. I agree with the implication that more should be done to dissect that.
Major Point 2: Quantitative image analysis:
Mander's Colocalization analyses with Costes correction are required No. The images in Figure 4 speak for themselves.
Please show the LD phenotype of untransfected, and CbEPF1-GFP transfected cells also This s a good idea.
provide a means to quantify the clustering of LDs Unnecessary. Not all findings need to be quantified.
Major Point 3:
Data depends largely on overexpression of the protein in uninfected cells. I agree
What is the localization of the protein in infected cells? I wondered about the same point, but I concluded that this is not likely to be possible in the scope of this submission. If it were possible then I guess the authors would have attempted it. Looking on Google Scholar I could find no example of an endogenous Coxiella proteins being tagged in the bacterial genome. So the only way to find the portion is via an antibody. Assuming the authors do not have one, I do not think we should ask for one at this stage in the publication process.
What happens to ER-LD contacts upon infection with C. burnetii? This is a very valid question, and answering it would not only strengthen the manuscript but should be achievable in 1-3 months.
Significance
This work takes a reasonably big step towards uncovering how parasites have mimicked the molecular machinery of contact sites, here in the context of ER-LD interactions and tantalizingly suggestive of lipid transfer at that contact site (although hard to get strong evidence for that at this stage). This provides yet more evidence for the conservation and overall importance to cells of lipid transfer at contact sites, as well as reminding us of the ability of parasites to attack every aspect of cell function.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary:
The authors report a Coxiella burnetii effector protein, CbEPF1, which associate with lipid droplets (LD) at points of contact with the endoplasmic reticulum (ER). The presence of two FFAT motifs in CbEPF1 mediates CbEPF1 interaction with the ER protein VAP, LD-ER interaction, and an increase in LD size. Based on these results the authors put forward a model by which translocation of CbEPF1 into the host cell cytosol results in regulation of host cell lipid metabolism via the formation of ER-LD contact. The study relies heavily on fluorescence microscopy of ectopic (over)expression of CbEPF1 in eukaryotic cells.
Major comments:
CbEPF1 and ER-LD contact:
The immunofluorescence analysis of cell ectopically expressing CbEPF1-GFP provides convincing evidence that CbEPF1-GFP associates with LD and that CbEPF1-positive LD are positive for ER markers such as BFP-KDEL and VAPB (Fig 1&2). However, the study would benefit from looking at endogenous proteins to rule out any potential overexpression artefacts. Does endogenous VAP localize to CbEPF1-positive LD? Does CbEPF1 expressed from Coxiella (endogenous protein, or at least a tagged protein expressed from the bacteria) localize to LD? While the immunofluorescence images are of very high quality and convincing, electron microscopy is necessary to ascertain that membrane contacts between LD and the ER are induced upon CbEPF1 overexpression. CbEPF1 interaction with the ER is linked to the FFAT motifs (see below); what is known about CbEPF1 association with LD? Can a specific CbEPF1 domain be identified? In other words, does CbEPF1 contains 2 distinct membrane targeting domains that confer specificity to each of the contacting organelle (ER and LD in the present case) and thereby resemble other contact site localizing proteins.
CbEPF1 FFAT motifs and VAP binding:
The similarity of the sequence of the CbEPF1 FFAT motifs to the canonical sequence (Fig 1A), combined with data with alanine substitution mutation of the essential residue in position 2 of the FFAT motifs (Fig 3, 4), strongly support that CbEPF1 contains 2 functional FFAT motifs that confer VAP binding. FFAT motifs can mediate binding to VAPA, VAPB, and/or MOSPD2. Moreover, in addition to forming homodimer, VAPA, VAPB, and MOSPD2 can form heterodimers. What is the rationale for using VAPB (Fig 3CDE)? Do VAPA and/or MOSPD2 also yield positive results using the assays performed in Fig 3CDE, or is the CbEPF1-VAP interaction specific to VAPB? In the same line, in Fig 3E, is it possible that the CbEPF1-MOSPD2 is indirect and due to VAP- MOSPD2 interaction? Regarding the two FFAT motifs: are the two FFAT motifs redundant or synergistic? Although the data is not quantified, Figure 3E suggest a synergistic effect for VAP binding, however most IF data suggest redundancy. On the other end, the second FFAT motif seems necessary for MOSPD2 biding. Overall, clarifying CbEPF1 binding specificity towards a VAP/MOSPD2 and the role of each FFAT motif in this process could elevate the study by providing mechanistic insights into the hijacking of ER-LD contact sites by Coxiella and comparing and contrasting with the formation of ER-LD in naïve cells and/or the hijacking of VAP-dependent contact by other microbial pathogens.
CbEPF1-mediated LD clustering in the absence of VAP binding
A CbEPF1 FFAT motif mutant (F3mt) associates with LD that do not associate with the ER marker KDEL, and causes LD clustering (Fig 4). The authors speculate that the lack of LD-ER interaction results in LD-LD interaction, potentially via interaction of unidentified protein(s) on the LD surface. What is the biological relevance of the LD clustering phenotype? What is known about the role of LD clustering vs ER-LD contact, in the context of lipid metabolism? Could mechanistic characterization of this phenomenon provide insights in LD biology and/or the role of CbEPF1/ER-LD contacts in the context of Coxiella infection?
CbEPF1-mediated increase in LD number and size
CbEPF1-GFP overexpression result in an increase in the number of LD per cell independently of the FFAT motifs (Fig 5A). CbEPF1-GFP overexpression also result in an increase in LD diameter; however, this phenotype is dependent on wild-type FFAT motifs (Fig 5B). Quantification and corresponding statistical analysis support these conclusions. However, the representative images are not necessary in line with the bar graphs. For example, there appear to be less LD upon expression of F1mt or F2mt, compared to WT. Additionally, the increase in size is moderate and hard to appreciate in the IF images. It is also unclear, if/how an increase in LD number and/or size is biologically relevant in the context of Coxiella infection. Regarding potential mechanism(s), it is also unclear how CbEPF1 is promoting an increase in LD number. De novo LD production at the ER is unlikely given that the FFAT motifs, and therefore ER association, are not required. What would an alternative mechanism be, and can it be experimentally tested? Regarding the increase in LD size, the author suggest that the phenotype could be due to impaired lipid transfer from the ER to LD. This is an interesting model. Do the authors envision that CbEPF1 is a lipid transfer protein and/or act on ER-LD associated lipid transfer? Can either be experimentally tested? Altogether, strengthening this aspect of the study would clarify the proposed model and significantly increase the impact of the study.
Functional relevance:
One aspect that is not addressed in the study, is what are the benefit(s), if any, of CbEPF1 translocation into the host cytosol and targeting to ER-LD contact? This could be addressed by assessing the phenotype of a Coxiella CbEPF1 mutant? On the flip side, is VAP required for Coxiella intracellular growth/vacuole maturation? Another avenue would be to investigate if CbEPF1 affects the lipid composition of the CCV. The present study suggest that LD may be important for Coxiella intracellular life cycle. Are LD formation induced upon infection? Are ER-LD contact increased upon infection? One may also expect that inhibition of LD formation would affect bacterial replication and that stimulation may promote growth/vacuole maturation? Any experiments addressing the biological relevance of the present findings in the context of Coxiella infection would tremendously increase the impact of the study.
Minor comments:
None. The manuscript is well written and easy to follow.
Significance
Inter-organelle communication through the formation of membrane contact between two apposing organelles is critical to maintain host cell homeostasis via the transfer of small molecules such as lipid and ions. Bacterial and viral pathogens have been shown to manipulate proteins that localize to cellular membrane contact and to promote membrane contact between their intracellular vacuole and the ER. Both viral and bacterial proteins that contains FFAT motifs and interact with VAP have been described in the context of tethering of the ER to the membrane compartment in which the pathogen replicate. The present study stands out by the characterization of a FFAT motifs-containing bacterial effector protein that targets cellular contact, ER-LD more specifically. The significance is 2-fold. It expands the list of FFAT-motif containing proteins in pathogens, reinforcing the idea that VAP/membrane contact may be a universal mechanism of host-pathogen interaction, which will be of interest to those studying host-microbe interaction in basic or translational research settings. The study also has the potential to move forward research on LD biology and LD-ER contact, which will be of interest to cell biologists in general, and to the evergrowing membrane contact community, specifically.
-
-
www.biorxiv.org www.biorxiv.org
-
Transparent Peer Review
Download the complete Review Process [PDF] including:
- reviews
- authors' reply
- editorial decisions
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
We thank the reviewers for their valuable comments, which definitely make our story stronger.
2. Description of the planned revisions
Reviewer 1
Comments:
No data are shown from the genome-wide screening approach, including the common regulators of KRAS and HRAS. Information about how imaging data were processed and analysed is missing. A final table of 8 selected factors with phosphatase activity is presented without providing further insight about the selection criteria and other factors.
This information will be included in the revised manuscript. In the subsequent characterization via image-based quantification of GFP-KRAS membrane localization, a Manders´ coefficient was calculated. A respective chapter in the methods section on how this was done is missing.
This information will be provided in the revised manuscript. I would be happy to see the following analyses to strengthen the dataset:
- Reconstitution experiments and further validation to show that it is dependent on the enzymatic activity of MTMRs.
MTMR3 knockdown (KD) cells will be rescued with wildtype (WT) MTMR3 or the phosphatase mutant MTMR3 (C413S, PMID: 11676921). MTMR4 KD cells will be rescued with WT MTMR4 or the phosphatase mutant MTMR4 (C407S, PMID: 20736309). In these cells, the PM localization of KRAS and PtdSer will be examined by confocal and electron microscopy. - Additive effect upon depletion of multiple MTMRs? Are they functionally co-operative?
MTMR3 and 4 KD cells will be rescued with WT MTMR4 and 3, respectively, and the PM localization of KRAS and PtdSer will be examined by confocal and electron microscopy. - Signalling analysis is very limited (Fig. 5). Do the authors detect any defects in K-RAS driven downstream signaling in these cells upon depletion of MTMRs.
Human pancreatic ductal adenocarcinoma (PDAC) cell lines that harbor oncogenic mutant KRAS and their growth is KRAS signaling-dependent (MiaPaCa2 and AsPC1), and PDAC cell line harboring WT KRAS and their growth is KRAS signaling-independent (BxPC3) will be infected with lentivirus expressing shRNAs against MTMR 2, 3, 4 or 7. Their growth (proliferation assay) and KRAS signaling (e.g. phosphorylated ERK and Akt by immunoblot) will be measure. Reviewer 2
Major comments
The unbiased siRNA screen used to identify proteins that impact KRAS membrane localization was a very nice approach to identify MTMR proteins. Although there is a clear phenotype of KRAS mislocalization associated with knockdown of the various MTMR proteins, the data provided does not prove a causational role for the MTMR proteins in maintaining PtdSer content, nor KRAS localization, at the PM. The current data does not provide a mechanism by which MTMR proteins are influencing this process, but rather speculates using existing literature that it is the loss in MTMR 3-phosphotase activity that leads to decreased PtdSer in the membrane. There is a series of conversions and exchanges that act upon PI3P (the substrate of MTMR proteins) and PI to generate PtdSer in the PM; thus, it is a dynamic process that is influenced by a variety of different proteins and transporters [3, 4, 5, 6]. To prove their single-protein-driven hypothesis, the authors should clone and express a mutant MTMR protein construct that contains an inactive phosphatase catalytic domain, to prove that it is indeed MTMR's generation of PI (which is further converted into PI4P) in the membrane that is responsible for maintaining PtdSer content and KRAS localization. Without this, there is not enough evidence to support this claim.
MTMR3 knockdown (KD) cells will be rescued with wildtype (WT) MTMR3 or the phosphatase mutant MTMR3 (C413S, PMID: 11676921). MTMR4 KD cells will be rescued with WT MTMR4 or the phosphatase mutant MTMR4 (C407S, PMID: 20736309). In these cells, the PM localization of KRAS and PtdSer will be examined by confocal and electron microscopy. In addition, the authors speculate that ORP5 is a critical intermediate in this process, and that the loss in PI4P/ORP5 at the PM following MTMR knockdown is responsible for the decrease in PtdSer at the PM. The authors should knockdown ORP5 in MTMR-wildtype cells, since it is downstream of their proposed mechanism, and see whether this leads to comparable reductions in PtdSer levels and KRAS mislocalization at the PM. This would confirm ORP5 as having a major role in this setting and would support the initial mechanistic hypothesis. These experiments are imperative to forming an appropriate conclusion, especially since some of their current data contradicts their mechanistic hypothesis: the authors identify a decrease in whole cell PtdSer content, not just PM PtdSer content, when MTMR proteins are knocked down. Based on this result, one would predict that a secondary or supporting mechanism must exist that contributes to a reduction in whole cell PtdSer content, which likely contributes to its loss at the PM as well. The authors describe in line 360 how "previous work has shown that PM PI4P depletion indirectly blocks PtdSer synthase 1 and 2 activities," to explain this reduction in total cell levels of PtdSer. The authors should look at PtdSer synthase 1 and 2 activities in the presence of MTMR knockdown, as the loss in PtdSer at the PM may rely more heavily on synthase activity than ORP-dependent transfer of PtdSer.
Investigating the PM localization of KRAS and PtdSer after silencing ORP5 in MTMR WT mammalian cell lines has been published (PMID: 31451509 and 34903667). In these studies, silencing ORP5 1) reduces the levels of PtdSer and KRAS from the plasma membrane (PM), 2) reduces KRAS signal output, 3) blocks the growth of KRAS-dependent PDAC in vitro and in vivo. These studies have been appropriately cited in our manuscript in lines 82 and 277. Although the c. Elegans model that was used to investigate downstream let-60 (RAS ortholog) activity through a multi-vulva phenotype is quite intriguing, it is more critical to assess downstream RAS pathway activation, especially in the human colorectal adenocarcinoma or the human mammary gland ductal carcinoma cell lines. Not only would this line of questioning provide a higher significance and increase the clinical applicability of these findings, but it is also crucial to support the author's claim that MTMR knockdown can influence mutant KRAS activity. Although small changes in KRAS localization to the PM can have significant effects on downstream signaling, these effects need to be measured and confirmed in this setting. The authors should perform western blots to assess the activation of both the PI3K and MAPK pathway in the MTMR knockdown cell lines.
Human pancreatic ductal adenocarcinoma (PDAC) cell lines that harbor oncogenic mutant KRAS and their growth is KRAS signaling-dependent (MiaPaCa2 and AsPC1), and PDAC cell line harboring WT KRAS and their growth is KRAS signaling-independent (BxPC3) will be infected with lentivirus expressing shRNAs against MTMR 2, 3, 4 or 7. Their growth (proliferation assay) and KRAS signaling (e.g. phosphorylated ERK and Akt by immunoblot) will be measure. In addition to this, it might be important to know whether there are any changes in the levels of the KRAS protein itself, as recycling/transport pathways may be impacted by its lack of recruitment to the plasma membrane.
Total KRAS protein expression will be measured in MTMR KD cell lines. Finally, the authors show that proliferation is inhibited by MTMR knockdown as a readout of RAS activity. The authors should also assess the levels of cell death, as the inhibition of mutant KRAS in cancer cells would likely lead to cell death. The authors do not describe why reducing any one of the MTMR proteins alone is sufficient to deplete the PM of PtdSer. This sort of discussion is important for understanding compensatory or regulatory mechanisms in place between the MTMR proteins, as this may influence PtdSer levels at the PM. For example, it has been shown that MTMR2 can stabilize MTMR13 on membranes. Do the levels, stability, or localization of the other MTMR proteins change when one specific MTMR is knocked down? Is this why we see an effect on PtdSer in any one of the knockdowns? The authors should at the very least provide western blots for each of the MTMR proteins discussed in the presence of each individual MTMR knockdown.
MTMR3 knockdown (KD) cells will be rescued with WT MTMR3 or the phosphatase mutant MTMR3 (C413S, PMID: 11676921). MTMR4 KD cells will be rescued with WT MTMR4 or the phosphatase mutant MTMR4 (C407S, PMID: 20736309). In these cells, the PM localization of KRAS and PtdSer will be examined by confocal and electron microscopy. In addition, we will measure endogenous MTMR 2/3/4/7 proteins levels in the presence of each individual MTMR KD by immunoblotting. In addition to the above experiments, the MTMR hairpins should be expressed in a secondary or tertiary cell line to prove that these events are not specific to the current model used. Since their current human mammary gland ductal carcinoma cell line overexpresses a mutant KRAS-GFP construct, perhaps doing similar experiments in a cancer cell line that already expresses an endogenous mutant KRAS might provide a better model.
Human pancreatic ductal adenocarcinoma (PDAC) cell lines that harbor oncogenic mutant KRAS and their growth is KRAS signaling-dependent (MiaPaCa2 and AsPC1), and PDAC cell line harboring WT KRAS and their growth is KRAS signaling-independent (BxPC3) will be infected with lentivirus expressing shRNAs against MTMR 2, 3, 4 or 7. Their growth (proliferation assay) and KRAS signaling (e.g. phosphorylated ERK and Akt by immunoblot) will be measure. Although this protein would not include a GFP-tag, other ways of visualizing its localization at the PM (such as immunofluorescent staining) could be used to confirm its localization there.
The anti-KRAS antibody for IF has not been reported to my knowledge. In addition, the effects on downstream RAS signaling could be measured through western blot of PI3K and MAPK pathways.
Human pancreatic ductal adenocarcinoma (PDAC) cell lines that harbor oncogenic mutant KRAS and their growth is KRAS signaling-dependent (MiaPaCa2 and AsPC1), and PDAC cell line harboring WT KRAS and their growth is KRAS signaling-independent (BxPC3) will be infected with lentivirus expressing shRNAs against MTMR 2, 3, 4 or 7. Their growth (proliferation assay) and KRAS signaling (e.g. phosphorylated ERK and Akt by immunoblot) will be measure. Supplemental Figure 4 is incorrectly referred to in the text as Supplemental Figure 3 (line 257-258). The text reads, "Confocal microscopy further demonstrates that HRASG12V cellular localization is not disrupted after silencing MTMR 2/3/4/7 (Fig. S3)" but Figure S3 is an EM image of PM basal sheets from T47D cells expressing GFP-KRASG12V. Supplemental Figure 4 shows that mutant HRAS is unaffected by the various MTMR knockdowns.
They will be labeled correctly in the revised manuscript. Since the authors show decreased proliferation in mutant KRAS cells following MTMR knockdown, the authors should also investigate any changes to proliferation rates in mutant HRAS cell lines following MTMR knockdown. This data is necessary to prove that MTMR-driven changes in downstream RAS signaling are specific to mutant KRAS and not mutant HRAS.
Cell proliferation assay will be performed using MTMR 2/3/4/7-silenced T47D cell lines stably expressing oncogenic mutant HRAS (HRASG12V) to address this questions. It may also be important for the authors to also show any effects on wildtype RAS localization to the PM when MTMR-2,-3,-4, and -7 are knocked down, to show whether this is a oncoprotein-specific event.
Cells expressing the truncated mutant KRAS, which contains the minimal membrane anchor and does not have G-domain will be infected with lentivirus expressing shRNA against MTMR 2/3/4/7, and their localization will be examined. The representative images chosen for Figure 4 diminish the reliability of the data, as it is difficult to see a visible change in the PI3P probe between the control and MTMR knockdown cells in these images. Since the authors rely on the Mander's coefficient and the number of gold particles throughout much of the paper, having the same conclusion quantitatively but not qualitatively for these assays is confusing. Perhaps the authors should elaborate on whether MTMR knockdown has a stronger effect on PtSer and KRAS PM presence than PI3P PM presence.
We will include the discussion in the revised manuscript. They should also describe their method for identifying early endosomes, since they switch back and forth between describing the content of the PM and of early endosomes, such as in Figure 1 and Figure 4.
We will include the information in the revised manuscript. Minor comments:
An additional experiment that may add another layer of clinical applicability would be the use of an MTMR inhibitor in this cell line, to see whether similar effects can be achieved pharmacologically [7]. This would provoke other researchers to investigate MTMR inhibitors in vitro and in vivo to assess the effect on mutant KRAS cancers.
- This is an important point, but while vanadate, a general phospho-tyrosine phosphatase (PTP) inhibitor, has been reported to inhibit myotubulin, a family member of MTMR (PMID: 8995372 and 1943774), there are no commercially available MTMR-specific inhibitors. Using vanadate to inhibit MTMR proteins will produce non-specific effects by blocking other PTPs. The inclusion of cell lines that express KRAS proteins of different mutational statuses would be extremely interesting, as KRAS' orientation within the plasma membrane has been shown to be altered by these mutations. This fact should potentially be considered when choosing a secondary or tertiary cell line to do additional experiments in, but it is not necessary for the authors to elaborate on how MTMR proteins may impact different KRAS mutants for the scope of this project.
For the aforementioned experiments using human KRAS-dependent and -independent PDAC cell lines, we will use MiaPaCa2 (KRASG12C) and AsPC1 (KRASG12D). Reviewer #3
*Major comments: *
One of the two main manuscript claims indicates that KRAS12V "function" is impaired upon MTMR knockdown. While this is an obvious phenotype expected by mislocalizing KRAS from the inner PM it is not sufficiently demonstrated in the current version of the manuscript. Western blots of at least MAPK and PI3K signalling following MTMR knockdown in KRAS-dependent cell lines should be included. In addition to the T47D cells used in the manuscript, it would be ideal to include a KRAS-mutant cell line from tumour types where KRAS mutations are more frequent that in breast.
- Human pancreatic ductal adenocarcinoma (PDAC) cell lines that harbor oncogenic mutant KRAS and their growth is KRAS signaling-dependent (MiaPaCa2 and AsPC1), and PDAC cell line harboring WT KRAS and their growth is KRAS signaling-independent (BxPC3) will be infected with lentivirus expressing shRNAs against MTMR 2, 3, 4 or 7. Their growth (proliferation assay) and KRAS signaling (e.g. phosphorylated ERK and Akt by immunoblot) will be measure. Since the MTMR dependent phenotypes are mutant-KRAS specific it would be interesting to study the resulting phenotypes in HRAS-mutant cell line.
Cell proliferation assay will be performed using MTMR 2/3/4/7-silenced T47D cell lines stably expressing oncogenic mutant HRAS (HRASG12V) to address these questions.
**Referee cross-commenting**
After reading the reviews of my colleagues I think there is a clear agreement on the need to further substantiate that KRAS membrane mis-localization is indeed affecting oncogenic output. The use of other KRAS addicted and non-addicted models would further enhance this analysis.
Likewise, the other two reviewers request experimental evidences to validate the role of MTMR enzymatic activity in the process. This is a pertinent request that I failed to put forward. Suggestions include the use of reconstitution experiments catalytically dead mutants. Also, the use of MTMR small molecule inhibitors is proposed. If those exist with sufficient specificity this would indeed be appropriate to perform.
Experiments addressing these comments have been described above.
3. Description of the revisions that have already been incorporated in the transferred manuscript
N/A
- *
4. Description of analyses that authors prefer not to carry out
*Please include a point-by-point response explaining why some of the requested data or additional analyses might not be necessary or cannot be provided within the scope of a revision. *
Reviewer 2
R2 suggests to investigate PtdSer synthase 1 and 2 activities in presence of MTMR knockdown, as the loss in PtdSer at the PM may rely more heavily on synthase activity than ORP-dependent transfer of PtdSer.
Although it is intriguing to examine the effect of MTMR loss on the activities of PtdSer synthase 1 and 2, our lab does not have resources/techniques to carry out the experiment. * *
The results of this paper rely heavily on one experimental technique, which is calculating a Mander's coefficient and counting the co-localization of the probe of interest with the CellMask stain of the plasma membrane. How this coefficient is derived is explained in appropriate detail in the methods section of this manuscript; however, a secondary route of identifying these changes in membrane constituents would greatly enhance the paper's conclusions. This would eliminate any doubt surrounding the accuracy of the technique, since so much of the data relies on one experimental output.
In addition to Manders' coefficient for examining the colocalization of KRAS and LactC2 (the PtdSer probe) to propose KRAS/PS redistribution to endomembranes after MTMR loss. To complement this, we also performed quantitative EM to demonstrate the PM depletion of KRAS and PtdSer from the inner PM leaflet. We believe these two techniques would appropriate to investigate KRAS/PtdSer PM depletion and cellular re-distribution. * *
Reviewer 3
To further support the conclusions, oncogenic signalling should be studied in the C.elegans model by immunofluorescence of immunohistochemistry. Furthermore, although not strictly required to support the author's claims, it would be interesting to elucidate whether the inhibition of the multivulva phenotype upon MTMR knockdown in vivo results as a consequence of cell death.
Our collaborator for C. elegans study does not have resources to carry out the proposed IF and IHC experiment. Instead, we will measure KRAS signaling (e.g. phosphorylated ERK and Akt by immunoblot) and the growth of KRAS-dependent PDAC after MTMR loss. These experiments would be more clinically and physiologically relevant.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
In recent years, various genetic and pharmacological studies have clearly demonstrated a causal relationship between phosphatidylserine (PtdSer) distribution at the plasma membrane (PM) and KRAS clustering at the inner leaflet. In this manuscript, Henkels and colleagues have performed a high-content genome wide siRNA screen in search of hits that upon knockdown would result in membrane mislocalization of an exogenous KRAS12V-GFP fusion while not affecting HRASV12 membrane distribution. The results identified 4 of the 14 human members of the myotubularin-related (MTMR) protein family. Individual knockdown of MTMR2, 3, 4 and 7 resulted in specific relocalization of KRAS12V (and not of HRAS12V) from the cell membrane to endomembranes assessed both by confocal and electron microscopy. The MTMRs display enzymatic activity (3-phosphatase activity towards PI3P and PI(3,5)P2) controlling membrane trafficking. Given the known dependency of KRAS PM clustering on PtdSer, the authors showed that KRAS12V mislocalization upon MTMR depletion is due to an overall reduction of PtdSer accompanied by depletion of inner PM PtdSer. Using lipid-specific probes the authors went on to demonstrate that this phenotype occurs as a combined reduction of inner PM PI4P levels and concomitant elevation of PM PI3P. As expected, KRAS12V inner PM mislocalization affected oncogenic function. This is shown by a 50% reduction in cell proliferation of KRAS-transformed T47D (human mammary gland ductal carcinoma) cell line. More convincingly, si-RNA mediated depletion of the C.elegans MTMR3 and 7 orthologs potently reduces a KRAS-dependent multivulva phenotype.
Overall, I find that the experimental part of the manuscript is satisfactory. Yet, the overall conclusion is that inactivation of a subset of MTMR phosphatases reduces KRAS PM localization and KRAS signalling. While changes of KRAS inner PM are well documented, there is not a single experiment demonstrating that this results in reduced oncogenic output. This needs to be further documented if a mention to KRAS function is included in the title.
Major comments:
- One of the two main manuscript claims indicates that KRAS12V "function" is impaired upon MTMR knockdown. While this is an obvious phenotype expected by mislocalizing KRAS from the inner PM it is not sufficiently demonstrated in the current version of the manuscript. Western blots of at least MAPK and PI3K signalling following MTMR knockdown in KRAS-dependent cell lines should be included. In addition to the T47D cells used in the manuscript, it would be ideal to include a KRAS-mutant cell line from tumour types where KRAS mutations are more frequent that in breast.
- Since the MTMR dependent phenotypes are mutant-KRAS specific it would be interesting to study the resulting phenotypes in HRAS-mutant cell line.
- To further support the conclusions, oncogenic signalling should be studied in the C.elegans model by immunofluorescence of immunohistochemistry. Furthermore, although not strictly required to support the author's claims, it would be interesting to elucidate whether the inhibition of the multivulva phenotype upon MTMR knockdown in vivo results as a consequence of cell death.
Referee cross-commenting
After reading the reviews of my colleagues I think there is a clear agreement on the need to further substantiate that KRAS membrane mis-localization is indeed affecting oncogenic output. The use of other KRAS addicted and non-addicted models would further enhance this analysis. Likewise, the other two reviewers request experimental evidences to validate the role of MTMR enzymatic activity in the process. This is a pertinent request that I failed to put forward. Suggestions include the use of reconstitution experiments catalytically dead mutants. Also, the use of MTMR small molecule inhibitors is proposed. If those exist with sufficient specificity this would indeed be appropriate to perform.
Significance
In spite of its importance for oncogenic function, KRAS cellular trafficking remains one of the least studied processes. As such, reports like the current work are important to increase our biological knowledge. Furthermore, this increased biological understanding could identify vulnerabilities with future therapeutic potential.
It is known, mainly from previous work of one of the co-authors (John Hancock), that a PtdSer interplay with oxysterol-binding protein related proteins ORP5 and 8 regulate KRAS membrane distribution. The current study describes a further layer of control depending on MTMR phosphatases. In my opinion the cellular phenotypes are properly addressed, but not the phenotypic consequences on KRAS-signalling.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Summary:
Henkels et al. propose the role of myotubularin-related proteins in promoting KRAS4B localization to the plasma membrane. Their data shows that shRNA-mediated knockdown of myotubularin-related proteins -2, -3, -4, or -7 led to measurable changes in RAS localization and in plasma membrane (PM) content. More specifically, knockdown of any one of these MTMR proteins led to a decrease in PI4P levels in the PM, an increase in PI3P content in the PM, a decrease in phosphatidyl serine (PtdSer) in the PM/whole cell, and a decrease in mutant KRAS localization to the PM. Their data also shows a decreased presence of ORP5 at the PM, a protein which is responsible for the exchange of PI4P in the plasma membrane for PtdSer in the endoplasmic reticulum. These results are somewhat predictable and are supported by the existing literature, as MTMR proteins are known to exhibit 3-phosphotase activity towards PI3P to generate PI (a precursor to PI4P), PI4P is known to recruit ORP5, and ORP5 is known to contribute to PtdSer content in the membrane [1, 2]. Regardless, the authors find that the individual knockdown of MTMR proteins is sufficient to cause measurable changes in PM content and mislocalization of mutant KRAS4B. Thus, despite the fact that many proteins are involved in regulating PM content, such as PI4KA, PtdSer synthase 1 and 2, Nir2/3, and PITPs, Henkels et al. speculate that MTMR proteins are the primary regulators of PtdSer PM levels [3, 4, 5, 6]. The authors propose that the loss of function in any one of these MTMR proteins alone is sufficient to cause significant changes in PM content through an ORP5-dependent process, and that this ultimately leads to a decrease in mutant KRAS signaling.
Major comments:
The unbiased siRNA screen used to identify proteins that impact KRAS membrane localization was a very nice approach to identify MTMR proteins. Although there is a clear phenotype of KRAS mislocalization associated with knockdown of the various MTMR proteins, the data provided does not prove a causational role for the MTMR proteins in maintaining PtdSer content, nor KRAS localization, at the PM. The current data does not provide a mechanism by which MTMR proteins are influencing this process, but rather speculates using existing literature that it is the loss in MTMR 3-phosphotase activity that leads to decreased PtdSer in the membrane. There is a series of conversions and exchanges that act upon PI3P (the substrate of MTMR proteins) and PI to generate PtdSer in the PM; thus, it is a dynamic process that is influenced by a variety of different proteins and transporters [3, 4, 5, 6]. To prove their single-protein-driven hypothesis, the authors should clone and express a mutant MTMR protein construct that contains an inactive phosphatase catalytic domain, to prove that it is indeed MTMR's generation of PI (which is further converted into PI4P) in the membrane that is responsible for maintaining PtdSer content and KRAS localization. Without this, there is not enough evidence to support this claim. In addition, the authors speculate that ORP5 is a critical intermediate in this process, and that the loss in PI4P/ORP5 at the PM following MTMR knockdown is responsible for the decrease in PtdSer at the PM. The authors should knockdown ORP5 in MTMR-wildtype cells, since it is downstream of their proposed mechanism, and see whether this leads to comparable reductions in PtdSer levels and KRAS mislocalization at the PM. This would confirm ORP5 as having a major role in this setting and would support the initial mechanistic hypothesis. These experiments are imperative to forming an appropriate conclusion, especially since some of their current data contradicts their mechanistic hypothesis: the authors identify a decrease in whole cell PtdSer content, not just PM PtdSer content, when MTMR proteins are knocked down. Based on this result, one would predict that a secondary or supporting mechanism must exist that contributes to a reduction in whole cell PtdSer content, which likely contributes to its loss at the PM as well. The authors describe in line 360 how "previous work has shown that PM PI4P depletion indirectly blocks PtdSer synthase 1 and 2 activities," to explain this reduction in total cell levels of PtdSer. The authors should look at PtdSer synthase 1 and 2 activities in the presence of MTMR knockdown, as the loss in PtdSer at the PM may rely more heavily on synthase activity than ORP-dependent transfer of PtdSer. Although the c. Elegans model that was used to investigate downstream let-60 (RAS ortholog) activity through a multi-vulva phenotype is quite intriguing, it is more critical to assess downstream RAS pathway activation, especially in the human colorectal adenocarcinoma or the human mammary gland ductal carcinoma cell lines. Not only would this line of questioning provide a higher significance and increase the clinical applicability of these findings, but it is also crucial to support the author's claim that MTMR knockdown can influence mutant KRAS activity. Although small changes in KRAS localization to the PM can have significant effects on downstream signaling, these effects need to be measured and confirmed in this setting. The authors should perform western blots to assess the activation of both the PI3K and MAPK pathway in the MTMR knockdown cell lines. In addition to this, it might be important to know whether there are any changes in the levels of the KRAS protein itself, as recycling/transport pathways may be impacted by its lack of recruitment to the plasma membrane. Finally, the authors show that proliferation is inhibited by MTMR knockdown as a readout of RAS activity. The authors should also assess the levels of cell death, as the inhibition of mutant KRAS in cancer cells would likely lead to cell death. The authors do not describe why reducing any one of the MTMR proteins alone is sufficient to deplete the PM of PtdSer. This sort of discussion is important for understanding compensatory or regulatory mechanisms in place between the MTMR proteins, as this may influence PtdSer levels at the PM. For example, it has been shown that MTMR2 can stabilize MTMR13 on membranes. Do the levels, stability, or localization of the other MTMR proteins change when one specific MTMR is knocked down? Is this why we see an effect on PtdSer in any one of the knockdowns? The authors should at the very least provide western blots for each of the MTMR proteins discussed in the presence of each individual MTMR knockdown.<br /> In addition to the above experiments, the MTMR hairpins should be expressed in a secondary or tertiary cell line to prove that these events are not specific to the current model used. Since their current human mammary gland ductal carcinoma cell line overexpresses a mutant KRAS-GFP construct, perhaps doing similar experiments in a cancer cell line that already expresses an endogenous mutant KRAS might provide a better model. Although this protein would not include a GFP-tag, other ways of visualizing its localization at the PM (such as immunofluorescent staining) could be used to confirm its localization there. In addition, the effects on downstream RAS signaling could be measured through western blot of PI3K and MAPK pathways. Supplemental Figure 4 is incorrectly referred to in the text as Supplemental Figure 3 (line 257-258). The text reads, "Confocal microscopy further demonstrates that HRASG12V cellular localization is not disrupted after silencing MTMR 2/3/4/7 (Fig. S3)" but Figure S3 is an EM image of PM basal sheets from T47D cells expressing GFP-KRASG12V. Supplemental Figure 4 shows that mutant HRAS is unaffected by the various MTMR knockdowns. Since the authors show decreased proliferation in mutant KRAS cells following MTMR knockdown, the authors should also investigate any changes to proliferation rates in mutant HRAS cell lines following MTMR knockdown. This data is necessary to prove that MTMR-driven changes in downstream RAS signaling are specific to mutant KRAS and not mutant HRAS. It may also be important for the authors to also show any effects on wildtype RAS localization to the PM when MTMR-2,-3,-4, and -7 are knocked down, to show whether this is a oncoprotein-specific event. <br /> The representative images chosen for Figure 4 diminish the reliability of the data, as it is difficult to see a visible change in the PI3P probe between the control and MTMR knockdown cells in these images. Since the authors rely on the Mander's coefficient and the number of gold particles throughout much of the paper, having the same conclusion quantitatively but not qualitatively for these assays is confusing. Perhaps the authors should elaborate on whether MTMR knockdown has a stronger effect on PtSer and KRAS PM presence than PI3P PM presence. They should also describe their method for identifying early endosomes, since they switch back and forth between describing the content of the PM and of early endosomes, such as in Figure 1 and Figure 4.
Minor comments:
An additional experiment that may add another layer of clinical applicability would be the use of an MTMR inhibitor in this cell line, to see whether similar effects can be achieved pharmacologically [7]. This would provoke other researchers to investigate MTMR inhibitors in vitro and in vivo to assess the effect on mutant KRAS cancers.
The inclusion of cell lines that express KRAS proteins of different mutational statuses would be extremely interesting, as KRAS' orientation within the plasma membrane has been shown to be altered by these mutations. This fact should potentially be considered when choosing a secondary or tertiary cell line to do additional experiments in, but it is not necessary for the authors to elaborate on how MTMR proteins may impact different KRAS mutants for the scope of this project.
The results of this paper rely heavily on one experimental technique, which is calculating a Mander's coefficient and counting the co-localization of the probe of interest with the CellMask stain of the plasma membrane. How this coefficient is derived is explained in appropriate detail in the methods section of this manuscript; however, a secondary route of identifying these changes in membrane constituents would greatly enhance the paper's conclusions. This would eliminate any doubt surrounding the accuracy of the technique, since so much of the data relies on one experimental output.
References
- Clague MJ, Lorenzo O. The myotubularin family of lipid phosphatases. Traffic. (12):1063-9 (2005).
- Chung J, Torta F, Masai K, Lucast L, Czapla H, Tanner LB, Narayanaswamy P, Wenk MR, Nakatsu F, De Camilli P. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science. 349(6246):428-32 (2015).
- Kim YJ, Guzman-Hernandez ML, Wisniewski E, Balla T. Phosphatidylinositol-Phosphatidic Acid Exchange by Nir2 at ER-PM Contact Sites Maintains Phosphoinositide Signaling Competence. Dev Cell 33: 549-561 (2015).
- Balla A, Balla T. Phosphatidylinositol 4-kinases: Old enzymes with emerging functions. Trends Cell Biol 16, 351-361 (2006).
- Arikketh D, Nelson R, Vance JE. Defining the importance of phosphatidylserine synthase-1 (PSS1): unexpected viability of PSS1-deficient mice. J Biol Chem. 283(19):12888-97 (2008).
- Cockcroft S. The diverse functions of phosphatidylinositol transfer proteins. Curr Top Microbiol Immunol. 362:185-208 (2012).
- Taylor GS, Maehama T, Dixon JE. Myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate. Proc Natl Acad Sci U S A. 1;97(16):8910-5 (2000).
Significance
The significance of this paper lies in providing the field with an additional regulator of KRAS localization at the PM, as this is localization is critical to KRAS function. Despite three decades worth of understanding and even successfully blocking KRAS membrane localization in vitro, no KRAS-membrane-localization inhibitors have been approved for the clinic. Thus, there is still room in the field for the development of a safe therapeutic target that can effectively block this process. There is a consensus in the literature that PtdSer is critical for KRAS anchoring to the membrane, and this paper describes how MTMR proteins may impact the supply of PtdSer to the PM. Since this work is done in a cancer background by utilizing a mutant KRAS construct (KRASG12V), this work would be interesting to many cancer researchers that are attempting to target mutant KRAS. This paper would also be interesting to researchers who investigate mechanisms of PM maintenance.
Our lab studies RAS signaling in tumorigenesis. The authors are clear in their explanations of the mechanisms of PM maintenance and PM components relevant to this study.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
In their manuscript with the title "Myotubularin-related proteins regulate KRAS function by controlling plasma membrane levels of polyphosphoinositides and phosphatidylserine", Henkels and colleagues describe the identification and characterization of factors modulating the plasma-membrane localization of KRASG12V, required for its activation. In an siRNA-based screening approach, they identify four members of the myotubularin-related (MTMR) protein family, namely MTMR 2, 3, 4 and 7, when downregulated result in impaired localization of KRAS to the plasma membrane.
Validation was performed via confocal microscopy in cells overexpressing GFP-RASG12V, stained with the membrane marker CellMask and with gold labelling-Electron microscopy. Co-expression of GFP-LactC2, a well-established marker for PtdSer, and subsequent EM analysis revealed a reduction of PtdSer at the PM upon MTMR depletion. This observation was further validated by whole cell lipidomics, showing a significant reduction in total cellular PtdSer content in MTMR 2/3/4/7 KD conditions.Reduction of PI4P at the PM of PI4P and increase in overall (and PM) levels of PI3P - measured by overexpression of fluorescently tagged marker proteins for the respective phospholipid as well as EM.inally, to investigate the effect of MTMR knockdown on RAS signalling, the authors used transformed T47D cells as well as a C. elegans model system. In both systems, RAS signalling was found to be impaired upon MTMR depletion.
Overall, the authors convincingly present MTMR proteins as regulators of KRAS plasma membrane localization. Upon depletion of MTMR 2,3,4 and 7, they see KRAS mis-localizing away from the PM and KRAS signalling being disrupted in cell culture and C. elegans model systems. The data are well presented and of high quality. Electron microscopy after immunogold labelling was used to provide quantitative data. The study can be further strengthened by uncovering the role of MTMR in KRAS driven pathobiology.
Please find some minor comments below
Comments:
- no data are shown from the genome-wide screening approach, including the common regulators of KRAS and HRAS. Information about how imaging data were processed and analysed is missing. A final table of 8 selected factors with phosphatase activity is presented without providing further insight about the selection criteria and other factors.
- in the subsequent characterization via image-based quantification of GFP-KRAS membrane localization, a Manders´ coefficient was calculated. A respective chapter in the methods section on how this was done is missing.
I would be happy to see the following analyses to strengthen the dataset:
- reconstitution experiments and further validation to show that it is dependent on the enzymatic activity of MTMRs
- additive effect upon depletion of multiple MTMRs? Are they functionally co-operative?
- signalling analysis is very limited (Fig. 5). Do the authors detect any defects in K-RAS driven downstream signaling in these cells upon depletion of MTMRs.
Significance
Very interesting and potentially important study. But needs further evidence on how MTMRs regulate pathobiology. Does MTMR depletion inhibit KRAS driven downs stream events needs to investigated here.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
__Summary __
Geng et al. explore the molecular mechanisms underlying the role of KIF1C in RNA transport, focusing on how it interacts with RNA. KIF1C is shown to form dynamic puncta when overexpressed in COS-7 cells that do not appear to colocalise with organelle markers. An IDR in the tail of the kinesin is necessary and sufficient for the formation of these structures and FRAP experiments show that they can exchange their contents with proteins in the cytosol and that their formation can can be reversibly modulated by hypotonic shock, consistent with LLPS. In vitro, the IDR and flanking regions can undergo phase separation at physiologically relevant concentrations and salt conditions. In cells, KIF1C puncta enrich for RNAs and support their transport, and depletion of RNA modulates KIF1C LLPS properties. A model is proposed whereby KIF1C mediated RNA transport to the cell periphery promotes the formation of a protein-RNA condensate that may act to fine tune local RNA activity.
__Major comments __
In general, the claims made here are well-supported by the data. However, I think that some exploration of the extent of LLPS at different KIF1C expression levels in cells is important but missing. The authors carefully estimate the endogenous concentration of KIF1C in COS-7 cells (at around 25 nm), but is isn't clear how this compares to that observed in transient transfection experiments. Although this is partly addressed in the vitro assays, I am still left with some questions over the extent of this phenomenon in a cellular context. Can the authors provide some experimental evidence to support the proposition that LLPS occurs (perhaps in a more localised fashion?, as Fig.9) at lower KIF1C expression levels? One way to address this might be a GFP-knock-in (although how feasible this is may depend on the genomic context), alternatively, the authors could generate cell lines that express KIF1C-GFP from a very weak promoter, demonstrate LLPS using their established assays, show that this is comparable to endogenous expression.
Response: We thank the reviewer for this suggestion. We have carried out additional experiments to explore the extent of KIF1C LLPS at endogenous levels. We used antibody against KIF1C to stain WT and KIF1C knockout (KO) cells. Although the antibody shows a high background of non-specific signal in the cytoplasm and nucleoplasm of both WT and KO cells, we were able to observe small puncta of KIF1C at the periphery of WT but not KO cells (new Figure 8). This finding supports our hypothesis that endogenous KIF1C undergoes LLPS upon reaching a high local concentration at the periphery of cells. Two lines of evidence support that these puncta of endogenous KIF1F protein are RNA-containing biomolecular condensates formed by LLPS (new Figure 8). First, these small puncta of endogenous KIF1C incorporate RAB13 mRNA, suggesting that they are RNA granules. Second, the puncta do not form in cells stably expressing KIF1C DIDR at near-endogenous levels.
Minor comments
Lines 107-109 and Figure 1B on localisation of other kinesin-3s. The authors state that they localise to certain organelle but don't show co-staining for those organelles.
Response: The localization of other kinesin-3s to certain organelles has been shown in the cited literature. In response to the reviewer's request, we now verify these findings by staining cells expressing the other kinesin-3s for specific organelles (new Figure S1 A).
Lines 172-183 and Figure 3. Evidence is provided through FRAP experiments that KIF1C puncta exchange with the cytosolic pool. However, the extent of recovery appears to saturate at Response: We agree that the data suggest the existence of an immobile pool of KIF1C within the condensates. We have added this information to the main text (lines 178-182). We note that these findings are consistent with recent studies demonstrating membrane-less organelles with at least partially solid-like properties, including nucleoli and stress granules as well as microtubule associated proteins (see references, reviewed in Van Treeck & Parker 2019).
Line 238 - Fig. S5C is cited as data on endogenous concentration of KIF1C - this should be Fig. S6C.
Response: Thank you. We have corrected this (now Fig S8 C).
Line 331-332 - I did not fully follow the logic here the RNAse A injection experiment supports the idea that KIF1C interaction with RNA is sequence selective. Could the authors expand on this.
Response: We thank the reviewer for this comment. We have rewritten the text (lines 235-238, 246-248).
__Reviewer #1 (Significance (Required)): __
This study introduces a new and exciting concept to motor protein biology: that some cytoskeletal motors and motor-cargo complexes can undergo phase separation, and that this is important for their function. The experiments are logical, progressive, and form a clear and compelling case. The main limitation is that demonstration of LLPS in cells is limited to over-expressed protein. Some exploration/demonstration of LLPS properties of KIF1C in cells at near to endogenous expression levels would enhance the study.
The work should be of interest to a broad range of readers, from the cytoskeletal motor community, those interested in mRNA regulation, as well as scientists studying phase separation more generally.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
This paper investigates mRNA transport by the kinesin Kif1C and tests the hypothesis that liquid condensation of the disordered C terminal region is important for mRNA recruitment. It is based on prior work from other labs showing that Kif1C recruits and transports a set of mRNAs to the periphery of cells. The mechanism of the KifC1-mRNA interaction was not investigated in the prior work, so the proposal that a liquid condensate is involved is novel. It is also topical, since there is intense current interest in transport and regulation of mRNAs by condensate-mediated mechanisms. The most useful part of this paper to the field may be the identification of IDR2 as required for mRNA binding in Fig 7.
__Major comments __
A major concern is reliance on expression of tagged KifC1 in Cos cells in several figures. The expression level in these experimental probably far exceeds normal, though this comparison is not reported. It is possibly justified to use over-expression to reveal a condensate mechanism, but it is concerning and the authors needs to strongly qualify their conclusions. One way to moderate this concern would be to examine condensation as a function of expression level.
Response: We thank the reviewer for this suggestion. We have carried out additional experiments to explore the extent of KIF1C LLPS at endogenous levels. We used antibody against KIF1C to stain WT and KIF1C knockout (KO) cells. Although the antibody shows a high background of non-specific signal in the cytoplasm and nucleoplasm of both WT and KO cells, we were able to observe small puncta of KIF1C at the periphery of WT but not KO cells (new Figure 8). This finding supports our hypothesis that endogenous KIF1C undergoes LLPS upon reaching a high local concentration at the periphery of cells. Two lines of evidence support that these puncta of endogenous KIF1F protein are RNA-containing biomolecular condensates formed by LLPS (new Figure 8). First, these small puncta of endogenous KIF1C incorporate RAB13 mRNA, suggesting that they are RNA granules. Second, the puncta do not form in cells stably expressing KIF1C DIDR at near-endogenous levels.
Another significant concern is that the biochemical reconstitution figure tests protein alone, not protein + RNA. Disordered RNA binding proteins usually phase separate better in the presence of RNA. The best reconstitution papers evaluate specificity of RNA recruitment to condensates. Specificity testing in a reconstituted system may not be required for a first paper, but testing the effect of some kind of RNA seems important.
Response: The purified CC4+IDR and IDR constructs form condensates at low mM concentrations and in the absence of RNA or crowding agents, thus we did not test whether they would phase separate better in the presence of RNA. In response to the reviewer's comments, we now evaluate the specificity of RNA recruitment to the KIF1C condensates. We utilized the purified CC4+IDR protein and added the same GU-rich and polyA RNAs used in cells (now Fig 4 B) at different concentrations. Interestingly, there is selective incorporation of GU-rich oligos in condensates at low RNA concentrations, incorporation of both RNAs into condensates at medium concentrations, and an inhibition of condensate formation at high RNA concentrations (new Fig 7 E,F).
A final concern is that the specificity of mRNA recruitment to Kif1C puncta in cells is not critically evaluated. Among endogenous mRNAs, only one (Rab13) is tested. The paper would be stronger with a second positive mRNA and a negative control mRNA.
Response: We have now tested whether the specificity of mRNA recruitment to KIF1C puncta applies to additional mRNAs. We carried out single-molecule FISH (smFISH) experiments for two additional mRNAs. Based on the literature showing KIF1C-dependent localization of specific RNAs, we chose NET1 as a second positive mRNA and CAM1 as a negative control mRNA (Pichon et al., 2021). We first show that NET1 mRNA is mislocalized in KIF1C KO cells whereas CAM1 mRNA is not (new Fig S7 C,D). We then rescued the KO cells with FL or DIDR constructs and show that the FL protein rescues NET1 mRNA localization to the cell periphery whereas the DIDR construct does not (new Fig S7 E,F).
__Reviewer #2 (Significance (Required)): __
The mechanism of the KifC1-mRNA interaction was not investigated in the prior work, so the proposal that a liquid condensate is involved in novel. It is also topical, since there is intense current interest in transport and regulation of mRNAs by condensate-mediated mechanisms. The most useful part of this paper to the field may be the identification of IDR2 as required for mRNA binding.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
KIF1C is a member of the kinesin-3 family, which is responsible for fast organelle transport in cells. The cargos of KIFIC are diverse, such as Golgi apparatus, Rab6 vesicles, exon junction complex (EJC), integrins, and RNA. Mutations in the KIF1C coding sequence leads to neurodegenerative diseases, such as hereditary spastic paraparesis (HSP). In addition, as an RNA transporter, KIF1C transports various types of mRNAs (e. g., APC-dependent mRNAs, KIF1C's own mRNA) along the microtubules and clusters them to cytoplasmic protrusions to fulfill certain biological functions.
In the current manuscript, Gen et.al., investigated the intracellular behaviors of the kinesin-3 member KIF1C. The study revealed that the KIF1C can form dynamic condensates both in cells and in vitro via an unstructured domain within the tail of the motor. KIF1C was found to also interact with synthesized RNA and other RNA granules in cells. In addition, the authors also show the KIFIC participates intracellular transport of endogenous mRNA, Rab13mRNA, identified a 47aa fragment in the KIF1C's IDR is critical for the KIF1C- Rab13mRNA interaction. Finally, as well as other prion-like proteins, the PPLS of KIF1C is buffered by the non-specific RNA pool in the cytoplasm.
In summary, this is an interesting work in the field, and reveals novel results about the mechanisms of motor protein transport that will be broadly interesting. The assays are generally well performed, and the results and discussion are well described, but some descriptions in the article should be more rigorous and objective. The article is very long, and I think it would benefit from streamlining and reducing the number of figures to make it more accessible for non-specialists in the field.
Here are some concerns:
__Major: __
Fig. 1A shows the domain organization of all kinesin-3 members, but Figure 1B only represents KIF1Bβ, KIF13B and KIF16B as controls. Generally, the KIF1Bα has the highest sequence similarity with KIF1C in kinesin-3 family (very high sequence similarity before aa 992 in KIF1C, which locates in IDR, probably contains IDR2a from Fig. S10A). In addition, both KIF1C and KIF1Bα contain a PLD from the prediction in this paper (Figure S2C). Although the authors show the phenotype of KIF1Bα in the Fig. S9, it might be better to put some descriptions up front, as readers may consider why the authors did not use KIF1Bα as a control. Actually, I kept thinking about this concern before I got to the discussion.
Response: We thank the reviewer for this suggestion. We have moved the descriptions of KIF1Ba phenotypes to earlier in the manuscript. We show that KIF1Ba forms puncta in cells but unlike KIF1C, the KIF1Ba puncta do not colocalize with known RNA granules P-bodies or stress granules (now in Fig S5 B,C). We show that, unlike KIF1C, the KIF1Ba puncta do not incorporate GU-rich or polyA RNA (now in Fig S6 B).
It would be better if the authors can combine the Fig. 2B and 2C, since the article did not mention Fig. 2B at all. In addition, Fig. S3 does not help this article too much. Probably it would be better if the authors could take the ΔIDR-mNG data from the Fig. S3 and put into the Fig. 2. as a negative control, especially for Fig. 2D an 2F. As for whether the phenotype of the ΔIDR-mNG construct is "similar to a constitutively active KIF1C construct containing only the motor domain (amino acids 1-348) (Fig. S3 C)", I do not think it is important here, since in this part, the authors are aiming to confirm the IDR is critical for KIF1C phase separation.
Response: We have combined Figures 2B and 2C as suggested. We prefer to leave Figure S3 intact since, as the reviewer mentioned, the article is already long and these data are not critical for the story.
The description "the condensate properties can be modulated by adjacent coiled-coil segments" in the abstract and the sentence "However, the coiled-coil segments in the stalk domain appear to facilitate puncta formation as the addition of increasing amounts of coiled coil resulted in increased KIF1C enrichment in puncta as compared to the IDR alone" in the article are not accurate, since there is no direct evidence in this manuscript that shows that. In Fig. 2D, as well as Fig. 6A and Fig. S7, it is manifest at a glance there are lots of IDR-mNG localized in nucleus, which decreases the concentration of this construct in cytoplasm which in turn may lower its capability to form puncta. This is important, as the results in Fig.4 show that the concentration of protein directly affects the formation of phase separated puncta in cells. From my view, the words "modulate", "tune" ... usually describe active processes, and these words may be confusing unless there are enough evidence support direct regulation. But the data presented in this article suggests to us that it is likely a passive process, such as the coiled coil region preventing the CC4-IDR construct from entering the nucleus (Fig. 2D, Fig. 6A and Fig. S7). Moreover, CC4 does affect the critical concentration of IDR in vitro (Fig. 5E), but that could be attributed to the coiled coil domain increasing its solubility. I like the word "influence" used in a subtitle in the discussion portion.
Response: We have removed this from the text.
In addition, the in vitro study of this paper in Fig. 5 did not show any significant difference of the puncta formation between IDR-mNG and CC4 - IDR-mNG (Diameter: 0.43 {plus minus} 0.22 μm (mean {plus minus} STD) for IDR-mNG vs 0.48 {plus minus} 0.27 μm (mean {plus minus} STD) for CC4-IDR-mNG. Roundness: No value was show in the article). So, a stricter assay or a more accurate description is required here to avoid any misleading to the readers.
Response: We now include p values showing that the differences in diameter and roundness are statistically significant (data moved to Fig S8 B).
The description for Fig. 5 "At 2 uM protein concentration and 100 mM NaCl, the KIF1C(IDR) droplets were smaller [diameter 0.43 {plus minus} 0.22 μm (mean {plus minus} STD)] than KIF1C(CC4+IDR) droplets [0.48 {plus minus} 0.27 μm (mean {plus minus} STD)] (Fig. 5 C)" does not appear accurate as well, since there is no significant difference between the value 0.43 {plus minus} 0.22 μm and the value 0.48 {plus minus} 0.27 μm, so it should not be descripted as "smaller". In addition, the article mentioned that "The KIF1C(IDR) puncta were also less round than those of KIF1C(CC4+IDR) (Fig. 5 C)", but there is no corresponding value from the quantification show the KIF1C(IDR) is less round.
Response: We now include p values showing that the differences in diameter and roundness are statistically significant (data moved to Fig S8 B).
The description in sentence "We thus tested whether ... LLPS is mutually exclusive (Fig. S5 A)" may not be accurate. Results in Fig. S5 only show there is no direct interaction between KIF1C and CLIP-170 or these two proteins do not colocalize. The words "mutually exclusive" means two proteins competent each other in the same location from my understanding.
Response: We have replaced the words "mutually exclusive" with "no colocalization" (line 204).
In addition, is it necessary to put Fig. S5 into this article? Since from my side, it does not help too much for the whole story. In cells, kinesin motors are autoinhibited in the cytoplasm. For this KIF1C, most of motors appear autoinhibited as well, even when the authors removed the IDR based on Fig. S3C (ΔIDR-mNG vs. MD-mNG). In this case, it is hard to investigate the potential interaction between the KIF1C (or its ΔIDR mutant) with the microtubules or with the tubulin due to the autoinhibition of constructs used in Fig. S5. It would be better to use other active versions of KIF1C, such as ΔP (Soppina et. al., PNAS, 2014) or other mutants (Ren et. al., PNAS, 2018; Wang et. al., Nat. Commun., 2022) if the authors want to show this part in the article.
Response: We agree that this data is not essential for the story, however, it may be of interest and benefit to others in the field studying LLPS of microtubule-associated proteins and we prefer to leave Figure S5 (now Figure S4) in the supplementary information.
The conclusion "This result suggests that the IDR- driven LLPS of KIF1C does not depend on mRNA incorporation, but is strongly affected by it" may not be accurate, there is no direct evidence that shows that mRNA, at least Rab13mRNA incorporation strongly affects the IDR- driven LLPS of KIF1C. Perhaps a knock out of Rab13mRNA would alter the formation of condensates, which would support a direct effect on LLPS.
Response: We have changed the text (line 306).
In addition, the sentence "These results also show that the LLPS is resistant to truncations of large portions of IDR" may not accurate, from my view, except IDR2a, the rest of the IDR may not participate or contribute too much to the formation of puncta, but that doesn't mean LLPS is resistant to the truncation of these portions in IDR, these are different logics. The quantification from Fig. 7E also show there is no significant difference between the ST and truncations except ΔIDR2 and ΔIDR2a in statistics, such as ST (21.8 {plus minus} 12.0 puncta per cell, 2.06 {plus minus} 0.83 μm diameter), ΔPLD (20.1 {plus minus} 13.7 puncta per cell, 1.62 {plus minus} 0.94 μm diameter), ΔIDR1 (23.1 {plus minus} 14.3 puncta per cell, 2.13 {plus minus} 1.04 μm diameter), ΔIDR3 (18.4 {plus minus} 8.1 puncta per cell, 1.71 {plus minus} 0.98 μm diameter).
Response: We have changed the text (line 307).
I am not sure I agree with the author's interpretation of their FRAP data in Fig. 3. It appears to me that there is a large immobile population of molecules, as the bleached areas recover less than 50% of their initial intensity. However, the authors conclude that there is rapid exchange of molecules in the puncta. The authors need to further analyze and discuss both the exchange rate of the population of molecules that exchange, but also the fraction of apparently immobile molecules that do not recover in their experiments. These data appear to suggest that a large percentage of the molecules in the KIF1C puncta in fact do not exchange with the cytoplasm and undermine their argument for a liquid-like phase of the puncta.
Response: We agree that the data suggest the existence of an immobile pool of KIF1C within the condensates. We have added this information to the main text (lines 178-182). We note that these findings are consistent with recent studies demonstrating membrane-less organelles with at least partially solid-like properties, including nucleoli and stress granules as well as microtubule associated proteins (see references, reviewed in Van Treeck & Parker 2019).
__Minor: __
As mentioned above, Fig. 2 F needs a negative control, since the values of FL and IDR are lower than other constructs, maybe use the Δ IDR-mNG protein is better. In addition, from my view, the lower value of IDR construct does not represent this construct has lower capability to form puncta, but more likely because most of this protein localizes in nucleus, thus dramatically lowering the cytoplasmic concentration.
Response: We have changed the text as suggested (lines 152-154).
Fig. 6A probably need a negative control as well, maybe use the same construct ΔIDR in Fig. S7 is better.
Response: We have now included KIF1Ba as a negative control (Fig S6 B).
Although I guess the reason for using hTERT-RPE1 cells in Rab13mRNA rescue assay (Fig. 6D-G) probably is easier to get KIF1C knock out cells (if I am correct), it would be better if there is a brief introduction for the reason to use hTERT-RPE1 here, since all previous assay in the article used COS-7 cells.
Response: You are correct and we have added text introducing the use of hTERT-RPE1 cells (line 269).
Is there any specific reason to use the construct ST in Fig. 7? Since in Fig. 6, the authors used FL-length KIFIC, if the authors want to avoid any effects caused by motor domain, the construct CC4-IRD also could be a simpler candidate.
Response: No specific reason other than to be consistent as most experiments that we carried out in cells used the ST construct (e.g. FRAP assay in Fig 3, hypotonic assay in Fig 3, RNaseA injection in Fig 4, RNA incorporation in Fig 4). (Note that Fig 7 is now Fig 6).
This article is a great case for motor-cargo interaction, since the RNA binding site of KIF1C is within its tail domain. This left me curious about if the interaction between the KIF1C and the membrane-less RNA granule is sufficient to release the KIF1C motor from autoinhibition? I guess the binding of RNA is not enough to release the KIF1C from autoinhibition. From Fig. S3C and Fig. 6D, seems the motor still in autoinhibition, even remove the Rab13mRNA binding region.
Response: We believe the question of whether the RNA binding relieves autoinhibition of KIF1C is beyond the scope of this manuscript and we plan to address this in the future with recombinant full-length KIF1C and RAB13 mRNAs.
There are some grammar mistakes, e.g., There should be a "is" between "IDR" and "critical" in the title "A subregion of the KIF1C IDR critical for enrichment of Rab13mRNA in condensates".
Response: Thank you. We have corrected this (line 289).
There should be a definition for the full names of the abbreviate "RBD" mentioned in the article although the readers may guess that is an RNA binding domain, if possible, it would be better but not necessary if the authors could show the residues or the region in IDR.
Response: RBD is defined at the beginning to the section "KIF1C condensates display properties of RNA granules" (line 219) but in response to the reviewer's comment, we now include this definition a second time in the Discussion section (line 420).
In the results (line 126), the authors refer to the KIF1C IDR without first defining this region in the introduction. I would re-word this sentence for clarity by first defining what an IDR is and how it's assessed in the current study.
Response: The IDR is defined at the end of the Introduction (lines 94-95).
What is the significance of the roundness measurement in Fig. 5? This should be described for the reader.
Response: Roundness refers to the shape of the droplet and this is now included in the text (line 323, data moved to Fig S8 B).
The authors state several times that this is the first kinesin shown to undergo LLPS. However, is this true? What about the recent work showing that the yeast Tea2 kinesin undergoes LLPS with other +TIP components (Maan et al. NCB 2023).
Response: We thank the reviewer for this comment. The recent work from the Dogterom lab (Maan et al., 2023) demonstrates that the end binding (EB) protein Mal3 forms condensates alone and with the kinesin-7 family member Tea2 and its cargo Tip1 for enrichment at microtubule plus ends. The authors show images of Mal 3 droplets and the requirement of the IDR domain and the crowding agent polyethylene glycol for droplet formation. The authors state that "Tea2 and Tip1 formed condensates under similar crowding conditions and concentrations on their own (Extended Data Fig. 5)." However, Extended Data Fig 5 reports on the fluorescence intensity of Mal3-EGFP colocalizing with Tea2 or Tip1. No images of Tea2-only droplets are shown and no information is provided on the Tea2 and/or PEG concentrations required for droplet formation or the liquid nature of Tea2 droplets. Thus, we do not feel comfortable stating that Tea2 on its own undergoes LLPS. We do reference the Maan et al., 2023 work in the Discussion listing microtubule-associated proteins shown to undergo LLPS (line 403) and when comparing the mM concentrations of KIF1C required for LLPS to the mM concentrations of these other microtubule-associated proteins (line 417).
The authors don't discuss KIF5A, but their analysis reveals it also contains a low complexity region that may undergo LLPS (Fig. S2D). This would fit with recent reports that KIF5A tends to oligomerize more than other KIF5 isoforms, and that mutations in KIF5A that impact the tail domain may lead to aberrant oligomerization. I feel that it would be useful to the field for the authors to discuss these results in light of their own.
Response: We thank the reviewer for this suggestion. Although it is intriguing that KIF5A is predicted to contain an IDR, there is, however, no data to suggest that KIF5A undergoes LLPS. Rather, the current literature suggests that KIF5A undergoes higher-order oligomerization and accumulation at the cell periphery, especially for the isoform lacking exon 27 (Nakano et al., 2022, Baron et al., 2022, Pant et al., 2023, Soustelle et al., 2023). It thus does not seem prudent for us to speculate on whether or not KIF5A undergoes LLPS.
__Reviewer #3 (Significance (Required)): __
The study is novel and interesting and will be impactful for the cytoskeletal and RNA biology communities. The experiments are of high quality and controls are appropriate. The finding that motor proteins can participate in LLPS will be of high interest for a variety of fields and provides a very interesting advance over current knowledge in the field.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
KIF1C is a member of the kinesin-3 family, which is responsible for fast organelle transport in cells. The cargos of KIFIC are diverse, such as Golgi apparatus, Rab6 vesicles, exon junction complex (EJC), integrins, and RNA. Mutations in the KIF1C coding sequence leads to neurodegenerative diseases, such as hereditary spastic paraparesis (HSP). In addition, as an RNA transporter, KIF1C transports various types of mRNAs (e. g., APC-dependent mRNAs, KIF1C's own mRNA) along the microtubules and clusters them to cytoplasmic protrusions to fulfill certain biological functions.
In the current manuscript, Gen et.al., investigated the intracellular behaviors of the kinesin-3 member KIF1C. The study revealed that the KIF1C can form dynamic condensates both in cells and in vitro via an unstructured domain within the tail of the motor. KIF1C was found to also interact with synthesized RNA and other RNA granules in cells. In addition, the authors also show the KIFIC participates intracellular transport of endogenous mRNA, Rab13mRNA, identified a 47aa fragment in the KIF1C's IDR is critical for the KIF1C- Rab13mRNA interaction. Finally, as well as other prion-like proteins, the PPLS of KIF1C is buffered by the non-specific RNA pool in the cytoplasm.
In summary, this is an interesting work in the field, and reveals novel results about the mechanisms of motor protein transport that will be broadly interesting. The assays are generally well performed, and the results and discussion are well described, but some descriptions in the article should be more rigorous and objective. The article is very long, and I think it would benefit from streamlining and reducing the number of figures to make it more accessible for non-specialists in the field.
Here are some concerns:
Major:
- Fig. 1A shows the domain organization of all kinesin-3 members, but Figure 1B only represents KIF1Bβ, KIF13B and KIF16B as controls. Generally, the KIF1Bα has the highest sequence similarity with KIF1C in kinesin-3 family (very high sequence similarity before aa 992 in KIF1C, which locates in IDR, probably contains IDR2a from Fig. S10A). In addition, both KIF1C and KIF1Bα contain a PLD from the prediction in this paper (Figure S2C). Although the authors show the phenotype of KIF1Bα in the Fig. S9, it might be better to put some descriptions up front, as readers may consider why the authors did not use KIF1Bα as a control. Actually, I kept thinking about this concern before I got to the discussion.
- It would be better if the authors can combine the Fig. 2B and 2C, since the article did not mention Fig. 2B at all. In addition, Fig. S3 does not help this article too much. Probably it would be better if the authors could take the ΔIDR-mNG data from the Fig. S3 and put into the Fig. 2. as a negative control, especially for Fig. 2D an 2F. As for whether the phenotype of the ΔIDR-mNG construct is "similar to a constitutively active KIF1C construct containing only the motor domain (amino acids 1-348) (Fig. S3 C)", I do not think it is important here, since in this part, the authors are aiming to confirm the IDR is critical for KIF1C phase separation.
- The description "the condensate properties can be modulated by adjacent coiled-coil segments" in the abstract and the sentence "However, the coiled-coil segments in the stalk domain appear to facilitate puncta formation as the addition of increasing amounts of coiled coil resulted in increased KIF1C enrichment in puncta as compared to the IDR alone" in the article are not accurate, since there is no direct evidence in this manuscript that shows that. In Fig. 2D, as well as Fig. 6A and Fig. S7, it is manifest at a glance there are lots of IDR-mNG localized in nucleus, which decreases the concentration of this construct in cytoplasm which in turn may lower its capability to form puncta. This is important, as the results in Fig.4 show that the concentration of protein directly affects the formation of phase separated puncta in cells. From my view, the words "modulate", "tune" ... usually describe active processes, and these words may be confusing unless there are enough evidence support direct regulation. But the data presented in this article suggests to us that it is likely a passive process, such as the coiled coil region preventing the CC4-IDR construct from entering the nucleus (Fig. 2D, Fig. 6A and Fig. S7). Moreover, CC4 does affect the critical concentration of IDR in vitro (Fig. 5E), but that could be attributed to the coiled coil domain increasing its solubility. I like the word "influence" used in a subtitle in the discussion portion.
In addition, the in vitro study of this paper in Fig. 5 did not show any significant difference of the puncta formation between IDR-mNG and CC4 - IDR-mNG (Diameter: 0.43 {plus minus} 0.22 μm (mean {plus minus} STD) for IDR-mNG vs 0.48 {plus minus} 0.27 μm (mean {plus minus} STD) for CC4-IDR-mNG. Roundness: No value was show in the article). So, a stricter assay or a more accurate description is required here to avoid any misleading to the readers.
The description for Fig. 5 "At 2 uM protein concentration and 100 mM NaCl, the KIF1C(IDR) droplets were smaller [diameter 0.43 {plus minus} 0.22 μm (mean {plus minus} STD)] than KIF1C(CC4+IDR) droplets [0.48 {plus minus} 0.27 μm (mean {plus minus} STD)] (Fig. 5 C)" does not appear accurate as well, since there is no significant difference between the value 0.43 {plus minus} 0.22 μm and the value 0.48 {plus minus} 0.27 μm, so it should not be descripted as "smaller". In addition, the article mentioned that "The KIF1C(IDR) puncta were also less round than those of KIF1C(CC4+IDR) (Fig. 5 C)", but there is no corresponding value from the quantification show the KIF1C(IDR) is less round. 4. The description in sentence "We thus tested whether ... LLPS is mutually exclusive (Fig. S5 A)" may not be accurate. Results in Fig. S5 only show there is no direct interaction between KIF1C and CLIP-170 or these two proteins do not colocalize. The words "mutually exclusive" means two proteins competent each other in the same location from my understanding.
In addition, is it necessary to put Fig. S5 into this article? Since from my side, it does not help too much for the whole story. In cells, kinesin motors are autoinhibited in the cytoplasm. For this KIF1C, most of motors appear autoinhibited as well, even when the authors removed the IDR based on Fig. S3C (ΔIDR-mNG vs. MD-mNG). In this case, it is hard to investigate the potential interaction between the KIF1C (or its ΔIDR mutant) with the microtubules or with the tubulin due to the autoinhibition of constructs used in Fig. S5. It would be better to use other active versions of KIF1C, such as ΔP (Soppina et. al., PNAS, 2014) or other mutants (Ren et. al., PNAS, 2018; Wang et. al., Nat. Commun., 2022) if the authors want to show this part in the article. 5. The conclusion "This result suggests that the IDR- driven LLPS of KIF1C does not depend on mRNA incorporation, but is strongly affected by it" may not be accurate, there is no direct evidence that shows that mRNA, at least Rab13mRNA incorporation strongly affects the IDR- driven LLPS of KIF1C. Perhaps a knock out of Rab13mRNA would alter the formation of condensates, which would support a direct effect on LLPS.
In addition, the sentence "These results also show that the LLPS is resistant to truncations of large portions of IDR" may not accurate, from my view, except IDR2a, the rest of the IDR may not participate or contribute too much to the formation of puncta, but that doesn't mean LLPS is resistant to the truncation of these portions in IDR, these are different logics. The quantification from Fig. 7E also show there is no significant difference between the ST and truncations except ΔIDR2 and ΔIDR2a in statistics, such as ST (21.8 {plus minus} 12.0 puncta per cell, 2.06 {plus minus} 0.83 μm diameter), ΔPLD (20.1 {plus minus} 13.7 puncta per cell, 1.62 {plus minus} 0.94 μm diameter), ΔIDR1 (23.1 {plus minus} 14.3 puncta per cell, 2.13 {plus minus} 1.04 μm diameter), ΔIDR3 (18.4 {plus minus} 8.1 puncta per cell, 1.71 {plus minus} 0.98 μm diameter). 6. I am not sure I agree with the author's interpretation of their FRAP data in Fig. 3. It appears to me that there is a large immobile population of molecules, as the bleached areas recover less than 50% of their initial intensity. However, the authors conclude that there is rapid exchange of molecules in the puncta. The authors need to further analyze and discuss both the exchange rate of the population of molecules that exchange, but also the fraction of apparently immobile molecules that do not recover in their experiments. These data appear to suggest that a large percentage of the molecules in the KIF1C puncta in fact do not exchange with the cytoplasm and undermine their argument for a liquid-like phase of the puncta.
Minor:
- As mentioned above, Fig. 2 F needs a negative control, since the values of FL and IDR are lower than other constructs, maybe use the Δ IDR-mNG protein is better. In addition, from my view, the lower value of IDR construct does not represent this construct has lower capability to form puncta, but more likely because most of this protein localizes in nucleus, thus dramatically lowering the cytoplasmic concentration.
- Fig. 6A probably need a negative control as well, maybe use the same construct ΔIDR in Fig. S7 is better.
- Although I guess the reason for using hTERT-RPE1 cells in Rab13mRNA rescue assay (Fig. 6D-G) probably is easier to get KIF1C knock out cells (if I am correct), it would be better if there is a brief introduction for the reason to use hTERT-RPE1 here, since all previous assay in the article used COS-7 cells.
- Is there any specific reason to use the construct ST in Fig. 7? Since in Fig. 6, the authors used FL-length KIFIC, if the authors want to avoid any effects caused by motor domain, the construct CC4-IRD also could be a simpler candidate.
- This article is a great case for motor-cargo interaction, since the RNA binding site of KIF1C is within its tail domain. This left me curious about if the interaction between the KIF1C and the membrane-less RNA granule is sufficient to release the KIF1C motor from autoinhibition? I guess the binding of RNA is not enough to release the KIF1C from autoinhibition. From Fig. S3C and Fig. 6D, seems the motor still in autoinhibition, even remove the Rab13mRNA binding region.
- There are some grammar mistakes, e.g., There should be a "is" between "IDR" and "critical" in the title "A subregion of the KIF1C IDR critical for enrichment of Rab13mRNA in condensates".
- There should be a definition for the full names of the abbreviate "RBD" mentioned in the article although the readers may guess that is an RNA binding domain, if possible, it would be better but not necessary if the authors could show the residues or the region in IDR.
- In the results (line 126), the authors refer to the KIF1C IDR without first defining this region in the introduction. I would re-word this sentence for clarity by first defining what an IDR is and how it's assessed in the current study.
- What is the significance of the roundness measurement in Fig. 5? This should be described for the reader.
- The authors state several times that this is the first kinesin shown to undergo LLPS. However, is this true? What about the recent work showing that the yeast Tea2 kinesin undergoes LLPS with other +TIP components (Maan et al. NCB 2023).
- The authors don't discuss KIF5A, but their analysis reveals it also contains a low complexity region that may undergo LLPS (Fig. S2D). This would fit with recent reports that KIF5A tends to oligomerize more than other KIF5 isoforms, and that mutations in KIF5A that impact the tail domain may lead to aberrant oligomerization. I feel that it would be useful to the field for the authors to discuss these results in light of their own.
Significance
The study is novel and interesting and will be impactful for the cytoskeletal and RNA biology communities. The experiments are of high quality and controls are appropriate. The finding that motor proteins can participate in LLPS will be of high interest for a variety of fields and provides a very interesting advance over current knowledge in the field.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
This paper investigates mRNA transport by the kinesin Kif1C and tests the hypothesis that liquid condensation of the disordered C terminal region is important for mRNA recruitment. It is based on prior work from other labs showing that Kif1C recruits and transports a set of mRNAs to the periphery of cells. The mechanism of the KifC1-mRNA interaction was not investigated in the prior work, so the proposal that a liquid condensate is involved in novel. It is also topical, since there is intense current interest in transport and regulation of mRNAs by condensate-mediated mechanisms. The most useful part of this paper to the field may be the identification of IDR2 as required for mRNA binding in Fig 7
A major concern is reliance on expression of tagged KifC1 in Cos cells in several figures. The expression level in these experimental probably far exceeds normal, though this comparison is not reported. It is possibly justified to use over-expression to reveal a condensate mechanism, but it is concerning and the authors needs to strongly qualify their conclusions. One way to moderate this concern would be to examine condensation as a function of expression level.
Another significant concern is that the biochemical reconstitution figure tests protein alone, not protein + RNA. Disordered RNA binding proteins usually phase separate better in the presence of RNA. The best reconstitution papers evaluate specificity of RNA recruitment to condensates. Specificity testing in a reconstituted system may not be required for a first paper, but testing the effect of some kind of RNA seems important.
A final concern is that the specificity of mRNA recruitment to Kif1C puncta in cells is not critically evaluated. Among endogenous mRNAs, only one (Rab13) is tested. The paper would be stronger with a second positive mRNA and a negative control mRNA.
Significance
The mechanism of the KifC1-mRNA interaction was not investigated in the prior work, so the proposal that a liquid condensate is involved in novel. It is also topical, since there is intense current interest in transport and regulation of mRNAs by condensate-mediated mechanisms. The most useful part of this paper to the field may be the identification of IDR2 as required for mRNA binding.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary
Geng et al. explore the molecular mechanisms underlying the role of KIF1C in RNA transport, focusing on how it interacts with RNA. KIF1C is shown to form dynamic puncta when overexpressed in COS-7 cells that do not appear to colocalise with organelle markers. An IDR in the tail of the kinesin is necessary and sufficient for the formation of these structures and FRAP experiments show that they can exchange their contents with proteins in the cytosol and that their formation can can be reversibly modulated by hypotonic shock, consistent with LLPS. In vitro, the IDR and flanking regions can undergo phase separation at physiologically relevant concentrations and salt conditions. In cells, KIF1C puncta enrich for RNAs and support their transport, and depletion of RNA modulates KIF1C LLPS properties. A model is proposed whereby KIF1C mediated RNA transport to the cell periphery promotes the formation of a protein-RNA condensate that may act to fine tune local RNA activity.
Major comments
In general, the claims made her are well-supported by the data. However, I think that some exploration of the extent of LLPS at different KIF1C expression levels in cells is important but missing. The authors carefully estimate the endogenous concentration of KIF1C in COS-7 cells (at around 25 nm), but is isn't clear how this compares to that observed in transient transfection experiments. Although this is partly addressed in the vitro assays, I am still left with some questions over the extent of this phenomenon in a cellular context. Can the authors provide some experimental evidence to support the proposition that LLPS occurs (perhaps in a more localised fashion?, as Fig.9) at lower KIF1C expression levels? One way to address this might be a GFP-knock-in (although how feasible this is may depend on the genomic context), alternatively, the authors could generate cell lines that express KIF1C-GFP from a very weak promoter, demonstrate LLPS using their established assays, show that this is comparable to endogenous expression.
Minor comments
Lines 107-109 and Figure 1B on localisation of other kinesin-3s. The authors state that they localise to certain organelle but don't show co-staining for those organelles.
Lines 172-183 and Figure 3. Evidence is provided through FRAP experiments that KIF1C puncta exchange with the cytosolic pool. However, the extent of recovery appears to saturate at <40%. Does this suggest the existence of an immobile pool of KIF1C within these structures?
Line 238 - Fig. S5C is cited as data on endogenous concentration of KIF1C - this should be Fig. S6C.
Line 331-332 - I did not fully follow the logical here the RNAse A injection experiment supports the idea that KIF1C interaction with RNA is sequence selective. Could the authors expand on this.
Significance
This study introduces a new and exciting concept to motor protein biology: that some cytoskeletal motors and motor-cargo complexes can undergo phase separation, and that this is important for their function. The experiments are logical, progressive, and form a clear and compelling case. The main limitation is that demonstration of LLPS in cells is limited to over-expressed protein. Some exploration/demonstration of LLPS properties of KIF1C in cells at near to endogenous expression levels would enhance the study.
The work should be of interest to a broad range of readers, from the cytoskeletal motor community, those interested in mRNA regulation, as well as scientists studying phase separation more generally.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
The authors do not wish to provide a response at this time.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Manuscript number: RC-2023-01938R
Corresponding author(s): Ilan, Davis
1. General Statements
We thank all four reviewers for their helpful and constructive comments. We have gone through each and every comment and proposed how we would address each point raised by the reviewers. We are confident our proposed revisions are feasible within a reasonable and expected time frame. Some of the comments regarding minor typo/aesthetics and extra references have already been addressed in the transferred manuscript. The changes are highlighted in yellow in the transferred manuscript.
2. Description of the planned revisions
Reviewer #1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Major points:
- The presented work itself (Figures 1-4) does not need significant adjustments prior to publication, in my view, with only a few points to address. However, the work in Figure 5- doesn't really support the claims the authors make on its own, and would require some additional experiments or at the very least discussion of the caveats to its current form.
We thank the reviewer for these comments and will follow the reviewer’s suggestion by discussing the caveats regarding the interpretation of Figure 5. We will also add to the discussion to suggest future research approaches beyond the scope of this manuscript that would address the functional importance of localised mRNA translation. We will briefly mention in the discussion methods such as the quantification of the mRNA foci and the disruption of the mRNA localisation signals to disrupt localised translation and the use of techniques such as Sun-Tag (Tanenbaum et al, 2014) and FLARIM (Richer et al, 2021) to visualise local translation directly.
Tanenbaum et al, 2014 DOI: 10.1016/j.cell.2014.09.039
Richer et al, 2021 DOI: 10.1101/2021.08.13.456301
* __ Localized glia transcripts, are they "glial/CNS/PNS" significant or are they similar to other known datasets of protrusion transcriptomes? The authors compared their 4801 "total" localized to a local transcriptome dataset from the Chekulaeva lab finding that a significant fraction are localized in both. As the authors note, this is in good agreement with a recent paper from the Talifarro lab showing conservation of localization of mRNAs across different cell types. What the authors haven't done here, is further test this by looking at other non-neuronal projection transcriptomic datasets (for example Mardakheh Developmental Cell 2015, among others). If the predicted glia-localized processes are similar to non-neuronal processes transcriptomes, this would further strengthen this claim and rule out some level of CNS/PNS derived linage driving the similarities between glia and neuronal localized transcripts. __*
This is a good point and we thank the review for pointing out this interesting cancer data set. We will do as the reviewer suggests and intersect our data with Mardakheh Dev Cell 2015 to test the further generality of localisation in neurons and glia, in other cell types. Specifically, we plan to intersect both glial (this study) and neuronal (von Kuegelgen & Chekulaeva, 2020) dataset with protrusive breast cancer cells (Mardakeh et al, 2015).
- *
von Kuegelgen & Chekulaeva, 2020 DOI: 10.1002/wrna.1590
Mardakeh et al, 2015 DOI: 10.1016/j.devcel.2015.10.005
* __ The presentation/discussion around Figure 3 is a bit weaker than other parts of the manuscript, and it doesn't really contribute to the story in its current form. Notably there is no discussion about the significance of glia in neurological disorders until the very end of the manuscript (page 21), meaning when its first brought up.. it just sits there as a one off side point. The authors might consider strengthening/tightening up the discussion here, if they really want to keep it as a solo main figure rather than integrating it somewhere else/putting it into supplemental. In my view, Figures 2 & 3 should be merged into something a bit more streamlined. __*
This is a good point. We plan to strengthen the presentation of Figure 3 and discussion of the significance of glia in neurological disorders by adding a description of the Figure in the Results section and highlighting the significance of glia in nervous system disorders in the Discussion section.
* __ Why aren't there more examples of different mRNAs in Figure 4? Seems a waste to kick them all to supplemental. __*
We agree that it could be helpful to show different expression patterns in the main figure. To address this point we will add Pdi (Fig. S4D), which shows mRNA expression in both the glia and the surrounding muscle cell. This pattern is in contrast to Gs2, which is highly specific to glial cells. We will also note that although pdi mRNA is present in both the glia and muscle, Pdi protein is only abundant in the glia, suggesting that translation of pdi mRNA to protein is regulated in a cell-specific manner.
The plasticity experiments, while creative, I think need to be approached far more cautiously in their interpretation. Given that the siRNAs will completely deplete these mRNAs- it really needs to be stressed any/all of the effects seen could just be the result of "defective" or "altered" states in this glial population- which has spill over effects on plasticity in at the NMJ. Without directly visualizing if these mRNAs are locally translated in these processes and assessing if their translation is modulated by their plasticity paradigm, all these experiments can say is that these RNAs are needed in glia to modulate ghost bouton formation in axons. This represents the weakest part of this manuscript, and the part that I feel does not actually backup the claims currently being made. Without any experiments to A. quantify how much of these transcripts are localized vs in the cell body of these glia, B. visualize/quantify the translation of these mRNAs during baseline and during plasticity; the authors cannot use these data to claim that localized mRNAs are required for synaptic plasticity.
We are grateful to the reviewer for pointing out that we were not precise enough in defining our interpretation of the structural plasticity assay. We did not intend to claim that our results show that local translation of these transcripts is necessary for plasticity, only that these transcripts are localized and are required in the glia for plasticity in the adjacent neuron (in which the transcript levels are not disrupted in the experiment). Definitively proving that these transcripts are required locally and translated in response to synaptic activity would require genetic/chemical perturbations and imaging assays that would require a year or more to complete, so are beyond the scope of this manuscript. To address this point, we will clarify that the results do not show that localized transcripts are required, only that the transcripts are required somewhere specifically in the glial cell (without affecting the neuron level), and we can indeed show in an independent experiment that there are localized transcripts.
Reviewer #2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Major points:
- * __ The authors analyse the 1700 shortlisted genes for Gene Ontology and associations with austism spectrum disorder, leading to interesting results. However, it is not clear to what extent the enrichments they observe are driven by their presumptive localization or if the associations are driven to a significant extent by the presence of these genes in the selected cell types in the Fly Cell Atlas. One way to address this would be to perform the GO and SFARI analysis on genes that are expressed in the same cells in the Fly Cell Atlas but were not shortlisted from the mammalian cell datasets - the results could then be compared to those obtained with the 1700 localized transcripts. __* This is a fair point raised by the reviewer as genes involved in neurological disease such as Autism Spectrum Disorder may be enriched in CNS/PNS cell types. We will follow the reviewer’s suggestion to perform GO and SFARI gene enrichment analysis in genes that were not shortlisted for presumptive glial localisation.
Although the authors attempt to justify its inclusion, I'm not convinced why it was important to use the whole cell transcriptome of perisynaptic Schwann cells as part of the selection process for localizing transcripts. Including this dataset may reduce the power of the pipeline by including mRNAs that are not localized to protrusions. How many of the shortlisted 1700 genes, and how many of the 11 glial localized mRNAs in Table 5, would be lost if the whole cell transcriptome were excluded. More generally, what is the distribution of the 11 validated localizing transcripts in each dataset in Table 4? This information might be valuable for determining which dataset(s), if any, has the best predictive power in this context.
We thank the reviewer for raising this point, which we will address with further analysis and adding to the discussion. We propose to address the criticism by running our analysis pipeline without the inclusion of the dataset using Perisynaptic Schwann Cells (PSCs) and then intersect with the PSCs-expressed genes, since their functional similarity with polarised Drosophila glial cells is highly relevant. We also agree with the reviewer that it would be a useful control for us to assess the ‘predictive power’ of each glial dataset by calculating their contribution to the shortlisted 1,700 glial localised transcripts and to the 11 experimentally validated transcripts via in situ hybridisation. To address this point, we plan to add this information in the revised manuscript.
* __ Did the authors check if any of the RNAi constructs are reducing levels of the target mRNA or protein? Doing so would strengthen the confidence in these important results significantly. In any case, the authors should also mention the caveat of potential off-target effects of RNAi. __*
We thank the reviewer for their useful comment and agree that the extent to which the RNAi expression reduces the levels of mRNA is not specifically known. We will add a FISH experiment on lac, pdi and gs2 RNAi showing very strong reduction in mRNA levels. We will also add an explanation of the caveats of the use of the RNAi system to the discussion.
Methods: what is the justification for assuming that if the RNAi cross caused embryonic or larval lethality then the 'next most suitable' RNAi line is reporting on a phenotype specific to the gene. If the authors want to claim the effect is associated with different degrees of knockdown they should show this experimentally. An alternative explanation is that the line used for phenotypic analysis in glia is associated with an off-target effect.
We thank the reviewer for this comment. We agree that off target effects cannot in principle be completely ruled out without considerable additional experimental analysis beyond the scope of this manuscript. To address the criticism we will remove the expression data of the lines that cause lethality and revise the discussion to explain that the level of knockdown in each line is unknown, and would require further experimental exploration.
Minor points:
- It would be helpful to have in the Introduction (rather than the Results, as is currently the case) an operational definition of mRNA localization in the context of the study. And is it known whether or not localization in protrusions is the norm in mammalian glia or the Drosophila larval glia? I ask because it may be that almost all mRNAs diffuse into the protrusion, so this is not a selective process. One interesting approach to test this idea might be to test if the 1700 shortlisted transcripts have a significant underrepresentation of 'housekeeping' functions. We thank the reviewer for this excellent suggestion. To address the comment, we will move our explanation of the operational definition of mRNA localization to the Introduction. We will also perform enrichment analysis of housekeeping genes within 1,700 shortlisted transcripts compared to the transcriptome background, as the reviewer suggested.
Reviewer #3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Major points:
- The authors have pooled data from different studies across different type of glial cells performed from in vitro to in vivo. While pooling datasets may reveal common transcripts enriched in processes, this may not be the best approach considering these are completely different types of glial cells with distinct function in neuronal physiology. We thank the reviewer for highlighting the need for us to further justify why we pooled datasets. We will revise the manuscript to better emphasise that the overarching goal of our study was to try to discern a common set of localised transcripts shared between the cells. The problem with analysing and comparing individual data sets is that much of the variation may be due to differences in the methods used and amount of material, rather than differences in the type of cells used. We will revise the discussion to make this point and plan to explain that our approach corresponds well with a previous publication pooling localised mRNA datasets in neurons (von Kugelgen & Chekulaeva 2021).
von Kuegelgen & Chekulaeva, 2020 DOI: 10.1002/wrna.1590
It is important to note the limitations of the study. For example, DeSeq2 is biased for highly expressed transcripts. How robust was the prediction for low abundance transcripts?
The presented 1,700 transcripts were shortlisted based on their presence and expression level (TPM) in glial protrusions rather than their relative enrichment. Nevertheless, the reviewer makes a valid criticism of our use of DESeq2, where we compared enriched transcripts in glial and neuronal protrusions in Figure 1D. To address this point we will discuss this caveat in the relevant section.
The issue raised regarding low abundance transcript prediction raises an important question: does the likelihood of localisation to cell extremities correlate with mRNA abundance? We have already partially addressed this point, since our analysis of the fraction of localised transcripts per expression level quantiles shows only limited correlation. To address this comment, we will add these results in the revised manuscript as a supplementary figure.
The authors identify 1,700 transcripts that they classify as "predicted to be present" in the projections of the Drosophila PNS glia. This was based on the comparison to all the mammalian glial transcripts. Since the authors have access to a transcriptomic study from Perisynaptic Schwann cells (PSCs), the nonmyelinating glia associated with the NMJ isolated from mice; it would be more convincing to then validate the extent of overlap between Drosophila peripheral glial with the mammalian PSCs. This may reveal conserved features of localized transcripts in the PNS, particularly associated with the NMJ function.
Thank you for the valuable suggestion. A similar point was also raised by __[Reviewer #2 - Major point 2] __to re-run our pipeline excluding the PSCs dataset and intersect with the PSC transcriptome post-hoc. Please see the above section for our detailed response.
Fig 2: What is the extent of overlap between the translating fractions versus the localized fraction? It will be informative to perform the functional annotation of the translating glial transcripts as identified from Fig 1D.
This is an interesting question. To address this point, we plan to: (i) compare transcripts that are translated vs. localised in glial protrusions, and (ii) perform functional annotation enrichment analysis on the translated fraction of genes.
"We conclude predicted group of 1,700 are highly likely to be peripherally localized in Drosophila cytoplasmic glial projections". To validate their predictions, the authors test some of these candidates in only one glial cell type. It might be worthy to extend this for other differentially expressed genes localized in another glial type as well.
The presented in vivo analyses made use of the repo-GAL4 driver, which is active in all glial subtypes, including subperineurial, perineurial and wrapping glia that make distal projection to the larval neuromuscular junction. We agree that subtype-specific analysis would be highly informative, but we believe this is outside the scope of the current work where we aimed to identify conserved localised transcriptomes across all glial subtypes. Nevertheless, to address the comment, we plan to further clarify our use of pan-glial repo-GAL4 driver in the Results and Method section of the revised manuscript.
Figure 5: The authors perform KD of candidate transcripts to test the effect on synapse formation. However, these are KD with RNAi that spans across the entire cell. To make the claim about the importance of "target" RNA localization in glia stronger, ideally, they should disrupt the enrichment specifically in the glial protusions and test the impact on bouton formation. Do these three RNAs have any putative localization elements?
We agree with the review, that we would ideally test the effect of disruption of mRNA localization (and therefore localised translation). However, we feel these experiments are beyond the scope of this current study, as they will require a long road of defining localisation signals that are small enough to disrupt without affecting other functions. To address this comment we will revise the Discussion section to mention those difficulties explicitly, and clarify the limitations of the approach used in our study for greater transparency.
Reviewer #4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Major points:
- The authors use FISH to validate the glial expression of their target genes, though these experiments are not quantified, and no controls are shown. The authors should provide a supplemental figure with "no probe" controls, and/or validate the specificity of the probe via glial knockdown of the target gene (see point 2). Furthermore, these data should be quantified (e.g. number of puncta colocalized with NMJ glia membrans). Thank you for requesting further information regarding the YFP smFISH probes. We have validated the specificity and sensitivity of the YFP probe in our recent publication (Titlow et al, 2023, Figure 1 and S1). Specifically, we demonstrated the lack of YFP probe signal from wild-type untagged biosamples and showed colocalization of YFP spots with additional probes targeting the endogenous exon of the transcript. Nevertheless, we will address this comment by adding control image panels of smFISH in wild-type (OrR) neuromuscular junction preparations.
Titlow et al, 2023 DOI: 10.1083/jcb.202205129
For the most part, the authors only use one RNAi line for their functional studies, and they only show data for one line, even if multiple were used. To rule out potential false negatives, the authors should leverage their FISH probes to show the efficacy of their knockdowns in glia. This would serve the dual purpose of validating the new probes (see point 1).
Thank you for the suggestion. This point was also raised by [Reviewer #2 - Major point 3]. Please see above for our detailed response.
In Figure 5 E, given the severe reduction in size in the stimulated Pdi KD animals, the authors should show images of the unstimulated nerve as well. Do the nerve terminals actually shrink in size in these animals following stimulation, rather than expand? The NMJ looks substantially smaller than a normal L3 NMJ, though their quantification of neurite size in F suggests they're normal until stimulation.
We share the same interpretation of the data with the reviewer that the neurite area is reduced post-potassium stimulation in pdi knockdown animals. We will follow the reviewer’s suggestion and add an image showing unstimulated neuromuscular junctions.
Minor points:
The authors claim that there is an enrichment of ASD-related genes in their final list of ~1400 genes that are enriched in glial processes. It is well-appreciated that synaptically-localized mRNAs are generally linked to ASDs. Can the authors comment on whether the transcripts localized to glial processes are even more linked to ASDs and neurological disorders than transcripts known to be localized to neuronal processes?
This is an interesting point. To address the comment, we will add a comparison of the degree of enrichment of ASD-related genes in neurite vs. glial protrusions in the revised manuscript.
__*
*__
- *
3. Description of the revisions that have already been incorporated in the transferred manuscript
Reviewer #1
- The use of blue/green or blue/green/magenta is difficult to resolve in some places. Swapping blue for cyan would greatly aid in visualizing their data.
- *
This comment is much appreciated. We have swapped blue for cyan in Figures 4 and S4. We have also changed Figure S1 to increase contrast and visibility as per reviewer’s comment.
Make the colouring/formatting of the tables more consistent, its distracting when its constantly changing (also there is no need for a blue background.. just use a basic white table).
This comment is much appreciated. We have applied a consistent colour palette to the Tables without background colourings and made the formatting uniform.
- *
Reviewer #2
- *
Introduction: 'Asymmetric mRNA localization is likely to be as important in glia, as it is in neurons,...'. Remove commas
Thank you for pointing this mistake out. We have made the corresponding edits.
- *
Reviewer #3
RNA localization in oligodendrocytes has been well studied and characterized. The authors should cite and discuss those papers (PMID: 18442491; PMID: 9281585).
We thank the reviewer for this useful suggestion. We have added these references to the paper.
-
*
-
*
Reviewer #4
-
*
-
In Figure 5D, the authors should include a label to indicate that these images are from an unstimulated condition. We thank the reviewer for pointing this out. We have added the label as requested.
The authors are missing a number of key citations for studies that have explored the functional significance of mRNA trafficking in glia, and those that have validated activity-dependent translation:
- ____https://pubmed.ncbi.nlm.nih.gov/18490510____/
-____https://pubmed.ncbi.nlm.nih.gov/7691830____/
-____https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001053
-____https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450274____/
-_https://pubmed.ncbi.nlm.nih.gov/36261025_*/
*__
We thank the reviewer for the comment. We have added these references to the text.
- *
4. Description of analyses that authors prefer not to carry out
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
'The authors do not wish to provide a response at this time.'
Our point-by-point response contains figures that we could not manage to upload in this text box.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
The authors do not wish to provide a response at this time, please see our Revision Plan
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Reviewer #1
In this paper, authors report that radiation, acidic pH, hypoxia, and drugs that interfere with lipid synthesis, all of which affect lipid droplets (LD), also affect the production of small extracellular vesicles (sEVs). In addition, they also report that LD content and sEV secretion are also modulated in CR-CSCs. Authors conclude that sEV formation and secretion is directly linked to LDs, and that their studies may open the way to new clinical perspectives. However, some important issues need to be addressed before the paper can be considered for publication.
My _main concern is that the notion that LDs and sEVs are linked remains vague. Do cells contain more LDs and secrete more sEVs because these two pathways are selectively up-regulated via some mechanism____s_ that controls both pathways in a concerted manner? Or do cells with more LDs and more sEVs also contain more of everything, perhaps as a result of metabolic activity? __
We appreciate the Reviewer's observations. Indeed, this comment represents the main pillar of the entire manuscript. We have attempted to uncover the molecular mechanism behind this novel and intriguing organelle connection. First of all, we have adapted the manuscript emphasizing that the LD – sEV connection might be direct or indirect. Our omic data suggested that some proteins belonging to the RAB family, mainly Rab18, Rab7a and Rab5c, could play a pivotal role in the LDs-sEVs axis. To strengthen those results, we have performed additional experiments by silencing the expression of the three candidate Rabs. Rab5c seems to be a good candidate to modulate the LD-sEV connection. We believe that Rab5c is not the only contributor to the LD-sEV connection but is part of a whole set of different elements that regulate this axis. However, it is quite challenging to rule out other molecular candidates as co-contributors to this phenomenon, especially when considering cellular metabolic pathways.
We recognize that external stimuli, such as radiation, pH, and lipid-interfering drugs, may exert their effects on other cellular organelles, even though we have strived to analyze each individual phenomenon rigorously. We are confident that our work lays the foundation for further research in the field.
__A direct corollary of this issue is whether increased sEV secretion reflects more endosomes and lysosomes (e.g. LysoTracker-positive compartments) or whether sEV secretion is selectively up-regulated. __
Thanks to the Reviewer’ suggestion, we have analyzed both the lysosome and endosome contents in our experimental cell systems. These data are now included in the manuscript in Figure S8. We have observed that it is unlikely that lysosomes are directly involved in the LD – sEV connection. However, the expression of Rab7a, a regulator of the late endosomal pathway, correlated with the LD content of the cells and their sEV release. Therefore, the endosomal pathway might be a good candidate to contribute to this LD – sEV connection.
__At one point, authors argue that cells that secrete more sEVs also contain more MVBs, but this issue remains elusive. To what extent is the increase in LDs and sEVS correlated in particular with an increase in endosome-lysosomes, and ER-Golgi (LDs originate from the ER)? __
We thank the Reviewer for this comment. We agree that the analyses of sEVs secreted in the media might not reflect the MVB content in the cells. However, two experiments, one on Panc01 cells and another one on MCF7 cells, showed that the number of MVBs, assessed by confocal microscopy using CD63 staining (MCF7) or CD63 and Alix plasmids (PANC-01), was directly correlated with the number of released sEVs in the media (Figure Fig S3C and 4J).
In addition, we included additional experiments assessing the lysosome content in HT29 LDHigh and LDLowcells. Hereby, we confirmed that HT29 LDHigh cells showed a higher LD content than HT29 LDLow cells. Inversely, by studying the lysotracker area per cell, we showed that HT29 LDLow population has a higher lysosomal content as compared to their counterpart, HT29 LDHigh cells (test = Wilcoxon rank sum test with continuity correction_ W = 85127, p-value = 7.255e-07 for LDs and W = 49321, p-value = 1.14e-11 for Lysotracker). However, we could not demonstrate a clear correlation between the number of LDs in the cell and the lysotracker signal.
Finally, we have also studied the expression of GM130, a Golgi-shaping protein (Ref. 1) and Rab7, a late-endocytic protein (Fig S8C). While the expression of Rab7 (endosome) seemed to correlate with the LD and sEV contents, the expression of GM130 (Golgi) gave back no coherent results. Indeed, it was inversely correlated to the LD and sEV amount, in accordance with what was already reported elsewhere (Ref 2 and 3)
- Nakamura N. Emerging new roles of GM130, a cis-Golgi matrix protein, in higher order cell functions. J Pharmacol Sci. (2010) 112:255–64. Doi: 10.1254/jphs.09R03CR
- Lydia-Ann L.S. Harris, James R. Skinner, Trevor M. Shew, Nada A. Abumrad, Nathan E. Wolins. Monoacylglycerol disrupts Golgi structure and perilipin 2 association with lipid droplets.Doi.org/10.1101/2021.07.09.451829
- Alvin Kamili, Nuruliza Roslan, Sarah Frost, Laurence C. Cantrill, Dongwei Wang, Austin Della-Franca, Robert K. Bright, Guy E. Groblewski, Beate K. Straub, Andrew J. Hoy, Yuyan Chen, Jennifer A. Byrne; TPD52 expression increases neutral lipid storage within cultured cells. J Cell Sci 1 September 2015; 128 (17): 3223–3238. Doi: 10.1242/jcs.167692
Authors conclude that the data with lipid inhibitors strengthen the connection between LDs and sEVs (Fig 2 and S2). However, is this regulation selective, or does it merely reflect the general effect of these inhibitors on membrane-related processes? The same comment applies to the role of iron metabolism after knockdown of ferritin heavy chain (Fig 3 and S3), acidic pH and X-ray radiation (Fig 4 and S4)____.
We thank the Reviewer for the interesting observation. As previously mentioned, we cannot rule out other potential contributors to the LDs-sEVs connection upon lipid inhibitor treatments and/or the others external stimuli applied to our cell systems.
The data presented in this manuscript merely represent a novel and unexplored (at least so far) organelle connection, direct or indirect, with a broad clinical implication. As the membrane-related processes (such as Endosomes, Golgi apparatus, Exosome (sEV) pathway, Lysosomes and Autophagosome) are all interconnected, in our opinion, it might be quite challenging to make such a definitive statement.
Such assertion would require extensive further investigation to relate each organelle to the LDs and/or sEVs. However, with our research, we hope to open the door to a new era of investigations regarding the sEV – LDs connection.
OTHER COMMENTS
1) Which cell line is used for sEV analysis (markers vs contaminants (Fig S1B)? In any case, the data should be shown for both cell types.
Our method to isolate sEVs is a standardized method that was already published by our group and collaborators in 2020 (M. Bordas, et al., Optimized Protocol for Isolation of Small Extracellular Vesicles from Human and Murine Lymphoid Tissues. Int J Mol Sci (2020) https:/doi.org/10.3390/ijms21155586.). This protocol was validated on human and mouse tissues, much more complex samples than cell culture supernatant.
Figure S1C was modified, as requested by the Reviewer, including new data for HT29, Panc01 and MCF7 cell lines to broaden the panel. Those results confirmed the good purity of sEV samples isolated from cell culture supernatant.
2) The Tsg101 blot is not impressive (Fig S1B): the difference between cells and sEVs is not easy to see. It would be nice if blots were quantified.
Indeed, the signal obtained for TSG101 for sEVs derived from Panc01 cell line is quite weak. It is important to remember that not all sEV markers are highly expressed in all cell lines and their derived sEVs. Some cell line-derived sEVs show a low or high expression of the diverse sEV markers. To answer the Reviewer #1’s comment, we quantified the expression of TSG101 in Panc01-derived sEVs. The quantification showed that TSG101 is 6.8 times more expressed on Panc01-dervied sEVs as compared to the cell line. However, since the expression is quite low, this quantification should be taken with some caution.
In light of the Reviewer ‘comment, we have performed the Western Blot analysis on other cell lines (HT29 and MCF7), and we have replaced TSG101 marker with CD9 marker (Figure S1C).
3) From Fig 1B it cannot be concluded that the size of sEVs ranges from 30 to 200nm: the micrograph only shows a few structures.
We appreciate the Reviewer's comment and have attempted to provide more clarity. Firstly, we want to highlight that TEM micrographs of sEVs typically show the donut shape, a unique feature of sEVs imaged with TEM, as well as a size range. In Figure 1B micrograph, the sEV size is approximately 100 nm. The size distribution of LoVo and HT29-derived sEVs can be observed from the NTA size measurements in Figure S1B. Indeed, the peak size is 148 nm for LoVo-derived sEVs and 135 nm for HT29, which aligns with the sEV sizes presented in Figure 1B. We have also included multiple micrographs here under. As the number of Supplementary Figures is already large, we have decided to not include those micrographs in the manuscript. The average size of LoVo-derived sEVs, based on TEM micrograph analysis, was 94 ± 41.10 nm, while the average size of HT29-derived sEVs was 76.41 ± 44.22 nm. The size discrepancy between the two methods (NTA versus TEM) can be ascribed to the dehydration step required for TEM, which results in a reduction of the actual sEV size.
4) HT29 cells contain far more LDs than LoVo cells (Fig 1A). Similarly, sEV proteins (CD63, CD81, CD9, Hsc-70) are more abundant in HT29 sEV____s____ than in LoVo sEVs (Fig 1D). However, the sEV preparation from HT29 cells contains only approx. 50% more total protein than LoVo sEVs (Fig S1D-E). Are sEVs prepared from LoVo cells far more contaminated with cell debris etc.. than sEV fractions from HT29 cells?
We are confident that our EV isolation method allows us to achieve high yield and excellent purity. It is possible that a lower number of sEVs in samples may lead to increased protein contamination during ultracentrifugation. However, size exclusion chromatography should minimize this protein contamination. It is important to note that the NTA method is significantly more sensitive and accurate than Qubit protein quantification. Consequently, protein concentration and particle concentration should not be directly compared.
5) LD staining should be shown for the corresponding populations of cells with high/low CD63 (Fig 1E). Cells in culture can be somewhat heterogeneous, but the difference between low and high CD63 is quite extreme (Fig 1E). Is such high heterogeneity also observed with other proteins of the endocytic and biosynthetic pathways? Authors conclude that cells containing high CD63 levels also contain more MVBs (Fig 1E): are all late endosomal proteins (e.g. LAMP1, RAB7) upregulated in cells with high CD63?
We thank the Reviewer for this comment, and we totally agree with the Reviewer that it would be better to have the LD and CD63 staining on the same images. Unfortunately, the staining for CD63 on LD540-sorted HT29 cells requires a permeabilization step that interferes with the cellular lipid part and could therefore negatively affect the LD imaging by confocal microscopy. To prove that the HT29 LDHigh and HT29 LDLowcontain high and low LD amount respectively, we sorted HT29 cells based on the LD content and, soon after, we observed them at the confocal microscopy. We thus added new images in Figure S1F, corresponding to the LD fluorescence detection. The readers will also appreciate the explanation regarding the inability of observing both LDs and CD63 staining on the same confocal images under the line 165 – 166:
“As the staining for CD63 required a permeabilization step, and therefore lipid digestion, it was not possible to assess both LDs and CD+MVBs on the same micrographs “.
In addition, we have added confocal images representing HT29 cells sorted based on their LD content and stained with Hoechst and Lysotracker. A quantification of the Lysotracker fluorescence per cell and the correlation with the number of LDs can also be appreciated in Figure S8A-B.
Finally, we performed Western Blot analysis to examine Rab7a expression under various conditions described in our manuscript (Figure S8C). In general, Rab7 expression corresponded with LD content, indicating that cells with high LD content exhibited higher Rab7 expression, while cells with low LD amount showed lower Rab7 expression, except for Triacsin-C. The Reviewer can now appreciate the quantification in the graphs provided below (not included in the manuscript).
Regarding the heterogeneity of LDs, CD63+MVBs, or lysotracker among the cell population, we have indeed noticed heterogeneity observable in these three types of staining in HT29, particularly in the HT29 LDHighpopulation.
6) Inhibitors of lipid synthesis reduce LD formation (Fig 2B), sEV production and CD63 / CD81/ CD9 secretion (Fig2C-D, Fig S2B). Are the cellular levels of these (and other endosomal) proteins also reduced after inhibitor treatment? Does the stimulation of LD formation with oleic acid also stimulate CD63 synthesis and sEV production?
We thank the Reviewer for this very interesting comment. To answer this question, we have added a supplementary figure (Figure S2A, S2B) showing the cellular expression of CD63 upon LD inhibition or stimulation.
During the planning of our experiments, we discussed about the possibility of using oleic acid to induce the formation of Lipid Droplets, which was ultimately not done. This is because the use of oleic acid would have more strongly stimulated the triglyceride pathway, as extensively discussed elsewhere (Mejhert N. et al., The lipid droplet knowledge portal: a resource for systematic analyses of lipid droplet biology, Developmental Cell, 2022). Since Lipid Droplets are made by cholesterol esters and triglycerides, we preferred to use other stimuli (hypoxia, radiation), all of them already discussed in literature, to induce both pathways simultaneously, resulting in the Lipid Droplet formation/induction.
7) It seems that pH and irradiation increase sEV markers far more significantly (Fig 4 B-C and Fig S4A-E) than FTH1 depletion decreases sEV markers (Fig 3 D-E). In fact, authors mention that they cannot exclude a contamination of sEVs with small apoptotic / autophagic vesicles after irradiation (Fig 4). To facilitate comparison, it would be nice to also show the number of secreted particles per cell (like after FTH1 depletion Fig 3D), as well as the distribution of possible contaminants (e.g. Fig S1). Also, authors state that the increase in the number CD63+ MVBs after irradiation is shown, but this is not the case.
We apologize to the Reviewer because, in fact, one figure was missing (Figure 4). We have rectified this by increasing the quality of Figure 4 and have added representative images for each acquisition of the number of MVBs, either positive for CD63 or Alix, in transfected Panc01 cells X-ray irradiated (8 Gy) or not (0Gy). In addition, a similar experiment was performed in MCF7 cells transduced with shRNA or shFTH1. CD63+ MVBs were assessed in both cell line and the number of CD63+ puncta (MVBs) were quantified by ImageJ. The results, although not significative, illustrated a trend for MCF7 shFTH1 to contain less CD63+ MVBs than MCF7 shRNA. Furthermore, the quantification of sEVs released in the conditioned media was performed in three independent experiments and demonstrated that significantly less particles (sEVs) were released by MCF7 shFTH1 than MCF7 shRNA.
8) Are the proteomic data (Fig 6) with LDlow and LDhigh cells obtained after cell sorting, as in Fig 1E? Did authors compare the proteome of LoVo and HT29 sEVs? How do the protein profiles (in particular proteins involved in lipid metabolism) obtained under different conditions compare with each other, in particular after irradiation (Fig4N) and knockdown of ferritin heavy chain (Fig 3, Fig S3)? It would also be interesting to compare these data with the data obtained in CR-CSCs culture under hypoxia (Fig S5). Are common proteins involved in sEV production and LD biosynthesis identified in the analysis of these biological processes? Is there a common set of proteins/genes revealed by this analysis, which may potentially control sEV production and LD biosynthesis?
We thank the reviewer for this interesting comment.
Proteomic analyses have been performed on the following conditions:
- Panc01 (0 Gy – 6 Gy – 8 Gy) for sEV samples
- MCF7 (shFTH1 and MCF7 shRNA)
- MCF7 (0 Gy and 6 Gy)
- MCF7 (Normoxia and Hypoxia)
- H460 (0 Gy and 6 Gy)
-
H460 (Normoxia and Hypoxia) RNA sequencing was performed on the following conditions:
-
CR-CSCs (#4, #8, #21) Based on all those data, we have analyzed the sEV pathway and how this pathway was modulated in the conditions with high LD content and low LD content. We therefore came up with several proteins, presented in Figure S7. Based on this analysis, we have decided to further investigate the role of RAB18, RAB5c and RAB7a in the connection between LDs and sEVs. Those additional results can be found in Figure 6 and Figure S7A (originally Figure 6). We have found that RAB5c, but not RAB7a or RAB18, seems to be a good candidate to intervene in the LD – sEV connection.
Minor comments
1) Some parts of the text are still a bit rough, and should be read and corrected carefully. For example: i) isn't it obvious that a common source of lipids builds up the membrane of sEVS, much like any other membrane (line 90, p.2); ii) what does this sentence mean: "LD have been considered as mere fat storage organelles for a long time, although important evidence could be traced back to the early 1960's". Important evidence for what? iii) why is the acronym AdExo used? iv) (line 138) the text should probably be "sEVs released during 72h were studied" and not "released sEVs were studied ... 72 h after seeding".
We apologize to the Reviewer if some parts of the paper were a bit rough. We have re-read the entire manuscript and corrected all the parts that needed revision work.
2) The captions are far too small in most figures and diagrams (for example ____X____ and Y axis in Fig 1C-D, text in Fig 1E; Fig S1; Fig 3C proteins in the heatmap).
We agree with the Reviewer. All images and their captions were properly revised.
3) The color code for LoVO and HT29 cells is reversed in Fig S1D-E
The mistake was corrected.
4) In Fig 1D, I cannot see CD81 in the LoVo blot.
In the image below, it is possible to see the LoVo blot.
5) Wording is not adequate in following sentences: "62.7% of proteins related to the exosomal pathway are downregulated in MCF7 shFTH1 cells" (line 233) and a few lines below: ".. the expression of almost all exosomal markers was downregulated in MCF7 shFTH1 cells" (line 239). Does 62.7% represent all proteins?
We apologize to the reviewer for the mistake. We rephrased this sentence.
6) In Fig 3E authors compare sEV markers secreted by cells treated with shFTH1 or control shRNA. The Anx5 and CD63 blots are not very convincing (quantification would be helpful).
We apologize to the Reviewer for this issue. These Western Blot analyses were performed only once, therefore a quantification in the manuscript would not be relevant. However, we report here the results of the quantification. The expression of Annexin V was 1.58 times higher in MCF7 shRNA than MCF7 shFTH1, while the expression of CD63 was 1.34 time higher in MCF shRNA as compared to MCF7 shFTH1.
7) The micrographs in Fig 4L are too small: gold particles cannot be seen, even in the high magnification views.
We thank the Reviewer for her/his comment. We have moved the micrograph and the quantification histogram to the Figure S6. Now, it is possible to discriminate easily gold nanoparticles.
8) The micrographs showing ALIX and CD63 (Fig 4J) in irradiated and unirradiated Panc01 cells should be shown for comparison.
We followed the Reviewer’ suggestion as it is possible to note in the Figure below.
Reviewer #2
This manuscript describes a relationship between lipid droplet presence in cells and small EV secretion. First, correlations are done between number of lipid droplets and numbers of EVs secreted. Then chemical inhibitors of lipid droplet biosynthesis pathways were shown to reduce small EV secretion. Then various processes known to target lipid droplets, including iron metabolism, irradiation, hypoxia, low pH are used to show concordant effects on lipid droplets and small EV secretion. Proteomic analysis of EVs and cells subjected to some of the treatments are also performed. Overall, it is an interesting line of investigation and the data overall seem solid. Several flaws exist, which can probably be fixed. These include the use of different cell lines for different experiments. It makes it a bit difficult to connect everything together. It could be fixed by adding some extra cell lines to some experiments - for example taking the MCF7 and Panc-01 cells for which proteomics was performed and redoing some of the correlative and causative experiments from Figs 1 and 2.
We appreciate the Reviewer's insightful observation. Following her/his suggestion, we have conducted additional experiments on MCF7, H460 and PANC-01 cell lines to enhance data consistency and facilitate a smoother transition between different sections of the paper.
It also would be good to have some more direct evidence of the connection between lipid droplets and EV secretion - one could argue that this was already done in Fig 2 with the chemical inhibitors, I wonder if there is a genetic way to do it too?
We totally agree with the Reviewer. Indeed, starting from our proteomic data we highlighted some genes belonging to the RAB family as potential candidates to interfere with the LD – sEV connection. The Reviewer can now appreciate in Figure 6 and Figure S7, the results from the additional experiments we carried out on RAB5c, RAB7a and RAB18 silencing in HT29 cells. The former Figure 6 has been moved in the Supplementary part (Figure S7).
Some tightening up of the writing (especially the Discussion) and the resolution of the figures would also improve the manuscript.
We apologize to the Reviewer for this issue. We have now re-prepared all Figures by increasing their resolution, as well as reviewing the entire manuscript with the aim of making the reading smoother and simpler.
__Overall, it is a nice piece of work but there are many minor things to be fixed. __
__Specific Comments: __
The sentence in the Introduction: "The non-endosomal pathway generates sEVs devoid of CD63, CD81 and CD9 or sEVs enriched in ECM and serum-derived factors (7)." is not well-supported and should be removed. The idea that you can classify membrane of origin based on markers has not been proven, but rather assumed.
We agree with the Reviewer. We have rephrased the sentence.
We thank the Reviewer for this comment. In response to this, we have generated correlation graphs for several of our experiments:
- HT29 (CTL – Triacsin-C - PF-06424439) in Figure 2E
- PANC-01 (CTL – 2 – 4 – 6 – 8 Gy) in Figure 4K
- CR-CSCs (#4, #8, #21) in Figure 5E
__The Method used for EV purification should be stated in the Results rather than referring to a reference and a Supplemental Figure (S1A) that is too low of a resolution to see. __
Our method to isolate sEVs is a standardized methods that was already published by our group and collaborators in 2020 (M. Bordas, et al., Optimized Protocol for Isolation of Small Extracellular Vesicles from Human and Murine Lymphoid Tissues. Int J Mol Sci (2020) https:/doi.org/10.3390/ijms21155586.). This protocol was validated on human and mouse tissues, much more complex samples than cell culture supernatant.
In regard to the Reviewer’s comment, we have added a better description of the protocol in the Results part, referring to the Material and Method. For this reason, we decided to keep the sEV protocol in the SI section. We apologize for the low quality of the Figure S1. In agreement with the Reviewer suggestion, we have modified the image by increasing its quality.
__Fig 1B would be better to have an image in which the EVs are not aggregated. __
We thank the Reviewer for this comment and have modified the Figure accordingly.
__Fig 3 is interesting but jumps cell lines. For better continuity, some of the experiments from Figs 1 and 2 should be repeated in the MCF7 cells to connect with the proteomics. __
In agreement with the Reviewer’ comment, we decided to perform additional experiment on MCF7, using Triacsin-C. The Reviewer can now appreciate the results in Figure 2F, Figure 2G and Figure S2E.
__Fig 3C is too low resolution to read, please export at higher resolution. __
We are sorry for the low-quality Figure. We have modified the image accordingly.
__Please provide all the raw proteomics data as a supplementary spreadsheet____. __
We have provided all the raw data regarding our proteomic analyses.
__Fig 4 panels are low resolution __
We apologize for the low-resolution Figure. We have modified the figure by increasing the quality.
Fig 4 again adds new cell lines with H460 and Panc-01
We thank the reviewer for this comment. In this regard, we have performed additional experiment:
- Western Blot: comparison cellular and exosomal markers (Figure S1C)
- MCF7 (CTL - Triacsin) (Figure 2F, Figure 2G and Figure S2E)
- Western Blot: analysis of RAB7a, GM130
__The images corresponding to 4J should be shown in a Supp Figure somewhere __
We thank the reviewer for pointing out this oversight. We have added the confocal images corresponding to the Figure 4J below the quantification.
The statements: "In addition, the exosomal nature of Panc01-derived vesicles was demonstrated by an analysis of CD63+ or Alix+ multivesicular bodies (MVBs) in unirradiated (0 Gy) or irradiated (8 Gy) pancreatic cancer cells (Fig 4J). Moreover, we confirmed a clear correlation between cellular LD content and sEV biogenesis, as represented in Fig 4K." are overly conclusive. For 4J, one can make a statement about the MVBs but not the EVs as that's not what was measured there. Likewise for 4K, what was measured was how many EVs were released not how many were formed. While the data are suggestive of alteration of exosome biogenesis, they are not conclusive.
We agree with the reviewer and have performed the necessary changes in the manuscript. The reviewer can see the changes under the lines 282 – 284:
“In addition, the analysis of CD63+ or Alix+ multivesicular bodies (MVBs) in unirradiated (0 Gy) or irradiated (8 Gy) pancreatic cancer cells revealed an increased number of MVBs after irradiation (Fig____ure 4J).”
__Western blot is always capitalized by convention - Western not western. __
We have corrected it accordingly.
__Fig 5A is too small and low resolution - suggest eliminating and just put info in methods. __
We are sorry for the low-resolution image. We have followed the Reviewer suggestion. The graphical method has been now moved to the Supplementary Figure S6.
Fig 5G, many of the genes shown are frequently EV cargoes but most not involved in exosome biogenesis - not sure where the label of Exosome pathway came from but it is not very compelling. Only ANXA2, Arf6, and Rab5C seem related and they are barely elevated.
We completely agree with the Reviewer's comment. As a result, we have revised the heatmap title to "Exosomal Cargoes and Pathways" instead of "Exosomal Pathway".
__Most main figures and all supplementary figures are extremely low res - please fix. __
We are very sorry for the low-quality figures. We have revised all Figures (main text and SI) by increasing their quality.
__Fig 6 is first mentioned in the Discussion - it should be described in the Results before that (or alternatively removed). __
We agree with the Reviewer. Our initial idea was to mention perspectives of analyses that could be carried ulteriorly. Nevertheless, we have performed additional experiments in order to get insight on the mechanism involved in the LD – sEV connection. Indeed, based on our proteomic data, we have analyzed the sEV pathway and how this pathway was modulated in the conditions with high LD content and low LD content. We therefore came up with several proteins, presented in Figure S7A (originally Figure 6). Based on this analysis, we have decided to further investigate the role of RAB18, RAB5c and RAB7a in the connection between LDs and sEVs. Those additional results can be found in Figure 6 and Figure S7 in the Results section. We have found that RAB5c, but not RAB7a or RAB18, seems to be a good candidate to intervene in the LD – sEV connection.
Table S1, also first mentioned in the Discussion, is missing. Either describe in the Results section or remove the callout to it.
Our apologies for that. The Table S1 has been now mentioned in the Results section and has been properly uploaded.
__The discussion is too dense with too many trains of thought, often many different directions in the same paragraph. It needs to be streamlined, with a central thought for each paragraph and good transitions between the paragraphs. __
We apologize to the Reviewer if the Discussion part was a bit confusing. We rewrote the paragraph, streamlining it and making the transitions between its paragraphs smoother.
Reviewer #2 (Significance (Required)):
__ Strengths of this manuscript are the interesting connection between lipid droplets and exosomes and the number of experiments to address it. __
__ Limitations: use of different cell lines for different figures, overall descriptive nature with regard to direct demonstration of connection to lipid droplets -- it's kind of done in Fig 2, but could be possibly bolstered. __
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
We thank the reviewers for their thoughtful comments. We were delighted that the reviewers found our manuscript and results “solid”, “important”, “well-written”, “thoughtful”, “critical addition to the literature”, that the “design of (these) experiments is high in quality” and “conclusions are convincing and the experiments are well executed”.
We were thrilled the reviewers appreciated that “this manuscript provides solutions to technical limitations to observe mRNA in vivo” by approaching such limitations “in a thoughtful study where many of the salient features of MS2 epitope tagging are systematically measured” and “it provides a greatly improved tool to track mRNA by live imaging” that “also alerts of experimental noise that can be found and can be specific for each gene/transcript”
We will address all the concerns raised by the reviewers. Most of the comments concern text edits. In addition, we will add the following to the Results section:
-
Quantitation of observed phenotypes in Figures 1C-D and 2C-D;
-
Quantitation of cytoplasmic transcripts in Figure 1G-L.
Quantitation will be performed as previously done in Tocchini et al., 2021.
-
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
1. General Statements [optional]
We thank the Reviewers for their helpful and constructive comments. In response to these suggestions we have performed new experiments and amended the manuscript, as we describe in our detailed response below.
2. Point-by-point description of the revisions
Reviewer #1
- The Reviewer notes that while our analysis of centrosome size was comprehensive, we provided no analysis of centrosomal MTs, pointing out that while centrosome size declines as the embryos enter mitosis, the ability of centrosomes to organise MTs might not. This is a good point, and we now provide an analysis of centrosomal-MT behaviour (Figure 2). We find that there is a dramatic decline in centrosomal MT fluorescence at NEB, although the pattern of centrosomal MT recruitment prior to NEB is surprisingly complex.
The Reviewer questions how PCM client proteins can be recruited in different ways by the same Cdk/Cyclin oscillator. We apologise for not explaining this properly. It is widely accepted that Cdk/Cyclins drive cell cycle progression, in part, by phosphorylating different substrates at different activity thresholds (e.g. Coudreuse and Nurse, Nature, 2010; Swaffer et al., Cell, 2016). Moreover, it is also clear that Cdk/Cyclins can phosphorylate the same protein at different sites at different activity thresholds (e.g. Koivomagi et al., Nature, 2011; Asafa et al., Curr. Biol., 2022; Ord et al., Nat. Struct. Mol. Biol., 2019). Thus, we hypothesise that rising Cdk/Cyclin cell cycle oscillator (CCO) activity phosphorylates multiple proteins at different times and/or at different sites to generate the complicated kinetics of centrosome growth. We now explain this point more clearly throughout the manuscript.
The Reviewer is puzzled as to how we conclude that Cdk/Cyclins phosphorylate Spd-2 and Cnn at all the potential Cdk/Cyclin phosphorylation sites we mutate in our study. The Reviewer is right that we cannot make this conclusion, and we did not intend to make this claim. As we now clarify (p11, para.1), although it is unclear if Cdk/Cyclins phosphorylate Spd-2 or Cnn on all, some, or none of these sites, if either protein can be phosphorylated by Cdk/Cyclins, then these mutants should not be able to be phosphorylated in this way—allowing us to address the potential significance of any such phosphorylation. We now also note that several of these sites have been shown to be phosphorylated in embryos in Mass Spectroscopy screens (Figure S6).
The Reviewer highlights differences in how Spd-2 and Cnn help recruit γ-tubulin to centrosomes (Figure 6). They ask for a more detailed description, and are puzzled as to how this is compatible with direct regulation by a single oscillator. We now explain our thinking on this important point in much more detail. It appears that Spd-2 helps recruit γ-tubulin throughout S-phase, while Cnn has a more prominent role in late S-phase (Figure 6). This is consistent with our overall hypothesis of CCO regulation, as we postulate that low-level CCO activity promotes the Spd-2/γ-tubulin interaction in early S-phase, while higher CCO activity promotes the Cnn/γ-tubulin interaction in late-S-phase, potentially explaining the increase in the rate of γ-tubulin (but not γ-TuRC) recruitment we observe at this point (see minor comment #1, below, for an explanation of the various γ-tubulin complexes in flies). This is consistent with recent literature showing that CCO activity promotes γ-tubulin (but not γ-TuRC) recruitment by Cnn/SPD-5 in worms and flies (Ohta et al., 2021; Tovey et al., 2021).
The Reviewer was not convinced by our model (Figure 8, now Figure 9), raising two major concerns. First, they were unsure how a single oscillator could generate different patterns of protein recruitment. We addressed this in point #2 and #4, above, where we explain how different thresholds of CCO activity trigger different events, so there is no expectation that we should observe steady changes in recruitment over time as CCO activity rises. Second, they questioned how modest levels of Cdk/Cyclin activity can promote recruitment, while high levels of activity can inhibit recruitment. In point #1, above, we cite several examples where such positive and negative regulation by different Cdk/Cyclin activity levels have been described. We also now explain throughout the manuscript why this hypothesis provides a plausible explanation for our results: with moderate CCO activity promoting Spd-2-dependent PCM-client recruitment in early S-phase; higher CCO activity promoting a decrease in Spd-2 recruitment in mid-late-S-phase (so centrosomal Spd-2 levels decline); and even higher levels of CCO activity leading to a decrease in the interactions between the client proteins and the Spd-2/Cnn scaffold as the embryos enter mitosis (so the client proteins are rapidly released from the centrosome).
The Reviewer also raised the important point here that our model does not explain why the mutant forms of Spd-2 and Cnn accumulate to higher levels at the start of S-phase, and not just at the end of S-phase/entry into mitosis. We apologise for not explaining this properly. The accumulation of the mutant proteins (particularly Spd-2, Figure 5C) in early-S-phase occurs because the excess mutant protein that accumulates at centrosomes in late-S-phase/mitosis is not removed properly from centrosomes during mitosis (presumably because there is insufficient time). Thus, centrosomes still have too much mutant Spd-2 at the start of the next S-phase. We show this in Reviewer Figure 1 (attached to this letter), which tracks Spd-2 behaviour further into mitosis, and now explain this in more detail in the text (p12, para.1).
The Reviewer questions how the CCO can both induce centrosome growth and also switch it off, as it is unclear how an oscillator that only phosphorylates sites to decrease centrosome binding could also promote growth. They ask if we can identify and mutate any Cdk/Cyclin sites in centrosome proteins that promote centrosome recruitment. As we now clarify, we did not intend to claim that the CCO only phosphorylates sites that decrease the centrosome binding of proteins, although we do hypothesise that such phosphorylation is important for switching off centrosome growth in mitosis. In addition, we hypothesise that moderate levels of CCO initially promote centrosome growth, and our data suggests that the CCO does this, at least in part, by promoting Polo recruitment (Figure 8). We speculate that the CCO phosphorylates specific Polo-box-binding sites in Ana1 and Spd-2, the main proteins that recruit Polo to centrioles. We agree that identifying these sites is an important next step, but it is complicated as our studies indicate that multiple sites contribute in a complex manner. Importantly, it is well established that the CCO triggers centrosome growth as cells prepare to enter mitosis, so our hypothesis that moderate levels of CCO activity initiate centrosome growth is not new or controversial.
Minor Comments
- The reviewer asks how we explain the different incorporation profiles we observe for the different subunits of the γ-tubulin ring complex. We apologise for not discussing this point. In flies there is a “core” γ-tubulin-small complex (γ-TuSC) and a larger γ-tubulin-ring complex (γ-TuRC) that contains the Grip71, Grip75 and Grip128 subunits we analyse here (Oegema et al., JCB, 1999). The γ-TuSC functions independently of the γ-TuRC so γ-tubulin and γ-TuRC components can behave differently.
The Reviewer questions why we claim an “inverse-linear” relationship between S-phase length and the centrosome growth rate when the relationship is not linear (Figure 3, now Figure S3). I was originally confused by this as well but, mathematically, a linear relationship means y is proportional to x, whereas an inverse-linear relationship means y is proportional to 1/x. Thus, an inverse-linear relationship between x and y does not plot as a straight line, but rather as the curves we show on the graphs. We now explain this in text (p9, para.2).
Reviewer #2
This Reviewer found the manuscript hard to follow, so we are very grateful that they took the time to try to understand it. We agree that the subject matter is complicated, and that our presentation was not always helpful. The Reviewer’s comments have been very useful in helping us to identify (and hopefully improve) areas of particular difficulty.
Major points:
- The Reviewer highlights that the two experimental approaches underpinning our main conclusions are problematic: (1) Experiments with mutants of Spd-2 and Cnn that theoretically cannot be phosphorylated by Cdk/Cyclins are hard to interpret as these mutations may have other effects; (2) It is unclear whether reducing Cyclin B levels reduces peak CDK activity or simply slows the time it takes to reach peak levels. They suggest a more direct test of our model would be to analyse PCM recruitment in embryos arrested in S-phase or mitosis. (1) We agree that the mutations designed to prevent Cdk/Cyclin phosphorylation could perturb function in other ways, but this is true for any such mutation, and there are many papers that infer a function for Cdk/Cyclin phosphorylation from such experiments. Importantly, the centrosomal accumulation of the phospho-null mutants actually slightly increases compared to WT (Figure 5C and I), and we now show that the centrosomal accumulation of a phosphomimicking Spd-2-Cdk20E mutant slightly decreases (Figure S8). We now acknowledge the potential caveat of a non-specific perturbation of protein function, but feel that the reciprocal behaviour of the phospho-null and phospho-mimicking mutants somewhat mitigates this concern (p12, para.2). (2) Fortunately, and as we now clarify, it has recently been shown that reducing Cyclin levels does not reduce peak Cdk activity, but rather slows the time it takes to reach peak activity (Figure 2A, Hayden et al., Curr. Biol., 2022). Thus, the cyclin half-dose experiments provide an excellent alternative test of our hypothesis as they show that the WT proteins can exhibit similar behaviour to the mutants if the rate of Cdk/Cyclin activation is slowed. We feel the evidence supporting our hypothesis is strong enough that it warrants serious consideration. The suggestion to look at PCM recruitment in embryos arrested in either S-phase or M-phase is a good one, but these experiments produce complicated data. In M-phase arrested embryos, for example, Cnn levels continue to rise (see Figure 1G, Conduit et al., Dev. Cell, 2014), but the other PCM proteins do not (unpublished); in S-phase arrested embryos (arrested by mitotic cyclin depletion) centrosomes continue to duplicate, but now do so asynchronously, greatly complicating the analysis (McCleland and O’Farrell, Curr. Biol.., 2008; Aydogan et al., Cell, 2020). The centrosomes that don’t duplicate, however, reach a constant steady-state size (where the rate of centrosome protein addition is balanced by the rate of loss). These observations are consistent with our recent mathematical modelling of mitotic PCM assembly (Wong et al., 2022) if we additionally account for cell cycle regulation (which was not considered in our original model). We believe such analyses are beyond the scope of the current paper and we plan to publish a second paper incorporating our new hypothesis into our mathematical modelling.
The Reviewer questions whether our methods accurately measure centrosomal protein accumulation, pointing out that γ-tubulin and Grip128 occupy different centrosomal areas—which should not be possible if they are part of the same complex. They suspect that our use of different transgenes with different promotors could explain these differences. As we should have described (see point #1 in our response to the minor comments of Reviewer #1), γ-tubulin exists in two complexes in flies, only one of which contains Grip128, so γ-tubulin and Grip128 exhibit different localisations. Moreover, as we now show (Figure S2), using different promotors does not seem to make a difference to overall recruitment kinetics. Thus, we are confident that our methods measure centrosome protein recruitment dynamics accurately.
The Reviewer is concerned that our measurements of centrosome size based on fluorescence intensity (Figure 1) and centrosomal area (Figure S1) do not always match. They suggest a potential reason for this is that proteins are not uniformly distributed within centrosomes, and this may impact our ability to measure protein accumulation based on 2D projections (noting, for example, that Polo and Spd-2 are concentrated at centrioles and in the PCM, potentially explaining the different shape of their growth curves compared to the client proteins). When the centrosome-fluorescence-intensity and centrosome-area recruitment profiles of a protein do not match, the average “centrosome-density” of that protein must be changing over time. In some cases, we understand why density changes. Cnn, for example, stops flaring outwards on the centrosomal MTs during mitosis so its centrosomal area decreases even as its fluorescence intensity increases (leading to an increase in its centrosomal-density). We agree (and now discuss—p19, para.3) that the prominent accumulation of Spd-2 and Polo at centrioles could help to explain why Spd-2 and Polo accumulation dynamics differ from the client proteins.
Other points:
The Reviewer suggests it would be good to know how much Polo at the centrosome is active____. We agree, but although commercial antibodies against PLK1 phosphorylated in its activation loop work in cultured fly cells, we cannot get them to work in embryos. Moreover, the recruitment of Polo/PLK1 to its site of action by its Polo-Box Domain is sufficient to partially activate the kinase independently of phosphorylation (Xu et al., NSMB, 2013). Thus, it seems likely that all the Polo/PLK1 recruited to centrosomes will be at least partially activated, even if it is not necessarily phosphorylated on its activation loop.
The Reviewer asks if it is clear that less Spd-2 and Cnn are recruited to centrosomes in the half gene-dosage embryos. We apologise for not mentioning that this is indeed the case. We showed this previously for Cnn (Conduit et al., Curr. Biol., 2010) and we now state that this is also the case for Spd-2. We do not show the Spd-2 data as we plan to publish a comprehensive dose-response curve of Spd-2 (and Cnn) recruitment in our next modelling paper.
Would it not be relevant to examine Polo ½ dosage embryos? We do have this data (Reviewer Figure 2), attached to this letter, but it is quite complicated to interpret (as we explain in the legend). We feel it would be more appropriate to include this in our next modelling paper where we can properly explain the behaviours we observe. Publishing this data here would distract from our main message without changing any of our conclusions.
The Reviewer asks why the non-phosphorylatable Spd-2 protein is also present at higher levels on centrosomes at the start of S-phase (not just the end of S-phase). This was also raised by Reviewer #1 (point #5), so please see the second paragraph of our response there.
Minor/Discussion Points:
We thank the Reviewer for highlighting that absolute and relative centrosome size control are different things and we have amended the manuscript accordingly.
The Reviewer questions whether it is accurate to describe Spd-2 and Polo as scaffold proteins, noting that only Cnn has been shown to have scaffolding properties. There is strong evidence that Spd-2 has Cnn-independent scaffolding properties in flies (e.g. Conduit et al., eLife, 2014), but this is a fair point for Polo. We think it is justified to separate Polo from other client proteins as Polo is essential for scaffold assembly, whereas other client proteins are not. We now define our scaffold/client terminology to avoid confusion (p4, para.3).
The Reviewer highlights several points related to differences in recruitment kinetics (also touched on in points #2 and #3, above), noting we don’t discuss properly the idea of two different modes of PCM recruitment. These are all good points, largely addressed in our response to points #2 and #3, above. We now discuss much more prominently the two different modes of client protein recruitment throughout the manuscript.
As we now clarify, in all our experiments we use centrosome separation and nuclear envelope breakdown (NEB) to define the start and end of S-phase, respectively.
The Reviewer quotes the landmark Woodruff paper (Cell, 2017) as showing that the ability to concentrate client proteins (including ZYG-9, the worm homologue of Msps) is an intrinsic property of the PCM scaffold, so how do we explain that Msps departs prior to NEB while Cnn continues to accumulate? It is indeed a striking observation of our study that all PCM client proteins (not just Msps) start to leave the centrosome prior to NEB, even as Cnn levels continue to accumulate. Our hypothesis is that this ‘leaving’ event is triggered by a threshold level of Cdk/Cyclin activity—explaining why these client proteins all start to leave the PCM at the same time (just prior to NEB) irrespective of nuclear cycle length. This is not incompatible with the Woodruff paper, which did not attempt to reconstitute any potential regulation by Cdk/Cyclins in their in vitro studies.
The Reviewer questions why Spd-2 that cannot be phosphorylated by Cdk/Cyclins (Spd-2-Cdk20A) accumulates abnormally at centrosomes in late S-phase, yet γ-tubulin (which is recruited by Spd-2) seems to leave centrosomes more slowly in the presence of the mutant protein. As we now explain more clearly, there is no contradiction here. Spd-2-Cdk20A accumulates to abnormally high levels in late-S-phase/early mitosis (Figure 5C), and this reduces the γ-tubulin dissociation rate, as we would predict (Figure 7B, right most graph). It does not “prevent” dissociation, however, (as the Reviewer seems to suggest it should?), but this is probably because these experiments have to be performed in the presence of large amounts of the WT Spd-2 (Figure 5A).
The referencing error has been corrected.
The Reviewer asks why in Figure 1 not all of the centrosome proteins could be followed for the full time period (as we mention in the legend, but do not explain). There are different reasons for different proteins: (1) Polo cannot be followed in mitosis as it binds to the kinetochores, making it impossible to accurately track centrosomes (so the data for mitosis is missing for Polo); (2) Cnn exhibits extensive flaring at the end of mitosis/early S-phase (Megraw et al., JCS, 1999), so we cannot track individual separating centrosomes labelled with NG-Cnn in early S-phase until they have moved sufficiently far-apart (so the early S-phase time-points are missing for Cnn); (3) In addition, several of the client proteins bind to the mitotic spindle, so although we can still track and measure the centrosomes in late mitosis in the graphs, we don’t show pictures of these late mitosis centrosomes in the montage in Figure 1A as the images look a bit odd. We now explain these reasons in the Materials and Methods.
We now indicate that nuclear cycle 12 (NC12) is being analysed in Figures 4-8.
The reviewer questions why we don’t show the decrease rate for γ-tubulin in Figure 6 (the Spd-2 and Cnn half-dose experiments), when we do show it in Figure 7 (the Spd-2 and Cnn Cdk-mutant experiments), suspecting that it is slowed in both cases. The reviewer is correct and we now show this data for both sets of experiments.
We have corrected the labelling error in Figure S1.
The Reviewer suggest moving some of the data from the main Figures, and the entirety of Figures 2 and 3 to the Supplemental Information. We understand this point, and agree that the amount of data presented in Figures 1-3 is somewhat overwhelming. We have played around with the Figures a lot—in particular trying to show a few examples of the data and moving the rest to Supplementary—but it is hard to pick a “typical” example, and the power of comparing the behaviour of so many different centrosome proteins is somewhat lost. We have tidied up several Figures and, as a compromise, we keep Figure 2 (now Figure 3) in the main text, but have moved Figure 3 to Supplementary (now Figure S5).
The Reviewer suggests that we should repeat the analysis of Spd-2, Polo and Cnn dynamics that we show here, as we already presented this data in a previous publication (Wong et al., EMBO. J, 2022). We understand this point, but feel this would be a less accurate comparison, as essentially all of the data shown in Figure 1 was obtained several years ago during a contiguous ~6month period. Since then, the lasers and software on our microscope system have been updated, so it would probably be less fair of a comparison to obtain new data for a subset of these proteins (and it seems overkill to perform the entire analysis again). We clearly state that this data has been presented previously, so we hope the Reviewer will agree that it is acceptable to present it again here so readers can more easily compare the data.
Reviewer #3
This Reviewer is broadly supportive of the manuscript, but to publish in a prestigious journal they think additional experimental evidence will be required to support our hypothesis.
The Reviewer notes that our only evidence that Cdk/Cyclins directly phosphorylate Spd-2 comes from our analysis of the Spd-2-Cdk20A mutant, as the effect of reducing Cyclin B dosage on WT Spd-2 behaviour is very modest. They request that we analyse the behaviour of a Spd-2-Cdk20E phospho-mimicking mutant. The effect of halving the dose of Cyclin B on Spd-2 behaviour is modest, but this is what we would predict as all we are doing in this experiment is slowing S-phase by ~15%, so Spd-2 should accumulate at centrosomes for a slightly longer time and to a slightly higher level (as we observe, Figure 5E). A great advantage of the early fly embryo system is that we can compare the behaviour of many hundreds of centrosomes, so even subtle differences like this are usually meaningful. To illustrate this point, we have now repeated the Spd-2 analysis in WT and CycB1/2 embryos (but now using a CRISPR/Cas9 Spd-2-NG knock-in line) and we see the same subtle differences (Figure S9). In addition, as requested, we have now analysed the behaviour of a Spd-2Cdk20E mutant protein using an mRNA injection assay (as it would have taken too long to generate and test new transgenic lines). In this assay we injected embryos with mRNA encoding either WT Spd-2-GFP, Spd-2-Cdk20A-GFP or Spd-2-Cdk20E-GFP. The mRNA is quickly translated, and we computationally measured the fluorescence intensity of the centrosomes in mid-S-phase (i.e. at the Spd-2 peak) (Figure S8). This analysis confirms that Cdk20A accumulates to slightly higher levels, and reveals that Cdk20E accumulates to slightly lower levels, than the WT protein. Together, these new experiments strongly support our original conclusions.
The Reviewer notes that we propose that the CCO initially promotes centrosome growth by stimulating Polo recruitment to centrosomes, but states that we only provide indirect evidence for this by showing that centrosomal Polo levels are strongly reduced in Cyclin B half-dose embryos. They suggest we determine Spd-2 levels in Polo half-dose embryos, and/or the centrosome levels of mutant forms of Spd-2 that cannot be phosphorylated by Polo. We believe the Cyclin B half-dose experiment provide direct support for our hypothesis that Cdk/Cyclin activity influences Polo recruitment (Figure 8), although, clearly, we have not identified the mechanism. We do, however, suggest a plausible mechanism: Ana1 and Spd-2 are largely responsible for recruiting Polo to centrosomes, and we have previously shown that several of the potential phosphorylation sites in these proteins that help recruit Polo to centrosomes are Cdk/Cyclin or Polo phosphorylation sites (Alvarez-Rodrigo et al., eLife, 2020 and JCS, 2021; Wong et al., EMBO J., 2022). We are currently testing this hypothesis, but progress is slow as it is clear that multiple sites in both proteins can influence this process.
As the Reviewer requests, we have now also examined how Spd-2 and Cnn behave in Polo half-dose embryos (Reviewer Figure 2, attached to this letter). As we describe in the Figure legend, this data is informative, but is complicated. With relatively minor, but mechanistically important, tweaks to our previous mathematical modelling we can explain these behaviours, but introducing such a significant mathematical modelling element would be beyond the scope of this paper. As described above, these findings will form the basis of a follow-up paper that is more mathematically oriented.
It is a great idea to look at mutant forms of Spd-2 that cannot be phosphorylated by Polo, but the consensus Polo phosphorylation site (N/D/E-X-S, with the N/D/E at -2 and the S at 0 being preferences, rather than a strict rule) is less well-defined than the consensus Cdk/Cyclin phosphorylation site (where the Pro at -1 is essentially invariant). Thus, we cannot accurately predict which sites would need to be mutated to generate such a mutant.
The Reviewer requests that we analyse the behaviour of TACC in embryos expressing the Spd-2-Cdk20A and Cnn-Cdk6A (as we do in Figure 7 for γ-tubulin). This is a reasonable request, but we prefer not to show this data as we have recently identified an interesting interaction between TACC, Spd-2 and Aurora A that will be the subject of another paper we hope to submit shortly. This data is hard to interpret without explaining these interactions properly, which is beyond the scope of the current manuscript.
We hope the Reviewers will agree that these changes have improved the manuscript substantially, and that it is now suitable for publication. We would like to thank them again for taking the time to read this rather complicated paper so thoroughly.
We look forward to hearing from you.
Yours sincerely,
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
A complete response to all the reviewers´ comments and suggestions has been uploaded as a separate file.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
1. General Statements [optional]
We thank the reviewers for their appreciation of the interest, novelty and quality of our study, and their useful feedback to improve its presentation.
We have revised the manuscript addressing all the points they made, as detailed below, section by section, following the organization in the reviews. The corresponding changes are highlighted in yellow (new text) or crossed out (deleted text) in our revised manuscript.
In case it is useful for the editor to check how each individual point was addressed, we also have extracted from the reviews each individual reviewer’s comment and our direct response, listed as bullet points at the end of this text.
2. Point-by-point description of the revisions
I - General criticisms
Reviewer #1: My main criticism is unfortunately inherent to the approach: comparative studies are absolutely critical, but they can only provide a very sparse sampling of diversity. Fortunately, thanks to high-throughput sequencing, bioinformatic analyses can now be performed on a large number of species, but experimental validation is typically restricted to two or three species. The consequence of this for the present manuscript is that while the functional conservation of the Gwl site is convincingly shown, the exact mechanisms responsible for the reduced effect of PKA phosphorylation remain relatively vaguely defined. Indeed, in their Discussion the authors list a number of experimental approaches to address this - but I understand that these would all involve substantial efforts to address. In particular, testing chimeric constructs around the consensus PKA site and from multiple species could be very informative.
We completely agree with the reviewer that comparative approaches are critical to understanding biological mechanisms, and are excited by the increasing possibilities to perform not only sequence and descriptive comparisons but functional studies across a range of emerging model organisms. We hope that more and more researchers in cell and molecular biology will profit from experimental tools and techniques now available in such species, and to pioneer new ones. Of course, and he/she rightly points out, conclusions are currently limited by the number of species studied, but comparisons between two judiciously chosen species can already be very informative. Thus, in our study, the use of Xenopus and Clytia allowed us to make significant progress towards our main objective of understanding the cAMP-PKA paradox in the control of oocyte maturation; specifically by showing both that PKA phosphorylation of Clytia ARPP19 is lower in efficiency and that the phosphorylated protein has a lower effect on oocyte maturation than the Xenopus protein. As the reviewer points out, unravelling the exact mechanisms underlying these differences will require a large amount of additional work and is beyond the scope of the current study. Actually, we have embarked on several series of experiments to this end using some of the approaches listed in the Discussion. Specifically, we are testing the biochemical and functional properties of chimeric constructs containing the consensus PKA site from various species. This is a substantial undertaking which will require one to two years to complete, but is already giving some very interesting findings.
Reviewer #1: The figures and text could be slightly condensed down to about 6 figures.
We have reduced the number of figure panels but we prefer to maintain the number of figures, because the experimental data presented in them is essential to the interpretation of our results and the overall conclusions of the article. If the journal editor would like us to reduce the number of figures, we could do this by displacing Figure 4 and some panels of other figures (to then fuse some of them) to supplementary material, but this would be a pity.
______________II - Abstract__
As recommended by Reviewer #2, we have reworked the Abstract to make it more accessible to new readers, attempting to bring out more clearly and simply the main results and conclusions of the study. We correspondingly simplified and shortened the title of the article. Changes: Page 2.
____________III- Introduction points__
Reviewer #2: I believe that it would be interesting to include some time-references when introducing the prophase arrest of Clytia and Xenopus oocytes. How long is prophase arrest in Xenopus compared to Clytia or other organisms? How can this affect the prophase arrest mechanisms? It seems that the prophase arrest in Xenopus oocytes is found to be significantly more prolonged compared to Clytia and various other organisms, and also meiotic maturation proceeds much more rapidly in Clytia than in Xenopus. This should be indicated in the introduction with a short introduction of why, and not others, were these species chosen for this study.
Differences in timing of oocyte prophase arrest and in maturation kinetics across animals are indeed highly relevant in relation to the underlying biochemical mechanisms. Unfortunately, not enough information is currently available concerning the duration of the successive phases of oocyte prophase arrest across species to make any meaningful correlations with PKA regulation of maturation initiation. We have nevertheless expanded the Introduction to cover this issue as follows:
- We start the introduction by mentioning how the length of the prophase arrest varies across species. __Changes: Page 3, lines 5-11. __
- We have added examples of species which likely have similar durations of prophase arrest but show cAMP-stimulated vs cAMP-inhibited release. Changes:____ Page 4, lines 28-35.
- We have specified the temporal differences in meiotic maturation in Xenopus (3-7 hrs) and Clytia (10-15 min). Changes: Page 5, lines 32-33. Reviewer #2: why, and not others, were these species [Xenopus, Clytia] chosen for this study. A brief justification is included in lines 1-page 5 "..a laboratory model hydrozoan species well suited to oogenesis studies", but it does not explain why this and not other hydrozoan species like Hydra, that has also been used for meiosis studies.
As requested by Reviewer #2, fuller details are now included about the advantages of Clytia compared to other hydrozoan species, citing several articles and recent reviews here and also in the Discussion. Changes: Page 5, lines 21-32 & 37-39.
Hydra is a classic cnidarian experimental species and has proved an extremely useful model for regeneration and body patterning, but is not suitable for experimental studies on oocyte maturation because spawning is hard to control and fully-grown oocytes cannot easily be obtained, manipulated or observed. In contrast many hydromedusae (including Clytia, Cytaeis, and Cladonema) have daily dark/light induced spawning and accessible gonads, so provide great material for studying oogenesis and maturation. Of these, Clytia has currently by far the most advanced molecular and experimental tools.
Reviewer #2: The proteins MAPK is not introduced properly, as it is first mentioned in the results section in line 12. Given the importance of the results provided with it, it should be presented in the introduction prior to the results section.
As requested by Reviewer #2, the involvement of MAPK activation during Xenopus oocyte meiotic maturation is now introduced, explaining how its phosphorylation serves as a marker of Cdk1 activation. Changes: Page 5, lines 1-5.
Reviewer #2: *These sentences need a more elaborate explanation: Page 4 Lines 16-17 "... no role for cAMP has been detected in meiotic resumption, which is mediated by distinct signaling pathways" Which pathways? *
We now give the example of the well-characterized pathway Gbg-PI3K pathway for oocyte maturation initiation in the starfish. Changes: Page 4, lines 1-15.
Reviewer #2: Page 4 line 34-39. Introduction indicates that the phosphorylation of ARPP19 on S67 by Gwl is a poorly understood molecular signaling cascade (line 34). However, the positive role of ARPP19 on Cdk1 activation, through the S67 phosphorylation by Gwl, appears to be widespread across all eukaryotic mitotic and meiotic divisions studied (lines 36-37). These two sentences seem a little contradictory. If the general pathway has been identified but the signaling cascade is still not well described, please indicate that in a clearer way.
We apologise that the wording we used was not clear and implied that the mechanisms of PP2A inhibition by Gwl-phosphorylated ARPP19 were poorly understood. On the contrary, they are very well studied. The part that remains mysterious concerns the upstream mechanisms. We have reworded the paragraph to make this point unambiguous. Changes: Page 5, lines 1-8.
______________IV - Results__
Reviewer #2: The text of the results is generally well described; however, all the sections start with a long introductory paragraph. I believe this facilitates the contextualization of the experiments, but please try to summarize when possible. For example, in page 5 lines 12-25, or page 7 lines 30-37, are all introduction information.
As requested by Reviewer #2, we have shortened or removed the introductory passages of the Results section paragraphs, which were redundant with the information given in the introduction. We did not restrict to the two examples cited by the reviewer, but have shortened all the Results passages that repeat information already provided in the Introduction. Changes: Page 7, lines 3-4 & 14-16 & 36-37 - Page 8, lines 12-15 - Page 8, lines 37-40 & Page 9, lines 1-6.
Reviewer #2: Page 7, Lines 14-19 present a general conclusion of the findings explained in lines 20-27. I think these results are important and they should be explained better, in my opinion they are slightly poorly described.
We have followed the reviewer's recommendation. The explanation of the experiments and the results are more detailed and the paragraph ends with a general conclusion which came too early in the previous version. Changes: Page 8, lines 22-24 & 32-34.
Reviewer #2: Page 8, lines 16-17: "It was not possible to increase injection volumes or protein concentrations without inducing high levels of non-specific toxicity". What are the non-specific toxicity effects? How was this addressed? What fundaments this conclusion?
Clytia oocytes are relatively fragile. Sensitivity of oocytes to injection varies between batches, while in general increasing injection volumes or protein concentrations increases the levels of lysis observed. We do not know exactly what causes this but lysis can happen either immediately following injection or during the natural exaggerated cortical contraction waves that accompany meiotic maturation, suggesting that it relates to mechanical trauma. We have expanded this paragraph and the legend of Fig. 3C to explain these injection experiments more fully in the text and to clarify these issues. Changes: Page 9, lines 16-29 - Page 32, lines 34-41 & Page 33, lines 1-11 - Supplementary Table 1.
Same paragraph: Lines 25-27 of page 8. Text reads, "These results suggest that PP2A inhibition is not sufficient to induce oocyte maturation in Clytia, although we cannot rule out that the quantity of OA or Gwl thiophosphorylated ARPP proteins delivered was insufficient to trigger GVBD.". Please provide evidence if higher concentrations of OA or Gwl were tested to state this conclusion.
As explained above, we could not increase the concentrations of ARPP19 protein beyond 4mg/ml. It is important to note that at the same concentration, both Clytia and Xenopus proteins induce activation of Cdk1 and GVBD in the Xenopus oocyte.
Concerning OA, it is well documented in many systems including Xenopus, starfish and mouse oocytes as well as mammalian cell cultures, that high concentrations lead to cell lysis/apoptosis as a result of a massive deregulation of protein phosphorylation (Goris et al, 1989; Rime & Ozon, 1990; Alexandre et al, 1991; Boe et al, 1991; Gehringer, 2004; Maton el al, 2005; Kleppe et al, 2015). Specific tests in Xenopus oocytes, have shown that injecting 50 nl of 1 or 2 mM OA specifically inhibits PP2A, while injecting 5 mM also targets PP1 and higher OA concentrations inhibit all phosphatases. For these reasons, we did not increase OA concentrations over 2 mM. When injected in Xenopus oocyte at 1 or 2 mM, OA induces Cdk1 activation, GVBD but then the cell dies because PP2A has multiple substrates essential for cell life. When injected at 2 mM in Clytia oocytes, OA does not induce Cdk1 activation nor GVBD but promotes cell lysis. This supports the conclusion that 2 mM OA is sufficient to inhibit PP2A (and possibly other phosphatases) but that PP2A inhibition is not sufficient to induce oocyte maturation in Clytia.
We have reworded the relevant text to make these points clearer. The previous statement that “we cannot rule out that the quantity of OA or Gwl thiophosphorylated ARPP proteins delivered was insufficient to trigger GVBD” has been removed because it was unnecessarily cautious in the context of the literature cited above, as now fully explained. Changes: Page 9, lines 31-35 - Page 32, lines 34-41 & Page 33, lines 1-11 - Supplementary Table 1.
References: Alexandre et al, 1991, doi: 10.1242/dev.112.4.971; Boe et al, 1991, doi: 10.1016/0014-4827(91)90523-w; Gehringer, 2004, doi: 10.1016/s0014-5793(03)01447-9; Goris et al, 1989, doi: 10.1016/0014-5793(89)80198-x; Kleppe et al, 2015, doi: 10.3390/md13106505; Maton el al, 2005, doi: 10.1242/jcs.02370; Rime & Ozon, 1990, doi: 10.1016/0012-1606(90)90106-s
Reviewer #2: Lines 12-13: the sentence "This in vitro assay thus places S81 as the sole residue in ClyARPP19 for phosphorylation by PKA." is overstated. As not all residues had been tested, please indicate that "it is likely that" or "among the residues tested", in contrast to "the sole residue in ClyARPP19".
We realise that we had not explained clearly enough how the thiophosphorylation assay works. In this assay, γ-S-ATP will be incorporated into any amino acid of ClyARPP19 phosphorylatable by PKA. The observed thiophosphorylation of the wild-type protein, demonstrates that one or more residues are phosphorylated by PKA. This thiophosphorylation was completely prevented by mutation of a single residue, S81. This experiment thus shows that S81 is entirely responsible for phosphorylation by PKA in this assay. We have rewritten this section more clearly. Changes: Page 10, lines 18-28.
______________V - Figures and text related to the figures__
Figure 1A
Reviewer #2: *Why is mouse not included in Figure 1A? Although it might be very similar to human, given that mouse is the species that is most commonly use as a mammalian model, I believe it could be included. However, this is optional upon decision by the authors. *
We have replaced the human sequence in Figure 1A with the mouse sequence as suggested. The sequences of each of the mouse and human ENSA/ARPP19 proteins are indeed virtually identical across mammals. Changes: Fig. 1A.
Figure 1C
Reviewer #2: *There should be a better explanation in the text of the results sections for the image included in in Fig1 C. Note that Clytia is not a commonly used species, therefore images should be properly explained for general readers. Please indicate in the text that ClyARPP19 mRNA is expressed in previtellogenic oocytes and not in vitellogenic, plus any additional information needed to understand the image. In addition, the detection of ARPP19 in the nerve rings is intriguing. This is mentioned in the discussion section, any idea of its function there? Please include some additional information or additional references, if they exist. *
We have expanded the explanations of Fig. 1C in the text and in the figure legend. We have also added cartoons to the figure to help readers understand the organisation of the Clytia jellyfish and gonad. As now explained, ClyARPP19 mRNA is detected in oocytes at all stages, but the signal is much stronger in pre-vitellogenic oocytes because all cytoplasmic components including mRNAs are significantly diluted by high quantity of yolk proteins as the oocytes grow to full size. Changes: page 7, line 40 & page 8, lines 1-9 - Fig. 1C - Legend page 31, lines 19-31.
Nothing is known about the function of ARPP19 in the Clytia nervous system. The only data linking ARPP19 and the nervous system concerns mammalian ARPP16, an alternatively spliced variant of ARPP19. ARPP16 is highly expressed in medium spiny neurons of the striatum and likely mediates effects of the neurotransmitter dopamine acting on these cells (Andrade et al, 2017; Musante et al, 2017). This point is included in the Discussion in relation to the hypothesis that PKA phosphorylation of ARPP19 proteins in animals first arose in the nervous system and only later was coopted into oocyte maturation initiation. Changes: page 16, lines 12-13 & 17-20 - page 19, lines 6-9.
Figure 2A
Reviewer #1: Fig. 2A (and similar plots in subsequent figures): is it really necessary to cut the x axis? Would it be possible to indicate the number of oocytes for each experiment (maybe in the legend in brackets)?
As requested by reviewer #1, the x-axis is no longer cut. The number of oocytes for each experiment is now provided in the legend of Fig. 2A and in similar plots of Fig. 5A and 5D. Changes: Fig. 2A - Legends page 31, lines 37-38 (Fig. 2A), page 33, line 25 (Fig. 5A) - page 33, line 34 (Fig. 5D).
Figure 2D-E (as well as Figure 6C-D and Figure 8B-C)
Reviewer #1: *Fig. 2D (and all similar plots below): I am lacking the discrete data points that were measured. Without these it is impossible to evaluate the fits. The half-times shown in 2E are somewhat redundant, and the information could be combined on a single plot. *
We added all the data points to the concerned plots: 2D, 6C and 8B. As recommended by reviewer #1, we combined on a single plot the phosphorylation levels and the half-times. 2D-E => 2D, 6C-D => 6C and 8B-C => 8B. Changes: Figs 2D, 6C and 8B - Legends page 32, lines 9-14 (Fig. 2D), page 34, lines 24-30 (Fig. 6C) - page 35, lines 13-18 (Fig. 8B).
Figure 3A and 3B
Reviewer #1: Fig. 3: why is the blot for PKA substrates cut into 3 pieces? It would be clearer to show the entire membrane.
In western blot experiments using Clytia oocytes, the amount of material was limited so the membranes were cut into three parts. The central part was incubated sequentially in distinct antibodies. We finally incubated all three parts of the membrane with the anti-phospho-PKA substrate antibody to reveal the full spectrum of proteins recognized by this antibody. The 3 pieces in Fig. 3A therefore together make up the same original membrane. We had separated them on the figure to make it clear that the membrane had been cut. In the new presentation, the 3 pieces are shown next to each other, making it clear that all the membrane is present, with dotted lines indicating the cut zone as explained in the legend. Changes: Fig. 3A and 3B - Legend page 32, lines 22-25 (Fig. 3A), lines 30-33 (Fig. 3B) - Page 24, lines 3-6 (Methods).
Figure 3C
Reviewer #2: Fig. 3C needs a better explanation in the text. The way these graphs are presented is somehow confusing. The meaning of the dots is not self-explanted in the graph, and it seems that each experiment was done independently but then the complete set of results is presented. Legend says that "each dot represents one experiment" but this is difficult to read as in every analysis the figure also indicates the average and the total number of oocytes. If authors wish so, they can keep the figure as it is, but then please explain this graph better in the text, and please include statistical analysis. These results are very robust, but a comparison between the number of oocytes that go through spontaneous GVBD of lysis in the different conditions will benefit their understanding.
This figure is intended to provide an overview of all the Clytia oocyte injection experiments that we performed, for which full details are given in Supplementary Table 1. Since these experiments were not equivalent in terms of exact timing and types of observation (or films) made and oocyte sensitivity to injection -as ascertained by buffer injections-, it is not justified to make statistical comparisons between groups. We apologise that the presentation was misleading in this respect and hope that the new version is easier to understand. We removed from the figure the average percentage of maturation for each condition between experiments to avoid any misunderstanding of the nature of the data, and rather represent the values of each experiment independently. We also now explain the data included in the figure fully in the text and figure legend. Changes: Page 9, lines 16-39 - Fig. 3C and Supplementary Table 1 - Legend page 32, lines 34-41 & page 33, lines 1-11.
Reviewer #2: Also, please provide in the text a plausible explanation for the cause of oocyte lysis for all experimental conditions (Fig 3C). Given that in the control experiments with buffer this effect is also observed in some oocytes, please explain if this is caused by a mechanical disruption of the oocyte during the injection. In contrast, okadaic acid induces the lysis in all the 14/14 oocytes analyzed, is this due also to the mechanical approach? Or is there other reason more related to the PP2A inhibition? Please explain.
These points are treated above in the response to this reviewer concerning the Results section.
Figure 5
Reviewer #2: In Figure 5 D-F, cited in page 9 lines 35-35. Can you provide an explanation of why the time course of meiosis resumption was delayed?
The binding partners/effectors of XeARPP19-S109D that are involved in maintaining the prophase arrest have not yet been identified. The most probable explanation of the delay in meiotic maturation induced by ClyARPP19-S109D is that Clytia protein recognizes less efficiently these unknown ARPP19 effectors that mediate the prophase arrest. As a result, maturation would be delayed, but not blocked. This explanation was provided in the Discussion (page 17, lines 14-17) and is now mentioned in the Results section. Changes: page 11, lines 16-19.
______________VI - Discussion__
Reviewer #2: Although it presents highly interesting suggestions, discussion may border on being overly speculative, especially from line 37 of page 15 till the end.
We agree and have reduced the speculation in this part of the discussion, in particular regrouping and reformulating ideas about evolutionary scenarios in a single paragraph. Changes: page 17, lines 37-41 - page 18, lines 1-41 - page 19, lines 1-18.
SUMMARY - ____Point by point responses to individual reviewers’ comments in their order of appearance.
Reviewer 1
-
The figures and text could be slightly condensed down to about 6 figures. We have reduced the number of figure panels but we prefer to maintain the number of figures, because the experimental data presented in them is essential to the interpretation of our results and the overall conclusions of the article. If the journal editor would like us to reduce the number of figures, we could do this by displacing Figure 4 and some panels of other figures (to then fuse some of them) to supplementary material, but this would be a pity.
-
The exact mechanisms responsible for the reduced effect of PKA phosphorylation remain relatively vaguely defined. Indeed, in their Discussion the authors list a number of experimental approaches to address this - but I understand that these would all involve substantial efforts to address. In particular, testing chimeric constructs around the consensus PKA site and from multiple species could be very informative. As the reviewer points out, unravelling these exact mechanisms will require a large amount of additional work and is beyond the scope of the current study.
-
2A (and similar plots in subsequent figures): is it really necessary to cut the x axis? Would it be possible to indicate the number of oocytes for each experiment (maybe in the legend in brackets)? Fig. 2A has been changed in line with the reviewer's request (as well as similar plots in Fig. 5A and 5D). Changes: Fig. 2A - Legends page 31, lines 37-38 (Fig. 2A), page 33, line 25 (Fig. 5A) - page 33, line 34 (Fig. 5D).
-
2D (and all similar plots below): I am lacking the discrete data points that were measured. Without these it is impossible to evaluate the fits. The half-times shown in 2E are somewhat redundant, and the information could be combined on a single plot. Fig. 2D has been changed in line with the reviewer's request (as well as similar plots in Figs 6C-D and 8B-C). Changes: Fig. 2D, 6C and 8B - Legends page 32, lines 9-14 (Fig. 2D), page 34, lines 24-30 (Fig. 6C) - page 35, lines 13-18 (Fig. 8B).
-
3: why is the blot for PKA substrates cut into 3 pieces? It would be clearer to show the entire membrane. In western blot experiments using Clytia oocytes, the amount of material was limited so the membranes were cut into three parts. The central part was incubated sequentially in distinct antibodies. We finally incubated all three parts of the membrane with the anti-phospho-PKA substrate antibody to reveal the full spectrum of proteins recognized by this antibody. The 3 pieces in Fig. 3A therefore together make up the same original membrane. In the new presentation, the 3 pieces are shown next to each other, making it clear that all the membrane is present, with dotted lines indicating the cut zone as explained in the legend. Changes: Fig. 3A and 3B - Legend page 32, lines 22-25 (Fig. 3A), lines 30-33 (Fig. 3B) - Page 24, lines 3-6 (Methods).
Reviewer 2
-
Abstract needs to be simplified if wants to reach a broader range of readers. We have reworked the Abstract to make it more accessible to new readers. Changes: Page 2.
-
It would be interesting to include some time-references when introducing the prophase arrest of Clytia and Xenopus oocytes. This should be indicated in the introduction with a short introduction of why, and not others, were these species chosen for this study. We have expanded the Introduction to cover the issue of time-references. Fuller details are now included about the advantages of Clytia compared to other hydrozoan species. Changes: Page 3, lines 5-11, page 4, lines 28-35, page 5, lines 32-33, page 5, lines 21-32 & 37-39.
-
The proteins MAPK is not introduced properly, as it is first mentioned in the results section. The involvement of MAPK activation during Xenopus oocyte meiotic maturation is now introduced. Changes: Page 5, lines 1-5.
-
Page 4 Lines 16-17 "... no role for cAMP has been detected in meiotic resumption, which is mediated by distinct signaling pathways" Which pathways? We now give the example of the well-characterized pathway Gbg-PI3K pathway for oocyte maturation in starfish, also mentioning that in many species the pathways are still unknown. Changes: Page 4, lines 1-15.
-
Page 4 line 34-39. Introduction indicates that the phosphorylation of ARPP19 on S67 by Gwl is a poorly understood molecular signaling cascade (line 34). However, the positive role of ARPP19 on Cdk1 activation, through the S67 phosphorylation by Gwl, appears to be widespread across all eukaryotic mitotic and meiotic divisions studied (lines 36-37). These two sentences seem a little contradictory. The mechanisms of PP2A inhibition by Gwl-phosphorylated ARPP19 are very well studied. The part that remains mysterious concerns the upstream mechanisms. We have reworded the paragraph to make this point unambiguous. Changes: Page 5, lines 1-8.
-
Why is mouse not included in Figure 1A? We have replaced the human sequence in Figure 1A with the mouse sequence. Changes: Fig. 1A.
-
1C: There should be a better explanation in the text of the results sections for the image included in in Fig1 C. Please indicate in the text that ClyARPP19 mRNA is expressed in previtellogenic oocytes and not in vitellogenic. We have expanded the explanations of Fig. 1C in the text. We have also added cartoons to the figure to help readers understand the organisation of the Clytia jellyfish and gonad. As now explained, ClyARPP19 mRNA is detected in oocytes at all stages, but the signal is much stronger in pre-vitellogenic oocytes because all cytoplasmic components are significantly diluted by high quantity of yolk proteins. Changes: page 7, line 40 & page 8, lines 1-9 - Fig. 1C - Legend page 31, lines 19-31.
-
In addition, the detection of ARPP19 in the nerve rings is intriguing. Any idea of its function there? The only data linking ARPP19 and the nervous system concerns a mammalian variant of ARPP19 that is highly expressed in the striatum. This point is included in the Discussion. __Changes: __page 16, lines 12-13 & 17-20 - page 19, lines 6-9.
-
Figure 3C. The way these graphs are presented is somehow confusing. If authors wish so, they can keep the figure as it is, but then Also, please provide in the text a plausible explanation for the cause of oocyte lysis for all experimental conditions. please explain this graph better in the text, and please include statistical analysis. This figure is intended to provide an overview of all the Clytia oocyte injection experiments, for which full details are given in Supplementary Table 1. We have modified the figure and now clarified this fully in the text and figure legend. Clytia oocytes are relatively fragile. Sensitivity of oocytes to injection varies between batches, while in general increasing injection volumes or protein concentrations increases the levels of lysis observed. We do not know exactly what causes this but it probably relates to mechanical trauma. We now explain these injection experiments more fully in the text. Changes: Page 9, lines 16-39 - Fig. 3C and Supplementary Table 1 - Legend page 32, lines 34-41 & page 33, lines 1-11.
-
In Figure 5 D-F, cited in page 9 lines 35-35. Can you provide an explanation of why the time course of meiosis resumption was delayed? The most probable explanation is that Clytia protein recognizes less efficiently the unknown ARPP19 effectors that mediate the prophase arrest in Xenopus. This explanation is provided in the Results section. Changes: page 11, line 16-19.
-
All the sections start with a long introductory paragraph. I believe this facilitates the contextualization of the experiments, but please try to summarize when possible. As requested, we have shortened or removed the introductory passages of the Results section paragraphs, which were redundant with the information given in the introduction. Changes: Page 7, lines 3-4 & 14-16 & 36-37 - Page 8, lines 12-15 - Page 8, lines 37-40 & Page 9, lines 1-6.
-
Page 7, Lines 14-19 present a general conclusion of the findings explained in lines 20-27. I think these results are important and they should be explained better, in my opinion they are slightly poorly described. The explanation of the experiments and the results are now more detailed and the paragraph ends with a general conclusion which came too early in the previous version. Changes: Page 8, lines 22-24 & 32-34.
-
Page 8, lines 16-17: "It was not possible to increase injection volumes or protein concentrations without inducing high levels of non-specific toxicity". What are the non-specific toxicity effects? How was this addressed? What fundaments this conclusion? As explained above, increasing injection volumes or protein concentrations increases the levels of lysis observed due probably to mechanical trauma. But it is important to note that at the same concentration, both Clytia and Xenopus proteins induce activation of Cdk1 and GVBD in the Xenopus oocyte. Changes: Page 9, lines 16-29 - Page 32, lines 34-41 & Page 33, lines 1-11 - Supplementary Table 1.
-
Lines 25-27 of page 8. "These results suggest that PP2A inhibition is not sufficient to induce oocyte maturation in Clytia, although we cannot rule out that the quantity of OA or Gwl thiophosphorylated ARPP proteins delivered was insufficient to trigger GVBD." Please provide evidence if higher concentrations of OA or Gwl were tested to state this conclusion. High OA concentrations lead to cell lysis/apoptosis as a result of a massive deregulation of protein phosphorylation. For these reasons, we cannot increase OA concentrations over 2 µM. When injected in Xenopus oocyte at 1 or 2 µM, OA induces Cdk1 activation, but then the cell dies because PP2A has multiple substrates essential for cell life. When injected at 2 µM in Clytia oocytes, OA does not induce Cdk1 activation but promotes cell lysis. This supports the conclusion that 2 µM OA is sufficient to inhibit PP2A but that PP2A inhibition is not sufficient to induce oocyte maturation in Clytia. We have reworded the relevant text. Changes: Page 9, lines 31-35 - Page 32, lines 34-41 & Page 33, lines 1-11 - Supplementary Table 1.
-
Lines 12-13: the sentence "This in vitro assay thus places S81 as the sole residue in ClyARPP19 for phosphorylation by PKA." is overstated. As not all residues had been tested, please indicate that "it is likely that" or "among the residues tested", in contrast to "the sole residue in ClyARPP19". The observed thiophosphorylation of the wild-type protein demonstrates that one or more residues are phosphorylated by PKA. This thiophosphorylation was completely prevented by mutation of a single residue, S81. This experiment thus shows that S81 is entirely responsible for phosphorylation by PKA in this assay. We have rewritten this section more clearly. Changes: Page 10, lines 18-28.
-
Some parts of the discussion are a bit speculative. We have reduced the speculation in this part of the discussion, in particular regrouping and reformulating ideas about evolutionary scenarios into a single paragraph. Changes: page 17, lines 37-41 - page 18, lines 1-41 - page 19, lines 1-18.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
*Reviewer #1 (Evidence, reproducibility and clarity (Required)): *
*REVIEW COMMENT *
*The article titled "The tRNA thiolation-mediated translational control is essential for plant immunity" by Zheng et al. highlights the critical role of tRNA thiolation in Arabidopsis plant immunity through comprehensive analysis, including genetics, transcriptional, translational, and proteomic approaches. Through their investigation, the authors identified a cbp mutant, resulting in the knockout of ROL5, and discovered that ROL5 and CTU2 form a complex responsible for catalyzing the mcm5s2U modification, which plays a pivotal role in immune regulation. The findings from this study unveil a novel regulatory mechanism for plant defense. Undoubtedly, this discovery is innovative and holds significant potential impact. However, before considering publication, it is necessary for the authors to address the various questions raised in the manuscript concerning the experiments and analysis to ensure the reliability of the study's conclusions. *
__Response: Thank you very much for your support and suggestions! __
*Here is Comments: *
*Line 64-65: *
*The author mentioned that 'While NPR1 is a positive regulator of SA signaling, NPR3 and NPR4 are negative regulators.' However, several recent discoveries are suggesting that it may not be a definitive fact that NPR3 and NPR4 are negative regulators. Therefore, I recommend the authors to review this section in light of the findings from recent papers and make necessary edits to reflect the most current understanding. *
__Response: Thank you for your feedback. Since we mainly focused on NPR1 in this study, we removed this sentence to avoid confusion. We provided additional information about NPR1 in the Introduction section to emphasize the importance of NPR1 (Line 64-68). __
*Line 182- & Figure 4: *
*The author conducted RNA-seq, Ribo-seq, and proteome analysis. Describing the analysis as "transcriptional and translational" using RNA-seq and proteome data seems not entirely accurate. Proteome data compared with RNA-seq not only reflects translational changes but may also encompass post-translational regulations that contribute to the observed differences. To maintain precision, the title of this section should either be modified to "transcriptional and protein analysis" or, alternatively, compare RNA-seq and Ribo-seq data to demonstrate the transcriptional and translational changes more explicitly. *
__Responses: Thank you for your suggestions. We agree with you and thus change the description accordingly throughout the manuscript. __
*Line 229-235 and Figure 5C: *
*The interpretation of Figure 5C's polysome profiling results is inconclusive. There does not seem to be a noticeable difference in polysomal fractions between the cab mutant and CAM. The observed differences in the overlay of multiple polysome fractions between cab and COM could be primarily influenced by baseline variations rather than a significant decrease in the polynomial fractions in cpg. Therefore, it is necessary to carefully review other relevant papers that discuss polysome fraction data and their analysis. By doing so, the authors can make the appropriate corrections to ensure accurate interpretations. *
__Responses: Thank you for your comments. We agree that the difference between cgb and COM was not dramatic visually. This is a common feature of ____polysome profiling assay (e.g. Extended Data Fig. 1f in Nature 545: 487–490; Fig. 1c in Nature Plants, 9: 289–301). In our case, the difference between polysome fractions was unlikely due to the baseline variation for two reasons. First, baseline variation affects monosome and polysome fractions in the same way. However, our results showed the monosome fraction of cgb is higher than that of COM, whereas the polysome fraction of cgb is lower than that of COM. Second, this result was repeatedly detected. For better visualization, we adjusted the scale of Y axis in the revised manuscript (Figure 5D). __
*Line 482 Ion Leakage assay: *
I could not find the ion leakage assay in this manuscript, so I wonder why it is mentioned.
__Response: We are sorry for the mistake. The Ion leakage data were included in previous visions of the manuscript. We removed the data but forgot to remove the corresponding method in the present version. __
*Materials and Methods: *
*To enhance the reproducibility of the study, the authors should provide a more detailed description of the materials and methods, especially for critical experiments like the Yeast-two-hybrid assays. Clear documentation of specific reagents, strains, and protocols used, along with information on controls, will bolster the validity of the results and facilitate future research in this area. *
__Response: Thank you for your suggestions. We provided more details in the methods. For y____east two-hybrid assays, the vector information was included in “Vector constructions” section. __
*Minor Point: *
Line 61: There is a space between ')' and '.', which needs to be edited.
Response: The space was deleted.
*Reviewer #1 (Significance (Required)): *
*This study holds significant importance within the field of plant immunity research. The authors have made valuable contributions through their comprehensive analysis, encompassing genetics, transcriptional, translational, and proteomic approaches, to elucidate the critical role of tRNA thiolation in plant immunity. One of the major strengths of this study lies in its ability to shed light on a previously unknown regulatory mechanism for plant defense. By identifying the cbp mutant and investigating the role of ROL5 and CTU2 in catalyzing the mcm5s2U modification, the authors have unveiled a novel aspect of plant immune regulation. This innovative discovery provides a deeper understanding of the intricate molecular processes governing immunity in plants. *
*Moreover, the study's findings are not limited to the immediate field of plant immunity but also have broader implications for the scientific community. By employing diverse methodologies, the authors have demonstrated how tRNA thiolation exerts control over both transcriptional and translational reprogramming, revealing intricate links between these processes. This integrative approach sets a precedent for future research in the field of plant molecular biology and opens up new avenues for investigating other aspects of immune regulation. *
In terms of its relevance, the study's findings have the potential to captivate researchers across various disciplines, such as plant biology, molecular genetics, and translational research. The insights gained from this study may inspire researchers to explore further the role of tRNA in other regulation.
Response: Thank you very much for your positive comments and support!
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
The authors presented an intriguing and previously unknown mechanism that the tRNA mcm5s2U modification regulates plant immunity through the SA signaling pathway, specifically by controlling NPR1 translation. The manuscript was well-written and logically structured, allowing for a clear understanding of the research. The authors provided strong and persuasive data to support their key claims. However, further improvement is required to strengthen the conclusion that mcm5s2U regulates plant immunity by controlling NPR1 translation.
__Response: Thank you very much for your positive comments and support! __
Major comments:
-
NPR1 translation should be examined to verify the Mass Spec (Figure 5B) and polysome profiling data (Figure 5D) by checking the NPR1 protein and mRNA level using antibodies and qPCR, respectively, in the cgb mutant background to establish a concrete confirmation of CGB regulation in NPR1 translation. * Response: This is a very constructive suggestion. We performed these experiments and found that the transcription levels of NPR1 were similar between COM and cgb both before and after ____Psm_ES4326 infection (Figure S2), _which is consistent with RNA-Seq data____. Consistent with the Mass Spec and polysome profiling data, _the NPR1 protein level was much higher in COM than that in cgb(Figure 5C) after _Psm____ ES4326 infection. Together, these data further supported our conclusion that translation of NPR1 is impaired in cgb. __
-
Analyzing the genetic epistasis of CGB and NPR1 to check if CGB regulates plant immunity through the NPR1-dependent SA signal pathway. If the authors' claim is valid, I would expect no addictive effect on bacterial growth in the cgb/npr1 double mutant compared to the single mutants. Due to the broad impact of CGB on plant signaling (Figures 4E and 4F), the SA protection assay, which concentrates on the SA signal pathway, needs to be tested in WT, cgb and npr1 plants as an alternative assay to the genetic epistasis analysis. I expect that the SA-mediated protection is also compromised in cgb mutant background.*
__Response: Thank you for your suggestions. We did examine the growth of Psm ES4326 in the cgb npr1double mutant and found that cgb npr1 was significantly more susceptible than npr1 and cgb (Figure below). Although the additive effects were observed, this result was not against our conclusion for the following reasons. First, the translation of NPR1 was reduced rather than completely blocked in cgb. In other words, NPR1 still has some function in cgb. But in the cgb npr1 double mutant, the function of NPR1 is completely abolished, which explains why cgb npr1 was more susceptible than cgb. Second, in addition to NPR1, some other immune regulators (such as PAD4, EDS5, and SAG101) were also compromised in cgb(Figure 5B), which explained why cgb npr1 was more susceptible than npr1. Since the result of the genetic analysis was not intuitive, we decided not to include it in the manuscript. __
__SA signaling is known to regulate both basal resistance and systemic acquired resistance (SA-mediated protection). We have shown that cgb is defective in the defect of basal resistance, which cgb is sufficient to support our conclusion that the tRNA thiolation is essential for plant immunity. We agree that it is expected that the SA-mediated protection is also compromised in cgb. We will test this in the future study. __
-
Could the authors comment on why using COM instead of WT as a control to perform the majority of the experiments? __Response: Thank you for your comments. In addition to ROL5, the cgb mutant may have other mutations compared with WT.COM is a complementation line in the cgb background. Therefore, the genetic background between COM and cgb may be more similar than that of WT and cgb*. __
-
In Figure 5E, why does ACTIN2 have an enhanced translation while NPR1 shows a compromised one in cgb mutant? How does the mcm5s2U distinguish NPR1 and ACTIN2 codons? Does mcm5s2U modification have both positive and negative roles in regulating protein translation? __Response: Thank you for raising this question. As previously reported, _loss of the mcm5s2U modification causes ribosome pausing at AAA and CAA codons. Therefore, the translation of the mRNAs with more _GAA/CAA/AAA codons (called s2 codon) is likely to be affected more dramatically in cgb*. We have analyzed the percentage of s2 codon at whole-genome level (Figure below). The average percentage is 8.5%, while NPR1 contains 10.1% s2 codon and actin contains only 4.5% s2 codon. When fewer ribosomes are used for translation of the mRNAs with high s2 codon percentage, more ribosomes are available for translation of the mRNAs with low s2 codon percentage, which may account for the enhanced translation efficiency. To focus on NPR1 and to avoid confusion, we removed the ACTIN data in the revised manuscript. __
-
Specify the protein amount used for the in vitro pull-down assay and agrobacteria concentration used for the tobacco Co-IP assay in the protocol section.*
Response: We added this information in Method section in the revised manuscript.
-
- Delete the SA quantification and Ion leakage assay in the protocol, which are not used in the study.*
__Response: We are sorry for the mistake. The ____SA quantification and ion leakage data were included in previous visions of the manuscript. We removed the data but forgot to remove the corresponding method in the present version. We deleted them in the revised manuscript. __
- The strain Pst DC3000 avrRPT2 was not used in this study. Please remove it.*
Response: We are sorry for the mistake. ____The strain Pst DC3000 avrRPT2 was used for ion leakage assay in previous visions of the manuscript. We deleted it in the revised manuscript.
- In Figure 5F, did the 59 genes tested overlap with the 366 attenuated proteins in the cgb mutant? Were the 59 genes translationally regulated?*
__Response: Thank you for your suggestion. Venn diagram analysis revealed that 12 genes (about 20%) are also attenuated proteins, suggesting that ____the mcm5s2U modification regulates the translation of some SA-responsive genes. __
Reviewer #2 (Significance (Required)):
The authors' study is significant as it establishes the first connection between tRNA mcm5s2U modification and plant immunity, specifically by regulating NPR1 protein translation. This research expands our understanding of the biological role of tRNA mcm5s2U modification and highlights the importance of translational control in plant immunity. It is likely to captivate scientists working in this field.
Response: Thank you very much for your positive comments and support!
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
In this manuscript, the authors identified a cgb mutant that carries a mutation in the ROL5 gene Both the cgb mutant and the newly created rol5-c mutant are susceptible to the bacterial pathogen Psm. The authors showed that ROL5 interacts with CTU2, the Arabidopsis homologous protein of the yeast tRNA thiolation enzyme NCS2. A ctu2-1 mutant is also susceptible to Psm, suggesting the tRNA thiolation may play a role in plant immunity. Indeed, tRNA mcm5S2U levels are undetectable in rol5-c and ctu2-1 mutants. The authors found that the cgb mutation significantly attenuated basal and Psm-induced transcriptome and proteome changes. Furthermore, it was found that the translation efficiency of a group of SA signaling-related proteins including NPR1 is compromised.
The manuscript provides solid evidence for the involvement of ROL5 and CTU2 in plant immunity using the rol5 and ctu2 mutants. The authors may consider the following suggestions and comments to improve the manuscript.
Response: Thank you very much for your support and suggestions!
- The function of the Elongator complex in tRNA modification/thiolation has been extensively studied. In Arabidopsis Elongator mutants, mcm5S2U levels are very low, similar to the levels in the rol5 and ctu2 mutants (Mehlgarten et al., 2010, Mol Microbiology, 76, 1082-1094; Leitner et al., 2015 Cell Rep). In elp mutants, the PIN protein levels are reduced without reduced mRNA levels (Leitner et al., 2015), indicating that Elongator-mediated tRNA modification is involved in translation regulation. The Elongator complex plays an important role in plant immunity, though the reduced mcm5S2U levels in elp mutants were not proposed as the exclusive cause of the immune phenotypes. In fact, it would be difficult to establish a cause-effect relationship between tRNA modification and immunity. These results should be discussed in the manuscript.* Response: Thank you very much for your insightful comment on the role of the ELP complex in tRNA modification and plant immunity. We added a paragraph ____discussing the ELP complex in the revised manuscript (Line 280-295).
__In addition to tRNA modification, the ELP complex has several other distinct activities including histone acetylation, α-tubulin acetylation, and DNA demethylation. Therefore, it is difficult to dissect which activity of the ELP complex contributes to plant immunity. However, the only known activity of ROL5 and CTU2 is to catalyze _tRNA thiolation. Considering that the elp, rol5, and ctu2 mutants are all defective in tRNA thiolation, it is likely the _tRNA modification activity of the ELP complex underlies its function in plant immunity. __
- The interaction between CTU2 and ROL5 in Y2H has previously been reported (Philipp et al., 2014). The same report also showed reduced tRNA thiolation in the ctu2-2 mutant using polyacrylamide gel. These results should be mentioned/discussed in the manuscript.*
__Response: Thank you for pointing them out. We added this information in the revised version (Line 146-147). __
- tRNA modification unlikely plays a unique role in plant immunity. It can be inferred that mutations affecting tRNA modification (rol5, ctu2, elp, etc.) would delay both internal and external stimulus-induced signaling including immune signaling.*
Response: We agree with you that tRNA modification has other roles in addition to plant immunity. In the Discussion section, we have mentioned that “it was found that tRNA thiolation is required for heat stress tolerance ____(Xu et al., 2020)____. ……It will also be interesting to test whether tRNA thiolation is required for responses to other stresses such as drought, salinity, and cold.” (Line276-279).
- It would be interesting to conduct statistical analyses on the genetic codons used in the CDSs whose translation was attenuated as described in the manuscript. Do these genes including NPR1 use more than average levels of AAA, CAA, and GAA codons? If not, why their translation is impaired?*
__Response: Thank you for your suggestion. We called _GAA/CAA/AAA codons s2 codon. We have analyzed the percentage of s2 codon at whole-genome level (Figure below). NPR1 does contain more s2 codon (10.1%) than the average level (8.5%). We are preparing another manuscript, which will report the relationship between _s2 codon and translation. __
**Referees cross-commenting**
It is important to put current research in the context of available knowledge in the field. The digram in Figure 3C shows that the Elongator complex functions upstream of ROL5 & CTU2 in modifying tRNA. The function of Elongator in plant immunity has been well established. The similarities and differences should be discussed. Additionally, it may no be a good idea to claim that the results are novel.
__Response: Thank you for your comments. We added a paragraph ____discussing the ELP complex in the revised manuscript (Line 280-295). The ELP complex catalyzes the cm5U modification, which is the precursor of mcm5s2U catalyzed by ROL5 and CTU2. In addition to tRNA modification, the ELP complex has several other distinct activities including histone acetylation, α-tubulin acetylation, and DNA demethylation. Therefore, it is difficult to dissect which activity of the ELP complex contributes to plant immunity. However, the only known activity of ROL5 and CTU2 is to catalyze tRNA thiolation. Considering that the elp, rol5, and ctu2 mutants are all defective in tRNA thiolation, it is likely the tRNA modification activity of the ELP complex underlies its function in plant immunity. Therefore, our study improved our understanding of the ELP complex in plant immunity. We have deleted the words “new” and “novel” throughout the manuscript. __
Reviewer #3 (Significance (Required)):
*The manuscript provides solid evidence for the involvement of ROL5 and CTU2 in plant immunity. However, the authors did not acknowledge the existing results about the Elongator complex that functions in the same pathway in modifying tRNA. The involvement of Elongator in plant immunity has been well established. The cause-effect relationship between tRNA modification and plant immunity is difficult to demonstrate. *
Response: We think that t____he cause-effect relationship between the activities of the ELP complex and plant immunity is difficult to demonstrate because the ELP complex has several distinct activities other than tRNA modification. However, since the only known activity of ROL5 and CTU2 is to catalyze tRNA thiolation, the cause-effect relationship between tRNA thiolation and plant immunity is clear, which indicated that ____the ____tRNA modification activity of the ELP complex contributes to plant immunity.
-
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
*We appreciate the valuable suggestions and the overall highly positive review of our manuscript. We have now included many suggestions provided by the reviewers, which have made our manuscript much stronger and more rigorous. One reviewer acknowledged, “This study uncovers sex-dependent mechanisms underlying cold sensitivity between male and female mice. The detailed IHC analysis of MHCII expression in DRG neurons is a clear strength of this study and supports flow cytometry results as well as existing literature. The specificity of MHCII expression on small diameter is well characterized and supported by conditional knockout mouse models of MHCII in TRVPV1-lineage neurons.” *
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
In this manuscript, Whitaker EE and co-authors implicate MHCII expression in DRG neurons in the resolution of pain following paclitaxel treatment. The authors demonstrate that CD4 T cells closely interact with DRG neurons, which also express MHCII proteins. They further characterize neuronal MHCII expression in naïve and paclitaxel treated mice in small diameter TRPV1+ neurons. Utilizing genetic animal models with MHCII knockout in TRPV1-lineage neurons, the authors highlight that loss of MHCII in TRPV1 neurons exaggerates cold sensitivity in naïve male mice, and in both sexes following paclitaxel treatment.
Major concerns:
The most pressing concern regarding this study is a lack of a vehicle control group. It is not appropriate to be comparing paclitaxel treated mice to naïve mice. Please include a vehicle treatment (cremophor:ethanol 1:1 diluted 1:3 in PBS) group for all experiments involving paclitaxel. This would also improve statistics as unpaired T tests comparing naïve vs paclitaxel is not convincing.
Figure 1A only includes representative images of a small number of T cells in presumable contact with DRG neurons in female Day 14 paclitaxel mice, but does not include images from other groups. Similarly, B-D show a single CD4+ T cell in contact with DRG neurons in Day 14 paclitaxel and naïve female mice. Please include quantification of the frequency of CD4+ T cells interacting with DRG neurons in the different experimental groups utilized in this study.
Please include entire blot for Figure 2A (or at least more of the blot). There is plenty of space in the figure and as it currently appears is not free from apparent manipulation.
The authors conclude that MHCII helps to suppress chemotherapy-induced peripheral neuropathy, resolving cold allodynia following paclitaxel treatment. To support this conclusion, I think it is necessary to include a time-course experiment highlighting whether cKO of MHCII in TRPV1 neurons indeed increases the duration for cold hypersensitivity to resolve following paclitaxel treatment.
Minor concerns:
The graphical abstract is misleading. The authors suggest paclitaxel is acting exclusively via TLR4 and that signaling is resolved at Day 14 which their data does not support. Please adjust to reflect findings from the experiments included in this study.
Figure 4 and 6 MHCII labelling is oversaturated in most of the images, creating a blurry hue in the representative images. This should be fixed
The effects of the PTX cHET group are very mild in both the male and female cohorts, and specific to 1 trial. I believe these assessments were conducted at Day 6 post injection. Why was this timepoint chosen considering differences in MHCII expression in small neurons was only present at Day 14 relative to naïve? The statistical analysis should also have been a mixed-effects repeated measures between groups ANOVA.
Significance
This study uncovers sex-dependent mechanisms underlying cold sensitivity between male and female mice. The detailed IHC analysis of MHCII expression in DRG neurons is a clear strength of this study, and supports flow cytometry results as well as existing literature. The specificity of MHCII expression on small diameter is well characterized and supported by conditional knockout mouse models of MHCII in TRVPV1-lineage neurons. The clear limitations of this study is the lack of a vehicle control group and limited behavioral analysis. They undermine the conclusions made by the author, and in extension, the significance of this study.
This study adds to the understanding of neuro-immune signaling in peripheral neuropathic pain. As far as I am aware, this is the first study to investigate MHCII expression in DRGs in relation to development of chemotherapy-induced peripheral neuropathy. Thus this study provides an incremental advance in neuroimmune mechanisms contributing to the development of chemotherapy-induced peripheral neuropathy in mice.
This study would be of interest to basic researchers interested in neuropathic pain, with particularly researchers with a focus on neuroimmunology and chemotherapy-induced peripheral neuropathy models. The sex differences observed in naïve mice would also be of interest to basic researchers within the wider pain field. Given the preliminary nature of the findings, I do not think this would be of interest to broader neuroimmunology or clinical audiences.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Dear Editor and Reviewers,
*We thank you for the thorough and detailed examination of our preprint and providing the very valuable comments that helped to even better present and interpret our data. *
*Thank you in particular for appreciating the extensive set of microscopic techniques that we have combined to study in a unique manner the characteristics and functionalities of FIT nuclear bodies in living plant cells. *
We prepared a revised preprint in which we address all reviewer comments. Our revision includes a NEW experiment (in four repetitions) that addresses one comment made by the reviewers with regard to the effects of the environmental FIT NB-inducing situation:
- NEW Supplemental Figures S6 and S7: Analysis of previously reported intron retention splicing variants of Fe deficiency genes FIT, BHLH039, IRT1, FRO2 in new gene expression experiments (Four independent repetitions of the experiments with three biological replicates of each sample – white/blue light treatment, sufficient and deficient iron supply). In the following, please find our detailed response to all reviewer comments.
With these changes, we hope that our peer-reviewed preprint can receive a positive vote,
We are looking forward to your response,
Sincerely
Petra Bauer and Ksenia Trofimov on behalf of all authors
Comments to the reviews:
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
In this paper entitled " FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) accumulates in homo- and heterodimeric complexes in dynamic and inducible nuclear condensates associated with speckle components", Trofimov and colleagues describe for the first time the function of FIT in nuclear bodies. By an impressive set of microscopies technics they assess FIT localization in nuclear bodies and its dynamics. Finally, they reveal their importance in controlling iron deficiency pathway. The manuscript is well written and fully understandable. Nonetheless, at it stands the manuscript present some weakness by the lack of quantification for co-localization and absence controls making hard to follow authors claim. Moreover, to substantially improve the manuscript the authors need to provide more proof of concepts in A. thaliana as all the nice molecular and cellular mechanism is only provided in N. bentamiana. Finally, some key conclusions in the paper are not fully supported by the data. Please see below:
Main comments:
1) For colocalization analysis, the author should provide semi-quantitative data counting the number of times by eyes they observed no, partial or full co-localization and indicate on how many nucleus they used.
Authors:
We have added the information in the Materials and Method section, lines 731-734:
In total, 3-4 differently aged leaves of 2 plants were infiltrated and used for imaging. One infiltrated leaf with homogenous presence of one or two fluorescence proteins was selected, depending on the aim of the experiment, and ca. 30 cells were observed. Images are taken from 3-4 cells, one representative image is shown.
In all analyzed cases, except in the case of colocalization of FIT and PIF4 fusion proteins, the ca. 30 cells had the same localization and/or colocalization patterns. This information has also been added in the figure legends. Each experiment was repeated at least 2-3 times, or as indicated in the figure legend.
2) Do semi-quantitative co-localization analysis by eyes, on FIT NB with known NB makers in the A. thaliana root. For now, all the nicely described molecular mechanism is shown in N. benthamiana which makes this story a bit weak since all the iron transcriptional machinery is localized in the root to activate IRT1.
Authors:
The described approach has been very optimal, and we were able to screen co-localizing marker proteins in FIT NBs in N. benthamiana to better identify the nature of FIT NBs. This has been successful as we were able to associate FIT NBs with speckles. The N. benthamiana system allowed optimal microscopic observation of fluorescence proteins and quantification of FIT NB characteristics in contrast to the root hair zone of Arabidopsis where Fe uptake takes place. FIT is expressed at a low level in roots and also in leaves, whereby fluorescence protein expression levels are insufficient for the here-presented microscopic studies. The tobacco infiltration system is also well established to study FIT-bHLH039 protein interaction and nuclear body markers. We discuss this point in the discussion, see line 489-500.
3) The authors need to provide data clearly showing that the blue light induce NB in A. thaliana and N. benthamiana.
Authors:
*For tobacco, see Figure 1B (t = 0, 5 min) and Supplemental Movies S1. For Arabidopsis, please see Figure 1A (t = 0, 90 and 120 min) and Supplemental Figure S1A. We provide an additional image of pFIT:cFIT-GFP Arabidopsis control plants, showing that NB formation is not detected in plants that were grown in white light and not exposed to blue light before inspection (Supplemental Figure S1B). We state, that upon blue light exposure, plants had FIT NBs in at least 3-10 nuclei of 20 examined nuclei in the root epidermis in the root hair zone (in three independent experiments with three independent plants). White-light-treated plants showed no NB formation unless an additional exposure to blue light was provided (in three independent experiments, three independent plants per experiment and with 15 examined nuclei per plant). *
4) Direct conclusion in the manuscript:
- Line 170: At this point of the paper the author cannot claim that the formation of FIT condensates in the nucleus is due to the light as it might be indirectly linked to cell death induced by photodamaging the cell using a 488 lasers for several minutes. This is true especially with the ELYRA PS which has strong lasers made for super resolution and that Cell death is now liked to iron homeostasis. The same experiment might be done using a spinning disc or if the authors present the data of the blue light experiment mentioned above this assumption might be discarded. Alternatively, the author can use PI staining to assess cell viability after several minutes under 488nm laser.
Authors:
As stated in our response to comment 3, we have included now a white light control to show that FIT NB formation is not occurring under the normal white light conditions. Since the formation of FIT NBs is a dynamic and reversible process (Figure 1A), it indicates that the cells are still viable, and that cell death is not the reason for FIT NB formation.
- Line 273: I don't agree with the first part of the authors conclusion, saying that "wild-type FIT had better capacities to localize to NBs than mutant FITmSS271AA, presumably due its IDRSer271/272 at the C-terminus. This is not supported by the data. In order to make such a claim the author need to compare the FA of FIT WT with FITmSS271AA by statistical analysis. Nonetheless, the value seems to be identical on the graphs. The main differences that I observed here are, 1) NP value for FITmSS271AA seems to be lower compared to FIT-WT, suggesting that the Serine might be important to regulate protein homedimerization partitioning between the NP and the NB. 2) To me, something very interesting that the author did not mention is the way the FA of FITmSS271AA in the NB and NP is behaving with high variability. The FA of those is widely spread ranging from 0.30 to 0.13 compared to the FIT-WT. To me it seems that according to the results that the Serine 271/272 are required to stabilize FIT homodimerization. This would not only explain the delay to form the condensate but also the decreased number and size observed for FITmSS271AA compared to FIT-WT. As the homodimerization occurs with high variability in FITmSS271AA, there is less chance that the protein will meet therefore decreasing the time to homodimerize and form/aggregate NB.
Authors:
We fully agree. We meant to describe this result it in a similar way and thank you for help in formulating this point even better. Rephrasing might make it better clear that the IDRSer271/272 is important for a proper NB localization, lines 272-278:
“Also, the FA values did not differ between NBs and NP for the mutant protein and did not show a clear separation in homodimerizing/non-dimerizing regions (Figure 3D) as seen for FIT-GFP (Figure 3C). Both NB and NP regions showed that homodimers occurred very variably in FITmSS271AA-GFP.
In summary, wild-type FIT could be partitioned properly between NBs and NP compared to FITmSS271AA mutant and rather form homodimers, presumably due its IDRSer271/272 at the C-terminus.”
- Line 301: According to my previous comment (line 273), here it seems that the Serine 271/272 are required only for proper partitioning of the heterodimer FIT/BHLH039 between the NP and NB but not for the stability of the heterodimer formation. However, it might be great if the author would count the number of BHLH039 condensates in both version FITmSS271AA and FIT-WT. To my opinion, they would observe less BHLH039 condensate because the homodimer of FITmSS271AA is less likely to occur because of instability.
Authors:
bHLH039 alone localizes primarily to the cytoplasm and not the nucleus, and the presence of FIT is crucial for bHLH039 nuclear localization (Trofimov et al., 2019). Moreover, bHLH039 interaction with FIT depends on SS271AA (Gratz et al., 2019). We therefore did not consider this experiment for the manuscript and did not acquire such data, as we did not expect to achieve major new information.
5) To wrap up the story about the requirements of NB in mediating iron acquisition under different light regimes, provide data for IRT1/FRO2 expression levels in fit background complemented with FITmSS271AA plants. I know that this experiment is particularly lengthy, but it would provide much more to this nice story.
Authors:
Data for expression of IRT1 and FRO2 in FITmSS271AA/fit-3 transgenic Arabidopsis plants are provided in Gratz et al. (2019). To address the comment, we did here a NEW experiment. We provide gene expression data on FIT, BHLH039, IRT1 and FRO2 splicing variants (previously reported intron retention) to explore the possibility of differential splicing alterations under blue light (NEW Supplemental Figure S6 and S7, lines 454-466). Very interestingly, this experiment confirms that blue light affects gene expression differently from white light in the short-term NB-inducing condition and that blue light can enhance the expression of Fe deficiency genes despite of the short 1.5 to 2 h treatment. Another interesting aspect was that the published intron retention was also detected. A significant difference in intron retention depending on iron supply versus deficiency and blue/white light was not observed, as the pattern of expression of transcripts with respective intron retentions sites was the same as the one of total transcripts mostly spliced.
Minor comments
In general, I would suggest the author to avoid abbreviation, it gets really confusing especially with small abbreviation as NB, NP, PB, FA.
Authors:
*We would like to keep the used abbreviations as they are utilized very often in our work and, in our eyes, facilitate the understanding. *
Line 106: What does IDR mean?
Authors:
Explanation of the abbreviation was added to the text, lines 105-108:
“Intrinsically disordered regions (IDRs) are flexible protein regions that allow conformational changes, and thus various interactions, leading to the required multivalency of a protein for condensate formation (Tarczewska and Greb-Markiewicz, 2019; Emenecker et al., 2020).”
Line 163-164: provide data or cite a figure properly for blue light induction.
Authors:
We have removed this statement from the description, as we provide a white light control now, lines 157-158:
“When whole seedlings were exposed to 488 nm laser light for several minutes, FIT became re-localized at the subnuclear level.”
Line 188: Provide Figure ref.
Authors:
Figure reference was added to the text, lines 184-185:
“As in Arabidopsis, FIT-GFP localized initially in uniform manner to the entire nucleus (t=0) of N. benthamiana leaf epidermis cells (Figure 1B).”
Line 194: the conclusion is too strong. The authors conclude that the condensate they observed are NB based on the fact the same procedure to induce NB has been used in other study which is not convincing. Co-localization analysis with NB markers need to be done to support such a claim. At this step of the study, the author may want to talk about condensate in the nucleus which might correspond to NB. Please do so for the following paragraph in the manuscript until colocalization analysis has not been provided. Alternatively provide the co-localization analysis at this step in the paper.
Authors:
We agree. We changed the text in two positions.
Lines 176-178: “Since we had previously established a reliable plant cell assay for studying FIT functionality, we adapted it to study the characteristics of the prospective FIT NBs (Gratz et al., 2019, 2020; Trofimov et al., 2019).”
Lines 192-193: “We deduced that the spots of FIT-GFP signal were indeed very likely NBs (for this reason hereafter termed FIT NBs).”
Line 214: In order to assess the photo bleaching due to the FRAP experiment the quantification of the "recovery" needs to be provided in an unbleached area. This might explain why FIT recover up to 80% in the condensate. Moreover, the author conclude that the recovery is high however it's tricky to assess since no comparison is made with a negative/positive control.
Authors:
In the FRAP analysis, an unbleached area is taken into account and used for normalization.
We reformulated the description of Figure 1F, lines 212-214:
“According to relative fluorescence intensity the fluorescence signal recovered rapidly within FIT NBs (Figure 1F), and the calculated mobile fraction of the NB protein was on average 80% (Figure 1G).”
Line 220-227: The conclusion it's too strong as I mentioned previously the author cannot claim that the condensate are NBs at this step of the study. They observed nuclear condensates that behave like NB when looking at the way to induce them, their shape, and the recovery. And please include a control.
Authors:
Please see the reformulated sentences and our response above.
Lines 176-178: “Since we had previously established a reliable plant cell assay for studying FIT functionality, we adapted it to study the characteristics of the prospective FIT NBs (Gratz et al., 2019, 2020; Trofimov et al., 2019).”
Lines 192-193: “We deduced that the spots of FIT-GFP signal were indeed very likely NBs (for this reason hereafter termed FIT NBs).”
Line 239: It's unappropriated to give the conclusion before the evidence.
Authors:
Thank you. We removed the conclusion.
Line 240: Figure 2A, provide images of FIT-G at 15min in order to compare. And the quantification needs to be provided at 5 minutes and 15 minutes for both FIT-G WT and FIT-mSS271AA-G counting the number of condensates in the nucleus. Especially because the rest of the study is depending on these time points.
Authors:
*This information is provided in the Supplemental Movie S1C. *
Line 241: the author say that the formation of condensate starts after 5 minutes (line 190) here (line 241) the author claim that it starts after 1 minutes. Please clarify.
Authors:
In line 190 we described that FIT NB formation occurs after the excitation and is fully visible after 5 min. In line 241 we stated that the formation starts in the first minutes after excitation, which describes the same time frame. We rephrased the respective sentences.
Lines 185-188: “A short duration of 1 min 488 nm laser light excitation induced the formation of FIT-GFP signals in discrete spots inside the nucleus, which became fully visible after only five minutes (t=5; Figure 1B and Supplemental Movie S1A).”
Lines 239-242: “While FIT-GFP NB formation started in the first minutes after excitation and was fully present after 5 min (Supplemental Movie S1A), FITmSS271AA-GFP NB formation occurred earliest 10 min after excitation and was fully visible after 15 min (Supplemental Movie S1C).”
Line 254: Not sure what the authors claim "not only for interaction but also for FIT NB formation ". To me, the IDR is predicted to be perturbed by modeling when the serines are mutated therefore the IDR might be important to form condensates in the nucleus. Please clarify.
Authors:
The formation of nuclear bodies is slow for FITmSS271AA as seen in Figure 2. Previously, we showed that FITmSS271AA homodimerizes less (Gratz et al., 2019.) Therefore, the said IDR is important for both processes, NB formation and homodimerization. We have added this information to make the point clear, lines 253-255:
“This underlined the significance of the Ser271/272 site, not only for interaction (Gratz et al., 2019) but also for FIT NB formation (Figure 2).”
Line 255: It's not clear why the author test if the FIT homodimerization is preferentially associated with condensate in the nucleus.
Authors:
We test this because both homo- and heterodimerization of bHLH TFs are generally important for the activity of TFs, and we unraveled the connection between protein interaction and NB formation. We state this in lines 228-232.
Line 269-272: It's not clear to what the authors are referring to.
Authors:
We are describing the homodimeric behavior of FIT and FITmSS271AA assessed by homo-FRET measurements that are introduced in the previous paragraph, lines 256-268.
Line 309: This colocalization part should be presented before line 194.
Authors:
We find it convincing to first examine and characterize the process underlying FIT NB formation, then studying a possible function of NBs. The colocalization analysis is part of a functional analysis of NBs. We thank the reviewer for the hint that colocalization also confirms that indeed the nuclear FIT spots are NBs. We will take this point and discuss it, lines 516-522:
“Additionally, the partial and full colocalization of FIT NBs with various previously reported NB markers confirm that FIT indeed accumulates in and forms NBs. Since several of NB body markers are also behaving in a dynamic manner, this corroborates the formation of dynamic FIT NBs affected by environmental signals.”
“In conclusion, the properties of liquid condensation and colocalization with NB markers, along with the findings that it occurred irrespective of the fluorescence protein tag preferentially with wild-type FIT, allowed us to coin the term of ‘FIT NBs’.”
Line 328: add the ref to figure, please.
Authors:
Figure reference was added to the text, lines 330-332:
“The second type (type II) of NB markers were partially colocalized with FIT-GFP. This included the speckle components ARGININE/SERINE-RICH45-mRFP (SR45) and the serine/arginine-rich matrix protein SRm102-mRFP (Figure 5).”
Line 334: It seems that the size of the SR45 has an anormal very large diameter between 4 and 6 µm. In general a speckle measure about 2-3µm in diameter. Can the author make sure that this structure is not due to overexpression in N. benthamiana or make sure to not oversaturate the image.
Authors:
Thank you for this hint. Indeed, there are reports that SR45 is a dynamic component inside cells. It can redistribute depending on environmental conditions and associate into larger speckles depending on the nuclear activity status (Ali et al., 2003). We include this reference and refer to it in the discussion, lines 557-564:
“Interestingly, typical FIT NB formation did not occur in the presence of PB markers, indicating that they must have had a strong effect on recruiting FIT. This is interesting because the partially colocalizing SR45, PIF3 and PIF4 are also dynamic NB components. Active transcription processes and environmental stimuli affect the sizes and numbers of SR45 speckles and PB (Ali et al., 2003; Legris et al., 2016; Meyer, 2020). This may indicate that, similarly, environmental signals might have affected the colocalization with FIT and resulting NB structures in our experiments. Another factor of interference might also be the level of expression.”
Line 335: It seems that the colocalization is partial only partial after induction of NB. The FIT NB colocalize around SR45. But it's hard to tell because the images are saturated therefore creating some false overlapping region.
Authors:
The localization of FIT with SR45 is partial and occurs only after FIT has undergone condensation, see lines 335-338.
Line 344-345: It's unappropriated to give the conclusion before the evidence.
Authors:
We explain at an earlier paragraph that we will show three different types of colocalization and introduce the respective colocalization types within separate paragraphs accordingly, see lines 314-321.
Line 353: increase the contrast in the image of t=5 for UAP56H2 since it's hard to assess the colocalization.
Authors:
This is done as noted in the figure legend of Figure 6.
Line 381-382: "In general" does not sound scientific avoid this kind of wording and describe precisely your findings.
Authors:
We rephrased the sentence, line 387-388:
Localization of single expressed PIF3-mCherry remained unchanged at t=0 and t=15 (Supplemental Figure S5A).
Line 384-385: Provide the data and the reference to the figure.
Authors:
We apologize for the misunderstanding and rephrased the sentence, line 389-391:
After 488 nm excitation, FIT-GFP accumulated and finally colocalized with the large PIF3-mCherry PB at t=15, while the typical FIT NBs did not appear (Figure 7A)
Line 386: The structure in which FIT-G is present in the Figure 7A t=15 is not alike the once already observed along the paper. This could be explained by over-expression in N. benthamiana. Please explain.
Authors:
Thank you for the hint. We discuss this in the discussion part, see lines 555-568.
Line 393: Explain and provide data why the morphology of PIF4/FIT NB do not correspond to the normal morphology.
Authors:
Thank you for the valuable hints. Several reasons may account for this and we provide explanations in the discussion, see lines 555-568.
Line 396-398: It seems also from the data that co-expression of PIF4 of PIF3 will affect the portioning of FIT between the NP and the NB.
Authors:
We can assume that residual nucleoplasm is depleted from protein during NB formation. This is likely true for all assessed colocalization experiments. We discuss this in lines 492-494.
The discussion is particularly lengthy it might be great to reduce the size and focus on the main findings.
Authors:
*We shortened the discussion. *
**Referees cross-commenting**
All good for me, I think that the comments/suggestions from Reviewer #2 are valid and fair. If they are addressed they will improve considerably the manuscript.
Reviewer #1 (Significance (Required)):
This manuscript is describing an unprecedent very precise cellular and molecular mechanism in nutrition throughout a large set of microscopies technics. Formation of nuclear bodies and their role are still largely unexplored in this context. Therefore, this study sheds light on the functional role of this membrane less compartment and will be appreciated by a large audience. However, the fine characterization is only made using transient expression in N. Bentamiana and only few proofs of concept are provided in A. thaliana stable line.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
The manuscript of Trofimov et al shows that FIT undergoes light-induced, reversible condensation and localizes to nuclear bodies (NBs), likely via liquid-liquid phase separation and light conditions plays important role in activity of FIT. Overall, manuscript is well written, authors have done a great job by doing many detailed and in-depth experiments to support their findings and conclusions.
However, I have a number of questions/comments regarding the data presented and there are still some issues that authors should take into account.
Major points/comments:
1) Authors only focused on blue light conditions. Is there any specific reason for selecting only blue light and not others (red light or far red)?
Authors:
There are two main reasons: First, in a preliminary study (not shown) blue light resulted in the formation of the highest numbers of NBs. Second, iron reductase activity assays and gene expression analysis under different light conditions showed a promoting effect under blue light, but not red light or dark red light (Figure 9). This indicated to us, that blue light might activate FIT, and that active FIT may be related to FIT NBs.
2) Fig. 3C and D: as GFP and GFP-GFP constructs are used as a reference, why not taking the measurements for them at two different time points for example t=0 and t=5 0r t=15???
Authors:
Free GFP and GFP-GFP dimers are standard controls for homo-FRET that serve to delimit the range for the measurements.
3) Line 27-271: Acc to the figure 3d, for the Fluorescence anisotropy measurement of NBs appears to be less. Please explain.
Authors:
FA in NBs with FITmSS271AA is variable and the value is lower than that of whole nucleus but not significantly different compared with that in nucleoplasm. We describe the results of Figure 3D in lines 272-275.
4) Figure 4: For the negative controls, data is shown at only t=0, data should be shown at t=5 also to prove that there is no decrease in fluorescence in these negative controls when they are expressed alone without bhlh39 as there is no acceptor in this case.
Authors:
Neither for FIT/bHLH039 nor the FITmSS271AA/bHLH039 pair, there is a significant decrease in the fluorescence lifetime values between t=0 and t=5/15. FIT-G is a control to delimit the range. The interesting experiment is to compare the protein pairs of interest between the different nuclear locations at t=5/15.
5) Line 300-301: In Figure 4D and 4E. Fluorescence lifetime of G measurement at t=0 seems very similar for both FIT-G as well as FITmSS but if we look at the values of t=0 for FIT-G+bhlh039 it is greater than 2.5 and for FITmSS271AA-G+bhlh039 it is less which suggests more heterodimeric complexes to be formed in FITmSS271AA-G+bhlh039. Similar pattern is observed for NBs and NPs, according to the figure 4d and E.
Therefore, heterodimeric complexes accumulated more in case of FITmSS271AA-G+bhlh039 as compared to FIT-G+bhlh039 (if we compare measurement values of Fluorescence lifetime of G of FITmSS271AA-G+bhlh039 with FIT-G+bhlh039).
Please comment and elaborate about this further.
Authors:
These conclusions are not valid as the experiments cannot be conducted in parallel. Since the experiments had to be performed on different days due to the duration of measurements including new calibrations of the system, we cannot compare the absolute fluorescence lifetimes between the two sets.
6) Figure 4: For the negative controls, data is shown at only t=0, data should be shown at t=5 also to prove that there is no decrease in fluorescence in these negative controls when they are expressed alone without bhlh39 as there is no acceptor in this case.
Authors:
Please see our response to your comment 4).
7) Line 439-400: As iron uptake genes (FRO2 and IRT1) are more induced in WT under blue light conditions and FRO2 is less induced in case of red-light conditions. So, what happens to Fe content of WT grown under blue light or red light as compared to WT grown under white light. Perls/PerlsDAb staining of WT roots under different light conditions will add more information to this.
Authors:
We focused on the relatively short-term effects of blue light on signaling of nuclear events that could be related to FIT activity directly, particularly gene expression and iron reductase activity as consequence of FRO2 expression. These are both rapid changes that occur in the roots and can be measured. We suspect that iron re-localization and Fe uptake also occur, however, in our experience differences in metal contents will not be directly significant when applying the standard methods like ICP-MS or PERLs staining.
Minor comments:
Line 75-76: Rephrase the sentence
Authors:
We rephrased the sentence, lines 73-74:
“As sessile organisms, plants adjust to an ever-changing environment and acclimate rapidly. They also control the amount of micronutrients they take up.”
Line 119: Rephrase the sentence
Authors:
We rephrased the sentence, line 118-119:
“Various NBs are found. Plants and animals share several of them, e.g. the nucleolus, Cajal bodies, and speckles.”
Line 235-236: rephrase the sentence
Authors:
We rephrased the sentence, line 232-234:
“In the work of Gratz et al. (2019), the hosphor-mimicking FITmS272E protein did not show significant changes in its behavior compared to wild-type FIT.”
Line 444: Correct the sentence “Fe deficiency versus sufficiency”
Authors:
We corrected that, line 449-451:
“In both, the far-red light and darkness situations, FIT was induced under iron deficiency versus sufficiency, while on the other side, BHLH039, FRO2 and IRT1 were not induced at all in these light conditions (Figure 9I-P).”
**Referees cross-commenting**
I agree with R1 suggestions/comments and i think manuscript quality will be much better if authors carry out the experiments suggested by R1. I believe this will also strengthen their conclusions.
Reviewer #2 (Significance (Required)):
Overall, manuscript is well written, authors have done a nice job by doing several key experiments to support their findings and conclusions. However, the results and manuscript can be improved further by addressing some question raised here. This study is interesting for basic scientists which unravels the crosstalk of light signaling in nutrient signaling pathways.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
We thank all three reviewers for their positive comments on the value of our work and for and for their helpful suggestions.
*Reviewer #1 (Evidence, reproducibility and clarity:
This manuscript reports the development of a new bright fluorescent reporter that allows to label neighbouring cells. The system is based on upon secretion and uptake of s36GFP, a positively supercharged fluorescent protein. The authors also develop a Halo tag that will allow for straight forward colour exchange, as well as a customisable single plasmid construct with modular components.
There are some minor suggestions that the authors may want to consider: 1) The authors conclude that "PUFFIN labelling is transferred rapidly between cells within minutes". They report in their time lapse experiments (Figure 2A,C) that sGFP can be detected within neighbours of secretors after 30 minutes when the cells are plated in a 50:1 non-labelled/secretor cell ratio, whereas it can be detected after 15 minutes when the cells are plated in a 1:9 ratio. Is there any synergistic effect on the signal when the proportion of secretors is increased or is this difference just because there is more signal, making it easier to visualise. *
We have addressed this point with new experiments (new data shown in Figure 2E and Supp Figure S2A,B). This makes it clear that labelling can indeed be detected earlier when the proportion of secretors is higher. This is likely to be because higher secretor:acceptor ratios result in stronger labelling, which in turn makes it easier to detect labelled neighbours at very early time points - even within as early as 15 minutes. We also confirm that, even when secretors are very sparse (1:50 ratio), label becomes detectable in neighbours within 60 minutes.
-
*Is there any reason why the main Figure legends lack a title, but the supplementary figures have one? 2. In Figure 3, it may be helpful to label each option as A, B, C.. 3. In Figure 4E, the legends + JF646 and -JF646 may be switched around. Shouldn't the orange box should be (+) and the grey box should be (-)?
*
We have modified / corrected the labelling as suggested and added titles to the main figure legends.
*Reviewer #1 (Significance):
This is a very valuable tool to address how cells change the behaviour of those in their environment. It will be very valuable for those interested in cell non-autonomous effects within a cell population or tissue. It will be especially valuable for live cell imaging; pulse chase experiments as well as omics approaches to understand cell behaviour in niches. *
We thank this reviewer for their positive comments on the value of our work.
*Reviewer #2 (Evidence, reproducibility and clarity (Required)):
The authors describe a new method, Positive Ultra-bright Fluorescent Fusion For Identifying Neighbours (PUFFFIN), to label with Fluorescent Proteins, neighboring cells. In brief, specific cells that express a nuclear mCherry are engineered to secrete a supercharged fluorescent protein (36GFP) fused to the ultra-bright green-fluorescent mNeonGreen (mNG) (s36GFP). Neighboring cells uptake s36GFP and can be easily visualized. The authors added the human serum albumin signal peptide which is efficiently cleaved to create s36GFP. The PUFFFIN system can also be customized for color-of-choice labelling using HaloTags. A shortcoming of the paper is that it is a method paper established in tissue culture cells with no biological applications. A test of the system in an in vivo model would improve the study. The authors should at least describe specific examples of how the method can be used to answer biological questions. *
We agree that the paper would be improved by demonstrating a biological application of our system. We are currently working on experiments to address a biological question, and will be submitting a revised manuscript containing these data.
*Reviewer #2 (Significance (Required)):
This straightforward and elegant approach is an improvement of current methods that are based on synthetic receptor-ligand interactions as it does not require genetic modification of both 'sender' cells and 'responding' cells. The approach should prove to be an effective and flexible tool for illuminating cellular neighborhoods. An interesting potential application of the method is to effectively deliver proteins fused to s36GFP.
A shortcoming of the paper is that it is a method paper established in tissue culture cells with no biological applications. A test of the system in an in vivo model would improve the study. The authors should at least describe specific examples of how the method can be used to answer biological questions.*
We thank this reviewer for their positive comments on the value of our work. We agree that the paper would be improved by demonstrating a biological application of our system. We are currently working on experiments to address a biological question, and will be submitting a revised manuscript containing these data
*Reviewer #3 (Evidence, reproducibility and clarity (Required)):
In this manuscript, the authors introduced a novel cell-neighbor-labeling system named PUFFFIN. PUFFFIN, as well as 'PUFFHalo', offers an elegantly simple method for distinguishing between secretors and receivers, providing users with a versatile tool to label proximate neighbors through the uptake of s36GFP, subsequently permitting their isolation via FACS for subsequent analysis. In addition, this system could be very useful considering of its customizability by exchanging elements, such as tissue-specific promotors, color-of-choice (HaloTag), and genes of interest to cater to the diverse requirements of secretors. Overall, this system is well-designed and characterized, and the claims in this study are mostly supported by the data. However, this neighbor-labeling approach is not efficiently used to obtain biological insights. The following comments are intended to enhance the overall quality of the study:
Major comments: *
-
* In Vidio1, it appears that certain nuclear mCherry+ cells did not secrete s36GFP-mNG during 19hrs recording window. However, in Figure1D and E, these GFP-mCherry+ cells were reported as having a 0% occurrence. This may be the result of either a delay in GFP secretion, or possible mCherry leakiness in unmodified cells. Please provide clarification. *
There is indeed one mCherry+ cell in video 1 that fails to generate s36GFP-mNG signal. This cell, unlike most other cells in the movie, fails to divide or actively migrate during the 19h recording period, but instead is being passively “pushed around” by surrounding cells, and therefore looks to us very much like a dead or dying cell (levels of cell death to tend to be slightly higher than usual during live imaging). We have looked through our other videos and identified only one other example of an mCherry+ GFP-negative cell: this cell is clearly dying because the nucleus disintegrates over the course of the movie.
We considered the possibility that some proportion of secretors may fail to generate signal even if they are healthy. We examined all our FACS analysis data. We detected at most 0.15% of such ‘failed secretors’, and most usually none. We conclude that any mCherry+ GFP- cells exist at extremely low frequencies and/or tend to be dying cells. Either way, they are very unlikely to interfere with interpretation of experimental data.
*Additionally, including representative images of the co-culture experiment in Figure 1.E would enhance the presentation of the data. *
These data have now been added to Supplemental Figure S1 C
*Since the authors mention that s36GFP-mNG labeling was not detectable beyond four cell diameters, it would be helpful to include statistical data regarding the average distances or cell layers that GFP can travel, thus describing the permeation and labeling limit of s36GFP-mNG, adjacent to Figure2C. *
We’ve now quantified the data and provide this information in a new panel (Figure 2D).
*Please comment on the application prospect of this system utilizing in vivo. In addition, comment should be made on the difference of PUFFFIN system and recent reported CILP (PNAS 2023). *
We have added discussion on prospects for using the system in vivo (new text lines 65-67). We have also described the CILP system in the revised introduction, explaining that it is an inducible version of the Cherry Niche system that we describe in our introduction (new text lines 291-294).
*Minor comments: 1. Please include the percentage of GFP+ and GFP- cells in Figure2.D, similar to what is provided in Figure S1.B. *
This is a great suggestion so we have decided to add this information to all flow cytometry histograms within the paper, Figure 2D.
*The '+' and '-' marks in Figure3.E appears to be mismatched with the results, please double-check and correct. *
This has now been corrected.
*I am curious about the interactions between secretors and 'receivers.' As the authors claim 'unbiased labeling' with this system, it's important to investigate whether the uptake abilities of receivers vary among different cell types. In other words, does the system exhibit cell-type preferences among receiver cells? This question could be optionally addressed through co-culture experiments involving secretors, receiver type A, and receiver type B. *
We will perform additional experiments to address the reviewer’s question by directly comparing labelling efficiency across different receiver cell-types.
Reviewer #3 (Significance (Required)):
*This study reported a simple and sensitive system for labeling neighboring cells in vitro, which can be customized by replacing exchangeable components for customized need. With promising application in vitro, this system could be further developed and tested in vivo. Fluorescent protein labeling in neighboring cells has been a topic of study recently, and this manuscript introduced a new tool that is added to such resources, offering a user-friendly and customizable alternative. Overall, this system will be of interest to researchers working on neighbor-cell labeling and study of cell-cell communications. *
We thank this reviewer for their positive comments on the value of our work.
-
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
In this manuscript, the authors introduced a novel cell-neighbor-labeling system named PUFFFIN. PUFFFIN, as well as 'PUFFHalo', offers an elegantly simple method for distinguishing between secretors and receivers, providing users with a versatile tool to label proximate neighbors through the uptake of s36GFP, subsequently permitting their isolation via FACS for subsequent analysis. In addition, this system could be very useful considering of its customizability by exchanging elements, such as tissue-specific promotors, color-of-choice (HaloTag), and genes of interest to cater to the diverse requirements of secretors. Overall, this system is well-designed and characterized, and the claims in this study are mostly supported by the data. However, this neighbor-labeling approach is not efficiently used to obtain biological insights. The following comments are intended to enhance the overall quality of the study:
Major comments:
- In Vedio1, it appears that certain nuclear mCherry+ cells did not secrete s36GFP-mNG during 19hrs recording window. However, in Figure1D and E, these GFP-mCherry+ cells were reported as having a 0% occurrence. This may be the result of either a delay in GFP secretion, or possible mCherry leakiness in unmodified cells. Please provide clarification. Additionally, including representative images of the co-culture experiment in Figure 1.E would enhance the presentation of the data.
- Since the authors mention that s36GFP-mNG labeling was not detectable beyond four cell diameters, it would be helpful to include statistical data regarding the average distances or cell layers that GFP can travel, thus describing the permeation and labeling limit of s36GFP-mNG, adjacent to Figure2C.
- Please comment on the application prospect of this system utilizing in vivo. In addition, comment should be made on the difference of PUFFFIN system and recent reported CILP (PNAS 2023).
Minor comments:
- Please include the percentage of GFP+ and GFP- cells in Figure2.D, similar to what is provided in Figure S1.B.
- The '+' and '-' marks in Figure3.E appears to be mismatched with the results, please double-check and correct.
- I am curious about the interactions between secretors and 'receivers.' As the authors claim 'unbiased labeling' with this system, it's important to investigate whether the uptake abilities of receivers vary among different cell types. In other words, does the system exhibit cell-type preferences among receiver cells? This question could be optionally addressed through co-culture experiments involving secretors, receiver type A, and receiver type B.
Significance
This study reported a simple and sensitive system for labeling neighboring cells in vitro, which can be customized by replacing exchangeable components for customized need. With promising application in vitro, this system could be further developed and tested in vivo. Fluorescent protein labeling in neighboring cells has been a topic of study recently, and this manuscript introduced a new tool that is added to such resources, offering a user-friendly and customizable alternative. Overall, this system will be of interest to researchers working on neighbor-cell labeling and study of cell-cell communications.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
The authors describe a new method, Positive Ultra-bright Fluorescent Fusion For Identifying Neighbours (PUFFFIN), to label with Fluorescent Proteins, neighboring cells. In brief, specific cells that express a nuclear mCherry are engineered to secrete a supercharged fluorescent protein (36GFP) fused to the ultra-bright green-fluorescent mNeonGreen (mNG) (s36GFP). Neighboring cells uptake s36GFP and can be easily visualized. The authors added the human serum albumin signal peptide which is efficiently cleaved to create s36GFP. The PUFFFIN system can also be customized for color-of-choice labelling using HaloTags.
A shortcoming of the paper is that it is a method paper established in tissue culture cells with no biological applications. A test of the system in an in vivo model would improve the study. The authors should at least describe specific examples of how the method can be used to answer biological questions.
Significance
This straightforward and elegant approach is an improvement of current methods that are based on synthetic receptor-ligand interactions as it does not require genetic modification of both 'sender' cells and 'responding' cells. The approach should prove to be an effective and flexible tool for illuminating cellular neighborhoods. An interesting potential application of the method is to effectively deliver proteins fused to s36GFP.
A shortcoming of the paper is that it is a method paper established in tissue culture cells with no biological applications. A test of the system in an in vivo model would improve the study. The authors should at least describe specific examples of how the method can be used to answer biological questions.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
This manuscript reports the development of a new bright fluorescent reporter that allows to label neighbouring cells. The system is based on upon secretion and uptake of s36GFP, a positively supercharged fluorescent protein. The authors also develop a Halo tag that will allow for straight forward colour exchange, as well as a customisable single plasmid construct with modular components.
There are some minor suggestions that the authors may want to consider: 1. The authors conclude that "PUFFIN labelling is transferred rapidly between cells within minutes". They report in their time lapse experiments (Figure 2A,C) that sGFP can be detected within neighbours of secretors after 30 minutes when the cells are plated in a 50:1 non-labelled/secretor cell ratio, whereas it can be detected after 15 minutes when the cells are plated in a 1:9 ratio. Is there any synergistic effect on the signal when the proportion of secretors is increased or is this difference just because there is more signal, making it easier to visualise. 2. Is there any reason why the main Figure legends lack a title, but the supplementary figures have one? 3. In Figure 3, it may be helpful to label each option as A, B, C.. 4. In Figure 4E, the legends + JF646 and -JF646 may be switched around. Shouldn't the orange box should be (+) and the grey box should be (-)?
Significance
This is a very valuable tool to address how cells change the behaviour of those in their environment. It will be very valuable for those interested in cell non-autonomous effects within a cell population or tissue. It will be especially valuable for live cell imaging; pulse chase experiments as well as omics approaches to understand cell behaviour in niches.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Reviewer #1
Evidence, reproducibility and clarity
In this manuscript, Hoskins et al describe analyses of the effects of sequence variation on RNA levels, protein levels, and ribosome loading for the COMT gene. They use multiple experimental approaches to assay these levels and report on how sequence differences affect expression. Overall, the paper is interesting in that it presents a very deep dive into the effects of sequence variation on gene expression, including in coding sequences. However, there are some issues with the polysome loading assay technique and there are substantial issues with the figure presentation, which is often confusing.
__Response: __Thanks for the positive assessment of our manuscript and the constructive feedback regarding the issues with the figure presentation. We have addressed all of these below and they have significantly improved the clarity.
-
Major comments:*
-
1) Figures:*
-
--Fig 1C needs a cartoon description to show where the UTRs are. Y-axis should say "Ribo-seq CPM"*
__Response: __Fig 1C now includes a schematic and the y-axis is updated. Locations of the uORFs are also now included in Fig 1A.
- --Sup Fig 1A confusing, what is "start" what is the point of this panel?*
__Response: __We apologize for the confusing labeling of the panels in Sup Fig 1. “Start” refers to the MB-COMT start codon. We removed this annotation as it is irrelevant to the figure. We included Supplementary Figure 1A to show RNA probing data for the entire transcript. Figure 1A and B only show the regions that encompass the variants assayed in our study.
- --Sup Fig 1B what is PCBP del?*
Response: “PCBP del” refers to deletion of PCBP1/PCBP2 RNA binding protein motifs. The legend now specifies this.
- --Sup Fig 1C what is "uORF B restore"? The description in the figure legend is not interpretable. Draw diagrams of the mutations that tell the reader what was assayed and why it was assayed. Why are there multiplication factors listed (e.g. 1.33X)? The data are depicted on a log scale, which makes it difficult to appreciate the fold-effects of the mutations (e.g. does uORFA mutation increase expression 1.5-fold?). Please calculate median expression values and report them on a bar graph or something like that so readers can interpret the results.*
Response: “uORF B restore” refers to restoration of the endogenous uORF B frame with a silent variant in the Flag tag of the transgene. The multiplication factors listed were the fold change in median fluorescence between each mutant and the template (wild-type) transgene. We retained the figures as they show the raw distribution of fluorescence in each cell line, but in response to the reviewer’s suggestion we included a new figure displaying the effects as a bar graph (Supplementary Figure 1E).
- --Fig 2A. It's hard to understand the cartoon diagram of the expression reporter construct. Why is +Dox shown here? Does that induce transcription?*
__Response: __The reviewer is correct. “+Dox” indicated addition of Doxycycline to induce transcription before the data collection step. We agree that there may have been too much detail in this diagram and have now removed this for simplicity and indicated this in the Methods section.
- --Fig 2B. What's on the x-axis? is it Log2(RNA/gDNA) from sequencing? is it Log2 or Log10 or Ln?*
__Response: __Variant effects in each figure were derived from ALDEx2 analysis, which reports effect size as the median standardized difference between groups. The effect size is not directly interpretable as a log fold change; it takes into account the difference between groups as well as the dispersion. This analysis strategy has been previously demonstrated for analysis of SELEX experiments (Fernandes et al. 2014), which are used to select small populations of cells with specific phenotypes.
ALDEx2 is a robust and principled choice for the analysis of count-compositional datasets, particularly after selection (e.g. sorted cell populations or low-input RNA fractions arising from polysome profiling). While we understand that this choice leads to less easily interpretable effect sizes, the mathematical advantages make ALDEx2 a more appropriate choice for this type of data. In the past, we had used other methods to analyze log frequencies (limma, a frequency based normalization-dependent analysis, as previously employed in Hoskins et al. 2023. Genome Biology) that directly reported fold changes. In our experience, the ALDEx2-derived effect sizes are well-correlated with those estimates (Pearson correlation 0.93 for variants significant at a FDR
- --Fig 2C. What's on the y-axis (same question). I think it's LogX(mutant/wt)RNA level?*
__Response: __For consistency with other figures, we replaced Figure 2C to report the effect size statistic as described above.
- --Fig 2D. What's on the y-axis now? Fold-difference (not log transformed)?*
__Response: __Please see our response above.
- --Fig 2E. The scale bar is flipped vs. normal convention. This is also log transformed, but it's not labeled. Please label as log(whatever) and put the negative values on the left side of the bar (red on the left, blue on the right).*
__Response: __Thanks for the suggestion, we have now updated the scale bar.
--Fig 2F y-axis should say Ribo-seq CPM.
__Response: __Done
- --Fig 3A - please separate the graphs more. Did you sort cells from ROI2 into populations, or just cells from ROI1?*
__Response: __Thanks for the suggestion, we now separate the graphs further. Cells were sorted for both ROI 1 and ROI 2 libraries.
- --Fig3C-F What's the "effect size" mean on these graphs?*
__Response: __Please see the response above regarding the effect size estimate from ALDEx2.
-
--Fig3D It looks like the colors have switched for positive / negative "effects" on the heat map*
-
compared to Figure 2E. Please define what "median effect" means and be consistent with*
-
comparison to figure 2E.*
__Response: __We intentionally inverted colors for Figure 3. The rationale is that a variant causing low protein abundance corresponds to enrichment in P3 compared to gDNA, as opposed to depletion in P3. On the other hand, for effects on RNA abundance and ribosome load, a variant leading to low abundance for these measures is depleted.
- --Figure 4 what does effect size mean, what's the log-transformed scale (log2, 10, etc) same issues from earlier figures.*
__Response: __Please see response above.
- --Figure 5 "effect size"*
__Response: __The same definition of effect size was used with the exception that effect sizes are multiplied by -1 so that color schemes are consistent for deleterious effects.
- 2) "Codon stability" should always be "Codon Stability Coefficient", maybe use "CSC". Otherwise it's confusing.*
__Response: __Thanks for the suggestion. This has been updated throughout the manuscript.
3) Flow cytometry section talks about "RNA fluorescence", which is confusing. You need to explain that it's IRES-driven mCherry as a proxy for the level of RNA first. It would also help to state explicitly that you sorted the cells into four populations, and define them all first before describing the results.
__Response: __We apologize for the use of imprecise language with respect to this reporter. We revised the text to emphasize that mCherry is a proxy for RNA abundance and described the populations first as suggested.
4) What are DeMask scores? How are they related to conservation or amino acid properties? If you define these, you can help the reader interpret the result.
__Response: __Thanks for the suggestion. We now include a conceptual interpretation of the DeMask score in the relevant section. We also include a comparison to a recent large language model for variant effect prediction (ESM1b, Brandes et al. 2023) which is now reported in Supplementary Figure 5C.
5) There are several issues with the Polysome gradient fractionation. The gradients did not separate 40S, 60S, and monosomal fractions, so it's hard to tell how many ribosomes correspond to each peak on the gradient graph in Figure S5. This is probably because the authors used a 20-50% gradient instead of a lower percentage on top. More significantly, variations in the coding region of COMT are likely affecting the polysome association in ways the authors didn't consider. Nonsense codons will simply make the orf a lot shorter, hence fewer ribosomes. This may have nothing to do with NMD. Silent and missense variants may have unpredictable effects because they may make translation faster (fewer ribosomes) or slower (more ribosomes) on the reporter. This could lead to more ribosomes with less protein or fewer ribosomes with more protein. The reporter RNA also has an IRES loading mCherry on it, which probably helps blunt or dampen the effects of the COMT sequence variants on polysome location distribution. Overall, the design of the polysome assay is probably very limited in power to detect changes in ribosome loading (four fractions, limited separation by 20-50 gradient, IRES loading, etc). This is partially addressed in the limitations section, but these issues could be discussed in more detail.
__Response: __Given high polysomal association of endogenous COMT and our COMT transgene (Supplementary Figure 2B, Supplementary Figure 5B-C), we chose a 20-50% sucrose gradient to better resolve changes in ribosome load among heavy polysomes.
We thank the reviewer for offering another valid explanation regarding the depletion of nonsensense variants. We have now included a sentence in the discussion to indicate lower ribosome load for nonsense variants may be due to a shorter ORF as opposed to NMD. We further include the potential limitation of the assay due to the presence of the IRES-mCherry.
We agree that variants may have unpredictable effects due to effects on the dynamics of translation elongation. To address this potential limitation, we attempted to devise a selective ribosome profiling strategy by immunoprecipitating N-terminal Flag tagged peptides to enrich ribosomes translating COMT. However, we were unable to achieve significant enrichment, limiting our ability to measure variant effects on elongation in a high-throughput manner.
Significance
The study is novel in that it assays both 5' UTR and a wide range of protein coding sequence variants for effects on RNA and protein levels from a clinically important gene, COMT. The manuscript reports that most protein coding variants have modest effects on RNA levels, and that the minority of variants that do affect RNA levels are not predictable due to their affect on codon usage. The work also determines the distribution of effects of variants on protein levels, finding a variety of effects on expression. Interestingly, the authors found SNPs that affect ribosome loading generally affect RNA structure of the COMT coding region, rather than affecting codon usage.
This should appeal to many different communities of biologists - gene expression experts, geneticists, and clinical neurobiologists who focus on COMT. So there is a potential for fairly broad interest. The main limitations to the work are in a lack of clarity in the figures and perhaps in the underdeveloped nature of the discussion section. The discussion section reports new results (SNP associations that affect expression). These would make more sense in the results section, such that the discussion could do a better job relating the impact of sequence variants on expression levels to prior work to highlight the novelty.
__Response: __We thank reviewer #1 for their positive assessment of the broad significance of our study. We also thank them for constructive suggestions that led to increased clarity in the presentation. We have moved the analysis of gnomAD variants to the Results section and expanded the discussion.
Reviewer #2
Evidence, reproducibility and clarity
Summary:
Hoskins and colleagues expressed a reporter containing all silent, missense, and nonsense codons at 58 amino acid positions in the human COMT gene in HEK293T cells and measured levels of DNA, bulk RNA, and pooled polysomal mRNA. They included a C-terminal translational GFP fusion and a downstream transcriptional mCherry fusion in the reporter in order to also bin variants by their relative protein and mRNA levels by flow cytometry. They hypothesized that RNA structure, in-part by mediating uORF translation, influences COMT gene expression. The authors conclude by identifying previously-uncharacterized COMT variants that, in this reporter system, affect RNA abundance and ribosome load. We generally found the results of this paper convincing and clear. We do not have major comments, but have many minor comments that we hope the authors can address. These comments mostly deal with clarification on analysis metrics and giving recommendations on data presentation.
__Response: __Thanks for highlighting the strengths of our study and the constructive suggestions to improve the presentation.
Minor comments:
In Figure 2C, the vertical axis reads "Median between-group difference". How was this metric calculated and normalized? We also agree that nonsense mutations having consistently-detrimental effects on RNA abundance is reassuring, but recommend more explanation as to why the difference in the effects of silence and missense mutations between regions may be biologically relevant.
__Response: __Variant effects in each figure derive from ALDEx2 analysis, which reports effect size as the median standardized difference between groups. In particular, to avoid any distributional assumptions for standardization, ALDEx2 uses a permutation based non-parametric estimate of dispersion. The effect size is not directly interpretable as a log fold change; it takes into account the difference between groups as well as the max dispersion of the groups. We have now provided explicit references to the specific R functions that were used to calculate the effect size.
ALDEx2 is robust for analysis of count-compositional datasets, particularly after selection and bottlenecking (e.g. sorted cell populations or low-input RNA fractions arising from polysome profiling). While we have used other methods to analyze log frequencies (limma, a frequency based normalization-dependent analysis, as previously employed in Hoskins et al. 2023. Genome Biology), we opted for the less-interpretable but more robust ALDEx2 analysis to report variant effects between varying nucleic acid inputs.
We currently lack a mechanistic interpretation for the difference in RNA abundance effects between ROI 1 and 2. However, we observed consistent results using a different analysis framework, which makes use of variant frequencies (as in Hoskins et al. 2023 Genome Biology) instead of the centered log ratios used in ALDEx2 analysis, further supporting a biological difference between the two.
In Figure 3, we believe that the authors are claiming that lower RNA abundance causes lower protein abundance in some variants. However, this data only reports on protein abundance relative to transcript abundance, not absolute protein abundance. We think the claim should be revised to (1) clarify that the authors are measuring protein per mRNA, and (2) express that lower mRNA amounts are more likely to co-occur with lower protein amounts, but that this data does not support any causative model.
__Response: __Thanks for the suggestion. We have now included an explicit description of the experimental design in the results section and noted that we are unable to assign protein abundance effects to underlying RNA abundance effects. In the current setup, we did not sort cells based on the ratio of moxGFP/mCherry fluorescence (protein per mRNA), but rather we defined gates based on the 2D plot of moxGFP versus mCherry. This is explicitly marked in Figure 3A.
On page 9, the authors claim that their data supports a model that rs4633 increases RNA
abundance, leading to higher COMT expression. Can the authors rule out a model whereby rs4633 facilitates translation initiation, as suggested by Tsao et al. 2011, leading to both an increase in mRNA and protein abundance?
__Response: __Thanks for this question and opportunity to clarify. We have now added a sentence to the Discussion and included the following paragraph in the Supplementary Note:
“Importantly, our study does not rule out a model where rs4633 facilitates translation initiation. Nevertheless, our data suggest a potential concurrent mechanism where rs4633 leads to higher protein abundance in human cell lines and in an in vitro translation assay (Tsao et al. 2011) by increasing RNA abundance. We note that Tsao et al did not directly measure RNA abundance in their study. In Supplementary Figure 3A of Nackley et al 2006, the APS haplotype containing rs4633 C>T showed slightly higher total RNA abundance compared to the LPS haplotype (in our study, the wild-type template). However, this was not statistically significant and was only observed for the S-COMT isoform. It is possible that our observations are compatible with the conclusions in Tsao et al. 2011. For example, increased translation of rs4633 C>T may lead to stabilization of the RNA.”
The paper references "effect size" at multiple points (e.g. "polysome effect size") but we could not find this term explicitly defined (for example: for the polysome effect size, were RNA counts for each polysome fraction divided by the relative abundance of that RNA in total RNA?)
__Response: __We apologize for this confusion. Please see our response above. We have also stated the definition of effect size explicitly in the revised manuscript.
Could you elaborate on how you define "protein abundance and "effect size: in Figure 5G? How is enrichment in P3 or P1 calculated?
__Response: __Effect size is defined as described above. Enrichment in P3 or P1 is calculated with respect to the abundance in gDNA (unsorted cells).
Were 3396 variants considered for all readouts in this paper? How many of these variants were present in each ROI? It may be worth clarifying sample sizes.
__Response: __Thanks for the suggestion. The reviewer is correct: 3396 variants were present in all biological replicates and all readouts (after excluding polysome metafractions 1 and 2 and flow cytometry population 4). The Methods were updated to include all readouts that were dropped. The number of variants in each ROI are now included in this section of the main text.
How did Twist generate these mutagenized sequences? We assumed that they used error-prone PCR due to the mention of multiple nucleotide polymorphisms, but couldn't find an explicit answer.
__Response: __Twist generates these mutagenized inserts using degenerate primers. This allows all alternate codons to be assayed (all silent, missense changes). This is now noted in the Methods.
In the methods, it may be worth elaborating on the composition of the HsCD00617865 plasmid. For example: this COMT reporter is under the control of a constitutively-expressed T7 promoter, correct?
__Response: __The HsCD00617865 plasmid was only used as a template for PCR amplification and generation of the transgene. The transgene is cloned into a vector containing attB sites for recombination into the landing pad cell line (Matreyek et al 2020). Transcription is induced by Doxycycline from the landing pad locus. Plasmid maps used for transfection into the landing pad line are now included in the GitHub repository.
In Supplementary Figures 4 and 5, it would be helpful to explicitly say that you are reporting Pearson correlations between biological replicates.
__Response: __Thanks for the suggestion. The legends have been updated accordingly.
"After summarizing biological replicates (N=4) for each readout...": how did the authors summarize biological replicates? Were counts averaged?
__Response: __Biological replicates were summarized using the median. This is now clarified in the Methods.
The authors used pairwise correlations between flow cytometry fractions, polysome fractions, and total RNA/gDNA as indications of data quality. Do the authors expect for these counts to be strongly correlated? We would not necessarily expect to see a strong correlation between ribosome load and RNA/gDNA.
__Response: __We used replicate correlation as an indicator of data quality. Our readouts of ribosome load reflect the abundance of a variant in a particular polysome fraction. Given that variants that are highly abundant in the RNA pool will on average be more highly represented in polysome fractions, we would expect a correlation between the abundance of a variant in total RNA and in polysome fractions.
The authors may need to check that their standard deviations on fold changes are properly reported.
__Response: __iIn the Figures and the main text, we specified the confidence intervals as calculated by ALDEx2 method instead of reporting standard deviations on fold changes,. Specifically, the confidence intervals were determined by Monte Carlo methods that produce a posterior probability distribution of the observed data given repeated sampling. Variants in which the confidence intervals do not cross 0 are considered true discoveries (section 5.4.1 of the ALDEx2 vignette on Bioconductor).
We would expect standard deviation bounds to be symmetric for log fold changes, but not on unlogged fold changes - for example see page 8, for the sentence "our point estimate for nonsense variant effects on COMT RNA abundance was approximately a two-fold decrease relative to the gDNA frequency (fold change of 0.43 +/- 0.13; mean +/- standard deviation; Methods)."
__Response: __Thanks for the suggestion. To avoid any confusion about the symmetry, we replaced the +/- notation, and explicitly noted the mean and standard deviation. To help the reader gain an intuition of the magnitude of variant effects, we conducted a frequency based normalization-dependent analysis using limma (as previously employed in Hoskins et al. 2023. Genome Biology). We now report a fold change (unlogged) for RNA abundance compared to gDNA abundance. The point estimate is the mean and s.d. across all nonsense variants.
On page 10, the authors say that their data suggests that hydrophobicity in the early coding region of COMT may be important for COMT folding. If this is the case, would we expect to see this effect in flow cytometry data (which is affected by protein degradation) and not polysome profiling (which is unaffected by post-translational protein degradation)?
__Response: __We apologize as we are uncertain about the reviewer’s intended question. The section that refers to the importance of hydrophobicity indeed refers to the flow cytometry data. While there are specific instances in which the amino acid properties encoded by the mRNA influences translation dynamics, these are not universally true. Consequently, we did not expect these impacts to be observed at the level of polysome profiling.
We believe that we would have some trouble replicating the analysis from this paper from the raw data, given that the bulk of the analysis on GitHub is presented as a single R Markdown file, with references to local files to which we do not have access. We recommend that the authors add additional documentation to their repository to facilitate re-analysis.
__Response: __Thanks for the opportunity to address this issue of critical importance. To facilitate replication, we have now deposited all analysis files to Zenodo and refactored the code to enable replication by simply running a markdown file.
In Figure 1B, indicating that more signal indicates less structure (in the legend or the figure itself) may assist readers who are unfamiliar with DMS-seq.
__Response: __Thanks for the suggestion. This is now updated.
Figure 1C does a great job presenting evidence for the translation of uORFs, but does not seem to flow with the overall argument of the paper, so may fit better in the supplement.
__Response: __We considered this suggestion, and opted for keeping its placement as it gives evidence that our transgene is translated primarily as the MB-COMT isoform. This ensures that, for variants upstream of the S-COMT isoform, we can assay effects on ribosome load that are tied to mechanisms of translation elongation and codon stability.
We believe there is a typo in the Figure 1 legend that should read "K562" instead of "H562".
__Response: __Thank you, this was indeed a typo.
You also gated to separate into P1-P4, correct? Can you also show the bounds of that gating
strategy in Figure 3A?
__Response: __This has been updated. We also added the gating strategy in response to comments from reviewer #1.
We find Figure 3F very compelling. Do you have any theories as to why mutating I59-H66 to
nonpolar, uncharged residues leads to increased COMT expression?
__Response: __We do not have any theories for why this may be. However, we noted that with the exception of V63, residues I59-H66 are not evolutionarily constrained (based on DeMask entropy values). This suggests mutational tolerance for nonpolar, uncharged residues in this region (with the exception of V63 and H66; see Figure 3D).
There appears to be a non-negligible proportion of di- and tri- nucleotide polymorphisms in Supplementary Figure 4. Were these excluded in downstream analyses?
__Response: __These variants are expected from the Twist mutagenesis strategy and included in analysis. We believe they are at lower frequency compared to SNPs due to less favorable annealing of the degenerate primers.
A minor typo in the discussion reads "fluoresce".
__Response: __Done
Significance
Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field.
This work investigated the regulatory effects of thousands of coding variants in the COMT gene, focusing on two regions with clinical significance, by using high-throughput reporter assays. The results from this will be useful for clinical scientists interested in understanding the impacts of COMT mutations and be a useful framework for other systems/computational biologists to understand the impacts of coding mutations across different levels of regulatory function. Mutations in protein regions, if having a function, are classically known to interfere with protein function. There are fewer large-scale efforts to understand the impacts of coding mutations affecting expression through potentially changing of RNA structure or codon optimization - this work has contributed towards that frontier.
Place the work in the context of the existing literature (provide references, where appropriate). This is (as far as I am aware) the first paper that has integrated high-throughput screens massively parallel reporter assays from RNA degradation, ribosomal load, and flow cytometry. Previous papers have tended to measure on expression regulation on only one dimension (i.e. Greisemer et al. 2023 on RNA degradation, Sample et al. 2019 on ribosomal load, and de Boer at al. 2020 on protein expression).
__Response: __Thanks for highlighting the novelty of our approach compared to existing strategies in the literature.
State what audience might be interested in and influenced by the reported findings.
Clinicians/researchers interested in COMT, computational biologists, geneticists and potentially structural biologists interested in understanding the consequences of amino acid mutations on RNA/protein expression
__Response: __Thanks for noting the broad significance of our study.
Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate.
Genomics, Massively parallel reporter assays, High-throughput regulatory screens.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
*This manuscript reports on transcript sequence variants that affect expression of the gene COMT. Targeted analysis of SNPs identifies 5' UTR variants that affect COMT, leading to the identification of translated uORFs. Common coding sequence SNPs do not affect COMT expression, however. Massively parallel analyses of mRNA abundance, protein abundance, and translation are combined to look more broadly at coding sequence variants. These analyses focus on regions of predicted structure in the COMT transcript. Both silent and missense mutations that increase mRNA abundance are identified. Protein abundance is then measured and many missense mutations are found to change protein levels. To address translation directly, analysis of polysome loading is performed and significant differences are identified, although technical challenges limit data quality in these experiments. These different experiments are then analyzed jointly to classify mutation effects and identify a class of silent mutations with expression effects, leading to a proposal that these act through structure. *
*The joint, integrative analysis of COMT variants through a range of methods allows clearer insights into interconnected post-transcriptional effects. The massively parallel experiments generate high-quality data, although targeted validation of key results would strengthen the work. The findings advance our understanding of silent variant effects, which remains an open question, and technical innovations could find broader applications. *
__Response: __Thanks for the positive assessment of the quality of the data generated and the potential for the broader application of the technical innovations.
*I do have concerns with the present version of this work. *
-
- There is no validation presented for high-throughput experimental data. I would say that validating the effects of M152T and V63V variants from Figure 2B would substantially strengthen the work and support key conclusions. * __Response: __Our experiments collectively enabled nearly 10,000 measurements of variant effect (summed over three layers of gene expression). The goal of our study was to identify broad mechanisms of variant effect. While we are excited about the specific variants uncovered, targeted experimental methods for validating changes to RNA abundance, such as RT-qPCR, are unlikely to be sufficiently sensitive. For example, RNA abundance effects in our study had a median effect size of 1.47 for variants up in RNA, and 0.4 for variants down in RNA. This likely corresponds to less than one Ct difference between the variant and the reference allele. Indeed, previous studies such as Findlay et al., 2018 Nature that reported similar effect sizes (FGF7 and FOS, respectively (Figure 4B).
Thus, for time and cost concerns, we respectfully suggest that targeted experiments involving V63V and M152T are beyond the scope of our study. Nevertheless, to further strengthen our conclusions, we have computationally confirmed our findings using a different analysis framework. We found 75/76 of the variants significant by ALDEx2 analysis were also significant by limma analysis (a frequency based normalization-dependent analysis, as previously employed in Hoskins et al. 2023. Genome Biology) using the same FDR (0.1).
- In the fluorescent reporter scheme, it seems that variants reducing mRNA abundance should be enriched in the "P2" gate region relative to "P1", as they would have lower mRNA abundance and correspondingly lower protein abundance. However, this analysis is not performed, and instead P1 and P3 are compared (Figure 3G), which would seem to focus on protein-level effects. *
__Response: __Our initial hesitation in comparing P2 to P1 is that the P2 population may be enriched for cells that underwent inefficient induction of transcription with Doxycycline. Hence technical factors as opposed to the effect of the variants may dominate this comparison. In response to the reviewer’s comments, we carried out the suggested analysis (new Supplementary Figure 5B). We found that variants that are down in RNA are enriched in P2 relative to P1 as expected. This is now noted in the Results section.
- In general the work classifies variants in several different ways and it would help to be a little clearer in naming these classes. For instance, in describing the FACS-based analysis of variant expression it is written, "protein fluorescence conditioned on RNA fluorescence" which is confusing at best-it's a fluorescence-based measurement that is used indirectly to measure COMT reporter abundance. *
__Response: __Thanks for the suggestion. We agree that our initial word-choice was imprecise. We rewrote this section to indicate mCherry fluorescence is an indirect proxy for RNA abundance.
- Likewise, the populations with shifted GFP/mCherry ratio in this assay are described as "uncorrelated" populations, which is opaque and somewhat inaccurate-there seems to be a correlation in this group but at a different ratio. *
__Response: __We have revised the language in the manuscript. We opted for “low or high RNA/protein abundance” to indicate the relationship between GFP and mCherry fluorescence in populations P3 and P4.
- In the same way, "deleterious variants" is used to describe protein abundance changes, but this term implies a fitness effect and is not very specific. *
__Response: __We apologize for the confusing word choice. We did away with this term in favor of “variants with low protein abundance”.
- In discussing the effects of missense COMT variants on protein levels, there is an implicit assumption that degradation of mis-folded protein (or perhaps properly-folded protein with excess hydrophobic exposure?) explains these effects. This is plausible, but it would help to lay out this reasoning more clearly. *
__Response: __Thanks for the suggestion. We have added a sentence at the end of the section that specifies this assumption and cites a recent study reporting that rare missense variants in COMT may be misfolded and degraded by the proteasome (Larsen et al. 2023).
- It is written that,"In line with codon stability as a predictor of translational efficiency (Presnyak et al., 2015), variants with low codon optimality were depleted from polysomes compared to variants with optimal codons". However, this mis-states the conclusions of the cited study, which notes, "Importantly, under normal conditions the ribosome occupancy of the HIS3 opt and non-opt constructs was determined to be similar (Fig. 6B)". *
__Response: __We apologize for mis-stating the conclusions of Presnyak et al. 2015. We have now revisited the relevant literature to more accurately place our conclusions in the context of literature. While Presnyak et al. and several other studies (Bazzini et al., 2016; Mauger et al., 2019) have clearly linked the association between codon choice and mRNA stability. We now reference Mauger et al. 2019 who used elegant experiments to demonstrate that mRNA secondary structure is a driver of increased protein production and synergizes with codon optimality (Figure 5B). Their results further support the role of codon optimality on RNA stability while providing evidence of additive impact on translation efficiency.
- It is written that, "One intriguing possibility is to develop multiplexed assays of variant effect on RNA folding, using mutational profiling RNA probing methods (Weng et al., 2020; Zubradt et al., 2017)." How would this differ from the "Mutate and Map" approach in doi://10.1038/nchem.1176 and subsequent work from the same group? *
__Response: __Thanks for pointing out the more recent work following the initial papers in 2010-2011. We have missed the work from the Das lab that extended the Mutate and Map approach to utilize mutational profiling (Cheng and Kladwang et al., 2017). We updated our Discussion to indicate that the proposed assay has been pioneered and is a viable approach for high-throughput determination of variant effects on RNA folding.
Because mutational profiling methods leverage reverse transcriptase readthrough and mismatch incorporation, they enable deeper and more uniform coverage of sequencing reads, particularly for longer transcripts. A key design principle of the proposed assay is to mutagenize only certain types of variants in the library such that they do not overlap RT mismatch signatures arising from the RNA probing reagent/RT enzyme. For example, readthrough of DMS base adducts largely generates A>N or C>N mismatches, so a variant library would be designed to only contain variants at G or T bases. This ensures variants in the library can be differentiated from signals of the RNA probing method.
***Referees cross-commenting** *
*I generally agree with the other reviewers and found that many small points on the figures were confusing, and in some cases the values being computed and displayed were under-specified. *
*I agree with Reviewer 1 that the polysome fractionation probably has limited power due to experimental design, and that the interpretation of changed ribosome loading is subtle. *
__Response: __In response to these helpful comments, we have clarified the points highlighted by the reviewers and expanded the limitations section related to the ribosome loading assay. Thanks for these constructive suggestions to strengthen our study.
*Reviewer #3 (Significance (Required)): *
*The joint, integrative analysis of COMT variants through a range of methods allows clearer insights into interconnected post-transcriptional effects. The massively parallel experiments generate high-quality data, although targeted validation of key results would strengthen the work. The findings advance our understanding of silent variant effects, which remains an open question, and technical innovations could find broader applications. *
__Response: __Thanks for pointing out the high-quality of the generated data and the broad significance of our study. The goal of our study was to identify broad mechanisms of variant effect instead of focusing on differential expression for any specific variants.
-
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
This manuscript reports on transcript sequence variants that affect expression of the gene COMT. Targeted analysis of SNPs identifies 5' UTR variants that affect COMT, leading to the identification of translated uORFs. Common coding sequence SNPs do not affect COMT expression, however. Massively parallel analyses of mRNA abundance, protein abundance, and translation are combined to look more broadly at coding sequence variants. These analyses focus on regions of predicted structure in the COMT transcript. Both silent and missense mutations that increase mRNA abundance are identified. Protein abundance is then measured and many missense mutations are found to change protein levels. To address translation directly, analysis of polysome loading is performed and significant differences are identified, although technical challenges limit data quality in these experiments. These different experiments are then analyzed jointly to classify mutation effects and identify a class of silent mutations with expression effects, leading to a proposal that these act through structure.
The joint, integrative analysis of COMT variants through a range of methods allows clearer insights into interconnected post-transcriptional effects. The massively parallel experiments generate high-quality data, although targeted validation of key results would strengthen the work. The findings advance our understanding of silent variant effects, which remains an open question, and technical innovations could find broader applications.
I do have concerns with the present version of this work.
- There is no validation presented for high-throughput experimental data. I would say that validating the effects of M152T and V63V variants from Figure 2B would substantially strengthen the work and support key conclusions.
- In the fluorescent reporter scheme, it seems that variants reducing mRNA abundance should be enriched in the "P2" gate region relative to "P1", as they would have lower mRNA abundance and correspondingly lower protein abundance. However, this analysis is not performed, and instead P1 and P3 are compared (Figure 3G), which would seem to focus on protein-level effects.
- In general the work classifies variants in several different ways and it would help to be a little clearer in naming these classes. For instance, in describing the FACS-based analysis of variant expression it is written, "protein fluorescence conditioned on RNA fluorescence" which is confusing at best-it's a fluorescence-based measurement that is used indirectly to measure COMT reporter abundance.
- Likewise, the populations with shifted GFP/mCherry ratio in this assay are described as "uncorrelated" populations, which is opaque and somewhat inaccurate-there seems to be a correlation in this group but at a different ratio.
- In the same way, "deleterious variants" is used to describe protein abundance changes, but this term implies a fitness effect and is not very specific.
- In discussing the effects of missense COMT variants on protein levels, there is an implicit assumption that degradation of mis-folded protein (or perhaps properly-folded protein with excess hydrophobic exposure?) explains these effects. This is plausible, but it would help to lay out this reasoning more clearly.
- It is written that,"In line with codon stability as a predictor of translational efficiency (Presnyak et al., 2015), variants with low codon optimality were depleted from polysomes compared to variants with optimal codons". However, this mis-states the conclusions of the cited study, which notes, "Importantly, under normal conditions the ribosome occupancy of the HIS3 opt and non-opt constructs was determined to be similar (Fig. 6B)".
- It is written that, "One intriguing possibility is to develop multiplexed assays of variant effect on RNA folding, using mutational profiling RNA probing methods (Weng et al., 2020; Zubradt et al., 2017)." How would this differ from the "Mutate and Map" approach in doi://10.1038/nchem.1176 and subsequent work from the same group?
Referees cross-commenting
I generally agree with the other reviewers and found that many small points on the figures were confusing, and in some cases the values being computed and displayed were under-specified.
I agree with Reviewer 1 that the polysome fractionation probably has limited power due to experimental design, and that the interpretation of changed ribosome loading is subtle.
Significance
The joint, integrative analysis of COMT variants through a range of methods allows clearer insights into interconnected post-transcriptional effects. The massively parallel experiments generate high-quality data, although targeted validation of key results would strengthen the work. The findings advance our understanding of silent variant effects, which remains an open question, and technical innovations could find broader applications.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Summary:
Hoskins and colleagues expressed a reporter containing all silent, missense, and nonsense codons at 58 amino acid positions in the human COMT gene in HEK293T cells and measured levels of DNA, bulk RNA, and pooled polysomal mRNA. They included a C-terminal translational GFP fusion and a downstream transcriptional mCherry fusion in the reporter in order to also bin variants by their relative protein and mRNA levels by flow cytometry. They hypothesized that RNA structure, in-part by mediating uORF translation, influences COMT gene expression. The authors conclude by identifying previously-uncharacterized COMT variants that, in this reporter system, affect RNA abundance and ribosome load.
We generally found the results of this paper convincing and clear. We do not have major comments, but have many minor comments that we hope the authors can address. These comments mostly deal with clarification on analysis metrics and giving recommendations on data presentation.
Minor comments:
In Figure 2C, the vertical axis reads "Median between-group difference". How was this metric calculated and normalized? We also agree that nonsense mutations having consistently-detrimental effects on RNA abundance is reassuring, but recommend more explanation as to why the difference in the effects of silence and missense mutations between regions may be biologically relevant.
In Figure 3, we believe that the authors are claiming that lower RNA abundance causes lower protein abundance in some variants. However, this data only reports on protein abundance relative to transcript abundance, not absolute protein abundance. We think the claim should be revised to (1) clarify that the authors are measuring protein per mRNA, and (2) express that lower mRNA amounts are more likely to co-occur with lower protein amounts, but that this data does not support any causative model.
On page 9, the authors claim that their data supports a model that rs4633 increases RNA abundance, leading to higher COMT expression. Can the authors rule out a model whereby rs4633 facilitates translation initiation, as suggested by Tsao et al. 2011, leading to both an increase in mRNA and protein abundance?
The paper references "effect size" at multiple points (e.g. "polysome effect size") but we could not find this term explicitly defined (for example: for the polysome effect size, were RNA counts for each polysome fraction divided by the relative abundance of that RNA in total RNA?)
Could you elaborate on how you define "protein abundance and "effect size: in Figure 5G? How is enrichment in P3 or P1 calculated?
Were 3396 variants considered for all readouts in this paper? How many of these variants were present in each ROI? It may be worth clarifying sample sizes.
How did Twist generate these mutagenized sequences? We assumed that they used error-prone PCR due to the mention of multiple nucleotide polymorphisms, but couldn't find an explicit answer.
In the methods, it may be worth elaborating on the composition of the HsCD00617865 plasmid. For example: this COMT reporter is under the control of a constitutively-expressed T7 promoter, correct?
In Supplementary Figures 4 and 5, it would be helpful to explicitly say that you are reporting Pearson correlations between biological replicates.
"After summarizing biological replicates (N=4) for each readout...": how did the authors summarize biological replicates? Were counts averaged?
The authors used pairwise correlations between flow cytometry fractions, polysome fractions, and total RNA/gDNA as indications of data quality. Do the authors expect for these counts to be strongly correlated? We would not necessarily expect to see a strong correlation between ribosome load and RNA/gDNA.
The authors may need to check that their standard deviations on fold changes are properly reported. We would expect standard deviation bounds to be symmetric for log fold changes, but not on unlogged fold changes - for example see page 8, for the sentence "our point estimate for nonsense variant effects on COMT RNA abundance was approximately a two-fold decrease relative to the gDNA frequency (fold change of 0.43 +/- 0.13; mean +/- standard deviation; Methods)."
On page 10, the authors say that their data suggests that hydrophobicity in the early coding region of COMT may be important for COMT folding. If this is the case, would we expect to see this effect in flow cytometry data (which is affected by protein degradation) and not polysome profiling (which is unaffected by post-translational protein degradation)?
We believe that we would have some trouble replicating the analysis from this paper from the raw data, given that the bulk of the analysis on GitHub is presented as a single R Markdown file, with references to local files to which we do not have access. We recommend that the authors add additional documentation to their repository to facilitate re-analysis.
In Figure 1B, indicating that more signal indicates less structure (in the legend or the figure itself) may assist readers who are unfamiliar with DMS-seq.
Figure 1C does a great job presenting evidence for the translation of uORFs, but does not seem to flow with the overall argument of the paper, so may fit better in the supplement.
We believe there is a typo in the Figure 1 legend that should read "K562" instead of "H562".
You also gated to separate into P1-P4, correct? Can you also show the bounds of that gating strategy in Figure 3A?
We find Figure 3F very compelling. Do you have any theories as to why mutating I59-H66 to nonpolar, uncharged residues leads to increased COMT expression? There appears to be a non-negligible proportion of di- and tri- nucleotide polymorphisms in Supplementary Figure 4. Were these excluded in downstream analyses?
A minor typo in the discussion reads "fluoresce".
Significance
Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field.
This work investigated the regulatory effects of thousands of coding variants in the COMT gene, focusing on two regions with clinical significance, by using high-throughput reporter assays. The results from this will be useful for clinical scientists interested in understanding the impacts of COMT mutations and be a useful framework for other systems/computational biologists to understand the impacts of coding mutations across different levels of regulatory function. Mutations in protein regions, if having a function, are classically known to interfere with protein function. There are fewer large-scale efforts to understand the impacts of coding mutations affecting expression through potentially changing of RNA structure or codon optimization - this work has contributed towards that frontier.
Place the work in the context of the existing literature (provide references, where appropriate).
This is (as far as I am aware) the first paper that has integrated high-throughput screens massively parallel reporter assays from RNA degradation, ribosomal load, and flow cytometry. Previous papers have tended to measure on expression regulation on only one dimension (i.e. Greisemer et al. 2023 on RNA degradation, Sample et al. 2019 on ribosomal load, and de Boer at al. 2020 on protein expression).
State what audience might be interested in and influenced by the reported findings.
Clinicians/researchers interested in COMT, computational biologists, geneticists and potentially structural biologists interested in understanding the consequences of amino acid mutations on RNA/protein expression
Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate.
Genomics, Massively parallel reporter assays, High-throughput regulatory screens.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
In this manuscript, Hoskins et al describe analyses of the effects of sequence variation on RNA levels, protein levels, and ribosome loading for the COMT gene. They use multiple experimental approaches to assay these levels and report on how sequence differences affect expression. Overall, the paper is interesting in that it presents a very deep dive into the effects of sequence variation on gene expression, including in coding sequences. However, there are some issues with the polysome loading assay technique and there are substantial issues with the figure presentation, which is often confusing.
Major comments:
- Figures: Fig 1C needs a cartoon description to show where the UTRs are. Y-axis should say "Ribo-seq CPM"
Sup Fig 1A confusing, what is "start" what is the point of this panel?
Sup Fig 1B what is PCBP del?
Sup Fig 1C what is "uORF B restore"? The description in the figure legend is not interpretable. Draw diagrams of the mutations that tell the reader what was assayed and why it was assayed. Why are there multiplication factors listed (e.g. 1.33X)? The data are depicted on a log scale, which makes it difficult to appreciate the fold-effects of the mutations (e.g. does uORFA mutation increase expression 1.5-fold?). Please calculate median expression values and report them on a bar graph or something like that so readers can interpret the results.
Fig 2A. It's hard to understand the cartoon diagram of the expression reporter construct. Why is +Dox shown here? Does that induce transcription?
Fig 2B. What's on the x-axis? is it Log2(RNA/gDNA) from sequencing? is it Log2 or Log10 or Ln?
Fig 2C. What's on the y-axis (same question). I think it's LogX(mutant/wt)RNA level?
Fig 2D. What's on the y-axis now? Fold-difference (not log transformed)?
Fig 2E. The scale bar is flipped vs. normal convention. This is also log transformed, but it's not labeled. Please label as log(whatever) and put the negative values on the left side of the bar (red on the left, blue on the right).
Fig 2F y-axis should say Ribo-seq CPM.
Fig 3A - please separate the graphs more. Did you sort cells from ROI2 into populations, or just cells from ROI1?
Fig3C-F What's the "effect size" mean on these graphs?
Fig3D It looks like the colors have switched for positive / negative "effects" on the heat map compared to Figure 2E. Please define what "median effect" means and be consistent with comparison to figure 2E.
Figure 4 what does effect size mean, what's the log-transformed scale (log2, 10, etc) same issues from earlier figures.
Figure 5 "effect size" 2. "Codon stability" should always be "Codon Stability Coefficient", maybe use "CSC". Otherwise it's confusing. 3. Flow cytometry section talks about "RNA fluorescence", which is confusing. You need to explain that it's IRES-driven mCherry as a proxy for the level of RNA first. It would also help to state explicitly that you sorted the cells into four populations, and define them all first before describing the results. 4. What are DeMask scores? How are they related to conservation or amino acid properties? If you define these, you can help the reader interpret the result. 5. There are several issues with the Polysome gradient fractionation. The gradients did not separate 40S, 60S, and monosomal fractions, so it's hard to tell how many ribosomes correspond to each peak on the gradient graph in Figure S5. This is probably because the authors used a 20-50% gradient instead of a lower percentage on top. More significantly, variations in the coding region of COMT are likely affecting the polysome association in ways the authors didn't consider. Nonsense codons will simply make the orf a lot shorter, hence fewer ribosomes. This may have nothing to do with NMD. Silent and missense variants may have unpredictable effects because they may make translation faster (fewer ribosomes) or slower (more ribosomes) on the reporter. This could lead to more ribosomes with less protein or fewer ribosomes with more protein. The reporter RNA also has an IRES loading mCherry on it, which probably helps blunt or dampen the effects of the COMT sequence variants on polysome location distribution. Overall, the design of the polysome assay is probably very limited in power to detect changes in ribosome loading (four fractions, limited separation by 20-50 gradient, IRES loading, etc). This is partially addressed in the limitations section, but these issues could be discussed in more detail.
Referees cross-commenting
I generally agree with the other reviews. Reviewer 2 asks a lot of clarifying questions, which is in line with my comments and suggestions to clarify the presentation of results in the figures. Reviewer 3 has some similar comments and also asks for validation of a few of the MPRA results, which I agree would strengthen the manuscript.
Significance
The study is novel in that it assays both 5' UTR and a wide range of protein coding sequence variants for effects on RNA and protein levels from a clinically important gene, COMT. The manuscript reports that most protein coding variants have modest effects on RNA levels, and that the minority of variants that do affect RNA levels are not predictable due to their affect on codon usage. The work also determines the distribution of effects of variants on protein levels, finding a variety of effects on expression. Interestingly, the authors found SNPs that affect ribosome loading generally affect RNA structure of the COMT coding region, rather than affecting codon usage.
This should appeal to many different communities of biologists - gene expression experts, geneticists, and clinical neurobiologists who focus on COMT. So there is a potential for fairly broad interest. The main limitations to the work are in a lack of clarity in the figures and perhaps in the underdeveloped nature of the discussion section. The discussion section reports new results (SNP associations that affect expression). These would make more sense in the results section, such that the discussion could do a better job relating the impact of sequence variants on expression levels to prior work to highlight the novelty.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
1. General Statements
We would like to thank the reviewers for their critical input on the manuscript and we are glad that, overall, they recognize that the extensive analysis of the endochondral perinatal bone we describe in this manuscript can constitute a useful resource both for the bone development and hematopoietic fields. Their input has allowed us to revise the manuscript such that it is much improved in our opinion. In this section, we wish to comment on the main common aspects raised by the reviewers, while specific point-by-point responses are provided below.
Fist, we are aware of the lack of functional assays mentioned by the reviewers, a limitation we explicitly mentioned in our original manuscript. While this is certainly a direction we will take in the future, we consider that such experiments are out of the scope and intentions of our study, given the magnitude of the resources and time they require (e.g. generation of new mouse alleles for cell fate tracking or selective ablation of specific populations, cell transplants into immunocompromised newborns, etc.). As stated in our original manuscript, this study is meant to be a resource that provides new findings and hypotheses that might be relevant for more specialized groups to functionally evaluate (e.g. teams working on thymus seeding progenitors, on adipogenesis or on immune tolerance in newborns, to name a few). As such, we believe our work has an intrinsic value. In fact, this is the first study with single cell resolution that not only compares bone populations before and after birth and with the adult tissue, but also one of the few in which all cell compartments (mesenchymal, endothelial and hematopoietic) are considered. Our manuscript hence brings a new layer of analysis not available in more directed studies, such as those based on flow cytometry (FC), in which not all populations are detected, either by lineage fraction discrimination or due to the lack of surface markers with validated antibodies for FC. This is relevant as our study identifies several new cluster-specific genetic markers and reveals their dynamic/changing expression (perinatal vs adult), or identifies that loci previously targeted for lineage tracing studies are not cluster-specific, which in our view will be useful for the interpretation of previous reports.
The other major point brought up in the reviewers’ reports is that our analysis would be nicely complemented by the spatial localization in the perinatal bone of the various populations we describe in our study. We also agree with the reviewers on this point, which we had considered, but for which we found severe technical limitations. Spatial transcriptomics with cellular resolution would be the ideal method to address this aspect, and we tested two different methods on our samples and under several fixation and permeabilization conditions. Unfortunately, and in contrast to brain tissue used as control, these attempts have been unsuccessful in consistently detecting even ubiquitous transcripts in perinatal bone samples. As spatial transcriptomics is a technology in constant development and several new platforms and approaches are becoming available, we expect that one or several of these various methods, at the moment mostly optimized for soft tissues, will be eventually set-up for mRNA detection with true cellular resolution in perinatal and adult bone samples.
Finally, immunofluorescence (IF) against specific markers is not a suitable approach in this case to unequivocally localize related cell populations such as the ones we describe (e.g. fibroblastic clusters). While flow cytometry has the unique advantage of performing lineage exclusion using cocktails of antibodies conjugated to the same fluorophore to label populations of cells which are not the aim of the study (e.g. hematopoietic and endothelial cells can be excluded by the use of TER119 plus CD45 and CD31, respectively), IF would require the availability of multiple specific antibodies, each conjugated to a different fluorophore, which are not available. In this regard, we would also like to point out that several studies that report the localization of specific cell populations in the bone have done so by taking advantage of genetic reporters (e.g. knock-in alleles encoding intracellular GFP or RFP). As previously mentioned, we consider that the generation of such new genetic tools is out of the scope of this manuscript.
1. Point-by-point description of the revisions
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
* In this new manuscript, Rueda and colleagues present an extensive bioinformatics analysis of single cell transcriptomic data obtained for mouse endochondral bone cell populations before and after birth. They describe gene markers of mesenchymal and hematopoietic cells pointing to differences with adult bone populations, and they use gene ontology and trajectory analyses to infer possible roles of these cells in the developing bone. The data could provide a valuable resource for further understanding endochondral bone development and the changes driving this process in peri-natal stages. However, they are also significant weaknesses. *
* A major weakness is that the scRNA-seq data lack validation through other techniques and functional assays. Namely, in situ data are missing to locate the various cell populations in the developing bones, especially the different types of fibroblastic cells identified by the authors. Such data would go a long way to understand the possible functions of the cell populations. Although the authors tried to complement their data with a review of the literature, most of the conclusions remain purely speculative and not sufficiently supported by scientific and statistic rigor. This makes the Results section more like a discussion than a description of the results. For instance, the authors proposed important regulatory functions for the fibroblastic clusters, but there is no data supporting this other than broad GO terms associated with genes expressed in these cells. Related to this point, the title of the manuscript does not accurately reflect the content of the study**. *
We thank the reviewer for the critical evaluation of our study and for considering it of potential interest for the field, and we have revised the manuscript to take into account his/her comments. We agree with the reviewer that including data to localize in situ the different cell populations would be highly informative. In fact, we had already attempted to perform these experiments using one of the most validated approaches, in situ sequencing (ISS). Despite assaying several fixation and permeabilization conditions, we could not reliably detect even ubiquitously expressed genes in all cells in PN1 bone sections. After discussing with a number of providers that have recently launched instruments capable of performing spatial transcriptomics technology, they all agreed that bone tissue is generally difficult to use for spatial transcriptomics technology. In summary, this data suggests that further optimization of ISS or of alternative spatial transcriptomics approaches will be needed in the future to robustly detect transcripts in bone sections with cellular resolution so as to localize in situ the various cell populations we describe in our study.
Finally, and given our attempt to interpret our analysis of the scRNAseq data in the context of the vast literature that considers both the mesenchymal and the hematopoietic compartments, we agree with the reviewer on the speculative nature of some our conclusions that he/she mentions at the end of the paragraph, an aspect also brought up by the other reviewers. Hence, starting with the title (being now “The cellular landscape of the endochondral bone during the transition to extrauterine life”), we have systematically modified such statements throughout the text to accurately make this distinction.
Other points: 1. The authors missed to report in the Results section which skeletal elements they used for their analyses and which skeletal elements were used for the adult dataset that they compared their data with. Differences in skeletal elements and in the ways whereby these samples were collected and processed could explain differences detected in the two types of datasets. Also, the sex and age of the samples for the adult dataset should be reported.
We now state also in the Results section that we collected forelimb long bones (excluding the handplate) for perinatal stages. In addition, we also indicate that the benchmark study by Baccin et al. used adult bone samples of mixed origin (femurs, tibiae, hips and spines) from 8-12 weeks old females. We agree with the reviewer that both this difference, as well as those related to the extraction protocols, might contribute to some of the variability we report. We now mention both these possibilities in the Discussion.
- It is unclear whether PN1 is the day that mice are born (classically referred to as P0) or the next day.*
As the reviewer indicates, P0 is the day of birth, and PN1 is the following day, which is the stage we chose for analysis. We have now indicated this clearly in the Materials and Methods section.
- It is unclear whether the cells obtained for each biological replicate were pooled for the scRNA-seq assays or were treated individually. It is thus unclear how reproducible the data are.*
In order to capture biological variability, each sample represented pooled littermates (5 fetuses for E18.5 and 4 pups at PN1), and processed as a single scRNA-seq library per stage to minimize technical variation. As our samples contained individuals from both sexes, already indicated in the original manuscript, we have now deconvoluted our datasets and computed male/female cell clustering so as to capture biological variability in duplicates (except for the sex, which is not considered as highly relevant at these stages). We assigned a “female” or “male” sex to a cell if it had at least one transcript read from a female or male specific transcript, respectively. If cells had at least one transcript read from both male and female specific genes, the cell was tagged as “undetermined”. Cells without any sex-specific transcript reads were tagged as “NA”. For the E18.5 sample we identified 21% female cells, 42% male cells, 3.7% undetermined and 33.3% NA cells. For the PN1 sample we identified 42.3% female cells, 28.1% male cells, 4.4% undetermined and 25.2% NA cells. This analysis, now shown in the new Fig. S2 and explained in Materials and Methods, reveals that all mesenchymal, hematopoietic and endothelial clusters are detected in both biological replicates. Finally, the changes we highlighted in the manuscript in the mesenchymal compartment between E18.5 and PN1 (TC, SPF and AFP) are maintained independently if the cells are processed as a single pool per stage or separated according to sex.
- It is not clear in the gating strategy chosen for the flow cytometry as shown in Fig. 1A why the green gate containing cells expressing high levels of CD9, CD140 and CD31 has been extended in between the purple and orange gates containing CD140 and CD31 negative cells.*
While the option mentioned by the reviewer is certainly plausible, this would have diluted the number of hematopoietic cells with intermediate CD9 levels present in our datasets. As our aim was to make sure even less abundant populations from all compartments would be captured in the scRNAseq libraries, we selected the sorting strategy depicted in Fig. 1A.
- Are cells from all the sequenced samples homogenously distributed in the scRNA-seq clusters? Authors should provide this information and add statistic when they describe changes in the amount of cells per cluster between E18.5 and PN1 stages.*
As mentioned in comment 3, we have now deconvoluted the datasets according to sex, which shows all clusters are represented in both biological duplicates and that overall follow similar trends in the E18.5 and PN1 samples.
- On the basis of what markers the AFP population has been called adipogenic? Authors present Ptch2 and Notch3 as markers of this cluster, but not adipogenic progenitor genes.*
Fig. 1C represents differentially expressed markers between clusters, which is why we chose these two representative markers for the AFP population. AFP cells also express adipogenic genes such as Pparg, Lpl or Gas6, although not exclusively. Cluster annotation is based on their molecular signature per se, GO and SCENIC analysis, which identified adipogenic regulons as active in the AFP cluster (see Fig. S10).
- Authors claim that there is a good correlation between OsC and osteo-CAR clusters. However, OsC cells do not express Cxcl12 and other typical CAR cell markers.*
We thank the reviewer for raising this very important point, as both our study and other recent ones (Liu et al., 2022, doi.org/10.1038/s41467-022-28775-x; Kara et al., 2023, doi:10.1016/j.devcel.2023.02.003), show that the most representative genes that historically define CARs (e.g. Cxcl12-high and LepR) are still not expressed at these stages, which indicates that these cells are not yet present at perinatal stages. Accordingly, we did not annotate any perinatal cluster as CAR cells. However, we did observe that other genes such as Runx2, Sp7, Spp1 or Alpl define populations belonging to the OsC cluster that map to the same integrated coordinates as the adult osteo-CAR cluster defined by Baccin et al. (Fig. 2C, bottom panel and Fig. S3, bottom panels). These observations stress the importance of performing ontogenic analysis for each marker defining specific populations, and that data obtained from adult tissue cannot be extrapolated to perinatal stages. We have also corrected the figure legend, which was certainly confusing in this respect.
- In Figure 6 expression of PaS cell markers should be shown for both adult and perinatal populations. Additionally, have the authors tested that the sorted cells in panel C have the same progenitor properties as the PaS cells?*
As requested by the reviewer, we have added the expression of PaS cell markers in adults to Fig. 6 (new panels in Fig. 6B). We are certainly considering exploring in the future the progenitor properties of the sorted cells in comparison to PaS, but these in vivo experiments will require extensive experimentation such as kidney subcapsular transplants in newborns in an immunocompromised background. We consider that these complex in vivo experiments are out of the scope of this manuscript, conceived as a resource paper.
Reviewer #1 (Significance (Required)):
* *As indicated in the comments for the authors, the new scRNA-seq data could become a useful resource for subsequent studies, but they are at present insufficient to represent a significant scientific advancement. The main concern is that new cell populations appear to have been identified by the authors, but a number of questions were not answered such as regarding their actual location in the skeletal elements, their origins, their fates and their functions. Generating such data would require a major amount of effort and require substantial revision of the manuscript.
Our study uncovers, in an unbiased and unsupervised manner, the heterogeneity of the entire perinatal bone with cellular resolution. As the reviewer points out, addressing the origin, fates and functions of the various cell clusters we describe would require a major financial effort and years to be completed. We consider that those aims are well beyond the aims of our manuscript, which is intended as a resource for the large scientific community in the field.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
* **In the study by Rueda et al. the authors use single cell RNA-sequencing to investigate differences in cellular composition bones/bone marrow between late gestational stage mouse embryos and their perinatal counterparts. The authors describe specific differences in the relative abundance of putative cell types and use established bioinformatic tools to infer interactions as well as molecular mechanisms determining specific functions. The employed methods are well described and the results are presented in a very clear and understandable manner. Despite that, the findings do not provide any substantial knowledge advance but are rather confirming work of published literature while supplementing available single cell RNA-sequencing datasets of mouse bones at adult ages. As such, this work provides an interesting resource but does not report novel biology.
Major comment: The authors explore the interesting transition of embryonic to perinatal bone/bone marrow using single RNA-sequencing. This fills a gap for the field of bone and hematopoietic researchers. There is little to criticize about the presented data. However, while it provides a nice resource, the knowledge gained is incremental. As acknowledged by the authors themselves, their study lacks functional validation of any findings made or conclusions drawn from bioinformatic tools in this manuscript. They use published work to validate their findings but do not go beyond that to confirm putative new biology. Some examples are listed in the minor comments.*
We thank the reviewer for the overall positive comments on our manuscript as a resource study and his/her critical input that we have taken into account when preparing the revised version of the manuscript. Despite the lack of functional validation (already discussed in the General Statements section), we feel that our molecular analysis does provide new valuable insight into the biology of the perinatal bone. For instance, this is the first report that categorizes the heterogeneity of all perinatal bone populations with single cell resolution, and the first that explores the cellular changes in the bone that accompany birth. It also provides an important resource for the generation of more specific genetic models for cell fate tracking or for the interpretation of previous results. Finally, while it is only an inference, our interactome analysis predicts interactions between specific mesenchymal and hematopoietic populations, opening new possibilities for specialists in the specific fields to functionally address in a directed manner (e.g. interactions between the mesenchymal compartment and the Eo/Bas or the ICL-TSP2 subpopulations, which, to the best of our knowledge, have not been previously postulated).
*Minor comments: *
-
* Remark: 10X Chromium does not provide whole transcriptomic coverage but rather captures the most highly abundant transcripts without for example being able to distinguish alternatively spliced gene variants. Based on that, interpretation of gene expression, or the absence of a gene in the dataset, should be interpreted carefully.*
The reviewer is correct, as the method used only captures the 3’UTR of each transcript. We have therefore added a sentence in Materials and Methods to address the limitation of the method. Still, our approach is widely used in the field, as it allows capturing several thousand cells and one facilitating the direct comparison with other datasets, as we ourselves did when integrating the adult dataset from Baccin et al.
- The fact that bone marrow adipose tissue begins to accumulate after birth is well known. It is therefore not surprising that adipogenic progenitor populations start to accumulate perinatally (established by studies cited by the authors). Thus, these results only confirm the validity of the dataset. This represents an example on how the majority of findings have been presented here.*
We fully agree that some of our results confirm, at the single cell level, knowledge previously stablished with other methods. However, and continuing with the case of adipose tissue mentioned by the reviewer, the analysis of our datasets with unbiased tools allowed the identification of fibroblastic populations, such as AFP or GFP, which shown by GO terms and, most importantly, by highly-relevant regulons identified by SCENIC, to be potentially associated with thermogenesis and brown fat differentiation. As far as we know, the specific transcriptional regulators involved in brown fat differentiation in the bone are poorly defined. In addition, adipogenesis is not the only aspect we highlight, being other novel association the putative interaction between fibroblastic mesenchymal populations and Eo/Bas and ILC-ISLP2 hematopoietic cells. These are just two examples of relevant aspects uncovered by that our holistic analysis of all bone population, and that might be further explored by specialized groups in the respective fields.
- Given that the authors do not provide functional validation of putative new molecular interactions (by CellPhoneDB) their conclusions should be presented in a more tempered manner and acknowledged as inference rather than fact.*
We agree with the reviewer and accordingly, we have tuned-down several statements throughout the text (see also response to Reviewer #1).
- Similarly, the authors claim "...we identified Ptx4 as a novel tenogenic-specific gene...". This is too strong a conclusion as this has not been functionally validated. It should at least be tested by immuno-(co)-staining.*
Being Ptx4 a secreted molecule, it would be very difficult to reliably assign the signal to a specific population by co-immunolocalization with bona fide tenogenic markers such as Scx or Tnmd. Besides, when pointing out Ptx4 specific expression in the tenogenic branch of the TC cluster, we intended to suggest the potential use of this locus for the generation of novel genetic tools. We have reformulated this sentence to clearly indicate this and avoid claiming that Ptx4 is a novel tenogenic marker.
- The authors identify "uncommitted clusters" as mesenchymal progenitor populations without actual showing that they are even related by lineage. This is a general pitfall in analyzing single cell RNA-sequencing data and making trajectory/pseudotime inferences. It is now well-established that the mesenchymal compartment is highly heterogeneous and composed of multiple distinct cellular lineages. Trajectory inference tools such as PHATE do not distinguish those different mesenchymal lineages. As such, the presented results cannot be considered valid unless there is proper functional validation.*
We agree with the reviewer on the limitation of this type of analysis, such as its inability to resolve phenotypic convergence (e.g. the case for osteoblasts generated from reprogrammed hypertrophic chondrocytes or from perichondrial cells). We have therefore removed the PHATE data from the manuscript.
- The description of PaS being mainly associated with compact bone is neither correct nor supported by cited studies. The authors show potential additional markers to target Pas in mice, but fail to validate their point that these markers could be used in human tissue as well.*
We thank the reviewer for pointing this out and we apologize for our incorrect wording. What we intended to mean is that PaS cells can only be efficiently extracted by enzymatic treatment of the bone fraction after bone marrow aspiration in adults. We have now corrected these instances in the revised manuscript.
Concerning the validation in human samples of the proposed additional markers for the PaS population, we agree that this is an important point, but one that would require the processing of fetal/newborn human bone tissue for FC, which is beyond our capacities and the scope of the current manuscript
Figure 1c: the legend for dotsize is off scale.
We thank the reviewer for spotting this mistake, which inadvertedly happened during figure assembly and is now corrected.
Reviewer #2 (Significance (Required)):
- Strength:
- thorough analysis of single cell RNA-sequencing datasets including integration of published work
- good writing and figure presentation
- dataset fills gap for the field as the presented ages have not been published
Limitations: - lacking functional validation - lack of new biology - mostly confirmation of known facts
Advance: - knowledge gain is incremental - good resource
Audience: - fills a gap in the bone and hematopoietic research field as a resource
My expertise: Skeletal stem cell lineage biology, single cell RNA-sequencing of bone cell populations.*
__*Reviewer #3 (Evidence, reproducibility and clarity (Required)):
*__
Summary The authors present data on a very interesting model, mouse bone just before and after birth. In this timeframe, the organism has to adapt from a buoyant, nurtured environment to stronger gravitational forces acting upon the skeletal structure, changed oxygen uptake, changed demands to the immune system and its development, and an overall changed metabolism. The authors introduce these changes and their importance in a clear, easy-to read introduction, and this clear structure and language continue throughout the manuscript. Comparing scRNA-seq of bone E18.5 and adult stage, comparable findings by Liu Y. et al., (https://doi.org/10.1038/s41467-022-28775-x) have been previously shown. However, this manuscript showed additional postnatal day 1 (P1) data. All computational analyses are well done, for the most part well described, and, notably, the integration of previously published data allows us to put the results of this study into context and compare them to the adult situation. Data sharing is not optimal, but it is already very good. The only downside is that most of the computational analyses are done at a very limited level of depth and merely provide initial insights and an overview of the data presented.
We thank the reviewer for the overall positive view of our manuscript and his/her critical comments which we have tried to address in our revisions. We wish to apologize for our omission in citing the Liu et al. study, which is now corrected in the revised text. In this respect, we would like to point out that the Liu et al. study is mostly centered in the endothelial compartment, whereas our work is more focused on the mesenchymal populations. Hence, both studies are complementary. Of note, Liu et al. were able to detect Wnt2 expression in E18.5 endothelial cells using targeted single-cell RNA-seq for a panel of specific genes, while in our data, more focused on the mesenchymal compartment, Wnt2 expression maps mostly to the SFP fibroblastic cluster, with low expression in few endothelial cells. In our view, this apparent discrepancy is not such, but the result of different strategies of sorting and enrichment, and illustrates the need of having complementary studies and datasets (e.g the SFP populations may also be an additional source of Wnt2 to promote hematopoietic stem and progenitor cell proliferation, as reported by Liu et al.).
As for the limited depth on our analysis mentioned by the reviewer, we would like to point out that we made a major effort to put our observations in the context of the vast literature on both the mesenchymal and hematopoietic compartments, which forced us to synthetize in the main text. When possible, we added additional data as part of the supplementary information (e.g. full CellPhoneDB inferred interactions as Excel tables).
*Further comments will be given in bullet-point form, split by their impact on the overall message of the manuscript. *
* Major • The authors provide FACS results for the cell clusters and types they defined from the scRNA-Seq data but do not provide any results on where and in which cellular contexts these cells are found in the bone and whether their spatial proximity and proteome (via staining, for example) make it likely or unlikely to see the cell-cell communication suggested in their CellPhoneDB analysis. The authors should either provide such results or adjust sentences as follows to not overstate their results: "These analyses also unveiled the complex MC-HC connectome, in particular the abundant interactions of fibroblastic SFP, AFP, CLFP, and GFP populations with HPC, and quite outstandingly, with the ILC-TSP2 and Eo/Bas clusters."*
We agree with the reviewer but, as previously commented in the General Statements and in our response to Reviewer #1, spatial localization of all populations is technically challenging in the bone and the methods we have tested fall short for the precise and reliable localization of specific bone cell populations with cellular resolution. Following his/her suggestion, we have systematically edited the text so as to not overstate any message stemming from our expression analysis.
- To address the issue of lineage commitment, the authors could offer some functional assessments between E18.5 and P1 or Adult bone BMSCs stromal cells subset that were sorted using FACS (Fig. 6).*
As commented in our response to Reviewer #2, and given the complex lineage relations in the bone, addressing this point would require extensive in vivo experimentation through transplant surgery in immunocompromised newborns or genetic analysis using novel mouse alleles, both of which we consider out of the scope of our study, conceived as a resource. Of note, in Fig. 6 we did not analyze by FC any adult population, but in the revised Fig. 6A, we now provide the expression of all markers in perinatal and adult datasets. In relation with lineage relations, we have also removed the PHATE analysis from the revised manuscript, as suggested by Reviewer #2.
Minor • The visualization of UMAP embeddings is very inconsistent across the manuscript and misleading or irritating in some cases. For example, in Figure 1b, the separation of the background grid is not clearly visible between E18 and PN1. In other figures in the same manuscript, borders around the figures solve this issue. Additionally, axes are either missing or unlabeled, whereas for UMAP embeddings, irrelevant axis tick labels and grid lines are present in most figures. It would benefit the overall flow and visualization of the manuscript if UMAP figures were more consistent.
We apologize for these inconsistencies and we thank the reviewer for pointing them out. We have now separated both panels in Fig. 1B and added borders so as to separate both UMAP plots. We have also added the missing labeling of axes throughout the manuscript so as to make all figures more consistent. We have chosen to keep both grid lines and tick labels as they help in the comparison of Harmony-integrated datasets.
- For Figure 1b specifically, it might also make sense to outline the main cell populations in both UMAPs, as in Figure 2a.*
Agreed and done.
- Average gene expression cannot take on values below 0, as that is the lower bound for expression counts. Figure 1c seems to show the colorbar dropping below 0 though. This might just be a problem of confusing color bar label placement, but it should be addressed. It should also be assured that, indeed, there has not been a mix-up and expression values are limited to >=0.*
We should have explained this better. These dotplots in Fig.1 and the heatmap in Fig. S1 use the normalized and scaled expression value (mean=0; standard deviation=1), which means that it might be negative expression values. These instances are interpreted as genes in which the expression levels are lower than the mean expression level in the dataset and facilitate the visualization of differential gene expression in the different clusters. We have now indicated this clearly in the figure legends.
- For the PHATE analysis, was there any batch correction applied to address potential batch effects between the E18 and PN1 datasets?*
We have removed from the manuscript all PHATE analysis. Still, as we use Harmony integration as a batch-correction tool, we now describe it now in detail in the Materials and Methods section.
- Figure 4a: From the text, it is clear that CellPhoneDB was used to calculate significant interactions between cell types. However, it is not clear which threshold (even if default) was used to determine what constitutes a significant interaction.*
We apologize for this omission. We have indicated both in the revised figure legend and in Materials and Methods the threshold (p-value ≤0.05; as calculated by CellPhoneDB) that was used to represent all significant interactions and shown in Fig. 4A.
- Figure 4b: It is unclear why a collection of chord representations was chosen here, as chord diagrams of this kind generally do not provide any useful additional information apart from an interaction being found to be significant (by a certain threshold) between two cell types. Lacking are generally more interesting parameters, such as the interaction score of such interactions or the expression of the involved ligands and receptors, in comparison to other cell types, where the respective interaction was not predicted to be significant. In this particular case, it is also unclear what is encoded by the width of the respective arrows. This should be made clear. Additionally, a suggestion could be to either present this information in an array of two DotPlots, one for ligands and receptors, respectively, or to encode additional information in, for example, the arrow or connector width, with the connector encoding the mean ligand expression and the arrow head encoding the mean receptor expression in the chord diagram.*
We initially chose to use chord plots as we thought it would be a visual way to represent significant interactions but, as the reviewer points out, they do not provide any additional information. In the line with the reviewer’s suggestion, we have substituted all Fig. 4B chord representations for bubble plots in which are both encoded the mean scaled expression of the ligand/receptor pair (the output of the CellPhoneDB tool) and the mean percentage of cells in the clusters expressing the corresponding molecules. We believe that this modification makes this figure more informative and visually easier to interpret.
- The authors do not mention how many genes were used as marker genes for GFP, SFP, etc. for the GO term enrichment analysis. This number (if low), the significance cut-offs, and the method used to determine DEGs could potentially have an impact on the GO enrichment results. The authors should therefore, already in the main manuscript text, mention the number of genes used for each of these cell subtypes and the method used to determine them. The text mentions cellranger, but the underlying methodology is not mentioned.*
In the revised manuscript, we have included how differential gene expression between clusters was calculated (DEGs were obtained using the FindAllMarkers() function in Seurat, using the default parameters -by default Seurat uses the Wilcoxon Rank Sum test for statistical testing) and the genes used for GO analysis (DEGs were filtered to include genes with an adjusted p-value ≤0.005; gene lists provided as new Supplementary Table 1). The resulting number of genes used for GO analysis at E18.5/PN1 was 218/280 (AFP), 455/480 (CLFP), 185/234 (GFP) and 436/305 (SFP). Retrieved GO terms were filtered by a ratio fold of enriched/expected ≥ 2 and manually curated.
Reviewer #3 (Significance (Required)):
* This study and single cell RNA-sequencing data further analyze the distinctions between the neonatal and adult stages of hematopoietic cells and bone stromal cells. This study also demonstrated the cellular heterogeneity of hematopoietic and bone stromal cells, as well as how cellular cross-talk supports osteogenic and hematopoietic cells. This sequencing data will be useful in the future to comprehend how the bone and marrow adapt to a stronger gravitational force operating on the skeletal structure, as well as to changed oxygen consumption, requirements for the development of the immune system, and an overall altered metabolism.*
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Summary
The authors present data on a very interesting model, mouse bone just before and after birth. In this timeframe, the organism has to adapt from a buoyant, nurtured environment to stronger gravitational forces acting upon the skeletal structure, changed oxygen uptake, changed demands to the immune system and its development, and an overall changed metabolism. The authors introduce these changes and their importance in a clear, easy-to read introduction, and this clear structure and language continue throughout the manuscript. Comparing scRNA-seq of bone E18.5 and adult stage, comparable findings by Liu Y. et al., (https://doi.org/10.1038/s41467-022-28775-x) have been previously shown. However, this manuscript showed additional postnatal day 1 (P1) data.
All computational analyses are well done, for the most part well described, and, notably, the integration of previously published data allows us to put the results of this study into context and compare them to the adult situation. Data sharing is not optimal, but it is already very good. The only downside is that most of the computational analyses are done at a very limited level of depth and merely provide initial insights and an overview of the data presented. Further comments will be given in bullet-point form, split by their impact on the overall message of the manuscript.
Major
- The authors provide FACS results for the cell clusters and types they defined from the scRNA-Seq data but do not provide any results on where and in which cellular contexts these cells are found in the bone and whether their spatial proximity and proteome (via staining, for example) make it likely or unlikely to see the cell-cell communication suggested in their CellPhoneDB analysis. The authors should either provide such results or adjust sentences as follows to not overstate their results:
- "These analyses also unveiled the complex MC-HC12 connectome, in particular the abundant interactions of fibroblastic SFP, AFP, CLFP13, and GFP populations with HPC, and quite outstandingly, with the ILC-TSP2 and 14 Eo/Bas clusters."
- To address the issue of lineage commitment, the authors could offer some functional assessments between E18.5 and P1 or Adult bone BMSCs stromal cells subset that were sorted using FACS (Fig. 6).
Minor
- The visualization of UMAP embeddings is very inconsistent across the manuscript and misleading or irritating in some cases. For example, in Figure 1b, the separation of the background grid is not clearly visible between E18 and PN1. In other figures in the same manuscript, borders around the figures solve this issue. Additionally, axes are either missing or unlabeled, whereas for UMAP embeddings, irrelevant axis tick labels and grid lines are present in most figures. It would benefit the overall flow and visualization of the manuscript if UMAP figures were more consistent.
- For Figure 1b specifically, it might also make sense to outline the main cell populations in both UMAPs, as in Figure 2a.
- Average gene expression cannot take on values below 0, as that is the lower bound for expression counts. Figure 1c seems to show the colorbar dropping below 0 though. This might just be a problem of confusing color bar label placement, but it should be addressed. It should also be assured that, indeed, there has not been a mix-up and expression values are limited to >=0.
- For the PHATE analysis, was there any batch correction applied to address potential batch effects between the E18 and PN1 datasets?
- Figure 4a: From the text, it is clear that CellPhoneDB was used to calculate significant interactions between cell types. However, it is not clear which threshold (even if default) was used to determine what constitutes a significant interaction.
- Figure 4b: It is unclear why a collection of chord representations was chosen here, as chord diagrams of this kind generally do not provide any useful additional information apart from an interaction being found to be significant (by a certain threshold) between two cell types. Lacking are generally more interesting parameters, such as the interaction score of such interactions or the expression of the involved ligands and receptors, in comparison to other cell types, where the respective interaction was not predicted to be significant. In this particular case, it is also unclear what is encoded by the width of the respective arrows. This should be made clear. Additionally, a suggestion could be to either present this information in an array of two DotPlots, one for ligands and receptors, respectively, or to encode additional information in, for example, the arrow or connector width, with the connector encoding the mean ligand expression and the arrow head encoding the mean receptor expression in the chord diagram.
- The authors do not mention how many genes were used as marker genes for GFP, SFP, etc. for the GO term enrichment analysis. This number (if low), the significance cut-offs, and the method used to determine DEGs could potentially have an impact on the GO enrichment results. The authors should therefore, already in the main manuscript text, mention the number of genes used for each of these cell subtypes and the method used to determine them. The text mentions cellranger, but the underlying methodology is not mentioned.
Significance
This study and single cell RNA-sequencing data further analyze the distinctions between the neonatal and adult stages of hematopoietic cells and bone stromal cells. This study also demonstrated the cellular heterogeneity of hematopoietic and bone stromal cells, as well as how cellular cross-talk supports osteogenic and hematopoietic cells. This sequencing data will be useful in the future to comprehend how the bone and marrow adapt to a stronger gravitational force operating on the skeletal structure, as well as to changed oxygen consumption, requirements for the development of the immune system, and an overall altered metabolism.
- The authors provide FACS results for the cell clusters and types they defined from the scRNA-Seq data but do not provide any results on where and in which cellular contexts these cells are found in the bone and whether their spatial proximity and proteome (via staining, for example) make it likely or unlikely to see the cell-cell communication suggested in their CellPhoneDB analysis. The authors should either provide such results or adjust sentences as follows to not overstate their results:
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
In the study by Rueda et al. the authors use single cell RNA-sequencing to investigate differences in cellular composition bones/bone marrow between late gestational stage mouse embryos and their perinatal counterparts. The authors describe specific differences in the relative abundance of putative cell types and use established bioinformatic tools to infer interactions as well as molecular mechanisms determining specific functions. The employed methods are well described and the results are presented in a very clear and understandable manner. Despite that, the findings do not provide any substantial knowledge advance but are rather confirming work of published literature while supplementing available single cell RNA-sequencing datasets of mouse bones at adult ages. As such, this work provides an interesting resource but does not report novel biology.
Major comment: The authors explore the interesting transition of embryonic to perinatal bone/bone marrow using single RNA-sequencing. This fills a gap for the field of bone and hematopoietic researchers. There is little to criticize about the presented data. However, while it provides a nice resource, the knowledge gained is incremental. As acknowledged by the authors themselves, their study lacks functional validation of any findings made or conclusions drawn from bioinformatic tools in this manuscript. They use published work to validate their findings but do not go beyond that to confirm putative new biology. Some examples are listed in the minor comments.
Minor comments:
- Remark: 10X Chromium does not provide whole transcriptomic coverage but rather captures the most highly abundant transcripts without for example being able to distinguish alternatively spliced gene variants. Based on that, interpretation of gene expression, or the absence of a gene in the dataset, should be interpreted carefully.
- The fact that bone marrow adipose tissue begins to accumulate after birth is well known. It is therefore not surprising that adipogenic progenitor populations start to accumulate perinatally (established by studies cited by the authors). Thus, these results only confirm the validity of the dataset. This represents an example on how the majority of findings have been presented here.
- Given that the authors do not provide functional validation of putative new molecular interactions (by CellPhoneDB) their conclusions should be presented in a more tempered manner and acknowledged as inference rather than fact.
- Similarly, the authors claim "...we identified Ptx4 as a novel tenogenic-specific gene...". This is too strong a conclusion as this has not been functionally validated. It should at least be tested by immuno-(co)-staining.
- The authors identify "uncommitted clusters" as mesenchymal progenitor populations without actual showing that they are even related by lineage. This is a general pitfall in analyzing single cell RNA-sequencing data and making trajectory/pseudotime inferences. It is now well-established that the mesenchymal compartment is highly heterogeneous and composed of multiple distinct cellular lineages. Trajectory inference tools such as PHATE do not distinguish those different mesenchymal lineages. As such, the presented results cannot be considered valid unless there is proper functional validation.
- The description of Pas being mainly associated with compact bone is neither correct nor supported by cited studies. The authors show potential additional markers to target Pas in mice, but fail to validate their point that these markers could be used in human tissue as well.
- Figure 1c: the legend for dotsize is off scale.
Significance
Strength:
- thorough analysis of single cell RNA-sequencing datasets including integration of published work
- good writing and figure presentation
- dataset fills gap for the field as the presented ages have not been published
Limitations:
- lacking functional validation
- lack of new biology - mostly confirmation of known facts
Advance:
- knowledge gain is incremental
- good resource
Audience:
- fills a gap in the bone and hematopoietic research field as a resource
My expertise: Skeletal stem cell lineage biology, single cell RNA-sequencing of bone cell populations
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
In this new manuscript, Rueda and colleagues present an extensive bioinformatics analysis of single cell transcriptomic data obtained for mouse endochondral bone cell populations before and after birth. They describe gene markers of mesenchymal and hematopoietic cells pointing to differences with adult bone populations, and they use gene ontology and trajectory analyses to infer possible roles of these cells in the developing bone. The data could provide a valuable resource for further understanding endochondral bone development and the changes driving this process in peri-natal stages. However, they are also significant weaknesses.
A major weakness is that the scRNA-seq data lack validation through other techniques and functional assays. Namely, in situ data are missing to locate the various cell populations in the developing bones, especially the different types of fibroblastic cells identified by the authors. Such data would go a long way to understand the possible functions of the cell populations. Although the authors tried to complement their data with a review of the literature, most of the conclusions remain purely speculative and not sufficiently supported by scientific and statistic rigor. This makes the Results section more like a discussion than a description of the results. For instance, the authors proposed important regulatory functions for the fibroblastic clusters, but there is no data supporting this other than broad GO terms associated with genes expressed in these cells. Related to this point, the title of the manuscript does not accurately reflect the content of the study.
Other points:
- The authors missed to report in the Results section which skeletal elements they used for their analyses and which skeletal elements were used for the adult dataset that they compared their data with. Differences in skeletal elements and in the ways whereby these samples were collected and processed could explain differences detected in the two types of datasets. Also, the sex and age of the samples for the adult dataset should be reported.
- It is unclear whether PN1 is the day that mice are born (classically referred to as P0) or the next day.
- It is unclear whether the cells obtained for each biological replicate were pooled for the scRNA-seq assays or were treated individually. It is thus unclear how reproducible the data are.
- It is not clear in the gating strategy chosen for the flow cytometry as shown in Fig. 1A why the green gate containing cells expressing high levels of CD9, CD140 and CD31 has been extended in between the purple and orange gates containing CD140 and CD31 negative cells.
- Are cells from all the sequenced samples homogenously distributed in the scRNA-seq clusters? Authors should provide this information and add statistic when they describe changes in the amount of cells per cluster between E18.5 and PN1 stages.
- On the basis of what markers the AFP population has been called adipogenic? Authors present Ptch2 and Notch3 as markers of this cluster, but not adipogenic progenitor genes.
- Authors claim that there is a good correlation between OsC and osteo-CAR clusters. However, OsC cells do not express Cxcl12 and other typical CAR cell markers.
- In Figure 6 expression of PaS cell markers should be shown for both adult and perinatal populations. Additionally, have the authors tested that the sorted cells in panel C have the same progenitor properties as the PaS cells?
Significance
As indicated in the comments for the authors, the new scRNA-seq data could become a useful resource for subsequent studies, but they are at present insufficient to represent a significant scientific advancement. The main concern is that new cell populations appear to have been identified by the authors, but a number of questions were not answered such as regarding their actual location in the skeletal elements, their origins, their fates and their functions. Generating such data would require a major amount of effort and require substantial revision of the manuscript.
-