10,000 Matching Annotations
  1. Oct 2025
    1. eLife Assessment

      This study by Lapao et al. uncovers a novel role for the Rab27A effector SYTL5 in regulating mitochondrial function and mitophagy under hypoxic conditions. Using a range of imaging and functional assays, the authors demonstrate that SYTL5 localizes to mitochondria in a Rab27A-dependent manner and impacts mitochondrial respiration and metabolic reprogramming. While the findings are solid and valuable in the area of cancer biology, further mechanistic clarity and improved imaging would strengthen the conclusions.

    2. Reviewer #1 (Public review):

      Summary:

      In this study, Ana Lapao et al. investigated the roles of Rab27 effector SYTL5 in cellular membrane trafficking pathways. The authors found that SYTL5 localizes to mitochondria in a Rab27A-dependent manner. They demonstrated that SYTL5-Rab27A positive vesicles containing mitochondrial material are formed under hypoxic conditions, thus they speculate that SYTL5 and Rab27A play roles in mitophagy. They also found that both SYTL5 and Rab27A are important for normal mitochondrial respiration. Cells lacking SYTL5 undergo a shift from mitochondrial oxygen consumption to glycolysis which is a common process known as the Warburg effect in cancer cells. Based on cancer patient database, the author noticed that low SYTL5 expression is related to reduced survival for adrenocortical carcinoma patients, indicating SYTL5 could be a negative regulator of the Warburg effect and potentially tumorigenesis.

      Strengths:

      The authors take advantages of multiple techniques and novel methods to perform the experiments.

      (1) Live-cell imaging revealed that stably inducible expression of SYTL5 co-localized with filamentous structures positive for mitochondria. This result was further confirmed by using correlative light and EM (CLEM) analysis and western blotting from purified mitochondrial fraction.

      (2) In order to investigate whether SYTL5 and RAB27A are required for mitophagy in hypoxic conditions, two established mitophagy reporter U2OS cell lines were used to analyze the autophagic flux.

      Weaknesses:

      This study revealed a potential function of SYTL5 in mitophagy and mitochondrial metabolism. However, the mechanistic evidence that establishes the relationship between SYTL5/Rab27A and mitophagy is insufficient. The involvement of SYTL5 in ACC needs more investigation. Furthermore, images and results supporting the major conclusions need to be improved.

      Comments on revisions: The authors did not revise the paper as suggested.

    3. Reviewer #2 (Public review):

      Summary:

      The authors provide convincing evidence that Rab27 and STYL5 work together to regulate mitochondrial activity and homeostasis.

      Strengths:

      The development of models which allow the function to be dissected, and the rigous approach and testing of mitochondrial activity.

      This work is carefully done, and supports the importance of the roles of Rab27A and STYL5.

    4. Reviewer #3 (Public review):

      In the manuscript by Lapao et al., the authors uncover a role for the RAB27A effector protein SYTL5 in regulating mitochondrial function and apparent selective turnover of mitochondrial components. The authors find that SYTL5 localizes to mitochondria in a RAB27A dependent way and that loss of SYTL5 (or RAB27A) impairs lysosomal turnover of MTCO1 (but not a matrix-based reporter/other mitochondrial proteins). The authors go on to show that loss of SYTL5 impacts mitochondrial respiration and ECAR and as such may influence the Warburg effect and tumorigenesis. Of relevance here, the authors go on to show that SYTL5 expression is reduced in adrenocortical carcinomas and this correlates with reduced survival rates.

      As previously reviewed, this is a very intriguing body of work and reveals a new role for SYTL5/RAB27A at the mitochondria. Unfortunately, it appears that SYTL5 is challenging protein to detect endogenously and the authors' cell lines "comprise a heterogenous pool with high variability", which means that a lot of my original concerns remain. It is still also not clear if the conventional autophagy machinery is required for this pathway, especially if SYTL5/RAB27A mitochondrial recruitment is upstream of this. Hopefully, in future work, the authors (and/or others) will be able to address this and build on the mechanisms of this interesting and potentially important pathway.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      In this study, Ana Lapao et al. investigated the roles of Rab27 effector SYTL5 in cellular membrane trafficking pathways. The authors found that SYTL5 localizes to mitochondria in a Rab27A-dependent manner. They demonstrated that SYTL5-Rab27A positive vesicles containing mitochondrial material are formed under hypoxic conditions, thus they speculate that SYTL5 and Rab27A play roles in mitophagy. They also found that both SYTL5 and Rab27A are important for normal mitochondrial respiration. Cells lacking SYTL5 undergo a shift from mitochondrial oxygen consumption to glycolysis which is a common process known as the Warburg effect in cancer cells. Based on the cancer patient database, the author noticed that low SYTL5 expression is related to reduced survival for adrenocortical carcinoma patients, indicating SYTL5 could be a negative regulator of the Warburg effect and potentially tumorigenesis.

      Strengths:

      The authors take advantage of multiple techniques and novel methods to perform the experiments.

      (1) Live-cell imaging revealed that stably inducible expression of SYTL5 co-localized with filamentous structures positive for mitochondria. This result was further confirmed by using correlative light and EM (CLEM) analysis and western blotting from purified mitochondrial fraction.

      (2) In order to investigate whether SYTL5 and Rab27A are required for mitophagy in hypoxic conditions, two established mitophagy reporter U2OS cell lines were used to analyze the autophagic flux.

      Weaknesses:

      This study revealed a potential function of SYTL5 in mitophagy and mitochondrial metabolism. However, the mechanistic evidence that establishes the relationship between SYTL5/Rab27A and mitophagy is insufficient. The involvement of SYTL5 in ACC needs more investigation. Furthermore, images and results supporting the major conclusions need to be improved.

      We thank the reviewer for their constructive comments. We agree that a complete understanding of the mechanism by which SYTL5 and Rab27A are recruited to the mitochondria and subsequently involved in mitophagy requires further investigation. Here, we have shown that SYTL5 recruitment to the mitochondria requires both its lipid-binding C2 domains and the Rab27A-binding SHD domain (Figure 1G-H). This implies a coincidence detection mechanism for mitochondrial localisation of SYTL5.  Additionally, we find that mitochondrial recruitment of SYTL5 is dependent on the GTPase activity and mitochondrial localisation of Rab27A (Figure 2D-E). We also identified proteins linked to the cellular response to oxidative stress, reactive oxygen species metabolic process, regulation of mitochondrion organisation and protein insertion into mitochondrial membrane to be enriched in the SYTL5 interactome (Figure 3A and C).

      However, less details regarding the mitochondrial localisation of Rab27A are understood. To investigate this, we have now performed a mass spectrometry analysis to identify the interactome of Rab27A (see Author response table 1 below,). U2OS cells with stable expression of mScarlet-Rab27A or mScarlet only, were subjected to immunoprecipitation, followed by MS analysis.  Of the 32 significant Rab27A-interacting hits (compared to control), two of the hits are located in the inner mitochondrial membrane (IMM); ATP synthase F(1) complex subunit alpha (P25705), and mitochondrial very long-chain specific acyl-CoA dehydrogenase (VLCAD)(P49748). However, as these IMM proteins are not likely involved in mitochondrial recruitment of Rab27A, observed under basal conditions, we choose not to include these data in the manuscript. 

      It is known that other RAB proteins are recruited to the mitochondria. During parkin-mediated mitophagy, RABGEF1 (a guanine nucleotide exchange factor) is recruited through its ubiquitin-binding domain and directs mitochondrial localisation of RAB5, which subsequently leads to recruitment of RAB7 by the MON1/CCZ1 complex[1]. As already mentioned in the discussion (p. 12), ubiquitination of the Rab27A GTPase activating protein alpha (TBC1D10A) is reduced in the brain of Parkin KO mouse compared to controls[35], suggesting a possible connection of Rab27A with regulatory mechanisms that are linked with mitochondrial damage and dysfunction. While this an interesting avenue to explore, in this paper we will not follow up further on the mechanism of mitochondrial recruitment of Rab27A. 

      Author response table 1.

      Rab27A interactome. Proteins co-immunoprecipitated with mScarlet-Rab27A vs mScarlet expressing control. The data show average of three replicates. 

      To investigate the role of SYTL5 in the context of ACC, we acquired the NCI-H295R cell line isolated from the adrenal gland of an adrenal cancer patient. The cells were cultured as recommended from ATCC using DMEM/F-12 supplemented with NuSerum and ITS +premix. It is important to note that the H295R cells were adapted to grow as an adherent monolayer from the H295 cell line which grows in suspension. However, there can still be many viable H295R cells in the media. 

      We attempted to conduct OCR and ECAR measurements using the Seahorse XF upon knockdown of SYTL5 and/or Rab27A in H295R cells. For these assays, it is essential that the cells be seeded in a monolayer at 70-90% confluency with no cell clusters[4]. Poor adhesion of the cells can cause inaccurate measurements by the analyser. Unfortunately, the results between the five replicates we carried out were highly inconsistent, the same knockdown produced trends in opposite directions in different replicates. This is likely due to problems with seeding the cells. Despite our best efforts to optimise seeding number, and pre-coating the plate with poly-D-lysine[5] we observed poor attachment of cells and inability to form a monolayer. 

      To study the localisation of SYTL5 and Rab27A in an ACC model, we transduced the H295R cells with lentiviral particles to overexpress pLVX-SV40-mScarlet-I-Rab27A and pLVX-CMV-SYTL5-EGFP-3xFLAG. Again, this proved unsuccessful after numerous attempts at optimising transduction. 

      These issues limited our investigation into the role of SYTL5 in ACC to the cortisol assay (Supplementary Figure 6). For this the H295R cells were an appropriate model as they are able to produce an array of adrenal cortex steroids[6] including cortisol[7]. In this assay, measurements are taken from cell culture supernatants, so the confluency of the cells does not prevent consistent results as the cortisol concentration was normalised to total protein per sample. With this assay we were able to rule out a role for SYTL5 and Rab27A in the secretion of cortisol.  

      Another consideration when investigating the involvement of SYTL5 in ACC, is that in general ACC cells should have a low expression of SYTL5 as is seen from the patient expression data (Figure 6B).

      The reviewer also writes “Furthermore, images and results supporting the major conclusions need to be improved.”. We have tried several times, without success, to generate U2OS cells with CRISPR/Cas9-mediated C-terminal tagging of endogenous SYTL5 with mNeonGreen, using an approach that has been successfully implemented in the lab for other genes. This is likely due to a lack of suitable sgRNAs targeting the C-terminal region of SYTL5, which have a low predicted efficiency score and a large number of predicted off-target sites in the human genome including several other gene exons and introns (see Author response image 2). 

      We have also included new data (Supplementary Figure 4B) showing that some of the hypoxia-induced SYTL5-Rab27A-positive vesicles stain positive for the autophagy markers p62 and LC3B when inhibiting lysosomal degradation, further strengthening our data that SYTL5 and Rab27A function as positive regulators of mitophagy.  

      Reviewer #2 (Public review): 

      Summary:

      The authors provide convincing evidence that Rab27 and STYL5 work together to regulate mitochondrial activity and homeostasis.

      Strengths:

      The development of models that allow the function to be dissected, and the rigorous approach and testing of mitochondrial activity.

      Weaknesses:

      There may be unknown redundancies in both pathways in which Rab27 and SYTL5 are working which could confound the interpretation of the results.

      Suggestions for revision:

      Given that Rab27A and SYTL5 are members of protein families it would be important to exclude any possible functional redundancies coming from Rab27B expression or one of the other SYTL family members. For Rab27 this would be straightforward to test in the assays shown in Figure 4 and Supplementary Figure 5. For SYTL5 it might be sufficient to include some discussion about this possibility.

      We thank the reviewer for pointing out the potential redundancy issue for Rab27A and SYTL5. There are multiple studies demonstrating the redundancy between Rab27A and Rab27B. For example, in a study of the disease Griscelli syndrome, caused by Rab27A loss of function, expression of either Rab27A or Rab27B rescues the healthy phenotype indicating redundancy[8]. This redundancy however applies to certain function and cell types. In fact, in a study regarding hair growth, knockdown of Rab27B had the opposite effect to knockdown of Rab27A[9].

      In this paper, we conducted all assays in U2OS cells, in which the expression of Rab27B is very low. Human Protein Atlas reports expression of 0.5nTPM for Rab27B, compared to 18.4nTPM for Rab27A. We also observed this low level of expression of Rab27B compared to Rab27A by qPCR in U2OS cells. Therefore, there would be very little endogenous Rab27B expression in cells depleted of Rab27A (with siRNA or KO). In line with this, Rab27B peptides were not detected in our SYTL5 interactome MS data (Table 1 in paper). Moreover, as Rab27A depletion inhibits mitochondrial recruitment of SYTL5 and mitophagy, it is not likely that Rab27B provides a functional redundancy. It is possible that Rab27B overexpression could rescue mitochondrial localisation of SYTL5 in Rab27A KO cells, but this was not tested as we do not have any evidence for a role of Rab27B in these cells. Taken together, we believe our data imply that Rab27B is very unlikely to provide any functional redundancy to Rab27A in our experiments. 

      For the SYTL family, all five members are Rab27 effectors, binding to Rab27 through their SHD domain. Together with Rab27, all SYTL’s have been implicated in exocytosis in different cell types. For example, SYTL1 in exocytosis of azurophilic granules from neutrophils[10], SYTL2 in secretion of glucagon granules from pancreatic α cells[11], SYTL3 in secretion of lytic granules from cytotoxic T lymphocytes[12], SYTL4 in exocytosis of dense hormone containing granules from endocrine cells[13] and SYTL5 in secretion of the RANKL cytokine from osteoblasts[14]. This indicates a potential for redundancy through their binding to Rab27 and function in vesicle secretion/trafficking. However, one study found that different Rab27 effectors have distinct functions at different stages of exocytosis[15].

      Very little known about redundancy or hierarchy between these proteins. Differences in function may be due to the variation in gene expression profile across tissues for the different SYTL’s (see Author response image 1 below). SYTL5 is enriched in the brain unlike the others, suggesting possible tissue specific functions. There are also differences in the binding affinities and calcium sensitivities of the C2iA and C2B domains between the SYTL proteins[16].

      Author response image 1.

      GTEx Multi Gene Query for SYTL1-5

      All five SYTL’s are expressed in the U2OS cell line with nTPMs according to Human Protein Atlas of SYTL1: 7.5, SYTL2: 13.4, SYTL3:14.2, SYTL4: 8.7, SYTL5: 4.8. In line with this, in the Rab27A interactome, when comparing cells overexpressing mScarlet-Rab27A with control cells, we detected all five SYTL’s as specific Rab27A-interacting proteins (see Author response table 1 above). Whereas, in the SYTL5 interactome we did not detect any other SYTL protein (table 1 in paper), confirming that they do not form a complex with SYTL5. 

      We have included the following text in the discussion (p. 12): “SYTL5 and Rab27A are both members of protein families, suggesting possible functional redundancies from Rab27B or one of the other SYTL isoforms. While Rab27B has a very low expression in U2OS cells, all five SYTL’s are expressed. However, when knocking out or knocking down SYTL5 and Rab27A we observe significant effects that we presume would be negated if their isoforms were providing functional redundancies. Moreover, we did not detect any other SYTL protein or Rab27B in the SYTL5 interactome, confirming that they do not form a complex with SYTL5.”

      Suggestions for Discussion: 

      Both Rab27A and STYL5 localize to other membranes, including the endolysosomal compartments. How do the authors envisage the mechanism or cellular modifications that allow these proteins, either individually or in complex to function also to regulate mitochondrial funcYon? It would be interesYng to have some views.

      We agree that it would be interesting to better understand the mechanism involved in modulation of the localisation and function of SYTL5 and Rab27A at different cellular compartments, including the mitochondria. Here, we have shown that SYTL5 recruitment to the mitochondria involves coincidence detection, as both its lipid-binding C2 domains and the Rab27A-binding SHD domain are required (Figure 1G-H). Both these domains also seem required for localisation of SYTL5 to vesicles, and we can only speculate that binding to different lipids (Figure 1F) may regulate SYTL5 localisation. Additionally, we find that mitochondrial recruitment of SYTL5 is dependent on the GTPase activity and mitochondrial localisation of Rab27A (Figure 2D-E). However, this seems also the case for vesicular recruitment of SYTL5, although a few SYTL5-Rab27A (T23N) positive vesicles were seen (Figure 2E). 

      To characterise the mechanisms involved in mitochondrial localisation of Rab27A, we have performed mass spectrometry analysis to identify the interactome of Rab27A (see Author response table 1 above). U2OS cells with stable expression of mScarlet-Rab27A or mScarlet only were subjected to immunoprecipitation, followed by MS analysis.  Of the 32 significant Rab27A-interacting hits (compared to control), two of the hits localise in the inner mitochondrial membrane (IMM); ATP synthase F(1) complex subunit alpha (P25705), and mitochondrial very long-chain specific acyl-CoA dehydrogenase (VLCAD)(P49748). However, as these IMM proteins are not likely involved in mitochondrial recruitment of Rab27A, observed under basal conditions, we chose not to include these data in the manuscript. 

      It is known that other RAB proteins are recruited to the mitochondria by regulation of their GTPase activity. During parkin-mediated mitophagy, RABGEF1 (a guanine nucleotide exchange factor) is recruited through its ubiquitin-binding domain and directs mitochondrial localisation of RAB5, which subsequently leads to recruitment of RAB7 by the MON1/CCZ1 GEF complex[1]. As already mentioned in the discussion (p.12), ubiquitination of the Rab27A GTPase activating protein alpha (TBC1D10A) is reduced in the brain of Parkin KO mouse compared to controls[35], suggesting a possible connection of Rab27A with regulatory mechanisms that are linked with mitochondrial damage and dysfunction. While this an interesting avenue to explore, it is beyond the scope of this paper. 

      Our data suggest that SYTL5 functions as a negative regulator of the Warburg effect, the switch from OXPHOS to glycolysis. While both SYTL5 and Rab27A seem required for mitophagy of selective mitochondrial components, and their depletion leading to reduced mitochondrial respiration and ATP production, only depletion of SYTL5 caused a switch to glycolysis. The mechanisms involved are unclear, but we found several proteins linked to the cellular response to oxidative stress, reactive oxygen species metabolic process, regulation of mitochondrion organisation and protein insertion into mitochondrial membrane to be enriched in the SYTL5 interactome (Figure 3A and C).

      We have addressed this comment in the discussion on p.12 

      Reviewer #3 (Public review):

      Summary:

      In the manuscript by Lapao et al., the authors uncover a role for the Rab27A effector protein SYTL5 in regulating mitochondrial function and turnover. The authors find that SYTL5 localizes to mitochondria in a Rab27A-dependent way and that loss of SYTL5 (or Rab27A) impairs lysosomal turnover of an inner mitochondrial membrane mitophagy reporter but not a matrix-based one. As the authors see no co-localization of GFP/mScarlet tagged versions of SYTL5 or Rab27A with LC3 or p62, they propose that lysosomal turnover is independent of the conventional autophagy machinery. Finally, the authors go on to show that loss of SYTL5 impacts mitochondrial respiration and ECAR and as such may influence the Warburg effect and tumorigenesis. Of relevance here, the authors go on to show that SYTL5 expression is reduced in adrenocortical carcinomas and this correlates with reduced survival rates.

      Strengths:

      There are clearly interesting and new findings here that will be relevant to those following mitochondrial function, the endocytic pathway, and cancer metabolism.

      Weaknesses:

      The data feel somewhat preliminary in that the conclusions rely on exogenously expressed proteins and reporters, which do not always align.

      As the authors note there are no commercially available antibodies that recognize endogenous SYTL5, hence they have had to stably express GFP-tagged versions. However, it appears that the level of expression dictates co-localization from the examples the authors give (though it is hard to tell as there is a lack of any kind of quantitation for all the fluorescent figures). Therefore, the authors may wish to generate an antibody themselves or tag the endogenous protein using CRISPR.

      We agree that the level of SYTL5 expression is likely to affect its localisation. As suggested by the reviewer, we have tried hard, without success, to generated U2OS cells with CRISPR knock-in of a mNeonGreen tag at the C-terminus of endogenous SYTL5, using an approach that has been successfully implemented in the lab for other genes. This is likely due to a lack of suitable sgRNAs targeting the C-terminal region of SYTL5, which have a low predicted efficiency score and a large number of predicted off-target sites in the human genome including several other gene exons and introns (see Author response image 2). 

      Author response image 2.

      Overview of sgRNAs targeting the C-terminal region of SYTL5 

      Although the SYTL5 expression level might affect its cellular localization, we also found the mitochondrial localisation of SYTL5-EGFP to be strongly increased in cells co-expressing mScarletRab27A, supporting our findings of Rab27A-mediated mitochondrial recruitment of SYTL5. We have also included new data (Supplementary Figure 4B) showing that some of the hypoxia-induced SYTL5Rab27A-positive vesicles stain positive for the autophagy markers p62 and LC3B when inhibiting lysosomal degradation, further strengthening our data that SYTL5 and Rab27A function as positive regulators of mitophagy.  

      In relation to quantitation, the authors found that SYTL5 localizes to multiple compartments or potentially a few compartments that are positive for multiple markers. Some quantitation here would be very useful as it might inform on function. 

      We find that SYTL5-EGFP localizes to mitochondria, lysosomes and the plasma membrane in U2OS cells with stable expression of SYTL5-EGFP and in SYTL5/Rab27A double knock-out cells rescued with SYTL5EGFP and mScralet-Rab27A. We also see colocalization of SYTL5-EGFP with endogenous p62, LC3 and LAMP1 upon induction of mitophagy. However, as these cell lines comprise a heterogenous pool with high variability we do not believe that quantification of the overexpressing cell lines would provide beneficial information in this scenario. As described above, we have tried several times to generate SYTL5 knock-in cells without success.  

      The authors find that upon hypoxia/hypoxia-like conditions that punctate structures of SYTL5 and Rab27A form that are positive for Mitotracker, and that a very specific mitophagy assay based on pSu9-Halo system is impaired by siRNA of SYTL5/Rab27A, but another, distinct mitophagy assay (Matrix EGFP-mCherry) shows no change. I think this work would strongly benefit from some measurements with endogenous mitochondrial proteins, both via immunofluorescence and western blot-based flux assays. 

      In addition to the western blotting for different endogenous ETC proteins showing significantly increased levels of MTCO1 in cells depleted of SYTL5 and/or Rab27A (Figure 5E-F), we have now blotted for the endogenous mitochondrial proteins, COXIV and BNIP3L, in DFP and DMOG conditions upon knockdown of SYTL5 and/or Rab27A (Figure 5G and Supplementary Figure 5A). Although there was a trend towards increased levels, we did not see any significant changes in total COXIV or BNIP3L levels when SYTL5, Rab27A or both are knocked down compared to siControl. Blotting for endogenous mitochondrial proteins is however not the optimum readout for mitophagy. A change in mitochondrial protein level does not necessarily result from mitophagy, as other factors such as mitochondrial biogenesis and changes in translation can also have an effect. Mitophagy is a dynamic process, which is why we utilise assays such as the HaloTag and mCherry-EGFP double tag as these indicate flux in the pathway. Additionally, as mitochondrial proteins have different half-lives, with many long-lived mitochondrial proteins[17], differences in turnover rates of endogenous proteins make the results more difficult to interpret. 

      A really interesting aspect is the apparent independence of this mitophagy pathway on the conventional autophagy machinery. However, this is only based on a lack of co-localization between p62or LC3 with LAMP1 and GFP/mScarlet tagged SYTL5/Rab27A. However, I would not expect them to greatly colocalize in lysosomes as both the p62 and LC3 will become rapidly degraded, while the eGFP and mScarlet tags are relatively resistant to lysosomal hydrolysis. -/+ a lysosome inhibitor might help here and ideally, the functional mitophagy assays should be repeated in autophagy KOs. 

      We thank the reviewer for this suggestion. We have now repeated the colocalisation studies in cells treated with DFP with the addition of bafilomycin A1 (BafA1) to inhibit the lysosomal V-ATPase. Indeed, we find that a few of the SYTL5/Rab27A/MitoTracker positive structures also stain positive for p62 and LC3 (Supplementary Figure 4B). As expected, the occurrence of these structures was rare, as BafA1 was only added for the last 4 hrs of the 24 hr DFP treatment. However, we cannot exclude the possibility that there are two different populations of these vesicles.

      The link to tumorigenesis and cancer survival is very interesYng but it is not clear if this is due to the mitochondrially-related aspects of SYTL5 and Rab27A. For example, increased ECAR is seen in the SYTL5 KO cells but not in the Rab27A KO cells (Fig.5D), implying that mitochondrial localization of SYTL5 is not required for the ECAR effect. More work to strengthen the link between the two sections in the paper would help with future direcYons and impact with respect to future cancer treatment avenues to explore. 

      We agree that the role of SYTL5 in ACC requires future investigation. While we observe reduced OXPHOS levels in both SYTL5 and Rab27A KO cells (Figure 5B), glycolysis was only increased in SYTL5 KO cells (Figure 5D). We believe this indicates that Rab27A is being negatively regulated by SYTL5, as ECAR was unchanged in both the Rab27A KO and Rab27A/SYTL5 dKO cells. This suggests that Rab27A is required for the increase in ECAR when SYTL5 is depleted, therefore SYTL5 negatively regulates Rab27A. The mechanism involved is unclear, but we found several proteins linked to the cellular response to oxidative stress, reactive oxygen species metabolic process, regulation of mitochondrion organisation and protein insertion into mitochondrial membrane to be enriched in the SYTL5 interactome (Figure 3A and C).

      To investigate the link to cancer further, we tested the effect of knockdown of SYTL5 and/or Rab27A on the levels of mitochondrial ROS. ROS levels were measured by flow cytometry using the MitoSOX Red dye, together with the MitoTracker Green dye to normalise ROS levels to the total mitochondria. Cells were treated with the antioxidant N-acetylcysteine (NAC)[18] as a negative control and menadione as a positive control, as menadione induces ROS production via redox cycling[19]. We must consider that there is also a lot of autofluorescence from cells that makes it impossible to get a level of ‘zero ROS’ in this experiment. We did not see a change in ROS with knockdown of SYTL5 and/or Rab27A compared to the NAC treated or siControl samples (see Author response image 3 below). The menadione samples confirm the success of the experiment as ROS accumulated in these cells. Thus, based on this, we do not believe that low SYTL5 expression would affect ROS levels in ACC tumours.

      Author response image 3.

      Mitochondrial ROS production normalised to total mitochondria

      As discussed in our response to Reviewer #1, we tried hard to characterise the role of SYTL5 in the context of ACC using the NCI-H295R cell line isolated from the adrenal gland of an adrenal cancer patient. We attempted to conduct OCR and ECAR measurements using the Seahorse XF upon knockdown of SYTL5 and/or Rab27A in H295R cells without success, due to poor attachment of the cells and inability to form a monolayer. We also transduced the H295R cells with lentiviral particles to overexpress pLVX-SV40-mScarlet-I-Rab27A and pLVX-CMV-SYTL5-EGFP-3xFLAG to study the localisation of SYTL5 and Rab27A in an ACC model. Again, this proved unsuccessful after numerous attempts at optimising the transduction. These issues limited our investigation into the role of SYTL5 in ACC to the cortisol assay (Supplementary Figure 6). For this the H295R cells were an appropriate model as they are able to produce an array of adrenal cortex steroids[6] including cortisol[7] In this assay, measurements are taken from cell culture supernatants, so the confluency of the cells does not prevent consistent results as the cortisol concentration was normalised to total protein per sample. With this assay we were able to rule out a role for SYTL5 and Rab27A in the secretion of cortisol.  

      Another consideration when investigating the involvement of SYTL5 in ACC, is that in general ACC cells should have a low expression of SYTL5 as is seen from the patient expression data (Figure 6B).

      Further studies into the link between SYTL5/Rab27A and cancer are beyond the scope of this paper as we are limited to the tools and expertise available in the lab.

      References

      (1) Yamano, K. et al. Endosomal Rab cycles regulate Parkin-mediated mitophagy. eLife 7 (2018). https://doi.org:10.7554/eLife.31326

      (2) Carré, M. et al. Tubulin is an inherent component of mitochondrial membranes that interacts with the voltage-dependent anion channel. The Journal of biological chemistry 277, 33664-33669 (2002). https://doi.org:10.1074/jbc.M203834200

      (3) Hoogerheide, D. P. et al. Structural features and lipid binding domain of tubulin on biomimetic mitochondrial membranes. Proceedings of the National Academy of Sciences 114, E3622-E3631 (2017). https://doi.org:10.1073/pnas.1619806114

      (4) Plitzko, B. & Loesgen, S. Measurement of Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate (ECAR) in Culture Cells for Assessment of the Energy Metabolism. Bio Protoc 8, e2850 (2018). https://doi.org:10.21769/BioProtoc2850

      (5) Yavin, E. & Yavin, Z. Attachment and culture of dissociated cells from rat embryo cerebral hemispheres on polylysine-coated surface. The Journal of cell biology 62, 540-546 (1974). https://doi.org:10.1083/jcb.62.2.540

      (6) Wang, T. & Rainey, W. E. Human adrenocortical carcinoma cell lines. Mol Cell Endocrinol 351, 5865 (2012). https://doi.org:10.1016/j.mce.2011.08.041

      (7) Rainey, W. E. et al. Regulation of human adrenal carcinoma cell (NCI-H295) production of C19 steroids. J Clin Endocrinol Metab 77, 731-737 (1993). https://doi.org:10.1210/jcem.77.3.8396576

      (8) Barral, D. C. et al. Functional redundancy of Rab27 proteins and the pathogenesis of Griscelli syndrome. J. Clin. Invest. 110, 247-257 (2002). https://doi.org:10.1172/jci15058

      (9) Ku, K. E., Choi, N. & Sung, J. H. Inhibition of Rab27a and Rab27b Has Opposite Effects on the Regulation of Hair Cycle and Hair Growth. Int. J. Mol. Sci. 21 (2020). https://doi.org:10.3390/ijms21165672

      (10) Johnson, J. L., Monfregola, J., Napolitano, G., Kiosses, W. B. & Catz, S. D. Vesicular trafficking through cortical actin during exocytosis is regulated by the Rab27a effector JFC1/Slp1 and the RhoA-GTPase–activating protein Gem-interacting protein. Mol. Biol. Cell 23, 1902-1916 (2012). https://doi.org:10.1091/mbc.e11-12-1001

      (11) Yu, M. et al. Exophilin4/Slp2-a targets glucagon granules to the plasma membrane through unique Ca2+-inhibitory phospholipid-binding activity of the C2A domain. Mol. Biol. Cell 18, 688696 (2007). https://doi.org:10.1091/mbc.e06-10-0914

      (12) Kurowska, M. et al. Terminal transport of lyXc granules to the immune synapse is mediated by the kinesin-1/Slp3/Rab27a complex. Blood 119, 3879-3889 (2012). https://doi.org:10.1182/blood-2011-09-382556

      (13) Zhao, S., Torii, S., Yokota-Hashimoto, H., Takeuchi, T. & Izumi, T. Involvement of Rab27b in the regulated secretion of pituitary hormones. Endocrinology 143, 1817-1824 (2002). https://doi.org:10.1210/endo.143.5.8823

      (14) Kariya, Y. et al. Rab27a and Rab27b are involved in stimulation-dependent RANKL release from secretory lysosomes in osteoblastic cells. J Bone Miner Res 26, 689-703 (2011). https://doi.org:10.1002/jbmr.268

      (15) Zhao, K. et al. Functional hierarchy among different Rab27 effectors involved in secretory granule exocytosis. Elife 12 (2023). https://doi.org:10.7554/eLife.82821

      (16) Izumi, T. Physiological roles of Rab27 effectors in regulated exocytosis. Endocr J 54, 649-657 (2007). https://doi.org:10.1507/endocrj.kr-78

      (17) Bomba-Warczak, E. & Savas, J. N. Long-lived mitochondrial proteins and why they exist. Trends in cell biology 32, 646-654 (2022). https://doi.org:10.1016/j.tcb.2022.02.001

      (18) Curtin, J. F., Donovan, M. & Cotter, T. G. Regulation and measurement of oxidative stress in apoptosis. Journal of Immunological Methods 265, 49-72 (2002). https://doi.org:https://doi.org/10.1016/S0022-1759(02)00070-4

      (19) Criddle, D. N. et al. Menadione-induced Reative Oxygen Species Generation via Redox Cycling Promotes Apoptosis of Murine Pancreatic Acinar Cells. Journal of Biological Chemistry 281, 40485-40492 (2006). https://doi.org:https://doi.org/10.1074/jbc.M607704200

    1. eLife Assessment

      This work provides one of the first important attempts to look at Drosophila immune responses against bacterial, viral, and fungal pathogens in a way that combines the roles of four major arms in immunity (Imd signaling, Toll signaling, phagocytosis, and melanization) rather than studying them separately. The findings are compelling and the tools provided can be used as they are, or built upon, in various contexts.

    2. Reviewer #1 (Public review):

      Summary:

      The innate immune system serves as the first line of defense against invading pathogens. Four major immune-specific modules-the Toll pathway, the Imd pathway, melanization, and phagocytosis-play critical roles in orchestrating the immune response. Traditionally, most studies have focused on the function of individual modules in isolation. However, in recent years, it has become increasingly evident that effective immune defense requires intricate interactions among these pathways.

      Despite this growing recognition, the precise roles, timing, and interconnections of these immune modules remain poorly understood. Moreover, addressing these questions represents a major scientific undertaking.

      Strengths:

      In this manuscript, Ryckebusch et al. systematically evaluate both the individual and combined contributions of these four immune modules to host defense against a range of pathogens. Their findings significantly enhance our understanding of the layered architecture of innate immunity.

    3. Reviewer #2 (Public review):

      Summary:

      In this work, the authors take a holistic view at the Drosophila immunity by selecting four major components of fly immunity often studied separately (Toll signaling, Imd signaling, phagocytosis and melanization), and studying their combinatory effects on the efficiency of the immune response. They achieve this by using fly lines mutant for one of these components, or modules, as well as for a combination of them, and testing the survival of these flies upon infection with a plethora of pathogens (bacterial, viral and fungal).

      Strengths:

      It is clear that this manuscript has required a large amount of hands-on work, considering the number of pathogens, mutations and timepoints tested. In my opinion, this work is a very welcome addition to the literature on fly immune responses, which obviously do not occur one type of a response at a time, but in parallel, subsequently and/or are interconnected. I find that the major strength of this work is the overall concept, which is made possible by the mutations designed to target the specific immune function of each module, without effects on other functions. I believe that the combinatory mutants will be of use for the fly community and enable further studies of interplay of these components of immune response in various settings.

      To control for the effects arising from the genetic variation other than the intended mutations, the mutants have been backcrossed into a widely used, isogenized Drosophila strain called w1118. Therefore, the differences accounted for by the genotype are controlled.

      I also appreciate that the authors have investigated the two possible ways of dealing with an infection: tolerance and resistance, and how the modules play into those.

      Weaknesses:

      While controlling for the background effects is vital, the w1118 background is problematic (an issue not limited to this manuscript) because of the wide effects of the white mutation on several phenotypes (also other than eye color/eyesight). It is a possibility that the mutation influences the functionality of the immune response components. I acknowledge that it is not reasonable to ask for data in different backgrounds better representing a "wild type" fly, but I think this matter should be brought up and discussed.

      The whole study has been conducted on male flies. Immune responses show quite extensive sex-specific variation across a variety of species studied, also in the fly. But the reasons for this variation are not fully understood. Therefore, I suggest that the authors would conduct a subset of experiments on female flies to see if the findings apply to both sexes, especially the infection-specificity of the module combinations.

      Comments on the revised manuscript:

      I appreciate the author's responses to the points I raised and the additional work they have conducted. The authors have now discussed the possible background effect and added an experiment on female flies showing that the module function is applicable to both sexes.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      The innate immune system serves as the first line of defense against invading pathogens. Four major immune-specific modules - the Toll pathway, the Imd pathway, melanization, and phagocytosis- play critical roles in orchestrating the immune response. Traditionally, most studies have focused on the function of individual modules in isolation. However, in recent years, it has become increasingly evident that effective immune defense requires intricate interactions among these pathways. 

      Despite this growing recognition, the precise roles, timing, and interconnections of these immune modules remain poorly understood. Moreover, addressing these questions represents a major scientific undertaking. 

      Strengths: 

      In this manuscript, Ryckebusch et al. systematically evaluate both the individual and combined contributions of these four immune modules to host defense against a range of pathogens. Their findings significantly enhance our understanding of the layered architecture of innate immunity. 

      We thank the reviewer for their kind assessment.

      Weaknesses: 

      While I have no critical concerns regarding the study, I do have several suggestions to offer that may help further strengthen the manuscript. These include: 

      (1) Have the authors validated the efficiency of the mutants used in this study? It would be helpful to include supporting data or references confirming that the mutations effectively disrupted the intended immune pathways. 

      We have done so in Figure 1.

      (2) Given the extensive use of double, triple, and quadruple mutants, a more detailed description of the mutant construction process is warranted. 

      We now provide a supplement (File S1) that details the successive genetic crosses and recombinations that were required to generate these compound fly stocks carrying multiple mutations. We also provide some information regarding rapid screening of stocks for phenotypes. Of note some of these fly stocks have been deposited at VDRC as they will be useful to fly community to assess immune modules in a controlled background, and complete stock information will be tied to these stocks there.

      Reviewer #2 (Public review): 

      Summary: 

      In this work, the authors take a holistic view of Drosophila immunity by selecting four major components of fly immunity often studied separately (Toll signaling, Imd signaling, phagocytosis, and melanization), and studying their combinatory effects on the efficiency of the immune response. They achieve this by using fly lines mutant for one of these components, or modules, as well as for a combination of them, and testing the survival of these flies upon infection with a plethora of pathogens (bacterial, viral, and fungal). 

      Strengths: 

      It is clear that this manuscript has required a large amount of hands-on work, considering the number of pathogens, mutations, and timepoints tested. In my opinion, this work is a very welcome addition to the literature on fly immune responses, which obviously do not occur in one type of response at a time, but in parallel, subsequently, and/or are interconnected. I find that the major strength of this work is the overall concept, which is made possible by the mutations designed to target the specific immune function of each module (at least seemingly) without major effects on other functions. I believe that the combinatory mutants will be of use for the fly community and enable further studies of the interplay of these components of immune response in various settings. 

      To control for the effects arising from the genetic variation other than the intended mutations, the mutants have been backcrossed into a widely used, isogenized Drosophila strain called w1118. Therefore, the differences accounted for by the genotype are controlled. 

      I also appreciate that the authors have investigated the two possible ways of dealing with an infection: tolerance and resistance, and how the modules play into those. 

      We thank the reviewer for their kind assessment. 

      Weaknesses: 

      While controlling for the background effects is vital, the w1118 background is problematic (an issue not limited to this manuscript) because of the wide effects of the white mutation on several phenotypes (also other than eye color/eyesight). It is a possibility that the mutation influences the functionality of the immune response components, for example, via effects of the faulty tryptophan handling on the metabolism of the animal. 

      I acknowledge that it is not reasonable to ask for data in different backgrounds better representing a "wild type" fly (however, that is defined is another question), but I think this matter should be brought up and discussed. 

      We agree with the reviewer and have included caveats on the different genetic effects brought about the combinatory mutant approach including differences in white gene status, insertion of GFP or DsRed markers, and nature of genetic mutations (Line 142-on).

      “Of note, the strains used in this study differ in their presence/absence of the white<sup>+</sup> gene, present in the PPO1<sup>∆</sup>, NimC1<sup>1</sup> and eater<sup>1</sup> mutations.  In addition to its well established function in eye pigmentation, the white gene can also impact host neurology and intestinal stem cell proliferation (Ferreiro et al., 2017; Sasaki et al., 2021). We did not observe any obvious correlations between white<sup>+</sup> gene status and susceptibilities in this study. Moreover,  in a previous study looking at the cumulative effects of AMP mutations on lifespan, white gene status and fluorescent markers did not readily explain differences in longevity (Hanson and Lemaitre, 2023). We therefore believe that the extreme immune susceptibility we have created through deficiencies for pathways regulating hundreds of genes, or major immune modules, overwhelms the potential effects of white<sup>+</sup> and other transgenic markers. For additional information on which stocks bear which markers, see discussion in Supplementary file 1.”

      Of interest, we were highly conscious of this concern in working with combinatory AMP mutants which differed in white, GFP, and DsRed copies. However, even over the many weeks of snowballing effects on microbiota community composition and structure, we found no trends tied strictly to white+ or to other genetic insertions on lifespan (Hanson and Lemaitre, 2023; DMM).

      The whole study has been conducted on male flies. Immune responses show quite extensive sex-specific variation across a variety of species studied, also in the fly. But the reasons for this variation are not fully understood. Therefore, I suggest that the authors conduct a subset of experiments on female flies to see if the findings apply to both sexes, especially the infection-specificity of the module combinations.  

      We thank the reviewer for this suggestion. We have performed the requested experiments, and include female survival trends in Figure 4supp1. We have added the following text to the main manuscript (Line 554):

      “All survival experiments to this point were done with males. We therefore assessed key survival trends for these infections in females to learn whether the dynamics we observed were consistent across sexes (Figure 4supp1). For all three pathogens (Pr rettgeri, Sa aureus, C. albicans) the rank order of susceptibility was broadly similar between males and females, with higher rates of mortality in females overall. Thus, we found no marked sex-bygenotype interaction. Interestingly, the greater susceptibility of females in our hands is true even for ∆ITPM flies, although there are only a few surviving flies on which we can base these conclusions. However, these data may suggest the sexual dimorphism in defense against infection that we see against these pathogens is due to factors independent of the immune modules we disrupted.”

      It is worth noting that male-female sex dichotomies in infection are inconsistent across the literature, with strong lab-specific effects (Belmonte et al., 2020 and personal observation). In our lab setting, we consistently see female mortality higher than males when compared, independent of pathogen and mutant background. We have not seen notable interaction terms of sex and genotype for most immune deficient mutants. It is quite interesting to have done these experiments with ITPM, however, which reveals that there is at least a trend suggesting this dichotomy is independent of the four immune modules we deleted. Still, our infection conditions kill most males, and so it would be good to replicate this sex-specific ∆ITPM result in a dedicated study with doses chosen to improve the resolution of male-female differences. For now, we prefer to use conservative language and avoid overinterpreting this trend, but do feel it merits mentioning.  

      Recommendations for the authors:

      Comment on statistical requests

      Both reviewers requested further clarity on the statistical analyses supplemental to Figure 3. We haved address these comments as follows.

      First, we now provide an additional supplementary .zip file containing summary statistics for all survival data in Figure 3 (Supplementary File 3). We have additionally added this text to line 226 to make this data treatment more clear:

      …” we chose to focus on major differences apparent in summary statistics,Highlighting”…

      And we highlight that all survival data are also provided as Kaplan-Meier survival curves in the main or supplementary figures in Line 233:

      “Kaplan-Meier survival curves for all experiments are provided in the main text or supplementary information”.

      Second, as outlined in the main text, we were unable to sample across all pathogenby-genotype interactions systematically, and this unfortunately obfuscates robust statistical modelling. We addressed the challenge of finding meaningful statistical differences by focusing on trends only if they were i) consistent across experimental replicates, ii) of a consistent logic across comparable genotypes, ensuring random inter-experimental noise was not unduly shaping interpretations, and iii) of a mean lifespan difference ≥1.0 days compared to wild-type, and compared to relevant unchallenged or clean-injury controls. This last choice was especially important because not all experimental replicates included all genotypes due to challenges of animal husbandry and coordination among multiple researchers over five years of data collection. As a result, our initial analyses using a cox mixed-effects model found it to be rather useless, being insensitive to important experiment batch effects visible to the eye because statistically-affected genotypes were not present in all experiments.

      We therefore ensured that behaviour relative to controls within* experiments was consistent, rather than the comparison of genotypes to controls across the sum of experiments with a post-hoc treatment attempting to apportion variance to experiment batch (but unable to do so for some genotypes and some batches). Due to differeces in baseline health and the dynamics explained by studies like Duneau et al. (2017; eLife, there is an expected unequal variance of genotype*pathogen interactions across experiment batches. Unfortunately, this unequal variance, coupled with incomplete sampling across experiment batches, means “highly significant” differences can emerge that don’t hold up to scrutiny of comparisons to controls taken only from within an experiment batch. Thus, we chose to forego a cox mixed effect model approach entirely. Instead, our highly conservative approach, focusing on only very large effects with a mean lifespan difference ≥1.0 days, mitigates these issues. We have taken great care to ensure that any results we highlight stand up to inter-experiment batch effects. We would further draw the reviewers’ attention to our response to Reviewer 2 relating to Figure 3, which emphasizes the level of conservativism that we are applying.

      At the end of the Discussion, we have added the following sentence to emphasize these limitations:

      “…a combinatorial mutation approach to deciphering immune function can be extended even to the broad level of whole immune modules. Of note, we were unable to systematically sample all genotype-bypathogen interactions equally. We have therefore been highly conservative in our reporting of major effects. There are likely many important interactions” not discussed in our study. Future investigations may highlight important biology that is apparent in our data, but which we may not have mentioned here. To this end, we have deposited our isogenic immunity fly stocks in the Vienna Drosophila Resource Centre to facilitate their use. Beyond immunity, our tools can also be of use to study various questions at the cutting edge of aging, memory, neurodegeneration, cancer, and more, where immune genes are repeatedly implicated. We hope that this set of lines will be useful to the community to better characterize the Drosophila host defense.”

      We recognise this response may not fully satisfy the reviewers’ requests. While use of summary statistics is simple, our rules for highlighting interactions of importance are defined, readily understood and interpreted, and draw attention to key trends in that are backed by a solid understanding of the data and its limitations. We have taken this approach out of a responsibility to avoid making spurious assertions that stem from underpowered statistical models rather than from the biology itself.

      Reviewer #1 (Recommendations for the authors): 

      (1) Lines 1092-1093 - Please double-check the labeling of the panels in Figure 2. It appears that panels A and C correspond to single-module mutants, whereas panels B and D refer to compound-module mutants. 

      We have modified Figure 2 and Figure 2supp1 labelling. We also realise there was an error in the column titling that contributed to the confusion. We hope the new layout is clear, and thank the reviewers for noting this issue.

      (2) Lines 347-377 - Figure 2D is not cited in the text. 

      We now cite Fig2D in Line 356.

      (3) P values should be indicated in Figure 2 and Figure 3 for all relevant comparisons. Additionally, "ns" (not significant) should be added in Figure 5A-B. 

      We make the effort to show key uninfected survival trends in Figure 2, and list the total flies (n_flies) in Fig3 to provide the reader with the underlying confidence in the trends observed. We focus on differences of mean lifespan of at least 1 day, and which are consistent in direction across combinatory mutations.  We have avoided the multiple comparisons of cox proportional hazard survival analyses throughout this study because they are overly sensitive for our purposes, as we have previously when systematically comparing many genotypes to each other (see Hanson and Lemaitre, 2023; DMM).

      (4) Minor points: Hml-Gal4, UAS-GFP should be italic; Line 192-- "uL" and "uM"; Line 596: P>.05.

      We have made these changes. We’re unsure what the comment regarding P>.05 referred to, but have removed spaces and made it non-italics. 

      Reviewer #2 (Recommendations for the authors): 

      Statistical analyses and their outcomes are clearly indicated only for the data in Figure 1 and Figure 5 and in the supplement for Figure 1, while they are not reported/not easily accessible for other data. For the main figures, statistics should be indicated in the figure for an easier assessment of the data. In case of multiple comparisons potentially crowding the plots too much, statistics may be in a supplementary file/table. 

      See response above.

      In case of the hemocytes, besides phagocytosis, I would think that ROS generation via the DUOX/NOX system is also an integral part of the immune response against pathogens, and that has not been included here. That might be an interesting addition for future experiments. As the NimC1, eater double mutant flies are said to have fewer hemocytes, it is possible that this function of the hemocytes is affected as well. This could be commented on in the text. 

      The reviewer raises a good point. The role of DUOX and NOX in ROS responses is not assessed in our study. To our knowledge, DUOX and NOX participate primarily in the wound repair response, or in epithelial renewal at damage sites or in the gut. In our study on systemic immunity, we did not assess the role of clotting, the precise function of ROS, and we have missed other host defense or stress response mechanisms as well (e.g. constitutively-expressed AMP-like genes, TEPs, JAK-STAT) that likely play a role in the systemic immune defense. Considering the lethality caused by Nox and Duox mutation, there would be inherent genetic difficulties to recombine these as multiple mutations. Unfortunately, this makes it  difficult to include these processes in our analysis in a systematic manner.  We are already happy to have generated fly lines lacking four immune modules simultaneously, even if they are not fully immune deficient. We have mentioned this point in the discussion (Line 613-on).

      Of note, the NimC1, eater double mutants actually have decreased hemocyte counts at the adult stage (Melcarne et al,. 2019). Thus NimC1, eater double mutants are not impaired only in phagocytosis, but the overall cellular response. We make a point to outline this in Line 225-257, and 607.

      I think it could be mentioned that the melanization response at larval stage (against parasitoids) functions differently from the melanization described here (requiring hemocyte differentiation and PPO3).

      A good point. We have added this mention in Line 97:

      “In addition, a third PPO gene (PPO3) is specifically expressed by lamellocytes, specialized hemocytes that differentiate in larvae responding to and enveloping invading parasites (Dudzic et al., 2015)”.

      Overall, the clarity of the figures and figure legends could be worked on to make them a bit easier to follow. Below are some of my suggestions: 

      (1) In Figure 2, adding headings to parts C & D (similarly to A & B) would make it easier to follow what is happening in the figure at a glance. Also, it is rather difficult to visually follow which strain is which in the plots. I'd suggest adding the key/legend for single mutants below 2A & B, and the key for the double mutants below C & D. If a mutant is present in A & B and in C & D, it could be included in both keys. I also think that it would be intuitive to present the single mutants by dashed lines and double mutants by continuous lines (or vice versa), so that one would easily distinguish between them. Of note, the figure legend says that A & B are single mutants, but for example in B there are also some double mutants (?). 

      We have modified Figure 2 and Figure 2supp1 labelling. We also realise there was an error in the column titling that contributed to the confusion. We hope the new layout is clear, and thank the reviewers for noting this issue.

      (2) In Figure 3, it looks like ΔMel is almost identical to controls in the clean injury survival, but in Figure 2C, it is clearly doing worse. I might be missing something here, but would like the authors to clarify the matter. Also, the meaning of the numbers in the heat map could be explained in the figure legend and/or added to the figure (color key). 

      The reviewer is correct. We thank the reviewer for this astute observation. Inadvertently, we used an old version of the Figure 2 preparation where only a subset of experiments was entered in the Prism data file rather than the total data used to inform Figure 3. This issue affected all genotypes.

      We have reviewed the data in Figure 2, Figure 2supp1, and Figure 3, and updated these figures accordingly to ensure they represent the full survival data. We have also incorporated new experiments into the sum data related to male-female differences and to fill gaps in the data from the 1<sup>st</sup> submission. We will also note due to the nature of 1<sup>st</sup> decimal rounding that the difference between WT and ΔMel appears slightly underrepresented: the true difference (over the 7-day lifespan) is 0.37. We’ve provided a version of this figure rounded to 2 decimal places below, but prefer the simpler 1 decimal place in the main text for readability. The updated Figure 2 shows the full data in Figure 3 accurately.

      We will also take this opportunity to highlight how conservative our ≥1.0 days difference approach is. Breaking down survival curve patterns in Figure 2 relative to mean differences in Figure 3, for clean injury, approximately ~75% of ΔMel flies survive to day 7 with mortality mostly taking place between days 3-7. The result is a mean lifespan of 6.37 days. On a survival curve, this difference appears quite strong, but in our mean lifespan table the difference is rather muted (WT vs. ΔMel difference = 0.37 days). Thus, differences of ≥1.0 days reflect very strong trends in survival data that are near-guaranteed to be independent of experimental noise. While we note issues that prevented us from a fully systematic sampling for all experiments, we are confident that the ≥1.0 day differences we highlight, using the rules explained in the main text, are robust. While this approach could be seen as overly conservative, it is our preference in this initial study, containing combinations of 25 treatments and 14 genotypes, to be highly conservative. Future studies may investigate other strong differences we have not highlighted, and the data we provide here can help generate expectations and guide those studies.

      Author response image 1.

      Figure 3 with 2 decimals places of rounding for mean lifespans. The 7-day clean injury mean lifespan of WT is 6.74 days, and of ΔMel is 6.37 days. Due to rounding, in the 1 decimal Figure 3 this difference appears as if it is only 0.3 days, but it closer to 0.4 days. Regardless, this level of difference, which appears rather clearly in a survival curve, is well below the level of difference we have chosen to highlight in our study.

      (1) Figure 4: I find it very tedious to compare CFUs among different mutants from the plots. As the idea is to compare bacterial loads among the mutants at different timepoints, it would be easier to compare them if the data were shown within a timepoint (CFUs of each mutant at 2h, at 6h, and so on). This is also how the results are written in the text (within a time point). Would it also be clearer if the CFU plots were named, for example: " A', B', and C'"? 

      We appreciate this note. We feel both representations have merits and pitfalls, but prefer our original design showing the progression of bacterial growth within genotype first. However, we have added dotted lines representing the wild-type bacterial loads at 2hpi, 12hpi, and 24hpi to assist the reader in making acrossgenotype comparisons at key time points. Like this, the reader can see if the error bars (StDev) overlap the mean of the wild-type, and so make more intuitive judgements about whether these differences are meaningful.

      (2) Figure 2D is not referred to in the text. 

      We now cite Fig2D in Line 356.

    1. eLife Assessment

      This potentially valuable study presents claims of evidence for coordinated membrane potential oscillations in E. coli biofilms that can be linked to a putative K+ channel and that may serve to enhance photo-protection. The finding of waves of membrane potential would be of interest to a wide audience from molecular biology to microbiology and physical biology. Unfortunately, a major issue is that it is unclear whether the dye used can act as a Nernstian membrane potential dye in E. coli. The arguments of the authors, who largely ignore previously published contradictory evidence, are not adequate in that they do not engage with the fact that the dye behaves in their hands differently than in the hands of others. In addition, the lack of proper validation of the experimental method including key control experiments leaves the evidence incomplete.

    2. Reviewer #1 (Public Review):

      (1) Significance of the findings:

      Cell-to-cell communication is essential for higher functions in bacterial biofilms. Electrical signals have proven effective in transmitting signals across biofilms. These signals are then used to coordinate cellular metabolisms or to increase antibiotic tolerance. Here, the authors have reported for the first time coordinated oscillation of membrane potential in E. coli biofilms that may have a functional role in photoprotection.

      (2) Strengths of the manuscript:

      - The authors report original data.<br /> - For the first time, they showed that coordinated oscillations in membrane potential occur in E. Coli biofilms.<br /> - The authors revealed a complex two-phase dynamic involving distinct molecular response mechanisms.<br /> - The authors developed two rigorous models inspired by 1) Hodgkin-Huxley model for the temporal dynamics of membrane potential and 2) Fire-Diffuse-Fire model for the propagation of the electric signal.<br /> - Since its discovery by comparative genomics, the Kch ion channel has not been associated with any specific phenotype in E. coli. Here, the authors proposed a functional role for the putative gated-voltage-gated K+ ion channel (Kch channel) : enhancing survival under photo-toxic conditions.

      (3) Weakness:

      - Contrarily to what is stated in the abstract, the group of B. Maier has already reported collective electrical oscillations in the Gram-negative bacterium Neisseria gonorrhoeae (Hennes et al., PLoS Biol, 2023).<br /> - The data presented in the manuscript are not sufficient to conclude on the photo-protective role of the Kch channel. The authors should perform the appropriate control experiments related to Fig4D,E, i.e. reproduce these experiments without ThT to rule out possible photo-conversion effects on ThT that would modify its toxicity. In addition, it looks like the data reported on Fig 4E are extracted from Fig 4D. If this is indeed the case, it would be more conclusive to report the percentage of PI-positive cells in the population for each condition. This percentage should be calculated independently for each replicate. The authors should then report the average value and standard deviation of the percentage of dead cells for each condition.<br /> - Although Fig 4A clearly shows that light stimulation has an influence on the dynamics of ThT signal in the biofilm, it is important to rule out possible contributions of other environmental variations that occur when the flow is stopped at the onset of light stimulation. I understand that for technical reasons, the flow of fresh medium must be stopped for the sake of imaging. Therefore, I suggest to perform control experiments consisting in stopping the flow at different time intervals before image acquisition (30min or 1h before). If there is no significant contribution from environmental variations due to medium perfusion arrest, the dynamics of ThT signal must be unchanged regardless of the delay between flow stop and the start of light stimulation.<br /> - To precise the role of K+ in the habituation response, I suggest using the ionophore valinomycin at sub-inhibitory concentrations (5 or 10µM). It should abolish the habituation response. In addition, the Kch complementation experiment exhibits a sharp drop after the first peak but on a single point. It would be more convincing to increase the temporal resolution (1min->10s) to show that there are indeed a first and a second peak. Finally, the high concentration (100µM) of CCCP used in this study completely inhibits cell activity. Therefore, it is not surprising that no ThT dynamics was observed upon light stimulation at such concentration of CCCP.<br /> - Since TMRM signal exhibits a linear increase after the first response peak (Supp Fig1D), I recommend to mitigate the statement at line 78.<br /> - Electrical signal propagation is an important aspect of the manuscript. However, a detailed quantitative analysis of the spatial dynamics within the biofilm is lacking. At minima, I recommend to plot the spatio-temporal diagram of ThT intensity profile averaged along the azimuthal direction in the biofilm. In addition, it is unclear if the electrical signal propagates within the biofilm during the second peak regime, which is mediated by the Kch channel: I have plotted the spatio-temporal diagram for Video S3 and no electrical propagation is evident at the second peak. In addition, the authors should provide technical details of how R^2(t) is measured in the first regime (Fig 7E).<br /> - In the series of images presented in supplementary Figure 4A, no wavefront is apparent. Although the microscopy technics used in this figure differs from other images (like in Fig2), the wavefront should be still present. In addition, there is no second peak in confocal images as well (Supp Fig4B) .<br /> - Many important technical details are missing (e.g. biofilm size, R^2, curvature and 445nm irradiance measurements). The description of how these quantitates are measured should be detailed in the Material & Methods section.<br /> - Fig 5C: The curve in Fig 5D seems to correspond to the biofilm case. Since the model is made for single cells, the curve obtained by the model should be compared with the average curve presented in Fig 1B (i.e. single cell experiments).<br /> - For clarity, I suggest to indicate on the panels if the experiments concern single cell or biofilm experiments. Finally, please provide bright-field images associated to ThT images to locate bacteria.<br /> - In Fig 7B, the plateau is higher in the simulations than in the biofilm experiments. The authors should add a comment in the paper to explain this discrepancy.

    3. Reviewer #2 (Public Review):

      The authors use ThT dye as a Nernstian potential dye in E. coli. Quantitative measurements of membrane potential using any cationic indicator dye are based on the equilibration of the dye across the membrane according to Boltzmann's law.

      Ideally, the dye should have high membrane permeability to ensure rapid equilibration. Others have demonstrated that E.coli cells in the presence of ThT do not load unless there is blue light present, that the loading profile does not look like it is expected for a cationic Nernstian dye. They also show that the loading profile of the dye is different for E.coli cells deleted for the TolC pump. I, therefore, objected to interpreting the signal from the ThT as a Vm signal when used in E.coli. Nothing the authors have said has suggested that I should be changing this assessment.

      Specifically, the authors responded to my concerns as follows:

      (1) 'We are aware of this study, but believe it to be scientifically flawed. We do not cite the article because we do not think it is a particularly useful contribution to the literature.' This seems to go against ethical practices when it comes to scientific literature citations. If the authors identified work that handles the same topic they do, which they believe is scientifically flawed, the discussion to reflect that should be included.

      (2)'The Pilizota group invokes some elaborate artefacts to explain the lack of agreement with a simple Nernstian battery model. The model is incorrect not the fluorophore.'<br /> It seems the authors object to the basic principle behind the usage of Nernstian dyes. If the authors wish to use ThT according to some other model, and not as a Nernstian indicator, they need to explain and develop that model. Instead, they state 'ThT is a Nernstian voltage indicator' in their manuscript and expect the dye to behave like a passive voltage indicator throughout it.

      (3)'We think the proton effect is a million times weaker than that due to potassium i.e. 0.2 M K+<br /> versus 10-7 M H+. We can comfortably neglect the influx of H+ in our experiments.'<br /> I agree with this statement by the authors. At near-neutral extracellular pH, E.coli keeps near-neutral intracellular pH, and the contribution from the chemical concentration gradient to the electrochemical potential of protons is negligible. The main contribution is from the membrane potential. However, this has nothing to do with the criticism to which this is the response of the authors. The criticism is that ThT has been observed not to permeate the cell without blue light. The blue light has been observed to influence the electrochemical potential of protons (and given that at near-neutral intracellular and extracellular pH this is mostly the membrane potential, as authors note themselves, we are talking about Vm effectively). Thus, two things are happening when one is loading the ThT, not just expected equilibration but also lowering of membrane potential. The electrochemical potential of protons is coupled via the membrane potential to all the other electrochemical potentials of ions, including the mentioned K+.

      (4) 'The vast majority of cells continue to be viable. We do not think membrane damage is dominating.' In response to the question on how the authors demonstrated TMRM loading and in which conditions (and while reminding them that TMRM loading profile in E.coli has been demonstrated in Potassium Phosphate buffer). The request was to demonstrate TMRM loading profile in their condition as well as to show that it does not depend on light. Cells could still be viable, as membrane permeabilisation with light is gradual, but the loading of ThT dye is no longer based on simple electrochemical potential (of the dye) equilibration.

      (5) On the comment on the action of CCCP with references included, authors include a comment that consists of phrases like 'our understanding of the literature' with no citations of such literature. Difficult to comment further without references.

      (6) 'Shielding would provide the reverse effect, since hyperpolarization begins in the dense centres of the biofilms. For the initial 2 hours the cells receive negligible blue light. Neither of the referee's comments thus seem tenable.'<br /> The authors have misunderstood my comment. I am not advocating shielding (I agree that this is not it) but stating that this is not the only other explanation for what they see (apart from electrical signaling). The other I proposed is that the membrane has changed in composition and/or the effective light power the cells can tolerate. The authors comment only on the light power (not convincingly though, giving the number for that power would be more appropriate), not on the possible changes in the membrane permeability.

      (7) 'The work that TolC provides a possible passive pathway for ThT to leave cells seems slightly niche. It just demonstrates another mechanism for the cells to equilibrate the concentrations of ThT in a Nernstian manner i.e. driven by the membrane voltage.' I am not sure what the authors mean by another mechanism. The mechanism of action of a Nernstian dye is passive equilibration according to the electrochemical potential (i.e. until the electrochemical potential of the dye is 0).

      (8) 'In the 70 years since Hodgkin and Huxley first presented their model, a huge number of similar models have been proposed to describe cellular electrophysiology. We are not being hyperbolic when we state that the HH models for excitable cells are like the Schrödinger<br /> equation for molecules. We carefully adapted our HH model to reflect the currently understood electrophysiology of E. coli.'

      I gave a very concrete comment on the fact that in the HH model conductivity and leakage are as they are because this was explicitly measured. The authors state that they have carefully adopted their model based on what is currently understood for E.coli electrophysiology. It is not clear how. HH uses gKn^4 based on Figure2 here https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413/pdf/jphysiol01442-0106.pdf, i.e. measured rise and fall of potassium conductance on msec time scales. I looked at the citation the authors have given and found a resistance of an entire biofilm of a given strain at 3 applied voltages. So why n^4 based on that? Why does unknown current have gqz^4 form? Sodium conductance in HH is described by m^3hgNa (again based on detailed conductance measurements), so why unknown current in E.coli by gQz^4? Why leakage is in the form that it is, based on what measurement?

      Throughout their responses, the authors seem to think that collapsing the electrochemical gradient of protons is all about protons, and this is not the case. At near neutral inside and outside pH, the electrochemical potential of protons is simply membrane voltage. And membrane voltage acts on all ions in the cell.

      Authors have started their response to concrete comments on the usage of ThT dye with comments on papers from my group that are not all directly relevant to this publication. I understand that their intention is to discredit a reviewer but given that my role here is to review this manuscript, I will only address their comments to the publications/part of publications that are relevant to this manuscript and mention what is not relevant.

      Publications in the order these were commented on.

      (1) In a comment on the paper that describes the usage of ThT dye as a Nernstian dye authors seem to talk about a model of an entire active cell.<br /> 'Huge oscillations occur in the membrane potentials of E. coli that cannot be described by the SNB model.' The two have nothing to do with each other. Nernstian dye equilibrates according to its electrochemical potential. Once that happens it can measure the potential (under the assumption that not too much dye has entered and thus lowered too much the membrane potential under measurement). The time scale of that is important, and the dye can only measure processes that are slower than that equilibration. If one wants to use a dye that acts under a different model, first that needs to be developed, and then coupled to any other active cell model.

      (2) The part of this paper that is relevant is simply the usage of TMRM dye. It is used as Nernstian dye, so all the above said applies. The rest is a study of flagellar motor.

      (3) The authors seem to not understand that the electrochemical potential of protons is coupled to the electrochemical potentials of all other ions, via the membrane potential. In the manuscript authors talk about, PMF~Vm, as DeltapH~0. Other than that this publication is not relevant to their current manuscript.

      (4) The manuscript in fact states precisely that PMF cannot be generated by protons only and some other ions need to be moved out for the purpose. In near neutral environment it stated that these need to be cations (K+ e.g.). The model used in this manuscript is a pump-leak model. Neither is relevant for the usage of ThT dye.

      Further comments include, along the lines of:

      'The editors stress the main issue raised was a single referee questioning the use of ThT as an indicator of membrane potential. We are well aware of the articles by the Pilizota group and we believe them to be scientifically flawed. The authors assume there are no voltage-gated ion channels in E. coli and then attempt to explain motility data based on a simple Nernstian battery model (they assume E. coli are unexcitable<br /> matter). This in turn leads them to conclude the membrane dye ThT is faulty, when in fact it is a problem with their simple battery model.'

      The only assumption made when using a cationic Nernstian dye is that it equilibrates passively across the membrane according to its electrochemical potential. As it does that, it does lower the membrane potential, which is why as little as possible is added so that this is negligible. The equilibration should be as fast as possible, but at the very least it should be known, as no change in membrane potential can be measured that is faster than that.

      This behaviour should be orthogonal to what the cell is doing, it is a probe after all. If the cell is excitable, a Nernstian dye can be used, as long as it's still passively equilibrating and doing so faster than any changes in membrane potential due to excitations of the cells. There are absolutely no assumptions made on the active system that is about to be measured by this expected behaviour of a Nernstian dye. And there shouldn't be, it is a probe. If one wants to use a dye that is not purely Nernstian that behaviour needs to be described and a model proposed. As far as I can find, authors do no such thing.

      There is a comment on the use of a flagellar motor as a readout of PMF, stating that the motor can be stopped by YcgR citing the work from 2023. Indeed, there is a range of references such as https://doi.org/10.1016/j.molcel.2010.03.001 that demonstrate this (from around 2000-2010 as far as I am aware). The timescale of such slowdown is hours (see here Figure 5 https://www.cell.com/cell/pdf/S0092-8674(10)00019-X.pdf). Needless to say, the flagellar motor when used as a probe, needs to stay that in the conditions used. Thus one should always be on the lookout at any other such proteins that could slow it down and we are not aware of yet or make the speed no longer proportional to the PMF. In the papers my group uses the motor the changes are fast, often reversible, and in the observation window of 30min. They are also the same with DeltaYcgR strain, which we have not included as it seemed given the time scales it's obvious, but certainly can in the future (as well as stay vigilant on any conditions that would render the motor a no longer suitable probe for PMF).

    4. Reviewer #3 (Public Review):

      This manuscript by Akabuogu et al. investigates membrane potential dynamics in E. coli. Membrane potential fluctuations have been observed in bacteria by several research groups in recent years, including in the context of bacterial biofilms where they have been proposed to play a role in cellular communication. Here, these authors investigate membrane potential in E. coli, in both single cells and biofilms. I have reviewed the revised manuscript provided by the authors, as well as their responses to the initial reviews; my opinion about the manuscript is largely unchanged. I have focused my public review on those issues that I believe to be most pressing, with additional comments included in the review to authors. Although these authors are working in an exciting research area, the evidence they provide for their claims is inadequate, and several key control experiments are still missing. In some cases, the authors allude to potentially relevant data in their responses to the initial reviews, but unfortunately these data are not shown. Furthermore, I cannot identify any traveling wavefronts in the data included in this manuscript. In addition to the challenges associated with the use of Thioflavin-T (ThT) raised by the second reviewer, these caveats make the work presented in this manuscript difficult to interpret.

      First, some of the key experiments presented in the paper lack required controls:

      (1) This paper asserts that the observed ThT fluorescence dynamics are induced by blue light. This is a fundamental claim in the paper, since the authors go on to argue that these dynamics are part of a blue light response. This claim must be supported by the appropriate negative control experiment measuring ThT fluorescence dynamics in the absence of blue light- if this idea is correct, these dynamics should not be observed in the absence of blue light exposure. If this experiment cannot be performed with ThT since blue light is used for its excitation, TMRM can be used instead.

      In response to this, the authors wrote that "the fluorescent baseline is too weak to measure cleanly in this experiment." If they observe no ThT signal above noise in their time lapse data in the absence of blue light, this should be reported in the manuscript- this would be a satisfactory negative control. They then wrote that "It appears the collective response of all the bacteria hyperpolarization at the same time appears to dominate the signal." I am not sure what they mean by this- perhaps that ThT fluorescence changes strongly only in response to blue light? This is a fundamental control for this experiment that ought to be presented to the reader.

      (2) The authors claim that a ∆kch mutant is more susceptible to blue light stress, as evidenced by PI staining. The premise that the cells are mounting a protective response to blue light via these channels rests on this claim. However, they do not perform the negative control experiment, conducting PI staining for WT the ∆kch mutant in the absence of blue light. In the absence of this control it is not possible to rule out effects of the ∆kch mutation on overall viability and/or PI uptake. The authors do include a growth curve for comparison, but planktonic growth is a very different context than surface-attached biofilm growth. Additionally, the ∆kch mutation may have impacts on PI permeability specifically that are not addressed by a growth curve. The negative control experiment is of key importance here.

      Second, the ideas presented in this manuscript rely entirely on analysis of ThT fluorescence data, specifically a time course of cellular fluorescence following blue light treatment. However, alternate explanations for and potential confounders of the observed dynamics are not sufficiently addressed:

      (1) Bacterial cells are autofluorescent, and this fluorescence can change significantly in response to stress (e.g. blue light exposure). To characterize and/or rule out autofluorescence contributions to the measurement, the authors should present time lapse fluorescence traces of unstained cells for comparison, acquired under the same imaging conditions in both wild type and ∆kch mutant cells. In their response to reviewers the authors suggested that they have conducted this experiment and found that the autofluorescence contribution is negligible, which is good, but these data should be included in the manuscript along with a description of how these controls were conducted.

      (2) Similarly, in my initial review I raised a concern about the possible contributions of photobleaching to the observed fluorescence dynamics. This is particularly relevant for the interpretation of the experiment in which catalase appears to attenuate the decay of the ThT signal; this attenuation could alternatively be due to catalase decreasing ThT photobleaching. In their response, the authors indicated that photobleaching is negligible, which would be good, but they do not share any evidence to support this claim. Photobleaching can be assessed in this experiment by varying the light dosage (illumination power, frequency, and/or duration) and confirming that the observed fluorescence dynamics are unaffected.

      Third, the paper claims in two instances that there are propagating waves of ThT fluorescence that move through biofilms, but I do not observe these waves in any case:

      (1) The first wavefront claim relates to small cell clusters, in Fig. 2A and Video S2 and S3 (with Fig. 2A and Video S2 showing the same biofilm.) I simply do not see any evidence of propagation in either case- rather, all cells get brighter and dimmer in tandem. I downloaded and analyzed Video S3 in several ways (plotting intensity profiles for different regions at different distances from the cluster center, drawing a kymograph across the cluster, etc.) and in no case did I see any evidence of a propagating wavefront. (I attempted this same analysis on the biofilm shown in Fig. 2A and Video S2 with similar results, but the images shown in the figure panels and especially the video are still both so saturated that the quantification is difficult to interpret.) If there is evidence for wavefronts, it should be demonstrated explicitly by analysis of several clusters. For example, a figure of time-to-peak vs. position in the cluster demonstrating a propagating wave would satisfy this. Currently, I do not see any wavefronts in this data.

      (2) The other wavefront claim relates to biofilms, and the relevant data is presented in Fig. S4 (and I believe also in what is now Video S8, but no supplemental video legends are provided, and this video is not cited in text.) As before, I cannot discern any wavefronts in the image and video provided; Reviewer 1 was also not able to detect wave propagation in this video by kymograph. Some mean squared displacements are shown in Fig. 7. As before, the methods for how these were obtained are not clearly documented either in this manuscript or in the BioRXiv preprint linked in the initial response to reviewers, and since wavefronts are not evident in the video it is hard to understand what is being measured here- radial distance from where? (The methods section mentions radial distance from the substrate, this should mean Z position above the imaging surface, and no wavefronts are evident in Z in the figure panels or movie.) Thus, clear demonstration of these wavefronts is still missing here as well.

      Fourth, I have some specific questions about the study of blue light stress and the use of PI as a cell viability indicator:

      (1) The logic of this paper includes the premise that blue light exposure is a stressor under the experimental conditions employed in the paper. Although it is of course generally true that blue light can be damaging to bacteria, this is dependent on light power and dosage. The control I recommended above, staining cells with PI in the presence and absence of blue light, will also allow the authors to confirm that this blue light treatment is indeed a stressor- the PI staining would be expected to increase in the presence of blue light if this is so.

      (2) The presence of ThT may complicate the study of the blue light stress response, since ThT enhances the photodynamic effects of blue light in E. coli (Bondia et al. 2021 Chemical Communications). The authors could investigate ThT toxicity under these conditions by staining cells with PI after exposing them to blue light with or without ThT staining.

      (3) In my initial review, I wrote the following: "In Figures 4D - E, the interpretation of this experiment can be confounded by the fact that PI uptake can sometimes be seen in bacterial cells with high membrane potential (Kirchhoff & Cypionka 2017 J Microbial Methods); the interpretation is that high membrane potential can lead to increased PI permeability. Because the membrane potential is largely higher throughout blue light treatment in the ∆kch mutant (Fig. 3[BC]), this complicates the interpretation of this experiment." In their response, the authors suggested that these results are not relevant in this case because "In our experiment methodology, cell death was not forced on the cells by introducing an extra burden or via anoxia." However, the logic of the paper is that the cells are in fact dying due to an imposed external stressor, which presumably also confers an increased burden as the cells try to deal with the stress. Instead, the authors should simply use a parallel method to confirm the results of PI staining. For example, the experiment could be repeated with other stains, or the viability of blue light-treated cells could be addressed more directly by outgrowth or colony-forming unit assays.

      The CFU assay suggested above has the additional advantage that it can also be performed on planktonic cells in liquid culture that are exposed to blue light. If, as the paper suggests, a protective response to blue light is being coordinated at the biofilm level by these membrane potential fluctuations, the WT strain might be expected to lose its survival advantage vs. the ∆kch mutant in the absence of a biofilm.

      Fifth, in several cases the data are presented in a way that are difficult to interpret, or the paper makes claims that are different to observe in the data:

      (1) The authors suggest that the ThT and TMRM traces presented in Fig. S1D have similar shapes, but this is not obvious to me- the TMRM curve has very little decrease after the initial peak and only a modest, gradual rise thereafter. The authors suggest that this is due to increased TMRM photobleaching, but I would expect that photobleaching should exacerbate the signal decrease after the initial peak. Since this figure is used to support the use of ThT as a membrane potential indicator, and since this is the only alternative measurement of membrane potential presented in text, the authors should discuss this discrepancy in more detail.

      (2) The comparison of single cells to microcolonies presented in figures 1B and D still needs revision:

      First, both reviewer 1 and I commented in our initial reviews that the ThT traces, here and elsewhere, should not be normalized- this will help with the interpretation of some of the claims throughout the manuscript.

      Second, the way these figures are shown with all traces overlaid at full opacity makes it very difficult to see what is being compared. Since the point of the comparison is the time to first peak (and the standard deviation thereof), histograms of the distributions of time to first peak in both cases should be plotted as a separate figure panel.<br /> Third, statistical significance tests ought to be used to evaluate the statistical strength of the comparisons between these curves. The authors compare both means and standard deviations of the time to first peak, and there are appropriate statistical tests for both types of comparisons.

      (3) The authors claim that the curve shown in Fig. S4B is similar to the simulation result shown in Fig. 7B. I remain unconvinced that this is so, particularly with respect to the kinetics of the second peak- at least it seems to me that the differences should be acknowledged and discussed. In any case, the best thing to do would be to move Fig. S4B to the main text alongside Fig. 7B so that the readers can make the comparison more easily.

      (4) As I wrote in my first review, in the discussion of voltage-gated calcium channels, the authors refer to "spiking events", but these are not obvious in Figure S3E. Although the fluorescence intensity changes over time, these fluctuations cannot be distinguished from measurement noise. A no-light control could help clarify this.

      (5) In the lower irradiance conditions in Fig. 4A, the ThT dynamics are slower overall, and it looks like the ThT intensity is beginning to rise at the end of the measurement. The authors write that no second peak is observed below an irradiance threshold of 15.99 µW/mm2. However, could a more prominent second peak be observed in these cases if the measurement time was extended? Additionally, the end of these curves looks similar to the curve in Fig. S4B, in which the authors write that the slow rise is evidence of the presence of a second peak, in contrast to their interpretation here.

      Additional considerations:

      (1) The analysis and interpretation of the first peak, and particularly of the time-to-fire data is challenging throughout the manuscript the time resolution of the data set is quite limited. It seems that a large proportion of cells have already fired after a single acquisition frame. It would be ideal to increase the time resolution on this measurement to improve precision. This could be done by imaging more quickly, but that would perhaps necessitate more blue light exposure; an alternative is to do this experiment under lower blue light irradiance where the first spike time is increased (Figure 4A).

      (2) The authors suggest in the manuscript that "E. coli biofilms use electrical signalling to coordinate long-range responses to light stress." In addition to the technical caveats discussed above, I am missing a discussion about what these responses might be. What constitutes a long-range response to light stress, and are there known examples of such responses in bacteria?

      (3) The presence of long-range blue light responses can also be interrogated experimentally, for example, by repeating the Live/Dead experiment in planktonic culture or the single-cell condition. If the protection from blue light specifically emerges due to coordinated activity of the biofilm, the ∆kch mutant would not be expected to show a change in Live/Dead staining in non-biofilm conditions. The CFU experiment I mentioned above could also implicate coordinated long-range responses specifically, if biofilms and liquid culture experiments can be compared (although I know that recovering cells from biofilms is challenging.)

      4. At the end of the results section, the authors suggest a critical biofilm size of only 4 μm for wavefront propagation (not much larger than a single cell!) The authors show responses for various biofilm sizes in Fig. 2C, but these are all substantially larger (and this figure also does not contain wavefront information.) Are there data for cell clusters above and below this size that could support this claim more directly?

      (5) In Fig. 4C, the overall trajectories of extracellular potassium are indeed similar, but the kinetics of the second peak of potassium are different than those observed by ThT (it rises minutes earlier)- is this consistent with the idea that Kch is responsible for that peak? Additionally, the potassium dynamics also include the first ThT peak- is this surprising given that the Kch channel has no effect on this peak according to the model?

      Detailed comments:

      Why are Fig. 2A and Video S2 called a microcluster, whereas Video S3, which is smaller, is called a biofilm?

      "We observed a spontaneous rapid rise in spikes within cells in the center of the biofilm" (Line 140): What does "spontaneous" mean here?

      "This demonstrates that the ion-channel mediated membrane potential dynamics is a light stress relief process.", "E. coli cells employ ion-channel mediated dynamics to manage ROS-induced stress linked to light irradiation." (Line 268 and the second sentence of the Fig. 4F legend): This claim is not well-supported. There are several possible interpretations of the catalase experiment (which should be discussed); this experiment perhaps suggests that ROS impacts membrane potential but does not indicate that these membrane potential fluctuations help the cells respond to blue light stress. The loss of viability in the ∆kch mutant might indicate a link between these membrane potential experiments and viability, but it is hard to interpret without the no light controls I mention above.

      "The model also predicts... the external light stress" (Lines 338-341): Please clarify this section. Where does this prediction arise from in the modeling work? Second, I am not sure what is meant by "modulates the light stress" or "keeps the cell dynamics robust to the intensity of external light stress" (especially since the dynamics clearly vary with irradiance, as seen in Figure 4A).

      "We hypothesized that E. coli not only modulates the light-induced stress but also handles the increase of the ROS by adjusting the profile of the membrane potential dynamics" (Line 347): I am not sure what "handles the ROS by adjusting the profile of the membrane potential dynamics" means. What is meant by "handling" ROS? Is the hypothesis that membrane potential dynamics themselves are protective against ROS, or that they induce a ROS-protective response downstream, or something else? Later the authors write that changes in the response to ROS in the model agree with the hypothesis, but just showing that ROS impacts the membrane potential does not seem to demonstrate that this has a protective effect against ROS.

      "Mechanosensitive ion channels (MS) are vital for the first hyperpolarization event in E. coli." (Line 391): This is misleading- mechanosensitive ion channels totally ablate membrane potential dynamics, they don't have a specific effect on the first hyperpolarization event. The claim that mechanonsensitive ion channels are specifically involved in the first event also appears in the abstract.

      Also, the apparent membrane potential is much lower even at the start of the experiment in these mutants (Fig. 6C-D)- is this expected? This seems to imply that these ion channels also have a blue light-independent effect.

      Throughout the paper, there are claims that the initial ThT spike is involved in "registering the presence of the light stress" and similar. What is the evidence for this claim?

      "We have presented much better quantitative agreement of our model with the propagating wavefronts in E. coli biofilms..." (Line 619): It is not evident to me that the agreement between model and prediction is "much better" in this work than in the cited work (reference 57, Hennes et al. 2023). The model in Figure 4 of ref. 57 seems to capture the key features of their data.

      In methods, "Only cells that are hyperpolarized were counted in the experiment as live" (Line 745): what percentage of cells did not hyperpolarize in these experiments?

      Some indication of standard deviation (error bars or shading) should be added to all figures where mean traces are plotted.

      Video S8 is very confusing- why does the video play first forwards and then backwards? It is easy to misinterpret this as a rise in the intensity at the end of the experiment.

    5. Author response:

      The issue of a control without blue light illumination was raised. Clearly without the light we will not obtain any signal in the fluorescence microscopy experiments, which would not be very informative. Instead, we changed the level of blue light illumination in the fluorescence microscopy experiments (figure 4A) and the response of the bacteria scales with dosage. It is very hard to find an alternative explanation, beyond that the blue light is stressing the bacteria and modulating their membrane potentials.

      One of the referees refuses to see wavefronts in our microscopy data. We struggle to understand whether it is an issue with definitions (Waigh has published a tutorial on the subject in Chapter 5 of his book ‘The physics of bacteria: from cells to biofilms’, T.A.Waigh, CUP, 2024 – figure 5.1 shows a sketch) or something subtler on diffusion in excitable systems. We stand by our claim that we observe wavefronts, similar to those observed by Prindle et al<sup>1</sup> and Blee et al<sup>2</sup> for B. subtilis biofilms.

      The referee is questioning our use of ThT to probe the membrane potential. We believe the Pilizota and Strahl groups are treating the E. coli as unexcitable cells, leading to their problems. Instead, we believe E. coli cells are excitable (containing the voltage-gated ion channel Kch) and we now clearly state this in the manuscript. Furthermore, we include a section here discussing some of the issues with ThT.


      Use of ThT as a voltage sensor in cells

      ThT is now used reasonably widely in the microbiology community as a voltage sensor in both bacterial [Prindle et al]1 and fungal cells [Pena et al]12. ThT is a small cationic fluorophore that loads into the cells in proportion to their membrane potential, thus allowing the membrane potential to be measured from fluorescence microscopy measurements.

      Previously ThT was widely used to quantify the growth of amyloids in molecular biology experiments (standardized protocols exist and dedicated software has been created)13 and there is a long history of its use14. ThT fluorescence is bright, stable and slow to photobleach.

      Author response image 1 shows a schematic diagram of the ThT loading in E. coli in our experiments in response to illumination with blue light. Similar results were previously presented by Mancini et al15, but regimes 2 and 3 were mistakenly labelled as artefacts.

      Author response image 1.

      Schematic diagram of ThT loading during an experiment with E. coli cells under blue light illumination i.e. ThT fluorescence as a function of time. Three empirical regimes for the fluorescence are shown (1, 2 and 3).

      The classic study of Prindle et al on bacterial biofilm electrophysiology established the use of ThT in B. subtilis biofilms by showing similar results occurred with DiSc3 which is widely used as a Nernstian voltage sensor in cellular biology1 e.g. with mitochondrial membrane potentials in eukaryotic organisms where there is a large literature. We repeated such a comparative calibration of ThT with DiSc3 in a previous publication with both B. subtilis and P. aeruginosa cells2. ThT thus functioned well in our previous publications with Gram positive and Gram negative cells.

      However, to our knowledge, there are now two groups questioning the use of ThT and DiSc3 as voltage sensors with E. coli cells15-16. The first by the Pilizota group claims ThT only works as a voltage sensor in regime 1 of Author response image 1 using a method based on the rate of rotation of flagellar motors. Another slightly contradictory study by the Strahl group claims DiSc316 only acts as a voltage sensor with the addition of an ionophore for potassium which allows free movement of potassium through the E. coli membranes.

      Our resolution to this contradiction is that ThT does indeed work reasonably well with E. coli. The Pilizota group’s model for rotating flagellar motors assumes the membrane voltage is not varying due to excitability of the membrane voltage (otherwise a non-linear Hodgkin Huxley type model would be needed to quantify their results) i.e. E. coli cells are unexcitable. We show clearly in our study that ThT loading in E. coli is a function of irradiation with blue light and is a stress response of the excitable cells. This is in contradiction to the Pilizota group’s model. The Pilizota group’s model also requires the awkward fiction of why cells decide to unload and then reload ThT in regimes 2 and 3 of Author response image 1 due to variable membrane partitioning of the ThT. Our simple explanation is that it is just due to the membrane voltage changing and no membrane permeability switch needs to be invoked. The Strahl group’s16 results with DiSc3 are also explained by a neglect of the excitable nature of E. coli cells that are reacting to blue light irradiation. Adding ionophores to the E. coli membranes makes the cells unexcitable, reduces their response to blue light and thus leads to simple loading of DiSc3 (the physiological control of K+ in the cells by voltage-gated ion channels has been short circuited by the addition of the ionophore).

      Further evidence of our model that ThT functions as a voltage sensor with E. coli include:

      1) The 3 regimes in Author response image 1 from ThT correlate well with measurements of extracellular potassium ion concentration using TMRM i.e. all 3 regimes in Author response image 1 are visible with this separate dye (figure 1d).

      2) We are able to switch regime 3 in Author response image 1, off and then on again by using knock downs of the potassium ion channel Kch in the membranes of the E. coli and then reinserting the gene back into the knock downs. This cannot be explained by the Pilizota model.

      We conclude that ThT works reasonably well as a sensor of membrane voltage in E. coli and the previous contradictory studies15-16 are because they neglect the excitable nature of the membrane voltage of E. coli cells in response to the light used to make the ThT fluoresce.

      Three further criticisms of the Mancini et al method15 for calibrating membrane voltages include:

      1) E. coli cells have clutches that are not included in their models. Otherwise the rotation of the flagella would be entirely enslaved to the membrane voltage allowing the bacteria no freedom to modulate their speed of motility.

      2) Ripping off the flagella may perturb the integrity of the cell membrane and lead to different loading of the ThT in the E. coli cells.

      3) Most seriously, the method ignores the activity of many other ion channels (beyond H+) on the membrane voltage that are known to exist with E. coli cells e.g. Kch for K+ ions. The Pilizota groups uses a simple Nernstian battery model developed for mitochondria in the 1960s. It is not adequate to explain our results.

      An additional criticism of the Winkel et al study17 from the Strahl group is that it indiscriminately switches between discussion of mitochondria and bacteria e.g. on page 8 ‘As a consequence the membrane potential is dominated by H+’. Mitochondria are slightly alkaline intracellular organelles with external ion concentrations in the cytoplasm that are carefully controlled by the eukaryotic cells. E. coli are not i.e. they have neutral internal pHs, with widely varying extracellular ionic concentrations and have reinforced outer membranes to resist osmotic shocks (in contrast mitochondria can easily swell in response to moderate changes in osmotic pressure).

      A quick calculation of the equilibrium membrane voltage of E. coli can be easily done using the Nernst equation dependent on the extracellular ion concentrations defined by the growth media (the intracellular ion concentrations in E. coli are 0.2 M K+ and 10-7 M H+ i.e. there is a factor of a million fewer H+ ions). Thus in contradiction to the claims of the groups of Pilizota15 and Strahl17, H+ is a minority determinant to the membrane voltage of E. coli. The main determinant is K+. For a textbook version of this point the authors can refer to Chapter 4 of D. White, et al’s ‘The physiology and biochemistry of prokaryotes’, OUP, 2012, 4th edition.

      Even in mitochondria the assumption that H+ dominates the membrane potential and the cells are unexcitable can be questioned e.g. people have observed pulsatile depolarization phenomena with mitochondria18-19. A large number of K+ channels are now known to occur in mitochondrial membranes (not to mention Ca2+ channels; mitochondria have extensive stores of Ca2+) and they are implicated in mitochondrial membrane potentials. In this respect the seminal Nobel prize winning research of Peter Mitchell (1961) on mitochondria needs to be amended20. Furthermore, the mitochondrial work is clearly inapplicable to bacteria (the proton motive force, PMF, will instead subtly depend on non-linear Hodgkin-Huxley equations for the excitable membrane potential, similar to those presented in the current article). A much more sophisticated framework has been developed to describe electrophysiology by the mathematical biology community to describe the activity of electrically excitable cells (e.g. with neurons, sensory cells and cardiac cells), beyond Mitchell’s use of the simple stationary equilibrium thermodynamics to define the Proton Motive Force via the electrochemical potential of a proton (the use of the word ‘force’ is unfortunate, since it is a potential). The tools developed in the field of mathematical electrophysiology8 should be more extensively applied to bacteria, fungi, mitochondria and chloroplasts if real progress is to be made.


      Related to the previous point, we now cite articles from the Pilizota and Strahl groups in the main text (one from each group). Unfortunately, the space constraints of eLife mean we cannot make a more detailed discussion in the main article.

      In terms of modelling the ion channels, the Hodgkin-Huxley type model proposes that the Kch ion channel can be modelled as a typical voltage-gated potassium ion channel i.e. with a 𝑛<sup>4</sup> term in its conductivity. The literature agrees that Kch is a voltage-gated potassium ion channel based on its primary sequence<sup>3</sup>. The protein has the typical 6 transmembrane helix motif for a voltage-gated ion channel. The agent-based model assumes little about the structure of ion channels in E. coli, other than they release potassium in response to a threshold potassium concentration in their environment. The agent based model is thus robust to the exact molecular details chosen and predicts the anomalous transport of the potassium wavefronts reasonably well (the modelling was extended in a recent Physical Review E article(<sup>4</sup>). Such a description of reaction-anomalous diffusion phenomena has not to our knowledge been previously achieved in the literature<sup>5</sup> and in general could be used to describe other signaling molecules.

      1. Prindle, A.; Liu, J.; Asally, M.; Ly, S.; Garcia-Ojalvo, J.; Sudel, G. M., Ion channels enable electrical communication in bacterial communities. Nature 2015, 527, 59.

      2. Blee, J. A.; Roberts, I. S.; Waigh, T. A., Membrane potentials, oxidative stress and the dispersal response of bacterial biofilms to 405 nm light. Physical Biology 2020, 17, 036001.

      3. Milkman, R., An E. col_i homologue of eukaryotic potassium channel proteins. _PNAS 1994, 91, 3510-3514.

      4. Martorelli, V.; Akabuogu, E. U.; Krasovec, R.; Roberts, I. S.; Waigh, T. A., Electrical signaling in three-dimensional bacterial biofilms using an agent-based fire-diffuse-fire model. Physical Review E 2024, 109, 054402.

      5. Waigh, T. A.; Korabel, N., Heterogeneous anomalous transport in cellular and molecular biology. Reports on Progress in Physics 2023, 86, 126601.

      6. Hodgkin, A. L.; Huxley, A. F., A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology 1952, 117, 500.

      7. Dawson, S. P.; Keizer, J.; Pearson, J. E., Fire-diffuse-fire model of dynamics of intracellular calcium waves. PNAS 1999, 96, 606.

      8. Keener, J.; Sneyd, J., Mathematical Physiology. Springer: 2009.

      9. Coombes, S., The effect of ion pumps on the speed of travelling waves in the fire-diffuse-fire model of Ca2+ release. Bulletin of Mathematical Biology 2001, 63, 1.

      10. Blee, J. A.; Roberts, I. S.; Waigh, T. A., Spatial propagation of electrical signals in circular biofilms. Physical Review E 2019, 100, 052401.

      11. Gorochowski, T. E.; Matyjaszkiewicz, A.; Todd, T.; Oak, N.; Kowalska, K., BSim: an agent-based tool for modelling bacterial populations in systems and synthetic biology. PloS One 2012, 7, 1.

      12. Pena, A.; Sanchez, N. S.; Padilla-Garfias, F.; Ramiro-Cortes, Y.; Araiza-Villaneuva, M.; Calahorra, M., The use of thioflavin T for the estimation and measurement of the plasma membrane electric potential difference in different yeast strains. Journal of Fungi 2023, 9 (9), 948.

      13. Xue, C.; Lin, T. Y.; Chang, D.; Guo, Z., Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. Royal Society Open Science 2017, 4, 160696.

      14. Meisl, G.; Kirkegaard, J. B.; Arosio, P.; Michaels, T. C. T.; Vendruscolo, M.; Dobson, C. M.; Linse, S.; Knowles, T. P. J., Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nature Protocols 2016, 11 (2), 252-272.

      15. Mancini, L.; Tian, T.; Guillaume, T.; Pu, Y.; Li, Y.; Lo, C. J.; Bai, F.; Pilizota, T., A general workflow for characterization of Nernstian dyes and their effects on bacterial physiology. Biophysical Journal 2020, 118 (1), 4-14.

      16. Buttress, J. A.; Halte, M.; Winkel, J. D. t.; Erhardt, M.; Popp, P. F.; Strahl, H., A guide for membrane potential measurements in Gram-negative bacteria using voltage-sensitive dyes. Microbiology 2022, 168, 001227.

      17. Derk te Winkel, J.; Gray, D. A.; Seistrup, K. H.; Hamoen, L. W.; Strahl, H., Analysis of antimicrobial-triggered membrane depolarization using voltage sensitive dyes. Frontiers in Cell and Developmental Biology 2016, 4, 29.

      18. Schawarzlander, M.; Logan, D. C.; Johnston, I. G.; Jones, N. S.; Meyer, A. J.; Fricker, M. D.; Sweetlove, L. J., Pulsing of membrane potential in individual mitochondria. The Plant Cell 2012, 24, 1188-1201.

      19. Huser, J.; Blatter, L. A., Fluctuations in mitochondrial membrane potential caused by repetitive gating of the permeability transition pore. Biochemistry Journal 1999, 343, 311-317.

      20. Mitchell, P., Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 1961, 191 (4784), 144-148.

      21. Baba, T.; Ara, M.; Hasegawa, Y.; Takai, Y.; Okumura, Y.; Baba, M.; Datsenko, K. A.; Tomita, M.; Wanner, B. L.; Mori, H., Construction of Escherichia Coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Molecular Systems Biology 2006, 2, 1.

      22. Schinedlin, J.; al, e., Fiji: an open-source platform for biological-image analysis. Nature Methods 2012, 9, 676.

      23. Hartmann, R.; al, e., Quantitative image analysis of microbial communities with BiofilmQ. Nature Microbiology 2021, 6 (2), 151.


      The following is the authors’ response to the original reviews.

      Critical synopsis of the articles cited by referee 2:

      (1) ‘Generalized workflow for characterization of Nernstian dyes and their effects on bacterial physiology’, L.Mancini et al, Biophysical Journal, 2020, 118, 1, 4-14.

      This is the central article used by referee 2 to argue that there are issues with the calibration of ThT for the measurement of membrane potentials. The authors use a simple Nernstian battery (SNB) model and unfortunately it is wrong when voltage-gated ion channels occur. Huge oscillations occur in the membrane potentials of E. coli that cannot be described by the SNB model. Instead a Hodgkin Huxley model is needed, as shown in our eLife manuscript and multiple other studies (see above). Arrhenius kinetics are assumed in the SNB model for pumping with no real evidence and the generalized workflow involves ripping the flagella off the bacteria! The authors construct an elaborate ‘work flow’ to insure their ThT results can be interpreted using their erroneous SNB model over a limited range of parameters.

      (2) ‘Non-equivalence of membrane voltage and ion-gradient as driving forces for the bacterial flagellar motor at low load’, C.J.Lo, et al, Biophysical Journal, 2007, 93, 1, 294.

      An odd de novo chimeric species is developed using an E. coli  chassis which uses Na+ instead of H+ for the motility of its flagellar motor. It is not clear the relevance to wild type E. coli, due to the massive physiological perturbations involved. A SNB model is using to fit the data over a very limited parameter range with all the concomitant errors.

      (3) Single-cell bacterial electrophysiology reveals mechanisms of stress-induced damage’, E.Krasnopeeva, et al, Biophysical Journal, 2019, 116, 2390.

      The abstract says ‘PMF defines the physiological state of the cell’. This statement is hyperbolic. An extremely wide range of molecules contribute to the physiological state of a cell. PMF does not even define the electrophysiology of the cell e.g. via the membrane potential. There are 0.2 M of K+ compared with 0.0000001 M of H+ in E. coli, so K+ is arguably a million times more important for the membrane potential than H+ and thus the electrophysiology!

      Equation (1) in the manuscript assumes no other ions are exchanged during the experiments other than H+. This is a very bad approximation when voltage-gated potassium ion channels move the majority ion (K+) around!

      In our model Figure 4A is better explained by depolarisation due to K+ channels closing than direct irreversible photodamage. Why does the THT fluorescence increase again for the second hyperpolarization event if the THT is supposed to be damaged? It does not make sense.

      (4) ‘The proton motive force determines E. coli robustness to extracellular pH’, G.Terradot et al, 2024, preprint.

      This article expounds the SNB model once more. It still ignores the voltage-gated ion channels. Furthermore, it ignores the effect of the dominant ion in E. coli, K+. The manuscript is incorrect as a result and I would not recommend publication.

      In general, an important problem is being researched i.e. how the membrane potential of E. coli is related to motility, but there are serious flaws in the SNB approach and the experimental methodology appears tenuous.

      Answers to specific questions raised by the referees

      Reviewer #1 (Public Review):

      Summary:

      Cell-to-cell communication is essential for higher functions in bacterial biofilms. Electrical signals have proven effective in transmitting signals across biofilms. These signals are then used to coordinate cellular metabolisms or to increase antibiotic tolerance. Here, the authors have reported for the first time coordinated oscillation of membrane potential in E. coli biofilms that may have a functional role in photoprotection.

      Strengths:

      - The authors report original data.

      - For the first time, they showed that coordinated oscillations in membrane potential occur in E. Coli biofilms.

      - The authors revealed a complex two-phase dynamic involving distinct molecular response mechanisms.

      - The authors developed two rigorous models inspired by 1) Hodgkin-Huxley model for the temporal dynamics of membrane potential and 2) Fire-Diffuse-Fire model for the propagation of the electric signal.

      - Since its discovery by comparative genomics, the Kch ion channel has not been associated with any specific phenotype in E. coli. Here, the authors proposed a functional role for the putative K+ Kch channel : enhancing survival under photo-toxic conditions.

      We thank the referee for their positive evaluations and agree with these statements.

      Weaknesses:

      - Since the flow of fresh medium is stopped at the beginning of the acquisition, environmental parameters such as pH and RedOx potential are likely to vary significantly during the experiment. It is therefore important to exclude the contributions of these variations to ensure that the electrical response is only induced by light stimulation. Unfortunately, no control experiments were carried out to address this issue.

      The electrical responses occur almost instantaneously when the stimulation with blue light begins i.e. it is too fast to be a build of pH. We are not sure what the referee means by Redox potential since it is an attribute of all chemicals that are able to donate/receive electrons. The electrical response to stress appears to be caused by ROS, since when ROS scavengers are added the electrical response is removed i.e. pH plays a very small minority role if any.

      - Furthermore, the control parameter of the experiment (light stimulation) is the same as that used to measure the electrical response, i.e. through fluorescence excitation. The use of the PROPS system could solve this problem.

      >>We were enthusiastic at the start of the project to use the PROPs system in E. coli as presented by J.M.Krajl et al, ‘Electrical spiking in E. coli probed with a fluorescent voltage-indicating protein’, Science, 2011, 333, 6040, 345. However, the people we contacted in the microbiology community said that it had some technical issues and there have been no subsequent studies using PROPs in bacteria after the initial promising study. The fluorescent protein system recently presented in PNAS seems more promising, ‘Sensitive bacterial Vm sensors revealed the excitability of bacterial Vm and its role in antibiotic tolerance’, X.Jin et al, PNAS, 120, 3, e2208348120.

      - Electrical signal propagation is an important aspect of the manuscript. However, a detailed quantitative analysis of the spatial dynamics within the biofilm is lacking. In addition, it is unclear if the electrical signal propagates within the biofilm during the second peak regime, which is mediated by the Kch channel. This is an important question, given that the fire-diffuse-fire model is presented with emphasis on the role of K+ ions.

      We have presented a more detailed account of the electrical wavefront modelling work and it is currently under review in a physical journal, ‘Electrical signalling in three dimensional bacterial biofilms using an agent based fire-diffuse-fire model’, V.Martorelli, et al, 2024 https://www.biorxiv.org/content/10.1101/2023.11.17.567515v1

      - Since deletion of the kch gene inhibits the long-term electrical response to light stimulation (regime II), the authors concluded that K+ ions play a role in the habituation response. However, Kch is a putative K+ ion channel. The use of specific drugs could help to clarify the role of K+ ions.

      Our recent electrical impedance spectroscopy publication provides further evidence that Kch is associated with large changes in conductivity as expected for a voltage-gated ion channel (https://pubs.acs.org/doi/10.1021/acs.nanolett.3c04446, 'Electrical impedance spectroscopy with bacterial biofilms: neuronal-like behavior', E.Akabuogu et al, ACS Nanoletters, 2024, in print.

      - The manuscript as such does not allow us to properly conclude on the photo-protective role of the Kch ion channel.

      That Kch has a photoprotective role is our current working hypothesis. The hypothesis fits with the data, but we are not saying we have proven it beyond all possible doubt.

      - The link between membrane potential dynamics and mechanosensitivity is not captured in the equation for the Q-channel opening dynamics in the Hodgkin-Huxley model (Supp Eq 2).

      Our model is agnostic with respect to the mechanosensitivity of the ion channels, although we deduce that mechanosensitive ion channels contribute to ion channel Q.

      - Given the large number of parameters used in the models, it is hard to distinguish between prediction and fitting.

      This is always an issue with electrophysiological modelling (compared with most heart and brain modelling studies we are very conservative in the choice of parameters for the bacteria). In terms of predicting the different phenomena observed, we believe the model is very successful.

      Reviewer #2 (Public Review):

      Summary of what the authors were trying to achieve:

      The authors thought they studied membrane potential dynamics in E.coli biofilms. They thought so because they were unaware that the dye they used to report that membrane potential in E.coli, has been previously shown not to report it. Because of this, the interpretation of the authors' results is not accurate.

      We believe the Pilizota work is scientifically flawed.

      Major strengths and weaknesses of the methods and results:

      The strength of this work is that all the data is presented clearly, and accurately, as far as I can tell.

      The major critical weakness of this paper is the use of ThT dye as a membrane potential dye in E.coli. The work is unaware of a publication from 2020 https://www.sciencedirect.com/science/article/pii/S0006349519308793 [sciencedirect.com] that demonstrates that ThT is not a membrane potential dye in E. coli. Therefore I think the results of this paper are misinterpreted. The same publication I reference above presents a protocol on how to carefully calibrate any candidate membrane potential dye in any given condition.

      We are aware of this study, but believe it to be scientifically flawed. We do not cite the article because we do not think it is a particularly useful contribution to the literature.

      I now go over each results section in the manuscript.

      Result section 1: Blue light triggers electrical spiking in single E. coli cells

      I do not think the title of the result section is correct for the following reasons. The above-referenced work demonstrates the loading profile one should expect from a Nernstian dye (Figure 1). It also demonstrates that ThT does not show that profile and explains why is this so. ThT only permeates the membrane under light exposure (Figure 5). This finding is consistent with blue light peroxidising the membrane (see also following work Figure 4 https://www.sciencedirect.com/science/article/pii/S0006349519303923 [sciencedirect.com] on light-induced damage to the electrochemical gradient of protons-I am sure there are more references for this).

      The Pilizota group invokes some elaborate artefacts to explain the lack of agreement with a simple Nernstian battery model. The model is incorrect not the fluorophore.

      Please note that the loading profile (only observed under light) in the current manuscript in Figure 1B as well as in the video S1 is identical to that in Figure 3 from the above-referenced paper (i.e. https://www.sciencedirect.com/science/article/pii/S0006349519308793 [sciencedirect.com]), and corresponding videos S3 and S4. This kind of profile is exactly what one would expect theoretically if the light is simultaneously lowering the membrane potential as the ThT is equilibrating, see Figure S12 of that previous work. There, it is also demonstrated by the means of monitoring the speed of bacterial flagellar motor that the electrochemical gradient of protons is being lowered by the light. The authors state that applying the blue light for different time periods and over different time scales did not change the peak profile. This is expected if the light is lowering the electrochemical gradient of protons. But, in Figure S1, it is clear that it affected the timing of the peak, which is again expected, because the light affects the timing of the decay, and thus of the decay profile of the electrochemical gradient of protons (Figure 4 https://www.sciencedirect.com/science/article/pii/S0006349519303923 [sciencedirect.com]).

      We think the proton effect is a million times weaker than that due to potasium i.e. 0.2 M K+ versus 10-7 M H+. We can comfortably neglect the influx of H+ in our experiments.

      If find Figure S1D interesting. There authors load TMRM, which is a membrane voltage dye that has been used extensively (as far as I am aware this is the first reference for that and it has not been cited https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914430 [ncbi.nlm.nih.gov]/). As visible from the last TMRM reference I give, TMRM will only load the cells in Potassium Phosphate buffer with NaCl (and often we used EDTA to permeabilise the membrane). It is not fully clear (to me) whether here TMRM was prepared in rich media (it explicitly says so for ThT in Methods but not for TMRM), but it seems so. If this is the case, it likely also loads because of the damage to the membrane done with light, and therefore I am not surprised that the profiles are similar.

      The vast majority of cells continue to be viable. We do not think membrane damage is dominating.

      The authors then use CCCP. First, a small correction, as the authors state that it quenches membrane potential. CCCP is a protonophore (https://pubmed.ncbi.nlm.nih.gov/4962086 [pubmed.ncbi.nlm.nih.gov]/), so it collapses electrochemical gradient of protons. This means that it is possible, and this will depend on the type of pumps present in the cell, that CCCP collapses electrochemical gradient of protons, but the membrane potential is equal and opposite in sign to the DeltapH. So using CCCP does not automatically mean membrane potential will collapse (e.g. in some mammalian cells it does not need to be the case, but in E.coli it is https://www.biorxiv.org/content/10.1101/2021.11.19.469321v2 [biorxiv.org]). CCCP has also been recently found to be a substrate for TolC (https://journals.asm.org/doi/10.1128/mbio.00676-21 [journals.asm.org]), but at the concentrations the authors are using CCCP (100uM) that should not affect the results. However, the authors then state because they observed, in Figure S1E, a fast efflux of ions in all cells and no spiking dynamics this confirms that observed dynamics are membrane potential related. I do not agree that it does. First, Figure S1E, does not appear to show transients, instead, it is visible that after 50min treatment with 100uM CCCP, ThT dye shows no dynamics. The action of a Nernstian dye is defined. It is not sufficient that a charged molecule is affected in some way by electrical potential, this needs to be in a very specific way to be a Nernstian dye. Part of the profile of ThT loading observed in https://www.sciencedirect.com/science/article/pii/S0006349519308793 [sciencedirect.com] is membrane potential related, but not in a way that is characteristic of Nernstian dye.

      Our understanding of the literature is CCCP poisons the whole metabolism of the bacterial cells. The ATP driven K+ channels will stop functioning and this is the dominant contributor to membrane potential.

      Result section 2: Membrane potential dynamics depend on the intercellular distance

      In this chapter, the authors report that the time to reach the first intensity peak during ThT loading is different when cells are in microclusters. They interpret this as electrical signalling in clusters because the peak is reached faster in microclusters (as opposed to slower because intuitively in these clusters cells could be shielded from light). However, shielding is one possibility. The other is that the membrane has changed in composition and/or the effective light power the cells can tolerate (with mechanisms to handle light-induced damage, some of which authors mention later in the paper) is lower. Given that these cells were left in a microfluidic chamber for 2h hours to attach in growth media according to Methods, there is sufficient time for that to happen. In Figure S12 C and D of that same paper from my group (https://ars.els-cdn.com/content/image/1-s2.0-S0006349519308793-mmc6.pdf [ars.els-cdn.com]) one can see the effects of peak intensity and timing of the peak on the permeability of the membrane. Therefore I do not think the distance is the explanation for what authors observe.

      Shielding would provide the reverse effect, since hyperpolarization begins in the dense centres of the biofilms. For the initial 2 hours the cells receive negligible blue light. Neither of the referee’s comments thus seem tenable.

      Result section 3: Emergence of synchronized global wavefronts in E. coli biofilms

      In this section, the authors exposed a mature biofilm to blue light. They observe that the intensity peak is reached faster in the cells in the middle. They interpret this as the ion-channel-mediated wavefronts moved from the center of the biofilm. As above, cells in the middle can have different membrane permeability to those at the periphery, and probably even more importantly, there is no light profile shown anywhere in SI/Methods. I could be wrong, but the SI3 A profile is consistent with a potential Gaussian beam profile visible in the field of view. In Methods, I find the light source for the blue light and the type of microscope but no comments on how 'flat' the illumination is across their field of view. This is critical to assess what they are observing in this result section. I do find it interesting that the ThT intensity collapsed from the edges of the biofilms. In the publication I mentioned https://www.sciencedirect.com/science/article/pii/S0006349519308793#app2 [sciencedirect.com], the collapse of fluorescence was not understood (other than it is not membrane potential related). It was observed in Figure 5A, C, and F, that at the point of peak, electrochemical gradient of protons is already collapsed, and that at the point of peak cell expands and cytoplasmic content leaks out. This means that this part of the ThT curve is not membrane potential related. The authors see that after the first peak collapsed there is a period of time where ThT does not stain the cells and then it starts again. If after the first peak the cellular content leaks, as we have observed, then staining that occurs much later could be simply staining of cytoplasmic positively charged content, and the timing of that depends on the dynamics of cytoplasmic content leakage (we observed this to be happening over 2h in individual cells). ThT is also a non-specific amyloid dye, and in starving E. coli cells formation of protein clusters has been observed (https://pubmed.ncbi.nlm.nih.gov/30472191 [pubmed.ncbi.nlm.nih.gov]/), so such cytoplasmic staining seems possible.

      >>It is very easy to see if the illumination is flat (Köhler illumination) by comparing the intensity of background pixels on the detector. It was flat in our case. Protons have little to do with our work for reasons highlighted before. Differential membrane permittivity is a speculative phenomenon not well supported by any evidence and with no clear molecular mechanism.

      Finally, I note that authors observe biofilms of different shapes and sizes and state that they observe similar intensity profiles, which could mean that my comment on 'flatness' of the field of view above is not a concern. However, the scale bar in Figure 2A is not legible, so I can't compare it to the variation of sizes of the biofilms in Figure 2C (67 to 280um). Based on this, I think that the illumination profile is still a concern.

      The referee now contradicts themselves and wants a scale bar to be more visible. We have changed the scale bar.

      Result section 4: Voltage-gated Kch potassium channels mediate ion-channel electrical oscillations in E. coli

      First I note at this point, given that I disagree that the data presented thus 'suggest that E. coli biofilms use electrical signaling to coordinate long-range responses to light stress' as the authors state, it gets harder to comment on the rest of the results.

      In this result section the authors look at the effect of Kch, a putative voltage-gated potassium channel, on ThT profile in E. coli cells. And they see a difference. It is worth noting that in the publication https://www.sciencedirect.com/science/article/pii/S0006349519308793 [sciencedirect.com] it is found that ThT is also likely a substrate for TolC (Figure 4), but that scenario could not be distinguished from the one where TolC mutant has a different membrane permeability (and there is a publication that suggests the latter is happening https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2010.07245.x [onlinelibrary.wiley.com]). Given this, it is also possible that Kch deletion affects the membrane permeability. I do note that in video S4 I seem to see more of, what appear to be, plasmolysed cells. The authors do not see the ThT intensity with this mutant that appears long after the initial peak has disappeared, as they see in WT. It is not clear how long they waited for this, as from Figure S3C it could simply be that the dynamics of this is a lot slower, e.g. Kch deletion changes membrane permeability.

      The work that TolC provides a possible passive pathway for ThT to leave cells seems slightly niche. It just demonstrates another mechanism for the cells to equilibriate the concentrations of ThT in a Nernstian manner i.e. driven by the membrane voltage.

      The authors themselves state that the evidence for Kch being a voltage-gated channel is indirect (line 54). I do not think there is a need to claim function from a ThT profile of E. coli mutants (nor do I believe it's good practice), given how accurate single-channel recordings are currently. To know the exact dependency on the membrane potential, ion channel recordings on this protein are needed first.

      We have good evidence form electrical impedance spectroscopy experiments that Kch increases the conductivity of biofilms  (https://pubs.acs.org/doi/10.1021/acs.nanolett.3c04446, 'Electrical impedance spectroscopy with bacterial biofilms: neuronal-like behavior', E.Akabuogu et al, ACS Nanoletters, 2024, in print.

      Result section 5: Blue light influences ion-channel mediated membrane potential events in E. coli

      In this chapter the authors vary the light intensity and stain the cells with PI (this dye gets into the cells when the membrane becomes very permeable), and the extracellular environment with K+ dye (I have not yet worked carefully with this dye). They find that different amounts of light influence ThT dynamics. This is in line with previous literature (both papers I have been mentioning: Figure 4 https://www.sciencedirect.com/science/article/pii/S0006349519303923 [sciencedirect.com] and https://ars.els-cdn.com/content/image/1-s2.0-S0006349519308793-mmc6.pdf [ars.els-cdn.com] especially SI12), but does not add anything new. I think the results presented here can be explained with previously published theory and do not indicate that the ion-channel mediated membrane potential dynamics is a light stress relief process.

      The simple Nernstian battery model proposed by Pilizota et al is erroneous in our opinion for reasons outlined above. We believe it will prove to be a dead end for bacterial electrophysiology studies.

      Result section 6: Development of a Hodgkin-Huxley model for the observed membrane potential dynamics

      This results section starts with the authors stating: 'our data provide evidence that E. coli manages light stress through well-controlled modulation of its membrane potential dynamics'. As stated above, I think they are instead observing the process of ThT loading while the light is damaging the membrane and thus simultaneously collapsing the electrochemical gradient of protons. As stated above, this has been modelled before. And then, they observe a ThT staining that is independent from membrane potential.

      This is an erroneous niche opinion. Protons have little say in the membrane potential since there are so few of them. The membrane potential is mostly determined by K+.

      I will briefly comment on the Hodgkin Huxley (HH) based model. First, I think there is no evidence for two channels with different activation profiles as authors propose. But also, the HH model has been developed for neurons. There, the leakage and the pumping fluxes are both described by a constant representing conductivity, times the difference between the membrane potential and Nernst potential for the given ion. The conductivity in the model is given as gK*n^4 for potassium, gNa*m^3*h sodium, and gL for leakage, where gK, gNa and gL were measured experimentally for neurons. And, n, m, and h are variables that describe the experimentally observed voltage-gated mechanism of neuronal sodium and potassium channels. (Please see Hodgkin AL, Huxley AF. 1952. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116:449-72 and Hodgkin AL, Huxley AF. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500-44).

      In the 70 years since Hodgkin and Huxley first presented their model, a huge number of similar models have been proposed to describe cellular electrophysiology. We are not being hyperbolic when we state that the HH models for excitable cells are like the Schrödinger equation for molecules. We carefully adapted our HH model to reflect the currently understood electrophysiology of E. coli.

      Thus, in applying the model to describe bacterial electrophysiology one should ensure near equilibrium requirement holds (so that (V-VQ) etc terms in authors' equation Figure 5 B hold), and potassium and other channels in a given bacterium have similar gating properties to those found in neurons. I am not aware of such measurements in any bacteria, and therefore think the pump leak model of the electrophysiology of bacteria needs to start with fluxes that are more general (for example Keener JP, Sneyd J. 2009. Mathematical physiology: I: Cellular physiology. New York: Springer or https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000144 [journals.plos.org])

      The reference is to a slightly more modern version of a simple Nernstian battery model. The model will not oscillate and thus will not help modelling membrane potentials in bacteria. We are unsure where the equilibrium requirement comes from (inadequate modelling of the dynamics?)

      Result section 7: Mechanosensitive ion channels (MS) are vital for the first hyperpolarization event in E. coli.

      The results that Mcs channels affect the profile of ThT dye are interesting. It is again possible that the membrane permeability of these mutants has changed and therefore the dynamics have changed, so this needs to be checked first. I also note that our results show that the peak of ThT coincides with cell expansion. For this to be understood a model is needed that also takes into account the link between maintenance of electrochemical gradients of ions in the cell and osmotic pressure.

      The evidence for permeability changes in the membranes seems to be tenuous.

      A side note is that the authors state that the Msc responds to stress-related voltage changes. I think this is an overstatement. Mscs respond to predominantly membrane tension and are mostly nonspecific (see how their action recovers cellular volume in this publication https://www.pnas.org/doi/full/10.1073/pnas.1522185113 [pnas.org]). Authors cite references 35-39 to support this statement. These publications still state that these channels are predominantly membrane tension-gated. Some of the references state that the presence of external ions is important for tension-related gating but sometimes they gate spontaneously in the presence of certain ions. Other publications cited don't really look at gating with respect to ions (39 is on clustering). This is why I think the statement is somewhat misleading.

      We have reworded the discussion of Mscs since the literature appears to be ambiguous. We will try to run some electrical impedance spectroscopy experiments on the Msc mutants in the future to attempt to remove the ambiguity.

      Result section 8: Anomalous ion-channel-mediated wavefronts propagate light stress signals in 3D E. coli biofilms.

      I am not commenting on this result section, as it would only be applicable if ThT was membrane potential dye in E. coli.

      Ok, but we disagree on the use of ThT.

      Aims achieved/results support their conclusions:

      The authors clearly present their data. I am convinced that they have accurately presented everything they observed. However, I think their interpretation of the data and conclusions is inaccurate in line with the discussion I provided above.

      Likely impact of the work on the field, and the utility of the methods and data to the community:

      I do not think this publication should be published in its current format. It should be revised in light of the previous literature as discussed in detail above. I believe presenting it in it's current form on eLife pages would create unnecessary confusion.

      We believe many of the Pilizota group articles are scientifically flawed and are causing the confusion in the literature.

      Any other comments:

      I note, that while this work studies E. coli, it references papers in other bacteria using ThT. For example, in lines 35-36 authors state that bacteria (Bacillus subtilis in this case) in biofilms have been recently found to modulate membrane potential citing the relevant literature from 2015. It is worth noting that the most recent paper https://journals.asm.org/doi/10.1128/mbio.02220-23 [journals.asm.org] found that ThT binds to one or more proteins in the spore coat, suggesting that it does not act as a membrane potential in Bacillus spores. It is possible that it still reports membrane potential in Bacillus cells and the recent results are strictly spore-specific, but these should be kept in mind when using ThT with Bacillus.

      >>ThT was used successfully in previous studies of normal B. subtilis cells (by our own group and A.Prindle, ‘Spatial propagation of electrical signal in circular biofilms’, J.A.Blee et al, Physical Review E, 2019, 100, 052401, J.A.Blee et al, ‘Membrane potentials, oxidative stress and the dispersal response of bacterial biofilms to 405 nm light’, Physical Biology, 2020, 17, 2, 036001, A.Prindle et al, ‘Ion channels enable electrical communication in bacterial communities’, Nature, 2015, 527, 59-63). The connection to low metabolism pore research seems speculative.

      Reviewer #3 (Public Review):

      It has recently been demonstrated that bacteria in biofilms show changes in membrane potential in response to changes in their environment, and that these can propagate signals through the biofilm to coordinate bacterial behavior. Akabuogu et al. contribute to this exciting research area with a study of blue light-induced membrane potential dynamics in E. coli biofilms. They demonstrate that Thioflavin-T (ThT) intensity (a proxy for membrane potential) displays multiphasic dynamics in response to blue light treatment. They additionally use genetic manipulations to implicate the potassium channel Kch in the latter part of these dynamics. Mechanosensitive ion channels may also be involved, although these channels seem to have blue light-independent effects on membrane potential as well. In addition, there are challenges to the quantitative interpretation of ThT microscopy data which require consideration. The authors then explore whether these dynamics are involved in signaling at the community level. The authors suggest that cell firing is both more coordinated when cells are clustered and happens in waves in larger, 3D biofilms; however, in both cases evidence for these claims is incomplete. The authors present two simulations to describe the ThT data. The first of these simulations, a Hodgkin-Huxley model, indicates that the data are consistent with the activity of two ion channels with different kinetics; the Kch channel mutant, which ablates a specific portion of the response curve, is consistent with this. The second model is a fire-diffuse-fire model to describe wavefront propagation of membrane potential changes in a 3D biofilm; because the wavefront data are not presented clearly, the results of this model are difficult to interpret. Finally, the authors discuss whether these membrane potential changes could be involved in generating a protective response to blue light exposure; increased death in a Kch ion channel mutant upon blue light exposure suggests that this may be the case, but a no-light control is needed to clarify this.

      In a few instances, the paper is missing key control experiments that are important to the interpretation of the data. This makes it difficult to judge the meaning of some of the presented experiments.

      (1) An additional control for the effects of autofluorescence is very important. The authors conduct an experiment where they treat cells with CCCP and see that Thioflavin-T (ThT) dynamics do not change over the course of the experiment. They suggest that this demonstrates that autofluorescence does not impact their measurements. However, cellular autofluorescence depends on the physiological state of the cell, which is impacted by CCCP treatment. A much simpler and more direct experiment would be to repeat the measurement in the absence of ThT or any other stain. This experiment should be performed both in the wild-type strain and in the ∆kch mutant.

      ThT is a very bright fluorophore (much brighter than a GFP). It is clear from the images of non-stained samples that autofluorescence provides a negligible contribution to the fluorescence intensity in an image.

      (2) The effects of photobleaching should be considered. Of course, the intensity varies a lot over the course of the experiment in a way that photobleaching alone cannot explain. However, photobleaching can still contribute to the kinetics observed. Photobleaching can be assessed by changing the intensity, duration, or frequency of exposure to excitation light during the experiment. Considerations about photobleaching become particularly important when considering the effect of catalase on ThT intensity. The authors find that the decrease in ThT signal after the initial "spike" is attenuated by the addition of catalase; this is what would be predicted by catalase protecting ThT from photobleaching (indeed, catalase can be used to reduce photobleaching in time lapse imaging).

      Photobleaching was negligible over the course of the experiments. We employed techniques such as reducing sample exposure time and using the appropriate light intensity to minimize photobleaching.

      (3) It would be helpful to have a baseline of membrane potential fluctuations in the absence of the proposed stimulus (in this case, blue light). Including traces of membrane potential recorded without light present would help support the claim that these changes in membrane potential represent a blue light-specific stress response, as the authors suggest. Of course, ThT is blue, so if the excitation light for ThT is problematic for this experiment the alternative dye tetramethylrhodamine methyl ester perchlorate (TMRM) can be used instead.

      Unfortunately the fluorescent baseline is too weak to measure cleanly in this experiment. It appears the collective response of all the bacteria hyperpolarization at the same time appears to dominate the signal (measurements in the eLife article and new potentiometry measurements).

      (4) The effects of ThT in combination with blue light should be more carefully considered. In mitochondria, a combination of high concentrations of blue light and ThT leads to disruption of the PMF (Skates et al. 2021 BioRXiv), and similarly, ThT treatment enhances the photodynamic effects of blue light in E. coli (Bondia et al. 2021 Chemical Communications). If present in this experiment, this effect could confound the interpretation of the PMF dynamics reported in the paper.

      We think the PMF plays a minority role in determining the membrane potential in E. coli. For reasons outlined before (H+ is a minority ion in E. coli compared with K+).

      (5) Figures 4D - E indicate that a ∆kch mutant has increased propidium iodide (PI) staining in the presence of blue light; this is interpreted to mean that Kch-mediated membrane potential dynamics help protect cells from blue light. However, Live/Dead staining results in these strains in the absence of blue light are not reported. This means that the possibility that the ∆kch mutant has a general decrease in survival (independent of any effects of blue light) cannot be ruled out.

      >>Both strains of bacterial has similar growth curve and also engaged in membrane potential dynamics for the duration of the experiment. We were interested in bacterial cells that observed membrane potential dynamics in the presence of the stress. Bacterial cells need to be alive to engage in membrane potential  dynamics (hyperpolarize) under stress conditions. Cells that engaged in membrane potential dynamics and later stained red were only counted after the entire duration. We believe that the wildtype handles the light stress better than the ∆kch mutant as measured with the PI.

      (6) Additionally in Figures 4D - E, the interpretation of this experiment can be confounded by the fact that PI uptake can sometimes be seen in bacterial cells with high membrane potential (Kirchhoff & Cypionka 2017 J Microbial Methods); the interpretation is that high membrane potential can lead to increased PI permeability. Because the membrane potential is largely higher throughout blue light treatment in the ∆kch mutant (Fig. 3AB), this complicates the interpretation of this experiment.

      Kirchhoff & Cypionka 2017 J Microbial Methods, using fluorescence microscopy, suggested that changes in membrane potential dynamics can introduce experimental bias when propidium iodide is used to confirm the viability of tge bacterial strains, B subtilis (DSM-10) and Dinoroseobacter shibae, that are starved of oxygen (via N2 gassing) for 2 hours. They attempted to support their findings by using CCCP in stopping the membrane potential dynamics (but never showed any pictoral or plotted data for this confirmatory experiment). In our experiment methodology, cell death was not forced on the cells by introducing an extra burden or via anoxia. We believe that the accumulation of PI in ∆kch mutant is not due to high membrane potential dynamics but is attributed to the PI, unbiasedly showing damaged/dead cells. We think that propidium iodide is good for this experiment. Propidium iodide is a dye that is extensively used in life sciences. PI has also been used in the study of bacterial electrophysiology (https://pubmed.ncbi.nlm.nih.gov/32343961/, ) and no membrane potential related bias was reported.

      Throughout the paper, many ThT intensity traces are compared, and described as "similar" or "dissimilar", without detailed discussion or a clear standard for comparison. For example, the two membrane potential curves in Fig. S1C are described as "similar" although they have very different shapes, whereas the curves in Fig. 1B and 1D are discussed in terms of their differences although they are evidently much more similar to one another. Without metrics or statistics to compare these curves, it is hard to interpret these claims. These comparative interpretations are additionally challenging because many of the figures in which average trace data are presented do not indicate standard deviation.

      Comparison of small changes in the absolute intensities is problematic in such fluorescence experiments. We mean the shape of the traces is similar and they can be modelled using a HH model with similar parameters.

      The differences between the TMRM and ThT curves that the authors show in Fig. S1C warrant further consideration. Some of the key features of the response in the ThT curve (on which much of the modeling work in the paper relies) are not very apparent in the TMRM data. It is not obvious to me which of these traces will be more representative of the actual underlying membrane potential dynamics.

      In our experiment, TMRM was used to confirm the dynamics observed using ThT. However, ThT appear to be more photostable than TMRM (especially towars the 2nd peak). The most interesting observation is that with both dyes, all phases of the membrane potential dynamics were conspicuous (the first peak, the quiescent period and the second peak). The time periods for these three episodes were also similar.

      A key claim in this paper (that dynamics of firing differ depending on whether cells are alone or in a colony) is underpinned by "time-to-first peak" analysis, but there are some challenges in interpreting these results. The authors report an average time-to-first peak of 7.34 min for the data in Figure 1B, but the average curve in Figure 1B peaks earlier than this. In Figure 1E, it appears that there are a handful of outliers in the "sparse cell" condition that likely explain this discrepancy. Either an outlier analysis should be done and the mean recomputed accordingly, or a more outlier-robust method like the median should be used instead. Then, a statistical comparison of these results will indicate whether there is a significant difference between them.

      The key point is the comparison of standard errors on the standard deviation.

      In two different 3D biofilm experiments, the authors report the propagation of wavefronts of membrane potential; I am unable to discern these wavefronts in the imaging data, and they are not clearly demonstrated by analysis.

      The first data set is presented in Figures 2A, 2B, and Video S3. The images and video are very difficult to interpret because of how the images have been scaled: the center of the biofilm is highly saturated, and the zero value has also been set too high to consistently observe the single cells surrounding the biofilm. With the images scaled this way, it is very difficult to assess dynamics. The time stamps in Video S3 and on the panels in Figure 2A also do not correspond to one another although the same biofilm is shown (and the time course in 2B is also different from what is indicated in 2B). In either case, it appears that the center of the biofilm is consistently brighter than the edges, and the intensity of all cells in the biofilm increases in tandem; by eye, propagating wavefronts (either directed toward the edge or the center) are not evident to me. Increased brightness at the center of the biofilm could be explained by increased cell thickness there (as is typical in this type of biofilm). From the image legend, it is not clear whether the image presented is a single confocal slice or a projection. Even if this is a single confocal slice, in both Video S3 and Figure 2A there are regions of "haze" from out-of-focus light evident, suggesting that light from other focal planes is nonetheless present. This seems to me to be a simpler explanation for the fluorescence dynamics observed in this experiment: cells are all following the same trajectory that corresponds to that seen for single cells, and the center is brighter because of increased biofilm thickness.

      We appreciate the reviewer for this important observation. We have made changes to the figures to address this confusion. The cell cover has no influence on the observed membrane potential dynamics. The entire biofilm was exposed to the same blue light at each time. Therefore all parts of the biofilm received equal amounts of the blue light intensity. The membrane potential dynamics was not influenced by cell density (see Fig 2C). 

      The second data set is presented in Video S6B; I am similarly unable to see any wave propagation in this video. I observe only a consistent decrease in fluorescence intensity throughout the experiment that is spatially uniform (except for the bright, dynamic cells near the top; these presumably represent cells that are floating in the microfluidic and have newly arrived to the imaging region).

      A visual inspection of Video S6B shows a fast rise, a decrease in fluorescence and a second rise (supplementary figure 4B). The data for the fluorescence was carefully obtained using the imaris software. We created a curved geometry on each slice of the confocal stack. We analyzed the surfaces of this curved plane along the z-axis. This was carried out in imaris.

      3D imaging data can be difficult to interpret by eye, so it would perhaps be more helpful to demonstrate these propagating wavefronts by analysis; however, such analysis is not presented in a clear way. The legend in Figure 2B mentions a "wavefront trace", but there is no position information included - this trace instead seems to represent the average intensity trace of all cells. To demonstrate the propagation of a wavefront, this analysis should be shown for different subpopulations of cells at different positions from the center of the biofilm. Data is shown in Figure 8 that reflects the velocity of the wavefront as a function of biofilm position; however, because the wavefronts themselves are not evident in the data, it is difficult to interpret this analysis. The methods section additionally does not contain sufficient information about what these velocities represent and how they are calculated. Because of this, it is difficult for me to evaluate the section of the paper pertaining to wave propagation and the predicted biofilm critical size.

      The analysis is considered in more detail in a more expansive modelling article, currently under peer review in a physics journal, ‘Electrical signalling in three dimensional bacterial biofilms using an agent based fire-diffuse-fire model’, V.Martorelli, et al, 2024 https://www.biorxiv.org/content/10.1101/2023.11.17.567515v1

      There are some instances in the paper where claims are made that do not have data shown or are not evident in the cited data:

      (1) In the first results section, "When CCCP was added, we observed a fast efflux of ions in all cells"- the data figure pertaining to this experiment is in Fig. S1E, which does not show any ion efflux. The methods section does not mention how ion efflux was measured during CCCP treatment.

      We have worded this differently to properly convey our results.

      (2) In the discussion of voltage-gated calcium channels, the authors refer to "spiking events", but these are not obvious in Figure S3E. Although the fluorescence intensity changes over time, it's hard to distinguish these fluctuations from measurement noise; a no-light control could help clarify this.

      The calcium transients observed were not due to noise or artefacts.

      (3) The authors state that the membrane potential dynamics simulated in Figure 7B are similar to those observed in 3D biofilms in Fig. S4B; however, the second peak is not clearly evident in Fig. S4B and it looks very different for the mature biofilm data reported in Fig. 2. I have some additional confusion about this data specifically: in the intensity trace shown in Fig. S4B, the intensity in the second frame is much higher than the first; this is not evident in Video S6B, in which the highest intensity is in the first frame at time 0. Similarly, the graph indicates that the intensity at 60 minutes is higher than the intensity at 4 minutes, but this is not the case in Fig. S4A or Video S6B.

      The confusion stated here has now been addressed. Also it should be noted that while Fig 2.1 was obtained with LED light source, Fig S4A was obtained using a laser light source. While obtaining the confocal images (for Fig S4A ), the light intensity was controlled to further minimize photobleaching. Most importantly, there is an evidence of slow rise to the 2nd peak in Fig S4B. The first peak, quiescence and slow rise to second peak are evident.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Scientific recommendations:

      - Although Fig 4A clearly shows that light stimulation has an influence on the dynamics of cell membrane potential in the biofilm, it is important to rule out the contribution of variations in environmental parameters. I understand that for technical reasons, the flow of fresh medium must be stopped during image acquisition. Therefore, I suggest performing control experiments, where the flow is stopped before image acquisition (15min, 30min, 45min, and 1h before). If there is no significant contribution from environmental variations (pH, RedOx), the dynamics of the electrical response should be superimposed whatever the delay between stopping the flow stop and switching on the light.

      In this current research study, we were focused on studying how E. coli cells and biofilms react to blue light stress via their membrane potential dynamics. This involved growing the cells and biofilms, stopping the media flow and obtaining data immediately. We believe that stopping the flow not only helped us to manage data acquisition, it also helped us reduce the effect of environmental factors. In our future study we will expand the work to include how the membrane potential dynamics evolve in the presence of changing environmental factors for example such induced by stopping the flow at varied times.

      - Since TMRM signal exhibits a linear increase after the first response peak (Supplementary Figure 1D), I recommend mitigating the statement at line 78.

      - To improve the spatial analysis of the electrical response, I suggest plotting kymographs of the intensity profiles across the biofilm. I have plotted this kymograph for Video S3 and it appears that there is no electrical propagation for the second peak. In addition, the authors should provide technical details of how R^2(t) is measured in the first regime (Figure 7E).

      See the dedicated simulation article for more details. https://www.biorxiv.org/content/10.1101/2023.11.17.567515v1

      - Line 152: To assess the variability of the latency, the authors should consider measuring the variance divided by the mean instead of SD, which may depend on the average value.

      We are happy with our current use of standard error on the standard deviation. It shows what we claim to be true.

      - Line 154-155: To truly determine whether the amplitude of the "action potential" is independent of biofilm size, the authors should not normalise the signals.

      Good point. We qualitatively compared both normalized and unnormalized data. Recent electrical impedance spectroscopy measurements (unpublished) indicate that the electrical activity is an extensive quantity i.e. it scales with the size of the biofilms.

      - To precise the role of K+ in the habituation response, I suggest using valinomycin at sub-inhibitory concentrations (10µM). Besides, the high concentration of CCCP used in this study completely inhibits cell activity. Not surprisingly, no electrical response to light stimulation was observed in the presence of CCCP. Finally, the Kch complementation experiment exhibits a "drop after the first peak" on a single point. It would be more convincing to increase the temporal resolution (1min->10s) to show that there is indeed a first and a second peak.

      An interesting experiment for the future.

      - Line 237-238: There are only two points suggesting that the dynamics of hyperpolarization are faster at higher irradiance(Fig 4A). The authors should consider adding a third intermediate point at 17µW/mm^2 to confirm the statement made in this sentence.

      Multiple repeats were performed. We are confident of the robustness of our data.

      - Line 249 + Fig 4E: It seems that the data reported on Fig 4E are extracted from Fig 4D. If this is indeed the case, the data should be normalised by the total population size to compare survival probabilities under the two conditions. It would also be great to measure these probabilities (for WT and ∆kch) in the presence of ROS scavengers.

      - To distinguish between model fitting and model predictions, the authors should clearly state which parameters are taken from the literature and which parameters are adjusted to fit the experimental data.

      - Supplementary Figure 4A: why can't we see any wavefront in this series of images?

      For the experimental data, the wavefront was analyzed by employing the imaris software. We systematically created a ROI with a curved geometry within the confocal stack (the biofilm). The fluorescence of ThT was traced along the surface of the curved geometry was analyzed along the z-axis.

      - Fig 7B: Could the authors explain why the plateau is higher in the simulations than in the biofilm experiments? Could they add noise on the firing activities?

      See the dedicated Martorelli modelling article. In general we would need to approach stochastic Hodgkin-Huxley modelling and the fluorescence data (and electrical impedance spectroscopy data) presented does not have extensive noise (due to collective averaging over many bacteria cells).

      - Supplementary Figure 4B: Why can't we see the second peak in confocal images?

      The second peak is present although not as robust as in Fig 2B. The confocal images were obtained with a laser source. Therefore we tried to create a balance between applying sufficient light stress on the bacterial cells and mitigating photobleaching.

      Editing recommendations:

      The editing recommendations below has been applied where appropriate

      - Many important technical details are missing (e.g. R^2, curvature, and 445nm irradiance measurements). Error bars are missing from most graphs. The captions should clearly indicate if these are single-cell or biofilm experiments, strain name, illumination conditions, number of experiments, SD, or SE. Please indicate on all panels of all figures in the main text and in the supplements, which are the conditions: single cell vs. biofilm, strains, medium, centrifugal vs centripetal etc..., where relevant. Please also draw error bars everywhere.

      We have now made appropriate changes. We specifically use cells when we were dealing with single cells and biofilms when we worked on biofilms. We decided to describe the strain name either on the panel or the image description.

      - Line 47-51: The way the paragraph is written suggests that no coordinated electrical oscillations have been observed in Gram-negative biofilms. However, Hennes et al (referenced as 57 in this manuscript) have shown that a wave of hyperpolarized cells propagates in Neisseria gonorrhoea colony, which is a Gram-negative bacterium.

      We are now aware of this work. It was not published when we first submitted our work and the authors claim the waves of activity are due to ROS diffusion NOT propagating waves of ions (coordinated electrical wavefronts).

      - Line 59: "stressor" -> "stress" or "perturbation".

      The correction has been made.

      - Line 153: Please indicate in the Material&Methods how the size of the biofilm is measured.

      The biofilm size was obtained using BiofilmQ and the step by step guide for using BiofilmQ were stated..

      - Figure 2A: Please provide associated brightfield images to locate bacteria.

      - Line 186: Please remove "wavefront" from the caption. Fig2B only shows the average signal as a function of time.

      This correction has been implemented.

      - Fig 3B,C: Please indicate single cell and biofilm on the panels and also WT and ∆kch.

      - Line 289: I suggest adding "in single cell experiments" to the title of this section.

      - Fig 5A: blue light is always present at regular time intervals during regime I and II. The presence of blue light only in regime I could be misleading.

      - Fig 5C: The curve in Fig 5D seems to correspond to the biofilm case. The curve given by the model, should be compared with the average curve presented in Fig 1D.

      - Fig 6A, B, and C: These figures could be moved to supplements.

      - Line 392: Replace "turgidity" with "turgor pressure".

      - Fig 7C,E: Please use a log-log scale to represent these data and indicate the line of slope 1.

      - Fig 7E: The x-axis has been cropped.

      - Please provide a supplementary movie for the data presented in Fig 7E.

      - Line 455: E. Coli biofilms do not express ThT.

      - Line 466: "\gamma is the anomalous exponent". Please remove anomalous (\gamma can equal 1 at this stage).

      - Line 475: Please replace "section" with "projection".

      - Line 476: Please replace "spatiotemporal" with "temporal". There is no spatial dependency in either figure.

      - Line 500: Please define Eikonal approximation.

      - Fig 8 could be moved to supplements.

      - Line 553: "predicted" -> "predict".

      - Line 593: Could the authors explain why their model offers much better quantitative agreement?

      - Line 669: What does "universal" mean in that context?

      - Line 671: A volume can be pipetted but not a concentration.

      - Line 676: Are triplicates technical or biological replicates?

      - Sup Fig1: Please use minutes instead of seconds in panel A.

      - Model for membrane dynamics: "The fraction of time the Q+ channel is open" -> "The dynamics of Q+ channel activity can be written". Ditto for K+ channel...

      - Model for membrane dynamics: "the term ... is a threshold-linear". This function is not linear at all. Why is it called linear? Also, please describe what \sigma is.

      - ABFDF model: "releasing a given concentration" -> "releasing a local concentration" or "a given number" but it's not \sigma anymore. Besides, this \sigma is unlikely related to the previous \sigma used in the model of membrane potential dynamics in single cells. Please consider renaming one or the other. Also, ions are referred to as C+ in the text and C in equation 8. Am I missing something?

      Reviewer #2 (Recommendations For The Authors):

      I have included all my comments as one review. I have done so, despite the fact that some minor comments could have gone into this section, because I decided to review each Result section. I thus felt that not writing it as one review might be harder to follow. I have however highlighted which comments are minor suggestions or where I felt corrections.

      However, while I am happy with all my comments being public, given their nature I think they should be shown to authors first. Perhaps the authors want to go over them and think about it before deciding if they are happy for their manuscript to be published along with these comments, or not. I will highlight this in an email to the editor. I question whether in this case, given that I am raising major issues, publishing both the manuscript and the comments is the way to go as I think it might just generate confusion among the audience.

      Reviewer #3 (Recommendations For The Authors):

      I was unable to find any legends for any of the supplemental videos in my review materials, and I could not open supplemental video 5.

      I made some comments in the public review about the analysis and interpretation of the time-to-fire data. One of the other challenges in this data set is that the time resolution is limited- it seems that a large proportion of cells have already fired after a single acquisition frame. It would be ideal to increase the time resolution on this measurement to improve precision. This could be done by imaging more quickly, but that would perhaps necessitate more blue light exposure; an alternative is to do this experiment under lower blue light irradiance where the first spike time is increased (Figure 4A).

      In the public review, I mentioned the possible impact of high membrane potential on PI permeability. To address this, the experiment could be repeated with other stains, or the viability of blue light-treated cells could be addressed more directly by outgrowth or colony-forming unit assays.

      In the public review, I mentioned the possible combined toxicity of ThT and blue light. Live/dead experiments after blue light exposure with and without ThT could be used to test for such effects, and/or the growth curve experiment in Figure 1F could be repeated with blue light exposure at a comparable irradiance used in the experiment.

      Throughout the paper and figure legends, it would help to have more methodological details in the main text, especially those that are critical for the interpretation of the experiment. The experimental details in the methods section are nicely described, but the data analysis section should be expanded significantly.

      At the end of the results section, the authors suggest a critical biofilm size of only 4 µm for wavefront propagation (not much larger than a single cell!). The authors show responses for various biofilm sizes in Fig. 2C, but these are all substantially larger. Are there data for cell clusters above and below this size that could support this claim more directly?

      The authors mention image registration as part of their analysis pipeline, but the 3D data sets in Video S6B and Fig. S4A do not appear to be registered- were these registered prior to the velocity analysis reported in Fig. 8?

      One of the most challenging claims to demonstrate in this paper is that these membrane potential wavefronts are involved in coordinating a large, biofilm-scale response to blue light. One possible way to test this might be to repeat the Live/Dead experiment in planktonic culture or the single-cell condition. If the protection from blue light specifically emerges due to coordinated activity of the biofilm, the Kch mutant would not be expected to show a change in Live/Dead staining in non-biofilm conditions.

      Line 140: How is "mature biofilm" defined? Also on this same line, what does "spontaneous" mean here?

      Line 151: "much smaller": Given that the reported time for 3D biofilms is 2.73 {plus minus} 0.85 min and in microclusters is 3.27 {plus minus} 1.77 min, this seems overly strong.

      Line 155: How is "biofilm density" characterized? Additionally, the data in Figure 2C are presented in distance units (µm), but the text refers to "areal coverage"- please define the meaning of these distance units in the legend and/or here in the text (is this the average radius?).

      Lines 161-162: These claims seem strong given the data presented before, and the logic is not very explicit. For example, in the second sentence, the idea that this signaling is used to "coordinate long-range responses to light stress" does not seem strongly evidenced at this point in the paper. What is meant by a long-range response to light stress- are there processes to respond to light that occur at long-length scales (rather than on the single-cell scale)? If so, is there evidence that these membrane potential changes could induce these responses? Please clarify the logic behind these conclusions.

      Lines 235-236: In the lower irradiance conditions, the responses are slower overall, and it looks like the ThT intensity is beginning to rise at the end of the measurement. Could a more prominent second peak be observed in these cases if the measurement time was extended?

      Line 242-243: The overall trajectories of extracellular potassium are indeed similar, but the kinetics of the second peak of potassium are different than those observed by ThT (it rises some minutes earlier)- is this consistent with the idea that Kch is responsible for that peak? Additionally, the potassium dynamics also reflect the first peak- is this surprising given that the Kch channel has no effect on this peak?

      Line 255-256: Again, this seems like a very strong claim. There are several possible interpretations of the catalase experiment (which should be discussed); this experiment perhaps suggests that ROS impacts membrane potential, but does not obviously indicate that these membrane potential fluctuations mitigate ROS levels or help the cells respond to ROS stress. The loss of viability in the ∆kch mutant might indicate a link between these membrane potential experiments and viability, but it is hard to interpret without the no-light control I mention in the public review.

      Lines 313-315: "The model predicts... the external light stress". Please clarify this section. Where this prediction arises from in the modeling work? Second, I am not sure what is meant by "modulates the light stress" or "keeps the cell dynamics robust to the intensity of external light stress" (especially since the dynamics clearly vary with irradiance, as seen in Figure 4A).

      Line 322: I am not sure what "handles the ROS by adjusting the profile of the membrane potential dynamics" means. What is meant by "handling" ROS? Is the hypothesis that membrane potential dynamics themselves are protective against ROS, or that they induce a ROS-protective response downstream, or something else? Later in lines 327-8 the authors write that changes in the response to ROS in the model agree with the hypothesis, but just showing that ROS impacts the membrane potential does not seem to demonstrate that this has a protective effect against ROS.

      Line 365-366: This section title seems confusing- mechanosensitive ion channels totally ablate membrane potential dynamics, they don't have a specific effect on the first hyperpolarization event. The claim that mechanonsensitive ion channels are specifically involved in the first event also appears in the abstract.

      Also, the apparent membrane potential is much lower even at the start of the experiment in these mutants- is this expected? This seems to imply that these ion channels also have a blue light independent effect.

      Lines 368, 371: Should be VGCCs rather than VGGCs.

      Line 477: I believe the figure reference here should be to Figure 7B, not 6B.

      Line 567-568: "The initial spike is key to registering the presence of the light stress." What is the evidence for this claim?

      Line 592-594: "We have presented much better quantitative agreement..." This is a strong claim; it is not immediately evident to me that the agreement between model and prediction is "much better" in this work than in the cited work. The model in Figure 4 of reference 57 seems to capture the key features of their data. Clarification is needed about this claim.

      Line 613: "...strains did not have any additional mutations." This seems to imply that whole genome sequencing was performed- is this the case?

      Line 627: I believe this should refer to Figure S2A-B rather than S1.

      Line 719: What percentage of cells did not hyperpolarize in these experiments?

      Lines 751-754: As I mentioned above, significant detail is missing here about how these measurements were made. How is "radius" defined in 3D biofilms like the one shown in Video S6B, which looks very flat? What is meant by the distance from the substrate to the core, since usually in this biofilm geometry, the core is directly on the substrate? Most importantly, this only describes the process of sectioning the data- how were these sections used to compute the velocity of ThT signal propagation?

      I also have some comments specifically on the figure presentation:

      Normalization from 0 to 1 has been done in some of the ThT traces in the paper, but not all. The claims in the paper would be easiest to evaluate if the non-normalized data were shown- this is important for the interpretation of some of the claims.

      Some indication of standard deviation (error bars or shading) should be added to all figures where mean traces are plotted.

      Throughout the paper, I am a bit confused by the time axis; the data consistently starts at 1 minute. This is not intuitive to me, because it seems that the blue light being applied to the cells is also the excitation laser for ThT- in that case, shouldn't the first imaging frame be at time 0 (when the blue light is first applied)? Or is there an additional exposure of blue light 1 minute before imaging starts? This is consequential because it impacts the measured time to the first spike. (Additionally, all of the video time stamps start at 0).

      Please increase the size of the scale bars and bar labels throughout, especially in Figure 2A and S4A.

      In Figure 1B and D, it would help to decrease the opacity on the individual traces so that more of them can be discerned. It would also improve clarity to have data from the different experiments shown with different colored lines, so that variability between experiments can be clearly visualized.

      Results in Figure 1E would be easier to interpret if the frequency were normalized to total N. It is hard to tell from this graph whether the edges and bin widths are the same between the data sets, but if not, they should be. Also, it would help to reduce the opacity of the sparse cell data set so that the full microcluster data set can be seen as well.

      Biofilm images are shown in Figures 2A, S3A, and Video S3- these are all of the same biofilm. Why not take the opportunity to show different experimental replicates in these different figures? The same goes for Figure S4A and Video S6B, which again are of the same biofilm.

      Figure 2C would be much easier to read if the curves were colored in order of their size; the same is true for Figure 4A and irradiance.

      The complementation data in Figure S3D should be moved to the main text figure 3 alongside the data about the corresponding knockout to make it easier to compare the curves.

      Fig.ure S3E: Is the Y-axis in this graph mislabeled? It is labeled as ThT fluorescence, but it seems that it is reporting fluorescence from the calcium indicator?

      Video S6B is very confusing - why does the video play first forwards and then backwards? Unless I am looking very carefully at the time stamps it is easy to misinterpret this as a rise in the intensity at the end of the experiment. Without a video legend, it's hard to understand this, but I think it would be much more straightforward to interpret if it only played forward. (Also, why is this video labeled 6B when there is no video 6A?)

    1. eLife Assessment

      This is a fundamental study that provides a detailed single-cell transcriptomic and epigenomic map of the mouse trabecular meshwor, identifying three distinct trabecular meshwor subtypes with specific functional roles. It links the glaucoma-associated transcription factor LMX1B to mitochondrial regulation in TM3 cells and demonstrates that nicotinamide treatment prevents IOP elevation in Lmx1bV265D/+ mutant mice, highlighting a potential metabolic therapeutic strategy for glaucoma. This convincing work would be further supported by data that link the transcriptional data with mitochondrial functional assays.

    2. Reviewer #1 (Public review):

      Summary:

      This study provides a comprehensive single-cell and multiomic characterization of trabecular meshwork (TM) cells in the mouse eye, a structure critical to intraocular pressure (IOP) regulation and glaucoma pathogenesis. Using scRNA-seq, snATAC-seq, immunofluorescence, and in situ hybridization, the authors identify three transcriptionally and spatially distinct TM cell subtypes. The study further demonstrates that mitochondrial dysfunction, specifically in one subtype (TM3), contributes to elevated IOP in a genetic mouse model of glaucoma carrying a mutation in the transcription factor Lmx1b. Importantly, treatment with nicotinamide (vitamin B3), known to support mitochondrial health, prevents IOP elevation in this model. The authors also link their findings to human datasets, suggesting the existence of analogous TM3-like cells with potential relevance to human glaucoma.

      Strengths:

      The study is methodologically rigorous, integrating single-cell transcriptomic and chromatin accessibility profiling with spatial validation and in vivo functional testing. The identification of TM subtypes is consistent across mouse strains and institutions, providing robust evidence of conserved TM cell heterogeneity. The use of a glaucoma model to show subtype-specific vulnerability, combined with a therapeutic intervention-gives the study strong mechanistic and translational significance. The inclusion of chromatin accessibility data adds further depth by implicating active transcription factors such as LMX1B, a gene known to be associated with glaucoma risk. The integration with human single-cell datasets enhances the potential relevance of the findings to human disease.

      Weaknesses:

      Although the LMX1B transcription factor is implicated as a key regulator in TM3 cells, its role in directly controlling mitochondrial gene expression is not fully explored. Additional analysis of motif accessibility or binding enrichment near relevant target genes could substantiate this mechanistic link. The therapeutic effect of vitamin B3 is clearly demonstrated phenotypically, but the underlying cellular and molecular mechanisms remain somewhat underdeveloped - for instance, changes in mitochondrial function, oxidative stress markers, or NAD+ levels are not directly measured. While the human relevance of TM3 cells is suggested through marker overlap, more quantitative approaches, such as cell identity mapping or gene signature scoring in human datasets, would strengthen the translational connection.

      Overall, this is a compelling and carefully executed study that offers significant advances in our understanding of TM cell biology and its role in glaucoma. The integration of multimodal data, disease modeling, and therapeutic testing represents a valuable contribution to the field. With additional mechanistic depth, the study has the potential to become a foundational resource for future research into IOP regulation and glaucoma treatment.

    3. Reviewer #2 (Public review):

      Summary:

      This elegant study by Tolman and colleagues provides fundamental findings that substantially advance our knowledge of the major cell types within the limbus of the mouse eye, focusing on the aqueous humor outflow pathway. The authors used single-cell and single-nuclei RNAseq to very clearly identify 3 subtypes of the trabecular meshwork (TM) cells in the mouse eye, with each subtype having unique markers and proposed functions. The U. Columbia results are strengthened by an independent replication in a different mouse strain at a separate laboratory (Duke). Bioinformatics analyses of these expression data were used to identify cellular compartments, molecular functions, and biological processes. Although there were some common pathways among the 3 subtypes of TM cells (e.g., ECM metabolism), there also were distinct functions. For example:

      • TM1 cell expression supports heavy engagement in ECM metabolism and structure, as well as TGFβ2 signaling.

      • TM2 cells were enriched in laminin and pathways involved in phagocytosis, lysosomal function, and antigen expression, as well as End3/VEGF/angiopoietin signaling.

      • TM3 cells were enriched in actin binding and mitochondrial metabolism.

      They used high-resolution immunostaining and in situ hybridization to show that these 3 TM subtypes express distinct markers and occupy distinct locations within the TM tissue. The authors compared their expression data with other published scRNAseq studies of the mouse as well as the human aqueous outflow pathway. They used ATAC-seq to map open chromatin regions in order to predict transcription factor binding sites. Their results were also evaluated in the context of human IOP and glaucoma risk alleles from published GWAS data, with interesting and meaningful correlations. Although not discussed in their manuscript, their expression data support other signaling pathways/ proteins/ genes that have been implicated in glaucoma, including: TGFβ2, BMP signaling (including involvement of ID proteins), MYOC, actin cytoskeleton (CLANs), WNT signaling, etc.

      In addition to these very impressive data, the authors used scRNAseq to examine changes in TM cell gene expression in the mouse glaucoma model of mutant Lmxb1-induced ocular hypertension. In man, LMX1B is associated with Nail-Patella syndrome, which can include the development of glaucoma, demonstrating the clinical relevance of this mouse model. Among the gene expression changes detected, TM3 cells had altered expression of genes associated with mitochondrial metabolism. The authors used their previous experience using nicotinamide to metabolically protect DBA2/J mice from glaucomatous damage, and they hypothesized that nicotinamide supplementation of mutant Lmx1b mice would help restore normal mitochondrial metabolism in the TM and prevent Lmx1b-mediated ocular hypertension. Adding nicotinamide to the drinking water significantly prevented Lmxb1 mutant mice from developing high intraocular pressure. This is a laudable example of dissecting the molecular pathogenic mechanisms responsible for a disease (glaucoma) and then discovering and testing a potential therapy that directly intervenes in the disease process and thereby protects from the disease.

      Strengths:<br /> There are numerous strengths in this comprehensive study including:<br /> • Deep scRNA sequencing that was confirmed by an independent dataset in another mouse strain at another university.<br /> • Identification and validation of molecular markers for each mouse TM cell subset along with localization of these subsets within the mouse aqueous outflow pathway.<br /> • Rigorous bioinformatics analysis of these data as well as comparison of the current data with previously published mouse and human scRNAseq data.<br /> • Correlating their current data with GWAS glaucoma and IOP "hits".<br /> • Discovering gene expression changes in the 3 TM subgroups in the mouse mutant Lmx1b model of glaucoma.<br /> • Further pursuing the indication of dysfunctional mitochondrial metabolism in TM3 cells from Lmx1b mutant mice to test the efficacy of dietary supplementation with nicotinamide. The authors nicely demonstrate the disease modifying efficacy of nicotinamide in preventing IOP elevation in these Lmx1b mutant mice, preventing the development of glaucoma. These results have clinical implications for new glaucoma therapies.

      Weaknesses:<br /> • Occasional over-interpretation of data. The authors have used changes in gene expression (RNAseq) to implicate functions and signaling pathways. For example: they have not directly measured "changes in metabolism", "mitochondrial dysfunction" or "activity of Lmx1b".<br /> • In their very thorough data set, there is enrichment of or changes in gene expression that support other pathways that have been previously reported to be associated with glaucoma (such as TGFβ2, BMP signaling, actin cytoskeletal organization (CLANs), WNT signaling, ossification, etc. that appears to be a lost opportunity to further enhance the significance of this work.

    4. Reviewer #3 (Public review):

      Summary:In this study, the authors perform multimodal single-cell transcriptomic and epigenomic profiling of 9,394 mouse TM cells, identifying three transcriptionally distinct TM subtypes with validated molecular signatures. TM1 cells are enriched for extracellular matrix genes, TM2 for secreted ligands supporting Schlemm's canal, and TM3 for contractile and mitochondrial/metabolic functions. The transcription factor LMX1B, previously linked to glaucoma, shows the highest expression in TM3 cells and appears to regulate mitochondrial pathways. In Lmx1bV265D mutant mice, TM3 cells exhibit transcriptional signs of mitochondrial dysfunction associated with elevated IOP. Notably, vitamin B3 treatment significantly mitigates IOP elevation, suggesting a potential therapeutic avenue.

      This is an excellent and collaborative study involving investigators from two institutions, offering the most detailed single-cell transcriptomic and epigenetic profiling of the mouse limbal tissues-including both TM and Schlemm's canal (SC), from wild-type and Lmx1bV265D mutant mice. The study defines three TM subtypes and characterizes their distinct molecular signatures, associated pathways, and transcriptional regulators. The authors also compare their dataset with previously published murine and human studies, including those by Van Zyl et al., providing valuable cross-species insights.

      Strengths:

      (1) Comprehensive dataset with high single-cell resolution<br /> (2) Use of multiple bioinformatic and cross-comparative approaches<br /> (3) Integration of 3D imaging of TM and SC for anatomical context<br /> (4) Convincing identification and validation of three TM subtypes using molecular markers.

      Weaknesses:

      (1) Insufficient evidence linking mitochondrial dysfunction to TM3 cells in Lmx1bV265D mice: While the identification of TM3 cells as metabolically specialized and Lmx1b-enriched is compelling, the proposed link between Lmx1b mutation and mitochondrial dysfunction remains underdeveloped. It is unclear whether mitochondrial defects are a primary consequence of Lmx1b-mediated transcriptional dysregulation or a secondary response to elevated IOP. Additional evidence is needed to clarify whether Lmx1b directly regulates mitochondrial genes (e.g., via ChIP-seq, motif analysis, or ATAC-seq), or whether mitochondrial changes are downstream effects.<br /> Furthermore, the protective effects of nicotinamide (NAM) are interpreted as evidence of mitochondrial involvement, but no direct mitochondrial measurements (e.g., immunostaining, electron microscopy, OCR assays) are provided. It is essential to validate mitochondrial dysfunction in TM3 cells using in vivo functional assays to support the central conclusion of the paper. Without this, the claim that mitochondrial dysfunction drives IOP elevation in Lmx1bV265D mice remains speculative. Alternatively, authors should consider revising their claims that mitochondrial dysfunction in these mice is a central driver of TM dysfunction.

      (2) Mechanism of NAM-mediated protection is unclear: The manuscript states that NAM treatment prevents IOP elevation in Lmx1bV265D mice via metabolic support, yet no data are shown to confirm that NAM specifically rescues mitochondrial function. Do NAM-treated TM3 cells show improved mitochondrial integrity? Are reactive oxygen species (ROS) reduced? Does NAM also protect RGCs from glaucomatous damage? Addressing these points would clarify whether the therapeutic effects of NAM are indeed mitochondrial.

      (3) Lack of direct evidence that LMX1B regulates mitochondrial genes: While transcriptomic and motif accessibility analyses suggest that LMX1B is enriched in TM3 cells and may influence mitochondrial function, no mechanistic data are provided to demonstrate direct regulation of mitochondrial genes. Including ChIP-seq data, motif enrichment at mitochondrial gene loci, or perturbation studies (e.g., Lmx1b knockout or overexpression in TM3 cells) would greatly strengthen this central claim.

      (4)Focus on LMX1B in Fig. 5F lacks broader context: Figure 5F shows that several transcription factors (TFs)-including Tcf21, Foxs1, Arid3b, Myc, Gli2, Patz1, Plag1, Npas2, Nr1h4, and Nfatc2-exhibit stronger positive correlations or motif accessibility changes than LMX1B. Yet the manuscript focuses almost exclusively on LMX1B. The rationale for this focus should be clarified, especially given LMX1B's relatively lower ranking in the correlation analysis. Were the functions of these other highly ranked TFs examined or considered in the context of TM biology or glaucoma? Discussing their potential roles would enhance the interpretation of the transcriptional regulatory landscape and demonstrate the broader relevance of the findings.

      Other weaknesses:

      (1) In abstract, they say a number of 9,394 wild-type TM cell transcriptomes. The number of Lmx1bV265D/+ TM cell transcriptomes analyzed is not provided. This information is essential for evaluating the comparative analysis and should be clearly stated in the Abstract and again in the main text (e.g., lines 121-123). Including both wild-type and mutant cell counts will help readers assess the balance and robustness of the dataset.

      (2) Did the authors monitor mouse weight or other health parameters to assess potential systemic effects of treatment? It is known that the taste of compounds in drinking water can alter fluid or food intake, which may influence general health. Also, does Lmx1bV265D/+ have mice exhibit non-ocular phenotypes, and if so, does nicotinamide confer protection in those tissues as well? Additionally, starting the dose of the nicotinamide at postnatal day 2, how long the mice were treated with water containing nicotinamide, and after how many days or weeks IOP was reduced, and how long the decrease in the IOP was sustained.<br /> (3) While the IOP reduction observed in NAM-treated Lmx1bV265D/+ mice appears statistically significant, it is unclear whether this reflects meaningful biological protection. Several untreated mice exhibit very high IOP values, which may skew the analysis. The authors should report the mean values for IOP in both untreated and NAM-treated groups to clarify the magnitude and variability of the response.<br /> (4) Additionally, since NAM has been shown to protect RGCs in other glaucoma models directly, the authors should assess whether RGCs are preserved in NAM-treated Lmx1b V265D/+ mice. Demonstrating RGC protection would support a synergistic effect of NAM through both IOP reduction and direct neuroprotection, strengthening the translational relevance of the treatment.<br /> (5) Can the authors add any other functional validation studies to explore to understand the pathways enriched in all the subtypes of TM1, TM2, and TM3 cells, in addition to the ICH/IF/RNAscope validation?<br /> (6) The authors should include a representative image of the limbal dissection. While Figure S1 provides a schematic, mouse eyes are very small, and dissecting unfixed limbal tissue is technically challenging. It is also difficult to reconcile the claim that the majority of cells in the limbal region are TM and endothelium. As shown in Figure S6, DAPI staining suggests a much higher abundance of scleral cells compared to TM cells within the limbal strip. Additional clarification or visual evidence would help validate the dissection strategy and cellular composition of the captured region.

    1. eLife Assessment

      This is a valuable methodological contribution towards accurate characterization of viral genetic diversity using long-read sequencing and unique molecular identifiers (UMIs). However, the methods are currently incomplete and the sensitivity is not rigorously demonstrated. Addressing these gaps would strengthen the manuscript and make it a key addition to the field.

    2. Reviewer #1 (Public review):

      Tamao et al. aimed to quantify the diversity and mutation rate of the influenza (PR8 strain) in order to establish a high-resolution method for studying intra-host viral evolution. To achieve this, the authors combined RNA sequencing with single-molecule unique molecular identifiers (UMIs) to minimize errors introduced during technical processing. They proposed an in vitro infection model with a single viral particle to represent biological genetic diversity, alongside a control model using in vitro transcribed RNA for two viral genes, PB2 and HA.

      Through this approach, the authors demonstrated that UMIs reduced technical errors by approximately tenfold. By analyzing four viral populations and comparing them to in vitro transcribed RNA controls, they estimated that ~98.1% of observed mutations originated from viral replication rather than technical artifacts. Their results further showed that most mutations were synonymous and introduced randomly. However, the distribution of mutations suggested selective pressures that favored certain variants. Additionally, comparison with a closely related influenza strain (A/Alaska/1935) revealed two positively selected mutations, though these were absent in the strain responsible for the most recent pandemic (CA01).

      Overall, the study is well-designed, and the interpretations are strongly supported by the data. However, the following clarifications are recommended:

      (1) The methods section is overly brief. Even if techniques are cited, more experimental details should be included. For example, since the study focuses heavily on methodology, details such as the number of PCR cycles in RT-PCR or the rationale for choosing HA and PB2 as representative in vitro transcripts should be provided.

      (2) Information on library preparation and sequencing metrics should be included. For example, the total number of reads, any filtering steps, and quality score distributions/cutoff for the analyzed reads.

      (3) In the Results section (line 115, "Quantification of error rate caused by RT"), the mutation rate attributed to viral replication is calculated. However, in line 138, it is unclear whether the reported value reflects PB2, HA, or both, and whether the comparison is based on the error rate of the same viral RNA or the mean of multiple values (as shown in Figure 3A). Please clarify whether this number applies universally to all influenza RNAs or provide the observed range.

      (4) Since the T7 polymerase introduced errors are only applied to the in vitro transcription control, how were these accounted for when comparing mutation rates between transcribed RNA and cell-culture-derived virus?

      (5) Figure 2 shows that a UMI group size of 4 has an error rate of zero, but this group size is not mentioned in the text. Please clarify.

    3. Reviewer #2 (Public review):

      Summary:

      This manuscript presents a technically oriented application of UMI-based long-read sequencing to study intra-host diversity in influenza virus populations. The authors aim to minimize sequencing artifacts and improve the detection of rare variants, proposing that this approach may inform predictive models of viral evolution. While the methodology appears robust and successfully reduces sequencing error rates, key experimental and analytical details are missing, and the biological insight is modest. The study includes only four samples, with no independent biological replicates or controls, which limits the generalizability of the findings. Claims related to rare variant detection and evolutionary selection are not fully supported by the data presented.

      Strengths:

      The study addresses an important technical challenge in viral genomics by implementing a UMI-based long-read sequencing approach to reduce amplification and sequencing errors. The methodological focus is well presented, and the work contributes to improving the resolution of low-frequency variant detection in complex viral populations.

      Weaknesses:

      The application of UMI-based error correction to viral population sequencing has been established in previous studies (e.g., in HIV), and this manuscript does not introduce a substantial methodological or conceptual advance beyond its use in the context of influenza.

      The study lacks independent biological replicates or additional viral systems that would strengthen the generalizability of the conclusions. Potential sources of technical error are not explored or explicitly controlled. Key methodological details are missing, including the number of PCR cycles, the input number of molecules, and UMI family size distributions. These are essential to support the claimed sensitivity of the method.

      The assertion that variants at {greater than or equal to}0.1% frequency can be reliably detected is based on total read count rather than the number of unique input molecules. Without information on UMI diversity and family sizes, the detection limit cannot be reliably assessed.

      Although genetic variation is described, the functional relevance of observed mutations in HA and NA is not addressed or discussed in the context of known antigenic or evolutionary features of influenza. The manuscript is largely focused on technical performance, with limited exploration of the biological implications or mechanistic insights into influenza virus evolution.

      The experimental scale is small, with only four viral populations derived from single particles analyzed. This limited sample size restricts the ability to draw broader conclusions about quasispecies dynamics or evolutionary pressures.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The authors sought to test whether anterior insular cortex neurons increase or decrease firing during fear behavior and freezing, bi-directionally control fear via separate, anatomically defined outputs. Using a fairly simple behavior where mice were exposed to tone-shock pairings, they found roughly equal populations that do indeed either increase or decrease firing during freezing. Next, they sought to test whether these distinct populations may also have distinct outputs. Using retrograde tracers they found that the anterior insular cortex contains non-overlapping neurons which project to the mediodorsal thalamus or amygdala. Mediodorsal thalamus-projecting neurons tended to cluster in deep cortical layers while amygdala-projecting neurons were primarily in more superficial layers. Stimulation of insula-thalamus projection decreased freezing behavior, and stimulation of insula-amygdala projections increased fear behavior. Given that the neurons that increased firing were located in deep layers, that thalamus projections occurred in deep layers, and that stimulation of insula-thalamus neurons decreased freezing, the authors concluded that the increased firing neurons may be thalamus projections. Similarly, given that decreased-firing neurons tended to occur in more superficial layers, that insula-amygdala projections were primarily superficial, and that insula-amygdala stimulation increased freezing behavior, authors concluded that the decreased firing cells may be amygdala projections. The study has several strengths though also some caveats.

      Strengths:

      The potential link between physiological activity, anatomy, and behavior is well laid out and is an interesting question. The activity contrast between the units that increase/decrease firing during freezing is clear.

      It is nice to see the recording of extracellular spiking activity, which provides a clear measure of neural output, whereas similar studies often use bulk calcium imaging, a signal that rarely matches real neural activity even when anatomy suggests it might (see London et al 2018 J Neuro - there are increased/decreased spiking striatal populations, but both D1 and D2 striatal neurons increase bulk calcium).

      Weaknesses:

      The link between spiking, anatomy, and behavior requires assumptions/inferences: the anatomically/genetically defined neurons which had distinct outputs and opposite behavioral effects can only be assumed the increased/decreased spiking neurons, based on the rough area of the cortical layer they were recorded.

      Yes, we are aware that we could not provide a direct link between spiking, anatomy and behavior. We have specifically noted this in the discussion section and added a possible experiment that could be carried out to provide a more direct link in a future study.

      [Lines 371-375] We would like to provide a more direct evidence between the neuronal response types and projection patterns in future studies by electrophysiologically identifying freezing-excited and freezing-inhibited aIC neurons and testing whether those neurons activates to optogenetic activation of amygdala or medial thalamus projecting aIC neurons.

      The behavior would require more control to fully support claims about the associative nature of the fear response (see Trott et al 2022 eLife) - freezing, in this case, could just as well be nonassociative. In a similar vein, fixed intertrial intervals, though common practice in the fear literature, pose a problem for neurophysiological studies. The first is that animals learn the timing of events, and the second is that neural activity is dynamic and changes over time. Thus it is very difficult to determine whether changes in neural activity are due to learning about the tone-shock contingency, timing of the task, simply occur because of time and independently of external events, or some combination of the above.

      Trott et al. (2022) stated that "...freezing was the purest reflection of associative learning." The nonassociative processes mentioned in the study were related to running and darting behaviors, which the authors argue are suppressed by associative learning. Moreover, considerable evidence from immediate postshock freezing and immediate postshock context shift studies all indicate that the freezing response is an associative (and not nonassociative) response (Fanselow, 1980 and 1986; and Landeira-Fernandez et al., 2006). Thus, our animals' freezing response to the tone CS presentation in a novel context, following three tone CS-footshock US pairings, most likely reflects associative learning. 

      Concerning the issue of fixed inter-trial intervals (ITIs), which are standard in fear conditioning studies, particularly those with few CS-US paired trials, we acknowledge the challenge in interpreting the neural correlates of behavior. However, the ITIs in our extinction study was variable and we still found neural activities that had significant correlation with freezing. The results of our extinction study, carried out with variable it is, suggest that the aIC neural activity changes measured in this study is likely due to freezing behavior associated with fear learning, not due to learning the contingencies of fixed ITIs.

      Reviewer #2 (Public Review):

      In this study, the authors aim to understand how neurons in the anterior insular cortex (insula) modulate fear behaviors. They report that the activity of a subpopulation of insula neurons is positively correlated with freezing behaviors, while the activity of another subpopulation of neurons is negatively correlated to the same freezing episodes. They then used optogenetics and showed that activation of anterior insula excitatory neurons during tones predicting a footshock increases the amount of freezing outside the tone presentation, while optogenetic inhibition had no effect. Finally, they found that two neuronal projections of the anterior insula, one to the amygdala and another to the medial thalamus, are increasing and decreasing freezing behaviors respectively. While the study contains interesting and timely findings for our understanding of the mechanisms underlying fear, some points remain to be addressed.

      We are thankful for the detailed and constructive comments by the reviewer and addressed the points. Specifically, we included possible limitations of using only male mice in the study, included two more studies about the insula as references, specified the L-ratio and isolated distance used in our study, added the ratio of putative-excitatory and putative-inhibitory neurons obtained from our study, changed the terms used to describe neuronal activity changes (freezing-excited and freezing-inhibited cells), added new analysis (Figure 2H), rearranged Figure 2 for clarity, added new histology images, and added atlas maps with viral expressions (three figure supplements).

      Reviewer #1 (Recommendations For The Authors):

      - I would suggest keeping the same y-axis for all figures that display the same data type - Figure 5D, for example.

      Thank you for the detailed suggestion. We corrected the y-axis that display the same data type to be the same for all figures.

      - In the methods, it says 30s bins were used for neural analysis (line 435). I cannot imagine doing this, and looking at the other figures, it does not look like this is the case so could you please clarify what bins, averages, etc were used for neural and behavioral analysis?

      Bin size for neural analysis varied; 30s, 5s, 1s bins were used depending on the analysis. We corrected this and specified what time bin was used for which figure in the methods.

      Bin size for neural and freezing behavior was 30s and we also added this to the methods.

      - I would not make any claims about the fear response here being associative/conditional. This would require a control group that received an equal number of tone and shock exposures, whether explicitly unpaired or random.

      The unpaired fear conditioning paradigm, unpaired tone and shock, suggested by the reviewer is well characterized not to induce fear behavior by CS (Moita et al., 2003 and Kochli et al., 2015). In addition, considerable evidence from immediate post-shock freezing and immediate post-shock context shift studies all indicate that the freezing response is an associative (and not nonassociative) response (Fanselow, 1980 and 1986; and Landeira-Fernandez et al., 2006). Thus, our animals' freezing response to the tone CS presentation in a novel context, following three tone CS-footshock US pairings, most likely reflects associative learning.

      - I appreciate the discussion about requiring some inference to conclude that anatomically defined neurons are the physiologically defined ones. This is a caveat that is fully disclosed, however, I might suggest adding to the discussion that future experiments could address this by tagging insula-thalamus or insula-amygdala neurons with antidromic (opto or even plain old electric!) stimulation. These experiments are tricky to perform, of course, but this would be required to fully close all the links between behavior, physiology, and anatomy.

      As suggested, we have included that, in a future study, we would like to elucidate a more direct link between physiology, anatomy and behaviors by optogenetically tagging the insula-thalamus/insula-amygdala neurons and identifying whether it may be a positive or a negative cell (now named the freezing-excited and freezing-inhibited cells, respectively) in the discussion.

      [Lines 371-375] We would like to provide a more direct evidence between the neuronal response types and projection patterns in future studies by electrophysiologically identifying freezing-excited and freezing-inhibited aIC neurons and testing whether those neurons activates to optogenetic activation of amygdala or medial thalamus projecting aIC neurons.

      Reviewer #2 (Recommendations For The Authors):

      Major comments:

      (1) As all experiments have been performed only in male mice, the authors need to clearly state this limit in the introduction, abstract, and title of the manuscript.

      With increasing number of readers becoming interested in the biological sex used in preclinical studies, we also feel that it should be mentioned in the beginning of the manuscript. As suggested, we explicitly wrote that we only used male mice in the title, abstract, and introduction. In addition, we discussed possible limitations of only using male mice in the discussion section as follows:

      [Lines 381-386] Another factor to consider is that we have only used male mice in this study. Although many studies report that there is no biological sex difference in cued fear conditioning (42), the main experimental paradigm used in this study, it does not mean that the underlying brain circuit mechanism would also be similar. The bidirectional fear modulation by aIC→medial thalamus or the aIC→amygdala projections may be different in female mice, as some studies report reduced cued fear extinction in females (42).

      (2) The authors are missing important publications reporting findings on the insular cortex in fear and anxiety. For example, the authors should cite studies showing that anterior insula VIP+ interneurons inhibition reduces fear memory retrieval (Ramos-Prats et al., 2022) and that posterior insula neurons are a state-dependent regulator of fear (Klein et al., 2021). Also, regarding the anterior insula to basolateral amygdala projection (aIC-BLA), the author should include recent work showing that this population encodes both negative valence and anxiogenic spaces (Nicolas et al., 2023). 

      We appreciate the detailed suggestions and we added appropriate publications in the discussion section. The anterior insula VIP+ interneuron study (Ramos-Prats et al., 2022) is interesting, but based on the evidence provided in the paper, we felt that the role of aIC VIP+ interneuron in fear conditioning is low. VIP+ interneurons in the aIC seem to be important in coding sensory stimuli, however, it’s relevance to conditioned stimuli seems to be low; overall VIP intracellular calcium activity to CS was low and did not differ between acquisition and retrieval. Also, inhibition of VIP did not influence fear acquisition. VIP inhibition during fear acquisition did reduce fear retrieval (CS only, no light stimulation), but this does not necessarily mean that VIP activity will be involved in fear memory storage or retrieval, especially because intracellular calcium activity of VIP+ neurons was low during fear conditioning and retrieval.

      Studies by Klein et al. (2021) and Nicolas et al. (2023) are integrated in the discussion section as follows.

      [Lines 297-301] Group activity of neurons in the pIC measured with fiberphotometry, interestingly, exhibited fear state dependent activity changes—decreased activity with high fear behavior and increased activity with lower fear behavior (29)—suggesting that group activity of the pIC may be involves in maintain appropriate level of fear behavior.

      [Lines 316-319] Another distinction between the aIC and pIC may be related with anxiety, as a recent study showed that group activity of aIC neurons, but not that of the pIC, increased when mice explored anxiogenic space (open arms in an elevated plus maze, center of an open field box) (32).

      (3) The authors should specify how many neurons they excluded after controlling the L-ratio and isolation distance. It is also important to specify the percentage of putative excitatory and inhibitory interneurons recorded among the 11 mice based on their classification (the number of putative inhibitory interneurons in Figure 1D seems too low to be accurate).

      We use manual cluster cutting and only cut clusters that are visually well isolated. So we hardly have any neurons that are excluded after controlling for L-ratio and isolation distance. The criterion we used was L-ratio<0.3 and isolation distance>15, and we specified this in the methods as follows.

      [Lines 454-458] We only used well-isolated units (L-ratio<0.3, isolation distance>15) that were confirmed to be recorded in the aIC (conditioned group: n = 116 neurons, 11 mice; control group: n = 14 neurons, 3 mice) for the analysis (46). The mean of units used in our analysis are as follows: L-ratio = 0.09 ± 0.012, isolation distance = 44.97 ± 5.26 (expressed as mean ± standard deviation).

      As suggested, we also specified the percentage of putative excitatory and inhibitory interneurons recorded from our study in the results and methods section. The relative percentage of putative excitatory and inhibitory interneurons were similar for both the conditioned and the control groups (conditioned putative-excitatory: 93.1%, putative-inhibitory: 6.9%; control putative-excitatory: 92.9%, putative-inhibitory: 7.1%). Although the number of putative-interneurons isolated from our recordings is low that is what we obtained. Putative inhibitory neurons, probably because of their relatively smaller size, has a tendency to be underrepresented than the putative excitatory cells.

      [Lines 83-87] Of the recorded neurons, we analyzed the activity of 108 putative pyramidal neurons (93% of total isolated neurons) from 11 mice, which were distinguished from putative interneurons (n = 8 cells, 7% of total isolated neurons) based on the characteristics of their recorded action potentials (Figure 1D; see methods for details).

      [Lines 464-467] The percentage of putative excitatory neurons and putative inhibitory interneurons obtained from both groups were similar (conditioned putative-excitatory: 93.1%, putative-inhibitory: 6.9%; control putative-excitatory: 92.9%, putative-inhibitory: 7.1%).

      (4) While the use of correlation of single-unit firing frequency with freezing is interesting, classically, studies analyze the firing in comparison to the auditory cues. If the authors want to keep the correlation analysis with freezing, rather than correlations to the cues, they should rename the cells as "freezing excited" and "freezing inhibited" cells instead of positive and negative cells.

      As suggested, we used the terms “freezing-excited” and “freezing-inhibited” cells instead of positive and negative cells.

      (5) To improve clarity, Figure 2 should be reorganized to start with the representative examples before including the average of population data. Thus Panel D should be the first one. The authors should also consider including the trace of the firing rate of these representative units over time, on top of the freezing trace, as well as Pearson's r and p values for both of them. Then, the next panels should be ordered as follows: F, G, H, C, A, B, I, and finally E.

      We have rearranged Figure 2 based on the suggestions.

      (6) It is unclear why the freezing response in Figure 2 is different in current panels F, G, and H. Please clarify this point.

      It was because the freezing behaviors of slightly different population of animals were averaged. Some animals did not have positive/negative (or both) cells and only the behavior of animals with the specified cell-type were used for calculating the mean freezing response. With rearrangement of Figure 2, now we do not have plots with juxtaposed mean neuronal response-types and behavior.

      (7) Even though the peak of tone-induced firing rate change between negative and positive cells is 10s later for positive cells, the conclusion that this 'difference suggests differential circuits may regulate the activities of different neuron types in response to fear' is overstating the observation. This statement should be rephrased. Indeed, it could be the same circuits that are regulated by different inputs (glutamatergic, GABA, or neuromodulatory inputs).

      We agree and delete the statement from the manuscript.

      (8) The authors mention they did not find tone onset nor tone offset-induced responses of anterior insula neurons. It would be helpful to represent this finding in a Figure, especially, which were the criteria for a cell to be tone onset or tone offset responding.

      We added how tone-onset and tone-offset were analyzed in the methods section and added a plot of the analysis in Figure 2H.

      (9) Based on the spread of the viral expression shown in Figure 3B, it appears that the authors are activating/inhibiting insula neurons in the GI layer, whereas single-unit recordings report the electrodes were located in DI, AID, and AIV layers. The authors should provide histology maps of the viral spread for ChR2, NpHR3, and eYFP expression.

      Thank you for the excellent suggestion. Now the histological sample in Figure 3B is a sample with expression in the GI/DI/AID layers and it also has an image taken at higher resolution (x40) to show that viral vectors are expressed inside neurons. We also added histological maps with overlay of viral expression patterns of the ChR2, eYFP, and NpHR3 groups in Figure 3—figure supplement 1.

      (10) In Figure 5B, the distribution of terminals expressing ChR2 appears much denser in CM than in MD. This should be quantified across mice and if consistent with the representative image, the authors should refer to aIC-CM rather than aIC-MD terminals.

      Overall, we referred to the connection as aIC-medial thalamus, which collectively includes both the CM and the MD. Microscopes we have cannot determine whether terminals end at the CM or MD, but the aIC projections seems to pass through the CM to reach the MD. The Allen Brain Institute’s Mouse brain connectivity map (https://connectivity.brain-map.org/projection/experiment/272737914) of a B6 mouse, the mouse strain we used in our study, with tracers injected in similar location as our study also supports our speculation and shows that aIC neuronal projections terminate more in the MD than in the CM. In addition, the power of light delivered for optogenetic manipulation is greatly reduced over distance, and therefore, the MD projecting terminals which is closer to the optic fiber will be more likely to be activated than the CM projecting terminals. However, since we could not determine whether the aIC terminate at the CM or the MD, we collectively referred to the connection as the aIC-medial thalamus throughout the manuscript.

      Author response image 1.

      (11) Histological verifications for each in vivo electrophysiology, optogenetic, and tracing experiments need to include a representative image of the implantation/injection site, as well as a 40x zoom-in image focusing on the cell bodies or terminals right below the optic fiber (for optogenetic experiments). Moreover, an atlas map including all injection locations with the spread of the virus and fiber placement should be added in the Supplement Figures for each experiment (see Figure S1 Klein et al., 2021). Similarly, the authors need to add a representation of the spread of the retrograde tracers for each mouse used for this tracing experiment.

      As suggested, we added a histology sample showing electrode recording location for in-vivo electrophysiology in Figure 1 and added atlas maps for the optogenetic and tracing experiments in supplementary figures. We also provide a 40x zoom-in image of the expression pattern for the optogenetic experiments (Figure 3B).

      (12) To target anterior insula neurons, authors mention coordinates that do not reach the insula on the Paxinos atlas (AP: +1.2 mm, ML: -3.4 mm, DV: -1.8 mm). If the DV was taken from the brain surface, this has to be specified, and if the other coordinates are from Bregma, this also needs to be specified. Finally, the authors cite a review from Maren & Fanselow (1996), for the anterior insula coordinates, but it remains unclear why.

      AP and ML coordinates are measurement made in reference to the bregma. DV was calculated from the brain surface. We specified these in the Methods. We did not cite a review from Maren & Fenselow for the aIC coordinates.

      Minor comments:

      (1) A schematic of the microdrive and tetrodes, including the distance of each tetrode would also be helpful.

      We used a handcrafted Microdrives with four tetrodes. Since they were handcrafted, the relative orientation of the tetrodes varies and tetrode recording locations has to be verified histologically. We, however, made sure that the distance between tetrodes to be more than 200 μm apart so that distinct single-units will be obtained from different tetrodes. We added this to the methods as follows.

      [Lines 430-431] The distance between the tetrodes were greater than 200 μm to ensure that distinct single-units will be obtained from different tetrodes.

      (2) Figure 2E: representation of the baseline firing (3-min period before the tone presentation) is missing.

      Figure 2E is the 3 min period before tone presentation

      (3) Figure 2: Averages Pearson's correlation r and p values should be stated on panels F, G, and H (positive cell r = 0.81, P < 0.05; negative cell r = -0.68, P < 0.05).

      They were all originally stated in the figures. But with reorganization of Figure 2, we now have a plot of the Pearson’s Correlation with r and p values in Figure 2F.

      (4) Figure 2I: Representation of the absolute value of the normalized firing is highly confusing. Indeed, as the 'negative cells' are inhibited to freezing, firing should be represented as normalized, and negative for the inhibited cells.

      To avoid confusion, we did not take an absolute value of the “negative cells”, which are now called the “freezing-inhibited cells”.

      (5) Figure 4E (retrograde tracing): representation of individual values is missing.

      Figure 4E now has individual values.

      References:

      London, T. D., Licholai, J. A., Szczot, I., Ali, M. A., LeBlanc, K. H., Fobbs, W. C., & Kravitz, A. V. (2018). Coordinated ramping of dorsal striatal pathways preceding food approach and consumption. Journal of Neuroscience, 38(14), 3547-3558.

      Trott, J. M., Hoffman, A. N., Zhuravka, I., & Fanselow, M. S. (2022). Conditional and unconditional components of aversively motivated freezing, flight and darting in mice. Elife, 11, e75663.

      Fanselow, M. S. (1980). Conditional and unconditional components of post-shock freezing. The Pavlovian journal of biological science: Official Journal of the Pavlovian, 15(4), 177-182.

      Fanselow, M. S. (1986). Associative vs topographical accounts of the immediate shock-freezing deficit in rats: implications for the response selection rules governing species-specific defensive reactions. Learning and Motivation, 17(1), 16-39.

      Landeira-Fernandez, J., DeCola, J. P., Kim, J. J., & Fanselow, M. S. (2006). Immediate shock deficit in fear conditioning: effects of shock manipulations. Behavioral neuroscience, 120(4), 873.

      Moita, M. A., Rosis, S., Zhou, Y., LeDoux, J. E., & Blair, H. T. (2003). Hippocampal place cells acquire location-specific responses to the conditioned stimulus during auditory fear conditioning. Neuron, 37(3), 485-497.

      Kochli, D. E., Thompson, E. C., Fricke, E. A., Postle, A. F., & Quinn, J. J. (2015). The amygdala is critical for trace, delay, and contextual fear conditioning. Learning & memory, 22(2), 92-100.

      Ramos-Prats, A., Paradiso, E., Castaldi, F., Sadeghi, M., Mir, M. Y., Hörtnagl, H., ... & Ferraguti, F. (2022). VIP-expressing interneurons in the anterior insular cortex contribute to sensory processing to regulate adaptive behavior. Cell Reports, 39(9).

      Klein, A. S., Dolensek, N., Weiand, C., & Gogolla, N. (2021). Fear balance is maintained by bodily feedback to the insular cortex in mice. Science, 374(6570), 1010-1015.

      Nicolas, C., Ju, A., Wu, Y., Eldirdiri, H., Delcasso, S., Couderc, Y., ... & Beyeler, A. (2023). Linking emotional valence and anxiety in a mouse insula-amygdala circuit. Nature Communications, 14(1), 5073.

      Maren, S., & Fanselow, M. S. (1996). The amygdala and fear conditioning : Has the nut been cracked? Neuron, 16(2), 237‑240. https://doi.org/10.1016/s0896-6273(00)80041-0

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      (1) The primary weakness of the paper concerns its conclusion of having generated "homogenous mature microglia", partly based on the RNAseq analysis. However, the comparison of gene profiles was carried out only between "hiPSC-derived mature microglia" and the proliferating myeloid progenitors. While the transcriptome profiles revealed a trend of enrichment of microglia-like gene expression in "hiPSC-derived mature microglia" compared to proliferating myeloid progenitors, this is not sufficient to claim they are "mature microglia". It is important that one carries out a comparative analysis of the RNAseq data with those of primary human microglia, which may be done by leveraging the public database. To convincingly claim these cells are mature microglia, questions need to be addressed including how similar the molecular signatures of these cells are compared with the fully differentiated primary microglia cell or if they remain progenitor-like or take on mosaic properties, and how they distinguish from macrophages.

      We greatly appreciate the insightful comments and suggestions from the reviewers, which were instrumental in enhancing our data analysis and organization. In response to the feedback, we have updated the terminology from “mature microglia” to simply “microglia” while clarifying in our text that these are fully differentiated microglia under single-type cell culture conditions.

      Guided by the reviewer's advice, we incorporated RNA-seq data from human brain microglia studies conducted by Dr. Poon and Dr. Blurton-Jones' Lab (Abud et al., Neuron, 2017) and Dr. Huitinga's Lab (van der Poel et al., Nat Commun, 2019). We then conducted a comparative analysis of the gene expression profiles between our fully differentiated hiPSC-derived microglia and those from fetal/adult brain microglia (see Fig.2. Suppl. B, C and D; Suppl. table 1 and table 2). The correlation analysis revealed that our hiPSC-derived microglia closely resemble fetal and adult brain microglia, distinguishing them significantly from monocytes and inflammatory monocytes.

      (2) While the authors attempted to demonstrate the functional property of "hiPSC-derived mature microglia" in culture, they used LPS challenge, which is an inappropriate assay. This is because human microglia respond poorly to LPS alone but need to be activated by a combination of LPS with other factors, such as IFNγ. Their data that "hiPSC-derived mature microglia" showed robust responses to LPS indeed implicates that these cells do not behave like mature human microglia.

      We appreciate the feedback received. In response, we cultured hiPSC-derived microglia cells and subjected them to treatments with IFNγ, LPS, and a combination of both IFNγ+LPS, as illustrated in Figure 3 suppl. Our findings revealed that the IFNγ+LPS combination notably enhanced the expression of IL1a, IL1b, TNFa, CCL8, and CXCL10, whereas IL6 and CCL2 levels remained unchanged. Treatment with IFNγ alone significantly elevated the expression of TNFa, CCL8, CXCL10, and CCL2. These outcomes align with the findings reported by Rustenhoven et al. (Sci Rep, 2016), suggesting that the functionality of our hiPSC-derived microglia cells closely mirrors that of primary human adult microglia cells.

      (3) The resolution of Figs. 4 - 6 is so low that even some of the text and labels are hardly readable. Based on the morphology shown in Fig. 4 and the statement in line 147, these hiPSC-derived "cells altered their morphology to a rounded shape within an hour of incubation and rapidly internalized the fluorescent-labeled particles". This is a peculiar response. Usually, microglia do not respond to fluorescent-labeled zymosan by turning into a rounded shaped within an hour when they internalize them. Such a behavior usually implicates weak phagocytotic capacity.

      Thank you for your insightful comments. During submission, the main text's PDF version was converted online, resulting in low-quality output. We have since updated this with a high-resolution version. The observed alterations in cell morphology following zymosan phagocytosis may be attributed to the high zymosan concentration used (2mg/ml). We conducted an assessment to understand the impact of zymosan concentration on the morphology of hiPSC-derived microglial cells, as shown in Figure 4 suppl B. Our findings indicate that microglia cells adopt an amoeboid, rounded shape at zymosan concentrations exceeding 20ug/ml. To clarify this point, we have amended the text to read: "The cells altered their morphology and rapidly internalized the fluorescent-labeled particles."

      (4) Data presented in Fig. 5 are not very convincing to support that transplanted cells were immunopositive for "human CD11b (Fig.5C), as well as microglia signature markers P2ry12 and TMEM119 (Fig.5D)" (line 167). The resolution and magnification of Fig. 5D is too low to tell the colocalization of tdT and human microglial marker immunolabeling. In the flat-mount images (C, I), hCD11b immunolabeling is not visible in the GCL or barely visible in the IPL. This should be discussed.

      We are grateful for the reviewer's comments. As previously mentioned, the low quality of the images was due to the online conversion of the PDF version. We have now submitted both high-quality PDF and Word versions for the reviewer's assessment. In these high-quality versions, the colocalization of tdT with human P2ry12 and TMEM119 is distinctly visible. Additionally, we have updated the hTMEM119 staining images in Figure 5D. The results from hCD11b staining align with those observed in mouse CD11b staining, notably showing more effective staining in the outer plexiform layer (OPL) microglia cells. The reason for this—whether it pertains to a staining issue, a variance in CD11b expression among microglia cells in the OPL and ganglion layer (GL), or differences in the samples due to varying conditions—is not yet clear and warrants further investigation.

      (5) Microglia respond to injury by becoming active and lose their expression of the resting state microglial marker, such as P2ry12, which is used in Fig. 6 for detection of migrated microglia. To confirm that these cells indeed respond to injury like native microglia, one should check for activated microglial markers and induction of pro-inflammatory cytokines in the sodium iodate-injury model.

      The reviewer's insights are spot-on. We utilized preserved retinas to extract mRNA, which was then reverse-transcribed to cDNA for conducting qRT-PCR using human-specific primers, as detailed in the updated Table 5. The findings revealed that following retinal pigment epithelium (RPE) injury for 3 days, the transplanted hiPSC-derived microglial cells exhibited an increase in the production of inflammatory cytokines and upregulated genes related to phagocytosis, migration, and adhesion. Conversely, there was a decrease in the expression of microglia-specific signature genes and neurotrophic factors, as demonstrated in Figure 7 suppl.

      Reviewer #1 (Recommendations For The Authors):

      Line 52: "Microglia cell repopulation research suggests that: 1) if no injury or infection occurs, retinal microglia cells can sustain their homeostasis indefinitely" - this statement is too strong or delivers a confusing message; it needs clarification or to be backed up by evidence. Recent single cell RNA sequencing analyses suggest that even under a normal condition, residential microglia do not present as a single homeostatic cell cluster, rather a subpopulation of activated inflammatory microglia are constantly detectable in the normal retina. This is likely because normal retinal neurons can be stressed due to various reasons, such as the temporal accumulation of misfolded proteins, exposed to strong light, or ageing, etc.

      We appreciate the comments. We changed the sentence to read, "Microglia cell repopulation research suggests that: 1) retinal resident microglia cells can sustain their population with the local dividing and migration if any perturbations do not exceed the threshold of the recovery speed by local neighbor microglia cells."

      Line 83: "we applied an appropriate protocol for culturing human iPSC-derived microglia cells" - it would be more appropriate if the word "appropriate" can be replaced by either "unique" or a phrase like "we adopted a (previously published) protocol...".

      Thanks! We changed it to “We modified a previously published protocol to culture human iPSC-derived microglia cells.".

      Fig. 1F,G: A method of flow cytometry will provide more comprehensive cell quantification for percentages of positively labeled cells than cell counts under high magnification confocal images.

      Thanks for the comments! We agreed with the reviewer. Given the experimental resources available, the quantifications of confocal images did provide a reasonable assessment. We will perform flow cytometry analysis in future experiments.

      Reviewer #2 (Public review):

      Weaknesses:

      Gene expression analysis of mature microglia cells should be better interpreted and it would be beneficial to compare the iPSC-derived microglia gene set to a human microglial cell line (for example, HMC3) instead of myeloid progenitor cells.<br /> The way that the manuscript has been written, unfortunately, is not optimal. I recommend that the entire manuscript be edited and proofread in English. The text contains spelling and grammar mistakes, and the manuscript is inconsistent in several parts. The manuscript should also be revised for a scientific paper format.

      We appreciate the reviewer's comments and have taken them into consideration along with similar inquiries from Reviewer 1. Following the suggestions, we conducted a comparison of gene expression profiles between our hiPSC-derived microglia and those from fetal/adult brain microglia, as depicted in the updated Fig.2. Suppl. B, C and D; as well as in the Suppl. table 1 and table 2. The correlation analysis demonstrated that the hiPSC-derived microglia cells closely resemble fetal and adult brain microglia, significantly differing from monocytes and inflammatory monocytes. Additionally, we have revised the manuscript to adhere more closely to the conventional scientific format.

      Reviewer #2 (Recommendations For The Authors):

      Specific suggestions for improvement:

      - Regarding the characterization of human iPSC-derived microglia, P2RY12 is a general hematopoietic cell marker. One cannot judge the maturity of microglia only by P2RY12 expression (for example, line 261). The expression of more specific markers such as TMEM119 and PROS1 should be studied and discussed.

      We are thankful for the reviewer's valuable feedback. In response:

      We have removed the term "mature" and clarified that the hiPSC-derived microglia we studied are fully differentiated within single-type cell culture conditions.

      We performed a comparative analysis of the gene expression profiles between our hiPSC-derived microglia and microglia from human brains, as illustrated in the updated Fig.2. Suppl. B, C and D. The results affirm that hiPSC-derived microglia closely resemble human fetal and adult microglia.

      We noted that the expression of TMEM119 in hiPSC-derived microglia under in vitro single-type cell culture conditions is notably low, as shown in the below A. This suggests that the stimulatory factors in our single-type cell culture might not sufficiently induce TMEM119 expression in microglia. The necessity for a retinal environment or interaction with neuronal and/or other glial cells for TMEM119 expression mirrors the behavior of infiltrating peripheral monocytes in pathological conditions, which initially lack TMEM119 but later differentiate into microglial-like macrophages that express TMEM119, as reported by Ma et al. in Sci Rep (2017).

      Additionally, our findings suggest that PROS1 is not uniquely characteristic of microglia but is expressed across a variety of cell types. Within our specific culture conditions, we noted a higher expression of PROS1 in microglial progenitor cells, as shown in Author response image 1B and C.

      Author response image 1.

      - In Figure 2, Part E, the names of the genes or pathways in the figure are not clear, and are these genes the set that are the most differentially expressed between iPSCs-derived microglia and MPC? The analysis needs more explanation.

      We regret any confusion caused by our previous explanation. To clarify, we compiled a list of microglia-enriched genes from the research conducted by Barres BA Lab (Bennett et al., Proc Natl Acad Sci U S A, 2016) and from our own RNA sequencing data of mouse retinal microglia, identifying a total of 130 genes predominantly expressed in microglia (Suppl. Table 3). We then applied this gene list to analyze our hiPSC-derived microglia RNA sequencing data, resulting in the identification of 71 microglia-specific genes. These 71 genes were subjected to Ingenuity Pathway Analysis (IPA) to visualize the signaling pathways involved. The details of these microglia genes can be found in the updated suppl. table 3.

      - Lines 124 to 128 mention that high expression of Stat3, IL1b, and IL6 and their central role in pathway analysis emphasize the efficiency of the maturation protocol. Regarding the fact that Stat3, IL1b, and IL6 are contributors to proinflammatory pathways, it is not convincing that the high expression of these genes in iPSC-derived microglia demonstrates the efficiency of the maturation protocol, given that microglia are not stimulated.

      Thanks for the comments! We added the sentences about the comparison results between hiPSC-derived microglia and human brain microglia. We have also replaced the “mature” with “functional.” The sentence reads, “Thus, our method of obtaining differentiated microglia is a reliable method to generate a large number of homogenous functional microglia cells.”

      - Statistical analysis is missing for some graphs, for example, figures 1-3 and 5.

      We appreciate the comments. We have added the statistical results in the revised version.

      - The legend for Figure 3 needs to be rewritten. The graphs or applied assays should be explained in the legend, not the interpretation of the data.

      The legend was rewritten.

      - There is no Figure 3 in the supplement figures file.

      We added Figure 3. Suppl.

      - hTMEM119 staining in Figure 5, Part D, is mostly background. Please provide another image.

      The images were unclear after on-line converting due to the low number of pixels. We replaced them with new hTMEM119 staining images in Figure 5D.

      - In line 176, figure 5I has been forgotten to be mentioned.

      Thank you very much! We added 5I.

      - Lines 241 to 244 state that more than 50% of the AMD-associated genes are highly expressed in retinal microglia according to Fig. discussion suppl A & B. It is not clear that the gene set that was used for analysis is from a healthy retinal microglia or AMD-related ones. Please explain precisely.

      Thank you for your feedback. The gene list we referenced originates from a Genome-Wide Association Study (GWAS) that compared patients with Age-related Macular Degeneration (AMD) to healthy cohorts. We did not directly utilize this list in our experiments but referred to it to underscore the importance of microglia cells in the context of AMD.

      Some of the English proofreading and manuscript format comments:

      Line 805: Iba1 is written in lowercase. Is it human IBA1? It is not consistent with the way it is written in the text (in line 117, for example).

      Thank you for pointing out the error. We reformed all Iba1 as “Iba1”. The Iba1 we used here are all from Wako (#019–19741), which labels both mouse and human microglial cells.

      Line 814: microglia-enriched gene expression instead of microglia-enrich gene expression

      Thank you! We changed it.

      Line 345: Starting a sentence with lower case letter.

      Thank you! We changed it.

      Line 342: Myeloid lineage instead of myeloid cell linage.

      Thank you! We changed it.

      Line 815: What does FPKM stand for? The abbreviations should be explained.

      The FPKM is the abbreviation of Fragments Per Kilobase of transcript per Million mapped reads. We added it in the text.

      Line 309: The manuscript has occasionally referred to PLX-5622 without a minus. Please follow a uniform format.

      We changed all “PLX5622” to “PLX-5622”.

      Lines 327-331: should be rewritten.

      The mentioned paragraph was rewritten.

      Lines 335-340: should be rewritten.

      The mentioned sentence was rewritten.

      Line 135: qRT-PCR instead of QPCR," as it is also mentioned in the methods and material. The correction also applies to all the QPCRs in the text.

      We changed “QPCR” with “qRT-PCR”

      Figure 3: Graph B should be right side of graph A

      Images description: It is better to have the images description in the left side of the image, for example, figure 5 part B, GL, IPL and OPL

      Thanks for the suggestion. We changed the image organization as per the reviewer’s advice.

      Lines 258 to 260 in the discussion have also been repeated with the same words in the introduction.

      The mentioned paragraph was rewritten.

      Lines 327-331 should be rewritten.

      The mentioned paragraph was rewritten.

      Lines 335-340 should be rewritten.

      The mentioned paragraph was rewritten.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Qin et al. set out to investigate the role of mechanosensory feedback during swallowing and identify neural circuits that generate ingestion rhythms. They use Drosophila melanogaster swallowing as a model system, focusing their study on the neural mechanisms that control cibarium filling and emptying in vivo. They find that pump frequency is decreased in mutants of three mechanotransduction genes (nompC, piezo, and Tmc), and conclude that mechanosensation mainly contributes to the emptying phase of swallowing. Furthermore, they find that double mutants of nompC and Tmc have more pronounced cibarium pumping defects than either single mutants or Tmc/piezo double mutants. They discover that the expression patterns of nompC and Tmc overlap in two classes of neurons, md-C and md-L neurons. The dendrites of md-C neurons warp the cibarium and project their axons to the subesophageal zone of the brain. Silencing neurons that express both nompC and Tmc leads to severe ingestion defects, with decreased cibarium emptying. Optogenetic activation of the same population of neurons inhibited filling of the cibarium and accelerated cibarium emptying. In the brain, the axons of nompC∩Tmc cell types respond during ingestion of sugar but do not respond when the entire fly head is passively exposed to sucrose. Finally, the authors show that nompC∩Tmc cell types arborize close to the dendrites of motor neurons that are required for swallowing, and that swallowing motor neurons respond to the activation of the entire Tmc-GAL4 pattern.

      Strengths:

      • The authors rigorously quantify ingestion behavior to convincingly demonstrate the importance of mechanosensory genes in the control of swallowing rhythms and cibarium filling and emptying

      • The authors demonstrate that a small population of neurons that express both nompC and Tmc oppositely regulate cibarium emptying and filling when inhibited or activated, respectively

      • They provide evidence that the action of multiple mechanotransduction genes may converge in common cell types

      Thank you for your insightful and detailed assessment of our work. Your constructive feedback will help to improve our manuscript.

      Weaknesses:

      • A major weakness of the paper is that the authors use reagents that are expressed in both md-C and md-L but describe the results as though only md-C is manipulated-Severing the labellum will not prevent optogenetic activation of md-L from triggering neural responses downstream of md-L. Optogenetic activation is strong enough to trigger action potentials in the remaining axons. Therefore, Qin et al. do not present convincing evidence that the defects they see in pumping can be specifically attributed to md-C.

      Thank you for your comments. This is important point that we did not adequately address in the original preprint. We have obtained imaging and behavioral results that strongly suggest md-C, rather than md-L, are essential for swallowing behavior.

      36 hours after the ablation of the labellum, the signals of md-L were hardly observable when GFP expression was driven by the intersection between Tmc-GAL4 & nompC-QF (see F Figure 3—figure supplement 1A). This observation indicates that the axons of md-L likely degenerated after 36 hours, and were unlikely to influence swallowing. Moreover, the projecting pattern of Tmc-GAL4 & nompC-QF>>GFP exhibited no significant changes in the brain post labellum ablation.

      Furthermore, even after labellum ablation for 36 hours, flies exhibited responses to light stimulation (see Figure 3—figure supplement 1B-C, Video 5) when ReaChR was expressed in md-C. We thus reasoned that md-C but not md-L, plays a crucial role in the swallowing process.

      • GRASP is known to be non-specific and prone to false positives when neurons are in close proximity but not synaptically connected. A positive GRASP signal supports but does not confirm direct synaptic connectivity between md-C/md-L axons and MN11/MN12.

      In this study, we employed the nSyb-GRASP, wherein the GRASP is expressed at the presynaptic terminals by fusion with the synaptic marker nSyb. This method demonstrates an enhanced specificity compared to the original GRASP approach.

      Additionally, we utilized +/ UAS-nSyb-spGFP1-10, lexAop-CD4-spGFP11 ; + / MN-LexA fruit flies as a negative control to mitigate potential false signals originating from the tool itself (Author response image 1, scale bar = 50μm). Beside the genotype Tmc-Gal4, Tub(FRT. Gal80) / UAS-nSyb-spGFP1-10, lexAop-CD4-spGFP11 ; nompC-QF, QUAS-FLP / MN-LexA fruit flies discussed in this manuscript, we also incorporated genotype Tmc-Gal4, Tub(FRT. Gal80) / lexAop-nSyb-spGFP1-10, UAS-CD4-spGFP11 ; nompC-QF, QUAS-FLP / MN-LexA fruit flies as a reverse control (Author response image 2). Unexpectedly, similar positive signals were observed, indicating that, positive signals may emerge due to close proximity between neurons even with nSyb-GRASP.

      Author response image 1.

      It should be noted that the existence of synaptic projections from motor neurons (MN) to md-C cannot be definitively confirmed at this juncture. At present, we can only posit the potential for synaptic connections between md-C and motor neurons. A more conclusive conclusion may be attainable with the utilization of comprehensive whole-brain connectome data in future studies.

      Author response image 2.

      • As seen in Figure 2—figure supplement 1, the expression pattern of Tmc-GAL4 is broader than md-C alone. Therefore, the functional connectivity the authors observe between Tmc expressing neurons and MN11 and 12 cannot be traced to md-C alone

      It is true that the expression pattern of Tmc-GAL4 is broader than that of md-C alone. Our experiments, including those flies expressing TNT in Tmc+ neurons, demonstrated difficulties in emptying (Figure 2A, 2D). Notably, we encountered challenges in finding fly stocks bearing UAS>FRT-STOP-P2X2. Consequently, we opted to utilize Tmc-GAL4 to drive UAS-P2X2 instead. We believe that the results further support our hypothesis on the role of md-C in the observed behavioral change in emptying.

      Overall, this work convincingly shows that swallowing and swallowing rhythms are dependent on several mechanosensory genes. Qin et al. also characterize a candidate neuron, md-C, that is likely to provide mechanosensory feedback to pumping motor neurons, but the results they present here are not sufficient to assign this function to md-C alone. This work will have a positive impact on the field by demonstrating the importance of mechanosensory feedback to swallowing rhythms and providing a potential entry point for future investigation of the identity and mechanisms of swallowing central pattern generators.

      Reviewer #2 (Public Review):

      In this manuscript, the authors describe the role of cibarial mechanosensory neurons in fly ingestion. They demonstrate that pumping of the cibarium is subtly disrupted in mutants for piezo, TMC, and nomp-C. Evidence is presented that these three genes are co-expressed in a set of cibarial mechanosensory neurons named md-C. Silencing of md-C neurons results in disrupted cibarial emptying, while activation promotes faster pumping and/or difficulty filling. GRASP and chemogenetic activation of the md-C neurons is used to argue that they may be directly connected to motor neurons that control cibarial emptying.

      The manuscript makes several convincing and useful contributions. First, identifying the md-C neurons and demonstrating their essential role for cibarium emptying provides reagents for further studying this circuit and also demonstrates the important of mechanosensation in driving pumping rhythms in the pharynx. Second, the suggestion that these mechanosensory neurons are directly connected to motor neurons controlling pumping stands in contrast to other sensory circuits identified in fly feeding and is an interesting idea that can be more rigorously tested in the future.

      At the same time, there are several shortcomings that limit the scope of the paper and the confidence in some claims. These include:

      a) the MN-LexA lines used for GRASP experiments are not characterized in any other way to demonstrate specificity. These were generated for this study using Phack methods, and their expression should be shown to be specific for MN11 and MN12 in order to interpret the GRASP experiments.

      Thanks for the suggestion. We have checked the expression pattern of MN-LexA, which is similar to MN-GAL4 used in previous work (Manzo et al., PNAS., 2012, PMID:22474379) . Here is the expression pattern:

      Author response image 3.

      b) There is also insufficient detail for the P2X2 experiment to evaluate its results. Is this an in vivo or ex vivo prep? Is ATP added to the brain, or ingested? If it is ingested, how is ATP coming into contact with md-C neuron if it is not a chemosensory neuron and therefore not exposed to the contents of the cibarium?

      The P2X2 experimental preparation was done ex vivo. We immersed the fly in the imaging buffer, as described in the Methods section under Functional Imaging. Following dissection and identification of the subesophageal zone (SEZ) area under fluorescent microscopy, we introduced ATP slowly into the buffer, positioned at a distance from the brain

      c) In Figure 3C, the authors claim that ablating the labellum will remove the optogenetic stimulation of the md-L neuron (mechanosensory neuron of the labellum), but this manipulation would presumably leave an intact md-L axon that would still be capable of being optogenetically activated by Chrimson.

      Please refer to the corresponding answers for reviewer 1 and Figure 3—figure supplement 1.

      d) Average GCaMP traces are not shown for md-C during ingestion, and therefore it is impossible to gauge the dynamics of md-C neuron activation during swallowing. Seeing activation with a similar frequency to pumping would support the suggested role for these neurons, although GCaMP6s may be too slow for these purposes.

      Profiling the dynamics of md-C neuron activation during swallowing is crucial for unraveling the operational model of md-C and validating our proposed hypothesis. Unfortunately, our assay faces challenges in detecting probable 6Hz fluorescent changes with GCaMP6s.

      In general, we observed an increase of fluorescent signals during swallowing, but movement of alive flies during swallowing influenced the imaging recording, so we could not depict a decent tracing for calcium imaging for md-C neurons. To enhance the robustness of our findings, patching the md-C neurons would be a more convincing approach. As illustrated in Figure 2, the somata of md-C neurons are situated in the cibarium rather than the brain. patching of the md-C neuron somata in flies during ingestion is difficult.

      e) The negative result in Figure 4K that is meant to rule out taste stimulation of md-C is not useful without a positive control for pharyngeal taste neuron activation in this same preparation.

      We followed methods used in the previous work (Chen et al., Cell Rep., 2019, PMID:31644916), which we believe could confirm that md-C do not respond to sugars.

      In addition to the experimental limitations described above, the manuscript could be organized in a way that is easier to read (for example, not jumping back and forth in figure order).

      Thanks for your suggestion and the manuscript has been reorganized.

      Reviewer #3 (Public Review):

      Swallowing is an essential daily activity for survival, and pharyngo-laryngeal sensory function is critical for safe swallowing. In Drosophila, it has been reported that the mechanical property of food (e.g. Viscosity) can modulate swallowing. However, how mechanical expansion of the pharynx or fluid content sense and control swallowing was elusive. Qin et al. showed that a group of pharyngeal mechanosensory neurons, as well as mechanosensory channels (nompC, Tmc, and Piezo), respond to these mechanical forces for regulation of swallowing in Drosophila melanogaster.

      Strengths:

      There are many reports on the effect of chemical properties of foods on feeding in fruit flies, but only limited studies reported how physical properties of food affect feeding especially pharyngeal mechanosensory neurons. First, they found that mechanosensory mutants, including nompC, Tmc, and Piezo, showed impaired swallowing, mainly the emptying process. Next, they identified cibarium multidendritic mechanosensory neurons (md-C) are responsible for controlling swallowing by regulating motor neuron (MN) 12 and 11, which control filling and emptying, respectively.

      Weaknesses:

      While the involvement of md-C and mechanosensory channels in controlling swallowing is convincing, it is not yet clear which stimuli activate md-C. Can it be an expansion of cibarium or food viscosity, or both? In addition, if rhythmic and coordinated contraction of muscles 11 and 12 is essential for swallowing, how can simultaneous activation of MN 11 and 12 by md-C achieve this? Finally, previous reports showed that food viscosity mainly affects the filling rather than the emptying process, which seems different from their finding.

      We have confirmed that swallowing sucrose water solution activated md-C neurons, while sucrose water solution alone could not (Figure 4J-K). We hypothesized that the viscosity of the food might influence this expansion process.

      While we were unable to delineate the activation dynamics of md-C neurons, our proposal posits that these neurons could be activated in a single pump cycle, sequentially stimulating MN12 and MN11. Another possibility is that the activation of md-C neurons acts as a switch, altering the oscillation pattern of the swallowing central pattern generator (CPG) from a resting state to a working state.

      In the experiments with w1118 flies fed with MC (methylcellulose) water, we observed that viscosity predominantly affects the filling process rather than the emptying process, consistent with previous findings. This raises an intriguing question. Our investigation into the mutation of mechanosensitive ion channels revealed a significant impact on the emptying process. We believe this is due to the loss of mechanosensation affecting the vibration of swallowing circuits, thereby influencing both the emptying and filling processes. In contrast, viscosity appears to make it more challenging for the fly to fill the cibarium with food, primarily attributable to the inherent properties of the food itself.

      Reviewer #4 (Public Review):

      A combination of optogenetic behavioral experiments and functional imaging are employed to identify the role of mechanosensory neurons in food swallowing in adult Drosophila. While some of the findings are intriguing and the overall goal of mapping a sensory to motor circuit for this rhythmic movement are admirable, the data presented could be improved.

      The circuit proposed (and supported by GRASP contact data) shows these multi-dendritic neurons connecting to pharyngeal motor neurons. This is pretty direct - there is no evidence that they affect the hypothetical central pattern generator - just the execution of its rhythm. The optogenetic activation and inhibition experiments are constitutive, not patterned light, and they seem to disrupt the timing of pumping, not impose a new one. A slight slowing of the rhythm is not consistent with the proposed function.

      Motor neurons implicated in patterned motions can be considered effectors of Central Pattern Generators (CPGs)(Marder et al., Curr Biol., 2001, PMID: 11728329; Hurkey et al., Nature., 2023, PMID:37225999). Given our observation of the connection between md-C neurons and motor neurons, it is reasonable to speculate that md-C neurons influence CPGs. Compared to the patterned light (0.1s light on and 0.1s light off) used in our optogenetic experiments, we noted no significant changes in their responses to continuous light stimulation. We think that optogenetic methods may lead to overstimulation of md-C neurons, failing to accurately mimic the expansion of the cibarium during feeding.

      Dysfunction in mechanosensitive ion channels or mechanosensory neurons not only disrupts the timing of pumping but also results in decreased intake efficiency (Figure 1E). The water-swallowing rhythm is generally stable in flies, and swallowing is a vital process that may involve redundant ion channels to ensure its stability.

      The mechanosensory channel mutants nompC, piezo, and TMC have a range of defects. The role of these channels in swallowing may not be sufficiently specific to support the interpretation presented. Their other defects are not described here and their overall locomotor function is not measured. If the flies have trouble consuming sufficient food throughout their development, how healthy are they at the time of assay? The level of starvation or water deprivation can affect different properties of feeding - meal size and frequency. There is no description of how starvation state was standardized or measured in these experiments.

      Defects in mechanosensory channel mutants nompC, piezo, and TMC, have been extensively investigated (Hehlert et al., Trends Neurosci., 2021, PMID:332570000). Mutations in these channels exhibit multifaceted effects, as illustrated in our RNAi experiments (see Figure 2E). Deprivation of water and food was performed in empty fly vials. It's important to note that the duration of starvation determines the fly's willingness to feed but not the pump frequency (Manzo et al., PNAS., 2012, PMID:22474379).

      In most cases, female flies were deprived water and food in empty vials for 24 hours because after that most flies would be willing to drink water. The deprivation time is 12 hours for flies with nompC and Tmc mutated or flies with Kir2.1 expressed in md-C neurons, as some of these flies cannot survive 24h deprivation.

      The brain is likely to move considerably during swallow, so the GCaMP signal change may be a motion artifact. Sometimes this can be calculated by comparing GCaMP signal to that of a co-expressed fluorescent protein, but there is no mention that this is done here. Therefore, the GCaMP data cannot be interpreted.

      We did not co-express a fluorescent protein with GCaMP for md-C. The head of the fly was mounted onto a glass slide, and we did not observe significant signal changes before feeding.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      .>Abstract: I disagree that swallow is the first step of ingestion. The first paragraph also mentions the final checkpoint before food ingestion. Perhaps sufficient to say that swallow is a critical step of ingestion.

      Indeed, it is not rigorous enough to say “first step”. This has been replaced by “early step”.

      Introduction:

      Line 59: "Silence" should be "Silencing"

      This has been replaced.

      Results:

      Lines 91-92: I am not clear about what this means. 20% of nompC and 20% of wild-type flies exhibit incomplete filling? So nompC is not different from wild-type?

      Sorry for the mistake. Viscous foods led to incomplete emptying (not incomplete filling), as displayed in Video 4. The swallowing behavior differs between nompC mutants and wild-type flies, as illustrated in Figure 1C, Figure 1—figure supplement 1A-C and video 1&5.

      When fed with 1% MC water solution (Figure 1—figure supplement 1E-H). We found that when fed with 1% MC watere solution, Tmc or piezo mutants displayed incomplete emptying, which could constitute a long time proportion of swallowing behavior; while only 20% of nompC flies and 20% of wild-type flies sporadically exhibit incomplete emptying, which is significantly different. Though the percent of flies displaying incomplete pump is similar between nompC mutant and wild-type files, you can find it quite different in video 1 and 5.

      Line 94: Should read: “while for foods with certain viscosity, the pump of Tmc or piezo mutants might"

      What evidence is there for weakened muscle motion? The phenotypes of all three mutants is quite similar, so concluding that they have roles in initiation versus swallowing strength is not well supported -this would be better moved to the discussion since it is speculative.

      Muscles are responsible for pumping the bolus from the mouth to the crop. In the case of Tmc or piezo mutants, as evidenced by incomplete filling for viscous foods (see Video 4), we speculate that the loss of sensory stimuli leads to inadequate muscle contraction. The phenotypes observed in Tmc and piezo mutants are similar yet distinct from those of the wild-type or nompC mutant, as shown in Video 1 and 4. The phrase "due to weakened muscle motion" has been removed for clarity.

      Line 146: If md-L neurons are also labeled by this intersection, then you are not able to know whether the axons seen in the brain are from md-L or md-C neurons. Line 148: cutting the labellum is not sufficient to ablate md-L neurons. The projections will still enter the brain and can be activated with optogenetics, even after severing the processes that reside in the labellum.

      Please refer to the responses for reviewer #1 (Public Review):” A major weakness of the paper…” and Figure 4.

      Line 162: If the fly head alone is in saline, do you know that the sucrose enters the esophagus? The more relevant question here is whether the md-C neurons respond to mechanical force. If you could artificially inflate the cibarium with air and see the md-C neurons respond that would be a more convincing result. So far you only know that these are activated during ingestion, but have not shown that they are activated specifically by filling or emptying. In addition, you are not only imaging md-C (md-L is also labeled). This caveat should be mentioned.

      We followed the methods outlined in the previous work (Chen et al., Cell Rep., 2019, PMID:31644916), which suggested that md-C neurons do not respond to sugars. While we aimed to mechanically stimulate md-C neurons, detecting signal changes during different steps of swallowing is challenging. This aspect could be further investigated in subsequent research with the application of adequate patch recording or two-photon microscopy (TPM).

      Figure 3: It is not clear what the pie charts in Figure 3 A refer to. What are the three different rows, and what does blue versus red indicate?

      Figure 3A illustrates three distinct states driven by CsChrimson light stimulation of md-C neurons, with the proportions of flies exhibiting each state. During light activation, flies may display difficulty in filling, incomplete filling, or a normal range of pumping. The blue and red bars represent the proportions of flies showing the corresponding state, as indicated by the black line.

      Figure 4: Where are the example traces for J? The comparison in K should be average dF/F before ingestion compared with average dF/F during ingestion. Comparing the in vitro response to sucrose to the in vivo response during ingestion is not a useful comparison.

      Please refer to the answers for reviewer #2 question d).

      Reviewer #2 (Recommendations For The Authors):

      Suggested experiments that would address some of my concerns listed in the public review include:

      a) high resolution SEZ images of MN-LexA lines crossed to LexAop-GFP to demonstrate their specificity

      b) more detail on the P2X2 experiment. It is hard to make suggestions beyond that without first seeing the details.

      c) presenting average GCaMP traces for all calcium imaging results

      d) to rule out taste stimulation of md-C (Figure 4K) I would suggest performing more extensive calcium imaging experiments with different stimuli. For example, sugar, water, and increasing concentrations of a neutral osmolyte (e.g. PEG) to suppress the water response. I think that this is more feasible than trying to get an in vitro taste prep to be convincing.

      Please refer to the responses for public review of reviewer #2.

      Reviewer #3 (Recommendations For The Authors):

      Below I list my suggestions as well as criticisms.

      (1) It would be excellent if the authors could demonstrate whether varying levels of food viscosity affect md-C activation.

      That is a good point, and could be studied in future work.

      (2) It is not clear whether an intersectional approach using TMC-GAL4 and nompC-QF abolishes labelling of the labellar multidendritic neurons. If this is the case, please show labellar multidendritic neurons in TMC-GAL4 only flies and flies using the intersectional approach. Along with this question, I am concerned that labellum-removed flies could be used for feeding assay.

      Intersectional labelling using TMC-GAL4 and nompC-QF could not abolish labelling of the labellar multidendritic neurons (Author response image 4). Labellum-removed flies could be used for feeding assay (Figure 3—figure supplement 1B-C, video 5), but once LSO or cibarium of fly was damaged, swallowing behavior would be affected. Removing labellum should be very careful.

      Author response image 4.

      (3) Please provide the detailed methods for GRASP and include proper control.

      Please refer to the responses for public review of reviewer #1.

      (4) The authors hypothesized that md-C sequentially activates MN11 and 12. Is the time gap between applying ATP on md-C and activation of MN11 or MN12 different? Please refer to the responses for public review of reviewer #3. The time gap between applying ATP on md-C and activation of MN11 or MN12 didn’t show significant differences, and we think the reason is that the ex vivo conditions could not completely mimic in vivo process.

      I found the manuscript includes many errors, which need to be corrected.

      (1) The reference formatting needs to be rechecked, for example, lines 37, 42, and 43.

      (2) Line 44-46: There is some misunderstanding. The role of pharyngeal mechanosensory neurons is not known compared with chemosensory neurons.

      (3) Line 49: Please specify which type of quality of food. Chemical or physical?

      (4) Line 80 and Figure 1B-D Authors need to put filling and emptying time data in the main figure rather than in the supplementary figure. Otherwise, please cite the relevant figures in the text(S1A-C).

      (5) Line 84-85; Is "the mutant animals" indicating only nompC? Please specify it.

      (6) Figure 1a: It is hard to determine the difference between the series of images. And also label filling and emptying under the time.

      (7) S1E-H: It is unclear what "Time proportion of incomplete pump" means. Please define it.

      (8) Please reorganize the figures to follow the order of the text, for example, figures 2 and 4

      (9) Figure 4A. There is mislabelling in Figure 4A. It is supposed to be phalloidin not nc82.

      (10) Figure 4K: It does not match the figure legend and main text.

      (11) Figure 4D and G: Please indicate ATP application time point.

      Thanks for your correction and all the points mentioned were revised.

      Reviewer #4 (Recommendations For The Authors):

      The figures need improvement. 1A has tiny circles showing pharynx and any differences are unclear.

      The expression pattern of some of these drivers (Supplement) seems quite broad. The tmc nompC intersection image in Figure 1F is nice but the cibarium images are hard to interpret: does this one show muscle expression? What are "brain" motor neurons? Where are the labellar multi-dendritic neurons?

      Tmc nompC intersection image show no expression in muscles. Somata of motor neurons 12 or 11 situated at SEZ area of brain, while somata of md-C neurons are in the cibarium. Image of md-L neurons was posted in response for reviewer #3 (Recommendations For The Authors):

      Why do the assays alternate between swallowing food and swallowing water?

      Thank for your suggestion, figure 1A has been zoomed-in. The Tmc nompC intersection image in Figure 2F displayed the position of md-C neurons in a ventral perspective, and muscles were not labelled. We stained muscles in cibarium by phalloidin and the image is illustrated in Figure 4A, while we didn’t find overlap between md-C neurons and muscles. Image of md-L neurons were posted as Author response image 4.

      In the majority of our experiments, we employed water to test swallowing behavior, while we used methylcellulose water solution to test swallowing behavior of mechanoreceptor mutants, and sucrose solution for flies with md-C neurons expressing GCaMP since they hardly drank water when their head capsules were open.

      How starved or water-deprived were the flies?

      One day prior to the behavioral assays, flies were transferred to empty vials (without water or food) for 24 hours for water deprivation. Flies who could not survive 24h deprivation would be deprived for 12h.

      How exactly was the pumping frequency (shown in Fig 1B) measured? There is no description in the methods at all. If the pump frequency is scored by changes in blue food intensity (arbitrary units?), this seems very subjective and maybe image angle dependent. What was camera frame rate? Can it capture this pumping speed adequately? Given the wealth of more quantitative methods for measuring food intake (eg. CAFE, flyPAD), it seems that better data could be obtained.

      How was the total volume of the cibarium measured? What do the pie charts in Figure 3A represent?

      The pump frequency was computed as the number of pumps divided by the time scale, following the methodology outlined in Manzo et al., 2012. Swallowing curves were plotted using the inverse of the blue food intensity in the cibarium. In this representation, ascending lines signify filling, while descending lines indicate emptying (see Figure 2D, 3B). We maintain objectivity in our approach since, during the recording of swallowing behavior, the fly was fixed, and we exclusively used data for analysis when the Region of Interest (ROI) was in the cibarium. This ensures that the intensity values accurately reflect the filling and emptying processes. Furthermore, we conducted manual frame-by-frame checks of pump frequency, and the results align with those generated by the time series analyzer V3 of ImageJ.

      For the assessment of total volume of ingestion, we referred the methods of CAFE, utilizing a measurable glass capillary. We then calculated the ingestion rate (nL/s) by dividing the total volume of ingestion by the feeding time.

      The changes seem small, in spite of the claim of statistical significance.

      The observed stability in pump frequency within a given genotype underscores the significance of even seemingly small changes, which is statistically significant. We speculate that the stability in swallowing frequency suggests the existence of a redundant mechanism to ensure the robustness of the process. Disruption of one channel might potentially be partially compensated for by others, highlighting the vital nature of the swallowing mechanism.

      How is this change in pump frequency consistent with defects in one aspect of the cycle - either ingestion (activation) or expulsion (inhibition)?

      Please refer to Figure 2, 3. Both filling and emptying process were affects, while inhibition mainly influences emptying time (Figure 1—figure supplement 1).

      for the authors:

      Line 48: extensively

      Line 62 - undiscovered.

      Line 107, 463: multi

      Line 124: What is "dysphagia?" This is an unusual word and should be defined.

      Line 446: severe

      Line 466: in the cibarium or not?

      Thanks for your correction and all the places mentioned were revised.

    1. Reviewer #2 (Public Review):

      The goal of the present study is to better understand the 'control objectives' that subjects adopt in a video-game-like virtual-balancing task. In this task, the hand must move in the opposite direction from a cursor. For example, if the cursor is 2 cm to the right, the subject must move their hand 2 cm to the left to 'balance' the cursor. Any imperfection in that opposition causes the cursor to move. E.g., if the subject were to move only 1.8 cm, that would be insufficient, and the cursor would continue to move to the right. If they were to move 2.2 cm, the cursor would move back toward the center of the screen. This return to center might actually be 'good' from the subject's perspective, depending on whether their objective is to keep the cursor still or keep it near the screen's center. Both are reasonable 'objectives' because the trial fails if the cursor moves too far from the screen's center during each six-second trial.

      This task was recently developed for use in monkeys (Quick et al., 2018), with the intention of being used for the study of the cortical control of movement, and also as a task that might be used to evaluate BMI control algorithms. The purpose of the present study is to better characterize how this task is performed. What sort of control policies are used. Perhaps more deeply, what kind of errors are those policies trying to minimize? To address these questions, the authors simulate control-theory style models and compare with behavior. They do in both in monkeys and in humans.

      These goals make sense as a precursor to future recording or BMI experiments. The primate motor-control field has long been dominated by variants of reaching tasks, so introducing this new task will likely be beneficial. This is not the first non-reaching task, but it is an interesting one and it makes sense to expand the presently limited repertoire of tasks. The present task is very different from any prior task I know of. Thus, it makes sense to quantify behavior as thoroughly as possible in advance of recordings. Understanding how behavior is controlled is, as the authors note, likely to be critical to interpreting neural data.

      From this perspective - providing a basis for interpreting future neural results - the present study is fairly successful. Monkeys seem to understand the task properly, and to use control policies that are not dissimilar from humans. Also reassuring is the fact that behavior remains sensible even when task-difficulty become high. By 'sensible' I simply mean that behavior can be understood as seeking to minimize error: position, velocity, or (possibly) both, and that this remains true across a broad range of task difficulties. The authors document why minimizing position and minimizing velocity are both reasonable objectives. Minimizing velocity is reasonable, because a near-stationary cursor can't move far in six seconds. Minimizing position error is reasonable, because the trial won't fail if the cursor doesn't stray far from the center. This is formally demonstrated by simulating control policies: both objectives lead to control policies that can perform the task and produce realistic single-trial behavior. The authors also demonstrate that, via verbal instruction, they can induce human subjects to favor one objective over the other. These all seem like things that are on the 'need to know' list, and it is commendable that this amount of care is being taken before recordings begin, as it will surely aid interpretation.

      Yet as a stand-alone study, the contribution to our understanding of motor control is more limited. The task allows two different objectives (minimize velocity, minimize position) to be equally compatible with the overall goal (don't fail the trial). Or more precisely, there exists a range of objectives with those two at the extreme. So it makes sense that different subjects might choose to favor different objectives, and also that they can do so when instructed. But has this taught us something about motor control, or simply that there is a natural ambiguity built into the task? If I ask you to play a game, but don't fully specify the rules, should I be surprised that different people think the rules are slightly different?

      The most interesting scientific claim of this study is not the subject-to-subject variability; the task design makes that quite likely and natural. Rather, the central scientific result is the claim that individual subjects are constantly switching objectives (and thus control policies), such that the policy guiding behavior differs dramatically even on a single-trial basis. This scientific claim is supported by a technical claim: that the authors' methods can distinguish which objective is in use, even on single trials. I am uncertain of both claims.

      Consider Figure 8B, which reprises a point made in Figure 1&3 and gives the best evidence for trial-to-trial variability in objective/policy. For every subject, there are two example trials. The top row of trials shows oscillations around the center, which could be consistent with position-error minimization. The bottom row shows tolerance of position errors so long as drift is slow, which could be consistent with velocity-error minimization. But is this really evidence that subjects were switching objectives (and thus control policies) from trial to trial? A simpler alternative would be a single control policy that does not switch, but still generates this range of behaviors. The authors don't really consider this possibility, and I'm not sure why. One can think of a variety of ways in which a unified policy could produce this variation, given noise and the natural instability of the system.

      Indeed, I found that it was remarkably easy to produce a range of reasonably realistic behaviors, including the patterns that the authors interpret as evidence for switching objectives, based on a simple fixed controller. To run the simulations, I made the simple assumption that subjects simply attempt to match their hand position to oppose the cursor position. Because subjects cannot see their hand, I assumed modest variability in the gain, with a range from -1 to -1.05. I assumed a small amount of motor noise in the outgoing motor command. The resulting (very simple) controller naturally displayed the basic range of behaviors observed across trials (see Image 1)

      Peer review image 1.

      Some trials had oscillations around the screen center (zero), which is the pattern the authors suggest reflects position control. In other trials the cursor was allowed to drift slowly away from the center, which is the pattern the authors suggest reflects velocity control. This is true even though the controller was the same on every trial. Trial-to-trial differences were driven both by motor noise and by the modest variability in gain. In an unstable system, small differences can lead to (seemingly) qualitatively different behavior on different trials.

      This simple controller is also compatible with the ability of subjects to adapt their strategy when instructed. Anyone experienced with this task likely understands (or has learned) that moving the hand slightly more than 'one should' will tend to shepherd the cursor back to center, at the cost of briefly high velocity. Using this strategy more sparingly will tend to minimize velocity even if position errors persist. Thus, any subject using this control policy would be able to adapt their strategy via a modest change in gain (the gain linking visible cursor position to intended hand position).

      This model is simple, and there may be reasons to dislike it. But it is presumably a reasonable model. The nature of the task is that you should move your hand opposite where the cursor is. Because you can't see your hand, you will make small mistakes. Due to the instability of the system, those small mistakes have large and variable effects. This feature is likely common to other controllers as well; many may explicitly or implicitly blend position and velocity control, with different trials appearing more dominated by one versus the other. Given this, I think the study presents only weak evidence that individual subjects are switching their objective on individual trials. Indeed, the more parsimonious explanation may be that they aren't. While the study certainly does demonstrate that the control policy can be influenced by verbal instructions, this might be a small adjustment as noted above.

      I thus don't feel convinced that the authors can conclusively tell us the true control policy being used by human and monkey subjects, nor whether that policy is mostly fixed or constantly switching. The data are potentially compatible with any of these interpretations, depending on which control-style model one prefers.

      I see a few paths that the authors might take if they chose.<br /> --First, my reasoning above might be faulty, or there might be additional analyses that could rule out the possibility of a unified policy underlying variable behavior. If so, the authors may be able to reject the above concerns and retain the present conclusions. The main scientifically novel conclusion of the present study is that subjects are using a highly variable control policy, and switching on individual trials. If this is indeed the case, there may be additional analyses that could reveal that.<br /> --Second, additional trial types (e.g., with various perturbations) might be used as a probe of the control policy. As noted below, there is a long history of doing this in the pursuit system. That additional data might better disambiguate control policies both in general, and across trials.<br /> --Third, the authors might find that a unified controller is actually a good (and more parsimonious) explanation. Which might actually be a good thing from the standpoint of future experiments. Interpretation of neural data is likely to be much easier if the control policy being instantiated isn't in constant flux.

      In any case, I would recommend altering the strength of some conclusions, particularly the conclusion that the presented methods can reliably discriminate amongst objectives/policies on individual trials. This is mentioned as a major motivation on multiple occasions, but in most of these instances, the subsequent analysis infers the objective only across trial (e.g., one must observe a scatterplot of many trials). By Figure 7, they do introduce a method for inferring the control policy on individual trials, and while this seems to work considerably better than chance, it hardly appears reliable.

      In this same vein I would suggest toning down aspects of the Introduction and Discussion. The Introduction in particular is overly long, and tries to position the present study as unique in ways that seem strained. Other studies have built links between human behavior, monkey behavior, and monkey neural data (for just one example, consider the corpus of work from the Scott lab that includes Pruszynski et al. 2008 and 2011). Other studies have used highly quantitative methods to infer the objective function used by subjects (e.g. Kording and Wolpert 2004). The very issue that is of interest in the present study - velocity-error-minimization versus position-error-minimization - has been extensively addressed in the smooth pursuit system. That field has long combined quantitative analyses of behavior in humans and monkeys, along with neural recordings. Many pursuit experiments used strategies that could be fruitfully employed to address the central questions of the present study. For example, error stabilization was important for dissecting the control policy used by the pursuit system. By artificially stabilizing the error (position or velocity) at zero, or at some other value, one can determine the system's response. The classic Rashbass step (1961) put position and velocity errors in opposition, to see which dominates the response. Step and sinusoidal perturbations were useful in distinguishing between models, as was the imposition of artificially imposed delays. The authors note the 'richness' of the behavior in the present task, and while one could say the same of pursuit, it was still the case that specific and well-thought through experimental manipulations were pretty critical. It would be better if the Introduction considered at least some of the above-mentioned work (or other work in a similar vein). While most would agree with the motivations outlined by the authors - they are logical and make sense - the present Introduction runs the risk of overselling the present conclusions while underselling prior work.

    1. Author Response

      Reviewer #1 (Public Review):

      The manuscript, "A versatile high-throughput assay based on 3D ring-shaped cardiac tissues generated from human induced pluripotent stem cell-derived cardiomyocytes" developed a unique culture platform with PEG hydrogel that facilitates the in-situ measurement of contractile dynamics of the engineered cardiac rings. The authors optimized the tissue seeding conditions, demonstrated tissue morphology with expressions of cardiac and fibroblast markers, mathematically modeled the equation to derive contractile forces and other parameters based on imaging analysis, and ended by testing several compounds with known cardiac responses.

      To strengthen the paper, the following comments should be considered:

      1) This paper provided an intriguing platform that creates miniature cardiac rings with merely thousands of CMs per tissue in a 96-well plate format. The shape of the ring and the squeezing motion can recapitulate the contraction of the cardiac chamber to a certain degree. However, Thavandiran et al (PNAS 2013) created a larger version of the cardiac ring and found the electrical propagation revealed spontaneous infinite loop-like cycles of activation propagation traversing the ring. This model was used to mimic a reentrant wave during arrhythmia. Therefore, it presents great concerns if a large number of cardiac tissues experience arrhythmia by geometry-induced re-entry current and cannot be used as a healthy tissue model. It would be interesting to see the impulse propagation/calcium transient on these miniature cardiac rings and evaluate the % of arrhythmia occurrence.

      The size is a key factor impacting the electrical propagation within the generated tissues. Our ring-shaped cardiac tissues have a diameter of 360µm, which is largely smaller than other tissues proposed so far, including in Thavandiran et al (PNAS 2013) where circular tissues had a reported size > 1mm. As shown in Figure 4E (and highlighted below in Author response image 1), tissues under basal conditions display regular beating rates without spontaneous arrhythmias. Videos also show that the tissue contraction is homogeneous around the pillar, suggesting that the smaller size favors the electrical propagation and limits the occurrence of spontaneous reentrant waves. Optical mapping measurements will be performed in the future to assess the occurrence of reentrant waves.

      **Author response image 1. **

      Poincaré plot showing the plots between successive RR intervals (Data from Figure 4E in basal conditions). Linear regression with 95% confidence interval indicates identity.

      2) The platform can produce 21 cardiac rings per well in 96-well plates. The throughput has been the highest among competing platforms. The resulting tissues have good sarcomere striation due to the strain from the pillars. Now the emerging questions are culture longevity and reproducibility among tissues. According to Figure 1E, there was uneven ring formation around the pillar, which leads to the tissue thinning and breaking off. There is only 50% survival after 20 days of culture in the optimized seeding group. Is there any way to improve it? The tissues had two compartments, cardiac and fibroblast-rich regions, where fibroblasts are responsible for maintaining the attachment to the glass slides. Do the cardiac rings detach from the glass slides and roll up? The SD of the force measurement is a quarter of the value, which is not ideal with such a high replicate number. As the platform utilizes imaging analysis to derive contractile dynamics, calibration should be done based on the angle and the distance of the camera lens to the individual tissues to reduce the error. On the other hand, how reproducible of the pillars? It is highly recommended to mechanically evaluate the consistency of the hydrogel-based pillars across different wells and within the wells to understand the variance. Figure 2B reports the early results obtained as the system was tested and developed. Since then, we have tested different iPSC lines and confirm that the overall yield is higher (up to 20 tissues at D14 for some cell lines), however dependent of cell lines.

      The tissues do not detach from the glass slides. It is very rare to see tissues roll up on the central pillar. As shown in Figure 1B, the pillars have a specific shape to avoid tissues to roll up as they develop and contract.

      3) Does the platform allow the observation of non-synchronized beating when testing with compounds? This can be extremely important as the intended applications of this platform are drug testing and cardiac disease modeling. The author should elaborate on the method in the manuscript and explain the obtained results in detail. The arrhythmogenic effect of a drug can be derived from the regularity of the beat-to-beat time. Indeed, we show that dofetilide increases the variability in the beat-to-beat time by plotting for each beat, the beat-to-beat time with the next beat as a function of the beat-to-beat time with the previous beat.

      4) The results of drug testing are interesting. Isoproterenol is typically causing positive chronotropic and positive inotropic responses, where inotropic responses are difficult to obtain due to low tissue maturity. It is inconsistent with other reported results that cardiac rings do not exhibit increased beating frequency, but slightly increased forces only. Zhao et al were using electrical pacing at a defined rate during force measurement, whereas the ring constructs are not.

      We agree. The difference in the response to isoproterenol with previous papers may be explained by different incubation timing with the drug. In our case, the tissues were incubated for 5 minutes at 37•C before being recorded.

      Overall, the manuscript is well written and the designed platform presented the unique advantages of high throughput cardiac tissue culture. Besides the contractile dynamics and IHC images, the paper lacks other cardiac functional evaluations, such as calcium handling, impulse propagation, and/or electrophysiology. The culture reproducibility (high SD) and longevity (<20 days) still remain unsolved.

      Since the submission, we have managed to keep some tissues and analyze them up to 32 days. At that time point the tissues are still beating. Nevertheless, a specific study concerning tissue longevity has not been carried out as the tissues were usually fixed after 14 days to be stained and analyze their structure.

      Reviewer #2 (Public Review):

      The authors should be commended for developing a high throughput platform for the formation and study of human cardiac tissues, and for discussing its potential, advantages and limitations. The study is addressing some of the key needs in the use of engineered cardiac tissues for pharmacological studies: ease of use, reproducible preparation of tissues, and high throughput.

      There are also some areas where the manuscript should be improved. The design of the platform and the experimental design should be described in more detail.

      It would be of interest to comprehensively document the progression of tissue formation. To this end, it would be helpful to show the changes in tissue structure through a series of images that would correspond to the progression of contractile properties shown in Figure 3.

      Our results indicate that the fibroblasts/cardiomyocytes segregation likely happens as soon as the tissue is formed, as the fibroblasts are critical for tissue generation. The change with time in the shape of the contractile ring is reported in Figure 1E, with a series of images which correspond to the timepoints of Figure 3.

      The very interesting tissue morphology (separation into the two regions) that was observed in this study is inviting more discussion.

      Finally, the reader would benefit from more specific comparisons of the contractile function of cardiac tissues measured in this study with data reported for other cardiac tissue models.

    1. Author Response:

      Assessment note: “Whereas the results and interpretations are generally solid, the mechanistic aspect of the work and conclusions put forth rely heavily on in vitro studies performed in cultured L6 myocytes, which are highly glycolytic and generally not viewed as a good model for studying muscle metabolism and insulin action.”

      While we acknowledge that in vitro models may not fully recapitulate the complexity of in vivo systems, we believe that our use of L6 myotubes is appropriate for studying the mechanisms underlying muscle metabolism and insulin action. As mentioned below (reviewer 2, point 1), L6 myotubes possess many important characteristics relevant to our research, including high insulin sensitivity and a similar mitochondrial respiration sensitivity to primary muscle fibres. Furthermore, several studies have demonstrated the utility of L6 myotubes as a model for studying insulin sensitivity and metabolism, including our own previous work (PMID: 19805130, 31693893, 19915010).

      In addition, we have provided evidence of the similarities between L6 cells overexpressing SMPD5 and human muscle biopsies at protein levels and the reproducibility of the negative correlation between ceramide and Coenzyme Q observed in L6 cells in vivo, specifically in the skeletal muscle of mice in chow diet. These findings support the relevance of our in vitro results to in vivo muscle metabolism.

      Finally, we will supplement our findings by demonstrating a comparable relationship between ceramide and Coenzyme Q in mice exposed to a high-fat diet, to be shown in Supplementary Figure 4 H-I. Further animal experiments will be performed to validate our cell-line based conclusions. We hope that these additional results address the concerns raised by the reviewer and further support the relevance of our in vitro findings to in vivo muscle metabolism and insulin action.

      Points from reviewer 1:

      1. Although the authors' results suggest that higher mitochondrial ceramide levels suppress cellular insulin sensitivity, they rely solely on a partial inhibition (i.e., 30%) of insulin-stimulated GLUT4-HA translocation in L6 myocytes. It would be critical to examine how much the increased mitochondrial ceramide would inhibit insulin-induced glucose uptake in myocytes using radiolabel deoxy-glucose.

      Response: The primary impact of insulin is to facilitate the translocation of glucose transporter type 4 (GLUT4) to the cell surface, which effectively enhances the maximum rate of glucose uptake into cells. Therefore, assessing the quantity of GLUT4 present at the cell surface in non-permeabilized cells is widely regarded as the most reliable measure of insulin sensitivity (PMID: 36283703, 35594055, 34285405). Additionally, plasma membrane GLUT4 and glucose uptake are highly correlated. Whilst we have routinely measured glucose uptake with radiolabelled glucose in the past, we do not believe that evaluating glucose uptake provides a better assessment of insulin sensitivity than GLUT4.

      We will clarify the use of GLUT4 translocation in the Results section:

      “...For this reason, several in vitro models have been employed involving incubation of insulin sensitive cell types with lipids such as palmitate to mimic lipotoxicity in vivo. In this study we will use cell surface GLUT4-HA abundance as the main readout of insulin response...”

      1. Another important question to be addressed is whether glycogen synthesis is affected in myocytes under these experimental conditions. Results demonstrating reductions in insulin-stimulated glucose transport and glycogen synthesis in myocytes with dysfunctional mitochondria due to ceramide accumulation would further support the authors' claim.

      Response: We have carried out supplementary experiments to investigate glycogen synthesis in our insulin-resistant models. Our approach involved L6-myotubes overexpressing the mitochondrial-targeted construct ASAH1 (as described in Fig. 3). We then challenged them with palmitate and measured glycogen synthesis using 14C radiolabeled glucose. Our observations indicated that palmitate suppressed insulin-induced glycogen synthesis, which was effectively prevented by the overexpression of ASAH1 (N = 5, * p<0.05). These results provide additional evidence highlighting the role of dysfunctional mitochondria in muscle cell glucose metabolism.

      These data will be added to Supplementary Figure 4K and the results modified as follows:

      “Notably, mtASAH1 overexpression protected cells from palmitate-induced insulin resistance without affecting basal insulin sensitivity (Fig. 3E). Similar results were observed using insulin-induced glycogen synthesis as an ortholog technique for Glut4 translocation. These results provide additional evidence highlighting the role of dysfunctional mitochondria in muscle cell glucose metabolism (Sup. Fig. 5K). Importantly, mtASAH1 overexpression did not rescue insulin sensitivity in cells depleted…”

      We will add to the method section:

      “L6 myotubes overexpressing ASAH were grown and differentiated in 12-well plates, as described in the Cell lines section, and stimulated for 16 h with palmitate-BSA or EtOH-BSA, as detailed in the Induction of insulin resistance section.

      On day seven of differentiation, myotubes were serum starved in plain DMEM for 3 and a half hours. After incubation for 1 hour at 37C with 2 µCi/ml D-[U-14C]-glucose in the presence or absence of 100 nM insulin, glycogen synthesis assay was performed, as previously described (Zarini S. et al., J Lipid Res, 63(10): 100270, 2022).”

      1. In addition, it would be critical to assess whether the increased mitochondrial ceramide and consequent lowering of energy levels affect all exocytic pathways in L6 myoblasts or just the GLUT4 trafficking. Is the secretory pathway also disrupted under these conditions?

      Response: As the secretory pathway primarily involves the synthesis and transportation of soluble proteins that are secreted into the extracellular space, and given that the majority of cellular transmembrane proteins (excluding those of the mitochondria) use this pathway to arrive at their ultimate destination, we believe that the question posed by the reviewer is highly challenging and beyond the scope of our research. We will add this to the discussion:

      “...the abundance of mPTP associated proteins suggesting a role of this pore in ceramide induced insulin resistance (Sup. Fig. 6E). In addition, it is yet to be determined whether the trafficking defect is specific to Glut4 or if it affects the exocytic-secretory pathway more broadly…”

      Points from reviewer 2:

      1. The mechanistic aspect of the work and conclusions put forth rely heavily on studies performed in cultured myocytes, which are highly glycolytic and generally viewed as a poor model for studying muscle metabolism and insulin action. Nonetheless, the findings provide a strong rationale for moving this line of investigation into mouse gain/loss of function models.

      Response: The relative contribution of the anaerobic (glycolysis) and aerobic (mitochondria) contribution to the muscle metabolism can change in L6 depending on differentiation stage. For instance, Serrage et al (PMID30701682) demonstrated that L6-myotubes have a higher mitochondrial abundance and aerobic metabolism than L6-myoblasts. Others have used elegant transcriptomic analysis and metabolic characterisation comparing different skeletal muscle models for studying insulin sensitivity. For instance, Abdelmoez et al in 2020 (PMID31825657) reported that L6 myotubes exhibit greater insulin-stimulated glucose uptake and oxidative capacity compared with C2C12 and Human Mesenchymal Stem Cells (HMSC). Overall, L6 cells exhibit higher metabolic rates and primarily rely on aerobic metabolism, while C2C12 and HSMC cells rely on anaerobic glycolysis. It is worth noting that L6 myotubes are the cell line most closely related to adult human muscle when compared with other muscle cell lines (PMID31825657). Our presented results in Figure 6 H and I provide evidence for the similarities between L6 cells overexpressing SMPD5 and human muscle biopsies. Additionally, in Figure 3J-K, we demonstrate the reproducibility of the negative correlation between ceramide and Coenzyme Q observed in L6 cells in vivo, specifically in the skeletal muscle of mice in chow diet. Furthermore, we have supplemented these findings by demonstrating a comparable relationship in mice exposed to a high-fat diet, as shown in Supplementary Figure 4 H-I (refer to point 4). We will clarify these points in the Discussion:

      “In this study, we mainly utilised L6-myotubes, which share many important characteristics with primary muscle fibres relevant to our research. Both types of cells exhibit high sensitivity to insulin and respond similarly to maximal doses of insulin, with Glut4 translocation stimulated between 2 to 4 times over basal levels in response to 100 nM insulin (as shown in Fig. 1-4 and (46,47)). Additionally, mitochondrial respiration in L6-myotubes have a similar sensitivity to mitochondrial poisons, as observed in primary muscle fibres (as shown in Fig. 5 (48)). Finally, inhibiting ceramide production increases CoQ levels in both L6-myotubes and adult muscle tissue (as shown in Fig. 2-3). Therefore, L6-myotubes possess the necessary metabolic features to investigate the role of mitochondria in insulin resistance, and this relationship is likely applicable to primary muscle fibres”.

      We will also add additional data - in point 2 - from differentiated human myocytes that are consistent with our observations from the L6 models. Additional experiments are in progress to further extend these findings.

      1. One caveat of the approach taken is that exposure of cells to palmitate alone is not reflective of in vivo physiology. It would be interesting to know if similar effects on CoQ are observed when cells are exposed to a more physiological mixture of fatty acids that includes a high ratio of palmitate, but better mimics in vivo nutrition.

      Response: Palmitate is widely recognized as a trigger for insulin resistance and ceramide accumulation, which mimics the insulin resistance induced by a diet in rodents and humans. Previous studies have compared the effects of a lipid mixture versus palmitate on inducing insulin resistance in skeletal muscle, and have found that the strong disruption in insulin sensitivity caused by palmitate exposure was lessened with physiologic mixtures of fatty acids, even with a high proportion of saturated fatty acids. This was associated, in part, to the selective partitioning of fatty acids into neutral lipids (such as TAG) when muscle cells are exposed to physiologic lipid mixtures (Newsom et al PMID25793412). Hence, we think that using palmitate is a better strategy to study lipid-induced insulin resistance in vitro. We will add to results:

      “In vitro, palmitate conjugated with BSA is the preferred strategy for inducing insulin resistance, as lipid mixtures tend to partition into triacylglycerides (33)”.

      We are also performing additional in vivo experiments to add to the physiological relevance of the findings.

      1. While the utility of targeting SMPD5 to the mitochondria is appreciated, the results in Figure 5 suggest that this manoeuvre caused a rather severe form of mitochondrial dysfunction. This could be more representative of toxicity rather than pathophysiology. It would be helpful to know if these same effects are observed with other manipulations that lower CoQ to a similar degree. If not, the discrepancies should be discussed.

      Response: We conducted a staining procedure using the mitochondrial marker mitoDsRED to observe the effect of SMPD5 overexpression on cell toxicity. The resulting images, displayed in the figure below (Author response image 1), demonstrate that the overexpression of SMPD5 did not result in any significant changes in cell morphology or impact the differentiation potential of our myoblasts into myotubes.

      Author response image 1.

      In addition, we evaluated cell viability in HeLa cells following exposure to SACLAC (2 uM) to induce CoQ depletion (left panel). Specifically, we measured cell death by monitoring the uptake of Propidium iodide (PI) as shown in the right panel. Our results demonstrated that Saclac-induced CoQ depletion did not lead to cell death at the doses used for CoQ depletion (Author response image 2).

      Author response image 2.

      Therefore, we deemed it improbable that the observed effect is caused by cellular toxicity, but rather represents a pathological condition induced by elevated levels of ceramides. We will add to discussion:

      “...downregulation of the respirasome induced by ceramides may lead to CoQ depletion. Despite the significant impact of ceramide on mitochondrial respiration, we did not observe any indications of cell damage in any of the treatments, suggesting that our models are not explained by toxic/cell death events.”

      1. The conclusions could be strengthened by more extensive studies in mice to assess the interplay between mitochondrial ceramides, CoQ depletion and ETC/mitochondrial dysfunction in the context of a standard diet versus HF diet-induced insulin resistance. Does P053 affect mitochondrial ceramide, ETC protein abundance, mitochondrial function, and muscle insulin sensitivity in the predicted directions?

      Response: We would like to note that the metabolic characterization and assessment of ETC/mitochondrial function in these mice (both fed a high-fat (HF) and chow diet, with or without P053) were previously published (Turner N, PMID30131496). In addition to this, we have conducted targeted metabolomic and lipidomic analyses to investigate the impact of P053 on ceramide and CoQ levels in HF-fed mice. As illustrated in the figures below (Author response image 3), the administration of P053 led to a reduction in ceramide levels (left panel) and an increase in CoQ levels (right panel) in HF-fed mice, which is consistent with our in vitro findings.

      Author response image 3.

      We will add to results:

      “…similar effect was observed in mice exposed to a high fat diet for 5 wks (Supp. Fig. 4H-I further phenotypic and metabolic characterization of these animals can be found in (41))”

      We will further perform more in-vivo studies to corroborate these findings.

    1. Author Response

      Reviewer #1 (Public Review):

      We thank the Reviewer for their comments.

      Reviewer #2 (Public Review):

      1) In Figure 4, the authors injected a retrograde tracer in the NA and an anterograde tracer in DCN to find potential "nodes" of overlap. From this experiment, the authors identify the VTA and regions of the thalamus as potential areas of tracer overlap, but it is unclear how many other brain regions were examined. Did the authors jump straight to likely locations of overlap based on previous findings, or were large swaths of the brain examined systematically? If other brain regions were examined, which regions and how was this done? A table listing which brain regions were examined and the presence/intensity of ctb-Alexa568 and GFP fluorescence would be helpful.

      We thank the Reviewer for their comments. Exhaustive characterizations of inputs into nucleus accumbens (NAc) as well as of direct outputs of the deep cerebellar nuclei (DCN) have appeared elsewhere (e.g, Ma et al., 2020 doi: 10.3389/fnsys.2020.00015; Novello et al., 2022 doi: 10.1007/s12311-022-01499-w). Our anatomical investigations with retrograde and anterograde tracers were focused on putative intermediary nodal regions with robust inputs from the DCN, clear outputs to NAc, and limbic functionality. Only a handful of brain regions fulfill these criteria, and from those, we chose to target the VTA and intralaminar thalamus based on the observation that cerebellar activation induces dopamine release in the NAc medial shell and core (Holloway et al., 2019 doi: 10.1007/s12311-019-01074-w; Low et al., 2021 10.1038/s41586-021-04143-5) and on our previous work on DCN projections to the midline thalamus (Jung et al., 2022 doi: 10.3389/fnsys.2022.879634).

      2) In Figure 5, the authors inject AAV1-Cre in DCN and AAV-FLEX-tdTomato in VTA or thalamus. This is an interesting experiment, but controls are missing. An important control is to inject AAV-FLEX-tdTomato in the VTA or thalamus in the absence of AAV1-Cre injection in DCN. Cre-independent expression of tdTomato should be assessed in the VTA/thalamus and the NA.

      We thank the reviewer for bringing up this important control. We routinely perform this control experiment to test for any “leakiness” of floxed vectors prior to use but we did not include it in the paper. In response to the Reviewer’s comment, we show results from this control below. Briefly, we performed a large injection (300 nl) of AAV-FLEX-tdTomato in the thalamus area together with AAV-EGFP (to visualize the injection). No Cre-expressing virus was injected anywhere in the brain. PFA-fixed brain slices were obtained at 3 weeks post-injection and imaged for EGFP and tdTomato. Author Response Figure 1 shows images of the injected thalamus area. No tdTomato expression (Fig. 1C, red) was observed despite abundant EGFP expression (Fig. 1B, green), which confirms that in the absence of Cre the floxed construct does not “leak”.

      Author response image 1.

      (related to Fig. 5 of manuscript). Control experiment for “leakiness” of floxed tdTomato. A, Epifluorescence image of thalamus region in brain slice with EGFP (green) and tdTomato (red) channels merged. Gain settings in the red channel were increased intentionally, to ensure detection of any “leaky” cells. B, Cellular EGFP expression marks successful viral injection. C, No cellular expression of tdTomato without Cre. Note diffuse red signal from background fluorescence.

      Reviewer #3 (Public Review):

      1) The novelty of this paper lies in the mapping of projections from the interposed and the lateral nuclei of the cerebellum, as the authors themselves mention. However, in some of the experiments the medial nucleus is also clearly injected (Fig. 4B and 6B). In those experiments, it is impossible to distinguish which nucleus these projections come from, and they could be the ones from the medial nucleus that were previously described (see above).

      We thank the Reviewer for their comments. As stated in the Results and in the legend of Fig. 4, in addition to experiments with injections in all DCN (Fig. 4B-D), we also performed experiments with injections in only the lateral nucleus (Fig. 4E and F). The results of these experiments support the existence of lateral DCN projections that overlap with NAc-projecting neurons in VTA and thalamus. This finding is further corroborated by our transsynaptic experiments with lateral DCN-only injections (Fig. 5E,F). Regarding the optophysiological experiments, as mentioned in the Results, all DCN were injected (Fig. 6B) in order to maximize ChR2 expression and the chances of successful stimulation of projections.

      2) A strength of the paper is the use of both electrical and optogenetic stimulation. However, the responses to the two in the NAc are very different - electrical stimulation results in both excitation and inhibition, whereas opto stimulation mostly results in only excitation.

      We thank the Reviewer for this comment. At least two different explanations could account for the observed differences in the prevalence of inhibitory responses elicited by optogenetic vs electrical stimulation: i) inhibitory response prevalence is sensitive to stimulation intensity (Table 1 and Fig. 2B). Because of inherent differences between optogenetic and electrical stimulation, it is not possible to directly compare intensities between the two modalities in order to determine at which intensities, if at all, the prevalence of responses should match. The observation that, at least in the VTA, the prevalence of inhibitory responses elicited by 1 mW light intensity (the lowest intensity that we tested) was comparable to the prevalence of inhibitory responses elicited by 100 µA electrical stimulation is in line with this explanation; ii) DCN electrical stimulation is not node-specific. To our knowledge, there is currently no evidence to support mesoscale topographic organization in lateral and interposed DCN that is node-specific. Consequently, electrical stimulation of DCN could, in principle, result in NAc responses through various polysynaptic pathways and/or nodes. This possibility would still exist even if electrical stimulation had limited spread of a few hundred microns (as in our experiments) and is at least partly supported by the observed long latencies of electrically-evoked inhibitory responses (NAcCore: 268 ± 25 ms (10th percentile: 42 ms), NAcMed: 259 ± 14 ms (10th percentile: 60 ms). Our recognition of this intrinsic limitation of DCN electrical stimulation was the impetus behind the node-specific optogenetic experiments.

      3) The stimulation frequency at which the electrical stimulation in Fig 1 is done to identify responses in the NAc is 200 Hz for 25 ms. Is this physiological? In addition, responses in the NAc are measured for 500 ms after, which is a very long response time.

      Regarding stimulation frequency, DCN neurons readily reach firing rates between 100-200 Hz in vivo and ex vivo (e.g., Beekhof et al., 2021 doi.org/10.3390/cells10102686; Sarnaik & Raman, 2018 doi:10.7554/eLife.29546; Canto et al., 2016 doi:10.1371/journal.pone.0165887). Regarding the duration of the response window, at the outset of our experiments we were agnostic to the type of responses that our stimulation protocols would evoke in NAc. We therefore established a response time window that would allow us to capture both fast neurotransmitter-mediated responses as well as neuromodulatory (e.g., dopaminergic) responses, which are known to occur at hundred-millisecond latencies or longer (Wang et al., 2017 doi.org/10.1016/j.celrep.2017.02.062; Chuhma et al., 2014 doi:10.1016/j.neuron.2013.12.027; Gonon, 1997). A posteriori analysis indicated that even if we reduced the response time window by 50%, the ratio of DCN-evoked excitatory vs inhibitory responses in NAc would not change substantially (E/I500: 4.3 vs E/I250: 5).

      4) Previous studies have described how different cell types within the DCN have different downstream projections (Fujita et al. 2020). However, the experiments here bundle together all this known heterogeneity.

      We agree with the Reviewer that dissecting the contributions of specific DCN cell types to NAc circuits is an important next step, which we are excited to undertake in future studies. Here we have broken new ground by identifying for the first time nodes and functional properties of DCN-NAc connectivity. Performing these studies with DCN cell type-specificity was not justified or feasible, given that the molecular identity of participating DCN neurons is currently unknown.

      5) Previous studies have also highlighted the importance of different cell types within the NAc and how input streams are differentially targeted to them. Here, that heterogeneity is also obscured.

      Along the same lines as #4, we agree with the Reviewer about the importance of examining the cellular identity of NAc neurons that participate in DCN-NAc circuitry. We are excited to undertake these examinations using ex vivo approaches, which are well suited to dissect cellular and molecular mechanisms.

      6) In Fig. 4C, E and F, the experiments on overlap between anterograde and retrograde tracers are not particularly convincing - it's hard to see the overlap.

      We thank the reviewer for this comment and have included revised figure panels 4C5, E3, Author response image 1 and Figure 2 below. Single optical sections with altered color scheme and orthogonal confocal views are presented in order to show the overlap between DCN projections and NAc-projecting nodal neurons more clearly. The findings of these imaging experiments are corroborated by the results of our transsynaptic labeling approach (Fig. 5), which we have validated elsewhere (Jung et al., 2022 doi:10.3389/fnsys.2022.879634; and Author response image 1).

      Author response image 2.

      (related to Fig. 4 of manuscript). Co-localization of NAc-projecting neurons with DCN axonal projections in VTA and thalamus. A-D, Single optical sections and orthogonal views are shown. Green: EGFP-expressing DCN axons; white: ctb- Alexa 568; red: anti-TH (A-B; VTA) or NeuN (C-D; thalamus). White arrows in orthogonal views point to regions of overlap.

    1. Author Response:

      The following is the authors' response to the original reviews.

      Reviewer #1 (Public Review):

      [...] The experiments are well-designed and carefully conducted. The conclusions of this work are in general well supported by the data. There are a couple of points that need to be addressed or tested.

      1) It is unclear how LC phasic stimulation used in this study gates cortical plasticity without altering cellular responses (at least at the calcium imaging level). As the authors mentioned that Polack et al 2013 showed a significant effect of NE blockers in membrane potential and firing rate in V1 layer2/3 neurons during locomotion, it would be useful to test the effect of LC silencing (coupled to mismatch training) on both cellular response and cortical plasticity or applying NE antagonists in V1 in addition to LC optical stimulation. The latter experiment will also address which neuromodulator mediates plasticity, given that LC could co-release other modulators such as dopamine (Takeuchi et al. 2016 and Kempadoo et al. 2016). LC silencing experiment would establish a causal effect more convincingly than the activation experiment.

      Regarding the question of how phasic stimulation could alter plasticity without affecting the response sizes or activity in general, we believe there are possibilities supported by previous literature. It has been shown that catecholamines can gate plasticity by acting on eligibility traces at synapses (He et al., 2015; Hong et al., 2022). In addition, all catecholamine receptors are metabotropic and influence intracellular signaling cascades, e.g., via adenylyl cyclase and phospholipases. Catecholamines can gate LTP and LTD via these signaling pathways in vitro (Seol et al., 2007). Both of these influences on plasticity at the molecular level do not necessitate or predict an effect on calcium activity levels. We have now expanded on this in the discussion of the revised manuscript.

      While a loss of function experiment could add additional corroborating evidence that LC output is required for the plasticity seen, we did not perform loss-of-function experiments for three reasons:

      1. The effects of artificial activity changes around physiological set point are likely not linear for increases and decreases. The problem with a loss of function experiment here is that neuromodulators like noradrenaline affect general aspects of neuronal function. This is apparent in Polack et al., 2013: during the pharmacological blocking experiment, the membrane hyperpolarizes, membrane variance becomes very low, and the cells are effectively silenced (Figure 7 of (Polack et al., 2013)), demonstrating an immediate impact on neuronal function when noradrenaline receptor activation is presumably taken below physiological/waking levels. In light of this, if we reduce LC output/noradrenergic receptor activation and find that plasticity is prevented, this could be the result of a direct influence on the plasticity process, or, the result of a disruption of another aspect of neuronal function, like synaptic transmission or spiking. We would therefore challenge the reviewer’s statement that a loss-of-function experiment would establish a causal effect more convincingly than the gain- of-function experiment that we performed.

      2. The loss-of-function experiment is technically more difficult both in implementation and interpretation. Control mice show no sign of plasticity in locomotion modulation index (LMI) on the 10-minute timescale (Figure 4J), thus we would not expect to see any effect when blocking plasticity in this experiment. We would need to use dark-rearing and coupled-training of mice in the VR across development to elicit the relevant plasticity ((Attinger et al., 2017); manuscript Figure 5). We would then need to silence LC activity across days of VR experience to prevent the expected physiological levels of plasticity. Applying NE antagonists in V1 over the entire period of development seems very difficult. This would leave optogenetically silencing axons locally, which in addition to the problems of doing this acutely (Mahn et al., 2016; Raimondo et al., 2012), has not been demonstrated to work chronically over the duration of weeks. Thus, a negative result in this experiment will be difficult to interpret, and likely uninformative: We will not be able to distinguish whether the experimental approach did not work, or whether local LC silencing does nothing to plasticity.

      Note that pharmacologically blocking noradrenaline receptors during LC stimulation in the plasticity experiment is also particularly challenging: they would need to be blocked throughout the entire 15 minute duration of the experiment with no changes in concentration of antagonist between the ‘before’ and ‘after’ phases, since the block itself is likely to affect the response size, as seen in Polack et al., 2013, creating a confound for plasticity-related changes in response size. Thus, we make no claim about which particular neuromodulator released by the LC is causing the plasticity.

      1. There are several loss-of-function experiments reported in the literature using different developmental plasticity paradigms alongside pharmacological or genetic knockout approaches. These experiments show that chronic suppression of noradrenergic receptor activity prevents ocular dominance plasticity and auditory plasticity (Kasamatsu and Pettigrew, 1976; Shepard et al., 2015). Almost absent from the literature, however, are convincing gain-of-function plasticity experiments.

      Overall, we feel that loss-of-function experiments may be a possible direction for future work but, given the technical difficulty and – in our opinion – limited benefit that these experiments, would provide in light of the evidence already provided for the claims we make, we have chosen not to perform these experiments at this time. Note that we already discuss some of the problems with loss-of-function experiments in the discussion.

      2) The cortical responses to NE often exhibit an inverted U-curve, with higher or lower doses of NE showing more inhibitory effects. It is unclear how responses induced by optical LC stimulation compare or interact with the physiological activation of the LC during the mismatch. Since the authors only used one frequency stimulation pattern, some discussion or additional tests with a frequency range would be helpful.

      This is correct, we do not know how the artificial activation of LC axons relates to physiological activation, e.g. under mismatch. The stimulation strength is intrinsically consistent in our study in the sense that the stimulation level to test for changes in neuronal activity is similar to that used to probe for plasticity effects. We suspect that the artificial activation results in much stronger LC activity than seen during mismatch responses, given that no sign of the plasticity in LMI seen in high ChrimsonR occurs in low ChrimsonR or control mice (Figure 4J). Note, that our conclusions do not rely on the assumption that the stimulation is matched to physiological levels of activation during the visuomotor mismatches that we assayed. The hypothesis that we put forward is that increasing levels of activation of the LC (reflecting increasing rates or amplitude of prediction errors across the brain) will result in increased levels of plasticity. We know that LC axons can reach levels of activity far higher than that seen during visuomotor mismatches, for instance during air puff responses, which constitute a form of positive prediction error (unexpected tactile input) (Figures 2C and S1C). The visuomotor mismatches used in this study were only used to demonstrate that LC activity is consistent with prediction error signaling. We have now expanded on these points in the discussion as suggested.

      Reviewer #1 (Recommendations For The Authors):

      1) In Figure 3E, there is a rebound response of ChrimsonR at the offset of the mismatch. Is that common? If so, what does it mean? If not, maybe replace it with a more common example trace.

      This trace in fact represents the population average, so this offset response (or ‘rebound’) reflects a significant component of the population response to visual flow onset (i.e., mismatch offset), only under conditions of LC stimulation. See our response to reviewer 2 concerning this element of the response.

      2) It would be helpful to have some discussions on how a mismatch signal reaches and activates LC from cortical neurons.

      We have now added a short segment on this to the discussion.

      Reviewer #2 (Public Review):

      [...] The study provides very compelling data on a timely and fascinating topic in neuroscience. The authors carefully designed experiments and corresponding controls to exclude any confounding factors in the interpretation of neuronal activity in LC axons and cortical neurons. The quality of the data and the rigor of the analysis are important strengths of the study. I believe this study will have an important contribution to the field of system neuroscience by shedding new light on the role of a key neuromodulator. The results provide strong support for the claims of the study. However, I also believe that some results could have been strengthened by providing additional analyses and experimental controls. These points are discussed below.

      Calcium signals in LC axons tend to respond with pupil dilation, air puffs, and locomotion as the authors reported. A more quantitative analysis such as a GLM model could help understand the relative contribution (and temporal relationship) of these variables in explaining calcium signals. This could also help compare signals obtained in the sensory and motor cortical domains. Indeed, the comparison in Figure 2 seems a bit incomplete since only "posterior versus anterior" comparisons have been performed and not within-group comparisons. I believe it is hard to properly assess differences or similarities between calcium signal amplitude measured in different mice and cranial windows as they are subject to important variability (caused by different levels of viral expression for instance). The authors should at the very least provide a full statistical comparison between/within groups through a GLM model that would provide a more systematic quantification.

      To provide a more detailed comparison of responses, we have expanded on the analysis in Figure 2 to include comparative heatmaps from anterior and posterior imaging sites, as well as statistical comparisons of the response curves as a function of time. This shows how similar the responses are in the two regions.

      Beyond this, we are not sure how a regression analysis (GLM or otherwise) would help support the main point we aim to make here. The responses in anterior and posterior regions are similar, which supports a broadcast model of LC function in the cortex, rather than specialized routing of prediction error signals to cortical areas. Linear contributions of the signals are apparent from the stimulus triggered responses, and while non-linear interactions between the different variables are certainly an interesting question, they go beyond the point we aim to make and would also not be captured by a regression analysis. In addition, we have refined our language replacing descriptors of ‘the same’ or ‘indistinguishable’ between the two regions with ‘similar’, to highlight that while we find no evidence of a difference, our analysis does not cover all possible differences that might appear when looking at non-linear interactions.

      Previous studies using stimulations of the locus coeruleus or local iontophoresis of norepinephrine in sensory cortices have shown robust responses modulations (see McBurney-Lin et al., 2019, https://doi.org/10.1016/j.neubiorev.2019.06.009 for a review). The weak modulations observed in this study seem at odds with these reports. Given that the density of ChrimsonR-expressing axons varies across mice and that there are no direct measurements of their activation (besides pupil dilation), it is difficult to appreciate how they impact the local network. How does the density of ChrimsonR-expressing axons compare to the actual density of LC axons in V1? The authors could further discuss this point.

      In terms of estimating the percentage of cortical axons labelled based on our axon density measurements: we refer to cortical LC axonal immunostaining in the literature to make this comparison.

      In motor cortex, an average axon density of 0.07 µm/µm2 has been reported (Yin et al., 2021), and 0.09 µm/µm2 in prefrontal cortex (Sakakibara et al., 2021). Density of LC axons varies by cortical area, with higher density in motor cortex and medial areas than sensory areas (Agster et al., 2013): V1 axon density is roughly 70% of that in cingulate cortex (adjacent to motor and prefrontal cortices) (Nomura et al., 2014). So, we approximate a maximum average axon density in V1 of approximately 0.056 µm/µm2.

      Because these published measurements were made from images taken of tissue volumes with larger z-depth (~ 10 µm) than our reported measurements (~ 1 µm), they appear much larger than the ranges reported in our manuscript (0.002 to 0.007 µm/µm2). We repeated the measurements in our data using images of volumes with 10 µm z-depth, and find that the percentage axons labelled in our study in high ChrimsonR-expressing mice ranges between 0.012 to 0.039 µm/µm2. This corresponds to between 20% to 70% of the density we would expect based on previous work. Note that this is a potentially significant underestimate, and therefore should be used as a lower bound: analyses in the literature use images from immunostaining, where the signal to background ratio is very high. In contrast, we did not transcardially perfuse our mice leading to significant background (especially in the pia/L1, where axon density is high - (Agster et al., 2013; Nomura et al., 2014)), and the intensity of the tdTomato is not especially high. We therefore are likely missing some narrow, dim, and superficial fibers in our analysis.

      We also can quantify how our variance in axonal labelling affects our results: For the dataset in Figure 3, there doesn’t appear to be any correlation between the level of expression and the effect of stimulating the axons on the mismatch or visual flow responses for each animal (Author response image 1), while there is a significant correlation between the level of expression and the pupil dilation, consistent with the dataset shown in Figure 4. Thus, even in the most highly expressing mice, there is no clear effect on average response size at the level of the population. We have added these correlations to the revised manuscript as a new Figure S3.

      **Author response image 1. **

      Correlations between axon density and average effect of laser stimulation on stimulus responses and pupil dilation (data from manuscript Figure 3). Grey points show control mice, blue points show low ChrimsonR-expressing mice, and purple points show high ChrimsonR- expressing mice.

      To our knowledge, there has not yet been any similar experiment reported utilizing local LC axonal optogenetic stimulation while recording cortical responses, so when comparing our results to those in the literature, there are several important methodological differences to keep in mind. The vast majority of the work demonstrating an effect of LC output/noradrenaline on responses in the cortex has been done using unit recordings, and while results are mixed, these have most often demonstrated a suppressive effect on spontaneous and/or evoked activity in the cortex (McBurney-Lin et al., 2019). In contrast to these studies, we do not see a major effect of LC stimulation either on baseline or evoked calcium activity (Figure 3), and, if anything, we see a minor potentiation of transient visual flow onset responses (see also Author response image 2). There could be several reasons why our stimulation does not have the same effect as these older studies:

      1. Recording location: Unit recordings are often very biased toward highly active neurons (Margrie et al., 2002) and deeper layers of the cortex, while we are imaging from layer 2/3 – a layer notorious for sparse activity. In one of the few papers to record from superficial layers, it was been demonstrated that deeper layers in V1 are affected differently by LC stimulation methods compared to more superficial ones (Sato et al., 1989), with suppression more common in superficial layers. Thus, some differences between our results and those in the majority of the literature could simply be due to recording depth and the sampling bias of unit recordings.

      2. Stimulation method: Most previous studies have manipulated LC output/noradrenaline levels by either iontophoretically applying noradrenergic receptor agonists, or by electrically stimulating the LC. Arguably, even though our optogenetic stimulation is still artificial, it represents a more physiologically relevant activation compared to iontophoresis, since the LC releases a number of neuromodulators including dopamine, and these will be released in a more physiological manner in the spatial domain and in terms of neuromodulator concentration. Electrical stimulation of the LC as used by previous studies differs from our optogenetic method in that LC axons will be stimulated across much wider regions of the brain (affecting both the cortex and many of its inputs), and it is not clear whether the cause of cortical response changes is in cortex or subcortical. In addition, electrical LC stimulation is not cell type specific.

      3. Temporal features of stimulation: Few previous studies had the same level of temporal control over manipulating LC output that we had using optogenetics. Given that electrical stimulation generates electrical artifacts, coincident stimulation during the stimulus was not used in previous studies. Instead, the LC is often repeatedly or tonically stimulated, sometimes for many seconds, prior to the stimulus being presented. Iontophoresis also does not have the same temporal specificity and will lead to tonically raised receptor activity over a time course determined by washout times.

      4. State specificity: Most previous studies have been performed under anesthesia – which is known to impact noradrenaline levels and LC activity (Müller et al., 2011). Thus, the acute effects of LC stimulation are likely not comparable between anesthesia and in the awake animal.

      Due to these differences, it is hard to infer why our results differ compared to other papers. The study with the most similar methodology to ours is (Vazey et al., 2018), which used optogenetic stimulation directly into the mouse LC while recording spiking in deep layers of the somatosensory cortex with extracellular electrodes. Like us, they found that phasic optogenetic stimulation alone did not alter baseline spiking activity (Figure 2F of Vazey et al., 2018), and they found that in layers 5 and 6, short latency transient responses to foot touch were potentiated and recruited by simultaneous LC stimulation. While this finding appears more overt than the small modulations we see, it is qualitatively not so dissimilar from our finding that transient responses appear to be slightly potentiated when visual flow begins (Author response image 2). Differences in the degree of the effect may be due to differences in the layers recorded, the proportion of the LC recruited, or the fact anesthesia was used in Vazey et al., 2018.

      Note that we only used one set of stimulation parameters for optogenetic stimulation, and it is always possible that using different parameters would result in different effects. We have now added a discussion on the topic to the revised manuscript.

      In the analysis performed in Figure 3, it seems that red light stimulations used to drive ChrimsonR also have an indirect impact on V1 neurons through the retina. Indeed, figure 3D shows a similar response profile for ChrimsonR and control with calcium signals increasing at laser onset (ON response) and offset (OFF response). With that in mind, it is hard to interpret the results shown in Figure 3E-F without seeing the average calcium time course for Control mice. Are the responses following visual flow caused by LC activation or additional visual inputs? The authors should provide additional information to clarify this result.

      This is a good point. When we plot the average difference between the stimulus response alone and the optogenetic stimulation + stimulus response, we do indeed find that there is a transient increase in response at the visual flow onset (and the offset of mismatch, which is where visual flow resumes), and this is only seen in ChrimsonR-expressing mice (Author response image 2). We therefore believe that these enhanced transients at visual flow onset could be due to the effect of ChrimsonR stimulation, and indeed previous studies have shown that LC stimulation can reduce the onset latency and latency jitter of afferent-evoked activity (Devilbiss and Waterhouse, 2004; Lecas, 2004), an effect which could mediate the differences we see. We have added this analysis to the revised manuscript in Figure 3 and added discussion accordingly.

      **Author response image 2. **

      Difference in responses to visual stimuli caused by optogenetic stimulation, calculated by subtracting the average response when no laser was presented from the average response when the laser was presented concurrent with the visual stimulus. Pink traces show the response difference for ChrimsonR-expressing mice, and grey shows the same for control mice. Black blocks below indicate consecutive timepoints after stimulation showing a significant difference between ChrimsonR and control as determined by hierarchical bootstrapping (p<0.05).

      Some aspects of the described plasticity process remained unanswered. It is not clear over which time scale the locomotion modulation index changes and how many optogenetic stimulations are necessary or sufficient to saturate this index. Some of these questions could be addressed with the dataset of Figure 3 by measuring this index over different epochs of the imaging session (from early to late) to estimate the dynamics of the ongoing plasticity process (in comparison to control mice). Also, is there any behavioural consequence of plasticity/update of functional representation in V1? If plasticity gated by repeated LC activations reproduced visuomotor responses observed in mice that were exposed to visual stimulation only in the virtual environment, then I would expect to see a change in the locomotion behaviour (such as a change in speed distribution) as a result of the repeated LC stimulation. This would provide more compelling evidence for changes in internal models for visuomotor coupling in relation to its behavioural relevance. An experiment that could confirm the existence of the LC-gated learning process would be to change the gain of the visuomotor coupling and see if mice adapt faster with LC optogenetic activation compared to control mice with no ChrimsonR expression. Authors should discuss how they imagine the behavioural manifestation of this artificially-induced learning process in V1.

      Regarding the question of plasticity time course: Unfortunately, owing to the paradigm used in Figure 3, the time course of the plasticity will not be quantifiable from this experiment. This is because in the first 10 minutes, the mouse is in closed loop visuomotor VR experience, undergoing optogenetic stimulation (this is the time period in which we record mismatches). We then shift to the open loop session to quantify the effect of optogenetic stimulation on visual flow responses. Since the plasticity is presumably happening during the closed loop phase, and we have no read-out of the plasticity during this phase (we do not have uncoupled visual flow onsets to quantify LMI in closed loop), it is not possible to track the plasticity over time.

      Regarding the behavioral relevance of the plasticity: The type of plasticity we describe here is consistent with predictive, visuomotor plasticity in the form of a learned suppression of responses to self-generated visual feedback during movement. Intuitive purposes of this type of plasticity would be 1) to enable better detection of external moving objects by suppressing the predictable (and therefore redundant) self-generated visual motion and 2) to better detect changes in the geometry of the world (near objects have a larger visuomotor gain that far objects). In our paradigm, we have no intuitive read-out of the mouse’s perception of these things, and it is not clear to us that they would be reflected in locomotion speed, which does not differ between groups (manuscript Figure S5). Instead, we would need to turn to other paradigms for a clear behavioral read-out of predictive forms of sensorimotor learning: for instance, sensorimotor learning paradigms in the VR (such as those used in (Heindorf et al., 2018; Leinweber et al., 2017)), or novel paradigms that reinforce the mouse for detecting changes in the gain of the VR, or moving objects in the VR, using LC stimulation during the learning phase to assess if this improves acquisition. This is certainly a direction for future work. In the case of a positive effect, however, the link between the precise form of plasticity we quantify in this manuscript and the effect on the behavior would remain indirect, so we see this as beyond the scope of the manuscript. We have added a discussion on this topic to the revised manuscript.

      Finally, control mice used as a comparison to mice expressing ChrimsonR in Figure 3 were not injected with a control viral vector expressing a fluorescent protein alone. Although it is unlikely that the procedure of injection could cause the results observed, it would have been a better control for the interpretation of the results.

      We agree that this indeed would have been a better control. However, we believe that this is fortunately not a major problem for the interpretation of our results for two reasons:

      1. The control and ChrimsonR expressing mice do not show major differences in the effect of optogenetic LC stimulation at the level of the calcium responses for all results in Figure 3, with the exception of the locomotion modulation indices (Figure 3I). Therefore, in terms of response size, there is no major effect compared to control animals that could be caused by the injection procedure, apart from marginally increased transient responses to visual flow onset – and, as the reviewer notes, it is difficult to see how the injection procedure would cause this effect.

      2. The effect on locomotion modulation index (Figure 3I) was replicated with another set of mice in Figure 4C, for which we did have a form of injected control (‘Low ChrimsonR’), which did not show the same plasticity in locomotion modulation index (Figure 4E). We therefore know that at least the injection itself is not resulting in the plasticity effect seen.

      Reviewer #2 (Recommendations For The Authors):

      In experiments where axonal imaging was performed on LC axons, the authors should indicate the number of mice used in addition to the number of Field of View (FoV). Indeed, samples (FoVs) are not guaranteed to be independent as LC axons can span large cortical areas and the same axon can end up in different FoVs. Please provide statistics across mice/cranial windows to confirm the robustness of the results.

      All information requested regarding animal numbers in axonal imaging are provided in the statistical Table S1, as well as in the text and figures (e.g., Figure 2A). Samples will be independent in time (as different FoVs were imaged on different days), but it is indeed possible that axon segments from different FoVs within an animal come from the same axon.

      Averaging across animals greatly reduces statistical power. We have therefore implemented hierarchical bootstrapping instead: bootstrapping first occurs at the level of animal and then at the level of FoV. All p-values that were reported as significant in manuscript remained significant with this test, with no major reduction in significance level, with the exception of Figure S2B, where statistical significance was lost (p = 0.04 with Rank sum, p = 0.07 with hierarchical Bootstrapping). We therefore conclude that sampling from the same animals across days is not responsible for the significance of results reported.

      References

      Agster, K.L., Mejias-Aponte, C.A., Clark, B.D., Waterhouse, B.D., 2013. Evidence for a regional specificityi n the density and distribution of noradrenergic varicosities in rat cortex. Journal of Comparative Neurology 521, 2195–2207. https://doi.org/10.1002/cne.23270

      Attinger, A., Wang, B., Keller, G.B., 2017. Visuomotor Coupling Shapes the Functional Development of Mouse Visual Cortex. Cell 169, 1291-1302.e14. https://doi.org/10.1016/j.cell.2017.05.023

      Devilbiss, D.M., Waterhouse, B.D., 2004. The Effects of Tonic Locus Ceruleus Output on Sensory-Evoked Responses of Ventral Posterior Medial Thalamic and Barrel Field Cortical Neurons in the Awake Rat. J. Neurosci. 24, 10773–10785. https://doi.org/10.1523/JNEUROSCI.1573-04.2004

      He, K., Huertas, M., Hong, S.Z., Tie, X., Hell, J.W., Shouval, H., Kirkwood, A., 2015. Distinct Eligibility Traces for LTP and LTD in Cortical Synapses. Neuron 88, 528–538. https://doi.org/10.1016/j.neuron.2015.09.037

      Heindorf, M., Arber, S., Keller, G.B., 2018. Mouse Motor Cortex Coordinates the Behavioral Response to Unpredicted Sensory Feedback. Neuron 0. https://doi.org/10.1016/j.neuron.2018.07.046

      Hong, S.Z., Mesik, L., Grossman, C.D., Cohen, J.Y., Lee, B., Severin, D., Lee, H.-K., Hell, J.W., Kirkwood, A., 2022. Norepinephrine potentiates and serotonin depresses visual cortical responses by transforming eligibility traces. Nat Commun 13, 3202. https://doi.org/10.1038/s41467-022-30827-1

      Kasamatsu, T., Pettigrew, J.D., 1976. Depletion of brain catecholamines: failure of ocular dominance shift after monocular occlusion in kittens. Science 194, 206–209. https://doi.org/10.1126/science.959850

      Lecas, J.-C., 2004. Locus coeruleus activation shortens synaptic drive while decreasing spike latency and jitter in sensorimotor cortex. Implications for neuronal integration. European Journal of Neuroscience 19, 2519–2530. https://doi.org/10.1111/j.0953-816X.2004.03341.x

      Leinweber, M., Ward, D.R., Sobczak, J.M., Attinger, A., Keller, G.B., 2017. A Sensorimotor Circuit in Mouse Cortex for Visual Flow Predictions. Neuron 95, 1420-1432.e5. https://doi.org/10.1016/j.neuron.2017.08.036

      Mahn, M., Prigge, M., Ron, S., Levy, R., Yizhar, O., 2016. Biophysical constraints of optogenetic inhibition at presynaptic terminals. Nat Neurosci 19, 554–556. https://doi.org/10.1038/nn.4266

      Margrie, T.W., Brecht, M., Sakmann, B., 2002. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch. 444, 491–498. https://doi.org/10.1007/s00424-002-0831-z

      McBurney-Lin, J., Lu, J., Zuo, Y., Yang, H., 2019. Locus coeruleus-norepinephrine modulation of sensory processing and perception: A focused review. Neurosci Biobehav Rev 105, 190–199. https://doi.org/10.1016/j.neubiorev.2019.06.009

      Müller, C.P., Pum, M.E., Amato, D., Schüttler, J., Huston, J.P., De Souza Silva, M.A., 2011. The in vivo neurochemistry of the brain during general anesthesia. Journal of Neurochemistry 119, 419–446. https://doi.org/10.1111/j.1471-4159.2011.07445.x

      Nomura, S., Bouhadana, M., Morel, C., Faure, P., Cauli, B., Lambolez, B., Hepp, R., 2014. Noradrenalin and dopamine receptors both control cAMP-PKA signaling throughout the cerebral cortex. Front Cell Neurosci 8. https://doi.org/10.3389/fncel.2014.00247

      Polack, P.-O., Friedman, J., Golshani, P., 2013. Cellular mechanisms of brain-state-dependent gain modulation in visual cortex. Nat Neurosci 16, 1331–1339. https://doi.org/10.1038/nn.3464

      Raimondo, J.V., Kay, L., Ellender, T.J., Akerman, C.J., 2012. Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission. Nat Neurosci 15, 1102–1104. https://doi.org/10.1038/nn.3143

      Sakakibara, Y., Hirota, Y., Ibaraki, K., Takei, K., Chikamatsu, S., Tsubokawa, Y., Saito, T., Saido, T.C., Sekiya, M., Iijima, K.M., n.d. Widespread Reduced Density of Noradrenergic Locus Coeruleus Axons in the App Knock-In Mouse Model of Amyloid-β Amyloidosis. J Alzheimers Dis 82, 1513–1530. https://doi.org/10.3233/JAD-210385

      Sato, H., Fox, K., Daw, N.W., 1989. Effect of electrical stimulation of locus coeruleus on the activity of neurons in the cat visual cortex. Journal of Neurophysiology. https://doi.org/10.1152/jn.1989.62.4.946

      Seol, G.H., Ziburkus, J., Huang, S., Song, L., Kim, I.T., Takamiya, K., Huganir, R.L., Lee, H.-K., Kirkwood, A., 2007. Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity. Neuron 55, 919–929. https://doi.org/10.1016/j.neuron.2007.08.013

      Shepard, K.N., Liles, L.C., Weinshenker, D., Liu, R.C., 2015. Norepinephrine is necessary for experience-dependent plasticity in the developing mouse auditory cortex. J Neurosci 35, 2432–2437.https://doi.org/10.1523/JNEUROSCI.0532-14.2015

      Vazey, E.M., Moorman, D.E., Aston-Jones, G., 2018. Phasic locus coeruleus activity regulates cortical encoding of salience information. Proceedings of the National Academy of Sciences 115, E9439– E9448. https://doi.org/10.1073/pnas.1803716115

      Yin, X., Jones, N., Yang, J., Asraoui, N., Mathieu, M.-E., Cai, L., Chen, S.X., 2021. Delayed motor learning in a 16p11.2 deletion mouse model of autism is rescued by locus coeruleus activation. Nat Neurosci 24, 646–657. https://doi.org/10.1038/s41593-021-00815-7

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Hearing and balance rely on specialized ribbon synapses that transmit sensory stimuli between hair cells and afferent neurons. Synaptic adhesion molecules that form and regulate transsynaptic interactions between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) are crucial for maintaining auditory synaptic integrity and, consequently, for auditory signaling. Synaptic adhesion molecules such as neurexin-3 and neuroligin-1 and -3 have recently been shown to play vital roles in establishing and maintaining these synaptic connections ( doi: 10.1242/dev.202723 and DOI: 10.1016/j.isci.2022.104803). However, the full set of molecules required for synapse assembly remains unclear.

      Karagulan et al. highlight the critical role of the synaptic adhesion molecule RTN4RL2 in the development and function of auditory afferent synapses between IHCs and SGNs, particularly regarding how RTN4RL2 may influence synaptic integrity and receptor localization. Their study shows that deletion of RTN4RL2 in mice leads to enlarged presynaptic ribbons and smaller postsynaptic densities (PSDs) in SGNs, indicating that RTN4RL2 is vital for synaptic structure. Additionally, the presence of "orphan" PSDs-those not directly associated with IHCs-in RTN4RL2 knockout mice suggests a developmental defect in which some SGN neurites fail to form appropriate synaptic contacts, highlighting potential issues in synaptic pruning or guidance. The study also observed a depolarized shift in the activation of CaV1.3 calcium channels in IHCs, indicating altered presynaptic functionality that may lead to impaired neurotransmitter release. Furthermore, postsynaptic SGNs exhibited a deficiency in GluA2/3 AMPA receptor subunits, despite normal Gria2 mRNA levels, pointing to a disruption in receptor localization that could compromise synaptic transmission. Auditory brainstem responses showed increased sound thresholds in RTN4RL2 knockout mice, indicating impaired hearing related to these synaptic dysfunctions.

      The findings reported here significantly enhance our understanding of synaptic organization in the auditory system, particularly concerning the molecular mechanisms underlying IHC-SGN connectivity. The implications are far-reaching, as they not only inform auditory neuroscience but also provide insights into potential therapeutic targets for hearing loss related to synaptic dysfunction.

      We would like to thank the reviewer for appreciating the work and the advice that helped us to further improve the manuscript. We have carefully addressed all concerns, please see our point-per-point response below and the revised manuscript.

      Reviewer #2 (Public review):

      Summary:

      Kargulyan et al. investigate the function of the transsynaptic adhesion molecule RTN4RL2 in the formation and function of ribbon synapses between type I spiral ganglion neurons (SGNs) and inner hair cells. For this purpose, they study constitutive RTN4RL2 knock-out mice. Using immunohistochemistry, they reveal defects in the recruitment of protein to ribbon synapses in the knockouts. Serial block phase EM reveals defects in SGN projections in mutants. Electrophysiological recordings suggest a small but statistically significant depolarized shift in the activation of Cav1.3 Ca<sup>2+</sup> channels. Auditory thresholds are also elevated in the mutant mice. The authors conclude that RTN4RL2 contributes to the formation and function of auditory afferent synapses to regulate auditory function.

      We would like to thank the reviewer for appreciating the work and the advice that helped us to further improve the manuscript. We have carefully addressed all concerns, please see our point-per-point response below and the revised manuscript.

      Strengths:

      The authors have excellent tools to analyze ribbon synapses.

      Weaknesses:

      However, there are several concerns that substantially reduce my enthusiasm for the study.

      (1) The analysis of the expression pattern of RTN4RL2 in Figure 1 is incomplete. The authors should show a developmental time course of expression up into maturity to correlate gene expression with major developmental milestones such as axon outgrowth, innervation, and refinement. This would allow the development of models supporting roles in axon outgrowth versus innervation or both.

      We agree that it would be valuable to show the developmental time course of RTN4RL2 expression. In response to the reviewer’s comment, we are providing RNAscope data from developmental ages E11.5, E12.5 and E16 in Figure 1. RTN4RL2 shows expression at E11.5/E12.5 both in the spiral ganglion and hair cell region, with first onset in the hair cells. We conclude that RTN4RL2 is expressed highest during fiber growth at embryonic stages and is downregulated during postnatal development maintaining low levels of expression during adulthood.

      (2) It would be important to improve the RNAscope data. Controls should be provided for Figure 1B to show that no signal is observed in hair cells from knockouts. The authors apparently already have the sections because they analyzed gene expression in SGNs of the knock-outs (Figure 1C).

      In Figure 1C gene expression in SGNs was assessed at p40, while the expression in hair cells is provided for p1 animals. Unfortunately, we do not have KO controls for p1 animals. However, as indicated in our manuscript, previously published RNA expression datasets do find RTN4RL2 expression in hair cells. Therefore, we think it is unlikely that our results are unspecific.

      (3) It is unclear from the immunolocalization data in Figure 1D if all type I SGNs express RTN4RL2. Quantification would be important to properly document the presence of RTN4RL2 in all or a subset of type I SGNs. If only a subset of SGNs express RTN4RL2, it could significantly affect the interpretation of the data. For example, SGNs selectively projecting to the pillar or modiolar side of hair cells could be affected. These synapses significantly differ in their properties.

      According to already published single cell RNAseq dataset from Shrestha et al., 2018, RTN4RL2 expression does not seem to show a clear type I SGN subtype specificity (Author response image 1). In response to the reviewer’s comment, we have further performed anti-Parvalbumin (PV) and anti-calretinin (CR) immunostainings in mid-modiolar cryosections of RTN4RL2<sup>+/+</sup> and RTN4RL2<sup>-/-</sup> cochleae. Parvalbumin was chosen to label all SGNs and CALB2 was chosen primarily as a type Ia SGN marker (Sun et al., 2018). We present the data from all analyzed samples below (figure 2 of this rebuttal letter). Cell segmentation masks of PV positive cells were obtained using Cellpose 2.0 and the average CR intensity was calculated in those masks. While the distributions of CR intensity and the ratio of CR and PV intensities are slightly shifted in RTN4RL2<sup>-/-</sup> cochleae, we take the data to suggest that the composition of the spiral ganglion by molecular type I SGN subtypes is largely unchanged in RTN4RL2<sup>-/-</sup> mice.

      Author response image 1.

      Author response image 1 cites single cell RNAseq data of Brikha R Shrestha, Chester Chia, Lorna Wu, Sharon G Kujawa, M Charles Liberman, Lisa V Goodrich. Sensory neuron diversity in the inner ear is shaped by activity. Cell. 2018 Aug 23; 174(5):1229-1246.e17. doi: 10.1016/j.cell/2018.07.007

      Author response image 2.

      Calretinin intensity distribution in spiral ganglion of RTN4RL2<sup>+/+</sup> and RTN4RL2<sup>-/-</sup> mice. (A) Mid-modiolar cochlear cryosections from RTN4RL2<sup>+/+</sup> (top) and RTN4RL2<sup>-/-</sup> (bottom) mice immunolabeled against Parvalbumin (PV) and Calretinin (CR). Scale bar = 20 mm. (B) Distribution of CR intensity in PV positive cells (N = 3 for each genotype). (C) Distribution of the ratio of CR and PV intensities (N = 3 for each genotype).

      (4) It is important to show proper controls for the RTN4RL2 immunolocalization data to show that no staining is observed in knockouts.

      Unfortunately, our recent attempts to perform RTN4RL2 immunostainings on cryosections failed and therefore, we decided to remove the RTNr4RL2 immunostainings from Figure 1. We have adjusted the results section accordingly.

      (5) The authors state in the discussion that no staining for RTN4RL2 was observed at synaptic sites. This is surprising. Did the authors stain multiple ages? Was there perhaps transient expression during development? Or in axons indicative of a role in outgrowth, not synapse formation?

      We thank the reviewer for the comment. We have now tried RTN4RL2 immunostainings on cryosections at several developmental stages, but unfortunately this time did not succeed to obtain reproducible and reliable results. Therefore, we decided to also remove the previous immunostainings from Figure 1. We have adjusted the results section as well as removed our statement of not detecting RTN4RL2 near the synaptic regions from the discussion.

      (6) In Figure 2 it seems that images in mutants are brighter compared to wildtypes. Are exposure times equivalent? Is this a consistent result?

      Yes, the samples were prepared in parallel, imaged and analyzed in the same manner.

      No, we did not observe consistent differences in brightness and also did not find it in the exemplary images of figure 2.

      (7) The number of synaptic ribbons for wildtype in Figure 2 is at 10/IHCs, and in Figure 2 Supplementary Figure 2 at 20/IHCs (20 is more like what is normally reported in the literature). The value for mutant similarly drastically varies between the two figures. This is a significant concern, especially because most differences that are reported in synaptic parameters between wild-type and mutants are far below a 2-fold difference.

      The key message is that there is no difference in the numbers of ribbons and synapses between the genotypes for the cochlear apex (~10 ribbons/IHCs, Figure 2 and Figure 2-figure supplement 2) and the mid- and base of the cochlea (more ribbons/IHCs, Figure 2-figure supplement 2). Figure 2-figure supplement 3 (now Figure 3) shows that there is a massive reduction of postsynaptic GluA2, while both Figure 2 and Figure 2-figure supplement 2 indicate that the number synapses is normal. These are two different data sets and while we closely collaborated and also shared the Moser lab protocols and analysis routines, we agree that there is a difference in the absolute synapse count, which most likely was an observer difference and different choice of tonotopic positions of analysis. In Figure 2 only the apical hair cells have been analyzed. The Moser lab, since establishing the immunofluorescence-based quantification of synapse number (Khimich et al., 2005) reported tonotopic differences in synapse counts (focus of Meyer et al., 2009 and reported by others: e.g. Kujawa and Liberman, 2009): apical and basal IHCs lower synapse numbers than mid-cochlear IHCs.

      (8) The authors report differences in ribbon volume between wild-type and mutant. Was there a difference between the modiolar/pillar region of hair cells? It is known that synaptic size varies across the modiolar-pillar axis. Maybe smaller synapses are preferentially lost?

      We thank the reviewer for the comment. Unfortunately, our already acquired datasets from 3-week-old mice did not allow us to check whether the previously described modiolar-pillar gradient of the ribbon size was collapsed in RTN4RL2<sup>-/-</sup> mice due to the not so well-preserved morphology of the inner hair cells in our preparations. However, since the number of the ribbons is not changed in the RTN4RL2 KO mice, we do not think that the increase in the ribbon size is due to the loss of small ribbons. In response to the reviewers comment we have analyzed the modiolar-pillar gradient of the ribbon size in IHCs of middle turn of the cochlea form a newly acquired dataset of 14-week-old mice. We took the fluorescence intensity of Ctbp2 positive puncta as a proxy for the ribbon size. In these older mice we found a preserved modiolar-pillar gradient of the ribbon size (larger ribbons at the modiolar side). We summarized the results in the below Author response image 3.

      Author response image 3.

      The modiolar-pillar gradient of ribbon size is preserved in RTN4RL2<sup>-/-</sup> IHCs. (A) Maximum intensity projections of approximately 2 IHCs stained against Vglut3 and Ctbp2 from 14-week-old RTN4RL2<sup>+/+</sup> (left) and RTN4RL2<sup>-/-</sup> (right) mice. Scale bar = 5 mm. (B) Synaptic ribbons on the modiolar side show higher fluorescence intensity than the ones on the pillar side of mid-cochlear IHCs in both RTN4RL2<sup>+/+</sup> (left, N=2) RTN4RL2<sup>-/-</sup> (right, N=2) mice. (C) Average fluorescence intensity of modiolar ribbons per IHC is higher than the average fluorescence intensity of pillar ribbons (paired t-test, p < 0.001).

      (9) The authors show in Figure 2 - Supplement 3 that GluA2/3 staining is absent in the mutants. Are GluA4 receptors upregulated? Otherwise, synaptic transmission should be abolished, which would be a dramatic phenotype. Antibodies are available to analyze GluA4 expression, the experiment is thus feasible. Did the authors carry out recordings from SGNs?

      In response to the reviewer’s comment, we have performed GluA4 stainings in RTN4LR2<sup>-/-</sup> mice and did not detect any GluA4 positive signal in the mutants (new Figure 3-figure supplement 1). Unfortunately, our animal breeding license was expired at the time we received the reviews and that is why our results are from 14-week-old animals. To verify that the absence of GluA4 signal is not due to potential PSD loss in 14-week-old RTN4RL2<sup>-/-</sup>, we have additionally performed anti-Ctbp2, anti-Homer1 and anti-Vglut3 stainings in 14-week-old animals. Despite the reduced number, we still observed juxtaposing pre- and postsynaptic puncta. We assume that the reviewer asks for patch-clamp recordings from SGNs, which are, as we are confident the reviewer is aware of, technically very challenging and beyond the scope of the present study but an important objective for future studies.  In response to the reviewers comment we have added a statement to the discussion pointing to these patch-clamp recordings from SGNs as important objective for future studies.

      (10) The authors use SBEM to analyze SGN projections and synapses. The data suggest that a significant number of SGNs are not connected to IHCs. A reconstruction in Figure 3 shows hair cells and axons. It is not clear how the outline of hair cells was derived, but this should be indicated. Also, is this a defect in the formation of synapses and subsequent retraction of SGN projections? Or could RTN4RL2 mutants have a defect in axonal outgrowth and guidance that secondarily affects synapses? To address this question, it would be useful to sparsely label SGNs in mutants, for example with AAV vectors expression GFP, and to trace the axons during development. This would allow us to distinguish between models of RTN4RL2 function. As it stands, it is not clear that RTN4RL2 acts directly at synapses.

      We agree with the reviewer on the value of a developmental study of afferent connectivity but consider this beyond the scope of the present study. In response to the reviewer's comment, we have replaced the IHC outlines with volume-reconstructed IHCs in Figure 3B (now Figure 4B). Moreover, as shown in Figure 3F (now Figure 4F), most if not all type-I SGNs (both with and without ribbon) were unbranched in the mutants just like in wildtype (also shown for a larger sample in Hua et al., 2021), arguing against morphological abnormality during development.

      (11) The authors observe a tiny shift in the operation range of Ca<sup>2+</sup> channels that has no effect on synaptic vesicle exocytosis. It seems very unlikely that this difference can explain the auditory phenotype of the mutant mice.

      We assume that the statement refers to the normal exocytosis of mutant IHCs at the potential of maximal Ca<sup>2+</sup> influx (Figure 3G and H, now Figure 4G and H). We would like to note that this experiment was performed to probe for a deficit of synapse function beyond that of the Ca<sup>2+</sup> channel activation, but did not address the impact of the altered voltage—dependence of Ca<sup>2+</sup> channel activation. In response to the reviewer’s comment, we have now added further discussion to more clearly communicate that for the range of receptor potentials achieved near sound threshold we expect impaired IHC exocytosis as the Ca<sup>2+</sup> channels require slightly more depolarization for activation in the mutant IHCs.

      (12) ABR recordings were conducted in whole-body knockouts. Effects on auditory thresholds could be a secondary consequence of perturbation along the auditory pathway. Conditional knockouts or precisely designed rescue experiments would go a long way to support the authors' hypothesis. I realize that this is a big ask and floxed mice might not be available to conduct the study.

      Thanks for this helpful comment and, indeed, unfortunately, we do not have conditional KO mice at our disposal. We totally agree that this will be important also for clarifying the role of IHC vs. SGN expression of RTN4RL2. In response to the reviewer’s comment, we now discussed the shortcoming of using constitutive RTN4RL2<sup>-/-</sup> mice and added this important experiment on IHC and SGN specific deletion of RTN4RL2 as an objective of future studies.

      Reviewer #3 (Public review):

      In this study, the authors used RNAscope and immunostaining to confirm the expression of RTN4RL2 RNA and protein in hair cells and spiral ganglia. Through RTN4RL2 gene knockout mice, they demonstrated that the absence of RTN4RL2 leads to an increase in the size of presynaptic ribbons and a depolarized shift in the activation of calcium channels in inner hair cells. Additionally, they observed a reduction in GluA2/3 AMPA receptors in postsynaptic neurons and identified additional "orphan PSDs" not paired with presynaptic ribbons. These synaptic alterations ultimately resulted in an increased hearing threshold in mice, confirming that the RTN4RL2 gene is essential for normal hearing. These data are intriguing as they suggest that RTN4RL2 contributes to the proper formation and function of auditory afferent synapses and is critical for normal hearing. However, a thorough understanding of the known or postulated roles of RTN4Rl2 is lacking.

      We would like to thank the reviewer for appreciating the work and the advice that helped us to further improve the manuscript. We have carefully addressed all concerns, please see our point-per-point response below and the revised manuscript.

      While the conclusions of this paper are generally well supported by the data, several aspects of the data analysis warrant further clarification and expansion.

      (1) A quantitative assessment is necessary in Figure 1 when discussing RNA and protein expression. It would be beneficial to show that expression levels are quantitatively reduced in KO mice compared to wild-type mice. This suggestion also applies to Figure 2-supplement 3.D, which examines expression levels.

      The processing of our control and KO samples for RNAscope was not strictly done in parallel and therefore we would like to refrain from quantitative comparison.

      (2) In Figure 2, the authors present a morphological analysis of synapses and discuss the presence of "orphan PSDs." I agree that Homer1 not juxtaposed with Ctbp2 is increased in KO mice compared to the control group. However, in quantifying this, they opted to measure the number of Homer1 juxtaposed with Ctbp2 rather than directly quantifying the number of Homer1 not juxtaposed with Ctbp2. Quantifying the number of Homer1 not juxtaposed with Ctbp2 would more clearly represent "orphan PSDs" and provide stronger support for the discussion surrounding their presence.

      We appreciate the reviewer’s comment. We did not perform this analysis primarily because “orphan” Homer1 puncta, as seen in our immunostainings, are distributed away from hair cells in diverse morphologies and sizes. This makes distinguishing them from unspecific immunofluorescent spots—also present in wild-type samples—challenging. In response to the reviewer’s request, we analyzed the number of “orphan” Homer1 puncta in our previously acquired RTN4RL2<sup>+/+</sup> and RTN4RL2<sup>-/-</sup> samples. Using the surface algorithm in Imaris software, we applied identical parameters across all samples to create surfaces for Homer1-positive puncta (total Homer1 puncta). We quantified “orphan” Homer1 puncta as the difference between total and ribbon-juxtaposing Homer1 puncta and normalized this number to the IHC count. Our results showed 4.3 vs. 26.8 “orphan” Homer1 puncta per IHC in RTN4RL2<sup>+/+</sup> and RTN4RL2<sup>-/-</sup> samples, respectively. We note that variations in acquired volumes between samples may introduce confounding effects.

      (3) In Figure 2, Supplementary 3, the authors discuss GluA2/3 puncta reduction and note that Gria2 RNA expression remains unchanged. However, there is an issue with the lack of quantification for Gria2 RNA expression. Additionally, it is noted that RNA expression was measured at P4. While the timing for GluA2/3 puncta assessment is not specified, if it was assessed at 3 weeks old as in Figure 2's synaptic puncta analysis, it would be inappropriate to link Gria2 RNA expression with GluA2/3 protein expression at P4. If RNA and protein expression were assessed at P4, please indicate this timing for clarity.

      GluA2/3 immunostainings were performed in 1 to 1.5-month-old animals. We apologize for not indicating this before and have now included it in Figure 3 legend. The processing of our control and KO samples for RNAscope was not strictly done in parallel and therefore we would like to refrain from quantitative comparison.

      (4) In Figure 3, the authors indicate that RTN4RL2 deficiency reduces the number of type 1 SGNs connected to ribbons. Given that the number of ribbons remains unchanged (Figure 2), it is important to clearly explain the implications of this finding. It is already known that each type I SGN forms a single synaptic contact with a single IHC. The fact that the number of ribbons remains constant while additional "orphan PSDs" are present suggests that the overall number of SGNs might need to increase to account for these findings. An explanation addressing this would be helpful.

      In Figure 3 (now Figure 4), we found additional type-1 SGNs that are unconnected to IHC, in good agreement with “orphan PSDs” observed under the light microscope. Indeed, we also confirmed monosynaptic, unbranched fiber morphology (Figure 3F, now Figure 4F). Together, these results imply about a 20% increase in the overall number of SGNs, which however we did not observe in SGN soma counting.

      (5) In Figure 4F and 5Cii, could you clarify how voltage sensitivity (k) was calculated? Additionally, please provide an explanation for the values presented in millivolts (mV).

      Voltage sensitivity (k) was calculated as the slope of the Boltzmann fit to the fractional activation curves: , Where G is conductance, G<sub>max</sub> is the maximum conductance, V<sub>m</sub> is the membrane potential, V<sub>half</sub> is the voltage corresponding to the half maximal activation of Ca<sup>2+</sup> channels and k (slope of the curve) is the voltage sensitivity of Ca<sup>2+</sup> channel activation. We have now added this to our Materials and Methods section.

      (6) In Figure 6, the author measured the threshold of ABR at 2-4 months old. Since previous figures confirming synaptic morphology and function were all conducted on 3-week-old mice, it would be better to measure ABR at 3 weeks of age if possible.

      ABR measurements for comparisons in a cohort of age-matched mice require fully developed individuals. 3 weeks is the minimum age that is regarded for a mature ear. However, variation in developmental differences among one litter is very frequent that affects normal hearing thresholds. From our own experience we do not regard the ear fully functional before 6 weeks of age. Then hearing thresholds are lowest indicating full functionality. Since the C57BL/6 background strain has a genetic defect in the Cadherin 23-coding gene (Cdh23) at the ahl locus of mouse chromosome 10 these mice exhibit early onset and progression of age-related hearing loss starting at 5–8 months (Hunter & Willott, 1987). Therefore, we chose a “safe” time window for stable and unaffected ABR recordings of 2-4 months to provide most representative data.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Please include information on the validation of all the antibodies used in this study, or reference the relevant work where the antibodies were previously validated.

      In response to the reviewer’s comment, we have now included a table listing all primary antibodies used in this study. Where possible, we provide references for knockout (KO) validation. Otherwise, we refer to the manufacturer’s information, as provided in the respective datasheets.

      (2) Figure 2 illustrates the pre- and postsynaptic changes observed in RTN4RL2 knockout (KO) mice. Please specify the age of the mice and the cochlear region depicted and analyzed in Figure 2.

      We thank the reviewer for the comment. The IHCs of apical cochlear region were analyzed in mice at 3 weeks of age. We have now added this to the figure legend.

      (3) The discovery of orphan SGN neurites in RTN4RL2 KO mice is particularly intriguing. I wonder whether the additional Homer1-positive puncta illustrated in Figure 2 are present in these orphan SGN neurites, which would suggest that they may be functional. Conducting immunohistochemistry (IHC) labeling for type I SGN neurites using an anti-Tuj1 antibody, along with Homer1, would help localize the additional Homer1 puncta shown in Figure 2. Additionally, the "extra" Homer1 puncta appears less striking in the data presented in Figure 2-Supplement 2. Quantifying the number of Homer1 puncta in wild-type versus KO mice across different cochlear regions will help visualize the Figure 2-Supplement 2 data and relate the presence of extra neurites to the increased auditory brainstem response (ABR) thresholds observed at all frequencies.

      We thank the reviewer for the comment and we agree that localizing orphan PSDs on the SGN neurites would be very useful. Unfortunately, the animal breeding license in the Göttingen lab had expired. At the time we received the reviews we only had access to 14-week-old animals and could not perform the stainings in animals which would have comparable age range to the rest of the study (3-4 weeks). The phenotype of extra Homer1 puncta was not as drastic in 14-week-old animals as it was in previously stained 3-week-old animals. Nevertheless, we still tried NF200, Homer1 and Vglut3 immunostainings in 14-week-old animals. We present representative single imaging planes of NF200, Homer1 and Vglut3 stainings in Author response image 4. Additionally, we provide exemplary images from 7-week-old RTN4RL2<sup>-/-</sup>, where it looks like that the orphan Homer1 puncta are found on calretinin positive neurites.

      Author response image 4.

      Attempts to localize “orphan” Homer1 patches on type I SGN neurites. (A) Single exemplary imaging planes of apical IHC region from RTN4RL2<sup>+/+</sup> (left) and RTN4RL2<sup>-/-</sup> (right) mice immunolabeled against NF200, Vglut3 and Homer1. White arrows show putative “orphan” Homer1 puncta on NF200 positive neurites. Scale bar = 5 mm. (B) Maximum intensity projections of representative confocal stacks of IHCs from RTN4RL2<sup>-/-</sup> mice immunolabeled against Calretinin and Homer1. Scale bars = 5 mm. White arrows show possible “orphan” Homer1 puncta on Calretinin positive boutons.

      (4) The authors noted a reduction in the number of GluA2/3-positive puncta in RTN4RL2 KOs, as shown in Figure 2-Supplement 3. However, in the Results section (page 5, line 124), it is unclear whether the authors refer to a reduction in fluorescence intensity or the number of puncta. Please clarify this.

      We thank the reviewer for the comment. We refer to the number and have now added this to the manuscript.

      (5) I find it particularly interesting that, despite the presence of smaller but synaptically engaged Homer1-positive SGN neurites, these appear to lack or present a reduction in the number of GluA2/3 puncta, and that GluA2/3 puncta are observed in non-ribbon juxtaposed neurites. Therefore, I suggest including GluA2/3 (Fig2 supplement 3) data in the main figure. It would be valuable to determine whether the orphan neurites express both Homer1 and GluA2/3, which could indicate that the defect is not solely due to reduced GluA2/3 expression at the formed synapses, but also to the presence of additional orphan synapses. I would also mention in the discussion how the phenotype of the RTN4L2 KO compares to the GluA2/3 KO and if the lack of GluA2/3 at the AZ could explain the increase in ABR threshold. Quantification of GluA2/3 puncta at the apical, middle, and basal region would also help understand the auditory phenotype of the KO mice.

      We have changed Figure2-figure supplement 3 to become a main figure (Figure 3) based on the recommendation of the reviewer. We agree, that it would be valuable to perform immunohistochemistry combining anti-GluA2/3 and anti-Homer1 and anti-Ctbp2 antibodies to see if the “orphan” Homer1 patches house GluA2/3 not juxtaposing synaptic ribbons. Unfortunately, as mentioned above, due to the expiration of our animal breeding and experimentation licenses we did not manage to do those experiments. We have however performed stainings with anti-GluA4 antibodies and could not detect GluA4 signal in RTN4RL2<sup>-/-</sup> mice (Figure 3-figure supplement 1). This potentially could explain the more drastic ABR threshold elevation in RTN4RL2<sup>-/-</sup> mice compared to e.g. GluA3 KO mice. We have now made this clearer in our discussion.

      (6) I suggest considering the use of color-blind friendly palettes for figures and graphs in this manuscript to enhance clarity and ensure that the findings are accessible to a wider audience and improve the overall effectiveness of the presentation. Please use color-blind-friendly schemes in Figure 1 and Figure 2 Supplement 3.

      Done.

      (7) Could you please explain what "XX {plus minus} Y, SD = W" means in the figure legends?

      Mean ± SEM (standard error of the mean), SD (standard deviation) are indicated in the legends. In response to the reviewer comment we have now added an explanation in the Materials and Methods –> Data analysis and statistics section.

      (8) Please include information about the ear tested (left or right or both).

      Both ears were tested. Since there was no significant difference between right and left ear we did not further consider this factor. We will add this fact more precisely in the Material and methods section.

      Reviewer #3 (Recommendations for the authors):

      (1) Line 90: Why not show this control, it is a nice control.

      Unfortunately, our recent attempts to perform RTN4RL2 immunostaining on cryosections were unsuccessful. Therefore, we decided to remove RTN4RL2 immunostaining from Figure 1 and have adjusted the results section accordingly.

      (2) Line 94: Please provide a reference for these interactions.

      Done.

    1. Author Response:

      Points from reviewer 1 (Public Review):

      In this manuscript, Yong and colleagues link perturbations in lysosomal lipid metabolism with the generation of protein aggregates resulting from proteosome inhibition.

      We apologize for any confusion in the explanation of the results. We found that both proteasome inhibition and, independently, perturbations to lysosomal lipid metabolism lead to accumulation of protein aggregates in the lysosome. There was no evidence of proteasome inhibition in the context of lysosomal lipid perturbations (Figure 4J).

      Despite using various tools of lysosomal function, acidity, permeability, etc, the authors couldn't identify the link between lysosomal lipid metabolism and protein aggregate formation.

      Indeed, despite testing numerous mechanistic hypotheses, we have yet to explain how perturbation of lysosomal lipid metabolism causes protein aggregates. However, we have demonstrated that lipids are both necessary (via epistasis and serum delipidation) and sufficient (media supplementation) to drive these phenotypes.

      Although this work is interesting and thought-provoking, their approach to identify novel pathways involved in proteostasis is limited and this weakens the contribution of the paper in its current form.

      We are glad the reviewer found the work to be thought-provoking. As a fundamental cellular process critical for longevity, we agree that the connections made here between lipids, lysosomes and protein aggregates are interesting and broaden the impact of cellular health on proteostasis. Though we have falsified multiple hypotheses for how perturbation of lysosomal lipid metabolism could influence protein aggregation, we agree that a major weakness of the current work is our limited mechanistic understanding of this process. We hope that by engaging the thoughtful and creative eLife readership, novel mechanistic hypotheses will emerge.

      Points from reviewer 2 (Public Review):

      This might be too much of an ask, but they should go further in excluding one very attractive alternative model: effects on proteasome activity. This explanation should be addressed definitively because the transcription factor that regulates proteasome subunit gene expression (Nrf1/NFE2L1) is processed in the ER and is therefore well placed to be influenced by membrane conditions, and because it is shown here that proteasome inhibition increase ProteoStat puncta.

      We appreciate the constructive suggestion to examine loss of proteasome expression as a relevant mechanism linking cellular dyslipidemia with proteostasis impairment. We analyzed the genome-wide perturb-seq data from Replogle et al. [1], which was performed in K562 cells cultured under similar conditions to our screen. As expected, perturbation of Nrf1/NFE2L1 reduced expression of proteasome subunits, whereas perturbation of proteasome subunits that increased proteostat staining (e.g. PSMD2, PSMD13) homeostatically increased expression of multiple proteasome subunits. In contrast, other top hits, including those related to lipid-related perturbations (e.g. MYLIP, PSAP) did not reduce the expression of genes encoding the proteasome (Author response image 1).

      Author response image 1.

      The relative expression of genes encoding proteasomal subunits for representative genes was re-plotted from genome-wide perturb-seq data in K562 cells [1]. Shown are hit genes that increase Proteostat staining along with non-targeting controls and the positive control gene NFE2L1. Proteasome expression was induced by proteasome impairment (PSMD2 and PSMD13) and repressed by NFE2L1 knockdown. Other hit genes related to lipid metabolism and lysosome function did not consistently impact the expression of proteasome subunits.

      The authors address proteasome activity only by using a dye that is not referenced. Here a much more solid answer is needed.

      We thank Reviewer #2 for bringing to our attention the missing reference for the proteasome activity probe we used (Me4BodipyFL-Ahx3Leu3VS). Both this probe [2] and its close derivative [3], BodipyFL-Ahx3Leu3VS, were fully characterized previously. We’ll include these references in the revision. In our hands, this probe behaved as expected under MG132 and Bortezomib treatment when quantified by flow cytometry (Fig. 4I), and by in-blot fluorescence scan (data will be included as supplementary in the revision). We further observed that HMGCR KD increased proteasome activity, consistent with what’s suggested by current literature. This validated our use of this probe and strongly suggested that proteasome activity was not perturbed by impaired lipid homeostasis.

      In general, most conclusions in the paper rely essentially solely on ProteoStat assays. The entire study would be greatly strengthened if the authors incorporated biochemical or other modalities to substantiate their results.

      We agree that orthogonal characterization of proteostasis impairment would be valuable. We chose the ProteoStat stain as a reporter of proteostasis because it is capable of integrating the aggregation states of multiple endogenously expressed proteins, and in the absence of exogenous stressors such as the overexpression of aggregation-prone proteins. With aging, a context where ProteoStat staining increases, hundreds of proteins exhibit reduced solubility [4], thus motivating the focus on endogenously expressed proteins. Despite the biochemical limitations, we think our work is differentiated from published screens focused on specific metastable proteins by our focus on regulators of endogenous proteostasis.

      The presentation would be improved greatly if the authors provided diagrams illustrating the pathways implicated in their results, as well as their models.

      We thank Reviewer #2 for the helpful suggestion. We have provided the suggested diagrams below (Author response image 2).

      Author response image 2.

      Mechanistic models linking screen hits to accrual of lysosomal protein aggregates, related to Figure 4. Perturbations that increased cholesterol and sphingolipid levels were evaluated for effects on lysosomal pH, lysosomal proteolytic capacity, lysosomal membrane permeability, lipid peroxidation and proteasome activity. None of these mechanisms appear to play a causal role in protein aggregation in response to elevated lipids.

      Author Response References

      1. Replogle, J. M. et al. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell 185, 2559-2575.e28 (2022).

      2. Berkers, C. R. et al. Probing the Specificity and Activity Profiles of the Proteasome Inhibitors Bortezomib and Delanzomib. Mol Pharmaceut 9, 1126–1135 (2012).

      3. Berkers, C. R. et al. Profiling Proteasome Activity in Tissue with Fluorescent Probes. Mol. Pharmaceutics 4, 739–748 (2007).

      4. David, D. C. et al. Widespread Protein Aggregation as an Inherent Part of Aging in C. elegans. Plos Biol 8, e1000450 (2010).

    1. eLife Assessment

      This study provides important insights into the role of polyUbiquitination in neurodegenerative diseases, elucidating how pUb promotes neurodegeneration by affecting proteasomal function. The findings not only offer a new perspective on the pathophysiology of neurodegenerative diseases but also provide potential targets for developing new therapeutic strategies. The experiments in the revised submission provide solid evidence to support the conclusions.

    2. Reviewer #1 (Public review):

      Summary:

      The manuscript discusses the role of phosphorylated ubiquitin (pUb) by PINK1 kinase in neurodegenerative diseases. It reveals that elevated levels of pUb are observed in aged human brains and those affected by Parkinson's disease (PD), as well as in Alzheimer's disease (AD), aging, and ischemic injury. The study shows that increased pUb impairs proteasomal degradation, leading to protein aggregation and neurodegeneration. The authors also demonstrate that PINK1 knockout can mitigate protein aggregation in aging and ischemic mouse brains, as well as in cells treated with a proteasome inhibitor. While this study provided some interesting data, several important points should be addressed before being further consideration.

      Strengths:

      (1) Reveals a novel pathological mechanism of neurodegeneration mediated by pUb, providing a new perspective on understanding neurodegenerative diseases.

      (2) The study covers not only a single disease model but also various neurodegenerative diseases such as Alzheimer's disease, aging, and ischemic injury, enhancing the breadth and applicability of the research findings.

      Comments on revisions:

      This study, through a systematic experimental design, reveals the crucial role of pUb in forming a positive feedback loop by inhibiting proteasome activity in neurodegenerative diseases. The data are comprehensive and highly innovative. However, some of the results are not entirely convincing, particularly the staining results in Figure 1.

      In Figure 1A, the density of DAPI staining differs significantly between the control patient and the AD patient, making it difficult to conclusively demonstrate a clear increase in PINK1 in AD patients. Quantitative analysis is needed. In Fig 1C, the PINK1 staining in the mouse brain appears to resemble non-specific staining.

    3. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      The manuscript discusses the role of phosphorylated ubiquitin (pUb) by PINK1 kinase in neurodegenerative diseases. It reveals that elevated levels of pUb are observed in aged human brains and those affected by Parkinson's disease (PD), as well as in Alzheimer's disease (AD), aging, and ischemic injury. The study shows that increased pUb impairs proteasomal degradation, leading to protein aggregation and neurodegeneration. The authors also demonstrate that PINK1 knockout can mitigate protein aggregation in aging and ischemic mouse brains, as well as in cells treated with a proteasome inhibitor. While this study provided some interesting data, several important points should be addressed before being further considered.

      Strengths:

      (1) Reveals a novel pathological mechanism of neurodegeneration mediated by pUb, providing a new perspective on understanding neurodegenerative diseases.

      (2) The study covers not only a single disease model but also various neurodegenerative diseases such as Alzheimer's disease, aging, and ischemic injury, enhancing the breadth and applicability of the research findings.

      Weaknesses:

      (1) PINK1 has been reported as a kinase capable of phosphorylating Ubiquitin, hence the expected outcome of increased p-Ub levels upon PINK1 overexpression. Figures 5E-F do not demonstrate a significant increase in Ub levels upon overexpression of PINK1 alone, whereas the evident increase in Ub expression upon overexpression of S65A is apparent. Therefore, the notion that increased Ub phosphorylation leads to protein aggregation in mouse hippocampal neurons is not yet convincingly supported.

      Indeed, overexpression of sPINK1 alone resulted in minimal changes in Ub levels in the soluble fraction (Figure 5E), which is expected given that the soluble Ub pool remains relatively stable and buffered. However, sPINK1* overexpression led to a marked increase in Ub levels in the insoluble fraction, indicative of increased protein aggregation (Figure 5F). The molecular weight distribution of Ub in the insoluble fraction was predominantly below 70 kDa, suggesting that phosphorylation inhibits Ub chain elongation.

      To further validate this mechanism, we utilized the Ub/S65A mutant to antagonize Ub phosphorylation and observed a significant reduction in the intensity of aggregated bands at low molecular weights, indicating restored proteasomal activity. The observed increase in Ub levels in the soluble fraction upon Ub/S65A overexpression is likely due to enhanced ubiquitination driven by elevated Ub-S65A, and notably, Ub/S65A was also detectable using an antibody against wild-type Ub.

      Consistent with these findings, overexpression of Ub/S65E resulted in a further increase in Ub levels in the insoluble fraction, with intensified low molecular weight bands. The effect was even more pronounced than that observed with sPINK1 transfection, likely resulting from the complete phosphorylation mimicry achieved by Ub/S65E, compared to the relatively low levels of phosphorylation by PINK1.

      These findings collectively support the conclusion that sPINK1 promotes protein aggregation via Ub phosphorylation. We have updated the Results and Discussion sections to more clearly present the data and explain the various controls.

      (2) The specificity of PINK1 and p-Ub antibodies requires further validation, as a series of literature indicate that the expression of the PINK1 protein is relatively low and difficult to detect under physiological conditions.

      We acknowledge the challenges in achieving high specificity with commercially available and customgenerated antibodies targeting PINK1 and pUb, particularly given their low endogenous expression under physiological conditions. However, in our study, we observed robust immunofluorescent staining for PINK1 (Figures 1A, 1C, and 1G) and pUb (Figures 1B, 1D, and 1G) in human brain samples from Alzheimer's disease (AD) patients, as well as in mouse models of AD and cerebral ischemia. The clear visualization can be partly attributed to the pathological upregulation of PINK1 and pUb under disease conditions. Importantly, the images from pink1<sup>-/-</sup> mice exhibit much weaker staining.

      Additionally, we detected a significant elevation in the pUb levels in aged mouse brains compared to younger ones (Figures 1E and 1F). In contrast, pink1<sup>-/-</sup> mice showed no change in pUb levels with aging, despite some background signals, demonstrating that pUb accumulation during aging is PINK1dependent. Collectively, these results support the specificity of the antibodies used in detecting pathophysiological changes in PINK1 and pUb levels.

      For cultured cells, pink1<sup>-/-</sup> cells served as a negative control for both PINK1 (Figures 2B and 2C) and pUb (Figures 2D and 2E). While the pUb Western blot exhibited some nonspecific background, pUb levels in pink1<sup>-/-</sup> cells remained unchanged across all MG132 treatment conditions (Figures 2D and 2E), further attesting the usability of the antibodies in conjunction with appropriated controls.

      We have updated the manuscript with higher-resolution images; individual image files have been uploaded separately.

      (3) In Figure 6, relying solely on Western blot staining and Golgi staining under high magnification is insufficient to prove the impact of PINK1 overexpression on neuronal integrity and cognitive function. The authors should supplement their findings with immunostaining results for MAP2 or NeuN to demonstrate whether neuronal cells are affected.

      We included NeuN immunofluorescent staining at 10, 30, and 70 days post transfection in Figure 5— figure supplement 2. The results clearly demonstrate a significant loss of NeuN-positive cells in the hippocampus following Ub/S65E overexpression, while no apparent reduction was observed with sPINK1 transfection alone. 

      We have also quantified MAP2 protein levels via Western blotting and examined morphology of neuronal dendrite and synaptic structure using Golgi staining. These analyses revealed a significant reduction in MAP2 levels and synaptic damage upon sPINK1 or Ub/S65E overexpression (Figures 6F and 6H), consistent with the proteomics analysis (Figure 5—figure supplementary 5). Notably, these detrimental effects could be rescued by co-expression of Ub/S65A, reinforcing the role of pUb in mediating these structural changes.

      Together, our findings from NeuN immunostaining, MAP2 protein analysis, proteomics analysis, and Golgi staining provide strong evidence for the impact of PINK1 overexpression and pUb elevation on neuronal integrity and synaptic structure.

      (4) The authors should provide more detailed figure captions to facilitate the understanding of the results depicted in the figures.

      Figure captions have been updated with more details incorporated in the revised manuscript.

      (5) While the study proposes that pUb promotes neurodegeneration by affecting proteasomal function, the specific molecular mechanisms and signaling pathways remain to be elucidated.

      The molecular mechanisms and signaling pathways through which pUb promotes neurodegeneration are likely multifaceted and interconnected. Our findings suggest that mitochondrial dysfunction plays a central role following sPINK1* overexpression. This is supported by (1) an observed increase in full-length PINK1, indicative of impaired mitochondrial quality control, and (2) proteomic data showing enhanced mitophagy at 30 days post-transfection, followed by substantial mitochondrial injuries at 70 days post-transfection (Figure 5—figure supplement 5 and Supplementary Data). The progressive mitochondrial damage caused by protein aggregates would exacerbate neuronal injury and degeneration.

      Additionally, reduced proteasomal activity may lead to the accumulation of inhibitory proteins that are normally degraded by the ubiquitin-proteasome system. Our proteomics analysis identified a >50fold increase in CamK2n1 (UniProt ID: Q6QWF9), an endogenous inhibitor of CaMKII activation, following sPINK1* overexpression. The accumulation of CamK2n1 suppresses CaMKII activation, thereby inhibiting the CREB signaling pathway (Figure 7), which is essential for synaptic plasticity and neuronal survival. This disruption can further contribute to neurodegenerative processes.

      Thus, our findings underscore the complexity of pUb-mediated neurodegeneration and call for further investigation into downstream consequences.

      Reviewer #1 (Recommendations for the authors):

      Suggestions for improved or additional experiments, data or analyses.

      We have performed additional experiments to investigate how the impairment of ubiquitinproteasomal activity contributes to neurodegeneration. Specifically, we investigated CamK2n1, an endogenous inhibitor of CaMKII, which is normally degraded by the proteasome to allow CaMKII activation. Our proteomics analysis revealed a significant (>50-fold) elevation of CamKI2n1 following sPINK1 overexpression (Figure 5—figure supplement 5 and Supplementary Data).

      To validate this mechanism, we conducted immunofluorescence and Western blot analyses, demonstrating reduced levels of phosphorylated CaMKII (pCaMKII) and phosphorylated CREB (pCREB), as well as reduced levels of downstream proteins such as BDNF and ERK. These results have been incorporated into the revised manuscript (Figure 7).

      As the proteasome is crucial in maintaining proteostasis, its dysregulation would trigger neurodegeneration through multiple pathways, contributing to a broad cascade of pathological events.

      Reviewer #2 (Public review):

      Summary:

      The manuscript makes the claim that pUb is elevated in a number of degenerative conditions including Alzheimer's Disease and cerebral ischemia. Some of this is based on antibody staining which is poorly controlled and difficult to accept at this point. They confirm previous results that a cytosolic form of PINK1 accumulates following proteasome inhibition and that this can be active. Accumulation of pUb is proposed to interfere with proteostasis through inhibition of the proteasome. Much of the data relies on over-expression and there is little support for this reflecting physiological mechanisms.

      Weaknesses:

      The manuscript is poorly written. I appreciate this may be difficult in a non-native tongue, but felt that many of the problems are organizational. Less data of higher quality, better controls and incision would be preferable. Overall the referencing of past work is lamentable. Methods are also very poor and difficult to follow.

      Until technical issues are addressed I think this would represent an unreliable contribution to the field.

      (1) Antibody specificity and detection under pathological conditions

      We recognize the limitations of commercially available antibodies for detecting PINK1 and pUb. Nevertheless, our findings reveal a significant elevation in PINK1 and pUb levels under pathological conditions, such as Alzheimer's disease (AD) and ischemia. Additionally, we observed an increase in pUb level during brain aging, further demonstrating its relevance and a potentially causative role for this special pathological condition. Similarly, elevated pUb levels were observed for cultured cells following pharmacological treatment or oxygen-glucose deprivation (OGD).

      In contrast, in pink1<sup>-/-</sup> mice and HEK293 cells used as negative controls, PINK1 and pUb levels remained consistently low. Therefore, the observed elevation of PINK1 and pUb are associated with special pathological conditions, rather than an antibody-detection anomaly.

      (2) Overexpression as a model for pathological conditions

      To investigate whether the inhibitory effects of sPINK1 on the ubiquitin-proteasome system (UPS) depend on its kinase activity, we employed a kinase-dead version of sPINK1* as a negative control. Given that PINK1 targets multiple substrates, we also investigated whether its effects on UPS inhibition were specifically mediated by ubiquitin phosphorylation. To this end, we used Ub/S65A (a phospho-null mutant) to block Ub phosphorylation by sPINK1, and Ub/S65E (a phospho-mimetic mutant) to mimic phosphorylated Ub. These well-defined controls ensured the robustness of our conclusions.

      Although overexpression does not perfectly replicate physiological conditions, it provides a valuable model for studying pathological scenarios such as neurodegeneration and brain aging, where pUb levels are elevated. For example, we observed a 30.4% increase in pUb levels in aged mouse brains compared to young brains (Figure 1F). Similarly, in our sPINK1 overexpression model, pUb levels increased by 43.8% and 59.9% at 30- and 70-days post-transfection, respectively, compared to controls (Figures 5A and 5C). Notably, co-expression of sPINK1* with Ub/S65A almost entirely prevented sPINK1* accumulation (Figure 5B), indicating that an active UPS can efficiently degrade this otherwise stable variant of sPINK1.

      Together, our findings demonstrate that sPINK1 accumulation inhibits UPS activity, an effect that can be reversed by the phospho-null Ub mutant. The overexpression model mimics pathological conditions and provides valuable insights into pUb-mediated proteasomal dysfunction.

      (3) Organization of the manuscript

      Following your suggestion, we have restructured the manuscript to present the key findings in a more logical and cohesive sequence:

      (a) Evidence for elevated PINK1 and pUb levels across a broad spectrum of pathological and neurodegenerative conditions;

      (b) The effects of pUb elevation in cultured cells, focusing on the proteasome;

      (c) Mechanistic insights into how pUb elevation inhibits proteasomal activity;

      (d) The absence of PINK1 and pUb alleviates protein aggregation;

      (e) Evidence for the causative relationship between elevated pUb levels and proteasomal inhibition;

      (f) Demonstration that pUb elevation directly contributes to neuronal degeneration;

      (g) Give an additional evidence to explain the mechanism of neuronal degeneration post sPINK1* over-expression. The downstream effects of elevated CamK2n1, an inhibitor of CaMKII, resulting from proteasomal inhibition.

      This reorganization should ensure a clear and progressive narrative, and enhance the overall coherence and impact of the revised manuscript.

      (4) Revisions to writing, referencing, and methodology

      We have made a great effort to enhance the clarity and flow of the manuscript, including the addition of references to appropriately acknowledge prior work. We have also expanded the Methods section with additional details to improve readability and ensure reproducibility. We believe these revisions effectively address the concerns raised and strengthen the overall quality of the manuscript.

      Reviewer #2 (Recommendations for the authors):

      Figure 1: PINK1 is a poorly expressed protein and difficult to detect by Western blot let alone by immunofluorescence. I have direct experience of the antibody used in this study and do not consider it reliable. There are much cleaner reagents out there, although they still have many challenges. The minimal requirement here is for the PINK1 antibody staining to be compared in wild-type and knockout mice. One would also expect to see a mitochondrial staining which would require higher magnification to be definitive, but it does not look like it to me. This is a key foundational figure and is unreliable. The pUb antibody also has a high background, see for example figure 2E.

      Under physiological conditions, PINK1 and pUb levels are indeed low, making their detection challenging. However, under pathological conditions, their expression is significantly elevated, correlating with disease severity. Given the limitations of available reagents, using appropriate controls is a standard approach in biological research.

      Nevertheless, we observed robust immunofluorescent staining for PINK1 (Figures 1A, 1C, and 1G) and pUb (Figures 1B, 1D, and 1G) in human brain samples from Alzheimer’s disease (AD) patients and mouse models of AD and cerebral ischemia. Compared to healthy controls, the significant elevation of PINK1 and pUb under these pathological conditions accounts for their clear visualization. To validate antibody specificity, we have included images from pink1<sup>-/-</sup> mice as negative controls (Figure 1C and 1D, third panel).

      Furthermore, we analyzed pUb levels in both young and aged mice, using pink1<sup>-/-</sup> mice as controls.

      Our results revealed a significant increase in pUb levels in aged wild-type mice (Figures 1E and 1F), In contrast, pink1<sup>-/-</sup> mice exhibited relatively low pUb levels, with no notable change between young and aged groups. These findings reinforce the conclusion that pUb accumulation during aging is dependent on PINK1.Furthermore, we analyzed pUb levels in both young and aged mice, using pink1<sup>-/-</sup> mice as controls.

      For HEK293 cells, pink1<sup>-/-</sup> cells were used as a negative control for assessing PINK1 (Figures 2B and 2C) and pUb levels (Figures 2D and 2E). While the pUb Western blot did show some nonspecific background, as you have noted, pUb levels significantly increased following MG132 treatment of the wildtype cells. In contrast, no such increase was observed in pink1<sup>-/-</sup> cells (Figure 2D and 2E). These results further validate the reliability of our findings.

      Regarding mitochondrial staining, we recognize that PINK1 localization can vary depending on the pathological context. For example, in Alzheimer’s disease, PINK1 exhibits relatively high nuclear staining, while in cerebral ischemia and brain aging, it is predominantly cytoplasmic and punctate. In contrast, in young, healthy mouse brains, PINK1 is more uniformly distributed. The observed elevation in pUb levels could arise from mitochondrial PINK1 or soluble sPINK1 in the cytoplasm, and it remains unclear whether nuclear PINK1 contributes to pUb accumulation. Investigating the role of PINK1 in different forms and subcellular localizations will be an important avenue for future research.

      To enhance clarity, we have updated our images and replaced them with higher-resolution versions in the revised manuscript.

      Please also confirm that the GAPDH loading controls represent the same gels, to my eye they do not match.

      We have reviewed all the bands, and confirmed that the GAPDH loading controls correspond to the same gels. For different gels, we use separate GAPDH loading controls. There are two experimental scenarios to consider:

      (1) When there is a large difference in molecular weight between target proteins, we cut the gel into sections and incubate each section with different antibodies separately.

      (2) When the molecular weight difference is small and cutting is not feasible, we first probe the membrane with one antibody, strip it, and then re-incubate the membrane with a second antibody.

      These approaches ensure accurate and reliable detection of target proteins with various molecular weights relative to GAPDH.

      1H. Ponceau.

      We have corrected the spelling.

      Figure 2 many elements are confirmation of work already reported and this must be made clearer in the text. 

      Indeed, the elevation of sPINK1 and pUb upon proteasomal inhibition has been previously reported, and these studies have been acknowledged (Gao, et al, 2016; Dantuma, et al, 2000). In the present study, we expand on these findings by conducting a detailed analysis of the time- and concentrationdependent effects of MG132 on sPINK1 and pUb levels, establishing a causative relationship between pUb accumulation and proteasomal inhibition. Furthermore, we demonstrate that sPINK1 overexpression and MG132-induced proteasomal inhibition exhibit no additive effect, indicating that both converge on the same pathway, resulting in the impairment of proteasomal activity.

      It has been established that ubiquitin phosphorylation inhibits Ub chain elongation (Wauer, et al, 2015). However, our study provides novel insights by identifying an additional mechanism: phosphorylated Ub also interferes with the noncovalent interactions between Ub chain and Ub receptors in the proteasome, which further contributes to the impairment of UPS function.

      The PINK1 kinase-dead mutant construction (Figure 2F) and the use of Ub-GFP as a proteasomal substrate were based on established methodologies, which have been appropriately cited in the manuscript (Beilina, etal 2005 for KD sPINK1; Yamano, et al for endogenous PINK1; Samant, et al, 2018 and Dantuma, et al, 2000 for Ub-GFP probe). Similarly, our use of puromycin and BALA treatments follows previously reported protocols (Gao, et al, 2016), which allowed us to dissect the relative contributions of sPINK1* overexpression to proteasomal vs. autophagic dysfunction.

      As you have noted, our study has built upon prior findings while introducing new mechanistic insights into sPINK1 and pUb-mediated proteasomal dysfunction.

      2C 24h MG132 not recommended, most cells are dead by then.

      We used MG132 treatment for 24 hours to evaluate the time-course effects of proteasomal inhibition on PINK1 and pUb levels in HEK293 cells (Figures 2C and 2E). We did observe some decrease in both PINK1 and pUb levels at 24 hours compared to 12 hours, which may result from some extend of cell death at the longer treatment duration.

      In SH-SY5Y cells, we collected cells at 24 hours after MG132 administration (Figure 5—figure supplementary 1). Though protein aggregation was evident in these cells, we did not observe pronounced cell death under these conditions, justifying our treatment.

      Our findings are consistent with previous studies demonstrating that MG132 at 5 µM for 24 hours effectively induces proteasomal inhibition without substantial cytotoxicity. For example, studies using human esophageal squamous cancer cells have reported that this treatment condition inhibits cell proliferation while maintaining cell viability, with cell viability >70% after 24-hour treatment with 5 µM MG132 (Int J Mol Med 33: 1083-1088, 2014). 

      MG132 has been commonly used at concentrations ranging from 5 to 50 µM for durations of 1 to 24 hours, as stated at the vendor’s website (https://www.cellsignal.com/products/activatorsinhibitors/mg-132/2194).

      2I what is BALA do they mean bafilomycin. This is a v-ATPase inhibitor, not just an autophagy inhibitor.

      We appreciate the reviewer’s comment regarding the use of BALA in Figure 2I. To clarify, BALA refers to bafilomycin A1, a well-established v-ATPase inhibitor that blocks lysosomal acidification. While bafilomycin A1 is commonly used as an autophagy inhibitor, its primary mechanism involves inhibiting lysosomal function, which is critical for autophagosome-lysosome fusion and subsequent degradation of autophagic cargo.

      In our study, we used bafilomycin A1 in conjunction with puromycin to dissect the relative contributions of sPINK1 overexpression on proteasomal and autophagic activities. Puromycin induces protein misfolding and aggregation, causing stress on both degradation pathways. By inhibiting lysosomal function with bafilomycin A1 and blocking the protein degradation load at various stages, we can tell the relative contributions of autophagy and UPS pathways.

      We acknowledge that bafilomycin A1’s effects extend beyond autophagy, as it also inhibits v-ATPase activity. However, its inhibition of lysosomal degradation is integral to distinguishing autophagy’s contribution under the experimental conditions, and BALA treatment has been used in extensively in previous studies (Mauvezin and Neufeld, 2015). 

      We have further clarified this treatment in the revised manuscript.

      Figure 3. Legend or text needs to be more explicit about how chains have been produced. From what I can gather from methods only a single E2 has been trialed. Authors should use at least one of the criteria used by Wauer et al. (2014) to confirm the stoichiometry of phosphorylation. The concept that pUb can interfere with E2 discharging is not new, but not universal across E2s.

      We have cited in the manuscript that PINK1-mediated ubiquitin phosphorylation can interfere with ubiquitin chain elongation for certain E2 enzymes (Wauer et al., 2015). 

      To clarify, the focus of our current work is on how elevation of Ub phosphorylation impacts UPS activity, rather than exploring the broader effects of Ub phosphorylation on Ub chain elongation. For this reason, we have used the standard E2 that is well-established for generating K48-linked polyUb chain (Pickart CM, 2005). Moreover, our findings go further and by demonstrate that phosphorylated K48-linked polyubiquitin exhibits weaker non-covalent interactions with proteasomal ubiquitin receptors. This dual effect—on both covalent chain elongation and non-covalent interactions— contributes to the observed reduction in ubiquitin-proteasome activity, a novel aspect of our study.

      To address the reviewer’s concerns, we have added details in the Methods section and figure legends regarding the generation of ubiquitin chains. Specifically, we used ubiquitin-activating enzyme E1 (UniProt ID: P22314) and ubiquitin-conjugating enzyme E2-25K (UniProt ID: P61086) to generate K48-linked ubiquitin chains. 

      Our ESI-MS analysis showed that only 1–2 phosphoryl groups were incorporated into the K48-linked tetra-ubiquitin chains (Figure 3—figure supplement 2). This is consistent with our in vivo findings, where pUb levels increased by 30.4% in aged mouse brains compared to young brains (Figure 1F). Notably, even sub-stoichiometric phosphorylation onto the K48-linked ubiquitin chain significantly weakens the non-covalent interactions with the proteasome (Figures 3E and 3H).

      Figure 4. I could find no definition of the insoluble fraction, nor details on how it is prepared.

      The insoluble fraction primarily contains proteins that are aggregated or associated with hydrophobic interactions and cannot be solubilized by RIPA buffer. We have provided more details in the Methods of the revised manuscript about how the insoluble fraction was prepared. Our approach was based on established protocols for fractionating soluble and insoluble proteins from brain tissues (Wirths, 2017). Here is an outline of the procedure, which enables the separation and subsequent analysis of distinct protein populations:

      • Lysis and preparation of soluble fraction: Cells and brain tissues were lysed using RIPA buffer (Beyotime Biotechnology, cat# P0013B) containing protease (P1005) and phosphatase inhibitors (P1081) on ice for 30 minutes, with gentle vortexing every 10 minutes. Brain samples were homogenized using a precooled TissuePrep instrument (TP-24, Gering Instrument Company). Lysates were centrifuged at 12,000 rpm for 30 minutes at 4°C. The supernatant was collected as the soluble protein fraction.

      • Preparation of insoluble fraction: The pellet was resuspended in 20 µl of SDS buffer (2% SDS, 50 mM Tris-HCl, pH 7.5) and subjected to ultrasonic pyrolysis at 4°C for 8 cycles (10 seconds ultrasound, 30 seconds interval). The samples were then centrifuged at 12,000 rpm for 30 minutes at 4°C. The supernatant obtained after this step was designated as the insoluble protein fraction.

      • Protein quantification: Protein concentrations for both soluble and insoluble fractions were determined using the BCA Protein Assay Kit (Beyotime Biotechnology, cat# P0009).

      Figure 5. What is the transfection efficiency? How many folds is sPINK1 over-expressed? Typically, a neuron will have only a few hundred copies of PINK1 at the basal state. How much mutant ubiquitin is expressed relative to wild type, seeing the free ubiquitin signals on the gels might be helpful here, but they seem to have been cut off. 

      We appreciate the reviewer's insightful comments regarding transfection efficiency, the extent of sPINK1 overexpression, and the expression levels of mutant ubiquitin relative to wild-type ubiquitin. Below, we provide detailed responses to each point:

      Transfection Efficiency: Our immunofluorescent staining for NeuN, a neuronal marker, demonstrated that over 90% of NeuN-positive cells were co-localized with GFP (Figure 5—figure supplement 2), indicating a high transfection efficiency in our neuronal cultures.

      Extent of sPINK1 Overexpression: Quantifying the exact fold increase of sPINK1 upon overexpression is inherently difficult due to its low basal expression under physiological conditions, making the relative increase difficult to measure (small denominator effect). However, our Western blot analysis shows that ischemic events can cause a substantial elevation of PINK1 levels, including both full-length and cleaved forms (Figure 1H). This suggests that our overexpression model recapitulates the pathological increase in PINK1, making it a relevant system for studying disease mechanisms.

      From Figure 5B, it is evident that sPINK1 levels differ significantly between neurons overexpressing sPINK1 alone and those co-expressing sPINK1 + Ub/S65A (70 days post-transfection). Overexpression of sPINK1 alone results in multiple PINK1 bands, consistent with sPINK1, endogenous PINK1 (induced by mitochondrial damage), and ubiquitinated sPINK1. In comparison, co-expressing Ub/S65A leads to faint PINK1 bands, suggesting that in the presence of a functionally restored proteasome, overexpressed sPINK1 is rapidly degraded. Therefore, actual accumulation of sPINK1 depends on proteasomal activity, and the “over-expressed” PINK1 level can be comparable to levels observed under native, pathological conditions.

      Expression Levels of Mutant Ubiquitin Relative to Wild-Type: Assessing the expression levels of mutant versus wild-type ubiquitin is indeed valuable. In Figure 5E, we observed a 38.9% increase in high-molecular-weight ubiquitin conjugates in the soluble fraction when comparing the sPINK1+Ub/S65A group to the control. This increase suggests that mutant ubiquitin is actively incorporated into polyubiquitin chains.

      Regarding free monomeric ubiquitin, its low abundance and rapid incorporation into polyubiquitin chains make it difficult to visualize in Western blots. Additionally, its low molecular weight and lower antibody binding valency further reduce its visibility.

      General: a number of effects are shown following over-expression but no case is made that these levels of pUb are ever attained physiologically. I am very unconvinced by these findings and think the manuscript needs to be improved at multiple levels before being added to the record.

      We understand the reviewer’s concerns regarding the relevance of pUb levels observed in our overexpression model. To clarify, our study is not focused on physiological levels of pUb, but rather on pathologically elevated levels, which have been documented in various neurodegenerative conditions. While overexpression is not a perfect replication of pathological states, it provides a valuable tool to investigate mechanisms that become relevant under disease conditions. Moreover, we have taken steps to ensure the validity of our findings and to address potential limitations associated with overexpression models:

      Pathological Relevance: Besides several reported literatures, we observed significant increases in PINK1 and pUb levels in human brain samples from Alzheimer's disease (AD) patients, as well as in mouse models of AD, cerebral ischemia (including mouse middle cerebral artery occlusion ischemic model and oxygen glucose deprivation cell model), and aging (e.g., Figures 1E, 1F, and 1H). All these data show that pUb levels are elevated under pathological conditions. Our overexpression model mimics these pathological scenarios by recreating the high levels of pUb, which lead to the impairment of proteasomal activity and subsequent disruption of proteostasis.

      Use of Robust Controls: To ensure the reliability of our results and interpretations, we employed multiple controls for our experiments. We have used pink1<sup>-/-</sup> mice and cells to confirm that pUb accumulation is PINK1-dependent (Figures 1C and 2C). We have also included kinase-dead sPINK1 mutant and Ub/S65A phospho-null mutants to negate/counteract the specific roles of PINK1 activity and pUb in proteasomal dysfunction. On the other hand, we have used Ub/S65E for phosphomimetic mutant, corresponding to a 100% Ub phosphorylation.

      Importantly, we have compared sPINK1 overexpression with both baseline and disease-mimicking conditions, thus to ensure that the observed effects are consistent with pathological changes. Furthermore, our findings are supported by complementary evidences from human brain samples, model animals, cell cultures, and molecular assays. Integrating the different controls and various approaches, we have provided mechanistic insights into how elevated pUb levels causes proteasomal impairment and contributes to neurodegeneration.

      Our findings elucidate how elevated pUb level contributes to the disruption of proteostasis in neurodegenerative conditions. While overexpression may have limitations, it remains a powerful tool for dissecting pathological mechanisms and testing hypotheses. Our results align with and expand upon previous studies suggesting pUb as a biomarker of neurodegeneration (Hou, et al, 2018; Fiesel, et al, 2015), and provide mechanistic insights into how elevated pUb and sPINK1 drive a viscous feedforward cycle, ultimately leading to proteasomal dysfunction and neurodegeneration. 

      We hope these clarifications highlight the relevance and rigor of our study, and welcome additional suggestions to improve the manuscript.

      Reviewer #3 (Public review):

      Summary:

      This study aims to explore the role of phosphorylated ubiquitin (pUb) in proteostasis and its impact on neurodegeneration. By employing a combination of molecular, cellular, and in vivo approaches, the authors demonstrate that elevated pUb levels contribute to both protective and neurotoxic effects, depending on the context. The research integrates proteasomal inhibition, mitochondrial dysfunction, and protein aggregation, providing new insights into the pathology of neurodegenerative diseases.

      Strengths:

      - The integration of proteomics, molecular biology, and animal models provides comprehensive insights.

      - The use of phospho-null and phospho-mimetic ubiquitin mutants elegantly demonstrates the dual effects of pUb.

      - Data on behavioral changes and cognitive impairments establish a clear link between cellular mechanisms and functional outcomes.

      Weaknesses:

      - While the study discusses the reciprocal relationship between proteasomal inhibition and pUb elevation, causality remains partially inferred.

      It has been well-established that protein aggregates, particularly neurodegenerative fibrils, can impair proteasomal activity (McDade, et al., 2024; Kinger, et al., 2024; Tseng, et al., 2008). Other contributing factors, including ATP depletion, reduced proteasome component expression, and covalent modifications of proteasomal subunits, can also lead to declined proteasomal function. Additionally, mitochondrial injury serves as an important source of elevated PINK1 and pUb levels. Recent studies have demonstrated that efficient mitophagy is essential to prevent pUb accumulation, whereas partial mitophagy failure results in elevated PINK1 levels (Chin, et al, 2023; Pollock, et al. 2024).

      While pathological conditions can impair proteasomal function and slow sPINK1 degradation, leading to its accumulation, our results demonstrate that overexpression of sPINK1 or PINK1 can initiate this cycle as well. Once this cycle is initiated, it becomes self-perpetuating, as sPINK1 and pUb accumulation progressively impair proteasomal function, leading to more protein aggregates and mitochondrial damages.

      Importantly, we show that co-expression of Ub/S65A effectively rescues cells from this cycle, which further illustrates the pivotal role of pUb in driving proteasomal inhibition and the causality between pUb elevation and proteasomal inhibition. At the animal level, pink1 knockout prevents protein aggregation under aging and cerebral ischemia conditions (Figures 1E and 1G). 

      Together, by controlling at protein, cell, and animal levels, our findings support this self-reinforcing and self-amplifying cycle of pUb elevation, proteasomal inhibition, protein aggregation, mitochondrial damage, and ultimately, neurodegeneration.

      - The role of alternative pathways, such as autophagy, in compensating for proteasomal dysfunction is underexplored.

      Indeed, previous studies have shown that elevated sPINK1 can enhance autophagy (Gao, et al., 2016,), potentially compensating for impaired UPS function. One mechanism involves PINK1mediated phosphorylation of p62, which enhances autophagic activity.

      In our study, we observed increased autophagic activity upon sPINK1 overexpression, as shown in Figure 2I (middle panel, without BALA). This increase in autophagy may facilitate the degradation of ubiquitinated proteins induced by puromycin, partially mitigating proteasomal dysfunction. This compensation might also explain why protein aggregation, though statistically significant, increased only slightly at 70 days post-sPINK1 transfection (Figure 5F). Additionally, we detected a mild but statistically insignificant increase in LC3II levels in the hippocampus of mouse brains at 70 days postsPINK1 transfection (Figure 5—figure supplement 6), further supporting the notion of autophagy activation.

      However, while autophagy may provide some compensation, its effect is likely limited. The UPS and autophagy serve distinct roles in protein degradation:

      • Autophagy is a bulk degradation pathway, primarily targeting damaged organelles, intracellular pathogens, and protein aggregates, often in a non-selective manner.

      • The UPS, in contrast, is highly selective, degrading short-lived regulatory proteins, misfolded proteins, and proteins tagged for degradation via ubiquitination.

      Thus, while sPINK1 overexpression enhances autophagy-mediated degradation, it simultaneously impairs UPS-mediated degradation. This suggests that autophagy partially compensates for proteasomal dysfunction but is insufficient to counterbalance the UPS's selective degradation function. We have incorporated additional discussion in the revised manuscript.

      - The immunofluorescence images in Figure 1A-D lack clarity and transparency. It is not clear whether the images represent human brain tissue, mouse brain tissue, or cultured cells. Additionally, the DAPI staining is not well-defined, making it difficult to discern cell nuclei or staging. To address these issues, lower-magnification images that clearly show the brain region should be provided, along with improved DAPI staining for better visualization. Furthermore, the Results section and Figure legends should explicitly indicate which brain region is being presented. These concerns raise questions about the reliability of the reported pUb levels in AD, which is a critical aspect of the study's findings.

      We have taken steps to address the concerns regarding clarity and transparency in Figure 1A-D. We have already addressed the source of tissues at the left of each images. For example, we have written “human brain with AD” at the left side of Figure 1A, and “mouse brains with AD” at the left side of Figure 1C.

      Briefly, the human brain samples in Figure 1 originate from the cingulate gyrus of Alzheimer’s disease (AD) patients. Our analysis revealed that PINK1 is primarily localized within cell bodies, whereas pUb is more abundant around Aβ plaques, likely in nerve terminals. For the mouse brain samples, we have now explicitly indicated in the figure legends and Results section that the images represent the neocortex of APP/PS1 mice, a mouse model relevant to AD pathology, as well as the corresponding regions in wild-type and pink1<sup>-/-</sup> mice. We have ensured that the brain regions and sources are clearly stated throughout the manuscript.

      Regarding image clarity, we have uploaded higher-resolution versions of the images in the revised manuscript to improve visualization of key features, including DAPI staining. We believe these revisions enhance the reliability and interpretability of our findings, particularly in relation to the reported pUb levels in AD. 

      - Figure 4B should also indicate which brain region is being presented.

      The images were taken for layer III-IV in the neocortex of mouse brains. We have included this information in the figure legend of the revised manuscript.

      Reviewer #3 (Recommendations for the authors):

      - Expand on the potential compensatory role of autophagy in response to proteasomal dysfunction.

      Upon proteasomal inhibition, cells may activate autophagy as an alternative pathway of degradation to help clear damaged or misfolded proteins. Autophagy is a bulk degradation process that targets long-lived proteins, damaged organelles, and aggregated proteins for lysosomal degradation. While this pathway can provide some compensation, it is distinct from the ubiquitin-proteasome system (UPS), which specializes in the selective degradation of short-lived regulatory proteins and misfolded proteins.

      In our study, we observed increased autophagic activity following sPINK1 overexpression (Figure 2J, middle panel, without BALA) and a slight, though statistically insignificant, increase in LC3II levels in the hippocampus of mouse brains at 70 days post-sPINK1 transfection (Figure 5—figure supplement 6). These findings suggest that autophagy is indeed upregulated as a compensatory response to proteasomal dysfunction, potentially facilitating the degradation of aggregated ubiquitinated proteins. Additionally, gene set enrichment analysis (GSEA) revealed similar enrichment of autophagy pathways at 30 and 70 days post-sPINK1 overexpression (Figure 5—figure supplement 5).

      However, the compensatory capacity of autophagy is likely limited. While autophagy can reduce protein aggregation, it is an inherently non-selective process and cannot fully replace the targeted functions of the UPS. Moreover, as we illustrate in Figure 7 of the revised manuscript, UPS is essential for degrading specific regulatory and inhibitory proteins and plays a critical role in cellular proteostasis, particularly in signaling regulation, cell cycle control, and stress responses.

      Together, while autophagy activation provides some degree of compensation, it cannot fully restore cellular proteostasis. The interplay between these two degradation pathways is an important area for future investigation. For the present study, our focus is on how pUb elevations impact proteasomal activity and elicits downstream effects.

      We have incorporated these additional discussions on this topic in the revised manuscript.

      - Simplify the discussion of complex mechanisms to improve accessibility for readers.

      We have revised the Discussion to present the mechanisms in a more coherent and accessible manner, ensuring clarity for a broader readership. These revisions should make the discussion more intuitive while preserving the depth of our findings.

      - Statistical analyses could benefit from clarifying how technical replicates and biological replicates were accounted for across experiments.

      We have clarified our statistical analysis in the Methods section and figure legends, explicitly detailing how many biological replicates were accounted for across experiments. These revisions should enhance transparency and clarity, ensuring that our findings are robust and reproducible.

      - The image in Figure 3D is too small to distinguish any signals. A larger and clearer image should be presented.

      We have expanded the images in Figure 3D. Additionally, we have replaced figures with version of better resolutions throughout the manuscript.

      - NeuN expression in Figure 4B differs between wildtype and pink-/- mice. Additional validation is needed to determine whether pink-/- enhances NeuN expression.

      The difference in NeuN immunofluorescence intensity between wild-type and pink1<sup>-/-</sup> mice in Figure 4B may simply result from variations in image acquisition rather than an actual difference in NeuN expression.

      Our single nuclei RNA-seq analyses of wild-type and pink1<sup>-/-</sup> mice at 3 and 18 months of age reveal no significant differences in NeuN expression at the transcript level (data provided below). This confirms that the observed variation in fluorescence intensity is unlikely to reflect an authentic upregulation of NeuN expression. Thus, factors like the concentration of antibody, image exposure and processing may contribute to differences in staining intensity.

      Author response image 1.

    1. eLife Assessment

      This manuscript presents an in-depth analysis of gene expression across multiple brown algal species with differing life histories, providing convincing evidence for the conservation of life cycle-specific gene expression. While largely descriptive, the study is an important step forward in understanding the core cellular processes that differ between life cycle phases, and its findings will be of broad interest to developmental and evolutionary biologists.

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript by Ratchinski et al presents a comprehensive analysis of developmental and life history gene expression patterns in brown algal species. The manuscript shows that the degree of generation bias or generation-specific gene expression correlates with the degree of dimorphism. It also reports conservation of life cycle features within generations and marked changes in gene expression patterns in Ectocarpus in the transition between gamete and early sporophyte. The manuscript also reports considerable conservation of gene expression modules between two representative species, particularly in genes associated with conserved functional characteristics.

      Strengths:

      The manuscript represents a considerable "tour de force" dataset and analytical effort. While the data presented is largely descriptive, it is likely to provide a very useful resource for studies of brown algal development and for comparative studies with other developmental and life cycle systems.

      Comments on revisions

      The authors have provided in their response (point 1) a good clarification for their rationale in excluding fucoid algae from the study, based on the diploid nature of the fucoid life cycle. Similarly, they have noted (point 2) that "the relationship between changes in gene expression during very early sporophyte development and during alternation of life cycle generations could be investigated further using a highlydimorphic kelp model system such as Saccharina latissima." For the benefit of the reader who may not be too familiar with the different life cycles in brown algae, I would recommend that these clarifications are included in the Discussion.

      Otherwise the authors have addressed my previous comments adequately.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      The authors have examined gene expression between life cycle stages in a range of brown macroalgae to examine whether there are conserved aspects of biological features. 

      Strengths: 

      The manuscript incorporates large gene expression datasets from 10 different species and therefore enables a comprehensive assessment of the degree of conservation of different aspects of gene expression and underlying biology. 

      The findings represent an important step forward in our understanding of the core aspects of cell biology that differ between life cycle phases and provide a substantial resource for further detailed studies in this area. Convincing evidence is provided for the conservation of lifecycle-specific gene expression between species, particularly in core housekeeping gene modules. 

      Weaknesses: 

      I found a few weaknesses in the methodology and experimental design. I think the manuscript could have been clearer when linking the findings to the biology of the brown algae. 

      Reviewer #2 (Public review): 

      Summary: 

      The manuscript by Ratchinski et al presents a comprehensive analysis of developmental and life history gene expression patterns in brown algal species. The manuscript shows that the degree of generation bias or generation-specific gene expression correlates with the degree of dimorphism. It also reports conservation of life cycle features within generations and marked changes in gene expression patterns in Ectocarpus in the transition between gamete and early sporophyte. The manuscript also reports considerable conservation of gene expression modules between two representative species, particularly in genes associated with conserved functional characteristics. 

      Strengths: 

      The manuscript represents a considerable "tour de force" dataset and analytical effort. While the data presented is largely descriptive, it is likely to provide a very useful resource for studies of brown algal development and for comparative studies with other developmental and life cycle systems. 

      Weaknesses: 

      Notwithstanding the well-known issues associated with inferring function from transcriptomics-only studies, no major weaknesses were identified by this reviewer. 

      Reviewing Editor Comments:

      The overall assessment of the reviewers does not contain major aspects of concern. We nevertheless recommend that the authors carefully consider the constructive comments, as this will further improve their manuscript. 

      Reviewer #1 (Recommendations for the authors): 

      (1) Line 32: The abstract states 'considerable conservation of co-expressed gene modules', but the degree of conservation between Ectocarpus and D. dichotoma appeared limited to specific subsets of genes with highly conserved housekeeping functions, e.g., translation. I think the wording of the abstract should be rephrased to better reflect this. 

      We agree that genes with housekeeping functions figure strongly in the gene modules that showed strong conservation between Ectocarpus species 7 and D. dichotoma (and we actually highlight this point in the manuscript) but we do not believe that this invalidates the conservation. In the analysis shown in Figure 6A, for example, high scores were obtained for both connectivity and density for about a third of the gene modules and these modules cover broad range of cellular functions. This is a significant result given the large phylogenetic distance and we feel that "considerable conservation" is appropriate as a description of the level of correlation. 

      (2) Introduction - The Introduction needs a better explanation of the biology of the life cycle phases. Some of this information is present in the 1st paragraph of Materials and Methods, although it would be preferable to include this information within the main text, ideally within the Introduction before the Results are described. For example, when are flagella present? The presence of flagella could be indicated in Figure 3. The ecology of the life cycle is also not described. Are life cycles present in the same ecological niche? Do they co-exist or occupy distinct environments? It would be useful to understand how the observed genotypes could relate to this wider aspect of the brown algal biology. 

      We have added a sentence to explain that zoids (gametes and spores) are the only flagellated stages of the life cycle (line 678). In addition, in the legend for Figure 3, we have indicated which of the life cycle stages analysed in panel 3A consisted entirely or partially of flagellated cells. We have also added information about phenology to the Introduction. 

      (3) Line 127. 'The proportion of generation specific genes was positively correlated with the level of dimorphism'. The level of dimorphism between species was not clear to me. This needs to be clearly displayed in Figure 1B. 

      We had attempted to illustrate the level of dimorphism, using the size of each generation as a measurable proxy, in Figure S1 but we agree that the information was not very clearly presented. To improve clarity, we now provide independent size scales for each generation of the life cycle in this figure and state in the legend that "Size bars indicate the approximate sizes of each generation of each life cycle, providing an indication of the degree of dimorphism between the two generations.". In the text, Figure S1 is cited earlier in the paragraph but we now repeat the citation of the figure at the end of the sentence "The proportion of generation-specific genes (...) was positively correlated with the level of dimorphism" so that the reader can specifically consult the supplementary figure for this phenotypic parameter. 

      (4) Line 267. Are there known differences in cell wall composition between life cycle phases or within each generation as individual life cycle phases mature (e.g., differences between unicellular and multicellular stages)? 

      Detailed comparative analyses of cell wall composition at different stages of the life cycle have not been carried out for brown algae. However, Congo red stains Ectocarpus gametophytes but not sporophytes (Coelho et al., 2011), indicating a difference in cell wall composition between the two generations. Zoids (spores and gametes) do not have a cell wall and calcofluor white staining of meio-spores has indicated that a cell wall only starts to be deposited 24-48 hours post-release (Arun et al., 2013).

      (5) Line 388. The authors should comment on the accuracy of OrthoFinder for different gene types across this degree of divergence (250 MYA). The best conservation was found in genes with housekeeping characteristics (line 401). It may be that these gene modules show the highest degree of conservation in expression patterns, but I also wonder whether they pattern may also emerge because finding true orthologues is easier for highly conserved gene families. 

      We do not believe that this is the case because, as mentioned above, the "housekeeping" modules cover quite a broad range of cellular functions. Note also that the modules were given functional labels based on their being clearly enriched in genes corresponding to a particular class of function but not all the genes in a module have a predicted function that corresponds to the functional classification. 

      However, we have carried out an analysis to look for evidence of the bias proposed by the reviewer. For this, we used BLASTp identity scores as an approximate proxy for pairwise identity between Ectocarpus species 7 and D. dichotoma one-to-one orthologues in each module and plotted the mean identity score for each module against the Fischer test p-value of the contingency table in Figure 6C (Author response image 1).

      Author response image 1.

      Plot of estimations of the mean percent shared identity between the orthologues within each module (based on mean BLASTp identity scores) against log10(pvalue) values obtained with the Fisher's exact test applied in Figure 6C to determine whether pairs of modules shared a greater number of one-to-one orthologues than expected from a random distribution. Error bars indicate the standard deviation. 

      This analysis did not detect any correlation between the degree of sequence conservation of orthologues in a module and the degree of conservation of the module between Ectocarpus species 7 and D. dichotoma.

      Minor comments 

      (1) Line 650 loose should be lose.

      The error has been corrected.

      (2) Line 695 filtered through a 1 μm filter to remove multicellular gametophyte fractions. Is this correct? It seems too small to allow gametes to pass through. 

      Yes, the text is correct, a 1 μm filter was used. The gametes do pass through this filter, presumably because they do not have a rigid cell wall, allowing them to squeeze through the filter when a light pressure is applied. 

      (3) Line 709 - DDT should be DTT 

      The error has been corrected.

      Reviewer #2 (Recommendations for the authors): 

      (1) It is not clear why the chosen species for analysis do not include fucoid algae, which display a high degree of dimorphism between generations and which are relatively well studied with respect to gene expression patterns during early development. Indeed, it was recently shown that gene expression patterns in developing embryos of Fucus spp. obey the "hourglass" pattern whereby gene expression shows a minima of transcription age index (i.e., higher expression of evolutionarily older genes) associated with differentiation at the phylotypic stage. I am somewhat surprised that the manuscript does not consider this feature in the analysis or discussion. 

      Brown algae of the order Fucales have diploid life cycles and therefore do not alternate between a sporophyte and gametophyte generation. It is for this reason that we thought that it was more interesting to compare Ectocarpus species 7 with D. dichotoma, which has a haploid-diploid life cycle.

      (2) In Discussion, the comparison of maternal to zygote transition in animals and land plants, which show a high degree of dimorphism, with Ectocarpus would be strengthened by data/discussion from other brown algae that show a high degree of dimorphism. 

      Animals have diploid life cycles and dimorphism in that lineage generally refers to sexual rather than generational dimorphism. Land plants do have highly dimorphic haploiddiploid life cycles but it is unclear how this characteristic relates to events that occur during the maternal to zygote transition. In Ectocarpus, the transition from gamete to the first stages of sporophyte development involved more marked changes in gene expression than we observed when comparing the mature sporophyte and gametophyte generations (Figure 3C). At present, there is no evidence that events during these two transitions are correlated. The relationship between changes in gene expression during very early sporophyte development and during alternation of life cycle generations could be investigated further using a highly dimorphic kelp model system such as Saccharina latissima but we are not aware of any studies that have specifically addressed this point. 

      (3) Since marked changes were observed during the transition from gamete to early sporophyte in Ectocarpus, it would be interesting to know how gene expression patterns change during the transition from gamete to partheno-sporophyte. Would the same patterns of downregulation and upregulation be expected? 

      The sporophyte individuals derived from gamete parthenogenesis (parthenosporophytes) are indistinguishable morphologically and functionally from diploid sporophytes derived from gamete fusions (see line 76). They also express generation marker genes in a comparable manner (Peters et al., 2008). Based on these observations, we have treated partheno-sporophytes and diploid sporophytes as equivalent in our experiments. For clarity, we have now distinguished partheno-sporophyte from diploid sporophyte samples in Table S1. 

      (4) The authors show a correlation between the degree of dimorphism and generation-biased or generation-specific expression. How was the degree of dimorphism quantified? 

      The degree of dimorphism is illustrated in Figure S1 using the relative size of the two generations as a proxy. Size estimations are approximate because the size of an individual of a particular species is quite variable but the ten species nonetheless represent a very clear gradient of dimorphism due to the extreme differences in size between generations of species at each end of the scale, with the sporophyte generation being several orders of magnitude larger than the gametophyte generation or visa versa. 

      References

      Arun A, Peters NT, Scornet D, Peters AF, Cock JM, Coelho SM. 2013. Non-cell autonomous regulation of life cycle transitions in the model brown alga Ectocarpus. New Phytol 197:503– 510. doi:10.1111/nph.12007

      Coelho SM, Godfroy O, Arun A, Le Corguillé G, Peters AF, Cock JM. 2011. OUROBOROS is a master regulator of the gametophyte to sporophyte life cycle transition in the brown alga Ectocarpus. Proc Natl Acad Sci USA 108:11518–11523. doi:10.1073/pnas.1102274108

      Peters AF, Scornet D, Ratin M, Charrier B, Monnier A, Merrien Y, Corre E, Coelho SM, Cock JM. 2008. Life-cycle-generation-specific developmental processes are modified in the immediate upright mutant of the brown alga Ectocarpus siliculosus. Development 135:1503–1512.doi:10.1242/dev.016303

    1. eLife Assessment

      In this preregistered study, Kunkel and colleagues set out to compare the magnitude and duration of placebo versus nocebo effects in healthy volunteers, and also to examine the different factors contributing to these effects. The authors follow a rigorous methodology in a within-subjects design, taking into consideration standard conventions for manipulation of expectations, and using an appropriate sham condition. They present compelling evidence of long-lasting placebo and nocebo effects, with nocebo responses demonstrating consistently greater strength. These valuable results have the potential for a great impact in the field of experimental and clinical pain.

    2. Reviewer #1 (Public review):

      Summary:

      The study aimed to: (1) assess the magnitude of placebo and nocebo effects immediately after induction through verbal instructions and conditioning, (2) examine the persistence of these effects one week later, and (3) identify predictors of sustained placebo and nocebo responses over time.

      Strengths:

      An innovation was to use sham TENS stimulation as the expectation manipulation. This expectation manipulation was reinforced not only by the change in pain stimulus intensity, but also by delivery of non-painful electrical stimulation, labelled as TENS stimulation.

      Questionnaire-based treatment expectation ratings were collected before conditioning and after conditioning, and after the test session, which provided an explicit measure of participant's expectations about the manipulation.

      The finding that placebo and nocebo effects are influenced by recent experience provides a novel insight into a potential moderator of individual placebo effects.

      Weaknesses:

      There are a limited number of trials per test condition (10) which means that the trajectory of responses to the manipulation may not be explored, which would be an interesting future study.

      The differences between the nocebo and control condition in pain ratings during conditioning could be explained by differing physiological effects of the different stimulus intensities, so it is difficult to make any claims about the expectation effects here. A a randomisation error meant that 25 participants received an unbalanced number 448 of trials per condition (i.e., 10 x VAS 40, 14 x VAS 60, 12 x VAS 80), although the authors accounted for this during analysis so it is not of major concern.

      This manuscript presents a study on expectation manipulation to induce placebo and nocebo effects in healthy participants. The study follows standard placebo experiment conventions with use of TENS stimulation as the placebo manipulation. The authors were able to achieve their aims. A key finding is that placebo and nocebo effects were predicted by recent experience, which is a novel contribution to the literature. The findings provide insights into the differences between placebo and nocebo effects and the potential moderators of these effects.

      Comments on revisions:

      I am satisfied with the author's revisions to the manuscript and have no further comments.

    3. Reviewer #2 (Public review):

      Summary:

      Kunkel et al aim to answer a fundamental question: Do placebo and nocebo effects differ in magnitude or longevity? To address this question, they used a powerful within-participants design, with a very large sample size (n=104), in which they compared placebo and nocebo effects - within the same individuals - across verbal expectations, conditioning, testing phase, and a 1-week follow-up. With elegant analyses, they establish that different mechanisms underlie the learning of placebo vs nocebo effects, with the latter being acquired faster and extinguished slower. This is an important finding for both the basic understanding of learning mechanisms in humans and for potential clinical applications to improve human health.

      Strengths:

      Beyond the above - the paper is well-written and very clear. It lays out nicely the need for the current investigation and what implications it holds. The design is elegant, and the analyses are rich, thoughtful, and interesting. The sample size is large which is highly appreciated, considering the longitudinal, in-lab study design. The question is super important and well-investigated, and the entire manuscript is very thoughtful with analyses closely examining the underlying mechanisms of placebo versus nocebo effects.

      Comments on revisions:

      The authors have addressed all of my concerns and comments - one point for them to verify is that indeed analyses that have not been preregistered will be flagged as such. The provided pre-registration link doesn't specify much about the analysis plans and specific tests used.

    4. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This manuscript presents a study on expectation manipulation to induce placebo and nocebo effects in healthy participants. The study follows standard placebo experiment conventions with the use of TENS stimulation as the placebo manipulation. The authors were able to achieve their aims. A key finding is that placebo and nocebo effects were predicted by recent experience, which is a novel contribution to the literature. The findings provide insights into the differences between placebo and nocebo effects and the potential moderators of these effects.

      Specifically, the study aimed to:

      (1) assess the magnitude of placebo and nocebo effects immediately after induction through verbal instructions and conditioning

      (2) examine the persistence of these effects one week later, and

      (3) identify predictors of sustained placebo and nocebo responses over time.

      Strengths:

      An innovation was to use sham TENS stimulation as the expectation manipulation. This expectation manipulation was reinforced not only by the change in pain stimulus intensity, but also by delivery of non-painful electrical stimulation, labelled as TENS stimulation.

      Questionnaire-based treatment expectation ratings were collected before conditioning and after conditioning, and after the test session, which provided an explicit measure of participants' expectations about the manipulation.

      The finding that placebo and nocebo effects are influenced by recent experience provides a novel insight into a potential moderator of individual placebo effects.

      We thank the reviewer for their thorough evaluation of our manuscript and for highlighting the novelty and originality of our study.

      Weaknesses:

      There are a limited number of trials per test condition (10), which means that the trajectory of responses to the manipulation may not be adequately explored.

      We appreciate the reviewer’s comment regarding the number of trials in the test phase. The trial number was chosen to ensure comparability with previous studies addressing similar research questions with similar designs (e.g. Colloca et al., 2010). Our primary objective was to directly compare placebo and nocebo effects within a within-subject design and to examine their persistence one week after the first test session. While we did not specifically aim to investigate the trajectory of responses within a single testing session, we fully agree that a comprehensive analysis of the trajectories of expectation effects on pain would be a valuable extension of our work. We have now acknowledged this limitation and future direction in the revised manuscript.

      The paragraph reads as follows: “It is important to note that our study was designed in alignment with previous studies addressing similar questions (e.g., Colloca et al., 2010). Our primary aim was to directly compare placebo and nocebo effects in a within-subject design and assess their persistence of these effects one week following the first test session. One limitation of our approach is the relatively short duration of each session, which may have limited our ability to examine the trajectory of responses within a single session. Future studies could address this limitation by increasing the number of trials for a more comprehensive analysis.”

      On day 8, one stimulus per stimulation intensity (i.e., VAS 40, 60, and 80) was applied before the start of the test session to re-familiarise participants with the thermal stimulation. There is a potential risk of revealing the manipulation to participants during the re-familiarization process, as they were not previously briefed to expect the painful stimulus intensity to vary without the application of sham TENS stimulation.

      We thank the reviewer for the opportunity to clarify this point. Participants were informed at the beginning of the experiment that we would use different stimulation intensities to re-familiarize them with the stimuli before the second test session. We are therefore confident that participants perceived this step as part of a recalibration rather than associating it with the experimental manipulation. We have added this information to the revised version of the manuscript.

      The paragraph now reads as follows: “On day 8, one stimulus per stimulation intensity (i.e., VAS 40, 60 and 80) was applied before the start of the test session to re-familiarise participants with the thermal stimulation. Note that participants were informed that these pre-test stimuli were part of the recalibration and refamiliarization procedure conducted prior to the second test session.”

      The differences between the nocebo and control conditions in pain ratings during conditioning could be explained by the differing physiological effects of the different stimulus intensities, so it is difficult to make any claims about expectation effects here.

      We appreciate the reviewer’s comment and agree that, despite the careful calibration of the three pain stimuli, we cannot entirely rule out the possibility that temporal dynamics during the conditioning session were influenced by differential physiological effects of the varying stimulus intensities (e.g., intensity-dependent habituation or sensitization). We have addressed this in the revision of the manuscript, but we would like to emphasize that the stronger nocebo effects during the test phase are statistically controlled for any differences in the conditioning session.

      The paragraph now reads: “This asymmetry is noteworthy in and of itself because it occurred despite the equidistant stimulus calibration relative to the control condition prior to conditioning. It may be the result of different physiological effects of the stimuli over time or amplified learning in the nocebo condition, consistent with its heightened biological relevance, but it could also be a stronger effect of the verbal instructions in this condition.”

      A randomisation error meant that 25 participants received an unbalanced number of 448 trials per condition (i.e., 10 x VAS 40, 14 x VAS 60, 12 x VAS 80).

      We agree that this is indeed unfortunate. However, we would like to point out that all analyses reported in the manuscript have been controlled for the VAS ratings in the conditioning session, i.e., potential effects of the conditioned placebo and nocebo stimuli. Moreover, we have now conducted additional analyses, presented here in our response to the reviewers, to demonstrate that this imbalance did not systematically bias the results. Importantly, the key findings observed during the test phase remain robust despite this issue.

      Specifically, when excluding these 25 participants from the analyses, the reported stronger nocebo compared to placebo effects in the test session on day 1 remain unchanged. Likewise, the comparison of placebo and nocebo effects between days 1 and 8 shows the same pattern when excluding the participants in question. The only exception is the interaction between effect (placebo vs nocebo) x session (day 1 vs day 8), which changed from a borderline significant result (p = .049) to insignificant (p = .24). However, post hoc tests continued to show the same pattern as originally reported: a significant reduction in the nocebo effect from day 1 to day 8 and no significant change in the placebo effect.

      Reviewer #2 (Public review):

      Summary:

      Kunkel et al aim to answer a fundamental question: Do placebo and nocebo effects differ in magnitude or longevity? To address this question, they used a powerful within-participants design, with a very large sample size (n=104), in which they compared placebo and nocebo effects - within the same individuals - across verbal expectations, conditioning, testing phase, and a 1-week follow-up. With elegant analyses, they establish that different mechanisms underlie the learning of placebo vs nocebo effects, with the latter being acquired faster and extinguished slower. This is an important finding for both the basic understanding of learning mechanisms in humans and for potential clinical applications to improve human health.

      Strengths:

      Beyond the above - the paper is well-written and very clear. It lays out nicely the need for the current investigation and what implications it holds. The design is elegant, and the analyses are rich, thoughtful, and interesting. The sample size is large which is highly appreciated, considering the longitudinal, in-lab study design. The question is super important and well-investigated, and the entire manuscript is very thoughtful with analyses closely examining the underlying mechanisms of placebo versus nocebo effects.

      We thank the reviewer for their positive evaluation of our manuscript and for acknowledging the methodological rigor and the significant implications for clinical applications and the broader research field.

      Weaknesses:

      There were two highly addressable weaknesses in my opinion:

      (1) I could not find the preregistration - this is crucial to verify what analyses the authors have committed to prior to writing the manuscript. Please provide a link leading directly to the preregistration - searching for the specified number in the suggested website yielded no results.

      We thank the reviewer for pointing this out. We included a link to the preregistration in the revised manuscript. This study was pre-registered with the German Clinical Trial Register (registration number: DRKS00029228; https://drks.de/search/de/trial/DRKS00029228).

      (2) There is a recurring issue which is easy to address: because the Methods are located after the Results, many of the constructs used, analyses conducted, and even the main placebo and nocebo inductions are unclear, making it hard to appreciate the results in full. I recommend finding a way to detail at the beginning of the results section how placebo and nocebo effects have been induced. While my background means I am familiar with these methods, other readers will lack that knowledge. Even a short paragraph or a figure (like Figure 4) could help clarify the results substantially. For example, a significant portion of the results is devoted to the conditioning part of the experiment, while it is unknown which part was involved (e.g., were temperatures lowered/increased in all trials or only in the beginning).

      We thank the reviewer for their helpful comment and agree that the Results section requires additional information that would typically be provided by the Methods section if it directly followed the Introduction. In response, we have moved the former Figure 4 from the Methods section to the beginning of the Results section as a new Figure 1, to improve clarity. Further, we have revised the Methods section to explicitly state that all trials during the conditioning phase were manipulated in the same way.

      Recommendations for the Authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Given that the authors are claiming (correctly) that there is only limited work comparing placebo/nocebo effects, there are some papers missing from their citations:

      Nocebo responses are stronger than placebo responses after subliminal pain conditioning - - Jensen, K., Kirsch, I., Odmalm, S., Kaptchuk, T. J. & Ingvar, M. Classical conditioning of analgesic and hyperalgesic pain responses without conscious awareness. Proc. Natl. Acad. Sci. USA 112, 7863-7 (2015)

      We thank the reviewer and have now included this relevant publication into the introduction of the revised manuscript.

      Hird, E.J., Charalambous, C., El-Deredy, W. et al. Boundary effects of expectation in human pain perception. Sci Rep 9, 9443 (2019). https://doi.org/10.1038/s41598-019-45811-x

      We thank the reviewer for suggesting this relevant publication. We have now included it into the discussion of the revised manuscript by adding the following paragraph:

      “Recent work using a predictive coding framework further suggests that nocebo effects may be less susceptible to prediction error than placebo effects (Hird et al., 2019), which could contribute to their greater persistence and strength in our study.”

      (2) The trial-by-trial pain ratings could have been usefully modelled with a computational model, such as a Bayesian model (this is especially pertinent given the reference to Bayesian processing in the discussion). A multilevel model could also be used to increase the power of the analysis. This is a tentative suggestion, as I appreciate it would require a significant investment of time and work - alternatively, the authors could acknowledge it in the Discussion as a useful future avenue for investigation, if this is preferred.

      We thank the reviewer for this thoughtful suggestion. While we agree that computational modelling approaches could provide valuable insights into individual learning, our study was not designed with this in mind and the relatively small number of trials per condition and the absence of trial-by-trial expectancy ratings limit the applicability of such models. We have therefore chosen not to pursue such analysis but highlight it in the discussion as a promising direction for future research.

      “Notably, the most recent experience was the most predictive in all three analyses; for instance, the placebo effect on day 8 was predicted by the placebo effect on day 1, not by the initial conditioning. This finding supports the Bayesian inference framework, where recent experiences are weighted more heavily in the process of model updating because they are more likely to reflect the current state of the environment, providing the most relevant and immediate information needed to guide future actions and predictions24. Interestingly, while a change in pain predicted subsequent nocebo effects, it seemed less influential than for placebo effects. This aligns with findings that longer conditioning enhanced placebo effects, while it did not affect nocebo responses10 and the conclusion that nocebo instruction may be sufficient to trigger nocebo responses. Using Bayesian modeling, future studies could identify individual differences in the development of placebo and nocebo effects by integrating prior experiences and sensory inputs, providing a probabilistic framework for understanding the underlying mechanisms.”

      (3) The paper is missing any justification of sample size, i.e. power analysis - please include this.

      We apologize for the missing information on our a priori power analysis. As there is a lack of prior studies investigating within-subjects comparisons of placebo and nocebo effects that could inform precise effect size estimates for our research question, we based our calculation on the ability detect small effects. Specifically, the study was powered to detect effect sizes in the range of d = 0.2 - 0.25 with α = .05 and power = .9, yielding a required sample size of N = 83-129. We have now added this information to the methods section of the revised manuscript.

      (4) "On day 8, one stimulus per stimulation intensity (i.e., VAS 40, 60 and 80) was applied before the start of the test session to re-familiarise participants with the thermal stimulation."

      What were the instructions about this? Was it before the electrode was applied? This runs the risk of unblinding participants, as they only expect to feel changes in stimulus intensity due to the TENS stimulation.

      We thank the reviewer for pointing out the potential risk of unblinding participants due to the re-familiarization process prior to the second test session. We would like to clarify that we followed specific procedures to prevent participants from associating this process with the experimental manipulation. The re-familiarisation with the thermal stimuli was conducted after the electrode had been applied and re-tested to ensure that both stimulus modalities were re-introduced in a consistent and neutral context. Participants were explicitly informed that both procedures were standard checks prior to the actual test session (“We will check both once again before we begin the actual measurement.”). For the thermal stimuli, we informed participants that they would experience three different intensities to allow the skin to acclimate (e.g., “...we will test the heat stimuli in 3 trials with different temperatures, allowing your skin to acclimate to the stimuli. …”), without implying any connection to the experimental conditions.

      Importantly, this re-familiarization procedure mirrored what participants had already experienced during the initial calibration session on day 1. We therefore assume that participants interpreted as a routine technical step rather than part of the experimental manipulation. We have now clarified this procedure in the methods section of the revised manuscript.

      (5) "For a comparison of pain intensity ratings between time-points, an ANOVA with the within-subject factors Condition (placebo, nocebo, control) and Session (day 1, day 8) was carried out. For the comparison of placebo and nocebo effects between the two test days, an ANOVA with the with-subject factors Effect (placebo effect, nocebo effect) and Session (day 1, day 8) was used."

      It seems that one ANOVA is looking at raw pain scores and one is looking at difference scores, but this is a bit confusing - please rephrase/clarify this, and explain why it is useful to include both.

      We thank the reviewer for highlighting this point. Our primary analyses focus on placebo and nocebo effects, which we define as the difference in pain intensity ratings between the control and the placebo condition (placebo effect) and the nocebo and the control condition (nocebo effect), respectively.

      To examine whether condition effects were present at each time-point, we first conducted two separate repeated measures ANOVAs - one for day 1 and one for day 8 - with the within-subject factor CONDITION (placebo, nocebo, control).

      To compare the magnitude and persistence of placebo and nocebo effects over time, we then calculated the above-mentioned difference scores and submitted these to a second ANOVA with within-subject factors EFFECT (placebo vs. nocebo effect) and SESSION (day 1 vs. day 8). We have now clarified this approach on page 19 of the revised manuscript. To avoid confusion, the Condition x Session ANOVA has been removed from the manuscript.

      (6) Please can the authors provide a figure illustrating trial-by-trial ratings during test trials as well as during conditioning trials?

      In response to the reviewer’s point, we now provide the trial-by-trial ratings of the test phases on days 1 and 8 as an additional figure in the Supplement (Figure S1) and would like to clarify that trial-by-trial pain intensity ratings of the conditioning phase are displayed in Figure 2C of the manuscript,

      (7) "Separate multiple linear regression analyses were performed to examine the influence of expectations (GEEE ratings) and experienced effects (VAS ratings) on subsequent placebo and nocebo effects. For day 1, the placebo effect was entered as the dependent variable and the following variables as potential predictors: (i) expected improvement with placebo before conditioning, (ii) placebo effect during conditioning and (iii) the expected improvement with placebo before the test session at day 1"

      The term "placebo effect during conditioning" is a bit confusing - I believe this is just the effect of varying stimulus intensities - please could the authors be more explicit on the terminology they use to describe this? NB changes in pain rating during the conditioning trials do not count as a placebo/nocebo effect, as most of the change in rating will reflect differences in stimulation intensity.

      We agree with the reviewer that the cited paragraph refers to the actual application of lower or higher pain stimuli during the conditioning session, rather than genuinely induced placebo or nocebo effect. We thank the reviewer for this helpful observation and have revised the terminology, accordingly, now referring to these as “pain relief during conditioning” and “pain worsening during conditioning”.

      (8) Supplementary materials: "The three temperature levels were perceived as significantly different (VAS ratings; placebo condition: M= 32.90, SD= 16.17; nocebo condition: M= 56.62, SD= 17.09; control condition: M= 80.84, SD= 12.18"

      This suggests that the VAS rating for the control condition was higher than for the nocebo condition. Please could the authors clarify/correct this?

      We thank the reviewer for spotting this error. The values for the control and the nocebo condition had accidentally been swapped. This has now been corrected in the manuscript: control condition: M= 56.62, SD= 17.09; nocebo condition: M= 80.84, SD= 12.18.

      (9) "To predict placebo responses a week later (VAScontrol - VASplacebo at day 8), the same independent variables were entered as for day 1 but with the following additional variables (i) the placebo effect at day 1 and (ii) the expected improvement with placebo before the test session at day 8."

      Here it would be much clearer to say 'pain ratings during test trials at day 1".

      We agree with the reviewer and have revised the manuscript as suggested.

      (10) For completeness, please present the pain intensity ratings during conditioning as well as calibration/test trials in the figure.

      Please see our answer to comment (6).

      (11) In Figure 1a, it looks like some participants had rated the control condition as zero by day 8. If so, it's inappropriate to include these participants in the analysis if they are not responding to the stimulus. Were these the participants who were excluded due to pain insensitivity?

      On day 8, the lowest pain intensity ratings observed were VAS 3 in the placebo condition and VAS 2 in the control condition, both from the same participant. All other participants reported minimum values of VAS 11 or higher (all on a scale from 0-100). Thus, no participant provided a pain rating of VAS 0, and all ratings indicated some level of pain perception in response to the stimulus. We did not define an exclusion criterion based on day 8 pain ratings in our preregistration, and we did not observe any technical issues with the stimulation procedure. To avoid post-hoc exclusions and maintain consistency with our preregistered analysis plan, we therefore decided to include all participants in the analysis.

      (12) "Comparison of day 1 and day 8. A direct comparison of placebo and nocebo effects on day 1 and day 8 pain intensity ratings showed a main effect of Effect with a stronger nocebo effect (F(1,97)= 53.93, 131 p< .001, η2= .36) but no main effect of Day (F(1,97)= 2.94, p= .089, η2 = .029). The significant Effect x Session interaction indicated that the placebo effect and the nocebo effect developed differently over time (F(1,97)= 3.98, p= .049, η2 = .039)"

      This is confusing as it talks about a main effect of "day" and then interaction with "session" - are they two different models? The authors need to clarify.

      We thank the reviewer for pointing this out. In our analysis, “Session” is the correct term for the experimental factor, which has two factor levels, “day 1” and “day 8”. This has now been corrected in the revised manuscript.

      Reviewer #2 (Recommendations for the authors):

      (1) More information on how "size of the effect" in Figures 1b and 2b was calculated is needed; this can be in the legend. If these are differences between control and each condition, then they were reversed for one condition (nocebo?), which is ok - but this should be clearly explained.

      We agree with the reviewer and have now revised the figure legends to improve clarity. The legends now read:

      1b: “Figure 1. Pain intensity ratings and placebo and nocebo effects during calibration and test sessions. (A) Mean pain intensity ratings in the placebo, nocebo and control condition during calibration, and during the test sessions at day 1 and day 8. (B) Placebo effect (control condition - placebo condition, i.e., positive value of difference) and nocebo effect (nocebo condition - control condition, i.e., positive value of difference) on day 1 and day 8. Error bars indicate the standard error of the mean, circles indicate mean ratings of individual participants. *: p < .001, : p < .01, n.s.: non-significant.”

      2b: “Figure 2. Mean and trial-by-trial pain intensity ratings, placebo and nocebo effects during conditioning. (A) Mean pain intensity ratings of the placebo, nocebo and control condition during conditioning. (B) Placebo effect (control condition - placebo condition, i.e., positive value of difference) and nocebo effect (nocebo condition - control condition, i.e., positive value of difference) during conditioning. (C) Trial-by-trial pain intensity ratings (with confidence intervals) during conditioning. Error bars indicate the standard error of the mean, circles indicate mean ratings of individual participants. ***: p < .001.”

      (2) In the methods, I was missing a clear understanding of how many trials there were in the conditioning phase, and then how many in the other testing phases. Also, how long did the experiment last in total?

      We apologize that the exact number of trials in the testing phases was not clear in the original manuscript. We now indicate on page 18 of the revised manuscript that we used 10 trials per condition in the test sessions. We have also added information on the duration of each test day (i.e., three hours on day 1 and one hour on day 8) on page 15.

      (3) In expectancy ratings, line 186 - are improvement and worsening expectations different from expected pain relief? It is implied that these are two different constructs - it would be helpful to clarify that.

      We agree that this is indeed confusing and would like to clarify that both refer to the same construct. We used the Generic rating scale for previous treatment experiences, treatment expectations, and treatment effects (GEEE questionnaire, Rief et al. 2021) that discriminates between expected symptom improvement, expected symptom worsening, and expected side effects due to a treatment. We now use the terms “expected pain relief” and “expected pain worsening” throughout the whole manuscript.

      (4) In the last section of the Results, somatosensory amplification comes out of nowhere - and could be better introduced (see point 2 above).

      We agree with the reviewer that introducing the concept of somatosensory amplification and its potential link to placebo/nocebo effects only in the Methods is unhelpful, given that this section appears at the end of the manuscript. We therefore now introduce the relevant publication (Doering et al., 2015) before reporting our findings on this concept.

      (5) In line 169, if the authors want to specify what portion of the variance was explained by expectancy, they could conduct a hierarchical regression, where they first look at R2 without the expectancy entered, and only then enter it to obtain the R2 change.

      We fully agree that hierarchical regression can be a useful approach for isolating the contribution of variables. However, in our case, expectancy was assessed at different time points (e.g., before conditioning and before the test session on day 1), and there was no principled rationale for determining the order in which these different expectancy-related variables should be entered into a hierarchical model.

      That said, in response to the reviewer’s suggestion, we have now conducted hierarchical regression analyses in which all expectancy-related variables were entered together as a single block (see below). These analyses largely confirmed the findings reported so far and are provided here in the response to the reviewers below. Given the exploratory nature of this grouping and the lack of an a priori hierarchy, we feel that the standard multiple regression models remain the most appropriate for addressing our research question because it allows us to evaluate the total contribution of expectancy-related predictors while also examining the individual contribution of each variable within the block. We would therefore prefer to retain these as the primary analyses in the manuscript.

      Results of the hierarchical regression analyses:

      Day 1 - Placebo response: In step 1, we entered the difference in pain intensity ratings between the control and the placebo condition during conditioning as a predictor. In step 2, we added the two variables reflecting expectations (i.e., expected improvement with placebo (i) before conditioning and (ii) before the test session on day 1). This allowed us to assess whether expectation-related variables explained additional variance beyond the effect of conditioning.

      The overall regression model at step 1 was significant, F(1, 102) = 13.42, p < .001, explaining 11.6% of the variance in the dependent variable (R<sup>2</sup> = .116). Adding the expectancy-related predictors in step 2 did not lead to a significant increase in explained variance, ΔR<sup>2</sup> = .007, F(2, 100) = 0.384, p = .682. Thus, the conditioning response significantly predicted placebo-related pain reduction on day 1, but additional information on expectations did not account for further variance.

      Day 1 - Nocebo response: The equivalent analysis was run for the nocebo response on day 1. In step 1, the pain intensity difference between the nocebo and the control condition was entered as a predictor before adding the two expectancy ratings (i.e., expected worsening with nocebo (i) before conditioning and (ii) before the test session on day 1).

      In step 1, the regression model was not statistically significant, F(1, 102) = 2.63, p = .108, and explained only 2.5% of the variance in nocebo response (R<sup>2</sup> = .025). Adding the expectation-related predictors in Step 2 slightly increased the explained variance by ΔR<sup>2</sup> = .027, but this change was also non-significant, F(2, 100) = 1.41, p = .250. The overall variance explained by the full model remained low (R<sup>2</sup> = .052). These results suggest that neither conditioning nor expectation-related variables reliably predicted nocebo-related pain increases on day 1.

      Day 8 - Placebo response: For the prediction of the placebo effect on day 8, the following variables reflecting perceived effects were entered as predictors in step 1: the difference in pain intensity ratings between the control and the placebo condition (i) during conditioning and (ii) on day 1. In step 2, the variables reflecting expectations were added: the expected improvement with placebo (i) before conditioning, (ii) before the test session on day 1 and (iii) before the test session on day 8.

      In step 1, the model was statistically significant, F(3, 95) = 14.86, p < .001, explaining 23.8% of the variance in the placebo response (R<sup>2</sup> = .238, Adjusted R<sup>2</sup> = .222). In step 2, the addition of the expectation-related predictors resulted in a non-significant improvement in model fit, ΔR<sup>2</sup> = .051, F(3, 92) = 2.21, p = .092. The overall variance explained by the full model increased modestly to 29.0%.

      Day 8 - Nocebo response: For the equivalent analyses of nocebo responses on day 8, the following variables were included in step 1: the difference in pain intensity ratings between the nocebo and the control condition (i) during conditioning and (ii) on day 1. In step 2, we entered the variables reflecting nocebo expectations including expected worsening with nocebo (i) before conditioning, (ii) before the test session on day 1 and (iii) before the test session on day 8. In step 1, the model significantly predicted the day 8 nocebo response, F(3, 95) = 6.04, p = .003, accounting for 11.3% of the variance (R<sup>2</sup> = .113, Adjusted R<sup>2</sup> = .094). However, the addition of expectation-related predictors in Step 2 resulted in only a negligible and non-significant improvement, ΔR<sup>2</sup> = .006, F(3, 92) = 0.215, p = .886. The full model explained just 11.9% of the variance (R<sup>2</sup> = .119).

      Typos:

      (6) Abstract - 104 heathy xxx (word missing).

      (7) Line 61 - reduce or decrease - I think you meant increase.

      Thank you, we have now corrected both sentences.

      References

      Colloca L, Petrovic P, Wager TD, Ingvar M, Benedetti F. How the number of learning trials affects placebo and nocebo responses. Pain. 2010

      Doering BK, Nestoriuc Y, Barsky AJ, Glaesmer H, Brähler E, Rief W. Is somatosensory amplification a risk factor for an increased report of side effects? Reference data from the German general population. J Psychosom Res. 2015

    1. eLife Assessment

      This work describes a highly complex automated algorithm for analyzing vascular imaging data from two-photon microscopy. This tool has the potential to be extremely valuable to the field and to fill gaps in knowledge of hemodynamic activity across a regional network. The solid biological application provides a demonstration of their pipeline's capabilities and suggests intriguing hypotheses around prolonged vascular tone changes, but will need to be followed up by further experiments to be conclusively demonstrated.

    2. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors describe a new pipeline to measure changes in vasculature diameter upon opt-genetic stimulation of neurons.

      The work is interesting and the topic is quite relevant to better understand the hemodynamic response on the graph/network level.

      Strengths:

      The manuscript provides a pipeline that allows for the detection of changes in the vessel diameter as well as simultaneously allowing for the location of the neurons driven by stimulation.

      The resulting data could provide interesting insights into the graph-level mechanisms of regulating activity-dependent blood flow.

      The interesting findings include that vessel radius changes depend on depth from the cortical surface and that dilations on average happen closer to the activated neurons.

    3. Reviewer #2 (Public Review):

      Summary:

      The authors develop a highly detailed pipeline to analyze hemodynamic signals from in vivo two-photon fluorescence microscopy. This includes motion correction, segmentation of the vascular network, diameter measurements across time, mapping neuronal position relative to the vascular network, and analyzing vascular network properties (interactions between different vascular segments). For the segmentation, the authors use a Convolution Neural Network to identify vessel (or neural) and background pixels and train it using ground truth images based on semi-automated mapping followed by human correction/annotation. Considerable processing was done on the segmented images to improve accuracy, extract vessel center lines, and compute frame-by-frame diameters. The model was tested with artificial diameter increases and Gaussian noise and proved robust to these manipulations.

      Network-level properties include Assortativity - a measure of how similar a vessel's response is to nearby vessels - and Efficiency - the ease of flow through the network (essentially, the combined resistance of a path based on diameter and vessel length between two points).

      Strengths:

      This is a very powerful tool for cerebral vascular biologists as many of these tasks are labor intensive, prone to subjectivity, and often not performed due to the complexity of collecting and managing volumes of vascular signals. Modelling is not my specialty so I cannot speak too specifically, but the model appears to be well-designed and robust to perturbations. It has many clever features for processing the data.

      The authors rightly point out that there is a real lack in the field of knowledge of vascular network activity at single-vessel resolution. Network anatomy has been studied, but hemodynamics are typically studied either with coarse resolution or in only one or a few vessels at a time. This pipeline has the potential to change that.

      [Editors' note: this work has been through three rounds of revisions, and most recently the authors have added caveats to the discussion. This version of the paper has been assessed by the editors and the weaknesses identified previously remain with earlier versions of the work.]

    4. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      Summary:

      In the manuscript the authors describe a new pipeline to measure changes in vasculature diameter upon optogenetic stimulation of neurons. The work is useful to better understand the hemodynamic response on a network /graph level.

      Strengths:

      The manuscript provides a pipeline that allows to detect changes in the vessel diameter as well as simultaneously allows to locate the neurons driven by stimulation.

      The resulting data could provide interesting insights into the graph level mechanisms of regulating activity dependent blood flow.

      Weaknesses:

      (1) The manuscript contains (new) wrong statements and (still) wrong mathematical formulas.

      The symbols in these formulas have been updated to disambiguate them, and the accompanying statements have been adjusted for clarity.

      (2) The manuscript does not compare results to existing pipelines for vasculature segmentation (opensource or commercial). Comparing performance of the pipeline to a random forest classifier (illastik) on images that are not preprocessed (i.e. corrected for background etc.) seems not a particularly useful comparison.

      We’ve now included comparisons to Imaris (a commercial) for segmentation and VesselVio (open-source) for graph extraction software.

      For the ilastik comparison, the images were preprocessed prior to ilastik segmentation, specifically by doing intensity normalization.

      Example segmentations utilizing Imaris have now been included. Imaris leaves gaps and discontinuities in the segmentation masks, as shown in Supplementary Figure 10. The Imaris segmentation masks also tend to be more circular in cross-section despite irregularities on the surface of the vessels observable in the raw data and identified in manual segmentation. This approach also requires days to months to generate per image stack.

      A comparison to VesselVio has now also been generated, and results are visualized in Supplementary Figure 11. VesselVio generates individual graphs for each time point, resulting in potential discrepancies in the structure of the graphs from different time points. Furthermore, Vesselvio uses distance transformation to estimate the vascular radius, which renders the vessel radius estimates highly susceptible to variation in the user selected methodology used to obtain segmentation results; while our approach uses intensity gradient-based boundary detection from centerlines in the image instead mitigating this bias. We have added the following paragraph to the Discussion section on the comparisons with the two methods:

      “Comparison with commercial and open-source vascular analysis pipelines

      To compare our results with those achievable on these data with other pipelines for segmentation and graph network extraction, we compared segmentation results qualitatively with Imaris version 9.2.1 (Bitplane) and vascular graph extraction with VesselVio [1]. For the Imaris comparison, three small volumes were annotated by hand to label vessels. Example slices of the segmentation results are shown in Supplementary Figure 10. Imaris tended to either over- or under-segment vessels, disregard fine details of the vascular boundaries, and produce jagged edges in the vascular segmentation masks. In addition to these issues with segmentation mask quality, manual segmentation of a single volume took days for a rater to annotate. To compare to VesselVio, binary segmentation masks (one before and one after photostimulation) generated with our deep learning models were loaded into VesselVio for graph extraction, as VesselVio does not have its own method for generating segmentation masks. This also facilitates a direct comparison of the benefits of our graph extraction pipeline to VesselVio. Visualizations of the two graphs are shown in Supplementary Figure 11. Vesselvio produced many hairs at both time points, and the total number of segments varied considerably between the two sequential stacks: while the baseline scan resulted in 546 vessel segments, the second scan had 642 vessel segments. These discrepancies are difficult to resolve in post-processing and preclude a direct comparison of individual vessel segments across time. As the segmentation masks we used in graph extraction derive from the union of multiple time points, we could better trace the vasculature and identify more connections in our extracted graph. Furthermore, VesselVio relies on the distance transform of the user supplied segmentation mask to estimate vascular radii; consequently, these estimates are highly susceptible to variations in the input segmentation masks.We repeatedly saw slight variations between boundary placements of all of the models we utilized (ilastik, UNet, and UNETR) and those produced by raters. Our pipeline mitigates this segmentation method bias by using intensity gradient-based boundary detection from centerlines in the image (as opposed to using the distance transform of the segmentation mask, as in VesselVio).”

      (3) The manuscript does not clearly visualize performance of the segmentation pipeline (e.g. via 2d sections, highlighting also errors etc.). Thus, it is unclear how good the pipeline is, under what conditions it fails or what kind of errors to expect.

      On reviewer’s comment, 2D slices have been added in the Supplementary Figure 4.

      (4) The pipeline is not fully open-source due to use of matlab. Also, the pipeline code was not made available during review contrary to the authors claims (the provided link did not lead to a repository). Thus, the utility of the pipeline was difficult to judge.

      All code has been uploaded to Github and is available at the following location: https://github.com/AICONSlab/novas3d

      The Matlab code for skeletonization is better at preserving centerline integrity during the pruning of hairs from centerlines than the currently available open-source methods.

      - Generalizability: The authors addressed the point of generalizability by applying the pipeline to other data sets. This demonstrates that their pipeline can be applied to other data sets and makes it more useful.  However, from the visualizations it's unclear to see the performance of the pipeline, where the pipelines fails etc. The 3d visualizations are not particularly helpful in this respect . In addition, the dice measure seems quite low, indicating roughly 20-40% of voxels do not overlap between inferred and ground truth. I did not notice this high discrepancy earlier. A thorough discussion of the errors appearing in the segmentation pipeline would be necessary in my view to better assess the quality of the pipeline.

      2D slices from the additional datasets have been added in the Supplementary Figure 13 to aid in visualizing the models’ ability to generalize to other datasets.

      The dice range we report on (0.7-0.8) is good when compared to those (0.56-86) of 3D segmentations of large datasets in microscopy [2], [3], [4], [5], [6]. Furthermore, we had two additional raters segment three images from the original training set. We found that the raters had a mean inter class correlation  of 0.73 [7]. Our model outperformed this Dice score on unseen data: Dice scores from our generalizability tests on C57 mice and Fischer rats on par or higher than this baseline.

      Reviewer #2 (Public review):

      The authors have addressed most of my concerns sufficiently. There are still a few serious concerns I have. Primarily, the temporal resolution of the technique still makes me dubious about nearly all of the biological results. It is good that the authors have added some vessel diameter time courses generated by their model. But I still maintain that data sampling every 42 seconds - or even 21 seconds - is problematic. First, the evidence for long vascular responses is lacking. The authors cite several papers:

      Alarcon-Martinez et al. 2020 show and explicitly state that their responses (stimulus-evoked) returned to baseline within 30 seconds. The responses to ischemia are long lasting but this is irrelevant to the current study using activated local neurons to drive vessel signals.

      Mester et al. 2019 show responses that all seem to return to baseline by around 50 seconds post-stimulus.

      In Mester et al. 2019, diffuse stimulations with blue light showed a return to baseline around 50 seconds post-stimulus (cf. Figure 1E,2C,2D). However, focal stimulations where the stimulation light is raster scanned over a small region focused in the field of view show longer-lasting responses (cf. Figure 4) that have not returned to baseline by 70 seconds post-stimulus [8]. Alarcon-Martinez et al. do report that their responses return baseline within 30 seconds; however, their physiological stimulation may lead to different neuronal and vessel response kinetics than those elicited by the optogenetic stimulations as in current work.

      O'Herron et al. 2022 and Hartmann et al. 2021 use opsins expressed in vessel walls (not neurons as in the current study) and directly constrict vessels with light. So this is unrelated to neuronal activity-induced vascular signals in the current study.

      We agree that optogenetic activation of vessel-associated cells is distinct from optogenetic activation of neurons, but we do expect the effects of such perturbations on the vasculature to have some commonalities.

      There are other papers including Vazquez et al 2014 (PMID: 23761666) and Uhlirova et al 2016 (PMID: 27244241) and many others showing optogenetically-evoked neural activity drives vascular responses that return back to baseline within 30 seconds. The stimulation time and the cell types labeled may be different across these studies which can make a difference. But vascular responses lasting 300 seconds or more after a stimulus of a few seconds are just not common in the literature and so are very suspect - likely at least in part due to the limitations of the algorithm.

      The photostimulation in Vazquez et al. 2014 used diffuse photostimulation with a fiberoptic probe similar to Mester et al. 2019 as opposed to raster scanning focal stimulation we used in this study and in the study by Mester et al. 2019  where we observed the focal photostimulation to elicited longer than a minute vascular responses. Uhlirova et al. 2016 used photostimulation powers between 0.7 and 2.8 mW, likely lower than our 4.3 mW/mm<sup>2</sup> photostimulation. Further, even with focal photostimulation, we do see light intensity dependence of the duration of the vascular responses. Indeed, in Supplementary Figure 2, 1.1 mW/mm<sup>2</sup> photostimulation leads to briefer dilations/constrictions than does 4.3 mW/mm<sup>2</sup>; the 1.1 mW/mm<sup>2</sup> responses are in line, duration wise, with those in Uhlirova et al. 2016.

      Critically, as per Supplementary Figure 2, the analysis of the experimental recordings acquired at 3-second temporal resolution did likewise show responses in many vessels lasting for tens of seconds and even hundreds of seconds in some vessels.

      Another major issue is that the time courses provided show that the same vessel constricts at certain points and dilates later. So where in the time course the data is sampled will have a major effect on the direction and amplitude of the vascular response. In fact, I could not find how the "response" window is calculated. Is it from the first volume collected after the stimulation - or an average of some number of volumes? But clearly down-sampling the provided data to 42 or even 21 second sampling will lead to problems. If the major benefit to the field is the full volume over large regions that the model can capture and describe, there needs to be a better way to capture the vessel diameter in a meaningful way.

      In the main experiment (i.e. excluding the additional experiments presented in the Supplementary Figure 2 that were collected over a limited FOV at 3s per stack), we have collected one stack every 42 seconds. The first slice of the volume starts following the photostimulation, and the last slice finishes at 42 seconds. Each slice takes ~0.44 seconds to acquire. The data analysis pipeline (as demonstrated by the Supplementary Figure 2) is not in any way limited to data acquired at this temporal resolution and - provided reasonable signal-to-noise ratio (cf. Figure 5) - is applicable, as is, to data acquired at much higher sampling rates.

      It still seems possible that if responses are bi-phasic, then depth dependencies of constrictors vs dilators may just be due to where in the response the data are being captured - maybe the constriction phase is captured in deeper planes of the volume and the dilation phase more superficially. This may also explain why nearly a third of vessels are not consistent across trials - if the direction the volume was acquired is different across trials, different phases of the response might be captured.

      Alternatively, like neuronal responses to physiological stimuli, the vascular responses elicited by increases in neuronal activity may themselves be variable in both space and time.

      I still have concerns about other aspects of the responses but these are less strong. Particularly, these bi-phasic responses are not something typically seen and I still maintain that constrictions are not common. The authors are right that some papers do show constriction. Leaving out the direct optogenetic constriction of vessels (O'Herron 2022 & Hartmann 2021), the Alarcon-Martinez et al. 2020 paper and others such as Gonzales et al 2020 (PMID: 33051294) show different capillary branches dilating and constricting. However, these are typically found either with spontaneous fluctuations or due to highly localized application of vasoactive compounds. I am not familiar with data showing activation of a large region of tissue - as in the current study - coupled with vessel constrictions in the same region. But as the authors point out, typically only a few vessels at a time are monitored so it is possible - even if this reviewer thinks it unlikely - that this effect is real and just hasn't been seen.

      Uhlirova et al. 2016 (PMID: 27244241) observed biphasic responses in the same vessel with optogenetic stimulation in anesthetized and unanesthetized animals (cf Fig 1b and Fig 2, and section “OG stimulation of INs reproduces the biphasic arteriolar response”). Devor et al. (2007) and Lindvere et al. (2013) also reported on constrictions and dilations being elicited by sensory stimuli.

      I also have concerns about the spatial resolution of the data. It looks like the data in Figure 7 and Supplementary Figure 7 have a resolution of about 1 micron/pixel. It isn't stated so I may be wrong. But detecting changes of less than 1 micron, especially given the noise of an in vivo prep (brain movement and so on), might just be noise in the model. This could also explain constrictions as just spurious outputs in the model's diameter estimation. The high variability in adjacent vessel segments seen in Figure 6C could also be explained the same way, since these also seem biologically and even physically unlikely.

      Thank you for your comment. To address this important issue, we performed an additional validation experiment where we placed a special order of fluorescent beads with a known diameter of 7.32 ± 0.27um, imaged them following our imaging protocol, and subsequently used our pipeline to estimate their diameter. Our analysis converged on the manufacturer-specified diameters, estimating the diameter to be 7.34 ± 0.32. The manuscript has been updated to detail this experiment, as below:

      Methods section insert

      “Second, our boundary detection algorithm was used to estimate the diameters of fluorescent beads of a known radius imaged under similar acquisition parameters. Polystyrene microspheres labelled with Flash Red (Bangs Laboratories, inc, CAT# FSFR007) with a nominal diameter of 7.32um and a specified range of 7.32 ± 0.27um as determined by the manufacturer using a Coulter counter were imaged on the same multiphoton fluorescence microscope set-up used in the experiment (identical light path, resonant scanner, objective, detector, excitation wavelength and nominal lateral and axial resolutions, with 5x averaging). The images of the beads had a higher SNR than our images of the vasculature, so Gaussian noise was added to the images to degrade the SNR to the same level of that of the blood vessels. The images of the beads were segmented with a threshold, centroids calculated for individual spheres, and planes with a random normal vector extracted from each bead and used to estimate the diameter of the beads. The same smoothing and PSF deconvolution steps were applied in this task. We then reported the mean and standard deviation of the distribution of the diameter estimates. A variety of planes were used to estimate the diameters.”

      Results Section Insert

      “Our boundary detection algorithm successfully estimated the radius of precisely specified fluorescent beads. The bead images had a signal-to-noise ratio of 6.79 ± 0.16 (about 35% higher than our in vivo images): to match their SNR to that of in vivo vessel data, following deconvolution, we added Gaussian noise with a standard deviation of 85 SU to the images, bringing the SNR down to 5.05 ± 0.15. The data processing pipeline was kept unaltered except for the bead segmentation, performed via image thresholding instead of our deep learning model (trained on vessel data). The bead boundary was computed following the same algorithm used on vessel data: i.e., by the average of the minimum intensity gradients computed along 36 radial spokes emanating from the centreline vertex in the orthogonal plane. To demonstrate an averaging-induced decrease in the uncertainty of the bead radius estimates on a scale that is finer than the nominal resolution of the imaging configuration, we tested four averaging levels in 289 beads. Three of these averaging levels were lower than that used on the vessels, and one matched that used on the vessels (36 spokes per orthogonal plane and a minimum of 10 orthogonal planes per vessel). As the amount of averaging increased, the uncertainty on the diameter of the beads decreased, and our estimate of the bead's diameter converged upon the manufacturer's Coulter counter-based specifications (7.32 ± 0.27um), as tabulated below in Table 1.”

      Bibliography

      (1) J. R. Bumgarner and R. J. Nelson, “Open-source analysis and visualization of segmented vasculature datasets with VesselVio,” Cell Rep. Methods, vol. 2, no. 4, Apr. 2022, doi: 10.1016/j.crmeth.2022.100189.

      (2) G. Tetteh et al., “DeepVesselNet: Vessel Segmentation, Centerline Prediction, and Bifurcation Detection in 3-D Angiographic Volumes,” Front. Neurosci., vol. 14, Dec. 2020, doi: 10.3389/fnins.2020.592352.

      (3) N. Holroyd, Z. Li, C. Walsh, E. Brown, R. Shipley, and S. Walker-Samuel, “tUbe net: a generalisable deep learning tool for 3D vessel segmentation,” Jul. 24, 2023, bioRxiv. doi: 10.1101/2023.07.24.550334.

      (4) W. Tahir et al., “Anatomical Modeling of Brain Vasculature in Two-Photon Microscopy by Generalizable Deep Learning,” BME Front., vol. 2020, p. 8620932, Dec. 2020, doi: 10.34133/2020/8620932.

      (5) R. Damseh, P. Delafontaine-Martel, P. Pouliot, F. Cheriet, and F. Lesage, “Laplacian Flow Dynamics on Geometric Graphs for Anatomical Modeling of Cerebrovascular Networks,” ArXiv191210003 Cs Eess Q-Bio, Dec. 2019, Accessed: Dec. 09, 2020. (Online). Available: http://arxiv.org/abs/1912.10003

      (6) T. Jerman, F. Pernuš, B. Likar, and Ž. Špiclin, “Enhancement of Vascular Structures in 3D and 2D Angiographic Images,” IEEE Trans. Med. Imaging, vol. 35, no. 9, pp. 2107–2118, Sep. 2016, doi: 10.1109/TMI.2016.2550102.

      (7) T. B. Smith and N. Smith, “Agreement and reliability statistics for shapes,” PLOS ONE, vol. 13, no. 8, p. e0202087, Aug. 2018, doi: 10.1371/journal.pone.0202087.

      (8) J. R. Mester et al., “In vivo neurovascular response to focused photoactivation of Channelrhodopsin-2,” NeuroImage, vol. 192, pp. 135–144, May 2019, doi: 10.1016/j.neuroimage.2019.01.036.

    1. eLife Assessment

      This paper provides important insight into how early life experience shapes adult behavior in fruit bats. The authors raised juvenile bats either in an impoverished or enriched environment and studied their foraging behaviors. The evidence is convincing that bats raised in enriched environments are more active, bold, and exploratory. The work will be of interest to ethologists and developmental psychologists.

    2. Reviewer #1 (Public review):

      Summary:

      The authors show that early life experience of juvenile bats shape their outdoor foraging behaviors. They achieve this by raising juvenile bats either in an impoverished or enriched environment. They subsequently test the behavior of bats indoors and outdoors. The authors show that behavioral measures outdoors were more reliable in delineating the effect of early life experiences as the bats raised in enriched environments were more bold, active and exhibit higher exploratory tendencies.

      Strengths:

      The major strength of the study is providing a quantitative study of animal "personality" and how it is likely shaped by innate and environmental conditions. The other major strength is the ability to do reliable long term recording of bats in the outdoors giving researchers the opportunity to study bats in their natural habitat. To this point, the study also shows that the behavioral variables measured indoors do not correlate to that measured outdoor, thus providing a key insight into the importance of test animal behaviors in their natural habitat.

      Weaknesses were in the first round of review:

      It is not clear from the analysis presented in the paper how persistent those environmentally induced changes, do they remain with the bats till end of their lives.

      Comments on revisions:

      The authors have addressed those weaknesses and the paper is much stronger.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Reviewer):

      It is not clear from the analysis presented in the paper how persistent those environmentally induced changes, do they remain with the bats till the end of their lives.

      Currently, the long-term effects of enrichment on the bats remain uncertain. Preliminary results suggest that these differences may persist throughout the bats’ lifetimes; however, further data analysis is ongoing to determine the extent of these effects. We also addressed now at the manuscript discussion

      Reviewer #2 (Public Reviewer):

      (1) Assessing personality metrics and the indoor paradigm: While I applaud this effort and think the metrics used are justified, I see a few issues in the results as they are currently presented:

      (a) [Major] I am somewhat concerned that here, the foraging box paradigm is being used for two somewhat conflicting purposes: (1) assessing innate personality and (2) measuring changes in personality as a result of experience. If the indoor foraging task is indeed meant to measure and reflect both at the same time, then perhaps this can be made more explicit throughout the manuscript. In this circumstance, I think the authors could place more emphasis on the fact that the task, at later trials/measurements, begins to take on the character of a "composite" measure of personality and experience.

      Personality traits should generally be stable over time, but personality can also somewhat change with experience. We used the foraging box to assess individual personality, but we also examined the assumption that what we are measuring is a proxy of personality and hence is stable over time. We now clarify this in the manuscript. 

      (b) [Major] Although you only refer to results obtained in trials 1 and 2 when trying to estimate "innate personality" effects, I am a little worried that the paradigm used to measure personality, i.e. the stable components of behavior, is itself affected by other factors such as age (in the case of activity, Fig. 1C3, S1C1-2), the environment (see data re trial 3), and experience outdoors (see data re trials 4/5).

      We found that boldness was the most consistent trait, showing persistence between trials 1 to 5, i.e., 144 days apart on average. We thus also used Boldness as the primary parameter for assessing the effects of personality on the outdoors behavior. While we evaluated other traits for completeness, boldness was the only one that consistently met the criteria for personality, which is why we focused on it in our analyses. The other traits which were not stable over time could be used to assess the effects of experience on behavior

      Ideally, a study that aims to disentangle the role of predisposition from early-life experience would have a metric for predisposition that is relatively unchanging for individuals, which can stand as a baseline against a separate metric that reflects behavioral differences accumulated as a result of experience.

      I would find it more convincing that the foraging box paradigm can be used to measure personality if it could be shown that young bats' behavior was consistent across retests in the box paradigm prior to any environmental exposure across many baseline trials (i.e. more than 2), and that these "initial settings" were constant for individuals. I think it would be important to show that personality is consistent across baseline trials 1 and 2. This could be done, for example, by reproducing the plots in Fig. 1C1-3 while plotting trial 1 against trial 2. (I would note here that if a significant, positive correlation were to be found (as I would expect) between the measures across trial 1 and 2, it is likely that we would see the "habituation effect" the authors refer to expressed as a steep positive slope on the correlation line (indicating that bold individuals on trial 1 are much bolder on trial 2).)

      We agree and thus used boldness which was found to be stable over five trials (three of which were without external experience). We note that if Boldness as we measured it increased over time, the differences between individuals remained similar and this is what is expected from personality traits measured in the same paradigm several times (after the animal acquires experience).  

      (c) Related to the previous point, it was not clear to me why the data from trial 2 (the second baseline trial) was not presented in the main body of the paper, and only data from trial 1 was used as a baseline.

      We added a main figure, showing the correlation between the two baseline trials

      In the supplementary figure and table, you show that the bats tended to exhibit more boldness and exploratory behavior, but fewer actions, in trial 2 as compared with trial 1. You explain that this may be due to habituation to the experimental setup, however, the precise motivation for excluding data from trial 2 from the primary analyses is not stated. I would strongly encourage the authors to include a comparison of the data between the baseline trials in their primary analysis (see above), combine the information from these trials to form a composite baseline against which further analyses are performed, or further justify the exclusion of data as a baseline.

      We had no intention of excluding data from baseline 2. As we have shown several times before (e.g., Harten, 2021) bats’ boldness as we measure it in the box experiment increases over sessions performed nearby in time. This means that trial 2’s boldness was higher than that of trial 1 and trial 3 which made the data less suitable for a Linear model. Moreover, our measurement of boldness is capped (with a maximum of 1) again making it less suitable for a Linear model. However, following the reviewer’s question we now ran all analyses with trial 2’s data included and not only that the results remained the same, some of the models fit better (based on the AIC criterion). We added this information to the revised manuscript.  

      (2) Comparison of indoor behavioral measures and outdoor behavioral measures Regarding the final point in the results, correlation between indoor personality on Trial 4 and outdoor foraging behavior: It is not entirely clear to me what is being tested (neither the details of the tests nor the data or a figure are plotted). Given some of the strong trends in the data - namely, (1) how strongly early environment seems to affect outdoor behavior, (2) how strongly outdoor experience affects boldness, measured on indoor behavior (Fig. 1D) - I am not convinced that there is no relationship, as is stated here, between indoor and outdoor behavior. If this conclusion is made purely on the basis of a p-value, I would suggest revisiting this analysis.

      We agree that the relationship between indoor personality measures and outdoor foraging behavior is of great interest and had expected to find some correspondence between the two. To test this, we conducted multiple GLM analyses using the different indoor behavioral traits as predictors of outdoor behaviors. These analyses did not reveal any significant correlations. We also performed a separate analysis using PC1 (derived from the indoor behavioral variables) as a predictor, and again found no significant associations with outdoor behavior.

      We were indeed surprised by this outcome. It is possible that the behavioral traits we assessed indoors (boldness, exploration, and activity) do not fully capture the dimensions of behavior that are most relevant to foraging in the wild. For example, traits such as neophobia or decisionmaking under risk, which we did not assess directly, may have had stronger predictive value for outdoor behavior. We now highlight this point more clearly in the Discussion and acknowledge the possibility that alternative or additional personality traits might have revealed meaningful relationships.

      (3) Use of statistics/points regarding the generalized linear models While I think the implementation of the GLMM models is correct, I am not certain that the interpretation of the GLMM results is entirely correct for cases where multivariate regression has been performed (Tables 4s and S1, and possibly Table 3). (You do not present the exact equation they used for each model (this would be a helpful addition to the methods), therefore it is somewhat difficult to evaluate if the following critique properly applies, however...)

      The "estimate" for a fixed effect in a regression table gives the difference in the outcome variable for a 1 unit increase in the predictor variable (in the case of numeric predictors) or for each successive "level" or treatment (in the case of categorical variables), compared to the baseline, the intercept, which reflects the value of the outcome variable given by the combination of the first value/level of all predictors. Therefore, for example, in Table 4a - Time spend outside: the estimate for Bat sex: male indicates (I believe) the difference in time spent outside for an enriched male vs. an enriched female, not, as the authors seem to aim to explain, the effect of sex overall. Note that the interpretation of the first entry, Environmental condition: impoverished, is correct. I refer the authors to the section "Multiple treatments and interactions" on p. 11 of this guide to evaluating contrasts in G/LMMS: https://bbolker.github.io/mixedmodelsmisc/notes/contrasts.pdf

      We are not certain we fully understand the comment; however, if our understanding is correct, we respectfully disagree. A GLM analysis without interaction terms—as conducted in our study—functions as a multiple linear regression, wherein each factor's estimate reflects its individual effect on the dependent variable. For example in the case of sex, it examines he effect of sex on the tie spent out independently of enrichment. An interaction term would be needed to test sex*enrichment. We have added the models’ formula, and we hope this clarifies our approach

      Reviewer #1 (Recommendations for the authors):

      I would recommend the following:

      (1) As video tracking and behavioral analysis softwares are wide spread, it would be great to see this applied to the bat behavior indoor to answer questions like how does the bat velocity or heading or acceleration correlate with the behavioral measures boldness , activity or exploration? In the same gist, can one infer boldness, activity or exploration from measured bat velocity or other parameters? I think this will further make the indoor behavior more quantitative.

      In a tent of the size used in our study, bats’ flight behavior tends to be highly stereotypical: they typically perch on the wall, take off, circle the tent—sometimes multiple times—and then either land or not, and enter or not. Flight velocity is largely determined by individual maneuverability and the physical constraints of the space; thus, precise tracking is unlikely to provide further insight into boldness. In contrast, decision-making behaviors—such as whether to land or enter—more accurately reflect personality traits, as we have shown previously (Harten et al., 2018). Moreover, accurate 3D tracking in such an environment is possible but definitely not easy due to the many blind-spots resulting from the cameras being inside the 3D volume.  Nonetheless, we quantified flight activity and assessed its correlation with the other behavioral axes. As it was highly correlated with general activity, we did not include it as an independent parameter in the main analysis. However, in response to the reviewer’s suggestion, we now present this analysis in the Supplementary Materials.

      (2) It is not clear whether the bats come from the same genetic background. they might be but it is not mentioned in the methods under the experimental subjects.

      We have shown in the past that there is no familial relations in a randomly caught sample of bats in the colony where we usually work (Harten et al., 2018). The bats were caught in three, not related wild colonies. The text referring to the table was clarified in the revised manuscript

      (3) It will be great to include the author's thoughts about mechanisms underlying those environmentally induced changes in behavior in the discussion section along with how this will affect the bats' social foraging abilities. Another question that comes to mind is whether growing up with a large number of bats constitute an enriched environment in itself.

      We agree that this could count as an enrichment, and we thus ensured similar group sizes in both groups for this reason. We clarify this in the revised manuscript. 

      We have elaborated on the underlying mechanisms in the discussion, focusing on how they contribute to behavioral changes.

      Reviewer #2 (Recommendations for the authors):

      (1) Outdoor foraging behavior

      If I understand correctly, the data you display in Fig. 3A is only from the 2nd to 3rd weeks of exploration, i.e. just before the first post-exploration trial.

      What does the data look like for the second outdoor exploration data, i.e. before the final trial?

      Is there a specific reason why these measures were only computed on the GPS data from the 3rd week outside? If so, can this sampling of the data be motivated or briefly addressed (in the methods and wherever else necessary)?

      In order to allow a comparison between individuals, we had to restrict ourself to a period we had data from many individuals (some dissapeared later on).

      Following the reviewer suggestion – we added a supplemenry figure including days 21-26

      I would find it important and of great interest to see movement maps for more animals, as these give very rich information that is not entirely captured by the three proxies of outdoor activity.

      Are these four exemplary animals sampled from both seasons?

      Did you check to see if there were any overall differences in outdoor foraging behavior as a function of the season in which the bats were captured?

      Yes, the samples represent individuals from both tested years. This was clarified, and additional examples were included in a supplementary figure.

      Variable of time spent outdoors: You mention that you did not include the nights that the bat spent in the colony in these calculations. Did you also look to see if 'the number of nights when the bats left the colony' predicted the bat's earlier enrichment treatment? This could also be interesting to consider.

      In response to the reviewer’s comment, we conducted an additional analysis to test whether the proportion of nights each bat spent foraging outside the roost was predicted by its earlier environmental condition (enriched vs. impoverished). We also examined whether sex or age influenced this variable. This analysis showed no significant effect of environmental condition, sex, or age on the proportion of nights spent foraging outside the roost

      [Following on point 3 in public review...]

      When wishing to discuss the effect/significance of predictors overall, it is common to present the modelling results as an analysis of variance table. See, for example, the two-way anova section (p. 182) in the book Practical Regression and ANOVA using R: https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf

      I think the output of passing the model object to an "anova" yields the table that you may be looking for, where the variance accounted for by a predictor is given overall, and not just relative to the first level of all predictors. Naturally, this information can be used in combination with the information provided by the raw model output presented in the paper.

      I assume you have done this analysis in R, but am not sure, as the statistical software used is not mentioned. There are several packages in R that allow users to quickly plot the graphical interaction of the parameters they use in models, which aids in interpreting results. It would be good to check results of model fitting in this manner.

      Relatedly, I was unable to locate the data and code for this paper using the DOI provided. Neither searching the internet using the doi nor entering the doi on the Mendeley Data website returned the right results. I tried searching Mendeley Data using the senior author's last name, but the most recent entry does not appear to be from this paper. https://data.mendeley.com/datasets/fr48bmnhxj/1

      We thank the reviewer for the helpful comment. The analysis was indeed conducted in MATLAB, and this has now been clarified in the manuscript. We have also revised the result tables to improve clarity and included the exact formulas used for each model. Regarding the data availability, the reviewer is correct — the dataset had not yet been published at the time of submission. It is now available at the provided DOI link.

      ### Suggestions and questions for the present paper, grouped thematically:

      [Major] Expansion and development of results: I thought there were many interesting and suggestive points in this data that could be expanded upon. I mention some of these here. While the authors of course do not need to implement all of these suggestions, I think the paper would benefit from a more substantial presentation of this rich data set:

      (a) Individual differences as such are not emphasized in the paper so much, as the analyses, particularly those expressed as boxplots, are grouped. The scatter plots in Figure 1 give the richest insight into how individual behavior changes throughout the course of the experiment. I would advocate for the authors to show additional comparisons using such scatter plots (perhaps in the supplementary, if needed).

      We thank the reviewer and added scatter plots to figure 2

      (b) In the second paragraph of the results, the authors introduce the concept of a pareto front and that of personality archetypes (lines 101-107). I found this very interesting, but these concepts were never reiterated upon later in the results or in the discussion. In fact, at many points, I found myself curious as to how the three indoor measures of personality might be combined to form a composite measure of personality (and likewise for outdoor measures). Have you tried to combine measures into a composite and tried to measure whether this composite metric provides any additional insight into these phenomena? For example, what if you mapped the starting position of each bat as a point in a three-dimensional space, given by the three personality measures, and then evaluated their trajectory through this space with measurements taken at later trials. Could innate personality be interpreted as the starting vector in this space (measured across the two baseline trials)? 

      Following the reviewer’s (justified) curiosity we ran a PCA analysis on the behavioral data from trials 1 and 5 and found that there is a significant correlation between the individual scores on PC1. This can be thought of as a measurement that takes both boldness and exploration into account (the weight of activity was very low). We added this information to the revised manuscript and also use this new behavioral parameter as a predisposition in the models (instead of exploration and activity). 

      Could environmental exposure be quantified as a warping of the trajectory through this space? Finally, could outdoor experience also be incorporated to evaluate how an individual arrives at its final measurement of personality combined with experience (trial 5)?

      The paper currently tries to explain outdoors behavior given personality and not vice versa. While this is a very interesting suggestion, we feel that adding this analysis would make the premise of the paper less clear and since the paper is already somewhat complex, we prefer to leave this analysis for a future study. 

      Examining the 3D trajectories of the individuals through the personality space did not reveal any immediate clear pattern (triangles mark the first trial and colours depict the environmental treatment) – 

      Author response image 1.

      Related to this point: I think the strongest part of the paper is the result showing that bats exposed to enriched environments explore farther, more often, and over larger distances than bats that were raised in an impoverished environment.

      We completely agree and tried to further emphasize this  

      (c) While these results of the outdoor GPS tracking are very clear, I wish that more information were extracted from the tracking data, which is incredibly rich and certainly can be used to derive many interest parameters beyond those that the authors have shown here. Examples might include: distance travelled (as opposed to estimated km2 or farthest point), a metric of navigational ability (how much "dead reckoning" the animal engages in). I even wonder if the areas or landmarks visited by the enriched bats might be found to be more complex, challenging, or richer by some measure.

      This study was a first step, aiming to establish a connection between early exposure and outdoors foraging

      We agree that there are many more analyses that can be done and indeed that ones related to navigation capabilities are missing. We are still collecting data on these bats and hope to present a more advanced analysis with a time span of years. 

      (d) Related to the above point: I find it very interesting that in 3 of the 4 bats for which you show exemplary movement data (Fig. 3, panels B and C), they appear to travel to the farthest distances and cover the most ground early on, and become more "conservative" in their flight paths on later evenings. This point is not explored in the discussion, nor related to earlier measurements.

      During the first months of exploration, bats will occasionally perform long exploratory flights in between bouts of shorter flights where they return to nearby familiar trees. This behavior can be seen in more detail in Harten et al Science 2020. We are currently quantifying this more carefully for another study. 

      (e) Finally, my points about the possible strength of a composite measure of the three personality metrics is related to my concern about one of the conclusions, which is that innate personality does not have an effect on outdoor foraging behavior. I think the manner in which this was tested statistically is likely to bias the results against finding such a result given that personality metrics are used to predict outdoor behaviors in an individual manner (6 models in total, each examining a single comparison of predisposition to outdoor behavior), while both indoor personality metrics (Fig 1B) and outdoor behaviors appear to be correlated with each other (Table 5).

      Are there other analyses you have performed that are not presented in the paper and that have led you to conclude that there is no relationship here?

      We agree with the reviewer, that our findings do not exclude an effect of innate personality on foraging but only suggest no such affect for the parameter we measured. That said, we did expect to find an effect of boldness because this parameter has been shown to differentiate much between groups (Harten et al., 2018), and to correlate with other parameters of behavior. We were therefore surprised to find no significant effects, as we had anticipated observing some differences.

      Following the reviewer’s previous comment we now also tested another predisposition parameter – the PC1 score and also found that it did not explain foraging. 

      (f) Personality measured before and after early environmental exposure (related to point (a) above): I find it interesting that the positive correlation in boldness between baseline and post-enrichment or baseline and post-release suggests that the individuals that were the most bold remained bold (and likewise for less adventurous individuals). The correlation for activity, too, still suggests that more active individuals early in life are likely to remain very active after enrichment, even accounting for the fact that activity is confounded with age.

      Perhaps you could place some emphasis on the fact that the initial variation between individuals also appears to be relatively stable over repeated trials. You might also consider measuring this directly (population variance over successive trials; relationship of population variance on indoor measures vs. outdoor measures...)

      Yes – this is a main point of interest. We further emphasize that in the revised manuscript 

      (g) Effect of indoor behavior following early experience on outdoor behavior: You evaluate the effect of predisposition (measured on baseline trial 1) and environmental condition on measures of outdoor activity (Table 4). I wonder if you also tried using indoor behavioral measures measured on the post-enrichment trial 3 to predict outdoor foraging behavior.

      Assuming that these measures are in fact reflecting a combination of predisposition and accumulated experience, then measurements at this closer time point may tell you how the combination of innate traits and early acquired experience affect behavior in the wild.

      We appreciate the reviewer’s insightful suggestion to test whether indoor behavior from post-enrichment Trial 3, reflecting both innate traits and experience, predicts outdoor foraging behavior. We conducted this analysis, but found that the boldness in Trial 3 did not significantly predict any of the outdoor activity measures.

      (2) [Minor] Age/development: While the authors discuss the effect of their manipulations on behavioral measures, they do not much discuss the effect of age.

      I think it would be important to include at some point a mention of the developmental stages of Rousettus, giving labels to certain age ranges, e.g. pup, juvenile, adult, and to provide more context about the stages at which bats were tested in the discussion. Presently, age is only really mentioned as an explanation for declining activity levels, but I wonder if it might also have an influence on boldness.

      It would also be very elegant for figures where age is given in days, to additional label then with these stages.

      All bats were juveniles during the trials (approximately 4 to 8 months old), so they could not be divided into distinct age groups. To assess the effect of age, it was included as a predictor (in days) in the GLM analysis.

      (3) [Major] Effect of early experience and outdoor experience on the indoor task: In the paragraph on lines 278-285, you argue that the effect of seeing earlyenriched bats exhibit more boldness in trial 5 was likely due to post-sampling bias...

      I tend to disagree with this conclusion. I actually find this result both interesting and intuitive - that bats that were exposed to an enriched environment and have had experience in the wild, show much bolder activity on a familiar indoor foraging test (i.e. outside experience has made the animals bolder than before) (Fig 1, lines 159-161, Fig. S1). I did not notice this possibility mentioned in the discussion of the results.

      I also do not fully understand this argument. Could you please explain further?

      We accept the reviewer's comment and updated the manuscript (lines 336346) explaining the two hypotheses more clearly and arguing that it is difficult to tell them apart with the current data.

      [Minor] You also say that "this difference... can be seen in Figure 2 when examining only the bats that had remained until the last trial (Figure 2A2)." Do you mean supplementary Figure S1 A2? In fact, I am entirely unclear on what data is plotted in the supplementary Figure S1 and what differentiates the two columns of figures and the two models presented in the supplementary table. Did you plot data similar to that in Figure 2, with only bats that were present for all trials, but not show this data?

      There was a mistake: what was previously referred to as 2A2 is actually S2 A2.

      On the right side—only among the individuals with GPS data—the change is already evident at Baseline 2, where only the bolder individuals remain. If you have suggestions for a better analysis approach, we would be happy to hear them.

      ### Minor points

      General points regarding figures:

      For Figures 2 and 3A1-3 (as well as Fig. S1): Authors must show the raw data points over the box plots. It is very difficult to interpret the data and conclusions without being able to see the true distribution.

      Done

      For all figures showing grouped individual data, please annotate all panels or sets of boxplots with the number of bats whose data entered into each, as it is a little difficult to keep track of the changing sample sizes across experimental stages.

      To enhance transparency, we have added individual data points to all boxplots, allowing visual estimation of sample sizes across experimental stages. While numerical annotations are not included on the figures, the exact number of bats contributing to each group is provided in the Methods section (Table 8), ensuring this information is readily accessible to readers.In response to the reviewer’s request, we have updated all relevant figures to display individual data points within each boxplot. This addition makes it easier to track changes in sample size across different experimental stages.

      Unless I've missed the reason behind differences in axis labelling across the figures, it seems that trials are not always referred to consistently. E.g. Fig. 1 labels say "Trial 1 (baseline)" and fig. 2 labels say "Baseline 1 0 days." I'm not entirely sure if these correspond to exactly the same data. If so, perhaps the labels can be made uniform. I think the descriptive ones (Baseline 1, Postenrichment...) may be more helpful to the reader than providing the trial number (Trial 1, etc....).

      Done

      Figure 1:

      Very good Fig. 1A and 1B.

      For panels C1-3 & D, I think it would make it easier for the reader if the personality measure labels were placed at the top of each panel, e.g. "Boldness (entrance proportion)". The double axis labels are not only harder to read, they are also redundant, as the personality measure label repeats on both axes.

      Done

      Panel C1: For the first panel in this sequence, I think it would be elegant to include an annotation in the figure that indicates what the datapoints lying on either side of the dashed line means, i.e. "bolder after enrichment treatment" in the upper left corner, and "bolder before enrichment treatment" in the bottom right corner.

      Panel C2: It appears as though many of the data points in this panel overlap, and it appears to me that the blue data points in particular are overlaid by the orange ones. I am guessing this happens because proportion values based on entrances to only 6 boxes end up giving a more "discrete" looking distribution. I wonder if you can find a way to allow all the data to be visible by, e.g., jittering the data slightly; if there is rounding being done to the proportions, perhaps don't round them so that minute differences will allow them to escape the overlap; or possibly split the panel by enrichment treatment.

      Caption for C1-3: it may be helpful to mention the correlation line color scheme: "enriched (blue lines), the impoverished (orange lines)". The caption also says positive correlations were found for "both environments together," but this correlation line is not shown. Perhaps mention "(not shown)" or show line. Please rephrase the sentence "Dashed line represents the Y=X line." for more transparency and clarity. I understand you mean an "equality" or "unity" line, but perhaps you can explicitly state the information that this line provides, something like e.g. "Dashed line indicates equal values measured on both trials."

      We added the line for a reference, the caption was corrected

      Figure 3:

      Panels B1-C2: I would suggest giving these panels supertitles that indicate that B panels are enriched, C panels are impoverished, and that each panel is data from a different individual.

      The legend was corrected to be more clear about the figure

      General points regarding tables:

      Please revisit tables for formatting and typos, particularly in Table 4. Please also revise table captions for clarity. E.g. "first exploration as predisposition" to "Exploration (Baseline 1)" or similar

      Done

      Supplementary Tables and Figure: these are missing captions and explanations.

      The missing parts were adddad and corrected

      Points of clarification/style:

      It would seem to me more logical to present the results shown in Table 3 before those in Table 2, given that the primary in-lab manipulation is discussed with relation to Table 3, and the analysis in Table 2 is discussed rather as a limitation (though I believe this result can be expanded upon further, see above).

      For the activity metric, I would suggest showing this data as actions/hour instead of actions/minute. I think it is much more intuitive to consider, for example, that a bat makes 2 actions every hour, than that it makes 0.002 actions per minute.

      Done

    1. eLife Assessment

      This revised manuscript presents an important characterization of mouse auditory cortex receptive field organization, utilizing two-photon imaging of specific subpopulations. They demonstrate a degradation of tonotopic organization from the input to the output neurons. The strength of the evidence is convincing.

    2. Reviewer #1 (Public review):

      Summary:

      In this study, Gu et al., employed novel viral strategies, combined with in vivo two-photon imaging, to map the tone response properties of two groups of cortical neurons in A1 - The thalamocortical recipient (TR neurons) and the corticothalamic (CT neurons). They observed a clear tonotopic gradient among TR neurons but not in CT neurons. Moreover, CT neurons exhibited high heterogeneity of their frequency tuning and broader bandwidth, suggesting increased synaptic integration in these neurons. By parsing out different projecting-specific neurons within A1, this study provides insight into how neurons with different connectivity can exhibit different frequency response-related topographic organization.

      Strengths:

      This study reveals the importance of studying neurons with projection specificity rather than layer specificity since neurons within the same layer have very diverse molecular, morphological, physiological, and connectional features. By utilizing a newly developed rabies virus CSN-N2c GCaMP-expressing vector, the authors can label and image specifically the neurons (CT neurons) in A1 that project to the MGB. To compare, they used an anterograde trans-synaptic tracing strategy to label and image neurons in A1 that receive input from MGB (TR neurons).

      Weaknesses:

      - Perhaps as cited in the introduction, it is well known that tonotopic gradient is well preserved across all layers within A1, but I feel if the authors want to highlight the specificity of their virus tracing strategy and the populations that they imaged in L2/3 (TR neurons) and L6 (CT neurons), they should perform control groups where they image general excitatory neurons in the two depths and compare to TR and CT neurons, respectively. This will show that it's not their imaging/analysis or behavioral paradigms that are different from other labs.  

      - Fig 1D and G, the y-axis is Distance from pia (%). I'm not exactly sure what this means. How does % translate to real cortical thickness? 

      - For Fig. 2G and H, is each circle a neuron or an animal? Why are they staggered on top of each other on the x-axis? If x-axis is thedistance from caudal to rostral, each neuron should have a different distance? Also,it seems like it's because Fig. 2H has more circles, that's why it has morevariation thus not significant (for example, at 600 or 900um, 2G seems to haveless circles than 2H).  

      - Similar in Fig 2J and L, why are the circles staggered onthe y-axis now? And is each circle now a neuron or a trial? It seems they havemuch more circles than Fig 2G and 2H. Also I don't think doing a correlation isthe proper stats for this type of plot (this point applies to Fig. 3H and 3J)

      - What does inter-quartile range of BF (IQRBF, in octaves) imply? What's the interpretation of this analysis? I am confused why TR neurons showhigh IQR in HF areas compared to LF areas mean homogeneity among TR neurons (line 213 - 216). On the same note, how is this different from the BF variability?  Isn't higher IQR = tohigher variability?

      - Fig. 4A-B, there's no clear critieria on how the authors categorize V, I, and O Shape. The descriptions in the Methods (line 721 - 725) are also very vague.  

      Comments on revisions:

      The authors have addressed all my questions in the previous round.

    3. Reviewer #2 (Public review):

      Summary:

      Gu and Liang et. al investigated how auditory information is mapped and transformed as it enters and exits a auditory cortex. They use anterograde transsynaptic tracers to label and perform calcium imaging of thalamorecipient neurons in A1 and retrograde tracers to label and perform calcium imaging of corticothalamic output neurons. They demonstrate a degradation of tonotopic organization from the input to output neurons.

      Strengths:

      The experiments appear well executed, well described, and analyzed.

      Weaknesses:

      (1) Given that the CT and TR neurons were imaged at different depths, the question as to whether not these differences could otherwise be explained by layer-specific differences is still not 100% resolved. Control measurements would be needed either by recording 1) CT neurons upper layers 2) TR in deeper layers 3) non-CT in deeper layers and/or 4) non-TR in upper layers.

      (2) What percent of the neurons at the depths being are CT neurons? Similar questions for TR neurons?

      (3) V-shaped, I-shaped, or O-shaped is not an intuitively understood nomenclature, consider changing. Further, the x/y axis for Figure 4a is not labeled, so it's not clear what the heat maps are supposed to represent.

      (4). Many references about projection neurons and cortical circuits are based on studies from visual or somatosensory cortex. Auditory cortex organization is not necessarily the same as other sensory areas. Auditory cortex references should be used specifically, and not sources reporting on S1, V1.

      Comments on revisions:

      The authors have fully addressed my concerns.

    4. Reviewer #3 (Public review):

      Summary:

      The authors performed wide-field and 2-photon imaging in vivo in awake head-fixed mice, to compare receptive fields and tonotopic organization in thalamocortical recipient (TR) neurons vs corticothalamic (CT) neurons of mouse auditory cortex. TR neurons were found in all cortical layers while CT neurons were restricted to layer 6. The TR neurons at nominal depths of 200-400 microns have a remarkable degree of tonotopy (as good if not better than tonotopic maps reported by multiunit recordings). In contrast, CT neurons were very heterogenous in terms of their best frequency (BF), even when focusing on the low vs high frequency regions of primary auditory cortex. CT neurons also had wider tuning.

      Strengths:

      This is a thorough examination using modern methods, helping to resolve a question in the field with projection-specific mapping.

      Weaknesses:

      There are some limitations due to the methods, and it's unclear what the importance of these responses are outside of behavioral context or measured at single timepoints given the plasticity, context-dependence, and receptive field 'drift' that can occur in cortex.

      (1) Probably the biggest conceptual difficulty I have with the paper is comparing these results to past studies mapping auditory cortex topography, mainly due to differences in methods. Conventionally, tonotopic organization is observed for characteristic frequency maps (not best frequency maps), as tuning precision degrades and best frequency can shift as sound intensity increases. The authors used six attenuation levels (30-80 dB SPL) and report that the background noise of the 2-photon scope is <30 dB SPL, which seems very quiet. The authors should at least describe the sound-proofing they used to get the noise level that low, and some sense of noise across the 2-40 kHz frequency range would be nice as a supplementary figure. It also remains unclear just what the 2-photon dF/F response represents in terms of spikes. Classic mapping using single-unit or multi-unit electrodes might be sensitive to single spikes (as might be emitted at characteristic frequency), but this might not be as obvious for Ca2+ imaging. This isn't a concern for the internal comparison here between TR and CT cells as conditions are similar, but is a concern for relating the tonotopy or lack thereof reported here to other studies.

      (2) It seems a bit peculiar that while 2721 CT neurons (N=10 mice) were imaged, less than half as many TR cells were imaged (n=1041 cells from N=5 mice). I would have expected there to be many more TR neurons even mouse for mouse (normalizing by number of neurons per mouse), but perhaps the authors were just interested in a comparison data set and not being as thorough or complete with the TR imaging?

      (3) The authors definitions of neuronal response type in the methods needs more quantitative detail. The authors state: ""Irregular" neurons exhibited spontaneous activity with highly variable responses to sound stimulation. "Tuned" neurons were responsive neurons that demonstrated significant selectivity for certain stimuli. "Silent" neurons were defined as those that remained completely inactive during our recording period (> 30 min). For tuned neurons, the best frequency (BF) was defined as the sound frequency associated with the highest response averaged across all sound levels." The authors need to define what their thresholds are for 'highly variable', 'significant', and 'completely inactive'. Is best frequency the most significant response, the global max (even if another stimulus evokes a very close amplitude response), etc.

      Comments on revisions:

      I think the authors misunderstood my point about sound level and characteristic frequency vs best frequency tonotopic maps. Yes, many studies of cortical responses present stimuli at higher intensities than the characteristic frequencies, but as tuning curves widen with sound level, the macroscopic tonotopic organization of primary auditory cortex breaks down at higher intensities. This is why most of the classic studies of tonotopy e.g., from the Merzenich lab) generated maps of characteristic frequency. As I mentioned before, this isn't so much of an issue for the authors' comparisons of TR vs CT organization in their own study, but in general, this makes it difficult to compare aspects of spatially-organized tonotopy from imaging studies with the older electrophysiological 'truer' tonotopic maps. That said, this means that CT cells also might be tonotopically organized if the authors had been able to look at lower intensity tuning properties.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      In this study, Gu et al. employed novel viral strategies, combined with in vivo two-photon imaging, to map the tone response properties of two groups of cortical neurons in A1. The thalamocortical recipient (TR neurons) and the corticothalamic (CT neurons). They observed a clear tonotopic gradient among TR neurons but not in CT neurons. Moreover, CT neurons exhibited high heterogeneity of their frequency tuning and broader bandwidth, suggesting increased synaptic integration in these neurons. By parsing out different projecting-specific neurons within A1, this study provides insight into how neurons with different connectivity can exhibit different frequency response-related topographic organization.

      Strengths:

      This study reveals the importance of studying neurons with projection specificity rather than layer specificity since neurons within the same layer have very diverse molecular, morphological, physiological, and connectional features. By utilizing a newly developed rabies virus CSN-N2c GCaMP-expressing vector, the authors can label and image specifically the neurons (CT neurons) in A1 that project to the MGB. To compare, they used an anterograde trans-synaptic tracing strategy to label and image neurons in A1 that receive input from MGB (TR neurons).

      Weaknesses:

      Perhaps as cited in the introduction, it is well known that tonotopic gradient is well preserved across all layers within A1, but I feel if the authors want to highlight the specificity of their virus tracing strategy and the populations that they imaged in L2/3 (TR neurons) and L6 (CT neurons), they should perform control groups where they image general excitatory neurons in the two depths and compare to TR and CT neurons, respectively. This will show that it's not their imaging/analysis or behavioral paradigms that are different from other labs. 

      We thank the reviewer for these constructive suggestions. As recommended, we have performed control experiments that imaged the general excitatory neurons in superficial layers (shown below), and the results showed a clear tonotopic gradient, which was consistent with previous findings (Bandyopadhyay et al., 2010; Romero et al., 2020; Rothschild et al., 2010; Tischbirek et al., 2019), thereby validating the reliability of our imaging/analysis approach. The results are presented in a new supplemental figure (Figure 2- figure supplementary 3).

      Related publications:

      (1) Gu M, Li X, Liang S, Zhu J, Sun P, He Y, Yu H, Li R, Zhou Z, Lyu J, Li SC, Budinger E, Zhou Y, Jia H, Zhang J, Chen X. 2023. Rabies virus-based labeling of layer 6 corticothalamic neurons for two-photon imaging in vivo. iScience 26: 106625. DIO: https://doi.org/10.1016/j.isci.2023.106625, PMID: 37250327

      (2) Bandyopadhyay S, Shamma SA, Kanold PO. 2010. Dichotomy of functional organization in the mouse auditory cortex. Nat Neurosci 13: 361-8. DIO: https://doi.org/10.1038/nn.2490, PMID: 20118924

      (3) Romero S, Hight AE, Clayton KK, Resnik J, Williamson RS, Hancock KE, Polley DB. 2020. Cellular and Widefield Imaging of Sound Frequency Organization in Primary and Higher Order Fields of the Mouse Auditory Cortex. Cerebral Cortex 30: 1603-1622. DIO: https://doi.org/10.1093/cercor/bhz190, PMID: 31667491

      (4) Rothschild G, Nelken I, Mizrahi A. 2010. Functional organization and population dynamics in the mouse primary auditory cortex. Nat Neurosci 13: 353-60. DIO: https://doi.org/10.1038/nn.2484, PMID: 20118927

      (5) Tischbirek CH, Noda T, Tohmi M, Birkner A, Nelken I, Konnerth A. 2019. In Vivo Functional Mapping of a Cortical Column at Single-Neuron Resolution. Cell Rep 27: 1319-1326 e5. DIO: https://doi.org/10.1016/j.celrep.2019.04.007, PMID: 31042460

      Figures 1D and G, the y-axis is Distance from pia (%). I'm not exactly sure what this means. How does % translate to real cortical thickness?

      We thank the reviewer for this question. The distance of labeled cells from pia was normalized to the entire distance from pia to L6/WM border for each mouse, according to the previous study (Chang and Kawai, 2018). For all mice tested, the entire distance from pia to L6/WM border was 826.5 ± 23.4 mm (in the range of 752.9 to 886.1).

      Related publications:

      Chang M, Kawai HD. 2018. A characterization of laminar architecture in mouse primary auditory cortex. Brain Structure and Function 223: 4187-4209. DIO: https://doi.org/10.1007/s00429-018-1744-8, PMID: 30187193

      For Figure 2G and H, is each circle a neuron or an animal? Why are they staggered on top of each other on the x-axis? If the x-axis is the distance from caudal to rostral, each neuron should have a different distance? Also, it seems like it's because Figure 2H has more circles, which is why it has more variation, thus not significant (for example, at 600 or 900um, 2G seems to have fewer circles than 2H). 

      We sincerely appreciate the reviewer’s careful attention to the details of our figures. Each circle in the Figure 2G and H represents an individual imaging focal plane from different animals, and the median BF of some focal planes may be similar, leading to partial overlap. In the regions where overlap occurs, the brightness of the circle will be additive.

      Since fewer CT neurons, compared to TR neurons, responded to pure tones within each focal plane, as shown in Figure 2- figure supplementary 2, a larger number of focal planes were imaged to ensure a consistent and robust analysis of the pure tone response characteristics. The higher variance and lack of correlation in CT neurons is a key biological finding, not an artifact of sample size. The data clearly show a wide spread of median BFs at any given location for CT neurons, a feature absent in the TR population.

      Similarly, in Figures 2J and L, why are the circles staggered on the y-axis now? And is each circle now a neuron or a trial? It seems they have many more circles than Figure 2G and 2H. Also, I don't think doing a correlation is the proper stats for this type of plot (this point applies to Figures 3H and 3J).

      We regret any confusion have caused. In fact, Figure 2 illustrates the tonotopic gradient of CT and TR neurons at different scales. Specifically, Figures 2E-H present the imaging from the focal plane perspective (23 focal planes in Figures 2G, 40 focal planes in Figures 2H), whereas Figures 2I-L provide a more detailed view at the single-cell level (481 neurons in Figures 2J, 491 neurons in Figures 2L). So, Figures 2J and L do indeed have more circles than Figures 2G and H. The analysis at these varying scales consistently reveals the presence of a tonotopic gradient in TR neurons, whereas such a gradient is absent in CT neurons.

      We used Pearson correlation as a standard and direct method to quantify the linear relationship between a neuron's anatomical position and its frequency preference, which is widely used in the field to provide a quantitative measure (R-value) and a significance level (p-value) for the strength of a tonotopic gradient. The same statistical logic applies to testing for spatial gradients in local heterogeneity in Figure 3. We are confident that this is an appropriate and informative statistical approach for these data.

      What does the inter-quartile range of BF (IQRBF, in octaves) imply? What's the interpretation of this analysis? I am confused as to why TR neurons show high IQR in HF areas compared to LF areas, which means homogeneity among TR neurons (lines 213 - 216). On the same note, how is this different from the BF variability?  Isn't higher IQR equal to higher variability?

      We thank the reviewer for raising this important point. IQRBF, is a measure of local tuning heterogeneity. It quantifies the diversity of BFs among neighboring neurons. A small IQRBF means neighbors are similarly tuned (an orderly, homogeneous map), while a large IQRBF means neighbors have very different BFs (a disordered, heterogeneous map). (Winkowski and Kanold, 2013; Zeng et al., 2019).

      From the BF position reconstruction of all TR neurons (Figures 2I), most TR neurons respond to high-frequency sounds in the high-frequency (HF) region, but some neurons respond to low frequencies such as 2 kHz, which contributes to high IQR in HF areas. This does not contradict our main conclusion, that the TR neurons is significantly more homogeneous than the CT neurons. BF variability represents the stability of a neuron's BF over time, while IQR represents the variability of BF among different neurons within a certain range. (Chambers et al., 2023).

      Related publications:

      (1) Chambers AR, Aschauer DF, Eppler JB, Kaschube M, Rumpel S. 2023. A stable sensory map emerges from a dynamic equilibrium of neurons with unstable tuning properties. Cerebral Cortex 33: 5597-5612. DIO: https://doi.org/10.1093/cercor/bhac445, PMID: 36418925

      (2) Winkowski DE, Kanold PO. 2013. Laminar transformation of frequency organization in auditory cortex. Journal of Neuroscience 33: 1498-508. DIO: https://doi.org/10.1523/JNEUROSCI.3101-12.2013, PMID: 23345224

      (3) Zeng HH, Huang JF, Chen M, Wen YQ, Shen ZM, Poo MM. 2019. Local homogeneity of tonotopic organization in the primary auditory cortex of marmosets. Proceedings of the National Academy of Sciences of the United States of America 116: 3239-3244. DIO: https://doi.org/10.1073/pnas.1816653116, PMID: 30718428

      Figure 4A-B, there are no clear criteria on how the authors categorize V, I, and O shapes. The descriptions in the Methods (lines 721 - 725) are also very vague.

      We apologize for the initial vagueness and have replaced the descriptions in the Methods section. “V-shaped”: Neurons whose FRAs show decreasing frequency selectivity with increasing intensity. “I-shaped”: Neurons whose FRAs show constant frequency selectivity with increasing intensity. “O-shaped”: Neurons responsive to a small range of intensities and frequencies, with the peak response not occurring at the highest intensity level.

      To provide better visual intuition, we show multiple representative examples of each FRA type for both TR and CT neurons below. We are confident that these provide the necessary clarity and reproducibility for our analysis of receptive field properties.

      Author response image 1.

      Different FRA types within the dataset of TR and CT neurons. Each row shows 6 representative FRAs from a specific type. Types are V-shaped (‘V'), I-shaped (‘I’), and O-shaped (‘O’). The X-axis represents 11 pure tone frequencies, and the Y-axis represents 6 sound intensities.

      Reviewer #2 (Public Review):

      Summary:

      Gu and Liang et. al investigated how auditory information is mapped and transformed as it enters and exits an auditory cortex. They use anterograde transsynaptic tracers to label and perform calcium imaging of thalamorecipient neurons in A1 and retrograde tracers to label and perform calcium imaging of corticothalamic output neurons. They demonstrate a degradation of tonotopic organization from the input to output neurons.

      Strengths:

      The experiments appear well executed, well described, and analyzed.

      Weaknesses:

      (1) Given that the CT and TR neurons were imaged at different depths, the question as to whether or not these differences could otherwise be explained by layer-specific differences is still not 100% resolved. Control measurements would be needed either by recording (1) CT neurons in upper layers, (2) TR in deeper layers, (3) non-CT in deeper layers and/or (4) non-TR in upper layers.

      We appreciate these constructive suggestions. To address this, we performed new experiments and analyses.

      Comparison of TR neurons across superficial layers: we analyzed our existing TR neuron dataset to see if response properties varied by depth within the superficial layers. We found no significant differences in the fraction of tuned neurons, field IQR, or maximum bandwidth (BWmax) between TR neurons in L2/3 and L4. This suggests a degree of functional homogeneity within the thalamorecipient population across these layers. The results are presented in new supplemental figures (Figure 2- figure supplementary 4).

      Necessary control experiments.

      (1) CT neurons in upper layers. CT neurons are thalamic projection neurons that only exist in the deeper cortex, so CT neurons do not exist in upper layers (Antunes and Malmierca, 2021).

      (2) TR neurons in deeper layers. As we mentioned in the manuscript, due to high-titer AAV1-Cre virus labeling controversy (anterograde and retrograde labelling both exist), it is challenging to identify TR neurons in deeper layers.

      (3) non-CT in deeper layers and/or (4) non-TR in upper layers.

      To directly test if projection identity confers distinct functional properties within the same cortical layers, we performed the crucial control of comparing TR neurons to their neighboring non-TR neurons. We injected AAV1-Cre in MGB and a Cre-dependent mCherry into A1 to label TR neurons red. We then co-injected AAV-CaMKII-GCaMP6s to label the general excitatory population green.  In merged images, this allowed us to functionally image and directly compare TR neurons (yellow) and adjacent non-TR neurons (green). We separately recorded the responses of these neurons to pure tones using two-photon imaging. The results show that TR neurons are significantly more likely to be tuned to pure tones than their neighboring non-TR excitatory neurons. This finding provides direct evidence that a neuron's long-range connectivity, and not just its laminar location, is a key determinant of its response properties. The results are presented in new supplemental figures (Figure 2- figure supplementary 5).

      Related publications:

      Antunes FM, Malmierca MS. 2021. Corticothalamic Pathways in Auditory Processing: Recent Advances and Insights From Other Sensory Systems. Front Neural Circuits 15: 721186. DIO: https://doi.org/10.3389/fncir.2021.721186, PMID: 34489648

      (2) What percent of the neurons at the depths are CT neurons? Similar questions for TR neurons?

      We thank the reviewer for the comments. We performed histological analysis on brain slices from our experimental animals to quantify the density of these projection-specific populations. Our analysis reveals that CT neurons constitute approximately 25.47%\22.99%–36.50% of all neurons in Layer 6 of A1. In the superficial layers(L2/3 and L4), TR neurons comprise approximately 10.66%\10.53%–11.37% of the total neuronal population.

      Author response image 2.

      The fraction of CT and TR neurons. (A) Boxplots showing the fraction of CT neurons. N = 11 slices from 4 mice. (B) Boxplots showing the fraction of TR neurons. N = 11 slices from 4 mice.

      (3) V-shaped, I-shaped, or O-shaped is not an intuitively understood nomenclature, consider changing. Further, the x/y axis for Figure 4a is not labeled, so it's not clear what the heat maps are supposed to represent.

      The terms "V-shaped," "I-shaped," and "O-shaped" are an established nomenclature in the auditory neuroscience literature for describing frequency response areas (FRAs), and we use them for consistency with prior work. V-shaped: Neurons whose FRAs show decreasing frequency selectivity with increasing intensity. I-shaped: Neurons whose FRAs show constant frequency selectivity with increasing intensity. O-shaped: Neurons responsive to a small range of intensities and frequencies, with the peak response not occurring at the highest intensity level.

      (Rothschild et al., 2010). We have included a more detailed description in the Methods.

      The X-axis represents 11 pure tone frequencies, and the Y-axis represents 6 sound intensities. So, the heat map represents the FRA of neurons in A1, reflecting the responses for different frequencies and intensities of sound stimuli. In the revised manuscript, we have provided clarifications in the figure legend.

      (4) Many references about projection neurons and cortical circuits are based on studies from visual or somatosensory cortex. Auditory cortex organization is not necessarily the same as other sensory areas. Auditory cortex references should be used specifically, and not sources reporting on S1, and V1.

      We thank the reviewers for their valuable comments. We have made a concerted effort to ensure that claims about cortical circuit organization are supported by findings specifically from the auditory cortex wherever possible, strengthening the focus and specificity of our discussion.

      Reviewer #3 (Public Review):

      Summary:

      The authors performed wide-field and 2-photon imaging in vivo in awake head-fixed mice, to compare receptive fields and tonotopic organization in thalamocortical recipient (TR) neurons vs corticothalamic (CT) neurons of mouse auditory cortex. TR neurons were found in all cortical layers while CT neurons were restricted to layer 6. The TR neurons at nominal depths of 200-400 microns have a remarkable degree of tonotopy (as good if not better than tonotopic maps reported by multiunit recordings). In contrast, CT neurons were very heterogenous in terms of their best frequency (BF), even when focusing on the low vs high-frequency regions of the primary auditory cortex. CT neurons also had wider tuning.

      Strengths:

      This is a thorough examination using modern methods, helping to resolve a question in the field with projection-specific mapping.

      Weaknesses:

      There are some limitations due to the methods, and it's unclear what the importance of these responses are outside of behavioral context or measured at single timepoints given the plasticity, context-dependence, and receptive field 'drift' that can occur in the cortex.

      (1) Probably the biggest conceptual difficulty I have with the paper is comparing these results to past studies mapping auditory cortex topography, mainly due to differences in methods. Conventionally, the tonotopic organization is observed for characteristic frequency maps (not best frequency maps), as tuning precision degrades and the best frequency can shift as sound intensity increases. The authors used six attenuation levels (30-80 dB SPL) and reported that the background noise of the 2-photon scope is <30 dB SPL, which seems very quiet. The authors should at least describe the sound-proofing they used to get the noise level that low, and some sense of noise across the 2-40 kHz frequency range would be nice as a supplementary figure. It also remains unclear just what the 2-photon dF/F response represents in terms of spikes. Classic mapping using single-unit or multi-unit electrodes might be sensitive to single spikes (as might be emitted at characteristic frequency), but this might not be as obvious for Ca2+ imaging. This isn't a concern for the internal comparison here between TR and CT cells as conditions are similar, but is a concern for relating the tonotopy or lack thereof reported here to other studies.

      We sincerely thank the reviewer for the thoughtful evaluation of our manuscript and for your positive assessment of our work.

      (1)  Concern regarding Best Frequency (BF) vs. Characteristic Frequency (CF)

      Our use of BF, defined as the frequency eliciting the highest response averaged across all sound levels, is a standard and practical approach in 2-photon Ca²⁺ imaging studies. (Issa et al., 2014; Rothschild et al., 2010; Schmitt et al., 2023; Tischbirek et al., 2019). This method is well-suited for functionally characterizing large numbers of neurons simultaneously, where determining a precise firing threshold for each individual cell can be challenging.

      (2) Concern regarding background noise of the 2-photon setup

      We have expanded the Methods section ("Auditory stimulation") to include a detailed description of the sound-attenuation strategies used during the experiments. The use of a custom-built, double-walled sound-proof enclosure lined with wedge-shaped acoustic foam was implemented to significantly reduce external noise interference. These strategies ensured that auditory stimuli were delivered under highly controlled, low-noise conditions, thereby enhancing the reliability and accuracy of the neural response measurements obtained throughout the study.

      (3) Concern regarding the relationship between dF/F and spikes

      While Ca²⁺ signals are an indirect and filtered representation of spiking activity, they are a powerful tool for assessing the functional properties of genetically-defined cell populations. As you note, the properties and limitations of Ca²⁺ imaging apply equally to both the TR and CT neuron groups we recorded. Therefore, the profound difference we observed—a clear tonotopic gradient in one population and a lack thereof in the other—is a robust biological finding and not a methodological artifact.

      Related publications:

      (1) Issa JB, Haeffele BD, Agarwal A, Bergles DE, Young ED, Yue DT. 2014. Multiscale optical Ca2+ imaging of tonal organization in mouse auditory cortex. Neuron 83: 944-59. DIO: https://doi.org/10.1016/j.neuron.2014.07.009, PMID: 25088366

      (2) Rothschild G, Nelken I, Mizrahi A. 2010. Functional organization and population dynamics in the mouse primary auditory cortex. Nat Neurosci 13: 353-60. DIO: https://doi.org/10.1038/nn.2484, PMID: 20118927

      (3) Schmitt TTX, Andrea KMA, Wadle SL, Hirtz JJ. 2023. Distinct topographic organization and network activity patterns of corticocollicular neurons within layer 5 auditory cortex. Front Neural Circuits 17: 1210057. DIO: https://doi.org/10.3389/fncir.2023.1210057, PMID: 37521334

      (4) Tischbirek CH, Noda T, Tohmi M, Birkner A, Nelken I, Konnerth A. 2019. In Vivo Functional Mapping of a Cortical Column at Single-Neuron Resolution. Cell Rep 27: 1319-1326 e5. DIO: https://doi.org/10.1016/j.celrep.2019.04.007, PMID: 31042460

      (2) It seems a bit peculiar that while 2721 CT neurons (N=10 mice) were imaged, less than half as many TR cells were imaged (n=1041 cells from N=5 mice). I would have expected there to be many more TR neurons even mouse for mouse (normalizing by number of neurons per mouse), but perhaps the authors were just interested in a comparison data set and not being as thorough or complete with the TR imaging?

      As shown in the Figure 2- figure supplementary 2, a much higher fraction of TR neurons was "tuned" to pure tones (46% of 1041 neurons) compared to CT neurons (only 18% of 2721 neurons). To obtain a statistically robust and comparable number of tuned neurons for our core analysis (481 tuned TR neurons vs. 491 tuned CT neurons), it was necessary to sample a larger total population of CT neurons, which required imaging from more animals.

      (3) The authors' definitions of neuronal response type in the methods need more quantitative detail. The authors state: "Irregular" neurons exhibited spontaneous activity with highly variable responses to sound stimulation. "Tuned" neurons were responsive neurons that demonstrated significant selectivity for certain stimuli. "Silent" neurons were defined as those that remained completely inactive during our recording period (> 30 min). For tuned neurons, the best frequency (BF) was defined as the sound frequency associated with the highest response averaged across all sound levels.". The authors need to define what their thresholds are for 'highly variable', 'significant', and 'completely inactive'. Is best frequency the most significant response, the global max (even if another stimulus evokes a very close amplitude response), etc.

      We appreciate the reviewer's suggestions. We have added more detailed description in the Methods.

      Tuned neurons: A responsive neuron was further classified as "Tuned" if its responses showed significant frequency selectivity. We determined this using a one-way ANOVA on the neuron's response amplitudes across all tested frequencies (at the sound level that elicited the maximal response). If the ANOVA yielded a p-value < 0.05, the neuron was considered "Tuned”. Irregular neurons: Responsive neurons that did not meet the statistical criterion for being "Tuned" (i.e., ANOVA p-value ≥ 0.05) were classified as "Irregular”. This provides a clear, mutually exclusive category for sound-responsive but broadly-tuned or non-selective cells. Silent neurons: Neurons that were not responsive were classified as "Silent". This quantitatively defines them as cells that showed no significant stimulus-evoked activity during the entire recording session. Best frequency (BF): It is the frequency that elicited the maximal mean response, averaged across all sound levels.

      To provide greater clarity, we showed examples in the following figures.

      Author response image 3.

      Reviewer #1 (Recommendations For The Authors):

      (1) A1 and AuC were used exchangeably in the text.

      Thank you for pointing out this issue. Our terminological strategy was to remain faithful to the original terms used in the literature we cite, where "AuC" is often used more broadly. In the revised manuscript, we have performed a careful edit to ensure that we use the specific term "A1" (primary auditory cortex) when describing our own results and recording locations, which were functionally and anatomically confirmed.

      (2) Grammar mistakes throughout.

      We are grateful for the reviewer’s suggested improvement to our wording. The entire manuscript has undergone a thorough professional copyediting process to correct all grammatical errors and improve overall readability.

      (3) The discussion should talk more about how/why L6 CT neurons don't possess the tonotopic organization and what are the implications. Currently, it only says 'indicative of an increase in synaptic integration during cortical processing'...

      Thanks for this suggestion. We have substantially revised and expanded the Discussion section to explore the potential mechanisms and functional implications of the lack of tonotopy in L6 CT neurons.

      Broad pooling of inputs: We propose that the lack of tonotopy is an active computation, not a passive degradation. CT neurons likely pool inputs from a wide range of upstream neurons with diverse frequency preferences. This broad synaptic integration, reflected in their wider tuning bandwidth, would actively erase the fine-grained frequency map in favor of creating a different kind of representation.

      A shift from topography to abstract representation: This transformation away from a classic sensory map may be critical for the function of corticothalamic feedback. Instead of relaying "what" frequency was heard, the descending signal from CT neurons may convey more abstract, higher-order information, such as the behavioral relevance of a sound, predictions about upcoming sounds, or motor-related efference copy signals that are not inherently frequency-specific.’

      Modulatory role of the descending pathway: The descending A1-to-MGB pathway is often considered to be modulatory, shaping thalamic responses rather than driving them directly. A modulatory signal designed to globally adjust thalamic gain or selectivity may not require, and may even be hindered by, a fine-grained topographical organization.

      Reviewer #2 (Recommendations For The Authors):

      (1) Given that the CT and TR neurons were imaged at different depths, the question as to whether or not these differences could otherwise be explained by layer-specific differences is still not 100% resolved. Control measurements would be needed either by recording (1) CT neurons in upper layers (2) TR in deeper layers (3) non-CT in deeper layers and/or (4) non-TR in upper layers.

      We appreciate these constructive suggestions. To address this, we performed new experiments and analyses.

      Comparison of TR neurons across superficial layers: we analyzed our existing TR neuron dataset to see if response properties varied by depth within the superficial layers. We found no significant differences in the fraction of tuned neurons, field IQR, or maximum bandwidth (BWmax) between TR neurons in L2/3 and L4. This suggests a degree of functional homogeneity within the thalamorecipient population across these layers.

      Necessary control experiments.

      (1) CT neurons in upper layers. CT neurons are thalamic projection neurons that only exist in the deeper cortex, so CT neurons do not exist in upper layers (Antunes and Malmierca, 2021).

      (2) TR neurons in deeper layers. As we mentioned in the manuscript, due to high-titer AAV1-Cre virus labeling controversy (anterograde and retrograde labelling both exist), it is challenging to identify TR neurons in deeper layers.

      (3) non-CT in deeper layers and/or (4) non-TR in upper layers.

      To directly test if projection identity confers distinct functional properties within the same cortical layers, we performed the crucial control of comparing TR neurons to their neighboring non-TR neurons. We injected AAV1-Cre in MGB and a Cre-dependent mCherry into A1 to label TR neurons red. We then co-injected AAV-CaMKII-GCaMP6s to label the general excitatory population green.  In merged images, this allowed us to functionally image and directly compare TR neurons (yellow) and adjacent non-TR neurons (green). We separately recorded the responses of these neurons to pure tones using two-photon imaging. The results show that TR neurons are significantly more likely to be tuned to pure tones than their neighboring non-TR excitatory neurons. This finding provides direct evidence that a neuron's long-range connectivity, and not just its laminar location, is a key determinant of its response properties.

      Related publications:

      Antunes FM, Malmierca MS. 2021. Corticothalamic Pathways in Auditory Processing: Recent Advances and Insights From Other Sensory Systems. Front Neural Circuits 15: 721186. DIO: https://doi.org/10.3389/fncir.2021.721186, PMID: 34489648

      (3) V-shaped, I-shaped, or O-shaped is not an intuitively understood nomenclature, consider changing. Further, the x/y axis for Figure 4a is not labeled, so it's not clear what the heat maps are supposed to represent.

      The terms "V-shaped," "I-shaped," and "O-shaped" are an established nomenclature in the auditory neuroscience literature for describing frequency response areas (FRAs), and we use them for consistency with prior work. V-shaped: Neurons whose FRAs show decreasing frequency selectivity with increasing intensity. I-shaped: Neurons whose FRAs show constant frequency selectivity with increasing intensity. O-shaped: Neurons responsive to a small range of intensities and frequencies, with the peak response not occurring at the highest intensity level.

      (Rothschild et al., 2010). We have included a more detailed description in the Methods.

      The X-axis represents 11 pure tone frequencies, and the Y-axis represents 6 sound intensities. So, the heat map represents the FRA of neurons in A1, reflecting the responses for different frequencies and intensities of sound stimuli. In the revised manuscript, we have provided clarifications in the figure legend.

      (4) Many references about projection neurons and cortical circuits are based on studies from visual or somatosensory cortex. Auditory cortex organization is not necessarily the same as other sensory areas. Auditory cortex references should be used specifically, and not sources reporting on S1, V1.

      We thank the reviewers for their valuable comments. We have made a concerted effort to ensure that claims about cortical circuit organization are supported by findings specifically from the auditory cortex wherever possible, strengthening the focus and specificity of our discussion.

      Reviewer #3 (Recommendations For The Authors):

      I suggest showing some more examples of how different neurons and receptive field properties were quantified and statistically analyzed. Especially in Figure 4, but really throughout.

      We thank the reviewer for this valuable suggestion. To provide greater clarity, we have added more examples in the following figure.

    1. eLife Assessment

      This study presents a valuable assessment of and solid evidence for increased similarity in visual appearance combined with increased chemical differences between two butterfly species in sympatry compared with differences between three populations of one of the two species in allopatry. The similarity in visual appearance hints to an evolutionary response to shared predators (but alternative explanations are possible). Thus, the difference in chemical signaling likely helps to avoid between-species mating in sympatry.

    2. Joint Public Review:

      Summary:

      Ledamoisel et al. examined the evolution of visual and chemical signals in closely related Morpho butterfly species to understand their role in species coexistence. Using an integrative, state-of-the-art approach combining spectrophotometry, visual modeling, and behavioral mate choice experiments, they quantified differences in wing iridescence and assessed its influence on mate preference in allopatry and sympatry. They also performed chemical analyses to determine whether sympatric species exhibit divergent chemical cues that may facilitate species recognition and mate discrimination. The authors found iridescent coloration to be similar in sympatric Morpho species. Furthermore, male mate choice experiments revealed that in sympatry, males fail to discriminate conspecific females based on coloration, reinforcing the idea that visual signal convergence is primarily driven by predation pressure. In contrast, the divergence of chemical signals among sympatric species suggests their potential role in facilitating species recognition and mate discrimination. The authors conclude that interactions between ecological pressures and signal evolution may shape species coexistence.

      Strengths:

      The study is well-designed and integrates multiple methodological approaches to provide a thorough assessment of signal evolution in the studied species. We appreciate the authors' careful consideration of multiple selective pressures and their combined influence on signal divergence and convergence. Additionally, the inclusion of both visual and chemical signals adds an interesting and valuable dimension to the study, enhancing its importance. Beyond butterflies, this research broadens our understanding of multimodal communication and signal evolution in the context of species coexistence.

      Reviewing Editor comment:

      The authors have improved their submission after revisions and responded to the previous concerns of the reviewers.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      In this study, Ledamoisel et al. examined the evolution of visual and chemical signals in closely related Morpho butterfly species to understand their role in species coexistence. Using an integrative, state-of-the-art approach combining spectrophotometry, visual modeling, and behavioral mate choice experiments, they quantified differences in wing iridescence and assessed its influence on mate preference in allopatry and sympatry. They also performed chemical analyses to determine whether sympatric species exhibit divergent chemical cues that may facilitate species recognition and mate discrimination. The authors found iridescent coloration to be similar in sympatric Morpho species. Furthermore, male mate choice experiments revealed that in sympatry, males fail to discriminate conspecific females based on coloration, reinforcing the idea that visual signal convergence is primarily driven by predation pressure. In contrast, the divergence of chemical signals among sympatric species suggests their potential role in facilitating species recognition and mate discrimination. The authors conclude that interactions between ecological pressures and signal evolution may shape species coexistence.

      Strengths:

      The study is well-designed and integrates multiple methodological approaches to provide a thorough assessment of signal evolution in the studied species. I appreciate the authors' careful consideration of multiple selective pressures and their combined influence on signal divergence and convergence. Additionally, the inclusion of both visual and chemical signals adds an interesting and valuable dimension to the study, enhancing its importance. Beyond butterflies, this research broadens our understanding of multimodal communication and signal evolution in the context of species coexistence.

      Weaknesses:

      (1) The broader significance of the findings needs to be better articulated. While the authors emphasize that comparing adaptive traits in sympatry and allopatry provides insights into selective processes shaping reproductive isolation and coexistence, it is unclear what key conceptual or theoretical questions are being addressed. Are these patterns expected under certain evolutionary scenarios? Have they been empirically demonstrated in other systems? The authors should explicitly state the overarching research question, incorporate some predictions, and better contextualize their findings within the existing literature. If the results challenge or support previous work, that should be highlighted to strengthen the study's importance in a broader context.

      We thank the reviewer for their valuable feedback. We understand that the framing of the results and the discussion may fail to convey the broader significance of our findings. In the first version of the manuscript, we framed our manuscript around the processes shaping reproductive isolation and co-existence in sympatry, but now realize that this question was too broad in regards to our results. We thus strictly focused on outlining the importance of ecological interactions in the evolution of traits in sympatric species. In the revised version of the manuscript, we rewrote the first paragraph of the introduction to introduce context regarding the effect of ecological interactions on trait evolution (lines 43-60). We then explicitly introduce the theoretical question investigated in our paper (i.e. “we investigate how ecological interactions in sympatry can constrain natural and sexual selection shaping trait evolution”, lines 62-63) and our predictions regarding the evolution of traits in sympatry vs. allopatry (lines 74-80). We also added predictions regarding our experiments on Morpho at the end of the introduction (lines 146-157). As a result, the discussion is now better aligned with the introduction, by discussing the putative effect of predation and mate choice on the evolution of wing iridescence in Morpho.

      (2) The motivation for studying visual signals and mate choice in allopatric populations (i.e., at the intraspecific level) is not well articulated, leaving their role in the broader narrative unclear. In particular, the rationale behind experiments 1, 2, and 3 is not well defined, as the authors have not made a strong case for the need for these intraspecific comparisons in the introduction. This issue is further compounded by the authors' primary focus on signal evolution in sympatry throughout both the results and the discussion. For instance, the divergence of iridescence in allopatry is a potentially interesting result. But the authors have not discussed its implications.

      We now clearly state in the introduction our motivation for studying visual signals and mate choice in allopatric populations (lines 74-80, lines 146-157). We argued that intraspecific comparisons help identify whether visual cues can be used in mate recognition between phylogenetically close subspecies, between whom visual resemblance is supposed to be higher than between closely-related species (tetrad experiment, and experiment 1). As M. h. bristowi and M. h. theodorus have different wing pattern, we also used this comparison to identify the traits involved in male mate preference within a species, testing the importance of iridescent color (experiment 2) or iridescent patterning (experiment 3). The results of those experiments can then be used to assess whether these traits are used in species recognition between sympatric species. See also our answers to recommendations 11 and 15 from reviewer #1.

      Overall, given that the primary conclusions are based on results and analyses in sympatry, the role of allopatric populations in shaping these conclusions needs to be better integrated and justified. Without a stronger link between the comparative framework and the study's key takeaways, the use of allopatric populations feels somewhat peripheral rather than central to the study's aim. Since the primary conclusions remain valid even without the allopatric comparisons, their inclusion requires a clearer rationale.

      To make a stronger case for the use of the allopatric population in our manuscript, we strengthened the justification behind the study of intraspecific allopatric populations vs. interspecific sympatric populations, as the iridescence measurements and the mate choice experiments in allopatric populations can serve as a baseline in studying how species interactions can shape the evolution of traits and mate recognition when compared to sympatric populations. Following your major comment #1, we rewrote the introduction to include a justification to the need for studying allopatric vs. sympatric populations (lines 74-80), and also further highlighted the need to study iridescence in sympatric species to fully understand the trait evolution of sympatric species in the discussion (339-343).

      (3) While the authors demonstrate that iridescence is indistinguishable to predators in sympatry, they overstate the role of predation in driving convergence. The present study does not experimentally demonstrate that iridescence in this species has a confusion effect or contributes to evasive mimicry. Alternatively, convergence could result from other selective forces, such as signal efficacy due to environmental conditions, rather than being solely driven by predation.

      We acknowledge that our study does not directly demonstrate that iridescence contributes to evasive mimicry. We did tone down the interpretation of the results in the discussion and state that predation is not the only selective pressure that could have promoted a convergent evolution of iridescence in sympatric species, as iridescence is a trait that could be involved in thermoregulation (lines 346-353) and camouflage (lines 363-369) for example. We made sure to mention that convergence in iridescent signals in sympatry is only an indirect support to the evasive mimicry hypothesis, and that further research is still needed, including direct predation experiments, to show that this convergence is indeed triggered by predation (lines 391-396).  

      Reviewer #2 (Public review):

      This study presents an investigation of the visual and chemical properties and mating behaviour in Morpho butterflies, aimed at addressing the nature of divergence between closely related species in sympatry. The study species consists of three subspecies of Morpho helenor (bristowi, theodorus, and helenor), and the conspecific Morpho achilles achilles. The authors postulate that whereas the iridescent blue signals of all (sub)species should function as a predator reduction signal (similar to aposematism) and therefore exhibit convergence, the same signals should indicate divergence if used as a mating signal, particularly in sympatric populations. They also assess chemical profiles among the species to assess the potential utility of scent in mediating species/sex discrimination.

      The authors first used reflectance spectrometry to calculate hue, brightness, and chroma, plus two measures of "iridescence" (perhaps better phrased as angular dependence) in each (sub)species. This indicated the ubiquitous presence of sexual dimorphism in brightness (males brighter), which also appears to be the case for iridescence (Figure 3A-B). Analysis of these data also indicated that whereas there is evidence for divergence among subspecies in allopatry, the same evidence is lacking for species in sympatry (P = 0.084). This was supported further by visual modelling, which showed that both conspecifics and birds should be (theoretically) capable of perceiving the colour difference among allopatric populations of M. helenor, whereas the same is not true for the sympatric species.

      The authors then conducted mate choice trials, first using live individuals and second using female dummies. The live experiments indicated the presence of assortative mating among the two subspecies of M. helenor (bristowi and theodorus). The dummy presentations indicated (a) bristowi males prefer conspecific wings, whereas theodorus have no preference, (b) bristowi males prefer the con(sub)specific colour pattern, (c) theodorus prefer the con(sub)specific iridescence when the pattern is manipulated to be similar among female dummies. A fourth experiment, using sympatric M. achilles and M. helenor, indicated no preference for conspecific female dummies. Finally, chemical analysis indicated substantial differences between these two species in putative pheromone compounds, and especially so in the males.

      The authors conclude that the similarity of iridescence among species in sympatry is suggestive of convergence upon a common anti-predation signal. Despite some behavioural evidence in favourof colour (iridescence)-based mate discrimination, chemical differences between Achilles and Helenor are posed as more likely to function for species isolation than visual differences.

      Overall, I enjoyed reading this manuscript, which presents a valiant attempt at studying visual, chemical and behavioural divergence in this iconic group of butterflies.

      Major comments

      My only major comment concerns the authors' favoured explanation for aposematism (or evasive mimicry) for convergence among species, which is based upon the you-can't-catch-me hypothesis first presented by Young 1971. Although there is supporting work showing that iridescent-like stimuli are more difficult to precisely localize by a range of viewers, most of the evidence as applied to the Morpho system is circumstantial, and I'm not certain that there is widespread acceptance of this hypothesis. Given that the present study deals with closely-related  (sub)species, one alternative explanation - a "null" hypothesis of sorts - is for a lack of divergence (from a common starting point) as opposed to evolutionary convergence per se. in other words, two subspecies are likely to retain ancestral character states unless there is selection that causes them to diverge. I feel that the manuscript would benefit from a discussion of this alternative, if not others. Signalling to predators could very well be involved in constraining the extent of convergence, but this seems a little premature to state as an up-front conclusion of this work. There is also the result of a *dorsal* wing manipulation by Vieira-Silva et al. 2024 which seems difficult to reconcile in light of this explanation. Whereas this paper is cited by the authors, a more nuanced discussion of their experimental results would seem appropriate here.

      We thank the reviewer for their constructive comments on our manuscript. We appreciate the reviewer’s concern regarding the way iridescence convergence between sympatric species is discussed in our manuscript, which align with similar concerns raised by Reviewer 1. Indeed, the you-can't-catch-me hypothesis has not been yet empirically tested in Morpho, this is currently a working hypothesis only supported by indirect lines of evidence.

      Among the 30 known Morpho species, iridescence is most likely the ancestral character, notably because iridescence is a trait shared by a majority of Morpho (we now mention this in the introduction lines 108-110). In this paper, we thus did not aim to identify the evolutionary forces involved in the appearance of iridescence in this group, but rather wanted to understand to what extent ecological interactions can impact the diversification (or not) of this trait. As such, the dorsal manipulations performed in Vieira-Silva et al 2024 showing that iridescence in Morpho may have a similar effect than crypsis does not impact our working hypothesis. Instead, we use VieraSilva et al 2024 to discuss the potential anti-predator effect of iridescence, that could potentially promote convergent evolution of iridescent patterns.

      In the main text, we now clearly mention our null hypothesis: under a scenario of neutral evolution of iridescence, we would expect that the divergence in wing coloration between two M. helenor subspecies would be lower than between two different Morpho species (M. helenor and M. achilles) and showed that our results sharply differ from this null expectation.

      We then improved the discussion by adding alternative hypotheses potentially explaining the convergent iridescent signal detected in sympatric species: we discussed the expected effect under neutral evolution (lines 339-343), but also added alternative hypotheses regarding the diversification of iridescence due to camouflage (lines 363-369), predator evasion (lines 373-377) and thermoregulation (lines 346-353).

      Reviewer #3 (Public review):

      The authors investigated differences in iridescence wing colouration of allopatric (geographically separated) and sympatric (coexisting) Morpho butterfly (sub)species. Their aim was to assess if iridescence wing colouration of Morpho (sub)species converged or diverged depending on coexistence and if iridescence wing colouration was involved in mating behaviour and reproductive isolation. The authors hypothesize that iridescence wing colouration of different (sub)species should converge in sympatry and diverge in allopatry. In sympatry, iridescence wing colouration can act as an effective antipredator defence with shared benefits if multiple (sub)species share the same colouration. However, shared wing colouration can have potential costs in terms of reproductive interference since wing colouration is often involved in mate recognition. If the benefits of a shared antipredator defence outweigh the costs of reproductive interference, iridescence wing colouration will show convergence and alternative mate recognition strategies might evolve, such as chemical mate recognition. In allopatry, iridescence wing colouration is expected to diverge due to adaptation to different local conditions and no alternative mate recognition is expected.

      Strengths:

      (1) Using allopatric and sympatric (sub)species that are closely related is a powerful way to test evolutionary hypotheses

      (2) By clearly defining iridescence and measuring colour spectra from a variety of angles, applying different methods, a very comprehensive dataset of iridescence wing colouration is achieved.

      (3) By experimentally manipulating wing coloration patterns, the authors show visual mate recognition for M. h. bristowi and could, in theory, separate different visual aspects of colouration (patterns VS iridescence strength).

      (4) Measurements of chemical profiles to investigate alternative mate recognition strategies in case of convergence of visual signals.

      Weaknesses:

      In my opinion, studies should be judged on the methods and data included, and not on additional measurements that could have been taken or additional treatments/species that should be included, since in most ecological and evolutionary studies, more measurements or treatments/species can always be included. However, studies do need to ensure appropriate replication and appropriate measurements to test their hypothesis AND support their conclusions. The current study failed to ensure appropriate replication, and in various cases, the results do not support the conclusions.

      First, when using allopatric and sympatric (sub)species pairs to test evolutionary hypotheses, replication is important. Ideally, multiple allopatric and sympatric (sub)species pairs are compared to avoid outlier (sub)species or pairs that lead to biased conclusions. Unfortunately, the current study compares 1 allopatric and 1 sympatric (sub)species pair, hence having poor (no) replication on the level of allopatric and sympatric (sub)species pairs,

      We would like to thank the reviewer for their constructive feedback. We agree that replication is important to test evolutionary hypotheses and that our study lacks replication for allopatric and sympatric Morpho populations. Ideally, one would require several allopatric and sympatric replicates to conclude on the effect of species interaction in trait evolution. Our study is a preliminary attempt at answering this question, covering a few Morpho populations but proposing a broad assessment of iridescence and mate preference for those populations. We clearly mentioned in the discussion that investigating multiple populations is needed to test whether the trend we observed in this paper can be generalized (line 388-392).

      Second, chemical profiles were only measured for sympatric species and not for allopatric (sub)species, which limits the interpretation of this data. The allopatric (sub)species could have been measured as non-coexistence "control". If coexistence and convergence in wing colouration drives the evolution of alternative mate recognition signals, such alternative signals should not evolve/diverge for allopatric (sub)species where wing colouration is still a reliable mate recognition cue. More importantly, no details are provided on the quantification of butterfly chemical profiles, which is essential to understand such data. It is unclear how the chemical profiles were quantified and what data (concentrations, ratios, proportions) were used to perform NDMS and generate Figure 5 and the associated statistical tests.

      We recognize that having the chemical profiles of the genitalia of the Morpho from the allopatric populations would have made a stronger case in favor of reinforcement acting on the divergence of the chemical compounds found on the genitalia of the sympatric Morpho species. Due to limited access to the biological material needed at the time of the chromatography, we could not test for lower divergence in the chemical profiles of allopatric Morpho butterflies. We made sure to mention this limitation in the discussion (lines 457-461). 

      We already stated in the methods that we compiled the area under the peak of each components found in the chromatograms of our samples and that we performed all the statistical analyses on this dataset. To make it clearer, we mention in the new version of the manuscript that the area under the peak of each component allows to measure the concentration of the components (in the methods lines 720, 723, 733). We also added some precisions in the legend of Figure 5.

      Third, throughout the discussion, the authors mention that their results support natural selection by predators on iridescent wing colouration, without measuring natural selection by predators or any other measure related to predation. It is unclear by what predators any of the butterfly species are predated on at this point

      We made sure to mention in the introduction (line 132-136) and in the discussion (line 373-377) that previous predation experiments performed on Morpho and other butterflies showed evidence that birds are likely predators for these species. These observations lead us to test for the putative effect of predation on the evolution of their color pattern, without directly testing predatory rates. We made sure this information is transparent in the revised manuscript, and now precise that assessing wing convergence is only an indirect way of testing the escape mimicry hypothesis (line 393-396).

      To continue on the interpretation of the data related to selection on specific traits by specific selection agents: This study did not measure any form of selection or any selection agent. Hence, it is not known if iridescent wing colouration is actually under selection by predators and/or mates, if maybe other selection agents are involved or if these traits converge due to genetic correlations with other traits under selection. For example, Iridescent colouration in ground beetles has functions as antipredator defence but also thermo- and water regulation. None of these issues are recognized or discussed.

      The lack of discussion of alternative selective pressures involved in the evolution of iridescence was pointed out by all reviewers. We thus modified the text to account for this comment, and no longer limit our discussion to the putative effects of predation. We now specifically discuss alternative hypotheses, including crypsis (362-369) and thermoregulation (line 346-353).

      Finally, some of the results are weakly supported by statistics or questionable methodology.

      Most notably, the perception of the iridescence coloration of allopatric subspecies by bird visual systems. Although for females, means and errors (not indicated what exactly, SD, SE or CI) are clearly above the 1 JND line, for males, means are only slightly above this line and errors or CIs clearly overlap with the 1 JND line. Since there is no additional statistical support, higher means but overlap of SD, SE or CI with the baseline provides weak statistical support for differences.

      We thank the reviewer for bringing interpretation issues concerning the chromatic distances of allopatric Morpho species measured with a bird vision model. We made sure to be nuanced in the description of this graph in the results section (line 208-212). Note that this addition does not change our main conclusion stating that Morpho and predator visual models better discriminate iridescence differences between allopatric subspecies than between sympatric species.

      We now also clearly mention in the figure’s legend that the error bars represent the confidence intervals obtained after performing a bootstrap analysis, in addition to the mention of the nature of the error bars already mentioned in the methods (line 580).

      Regarding the assortative mating experiment, the results are clearly driven by M. bristowi. For M. theodorus, females mate equally often with conspecifics (6 times) as with M. bristowi (5 times). For males, the ratio is slightly better (6 vs 3), but with such low numbers, I doubt this is statistically testable. Overall low mating for M. bristowi could indicate suboptimal experimental conditions, and hence results should be interpreted with care.

      We recognize that the tetrad experiment results are mainly driven by M. bristowi’s behavior as already mentioned in the results (line 231-232) but we now also mention it in the discussion (lines 401-402). This experiment would have benefited from more replicates, but the limited access to live males and virgin females for both subspecies was a limiting factor. Fisher’s exact test used to assess assortative mating is specifically appropriate to small sample sizes. We recognize that the sampling size is not ideal, however it is still statistically testable.

      Regarding the wing manipulation experiment, M. theodorus does not show a preference when dummies with non-modified wings are presented and prefers non-modified dummies over modified dummies. This is acknowledged by the authors but not further discussed. Certainly, some control treatment for wing modification could have been added.

      The use of controls to consider the effect of wing modification and odor by the permanent marker were already mentioned in the methods (lines 636-639). Following your recommendation and comments from the other reviewers, we now mention the use of this control in the results (lines 278283). We also address a potential issue that would have resulted in the rejection of these modified dummies by live males: we cannot be sure whether butterflies perceive these modifications as equivalent to natural coloration (lines 281-282). An additional control could have been used, adding black ink on the black dorsal parts of the pattern to assess its potential visual effect. The constraints on sampling unfortunately did not allow to add another treatment.

      Overall, the fact that certain measurements only provide evidence for 1 of the 2 (sub)species (assortative mating, wing manipulation) or one sex of one of the species (bird visual systems) means overall interpretation and overgeneralization of the results to both allopatric or sympatric species should be done with care, and such nuances should ideally be discussed.

      The aim of the authors, "to investigate the antagonistic effects of selective pressures generated by mate recognition and shared predation" has not been achieved, and the conclusions regarding this aim are not supported by the results. Nevertheless, the iridescence colour measurements are solid, and some of the behavioural experiments and chemical profile measurements seem to yield interesting results. The study would benefit from less overinterpretation of the results in the framework of predation and more careful consideration of methodological difficulties, statistical insecurities, and nuances in the results.

      Overall, we would like to thank all reviewers for their thorough assessment of our work. We understand that the imbalance between mate choice data, visual model data and chemical data only gives us a partial assessment of species recognition in Morpho butterflies, thus requiring more precision in the interpretation and the discussion of our results. We made sure to add balanced interpretations in our discussion, by mentioning the lack of replicates for allopatric and sympatric populations (lines 391-392), and the lack of chemical characterization of allopatric species (lines 458361, see previous comments) and by being more transparent on methodological limitations that we failed to convey in the first version of our manuscript. We brought nuance to our discussion and also discussed alternative hypotheses to predation to explain the convergence of iridescence found in sympatry.

      Reviewing Editor Comments:

      While all reviewers acknowledge the value of your data, they converge in their recommendations to tone down the evolutionary interpretations. Ideally, to test your main hypothesis, you would need several species pairs, or if only one, as in your case, replicated sympatric and allopatric sites for both species. Furthermore, your more specific hypotheses about convergence (vs. nondivergence), response to predators (vs. other environmental variables), and avoiding interspecific mating in sympatry (vs. not avoiding it in allopatry) would require appropriate alternative treatments/controls. We therefore recommend that you focus on those statements that you can support with your experiments and data, and introduce these statements in the introduction with reference to the appropriate literature.

      Reviewer #1 (Recommendations for the authors):

      (1) Line 25: This stated aim seems a bit off. The authors did not sensu stricto quantify 'how shared adaptive traits may shape genetic divergence' in this study. I suggest rewriting or deleting this whole sentence altogether. The study's aim is already clear in lines 29-34.

      We deleted the mention of the characterization of genetic divergence, since this study did not focus on any genetic analysis.

      (2) Line 34: The authors here state that they compared allopatric vs sympatric populations. This is strictly not true for M. Achilles. Further, the results after this sentence focus solely ondivergence/convergence in sympatry, nothing at the intraspecific level and implications of the findings

      We now mention that we tested allopatric vs. sympatric species of M. helenor only (lines 28-29). We also mention that the behavioral experiments were based on intraspecific comparisons, and discuss the implications of this result in the discussion.

      (3) Line 35: 'convergence driven by predation': this is a strong statement and cannot be directly inferred from the present set of experiments. Consider toning it down.

      We added nuance to this statement by rephrasing it “suggesting that predation may favors local resemblance” (lines 32-33)

      (4) Line 36: Replace 'behavioral results' with 'behavioral experiments' or something similar.

      Corrected

      (5) Line 45-49: These opening statements need some citations.

      We provided references for the first few lines, by citing terHorst et al 2018 (line 44) underlining the importance of species interactions in trait evolution, and Blomberg et al 2003 (line 45) showing that closely-related species tend to resemble each other by quantifying the phylogenetic signal of various traits.

      (6) Line 83, 165: 'visual effect', not sure what the authors are referring to. Please rewrite.

      We defined “visual effect” as the way wing color patterns could be perceived by predators or mates. We removed mentions of “visual effect” and directly used its definition instead.

      (7) Line 105 onwards: This section of the introduction could benefit from more concise writing. The authors might consider reducing the number of specific examples and instead offering broader general statements, supported by citations from multiple studies.

      We reduced the number of examples given in this paragraph and used general statements supported by multiple citations as examples. (lines 102-119).

      (8) Line 108-110: This sentence seems to be redundant with the previous one.

      We merged this sentence with the previous one to improve clarity. (lines 103-105)

      (9) Line 140: 'with chemical defenses': include citations here.

      We added citations of Joron et al 1999 and Merrill et al 2014, which document the evolution of convergent wing patterns (mimicry) in butterfly species with chemical-defenses.

      (10) Line 149: This is a bit of a stretch. Note that genetic divergence could be influenced by many other things, not only the processes that the authors examined.

      We agree with the reviewer that the study of the convergent vs. divergent evolution of visual cues is not enough to fully understand the mechanisms allowing genetic divergence between species. Because this paper does not focus on characterizing genetic divergence, we removed it from the manuscript to avoid oversimplification.

      (11) Line 151: Again. Here, the author's primary focus seems to be at an interspecific level. One is left to wonder about the need for comparisons at the intraspecific level in M.helenor and the implications. Please clarify

      In the end of the introduction (lines 146-157), we specifically highlighted the importance of intraspecific comparisons. While studying the effect of sympatry on the evolution of the iridescent color pattern, we use this intraspecific comparison as a baseline to account for convergence or divergence of iridescence in a sympatric interspecific pair of Morpho, because under neutral evolution two subspecies are expected to be more similar than two different species (this assumption has been clarified line 147-148). We also used intraspecific mate choice to test for the use of visual cues in mate recognition (experiment 1) and to test what type of signal could be perceived by Morphos (the iridescent coloration or the iridescent pattern, experiment 2 and 3). These results help contextualize the interspecific mate choice, focused on determining whether visual cues could also be used in species recognition. Since we show that iridescent coloration is important in mate recognition at the intraspecific scale, it helps understand why species recognition is low at the interspecific scale because of wing color convergence between M. helenor and M. achilles.

      (12) Line 154: 'signals on mate preferences'.

      Corrected.

      (13) Line 189: 'At the intraspecific level', maybe in the brackets include 'allopatric populations' just so the results are in a similar format as in the color contrast section below.

      We added details to make clearer that the intraspecific level is studied between allopatric Morpho populations (line 189).

      (14) Line 189-192: Please rearrange the figure (current B as A and vice versa) or present the results in order as in the figure (interspecific first and then intraspecific level).

      We rearranged Figure 3 so that the intraspecific comparison (allopatric population) appears as A and the interspecific level (sympatric population) appears as B, to follow the order of presentation in the main text.

      (15) Line 232: The motivation behind experiments 1, 2, and 3 is unclear. The authors have not made a strong point in the introduction about the need for these comparisons at an intraspecific level. Given that the authors are focused on divergence/convergence at an interspecific level, this set of experiments seems to be irrelevant to the present study. The implications of these findings are also not discussed.

      We added motivation to the use of experiment 1, 2, and 3 in the introduction (lines 151-154) by stating that those experiments were used to assess whether blue color could indeed be used as a mating cue in Morpho helenor (experiment 1) and to try to understand what part of the visual signal is important in mate choice in Morpho helenor: the wing pattern (experiment 2) or the iridescent coloration (experiment 3). Although motivation for these experiments was not detailed in our manuscript, we already discussed the implications of the results of experiments 1, 2 and 3 in the discussion by stating that visual cues can take many forms and that considering both color AND pattern is important in understanding visual cues (lines 408-416). We carefully reworked this new version to make it more straightforward.

      (16) Line 260: Insert 'wild-type' before model to ensure similar wording as in the previous section.

      Corrected.

      (17) Line 286: Insert 'sympatric' after mimetic.

      Corrected.

      (18) Line 307: Include a reference to the figures or table where these results are presented.

      We now mention in the main text that the different proportions of beta-ocimene found between males M. helenor and M. achilles are shown in Table S2.

      (19) Line 343: These inferences are speculative. Add a line here, something like 'although this warrants further research in this species'.

      We detailed what additional experiments are needed lines 388-396.

      (20) Line 357: The authors have not discussed their results on iridescence divergence in allopatric populations (line 190) and its implications.

      We now made clear in the beginning of the discussion that the divergence of iridescence in allopatric populations is used as a baseline to test for convergent iridescence between species (lines 339-343).

      (21) Line 361 onwards: This first paragraph is a bit confusing, as the results mainly focus on allopatry, while the title refers to sympatry.

      To avoid confusion between the title and the content of the discussion, we divided the last part of the discussion into two different parts. As the first paragraph mainly focus on allopatry, we isolated it and titled it “Iridescent color patterns can be used as mate recognition cues in M. helenor” (line 498). The next paragraph of the discussion, focusing on the sympatric Morpho populations, has been titled “Evolution of visual and olfactory cues in mimetic sister-species living in sympatry” (line 418).

      (21)  Line 383: visual cues 'as' poor species.

      Corrected.

      (23) Line 405: Why females here and not males? This is again confusing since the authors tested for male mate choice in the main experiments. Some background information on sex-specific mate choice in the methods might help.

      In this specific sentence, we talk about performing mate choice experiments to test for the discrimination of olfactory cues by females (and not males) because we found a high divergence in the chemical compounds found on male genitalia. Although female chemical compounds could also be used as a cue by males in mate recognition, olfactive mate choice is often driven by female choice in butterflies. We recognize that this perspective does not line up with the mate choice presented in our results section which focused on male mate choice based on visual cues, because of ecological reasons (Morpho males tend to be attracted to bright blue colorations but not females) and technical reasons (in cages, females tend to hide away from the males or male dummies, and this behavior is not compatible with experiments involving flying around false males). In the discussion, we made sure to precise that the perspective we cite here is about testing the implications of divergence in male olfactory cues (line 454). We also added motivation to why we chose to investigate male (and not female) mate choice based on visual cues in the methods (lines 613-618) and in the results (219-223).

      (24) Line 417: This inference is speculative. Consider toning it down.

      We rewrote the sentence: “We find evidence of converging iridescent patterns in sympatry suggesting that predation could play a major role in the evolution of iridescence. Further work is nevertheless needed to directly test this hypothesis and establish the important of evasive mimicry in Morpho” (lines 465-468).

      (25) Line 429: 'Convergent trait evolution leads to mutualistic interactions enhancing coexistence'. Careful here. It is not very evident how convergent trait evolution (iridescence) is mutualistic in this case, as there is no experimental evidence for evasive mimicry yet. Consider rewording or toning this sentence down.

      We agree with the reviewer and removed this statement, only keeping the end of the sentence: “Altogether, this study addresses how convergence in one trait as a result of biotic interactions may alter selection on traits in other sensory modalities, resulting in a complex mosaic of biodiversity. (lines 479-481).

      (26) Line 442: Since the samples come from a breeding farm, I have a few questions. How are the authors sure about the location where the specimens were collected? How long have they been kept in captivity? Have they been subjected to any artificial selection? More details are needed here.

      Since M. helenor bristowi and M. helenor theodorus are only found in the wild in West and East Ecuador respectively, those M. helenor subspecies can only be collected in those two allopatric populations. Their phenotype is directly linked to their geographic repartition, this is how we made sure about their collect location. M. h. theodorus we used in this study were caught in East Ecuador in Tena, and M. h. bristowi were caught in West Ecuador in Pedro Vincente Madonado. We received pupae from the breeding farm, meaning that the Morpho used for the experiments were raised in captivity since their date of emergence. Upon emergence, they were transferred into cages for 4 to 5 days to wait for sexual maturity before performing the tetrad and mate choice experiments. This information was added to the method (lines 490-496).

      (27) Line 476: Include some citations supporting this statement.

      We now cite Bennett and Théry (2007), reviewing avian color vision, and Briscoe (2008), characterizing the sensitivity of the photoreceptors found in the eyes of butterflies. Both citations show that the 300-700nm range is seen by avian and butterfly visual systems.

      (28) Line 480 onwards: Please clarify if the analysis used only one value (mean?) per species, sex, angle of measurement, and locality or included data from multiple individuals.

      The analyses of both colorimetric variables and global iridescence were performed using iridescence data from multiple individuals (10 males and 10 females from M. h. bristowi, M. h. theodorus, M. h. helenor and M. a. achilles), for which we measured iridescence at 21 angles of illumination. Sampling size are mentioned lines 507, 515, 540-542.

      (29) Line 510: Is there a specific reason that authors did not investigate achromatic contrasts? Provide some justification here. Or include the results of achromatic contrasts in the supplement.

      We added the achromatic results in the supplement and in the results (lines 200-204). For both the avian visual model and the Morpho visual model, the confidence intervals always overlapped with the JND threshold, showing that neither birds nor butterflies could theoretically discriminate the wing reflectance brightness in allopatric and sympatric populations.

      (30) Line 552 onwards: I may have missed it. It is not entirely clear why the authors focused on male mate choice rather than female preference for visual cues. The authors should explicitly justify this choice and cite previous studies demonstrating that male mate choice, rather than female preference, is important in this species. This should be stated in the results section as well.

      We added a paragraph in the method (lines 613-618) to describe the ecological and technical reasons leading to testing only male mate choice using visual cues (also see our response to recommendation #23).

      (31) Line 537 onwards: What was the criterion used to score that mating had occurred? Why first mating and not how long they were mating? Please add these details.

      We stopped the experiment as soon as a male/female pair was formed by joining their genitalia (we added this information in the method lines 599-600). Since the tetrad experiment involves the interaction of two males and two females from different subspecies, we considered that mate choice happened before the formation of any couple, and is not necessarily dependent on how long they mate by observing their mating behavior. For instance, we witnessed avoidance behaviors from females that systematically hide their genitalia and refused to join their abdomen to some males, while being very ‘open’ to others (but did not quantify it).  

      (32) Line 571: The authors used a black permanent marker to modify wing patterns but did not validate whether butterflies perceive these modifications as equivalent to natural coloration. It is possible that the alterations introduced unintended visual cues and may explain why most males rejected the dummies (line 267). The authors should acknowledge this limitation here.

      We now acknowledge this limitation in the method (lines 638-639) and in the results section (lines 278-283).

      (33) Line 591: Insert 'above' after protocol.

      Corrected.

      (34) Line 605: If the authors included random effects in their model, then it should be generalized linear mixed model (GLMM) and not GLM as they wrote.

      We indeed included a random effect in our model accounting for male ID and trial number, we thus replaced “GLM” by “GLMM” in the manuscript.

      (35) Line 615: This set of analyses does not seem to account for pseudo-replication, as the data were recorded from the same male more than once (Line 583). Please clarify and redo the analysis with the GLMM framework

      We run new analyses using the GLMM framework: we used a binomial GLMM to test whether individuals preferentially interacted with dummy 1 vs. dummy 2 while accounting for pseudoreplication. The previously detected tendencies hold true with these new analyses, except for the visual mate discrimination of M. achilles: we now find statistical evidence that M. achilles tend to approach more their conspecifics during the mate choice experiment, although the signal is weak (line 297-307). Indeed, while we previously concluded that both species in sympatry (M. helenor and M. achilles) could not discriminate their conspecific mates, we now emphasize that M. achilles is somewhat sensitive to some visual signals. However, its estimated probability of approaching a conspecific is only 0.54, which is low compared to the estimated probability of approaching (0.61) or touching (0.84) a con-subspecific for M. bristowi. We thus concluded that even though some visual cues could be relevant for mate recognition, they are less reliable for male choice in sympatric populations were color patterns are more convergent, compared to allopatric populations. We thus updated Figure 4 and Figure S8 and S9, which are now picturing the probability of approaching or touching a conspecific or con-subspecific with the updated pvalues retrieved from the GLMM analyses. We also updated the results (line 297-307) and the discussion (lines 430-438) to bring nuance to our previous results.  

      (36) Line 963: Figure 3D. Is there a particular reason for comparing allopatric populations only within Ecuador rather than between Ecuador and French Guiana for M. helenor? Please clarify.

      We aimed at comparing the putative discrimination of blue coloration using visual models vs. what the butterflies actually discriminate using mate choice experiments. Since we only performed mate choice experiments involving M. h. bristowi x M. h. theodorus (allopatric populations within Ecuador) and M. h. helenor x M. a. achilles (sympatric population from Ecuador), we only looked at those comparisons using visual models. We added this precision lines (559-560).

      (37) Line 980: Are these predicted probabilities or just mean proportions as written in line 614? Then the label should be changed to 'Proportion of approaches' or something similar.

      Following our answer to recommendation #35, the points now represent the probability of touching a conspecific in the graph for each male, for every trial of every male tested. We corrected the legend of the figure. 

      Reviewer #2 (Recommendations for the authors):

      (1) Line 25: "...therefore facilitating co-existence in sympathy".

      Corrected.

      (2) Line 28: "contrasting" instead of contrasted.

      Corrected.

      (3) Line 33: begin a new sentence at the colon.

      Corrected.

      (4) Line 49: the phrase "habitat filtering" is unclear and should perhaps be defined or qualified.

      We replaced “habitat filtering” by its definition and cited Keddy (1992), describing the community assembly rules and defining habitat filtering (line 46)

      (5) Line 52: remove "even".

      Corrected.

      (6) Line 53: divergent suites may also result because traits are often constrained by genetic architecture (multivariate genetic covariances). This is discussed at length and specifically in relation to ornamental coloration by Kemp et al. 2023

      We rewrote the introduction and focused on only reviewing the ecological interactions promoting trait divergence in sympatric species, and did not mention genetics in this paper.

      (7) Line 87: (and throughout) refer to "colouration" or "colour pattern" rather than "colourations".

      Corrected.

      (8) Line 151: Remove "To do so,".

      Corrected.

      (9) Line 191: I would like to see the degrees of freedom for this test.

      We added the F-statistic=2.09 and the degrees of freedom df=1 of this test, and for all the following tests.

      (10) Line 201: (and throughout) replace "on" with "of".

      Corrected.

      (11) Line 205: modelling the visual properties of the wings allows one to infer what is theoretically visible/distinguishable. The modelling is useful but not necessarily definitive of vision/behaviour per se under different conditions in the wild. I therefore think it is appropriate to phrase the wording around the modelling approach more carefully. Perhaps refer to "theoretical" or "inferred" discriminability, or state (e.g.) that species should/should not be capable of perceiving differences based on the modelling data. You do this well in your wording of lines 207-209. This need not apply in the discussion because you're then dealing with the combination of modelling results and behaviour (mating trials).

      We agree with the reviewer that visual modelling only allows to infer what is theoretically discriminated by the butterflies, and that the wording of our sentence is confusing. We therefore modified the sentence to account for those precisions: “Morpho butterflies and predators can theoretically visually perceive the difference in the blue coloration between different subspecies of M. helenor…… using both bird and Morpho visual models” (line 206-209).

      (12) Line 222: Either the chi-square test or Fisher's exact test should be sufficient (why report both?)

      Chi-square test relies on large-sample assumptions (expected counts>5) whereas Fischer’s exact test does not and is valid even with small or unbalanced sample sizes. Since the M. bristowi female/M. h. theodorus male paring only occurred 3 times, we do not meet the primary assumptions to apply a Chi-square test, although it is significant. We used a Fischer’s test to confirm the results. Using both and finding that both tests are significant shows that the results are robust, although they may appear redundant. To simplify, we remove the results of the Chisquare test and only keep the Fisher’s test in the methodology and the results.

      (13) Line 224 (and throughout): Degrees of freedom should be provided for statistical tests.

      We reported the statistic value and the degrees of freedom for all mentions of the statistical tests in the main text, except for the Fischer test which does not rely on an asymptotic distribution like the Chi-squared distribution as it is an exact test.

      (14) Lines 266-267: This sentence has interest, but it is rather vague at present. Wouldn't your controls account for the effect of manipulation? This could be explained further.

      During our mate choice experiments, all Morpho female dummies used for the experiments were painted with black markers, either on their dorsal blue band to modify their blue iridescent phenotype, or on their ventral side, thus controlling for the effect of manipulation. However, we cannot rule out that the modification of the dorsal blue iridescence could have had a “repulsive” effect for males for several reasons. For example, depending on the visual discrimination of darker colors by Morphos, the painted black band could have a slightly different color compared to the dark “brown” usually surrounding their blue iridescent patterns. We now explain this in the results (lines 278-283) and in the methodology (lines 638-639)  

      (15) Line 316: I'm not certain that the similarity is best described as "striking", given a P-value of 0.084 for this contrast

      We agree with the reviewer and removed this adjective for this line.

      (16) Lines 387-390: This sentence is puzzling because, theoretically speaking, we should expect selection on visual preference to be heightened (not relaxed) in sympatry if colouration isincluded among the traits used in mate selection. I'm not certain I have understood the meaning here.

      We would like to thank the reviewer for pointing out this typo. If shared predatory pressures favors convergent evolution of color pattern, then the visual signals become less reliable for species recognition. As a result, sexual selection on visual preference is heightened and becomes stronger, favoring the evolution of alternative cues used to discriminate conspecific mates. We changed the sentence and now write “the convergent evolution of iridescent wing patterns… may have negatively impact visual discrimination and favored the evolution of divergent olfactory cues” (lines 457-458).

      (17) Line 529: Mating experiments. Given that these are quite large butterflies, I wondered whether a 3x3x2m cage would be sufficient in size to allow the expression of male courtship. A brief description of the courtship behaviour in these species or Morphos generally would be a useful addition to the paper.

      A cage this size was enough for the males to express a flight behavior similar to what can be seen in nature, while also being able to see the females (live females or dummies). We tried to perform mate experiments in a larger cage (7m x 5m x 3m) but the trials were not conclusive because male did not find the dummies depending on where they were flying in the cage. A 3mx3mx2m cage is a good compromise maximizing interactions while still allowing enough space to fly. We now describe Morpho male behavior and female behavior in the methods (lines 613-618).

      (18) Line 546: Why are both tests needed (chi-square AND Fisher's exact)?

      Similarly to our answer on recommendations #12, were used both tests to show robustness in the statistical results. We only kept the Fisher’s test results to simplify the results.

    1. eLife Assessment

      This study presents important information about the role of mu opioid receptors in neurotransmission between the medial habenula and the interpeduncular nucleus. The authors provide convincing evidence that mu opioid receptor activation has differential effects on transmission from substance P neurons and cholinergic neurons, and that blockade of potassium channels can unmask a nicotinic cholinergic synaptic response. This work will be of high interest to those studying this brain region, and potentially to the larger neuroscience community studying motivated behavior.

    2. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors demonstrate for the first time that opioid signaling has opposing effects on the same target neuron depending on the source of the input. Further, the authors provide evidence to support the role of potassium channels in regulating a brake on glutamatergic and cholinergic signaling, with the latter finding being developmentally regulated and responsive to opioid treatment. This evidence solves a conundrum regarding cholinergic signaling in the interpeduncular nucleus that evaded elucidation for many years.

      Strengths:

      This manuscript provides 3 novel and important findings that significantly advance our understanding of the medial habenula-interpeduncular circuitry:

      (1) Mu opioid receptor activation (mOR) reduces postsynaptic glutamatergic currents elicited from substance P neurons while simultaneously enhancing postsynaptic glutamatergic currents from cholinergic neurons, with the latter being developmentally regulated.

      (2) Substance P neurons from the Mhb provide functional input to the rostral nucleus of the IPN, in addition to the previously characterized lateral nuclei.

      (3) Potassium channels (Kv1.2) provide a break on neurotransmission in the IPN,

      The findings here suggest that the authors have identified a novel mechanism for the normal function of neurotransmission in the IPN, so it would be expected to be observable in almost any animal. In the revised manuscript, the authors put forth significant effort to increase the n, thus increasing the confidence in the observations.

      There are also significant sex differences in nAChR expression in the IPN that might not be functionally apparent using the low n presented here. In the revised manuscript, the authors increased the n, and provided data to the reviewers that no significant sex differences were apparent, although there was a trend. Future studies should examine sex differences in detail.

      There are also some particularly novel observations that are presented but not followed up on, and this creates a somewhat disjointed story. For example, in Figure 2, the authors identify neurons in which no response is elicited by light stimulation of ChAT-neurons, but application of DAMGO (mOR agonist) un-silences these neurons. Are there baseline differences in the electrophysiological or morphological properties of these "silent" neurons compared to the responsive neurons? In the revised manuscript, the authors directly tested this with new experiments in SST+ neurons in the IPN, demonstrating convincingly that mOR activation unsilences these neurons.

      With the revisions, the authors have addressed the reviewers' concerns and significantly improved the manuscript. I find no further weaknesses.

    3. Reviewer #2 (Public review):

      Summary:

      In this paper, Chittajallu and colleagues present compelling evidence that mu opioid receptor (MOR) activation can potentiate synaptic neurotransmission in a medial habenula to interpeduncular nucleus (mHb-IPN) subcircuit. While, projections from mHb tachykinin 1 (Tac1) neurons onto lateral IPN neurons show a canonical opioid-induced synaptic depression in glutamate release, excitatory neurotransmission in mHb choline acetyltransferase (ChAT) projections to the rostral IPN is potentiated by opioids. This function emerges around age P27 in mice, when MOR expression in the IPN peaks.

      Strengths:

      Carefully executed electrophysiological experiments with appropriate controls. Interesting description of a neurodevelopmental change in the effects of opioids on mHb-IPN signaling.

      Weaknesses:

      A minor concern is that the genetic strategy used to target the mHb-IPN pathway (constitutive ChR2 expression in all ChAT+ and Tac1+ neurons) might not specifically target this projection. Future studies are needed to examine the precise mechanism whereby MOR signaling can potentiate glutamatergic neurotransmission in ChAT+ MHb-IPN projections."

    4. Reviewer #3 (Public review):

      Summary:

      Here the authors describe the role of mORs in synaptic glutamate release from substance P and cholinergic neurons in the medial habenula to interpeduncular nucleus (IPN) circuit in adult mice. They show that mOR activation reduces evoked glutamate release from substance P neurons yet increases evoked glutamate release and Ach release from cholinergic neurons. Unlike glutamate release, Ach release is only detected when potassium channels are blocked with 4-AP or dendrotoxin. The authors also report a previously unidentified glutamatergic input to IPR from SP neurons and describe the developmental timing of mOR- facilitation in adolescent mice.

      Strengths:

      - The experiments provide new insight into the role of mORs in controlling evoked glutamate release in a circuit with high levels of mORs and established roles in relevant behaviors.

      - The experiments are rigorous, and the results are clear cut. The conclusions are supported by the data.

      - The findings will be of interest to those working in the field of synaptic transmission and those interested in the function of the medial habenula or interpeduncular nucleus, as well as those seeking to understand the role of opioids on normal and pathological behaviors.

      Weaknesses:

      - The mechanistic underpinnings of these interesting and novel results are not pursued.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Reviews):

      Weaknesses: 

      Overall I find the data presented compelling, but I feel that the number of observations is quite low (typically n=3-7 neurons, typically one per animal). While I understand that only a few slices can be obtained for the IPN from each animal, the strength of the novel findings would be more convincing with more frequent observations (larger n, more than one per animal). The findings here suggest that the authors have identified a novel mechanism for the normal function of neurotransmission in the IPN, so it would be expected to be observable in almost any animal. Thus,  it is not clear to me why the authors investigated so few neurons per slice and chose to combine different treatments into one group (e.g. Figure 2f), even if the treatments have the same expected effect.  

      This is a well taken suggestion. However, we must  point out that we do perform statistical analyses on the original datasets and we believe that our conclusions are justified as acknowledged by the Reviewer. As the Reviewer is aware,  the IPN is a small nucleus and with the slicing protocol used, we typically attain 1-2 slices per mouse that are suitable for recordings. Since most of the experiments in the manuscript deals with some form of pharmacological interrogation, we were reticent to use slices that are not naïve and therefore in general did not perform more than 1 cell recording per slice. Having said this, to comply with the Reviewer’s suggestion we have now performed additional experiments to increase the n number for certain experiments. We have amended all figures and legends to incorporate the additional data. We must point out that during the replotting of the data in the summary Figure 8i (previously Figure 7i) we noticed an error with the data representation of the TAC IPL data and have now corrected this oversight  

      Figure 2b,c. 

      500nM DAMGO effect on TAC IPL AMPAR EPSC – n increased from 5 to 9

      Figure 3g. 

      500nM DAMGO effect on CHAT IPR AMPAR EPSC – n increased from 8 to 16 Effect of CTAP on DAMGO on CHAT IPR AMPAR EPSC – n increased from 4 to 7

      Figure 3i. 

      500nm DAMGO or Met-enk effect in “silent” CHAT IPR AMPAR EPSC – n increased    from 7 to 9

      Figure 4e. 

      500nM DAMGO effect on ES coupling – Note: in the original version the n number was 5 and not 7 as written in the figure legend. We have now increased the n from 5 – 9.

      Figure 5e,f. 

      500nM DAMGO effect on TAC IPR AMPAR EPSC – n increased from 5 to 9

      Figure 7f.

      Effect of DHE on EPSC amplitude after application of DNQX/APV/4-AP or DTX-α – n increased from 7-9.

      Figure 7g.

      Emergence of nAChR EPSC after DTX – n increased from 4 to 7

      Figure 7i. 

      Effect of ambenonium on nAChR amplitude and charge – n increased from 4 to 7

      Supplementary Figure 3c and h

      Effect of DAMGO after DNQX – n increased from 4 to 7

      Effect of DNQX after DAMGO mediated potentiation – n increased from 3 to 5.

      Throughout the study (Figs. 3i, 7f and 8h in the revised manuscript)  we do indeed pool datasets that were amassed from different conditions since we were not directly investigating the possibility of any deviation in the extent of response between said treatments. For example, and as pointed out by the Reviewer, in Fig. 2F (now Fig. 3i) the use of DAMGO and met-ENK were merely employed to ascertain whether light-evoked synaptic transmission (ChATCre:ai32 mice) in cells that had no measurable EPSC could be pharmacologically “unsilenced” by mOR activation. Thus, the means by which mOR receptor was activated was not relevant to this specific question. Note: 2 more recordings are now added to this dataset (Fig. 3i) that were taken from ChATChR2/SSTCre:ai9 mice in response to the comment by this Reviewer below (“Are there baseline differences in the electrophysiological or morphological properties of these "silent" neurons compared to the responsive neurons?”).  Similarly, in the revised Fig.7f we pooled data investigating the pharmacological block of the EPSC that emerged following application of either DNQX/APV/4-AP or DNQX/APV/DTX. Low concentrations 4-AP or DTX were interchangeably employed to reveal the DNQX-insensitive EPSC that we go on to show is indeed the nAChR response. Finally, in Fig. 8h, we pooled data demonstrating a  lack of effect of DAMGO in potentiating  both the glutamatergic and cholinergic arms of synaptic transmission in the OPRM1 KO mice. Again, here we were only interested in determining whether removal of mOR expression prevented potentiation of transmission mediated by mHB ChAT neurons irrespective of neurotransmitter modality.  Thus, overall we were careful to only pool data in those instances where it  would not change the interpretation and hence conclusions reached. 

      There are also significant sex differences in nAChR expression in the IPN that might not be functionally apparent using the low n presented here. It would be helpful to know which of the recorded neurons came from each sex, rather than presenting only the pooled data.  

      As the reviewer correctly states there are veins of literature concerning a divergence, based on sex, of not only nicotinic receptor expression but also behaviors associated with nicotine addiction. However, we have reanalyzed our datasets focusing on the extent of the mOR potentiation of glutamatergic and cholinergic transmission mediated by mHB ChAT neurons in IPR  between male and female mice. Please refer to the Author response image 1 below. Although there is a possible trend towards a higher potentiation of nAChR in female mice, this was not found to be of statistical significance (see Author response image 1 below). We therefore chose not to split our data in the manuscript based on gender.

      Author response image 1.

      Comparison of the mOR (500nM DAMGO) mediated potentiation on evoked (a) AMPAR and (b) nAChR  EPSCs in IPR between male and female mice.  

      There are also some particularly novel observations that are presented but not followed up on, and this creates a somewhat disjointed story. For example, in Figure 2, the authors identify neurons in which no response is elicited by light stimulation of ChAT-neurons, but the application of DAMGO (mOR agonist) un-silences these neurons. Are there baseline differences in the electrophysiological or morphological properties of these "silent" neurons compared to the responsive neurons?  

      Unfortunately, we did not routinely measure intrinsic properties of the recorded postsynaptic neurons nor systematically recovered biocytin fills to assess morphology. Therefore, it remains unclear whether the  neurons in which there were none or minimal AMPAR-mediated EPSCs are distinct to the ones displaying measurable responses. The IPR is resident to GABAergic SST neurons that comprise the most numerous neuron type in this IPN subdivision. Although heavily outnumbered by the SST neurons there are additionally VGluT3+ glutamatergic neurons in IPN. The Reviewer is likely referring to a recent study investigating synaptic transmission specifically onto  SST+ and VGluT3+ neurons in IPN demonstrating that mHB cholinergic mediated glutamatergic input is “weaker” onto the glutamatergic neurons. Furthermore, in some instances synaptic transmission onto this latter population can be “unsilenced” by GABAB receptor activation in a similar manner to that seen with mOR activation in this manuscript when IPR neurons are blindly targeted(Stinson & Ninan, 2025).  Using a similar strategy as in this recent study(Stinson & Ninan, 2025), we now include experiments in which the ChATChR2 mouse was crossed with  a SSTCre:Ai14. This allowed for recording of postsynaptic EPSCs in directly identified SST IPR neurons. We demonstrate that DAMGO can indeed increase glutamatergic EPSCs and in 2 of the cells where light activation demonstrated no appreciable AMPAR EPSC upon maximal LED light activation, DAMGO clearly “unsilenced” transmission.  Thus, our additional analyses directly demonstrate that our original observations concerning mOR modulation extend to the mHb cholinergic AMPAR mediated input onto IPR SST neurons. This additional data is in the revised manuscript (Figure 3D-F, I). Future experimentation will be required to determine if the propensity of encountering a  “silent” input that can be converted to robust synaptic transmission by mOR differs between these two cell types. Furthermore, it will be of interest to investigate if any differences exist in the magnitude of the cholinergic input or the mOR mediated potentiation of co-transmission between postsynaptic SST GABA and glutamatergic neuronal subtypes. 

      Reviewer #2 (Public review)

      Weaknesses: 

      The genetic strategy used to target the mHb-IPN pathway (constitutive expression in all ChAT+ and Tac1+ neurons) is not specific to this projection.  

      This is an important point made. We are acutely aware that the source of the synaptic input in IPN mediated by conditional expression of ChR2 employing  using transgenic cre driver lines does not confer specificity to mHB. This is particularly relevant considering one of the novel observations here relates to  a previously unidentified functional input from TAC1 neurons to the IPR. At this juncture we would like to point the Reviewer to the publicly available Connectivity Atlas provided by the Allen Brain Institute (https://connectivity.brain-map.org/). With reference to mHB TAC1 neuronal output, targeted viral injection into the habenula of Tac1Cre mice allows conditional expression of EGFP to SP neurons as evidenced by the predominant expression of reported fluorescence in dorsal mHB (see Author response image 2 a,b below). Tracing the axonal projections to the IPN clearly demonstrates dense fibers in IPL as expected but also arborization in  IPR (Author response image 2 a,c) . This pattern is reminiscent of that seen in the transgenic Tac1Cre:ai9 or ai32 mice used in the current study (Figs. 1c, 2a, 5c). Closer inspection of the fibers in the IPR reveals putative synaptic bouton like structures as we have shown in Fig. 5a,b (Author response image 2 d below).

      Author response image 2.

      Sterotaxic viral injection into mHB pf Tac1Cre mice taken from Allen Brain connectivity atlas (Link to Connectivity Atlas for mHb SP neuronal projection pattern)

      These anatomical data suggest that part of the synaptic input to the IPR originates from mHB TAC1 neurons although we cannot fully discount additional synaptic input from other brain areas that may impinge on the IPR. Indeed, as the Reviewer points out, it is evident that other regions including the nucleus incertus send outputs to the IPN(Bueno et al., 2019; Liang et al., 2024; Lima et al., 2017). However, it is unclear if neuronal inputs from these alternate sources {Liang, 2024 #123;Lima, 2017 #33}{Bueno, 2019 #178} are glutamatergic in nature AND mediated by a TAC1/OPRM1-expressing neuronal population. Nevertheless, we have now modified text in the discussion to highlight the limitations of using a transgenic strategy (pg 12, para 1).

      In addition, a braking mechanism involving Kv1.2 has not been identified.

      It is unclear to what the Reviewer is referring to here. Although most of our experiments pertaining to the brake on cholinergic  transmission by potassium channels use low concentrations of 4-AP (50100M) which have been used to block Shaker Kv1 channels there although at these concentrations there are additional action at other K+-channels such as Kv3, for instance. However, we essentially demonstrate that a selective Kv1.1 and Kv1.2 antagonist dendrotoxin replicates the 4-AP effects. We have now also included RNAseq data demonstrating the relative expression levels of Kv1 channel mRNA in mHb ChAT neurons (KCNA1 through KCNA6; Figure 6b). The complete absence of KCNA1 yet a high expression level of KCNA2 transcripts highly suggests a central role of Kv1.2 in unmasking nAChR mediated synaptic transmission. 

      Reviewer #3 (Public review)

      Weaknesses:  

      The significance of the ratio of AMPA versus nACh EPSCs shown in Figure 6 is unclear since nAChR EPSCs measured in the K+ channel blockers are compared to AMPA EPSCs in control (presumably 4-AP would also increase AMPA EPSCs). 

      We understand the Reviewer’s concern regarding the calculation of nicotinic/AMPA ratios since they are measured under differing conditions i.e. absence and presence of 4-AP, respectively. As the reviewer correctly points point 4-AP likely increases the amplitude of the AMPA receptor mediated EPSC. However, our intention of calculating this ratio was not to ascertain a measure of relative strengths of fast glutamatergic vs cholinergic transmission onto a given postsynaptic IPN neuron per se. Rather, we used the ratio as a means to normalize the size of the nicotinic receptor EPSC to the strength of the light stimulation (using the AMPA EPSC as the normalizing factor) in each individual recording. This permits a more meaningful comparison across cells/slices/mice . We apologize for the confusion and have amended the text in the results section to reflect this (pg 9; para2).

      The mechanistic underpinnings of the most now  results are not pursued. For example, the experiments do not provide new insight into the differential effects of evoked and spontaneous glutamate/Ach release by Gi/o coupled mORs, nor the differential threshold for glutamate versus Ach release. 

      Our major goal of the current manuscript was to provide a much-needed roadmap outlining the effects of opioids in the habenulo-interpeduncular axis. Of course, a full understanding of the mechanisms underlying such complex opioid actions at the molecular level will be of great value. We feel that this is beyond the scope of this already quite result dense manuscript but will be essential if directed manipulation of the circuit is to be leveraged to alter maladaptive behaviors associated with addiction/emotion during adolescence and in adult. 

      The authors note that blocking Kv1 channels typically enhances transmitter release by slowing action potential repolarization. The idea that Kv1 channels serve as a brake for Ach release in this system would be strengthened by showing that these channels are the target of neuromodulators or that they contribute to activity-dependent regulation that allows the brake to be released. 

      The exact mechanistic underpinnings that can potentially titer Kv1.2 availability and hence nAChR transmission would be essential to shed light on potential in vivo conditions under which this arm of neurotransmission can be modulated. However, we feel that detailed mechanistic interrogation constitutes significant work but one that future studies should aim to achieve. Thus, it presently remains unclear under what physiological or pathological scenarios result in attenuation of Kv1.2 to subsequently promote nAChR mediated transmission but as mentioned in the existing discussion future work to decipher such mechanisms would be of great value.

      Reviewer #1 (Recommendations for the authors): 

      Overall I find this to be a very interesting and exciting paper, presenting novel findings that provide clarity for a problem that has persisted in the IPN field: that of the conundrum that light-evoked cholinergic signaling was challenging to observe despite the abundance of nAChRs in the IPN. 

      Major concerns: 

      (1) The n is quite low in most cases, and in many instances, data from one figure are replotted in another figure. Given that the findings presented here are expected in the normal condition, it should not be difficult to increase the n. A more robust number of observations would strengthen the novel findings presented here. 

      Please refer to the response to the public review above.

      (2) In general, I find the organization of the figures somewhat disjointed. Sometimes it feels as if parts of the information presented in the results are split between figures, where it would make more sense to be together in a figure. For example, all the histology for each of the lines is in Figure 1, but only ephys data for one line is included there. It would be more logical to include the histology and ephys data for each line in its own figure. It would also be helpful to show the overlap of mOR expression with Tac1-Cre and ChAT-Cre terminals in the IPN. Likewise, the summarized Tac1Cre:Ai32 IPR data is in Figure 4, but the individual data is in Figure 5. 

      We introduce both ChAT and TAC1 cre lines in Figure 1 as an overview particularly for those readers who are not entirely familiar with the distinct afferent systems operating with the habenulointerpeduncular pathway.  However, in compliance with the Reviewer’s suggestion we have now restructured the Figures. In the revised manuscript, the functional data pertaining to the various transmission modalities mediated by the distinct afferent systems impinging on the subdivision of the IPN tested are now split into their own dedicated figure as follows:

      Figure 2. 

      mOR effect on TAC1neuronal glutamatergic output in IPL.

      Figure 3. 

      mOR effect on CHAT neuronal glutamatergic output in IPR.

      Figure 5. 

      mOR effect on TAC1neuronal glutamatergic output in IPR.

      Figure 8.

      mOR effect on CHAT neuronal cholinergic output in IPC.

      Supp. Fig. 1 mOR effect on CHAT neuronal glutamatergic output in IPC.

      We thank the Reviewer for their suggestions regarding the style of the manuscript. The restructuring has now resulted in a much better flow of the presented data.

      (3) The discussion is largely satisfactory. However, a little more discussion of the integrative function of the IPN is warranted given the opposing effects of MOR activation in the Tac vs ChAT terminals, particularly in the context of both opioids and natural rewards. 

      We thank the reviewer for this comment. However, we feel the discussion is rather lengthy as is and therefore we refrained from including additional text.  

      Minor concerns: 

      (1)  The methods are missing key details. For example, the stock numbers of each of the strains of mice appear to have been left out. This is of particular importance for this paper as there are key differences between the ChAT-Cre lines that are available that would affect observed electrophysiological properties. As the authors indicate, the ChAT-ChR2 mice overexpress VAChT, while the ChAT-IRES-Cre mice do not have this problem. However, as presented it is unclear which mice are being used. 

      We apologize for the omission - the catalog numbers of the mice employed have now been included in the methods section.

      We have now clearly included in each figure panel (single trace examples and pooled data) from which mice the data are taken from – in some instances the pooled data are from the two CHAT mouse strains employed. Despite the tendency of the ChATChR2 mice to demonstrate more pronounced nAChR mediated transmission (Fig. 7h),  we justify pooling the data since we see no statistical significance in the effect of mOR activation on either potentiating AMPA or nAChR EPSCs (Please refer to response to Reviewer 2, Minor Concern point 2)

      (2) Likewise, antibody dilutions used for staining are presented as both dilution and concentration, which is not typical. 

      We thank the reviewer for pointing out this inconsistency. We have amended the text in the methods to include only the working dilution for all antibodies employed in the study.

      (3) There are minor typos throughout the manuscript. 

      All typos have been corrected.

      Reviewer #2 (Recommendations for the authors): 

      The authors provide a thorough investigation into the subregion, and cell-type effect of mu opioid receptor (MOR) signaling on neurotransmission in the medial habenula to interpeduncular nucleus circuit (mHb-IPN). This circuit largely comprises two distinct populations of neurons: mHb substance P (Tac1+) and cholinergic (ChAT+) neurons. Corroborating prior work, the authors report that Tac1+ neurons preferentially innervate the lateral IPN (IPL) and rostral IPN (IPR), while ChAT+ neurons preferentially innervate the central IPN (IPC) and IPR. The densest expression of MOR is observed in the IPL and MOR agonists produce a canonical presynaptic depression of glutamatergic neurotransmission in this region. Interestingly, MOR signaling in the ChAT+ mHb projection to the IPR potentiates light-evoked glutamate and acetylcholine-mediated currents (EPSC), and this effect is mediated by a MOR-induced inhibition of Kv2.1 channels. 

      Major concerns: 

      (1) The method used for expressing channelrhodopsin (ChR2) into cholinergic and neurokinin neurons in the mHb (Ai32 mice crossed with Cre-driver lines) has limitations because all Tac1+/ChAT+ inputs to the IPN express ChR2 in this mouse. Importantly, the IPN receives inputs from multiple brain regions besides the IPN-containing neurons capable of releasing these neurotransmitters (PMID: 39270652). Thus, it would be important to isolate the contributions of the mHb-IPN pathway using virally expressed ChR2 in the mHb of Cre driver mice. 

      Please refer to the response to the public review above. 

      (2) Figure 4: The authors conclude that the sEPSC recorded from IPR originate from Tac1+ mHbIPR projections. However, this cannot be stated conclusively without additional experimentation. For instance, an optogenetic asynchronous release experiment. For these experiments it would also be important to express ChR2 virus in the mHb in Tac1- and ChAT-Cre mice since glutamate originating from other brain regions could contribute to a change in asynchronous EPSCs induced by DAMGO. 

      This is a well taken point. The incongruent effect of DAMGO on evoked CHAT neuronal EPSC amplitude and sEPSC frequency prompted us  to consider the the possibility of differing effect of DAMGO on a  secondary input. We agree that we do not show directly if the sEPSCs originate from a TAC1 neuronal population. Therefore, we have tempered our wording with regards the origin of the sEPSCs and  have also restructured the Figure in question moving the sEPSC data into supplemental data (Supplemental Fig. 2) 

      (3) Figure 5D: lt would be useful to provide a quantitative measure in a few mice of mOR fluorescence across development (e.g. integrated density of fluorescence in IPR). 

      We have now included mOR expression density across development  (Fig. 6). Interestingly, the adult expression levels of mOR in the IPR are essentially reached at a very early developmental age (P10) yet we see stark differences in the role of mOR activation in modulating glutamatergic transmission mediated by mHB cholinergic neurons. Note: since we processed adult tissue (i.e. >p40) for these developmental analyses we utilized these slices to also include an analysis of the relative mOR expression density specifically in adults between the subdivisions of IPN in Fig. 1.

      (4) Figure 6B: It would be useful to quantify the expression of Kcna2 in ChAT and Tac1 neurons (e.g. using FISH). 

      We thank the Reviewer for this suggestion. We have now included mRNA expression levels available from publicly available 10X RNA sequencing dataset provided by the Allen Brain Institute (Figure 7b).  

      (5) It would be informative to examine what the effects of MOR activation are on mHb projections to the (central) . 

      In response to this suggestion, we now have included  additional data in the manuscript in putative IPC cells that clearly demonstrate a similar DAMGO elicited potentiation of AMPAR EPSC to that  seen in IPR. These data are now included in the revised manuscript  (Supplemental Fig. 1; Fig. 8i). 

      (6) What is the proposed link between MOR activation and the inhibition of Kv1.2 (e.g. beta-Arrestin signaling, G beta-gamma interaction with Kv1.2, PKA inhibition?) 

      We apologize for any confusion. We do not directly test whether the potentiation of EPSCs upon mOR activation occurs via inhibition of Kv1.2.Although we have not directly tested this possibility we find it an unlikely underlying cellular mechanism, especially for the potentiation of the cholinergic arm of neurotransmission since in the presence of DNQX/APV, the activation of mOR does not result in any emergence of any nAChR EPSC (see Supplementary Fig. 3a-c)

      Minor concerns: 

      (1) Methods: Jackson lab ID# for used mouse strains is missing. 

      We apologize for this omission and have now included the mouse strain catalog numbers.

      (2) The authors use data from both ChAT-Cre x Ai32 and ChAT-ChR2 mice. It would be helpful to show some comparisons between the lines to justify merging data sets for some of the analyses as there appear to be differences between the lines (e.g. Figure 6G). 

      This is a well taken point. We have now provided a figure for the Reviewer (see below) that illustrates the lack of  significant difference between the mOR mediated potentiation of both mHB CHAT neuronal AMPAR and nAChR transmission between the two mouse lines employed despite a divergence in the extent of glutamatergic vs cholinergic transmission shown in Fig. 7g (previously Figure 6g). We have chosen not to include this data in the revised manuscript.

      Author response image 3.

      Comparison of the mOR (500nM DAMGO) mediated potentiation on evoked AMPAR (a) and nAChR (b)EPSCs in IPR between ChATCre:Ai32  and ChATChR2 mice.

      (3)  Line 154: How was it determined that the EPSC is glutamatergic? 

      We apologize for any confusion. In the revised manuscript we now clearly point to the relevant figures (see Supplementary Figs. 2a and 3) in the Results section (pg. 4, para 2; pg 7, para 1; pg 8, para2) where we determine that both the sEPSCs and ChAT mediated light evoked EPSCs recorded under baseline conditions are totally blocked by DNQX and hence are exclusively AMPAR events 

      (4) It would be helpful to discuss the differences between GABA-B mediated potentiation of mHbIPN signaling and the current data in more detail. 

      We are unclear as to what differences the Reviewer is referring to. At least from the perspective of ChAT neuronal mediated synaptic transmission, other groups (and in the current study; Fig. 7h) have clearly shown that GABA<sub>B</sub> activation markedly potentiates synaptic transmission like mOR activation. Nevertheless, based on our novel findings it would be of interest to determine whether the influence of GABA<sub>B</sub> is inhibitory onto the TAC mediated input in IPR and whether there is a developmental regulation of this effect as we demonstrate upon mOR activation. These additional comparisons between the effect of the two Gi-linked receptors may shed light onto the similarity, or lack thereof, regarding the underlying cellular mechanisms. We now have included a few sentences in the discussion to highlight this (pg 11, para 1).

      Reviewer #3 (Recommendations for the authors): 

      The abstract was confusing at first read due to the complex language, particularly the sentence starting with... Further, specific potassium channels... 

      The authors might want to consider simplifying the description of the experiments and the results to clarify the content of the manuscript for readers who many only read the abstract. 

      We have altered the wording of the abstract and hope it is now more reader friendly.

      The opposite effect of mOR activation on spontaneous EPSCs versus electrical or ChR2-evoked EPSCs is very interesting and raises the issue of which measure is most physiologically relevant. For example, it is unclear whether sEPSCs arise primarily from cholinergic neurons (that are spontaneously active in the slice, Figure 3), and if so, does mOR activation suppress or enhance cholinergic neuron excitability and/or recruitment by ChR2? While a full analysis of this question is beyond the scope of this manuscript, the assumption that glutamate release assayed by electrical/ChR2 evoked transmission is the most physiologically relevant might merit some discussion since sEPSCs presumably also reflect action-potential dependent glutamate release. One wonders whether mORs hyperpolarize cholinergic neurons to reduce spontaneous spiking yet enhance fiber recruitment by ChR2 or an electrical stimulus (i.e. by removing Na channel inactivation). The authors have clearly stated that they do not know where the mORs are located, and that the effects arising from disinhibition are likely complex. But they also might discuss whether glutamate release following synchronous activation of a fiber pathway by ChR2 or electrode is more or less physiologically relevant than glutamate release assayed during spontaneous activity. It seems likely that an equivalent experiment to Figure 3D, E using spontaneous spiking of IPR neurons would show that spiking is reduced by mOR activation. 

      We thank the Reviewer for this comment. As pointed it would be of interest to dissect the “network” effect of mOR activation but as the Reviewer acknowledges this is beyond the scope of the current manuscript. The Reviewer is correct in postulating that mOR activation results in hyperpolarization of mHB ChAT neurons.  A recent study(Singhal et al 2025) demonstrate that a subpopulation of ChAT neurons undergoes a reduction in firing frequency following DAMGO application. This is corroborated by our own observations although we chose not to include this data in our current manuscript (but see below).

      Additionally, the Reviewer questions whether ChR2/electrical stimulation is physiological. This is a well taken point and of course the simultaneous activation of potentially all possible axonal release sites is not the mode under which the circuit operates. Nevertheless, our data clearly demonstrates the ability of mORs to modulate release under these circumstances that must reflect an impact on spontaneous action potential driven evoked release.  Although the suggested experiment  could shed light on the synaptic outcomes of mOR receptor activation on ES coupling of downstream IPN neurons. Interpretation of the outcome would be confounded by the fact that postsynaptic IPN neurons also express mORs . Thus,  we would not be able to isolate the effects of presynaptic changes in modulating ES coupling from any direct postsynaptic effect on the recorded cell when in current clamp. 

      Together these additional sites of action of mOR (i.e. mHB ChAT somatodendritic and postsynaptic IPN neuron) only serve to further highlight the complex nature of the actions of opioids on the habenulo-interpeduncular axis warranting  future work to fully understand the physiological and pathological effects on the habenulo-interpeduncular axis as a whole.

      The idea that Kv2.1 channels serve as a brake raises the question of whether they contribute to activity-dependent action potential broadening to facilitate Ach release during trains of stimuli. 

      This is an interesting suggestion and one that we had considered ourselves. Indeed, as the Reviewer is likely aware and as mentioned in the manuscript, previous studies have shown nAChR signaling can be revealed under conditions of multiple stimulations given at relatively high frequencies.  We therefore attempted to perform high frequency stimulation (20 stimulations at 25Hz and 50Hz) in the presence of ionotropic glutamatergic receptor antagonists DNQX and APV. We have now included this data in the revised manuscript (Supplementary Fig 3b). As shown, this failed to engage nAChR mediated synaptic transmission in our hands. Interestingly there is evidence from reduced expression systems demonstrating that Kv1.2 channels undergo use-dependent potentiation(Baronas et al., 2015) in contrast to that seen with other K+-channels. Whether this is the case for the axonal Kv1.2 channels on mHB axonal terminals in situ is not known but this may explain the inability to reveal nAChR EPSCs upon delivery of such stimulation paradigms.  

      References 

      Baronas, V. A., McGuinness, B. R., Brigidi, G. S., Gomm Kolisko, R. N., Vilin, Y. Y., Kim, R. Y., … Kurata, H. T. (2015). Use-dependent activation of neuronal Kv1.2 channel complexes. J Neurosci, 35(8), 3515-3524. doi:10.1523/JNEUROSCI.4518-13.2015

      Bueno, D., Lima, L. B., Souza, R., Goncalves, L., Leite, F., Souza, S., … Metzger, M. (2019). Connections of the laterodorsal tegmental nucleus with the habenular-interpeduncular-raphe system. J Comp Neurol, 527(18), 3046-3072. doi:10.1002/cne.24729

      Liang, J., Zhou, Y., Feng, Q., Zhou, Y., Jiang, T., Ren, M., … Luo, M. (2024). A brainstem circuit amplifies aversion. Neuron. doi:10.1016/j.neuron.2024.08.010

      Lima, L. B., Bueno, D., Leite, F., Souza, S., Goncalves, L., Furigo, I. C., … Metzger, M. (2017). Afferent and efferent connections of the interpeduncular nucleus with special reference to circuits involving the habenula and raphe nuclei. J Comp Neurol, 525(10), 2411-2442. doi:10.1002/cne.24217

      Singhal, S. M., Szlaga, A., Chen, Y. C., Conrad, W. S., & Hnasko, T. S. (2025). Mu-opioid receptor activation potentiates excitatory transmission at the habenulo-peduncular synapse. Cell Rep, 44(7), 115874. doi:10.1016/j.celrep.2025.115874

      Stinson, H.E., & Ninan, I. (2025). GABA(B) receptor-mediated potentiation of ventral medial habenula glutamatergic transmission in GABAergic and glutamatergic interpeduncular nucleus neurons. bioRxiv doi.10.1101/2025.01.03.631193

    1. eLife Assessment

      This important study elucidates the role of the exocyst component EXOC6A at distinct stages of ciliogenesis, which advances our understanding of ciliary membrane remodeling and cilium formation. The authors provide solid evidence that EXOC6A interacts with myosin-Va and is dynamically recruited via dynein-, microtubule-, and actin-dependent mechanisms, to support proper formation of the ciliary membrane. The study will be of interest to cell biologists and other researchers interested in vesicular trafficking, organellar membrane dynamics, and ciliogenesis.

    2. Reviewer #1 (Public review):

      Summary:

      The study by Lin et al. studies the role of EXOC6A in ciliogenesis and its relationship with the interactor myosin-Va using a range of approaches based on the RPE1 cell line model. They establish its spatio-temporal organization at centrioles, the forming ciliary vesicle and ciliary sheath using ExM, various super-resolution techniques, and EM, including correlative light and electron microscopy. They also perform live imaging analyses and functional studies using RNAi and knockout. They establish a role of EXOC6A together with myosin-Va in Golgi-derived, microtubule- and actin-based vesicle trafficking to and from the ciliary vesicle and sheath membranes. Defects in these functions impair robust ciliary shaft and axoneme formation due to defective transition zone assembly.

      Strengths:

      The study provides very high-quality data that support the conclusions. In particular, the imaging data is compelling. It also integrates all findings in a model that shows how EXOC6A participates in multiple stages of ciliogenesis and how it cooperates with other factors.

      Weaknesses:

      The precise role of EXOC6A remains somewhat unclear. While it is described as a component of the exocyst, the authors do not address its molecular functions and whether it indeed works as part of the exocyst complex during ciliogenesis.

    3. Reviewer #2 (Public review):

      Summary:

      The molecular mechanisms underlying ciliogenesis are not well understood. Previously, work from the same group (Wu et al., 2018) identified myosin-Va as an important protein in transporting preciliary vesicles to the mother vesicles, allowing for initiation of ciliogenesis. The exocyst complex has previously been implicated in ciliogenesis and protein trafficking to cilia. Here, Lin et al. investigate the role of exocyst complex protein EXOC6A in cilia formation. The authors find that EXOC6A localizes to preciliary vesicles, ciliary vesicles, and the ciliary sheath. EXOC6A colocalizes with Myo-Va in the ciliary vesicle and the ciliary sheath, and both proteins are removed from fully assembled cilia. EXOC6A is not required for Myo-Va localization, but Myo-VA and EHD1 are required for EXOC6A to localize in ciliary vesicles. The authors propose that EXOC6A vesicles continually remodel the cilium: FRAP analysis demonstrates that EXOC6A is a dynamic protein, and live imaging shows that EXOC6A fuses with and buds off from the ciliary membrane. Loss of EXOC6A reduces, but does not eliminate, the number of cilia formed in cells. Any cilia that are still present are structurally abnormal, with either bent morphologies or the absence of some transition zone proteins. Overall, the analyses and imaging are well done, and the conclusions are well supported by the data. The work will be of interest to cell biologists, especially those interested in centrosomes and cilia.

      Strengths:

      The TEM micrographs are of excellent quality. The quality of the imaging overall is very good, especially considering that these are dynamic processes occurring in a small region of the cell. The data analysis is well done and the quantifications are very helpful. The manuscript is well-written and the final figure is especially helpful in understanding the model.

      Weaknesses:

      Additional information about the functional and mechanistic roles of EXOC6A would improve the manuscript greatly.

    4. Reviewer #3 (Public review):

      Summary:

      Lin et al report on the dynamic localization of EXOC6A and Myo-Va at pre-ciliary vesicles, ciliary vesicles, and ciliary sheath membrane during ciliogenesis using three-dimensional structured illumination microscopy and ultrastructure expansion microscopy. The authors further confirm the interaction of EXOC6A and Myo-Va by co-immunoprecipitation experiments and demonstrated the requirement of EHD1 for the EXOC6A-labeled ciliary vesicles formation. Additional experiments using gene-silencing by siRNA and pharmacological tools identified the involvement of dynein-, microtubule-, and actin in the transport mechanism of EXOC6A-labeled vesicles to the centriole, as they have previously reported for Myo-Va. Notably, loss of EXOC6A severely disrupts ciliogenesis, with the majority of cells becoming arrested at the ciliary vesicle (CV) stage, highlighting the involvement of EXOC6A at later stages of ciliogenesis. As the authors observe dynamic EXOC6A-positive vesicle release and fusion with the ciliary sheath, this suggests a role in membrane and potentially membrane protein delivery to the growing cilium past the ciliary vesicle stage. While CEP290 localization at the forming cilium appears normal, the recruitment of other transition zone components, exemplified by several MKS and NPHP module components, was also impaired in EXOC6A-deficient cells.

      Strengths:

      (1) By applying different microscopy approaches, the study provides deeper insight into the spatial and temporal localization of EXOC6A and Myo-Va during ciliogenesis.

      (2) The combination of complementary siRNA and pharmacological tools targeting different components strengthens the conclusions.

      (3) This study reveals a new function of EXOC6A in delivering membrane and membrane proteins during ciliogenesis, both to the ciliary vesicle as well as to the ciliary sheath.

      (4) The overall data quality is high. The investigation of EXOC6A at different time points during ciliogenesis is well schematized and explained.

      Weaknesses:

      (1) Since many conclusions are based on EXOC6A immunostaining, it would strengthen the study to validate antibody specificity by demonstrating the absence of staining in EXOC6A-deficient cells.

      (2) While the authors generated an EXOC6A-deficient cell line, off-target effects can be clone-specific. Validating key experiments in a second independent knockout clone or rescuing the phenotype of the existing clone by re-expressing EXOC6A would ensure that the observed phenotypes are due to EXOC6A loss rather than unintended off-target effects.

      (3) Some experimental details are lacking from the materials and methods section. No information on how the co-immunoprecipitation experiments have been performed can be found. The concentrations of pharmacological agents should be provided to allow proper interpretation of the results, as higher or lower doses can produce nonspecific effects. For example, the concentrations of ciliobrevin and nocodazole used to treat RPE1 cells are not specified and should be included. More precise settings for the FRAP experiments would help others reproduce the presented data. Some details for the siRNA-based knockdowns, such as incubation times, can only be found in the figure legends.

      Taken together, the authors achieved their goal of elucidating the role of EXOC6A in ciliogenesis, demonstrating its involvement in vesicle trafficking and membrane remodeling in both early and late stages of ciliogenesis. Their findings are supported by experimental evidence. This work is likely to have an impact on the field by expanding our understanding of the molecular machinery underlying cilia biogenesis, particularly the coordination between the exocyst complex and cytoskeletal transport systems. The methods and data presented offer valuable tools for dissecting vesicle dynamics and cilium formation, providing a foundation for future research into ciliary dysfunction and related diseases. By connecting vesicle trafficking to structural maturation of an organelle, the study adds important context to the broader description of cellular architecture and organelle biogenesis.

    1. eLife Assessment

      This valuable study investigates the role of HIF1a signaling in epicardial activation and neonatal heart regeneration in mice. Using a combination of genetic and pharmacological approaches, the authors demonstrate that stabilization of HIF1a enhances epicardial activation and extends the regenerative capacity of the heart beyond the typical neonatal window following myocardial infarction. The main conclusion is well supported by solid data, although some minor concerns regarding experimental interpretation require further clarification to ensure accuracy.

    2. Reviewer #1 (Public review):

      Summary:

      The manuscript by Gamen et al. analyzed the functional role of HIF signaling in the epicardium providing evidence that stabilization of the hypoxia signaling pathway might contribute to neonatal heart regeneration. By generating different conditionally mouse mutants and performing pharmacological interventions, the authors demonstrate that stabilizing HIF signaling enhances cardiac regeneration after MI in P7 neonatal hearts.

      Strengths:

      The study presents convincing genetic and pharmacological approaches on the role of hypoxia signaling enhance the regenerative potential of the epicardium

      Weaknesses:

      The major weakness remains the lack of convincing evidence demonstrating the role of hypoxia signaling in EMT modulation in the epicardial cells. The authors claimed that EMT assays adopted in this study are based on similar previous studies. Surprisingly, two of the references provided correspond to their own research group (PMID: 17108969, PMID: 19235142), limiting the credit for such claims, and the other two (PMID: 27023710, PMID: 12297106) assessment of cell migration but not EMT is reported. Thus, EMT remains to be convincingly demonstrated.

    3. Reviewer #2 (Public review):

      Summary:

      In this study, Gamen et al. investigated the roles of hypoxia and HIF1a signaling in regulating epicardial function during cardiac development and neonatal heart regeneration. The authors identified hypoxic regions in the epicardium during development and demonstrated that genetic and pharmacological stabilization of HIF1a during neonatal heart injury prolonged epicardial activation, preserved myocardium, enhanced infarct resolution, and maintained cardiac function beyond the normal postnatal regenerative window.

      Strengths:

      HIF1a signaling was manipulated in an epicardium-specific manner using appropriate genetic tools.

      Weaknesses:

      Some conclusions still need clarification.

      Comments on revisions:

      (1) The authors' comment on the partial overlap of HP1 and HIF1a IF signals (HIF1a is highly unstable ... broader regions of hypoxia) is reasonable and would help readers interpret the data if included in the text describing Fig. 1.

      (2) The conclusion regarding WT1+ cells in Fig. 2a and b remains unclear. Both panels display larger and smaller magenta cells, and when all are taken into account, the overall number does not appear substantially different. Additional clarification is needed on how the quantification was performed.

      (3) Regarding Figure 6-figure supplement 1c, it seems difficult to conclude the endothelial identity of WT1+ cells based on EMCN staining, as the markers do not overlap. The authors note that WT1 is upregulated in endothelial cells, but this has been reported in the context of injury, which differs from the context of the present study involving Molidustat.

    4. Reviewer #3 (Public review):

      Summary:

      The author's research here was to understand the role of hypoxia and hypoxia-induced transcription factors Hif-1a in the epicardium. The authors noted that hypoxia was prevalent in the embryonic heart and this persisted into neonatal stages until post natal day 7 (P7). Hypoxic regions in the heart were noted in the outer layer of the heart and expression of Hif-1a coincided with the epicardial gene WT1. It has been documented that at P7, the mouse heart cannot regenerate after myocardial infarction and the authors speculated that the change in epicardial hypoxic conditions could play a role in regeneration. The authors then used genetic and pharmacological tools to increase the activity of Hif genes in the heart and noted that there was a significant improvement in cardiac function when Hif-1a was active in the epicardium. The authors speculated that the presence of Hif-1a improved cell survival.

      Strengths:

      A focus on hypoxia and its effects on the epicardium in development and after myocardial infraction. This study outlines a potential to extend the regenerative time window in neonatal mammalian hearts.

      Weaknesses:

      While the observations of improved cardiac function is clear, the exact mechanism of how increased Hif-1a activity causes these effects is not completely revealed. The authors mention improved myocardium survival, but do not include studies to demonstrate this.

      There is an indication that fibrosis is decreased in hearts where Hif activity is prolonged, but there are no studies to link hypoxia and fibrosis.

      Comments on revisions:

      In the manuscript revision, the authors address my comments. They outline differences between genetic disruption of Phd2 and chemical inactivation could be due to dosing and drug half-life of Molidustat. The other comments are addressed by explaining that they have analyzed enough heart sections and hearts to come to their conclusions. The authors also state they cannot generate more numbers for this study, therefore I accept their conclusions as stated.

    5. Author response:

      The following is the authors’ response to the original reviews

      eLife Assessment

      This valuable study investigates the role of HIF1a signalling in epicardial activation and neonatal heart regeneration in mice. Through a combination of genetic and pharmacological approaches, the authors show that stabilization of HIF1a enhances epicardial activation and extends the regenerative capacity of the heart beyond the typical neonatal window following myocardial infarction (MI). However, several aspects of the study remain incomplete and would benefit from further clarification and additional experimental support to solidify the conclusions.

      We reveal herein prolonged epicardial activation following myocardial infarction (MI) beyond post-natal days 1-7 (P1-P7) by genetic or pharmacological stabilisation of HIF-signalling. This extends the so-called “regenerative window” during an adult-like response to injury, leading to enhanced survived myocardium and functional improvement of the heart, even against a backdrop of persistent, albeit reduced, fibrosis. The epicardium is known to enhance cardiomyocyte proliferation and myocardial growth during heart development via trophic growth factor (for example, IGF-1, FGF, VEGF, TGFβ and BMP) signalling (reviewed in PMID:29592950) and epicardium-derived cell-conditioned medium reduces infarct size and improves heart function (PMID: 21505261). Further experiments, outside of the scope of the current study, are required to determine whether activated neonatal epicardium elicits similar paracrine support to sustain the myocardium and heart function after injury beyond P7 into adulthood.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The manuscript by Gamen et al. analyzed the functional role of HIF signaling in the epicardium, providing evidence that stabilization of the hypoxia signaling pathway might contribute to neonatal heart regeneration. By generating different conditionally mouse mutants and performing pharmacological interventions, the authors demonstrate that stabilizing HIF signaling enhances cardiac regeneration after MI in P7 neonatal hearts.

      Strengths:

      The study presents convincing genetic and pharmacological approaches to the role of hypoxia signaling in enhancing the regenerative potential of the epicardium.

      Weaknesses:

      The major weakness is the lack of convincing evidence demonstrating the role of hypoxia signaling in EMT modulation in epicardial cells. Additionally, novel experimental approaches should be performed to allow for the translation of these findings to the clinical arena.

      We respectfully disagree that we have not convincingly demonstrated a role for HIF-signalling in promoting epicardial EMT. We adopt epicardial explant assays utilising a well characterised ex vivo protocol previously described for studying EMT in embryonic, neonatal and adult epicardium (PMID: 27023710, PMID: 12297106; PMID: 17108969, PMID: 19235142). These assays demonstrate in WT1<sup>CreERT2</sup>;Phd2<sup>fl/fl</sup> explants enhanced cobblestone to spindle-like change in cell morphology, increased cell migration, appearance of stress fibres and an up-regulation of the mesenchymal marker alpha-smooth muscle actin (αSMA); all parameters associated with EMT. In addition, our in vivo analyses of Wt1<sup>CreERT2</sup>;Phd2<sup>fl/fl</sup> hearts, in response to neonatal injury, reveal elevated numbers of WT1+ epicardial cells within the sub-epicardial region and underlying myocardium as is associated with active EMT and subsequent migration from the epicardium.

      Reviewer #2 (Public review):

      Summary:

      In this study, Gamen et al. investigated the roles of hypoxia and HIF1a signaling in regulating epicardial function during cardiac development and neonatal heart regeneration. They found that WT1<sup>+</sup> epicardial cells become hypoxic and begin expressing HIF1a from mid-gestation onward. During development, epicardial HIF1a signaling regulates WT1 expression and promotes coronary vasculature formation. In the postnatal heart, genetic and pharmacological upregulation of HIF1a sustained epicardial activation and improved regenerative outcomes.

      Strengths:

      HIF1a signaling was manipulated in an epicardium-specific manner using appropriate genetic tools.

      Weaknesses:

      There appears to be a discrepancy between some of the conclusions and the provided histological data. Additionally, the study does not offer mechanistic insight into the functional recovery observed.

      We respectfully disagree with the comment that our histological data does not support our conclusions and expand on this in the response to specific reviewer comments. We agree that further mechanistic experiments outside of the scope of the current study are required to identify precisely how activated neonatal epicardium results in increased healthy myocardium after injury beyond post-natal day 7 (P7).

      Reviewer #3 (Public review):

      Summary:

      The authors' research here was to understand the role of hypoxia and hypoxia-induced transcription factor Hif-1a in the epicardium. The authors noted that hypoxia was prevalent in the embryonic heart, and this persisted into neonatal stages until postnatal day 7 (P7). Hypoxic regions in the heart were noted in the outer layer of the heart, and expression of Hif-1a coincided with the epicardial gene WT1. It has been documented that at P7, the mouse heart cannot regenerate after myocardial infarction, and the authors speculated that the change in epicardial hypoxic conditions could play a role in regeneration. The authors then used genetic and pharmacological tools to increase the activity of Hif genes in the heart and noted that there was a significant improvement in cardiac function when Hif-1a was active in the epicardium. The authors speculated that the presence of Hif-1a improved cell survival.

      Strengths:

      A focus on hypoxia and its effects on the epicardium in development and after myocardial infarction. This study outlines the potential to extend the regenerative time window in neonatal mammalian hearts.

      We thank the reviewer for this positive endorsement and recognition of the importance of mechanistic insight into how to extend the window of neonatal heart regeneration.

      Weaknesses:

      While the observations of improved cardiac function are clear, the exact mechanism of how increased Hif-1a activity causes these effects is not completely revealed. The authors mention improved myocardium survival, but do not include studies to demonstrate this.

      We report an increase in healthy myocardium arising from prolonged activation of the epicardium during the neonatal window and following injury at post-natal day 7 (P7). We speculate this recapitulates the role of the epicardium during heart development which is known to be a source of trophic growth factors that can enhance myocardial growth. Further experiments are required, out-of-scope of this study, to define a mechanistic link between HIF-signalling, epicardial activation and myocardial survival in the setting of prolonged neonatal heart regeneration.

      There is an indication that fibrosis is decreased in hearts where Hif activity is prolonged, but there are no studies to link hypoxia and fibrosis.

      We believe the decreased fibrosis is a natural consequence of the increase in survived myocardium arising from the activated epicardium. There is strong precedent here following injury at post-natal day 1 (P1) in which fibrosis is evident early-on but is resolved over time with growth of the myocardium in the regenerating heart (PMID: 23248315).

      Recommendations for the authors:

      Reviewing Editor Comments:

      (1) Address issues related to image quality, colocalization, sample labeling, appropriate controls, and quantification - particularly in Figures 1, 2, 6, and Supplementary Figure 9. Increase sample size as noted by reviewers.

      The issues of co-localisation and sample labelling have been addressed under response to reviewers. We are unable to increase sample numbers but have clarified the number of regions per section and numbers of sections per heart analysed where appropriate.

      (2) Clarify the effects of epicardial HIF1a activation on neovascularization.

      We have removed reference in the abstract to an effect on neovascularisation.

      (3) Extend assessments of epicardial hypoxia and HIF1a expression to earlier embryonic stages, when epicardial EMT is more active.

      Our earliest timepoint of E12.5 marks the onset of epicardial EMT and E13.5 is the stage with the most significant mobilisation of epicardium-derived cells (EPDCs) into the sub-epicardial region and underlying myocardium (PMID: 32359445). In the same study, E11.5 lineage tracing of epicardial cells is restricted to outer layer of the heart; thus, our timepoints are representative in capturing both the onset and progression of in vivo EMT.

      (4) Strengthen EMT assays and mechanistic modeling. Provide evidence from physiologically relevant models, as current 2D culture assays do not adequately support conclusions about EMT. Include additional EMT markers and quantification where appropriate.

      We respectfully disagree that epicardial explants are not a valid assay for assessing EMT. As noted under responses to reviewers, such primary explants have been widely described elsewhere (PMID: 27023710, PMID: 12297106; PMID: 17108969, PMID: 19235142) and enable documentation of multiple parameters that are associated with active EMT, including an assessment of the extent of cell migration, cobblestone (epithelial) to spindle-like (mesenchymal) cell morphologies, stress fibre formation and expression of alpha-smooth muscle actin as a mesenchymal marker. We support our findings in explants by revealing reduced WT1+ epicardium-derived cells (EPDCs) in the sub-epicardial region and underlying myocardium of WT1<sup>CreERT2/+</sup>;Hif1a<sup>fl/fl</sup> embryonic hearts (data in Figure 2) indicative of impaired epicardial EMT and migration of EPDCs and in vivo following neonatal MI with pharmacological inhibition of PHD2, where we observe the reciprocal phenotype of increased numbers of epicardium-derived cells emerging from the outer epicardial layer (data in Figure 6).

      (5) Strengthen mechanistic insights into the role of epicardial cells in the functional recovery observed in MI hearts.

      We agree that further experiments are required, out-of-scope of this study, to define a mechanistic link between HIF-signalling, epicardial activation and myocardial survival in the setting of prolonged neonatal heart regeneration.

      Reviewer #1 (Recommendations for the authors):

      The manuscript by Gamen et al. analyzed the functional role of HIF signaling in the epicardium, providing evidence that stabilization of the hypoxia signaling pathway might contribute to neonatal heart regeneration. By generating different conditionally mouse mutants and performing pharmacological interventions, the authors demonstrate that stabilizing HIF signaling enhances cardiac regeneration after MI in P7 neonatal hearts. The study is potentially interesting, but it presents several major caveats.

      (1) One of the critical points reported in the early stages of this study is the early co-localization of Wt1, the hypoxic report (HP1), and HIF signaling pathways master regulators (i.e., HIF1a and HIF1b) during embryonic development. Figure 1 is meant to report such findings. However, unfortunately, I hardly see any co-localization at all in the Wt1+ epicardial cells for HP1, with some colocalization is seen for HIF1 and 2 alpha, although none of these data are quantified. Thus, it is hard to believe such co-localization.

      We respectfully disagree with this comment. We highlight cells in Figure 1 that are co-stained for WT1+ and HP1. In addition, we identify HIF1-α and HIF2- α positive cells which either reside within the epicardium, as the outer cell layer, or within the underlying sub-epicardial region, respectfully.

      (2) The authors claimed that they have analyzed the expression of the hypoxic report, as well as Wt1 and the HIF signaling pathways master regulators (i.e., HIF1a and HIF1b) in the AV groove, as compared to the apex, in embryonic heart ranging from E12.5 to E18.5 (Figure 1). Unfortunately, all images provided that are tagged as AV groove are rather misleading. They do not represent the AV groove but part of the right ventricular free wall. If the authors want to refer to the AV groove, AV cushions should be visible underneath.

      We have removed specific reference to the AV groove and refer to the highlighted regions as the “Base” of the heart.

      (3) The authors analyzed the hypoxic condition of the developing heart from E12.5 to E18.5. However, it remains unclear why the authors only explored the hypoxic conditions from E12.5 onwards, since epicardial EMT mainly occurs earlier than this time point, i.e., E10.5 onwards. Therefore, it would be needed to explore it already at this earlier time point.

      We respectfully disagree with the reviewer and refer to the comment above regarding the fact that E12.5 marks the onset of epicardial EMT and E13.5 is the stage with the most significant mobilisation of epicardium-derived cells (EPDCs) into the sub-epicardial region and underlying myocardium (PMID: 32359445).

      (4) The authors reported a conditional mouse model of HIF1alpha deletion by using the Wt1CreERT2 driver. Curiously, Wt1 is dependent on hypoxia signaling (i.e., HIF1a). Therefore, it is unclear whether there is a negative feedback loop between the deletion of Hif1alpha and the activation of the Cre driver might have functional consequences. Convincing evidence should be provided that such crosstalk does not interfere with Hif1alpha inactivation, and therefore, appropriate controls should be run in parallel.

      We discount a negative feedback loop in this instance based on the fact we have utilised heterozygous mice for the WT1<sup>CreERT2/+</sup> line and observe a consistent and reproducible phenotype for the developing hearts on a Wt1<sup>CreERT2/+</sup>;Hif1a<sup>fl/fl</sup> background and following injury in Wt1<sup>CreERT2/+</sup>;Phd2<sup>fl/fl</sup> mice. Collectively this indicates that the WT1-CreERT2 driver is active in the context of diminishing HIF-1α and Phd2, respectively. In addition, have carried out parallel experiments using epicardial explants derived from R26R-CreERT2;Phd2<sup>fl/fl</sup> (Figure 3) to circumvent any potential confounding issues; the results of which are consistent with increased epicardial EMT in support of our overall hypothesis.

      (5) On Figure 2a-f the authors reported that epicardial cells are diminished in Wt1CreERT2Hif1alpha mice as compared to controls. I am very sorry, but I do not see any difference. Furthermore, it is unclear to me how the authors quantified such differences, i.e., what marker signal did they use and how it was performed (Figure 2c and d)?

      We respectfully disagree with the reviewer and draw attention to the single channel panels of WT1+ staining in Figure 2, which show clear differences between numbers of epicardial cells in the mutant mice compared to controls (comparing magenta cells in panels a) versus b). Quantification was carried out for numbers of WT1+ cells residing within the PDPN-positive epicardium (and underlying PDPN-negative myocardium) across multiple images from multiple sections and multiple hearts.

      (6) On Figure 2g, the authors reported differences in total vessel length. Are they referring to impaired microvasculature development? Or is this analysis also including major coronary vessels? What about the major coronary vessels and trees, is there any affection?

      This analysis refers to the microvasculature and not the major coronary arteries or coronary trees.

      (7) The authors reported that there might be some differences in EMT markers, but unfortunately, all of them are analyzed on 2D cultures, where no substrate for EMT is present, i.e., an underlying ECM bed. Thus, the authors cannot claim that EMT is altered. Additional experiments using either collagen substrate and/or Matrigel are required to fully demonstrate that EMT is impaired. Furthermore, quantitative analyses of such differences should be provided.

      The 2D cultures are epicardial explants from mutant versus wild type hearts and represent a widely adopted previously published ex-vivo assay for investigating epicardial EMT across embryonic to adult stages (PMID: 27023710, PMID: 12297106; PMID: 17108969, PMID: 19235142); including an assessment of the extent of migration and cobblestone (epithelial) to spindle-like (mesenchymal) cell morphologies, stress fibre formation and expression of alpha-smooth muscle actin as a mesenchymal marker. We do not understand the comment regarding an “underlying ECM bed” as the cells exhibit EMT routinely on tissue culture plastic and will deposit their own ECM during the culture time course and in response to EMT/cell migration. In terms of quantification this was carried out for scratch assay experiments, as a proxy for EMT and emergent mesenchymal cell migration, as presented in Figure 3i, j with significant enhanced scratch closure and cell migration following Molidustat treatment.

      (8) The description of data provided on Supplementary Figure 5 is spurious and should be removed. A note in the discussion might be sufficient.

      We respectfully disagree. The ChIP-seq data, in what is now Figure 2- figure supplement 3, highlights a HIF-1 α binding site within the Wt1 locus suggesting putative upstream regulation of WT1 by HIF-1α. Thus this provides a potential explanation as to how HIF-1α may activate the epicardium through up-regulation of Wt1/WT1.

      (9) On Figure 3, the authors further illustrate the change of EMT markers using ex vivo cardiac explants. They reported increased expression of Snai2 that, although statistically significant, is most likely of no biological relevance (increase of only 20% at transcript level). What about Snai1, Prrx1, and other EMT promoters? Are they also induced? As previously stated, these 2D cultures do not provide supporting evidence that EMT is occurring, thus 3D gel assays should be performed in which Z-axis analyses will provide evidence on the different migratory behaviour of those cells.

      We respectfully suggest that a 20% change in snai2 expression is biologically meaningful with respect to EMT. This in-turn is supported by associated cell migration, reduced ZO-1 expression, increased stress fibres and increased alpha-SMA as a mesenchymal marker; all properties associated with active EMT. Other suggested markers have not been validated as formally required for EMT, for example Snai1 (PMID: 23097346). The migratory capacity of targeted versus epicardial cells was assessed by combined explant and scratch assay experiments.

      (10) The description of single-cell analyses is very incomplete. Which mice were used for these analyses, wildtype control, or hypoxic mice? Please provide a clearer description of the samples used. Additionally, the entire rationale of these analyses is dubious. Doing single-cell analyses to analyze a couple or three markers in a very small cell population is rather ridiculous. qPCR might be far more appropriate and convincing, or a bulk RNAseq analysis of isolated epicardial cells.

      The single-cell analyses represent an unbiased assessment of different pathways in epicardial cells (identified bioinformatically) between intact P1 and P7 stages in wild type (control) hearts, with a focus on hypoxia-related gene expression and HIF-dependent pathways. It was not designed to analyse a small number of genes, rather global differences in the hypoxic states between P1 and P7 hearts. Selected genes (Vegfa, Pdk3, Egln 1 (Phd2)) were analysed to highlight the key differences in hypoxic signalling across the regenerative window. The fact the hearts were uninjured/intact is clarified in the text and legends for Figure 4 and now Figure 4-figure supplement 1.

      (11) The analyses provided in Figure 5 are very interesting and their findings are very relevant. However, I would think that the complementary experimental approach should also be done, i.e, MI followed by activation with tamoxifen, since that situation would be more realistic in the clinical setting.

      Tamoxifen causes respiratory failure in neonates with MI, so the two cannot be combined at the same time or soon after surgery. Moreover, tamoxifen takes significant time to take effect on targeted gene down-regulation which may negate sufficient activation of the epicardium following injury.

      The experiments in Figure 5 were designed to demonstrate that prolonged heart regeneration could be elicited in a cell-specific (epicardial-specific) manner via a genetic approach. The pharmacological experiments in Figure 6 are complementary in this regard by demonstrating equivalent effects with drug (Molidustat) delivery to reduce PHD2 and stabilise HIF post-MI.

      (12) In Figure 6, expression of Wt1 is highly prominent in P7 controls, mainly restricted to the epicardial lining while in the experimental setting, such Wt1 expression is broadly distributed on the subepicardial space, nicely demonstrating epicardial activation. However, it is very surprising to see such Wt1 expression in controls, something that is not expected, as compared to the data reported in Figure 4g. Could the authors please reconcile these findings?

      Figure 6 represents the injury setting and Figure 4g the intact setting (as clarified above, in the text and revised figure legends). Hence in the latter WT1 expression is significantly reduced in the P7 heart, as anticipated. With injury at P7 we anticipate activation of WT1 in control hearts, albeit restricted to the epicardial layer (as occurs in adult hearts, PMID: 21505261). In contrast, following Molidustat-treatment of P7 hearts post-MI we observe extensive epicardial expansion into the sub-epicardial region and EPDC migration into the underlying myocardium (Figure 6b).

      Reviewer #2 (Recommendations for the authors):

      The role of hypoxia and HIF1a signaling in epicardial activation is an important topic, and the genetic approaches employed in this study are appropriate. However, several aspects of the study remain unclear and would benefit from further clarification or explanation by the authors:

      (1) The authors detected hypoxic regions using an anti-pimonidazole fluorescence-conjugated monoclonal antibody (HP1). The data would become more compelling if negative and positive controls were provided.

      We believe the HP1 staining is compelling in the images shown and is consistent with hypoxic regions of the developing heart. We reveal HP1 staining at cellular resolution with neighbouring cells positive and negative for the HP1 signal in the apex of the heart and within the epicardium and sub-epicardial regions at E12.5 (Figure 1a) and diminished/altered hypoxic/HP1 regional signal through subsequent developmental stages at E14.5-18.5 (Figure 1a-d).

      (2) Many HIF1a-positive cells in the AV groove region do not appear to overlap with HP1 staining (Figure 1a). Providing a low-magnification image of HIF1α expression would be helpful to better assess the extent of overlap with HP1 staining

      HIF-1 is highly unstable and hence detection of HIF-1+ cells will likely only sample of cells compared to HP1 which is a surrogate for broader regions of hypoxia.

      (3) Although the authors conclude that epicardial HIF1a deletion results in a significant reduction of WT1⁺ cells in both the epicardium and myocardium (Figure 2a-d), the provided images are not sufficiently clear to fully support this interpretation. Providing additional evidence to support this conclusion would be helpful.

      We respectfully disagree with the reviewer and draw attention to the single channel panels of WT1+ staining which show clear differences between numbers of epicardial cells in the mutant mice compared to controls (Figure 2a versus 2b; magenta WT1+ staining).

      (4) Similar to the point raised above, the authors' conclusion regarding the increased expression of WT1 following Molidustat treatment does not appear to be fully supported by the provided images (Figure 6b-f). Immunofluorescence staining for WT1 does not clearly demonstrate epicardial expression in the remote zone of either the control or Molidustat-treated hearts. In addition, while an increase of WT1<sup>+</sup> cells is observed in the infarct zone of the Molidustat-treated heart, it is somewhat unexpected that such expansion is not evident in the corresponding region of the control heart, given that epicardial cells typically expand near the infarct area. Clarification on these points would be helpful.

      Figure 6b reveals WT1 expression in controls (upper panel set) that is reactivated proximal to the infarct region, given WT1 is not expressed in adult epicardium but restricted to the epicardial layer (as occurs in injured adult mouse hearts PMID: 21505261). This contrasts with what is observed in the Molidustat-treated P7 hearts post-MI, where we observe epicardial expansion and migration of WT1+ cells into the underlying myocardium (Figure 6b, lower panel set, infarct zone).

      (5) The authors conclude that WT1<sup>+</sup> cells in the myocardial tissue exhibit endothelial identity based on the colocalization of WT1 and EMCN signals (Supplementary Figure 9c). However, this interpretation is difficult to assess, as WT1 is a nuclear marker and EMCN is a membrane protein, which makes precise colocalization challenging to confirm with confidence. Additional supporting evidence may be necessary to substantiate this conclusion.

      WT1 is known to be up regulated in endothelial cells in response to injury as shown previously in several studies (for example, PMID: 25681586). Here we show clear co-localisation of nuclear WT1 and cytoplasmic Endomucin (EMCN) in what is now Figure 6- figure supplement 1c and would encourage the reviewer and readers to magnify the image by zooming-in on the relevant co-stained panel.

      (6) The authors conclude that activation of epicardial HIF1a signaling has no effect on neovascularization in postnatal MI hearts (Figure 5c). However, the abstract states: "Finally, a combination of genetic and pharmacological stabilisation of HIF ... increased vascularisation, augmented infarct resolution and preserved function beyond the 7-day regenerative window" (Lines 38-41). Clarification regarding this apparent discrepancy would be appreciated.

      The abstract has been altered to remove the statement of increased vascularisation.

      (7) The study appears somewhat incomplete, as it lacks mechanistic insight into the functional recovery observed following epicardial Phd2 deletion and Molidustat treatment in postnatal MI hearts. Although the authors suggest a potential paracrine role of the epicardium in protecting cardiomyocytes from apoptosis, this hypothesis has not been experimentally addressed. Incorporating such analysis would help to reinforce the study's conclusions.

      Further experiments are required, which are out-of-scope of this study, to define a mechanistic link between the genetic or pharmacological stabilisation of HIF-signalling, epicardial activation and myocardial survival in the setting of prolonged neonatal heart regeneration.

      Other points:

      (1) Providing single-channel images for Figures 1a-d and 6g would be helpful for clarity and interpretation.

      We believe the combined channel views of co-staining for two markers on a background of DAPI staining to pin-point cell nuclei, are informative and support our conclusions.

      (2) Have the authors considered using AngioTool to quantify the number of vessels in Figure 5b-c?

      AngioToolTM was used to quantify the vessels, as we have used previously (PMID: 33462113) and this is now added to the methods and legend of Figure 2.

      Reviewer #3 (Recommendations for the authors):

      There are several areas where the manuscript can be improved, such that its conclusions can be solidified.

      (1) The authors highlight a point where blocking Phd2 can enhance survival of cardiac tissue, but did not report on survival markers. They surmised that apoptosis could be decreased in Phd2 mutant or Molidustat treatment but did not show this. The authors should determine if apoptosis is decreased in the myocardium and epicardium.

      We show evidence of increased levels of healthy myocardium in the genetic and pharmacological models of stabilised HIF-signalling. We exclude increased cardiac hypertrophy or increased cardiomyocyte proliferation as causative, so suggest as a reasonable alternative enhanced survival, albeit this need not necessarily be via an apoptotic pathway given the incidence of necrotic cell death during MI. We are unable to generate new surgeries and mutant/treated heart samples to analyse for apoptotic markers at this stage.

      (2) There appears to be no difference in cardiomyocyte proliferation in Molidustat-treated animals, but the experiment was only performed on 2 to 3 animals. This is too small a sample size to conclude from these results. The authors should increase the sample size to make this assertion.

      We respectfully disagree that we are unable to conclude no effect on cardiomyocyte proliferation. We analysed multiple heart regions per section, for EdU+/cTnT+ colocalised signals across several sections per heart, set against a consistency of effect on other parameters in hearts treated with Molidustat. We are unable to generate more P7 heart surgeries +/- Molidustat and +/- EdU at this stage.

      (3) It is curious as to how, after myocardial infarction, the fibrotic scar tissue is decreased in the Phd2 deletion but not as profound in Molidustat-treated mice at d21. Can the authors speculate why the difference exists and how this decrease arises? For example, are there decreased pro-inflammatory signals in Phd2 deleted mice? Is there decreased collagen deposition and ECM gene expression? Do macrophage recruitment into the infarct zone differ between mutant/treated vs WT?

      The representative images in Figure 6k reveal a trend towards reduced fibrosis with Molidistat treatment (Figure 6l), but across all hearts analysed this was not as significant as observed in the epicardial-specific deletion injured hearts (Figure 5g, h). This may be due to the relatively short half-life of Molidustat (approximately 4-10 hours, PMID: 32248614), the dosing regimen for the drug and/or the fact that it was not specifically delivered/targeted to the epicardium.

      (4) The magnified images in Figure 1 do not match the boxes in the whole heart images. It is unclear what the white boxes signify.

      The white boxes have been removed from Figure 1. The magnified image panels are from serial heart sections and this is now clarified in the Figure 1 legend.

    1. eLife Assessment

      This fundamental work substantially advances our understanding of how the glycocalyx of cells provide a non-specific barrier for the interaction of viruses with cell-surface receptors. Using both in vitro experiments and in vivo manipulations they provide compelling evidence for the properties of the glycocalyx to serve as an energy barrier as a main attribute of its mode of action. The work will be of broad interest to virologists and the cell biology community that studies host-pathogen interactions.

    2. Joint Public Review:

      This manuscript tests the notion that bulky membrane glycoproteins suppress viral infection through non-specific interactions. Using a suite of biochemical, biophysical, and computational methods in multiple contexts (ex vivo, in vitro, and in silico), the authors collect compelling evidence supporting the notion that (1) a wide range of surface glycoproteins erect an energy barrier for the virus to form stable adhesive interface needed for fusion and uptake and (2) the total amount of glycan, independent of their molecular identity, additively enhanced the suppression.

      As a functional assay the authors focus on viral infection starting from the assumption that a physical boundary modulated by overexpressing a protein-of-interest could prevent viral entry and subsequent infection. Here they find that glycan content (measured using the PNA lectin) of the overexpressed protein and total molecular weight, that includes amino acid weight and the glycan weight, is negatively correlated with viral infection. They continue to demonstrate that it is in effect the total glycan content, using a variety of lectin labelling, that is responsible for reduced infection in cells. Because the authors do not find a loss in virus binding this allows them to hypothesize that the glycan content presents a barrier for the stable membrane-membrane contact between virus and cell. They subsequently set out to determine the effective radius of the proteins at the membrane and demonstrate that on a supported lipid bilayer the glycosylated proteins do not transition from the mushroom to the brush regime at the densities used. Finally, using Super Resolution microscopy they find that above an effective radius of 5 nm proteins are excluded from the virus-cell interface.

      The experimental design does not present major concerns and the results provide insight on a biophysical mechanism according to which, repulsion forces between branched glycan chains of highly glycosylated proteins exert a kinetic energy barrier that limits the formation of a membrane/viral interface required for infection.

      In their revised manuscript and rebuttal, the authors address several general and specific concerns that were raised about their first submission. The revised manuscript now makes the strength of the evidence supporting their claims, compelling.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Public Review

      GENERAL QUESTIONS:

      (1) For many enveloped viruses, the attachment factors - paradoxically - are also surface glycoproteins, often complexed with a distinct fusion protein. The authors note here that the glycoportiens do not inhibit the initial binding, but only limit the stability of the adhesive interface needed for subsequent membrane fusion and viral uptake. How these antagonistic tendencies might play out should be discussed.

      When the surface density of receptor molecules for a virus with glycans increases, the density of free glycans not bound to the virus increases along with the amount of virus adsorbed. However, if the total amount of glycans is considered to be a function of the receptor density, the reaction may become more complicated. This complication may also be affected by the prolonged infection. If the receptor density on the cell surface is high, the infection inhibitory effect of glycans may not be obtained in a system in which a high concentration of virus is supplied from the outside world for a long time. This is because once viruses have entered the cell, they accumulate inside the cell, and viral infection is affected by the total accumulated amount, which is the integration of the number of viruses that have entered over time. This distinction indicates that the virus entry reaction and the total amount of infection in the cell must be considered separately. This is an important point, but it was not clearly mentioned in the original manuscript.

      Our experiments were conducted under conditions that clearly allowed us to detect the virusinhibiting function of glycans without being affected by the above points. In order to clarify these points, we will revise this article as follows, referring to an experiment that is somewhat related to this discussion (the Adenovirus infection experiment into HEK293T cells shown in Figure S1F)..

      (Page-3, Introduction)

      While there are known examples of glycans that function as viral receptors (Thompson et al., 2019), these results demonstrate that a variety of glycoproteins negatively regulate viral infection in a wide range of systems. All of these results suggest that bulky membrane glycoproteins nonspecifically inhibit viral infection.

      (Page 20, Discussion)

      When the virus receptor is a glycoprotein or glycan itself, the inhibition of virus infection by glycans becomes more complex because the total amount of glycans is also a function of the receptor density. It is also important to note that the total amount of infection into a cell is the time integral of virus entry. Even if the probability of virus entry is significantly reduced by glycans, the cumulative number of virus entries may increase if high concentrations of virus continue to be supplied from outside the cell for a long period of time. In the case of Adenovirus, which continues to amplify in HEK293T cells after infection, we showed that MUC1 on the cell surface has an inhibitory effect on long-term cumulative infection (Supplementary Figure 1F). However, such an accumulation effect may be caseby-case depending on the virus cell system, and may be more pronounced when the cell surface density of virus receptor molecules is high. As a result, if the virus receptor molecule is a glycan or glycoprotein and infection continues for a long period of time, the infection inhibition effect may not be observed despite an apparent increase in the total amount of glycans in the cell. In any case, our results clarified the factor of virus entry inhibition dependent on the total amount of glycans because appropriate conditions were set.

      (2) Unlike polymers tethered to solid surface undergoing mushroom-to-brush transition in densitydependent manner, the glycoproteins at the cell surface are of course mobile (presumably in a density-dependent manner). They can thus redistribute in spatial patterns, which serve to minimize the free energy. I suggest the authors explicitly address how these considerations influence the in vitro reconstitution assays seeking to assess the glycosylation-dependent protein packing.

      We performed additional experiments using lipid bilayers that had lost fluidity, and found that there is no significant difference in protein binding between fluid and nonfluid bilayers. The redistribution of molecules due to molecular fluidity may play some roles but not in our experimental systems. It suggests that glycoproteins can generate intermolecular repulsion even in fluid conditions such as cell membranes, just as they do on the solid phase. This experiment was also very useful because it allowed us to compare our results in the fluid bilayer with solid-state measurements of saturation molecular density and the brush transition. This comparison gave us confidence that in the reconstituted membrane system, even at saturation density, the membrane proteins are not as stretched as they are in the condensed brush state. We have therefore added a new paragraph and a new figure (Supplementary Fig. 5B) to discuss this issue, as follows:

      The molecular structural state of these proteins needs to be further discussed to estimate the contribution of f<sub>el</sub>, which represents resistance to molecular elongation. Our results suggest that these densely packed nonglycosylated molecules are no longer in a free mushroom state. However, their saturation density was several times lower than previously reported brush transition densities, such as 65000 µm<sup>-2</sup> for 17 kDa polyacrylamide (R<sub>F</sub> ~ 15 nm) on a solid surface (Wu et al., 2002). To compare our data on fluid bilayers with previously reported data on solid surfaces, we performed additional experiments with lipid bilayers that lost fluidity. No significant changes in protein binding between fluid and nonfluid bilayers were observed for both b-MUC1 and g-MUC1 molecules (Supplementary Figure 5B). This result suggests that membrane fluidity does not affect the average intermolecular distance or other relevant parameters that control molecular binding in the reconstituted system. Based on these, we speculate that the saturated protein density observed in our experiments is lower than or at most comparable to the actual brush transition density. Thus, although these crowded proteins may be restricted from free random motion, they are not significantly extended as in the condensed brush state, in which the contribution of resistance to molecular extension f<sub>el</sub> is expected to be small relative to the overall free energy of the system.

      (3) The discussion of the role of excluded volume in steric repulsion between glycoprotein needs clarification. As presented, it's unclear what the role of "excluded volume" effects is in driving steric repulsion? Do the authors imply depletion forces? Or the volume unavailable due to stochastic configurations of gaussian chains? How does the formalism apply to branched membrane glycoproteins is not immediately obvious.

      Regarding the excluded volume due to steric repulsion between glycoproteins, we considered the volume that cannot be used by glycans as Gaussian chains branching from the main chain. We would like to expand on this point by adding several papers that make similar arguments. I'm glad you brought this up because we hadn't considered depletion forces - the excluded volume between glycoproteins should generate a depletion force, but in this case we believe this force will not have a significant effect on viruses that are larger than the glycoproteins. We also attempted to clarify the discussion in this section by focusing on intermolecular repulsion, and restructured paragraphs, which are also related to General Question 2 and Specific Question 2. The relevant part has been revised as follows. (page 15~page16):

      To compare the packing of proteins with different molecular weights and R<sub>F</sub>, These were smaller than the coverage of molecules at hexagonal close packing that is ~90.7%. In contrast, the coverage of b-CD43 and b-MUC1 at saturated binding was estimated to be greater than 100% under this normalization standard, indicating that the mean projected sizes of these molecules in surface direction were smaller than those expected from their R<sub>F</sub> Thus, it is clear that glycosylation reduces the saturation density of membrane proteins, regardless of molecular size.

      Highly glycosylated proteins resisted densification, indicating that some intermolecular repulsion is occurring. In the framework of polymer brush theory, the intermolecular repulsion of densely packed highly glycosylated proteins is due to an increase in either f<sub>el</sub>, f<sub>int</sub> (d<R<sub>F</sub>), or both (Hansen et al., 2003; Wu et al., 2002). The term of intermolecular interaction, f<sub>int</sub>, is regulated by intermolecular steric repulsion, which occurs when neighboring molecules cannot approach the excluded volume created by the stochastic configuration of the polymer chain (Attili et al., 2012; Faivre et al., 2018; Kreussling and Ullman, 1954; Kuo et al., 2018; Paturej et al., 2016). The magnitude of this steric repulsion depends largely on R<sub>F</sub> in dilute solutions, but the molecular structure may also affect it when molecules are densified on a surface. In other words, the glycans protruding between molecules can cause steric inhibition between neighboring proteins (Figure 5D). Such intermolecular repulsion due to branched side chains occurs only when the molecules are in close proximity and sterically interact on a twodimensional surface, but not in dilute solution, and does not occur in unbranched polymers such as underglycosylated proteins (Figure 5D). Based on the above, we propose the following model for membrane proteins: Only when the membrane proteins are glycosylated does strong steric repulsion occur between neighboring molecules during the densification process, suppressing densification.

      The molecular structural state of these proteins needs to be further discussed to estimate the contribution of f<sub>el</sub>, which represents resistance to molecular elongation. Our results suggest that these densely packed nonglycosylated molecules are no longer in a free mushroom state. However, their saturation density was several times lower than previously reported brush transition densities, such as 65000 µm<sup>-2</sup> for 17 kDa polyacrylamide (R<sub>F</sub> ~ 15 nm) on a solid surface (Wu et al., 2002). To compare our data on fluid bilayers with previously reported data on solid surfaces, we performed additional experiments with lipid bilayers that lost fluidity. No significant changes in protein binding between fluid and nonfluid bilayers were observed for both b-MUC1 and g-MUC1 molecules (Supplementary Figure 5B). This result suggests that membrane fluidity does not affect the average intermolecular distance or other relevant parameters that control molecular binding in the reconstituted system. Based on these, we speculate that the saturated protein density observed in our experiments is lower than or at most comparable to the actual brush transition density. Thus, although these crowded proteins may be restricted from free random motion, they are not significantly extended as in the condensed brush state, in which the contribution of resistance to molecular extension f<sub>el</sub>, is expected to be small relative to the overall free energy of the system.

      Note that this does not mean that glycoproteins cannot form condensed brush structures: in fact, highly glycosylated molecules (e.g., MUC1) can form brush structures in cells when such proteins are expressed at very high densities. (Shurer et al., 2019). In these cells, ………. Such membrane deformation results in the increase of total surface area to reduce the density of glycoproteins, indicating that there is strong intermolecular repulsion between glycoproteins. In any case, the free energy of the system is determined by the balance between protein binding and insertion into the membrane, protein deformation, and repulsive forces between proteins, which determine the density of proteins depending on the configuration of the system. Thus, although strong intermolecular repulsions were prominently observed in our simplified system, this may not be the case in other systems. ……

      (4) The authors showed that glycoprotein expression inversely correlated with viral infection and link viral entry inhibition to steric hindrance caused by the glycoprotein. Alternative explanations would be that the glycoprotein expression (a) reroutes endocytosed viral particles or (b) lowers cellular endocytic rates and via either mechanism reduce viral infection. The authors should provide evidence that these alternatives are not occurring in their system. They could for example experimentally test whether non-specific endocytosis is still operational at similar levels, measured with fluid-phase markers such as 10kDa dextrans.

      The results of the experiment suggested by the reviewer are shown in the new Supplementary Figure 3B. (This results in generation of a new Supplementary Figure 3, and previous Supplementary Figures 4-5 are now renumbered as Supplementary Figures 5-6). Endocytosis of 10KDa dextran was attenuated by the expression of several large-sized molecules, but was not affected by the expression of many other glycoproteins that have the ability to inhibit infection. These results were clearly different from the results in which virus infection was inhibited more by the amount of glycan than by molecular weight. Therefore, it was found that many glycoproteins inhibit virus infection through processes other than endocytosis. Based on the above, we have added the following to the manuscript: (p9 New paragraph:)

      We also investigated the effect of membrane glycoproteins on membrane trafficking, another process involved in viral infection. Expression of MUC1 with higher number of tandem repeats reduced the dextran transport in the fluid phase, while expression of multiple membrane glycoproteins that have infection inhibitory effects, including truncated MUC1 molecules, showed no effect on fluid phase endocytosis, indicating a molecular weight-dependent effect (Supplementary Figure 3B). The molecular weight-dependent inhibition of endocytosis may be due to factors such as steric inhibition of the approach of dextran molecules or a reduction in the transportable volume within the endosome. In any case, it is clear that many low molecular weight glycoproteins inhibit infection by disturbing processes other than endocytosis. Based on the above, we focus on the effect of glycoproteins on the formation of the interface between the virus and the cell membrane.

      (5) The authors approach their system with the goal of generalizing the cell membrane (the cumulative effect of all cell membrane molecules on viral entry), but what about the inverse? How does the nature of the molecule seeking entry affect the interface? For example, a lipid nanoparticle vs a virus with a short virus-cell distance vs a virus with a large virus-cell distance?

      Thank you for your interesting comment. If the molecular size of the ligand is large, it should affect virus adsorption and molecular exclusion from the interface. In lipid nanoparticle applications, controlling this parameter may contribute to efficiency. In addition, a related discussion is the influence of virus shell molecules that are not bound to the receptor. I will revise the text based on the above.

      Discussion (as a new paragraph after the paragraph added in Q1):

      In this study, we attempted to generalize the surface structure on the cell side, but the surface structure on the virus side may also have an effect. The efficiency of virus adsorption and the efficiency of cell membrane protein exclusion from the interface will change depending on the molecular length of the receptor-ligand, although receptor priming also has an effect. In addition, free ligands of the viral envelope or other coexisting glycoproteins may also have an effect as they are also required for exclusion from the virus-cell interface. In fact, there are reports that expression of CD43 and PSGL-1 on the virus surface reduces virus infection efficiency (Murakami et al., 2020). Such interface structure may be one of the factors that determine the infection efficiency that differs depending on the virus strain. More generally, modification of the surface structure may be effective for designing materials such as lipid nanoparticles that construct the interface with cell.

      SPECIFIC QUESTIONS:

      (1) The proposed mechanism indicates that glycosylation status does not produce an effect in the "trapping" of virus, but in later stages of the formation of the virus/membrane interface due to the high energetic costs of displacing highly glycosylated molecules at the vicinity of the virus/membrane interface. It is suggested to present a correlation between the levels of glycans in the Calu-3 cell monolayers and the number of viral particles bound to cell surface at different pulse times. Results may be quantified following the same method as shown in Figure 2 for the correlation between glycosylation levels and viral infection (in this case the resulting output could be number of viral particles bound as a function of glycan content).

      The results of this experiment are now shown as Supplementary Figure 2F and 2G. We compared the amount of virus bound after incubation for 10 minutes or for 3 hours as in the infection experiment, but no negative correlation was found between the total amount of glycans on the surface of the Calu3 monolayer and the amount of virus bound. Interestingly, there was a sight positive correlation was detected, which may be due to concentrated virus receptor expressions in glycan-enriched cells. This result shows that glycoproteins do not strongly inhibit virus binding. We will amend the text as follows (see also Q6).

      (Page 10)

      Glycans could be one of the biochemical substances ……We found that a large number of SARS-CoV2-PP can still bind to cells even when cells expressed sufficient amounts of the glycoprotein that could account for the majority of glycans within these cells and inhibit viral infection (Figure 3A). Similarly, on the two-dimensional culture surface of Calu-3 cells, no negative correlation was observed between the number of viruses bound and the total amount of glycans on the cell surface (Supplementary Figure 2F-G). The slight positive correlation between bound virus and glycans may be due to higher expression levels of viral receptors in glycan-rich cells. ….

      (2) The use of the purified glycosylated and non-glycosylated ectodomains of MUC1 and CD-43 to establish a relationship between glycosylation and protein density into lipid bilayers on silica beads is an elegant approach. An assessment of the impact of glycosylation in the structural conformation of both proteins, for instance determining the Flory radius of the glycosylated and non-glycosylated ectodomains by the FRET-FLIM approach used in Figure 4 would serve to further support the hypothesis of the article.

      Unfortunately, the proposed experiment did not provide a strong enough FRET signal for analysis. This was due in part to the difficulty in constructing a bead-coated bilayer incorporating PlasMem Bright Red, which established a good FRET pair in cell experiments. We also tried other fluorescent molecules, but were unable to obtain a strong and stable FRET signal. Another reason may be that the curvature of the beads is larger than that of the cells, making it difficult to obtain a sufficient cumulative FRET effect from multiple membrane dyes. We plan to improve the experimental system in the future.

      On the other hand, we also found that in this system, the signal changes were very subtle, making it difficult to detect molecular conformational changes using FRET. After reconsidering general questions (2) and (3), we speculated that the molecular density in the experiment, even at saturation binding, was below or at most equivalent to the brush transition point. In other words, proteins on the bead-coated bilayer may not be significantly extended in the vertical direction. Therefore, the conformational changes of these proteins may not be large enough to be detected by the FRET assay. We updated Figure 3C and Figure 5D (model description) to better reflect the above discussion and introduced the following discussion in the manuscript.

      (page11)

      We introduced the framework of conventional polymer brush theory to study the structure of viruscell interfaces containing proteins……. Numerous experimental measurements of the formation of polymer brushes have also been reported (Overney et al., 1996; Wu et al., 2002; Zhao and Brittain, 2000). In these measurements, the transition to a brush typically occurs at a density higher than that required to pack a surface with hemispherical polymers of diameter R<sub>F</sub>. This is the point at which the energy loss due to repulsive forces between adjacent molecules (f<sub>int</sub>) exceeds the energy required to stretch the polymer perpendicularly into a brush (f<sub>el</sub>).

      (page16)

      The molecular structural state of these proteins needs to be further discussed to estimate the contribution of f<sub>el</sub>, which represents resistance to molecular elongation. Our results suggest that these densely packed nonglycosylated molecules are no longer in a free mushroom state. However, their saturation density was several times lower than previously reported brush transition densities, such as 65000 µm<sup>-2</sup> for 17 kDa polyacrylamide (R<sub>F</sub> ~ 15 nm) on a solid surface (Wu et al., 2002). To compare our data on fluid bilayers with previously reported data on solid surfaces, we performed additional experiments with lipid bilayers that lost fluidity. No significant changes in protein binding between fluid and nonfluid bilayers were observed for both b-MUC1 and g-MUC1 molecules (Supplementary Figure 5B). This result suggests that membrane fluidity does not affect the average intermolecular distance or other relevant parameters that control molecular binding in the reconstituted system. Based on these, we speculate that the saturated protein density observed in our experiments is lower than or at most comparable to the actual brush transition density. Thus, although these crowded proteins may be restricted from free random motion, they are not significantly extended as in the condensed brush state, in which the contribution of resistance to molecular extension f<sub>el</sub> is expected to be small relative to the overall free energy of the system.

      Note that this does not mean that glycoproteins cannot form condensed brush structures: in fact, highly glycosylated molecules (e.g., MUC1) can form brush structures in cells when such proteins are expressed at very high densities. (Shurer et al., 2019). In these cells, ………. Such membrane deformation results in the increase of total surface area to reduce the density of glycoproteins, indicating that there is strong intermolecular repulsion between glycoproteins. In any case, the free energy of the system is determined by the balance between protein binding and insertion into the membrane, protein deformation, and repulsive forces between proteins, which determine the density of proteins depending on the configuration of the system. Thus, although strong intermolecular repulsions were prominently observed in our simplified system, this may not be the case in other systems. ……

      (3) The MUC1 glycoprotein is reported to have a dramatic effect in reducing viral infection shown in Fig 1F. On the contrary, in a different experiment shown in Fig2D and Fig2H MUC1 has almost no effect in reducing viral infection. It is not clear how these two findings can be compatible.

      The immunostaining results show that the density of MUC1 molecules is very low in the experimental system in Figure 2 (Figure 2C), which is supported by the SC-RNASeq data (as shown in Supplementary Figure 2A, MUC1 is not listed as a top molecule). In other words, the MUC1 expression level in this experiment is too low to affect virus infection inhibition. On the other hand, the Pearson correlation function represents the strength of the linear relationship between two variables, so it is not the most appropriate indicator for seeing the correlation with the MUC1 expression level, which has little change (Figure 2D, 2F). In fact, even TOS analysis, which can see the correlation by focusing on the cells with the highest expression level, cannot detect the correlation (Figure 2H).Therefore, the MUC1 data in Figure 2DFH will be annotated and corrected in the figure legend.

      Figure2 Legend:

      MUC1 has a small mean expression level and variance, and is more affected by measurement noise than other molecules when calculating the Pearson correlation function (Figure 2C-2F). In addition, the number of cells in which expression can be detected is small, so no significant correlation was detected by TOS analysis (Figure 2H).

      (4) Why is there a shift in the use of the glycan marker? How does this affect the conclusions? For the infection correlation relating protein expression with glycan content the PNA-lectin was used together with flow cytometry. For imaging the infection and correlating with glycan content the SSA-lectin is used.

      For each cell line, we selected the lectin that could be measured over the widest dynamic range. This lectin is thought to recognize the predominant glycan species in the cell line (Fig. S1C, Fig. 2D). In our model, we believe that viral infection inhibition is not specific to the type of sugar, but is highly dependent on the total amount of glycans. If this hypothesis is correct, the reason we used different lectins in each experiment is simply to select the lectin that recognizes the most predominant glycan species that is most convenient for predicting the total amount of glycans in cells. This hypothesis is consistent with our observations, where the total amount of glycans estimated by different lectins could explain the infection inhibition in a similar way in the experiments in Figures 1 and 2, and the TOS analysis in Figure 2 showed that minor glycans also have an infection inhibitory effect. On the other hand, it is of course possible to predict the total amount of glycans more accurately by obtaining as much information on glycans as possible (related to Q5). Based on the above discussion, the manuscript will be revised as follows.

      Page5

      Using HEK293T cell lines exogenously expressing genes of these proteins tagged with fluorescent markers, their glycosylation was measured by binding of a lectin from Arachis hypogaea (PNA), and the number of these proteins in the cells was measured simultaneously. PNA was used for the measurement because it has a wider dynamic range than other lectins (Supplementary Figure 1C). This suggests that GalNAc recognized by PNA is predominantly present on glycans of HEK293T cells, especially on the termini of glycans that are amenable to lectin binding, compared to other saccharides.. …

      page9  

      Our findings suggest that membrane glycoproteins nonspecifically inhibit viral infection, and we hypothesize that their inhibitory function is also nonspecific depending on the type of glycan. Our hypothesis is consistent with the observations in the TOS analysis. Although minor saccharide species in the system (such as GlcNAc and GalNAc recognized by DSA, WGA, or PNA) showed anticolocalization with infection, their scores were much lower than those of major saccharide species. This suggests that all major and minor saccharide species have an infection inhibitory effect, but cells enriched with minor type glycans are only partially present in the system, and the contribution of these cells to virus inhibition is also partial. It is also consistent with the observation that the amount of GalNAc recognized by PNA determines the virus infection inhibition in HEK 293T cells (Figure 1). Therefore, we believe that our assay using a single type of predominantly expressed lectin is still useful for estimating the total glycan content. Nevertheless, the virus infection rate may show a better correlation with a more accurately estimated total glycan in each cell. For example, the use of multiple lectins with appropriate calibration to integrate multiple signals to simultaneously detect a wider range of saccharide species would allow for more accurate estimation. It should be noted that the amount of bound lectin does not necessarily measure the overall glycan composition but likely reflects the sugar population at the free end of the glycan chain to which the lectin binds most.

      (5) The authors in several instances comment on the relevance and importance of the total glycan content. Nevertheless, these conclusions are often drawn when using only one glycan-binding lectin. In fact, the anti-correlation with viral infection is distinct for the various lectins (Fig 2D and Fig 2H). Would it make more sense to use a combination of lectins to get a full glycan spectrum?

      As stated in the answer to Q4, we believe that we were able to detect the infection-suppressing effect of the total glycan amount by using the measurement value of the major component glycan as an approximation. However, as you pointed out, if we could accurately measure the minor glycan components and add up their values, we believe that we could measure the total glycan amount more accurately. In order to measure multiple glycans simultaneously and with high accuracy, some kind of biochemical calibration may be necessary to compare the measurements of lectin-glycan pairs with different binding constants. We believe that these are very useful techniques, and would like to consider them as a future challenge. The corrections listed in Q4 are shown below.

      (Page 9)

      Nevertheless, the virus infection rate may show a better correlation with a more accurately estimated total glycan in each cell. For example, the use of multiple lectins with appropriate calibration to integrate multiple signals to simultaneously detect a wider range of glycans would allow for more accurate estimation. …….

      (6) Fig 3A shows virus binding to HEK cells upon MUC1 expression. Please provide the surface expression of the MUC1 so that the data can be compared to Fig 1F. Nevertheless, it is not clear why the authors used MUC expression as a parameter to assess virus binding. Alternatively, more conclusive data supporting the hypothesis would be the absence of a correlation between total glycan content and virus binding capacity.

      The relationship between the expression level of MUC1 in each cell and the amount of virus binding is shown in Supplementary Figure 3A. There is no correlation between the two. In HEK293T cells, many glycans are modified with MUC1, so MUC1 was used as the indicator for analysis (Supplementary Figure 1C). As you pointed out, it is better to use the amount of glycan as an indicator, so we analyzed the relationship between the amount of bound virus and the amount of glycan on the surface on the Calu-3 monolayer (Supplementary Figure 2F, 2G, introduced in the answer to Specific (Q1)). In any case, no correlation was found between virus binding and surface glycans. I will correct the manuscript as follows.

      (page 9)

      Glycans could be one of the biochemical substances that link the intracellular molecular composition and macroscopic steric forces at the cell surface. To clarify this connection, we further investigated the mechanism by which membrane glycoproteins inhibit viral infection. First, we measured viral binding to cells to determine which step of infection is inhibited. We found that a large number of SARS-CoV2-PP can still bind to cells even when cells expressed sufficient amounts of the glycoprotein that could account for the majority of glycans within these cells and inhibit viral infection (Figure 3A). Similarly, on the two-dimensional culture surface of Calu-3 cells, no correlation was observed between the number of viruses bound and the total amount of glycans on the cell surface (Supplementary Figure 2F-G). These results indicate that glycoproteins do not inhibit virus binding to cells, but rather inhibit the steps required for subsequent virus internalization.

      (7) While the use of the Flory model could provide a simplification for a (disordered) flexible structure such as MUC1, where the number of amino acids equals N in the Flory model, this generalisation will not hold for all the proteins. Because folding will dramatically change the effective polypeptide chain-length and reduce available positioning of the amino acids, something the authors clearly measured (Fig 4G), this generalisation is not correct. In fact, the generalisation does not seem to be required because the authors provide an estimation for the effective Flory radius using their FRET approach

      Current theories generalizing the Flory model to proteins are incomplete, and it is certainly not possible to accurately estimate the size of individual molecules undergoing different folding. However, we found such a generalized model to be useful in understanding the overall properties of membrane proteins. In our experiments, we were indeed able to obtain the R<sub>F</sub>s of some individual molecules by FRET measurements. However, this modeling made it possible to estimate the distribution range of the RFs, including for larger proteins that cannot be measured by FRET. For example, from our results, we can estimate that the upper limit of the RFs of the longest membrane proteins is about 10.5 nm, assuming that the proteins follow the Flory model in all respects except for the shortening of the effective length due to folding. These analyses are useful for physical modeling of nonspecific phenomena, as in our case.

      In order to discuss the balance between such theoretical validity and the convenience of practical handling, we revise the manuscript as follows.

      (page 13) 

      This shift in ν indicates that glycosylation increases the size of the protein at equilibrium, but the change in R<sub>F</sub> is slight, e.g., a 1.3-fold increase for one of the longest ectodomains with N = 4000 when these values of ν are applied. This calculation also gives a rough estimate of the upper limit of the R<sub>F</sub> of the extracellular domains of all membrane proteins in the human genome (approximately 10.5 nm). Physically, this change in ν by glycosylation may be caused by the increased intramolecular exclusion induced sterically between glycan chains. This estimated ν are much smaller than that of 0.6 for polymers in good solvents, possibly due to protein folding or anchoring effects on the membrane. In fact, the ν of an intrinsically disordered protein in solution has been reported to be close to 0.6 (Riback et al., 2019; Tesei et al., 2024). Overall, these analyses using the Flory model provide information on the size distribution of membrane proteins and the influence of glycans, although the model cannot predict the exact size of each protein due to its specific folding.

      MINOR COMMENTS/EDITS:

      (1) In Figures 2A and 2C, as well as Supplemental Figure 2C, the fluorescent images indicate that GFP expression differs among the various groups. Ideally, these should be at the same GFP expression level, as the glycan and antibody staining occurred post-viral infection. For instance, ACE2 is a well-known positive control and should enhance SARS-CoV-2 infection. Yet, based on the findings presented in Supplemental Figure 2C, ACE2 appears to correlate with the lowest infection rate. The relationship between the infection rate and key glycoproteins needs clearer quantification.

      We measured the virus inhibition effect specific to each molecule using a cell line expressing low levels of viral receptors and glycoproteins (Fig. 1). On the other hand, the system in Fig. 2 contains diverse viral receptors and glycoproteins and has not been genetically manipulated. (We apologize that there was a typo in our description of experiment, which will be corrected, as shown below). The variation in infection rate between samples was caused by multiple factors but was not related to the molecule for which the correlation was measured. The receptor-based normalization used in the experiment in Fig. 1 cannot be applied in this system in Fig.2 due to the complexity of the gene expression profile. Therefore, instead of such parameter-based normalization, we applied Pearson correlation and TOS analysis. In the calculation of Pearson correlation, intensities are normalized. TOS analysis allows the analysis of colocalization between the groups with the highest fluorescence intensity. Therefore, in both cases of variation in overall infection rate and variation in the distribution of infected populations, samples with large variations can be reasonably compared by Pearson correlation and TOS analysis, respectively. We extend the discussion on statistics and revise the manuscript as follows.

      (page 8-9)

      To test this hypothesis, we infected a monolayer of epithelial cells endogenously expressing highly heterogeneous populations of glycoproteins with SARS-CoV-2-PP, and measured viral infection from cell to cell visually by microscope imaging. …

      Pearson correlation is effective for comparing samples with varying scales of data because it normalizes the data values by the mean and variance. However, as observed in our experiments, this may not be the case when the distribution of data within a sample varies between samples. In addition, as has already been reported, the distribution of infected cells often deviates significantly from the normal distribution of data that is the premise of Pearson correlation (Russell et al., 2018) (Figure 2B). To further analyze data in such nonlinear situations, we applied the threshold overlap score (TOS) analysis (Figure 2G-H, Supplementary Figure 2E). This is one statistical method for analyzing nonlinear correlations, and is specialized for colocalization analysis in dual color images (Sheng et al., 2016). TOS analysis involves segmentation of the data based on signal intensity, as in other nonlinear statistics (Reshef et al., 2011). The computed TOS matrix indicates whether the number of objects classified in each region is higher or lower than expected for uniformly distributed data, which reflects co-localization or anti-localization in dual-color imaging data. For example, calculated TOS matrices show strong anti-localization for infection and glycosylation when both signals are high (Figure 2GH). This confirms that high infection is very unlikely to occur in cells that express high levels of glycans. The TOS analysis also yielded better anti-localization scores for some of the individual membrane proteins, especially those that are heterogeneously distributed across cells (Figure 2H). This suggests that TOS analysis can highlight the inhibitory function of molecules that are sparsely expressed among cells, reaffirming that high expression of a single type of glycoprotein can create an infection-protective surface in a single cell and that such infection inhibition is not protein-specific. In contrast, for more uniformly distributed proteins such as the viral receptor ACE2, TOS analysis and Pearson correlation showed similar trends, although the two are mathematically different (Figure 2D, 2H). Because glycoprotein expression levels and virus-derived GFP levels were treated symmetrically in these statistical calculations, the same logic can be applied when considering the heterogeneity of infection levels among cells. Therefore, it is expected that TOS analysis can reasonably compare samples with different virus infection level distributions by focusing on cells with high infection levels in all samples.

      (2) For clarity, the authors should consider separating introductory and interpretive remarks from the presentation of results. These seem to get mixed up. The introduction section could be expanded to include more details about glycoproteins, their relevance to viral infection, and explanations of N- and O-glycosylation.

      Following the suggestion, (1) we added an explanation of the relationship between glycoproteins and viral infection, and N-glycosylation and O-glycosylation to the Introduction section, and (2) moved the introductory parts in the Results section to the Introduction section, as follows.

      (1; page3)

      While there are known examples of glycans that function as viral receptors (Thompson et al., 2019), these results demonstrate that a variety of glycoproteins negatively regulate viral infection in a wide range of systems. These glycoprotein groups have no common amino acid sequences or domains. The glycans modified by these proteins include both the N-type, which binds to asparagine, and the O-type, which binds to serine and threonine. Furthermore, there have been no reports of infection-suppressing effects according to the specific monosaccharide type in the glycan. All of these results suggest that bulky membrane glycoproteins nonspecifically inhibit viral infection.

      (2 : Page 4-5)

      To confirm that glycans are a general chemical factor of steric repulsion, an extensive list of glycoproteins on the cell membrane surface would be useful. The wider the range of proteins to be measured, the better. Therefore, we collect information on glycoproteins on the genome and compile them into a list that is easy to use for various purposes. Then, by analyzing sample molecules selected from this list, it may be possible to infer the effect of the entire glycoprotein population on the steric inhibition of virus infection, despite the complexity and diversity of the Glycome (Dworkin et al., 2022; Huang et al., 2021; Moremen et al., 2012; Rademacher et al., 1988). Elucidation of the mechanism of how glycans regulate steric repulsion will also be useful to quantitatively discuss the relationship between steric repulsion and intracellular molecular composition. For this purpose, we apply the theories of polymer physics and interface chemistry.

      Results

      List of membrane glycoproteins in human genome and their inhibitory effect on virus infection

      To test the hypothesis that glycans contribute to steric repulsion at the cell surface, we first generate a list of glycoproteins in the human genome and then measure the glycan content and inhibitory effect on viral infection of test proteins selected from the list (Figure 1A). To compile the list of glycoproteins, we ….

      (3) In the sentence, "glycoproteins expressed lower than CD44 or other membrane proteins including ERBB2 did not exhibit any such correlation, although ERBB2 expressed ~4 folds higher amount than CD44 and shared ~7% among all membrane proteins," it is unclear which protein has a higher expression level: CD44 or ERBB2? Furthermore, the use of the word "although" needs clarification.

      Corrected as follows:

      (page 8)

      ……showed a weak inverse correlation with viral infection; even such a weak correlation was not observed with other proteins, including ERBB2, which is approximately four-fold more highly expressed than CD44

      (4) In Supplementary Figure 5, please provide an explanation of the data in the figure legend, particularly what the green and red signals represent.

      Corrected as follows:

      STORM images of all analyzed cells, expressing designated proteins. The detected spots of SNAPsurface Alexa 647 bound to each membrane protein are shown in red, and the spots of CF568conjugated anti-mouse IgG secondary antibody that recognizes Spike on SARS-CoV2-PP are shown in green. For cells, a pair of two-color composite images and a CF658-only image are shown. Numbers on axes are coordinates in nanometer.

      (5) It would be good to see a comprehensive demonstration of the exact method for estimation of membrane protein density (in the SI), since this is an integral part of many of the analyses in this paper. The method is detailed in the Methods section in text and is generally acceptable, but this methodology can vary quite widely and would be more convincing with calibration data provided.

      We added flow cytometry and fluorometer data for calibration (Supplementary Figure 1L,M) and introduced a sentence explaining the procedure for obtaining the values used for calibration as follows:

      (page 54)

      …….Liposome standards containing fluorescent molecules (0.01– 0.75 mol% perylene (Sigma), 0.1– 1.25 mol% Bodipy FL (Thermo), and 0.005– 0.1% DiD) as well as DOPC (Avanti polar lipids) were measured in flow cytometry (Supplmentary Figure 1L). Meanwhile, by fluorimeter, fluorescence signals of these liposomes and known concentrations of recombinant mTagBFP2, AcGFP and TagRFP-657 proteins and SNAP-Surface 488 and Alexa 647 dyes (New England Biolabs) were measured in the same excitation and emission ranges as in flow cytometry assays (Supplementary Figure 1M). Ratios between the integral of fluorescent intensities in this range between two dyes of interest are used for converting the signals measured in flow cytometry. Additional information needed for calibration is the size difference between liposomes and cells. The average diameter of liposomes is measured to be 130 nm, and the diameter of HEK 293T cells is estimated to be 13 µm (Furlan et al., 2014; Kaizuka et al., 2021b; Ushiyama et al., 2015). From these data, the signal from cells acquired by flow cytometry can be calibrated to molecular surface density. For example, the Alexa 647 signal acquired by flow cytometry can be converted to the signal of the same concentration of DID dye using fluorometer data, but the density of the dye is unknown at this point. This converted DID signal can then be calibrated to the density on liposomes rather than cells using liposome flow cytometry data. Finally, adjusted for the size difference between liposomes and cells, the surface molecular density on cells is determined. By going through one cycle of these procedures, we could obtain calibration unit, such as 1 flow cytometry signal for a cell in the designated illumination and detection setting = 0.0272 mTagBFP2 µm<sup>-2</sup> on cell surface.

      (Figure legend, Supporting Figure 1: )

      … L. Flow cytometry measurements for liposomes containing serially diluted dye-conjugated lipids and fluorescent membrane incorporating molecules (Bodipy-FL, peryelene, and DID) with indicated mol%. Linear fitting shown was used for calibration.  M. Fluorescence emission spectrum for equimolar molecules (50µM for green and far-red channels, and 100µM for blue channel), excited at 405 nm, 488 nm, and 638 nm, respectively. Membrane dyes were measured as incorporated in liposomes. Purified recombinant mTagBFP2 was used.

      (6) Fig 2A: The figure legend should describe the microscopy method for a quick and easy reference.

      Corrected as follows:

      (Figure legend, Figure 2)

      A. Maximum projection of Z-stack images at 1 µm intervals taken with a confocal microscope. SARSCoV2-pp-infected, air-liquid interface (ALI)-cultured Calu-3 cell monolayers were chemically fixed and imaged by binding of Alexa Fluor 647-labeled Neu5AC-specific lectin from Sambucus sieboldiana (SSA) and GFP expression from the infecting virus.

      (7) Fig 2B: what is the color bar supposed to represent? Is it the pixel density per a particular value? Units and additional description are required. In addition, these are "arbitrary units" of fluorescence, but you should tell us if they've been normalized and, if so, how. They must have been normalized, since the values are between 0 and 1, but then why does the scale bar for SSA only go to 0.5?

      The color bar shows the number of pixels for each dot, resulting in the scale for density scatter plot. The scale on the X-axis was incorrect. All these issues have been fixed in this revision, in the figure and in the legend as follows.

      (Figure legend, Figure 2)

      B. Density scatter plot of normalized fluorescence intensities in all pixels in Figure 2A in both GFP and SSA channels. Color indicates the pixel density.  

      (8) Fig 3D has a typo: this should most likely be "grafted polymer."

      (9) Fig 3E has a suspected typo: in the text, the author uses the word "exclusion" instead of "extrusion." The former makes more sense in this context.

      (10) Fig 5A has a typo: "Suppoorted" instead of Supported Lipid Bilayer.

      (11) Fig 7E-F has a suspected typo: Again, this should most likely be the word "exclusion" instead of "extrusion."

      Thank you so much for pointing out these mistakes, I have corrected them all as suggested.

      (12) Which other molecules are referred to, on page 6 (middle), that do not have an inhibitory effect? Please specify.

      We specified the molecules that have inhibitory effects, and revised as follows: 

      These proteins include those previously reported (MUC1, CD43) as well as those not yet reported (CD44, SDC1, CD164, F174B, CD24, PODXL) (Delaveris et al., 2020; Murakami et al., 2020). In contrast, other molecules (VCAM-1, EPHB1, TMEM123, etc.) showed little inhibitory effect on infection within the density range we used.

      (13) Fig 2 B: the color LUT is not labelled nor explained.

      Corrected as described in (7)

      (14) Please provide the scale bars for figures Fig 2A, C, E and Suppl Fig 2C, D.

      Corrected. 

      (15) Please provide the name for the example of a 200 aa protein that is meant to inhibit viral infection but is not bigger than ACE2. Also providing the densities in Fig 3A would help to correlate the data to Fig 1F.

      Corrected as follows: 

      (page 10)

      We found that a large number of SARS-CoV2-PP can still bind to cells even when cells expressed sufficient amounts of the glycoprotein (mean density ~50 µm<sup>-2</sup>) that could account for the majority of glycans within these cells and inhibit viral infection (Figure 3A). …..

      In our measurements, a protein with extracellular domain of ~200 amino acids (e.g. CD164 (138aa)) at a density of ~100 μm-2 showed significant inhibition in viral infection. This molecule is shorter than the receptor ACE2 (722 aa),

      (16) In the experiments conducted in HeK cells expressing the different glycoproteins studies it is mentioned that results of infection were normalised by the amount ACE2 expression. Is the expression of receptor homogenous in the experiments conducted in Figure 2? Clarify in the methods if the expression of receptor has been quantified and somehow used to correct the intensity values of GFP used to determine infection.

      As also explained for Q1, the system in Fig. 2 contains diverse viral receptors and glycoproteins, and the receptor-based normalization used in the experiment in Fig. 1 cannot be applied. Instead, we applied Pearson correlation and TOS analysis. In the calculation of Pearson correlation, intensities are normalized. TOS analysis allows the analysis of colocalization between the groups with the highest fluorescence intensity. Therefore, in both cases of variation in overall infection rate and variation in the distribution of infected populations, samples with large variations can be reasonably compared by Pearson correlation and TOS analysis, respectively. We extend the discussion on statistics and revise the manuscript as follows.

      (page 8-9)

      Pearson correlation is effective for comparing samples with varying scales of data because it normalizes the data values by the mean and variance. However, as observed in our experiments, this may not be the case when the distribution of data within a sample varies between samples. In addition, as has already been reported, the distribution of infected cells often deviates significantly from the normal distribution of data that is the premise of Pearson correlation (Russell et al., 2018) (Figure 2B). To further analyze data in such nonlinear situations, we applied the threshold overlap score (TOS) analysis (Figure 2G-H, Supplementary Figure 2E). This is one statistical method for analyzing nonlinear correlations, and is specialized for colocalization analysis in dual color images (Sheng et al., 2016). TOS analysis involves segmentation of the data based on signal intensity, as in other nonlinear statistics (Reshef et al., 2011). The computed TOS matrix indicates whether the number of objects classified in each region is higher or lower than expected for uniformly distributed data, which reflects co-localization or anti-localization in dual-color imaging data. For example, calculated TOS matrices show strong anti-localization for infection and glycosylation when both signals are high (Figure 2GH). This confirms that high infection is very unlikely to occur in cells that express high levels of glycans. The TOS analysis also yielded better anti-localization scores for some of the individual membrane proteins, especially those that are heterogeneously distributed across cells (Figure 2H). This suggests that TOS analysis can highlight the inhibitory function of molecules that are sparsely expressed among cells, reaffirming that high expression of a single type of glycoprotein can create an infection-protective surface in a single cell and that such infection inhibition is not protein-specific. In contrast, for more uniformly distributed proteins such as the viral receptor ACE2, TOS analysis and Pearson correlation showed similar trends, although the two are mathematically different (Figure 2D, 2H). Because glycoprotein expression levels and virus-derived GFP levels were treated symmetrically in these statistical calculations, the same logic can be applied when considering the heterogeneity of infection levels among cells. Therefore, it is expected that TOS analysis can reasonably compare samples with different virus infection level distributions by focusing on cells with high infection levels in all samples.

      (17) Can you provide additional details about the method of thresholding to eliminate "background" localisations in STORM?

      Method section was corrected as follows: 

      (page 59)

      …Viral protein spots not close to cell membranes were eliminated by thresholding with nearby spot density for cell protein. Specifically, the entire image was pixelated with a 0.5µm square box and all viral protein signals within the box that had no membrane protein signals were removed. Also, viral protein spots only sparsely located were eliminated by thresholding with nearby spot density for viral protein. This thresholding process removed any detected viral protein spot that did not have more than 100 other viral protein spots within 1µm.

      (18) The article says "It was shown that the number of bound lectins correlated with the amount of glycans, not with number of proteins (Figure 1E)". Figure 1E correlates experimental PNA/mol with predicted glycosylation sites, not with the number of expressed proteins. Correct sentence with the right Figure reference.

      As you pointed out, the meaning of this sentence was not clear. We have amended it as follows to clarify our intention:

      (page 8)

      Since a wide range of glycoproteins inhibit viral infection, it is possible that all types of glycoproteins have an additive effect for this function. ……. In this cell line, this inverse correlation was most pronounced when quantifying N-acetylneuraminic acid (Neu5AC, recognized by lectins SSA and MAL) compared to the various types of glycans, while some other glycans also showed weak correlations (Supplementary Figure 2C). These results showed that the amount of virus infection in cell anticorrelated with the amount of total glycans on the cell surface. As amount of glycans is determined by the total population of glycocalyx, infection inhibitory effect can be additive by glycoprotein populations as we hypothesized.

      If the inhibitory effect is nonspecific and additive, the contribution of each protein is likely to be less significant. To confirm this, we also measured the correlation between the density of each glycoprotein and viral infection. CD44, which was shown to…….. Our results demonstrate that total glycan content is a superior indicator than individual glycoprotein expression for assessing infection inhibition effect generated by cell membrane glycocalyx. These results are consistent with our hypothesis regarding the additive nature of the nonspecific inhibitory effects of each glycoprotein.

    1. eLife Assessment

      Endothelial cell-specific loss of TGF-beta signaling in mice leads to CNS vascular defects, specifically impairing retinal development and promoting immune cell infiltration. The data are solid, showing that loss of TGF-beta signaling triggers vascular inflammation and attracts immune cells specific to CNS vasculature. These findings are important, highlighting TGF-beta's role in maintaining vascular-immune homeostasis and its therapeutic potential in neurovascular inflammatory diseases.

    2. Reviewer #1 (Public review):

      Summary:

      The manuscript analyses the effects of deleting the TgfbR1 and TgfbR2 receptors from endothelial cells at postnatal stages on vascular development and blood-retina barrier maturation in the retina. The authors find that deletion of these receptors affects vascular development in the retina but importantly it affects the infiltration of immune cells across the vessels in the retina. The findings demonstrate that Tgf-beta signaling through TgfbR1/R2 heterodimers regulates primarily the immune phenotypes of endothelial cells in addition to regulating vascular development, but has minor effects on the BRB maturation. The data provided by the authors provides a solid support for their conclusions.

      Strengths:

      (1) The manuscript uses a variety of elegant genetic studies in mice to analyze the role of TgfbR1 and TgfbR2 receptors in endothelial cells at postnatal stages of vascular development and blood-retina barrier maturation in the retina.

      (2) The authors provide a nice comparison of the vascular phenotypes in endothelial-specific knockout of TgfbR1 and TgfbR2 in the retina (and to a lesser degree in the brain) with those from Npd KO mice (loss of Ndp/Fzd4 signaling) or loss of VEGF-A signaling to dissect the specific roles of Tgf-beta signaling for vascular development in the retina.

      (3) The snRNAseq data of vessel segments from the brains of WT versus TgfbR1 -iECKO mice provides a nice analysis of pathways and transcripts that are regulated by Tgf-beta signaling in endothelial cells.

      Weaknesses (Original Submission):

      (1) The authors claim that choroidal neovascular tuft phenotypes are similar in TgfbrR1 KO and TgfbrR2 KO mice. However, the phenotypes look more severe in the TgfbrR1 KO rather than TgfbrR2 KO mice. Can the authors show a quantitative comparison of the number of choroidal neovascular tufts per whole eye cross-section in both genotypes?

      (2) In the analysis of Sulfo-NHS-Biotin leakage in the retina to assess blood-retina barrier maturation, the authors claim that there is increased vascular leakage in the TgfbR1 KO mice. However, there does not seem like Sulfo-NHS-biotin is leaking outside the vessels. Therefore, it cannot be increased vascular permeability. Can the authors provide a detailed quantification of the leakage phenotype?

      (3) The immune cell phenotyping by snRNAseq seems premature as the number of cells is very small. The authors should sort for CD45+ cells and perform single cell RNA sequencing.

      (4) The analysis of BBB leakage phenotype in TgfbR1 KO mice needs to be more detailed and include some tracers in addition to serum IgG leakage.

      (5) A previous study (Zarkada et al., 2021, Developmental Cell) showed that EC-deletion of Alk5 affects the D tip cells. The phenotypes of those mice look very similar to those shown for TgfbrR1 KO mice. Are D tip cells lost in these mutants by snRNAseq?

      Comments on revisions:

      The authors have addressed the major weaknesses that I raised with the original submission adequately in the revised manuscript.

    3. Reviewer #2 (Public review):

      Summary:

      The authors meticulously characterized EC-specific Tgfbr1, Tgfbr2, or double knockout in the retina, demonstrating through convincing immunostaining data that loss of TGF-β signaling disrupts retinal angiogenesis and choroidal neovascularization. Compared to other genetic models (Fzd4 KO, Ndp KO, VEGF KO), the Tgfbr1/2 KO retina exhibits the most severe immune cell infiltration. The authors proposed that TGF-β signaling loss triggers vascular inflammation, attracting immune cells - a phenotype specific to CNS vasculature, as non-CNS organs remain unaffected.

      Strengths:

      The immunostaining results presented are clear and robust. The authors performed well-controlled analyses against relevant mouse models. snRNA-seq corroborates immune cell leakage in the retina and vascular inflammation in the brain.

      Comments on revisions:

      The authors have revised the manuscript and addressed all my questions.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Weaknesses: 

      (1) The authors claim that choroidal neovascular tuft phenotypes are similar in TgfbrR1 KO and TgfbrR2 KO mice. However, the phenotypes look more severe in the TgfbrR1 KO rather than TgfbrR2 KO mice. Can the authors show a quantitative comparison of the number of choroidal neovascular tufts per whole eye cross-section in both genotypes? 

      Thank you for asking about this.  Each VE-cad-CreER;TGFBR1 CKO/- and VE-cad-CreER;TGFBR2 CKO/- retina exhibits multiple zones of choroidal neovascularization.  The examples in Figures 1 and Figure 1 – Figure supplements 1 and 2 are mostly from retinas with loss of TGFBR1, but we could have chosen similar examples from retinas with loss of TGFBR2.  The quantification in the original version of Figure 1- Figure supplement 1 panel C had a labeling error.  It actually showed the quantification choroidal neovascularization (CNV) in the sum of both VE-cad-CreER;TGFBR1 CKO/- and VE-cad-CreER;TGFBR2 CKO/- retinas, not only in VE-cad-CreER;TGFBR1 CKO/- retinas as originally labeled.  The point that it made is that CNV is seen with loss of TGF-beta signaling but not in control retinas or retinas with loss of Norrin signaling.  We have now updated that plot by separating the data points for VE-cad-CreER;TGFBR1 CKO/- and VE-cad-CreER;TGFBR2 CKO/- retinas, so that they can be compared to each other.   The result shows ~2.5-fold more CNV in VE-cad-CreER;TGFBR2 CKO/- retinas compared to VE-cad-CreER;TGFBR1 CKO/-.  We think it likely that a more extensive sampling would show little or no difference between these two genotypes – but the data is what it is. This is now described in the Results section. 

      We have also added a panel D to Figure 1- Figure supplement 1, which shows a retina flatmount analysis of CNV.  This is done by mounting the retina with the photoreceptor side up so that the outer retina can be optimally imaged. 

      (2) In the analysis of Sulfo-NHS-Biotin leakage in the retina to assess blood-retina barrier maturation. The authors claim that there is increased vascular leakage in the TgfbR1 KO mice. However, it does not seem like Sulfo-NHS-biotin is leaking outside the vessels. Therefore, it cannot be increased vascular permeability. Can the authors provide a detailed quantification of the leakage phenotype? 

      Thank you for raising this point.  Your comment prompted us to look at this question in greater depth with more experiments.  We have expanded Figure 2 to show and quantify a comparison between control (i.e. phenotypically WT), NdpKO, and TGFBR1 endothelial KO and we have expanded the associated part of the Results section (Figure 2C and D).  In a nutshell, control retinas show little Sulfo-NHS-biotin accumulation in or around the vasculature or in the parenchyma; NdpKO retinas show Sulfo-NHS-biotin accumulation in the vasculature and in the parenchyma (i.e., the area between the vessels); and VEcadCreER;Tgfbr1CKO/- retinas show Sulfo-NHS-biotin accumulation in the vascular tufts with minimal accumulation in the non-tuft vasculature and minimal leakage into the parenchyma.   The conclusion is that the bulk of the retinal vasculature in TGFBR1 endothelial KO mice is minimally or not at all leaky – very different from the situation with loss of Norrin/Frizzled4 signaling.

      (3) The immune cell phenotyping by snRNAseq is premature, as the number of cells is very small. The authors should sort for CD45+ cells and perform single-cell RNA sequencing. 

      Thank you for raising this point.  For the revised manuscript, we have performed additional snRNAseq analyses using the same tissue processing protocol as for our original snRNAseq data.  We have opted to homogenize the tissue and prepare nuclei (our original method) rather than dissociate the tissue and FACS sorting for CD45+ cells because the nuclear isolation approach is unbiased – we assume that nuclei from all cell types are present after tissue homogenization.  By contrast, we cannot be certain that CD45 FACS will capture the full range of immune cells since some cells may not express CD45, may express CD45 at low level, or may be tightly adherent to other cells, such as vascular endothelial cell.  Additionally, by following the original protocol, we can combine the original snRNAseq dataset and the new snRNAseq dataset.  In the revised manuscript we present the snRNAseq data from the combination of the original and the more recent snRNAseq datasets (revised Figure 4; N=628 immune cell nuclei).  The new analysis comes to the same conclusions as the original analysis: the immune cell infiltrate in the mutant retinas is composed of a wide variety of immune cells.

      (4) The analysis of BBB leakage phenotype in TgfbR1 KO mice needs to be more detailed and include tracers as well as serum IgG leakage. 

      As described in our response to query 2, we have conducted additional experiments to look at vascular leakage in control, VE-cad-CreER;TGFBR1 CKO/-, and NdpKO retinas.  We have also looked at Sulfo-NHS-biotin leakage in the VE-cadCreER;TGFBR1 CKO/- brain, and it is indistinguishable from WT controls.  Since Sulfo-NHS-biotin is a low MW tracer (<1,000 kDa), this implies that loss of TGF-beta signaling does not increase non-specific diffusion of either low or high MW molecules.  Therefore, the elevated levels of IgG in the brain parenchyma in young VE-cad-CreER;TGFBR1 CKO/- mice (Figure 8A) likely represents specific transport of IgG across the BBB.  Such transport is known to occur via Fc receptors expressed on vascular endothelial cells, although it is normally greater in the brain-to-blood direction than in the blood-to-brain direction.  For example, see Lafrance-Vanasse et al (2025) Leveraging neonatal Fc receptor (FcRn) to enhance antibody transport across the blood brain barrier.  Nat Commun. 16:4143.  This is now described in greater detail in the Results section.

      (5) A previous study (Zarkada et al., 2021, Developmental Cell) showed that EC-deletion of Alk5 affects the D tip cells. The phenotypes of those mice look very similar to those shown for TgfbrR1 KO mice. Are D-tip cells lost in these mutants by snRNAseq? 

      Please note: Alk5 is another name for TGFBR1.  This is noted in the second sentence of paragraph 4 of the Introduction.  The reviewer is correct: there are a lot of similarities because these are exactly the same KO mice.  Also, Zarkada and we used the same VEcadCreER to recombine the CKO allele.  The proposed snRNAseq analysis would serve as an independent check on the diving (D) tip vs stalk cell analyses published in Zarkada et al (2021) Specialized endothelial tip cells guide neuroretina vascularization and blood-retina-barrier formation. Dev Cell 56:2237-2251.  We have not gone in this direction because the question of tip vs. stalk cells and of subtypes of tip cells in WT vs. mutant retinas is beyond our focus on choroidal neovascularization and the role of immune cells and vascular inflammation.  The proposed snRNAseq analysis would also require a major effort since tip cells are rare and must be harvested from large numbers of early postnatal retinas followed by FACS enrichment for vascular endothelial cells.  Finally, we have no reason to doubt the results of Zarkada et al.

      Reviewer #2 (Public review): 

      Summary:

      The authors meticulously characterized EC-specific Tgfbr1, Tgfbr2, or double knockout in the retina, demonstrating through convincing immunostaining data that loss of TGF-β signaling disrupts retinal angiogenesis and choroidal neovascularization. Compared to other genetic models (Fzd4 KO, Ndp KO, VEGF KO), the Tgfbr1/2 KO retina exhibits the most severe immune cell infiltration. The authors proposed that TGF-β signaling loss triggers vascular inflammation, attracting immune cells - a phenotype specific to CNS vasculature, as non-CNS organs remain unaffected. 

      Strengths: 

      The immunostaining results presented are clear and robust. The authors performed well-controlled analyses against relevant mouse models. snRNA-seq corroborates immune cell leakage in the retina and vascular inflammation in the brain. 

      Weaknesses: 

      The causal link between TGF-β loss, vascular inflammation, and immune infiltration remains unresolved. The authors' model posits that EC-specific TGF-β loss directly causes inflammation, which recruits immune cells. However, an alternative explanation is plausible: Tgfbr1/2 KO-induced developmental defects (e.g., leaky vessels) permit immune extravasation, subsequently triggering inflammation. The observations that vein-specific upregulation of ICAM1 staining and the lack of immune infiltration phenotypes in the non-CNS tissues support the alternative model. Late-stage induction of Tgfbr1/2 KO (avoiding developmental confounders) could clarify TGF-β's role in retinal angiogenesis versus anti-inflammation. 

      Thank you for raising this point.  Your comment prompted us to look at this question in greater depth with more experiments.  We have expanded Figure 2 to show and quantify a comparison between control (i.e. phenotypically WT), NdpKO, and TGFBR1 endothelial KO and we have expanded the associated part of the Results section (Figure 2C and D).  In a nutshell, control retinas show little Sulfo-NHS-biotin accumulation in or around the vasculature or in the parenchyma; NdpKO retinas show Sulfo-NHS-biotin accumulation in the vasculature and in the parenchyma (i.e., the area between the vessels); and VEcadCreER;Tgfbr1CKO/- retinas show Sulfo-NHS-biotin accumulation in the vascular tufts with minimal accumulation in the non-tuft vasculature and minimal leakage into the parenchyma.   The conclusion is that the bulk of the retinal vasculature in TGFBR1 endothelial KO mice is minimally or not at all leaky – very different from the situation with loss of Norrin/Frizzled4 signaling.

      In the revised manuscript, we have expanded the Discussion section to address the two alternative hypotheses raised by the reviewer.  Here are the relevant data in a nutshell: (1) vascular leakage into the parenchyma, as measured with sulfo-NHSbiotin, in TGFBR1 endothelial CKO retinas is far less than in NdpKO retinas, where nearly all ECs convert to a fenestration+ (PLVAP+) phenotype and there is leakage of sulfo-NHS-biotin, (2) ICAM1 in ECs in TGFBR1 endothelial CKO retinas increases several-fold more than in NdpKO or Frizzled4KO retinas, (3) TGFBR1 endothelial CKO retinas have more infiltrating immune cells than NdpKO or Frizzled4KO retinas, and (4) in TGFBR1 endothelial CKO retinas large numbers of immune cells are observed within and adjacent to blood vessels.  We think that the simplest explanation for these data is that loss of TGFbeta signaling in ECs causes an endothelial inflammatory state with enhanced immune cell extravasation.  That said, the case for this model is not water-tight, and there could be less direct mechanisms at play.  In particular, this model does not explain why the inflammatory phenotype is limited to CNS (and especially retinal) vasculature.

      Regarding the last sentence of the reviewer’s comment (“Late stage induction…”), we have tried activating CreER recombination at different ages and we observe a large reduction in the inflammatory phenotype when recombination is initiated after vascular development is complete.   This observation suggests that the vascular developmental/anatomic defect – and perhaps the resulting retinal hypoxia response – is required for the inflammatory phenotype.  In the revised manuscript we have expanded the Results and Discussion sections to describe this observation.

      Reviewer #1 (Recommendations for the authors): 

      Suggestions for experiments: 

      (1) The authors need to show a quantitative comparison of the number of choroidal neovascular tufts per whole eye crosssection in both genotypes (TgfbR1 and TgfbR2 KO mice). 

      Thank you for raising this point.  The quantification in the original version of Figure 1- Figure supplement 1 panel C was mis-labeled.  It quantifies choroidal neovascularization (CNV) in both VE-cad-CreER;TGFBR1 CKO/- and VE-cadCreER;TGFBR2 CKO/- retinas, not VE-cad-CreER;TGFBR1 CKO/- retinas only as originally labeled.  The point it makes is that CNV is seen with loss of TGF-beta signaling but not in control retinas or retinas with loss of Norrin signaling.  We have now corrected that plot by separating the data points for VE-cad-CreER;TGFBR1 CKO/- and VE-cad-CreER;TGFBR2 CKO/- retinas, so that they can be compared to each other.   The result shows ~2.5-fold more CNV in VE-cad-CreER;TGFBR2 CKO/- retinas compared to VE-cad-CreER;TGFBR1 CKO/-.  This is now described in the Results section. 

      (2) In the analysis of Sulfo-NHS-Biotin leakage in the retina to assess blood-retina barrier maturation. The authors should provide a detailed quantification of the leakage phenotype outside the vessels into the CNS parenchyma, both in the retina and brain, in TgfbR1 KO mice. 

      Thank you for raising this point.  There is no detectable Sulfo-NHS-biotin leakage into the brain parenchyma in VE-cadCreER;TGFBR1 CKO/- mice.  We have expanded Figure 2 to show and quantify the data for retinal vascular leakage (Figure 2C and D).  The data show that in VE-cad-CreER;TGFBR1 CKO/- mice there is accumulation of Sulfo-NHS-biotin in the vascular tufts but minimal accumulation elsewhere in the retinal vasculature and minimal leakage of Sulfo-NHS-biotin into the retinal parenchyma.

      (3) The immune cell phenotyping by snRNAseq is premature, as the number of cells is very small. The authors should sort for CD45+ cells and perform single-cell RNA sequencing to ascertain these preliminary data. 

      Thank you for raising this point.  We have performed additional snRNAseq analyses using the same tissue processing protocol as for our original snRNAseq data to increase the numbers of cells.  We have opted to homogenize the tissue and prepare nuclei (our original method) rather than dissociating the cells and FACS sorting for CD45+ cells because the nuclear isolation approach is unbiased – we assume that nuclei from all cell types are present.  By contrast, we cannot be certain that CD45 FACS will capture the full range of immune cells, since some cells may not express CD45, may express CD45 at low level, or may be tightly adherent to other cells, such as vascular endothelial cell.  Additionally, by following the original protocol, we can combine the original snRNAseq dataset of and the new snRNAseq dataset.  In the revised manuscript we present the snRNAseq data from the combination of the original and the more recent snRNAseq datasets (revised Figure 4; N=628 immune cell nuclei).  The new analysis comes to the same conclusion as in the original submission, namely that the immune cell infiltrate in the mutant retinas is composed of a wide variety of immune cells.  The Results section has been expanded to describe this new data and analysis.    

      (4) The analysis of BBB leakage phenotype in TgfbR1 KO mice needs to be more detailed and include tracers as well as serum IgG leakage. 

      Sulfo-NHS biotin leakage in the VE-cad-CreER;TGFBR1 CKO/- brain is minimal, and it is indistinguishable from WT controls.  Since Sulfo-NHS biotin is a low MW tracer (<1,000 kDa), this implies that loss of TGF-beta signaling does not increase non-specific diffusion of either low or high MW molecules.  Therefore, the elevated levels of IgG in the brain parenchyma in young VE-cad-CreER;TGFBR1 CKO/- mice (Figure 8A) likely represents specific transport of IgG across the BBB.  Such transport is known to occur via Fc receptors expressed on vascular endothelial cells, although it is normally greater in the brain-to-blood direction than in the blood-to-brain direction.  For example, see Lafrance-Vanasse et al (2025) Leveraging neonatal Fc receptor (FcRn) to enhance antibody transport across the blood brain barrier.  Nat Commun. 16:4143.  This is now described in greater detail in the Results section.

      (5) The authors should perform a more detailed RNAseq analysis of tip and stack (stalk) cells in TgfbrR1 KO mice to determine whether D tip cells are lost in these mutants by snRNAseq. 

      The proposed snRNAseq analysis would serve as an independent check on the diving (D) tip vs stalk cell analyses published by Zarkada et al, who analyzed the same VE-cad-CreER;TGFBR1 CKO/- mutant mice, although they refer to the TGFBR1 gene by its alternate name ALK5 [Zarkada et al (2021) Specialized endothelial tip cells guide neuroretina vascularization and blood-retina-barrier formation. Dev Cell 56:2237-2251].  We have not gone in this direction because the question of tip vs. stalk cells and of subtypes of tip cells in WT vs. mutant retinas is beyond our focus on choroidal neovascularization and the role of immune cells and vascular inflammation.  The proposed snRNAseq analysis would also require a major effort since tip cells are rare and must be harvested from large numbers of early postnatal retinas followed by FACS enrichment for vascular endothelial cells.

      Suggestions for improving the manuscript:  

      (6) The statement that ECs acquire properties of immune cells (Page 2, Line 90) is incorrect. Endothelial cells may acquire characteristics of antigen presenting cells. 

      Thank you for that correction.  Based on the review from Amersfoort et al (2022) (Amersfoort J, Eelen G, Carmeliet P. (2022) Immunomodulation by endothelial cells - partnering up with the immune system? Nat Rev Immunol 22:576-588) and the articles cited in it, we have changed the sentence to “Although vascular endothelial cells (ECs) are not generally considered to be part of the immune system, in some locations and under some conditions they acquire properties characteristic of immune cells, including secretion of cytokines, surface display of co-stimulatory or co-inhibitory receptors, and antigen presentation in association with MHC class II proteins (Pober and Sessa, 2014; Amersfoort et al., 2022).”  

      (7) The statement in Page 3, Line 100-101 [In CNS ECs, quiescence is maintained in part by the actions of astrocyte-derived Sonic Hedgehog, with the result that few immune cells other than resident microglia are found within the CNS (Alvarez et al., 2011).] is incomplete. Wnt signaling also suppresses the expression of leukocyte adhesion molecules from endothelial cells and therefore helps with immune cell quiescence. 

      Thank you for raising that point.  We have expanded that sentence to include Wnt signaling in CNS endothelial cells, as described in the following reference: Lengfeld JE, Lutz SE, Smith JR, Diaconu C, Scott C, Kofman SB, Choi C, Walsh CM, Raine CS, Agalliu I, Agalliu D. (2017) Endothelial Wnt/beta-catenin signaling reduces immune cell infiltration in multiple sclerosis. Proc Natl Acad Sci USA 114:E1168-E1177.

      (8) It may be beneficial for the reader to separate the results of the vascular phenotypes related to choroidal neovascularization compared to retinal vascular development. 

      Thank you for this suggestion.  The two topics are partly overlapping: choroidal neovascularization is described in Figure 1, and retinal development is described in Figures 1 and 2.  The challenge is that some of same images illustrate both phenotypes as in Figure 1, so the topics cannot be easily separated.

      (9) In addition to comparing the phenotypes in Tgfb signaling mutant mice with Wnt signaling and VEGF-A signaling mutants, the authors should compare and contrast their data with those found in Alk5 KO mice, as there are a lot of similarities. 

      The reviewer has alerted us to a nomenclature challenge which we will try to resolve in the introduction: Alk5 is just another name for TGFBR1.  The reviewer is correct: there are a lot of similarities between the present study and that of Zarkada et al (2021) because both use the same TGFBR1(=Alk5) CKO mice.

      Reviewer #2 (Recommendations for the authors): 

      Figure 2 

      For 2B, the authors should clarify whether the two regions shown in the Tgfbr1 KO retina (P14) represent central vs. peripheral areas, as phenotype severity varies. 

      For 2C, does the uneven biotin accumulation reflect developmental gradients (e.g., central-peripheral maturation timing)? 

      Thank you for raising these points.  Regarding Figure 2B, these images are all from the mid-peripheral retina, where the phenotype is moderately severe.  This is now noted in the figure legend.

      Regarding Figure 2C, the reviewer is correct that the pattern of Sulfo-NHS-biotin is uneven in VEcadCreER;Tgfbr1CKO/- retinas – it accumulates only in the tufts.  We have expanded Figure 2C to show a comparison between control (i.e.

      phenotypically WT), NdpKO, and TGFBR1 endothelial KO retinas, and we have expanded the associated part of the Results section.  In a nutshell, control retinas show little Sulfo-NHS-biotin accumulation in the vasculature or in the parenchyma; NdpKO retinas show Sulfo-NHS-biotin accumulation in the vasculature and in the parenchyma (i.e., the area between the vessels); and VEcadCreER;Tgfbr1CKO/- retinas show Sulfo-NHS-biotin accumulation in the vascular tufts with minimal accumulation in the non-tuft vasculature and minimal leakage into the parenchyma.   The conclusion is that the bulk of the retinal vasculature in TGFBR1 endothelial KO mice is not leaky – very different from the situation with loss of Norrin/Frizzled4 signaling.

      Figure 6 

      The claim that PECAM1+ rings on veins reflect EC-immune cell binding is uncertain, as PECAM1 is also known to be expressed by immune cells. The complete correlation of PECAM1 and CD45 staining signals suggests that a subset of immune cells upregulates PECAM1. The VEcadCreER;Tgfbr1 flox/-; SUN1:GFP reporter would be helpful to delineate ECimmune cell proximity. Super-resolution imaging with Z-stacks could also resolve spatial relationships (luminal vs. abluminal immune cell adhesion). 

      Thank you for this comment.  The reviewer is correct that, at the resolution of these images, we cannot determine whether the PECAM1 immunostaining signal is derived from ECs, from leukocytes, or from both.  This is now stated in the Results section.  The PECAM1-rich endothelial ring structure associated with leukocyte extravasation has been characterized in various publications, for example in (1) Carman CV, Springer TA. (2004) A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J Cell Biol 167:377-388 and (2) Mamdouh Z, Mikhailov A, Muller WA. (2009) Transcellular migration of leukocytes is mediated by the endothelial lateral border recycling compartment. J Exp Med 206:2795-2808.  The ring structures visualized in Figure 6D by PECAM1 immunostaining conform to the ring structures described in these and other papers.  In showing these structures, our point is simply that they likely represent sites of leukocyte extravasation.  This is now clarified in the text.  We have also added some additional references on leukocyte extravasation and the ring structures.

      Figure 7 

      A time-course analysis of ICAM1 would strengthen the mechanistic model. Does ICAM1 upregulation precede immune infiltration (supporting inflammation as the primary defect)? Given that immune cells appear by P14 (per snRNA-seq), is ICAM1 elevated earlier? 

      This is an interesting idea, but based on what is known about leukocyte adhesion and extravasation we predict that there will not be a clean temporal separation between ICAM1 induction and leukocyte adhesion/infiltration.  That is, if the proinflammatory state causes an increase in the number of leukocytes, then as ICAM1 levels increase, leukocyte adhesion would also increase.  Similarly, if the presence of leukocytes increases the pro-inflammatory state, then as the number of leukocytes increases, the levels of ICAM1 would be predicted to increase.  Thus, we think that a time course analysis is unlikely to provide a definitive conclusion.

      Figure 8-SF1 

      In brain slices, a transient pan-IgG accumulation suggests a self-resolving defect in the BBB. However, this BBB impairment appears to be spatiotemporally distinct from ICAM1 upregulation. ICAM1 staining is restricted to the lesion site, aligning with immune cell-driven inflammation. 

      Thank you for raising these points.  The reviewer is correct that these observations don’t fit together in a clear way.  There does not appear to be a general increase in brain vascular permeability in VE-cad-CreER;TGFBR1 CKO/- mice, as shown by sulfo-NHS-biotin.  However, there is a large and transient increase in IgG in the brain parenchyma, suggestive of a general vascular alteration, and – as the reviewer correctly notes – it is not accompanied by a generalized increase in ICAM1 vascular immunostaining.  At this point, we don’t have any real insight into the mechanistic basis of the transient IgG increase.

      Thank you for handling this manuscript.

    1. eLife Assessment

      This cleverly designed and potentially important work supports our understanding regarding how and whether social behaviours promoting egalitarianism can be learned, even when implementing these norms entails a cost for oneself. However, the evidence supporting the major claims is currently incomplete, with the major limitation being whether Ps truly learn egalitarianism from a teacher or instead exhibit reduced guilt across time that is reduced when observing others behaving more selfishly. With a strengthening of the supporting evidence, this work will be of interest to a wide range of fields, including cognitive psychology/neuroscience, neuroeconomics, and social psychology, as well as policy making.

    2. Reviewer #1 (Public review):

      Summary:

      Zhang et al. addressed the question of whether advantageous and disadvantageous inequality aversion can be vicariously learned and generalized. Using an adapted version of the ultimatum game (UG), in three phases, participants first gave their own preference (baseline phase), then interacted with a "teacher" to learn their preference (learning phase), and finally were tested again on their own (transfer phase). The key measure is whether participants exhibited similar choice preference (i.e., rejection rate and fairness rating) influenced by the learning phase, by contrasting their transfer phase and baseline phase. Through a series of statistical modeling and computational modeling, the authors reported that both advantageous and disadvantageous inequality aversion can indeed be learned (Study 1), and even be generalised (Study 2).

      Strengths:

      This study is very interesting, that directly adapted the lab's previous work on the observational learning effect on disadvantageous inequality aversion, to test both advantageous and disadvantageous inequality aversion in the current study. Social transmission of action, emotion, and attitude have started to be looked at recently, hence this research is timely. The use of computational modeling is mostly appropriate and motivated. Study 2 that examined the vicarious inequality aversion on conditions where feedback was never provided is interesting and important to strengthen the reported effects. Both studies have proper justifications to determine the sample size.

      Weaknesses:

      Despite the strengths, a few conceptual aspects and analytical decisions have to be explained, justified, or clarified.

      INTRODUCTION/CONCEPTUALIZATION

      (1) Two terms seem to be interchangeable, which should not, in this work: vicarious/observational learning vs preference learning. For vicarious learning, individuals observe others' actions (and optionally also the corresponding consequence resulted directly by their own actions), whereas, for preference learning, individuals predict, or act on behalf of, the others' actions, and then receive feedback if that prediction is correct or not. For the current work, it seems that the experiment is more about preference learning and prediction, and less so about vicarious learning. But the intro and set are heavily around vicarious learning, and late the use of vicarious learning and preference learning is rather mixed in the text. I think either tone down the focus on vicarious learning, or discuss how they are different. Some of the references here may be helpful: Charpentier et al., Neuron, 2020; Olsson et al., Nature Reviews Neuroscience, 2020; Zhang & Glascher, Science Advances, 2020

      EXPERIMENTAL DESIGN

      (2) For each offer type, the experiment "added a uniformly distributed noise in the range of (-10 ,10)". I wonder how this looks like? With only integers such as 25:75, or even with decimal points? More importantly, is it possible to have either 70:30 or 90:10 option, after adding the noise, to have generated an 80:20 split shown to the participants? If so, for the analyses later, when participants saw the 80:20 split, which condition did this trial belong to? 70:30 or 90:10? And is such noise added only to the learning phase, or also to the baseline/transfer phases? This requires some clarification.

      (3) For the offer conditions (90:10, 70:30, 50:50, 30:70, 10:90) - are they randomized? If so, how is it done? Is it randomized within each participants, and/or also across participants (such that each participant experienced different trial sequences)? This is important, as the order especially for the leanring phase can largely impact on the preference learning of the participants.

      STATISTICAL ANALYSIS & COMPUTATIONAL MODELING

      (4) In Study 1 DI offer types (90:10, 70:30), the rejection rate for DI-AI averse looks consistently higher than that for DI averse (ie, blue line is above the yellow line). Is this significant? If so, how come? Since this is a between-subject design, I would not anticipate such a result (especially for the baseline). Also, for the LME results (eg, Table S3), only interactions were reported but not the main results.

      (5) I do not particularly find this analysis appealing: "we examined whether participants' changes in rejection rates between Transfer and Baseline, could be explained by the degree to which they vicariously learned, defined as the change in punishment rates between the first and last 5 trials of the Learning phase." Naturally, participants' behavior in the first 5 trials in the learning phase will be similar to those in the baseline; and their behavior in the last 5 trials in the learning phase would echo those at the transfer phase. I think it would be stronger to link the preference learning results to the chance between baseline and transfer phase, eg, by looking at the difference between alpha (beta) at the end of the learning phase and the initial alpha (beta).

      (6) I wonder if data from the baseline and transfer phases can also be modeled, using a simple Fehr-Schimdt model? This way, the change in alpha/beta can also be examined between the baseline and transfer phase.

      (7) I quite liked Study 2 that tests the generalization effect, and I expected to see an adapted computational modeling to directly reflect this idea. Indeed, the authors wrote "[...] given that this model [...] assumes the sort of generalization of preferences between offer types [...]". But where exactly did the preference learning model assumed the generalization? In the methods, the modeling seems to be only about Study 1; did the authors advise their model to accommodate Study 2? The authors also ran simulation for the learning phase in Study 2 (Figure 6), and how did the preference updated (if at all) for offers (90:10 and 10:90) where feedback was not given? Extending/Unpacking the computational modeling results for Study2 will be very helpful for the paper.

      Comments on revisions:

      I kept my original public review, so that future readers can see the progress and development of the manuscript.

      The authors have largely addressed my original questions/concerns, and I have two outstanding comments.

      (a) Related to my original comment #6, where I suggested to apply the F-S model also to the baseline and transfer phase. The authors were inclined not to do it, but in fact later in comment #7 and in the manuscript they opted to use a more complex F-S-based model to their learning phase. I agree that the rejection rate is indeed a clear indication, but for completeness, it'd be more consistent and compelling if the paper follows a model-free (model-agnostic) and model-based approach in all phases of the experiment.

      (b) Related to my original comment #4, I appreciate that the authors have provided more details of their LMM models. But I don't think it is accurate regardless. First, all offer levels (50:50, 30:70, 10:90), should not be coded as pure categorical levels. In fact, they have an ordinal meaning, a single ordinal predictor with three levels should be used. This also avoids the excessive number of interactions the authors have pointed out.

      Second, running a model with only interactions without main effects is flawed. All textbooks on stats emphasize that without the presence of the main effects, the interpretation of interaction only is biased.

      So these LMMs needs to be revised before the manuscript eventually gets to a version of record.

    3. Reviewer #2 (Public review):

      Summary:

      This study investigates whether individuals can learn to adopt egalitarian norms that incur a personal monetary cost, such as rejecting offers that benefit them more than the giver (advantageous inequitable offers). While these behaviors are uncommon, two experiments aim to demonstrate that individuals can learn to reject such offers by observing a "teacher" who follows these norms. The authors use computational modelling to argue that learners adopt these norms through a sophisticated process, inferring the latent structure of the teacher's preferences, akin to theory of mind.

      Strengths:

      This paper is well-written and tackles an important topic relevant to social norms, morality, and justice. The findings are promising (though further control conditions are necessary to support the conclusions). The study is well-situated in the literature, with a clever experimental design and a computational approach that may offer insights into latent cognitive processes. In the revision, the authors clarified some questions related to the initial submission.

      Weaknesses:

      Despite these strengths, I remain unconvinced that the current evidence supports the paper's central claims. Below, I outline several issues that, in my view, limit the strength of the conclusions.

      (1) Experimental Design and Missing Control Condition:

      The authors set out to test whether observing a "teacher" who is averse to advantageous inequity (Adv-I) will affect observers' own rejection of Adv-I offers. However, I think the design of the task lacks an important control condition needed to address this question. At present, participants are assigned to one of two teachers: DIS or DIS+ADV. Behavioral differences between these groups can only reveal relative differences in influence; they cannot establish whether (and how) either teacher independently affects participants' own behavior. For example, a significant difference between conditions can emerge even if participants are only affected by the DIS teacher and are not affected at all by the DIS+ADV teacher. What is crucially missing here is a no-teacher control condition, which can then be compared with each teacher condition separately. This control condition would also control for pure temporal effects unrelated to teacher influence (e.g., increasing Adv-I rejections due to guilt build-up).

      While this criticism applies to both experiments, it is especially apparent in Experiment 2. As shown in Figure 4, the interaction for 10:90 offers reflects a decrease in rejection rates following the DIS teacher, with no significant change following the DIS+ADV teacher. Ignoring temporal effects, this pattern suggests that participants may be learning NOT to reject from the DIS teacher, rather than learning to reject from the DIS+ADV teacher. On this basis, I do not see convincing evidence that participants' own choices were shaped by observing Adv-I rejections.

      In the Discussion, the authors write that "We found that participants' own Adv-I-averse preferences shifted towards the preferences of the Teacher they just observed, and the strength of these contagion effects related to the degree of behavior change participants exhibited on behalf of the Teachers, suggesting that they internalized, at least somewhat, these inequity preferences." However, there is no evidence that directly links the degree of behaviour change (on the teacher's behalf) to contagion effects (own behavioural change). I think there was a relevant analysis in the original version, but it was removed from the current version.

      (2) Modelling Efforts: The modelling approach is underdeveloped. The identification of the "best model" lacks transparency, as no model-recovery results are provided. Additionally, behavioural fits for the losing models are not shown, leaving readers in the dark about where these models fail. Readers would benefit from seeing qualitative/behavioural patterns that favour the winning model. Moreover, the reinforcement learning (RL) models used are overly simplistic, treating actions as independent when they are likely inversely related. For example, the feedback that the teacher would have rejected an offer provides evidence that rejection is "correct" but also that acceptance is "an error," and the latter is not incorporated into the modelling. In other words, offers are modelled as two-armed bandits (where separate values are learned for reject and accept actions), but the situation is effectively a one-armed bandit (if one action is correct, the other is mistaken). It is unclear to what extent this limitation affects the current RL formulations. Can the authors justify/explain their reasoning for including these specific variants? The manuscript only states Q-values for reject actions, but what are the Q-values for accept actions? This is unclear.

      In Experiment 2, only the preferred model is capable of generalization, so it is perhaps unsurprising that this model "wins." However, this does not strongly support the proposed learning mechanism, lacking a comparison with simpler generalizing mechanisms (see following comments).

      (3) Conceptual Leap in Modelling Interpretation: The distinction between simple RL models and preference-inference models seems to hinge on the ability to generalize learning from one offer to another. Whereas in the RL models, learning occurs independently for each offer (hence no cross-offer generalization), preference inference allows for generalization between different offers. However, the paper does not explore "model-free" RL models that allow generalization based on the similarity of features of the offers (e.g., payment for the receiver, payment for the offer-giver, who benefits more). Such models are more parsimonious and could explain the results without invoking a theory of mind or any modelling of the teacher. In such model versions, a learner acquires a functional form that allows prediction of the teacher's feedback based on offer features (e.g., linear or quadratic weighting). Because feedback for an offer modulates the parameters of this function (feature weights), generalization occurs without necessarily evoking any sophisticated model of the other person. This leaves open the possibility that RL models could perform just as well or even outperform the preference learning model, casting doubt on the authors' conclusions.

      Of note: even the behaviourists knew that when Little Albert was taught to fear rats, this fear generalized to rabbits. This could occur simply because rabbits are somewhat similar to rats. But this doesn't mean Little Albert had a sophisticated model of animals that he used to infer how they behave.

      In their rebuttal letter, the authors acknowledge these possibilities, but the manuscript still does not explore or address alternative mechanisms.

      (4) Limitations of the Preference-Inference Model: The preference-inference model struggles to capture key aspects of the data, such as the increase in rejection rates for 70:30 DI offers during the learning phase (e.g., Fig. 3A, AI+DI blue group). This is puzzling. Thinking about this, I realized the model makes quite strong, unintuitive predictions which are not examined. For example, if a subject begins the learning phase rejecting the 70:30 offer more than 50% of the time (meaning the starting guilt parameter is higher than 1.5), then, over learning, the tendency to reject will decrease to below 50% (the guilt parameter will be pulled down below 1.5). This is despite the fact that the teacher rejects 75% of the offers. In other words, as learning continues, learners will diverge from the teacher. On the other hand, if a participant begins learning by tending to accept this offer (guilt < 1.5), then during learning, they can increase their rejection rate but never above 50%. Thus, one can never fully converge on the teacher. I think this relates to the model's failure in accounting for the pattern mentioned above. I wonder if individuals actually abide by these strict predictions. In any case, these issues raise questions about the validity of the model as a representation of how individuals learn to align with a teacher's preferences (given that the model doesn't really allow for such an alignment).

      In their rebuttal letter, the authors acknowledged these anomalies and stated that they were able to build a better model (where anomalies are mitigated, though not fully eliminated). But they still report the current model and do not develop/discuss alternatives. A more principled model may be a Bayesian model where participants learn a belief distribution (rather than point estimates) regarding the teacher's parameters.

      (5) Statistical Analysis: The authors state in their rebuttal letter that they used the most flexible random effect structure in mixed-effects models. But this seems not to be the case in the model reported in Table SI3 (the very same model was used for other analyses too). Indeed, here it seems only intercepts are random effects. This left me confused about which models were used.

    4. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      Zhang et al. addressed the question of whether advantageous and disadvantageous inequality aversion can be vicariously learned and generalized. Using an adapted version of the ultimatum game (UG), in three phases, participants first gave their own preference (baseline phase), then interacted with a "teacher" to learn their preference (learning phase), and finally were tested again on their own (transfer phase). The key measure is whether participants exhibited similar choice preferences (i.e., rejection rate and fairness rating) influenced by the learning phase, by contrasting their transfer phase and baseline phase. Through a series of statistical modeling and computational modeling, the authors reported that both advantageous and disadvantageous inequality aversion can indeed be learned (Study 1), and even be generalised (Study 2).

      Strengths:

      This study is very interesting, it directly adapted the lab's previous work on the observational learning effect on disadvantageous inequality aversion, to test both advantageous and disadvantageous inequality aversion in the current study. Social transmission of action, emotion, and attitude have started to be looked at recently, hence this research is timely. The use of computational modeling is mostly appropriate and motivated. Study 2, which examined the vicarious inequality aversion in conditions where feedback was never provided, is interesting and important to strengthen the reported effects. Both studies have proper justifications to determine the sample size.

      Weaknesses:

      Despite the strengths, a few conceptual aspects and analytical decisions have to be explained, justified, or clarified.

      INTRODUCTION/CONCEPTUALIZATION

      (1) Two terms seem to be interchangeable, which should not, in this work: vicarious/observational learning vs preference learning. For vicarious learning, individuals observe others' actions (and optionally also the corresponding consequence resulting directly from their own actions), whereas, for preference learning, individuals predict, or act on behalf of, the others' actions, and then receive feedback if that prediction is correct or not. For the current work, it seems that the experiment is more about preference learning and prediction, and less so about vicarious learning. The intro and set are heavily around vicarious learning, and later the use of vicarious learning and preference learning is rather mixed in the text. I think either tone down the focus on vicarious learning, or discuss how they are different. Some of the references here may be helpful: (Charpentier et al., Neuron, 2020; Olsson et al., Nature Reviews Neuroscience, 2020; Zhang & Glascher, Science Advances, 2020)

      We are appreciative of the Reviewer for raising this question and providing the reference. In response to this comment we have elected to avoid, in most cases, use of the term ‘vicarious’ and instead focus the paper on learning of others’ preferences (without specific commitment to various/observational learning per se). These changes are reflected throughout all sections of the revised manuscript, and in the revised title. We believe this simplified terminology has improved the clarity of our contribution.

      EXPERIMENTAL DESIGN

      (2) For each offer type, the experiment "added a uniformly distributed noise in the range of (-10 ,10)". I wonder what this looks like? With only integers such as 25:75, or even with decimal points? More importantly, is it possible to have either 70:30 or 90:10 option, after adding the noise, to have generated an 80:20 split shown to the participants? If so, for the analyses later, when participants saw the 80:20 split, which condition did this trial belong to? 70:30 or 90:10? And is such noise added only to the learning phase, or also to the baseline/transfer phases? This requires some clarification.

      We thank the Reviewer for pointing this out. The uniformly distributed noise was added to all three phases to make the proposers’ behavior more realistic. This added noise was rounded to integer numbers, constrained from -9 to 9, which means in both 70:30 and 90:10 offer types, an 80:20 split could not occur. We have made this feature of our design clear in the Method section Line 524 ~ 528:

      “In all task phases, we added uniformly distributed noise to each trial’s offer (ranging from -9 to 9, inclusive, rounding to the nearest integer) such that the random amount added (or subtracted) from the Proposer’s share was subtracted (or added) to the Receiver’s share. We adopted this manipulation to make the proposers’ behavior appear more realistic. The orders of offers participants experienced were fully randomized within each experiment phase. ”

      (3) For the offer conditions (90:10, 70:30, 50:50, 30:70, 10:90) - are they randomized? If so, how is it done? Is it randomized within each participant, and/or also across participants (such that each participant experienced different trial sequences)? This is important, as the order especially for the learning phase can largely impact the preference learning of the participants.

      We agree with the Reviewer the order in which offers are experienced could be very important. The order of the conditions was randomized independently for each participant (i.e. each participant experienced different trial sequences). We made this point clear in the Methods part. Line 527 ~ 528:

      “The orders of offers participants experienced were fully randomized within each experiment phase.”

      STATISTICAL ANALYSIS & COMPUTATIONAL MODELING

      (4) In Study 1 DI offer types (90:10, 70:30), the rejection rate for DI-AI averse looks consistently higher than that for DI averse (ie, the blue line is above the yellow line). Is this significant? If so, how come? Since this is a between-subject design, I would not anticipate such a result (especially for the baseline). Also, for the LME results (eg, Table S3), only interactions were reported but not the main results.

      We thank the Reviewer for pointing out this feature of the results. Prompted by this comment, we compared the baseline rejection rates between two conditions for these two offer types, finding in Experiment 1 that rejection rates in the DI-AI-averse condition were significantly higher than in the DI-averse condition (DI-AI-averse vs. DI-averse; Offer 90:10, β = 0.13, p < 0.001, Offer 70:30, β = 0.09, p < 0.034). We agree with the Reviewer that there should, in principle, be no difference between the experiences of participants in these two conditions is identical in the Baseline phase. However, we did not observe these difference in baseline preferences in Experiment 2 (DI-AI-averse vs. DI-averse; Offer 90:10, β = 0.07, p < 0.100, Offer 70:30, β = 0.05, p < 0.193). On the basis of the inconsistency of this effect across studies we believe this is a spurious difference in preferences stemming from chance.

      Regarding the LME results, the reason why only interaction terms are reported is due to the specification of the model and the rationale for testing.

      Taking the model reported in Table S3 as an example—a logistic model which examines Baseline phase rejection rates as a function of offer level and condition—the between-subject conditions (DI-averse and DI-AI-averse) are represented by dummy-coded variables. Similarly, offer types were also dummy-coded, such that each of the five columns (90:10, 70:30, 50:50, 30:70, and 10:90) correspond corresponded to a particular offer type. This model specification yields ten interaction terms (i.e., fixed effects) of interest—for example, the “DI-averse × Offer 90:10” indicates baseline rejection rates for 90:10 offers in DI-averse condition. Thus, to compare rejection rates across specific offer types, we estimate and report linear contrasts between these resultant terms. We have clarified the nature of these reported tests in our revised Results—for example, line189-190: “linear contrasts; e.g. 90:10 vs 10:90, all Ps<0.001, see Table S3 for logistic regression coefficients for rejection rates).

      Also in response to this comment that and a recommendation from Reviewer 2 (see below), we have revised our supplementary materials to make each model specification clearer as SI line 25:

      RejectionRate ~ 0 + (Disl + Advl):(Offer10 + Offer30 + Offer50 + Offer70 + Offer90) + (1|Subject)”

      (5) I do not particularly find this analysis appealing: "we examined whether participants' changes in rejection rates between Transfer and Baseline, could be explained by the degree to which they vicariously learned, defined as the change in punishment rates between the first and last 5 trials of the Learning phase." Naturally, the participants' behavior in the first 5 trials in the learning phase will be similar to those in the baseline; and their behavior in the last 5 trials in the learning phase would echo those at the transfer phase. I think it would be stronger to link the preference learning results to the change between the baseline and transfer phase, eg, by looking at the difference between alpha (beta) at the end of the learning phase and the initial alpha (beta).

      Thanks for pointing this out. Also, considering the comments from Reviewer 2 concerning the interpretation of this analysis, we have elected to remove this result from our revision.

      (6) I wonder if data from the baseline and transfer phases can also be modeled, using a simple Fehr-Schimdt model. This way, the change in alpha/beta can also be examined between the baseline and transfer phase.

      We agree with the Reviewer that a simplified F-S model could be used, in principle, to characterize Baseline and Transfer phase behavior, but it is our view that the rejection rates provide readers with the clearest (and simplest) picture of how participants are responding to inequity. Put another way, we believe that the added complexity of using (and explaining) a new model to characterize simple, steady-state choice behavior (within these phases) would not be justified or add appreciable insights about participants’ behavior.

      (7) I quite liked Study 2 which tests the generalization effect, and I expected to see an adapted computational modeling to directly reflect this idea. Indeed, the authors wrote, "[...] given that this model [...] assumes the sort of generalization of preferences between offer types [...]". But where exactly did the preference learning model assume the generalization? In the methods, the modeling seems to be only about Study 1; did the authors advise their model to accommodate Study 2? The authors also ran simulation for the learning phase in Study 2 (Figure 6), and how did the preference update (if at all) for offers (90:10 and 10:90) where feedback was not given? Extending/Unpacking the computational modeling results for Study 2 will be very helpful for the paper.

      We are appreciative of the Reviewer’s positive impression of Experiment 2. Upon reflection, we realize that our original submission was not clear about the modeling done in Experiment 2, and we should clarify here that we did also fit the Preference Inference model to this dataset. As in Experiment 1, this model assumes that the participants have a representation of the teacher’s preference as a Fehr-Schmidt form utility function and infer the Teacher’s Envy and Guilt parameters through learning. The model indicates that, on the basis of experience with the Teacher’s preferences on moderately unfair offers (i.e., offer 70:30 and offer 30:70), participants can successfully infer these guess of these two parameters, and in turn, compute Fehr-Schmidt utility to guide their decisions in the extreme unfair offers (i.e., offer 90:10 and offer 10:90).

      In response to this comment, we have made this clearer in our Results (Line 377-382):

      “Finally, following Experiment 1, we fit a series of computational models of Learning phase choice behavior, comparing the goodness-of-fit of the four best-fitting models from Experiment 1 (see Methods). As before, we found that the Preference Inference model provided the best fit of participants’ Learning Phase behavior (Figure S1a, Table S12). Given that this model is able to infer the Teacher’s underlying inequity-averse preferences (rather than learns offer-specific rejection preferences), it is unsurprising that this model best describes the generalization behavior observed in Experiment 2.”

      and in our revised Methods (Line 551-553)

      “We considered 6 computational models of Learning Phase choice behavior, which we fit to individual participants’ observed sequences of choices, in both Experiments 1 and 2, via Maximum Likelihood Estimation”

      Reviewer #2 (Public review):

      Summary:

      This study investigates whether individuals can learn to adopt egalitarian norms that incur a personal monetary cost, such as rejecting offers that benefit them more than the giver (advantageous inequitable offers). While these behaviors are uncommon, two experiments demonstrate that individuals can learn to reject such offers through vicarious learning - by observing and acting in line with a "teacher" who follows these norms. The authors use computational modelling to argue that learners adopt these norms through a sophisticated process, inferring the latent structure of the teacher's preferences, akin to theory of mind.

      Strengths:

      This paper is well-written and tackles a critical topic relevant to social norms, morality, and justice. The findings, which show that individuals can adopt just and fair norms even at a personal cost, are promising. The study is well-situated in the literature, with clever experimental design and a computational approach that may offer insights into latent cognitive processes. Findings have potential implications for policymakers.

      Weaknesses:

      Note: in the text below, the "teacher" will refer to the agent from which a participant presumably receives feedback during the learning phase.

      (1) Focus on Disadvantageous Inequity (DI): A significant portion of the paper focuses on responses to Disadvantageous Inequitable (DI) offers, which is confusing given the study's primary aim is to examine learning in response to Advantageous Inequitable (AI) offers. The inclusion of DI offers is not well-justified and distracts from the main focus. Furthermore, the experimental design seems, in principle, inadequate to test for the learning effects of DI offers. Because both teaching regimes considered were identical for DI offers the paradigm lacks a control condition to test for learning effects related to these offers. I can't see how an increase in rejection of DI offers (e.g., between baseline and generalization) can be interpreted as speaking to learning. There are various other potential reasons for an increase in rejection of DI offers even if individuals learn nothing from learning (e.g. if envy builds up during the experiment as one encounters more instances of disadvantageous fairness).

      We are appreciative of the Reviewer’s insight here and for the opportunity to clarify our experimental logic. We included DI offers in order to 1) expose participants to the full spectrum of offer types, and avoid focusing participants exclusively upon AI offers, which might result in a demand characteristic and 2) to afford exploration of how learning dynamics might differ in DI context s—which was, to some extent, examined in our previous study (FeldmanHall, Otto, & Phelps, 2018)—versus AI contexts. Furthermore, as this work builds critically on our previous study, we reasoned that replicating these original findings (in the DI context) would be important for demonstrating the generality of the learning effects in the DI context across experimental settings. We now remark on this point in our revised Introduction Line 129 ~132:

      “In addition, to mechanistically probe how punitive preferences are acquired in Adv-I and Dis-I contexts—in turn, assessing the replicability of our earlier study investigating punitive preference acquisition in the Dis context—we also characterize trial-by-trial acquisition of punitive behavior with computational models of choice.”

      (2) Statistical Analysis: The analysis of the learning effects of AI offers is not fully convincing. The authors analyse changes in rejection rates within each learning condition rather than directly comparing the two. Finding a significant effect in one condition but not the other does not demonstrate that the learning regime is driving the effect. A direct comparison between conditions is necessary for establishing that there is a causal role for the learning regime.

      We agree with the Reviewer and upon reflection, believe that direct comparisons between conditions would be helpful to support the claim that the different learning conditions are responsible for the observed learning effects. In brief, these specific tests buttress the idea that exposure to AI-averse preferences result in increases in AI punishment rates in the Transfer phase (over and above the rates observed for participants who were only exposed to DI-averse preferences).

      Accordingly, our revision now reports statistics concerning the differences between conditions for AI offers in Experiment 1 (Line 198~ 207):

      “Importantly, when comparing these changes between the two learning conditions, we observed significant differences in rejection rates for Adv-I offers: compared to exposure to a Teacher who rejected only Dis-I offers, participants exposed to a Teacher who rejected both Dis-I and Adv-I offers were more likely to reject Adv-I offers and rated these offers more unfair. This difference between conditions was evident in both 30:70 offers (Rejection rates: β(SE) = 0.10(0.04), p = 0.013; Fairness ratings: β(SE) = -0.86(0.17), p < 0.001) and 10:90 offers (Rejection rates: β(SE) = 0.15(0.04), p < 0.001, Fairness ratings: β(SE) = -1.04(0.17), p < 0.001). As a control, we also compared rejection rates and fairness rating changes between conditions in Dis-I offers (90:10 and 30:70) and Fair offers (i.e., 50:50) but observed no significant difference (all ps > 0.217), suggesting that observing an Adv-I-averse Teacher’s preferences did not influence participants’ behavior in response to Dis-I offers.”

      Line 222 ~ 230:

      “A mixed-effects logistic regression revealed a significant larger (positive) effect of trial number on rejection rates of Adv-I offers for the Adv-Dis-I-Averse condition compared to the Dis-I-Averse condition. This relative rejection rate increase was evident both in 30:70 offers (Table S7; β(SE) = -0.77(0.24), p < 0.001) and in 10:90 offers (β(SE) = -1.10(0.33), p < 0.001). In contrast, comparing Dis-I and Fairness offers when the Teacher showed the same tendency to reject, we found no significant difference between the two conditions (90:10 splits: β(SE)=-0.48(0.21),p=0.593;70:30 splits: β(SE)=-0.01(0.14),p=0.150; 50:50 splits: β(SE)=-0.00(0.21),p=0.086). In other words, participants by and large appeared to adjust their rejection choices in accordance with the Teacher’s feedback in an incremental fashion.”

      And in Experiment 2 Line 333 ~ 345:

      “Similar to what we observed in Experiment 1 (Figure 4a), Compared to the participants in the Dis-I-Averse Condition, participants in the Adv-I-Averse Condition increased their rates of rejection of extreme Adv-I offerers (i.e., 10:90) in the Transfer Phase, relative to the Baseline phase (β(SE) = -0.12(0.04), p < 0.004; Table S9), suggesting that participants’ learned (and adopted) Adv-I-averse preferences, generalized from one specific offer type (30:70) to an offer types for which they received no Teacher feedback (10:90). Examining extreme Dis-I offers where the Teacher exhibited identical preferences across the two learning conditions, we found no difference in the Changes of Rejection Rates from Baseline to Transfer phase between conditions (β(SE) = -0.05(0.04), p < 0.259). Mirroring the observed rejection rates (Figure 4b), relative to the Dis-I-Averse Condition, participants’ fairness ratings for extreme Adv-I offers increased more from the Baseline to Transfer phase in the Adv-Dis-I-Averse Condition than in the Dis-I-Averse condition (β(SE) = -0.97(0.18), p < 0.001), but, importantly, changes in fairness ratings for extreme Dis-I offers did not differ significantly between learning conditions (β(SE) = -0.06(0.18), p < 0.723)”

      Line 361 ~ 368:

      “Examining the time course of rejection rates in Adv-I-contexts during the Learning phase (Figure 5) revealed that participants learned over time to punish mildly unfair 30:70 offers, and these punishment preferences generalized to more extreme offers (10:90). Specifically, compared to the Dis-I-Averse Condition, in the Adv-Dis-I-Averse condition we observed a significant larger trend of increase in rejections rates for 10:90 (Adv-I) offers (Figure 5, β(SE) = -0.81(0.26), p < 0.002 mixed-effects logistic regression, see Table S10). Again, when comparing the rejection rate increase in the extremely Dis-I offers (90:10), we didn’t find significant difference between conditions (β(SE) = -0.25(0.19), p < 0.707).”

      (3) Correlation Between Learning and Contagion Effects:

      The authors argue that correlations between learning effects (changes in rejection rates during the learning phase) and contagion effects (changes between the generalization and baseline phases) support the idea that individuals who are better aligning their preferences with the teacher also give more consideration to the teacher's preferences later during generalization phase. This interpretation is not convincing. Such correlations could emerge even in the absence of learning, driven by temporal trends like increasing guilt or envy (or even by slow temporal fluctuations in these processes) on behalf of self or others. The reason is that the baseline phase is temporally closer to the beginning of the learning phase whereas the generalization phase is temporally closer to the end of the learning phase. Additionally, the interpretation of these effects seems flawed, as changes in rejection rates do not necessarily indicate closer alignment with the teacher's preferences. For example, if the teacher rejects an offer 75% of the time then a positive 5% learning effect may imply better matching the teacher if it reflects an increase in rejection rate from 65% to 70%, but it implies divergence from the teacher if it reflects an increase from 85% to 90%. For similar reasons, it is not clear that the contagion effects reflect how much a teacher's preferences are taken into account during generalization.

      This comment is very similar to a previous comment made by Reviewer 1, who also called into question the interpretability of these correlations. In response to both of these comments we have elected to remove these analyses from our revision.

      (4) Modeling Efforts: The modelling approach is underdeveloped. The identification of the "best model" lacks transparency, as no model-recovery results are provided, and fits for the losing models are not shown, leaving readers in the dark about where these models fail. Moreover, the reinforcement learning (RL) models used are overly simplistic, treating actions as independent when they are likely inversely related (for example, the feedback that the teacher would have rejected an offer provides feedback that rejection is "correct" but also that acceptance is "an error", and the later is not incorporated into the modelling). It is unclear if and to what extent this limits current RL formulations. There are also potentially important missing details about the models. Can the authors justify/explain the reasoning behind including these variants they consider? What are the initial Q-values? If these are not free parameters what are their values?

      We are appreciative of the Reviewer for identifying these potentially unaddressed questions.

      The RL models we consider in the present study are naïve models which, in our previous study (FeldmanHall, Otto, & Phelps, 2018), we found to capture important aspects of learning. While simplistic, we believed these models serve as a reasonable baseline for evaluating more complex models, such as the Preference Inference model. We have made this point more explicit in our revised Introduction, Line 129 ~ 132:

      “In addition, to mechanistically probe how punitive preferences may be acquired in Adv-I and Dis-I contexts—in turn, assessing the replicability of our earlier study investigating punitive preference acquisition in the Dis-I context—we also characterize trial-by-trial acquisition of punitive behavior with computational models of choice.”

      Again, following from our previous modeling of observational learning (FeldmanHall et al., 2018), we believe that the feedback the Teacher provides here is ideally suited to the RL formalism. In particular, when the teacher indicates that the participant’s choice is what they would have preferred, the model receives a reward of ‘1’ (e.g., the participant rejects and the Teacher indicates they would preferred rejection, resulting in a positive prediction error) otherwise, the model receives a reward of ‘0’ (e.g., the participant accepts and the Teacher indicates they would preferred rejection, resulting in a negative prediction error), indicating that the participant did not choose in accordance with the Teacher’s preferences. Through an error driven learning process, these models provide a naïve way of learning to act in accordance with the Teacher’s preferences.

      Regarding the requested model details: When treating the initial values as free parameters (model 5), we set Q(reject, offertype) as free values in [0,1] and Q(accept,offertype) as 0.5. This setting can capture participants' initial tendency to reject or accept offers from this offer type. When the initial values are fixed, for all offer types we set Q(reject, offertype) = Q(accept,offertype) = 0.5. In practice, when the initial values are fixed, setting them to 0.5 or 0 doesn’t make much difference. We have clarified these points in our revised Methods, Line 275 ~ 576:

      “We kept the initial values fixed in this model, that is Q<sub>0</sub>(reject,offertype) =0.5, (offertype ∈ 90:10, 70:30, 50:50, 30:70, 10:90)”

      And Line 582 ~ 584:

      “Formally, this model treats Q<sub>0</sub>(reject,offertype) =0.5, (offertype ∈ 90:10, 70:30, 50:50, 30:70, 10:90) as free parameters with values between 0 and 1.”

      (5) Conceptual Leap in Modeling Interpretation: The distinction between simple RL models and preference-inference models seems to hinge on the ability to generalize learning from one offer to another. Whereas in the RL models learning occurs independently for each offer (hence to cross-offer generalization), preference inference allows for generalization between different offers. However, the paper does not explore RL models that allow generalization based on the similarity of features of the offers (e.g., payment for the receiver, payment for the offer-giver, who benefits more). Such models are more parsimonious and could explain the results without invoking a theory of mind or any modelling of the teacher. In such model versions, a learner learns a functional form that allows to predict the teacher's feedback based on said offer features (e.g., linear or quadratic form). Because feedback for an offer modulates the parameters of this function (feature weights) generalization occurs without necessarily evoking any sophisticated model of the other person. This leaves open the possibility that RL models could perform just as well or even show superiority over the preference learning model, casting doubt on the authors' conclusions. Of note: even the behaviourists knew that as Little Albert was taught to fear rats, this fear generalized to rabbits. This could occur simply because rabbits are somewhat similar to rats. But this doesn't mean little Alfred had a sophisticated model of animals he used to infer how they behave.

      We are appreciative of the Reviewer for their suggestion of an alternative explanation for the observed generalization effects. Our understanding of the suggestion, put simply, put simply, is that an RL model could capture the observed generalization effects if the model were to learn and update a functional form of the Teacher’s rejection preferences using an RL-like algorithm. This idea is similar, conceptually to our account of preference learning whereby the learner has a representation of the teacher’s preferences. In our experiment the offer is in the range of [0-100], the crux of this idea is why the participants should take the functional form (either v-shaped or quadratic) with the minimum at 50. This is important because, at the beginning of the learning phase, the rejection rates are already v-shaped with 50 as its minimum. The participants do not need to adjust the minimum of this functional form. Thus, if we assume that the participants represent the teacher’s rejection rate as a v-shape function with a minimum at [50,50], then this very likely implies that the participants have a representation that the teacher has a preference for fairness. Above all, we agree that with suitable setup of the functional form, one could implement an RL model to capture the generalization effects, without presupposing an internal “model” of the teacher’s preferences.

      However, there is another way of modeling the generalization effect by truly “model-free” similarity-based Reinforcement learning. In this approach, we do not assume any particular functional form of the teacher’s preferences, but rather, assumes that experience acquired in one offer type can be generalized to offers that are close (i.e., similar) to the original offer. Accordingly, we implement this idea using a simple RL model in which the action values for each offer type is updated by a learning rate that is scaled by the distance between that offer and the experienced offer (i.e., the offer that generated the prediction error). This learning rate is governed by a Gaussian distribution, similar to the case in the Gaussian process regression (cf. Chulz, Speekenbrink, & Krause, 2018). The initial value of the ‘Reject’ action, for each offer , is set to a free parameter between 0 and 1, and the initial value for the 'Accept’ action was set to 0.5. The results show that even though this model exhibits the trend of increasing rejection rates observed in the AI-DI punish condition, the initial preferences (i.e., starting point of learning) diverges markedly from the Learning phase behavior we observed in Experiment 1:

      Author response image 1.

      This demonstrated that the participant at least maintains a representation of the teacher’s preference at the beginning. That is, they have prior knowledge about the shape of this preference. We incorporated this property into the model, that is, we considered a new model that assumes v-shaped starting values for rejection with two parameters, alpha and beta, governing the slope of this v-shaped function (this starting value actually mimics the shape of the preference functions of the Fehr-Schmidt model). We found that this new model (which we term the “Model RL Sim Vstart”) provided a satisfactory qualitative fit of the Transfer phase learning curves in Experiment 1 (see below).

      Author response image 2.

      However, we didn’t adopt this model as the best model for the following reasons. First, this model yielded a larger AIC value (indicating worse quantitative fit) compared to our preference Inference model in both Experiments 1 and 2, likely owing to its increased complexity (5 free parameters versus 4 in the Preference Inference model). Accordingly, we believe that inclusion of this model in our revised submission would be more distracting than helpful on account of the added complexity of explaining and justifying these assumptions, and of course its comparatively poor goodness of fit (relative to the preference inference model).

      (6) Limitations of the Preference-Inference Model: The preference-inference model struggles to capture key aspects of the data, such as the increase in rejection rates for 70:30 DI offers during the learning phase (e.g. Figure 3A, AI+DI blue group). This is puzzling.

      Thinking about this I realized the model makes quite strong unintuitive predictions that are not examined. For example, if a subject begins the learning phase rejecting the 70:30 offer more than 50% of the time (meaning the starting guilt parameter is higher than 1.5), then overleaning the tendency to reject will decrease to below 50% (the guilt parameter will be pulled down below 1.5). This is despite the fact the teacher rejects 75% of the offers. In other words, as learning continues learners will diverge from the teacher. On the other hand, if a participant begins learning to tend to accept this offer (guilt < 1.5) then during learning they can increase their rejection rate but never above 50%. Thus one can never fully converge on the teacher. I think this relates to the model's failure in accounting for the pattern mentioned above. I wonder if individuals actually abide by these strict predictions. In any case, these issues raise questions about the validity of the model as a representation of how individuals learn to align with a teacher's preferences (given that the model doesn't really allow for such an alignment).

      In response to this comment we explain our efforts to build a new model that might be able conceptually resolves the issue identified by the Reviewer.

      The key intuition guiding the Preference inference model is a Bayesian account of learning which we aimed to further simplify. In this setting, a Bayesian learner maintains a representation of the teacher’s inequity aversion parameters and updates it according to the teacher’s (observed) behavior. Intuitively, the posterior distribution shifts to the likelihood of the teacher’s action. On this view, when the teacher rejects, for instance, an AI offer, the learner should assign a higher probability to larger values of the Guilt parameter, and in turn the learner should change their posterior estimate to better capture the teacher’s preferences.

      In the current study, we simplified this idea, implementing this sort of learning using incremental “delta rule” updating (e.g. Equation 8 of the main text). Then the key question is to define the “teaching signal”. Assuming that the teacher rejects an offer 70:30, based on Bayesian reasoning, the teacher’s envy parameter (α) is more likely to exceed 1.5 (computed as 30/(50-30), per equation 7) than to be smaller than 1.5. Thus, 1.5, which is then used in equation 8 to update α, can be thought of as a teaching signal. We simply assumed that if the initial estimate is already greater than 1.5, which means the prior is consistent with the likelihood, no updating would occur. This assumption raises the question of how to set the learning rate range. In principle, an envy parameter that is larger than 1.5 should be the target of learning (i.e., the teaching signal), and thus our model definition allows the learning rate to be greater than 1, incorporating this possibility.

      Our simplified preference inference model has already successfully captured some key aspects of the participants’ learning behavior. However, it may fail in the following case: assume that the participant has an initial estimate of 1.51 for the envy parameter (β). Let’s say this corresponds to a rejection rate of 60%. Thus, no matter how many times the teacher rejects the offer 70:30, the participant’s estimate of the envy parameter remains the same, but observing only one offer acceptance would decrease this estimate, and in turn, would decrease the model’s predicted rejection rate. We believe this is the anomalous behavior—in 70:30 offers—identified by the Reviewer which the model does not appear able to recreate participants’ in these offers.

      This issue actually touches the core of our model specification, that is, the choosing of the teaching signal. As we chose 1.5 as the teaching signal—i.e. lower bound on whenever the teacher rejects or accepts an offer of 70:30, a very small deviation of 1.5 would fail one part of updating. One way to mitigate this problem would be to choose a lower bound for α greater than 1.5, such that when the Teacher rejects a 70:30 offer, we assign a number greater than 1.5 (by ‘hard-coding’ this into the model via modification of equation 7). One sensible candidate value could be the middle point between 1.5 and 10 (the maximum value of α per our model definition). Intuitively, the model of this setting could still pull up the value of α to 1.51 when the teacher rejects 70:30, thus alleviating (but not completely eliminating) the anomaly.

      We fitted this modified Preference Inference model to the data from Experiment 1 (see Author response image 3 below) and found that even though this model has a smaller AIC (and thus better quantitative fit than the original Preference Inference model), it still doesn’t fully capture the participants’ behavior for 70:30 offers.

      Author response image 3.

      Accordingly, rather than revising our model to include an unprincipled ‘kludge’ to account for this minor anomaly in the model behavior, we have opted to report our original model in our revision as we still believe it parsimoniously captures our intuitions about preference learning and provides a better fit to the observed behavior than the other RL models considered in the present study.

      Reviewer #1 (Recommendations for the authors):

      (1) I do not particularly prefer the acronyms AI and DI for disadvantageous inequity and advantageous inequity. Although they have been used in the literature, not every single paper uses them. More importantly, AI these days has such a strong meaning of artificial intelligence, so when I was reading this, I'd need to very actively inhibit this interpretation. I believe for the readability for a wider readership of eLife, I would advise not to use AI/DI here, but rather use the full terms.

      We thank the Reviewer for this suggestion. As the full spelling of the two terms are somewhat lengthy, and appear frequently in the figures, we have elected to change the abbreviations for disadvantageous inequity and advantageous inequity to Dis-I and Adv-I, respectively in the main text and the supplementary information. We still use AI/DI in the response letter to make the terminology consistent.

      (2) Do "punishment rate" and "rejection rate" mean the same? If so, it would be helpful to stick with one single term, eg, rejection rate.

      We thank the Reviewer for this suggestion. As these terms have the same meaning, we have opted to use the term “rejection rate” throughout the main text.

      (3) For the linear mixed effect models, were other random effect structures also considered (eg, random slops of experimental conditions)? It might be worth considering a few model specifications and selecting the best one to explain the data.

      Thanks for this comment. Following established best practices (Barr, Levy, Scheepers, & Tily, 2013) we have elected to use a maximal random effects structure, whereby all possible predictor variables in the fixed effects structure also appear in the random effects structure.

      (4) For equation (4), the softmax temperature is denoted as tau, but later in the text, it is called gamma. Please make it consistent.

      We are appreciative of the Reviewer’s attention to detail. We have corrected this error.

      Reviewer #2 (Recommendations for the authors):

      (1) Several Tables in SI are unclear. I wasn't clear if these report raw probabilities of coefficients of mixed models. For any mixed models, it would help to give the model specification (e.g., Walkins form) and explain how variables were coded.

      We are appreciative of the Reviewer’s attention to detail. We have clarified, in the captions accompanying our supplemental regression tables, that these coefficients represent log-odds. Regretfully we are unaware of the “Walkins form” the Reviewer references (even after extensive searching of the scientific literature). However, in our new revision we do include lme4 model syntax in our supplemental information which we believe will be helpful for readers seeking replicate our model specification.

      (2) In one of the models it was said that the guilt and envy parameters were bounded between 0-1 but this doesn't make sense and I think values outside this range were later reported.

      We are again appreciative of the Reviewer’s attention to detail. This was an error we have corrected— the actual range is [0,10].

      (3) It is unclear if the model parameters are recoverable.

      In response to this comment our revision now reports a basic parameter recovery analysis for the winning Preference Inference model. This is reported in our revised Methods:

      “Finally, to verify if the free parameters of the winning model (Preference Inference) are recoverable, we simulated 200 artificial subjects, based on the Learning Phase of Experiment 1, with free parameters randomly chosen (uniformly) from their defined ranges. We then employed the same model-fitting procedure as described above to estimate these parameter value, observing that parameters. We found that all parameters of the model can be recovered (see Figure S2).”

      And scatter plots depicting these simulated (versus recovered) parameters are given in Figure S2 of our revised Supplementary Information:

      (4) I was confused about what Figure S2 shows. The text says this is about correlating contagious effects for different offers but the captions speak about learning effects. This is an important aspect which is unclear.

      We have removed this figure in response to both Reviewers’ comments about the limited insights that can be drawn on the basis of these correlations.

    1. eLife Assessment

      This important study provides solid evidence for new insights into the role of Type-1 nNOS interneurons in driving neuronal network activity and controlling vascular network dynamics in awake, head-fixed mice. The authors use an original strategy based on the ablation of Type-1 nNOS interneurons with local injection of saporin conjugated to a substance P analogue into the somatosensory cortex. They show that ablation of type I nNOS neurons has surprisingly little effect on neurovascular coupling, although it alters neural activity and vascular dynamics.

    2. Reviewer #1 (Public review):

      Turner et al. present an original approach to investigate the role of Type-1 nNOS interneurons in driving neuronal network activity and in controlling vascular network dynamics in awake head-fixed mice. Selective activation or suppression of Type-1 nNOS interneurons has previously been achieved using either chemogenetic, optogenetic or local pharmacology. Here, the authors took advantage of the fact that Type-1 nNOS interneurons are the only cortical cells that express the tachykinin receptor 1 to ablate them with a local injection of saporin conjugated to substance P (SP-SAP). SP-SAP causes cell death in 90 % of type1 nNOS interneurons without affecting microglia, astrocytes and neurons. The authors report that the ablation has no major effects on sleep or behavior. Refining the analysis by scoring neural and hemodynamic signals with electrode recordings, calcium signal imaging and wide field optical imaging, they observe that Type-1 nNOS interneuron ablation does not change the various phases of the sleep/wake cycle. However, it does reduce low-frequency neural activity, irrespective of the classification of arousal state. Analyzing neurovascular coupling using multiple approaches, they report small changes in resting-state neural-hemodynamic correlations across arousal states, primarily mediated by changes in neural activity. Finally, they show that nNOS type 1 interneurons play a role in controlling interhemispheric coherence and vasomotion.

      In conclusion, these results are interesting, use state-of-the-art methods and are well supported by the data and their analysis. I have only a few comments on the stimulus-evoked haemodynamic responses that can be easily addressed:

      Comments on revisions:

      As I mentioned in my initial review, this study is important. In my opinion, it could be published as is. Nonetheless, I am still somewhat dissatisfied with the authors' responses to my earlier comments. I understand that the same animals were not used for both stimulation paradigms, which is unfortunate. Nonetheless, I would have appreciated it if the authors had provided a couple of experiments illustrating GCaMP7 signals during brief stimulation in their reply to the reviewers. I am still unconvinced by the authors' suggestion that the GCaMP7 signal would remain stable during removal of the vascular undershoot. Since the absence of the undershoot is notable, I anticipate that a significant part of the initial response to prolonged stimulation is influenced by processes that occur during the 0.1-second stimulation, processes that may involve a change in the bulk neuronal response.

      In short, the data could support or refute the following statement: "Loss of type-I nNOS neurons drove minimal changes in the vasodilation elicited by brief stimulation..."

    3. Reviewer #2 (Public review):

      Summary:

      This important study by Turner et al., examines the functional role of a sparse but unique population of neurons in the cortex that express Nitric oxide synthase (Nos1). To do this, they pharmacolologically ablate these neurons in focal region of whisker related primary somatosensory (S1) cortex using a saponin-Substance P conjugate. Using widefield and 2-photon microscopy, as well as field recordings, they examine the impact of this cell specific lesion on blood flow dynamics and neuronal population activity. Within primary somatosensory cortex after Nos1 ablation, they find changes in neural activity patterns, decreased delta band power, reduced sensory evoked changes in blood flow (specifically eliminates the sustained blood flow change after stimulation) and decreased vasomotion.

      Strengths:

      This was a technically challenging study and the experiments were executed in an expert manner. The manuscript was well written and I appreciated the cartoon summary diagrams included in each figure. The analysis was rigorous and appropriate. Their discovery that Nos1 neurons can have significant effects on blood flow dynamics and neural activity is quite novel that should seed many follow up, mechanistic experiments to explain this phenomenon. The conclusions were justified by the convincing data presented.

      Weaknesses:

      I did not find any major flaws with the study. I originally noted some potential issues with the authors' characterization of the lesion and its extent, but that has been resolved in the revised manuscript.

      Comments on revisions:

      The authors have thoughtfully addressed the relatively minor concerns I had originally raised. Congratulations to the authors for producing this important paper.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Turner et al. present an original approach to investigate the role of Type-1 nNOS interneurons in driving neuronal network activity and in controlling vascular network dynamics in awake head-fixed mice. Selective activation or suppression of Type-1 nNOS interneurons has previously been achieved using either chemogenetic, optogenetic, or local pharmacology. Here, the authors took advantage of the fact that Type-1 nNOS interneurons are the only cortical cells that express the tachykinin receptor 1 to ablate them with a local injection of saporin conjugated to substance P (SP-SAP). SP-SAP causes cell death in 90 % of type1 nNOS interneurons without affecting microglia, astrocytes, and neurons. The authors report that the ablation has no major effects on sleep or behavior. Refining the analysis by scoring neural and hemodynamic signals with electrode recordings, calcium signal imaging, and wide-field optical imaging, the authors observe that Type-1 nNOS interneuron ablation does not change the various phases of the sleep/wake cycle. However, it does reduce low-frequency neural activity, irrespective of the classification of arousal state. Analyzing neurovascular coupling using multiple approaches, they report small changes in resting-state neural-hemodynamic correlations across arousal states, primarily mediated by changes in neural activity. Finally, they show that nNOS type 1 interneurons play a role in controlling interhemispheric coherence and vasomotion.

      In conclusion, these results are interesting, use state-of-the-art methods, and are well supported by the data and their analysis. I have only a few comments on the stimulus-evoked haemodynamic responses, and these can be easily addressed.

      We thank the reviewer for their positive comments on our work.

      Reviewer #2 (Public review):

      Summary:

      This important study by Turner et al. examines the functional role of a sparse but unique population of neurons in the cortex that express Nitric oxide synthase (Nos1). To do this, they pharmacologically ablate these neurons in the focal region of whisker-related primary somatosensory (S1) cortex using a saponin-substance P conjugate. Using widefield and 2photon microscopy, as well as field recordings, they examine the impact of this cell-specific lesion on blood flow dynamics and neuronal population activity. Locally within the S1 cortex, they find changes in neural activity paFerns, decreased delta band power, and reduced sensory-evoked changes in blood flow (specifically eliminating the sustained blood flow change amer stimulation). Surprisingly, given the tiny fraction of cortical neurons removed by the lesion, they also find far-reaching effects on neural activity paFerns and blood volume oscillations between the cerebral hemispheres.

      Strengths:

      This was a technically challenging study and the experiments were executed in an expert manner. The manuscript was well wriFen and I appreciated the cartoon summary diagrams included in each figure. The analysis was rigorous and appropriate. Their discovery that Nos1 neurons can have far-reaching effects on blood flow dynamics and neural activity is quite novel and surprising (to me at least) and should seed many follow-up, mechanistic experiments to explain this phenomenon. The conclusions were justified by the convincing data presented.

      Weaknesses:

      I did not find any major flaws in the study. I have noted some potential issues with the authors' characterization of the lesion and its extent. The authors may want to re-analyse some of their data to further strengthen their conclusions. Lastly, some methodological information was missing, which should be addressed.

      We thank the reviewer for their enthusiasm for our work.

      Reviewer #3 (Public review):

      The role of type-I nNOS neurons is not fully understood. The data presented in this paper addresses this gap through optical and electrophysiological recordings in adult mice (awake and asleep).

      This manuscript reports on a study on type-I nNOS neurons in the somatosensory cortex of adult mice, from 3 to 9 months of age. Most data were acquired using a combination of IOS and electrophysiological recordings in awake and asleep mice. Pharmacological ablation of the type-I nNOS populations of cells led to decreased coherence in gamma band coupling between lem and right hemispheres; decreased ultra-low frequency coupling between blood volume in each hemisphere; decreased (superficial) vascular responses to sustained sensory stimulus and abolishment of the post-stimulus CBV undershoot. While the findings shed new light on the role of type-I nNOS neurons, the etiology of the discrepancies between current observations and literature observations is not clear and many potential explanations are put forth in the discussion.

      We thank the reviewer for their comments.

      Reviewer #1 (Recommendations for the authors):  

      (1) Figure 3, Type-1 nNOS interneuron ablation has complex effects on neural and vascular responses to brief (.1s) and prolonged (5s) whisker stimulation. During 0.1 s stimulation, ablation of type 1 nNOS cells does not affect the early HbT response but only reduces the undershoot. What is the pan-neuronal calcium response? Is the peak enhanced, as might be expected from the removal of inhibition? The authors need to show the GCaMP7 trace obtained during this short stimulation.

      Unfortunately, we did not perform brief stimulation experiments in GCaMP-expressing mice. As we did not see a clear difference in the amplitude of the stimulus-evoked response with our initial electrophysiology recordings (Fig. 3a), we suspected that an effect might be visible with longer duration stimuli and thus pivoted to a pulsed stimulation over the course of 5 seconds for the remaining cohorts. It would have been beneficial to interweave short-stimulus trials for a direct comparison between the complimentary experiments, but we did not do this.

      During 5s stimulation, both the early and delayed calcium/vascular responses are reduced. Could the authors elaborate on this? Does this mean that increasing the duration of stimulation triggers one or more additional phenomena that are sensitive to the ablation of type 1 nNOS cells and mask what is triggered by the short stimulation? Are astrocytes involved? How do they interpret the early decrease in neuronal calcium?

      As our findings show that ablation reduces the calcium/vascular response more prominently during prolonged stimulation, we do suspect that this is due to additional NO-dependent mechanisms or downstream responses. NO is modulator of neural activity, generally increasing excitability (Kara and Friedlander 1999, Smith and Otis 2003), so any manipulation that changes NO levels will change (likely decrease) the excitability of the network, potentially resulting in a smaller hemodynamic response to sensory stimulation secondary to this decrease. While short stimuli engage rapid neurovascular coupling mechanisms, longer duration (>1s) stimulation could introduce additional regulatory elements, such as astrocytes, that operate on a slower time scale. On the right, we show a comparison of the control groups ploFed together from Fig. 3a and 3b with vertical bars aligned to the peak. During the 5s stimulation, the time-to-peak is roughly 830 milliseconds later than the 0.1s stimulation, meaning it’s plausible that the signals don’t separate until later. Our interpretation is that the NVC mechanisms responsible for brief stimulus-evoked change are either NO-independent or are compensated for in the SSP-SAP group by other means due to the chronic nature of the ablation. 

      We have added the following text to the Discussion (Line 368): “Loss of type-I nNOS neurons drove minimal changes in the vasodilation elicited by brief stimulation, but led to decreased vascular responses to sustained stimulation, suggesting that the early phase of neurovascular coupling is not mediated by these cells, consistent with the multiple known mechanisms for neurovascular coupling (AFwell et al 2010, Drew 2019, Hosford & Gourine 2019) acting through both neurons and astrocytes with multiple timescales (Le Gac et al 2025, Renden et al 2024, Schulz et al 2012, Tran et al 2018).”

      Author response image 1.

      (2) In Figures 4d and e, it is unclear to me why the authors use brief stimulation to analyze the relationship between HbT and neuronal activity (gamma power) and prolonged stimulation for the relationship between HbT and GCaMP7 signal. Could they compare the curves with both types of stimulation?

      As discussed previously, we did not use the same stimulation parameters across cohorts. The mice with implanted electrodes received only brief stimulation, while those undergoing calcium imaging received longer duration stimulus. 

      Reviewer #2 (Recommendations for the authors):

      (1) Results, how far-reaching is the cell-specific ablation? Would it be possible to estimate the volume of the cortex where Nos1 cells are depleted based on histology? Were there signs of neuronal injury more remotely, for example, beading of dendrites?

      We regularly see 1-2 mm in diameter of cell ablation within the somatosensory cortex of each animal, which is consistent with the spread of small molecules. Ribosome inactivating proteins like SAP are smaller than AAVs (~5 nm compared to ~25 nm in diameter) and thus diffuse slightly further. We observed no obvious indication of neuronal injury more remotely or in other brain regions, but we did not image or characterize dendritic beading, as this would require a sparse labeling of neurons to clearly see dendrites (NeuN only stains the cell body). Our histology shows no change in cell numbers. 

      We have added the following text to the Results (Line 124): “Immunofluorescent labeling in mice injected with Blank-SAP showed labeling of nNOS-positive neurons near the injection site. In contrast, mice injected with SP-SAP showed a clear loss in nNOS-labeling, with a typical spread of 1-2 mm from the injection site, though nNOS-positive neurons both subcortically and in the entirety of the contralateral hemisphere remaining intact.”

      (2) For histological analysis of cell counts amer the lesion, more information is needed. How was the region of interest for counting cells determined (eg. 500um radius from needle/pipeFe tract?) and of what volume was analysed?

      The region of interest for both SSP-SAP and Blank SAP injections was a 1 mm diameter circle centered around the injection site and averaged across sections (typically 3-5 when available). In most animals, the SSP-SAP had a lateral spread greater than 500 microns and encompassed the entire depth of cortex (1-1.5 mm in SI, decreasing in the rostral to caudal direction). The counts within the 1 mm diameter ROI were averaged across sections and then converted into the cells per mm area as presented. Note the consistent decrease in type I nNOS cells seen across mice in Fig 1d, Fig S1b.

      We have added the following text in the Materials & Methods (Line 507): “The region of interest for analysis of cell counts was determined based on the injection site for both SP-SAP and Blank SAP injections, with a 1 mm diameter circle centered around the injection site and averaged across 3-5 sections where available. In most animals, the SP-SAP had a lateral spread greater than 500 microns and encompassed the entire depth of cortex (1-1.5 mm in SI).”

      (3) Based on Supplementary Figure 1, it appears that the Saponin conjugate not only depletes Nos neurons but also may affect vascular (endothelial perhaps) Nos expression. Some quantification of this effect and its extent may be insighIul in terms of ascribing the effects of the lesion directly on neurons vs indirectly and perhaps more far-reaching via vascular/endothelial NOS.

      Thank you for this comment. While this is a possibility, while we have found that the high nNOS expression of type-I nnoos neurons makes NADPH diaphorase a good stain for detecting them, it is less useful for cell types that expres NOS at lower levels.  We have found that the absolute intensity of NADPH diaphorase staining is somewhat variable from section to section. Variability in overall NADPH diaphorase intensity is likely due to several factors, such as duration of staining, thickness of the section, and differences in PFA concentration within the tissue and between animals. As NADPH diaphorase staining is highly sensitive to amount PFA exposure, any small differences in processing could affect the intensity, and slight differences in perfusion quality and processing could account. A second, perhaps larger issue could be due to differences in the number of arteries (which will express NOS at much higher levels than veins, and thus will appear darker) in the section. We did not stain for smooth muscle and so cannot differentiate arteries and veins.  Any difference in vessel intensity could be due to random variations in the numbers of arteries/veins in the section. While we believe that this is a potentially interesting question, our histological experiments were not able to address it.

      (4) The assessment for inflammation took place 1 month amer the lesion, but the imaging presumably occurred ~ 2 weeks amer the lesion. Note that it seemed somewhat ambiguous as to when approximately, the imaging, and electrophysiology experiments took place relative to the induction of the lesion. Presumably, some aspects of inflammation and disruption could have been missed, at the time when experiments were conducted, based on this disparity in assessment. The authors may want to raise this as a possible limitation.

      We apologize for our unclear description of the timeline. We began imaging experiments at least 4 weeks amer ablation, the same time frame as when we performed our histological assays. 

      We have added the following text to the Discussion (Line 379): “With imaging beginning four weeks amer ablation, there could be compensatory rewiring of local and/or network activity following type-I nNOS ablation, where other signaling pathways from the neurons to the vasculature become strengthened to compensate for the loss of vasodilatory signaling from the typeI nNOS neurons.”

      (5) Results Figure 2, please define "P or delta P/P". Also, for Figure 2c-f, what do the black vertical ticks represent?

      ∆P/P is the change in the gamma-band power relative to the resting-state baseline, and black tick marks indicate binarized periods of vibrissae motion (‘whisking’). We have clarified this in Figure caption 2 (Line 174).

      (6) Figure 3b-e, is there not an undershoot (eventually) amer 5s of stimulation that could be assessed? 

      Previous work has shown that there is no undershoot in response to whisker stimulations of a few seconds (Drew, Shih, Kelinfeld, PNAS, 2011).  The undershoot for brief stimuli happens within ~2.5 s of the onset/cessation of the brief stimulation, this is clearly lacking in the response to the 5s stim (Fig 3).  The neurovascular coupling mechanisms recruited during the short stimulation are different than those recruited during the long stimulus, making a comparison of the undershoot between the two stimulation durations problematic. 

      For Figures 3e and 6 how was surface arteriole diameter or vessel tone measured? 2P imaging of fluorescent dextran in plasma? Please add the experimental details of 2P imaging to the methods. Including some 2P images in the figures couldn't hurt to help the reader understand how these data were generated.

      We have added details about our 2-photon imaging (FITC-dextran, full-width at half-maximum calculation for vessel diameter) as well as a trace and vessel image to Figure 2.

      We have added the following text to the Materials & Methods (Line 477): “In two-photon experiments, mice were briefly anesthetized and retro-orbitally injected with 100 µL of 5% (weight/volume) fluorescein isothiocyanate–dextran (FITC) (FD150S, Sigma-Aldrich, St. Louis, MO) dissolved in sterile saline.”

      We have added the following text to the Materials & Methods (Line 532): “A rectangular box was drawn around a straight, evenly-illuminated vessel segment and the pixel intensity was averaged along the long axis to calculate the vessel’s diameter from the full-width at half-maximum (https://github.com/DrewLab/Surface-Vessel-FWHM-Diameter; (Drew, Shih et al. 2011)).”

      (7) Did the authors try stimulating other body parts (eg. limb) to estimate how specific the effects were, regionally? This is more of a curiosity question that the authors could comment on, I am not recommending new experiments.

      We did measure changes in [HbT] in the FL/HL representation of SI during locomotion (Line 205), which is known to increase neural activity in the somatosensory cortex (Huo, Smith and Drew, Journal of Neuroscience, 2014; Zhang et al., Nature Communications 2019). We observed a similar but not statistically significant trend of decreased [HbT] in SP-SAP compared to control. This may have been due to the sphere of influence of the ablation being centered on the vibrissae representation and not having fully encompassed the limb representation. We agree with the referee that it would be interesting to characterize these effects on other sensory regions as well as brain regions associated with tasks such as learning and behavior.

      (8) Regarding vasomotion experiments, are there no other components of this waveform that could be quantified beyond just variance? Amplitude, frequency? Maybe these don't add much but would be nice to see actual traces of the diameter fluctuations. Further, where exactly were widefield-based measures of vasomotion derived from? From some seed pixel or ~1mm ROI in the center of the whisker barrel cortex? Please clarify.

      The reviewer’s point is well taken. We have added power spectra of the resting-state data which provides amplitude and frequency information. The integrated area under the curve of the power spectra is equal to the variance. Widefield-based measures of vasomotion were taken from the 1 mm ROI in the center of the whisker barrel cortex.

      We have added the following text to the Materials & Methods (Line 560): “Variance during the resting-state for both ∆[HbT] and diameter signals (Fig. 7) was taken from resting-state events lasting ≥10 seconds in duration. Average ∆[HbT] from within the 1 mm ROI over the vibrissae representation of SI during each arousal state was taken with respect to awake resting baseline events ≥10 seconds in duration.” 

      (9) On page 13, the title seems like a bit strong. The data show a change in variance but that does not necessarily mean a change in absolute amplitude. Also, I did not see any reports of absolute vessel widths between groups from 2P experiments so any difference in the sampling of larger vs smaller arterioles could have affected the variance (ie. % changes could be much larger in smaller arterioles).

      We have updated the title of Figure 7 to specifically state power (which is equivalent to the variance) rather than amplitude (Line 331). We have also added absolute vessel widths to the Results (Line 340): “There was no difference in resting-state (baseline) diameter between the groups, with Blank-SAP having a diameter of 24.4 ± 7.5 μm and SP-SAP having a diameter of 23.0 ± 9.4 μm (Fest, p ti 0.61). “

      (10) Big picture question. How could a manipulation that affects so few cells in 1 hemisphere (below 0.5% of total neurons in a region comprising 1-2% of the volume of one hemisphere) have such profound effects in both hemispheres? The authors suggest that some may have long-range interhemispheric projections, but that is presumably a fraction of the already small fraction of Nos1 neurons. Perhaps these neurons have specializing projections to subcortical brain nuclei (Nucleus Basilis, Raphe, Locus Coerulus, reticular thalamus, etc) that then project widely to exert this outsized effect? Has there not been a detailed anatomical characterization of their efferent projections to cortical and sub-cortical areas? This point could be raised in the discussion.

      We apologize for the lack of clarity of our work in this point.  We would like to clarify that the only analysis showing a change in the unablated hemisphere being coherence/correlation analysis between the two hemispheres.  Other metrics (LFP power and CBV power spectra) do not change in the hemisphere contralateral to the injections site, as we show in data added in two supplementary figures (Fig. S4 and 7). The coherence/correlation is a measure of the correlated dynamics in the two hemispheres. For this metric to change, there only needs to be a change in the dynamics of one hemisphere relative to another.  If some aspects of the synchronization of neural and vascular dynamics across hemispheres are mediated by concurrent activation of type I nNOS neurons in both hemispheres, ablating them in one hemisphere will decrease synchrony. It is possible that type I nNOS neurons make some subcortical projections that were not reported in previous work (Tomioka 2005, Ruff 2024), but if these exist they are likely to be very small in number as they were not noted.  

      We have added the text in the Results (Line 228): “In contrast to the observed reductions in LFP in the ablated hemisphere, we noted no gross changes in the power spectra of neural LFP in the unablated hemisphere (Fig. S7) or power of the cerebral blood volume fluctuations in either hemisphere (Fig. S4).”

      Line 335): “The variance in ∆[HbT] during rest, a measure of vasomotion amplitude, was significantly reduced following type-I nNOS ablation (Fig. 7a), dropping from 40.9 ± 3.4 μM<sup>2</sup> in the Blank-SAP group (N ti 24, 12M/12F) to 23.3 ± 2.3 μM<sup>2</sup> in the SP-SAP group (N ti 24, 11M/13F) (GLME p ti 6.9×10<sup>-5</sup>) with no significant di[erence in the unablated hemisphere (Fig. S7).”

      Reviewer #3 (Recommendations for the authors):

      (1)  The reporting would be greatly strengthened by following ARRIVE guidelines 2.0: https://arriveguidelines.org/: aFrition rates and source of aFrition, justification for the use of 119 (beyond just consistent with previous studies), etc.

      We performed a power analysis prior to our study aiming to detect a physiologically-relevant effect size of (Cohen’s d) ti 1.3, or 1.3 standard deviations from the mean. Alpha and Power were set to the standard 0.05 and 0.80 respectively, requiring around 8 mice per group (SP-SAP, Blank, and for histology, naïve animals) for multiple independent groups (ephys, GCamp, histology). To potentially account for any aFrition due to failures in Type-I nNOS neuron ablation or other problems (such as electrode failure or window issues) we conservatively targeted a dozen mice for each group. Of mice that were imaged (1P/2P), two SP-SAP mice were removed from the dataset (24 SP-SAP remaining) post-histological analysis due to not showing ablation of nNOS neurons, an aFrition rate of approximately 8%.

      We have added the following text to the Materials & Methods (Line 441): “Sample sizes are consistent with previous studies (Echagarruga et al 2020, Turner et al 2023, Turner et al 2020, Zhang et al 2021) and based on a power analysis requiring 8-10 mice per group (Cohen’s d ti 1.3, α ti 0.05, (1 - β) ti 0.800). Experimenters were not blind to experimental conditions or data analysis except for histological experiments. Two SP-SAP mice were removed from the imaging datasets (24 SP-SAP remaining) due to not showing ablation of nNOS neurons during post-histological analysis, an aFrition rate of approximately 8%.”

      (2) Intro, line 38: Description of the importance of neurovascular coupling needs improvement. Coordinated haemodynamic activity is vital for maintaining neuronal health and the energy levels needed.

      We have added a sentence to the introduction (Line 41): “Neurovascular coupling plays a critical role in supporting neuronal function, as tightly coordinated hemodynamic activity is essential for meeting energy metabolism and maintaining brain health (Iadecola et al 2023, Schaeffer & Iadecola 2021).“

      (3) Given the wide range of mice ages, how was the age accounted for/its effects examined?

      Previous work from our lab has shown that there is no change in hemodynamics responses in awake mice over a wide range of ages (2-18 months), so the age range we used (3 and 9 months of age) should not impact this.  

      We have added the following text in the Results (Line 437): “Previous work from our lab has shown that the vasodilation elicited by whisker stimulation is the same in 2–4-month-old mice as in 18-month-old mice (BenneF, Zhang et al. 2024). As the age range used here is spanned by this time interval, we would not expect any age-related differences.”

      (4) How was the susceptibility of low-frequency neuronal coupling signals to noise managed? How were the low-frequency bands results validated?

      We are not sure what the referee is asking here. Our electrophysiology recordings were made differentially using stereotrodes with tips separated by ~100µm, which provides excellent common-mode rejection to noise and a localized LFP signal. Previous publications from our lab (Winder et al., Nature Neuroscience 2017; Turner et al., eLife2020) and others (Tu, Cramer, Zhang, eLife 2024) have repeatedly show that there is a very weak correlation between the power in the low frequency bands and hemodynamic signals, so our results are consistent with this previous work. 

      (5) It would be helpful to demonstrate the selectivity of cell *death* (as opposed to survival) induced by SP-SAP injections via assessments using markers of cell death.

      We agree that this would be helpful complement to our histological studies that show loss of type-I nNOS neurons, but no loss of other cells and minimal inflammation with SP-saporin injections.  However, we did not perform histology looking at cell death, only at surviving cells, given that we see no obvious inflammation or cells loss, which would be triggered by nonspecific cell death.  Previous work has established that saporin is cytotoxic and specific only to cell that internalize the saporin.   Internalization of saporin causes cell death via apoptosis (Bergamaschi, Perfe et al. 1996), and that the substance P receptor is internalized when the receptor is bound (Mantyh, Allen et al. 1995). Treatment of internalized saporin generates cellular debris that is phagocytosed by microglial, consistent with cell death (Seeger, Hartig et al. 1997). While it is possible that treatment of SP-saporin causes type 1 nNOS neurons to stop expressing nitric oxide synthase (which would make them disappear from our IHC staining), we think that this is unlikely given the literature shows internalized saporin is clearly cytotoxic. 

      We have added the following text to the Results (Line 131): “It is unlikely that the disappearance of type-I nNOS neurons is because they stopped expressing nNOS, as internalized saporin is cytotoxic. Exposure to SP-conjugated saporin causes rapid internalization of the SP receptor-ligand complex (Mantyh, Allen et al. 1995), and internalized saporin causes cell death via apoptosis (Bergamaschi, Perfe et al. 1996). In the brain, the resulting cellular debris from saporin administration is then cleared by microglia phagocytosis (Seeger, Hartig et al. 1997).”

      (6) Was the decrease in inter-hemispheric correlation associated with any changes to the corpus callosum?

      We noted no gross changes to the structure of the corpus callosum in any of our histological reconstructions following SSPSAP administration, however, we did not specifically test for this. Again, as we note in our reply in reviewer 2, the decrease in interhemispheric synchronization does not imply that there are changes in the corpus callosum and could be mediated by the changes in neural activity in the hemisphere in which the Type-I nNOS neurons were ablated.

      (7) How were automated cell counts validated?

      Criteria used for automated cell counts were validated with comparisons of manual counting as described in previous literature. We have added additional text describing the process in the Materials & Methods (Line 510): “For total cell counts, a region of interest (ROI) was delineated, and cells were automatically quantified under matched criteria for size, circularity and intensity. Image threshold was adjusted until absolute value percentages were between 1-10% of the histogram density. The function Analyze Par-cles was then used to estimate the number of particles with a size of 100-99999 pixels^2 and a circularity between 0.3 and 1.0 (Dao, Suresh Nair et al. 2020, Smith, Anderson et al. 2020, Sicher, Starnes et al. 2023). Immunoreactivity was quantified as mean fluorescence intensity of the ROI (Pleil, Rinker et al. 2015).”

      (8) Given the weighting of the vascular IOS readout to the superficial tissue, it is important to qualify the extent of the hemodynamic contrast, ie the limitations of this readout.

      We have added the following text to the Discussion (Line 385): “Intrinsic optical signal readout is primarily weighted toward superficial tissue given the absorption and scaFering characteristics of the wavelengths used. While surface vessels are tightly coupled with neural activity, it is still a maFer of debate whether surface or intracortical vessels are a more reliable indicator of ongoing activity (Goense et al 2012; Huber et al 2015; Poplawsky & Kim 2014).” 

      (9) Partial decreases observed through type-I iNOS neuronal ablation suggest other factors also play a role in regulating neural and vascular dynamics: data presented thus do *not* "indicate disruption of these neurons in diseases ranging from neurodegeneration to sleep disturbances," as currently stated. Please revise.

      We agree with the reviewer. We have changed the abstract sentence to read (Line 30): “This demonstrates that a small population of nNOS-positive neurons are indispensable for regulating both neural and vascular dynamics in the whole brain, raising the possibility that loss of these neurons could contribute to the development of neurodegenerative diseases and sleep disturbances.”

    1. eLife Assessment

      This paper addresses a significant question regarding the low overlap between genetic discoveries for human complex diseases and those for gene expression by emphasizing the contribution of cell-type-specific chromatin accessibility QTLs. The analyses supporting the main claims are convincing, and the key conclusions are valuable and of interest to readers in the fields of human genetics and functional genomics.

    2. Reviewer #1 (Public review):

      Most human traits and common diseases are polygenic, influenced by numerous genetic variants across the genome. These variants are typically non-coding and likely function through gene regulatory mechanisms. To identify their target genes, one strategy is to examine if these variants are also found among genetic variants with detectable effects on gene expression levels, known as eQTLs. Surprisingly, this strategy has had limited success, and most disease variants are not identified as eQTLs, a puzzling observation recently referred to as "missing regulation".

      In this work, Jeong and Bulyk aimed to better understand the reasons behind the gap between disease-associated variants and eQTLs. They focused on immune-related diseases and used lymphoblastoid cell lines (LCLs) as a surrogate for the cell types mediating the genetic effects. Their main hypothesis is that some variants without eQTL evidence might be identifiable by studying other molecular intermediates along the path from genotype to phenotype. They specifically focused on variants that affect chromatin accessibility, known as caQTLs, as a potential marker of regulatory activity.

      The authors present data analyses supporting this hypothesis: several disease-associated variants are explained by caQTLs but not eQTLs. They further show that although caQTLs and eQTLs likely have largely overlapping underlying genetic variants, some variants are discovered only through one of these mapping strategies. Notably, they demonstrate that eQTL mapping is underpowered for gene-distal variants with small effects on gene expression, whereas caQTL mapping is not dependent on the distance to genes. Additionally, for some disease variants with caQTLs but no corresponding eQTLs in LCLs, they identify eQTLs in other cell types.

      Altogether, Jeong and Bulyk convincingly demonstrate that for immune-related diseases, discovering the missing disease-eQTLs requires both larger eQTL studies and a broader range of cell types in expression assays. It remains to be seen what fractions of the missing disease-eQTLs will be discovered with either strategy and whether these results can be extended to other diseases or traits.

      It should be noted that the problem of "missing regulation" has been investigated and discussed in several recent papers, notably Umans et al., Trends in Genetics 2021; Connally et al., eLife 2022; Mostafavi et al., Nat. Genet. 2023. The results reported by Jeong and Bulyk are not unexpected in light of this previous work (all of which they cite), but they add valuable empirical evidence that mostly aligns with the model and discussions presented in Mostafavi et al.

    3. Reviewer #2 (Public review):

      eQTLs have emerged as a method for interpreting GWAS signals. However, some GWAS signals are difficult to explain with eQTLs. In this paper, the authors demonstrated that caQTLs can explain these signals. This suggests that for GWAS signals to actually lead to disease phenotypes, they must be accessible in the chromatin. This implies that for GWAS signals to translate into disease phenotypes, they need to be accessible within the chromatin.

      However, fundamentally, caQTLs, like GWAS, have the limitation of not being able to determine which genes mediate the influence on disease phenotypes. This limitation is consistent with the constraints observed in this study.

      (1) Reproducibility / Methods. The concrete numbers provided in the authors' response (e.g., 20 YRI LCL ATAC‑seq samples used only for peak discovery; caQTL mapping restricted to 100 GBR LCLs; 99,320 ATAC peaks tested vs 14,872 genes for eQTL; 373 European RNA‑seq samples, with clarification of overlap) do not appear to be reflected in the Methods. These specifics should be incorporated directly into the Methods sections.

      (2) Experimental evidence demonstrating transcription factor binding at representative caQTL peaks would strengthen causal interpretation of these loci.

      (3) Tissue/cell‑type specificity of caQTLs: Prior work supports that chromatin‑level effects are broadly shared across cellular states, whereas expression effects are more context‑specific; thus, caQTLs are generally less "state‑specific" than eQTLs. However, this does not imply equivalence across distinct cell types: caQTLs derived from different cell types may yield different results, particularly where accessibility is cell‑type restricted.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      Most human traits and common diseases are polygenic, influenced by numerous genetic variants across the genome. These variants are typically non-coding and likely function through gene regulatory mechanisms. To identify their target genes, one strategy is to examine if these variants are also found among genetic variants with detectable effects on gene expression levels, known as eQTLs. Surprisingly, this strategy has had limited success, and most disease variants are not identified as eQTLs, a puzzling observation recently referred to as "missing regulation". 

      In this work, Jeong and Bulyk aimed to better understand the reasons behind the gap between disease-associated variants and eQTLs. They focused on immune-related diseases and used lymphoblastoid cell lines (LCLs) as a surrogate for the cell types mediating the genetic effects. Their main hypothesis is that some variants without eQTL evidence might be identifiable by studying other molecular intermediates along the path from genotype to phenotype. They specifically focused on variants that affect chromatin accessibility, known as caQTLs, as a potential marker of regulatory activity. 

      The authors present data analyses supporting this hypothesis: several disease-associated variants are explained by caQTLs but not eQTLs. They further show that although caQTLs and eQTLs likely have largely overlapping underlying genetic variants, some variants are discovered only through one of these mapping strategies. Notably, they demonstrate that eQTL mapping is underpowered for gene-distal variants with small effects on gene expression, whereas caQTL mapping is not dependent on the distance to genes. Additionally, for some disease variants with caQTLs but no corresponding eQTLs in LCLs, they identify eQTLs in other cell types. 

      Altogether, Jeong and Bulyk convincingly demonstrate that for immune-related diseases, discovering the missing disease-eQTLs requires both larger eQTL studies and a broader range of cell types in expression assays. It remains to be seen what fractions of the missing diseaseeQTLs will be discovered with either strategy and whether these results can be extended to other diseases or traits. 

      We thank the reviewer for their accurate summary of our study and positive review of our findings for immune-related diseases.

      It should be noted that the problem of "missing regulation" has been investigated and discussed in several recent papers, notably Umans et al., Trends in Genetics 2021; Connally et al., eLife 2022; Mostafavi et al., Nat. Genet. 2023. The results reported by Jeong and Bulyk are not unexpected in light of this previous work (all of which they cite), but they add valuable empirical evidence that mostly aligns with the model and discussions presented in Mostafavi et al. 

      We thank the reviewer for their positive review of our results and manuscript. As Reviewer #1 noted, whether our and others' observation extends to other diseases or traits is an open question. For instance, Figure 2b in Mostafavi et al., Nat. Genet. (2023) demonstrated that there was a spectrum of depletion of eQTLs and enrichment of GWAS signals in constrained genes across various tissues and traits, respectively. Therefore, gene expression constraint may play a larger or smaller role in different diseases or traits. That immune cell types and cell states are extremely diverse (Schmiedel et al., Cell (2018) and Calderon et al., Nat. Genet. (2019), just to name a few) likely adds to the complexity of gene regulation that contributes to immune-mediated disease.

      Reviewer #2 (Public Review): 

      Summary: 

      eQTLs have emerged as a method for interpreting GWAS signals. However, some GWAS signals are difficult to explain with eQTLs. In this paper, the authors demonstrated that caQTLs can explain these signals. This suggests that for GWAS signals to actually lead to disease phenotypes, they must be accessible in the chromatin. This implies that for GWAS signals to translate into disease phenotypes, they need to be accessible within the chromatin. 

      However, fundamentally, caQTLs, like GWAS, have the limitation of not being able to determine which genes mediate the influence on disease phenotypes. This limitation is consistent with the constraints observed in this study. 

      We thank the reviewer for their accurate summary of our results.

      (1) For reproducibility, details are necessary in the method section.

      Details about adding YRI samples in ATAC-seq: For example, how many samples are there, and what is used among public data? There is LCL-derived iPSC and differentiated iPSC (cardiomyocytes) data, not LCL itself. How does this differ from LCL, and what is the rationale for including this data despite the differences?

      Banovich et al., Genome Research (2018) (PMID: 29208628), who generated data using LCLderived iPSCs and differentiated iPSCs (cardiomyocytes), also generated ATAC-seq data from 20 YRI LCL samples. We analyzed those data to identify open chromatin regions (i.e., ATACseq peaks) in LCLs and merged the regions with open chromatin regions identified with 100 GBR LCL samples from two studies by Kumasaka et al. (Nature Genetics (2016)

      PMID: 26656845 and Nature Genetics (2019) PMID: 30478436). However, we restricted the caQTL analysis to only the 100 GBR samples because of possible ancestry effects and batch effects. We attempted caQTL analysis with the 20 YRI samples as well, but the result was noisy, likely due to smaller sample size and lower read depth of the ATAC-seq data.

      caQTL is described as having better power than eQTL despite having fewer samples. How does the number of ATAC peaks used in caQTL compare to the number of gene expressions used in eQTL?

      The number of ATAC peaks used in caQTL (99,320) is ~6.7 times greater than the number of genes (14,872) used in the eQTL analysis. Therefore, there is a higher chance of detecting a significant caQTL signal and a significant colocalization signal than there is for eQTLs. However, we reasoned that since distal eQTLs are more easily detected as caQTLs and since increasing the sample size of eQTLs through meta-analysis uncovered additional eQTL colocalization at loci with caQTL colocalization only, colocalized caQTLs are likely capturing disease-relevant regulatory effects.

      Details about RNA expression data: In the method section, it states that raw data (ERP001942) was accessed, and in data availability, processed data (E-GEUV-1) was used. These need to be consistent.

      Thank you for pointing this out. We used the processed data from Expression Atlas (https://www.ebi.ac.uk/gxa/experiments/E-GEUV-1/Results), and that's what we meant by "We downloaded RNA expression level data of the LCL samples from the Expression Atlas." We have revised the “RNA expression data preparation” section in our manuscript to make the text clearer.

      How many samples were used (the text states 373, but how was it reduced from the original 465, and the total genotype is said to be 493 samples while ATAC has n=100; what are the 20 others?), and it mentions European samples, but does this exclude YRI?

      We thank the reviewer for pointing out these points of confusion. Our reported count of 493 samples included YRI samples with RNA-seq data or ATAC-seq data that we ultimately did not use for QTL analyses. There were 373 European samples with RNA-seq data that we used for eQTL analysis, and 100 GBR samples (including some that overlap with the 373 European samples) that we used for caQTL analysis. We have revised the text to clarify these points.

      (2) Experimental results determining which TFs might bind to the representative signals of caQTL are required.

      We agree that caQTL colocalization is just the start of elucidating the regulatory mechanism of a GWAS locus. Determining which TFs are bound and which TFs' binding is altered would be necessary to describe the causal regulatory mechanism. For this, we utilized the Cistrome database to search for TFs whose binding overlaps the colocalized caQTL peaks. We present the results of this analysis in Supplementary Table 3 and Supplementary Figure 4, both of which we have added in our revised manuscript. Overall, protein factors associated with active transcription, such as POL2RA, and several immune cell TFs, including RUNX3, SPI1, and RELA, were frequently detected in those peaks. Detecting these factors in most peaks supports the likelihood that the colocalized caQTL peaks are active cis-regulatory elements. These results are consistent with our observation of enriched caQTL-mediated heritability in regions with active histone marks (Figure 1).

      (3) It is stated that caQTL is less tissue-specific compared to eQTL; would caQTL performed with ATAC-seq results from different cell types, yield similar results?

      We thank the reviewer for the question. Calderon et al. (PMID: 31570894) observed that "most effects on allelic imbalance (of ATAC-seq) were shared regardless of lineage or condition". Yet, there were regions where a different cell type or state would show inaccessibility (Figure 4d in Calderon et al.). Thus, we expect that ATAC-seq results from different cell types (e.g., T cells, B cells, monocytes, etc.) would lead to additional caQTLs showing colocalization at cell-typespecific open chromatin. However, if a region is accessible in both cell types, caQTL may be detected in both. Moreover, Alasoo et al., Nature Genetics (2018) (PMID: 29379200) observed that “many disease-risk variants affect chromatin structure in a broad range of cellular states, but their effects on expression are highly context specific.” In both studies, the authors investigated immune cell types, and there could be different observations in non-immune cell types and other diseases and traits.

      Reviewer #1 (Recommendations For The Authors): 

      I think it would strengthen the paper to explore gene-level differences in the discovery of caQTLs and eQTLs. For example, complex disease-relevant genes, on average, have more/longer regulatory domains (as shown by Wang and Goldstein, AJHG 2020; Mostafavi et al., Nat. Genet. 2023). Therefore, it is plausible that for such genes, caQTLs are much more easily discoverable than eQTLs due to (i) a larger mutational target size for caQTLs, and (ii) dispersion of expression heritability across multiple domains, which hampers the discovery of eQTLs but not caQTLs, which are studied independently of other domains in the region. In other words, discovered caQTLs and eQTLs likely vary in terms of their distance to genes (as the authors report), as well as their target genes.

      We thank the reviewer for the suggestion to explore gene-level differences. We expect that the effects of complex disease-relevant genes having more / longer regulatory domains, on average, to explain our observations. We agree on both of your points that there are many more regulatory elements that are captured as accessible regions than expressed genes and that genes often have multiple independent eQTLs leading to dispersion of heritability. The genelevel trend that we described was the distance of the regulatory element from the genes. Additional analyses would be a relevant future direction.

      Also considering gene-level analysis, Mostafavi et al. show that the types of biases they report for eQTLs also apply to other molecular QTLs. It would be valuable to compare GWAS hits with versus without caQTL colocalization. Similarly, it would be insightful to compare GWAS hits with both colocalized caQTLs and eQTLs to GWAS hits with colocalized caQTLs but no eQTLs in any of the cell types. 

      We thank the reviewer for the comment. Investigating for potential biases in the colocalized caQTL would be useful, but we considered it beyond the scope of this work. In terms of biological factors, we demonstrated through mediated heritability analyses that more accessible chromatin (based on ATAC-seq read coverage) and regions with active histone marks were enriched for autoimmune disease associations (Figure 1). Furthermore, as greater distance of the regulatory variant from the transcription start site significantly reduced the cis-heritability, we would expect that distance would play a major role, similar to Mostafavi et al.’s conclusions.

      I don't think the argument for the role of natural selection contributing to the "missing regulation" is presented accurately. Specifically, large eQTLs acting on top trait-relevant genes are under stronger selection and thus, on average, segregate at lower frequencies. This makes them difficult to discover in eQTL assays. However, if not lost, they contribute as much, if not more, to trait heritability than weaker eQTLs at the same gene because their larger effects compensate for their lower frequency. At the most extreme, selection should have a "flattening" effect (e.g., see Simons et al., PLOS Biol 2018; O'Connor et al., AJHG 2019): weak and strong eQTLs at the same gene are expected to contribute equally to heritability. Therefore, the statement "Consequently, only weak eQTL variants, often in regions distal to the gene's promoter, may remain and affect traits" is not correct. If this turns out to be empirically true, other models, such as pleiotropic selection, need to explain it. 

      We thank the reviewer for the correction. We agree with the comment and have revised the sentences in the introduction accordingly.

      It is worth speculating why caQTLs may be more consistent across cell types than cis-eQTLs. Additionally, readers may infer from the paper that the focus should shift from eQTLs to caQTLs, which may not be the authors' intention. Perhaps these approaches are complementary: caQTLs can help with TSS-distal disease variants, while finding the target gene and regulatory context is more straightforward with eQTL colocalization. Addressing these points in the discussion will be helpful.

      We appreciate the reviewer's suggestion to clarify the advantages of incorporating cis-eQTLs and caQTLs. Our argument is exactly as you put it, and we added a paragraph on this in the Discussion.

      I believe the authors could do more to contextualize their findings within the existing literature on the subject, particularly Umans et al., Trends in Genetics 2021; Connally et al., eLife 2022; and Mostafavi et al., Nat. Genet. 2023. For instance, Umans et al. suggest that "if most standard eQTLs are generally benign, increasing sample size and adding more tissue types in an effort to identify even more standard eQTLs may not help us to explain many more disease risk mutations". Conversely, Mostafavi et al. argue for a multipronged approach, which appears more aligned with the authors' conclusions.

      We followed the reviewer’s suggestion to place our work in the context of existing literature on this topic. Moreover, we clarified what our recommendations for future data generation are.

      I thought Figures 1C-D were unclear. 

      We added a sentence in the figure legend describing that stronger and more significant enrichment indicate that mediated heritability is concentrated in that subset.

      Reviewer #2 (Recommendations For The Authors): 

      Complete workflow figures for caQTL calling and eQTL calling are required. 

      To improve clarity of the caQTL and eQTL calling workflow, we added Supplementary Figure 1.

    1. eLife Assessment

      This paper reports a valuable finding that gastric fluid DNA content can be used as a potential biomarker for human gastric cancer. The evidence supporting the claims of the authors is solid, although an inclusion of explanations for the methodological limitations, moderate diagnostic performance, and the unexpected survival correlation would have strengthened the study. The work will be of interest to medical biologists working in the field of gastric cancer.

    2. Reviewer #1 (Public review):

      The study analyzes the gastric fluid DNA content identified as a potential biomarker for human gastric cancer. However, the study lacks overall logicality, and several key issues require improvement and clarification. In the opinion of this reviewer, some major revisions are needed:

      (1) This manuscript lacks a comparison of gastric cancer patients' stages with PN and N+PD patients, especially T0-T2 patients.

      (2) The comparison between gastric cancer stages seems only to reveal the difference between T3 patients and early-stage gastric cancer patients, which raises doubts about the authenticity of the previous differences between gastric cancer patients and normal patients, whether it is only due to the higher number of T3 patients.

      (3) The prognosis evaluation is too simplistic, only considering staging factors, without taking into account other factors such as tumor pathology and the time from onset to tumor detection.

      (4) The comparison between gfDNA and conventional pathological examination methods should be mentioned, reflecting advantages such as accuracy and patient comfort.

      (5) There are many questions in the figures and tables. Please match the Title, Figure legends, Footnote, Alphabetic order, etc.

      (6) The overall logicality of the manuscript is not rigorous enough, with few discussion factors, and cannot represent the conclusions drawn

    3. Reviewer #2 (Public review):

      Summary:

      The authors investigated whether the total DNA concentration in gastric fluid (gfDNA), collected via routine esophagogastroduodenoscopy (EGD), could serve as a diagnostic and prognostic biomarker for gastric cancer. In a large patient cohort (initial n=1,056; analyzed n=941), they found that gfDNA levels were significantly higher in gastric cancer patients compared to non-cancer, gastritis, and precancerous lesion groups. Unexpectedly, higher gfDNA concentrations were also significantly associated with better survival prognosis and positively correlated with immune cell infiltration. The authors proposed that gfDNA may reflect both tumor burden and immune activity, potentially serving as a cost-effective and convenient liquid biopsy tool to assist in gastric cancer diagnosis, staging, and follow-up.

      Strengths:

      This study is supported by a robust sample size (n=941) with clear patient classification, enabling reliable statistical analysis. It employs a simple, low-threshold method for measuring total gfDNA, making it suitable for large-scale clinical use. Clinical confounders, including age, sex, BMI, gastric fluid pH, and PPI use, were systematically controlled. The findings demonstrate both diagnostic and prognostic value of gfDNA, as its concentration can help distinguish gastric cancer patients and correlates with tumor progression and survival. Additionally, preliminary mechanistic data reveal a significant association between elevated gfDNA levels and increased immune cell infiltration in tumors (p=0.001).

      Weaknesses:

      The study has several notable weaknesses. The association between high gfDNA levels and better survival contradicts conventional expectations and raises concerns about the biological interpretation of the findings. The diagnostic performance of gfDNA alone was only moderate, and the study did not explore potential improvements through combination with established biomarkers. Methodological limitations include a lack of control for pre-analytical variables, the absence of longitudinal data, and imbalanced group sizes, which may affect the robustness and generalizability of the results. Additionally, key methodological details were insufficiently reported, and the ROC analysis lacked comprehensive performance metrics, limiting the study's clinical applicability.

    4. Auhtor response:

      Public Reviews:

      Reviewer #1 (Public review):

      The study analyzes the gastric fluid DNA content identified as a potential biomarker for human gastric cancer. However, the study lacks overall logicality, and several key issues require improvement and clarification. In the opinion of this reviewer, some major revisions are needed:

      (1) This manuscript lacks a comparison of gastric cancer patients' stages with PN and N+PD patients, especially T0-T2 patients.

      We are grateful for this astute remark. A comparison of gfDNA concentration among the diagnostic groups indicates a trend of increasing values as the diagnosis progresses toward malignancy. The observed values for the diagnostic groups are as follows:

      Author response table 1.

      The chart below presents the statistical analyses of the same diagnostic/tumor-stage groups (One-Way ANOVA followed by Tukey’s multiple comparison tests). It shows that gastric fluid gfDNA concentrations gradually increase with malignant progression. We observed that the initial tumor stages (T0 to T2) exhibit intermediate gfDNA levels, which in this group is significantly lower than in advanced disease (p = 0.0036), but not statistically different from non-neoplastic disease (p = 0.74).

      Author response image 1.

      (2) The comparison between gastric cancer stages seems only to reveal the difference between T3 patients and early-stage gastric cancer patients, which raises doubts about the authenticity of the previous differences between gastric cancer patients and normal patients, whether it is only due to the higher number of T3 patients.

      We appreciate the attention to detail regarding the numbers analyzed in the manuscript. Importantly, the results are meaningful because the number of subjects in each group is comparable (T0-T2, N = 65; T3, N = 91; T4, N = 63). The mean gastric fluid gfDNA values (ng/µL) increase with disease stage (T0-T2: 15.12; T3-T4: 30.75), and both are higher than the mean gfDNA values observed in non-neoplastic disease (10.81 ng/µL for N+PD and 10.10 ng/µL for PN). These subject numbers in each diagnostic group accurately reflect real-world data from a tertiary cancer center.

      (3) The prognosis evaluation is too simplistic, only considering staging factors, without taking into account other factors such as tumor pathology and the time from onset to tumor detection.

      Histopathological analyses were performed throughout the study not only for the initial diagnosis of tissue biopsies, but also for the classification of Lauren’s subtypes, tumor staging, and the assessment of the presence and extent of immune cell infiltrates. Regarding the time of disease onset, this variable is inherently unknown--by definition--at the time of a diagnostic EGD. While the prognosis definition is indeed straightforward, we believe that a simple, cost-effective, and practical approach is advantageous for patients across diverse clinical settings and is more likely to be effectively integrated into routine EGD practice.

      (4) The comparison between gfDNA and conventional pathological examination methods should be mentioned, reflecting advantages such as accuracy and patient comfort.

      We wish to reinforce that EGD, along with conventional histopathology, remains the gold standard for gastric cancer evaluation. EGD under sedation is routinely performed for diagnosis, and the collection of gastric fluids for gfDNA evaluation does not affect patient comfort. Thus, while gfDNA analysis was evidently not intended as a diagnostic EGD and biopsy replacement, it may provide added prognostic value to this exam.

      (5) There are many questions in the figures and tables. Please match the Title, Figure legends, Footnote, Alphabetic order, etc.

      We are grateful for these comments and apologize for the clerical oversight. All figures, tables, titles and figure legends have now been double-checked.

      (6) The overall logicality of the manuscript is not rigorous enough, with few discussion factors, and cannot represent the conclusions drawn.

      We assume that the unusual wording remark regarding “overall logicality” pertains to the rationale and/or reasoning of this investigational study. Our working hypothesis was that during neoplastic disease progression, tumor cells continuously proliferate and, depending on various factors, attract immune cell infiltrates. Consequently, both tumor cells and immune cells (as well as tumor-derived DNA) are released into the fluids surrounding the tumor at its various locations, including blood, urine, saliva, gastric fluids, and others. Thus, increases in DNA levels within some of these fluids have been documented and are clinically meaningful. The concurrent observation of elevated gastric fluid gfDNA levels and immune cell infiltration supports the hypothesis that increased gfDNA—which may originate not only from tumor cells but also from immune cells—could be associated with better prognosis, as suggested by this study of a large real-world patient cohort.

      In summary, we thank Reviewer #1 for his time and effort in a constructive critique of our work.

      Reviewer #2 (Public review):

      Summary:

      The authors investigated whether the total DNA concentration in gastric fluid (gfDNA), collected via routine esophagogastroduodenoscopy (EGD), could serve as a diagnostic and prognostic biomarker for gastric cancer. In a large patient cohort (initial n=1,056; analyzed n=941), they found that gfDNA levels were significantly higher in gastric cancer patients compared to non-cancer, gastritis, and precancerous lesion groups. Unexpectedly, higher gfDNA concentrations were also significantly associated with better survival prognosis and positively correlated with immune cell infiltration. The authors proposed that gfDNA may reflect both tumor burden and immune activity, potentially serving as a cost-effective and convenient liquid biopsy tool to assist in gastric cancer diagnosis, staging, and follow-up.

      Strengths:

      This study is supported by a robust sample size (n=941) with clear patient classification, enabling reliable statistical analysis. It employs a simple, low-threshold method for measuring total gfDNA, making it suitable for large-scale clinical use. Clinical confounders, including age, sex, BMI, gastric fluid pH, and PPI use, were systematically controlled. The findings demonstrate both diagnostic and prognostic value of gfDNA, as its concentration can help distinguish gastric cancer patients and correlates with tumor progression and survival. Additionally, preliminary mechanistic data reveal a significant association between elevated gfDNA levels and increased immune cell infiltration in tumors (p=0.001).

      Reviewer #2 has conceptually grasped the overall rationale of the study quite well, and we are grateful for their assessment and comprehensive summary of our findings.

      Weaknesses:

      (1) The study has several notable weaknesses. The association between high gfDNA levels and better survival contradicts conventional expectations and raises concerns about the biological interpretation of the findings.

      We agree that this would be the case if the gfDNA was derived solely from tumor cells. However, the findings presented here suggest that a fraction of this DNA would be indeed derived from infiltrating immune cells. The precise determination of the origin of this increased gfDNA remains to be achieved in future follow-up studies, and these are planned to be evaluated soon, by applying DNA- and RNA-sequencing methodologies and deconvolution analyses.

      (2) The diagnostic performance of gfDNA alone was only moderate, and the study did not explore potential improvements through combination with established biomarkers. Methodological limitations include a lack of control for pre-analytical variables, the absence of longitudinal data, and imbalanced group sizes, which may affect the robustness and generalizability of the results.

      Reviewer #2 is correct that this investigational study was not designed to assess the diagnostic potential of gfDNA. Instead, its primary contribution is to provide useful prognostic information. In this regard, we have not yet explored combining gfDNA with other clinically well-established diagnostic biomarkers. We do acknowledge this current limitation as a logical follow-up that must be investigated in the near future.

      Moreover, we collected a substantial number of pre-analytical variables within the limitations of a study involving over 1,000 subjects. Longitudinal samples and data were not analyzed here, as our aim was to evaluate prognostic value at diagnosis. Although the groups are imbalanced, this accurately reflects the real-world population of a large endoscopy center within a dedicated cancer facility. Subjects were invited to participate and enter the study before sedation for the diagnostic EGD procedure; thus, samples were collected prospectively from all consenting individuals.

      Finally, to maintain a large, unbiased cohort, we did not attempt to balance the groups, allowing analysis of samples and data from all patients with compatible diagnoses (please see Results: Patient groups and diagnoses).

      (3) Additionally, key methodological details were insufficiently reported, and the ROC analysis lacked comprehensive performance metrics, limiting the study's clinical applicability.

      We are grateful for this useful suggestion. In the current version, each ROC curve (Supplementary Figures 1A and 1B) now includes the top 10 gfDNA thresholds, along with their corresponding sensitivity and specificity values (please see Suppl. Table 1). The thresholds are ordered from-best-to-worst based on the classic Youden’s J statistic, as follows:

      Youden Index = specificity + sensitivity – 1 [Youden WJ. Index for rating diagnostic tests. Cancer 3:32-35, 1950. PMID: 15405679]. We have made an effort to provide all the key methodological details requested, but we would be glad to add further information upon specific request.

    1. eLife Assessment

      This study reports important findings about the nature of feedback to primary visual cortex (V1) during object recognition. The state-of-the-art functional MRI evidence for the main claims is solid, and the combination of high-resolution fMRI with MEG yields significant insight into neural mechanisms. The findings presented here are relevant to a number of scientific fields such as object recognition, categorisation and predictive coding.

    2. Reviewer #1 (Public review):

      This study examines the spatiotemporal properties of feedback signals in the human brain during an object discrimination task. Using 7T fMRI and MEG, the authors show that task-relevant object category information can be decoded from both deep and superficial layers of V1, originating from occipito-temporal and posterior parietal cortices. In contrast, task-irrelevant category feedback does not appear in V1, even when the same objects are foveally presented. Low-level orientation information, however, is decodable from V1 regardless of task relevance and is supported by recurrence with occipito-temporal regions. These findings suggest that category decoding in V1 depends on task-driven feedback rather than feedforward visual features.

      Strengths

      This study leverages two advanced neuroimaging modalities attempting to connect object recognition across cortical layer and whole-brain levels. The revised manuscript strengthens the connection between the fMRI and MEG components.<br /> It also demonstrates that a peripheral object discrimination task is effective for isolating feedforward and feedback signals using 7T fMRI.<br /> It is particularly notable that no low-level features were fed back to V1's superficial layers in the peripheral object discrimination task. The authors further show that high- and low-level feedback to the foveal V1 are comparable in strength, supporting the idea that the superficial layer in V1 selectively represents task-relevant content.

      Weaknesses

      One alternative explanation for the absence of task-irrelevant category decoding in the foveal task could be that feedback enhancement may be required to decode complex features from V1 (compared to a coarse orientation feature). It would be informative to test whether the findings hold if the categorical boundary were defined through a low level feature other than orientation (e.g., frequency) (e.g. Ester, Sprague and Serences, 2020).

      I would like to echo the concerns raised by the other reviewer regarding multiple comparisons correction. It is important to apply correction procedures, especially given the number of statistical tests performed across brain regions where strict a priori hypotheses are unlikely. In the case of cluster-based statistics, the manuscript should clearly specify both the cluster-forming threshold and the significance threshold used for comparing true cluster masses to the shuffled distribution.

      Conclusion

      Overall, the results support the study's conclusions. This work addresses a timely question in object categorization and predictive coding-specifically, how feedback signals vary in content and timing across cortical layers.

    3. Reviewer #2 (Public review):

      Summary:

      This manuscript reports high-resolution functional MRI data and MEG data revealing additional mechanistic information about an established paradigm studying how foveal regions of primary visual cortex (V1) are involved in processing peripheral visual stimuli. Because of the retinotopic organization of V1, peripheral stimuli should not evoke responses in the regions of V1 that represent stimuli in the center of the visual field (the fovea). However, functional MRI responses in foveal regions do reflect the characteristics of peripheral visual stimuli - this is a surprising finding first reported in 2008. The present study uses fMRI data with sub-millimeter resolution to study the how responses at different depths in the foveal gray matter do or don't reflect peripheral object characteristics during 2 different tasks: one in which observers needed to make detailed judgments about object identity, and one in which observers needed to make more coarse judgments about object orientation. FMRI results reveal interesting and informative patterns in these two conditions. A follow-on MEG study yields information about the timing of these responses. Put together, the findings settle some questions in the field and add new information about the nature of visual feedback to V1.

      Strengths:

      (1) Rigorous and appropriate use of "laminar fMRI" techniques.

      (2) The introduction does an excellent job of contextualizing the work.

      (3) Control experiments and analyses are designed and implemented well

      Weaknesses:

      (1) The use of the term "low order" to describe object orientation is potentially confusing. During review, the authors considered this issue and responded that they would continue with the use of the term low-order to describe object orientation because a low-pass spatial frequency filter would provide object orientation information. This is certainly a reasonable perspective; nonetheless, this reviewer thinks spatial frequencies that low are not readily represented by neurons in early visual cortex and it is common to use "low-order" to refer to features extracted in early visual areas, so I think this causes confusion.

      (2) The methods contain a nice description of the methods for "correcting the vascular-related signals". I'm guessing this is the method that removed, e.g., 22% of foveal voxels (previous paragraph), but it's not entirely clear whether the voxel selection methods described in the "correcting the vascular-related signals" are describing the same processing step referred to in the previous paragraph as "a portion of voxels was removed based on large vein distribution".

      (3) It is quite difficult to perform laminar analyses across multiple visual areas because distortion compensation is not perfect and registration of functional to anatomical data will always be a bit better in some places and a bit worse in others. An ideal manuscript would include some images showing registration quality in V1, LOC, and IPS regions for a few different participants, or include some kind of quality metric indicating the confidence in depth assignments in different regions.

      (4) For the decoding analysis, it would be helpful to have more information about how samples were defined for each condition -- were the beta values for entire blocks used as samples for each condition, or were separate timepoints during a block used in the SVM as repeated samples for each condition?

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      (1.1) The authors argue that low-level features in a feedback format could be decoded only from deep layers of V1 (and not superficial layers) during a perceptual categorization task. However, previous studies (Bergman et al., 2024; Iamshchinina et al., 2021) demonstrated that low-level features in the form of feedback can be decoded from both superficial and deep layers. While this result could be due to perceptual task or highly predictable orientation feature (orientation was kept the same throughout the experimental block), an alternative explanation is a weaker representation of orientation in the feedback (even before splitting by layers there is only a trend towards significance; also granger causality for orientation information in MEG part is lower than that for category in peripheral categorization task), because it is orthogonal to the task demand. It would be helpful if the authors added a statistical comparison of the strength of category and orientation representations in each layer and across the layers.

      We agree that the strength of feedback information is related to task demand. Specifically, we would like to highlight the relationship between task demand and feedback information in the superficial layer. Previous studies have shown that foveal feedback information is observed only when the task requires the identity information of the peripheral objects (Williams et al., 2008; Fan et al., 2016; Yu and Shim, 2016). In this study, we found that the deep layer represented both orientation and categorical feedback information, while the superficial layer only represented categorical information. This suggests that feedback information in the superficial layer may be related to (or enhanced by) the task demands. In other words, if the experimental design required participants to discriminate orientation rather than object identity, we would expect stronger orientation information in foveal V1 and significant decoding performance of orientation feedback information in the superficial layer of foveal V1. This assumption is consistent with the anatomical connections of the superficial layer, which not only receives feedback connections but also sends outputs to higher-level regions for further processing. This is also consistent with Iamshchinina et al.’s observation that, when orientation information had to be mentally rotated and reported (i.e., task-relevant), it was observed in both the superficial and deep layers of V1. Bergmann et al. observed illusory color information in the superficial layer of V1, which may reflect a combination of lateral propagation and feedback mechanisms in the superficial layer that support visual filling-in phenomena. We have revised the discussion in the manuscript: In other words, if the experimental design required participants to discriminate orientation rather than object identity, we would expect stronger orientation information in foveal V1 and significant decoding performance of orientation feedback information in the superficial layer of foveal V1. Recent studies (Iamshchinina et al., 2021; Bergman et al., 2024) have also highlighted the relationship between feedback information and neural representations in V1 superficial layer.

      To further demonstrate the laminar profiles of low- and high-order information, we have re-analyzed the data and added more fine-scale laminar profiles with statistical comparisons in the revised manuscript. The results again showed significant neural decoding performances in the deep layer of both category and orientation information, and only significant decoding performances of category information in the superficial layer.

      (1.2) The authors argue that category feedback is not driven by low-level confounding features embedded in the stimuli. They demonstrate the ability to decode orientations, particularly well represented by V1, in the absence of category discrimination. However, the orientation is not a category-discriminating feature in this task. It could be that the category-discriminating features cannot be as well decoded from V1 activity patterns as orientations. Also, there are a number of these category discriminating features and it is unclear if it is a variation in their representational strength or merely the absence of the task-driven enhancement that preempts category decoding in V1 during the foveal task. In other words, I am not sure whether, if orientation was a category-specific feature (sharpies are always horizontal and smoothies are vertical), there would still be no category decoding.

      The low-order features mentioned in the manuscript refer to visual information encoded intrinsically in V1, independent of task demands. In the foveal experiment, the task is to discriminate the color of fixation, which is unrelated to the category or orientation of the object stimuli. The results showed that only orientation information could be decoded from foveal V1. This indicates that low-order information, such as orientation, is strongly and automatically encoded in V1, even when it is irrelevant to the task. Meanwhile, category information could not be decoded, indicating that category information relies on feedback signals driven by attention or the task to the objects, both of which are absent in the fixation task. Other evidence indicates that category feedback is not driven by low-level features intrinsically encoded in V1. First, the laminar profiles of these two types of feedback information differ considerably (see response to 1.1). Second, only category feedback information was correlated with behavioral performance (MEG experiment). These findings demonstrate that category feedback information is task-driven and differs from the automatically encoded low-order information in foveal V1. The reviewer expressed some uncertainty that, whether “if orientation was a category-specific feature (sharpies are always horizontal and smoothies are vertical), there would still be no category decoding”. Our data showed that orientation could be automatically decoded in V1, regardless of task demand. Thus, if orientation was a category-specific feature in the foveal task (i.e., sharpies are always horizontal and smoothies are always vertical), category decoding would be successful in V1. However, in this scenario, the orientation and other shape features are not independent, thus preventing us to find out whether non-orientation shape features could be decoded in V1.  

      Reviewer #2 (Public review):

      (2.1) While not necessarily a weakness, I do not fully agree with the description of the 2 kinds of feedback information as "low-order" and "high-order". I understand the motivation to do this - orientation is typically considered a low-level visual feature. But when it's the orientation of an entire object, not a single edge, orientation can only be defined after the elements of the object are grouped. Also, the discrimination between spikies and smoothies requires detecting the orientations of particular edges that form the identifying features. To my mind, it would make more sense to refer to discrimination of object orientation as "coarse" feature discrimination, and orientation of object identity as "fine" feature discrimination. Thus, the sentence on line 83, for example, would read "Interestingly, feedback with fine and coarse feature information exhibits different laminar profiles.".

      We agree that the object orientation (invariant to object category or identity) is defined on a larger spatial scale than the local orientation features such as local edges, however, in this sense, the object orientation is a coarse feature. In contrast, the category-defining information is mainly contributed by the local shape information (i.e., little cubes vs. bumps), which is more fine-scale information. One way to look at this difference is that the object orientation information is mainly carried by low-spatial frequency information and will survive low-pass filtering, hence “coarse”; while the object category information would largely be lost if the objects underwent low-pass spatial filtering.

      We believe the labeling words “low-order” and “high-order” are consistent with the typical use of these terms in the literature, referring to features intrinsically encoded in early visual cortex vs. in high level object sensitive cortical regions. The more important aspects of our results are in their differential engagement in feedforward vs. feedback processing, with low-order features automatically represented in the early visual cortex during feedforward processing while high-order features represented due to feedback processing. Results from the foveal fMRI experiment (Exp. 2) strongly support this assumption that, when objects were presented at the fovea and the task was a fixation color task irrelevant to object information, foveal V1 could only represent orientation information, not category information. Notably, there was a dramatic difference in decoding performance in foveal V1 between Exp.1 and Exp.2, which ruled out the argument that both orientation and category information were driven by local edge information represented in V1.

      (2.2) Figure 2 and text on lines 185, and 186: it is difficult to interpret/understand the findings in foveal ROIs for the foveal control task without knowing how big the ROI was. Foveal regions of V1 are grossly expanded by cortical magnification, such that the central half-degree can occupy several centimeters across the cortical surface. Without information on the spatial extent of the foveal ROI compared to the object size, we can't know whether the ROI included voxels whose population receptive fields were expected to include the edges of the objects.

      The ROI of foveal V1 was defined using data from independent localizer runs. In each localizer run, flashing checkerboards of the same size as the objects in the task runs were presented at the fovea or in the periphery. The ROI of foveal V1 was identified as the voxels responsive to the foveal checkerboards. In other words, The ROI of foveal V1 included the voxels whose population receptive fields covered the entire object in the foveal visual field.

      We included a figure in the revised manuscript comparing the activation maps induced by the foveal object stimulus in the task runs with the ROI coverage defined by the localizer runs. 

      (2.3) Line 143 and ROI section of the methods: in order for the reader to understand how robust the responses and analyses are, voxel counts should be provided for the ROIs that were defined, as well as for the number (fraction) of voxels excluded due to either high beta weights or low signal intensity (lines 505-511).

      In the revised manuscript, we have included the number of voxels in each ROI and the criteria for voxel selection:

      For each ROI, the number of voxels depended on the size of the activated region, as estimated from the localizer data. The numbers are as follows: foveal V1, 2185 ± 389; peripheral V1, 1294± 215; LOC, 3451 ± 863; and pIPS, 5154 ± 1517. To avoid the signals of large vessels, a portion of voxels was removed based on the distribution of large vessels: V1 foveal, 22.5% ± 6.6%; V1 peripheral, 6.8% ± 3.9%; LOC, 16.1% ± 8.1% ; and pIPS, 5.1% ± 3.2%. For the decoding analysis, the top 500 responsive voxels in each ROI were selected to balance the voxel numbers across different ROIs for training and testing the decoder.

      (2.4) I wasn't able to find mention of how multiple-comparisons corrections were performed for either the MEG or fMRI data (except for one Holm-Bonferonni correction in Figure S1), so it's unclear whether the reported p-values are corrected.

      For the fMRI results, there is strong evidence showing that feedback information is sent to the foveal V1 during a peripheral object task (Williams et al., 2008; Fan et al., 2016; Yu and Shim, 2016). In addition, anatomical and functional evidence shows that the superficial and deep layers of V1 receive feedback information during visual processing. Therefore, in the current study, we specifically examined two types of feedback information in the superficial and deep layers of foveal V1, and did not apply multiple-comparison correction to the decoding results.

      Regarding the MEG results, since we did not have a strong prior about when feedback information would arrive in the foveal V1, a cluster-based permutation method was used to correct for multiple comparisons in each time course. Specifically, for each time point, the sign of the effect for each participant was randomly flipped 50000 times to obtain the null hypothesis distribution for each time point. Clusters were defined as continuous significant time points in the real and flipped time series, and the effects in each cluster were summed to create a cluster-based effect. The most significant cluster-based effect in each flipped time series was then used to generate the corrected null hypothesis distribution.

      We included these clarifications in Significance testing part of the revised manuscript.

      Reviewer #1 (Recommendations for the authors):

      It would be helpful if the authors could elaborate more on the fMRI decoding results in higher-order visual areas in the Discussion (there are recent studies also investigating higher-order visual areas (Carricarte et al., 2024) and associative areas (Degutis et al., 2024)) and relate it to the MEG information transmission results between the areas overlapping with the regions recorded in the fMRI part of the study.

      We have discussed the fMRI decoding results in the LOC and IPS in the revised manuscript: 

      In the current study, fMRI signals from early visual cortex and two high-level brain regions (LOC and pIPS) were recorded. Neural dynamics of these regions were extracted from MEG signals. Decoding analyses based on fMRI and MEG signals consistently showed that object category information could be decoded from both regions. These findings raise an important question:  Further Granger causality analysis indicates that the feedback information in foveal V1 was mainly driven by signals from the LOC. Layer-specific analysis showed that category information could be decoded in the middle and superficial layers of the LOC. A reasonable interpretation of this result is that feedforward information from the early visual cortex was received by the LOC’s middle layer, then the category information was generated and fed back to foveal V1 through the LOC’s superficial layer. A recent study (Carricarte et al., 2024) found that, in object selective regions in temporal cortex, the deep layer showed the strongest fMRI responses during an imagery task. Together, the results suggest that the deep and superficial layers correspond to different feedback mechanisms. It is worth noting that other cortical regions may also generate feedback signals to the early visual cortex. The current study did not have simultaneously recorded fMRI signals from the prefrontal cortex, but it has been shown that feedback signals can be traced back to the prefrontal cortex during complex cognitive tasks, such as working memory (Finn et al., 2019; Degutis et al., 2024). Further fMRI studies with submillimeter resolution and whole-brain coverage are needed to test other potential feedback pathways during object processing.

      The behavioral performance seems quite low (67%), could authors explain the reasons for it?

      We designed the object stimuli to be difficult to distinguish on purpose. Some of our pilot data showed that the more involved the participants were in the peripheral object task, the easier the foveal feedback information was to decoded. It is reasonable to assume that if the peripheral objects were easily distinguishable, the feedback mechanism may not be fully recruited during object processing. Furthermore, since we were decoding category and orientation information rather than identity information, the difficulty of distinguishing two objects from the same category and with the same orientation would not affect the decoding of category and orientation information in the neural signals.

      Reviewer #2 (Recommendations for the authors):

      (1) Line 52: the meaning of the sentence starting with "However, ..." is not entirely clear. Maybe the word "while" is missing after the first comma?

      (2) Line 224. If I'm understanding the rationale for the MEG analysis correctly, it was not possible to localize foveal regions, but the cross-location decoding analysis was used to approximate the strength and timing of feedback information. If this is the case, "neural representations in the foveal region" were not extracted.

      (3) Figure 4. The key information is too small to see. The lines indicating where decoding performance was significant are quite thin but very important, and the text next to them indicating onset times of significant decoding is in such a small font size I needed to zoom in to 300% to read it (yes, my eyes are getting old and tired). Increasing the font size used to represent key information would be nice.

      (4) Figure 4 caption. Line 270 describes the line color in the plots as yellow, but that color is decidedly orange to my eye.

      (5) Line 340/341: Papers that define and describe feedback-receptive fields seem important to cite here:

      Keller, A. J., Roth, M. M., & Scanziani, M. (2020). Feedback generates a second receptive field in neurons of the visual cortex. Nature, 582(7813), 545-549.

      Kirchberger, L., Mukherjee, S., Self, M. W., & Roelfsema, P. R. (2023). Contextual drive of neuronal responses in mouse V1 in the absence of feedforward input. Science advances, 9(3), eadd2498.

      (6) Lines 346-350: this sentence seems to have some missing or misused words, because the syntax isn't intact.

      (7) Line 367: supports should be support.

      We thank the reviewers for the comments and have corrected them in the manuscript.

    1. eLife Assessment

      This important study identifies a plant-derived metabolite, betulin, as an effective natural insecticide against aphids and uncovers its specific molecular target. The evidence is compelling, combining greenhouse and field efficacy trials with rigorous molecular, genetic, and electrophysiological approaches that converge on a conserved binding site in the aphid GABA receptor. While additional work is needed to fully assess potential off-target effects and ecological safety, the study provides a strong mechanistic foundation. These findings will be of interest to researchers in plant biology, chemical ecology, and sustainable pest management.

    2. Reviewer #1 (Public review):

      Wang, Junxiu et al. investigated the underlying molecular mechanisms of the insecticidal activity of betulin against the peach aphid, Myzus persicae. There are two important findings described in this manuscript: (a) betulin inhibits the gene expression of GABA receptor in the aphid, and (b) betulin binds to the GABA receptor protein, acting as an inhibitor. The first finding is supported by RNA-Seq and RNAi, and the second one is convinced with MST and electrophysiological assays. Further investigations on the betulin binding site on the receptor protein provided a fundamental discovery that T228 is the key amino acid residue for its affinity, thereby acting as an inhibitor, backed up by site-directed mutagenesis of the heterologously-expressed receptor in E. coli and by CRISPR-genome editing in Drosophila.

      Comments on revisions:

      All of my review comments have been addressed, and the manuscript has been revised accordingly.

    3. Reviewer #2 (Public review):

      Summary:

      This important study shows that betulin from wild peach trees disrupts neural signaling in aphids by targeting a conserved site in the insect GABA receptor. The authors present a nicely integrated set of molecular, physiological, and genetic experiments to establish the compound's species-specific mode of action. While the mechanistic evidence is solid, the manuscript would benefit from a broader discussion of evolutionary conservation and potential off-target ecological effects.

      Strengths:

      The main strengths of the study lie in its mechanistic clarity and experimental rigor. The identification of a betulin-binding single threonine residue was supported by (1) site-directed mutagenesis and (2) functional assays. These experiments strongly support the specificity of action. Furthermore, the use of comparative analyses between aphids and fruit flies demonstrates an important effort to explore species specificity, and the integration of quantitative data further enhances the robustness of the conclusions.

      Comments on revisions:

      The revision satisfactorily addresses my concerns on evolutionary context, methodological clarity, and ecological risk.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Wang, Junxiu et al. investigated the underlying molecular mechanisms of the insecticidal activity of betulin against the peach aphid, Myzus persicae. There are two important findings described in this manuscript: (a) betulin inhibits the gene expression of GABA receptor in the aphid, and (b) betulin binds to the GABA receptor protein, acting as an inhibitor. The first finding is supported by RNA-Seq and RNAi, and the second one is convinced with MST and electrophysiological assays. Further investigations on the betulin binding site on the receptor protein provided a fundamental discovery that T228 is the key amino acid residue for its affinity, thereby acting as an inhibitor, backed up by site-directed mutagenesis of the heterologously-expressed receptor in E. coli and by CRISPR-genome editing in Drosophila.

      Although the manuscript does have strengths in principle, the weaknesses do exist: the manuscript would benefit from more comprehensive analyses to fully support its key claims in the manuscript. In particular:

      (1) The Western blotting results in Figure 5A & B appear to support the claim that betulin inhibits GABR gene expression (L26), as a decrease in target protein levels is often indicative of suppressed gene expression. The result description for Figure 5A & B is found in L312-L316, within Section 3.6 ("Responses of MpGABR to betulin"), where MST and voltage-clamp assays are also presented. It seems the observed decrease in MpGABR protein content is due to gene downregulation, rather than a direct receptor protein-betulin interaction. However, this interpretation lacks discussion or analysis in either the corresponding results section or the Discussion. In contrast, Figures 5C-F are specifically designed to illustrate protein-betulin interactions. Presenting Figure 5A & B alongside these panels might lead to confusion, as they support distinct claims (gene expression vs. protein binding/inhibition). Therefore, I recommend moving Figure 5A & B either to the end of Figure 3 or to a separate figure altogether to improve clarity and logical flow. A minor point in the Western blotting experiment is that although GAPDH was used as a reference protein, there is no explanation in the corresponding M&M section.

      We thank the reviewer for the concise and accurate summary and appreciate the constructive feedback on the article’s strengths and weaknesses.

      (A) According to your suggestion, the original Figure 5A and B have been inserted into Figure 3, following Figure 3D. The original Figure 3E-I has been saved as a new figure, to illustrate the RNAi assay.

      (b) “GAPDH was used as a reference protein” has been supplied in the M&M section, see

      Line 209.

      (2) The description of the electrophysiological recording experiment is unclear regarding the use of GABA. I didn't realize that GABA, the true ligand of the GABA receptor, was used in this inhibition experiment until I reached the Results section (L321), which states, "In the presence of only GABA, a fast inward current was generated." Crucially, no details are provided on the experiment itself, including how GABA was applied (e.g., concentration, duration, whether GABA was treated, followed by betulin, or vice versa). This information is essential for reproducibility. Please ensure these details are thoroughly described in the corresponding M&M section.

      We thank the reviewer for the valuable comments.

      (a) Detailed information on how to apply GABA has been added to the corresponding M&M section (Lines 260-263): After 3 days of incubation, the oocytes were used for electrophysiological recording. GABA was dissolved in 1 × Ringer's solution to prepare 100 µM GABA solution. Subsequently, the 100 µM GABA solutions containing different concentrations of betulin (0, 5, 10, 20, 40, 80, 160, 320 µM) were used to perfuse the oocytes.

      (b) Additionally, we also checked other contents of M&M section to ensure that sufficient detail has been supplied.

      (3) The phylogenetic analysis, particularly concerning Figures 4 and 6B, needs significant attention for clarity and representativeness. First, your claim that MpGABR is only closely related to CAI6365831.1 (L305-L310) is inconsistent with the provided phylogenetic tree, which shows MpGABR as equally close to Metopolophium dirhodum (XP_060864885.1) and Acyrthosiphon pisum (XP_008183008.2). Therefore, singling out only Macrosiphum euphorbiae (CAI6365831.1) is not supported by the data. Second, the representation of various insect orders is insufficient. All 11 sequences in the Hemiptera category (in both Figure 4 and Figure 6B) are exclusively from the Aphididae family. This small subset cannot represent the highly diverse Order Hemiptera. Consequently, statements like "only THR228 was conserved in Hemiptera" (L338), "The results of the sequence alignment revealed that only THR228 was conserved in Hemiptera" (L430), or "THR228... is highly conserved in Hemiptera" (L486) are not adequately supported. Third, similar concerns apply to the Diptera order, which includes 10 Drosophila and 2 mosquito samples (not diverse or representative enough), and likely to other orders as well. Thereby, the Figure 6B alignment should be revised accordingly to reflect a more accurate representation or to clarify the scope of the analysis. Fourth, there's a discrepancy in the phylogenetic method used: the M&M section (L156) states that MEGA7, ClustalW, and the neighbor-joining method were used, while the Figure 4 caption mentions that MEGA X, MUSCLE, and the Maximum likelihood method were employed. This inconsistency needs to be clarified and made consistent throughout the manuscript. Fifth, I have significant concerns about the phylogenetic tree itself (Figure 4). A small glitch was observed at the Danaus plexippus node, which raises suspicion regarding potential manipulation after tree construction. More critically, the tree, especially within Coleoptera, does not appear to be clearly resolved. I am highly concerned about whether all included sequences are true GABR orthologs or if the dataset includes partial or related sequences that could distort the phylogeny. Finally, for Figure 6B, both protein (XP_) and nucleotide (XM_) sequences were mix used. I recommend using the protein sequences instead of nucleotide sequences in this figure panel, as protein sequences are more directly informative.

      We thank the reviewer for the careful reading and valuable comments.

      (a) Firstly, according to your comments, phylogenetic analysis has been re-performed with more represent species from each Order (Fig. 5 and Fig. 7B). The results revealed that only THR228 was conserved across 11 species in the Aphididae family of Hemiptera. Therefore, the expressions like "only THR228 was conserved in Hemiptera" have been revised to “among the four residues, only THR228 was conserved across 11 species in the Aphididae family of Hemiptera” (Line 106, Line 369, Line 477, and Lines 563-564).

      (b) We have modified the description of Fig. 5 (the original Fig. 4): MpGABR  (XP_022173711.1) was found to be genetically closely related to CAI6365831.1 from Macrosiphum euphorbiae, XP 008183008.2 from Acyrthosiphon pisum, and XP 060864885.1 from Metopolophium dirhodum (Fig. 5 and Table S6). See Lines 342-346.

      (c) Phylogenetic analysis was performed using MEGA7 with multiple amino acid sequence alignment (ClustalW) and the neighbor-joining method. We have revised the Fig. 5 (the original Fig. 4) caption to make it accurate and consistent throughout the manuscript.

      (d) We are sorry about the small glitch at the Danaus plexippus node. Actually, after the phylogenetic tree was constructed, it was imported in Adobe Illustration for coloring and classification annotation. There may have been operational errors during the process of resizing the image, resulting in the occurrence of the small glitch. Besides, the unclear clustering of Coleoptera may be due to improper regulation of distance (pixels) of branch from nodes. Again, thanks for your careful reading. We have rebuilt the phylogenetic tree.

      (e) Based on your suggestion, the sequence IDs have been unified as the protein sequence IDs (Fig. 5, Fig. 7B and Table S6)

      (4) The Discussion section requires significant revision to provide a more insightful and interpretative analysis of the results. Currently, much of the section primarily restates findings rather than offering deeper discussion. For instance, L409-L419 restate the results, followed by the short sentence "Collectively, these results suggest that betulin may have insecticidal effects on aphids by inhibiting MpGABR expression". It could be further expanded to make it beneficial to elaborate on proposed mechanisms by which gene expression might be suppressed, including any potential transcription factors involved. In contrast, while L422-L442 also initially summarize results, the subsequent paragraph (L445-L472) effectively discusses the potential mechanisms of inhibitory action and how mortality is triggered, which is a good model for other parts of the section. However, all the discussion ends up with a short statement, "implying that betulin acts as a CA of MpGABR" (L472), which appears to be a leap. The inference that betulin acts as a competitive antagonist (CA) is solely based on the location of its extracellular binding site, which does not exactly overlap with the GABA binding site. It needs stronger justification or actually requires further experimental validation. The authors should consider rephrasing this statement to acknowledge the need for additional studies to definitively confirm this mechanism of action.

      We appreciate the reviewer's careful reading and valuable feedback, which will certainly enhance the quality of our manuscript.

      (a) Possible reasons for the effect of betulin on MpGABR expression have been discussed in our manuscript (Lines 455-466): The regulation of gene expression is sophisticated and delicate (Pope and Medzhitov 2018). The regulatory network controlling GABR expression remains unclear. In adult rats, epileptic seizures has been reported to increase the levels of brain-derived neurotrophic factor (BDNF), which in turn prompted the transcription factors CREB and ICER to reduce the gene expression of the GABR α1 subunit (Lund et al. 2008). In Drosophila, it has been demonstrated that WIDE AWAKE, which regulated the onset of sleep, interacted with the GABR and upregulated its expression level (Liu et al. 2014). In Drosophila brain, circular RNA circ_sxc was found to inhibit the expression of miR-87-3p in the brain through sponge adsorption, thereby regulating the expression of neurotransmitter receptor ligand proteins, including GABR, and ensuring the normal function of synaptic signal transmission in brain neurons (Li et al. 2024). However, it remains unclear how betulin reduces the expression of MpGABR, and further research is needed.

      (b) In the Discussion section, we acknowledged the need for further research to ultimately confirm the mechanism by which betulin competes with GABA for binding to MpGABR (Lines 532-535): Although the mechanism by which betulin competes with GABA for binding to MpGABR requires further experimental validation, our work may have provided a novel target for developing insecticides.

      (c) Besides, we have added the discussion of the sensitivity of GABA receptor to betulin in Discussion section (Lines 491-501): Studies on key amino acids that are crucial for GABR function has primarily focused on transmembrane regions. For instance, based on the mutational research and Drosophila GABR modeling approach, multiple key amino acids were identified as insecticide targets in the transmembrane domain (Nakao and Banba 2021). Guo et al. proposed that amino acid substitutions in the transmembrane domain 2 contribute to terpenoid insensitivity during plant-insect coevolution (Guo et al. 2023). However, these studies have neglected the extracellular domain. Our study signified that betulin targets the THR228 site in the extracellular domain of MpGABR, which is conserved only in the Aphididae family. Therefore, betulin is speculated to be a specific insecticidal substance evolved by plants in response to aphid infestation. Besides, further verification is needed to determine whether betulin is toxic to other insect species.

      (d) Furthermore, the discussion of potential ecological risks of deploying betulin as a bioinsecticide has been elaborated in our manuscript (Lines 538-553): The development of bioinsecticides should not only focus on the toxic effects of active substance on target organisms, but also on their influence on the ecosystem (Haddi et al. 2020). Although our results indicate that betulin has specific toxicity to aphids, previous studies have reported that betulin and its derivatives had effects on Plutella xylostella L. (Huang et al. 2025), Aedes aegypti (de Almeida Teles et al. 2024), and Drosophila melanogaster (Lee and Min 2024). Therefore, further research is needed to determine whether there are other insecticidal mechanisms or off target effects of betulin. Additionally, betulin exhibits a wide range of pharmacological activities (Amiri et al. 2020), which have been used to treat various diseases, such as cancer (Lv 2023), glioblastoma (Li et al. 2022), inflammation (Szlasa et al. 2023) and hyperlipidemia (Tang et al. 2011). Before applying betulin in the field, it is necessary to fully verify and consider whether betulin has any impact on farmers' health. Furthermore, will betulin cause residue or diffusion in the process of field application? Will long-term application promote the evolution of resistance to aphids or other insects? These issues also need further experimental verification. In summary, before any field application, further research is needed on the environmental behavior, degradation process, and safety of betulin.

      Reviewer #2 (Public review):

      Summary:

      This important study shows that betulin from wild peach trees disrupts neural signaling in aphids by targeting a conserved site in the insect GABA receptor. The authors present a nicely integrated set of molecular, physiological, and genetic experiments to establish the compound's species-specific mode of action. While the mechanistic evidence is solid, the manuscript would benefit from a broader discussion of evolutionary conservation and

      potential off-target ecological effects.

      Strengths:

      The main strengths of the study lie in its mechanistic clarity and experimental rigor. The identification of a betulin-binding single threonine residue was supported by (1) site-directed mutagenesis and (2) functional assays. These experiments strongly support the specificity of action. Furthermore, the use of comparative analyses between aphids and fruit flies demonstrates an important effort to explore species specificity, and the integration of quantitative data further enhances the robustness of the conclusions.

      Weaknesses:

      There are several important limitations that need to be addressed. The manuscript does not explore whether the observed sensitivity to betulin reflects a broadly conserved feature of GABA receptors across animal lineages or a more lineage-specific adaptation. This evolutionary context is crucial for understanding the broader significance of the findings.

      In addition, while the compound's aphicidal effect is well established, the potential for off-target effects in non-target organisms - especially vertebrates - remains unaddressed, despite prior evidence that betulin interacts with mammalian GABAa receptors. There is little discussion on the ecological or environmental safety of exogenous betulin application, such as persistence, degradation, or exposure risks.

      We sincerely thank the reviewer for the time and effort dedicated to our manuscript's detailed review and assessment. The revision suggestions were constructive, and we have provided a point-by-point response to address them.

      (a) Briefly introduce the evolutionary conservation of GABA receptors has been added in the Introduction (Lines 90-98): Previous study has proposed that vertebrate and human GABR genes maintain a broad and conservative gene clustering pattern, while in invertebrates, this pattern is missing, indicating that these gene clusters formed early in vertebrate evolution and were established after diverging from invertebrates. Notably, invertebrates each possess a unique GABR gene pair, which are homologous with human GABR α and β subunits, suggesting that the existing GABR gene cluster evolved from an ancestral α - β subunit gene pair (Tsang et al. 2006). During the coevolution of plants and insects, the duplications and amino acid substitutions in GABR may be beneficial for the adaptation to insecticides and terpenoid compounds (Guo et al. 2023).

      (b) We have added the discussion of the sensitivity of GABA receptor to betulin in Discussion section (Lines 491-501): Studies on key amino acids that are crucial for GABR function has primarily focused on transmembrane regions. For instance, based on the mutational research and Drosophila GABR modeling approach, multiple key amino acids were identified as insecticide targets in the transmembrane domain (Nakao and Banba 2021). Guo et al. proposed that amino acid substitutions in the transmembrane domain 2 contribute to terpenoid insensitivity during plant-insect coevolution (Guo et al. 2023). However, these studies have neglected the extracellular domain. Our study signified that betulin targets the THR228 site in the extracellular domain of MpGABR, which is conserved only in the Aphididae family. Therefore, betulin is speculated to be a specific insecticidal substance evolved by plants in response to aphid infestation. Besides, further verification is needed to determine whether betulin is toxic to other insect species.

      (c) The discussion of potential ecological risks of deploying betulin as a bioinsecticide has been elaborated in our manuscript (Lines 538-553): The development of bioinsecticides should not only focus on the toxic effects of active substance on target organisms, but also on their influence on the ecosystem (Haddi et al. 2020). Although our results indicate that betulin has specific toxicity to aphids, previous studies have reported that betulin and its derivatives had effects on Plutella xylostella L. (Huang et al. 2025), Aedes aegypti (de Almeida Teles et al. 2024), and Drosophila melanogaster (Lee and Min 2024). Therefore, further research is needed to determine whether there are other insecticidal mechanisms or off target effects of betulin. Additionally, betulin exhibits a wide range of pharmacological activities (Amiri et al. 2020), which have been used to treat various diseases, such as cancer (Lv 2023), glioblastoma (Li et al. 2022), inflammation (Szlasa et al. 2023) and hyperlipidemia (Tang et al. 2011). Before applying betulin in the field, it is necessary to fully verify and consider whether betulin has any impact on farmers' health. Furthermore, will betulin cause residue or diffusion in the process of field application? Will long-term application promote the evolution of resistance to aphids or other insects? These issues also need further experimental verification. In summary, before any field application, further research is needed on the environmental behavior, degradation process, and safety of betulin.

      Reviewer #1 (Recommendations for the authors):

      (1) L28 Provide the full name of MST.

      Thanks for your suggestion. The full name of MST, microscale thermophoresis, has been supplied.

      (2) L87 in the Order Hemiptera.

      Thanks for your suggestion. Corrected.

      (3) L99 "Leaf bioassay" would be better to differentiate the greenhouse and field bioassays.

      Thanks for your suggestion. Corrected.

      (4) L104 It should be 7 doses, including the "0 mg/mL" control.

      Thanks for your suggestion. Corrected.

      (5) L104 Since the LC50 of pymetrozine is 1.0612 mg/mL, a wider range of doses should have been tested compared to the dose range of betulin.

      Thanks for your comment.

      (a) Firstly, seven doses (0, 0.0625, 0.125, 0.25, 0.5, 1, and 2 mgmL<sup>-1</sup>) were set to calculate the LC50 of betulin and pymetrozine. Since the LC50 values of betulin and pymetrozine are 0.1641 and 1.0612 mgmL<sup>–1</sup>, respectively, which are within the set range, indicating that the set dose range is reasonable and the LC50 values of betulin and pymetrozine are reliable.

      (b) To compare the control effects of betulin and pymetrozine against M. persicae, LC50 of betulin (0.1641 mgmL<sup>-1</sup>) and pymetrozine (1.0612 mgmL<sup>-1</sup>) were used to treat M. persicae.

      (6) L109 Greenhouse and field bioassays.

      Thanks for your suggestion. Corrected.

      (7) L112 Tween-80 and acetone in L103. Keep the order consistent throughout the manuscript.

      Thanks for your suggestion. Corrected.

      (8) L122 Mortality was recorded at 1, 5, 9, and 14 days after treatment. Revise the other similar mistakes throughout the manuscript (e.g. L250, L254, L255, L256, L259, etc.).

      Thanks for your suggestion. Corrected.

      (9) L126 apterous instead of wingless (keep a consistent expression).

      Thanks for your suggestion. Corrected.

      (10) L138 Primer Premier?

      Thanks for your comment. Corrected.

      (11) L141 Add RPS18 primers in Table S2.

      Thanks for your comment. Corrected.

      (12) L155 MEGA7 vs. MEGAX (as described in the Figure 4 caption).

      Thanks for your comment. Corrected.

      (13) L156 NJ method vs. ML method (as described in the Figure 4 caption).

      Thanks for your comment. Corrected.

      (14) L157 2.7. RNAi assay (Remove "In vitro" and re-number the following M&M sections accordingly).

      Thanks for your comment. Corrected.

      (15) L163 Add dsGFP primers in Table S2.

      Thanks for your comment. Corrected.

      (16) L166 apterous instead of wingless (keep a consistent expression).

      Thanks for your comment. Corrected.

      (17) L172 Add the source of pET-B2M vector.

      pET-B2M vector was obtained from BGI (Shenzhen, China), which has been added in our manuscript (Line 194).

      (18) L195 coding sequence instead of cDNA.

      Thanks for your comment. Corrected.

      (19) L198 the mutations of R224A ...

      Thanks for your comment. Corrected.

      (20) L199 TYR), or T228R ...

      Thanks for your comment. Corrected.

      (21) L211 and 90 ng.

      Thanks for your comment. Corrected.

      (22) L213 genomic DNA instead of gDNA, because gDNA may be confused in the context of sgRNA.

      Thanks for your suggestion. Corrected.

      (23) L253 (Fig. 1A-B).

      Thanks for your comment. Corrected.

      (24) L268 Explain why these 15 DEGs were selected for qRT-PCR.

      Thanks for your comment. These 15 DEGs were randomly selected and act as representative DEGs with different expression levels. The reason for selection of these 15 DEGs were added in the manuscript (Lines 295-296).

      (25) L287 What about GABRB? It has a TM domain.

      GABRB refers to “gamma-aminobutyric acid receptor subunit beta-like” annotated on NCBI. Theoretically, it should contain four transmembrane structural domains, while it has only one, indicating that it is incomplete.

      (26) L297 Add dsGFP as another control group.

      Thanks for your comment. Corrected.

      (27) L299 increased by 30.44% (Remove a comma).

      Thanks for your comment. Corrected.

      (28) L308 XM_022318019.1 (or protein accession number with XP_).

      Thanks for your comment. Corrected.

      (29) L338 that THR228 was conserved only in Hemiptera.

      Thanks for your comment. Since our original intention was to emphasize that THR228 is the only conserved among the four key amino acid residues, after careful consideration, we retained the expression "only THR228".

      (30) L342 or T228R.

      Thanks for your comment. Corrected.

      (31) L382 Is pyrhidone a general name for pymetrozine?

      Thanks for your comment. Corrected.

      (32) L450 Remove "and so on".

      Thanks for your comment. Corrected.

      (33) Figure 1D: Remove "Environment friendly". Replace the plant pot image on the right side with the one sprayed with pymetrozine, like the one in Figure 1F.

      Thanks for your comment. 

      (a) "Environment friendly" in Figure 1D has been removed.

      (b) We have attempted to modify the Figure 1D according to your suggestion. However, the modified Figure 1D is similar to Figure 1F and appears monotonous. Therefore, we have retained the original framework of Figure 1D.

      (34) Figure 2E 111036117 and 111041856 are in different IDs (XM_). I suggest keeping GeneID in Figure 2E and Table S2, as shown in Table S4.

      Thanks for your comment. Corrected.

      (35) Figure 2H: Add unit of the heatmap values. Or just add the title (e.g., expression level) on top of the bar.

      Thanks for your comment. Corrected.

      (36) Figure 3A: Add "aa" next to 700.

      Thanks for your comment. Corrected.

      (37) Figure 3E-G: Revise the tick marks on Y-axis: 0.0, 0.5, 1.0, and 1.5.

      Thanks for your comment. Corrected.

      (38) Figure 5C: Remove "1" and move "WT" up to the position where "1" was.

      Thanks for your comment. Corrected.

      (39) Figure 5D: Revise the tick marks on the Y-axis: 0.0, 0.5, 1.0, and 1.5.

      Thanks for your comment. Corrected.

      (40) Figure 5E: Remove the decimal. (e.g. 5 uM, 10 uM, 20 uM, etc.).

      Thanks for your comment. Corrected.

      (41) Figure 6B: What are the numbers next to the amino acid sequences? Provide the information in the figure caption.

      Thanks for your comment. The numbers next to the amino acid indicates the site of the last residue of the key amino acids, which was supplied in the figure caption.  

      (42) Figure 6D: Revise the tick marks on the Y-axis: 0.0, 0.5, 1.0, and 1.5. The X-axis title should be betulin (see Figure 5D). In the figure caption at the 5th row from the top, R244A should be R224A.

      Thanks for your comment. Corrected.

      (43) Figure 7E: R122T (not R1272T).

      Thanks for your comment. Corrected.

      (44) Supplementary Figure 1: It should be Figure S1. Add dsGFP in the figure caption.

      Thanks for your comment. Corrected.

      (45) Figure S2: What are the two pink bars and the other bars in brown or blue? Add an appropriate explanation in the figure caption.

      Thanks for your comment. Corrected.

      (46) Table S1: r square?

      Thanks for your comment. It is “r square” and corrected.

      (47) Table S2: (a) Add horizontal lines to separate qPCR, RNAi, cloning, and heterologous expression from each other (b) Replace XM_022318017.1 and XM_022318019.1 with their corresponding GeneIDs, as shown in Table S4. (c) AK340444.1 is a sequence from another aphid (Acyrthosiphon pisum)-Revise it. (d) In the cloning primers, place MpGABR first, followed by MpGABRAP and MpGABRB, as shown in the manuscript and Table S5. (e) Also, in the cloning primers, MpGABRB and MpGABRAP use reverse primers without stop codon, while MpGABR uses stop codon (TCA = TGA in reverse)-Revise it accordingly. Otherwise, provide the reason.

      Thanks for your comment. Corrected.

      (48) Table S3: (a) Add "Drosophila melanogaster" and the target sequence ID in the table caption. Is it KF881792.1, as shown in Table S6? (b) Align the sequences to the left side. 

      Thanks for your comment. 

      (a) The GenBank number of target sequence is KF881792.1 (Drosophila melanogaster). We have added this information in the Table S3 note.

      (b) It has been adjusted according to your suggestion.

      (49) Table S5: (a) Replace the accession numbers with GeneID, as shown in Table S4. K340444.1 is a sequence from another aphid (Acyrthosiphon pisum), (b) Coding sequences with stop codon are 2082, 357, and 753, respectively, while the sequences without stop codon are 2079, 354, and 750, respectively. The lengths of the deduced amino acids are 693, 118, and 250. Revise accordingly.

      Thanks for your comment. Corrected.

      (50) Table S6: (a) Use GenBank No for protein sequences. There is no Gene ID in this table. (b) Order (instead of Class). (c) See my comment on the phylogenetic analysis above.

      Thanks for your comment. Corrected.

      (51) Table S7 (a) Add unit under "Binding Energy". (b) There are two ALA226 [Alkyl] with two different distances. (c) PHE227 at the bottom should be THR228?

      Thanks for your comment.

      (a) The unit of "Binding Energy" was kcalmol<sup>–1</sup>, and it was added in the table caption.

      (b) Refer to Figure 6A, there were two Alkyl interaction between ALA226 and betulin. Therefore, there were two ALA226 [Alkyl] with two different distances.

      (c) Similarly, there were two Pi-Alkyl interactions between PHE227 and betulin. Thus, there were two rows of PHE227 in the table.

      (52) Table S9 (a) R117T should be R122T. (b) r square?

      Thanks for your comment. a and b Corrected.

      Reviewer #2 (Recommendations for the authors):

      (1) Introduction

      (a) It lacks a deeper biological and evolutionary framing of the GABA receptor system. As GABA receptors are highly conserved across animal taxa, the observed interaction between betulin and the aphid GABA receptor could have broader implications. This possibility is not addressed in the current version, which limits the reader's appreciation of the relevance of this mode of action.

      (b) Previous reports of betulin activity in mammalian systems are not mentioned in the introduction, even though they are directly relevant to concerns about off-target toxicity. Therefore, the introduction should be revised to (i) briefly introduce the evolutionary conservation of GABA receptors, and (ii) acknowledge that betulin may affect a broader range of organisms, which sets up the need for caution in its application.

      Thanks for your important suggestions.

      (a) Briefly introduce the evolutionary conservation of GABA receptors has been added in the Introduction (Lines 90-98): Previous study has proposed that vertebrate and human GABR genes maintain a broad and conservative gene clustering pattern, while in invertebrates, this pattern is missing, indicating that these gene clusters formed early in vertebrate evolution and were established after diverging from invertebrates. Notably, invertebrates each possess a unique GABR gene pair, which are homologous with human GABR α and β subunits, suggesting that the existing GABR gene cluster evolved from an ancestral α - β subunit gene pair (Tsang et al. 2006). During the coevolution of plants and insects, the duplications and amino acid substitutions in GABR may be beneficial for the adaptation to insecticides and terpenoid compounds (Guo et al. 2023).

      (b) The possible effects of betulin on a broader range of organisms have been acknowledged in the Introduction section (Lines 68-77): An immune stimulant, Ir-Bet, was prepared using iridium complex and betulin, which evoked ferritinophagy-enhanced ferroptosis, thereby activating anti-tumor immunity (Lv 2023). The anti-inflammatory effect of betulin has been reported in macrophages at lymphoma site in mice (Szlasa et al. 2023). Betulin has been found to improve hyperlipidemia and insulin resistance and decrease atherosclerotic plaques by inhibiting the maturation of sterol regulatory element-binding protein (Tang et al. 2011). Besides, betulin and its derivatives have been found to exhibit insecticidal activity against Plutella xylostella L. (Huang et al. 2025), Aedes aegypti (de Almeida Teles et al. 2024), and Drosophila melanogaster (Lee and Min 2024).

      (c) At the end of the introduction, we remind that betulin should be used with caution (Lines 111-112): However, given that betulin may affect a wider range of organisms, it should be used with caution.

      (2) Method

      Number of biological replicates in all assays and justification of thresholds used for significance in RNAi and survival experiments are not addressed in the manuscript.

      Thanks for your careful reading. We have checked Materials and Methods section and added corresponding number of biological replicates in all assays. Besides, the p-values for the corresponding significance analyses of RNAi and survival experiments have been added to our Manuscript.

      (2)  Discussion

      (a) Consistent with the comments on the Introduction, the absence of discussion on (i) the evolutionary conservation of GABA receptor sensitivity to betulin, (ii) potential off-target effects in non-target insects and vertebrates (if so, this cannot be use for "eco-friendly pesticide" as the authors stated in the manuscript), and (iii) ecological risks associated with the exogenous application of betulin limits both the interpretive depth and applied relevance of the study.

      (b) To strengthen the Discussion, the authors should consider addressing: (i) whether the observed sensitivity reflects a conserved pharmacological vulnerability across animal taxa or a lineage-specific adaptation; (ii) the potential ecological risks of deploying betulin as a bioinsecticide, and (iii) the need for future research into the environmental fate, degradation, and safety profile of betulin prior to any field-level application.

      Thank you for your valuable comments.

      (a) We have added the discussion of the sensitivity of GABA receptor to betulin in Discussion section (Lines 491-501): Studies on key amino acids that are crucial for GABR function has primarily focused on transmembrane regions. For instance, based on the mutational research and Drosophila GABR modeling approach, multiple key amino acids were identified as insecticide targets in the transmembrane domain (Nakao and Banba 2021). Guo et al. proposed that amino acid substitutions in the transmembrane domain 2 contribute to terpenoid insensitivity during plant-insect coevolution (Guo et al. 2023). However, these studies have neglected the extracellular domain. Our study signified that betulin targets the THR228 site in the extracellular domain of MpGABR, which is conserved only in the Aphididae family. Therefore, betulin is speculated to be a specific insecticidal substance evolved by plants in response to aphid infestation. Besides, further verification is needed to determine whether betulin is toxic to other insect species.

      (b) The discussion of potential ecological risks of deploying betulin as a bioinsecticide has been elaborated in our manuscript (Lines 538-551): The development of bioinsecticides should not only focus on the toxic effects of active substance on target organisms, but also on their influence on the ecosystem (Haddi et al. 2020). Although our results indicate that betulin had specific toxicity to aphids, previous studies have reported that betulin and its derivatives had effects on Plutella xylostella L. (Huang et al. 2025), Aedes aegypti (de Almeida Teles et al. 2024), and Drosophila melanogaster (Lee and Min 2024). Therefore, further research is needed to determine whether there are other insecticidal mechanisms or off target effects of betulin. Additionally, betulin exhibits a wide range of pharmacological activities (Amiri et al. 2020), which have been used to treat various diseases, such as cancer (Lv 2023), glioblastoma (Li et al. 2022), inflammation (Szlasa et al. 2023) and hyperlipidemia (Tang et al. 2011). Before applying betulin in the field, it is necessary to fully verify and consider whether betulin has any impact on farmers' health. Furthermore, will betulin cause residue or diffusion in the process of field application? Will long-term application promote the evolution of resistance to aphids or other insects? These issues also need further experimental verification. 

      (c) Additionally, at the end of the Discussion, we remind that more research is needed before any field application of betulin (Lines 551-553): In summary, before any field application, further research on the environmental behavior, degradation process, and safety of betulin is needed.

      Reference

      Amiri S, Dastghaib S, Ahmadi M, Mehrbod P, Khadem F, Behrouj H, Aghanoori M, Machaj F, Ghamsari M, Rosik J, Hudecki A, Afkhami A, Hashemi M, Los M, Mokarram P, Madrakian T, Ghavami S. 2020. Betulin and its derivatives as novel compounds with different pharmacological effects. Biotechnology Advances 38: 107409.

      de Almeida Teles AC, dos Santos BO, Santana EC, Durço AO, Conceição LSR, Roman Campos D, de Holanda Cavalcanti SC, de Souza Araujo AA, dos Santos MRV. 2024.

      Larvicidal activity of terpenes and their derivatives against Aedes aegypti: a systematic review and meta-analysis. Environmental Science and Pollution Research 31: 64703-64718.

      Guo L, Qiao X, Haji D, Zhou T, Liu Z, Whiteman NK, Huang J. 2023. Convergent resistance to GABA receptor neurotoxins through plant–insect coevolution. Nature Ecology & Evolution 7: 1444-1456.

      Haddi K, Turchen LM, Viteri Jumbo LO, Guedes RN, Pereira EJ, Aguiar RW, Oliveira EE. 2020. Rethinking biorational insecticides for pest management: unintended effects and consequences. Pest Management Science 76: 2286-2293.

      Huang X, Hao N, Shu L, Wei Z, Shi J, Tian Y, Chen G, Yang X, Che Z. 2025. Preparation and insecticidal activities of betulin-cinnamic acid-related hybrid compounds and insights into the stress response of Plutella xylostella L. Pest Management Science 81: 4243-4255.

      Lee HY, Min KJ. 2024. Betulinic acid increases the lifespan of Drosophila melanogaster via Sir2 and FoxO activation. Nutrients 16: 441.

      Li Q, Wang L, Tang C, Wang X, Yu Z, Ping X, Ding M, Zheng L. 2024. Adipose tissue exosome circ_sxc mediates the modulatory of adiposomes on brain aging by inhibiting brain dme-miR-87-3p. Molecular Neurobiology 61: 224-238.

      Li Y, Wang Y, Gao L, Tan Y, Cai J, Ye Z, Chen A, Xu Y, Zhao L, Tong S, Sun Q, Liu B, Zhang S, Tian D, Deng G, Zhou J, Chen Q. 2022. Betulinic acid self-assembled nanoparticles for effective treatment of glioblastoma. Journal of Nanobiotechnology 20: 39.

      Liu S, Lamaze A, Liu Q, Tabuchi M, Yang Y, Fowler M, Bharadwaj R, Zhang J, Bedont J,

      Blackshaw S, Lloyd Thomas E, Montell C, Sehgal A, Koh K, Wu Mark N. 2014. WIDE AWAKE mediates the circadian timing of sleep onset. Neuron 82: 151-166.

      Lund IV, Hu Y, Raol YH, Benham RS, Faris R, Russek SJ, Brooks Kayal AR. 2008. BDNF selectively regulates GABAA receptor transcription by activation of the JAK/STAT pathway. Science Signaling 1: ra9.

      Lv M, Zheng Y, Wu J, Shen Z, Guo B, Hu G, Huang Y, Zhao J, Qian Y, Su Z, Wu C, Xue X, Liu H, Mao Z. 2023. Evoking ferroptosis by synergistic enhancement of a cyclopentadienyl iridium-betulin immune agonist. Angewandte Chemie International Edition 62: e202312897.

      Nakao T, Banba S. 2021. Important amino acids for function of the insect Rdl GABA receptor. Pest Management Science 77: 3753-3762.

      Pope SD, Medzhitov R. 2018. Emerging principles of gene expression programs and their regulation. Molecular Cell 71: 389-397.

      Szlasa W, Ślusarczyk S, Nawrot Hadzik I, Abel R, Zalesińska A, Szewczyk A, Sauer N, Preissner R, Saczko J, Drąg M, Poręba M, Daczewska M, Kulbacka J, Drąg Zalesińska M. 2023. Betulin and its derivatives reduce inflammation and COX-2 cctivity in macrophages. Inflammation 46: 573-583.

      Tang JJ, Li JG, Qi W, Qiu WW, Li PS, Li BL, Song BL. 2011. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metabolism 13: 44-56.

      Tsang SY, Ng SK, Xu Z, Xue H. 2006. The evolution of GABAA receptor–like genes. Molecular Biology and Evolution 24: 599-610.

    1. eLife Assessment

      This study presents a valuable finding about how receptor-ligand binding pathways with multi-site phosphorylation can show non-monotonic responses to increasing ligand affinity and to kinase activity. The authors provide compelling evidence through a simple ordinary differential equation model of such signaling networks with the key new ingredient of ligand-induced receptor degradation. The work will be of interest to physicists and biologists working on signal transduction and biological information processing.

    2. Reviewer #1 (Public review):

      Summary:

      The authors study the steady-state solutions of ODE models for molecular signaling involving ligand binding coupled to multi-site phosphorylation at saturating ligand concentrations. Although the results are in principle general, the work highlights the receptor tyrosine kinases (RTK) as model systems. After presenting previous ODE model solutions, the authors present their own "kinetic sorting" model, which is distinguished by ligand-induced phosphorylation-dependent receptor degradation and the property that every phosphorylation state is signaling competent. The authors show that this model recovers the two types of non-monotonicity experimentally reported for RTKs: maximum activity for intermediate ligand affinity and maximum activity for intermediate kinase activity.

      The main contribution of the work is in demonstrating that their model can capture both types of non-monotonicity, whereas previous models could at most capture non-monotonicity of ligand binding.

      Strengths:

      The question of how energy dissipating, and thus non-equilibrium, molecular systems can achieve steady-state solutions not accessible to equilibrium systems is of fundamental importance in biomolecular information processing and self-organization. Although the authors do not address the energy requirements of their non-equilibrium model, their comparative analysis of different alternative non-equilibrium models provides insight into the design choices necessary to achieve non-monotonic control, a property that is inaccessible at equilibrium.

      The paper is succinctly written and easy to follow, and the authors achieve their aims by providing convincing numerical solutions demonstrating non-monotonicity over the range of parameter values encompassing the biologically relevant regime.

      Weaknesses:

      (1) A key motivating framework for this work is the argument that the ability to tune to recognize intermediate ligand affinities provides a control knob for signal selection that is available to non-equilibrium systems. As such, this seems like a compelling type of ligand selectivity, which is a question of broad interest. However, as the authors note in the results, the previously published "limited signaling model" already achieves such non-monotonicity to ligand binding affinity. The introduction and abstract do not clearly delineate the new contributions of the model.

      The novel benefit of the model introduced by the authors is that it also achieves non-monotonic response to kinase activity. Because such non-monotonicity is observed for RTK, this would make the authors' model a better fit for capturing RTK behavior. However, the broad significance of achieving non-monotonicity to kinase activity is not motivated or supported by empirical evidence in the paper. As such, the conceptual significance of the modified model presented by the authors is not clear.

      UPDATE: The authors have now clarified the significance of the model in elucidating how known motifs (multisite phosphorylation and active receptor degradation) could explain the behavior, including non-monotonicity. The authors have also provided compelling arguments for the biological significance of achieving non-monotonic kinase activity response.

      (2) Whereas previous models used in the literature are schematized in Figure 1, the model proposed by the author is missing (See line 97 of page 3). Without the schematic, the text description of the model is incomplete.

      UPDATE: this issue has been resolved.

      (3) The authors use the activity of the first phosphorylation site as the default measure of activity. This choice needs to be justified. Why not use the sum of the activities at all sites?

      UPDATE: This was a non-issue. The potential misunderstanding has been mitigated by clarifications in the text.

      Comments on revisions:

      All issues previously identified were convincingly addressed. I have no additional suggestions.

    3. Reviewer #2 (Public review):

      Summary:

      In classical models of signaling network, the signaling activity increases monotonically with the ligand affinity. However, certain receptors prefer ligands of intermediate affinity. In the paper, the authors present a new minimal model to derive generic conditions for ligand specificity. In brief, this requires multi-site phosphorylation and that high-affinity complexes be more prone to degrade. This particular type of kinetic discrimination allows to overcome equilibrium constraints.

      Strengths:

      The model is simple, and it adds only a few parameters to classical generic models. They moreover vary these additional parameters in ranges based on experimental observations. They explain how the introduction of these new parameters is essential to ligand specificity. Their model quantitatively reproduces the ligand specificity of a certain receptor. They finally provide testable prediction.

      Weaknesses:

      The naming of multiple variables as activity without precise definitions may be confusing to readers.

      Comments on revisions:

      I thank the authors for addressing my comments. One point remains regarding the naming of multiple variables as activity. Besides using other words, the authors may consider giving precise definitions of terms, e.g. by writing "We define kinase activity as the phosphorylation rate $\omega=k_p\tau$." A connection that appears only at line 204 in the present manuscript.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors study the steady-state solutions of ODE models for molecular signaling involving ligand binding coupled to multi-site phosphorylation at saturating ligand concentrations. Although the results are in principle general, the work highlights the receptor tyrosine kinases (RTK) as model systems. After presenting previous ODE model solutions, the authors present their own "kinetic sorting" model, which is distinguished by ligand-induced phosphorylationdependent receptor degradation and the property that every phosphorylation state is signaling competent. The authors show that this model recovers the two types of non-monotonicity experimentally reported for RTKs: maximum activity for intermediate ligand affinity and maximum activity for intermediate kinase activity.

      The main contribution of the work is in demonstrating that their model can capture both types of non-monotonicity, whereas previous models could at most capture non-monotonicity of ligand binding.

      Strengths:

      The question of how energy-dissipating, and thus non-equilibrium, molecular systems can achieve steady-state solutions not accessible to equilibrium systems is of fundamental importance in biomolecular information processing and self-organization. Although the authors do not address the energy requirements of their non-equilibrium model, their comparative analysis of different alternative non-equilibrium models provides insight into the design choices necessary to achieve non-monotonic control, a property that is inaccessible at equilibrium.

      The paper is succinctly written and easy to follow, and the authors achieve their aims by providing convincing numerical solutions demonstrating non-monotonicity over the range of parameter values encompassing the biologically relevant regime.

      Weaknesses:

      (1) A key motivating framework for this work is the argument that the ability to tune to recognize intermediate ligand affinities provides a control knob for signal selection that is available to nonequilibrium systems. As such, this seems like a compelling type of ligand selectivity, which is a question of broad interest. However, as the authors note in the results, the previously published "limited signaling model" already achieves such non-monotonicity in ligand binding affinity. The introduction and abstract do not clearly delineate the new contributions of the model.

      We thank the reviewer for this comment. We apologize for any unclear language on our part. The purpose of our work was not to identify the unique reaction scheme to obtain nonmonotonic dependence of network activity on ligand affinity and kinase activity. Rather, we were interested in exploring how such a dependence could arise from the interplay between two ubiquitous network motifs (multisite phosphorylation and active receptor degradation). Notably, as the reviewer later points out, previous models that incorporate only multisite phosphorylation only capture the non-monotonic dependence of network activity on ligand affinity and not kinase/phosphatase activity. We have now clarified this in the abstract (lines 14-16) and the introduction (lines 55-59). 

      The novel benefit of the model introduced by the authors is that it also achieves a nonmonotonic response to kinase activity. Because such non-monotonicity is observed for RTK, this would make the authors' model a better fit for capturing RTK behavior. However, the broad significance of achieving non-monotonicity to kinase activity is not motivated or supported by empirical evidence in the paper. As such, the conceptual significance of the modified model presented by the authors is not clear.

      We thank the reviewer for this comment. We agree that the ability of our model to reproduce non-monotonic dependence on kinase/phosphatase activity was not sufficiently motivated in the original submission. We have now added a brief mention of the biological motivation for nonmonotonic kinase activity in the discussion (lines 229-247) to describe the potential biological significance of this behavior. In particular, non-monotonic kinase/phosphatase dependence may act as a safeguard, filtering out signaling cells with abnormally elevated kinase activity or suppressed phosphatase activity. In the presence of non-monotonic dependence on network activity, downstream signaling would remain contingent on extracellular cues, and cells with extreme kinase/phosphatase imbalances would fail to signal. This could prevent persistent, cueindependent activation, an especially important protective mechanism in pathways regulating metabolically taxing functions such as growth, proliferation, or mounting immune responses. Although direct experimental evidence for the widespread use of this mechanism is currently scarce, our motivation is supported both by the presence of similar regulatory behaviors of phosphatases which arise through distinct mechanisms (such as CD45 in T-cell receptor signaling, (Weiss, 2019)), but highlight the potential biological use of this strategy and by theoretical work on phosphorylation-dephosphorylation cycles, which demonstrates a similar effect in more general settings (Swain, 2013).

      (2) Whereas previous models used in the literature are schematized in Figure 1, the model proposed by the authors is missing (see line 97 of page 3). Without the schematic, the text description of the model is incomplete.

      We thank the reviewer for identifying this oversight, it has been corrected. See Figure 3 in the new text. 

      (3) The authors use the activity of the first phosphorylation site as the default measure of activity. This choice needs to be justified. Why not use the sum of the activities at all sites?

      We thank the reviewer for this comment. We in fact study all sites (Figure 5A in the resubmitted manuscript). Notably, as suggested by the reviewer, the concentration of the first site is indeed represented by the sum of concentrations of all phosphorylated species. The concentration of the 2<sup>nd</sup> site is represented by the sum of concentrations of all species except for the first one and so on (lines 153-155). 

      Reviewer #2 (Public review):

      Summary:

      In classical models of signaling networks, the signaling activity increases monotonically with the ligand affinity. However, certain receptors prefer ligands of intermediate affinity. In the paper, the authors present a new minimal model to derive generic conditions for ligand specificity. In brief, this requires multi-site phosphorylation and that high-anity complexes be more prone to degrade. This particular type of kinetic discrimination allows for overcoming equilibrium constraints.

      Strengths:

      The model is simple, and it adds only a few parameters to classical generic models. Moreover, the authors vary these additional parameters in ranges based on experimental observations. They explain how the introduction of these new parameters is essential to ligand specificity. Their model quantitatively reproduces the ligand specificity of a certain receptor. Finally, they provide a testable prediction.

      Weaknesses:

      The naming of certain variables may be confusing to readers.

      We apologize for the confusion due to unclear presentation. We have clarified our definitions throughout the manuscript. 

      Reviewer #1 (Recommendations for the authors):

      (1) The abstract and introduction present the problem as if this model is solving the fundamental problem of non-monotonic dependence on ligand affinity. However, as the authors noted in their results, this problem has already been solved by a previous phosphorylation model with N-state degradation. What the authors' new model achieves is the additional experimentally observed non-monotonicity of kinase activity dependence. The abstract and introduction should be changed to reflect the actual novel contributions and also to motivate the biological significance of non-montonic kinase activity dependence.

      We thank the reviewer for this comment. We apologize for any unclear language on our part. The purpose of our work was not to identify the unique reaction scheme to obtain nonmonotonic dependence of network activity on ligand affinity and kinase activity. Rather, we were interested in exploring how such a dependence could arise from two ubiquitous network motifs (multisite phosphorylation and active receptor degradation). Notably, as the reviewer later points out, previous models that incorporate only multisite phosphorylation only capture the nonmonotonic dependence of network activity on ligand affinity and not kinase/phosphatase activity. We have now clarified this in the abstract (lines 14-16) and the introduction (lines 55-59). We have also provided biological motivation behind nonmonotonic kinase activity dependance (lines 229-247). 

      (2) It is important to show (in the supplemental materials if needed) that the closest equilibrium analog to the model (for example, reversible rate constants from each of the activated states to an inactive state) does not achieve non-monotonicity with ligand affinity.

      We have added a model in the supplementary materials that represents a detailed balance Markov chain. In the model, we imagine that ligand bound receptors undergo a series of equilibrium transitions, all characterized by the same activation and inactivation rate. We show that at saturating ligand levels, the signaling output only depends on the ratio of the activation to the inactivation rate (i.e., the thermodynamic stability of the active site) (lines 466-488).

      (3) Schematics for earlier models are described in Figure 1. However, no schematic for the actual model proposed by the authors is shown. This should be added as a subpanel to Figure 1.

      We thank the reviewer for identifying our omission of our model schematic. We have included our model schematic as its own figure (Figure 3).

      (4) Minor: Figure 1 is referred to as Figure?? In line 97 of page 3.

      We thank the reviewer for identifying this error, it has been corrected. 

      Reviewer #2 (Recommendations for the authors):

      (1) There is an inconsistency between Figure 2(a) and Equation (1), it suggests that p_N is \omega^N/(\omega+\delta)^N. This makes more sense with the model defined in the supplementary material.

      We thank the reviewer for identifying this error. Equation (1) has been updated to reflect the correct relationship.

      (2) The figure presenting the model of the authors appears to be missing.

      We thank the reviewer for identifying this error, it has been corrected (Figure 3 in the new manuscript). 

      (3) The authors describe phosphorylation as irreversible in the intro, but then consider reversible phosphorylation in their model, which may be confusing to readers.

      We thank the reviewer for identifying this source of possible confusion. We have clarified that dephosphorylation is taken to be a distinct irreversible reaction, see lines 105 - 112.

      (4) The authors reuse similar names, e.g., network activity, kinase activity, signaling activity, activity. This is confusing.

      We apologize for the confusion. We note that, within the context of our model, there are important distinctions between signaling activity (the amount of signaling competent receptors) and kinase activity (value corresponding to the phosphorylation rate). We have attempted to use these different terms correctly and are happy to make clarifying corrections if there are any places where a term is misused.  

      (5) Several parameters are defined only in the captions of the figures, such as \beta and \rho.

      We thank the reviewer for identifying this omission, we have added the definitions of beta and rho to the main text (see line 129). 

      (6) The sentence at line 137 lacks some words: "Below, we kinetic...".

      We thank the reviewer for identifying this error, we have added the missing words (“Below, we show how kinetic…”).

      (7) The sentence at line 183 lacks some words: "When kinase activity...".

      We thank the reviewer for identifying this error. We have now corrected it. 

      (8) Figure 5 is very small.

      We will work with the production team to increase the size of this figure.

    1. eLife Assessment

      This important study characterizes and validates a new activity marker - fast labelling of engram neurons (FLEN) - which is transiently active and driven by cFos, allowing the monitoring of intrinsic and synaptic properties of engram neurons shortly after the learning experience. The results convincingly demonstrate the utility of this novel viral tool for studying early changes in the properties of engram cells. FLEN will provide a beneficial tool for the neuroscience community once it is made available at a plasmid repository.

    2. Reviewer #1 (Public review):

      Summary:

      The manuscript by Cupollilo et al describes the development, characterization and application of a novel activity labeling system; fast labelling of engram neurons (FLEN). Several such systems already exist but this study adds additional capability by leveraging an activity marker that is destabilized (and thus temporally active) as well as being driven by the full-length promoter of cFos. The authors demonstrate the activity dependent induction and timecourse of expression, first in cultured neurons and then in vivo in hippocampal CA3 neurons after one trial contextual fear conditioning. In a series of ex vivo experiments the authors perform patch clamp analysis of labeled neurons to determine if these putative engram neurons differ from non-labelled neurons using both the FLEN system as well as the previously characterized RAM system. Interestingly the early labelled neurons at 3 h post CFC (FLEN+) demonstrated no differences in excitability whereas the RAM labeled neurons at 24h after CFC had increased excitability. Examination of synaptic properties demonstrated an increase in sEPCS and mEPSC frequencies as well as those for sIPSCs and mIPSCs which was not due to a change in the mossy fiber input to these neurons.

      Strengths:

      Overall the data is of high quality and the study introduces a new tool while also reassessing some principles of circuit plasticity in the CA3 that have been the focus of prior studies.

      Weaknesses:

      No major weaknesses were noted

    3. Reviewer #2 (Public review):

      Summary:

      Cupollilo et al. investigate the properties of hippocampal CA3 neurons that express the immediate early gene cFos in response to a single foot shock. They compare ex-vivo the electrophysiological properties of these "engram neurons" labeled with two different cFos promoter-driven green markers: Their new virally delivered tool FLEN labels neurons 2-6 h after activity, while RAM contains additional enhancers and peaks considerably later (>24 h). Since the fraction of labeled CA3 cells is comparable with both constructs, it is assumed (but not tested) that they label the same population of activated neurons at different time points. Both FLEN+ and RAM+ neurons in CA3 receive more synaptic inputs compared to non-expressing control neurons, which could be a causal factor for cFos activation, or a very early consequence thereof. Frequency facilitation and E/I ratio of mossy fiber inputs were also tested, but are not different in both cFos+ groups of neurons. One day after foot shock, RAM+ neurons are more excitable than RAM- neurons, suggesting a slow increase in excitability as a major consequence of cFos activation.

      Strengths:

      The study is conducted to high standards and contributes significantly to our understanding of memory formation and consolidation in the hippocampus. Modifications of intrinsic neuronal properties seem to be more salient than overall changes in the total number of (excitatory and inhibitory) inputs, although a switch in the source of the synaptic inputs would not have been detected by the methods employed in this study

      Weaknesses:

      The new tool FLEN is not quantitatively compared to e.g. the TetTag reporter mouse. Nevertheless, the fluorescent images of FLEN+ neurons are quite convincing.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):  

      Summary:

      The manuscript by Cupollilo et al describes the development, characterization, and application of a novel activity labeling system; fast labelling of engram neurons (FLEN). Several such systems already exist but this study adds additional capability by leveraging an activity marker that is destabilized (and thus temporally active) as well as being driven by the full-length promoter of cFos. The authors demonstrate the activity-dependent induction and time course of expression, first in cultured neurons and then in vivo in hippocampal CA3 neurons after one trial of contextual fear conditioning. In a series of ex vivo experiments, the authors perform patch clamp analysis of labeled neurons to determine if these putative engram neurons differ from non-labelled neurons using both the FLEN system as well as the previously characterized RAM system. Interestingly the early labelled neurons at 3 h post CFC (FLEN+) demonstrated no differences in excitability whereas the RAMlabelled neurons at 24h after CFC had increased excitability. Examination of synaptic properties demonstrated an increase in sEPCS and mEPSC frequencies as well as those for sIPSCs and mIPSCs which was not due to a change in the mossy fiber input to these neurons.

      Strengths:

      Overall the data is of high quality and the study introduces a new tool while also reassessing some principles of circuit plasticity in the CA3 that have been the focus of prior studies.

      Weaknesses:

      No major weaknesses were noted.

      Reviewer #2 (Public review): 

      Summary: 

      Cupollilo et al. investigate the properties of hippocampal CA3 neurons that express the immediate early gene cFos in response to a single foot shock. They compare ex-vivo the electrophysiological properties of these "engram neurons" labeled with two different cFos promoter-driven green markers: Their new tool FLEN labels neurons 2-6 h after activity, while RAM contains additional enhancers and peaks considerably later (>24 h). Since the fraction of labeled CA3 cells is comparable with both constructs, it is assumed (but not tested) that they label the same population of activated neurons at different time points. Both FLEN+ and RAM+ neurons in CA3 receive more synaptic inputs compared to non-expressing control neurons, which could be a causal factor for cFos activation, or a very early consequence thereof. Frequency facilitation and E/I ratio of mossy fiber inputs were also tested, but are not different in both cFos+ groups of neurons. One day after foot shock, RAM+ neurons are more excitable than RAM- neurons, suggesting a slow increase in excitability as a major consequence of cFos activation.

      Strengths: 

      The study is conducted to high standards and contributes significantly to our understanding of memory formation and consolidation in the hippocampus. Modifications of intrinsic neuronal properties seem to be more salient than overall changes in the total number of (excitatory and inhibitory) inputs, although a switch in the source of the synaptic inputs would not have been detected by the methods employed in this study

      Weaknesses: 

      With regard to the new viral tool, a direct comparison between the new tool FLEN and existing cFos reporters is missing. 

      Reviewer #1 (Recommendations for the authors):

      I have only minor suggestions for the authors to consider. 

      (1) In the in vitro characterization, the percentage of labelled neurons seems very low after a powerful and prolonged activation. It was somewhat surprising and raised the question of how accurately the FLEN construct reflects endogenous cFOS activity. Could the authors speak to this?

      The reviewer is correct that the level of FLEN positive neurons, as compared to mCherry positive neurons, is low as compared to studies using viral infection with RAM vectors in neuronal cultures (Sorensen et al, 2016, Sun et al, 2020), which is around 70-80% following chemical stimulation. The authors do not provide evidence however for a comparison with endogenous c-Fos activity in cell cultures. The reason for a discrepancy in the effect of chemical stimulation of cultured neurons is not clear, but may depend on culture conditions which may vary between labs. 

      FLEN was constructed using a mouse c-Fos promoter (-355 to +109) (Cen et al, 2003). To answer the reviewer’s question we performed an additional experiment in cultured neurons in which we found that 77.1 % of FLEN positive neurons were also c-fos positive neurons (using immunocytochemistry).

      (2) The authors compare the two labelling strategies and interpret their data with the presumption that both label a similar set of active neurons. This is particularly relevant when they suggest there might be a progressive increase in the excitability of active neurons with time. This is certainly a possibility, but the authors should also consider other possibilities that the two markers might label different populations of neurons. For example, if they require different thresholds for activation, it is possible that one is more sensitive to activity than the other. As these are unknown variables the authors should temper the interpretation accordingly.

      Indeed, the reviewer is correct that this limitation should be discussed. We have added this as a point of discussion in the text (line 355-358). In the article describing the RAM strategy (Sorensen et al, 2016) the authors use RAM to label DG neurons activated during an experience in a context A (Figure 4). Exploiting the fact that engram cells are re-activated when the animal is re-exposed to the same environment of training (memory recall), they performed c-Fos staining 90 minutes following either context A or context B re-exposure. The RAM-c-Fos overlap percentage was higher in A-A rather than A-B (A-A was a bit more than 20%). This means that RAM has captured a group of cells during training that, at least in part, were re-activated during recall. This could in part support the assumption that RAM and c-Fos share a certain overlap. Of course, this was done in DG, while we worked in CA3. In addition, both strategies label in their great majority c-Fos+ neurons (see above answer to point #1). This can not completely rule out the possibility that FLEN and RAM label partly distinct population of activated cells. 

      (3) An increase in the frequency of synaptic events is observed in neurons labelled with both markers. The authors propose that this may be due to an increase in synaptic contacts based on prior studies. However, as this is the first functional assessment why not consider changes in release probability as a mechanism for this finding? 

      We have added this as a possibility in the text (line 362-363).

      (4) It would be useful to include plots of the average frequency of m/sEPSCs and m/sIPSCs in Figures 4 and 5. These figures could also be combined into a single figure.

      We agree with the reviewer that figure 4 and 5 could be merged into a single figure. In the revised version, figure 5A becomes panel C in figure 4. Text and figure descriptions were adjusted accordingly.

      Reviewer #2 (Recommendations for the authors): 

      (1) Abstract, line 24: "In contrast, FLEN+ CA3 neurons show an increased number of excitatory inputs." RAM+ neurons also show an increased number of excitatory inputs, so this is not "in contrast". Also, not just excitatory, but also inhibitory synaptic inputs are more numerous in cFos+ neurons. Please improve the summary of your findings.

      “In contrast” referred to the fact that FLEN+ neurons do not show differences in excitability as compared to FLEN- neurons, as mentioned in the previous sentence. We now provide a more explicit sentence to explain this point: “On the other hand, like RAM+ neurons, FLEN+ CA3 neurons show an increased number of excitatory inputs.”

      (2) Novel tool: Destabilized cFos reporters were introduced 23 years ago and are also part of the TetTag mouse. I am not sure that changing the green fluorescent protein to a different version merits a new acronym (FLEN). To convince the readers that this is more than a branding exercise, the authors should compare the properties (brightness, folding time, stability) of FLEN to e.g. the d2EGFP reporter introduced by Bi et al. 2002 (J Biotechnol. 93(3):231) and show significant improvements.

      We thank the reviewer for this comment which compelled us to evaluate the features of other tools used to label neurons activated following contextual fear conditioing. The key properties of FLEN as compared to other tools used to label engrams is that: (i) it is a viral tool, as opposed to transgenic mice, (ii) a c-fos promoter drives the expression of a brightly fluorescent protein allowing their identification ex vivo for functional analysis, (iii) the fluorescent protein is rapidly destabilized, providing the possibility to label neurons only a few hours after their activation by a behavioural task.

      We did not find any viral tools providing the possibility to label c-fos activated neurons for functional assesment. We have not been able to find references for the use of the d2EGFP reporter introduced by Bi et al. 2002 in a behavioural context. One of the major difference and improvement is certainly the brightness of ZsGreen. In cell cultures, ZsGreen1 showed a 8.6-fold increase in fluorescence intensity as compared with EGFP (Bell et al, 2007).

      Amongst tools with comparable properties, eSARE was developed based on a synthetic Arc promoter driving the expression of a destabilized GFP (dEGFP) (Kawashima et al 2013). We initially used ESARE–dGFP but unfortunately, in our experimental conditions we found that the signal to noise ratio was not satisfactory (number of cells label in the home cage vs. following contextual fear conditining).

      We developed a viral tool to avoid the use of transgenic reporter lines which require laborious breeding and is experimentally less flexible. Nevertheless, many transgenic mice based on the expression of fluorescent proteins under the control of IEG promoters have been developed and used. Some of these mice show a time course of expression of the transgene which is comparable to FLEN. For instance, in organotypic slices from Tet-Tag mice, the time course of expression of EGFP slices follows with a small delay endogenous cFOS expression, and starts decaying after 4 hours (Lamothe-Molina et al, 2022). However, the fluorescence was too weak to visualize neurons in the slice (Christine Gee, personal communication), and imaging is perfomed after immunocytochemistry against GFP. 

      Therefore, we feel that the name given to the FLEN strategy is legitimate. The features of the FLEN strategy were summarized in the discussion (Lines 318-322).

      (3) Line 214: "...FLEN+ CA3 PNs do not show differences in [...] patterns of bursting activity as compared to control neurons." It looks quite different to me (Figure 3E). Just because low n precludes meaningful statistical analysis, I would not conclude there is no difference.

      We agree with the reviewer that the data in Figure 3E are not conclusive due to small sample size, which limits the reliability of statistical comparison. Additionally, the classification of bursting neurons is highly dependent on the specific criteria used, which vary considerably across the literature. To avoid overinterpretation or misleading conclusions, we decided to remove the panel E of Figure 3 showing the fraction of bursting neurons. Nevertheless, we draw the attention to the more robust and interpretable results: RAM⁺ neurons exhibit an increase in firing frequency and a distinct action potential discharge pattern, data which we believe are informative of altered excitability.

      (4) Line 304: Remove the time stamp.

      This was done.

      (5) Line 334: "...results may be explained by an overall increased activity of CA1 neurons..." I don't understand - isn't CA1 downstream of CA3? 

      The reviewer is correct that the sentence was misleading. We removed the reference to CA1, as it was more of a general principle about neuronal activity.

      (6) Line 381: "resolutive", better use "sensitive". 

      This was changed.

      (7) Figure S3: Fear-conditioned animals were 3 days off Dox, controls only 2 days. As RAM expression accumulates over time off Dox, this is not a fair comparison.

      We thank the reviewer for pointing out the incorrect reporting of the experimental design in Figure S3 panel A (bottom), which could lead to misinterpretation of results. In fact, the two groups of mice (CFC vs. HC) underwent all experimental steps in parallel. Specifically, both groups were maintained on and off Doxycycline for the same duration and received viral injection on the same day. 48 hours after Dox withdrawal, the CFC group was trained for contextual conditioning, while the HC group remained in the home cage in the holding room. All animals were thus sacrificed 72 hours after Dox removal. We have corrected the figure to accurately reflect this timeline.

      (8) Please provide sequence information for c-cFos-ZsGreen1-DR. Which regulatory elements of the cFos promoter are included, is the 5' NTR included? This information is very important.

      The information is now provided in the Methods section.

      (9) Please provide the temperature during pharmacological treatments (TTX etc.) before fixation.

      The pharmacological treatment was performed in the incubator at 37°C, this is now indicated in the methods.

    1. eLife Assessment

      This work derives a valuable general theory unifying theories of efficient information transmission in the brain with population homeostasis. The general theory provides an explanation for firing rate homeostasis at the level of neural clusters with firing rate heterogeneity within clusters. Applying this theory to the primary visual cortex, the authors present solid evidence that accounts for stimulus-specific and neuron-specific adaptation. Reviewers have provided additional suggestions for improving the readability of the manuscript, as well as discussing previous results on adapting coding as well as those aspects of experimental data that are not fully explained by the present theory.

    2. Reviewer #1 (Public review):

      This work derives a general theory of optimal gain modulation in neural populations. It demonstrates that population homeostasis is a consequence of optimal modulation for information maximization with noisy neurons. The developed theory is then applied to the distributed distributional code (DDC) model of the primary visual cortex to demonstrate that homeostatic DDCs can account for stimulus specific adaptation.

      Strengths:

      The theory of gain modulation proposed in the paper is rigorous and the analysis is thorough. It does address the issue in an interesting, general setting. The proposed approach separates the question of which bits of sensory information are transmitted (as defined by a specific computation and tuning curve shapes) and how well are they transmitted (as defined by the tuning curve gain optimized to combat noise). This separation permits the application of the developed theory to different neural systems.

      Weaknesses:

      The manuscript effectively consits of two parts: a general theory of optimal gain modulation and a DDC model of the visual cortex. From my perspective it is not entirely clear which components of the developed theory and the model it is applied to are essential to explain the experimental phenomena in the visual cortex (Fig. 12). This "separation" into two parts makes this work, in my view, somewhat diffused.

      Overall, I think this is an interesting contribution and I assess it positively. It has the potential of deepening our understanding of efficient neural representations beyond sensory periphery.

    3. Reviewer #2 (Public review):

      Summary:

      Using the theory of efficient coding, the authors study how neural gains may be adjusted to optimize information transmission by noisy neural populations while minimizing metabolic cost, under the assumption that other aspects of neural activity (i.e. tuning) are determined by the computation performed by the network.

      The manuscript first presents mathematical results for the general case where the computational goals of the neural population are not specified (the computation is implicit in the assumed tuning curves). It then develops the theory for a specific probabilistic coding scheme. The general theory provides an explanation for firing rate homeostasis at the level of neural clusters with firing rate heterogeneity within clusters. The specific application further explains stimulus-specific adaptation in visual cortex.

      The mathematical derivations, simulations and application to visual cortex data are solid as far as I can tell.

      This remains a highly technical manuscript although the authors have improved the clarity of presentation of the general theory (which is the bulk of the work presented) and better motivated/explained modeling assumptions and choices. In the second part, the manuscript focuses on a specific code (homeostatic DDC) showing that this can be implemented by divisive normalization and can explain stimulus-specific adaptation.

      Strengths:

      The problem of efficient coding is a long-standing and important one. This manuscript contributes to that field by proposing a theory of efficient coding through gain adjustments, independent of the computational goals of the system. The main assumption, and insight, is that computational goals and efficiency can be in some sense factorized: tuning curve shapes are determined by the computational goal, whereas gains can be adjusted to optimize transmission of information.

      One key result is a normative explanation for firing rate homeostasis at the level of neural clusters (groups of neurons that perform a similar computation) with firing rate heterogeneity within each cluster. Both phenomena are widely observed, and reconciling them under one theory is important.

      The mathematical derivations are thorough. Although the model of neural activity is artificial, the authors make sure to include many aspects of cortical physiology, while also keeping the models quite general.

      Section 2.5 derives the conditions in which homeostasis would be near-optimal in cortex, which appear to be consistent with many empirical observations in V1. This indicates that homeostasis in V1 might be indeed a close to optimal solution to code efficiently in the face of noise.

      The application to the data of Benucci et al 2013 is the first to offer a normative explanation of stimulus-specific adaptation in V1.

      The novelty and significance of the work are presented clearly in the newly extended Introduction and Discussion.

      Weaknesses:

      The manuscript remains hard to read. The general theory occupies most of the manuscript, as needed to convey it fully. But as a result the second part on homeostatic DDC and adaptation is somewhat underdeveloped and risks having less visibility than it might deserve.

      The paper Benucci et al 2013 shows that homeostasis holds for some stimulus distributions, but not others i.e. when the 'adapter' is present too often. This manuscript, like the Benucci paper, discards those datasets. But from a theoretical standpoint, it seems important to consider why that would be the case, and if it can be predicted by the theory proposed here. The authors now acknowledge this limitation in the Discussion.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1(Public Review):

      Major comments:

      (1) Interpretation of key results and relationship between different parts of the manuscript. The manuscript begins with an information-transmission ansatz which is described as ”independent of the computational goal” (e.g. p. 17). While information theory indeed is not concerned with what quantity is being encoded (e.g. whether it is sensory periphery or hippocampus), the goal of the studied system is to *transmit* the largest amount of bits about the input in the presence of noise. In my view, this does not make the proposed framework ”independent of the computational goal”. Furthermore, the derived theory is then applied to a DDC model which proposes a very specific solution to inference problems. The relationship between information transmission and inference is deep and nuanced. Because the writing is very dense, it is quite hard to understand how the information transmission framework developed in the first part applies to the inference problem. How does the neural coding diagram in Figure 3 map onto the inference diagram in Figure 10? How does the problem of information transmission under constraints from the first part of the manuscript become an inference problem with DDCs? I am certain that authors have good answers to these questions - but they should be explained much better.

      We are very thankful to the reviewer for highlighting the potential confusion surrounding these issues, in particular the relationship between the two halves of the paper – which was previously exacerbated by the length of the paper. We have now added further explanations at different points within the manuscript to better disentangle these issues and clarify our key assumptions. We have also significantly cut the length of the paper by moving more technical discussions to the Methods or Appendices. We will summarise these changes here and also clarify the rationale for our approach and point out potential disagreements with the reviewer.

      Key to our approach is that we indeed do not assume the entire goal of the studied neural system (whether part of the sensory system or not) is to transmit the largest amount of information about the stimulus input (in the presence of noise). In fact, general computations, including the inference of latent causes of inputs, often require filtering out or ignoring some information in the sensory input. It is thus not plausible that tuning curves in general (i.e. in an arbitrary part of the nervous system) are optimised solely with regards to the criterion of information transmission. Accordingly we do not assume they are entirely optimised for that purpose. However, we do make a key assumption or hypothesis (which like any hypothesis might turn out to be partly or entirely wrong): that (1) a minimal feature of the tuning curve (its scale or gain) is entirely free to be optimised for the aim of information transmission (or more precisely the goal of combating the detrimental effect of neural noise on coding fidelity), (2) other aspects of the population tuning curve structure (i.e. the shape of individual tuning curves and their arrangement across the population) are determined by (other) computational goals beyond efficient coding. (Conceptually, this is akin to the modularization between indispensible error correction and general computations in a digital computer, and the need for the former to be performed in a manner that is agnostic as to the computations performed.) We have added two paragraphs in the manuscript which present the above rationale and our key hypothesis or assumption. The first of these was added to the (second paragraph of the) Introduction section, and the second is a new paragraph following Eq. 1 (which is about the gain-shape decomposition of the tuning curves, and the optimisation of the former based on efficient coding) of Results.

      Our paper can be divided into two parts. In the first part, we develop a general, computationally agnostic (in the above sense, just as in the digital computer example), efficient coding theory. In the second part, we apply that theory to a specific form of computation, namely the DDC framework for Bayesian inference. The latter theory now determines the tuning curve shapes. When combined with the results of the first part (which dictate the tuning curve scale or gain according to efficient coding theory), this “homeostatic DDC” model makes full predictions for the tuning curves (i.e., both scale and shape) and how they should adapt to stimulus statistics.

      So to summarise, it is not the case that the problem of information transmission (or rather mitigating the effect noise on coding fidelity under metabolic constraints), dealt with in the first part, has become a problem of Bayesian inference. But rather, the dictates of efficient coding for optimal gains for coding fidelity (under constraints) have been applied to and combined with a computational theory of inference.

      We have added new expository text before and after Eq. 17 in Sec. 2.7 (at the beginning of the second part of the paper on homeostatic DDCs) to again make the connection with the first part and the rationale for its combination with the original DDC framework more clear.

      With the changes outlined above, we believe and hope the connection between the two parts (which we agree with the reviewer, was indeed rather obscure previously) has been adequately clarified.

      (2) Clarity of writing for an interdisciplinary audience. I do not believe that in its current form, the manuscript is accessible to a broader, interdisciplinary audience such as eLife readers. The writing is very dense and technical, which I believe unnecessarily obscures the key results of this study.

      We thank the reviewer for this comment. We have taken several steps to improve the accessibility of this work for an interdisciplinary audience. Firstly, several sections containing dense, mathematical writing have now been moved into appendices or the Methods section, out from the main text; in their place we have made efforts to convey the core of the results, and to providing intuitions, without going into unnecessary technical detail. Secondly, we have added additional figures to help illustrate key concepts or assumptions (see Fig. 1B clarifying the conceptual approach to efficient coding and homeostatic adaptation, and Fig. 8A describing the clustered population). Lastly, we have made sure to refer back to the names of symbols more often, so as to make the analysis easier to follow for a reader with an experimental background.

      (3) Positioning within the context of the field and relationship to prior work. While the proposed theory is interesting and timely, the manuscript omits multiple closely related results which in my view should be discussed in relationship to the current work. In particular, a number of recent studies propose normative criteria for gain modulation in populations: • Duong, L., Simoncelli, E., Chklovskii, D. and Lipshutz, D., 2024. Adaptive whitening with fast gain modulation and slow synaptic plasticity. Advances in Neural Information Processing Systems

      Tring, E., Dipoppa, M. and Ringach, D.L., 2023. A power law describes the magnitude of adaptation in neural populations of primary visual cortex. Nature Communications, 14(1), p.8366.

      Ml ynarski, W. and Tkaˇcik, G., 2022. Efficient coding theory of dynamic attentional modulation. PLoS Biology

      Haimerl, C., Ruff, D.A., Cohen, M.R., Savin, C. and Simoncelli, E.P., 2023. Targeted V1 co-modulation supports task-adaptive sensory decisions. Nature Communications • The Ganguli and Simoncelli framework has been extended to a multivariate case and analyzed for a generalized class of error measures:

      Yerxa, T.E., Kee, E., DeWeese, M.R. and Cooper, E.A., 2020. Efficient sensory coding of multidimensional stimuli. PLoS Computational Biology

      Wang, Z., Stocker, A.A. and Lee, D.D., 2016. Efficient neural codes that minimize LP reconstruction error. Neural Computation, 28(12),

      We thank the reviewer again for bringing these works to our attention. For each, we explain whether we chose to include them in our Discussion section, and why.

      (1) Duong et al. (2024): We decided not to discuss this manuscript, as our assessment is that it is very relevant to our work. That study starts with the assumption that the goal of the sensory system under study is to whiten the signal covariance matrix, which is not the assumption we start with. A mechanistic ingredient (but not the only one) in their approach is gain modulation. However, in their case it is the gains of computationally auxiliary inhibitory neurons that is modulated and not (as in our case) the gain the (excitatory) coding neurons (i.e. those which encode information about the stimulus and whose response covariance is whitened). These key distinction make the connection with our work quite loose and we did not discuss this work.

      (2) Tring et al. (2023): We have added a discussion of the results of this paper and its relationship to the results of our work and that of Benucci et al. This appears in the 7th paragraph of the Discussion. This study is indeed highly relevant to our paper, as it essentially replicates the Benucci et al. experiment, this time in awake mice (rather than anesthetised cats). However, in contrast to the resul‘ts of Benucci et al., Tring et al. do not find firing rate homeostasis in mouse V1. A second, remarkable finding of Tring et al. is that adaptation mainly changes the scale of the population response vector, and only minimally affects its direction. While Tring et al. do not portray it as such, this behaviour amounts to pure stimulus-specific adaptation without the neuron-specific factor found in the Benucci et al. results (see Eq. 24 of our manuscript). As we discuss in our manuscript, when our homeostatic DDC model is based on an ideal-observer generative model, it also displays pure stimulus-specific adaptation with no neuronal factor. Our final model for Benucci’s data did contain a neural factor, because we used a non-ideal observer DDC (in particular, we assumed a smoother prior distribution over orientations compared to the distribution used in the experiment - which has a very sharp peak – as it is more natural given the inductive biases we expect in the brain). The resultant neural factor suppresses the tuning curves tuned to the adaptor stimulus. Interestingly, when gain adaptation is incomplete, and happens to a weaker degree compared to what is necessary for firing rate homeostasis, an additional neural factor emerges that is greater than one for neurons tuned to the adaptor stimulus. These two multiplicative neural factors can approximately cancel each other; such a theory would thus predict both deviation from homeostasis and approximately pure stimulus-specific adaptation. We plan to explore this possibility in future work.

      (3) Ml ynarski and Tkaˇcik (2022): We are now citing and discussing this work in the Discussion (penultimate paragraph), in the context of a possible future direction, namely extending our framework to cover the dynamics of adaptation (via a dynamic efficient gain modulation and dynamic inference). We have noted there that Mlynarski have used such a framework (which while similar has key technical differences with our approach) based on a task-dependent efficient coding objective to model top-down attentional modulation. By contrast, we have studied bottom-up and task-independent adaptation, and it would be interesting to extend our framework and develop a model to make predictions for the temporal dynamics of such adaptation.

      (4) Haimerl et al. (2023): We have elected not to include this work within our discussion either, as we do not believe it is sufficiently relevant to our work to warrant inclusion. Although this paper also considers gain modulation of neural activity, the setting and the aims of the theoretical work and the empirical phenomena it is applied to are very different from our case in various ways. Most importantly, this paper is not offering a normative account of gain modulation; rather, gain modulation is used as a mechanism for enabling fast adaptive readouts of task relevant information.

      (5) Yerxa et al. (2020): We have now included a discussion of this paper in our Discussion section. Note that, even though this study generalises the Ganguli and Simoncelli framework to higher diemsnions, just like that paper it still places strict requirements (which are arguably even more stringent in higher dimensions) on the form of the tuning curves in the population, viz. that there exists a differentiable transform of the stimulus space which renders these unimodal curves completely homogeneous (i.e., of the same shape, and placed regularly and with uniform density).

      (6) Wang et al. (2016): We have included this paper in our discussion as well. As above, this paper does not consider general tuning curves, and places the same constraint on their shape and arrangement as in Ganguli and Simoncelli paper.

      More detailed comments and feedback:

      (1) I believe that this work offers the possibility to address an important question about novelty responses in the cortex (e.g. Homann et al, 2021 PNAS). Are they encoding novelty per-se, or are they inefficient responses of a not-yet-adapted population? Perhaps it’s worth speculating about.

      We are not sure why the relatively large responses to “novel” or odd-ball stimuli should be considered inefficient or unadapted: in the context in which those stimuli are infrequent odd-balls (and thus novel or surprising when occurring), efficient coding theory would indeed typically predict a large response compared to the (relatively suppressed) responses to frequently occurring stimuli. Of course, if the statistics change and the odd-ball stimulus now becomes frequent, adaptation should occur and would be expected to suppress responses to this stimulus. As to the question of whether (large) responses to infrequent stimuli can or should be characterised as novelty responses: this is partly an interpretational or semantic issue – unless it is grounded in knowledge of how downstream populations use this type of coding in V1, which could then provide a basis for solidly linking them to detection of novelty per se. In short, our theory, could be applied to Homann et al.’s data, but we consider that beyond the scope of the current paper.

      (2) Clustering in populations - typically in efficient coding studies, tuning curve distributions are a consequence of input statistics, constraints, and optimality criteria. Here the authors introduce randomly perturbed curves for each cluster - how to interpret that in light of the efficient coding theory? This links to a more general aspect of this work - it does not specify how to find optimal tuning curves, just how to modulate them (already addressed in the discussion).

      We begin by addressing the reviewer’s more general concern regarding the fact that our theory does not address the problem of finding optimal tuning curves, only that of modulating them optimally. As we expound within the updated version of the paper (see the newly expanded 3rd paragraph in Sec. 2.1 and the expanded 2nd paragraph in Introduction), it is not plausible that the sole function of sensory systems, and neural circuits more generally, is the transmission of information. There are many other computational tasks which must be performed by the system, such as the inference of the latent causes of sensory inputs. For many such tasks, it is not even desirable to have complete transmission of information about the external stimulus, since a substantial portion of that information is not important for the task at hand, and must be discarded. For example, such discarding of information is the basis of invariant representations that occur, e.g., in higher visual areas. So we recognise that tuning curve shapes are in general dictated and shaped by computational goals beyond transmission of information or error correction. As such, we have remained agnostic as to the computational goals of neural systems and therefore the shape of the tuning curve. We have made the assumption and adopted the postulate that those computational goals determine the shape of the tuning curves, leaving the gains to be adjuted freely for the purpose of mitigating the effect noise on coding fidelity (this is similar to how error correction is done in computers independendently of the computations performed). by assuming that those computational goals are captured adequately by the shape of tuning curves, this leaves us free to optimise the gains of those curves for purely information theoretic objectives. Finally, we note that the case where the tuning curve shapes are additionally optimised for information transmission is a special case of our more general approach. For further discussion, see the updated version of our introduction.

      We now turn to our choice to model clusters using random perturbations. This is, of course, a toy model for clustering tuning curves within a population. With this toy model we are attempting to capture the important aspects of tuning curve clusters within the population while not over-complicating the simulations. Within any neural population, there will be tuning curves that are similar; however, such curves will inevitably be heterogeneous, as opposed to completely identical. Thus, when we cluster together similar curves there will be an “average” cluster tuning curve (found by, e.g., normalising all individual curves and taking the average), which all other tuning curves within the cluster are deviations from. The random perturbations we apply are our attempt to capture these deviations. However, note that the perturbations are not fully random, but instead have an “effective dimensionality” which we vary over. By giving the perturbations an effective dimensionality, we aim to capture the fact that deviations from the average cluster tuning curve may not be fully random, and may display some structure.

      (3) Figure 8 - where do Hz come from as physical units? As I understand there are no physical units in simulations.

      We have clarified this within the figure caption. The within-cluster optimisation problem requires maximising a quadratic program subject to a constraint on the total mean spike count of the cluster. The objective for the quadratic program is however mathematically homogeneous. So we can scale the variables and parameters in a consistent to be in units of Hz – i.e., turn them into mean firing rates, instead of mean spike counts, with an assumption on the length of the coding time interval. We fix this cluster firing rate to be k × 5 Hz, so that the average single-neuron firing rate is 5 Hz (based on empirical estimates – see our Sec. 2.5). This agrees with our choice of µ in our simulations (i.e., µ = 10) if we assume a coding interval of 0.1 seconds.

      (4) Inference with DDCs in changing environments. To perform efficient inference in a dynamically changing environment (as considered here), an ideal observer needs some form of posterior-prior updating. Where does that enter here?

      A shortcoming of our theory, in its current form, is that it applies only to the system in “steady-state”, without specifying the dynamics of how adaptation temporlly evolves (we assume the enrivonment has periods of relative stability that are of relatively long duration compared to the dynamical timescales of adaptation, and consider the properties of the well-adapted steady state population). Thus our efficient coding theory (which predicts homeostatic adaptation under the outlined conditions) is silent on the time-course over which homeostasis occurs. Likewise, the DDC theory (in its original formulation in Vertes & Sahani) is silent on dynamic updating of posteriors and considers only static inference with a fixed internal model. We have now discuss a new future directoin in the Discussion (where we cite the work of Mlynarski and Tkacik) to point out that our theory can in principle be extended (based on dynamic inference and efficient coding) to account for the dynamics of attention, but this is beyond the scope of the current work.

      (5) Page 6 - ”We did this in such a way that, for all , the correlation matrices, (), were derived from covariance matrices with a 1/n power-law eigenspectrum (i.e., the ranked eigenvalues of the covariance matrix fall off inversely with their rank), in line with the findings of Stringer et al. (2019) in the primary visual cortex.” This is a very specific assumption, taken from a study of a specific brain region - how does it relate to the generality of the approach?

      Our efficient coding framework has been formulated without relying on any specific assumptions about the form of the (signal or noise) correlation matrices in cortex. The homeostatic solution to this efficient coding problem, however, emerges under certain conditions. But, as we demonstrate in our discussion of the analytic solutions to our efficient coding objective and the conditions necessary for the validity of the homeostatic solution, we expect homeostasis to arise whenever the signal geometry is sufficiently high-dimensional (among other conditions). By this we mean that the fall-off of the eigenvalues of the signal correlation matrix must be sufficiently slow. Thus, a fall-off in the eigenvalue spectrum slower than 1/n would favor homeostasis even more than our results. If the fall off was faster, then whether or not (and to what degree) firing rate homeostasis becomes suboptimal depends on factors such as the fastness of the fall-off and also the size of the population. Thus (1) rate homeostasis does not require the specific 1/n spectrum, but that spectrum is consistent with the conditions for optimality of rate homeostasis, (2) in our simulations we had to make a specific choice, and relying on empirical observations in V1 was of course a well-justified choice (moreover, as far as we are aware, there have been no other studies that have characterised the spectrum of the signal covariance matrix in response to natural stimuli, based on large population recordings).

      Reviewer #2 (Public Review):

      Strengths:

      The problem of efficient coding is a long-standing and important one. This manuscript contributes to that field by proposing a theory of efficient coding through gain adjustments, independent of the computational goals of the system. The main result is a normative explanation for firing rate homeostasis at the level of neural clusters (groups of neurons that perform a similar computation) with firing rate heterogeneity within each cluster. Both phenomena are widely observed, and reconciling them under one theory is important.

      The mathematical derivations are thorough as far as I can tell. Although the model of neural activity is artificial, the authors make sure to include many aspects of cortical physiology, while also keeping the models quite general.

      Section 2.5 derives the conditions in which homeostasis would be near-optimal in the cortex, which appear to be consistent with many empirical observations in V1. This indicates that homeostasis in V1 might be indeed close to the optimal solution to code efficiently in the face of noise.

      The application to the data of Benucci et al 2013 is the first to offer a normative explanation of stimulus-specific and neuron-specific adaptation in V1.

      We thank the reviewer for these assessments.

      Weaknesses:

      The novelty and significance of the work are not presented clearly. The relation to other theoretical work, particularly Ganguli and Simoncelli and other efficient coding theories, is explained in the Discussion but perhaps would be better placed in the Introduction, to motivate some of the many choices of the mathematical models used here.

      We thank the reviewer for this comment; we have updated our introduction to make clearer the relationship between this work and previous works within efficient coding theory. Please see the expanded 2nd paragraph of Introduction which gives a short account of previous efficient coding theories and now situates our work and differentiates it more clearly from past work.

      The manuscript is very hard to read as is, it almost feels like this could be two different papers. The first half seems like a standalone document, detailing the general theory with interesting results on homeostasis and optimal coding. The second half, from Section 2.7 on, presents a series of specific applications that appear somewhat disconnected, are not very clearly motivated nor pursued in-depth, and require ad-hoc assumptions.

      We thank the reviewer for this suggestion. The reviewer is right to note that our paper contains both the exposition of a general efficient coding theory framework in addition to applications of that framework. Following your advice we have implemented the following changes. (1) significantly shortened or entirely moved some of the less central results in the second half of Results, to the Methods or appendices (this includes the entire former section 2.7 and significant shortening of the section on implementation of Bayes ratio coding by divisive normalisation). (2) We have added a new figure (Fig 1B) and two long pieces of text to the (2nd paragraph of) Introduction, after Eq. (1), and in Sec. 2.7 (introducing homeostatic DDCs) to more clearly explain and clarify the assumptions underlying our efficient coding theory, and its connection with the second half of the Results (i.e. application to DDC theory of Bayesian inference), and better motivate why we consider the homeostatic DDC.

      For instance, it is unclear if the main significant finding is the role of homeostasis in the general theory or the demonstration that homeostatic DDC with Bayes Ratio coding captures V1 adaptation phenomena. It would be helpful to clarify if this is being proposed as a new/better computational model of V1 compared to other existing models.

      We see the central contribution of our work as not just that homeostasis arises as a result of an efficient coding objective, but also that this homeostasis is sufficient to explain V1 adaptation phenomena - in particular, stimulus specific adaptation (SSA) - when paired with an existing theory of neural representation, the DDC (itself applied to orientation coding in V1). Homeostatic adaptation alone does not explain SSA; nor do DDCs. However, when the two are combined they provide an explanation for SSA. This finding is significant, as it unifies two forms of adaptation (SSA and homeostatic adaptation) whose relationship was not previously appreciated. Our field does not currently have a standard model of V1, and we do not claim to have provided one either; rather, different models have captured different phenomena in V1, and we have done so for homeostatic SSA in V1.

      Early on in the manuscript (Section 2.1), the theory is presented as general in terms of the stimulus dimensionality and brain area, but then it is only demonstrated for orientation coding in V1.

      The efficient coding theory developed in Section 2 is indeed general throughout, we make no assumptions regarding the shape of the tuning curves or the dimensionality of the stimulus. Further, our demonstrations of the efficient coding theory through numerical simulations - make assumptions only about the form of the signal and noise covariance matrices. When we later turn our attention away from the general case, our choice to focus on orientation coding in V1 was motivated by empirical results demonstrating a co-occurrence of neural homeostasis and stimulus specific adaptation in V1.

      The manuscript relies on a specific response noise model, with arbitrary tuning curves. Using a population model with arbitrary tuning curves and noise covariance matrix, as the basis for a study of coding optimality, is problematic because not all combinations of tuning curves and covariances are achievable by neural circuits (e.g. https://pubmed.ncbi.nlm.nih.gov/27145916/ )

      First, to clarify, our theory allows for complete generality of neural tuning curve shapes, and assumes a broad family of noise models (which, while not completely arbitrary, includes cases of biological relevance and/or models commonly used in the theoretical literature). Within this class of noise covariance models, we have shown numerical results for different values for different parameters of the noise covariance model, but more importantly, have analytically outlined the general properties and requirements on noise strength and structure (and its relationship to tuning curves and signal structure) under which homeostatic adaptation would be optimal. Regarding the point that not all combinations of tuning curves and noise covariances occur in biology or are achievable by neural circuits: (1) If we are guessing correctly the specific point of the reviewer’s reference to the review paper by Kohn et al. 2016, we have in fact prominently discussed the case of information limiting noise which corresponds to a specific relationship between signal structure (as determined by tuning curves) and noise structure (as specified by the noise covariance matrix). Our family of noise models include that biologically relevant case and we have indeed paid it particular attention in our simulations and discussions (see discussion of Fig. 7 in Sec. 2.3, and that of aligned noise in Sec. 2.5). (2) As for the more general or abstract point that not all combinations of noise covariance and tuning curve structures are achievable by neural circuits, we can make the following comments. First, in lieu of a full theoretical or empirical understanding of the achievable combinations (which does not exist), we have outlined conditions for homeostatic adaptations under a broad class of noise models and arbitrary tuning curves. If some combinations within this class are not realised in biology, that does not invalidate the theoretical results, as the latter have been derived under more general conditions, which nevertheless include combinations that do occur in biology and are achievable by neural circuits (which, as pointed out, include the important case of aligned noise and signal structure – as reviewed in Kohn et al.– to which we have paid particular attention).

      The paper Benucci et al 2013 shows that homeostasis holds for some stimulus distributions, but not others i.e. when the ’adapter’ is present too often. This manuscript, like the Benucci paper, discards those datasets. But from a theoretical standpoint, it seems important to consider why that would be the case, and if it can be predicted by the theory proposed here.

      The theory we provide predicts that, under certain (specified) conditions, we ought to see deviation from exact homeostatic results; indeed, we provide a first order approximation to the optimal gains in this case which quantifies such deviations when they are small. However, unfortunately the form of this deviation depends on a precise choice of stimulus statistics (e.g. the signal correlation matrix, the noise correlation matrix averaged over all stimulus space, and other stimulus statistics), in contrasts to the universality of the homeostatic solution, when it is a valid approximation. In our model of Benucci et al.’s experiment, we restrict to a simple one-dimensional stimulus space (corresponding to orientated gratings), without specifying neural responses to all stimuli; as such, we are not immediately able to make predictions about whether the homeostatic failure can be predicted using the specific form of deviation from homeostasis. However, we acknowledge that this is a weakness of our analysis, and that a more complete investigation would address this question. For reasons of space, we elected not to pursue this further. We have added a paragraph to our Discussion (8th paragraph) explaining this.

      Reviewer#1 (Recommendations for the authors):

      (1) To make the article more accessible I would suggest the following:

      (a) Include a few more illustrations or diagrams that demonstrate key concepts: adaptationof an entire population, clustering within a population, different sources of noise, inference with homeostatic DDCs, etc.

      We thank the reviewer for this suggestion - we have added an additional figure in (Figure 8, Panel A) to explain the concept of clustering within a population. We also added a new panel to Figure 1 (Figure 1B) which we hope will clarify the conceptual postulate underlying our efficient coding framework and its link to the second half of the paper.

      (b) Within the text refer to names of quantities much more often, rather than relying onlyon mathematical symbols (e.g. w,r,Ω, etc).

      We thank the reviewer for the suggestion; we have updated the text accordingly and believe this has improved the clarity of the exposition.

      (2) It is hard to distill which components of the considered theory are crucial to reproducing the experimental observations in Figure 12. Is it the homeostatic modulation, efficient coding, DDCs, or any combination of those or all of them necessary to reproduce the experiment? I believe this could be explained much better, also with an audience of experimentalists in mind.

      We have updated the text to provide additional clarity on this matter (see the pointers to these changes and additions in the revised manuscript, given above in response to your first comment). In particular, reproducing the experimental results requires combining DDCs with homeostatic modulation – with the latter a consequence of our efficient coding theory, and not an independent ingredient or assumption.

      (3) It would be good to comment on how sensitive the results are to the assumptions made, parameter values, etc. For example: do conclusions depend on statistics of neural responses in simulated environments? Do they generalize for different values of the constraint µ? This could be addressed in the discussion / supplementary material.

      This issue is already discussed extensively within the text - see Sec. 2.4, Analytical insight on the optimality of homeostasis, and Sec. 2.5, Conditions for the validity of the homeostatic solution to hold in cortex. In these sections, we outline that - provided a certain parameter combination is small - we expect the homeostatic result to hold. Accordingly, we anticipate that our numerical results will generalise to any settings in which that parameter combination remains small.

      (4) How many neurons/units were used for simulations?

      We apologies for omitting this detail; we used 10,000 units for our simulations. We have edited both the main text and the methods section to reflect this.

      (5) Typos etc: a) Figure 5 caption - the order of panels B and C is switched. b) Figure 6A - I suggest adding a colorbar.

      Thank you. We have relabelled the panels B and C in the appropriate figures so that the ordering in the figure caption is correct. We feel that a colourbar in figure 6A would be unnecessary, since we are only trying to convey the concept of uniform correlations, rather than any particular value for the correlations; as such we have elected not to add a colourbar. We have, however, added a more explicit explanation of this cartoon matrix in the figure caption, by referring to the colors of diagonal vs off-diagonal elements.

      Reviewer#2 (Recommendations for the authors):

      The text on page 10, with the perturbation analysis, could be moved to a supplement, leaving here only the intuition.

      We thank the reviewer for this suggestion; we have moved much of the argument into the appendix so as to not distract the reader with unnecessary technical details.

      Text before eq. 12 “...in cluster a maximize the objective...” should be ‘minimize’?

      The cluster objective as written is indeed maximised, as stated in the text. Note that, in the revised manuscript, this argument has been moved to an appendix to reduce the density of mathematics in the main text.

      Top of page 25 “S<sub>0</sub> and S<sub>0</sub>” should be “S<sub>0</sub> and S<sub>1</sub>”?

      Thank you, we have corrected the manuscript accordingly.

    1. eLife Assessment

      This important study investigates nerve-injury-induced allodynia by studying the role of a subpopulation of excitatory dorsal horn CCK+ neurons that express the estrogen receptor GPR30 and potentially modulate nociceptive sensitivity via direct inputs from primary somatosensory cortex. In this revised version, the authors addressed many of the critiques raised through added analyses that convincingly support the notion that spinal GPR30 neurons are indeed an excitatory subpopulation of CCK+ neurons that contribute to neuropathic pain. While evidence of a direct functional corticospinal projection to CCK+/GPR30+neurons is not fully demonstrated, this work will be of broad interest to researchers interested in the neural circuitry of pain.

    2. Reviewer #1 (Public review):

      In this manuscript, Chen et al. investigate the role of the membrane estrogen receptor GPR30 in spinal mechanisms of neuropathic pain. Using a wide variety of techniques, they first provide convincing evidence that GPR30 expression is restricted to neurons within the spinal cord, and that GPR30 neurons are well-positioned to receive descending input from the primary sensory cortex (S1). In addition, the authors put their findings in the context the previous knowledge in the field, presenting evidence demonstrating that GRP30 is expressed in the majority of CCK-expressing spinal neurons. Overall, this manuscript furthers our understanding of neural circuity that underlies neuropathic pain and will be of broad interest to neuroscientists, especially those interested in somatosensation. Nevertheless, the manuscript would be strengthened by additional analyses and clarification of data that is currently presented.

      Strengths:

      The authors present convincing evidence for expression of GPR30 in the spinal cord that is specific to spinal neurons. Similarly, complementary approaches including pharmacological inhibition and knockdown of GPR30 are used to demonstrate a role for the receptor in driving nerve injury-induced pain in rodent models.

      Weaknesses:

      Although steps were taken to put their data into the broader context of what is already known about the spinal circuitry of pain, more considerations and analyses would help the authors better achieve their goal. For instance, to determine whether GPR30 is expressed in excitatory or inhibitory neurons, more selective markers for these subtypes should be used over CamK2. Moreover, quantitative analysis of the extent of overlap between GPR30+ and CCK+ spinal neurons is needed to understand the potential heterogeneity of the GPR30 spinal neuron population, and to interpret experiments characterizing descending SI inputs onto GPR30 and CCK spinal neurons. Filling these gaps in knowledge would make their findings more solid.

      Revised Manuscript Update:

      In their revised manuscript, Chen et al. have added additional data that establishes GPR30 spinal neurons as a population of excitatory neurons, half of which express CCK. These data help to position GPR30 neurons in the existing framework of spinal neuron populations that contribute to neuropathic pain, strengthening the author's findings.

    3. Reviewer #3 (Public review):

      Summary:

      The authors convincingly demonstrate that a population of CCK+ spinal neurons in the deep dorsal horn express the G protein coupled estrogen receptor GPR30 to modulate pain sensitivity in the chronic constriction injury (CCI) model of neuropathic pain in mice. Using complementary pharmacological and genetic knockdown experiments they convincingly show that GPR30 inhibition or knockdown reverses mechanical, tactile and thermal hypersensitivity, conditioned place aversion, and c-fos staining in the spinal dorsal horn after CCI. They propose that GPR30 mediates an increase in postsynaptic AMPA receptors after CCI using slice electrophysiology which may underlie the increased behavioral sensitivity. They then use anterograde tracing approaches to show that CCK and GPR30 positive neurons in the deep dorsal horn may receive direct connections from primary somatosensory cortex. Chemogenetic activation of these dorsal horn neurons proposed to be connected to S1 increased nociceptive sensitivity in a GPR30 dependent manner. Overall, the data are very convincing and the experiments are well conducted and adequately controlled. However, the proposed model of descending corticospinal facilitation of nociceptive sensitivity through GPR30 in a population of CCK+ neurons in the dorsal horn is not fully supported.

      Strengths:

      The experiments are very well executed and adequately controlled throughout the manuscript. The data are nicely presented and supportive of a role for GPR30 signaling in the spinal dorsal horn influencing nociceptive sensitivity following CCI. The authors also did an excellent job of using complementary approaches to rigorously test their hypothesis.

      Weaknesses:

      The primary weakness in this manuscript involves overextending the interpretations of the data to still propose a role for corticospinal descending facilitation. While the viral tracing demonstrates a potential connection between S1 and CCK+ or GPR30+ spinal neurons, no direct evidence is provided for S1 in facilitating any activity of these neurons in the dorsal horn.

      Comments on the latest version:

      The authors did an excellent job addressing many of the critiques raised. Despite acknowledging that a direct functional corticospinal projection to CCK/GPR30+neurons is not supported by the data and revising the title, these claims still persist throughout the manuscript. Manipulating gene expression or the activity of postsynaptic neurons through a trans-synaptic labeling strategy does not directly support any claim that those upstream neurons are directly modulating spinal neurons through the proposed pathway. Indeed they might, but that is not demonstrated here.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      In this manuscript, Chen et al. investigate the role of the membrane estrogen receptor GPR30 in spinal mechanisms of neuropathic pain. Using a wide variety of techniques, they first provide convincing evidence that GPR30 expression is restricted to neurons within the spinal cord, and that GPR30 neurons are well-positioned to receive descending input from the primary sensory cortex (S1). In addition, the authors put their findings in the context of the previous knowledge in the field, presenting evidence demonstrating that GRP30 is expressed in the majority of CCK-expressing spinal neurons. Overall, this manuscript furthers our understanding of neural circuity that underlies neuropathic pain and will be of broad interest to neuroscientists, especially those interested in somatosensation. Nevertheless, the manuscript would be strengthened by additional analyses and clarification of data that is currently presented. 

      Strengths: 

      The authors present convincing evidence for the expression of GPR30 in the spinal cord that is specific to spinal neurons. Similarly, complementary approaches including pharmacological inhibition and knockdown of GPR30 are used to demonstrate the role of the receptor in driving nerve injury-induced pain in rodent models. 

      Weaknesses: 

      Although steps were taken to put their data into the broader context of what is already known about the spinal circuitry of pain, more considerations and analyses would help the authors better achieve their goal. For instance, to determine whether GPR30 is expressed in excitatory or inhibitory neurons, more selective markers for these subtypes should be used over CamK2. Moreover, quantitative analysis of the extent of overlap between GPR30+ and CCK+ spinal neurons is needed to understand the potential heterogeneity of the GPR30 spinal neuron population, and to interpret experiments characterizing descending SI inputs onto GPR30 and CCK spinal neurons. Filling these gaps in knowledge would make their findings more solid. 

      Thank you very much for your constructive feedback.

      In response to your suggestion, we have used more specific markers to distinguish excitatory (VGLUT2) and inhibitory (VGAT) neurons via in situ hybridization. These analyses revealed that GPR30 is predominantly expressed in excitatory neurons of the superficial dorsal horn (SDH), as presented in the Results section (lines 117-120) and in Figure 2A-B.

      Additionally, we performed a quantitative analysis to determine the extent of co-localization between GPR30+ and CCK+ neurons. The data were included in the Results (lines 131–132) and Figure 2G.

      Reviewer #2 (Public review):

      Using a variety of experimental manipulations, the authors show that the membrane estrogen receptor G protein-coupled estrogen receptor (GPER/GPR30) expressed in CCK+ excitatory spinal interneurons plays a major role in the pain symptoms observed in the chronic constriction injury (CCI) model of neuropathic pain. Intrathecal application of selective GPR30 agonist G-1 induced mechanical allodynia and thermal hyperalgesia in male and female mice. Downregulation of GPR30 in CCK+ interneurons prevented the development of mechanical and thermal hypersensitivity during CCI. They also show the up modulation of AMPA receptor expression by GPR30. 

      Generally, the conclusions are supported by the experimental results. I also would like to see significant improvements in the writing and the description of results. 

      Methodological details for some of the techniques are rather sparse. For example, when examining the co-localization of various markers, the authors do not indicate the number of animals/sections examined. Similarly, when examining the effect of shGper1, it is unclear how many cells/sections/animals were counted and analyzed. 

      In other sections, there is no description of the concentration of drugs used (for example, Figure 4H). In Figures 4C-E, there is no indication of the duration of the recordings, the ionic conditions, the effect of glutamate receptor blockers, etc 

      Some results appear anecdotal in the way they are described. For example, in Figure 5, it is unclear how many times this experiment was repeated. 

      We sincerely appreciate your valuable feedback and thoughtful recommendations.

      To address your concerns regarding methodological transparency, we have added the following details to the revised manuscript:

      The number of animals and sections analyzed in co-localization studies.

      The number of cells/sections/animals used in each quantification following shGper1 treatment.

      The concentrations of drugs administered (e.g., in Figure 4H).

      Detailed recording conditions, including duration, ionic composition, and pharmacological conditions (Figures 4C-E).

      In addition, we have thoroughly revised the writing throughout the manuscript to enhance clarity and precision in the description of our findings.

      Reviewer #3 (Public review): 

      Summary: 

      The authors convincingly demonstrate that a population of CCK+ spinal neurons in the deep dorsal horn express the G protein-coupled estrogen receptor GPR30 to modulate pain sensitivity in the chronic constriction injury (CCI) model of neuropathic pain in mice. Using complementary pharmacological and genetic knockdown experiments they convincingly show that GPR30 inhibition or knockdown reverses mechanical, tactile, and thermal hypersensitivity, conditioned place aversion, and c-fos staining in the spinal dorsal horn after CCI. They propose that GPR30 mediates an increase in postsynaptic AMPA receptors after CCI using slice electrophysiology which may underlie the increased behavioral sensitivity. They then use anterograde tracing approaches to show that CCK and GPR30 positive neurons in the deep dorsal horn may receive direct connections from the primary somatosensory cortex. Chemogenetic activation of these dorsal horn neurons proposed to be connected to S1 increased nociceptive sensitivity in a GPR30-dependent manner. Overall, the data are very convincing and the experiments are well conducted and adequately controlled. However, the proposed model of descending corticospinal facilitation of nociceptive sensitivity through GPR30 in a population of CCK+ neurons in the dorsal horn is not fully supported. 

      Strengths: 

      The experiments are very well executed and adequately controlled throughout the manuscript. The data are nicely presented and supportive of a role for GPR30 signaling in the spinal dorsal horn influencing nociceptive sensitivity following CCI. The authors also did an excellent job of using complementary approaches to rigorously test their hypothesis. 

      Weaknesses: 

      The primary weakness in this manuscript involves overextending the interpretations of the data to propose a direct link between corticospinal projections signaling through GPR30 on this CCK+ population of spinal dorsal horn neurons. For example, even in the cropped images presented, GPR30 is present in many other CCK-negative neurons. Only about a quarter of the cells labeled by the anterograde viral tracing experiment from S1 are CCK+. Since no direct evidence is provided for S1 signaling through GPR30, this conclusion should be revised. 

      Thank you for your encouraging comments and critical insights.

      We fully acknowledge the concern regarding the proposed direct involvement of corticospinal projections in modulating nociceptive behavior via GPR30 in CCK+ neurons. While our anterograde tracing experiments suggest anatomical overlap, we agree that definitive evidence of functional connectivity is lacking.

      Accordingly, we have revised the Abstract, Discussion, and Graphical Abstract to present our findings more cautiously. We now describe our observations as indicating that S1 projections potentially interact with GPR30<sup>+</sup> spinal neurons, rather than asserting a definitive functional link.

      To support this revised interpretation, we performed additional quantitative analyses examining the co-localization among S1 projections, CCK+, and GPR30+ neurons. Furthermore, we clarified that the chemogenetic activation studies targeted a mixed neuronal population and did not exclusively manipulate CCK+ neurons.

      These changes aim to better align our conclusions with the presented data and provide a more nuanced framework for future investigations.

      Reviewer #1 (Recommendations for the authors): 

      Major corrections 

      (1) Figure 2: The authors conclude that GPR30 is mainly expressed in excitatory spinal neurons because they are labeled by a virus with a Camk2 promoter. While there is evidence that Camk2 is specific to excitatory neurons in the brain, based on RNAseq datasets (e.g. Linnarsson Lab, http://mousebrain.org/adolescent/genesearch.html ) this is less clear cut within the spinal cord. A more direct way to assess the relative expression of GPR30 in excitatory versus inhibitory neurons would be to perform immunohistochemistry or FISH with GPR30/Vglut2/Vgat. 

      Alternatively, if this observation is not crucial for the overall arch of the story, I recommend the authors eliminate these data, as they do not support the idea that GPR30 is mainly in excitatory neurons. 

      We thank the reviewer for highlighting this important limitation. To strengthen our conclusion regarding the neuronal identity of GPR30-expressing cells, we performed fluorescent in situ hybridization (FISH) using vGluT2 (marker for excitatory neurons) and VGAT (marker for inhibitory neurons). The results confirmed that GPR30 is predominantly expressed in vGluT2-positive excitatory neurons within the spinal cord. These new data are presented in the revised manuscript (lines 117-120) and shown in Figure 2A-B.

      (2) (2a) Figure 2: The authors also report that GPR30 is expressed in most CCK+ spinal neurons. A more rigorous way to present the data would be to perform quantification and report the % of CCK neurons that are GPR30. 

      (2b) More importantly, it is unclear what % of GPR30 neurons are CCK+. These types of quantifications would provide useful insights into the heterogeneity of CCK and GPR30 neuron populations, and help align findings of experiments using the behavioral pharmacology using GRP antagonists to the knockdown of Gper1 in CCK spinal neurons - for instance, does a population of GRP30+/CCK- neurons exist? If so, it would be worth discussing what role (if any) that population might play in nerve injury-induced mechanical allodynia. 

      Understanding the breakdown of GPR30 populations becomes even more relevant when the authors characterize which cell types are targeted by descending projections from S1. It is clear that the vast majority of CCK+ neurons that receive descending input from S1 neurons are GPR30+, but there are many other GPR30+ neurons that do not receive input from SI neurons presented in 5M. Is this simply because only a small fraction of CCK+/GPR30+ neurons are targeted by descending S1 projections, or could they represent a distinct population of GPR30 neurons? 

      (2a) We appreciate the suggestion. Quantification showed that approximately 90% of CCK⁺ neurons express GPR30, and about 50% of GPR30⁺ neurons co-express CCK. These data are now provided in the revised Results (lines 131-132) and in Figure 2F-G.

      (2b) Indeed, our data reveal that a substantial portion of GPR30⁺ neurons do not co-express CCK. While this study focuses on GPR30 function in CCK⁺ neurons, we recognize the potential relevance of GPR30⁺/CCK⁻ populations. We have addressed this point in the Discussion (lines 303-306):

      “However, it should be noted that half of GPR30⁺ neurons are not co-localized with CCK⁺ neurons, and further studies are needed to explore the function of these GPR30⁺/CCK⁻ neurons in neuropathic pain.”

      Regarding descending input, our data in Figure 5 show that S1 projections selectively innervate a subset (~30%) of CCK⁺ neurons, most of which co-express GPR30. This suggests that S1-targeted CCK⁺/GPR30⁺ neurons may represent a functionally distinct population. We have added clarification to the revised manuscript, while acknowledging that further studies are needed to elucidate the roles of non-targeted GPR30⁺ neurons.

      (3) Throughout the manuscript both male and female mice were used in experiments. Rather than referring to male and female mice as different genders, it would be more appropriate to describe them as different sexes. 

      As suggested, we have replaced all instances of “gender” with “sex” throughout the revised manuscript.

      (4) Figure 5: To increase the ease of interpreting the figure, in panels 5J and 5N, it would be helpful to indicate directly on the figure panel which another marker was assessed in double-labeling analyses.

      We have revised Figures 5J and 5N to include clear labels identifying the markers used in double-labeling analyses, to improve interpretability.

      Minor corrections: 

      (1) Line 36, I believe the authors mean to say "GPER/GPR30 in spinal neurons", rather than just "spinal". 

      Corrected as suggested. The sentence now reads (line 34):

      “Here we showed that the membrane estrogen receptor G-protein coupled estrogen receptor (GPER/GPR30) in spinal neurons was significantly upregulated in chronic constriction injury (CCI) mice…”

      (2) There are minor grammatical errors throughout the manuscript that interfere with comprehension. Proofreading/editing of the English language use may be beneficial. 

      We have thoroughly revised the manuscript for clarity and corrected grammatical and syntactic errors to improve readability.

      (3) Line 169-170, reads "Known that EPSCs are mediated by glutamatergic receptors like AMPA receptors and several studies have been reported the relationship between GPR30 and AMPA receptor25,29". Rewriting the sentence such that it better describes what the known relationship is between GPR30 and AMPA would be helpful in setting up the rationale of the experiment in Figure 4. 

      We have rewritten this section to better clarify the rationale behind the electrophysiological experiments (lines 161-164):

      “Given that EPSCs are primarily mediated through glutamatergic receptors such as AMPA receptors, and emerging evidence suggesting that GPR30 enhances excitatory transmission by promoting clustering of glutamatergic receptor subunits, we examined whether GPR30 modulates EPSCs via AMPA receptor-dependent mechanisms.”

      (4) Line 198-199 "Then we explored the possible connections among GPR30, S1-SDH projections and CCK+ neuron." In the context of spinal circuitry, "connections" may raise the expectation that synaptic connectivity will be evaluated. What I think best describes what the authors investigated in Figure 5 is the "relationship" between GPR30, S1-SDH projections, and CCK+ neurons. 

      We have revised the sentence accordingly (lines 184-186):

      “Building on previous findings suggesting a functional interaction between S1-SDH projections and spinal CCK⁺ neurons, our current study aimed to further elucidate the structural relationship among GPR30, S1-SDH projections, and CCK⁺ neurons.”

      (5) Figure 5: To increase the ease of interpreting the figure, in panels 5J and FN, it would be helpful to indicate directly on the figure panel which other marker was assessed in double-labeling analyses. 

      We have added direct labels to figure panels to clarify double-labeled analyses in the revised Figure 5J and 5N.

      Reviewer #2 (Recommendations for the authors): 

      (1) Can the authors provide more detail about the distribution of CCK+ cells in the spinal cord and, in particular, the localization of double-stained (CCK/cfos) neurons? 

      We thank the reviewer for this suggestion. To better characterize the distribution of CCK⁺ neurons within the spinal dorsal horn (SDH), we performed immunostaining in CCK-tdTomato mice using lamina-specific markers: CGRP (lamina I), IB4 (lamina II), and NF200 (lamina III–V). Our results demonstrate that CCK⁺ neurons are primarily localized in the deeper laminae of the SDH. These findings are now described in the revised Results (lines 126–129) and shown in Figure 2E.

      In addition, we conducted c-Fos immunostaining in CCK-Ai14 mice and found increased activation of CCK⁺ neurons following CCI. This supports the involvement of CCK⁺ neurons in neuropathic pain. These data are included in the Results (lines 129–131) and Supplementary Figure S4.

      (2) Figure 2A. There is no formal quantification of the percentage of TdTomato+ neurons that are also CCK+. The description of these results is insufficient. 

      We appreciate this point and have revised the description of Figure 2A accordingly. To strengthen our analysis, we conducted additional FISH experiments with vGluT2 and VGAT probes. Quantification revealed that GPR30 is predominantly expressed in excitatory neurons (approximately 60%). These data are shown in the revised Results (lines 117-119) and Figures 2A-B and S3. This supports our conclusion that GPR30 is largely localized to excitatory spinal interneurons.

      (3) Figure 4H. What is the evidence that these are AMPA-mediated currents? This is not explained in the text. 

      Thank you for raising this point. We now provide detailed experimental procedures to clarify that the recorded EPSCs are AMPA receptor–mediated. Specifically, spinal slices from CCK-Cre mice were used, and excitatory postsynaptic currents were recorded in the presence of APV (100 μM, NMDA receptor blocker), bicuculline (20 μM, GABA_A receptor blocker), and strychnine (0.5 μM, glycine receptor blocker), ensuring that the observed currents were AMPA-dependent. These methodological details are now clearly described in the revised Results (lines 165–173) and supported by prior literature (Zhang et al., J Biol Chem 2012; Hughes et al., J Neurosci 2010).

      (1) Yan Zhang, Xiao Xiao, Xiao-Meng Zhang, Zhi-Qi Zhao, Yu-Qiu Zhang (2012). Estrogen facilitates spinal cord synaptic transmission via membrane-bound estrogen receptors: implications for pain hypersensitivity. J Biol Chem. Sep 28;287(40):33268-81.

      (2) Ethan G Hughes, Xiaoyu Peng, Amy J Gleichman, Meizan Lai, Lei Zhou, Ryan Tsou, Thomas D Parsons, David R Lynch, Josep Dalmau, Rita J Balice-Gordon (2010). Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J Neurosci. 2010 Apr 28;30(17):5866-75.

      (4) What is the signaling mechanism leading to a larger amplitude of currents after G-1 infusion? 

      We thank the reviewer for this important question. G-1 is a selective agonist for GPR30. Based on previous studies by Luo et al. (2016), we speculate that activation of GPR30 may increase the clustering of glutamatergic receptor subunits at postsynaptic sites, thereby enhancing AMPA receptor-mediated currents. While our current study did not directly address the intracellular signaling cascade, we have incorporated this mechanistic speculation in the Discussion.

      Jie Luo, X.H., Yali Li, Yang Li, Xueqin Xu, Yan Gao, Ruoshi Shi, Wanjun Yao, Juying Liu, Changbin Ke (2016). GPR30 disrupts the balance of GABAergic and glutamatergic transmission in the spinal cord driving to the development of bone cancer pain. Oncotarget 7, 73462-73472. 10.18632/oncotarget.11867.

      (5) Figure 4I. Please include error bars. 

      We have revised Figure 4I to include error bars, as requested.

      (6) Line 198. What is the evidence that AAV2/1 EF1α FLP is an antegrade trans monosynaptic marker? 

      We thank you for this request. AAV2/1 has been widely used for anterograde monosynaptic tracing based on its properties (Wang et al., Nat Neurosci 2024; Wu et al., Neurosci Bull 2021): (1) it infects neurons at the injection site and undergoes active anterograde transport; (2) newly assembled viral particles are released at synapses and infect postsynaptic partners; (3) in the absence of helper viruses, the spread halts at the first synapse, ensuring monosynaptic restriction. We have elaborated on this in the revised manuscript (line 198), citing Wang et al. (Nat Neurosci 2024) and Wu et al. (Neurosci Bull 2021).

      (1) Hao Wang, Qin Wang, Liuzhe Cui, Xiaoyang Feng, Ping Dong, Liheng Tan, Lin Lin, Hong Lian, Shuxia Cao, Huiqian Huang, Peng Cao, Xiao-Ming Li (2024). A molecularly defined amygdalaindependent tetra-synaptic forebrain-tohindbrain pathway for odor-driven innate fear and anxiety. Nat Neurosci. 2024 Mar;27(3):514-526.

      (2) Zi-Han Wu, Han-Yu Shao, Yuan-Yuan Fu, Xiao-Bo Wu, De-Li Cao, Sheng-Xiang Yan, Wei-Lin Sha, Yong-Jing Gao, Zhi-Jun Zhang (2021). Descending Modulation of Spinal Itch Transmission by Primary Somatosensory Cortex. Neurosci Bull. 2021 Sep;37(9):1345-1350.

      (7) Figure 5G. I do not understand the logic of this experiment. A Cre AAV is injected in the S1 cortex. Why should this lead to the expression of tdTomato on a downstream (postsynaptic?) neuron? The authors should quote the literature that supports this anterograde transsynaptic transport.

      We appreciate this question. As described in previous studies (e.g., Wu et al., Neurosci Bull 2021), AAV2/1-Cre injected into the S1 cortex leads to Cre expression in projection targets due to transsynaptic anterograde transport. Subsequent injection of a Cre-dependent AAV (AAV2/9-DIO-mCherry) into the spinal cord enables specific labeling of postsynaptic neurons that receive input from S1. We have clarified this mechanism in line 206 and provided the appropriate citation.

      Zi-Han Wu, Han-Yu Shao, Yuan-Yuan Fu, Xiao-Bo Wu, De-Li Cao, Sheng-Xiang Yan, Wei-Lin Sha, Yong-Jing Gao, Zhi-Jun Zhang (2021). Descending Modulation of Spinal Itch Transmission by Primary Somatosensory Cortex. Neurosci Bull. 2021 Sep;37(9):1345-1350.

      (8) The same question arises when interpreting the results obtained in Figure 6.

      We thank the reviewer for the question, and we have addressed it in point (7).

      (9) Line 257. How do the authors envision that estrogen would change its modulation of GPR30 under basal and neuropathic conditions? Is there any evidence for this speculation? 

      We thank the reviewer for raising this thoughtful question. In the current study, we focused on pharmacologically manipulating GPR30 activity via its selective agonist and antagonist. We did not directly investigate how endogenous estrogen regulates GPR30 under physiological and neuropathic states. We have recognized this limitation and highlighted the need for future research to investigate this regulatory mechanism.

      (10-20) In my opinion, the entire manuscript needs a careful revision of the English language. While one can follow the text, it contains numerous grammatical and syntactic errors that make the reading far from enjoyable. I am highlighting just a few of the many errors. 

      We appreciate the reviewer’s honest assessment. The manuscript has undergone thorough language editing by a native English speaker to correct grammatical errors, improve clarity, and enhance overall readability. We also restructured several sections, particularly the Discussion, to improve logical flow.

      (21) The discussion of results is a bit disorganized, with disconnected sentences and statements, and somewhat repetitive. For example, lines 303 to 306 lack adequate flow. It is also quite long and includes general statements that add little to the discussion of the new findings (lines 326-333). 

      We agree and have revised the Discussion extensively. Disconnected or repetitive sentences (e.g., lines 303-306, 326-333) have been removed or rewritten. For instance, we added a new transitional paragraph (lines 307-311) to improve flow:

      “Abnormal activation of neurons in the SDH is a key contributor to hyperalgesia, and enhanced excitatory synaptic transmission is a major mechanism driving increased neuronal excitability. Therefore, we evaluated excitatory postsynaptic currents (EPSCs) and observed increased amplitudes in CCK⁺ neurons following CCI, suggesting elevated excitability in these neurons.”

      We also removed redundant generalizations to maintain a focused discussion of our novel findings.

      Reviewer #3 (Recommendations for the authors): 

      (1) What is the distribution of GPR30 throughout the spinal cord and DRG? The authors demonstrate that this can overlap with a CCK+ population, but there are many GPR30+ and CCK negative neurons, even in the cropped images presented. It would be helpful to quantify the colocalization with CCK. 

      We thank the reviewer for this important point. As shown in the revised manuscript, GPR30 is expressed in both the spinal cord and dorsal root ganglia (DRG). However, our updated data (Figure 1B) demonstrate that Gper1 mRNA levels in the DRG are not significantly altered after CCI, suggesting a limited involvement of DRG GPR30 in neuropathic pain. These results are described in the revised Results (line 94).

      Regarding spinal co-expression, we performed a detailed quantification. Approximately 90% of CCK⁺ neurons express GPR30, while about 50% of GPR30⁺ neurons are CCK⁺. These co-localization results are now included in the revised Results and presented in Figure 2G.

      (2) It is clear that CCI and GPR30 influence excitatory synaptic transmission in CCK+ neurons. However, these experiments do not fully support the authors' claims of a postsynaptic upregulation of AMPARs. Comparing amplitudes and frequencies of spontaneous EPSCs cannot necessarily distinguish a pre- vs postsynaptic change since some of these EPSCs can arise from spontaneous action potential firing. I suggest revising this conclusion. 

      We appreciate these insightful comments. We fully agree that our data from spontaneous EPSC recordings (sEPSCs) in CCK⁺ neurons are not sufficient to distinguish between pre- and postsynaptic mechanisms, as sEPSCs may include spontaneous presynaptic activity. Therefore, we have revised the text throughout the manuscript to avoid overstating conclusions related to postsynaptic AMPA receptor upregulation.

      (3) What is the rationale for the evoked EPSC experiments from electrical stimulation in "the deep laminae of SDH?" I do not think that this experiment can rule out a presynaptic contribution of GPR30 to the evoked responses, particularly if these are Gs-coupled at presynaptic terminals. Paired-pulse stimulations could help answer this question, otherwise, alternative interpretations, also related to the point above, should be provided. 

      We thank the reviewer for this thoughtful critique. Indeed, electrical stimulation of the deep SDH laminae does not exclude presynaptic involvement, especially considering that GPR30 is a G protein–coupled receptor (GPCR) and could act presynaptically. We agree that paired-pulse ratio (PPR) analysis would be more informative in distinguishing pre- from postsynaptic effects, but this was not performed due to technical limitations in our current experimental setup.

      Accordingly, we have revised our interpretations in both the Results and Discussion to acknowledge that our data do not rule out presynaptic contributions. We now state that GPR30 activation enhances EPSCs in CCK⁺ neurons, while further studies are needed to dissect the precise site of action.

      (4) I appreciate the challenging nature of the trans-synaptic viral labeling approaches, but the chemogenetic and Gper knockdown experiments do not selectively target this CCK+ population of deep dorsal horn neurons. The data are clear that each of these components (descending corticospinal projections, CCK neurons, and GPR30) can modulate nociceptive hypersensitivity, but I do not agree with the overall conclusion that each of are directly linked as the authors propose. I recommend revising the overall conclusion and title to reflect the convincing data presented. 

      We thank the reviewer for this critical observation. We agree that while our data show functional roles for descending cortical input, CCK⁺ neurons, and GPR30 in modulating pain hypersensitivity, the evidence does not establish a definitive direct circuit integrating all three components.

      In response, we have revised our conclusions to reflect this limitation. Specifically, we avoided claiming a direct functional link among S1 projections, CCK⁺ neurons, and GPR30. Instead, we now propose that GPR30 modulates neuropathic pain primarily through its action in CCK⁺ spinal neurons, with potential involvement of descending facilitation from the somatosensory cortex.

      Additionally, we have revised the manuscript title to better reflect our mechanistic focus:<br /> “GPR30 in spinal CCK-positive neurons modulates neuropathic pain.”

      Minor Corrections

      (1) The authors should refer to mice by sex, not gender. 

      Corrected throughout the manuscript.

      (2) Page 9, line 195: "significantly" is used to refer to co-localization of 28.1%. What is this significant to? 

      We have revised the sentence to accurately describe the observed percentage, without implying statistical significance:

      “Our co-staining results revealed that a high proportion of CCK⁺ S1-SDH postsynaptic neurons expressed GPR30” (line 198-199).

      (3) I recommend modifying some of the transition phrases like "by the way," "what's more," and "besides". 

      All informal expressions have been replaced with academic alternatives including “Furthermore,” “Additionally,” and “Moreover.”

      (4) Additional guides to mark specific laminae in the dorsal horn would be useful. 

      We added immunostaining with laminar markers (CGRP for lamina I and NF200 for lamina III–V), and these data are now shown in Figure 2E and described in the Results (lines 126-129).

      (5) Page 5, line 115: immunochemistry should be immunohistochemistry. 

      Corrected as suggested.

      (6) Page 6, line 136: "Confirming the structural connnections" was not demonstrated here. Perhaps co-localization between GPR30 and CCK+. 

      The text was revised to “To functionally interrogate GPR30 and CCK⁺ neurons in neuropathic pain...” (line 133).

      (7) Page 8, line 166: unsure what "took and important role" means. 

      This phrasing was corrected for clarity and replaced with an accurate scientific description.

      (8) Page 8, line 168: "IPSCs of spinal CCK+ neurons" implies that they are sending inhibitory inputs. 

      We revised the term to “EPSCs” to correctly reflect excitatory synaptic currents in CCK⁺ neurons.

      (9) Page 8, line 169: "Known that EPSCs" is missing an introductory phrase. 

      The sentence was rewritten to include an appropriate introductory clause (lines 161–164):

      “Given that EPSCs are primarily mediated through glutamatergic receptors such as AMPA receptors...”

      (10) Page 10, line 227 and 228: "adequately" and "sufficiently" should be adequate and sufficient. 

      We corrected these terms to the proper adjective forms: “adequate” and “sufficient” (lines 224-225).

    1. eLife Assessment

      This study presents a valuable finding regarding the role of oxytocin neurons in thermogenesis and behavioral thermoregulation. The use of numerous converging methods, including behavior, fiber photometry, optogenetics, thermal recordings, metabolic analyses, and more, produces a multi-dimensional dataset delivering findings that provide solid support for the conclusions. Conclusions would be strengthened with validation of the approaches, inclusion of a loss of function experiment, and further investigation of the social nature of the behavior. The maternal findings are, at present, somewhat disconnected from the conclusions. The findings are novel and open new doors for understanding the role of the PVT and oxytocin in thermoregulation work; the work will be of strong interest to the thermoregulation, social behavior, and oxytocin signaling communities.

    2. Reviewer #1 (Public review):

      Summary:

      The authors identify and investigate a specific population of PVNOT neurons (oxytocin neurons of the paraventricular hypothalamus) that seem to be involved in both behavioral and autonomic thermoregulation. These cells are activated by social thermoregulatory behaviors, but can influence thermoregulation in both social and nonsocial contexts, specifically during transitions and when mice are at low core body temperature (Tb).

      Strengths:

      The manuscript has many strengths.

      This is a novel study, with a clear question that is addressed using an array of well-designed experiments employing integrative methods. Most of the figures are well-developed, and the analysis is generally rigorous and well-detailed. The authors are clearly very experienced in this field, and indeed, their scholarly introduction and discussion sections are to their credit.

      The link between thermoregulation and the oxytocin system is well established, as is the link between social behavior and the same broad system. However, the link between these three things is novel, if it can be well substantiated. I am not persuaded that was achieved here, but I do think this manuscript has many novel and useful offerings.

      The authors use a cooling floor, and only go down to 10 degrees Celsius. This is fine, but I would like to see the effects using ambient temperature also. This is not a crucial issue, as it is not necessary for the authors' interpretations, but it could improve measurement sensitivity.

      Through an elegant behavioral experiment in Figure 1, the authors identify c-Fos patterns in the PVN that are activated by active social huddling, and they show that at the RNA level these cells overlap with oxytocin, indicating that they are oxytocin-producing cells. But this is not well discussed or indeed quantified.

      The authors engage in a deep analysis of fiber photometry experiments, first by observing PVNOT neuron overall activity during a variety of different behaviors in the context of three different temperatures. Activity was associated with nesting, quiescence, and both types of huddling (when social opportunities exist). Social situations did not strongly affect this, nor did temperature conditions. These analyses indicate that the PVNOT neurons are involved in mediating specific behavioral outputs.

      With more detailed analysis, the authors investigated how PVNOT neuronal activity relates to behavioral state transition. They found that the probability of peak PVNOT neural activity strongly predicts the offset of quiescence or quiescent huddling, and therefore can be argued to signal an increase in physical activity, and as such, increased metabolism. However, the opposite pattern was observed for huddling and nesting (onset being associated with PVNOT activity), again arguing for increased thermogenesis as a function.

      What is particularly compelling is that these peaks of activity tend to occur during low Tb, again arguing for the function in increasing body warmth.

      The authors then employ an impressive setup where they image brown adipose tissue (BAT) in tandem with DeepLabCut (DLC) based animal tracking. Crucially, BAT activity and surface temperature correlated with the calcium peak of PVNOT neurons.

      Lastly, optogenetic activation of PVNOT neurons increased Tb when it was in the lower range, but not when in the higher range. It also affected BAT and rump temperature, again at low Tb. However, there is no real effect on behavior, except a trend in activity.

      The authors do some interesting tracing work at the end, though this is not functionally explored. That is not a criticism, as it does seem like this would be a whole follow-up study.

      Weaknesses:

      While novel and valuable, the manuscript feels incomplete in its current form.

      The main evidence lacking is a loss of function of the experiment. Ideally, the authors would chronically and/or acutely inhibit PVNOT neurons to establish their necessity. I know this seems obvious, but I think it is important.

      The relative lack of behavioral analysis following optogenetic activation of PVNOT neurons is puzzling. The authors must surely want to study what this intervention does to behavioral state transitions. I feel that the current level of analysis limits the overall conclusions of this study to a large extent.

      A broader criticism is that the social dimension of this manuscript seems overplayed. Naturally, oxytocin signalling can be implicated in social behavior based on a large literature. However, the focus on social thermogenesis seems like a crude integration of social behavior and thermogenesis. Given that the authors see their effects in both social and nonsocial cases of thermoregulation, I am not sure the attempts at integrating social functions and thermogenic functions of PVNOT neurons are warranted. That is, unless the authors have further experiments or analysis that can convincingly justify this link.

      In addition, the analysis of virgin females and lactating mothers seems out of place in Figure 4.

      The c-Fos/oxytocin overlap needs to be quantified.

      The methods section could be improved by explaining how the authors exclude animals that exhibit both types of huddling, if they occur within a 90-minute time window. This seems like it could cause significant confounds.

      The computer vision model is not well-explained. The authors need to be far more explicit here about how it was validated.

      The authors should cite and consider this preprint: https://www.biorxiv.org/content/10.1101/2024.09.17.613378v1

    3. Reviewer #2 (Public review):

      Summary:

      This is a very interesting study from Vandendoren and colleagues examining the role of PVN oxytocin neurons during thermoregulatory behaviors, in particular during thermoregulatory huddling. The findings are important and compelling, and have implications for the thermoregulation field as well as the social/naturalistic behavior field.

      Strengths:

      The study is very creative and tackles a challenging task to examine how natural and social behavior influences neural circuits for a homeostatic system such as thermoregulation. The authors use a combination of state-of-the-art tools (photometry, optogenetics, automated behavior tracking, thermal imaging, and core body temperature measurement), often in combination with each other, to produce a rigorous and high-dimensional dataset. Carrying out tightly temperature-controlled experiments and examining natural behavior, neural activity, and body physiology simultaneously is quite a feat. I applaud the authors for taking this on in a rigorous and detailed manner. This paper will be valuable for both the thermoregulation field as well as for researchers interested in naturalistic social behaviors. The conclusions are supported by the data.

      Weaknesses:

      I have a number of questions and suggestions for clarification that would help improve the interpretation of the findings.

      (1) Figure 1D-F: It would be helpful to include representative images of cFos expression in the PVN, LS, and DMH during both quiescent and solo huddling conditions, to better illustrate the reported differences.

      (2) Figure 1C: The data suggest a general suppression of neural activity during sleep-associated quiescent huddling, which somewhat complicates the interpretation of what specifically the active huddling cells are responding to. A more informative control might have been a comparison between huddling and a more generic form of social engagement (e.g., dyadic sniffing) to assess whether huddling-responsive neurons are broadly tuned to social stimuli. While it may not be feasible to add this experimentally at this time, a brief discussion of this limitation in the main text would be valuable.

      (3) Figure 2H-J vs. Figure 1: The fiber photometry data suggest increased PVN activity during quiescent huddling vs active huddling, which appears to contrast with the cFos results from Figure 1. It would be helpful for the authors to comment on possible reasons for this discrepancy-e.g., methodological differences, temporal resolution, or cell-type specificity.

      (4) Figure 2O: A comparable linear regression for active huddling would be informative to assess whether the observed relationships extend across behavioral states.

      (5) Temperature manipulation: The use of floor temperature changes presents a distinct physiological and sensory experience from, for example, manipulation of ambient temperature. A discussion of how this choice may affect neural circuit engagement or interpretation of thermoregulatory responses would be beneficial.

      (6) Correlations with behavior: Across the manuscript, it would be informative to see correlations between huddle duration and neural activity (e.g., cFos expression, calcium signal magnitude). Similarly, do longer huddles produce greater thermogenic effects?

      (7) Lactating vs. virgin mothers: The inclusion of maternal data is intriguing but feels somewhat disconnected from the central huddling-thermoregulation narrative. If these experiments are to remain, additional explanation of their rationale and how they fit into the broader story would help clarify their relevance.

      (8) Optogenetic manipulation: Have the authors tested the effect of PVN OT neuron stimulation or inhibition during huddling? Even a negative result would be of interest to the field. If these data exist (main or supplementary), I apologize for missing them. If not, the authors might consider including them or commenting briefly on any attempts or challenges in carrying out these experiments.

    4. Reviewer #3 (Public review):

      Summary:

      The authors aimed to elucidate the relationship between physiological state (i.e., behavioral status and thermogenic sympathetic activity) and the activity of hypothalamic paraventricular oxytocin (PVNOT) neurons in female mice. They studied this by combining automated classification of mouse behavior via video-based analysis with calcium imaging of PVNOT neuron activity. Sympathetic thermogenesis was inferred from surface temperature changes captured by infrared thermography, and the authors provided their custom analysis scripts in the manuscript. Notably, they found that a strong, pulsatile activation of PVNOT neurons was "occasionally" observed immediately before the animals transitioned from a resting to an active state. This pulsatile activity was observed in both pair-housed and individually housed animals. While PVNOT neurons are often associated with social behaviors, this finding suggests that the oxytocinergic system is also engaged during naturalistic behaviors, even in the absence of social interactions. If experiments were more convincingly performed and presented, the results would point to a broader physiological role of central oxytocin, including in the regulation of fundamental brain states and homeostatic processes, and offer a new perspective on the functional significance of central oxytocin signaling.

      Strengths:

      The oxytocinergic neural system is believed to subserve a wide range of physiological functions, and elucidating these roles requires monitoring PVNOT neuronal activity under various behavioral contexts, as well as manipulating this activity to establish causal links. In the present study, the authors show a technically sound experimental framework that integrates behavioral tracking in both individually and group-housed mice with the observation and manipulation of PVNOT neuron activity. This experimental setup represents a valuable methodological resource for researchers investigating the physiological functions of oxytocin.

      Weaknesses:

      While this study successfully established a new experimental setup for simultaneous analyses of behavior and PVNOT neuronal activity, there are several concerns regarding the interpretation of the results and the robustness of the conclusions, which should be more thoroughly addressed.

      (1) The study relies on the assumption that calcium imaging and optogenetic manipulation were restricted only to PVNOT neurons. However, the specificity of AAV-mediated gene expression was not verified quantitatively. A fair number of cell bodies in the PVN expressed GCaMP8s, but not OT, indicating potential off-target expression (see Figure S2A, B). The lack of quantitative validation weakens confidence in the causal interpretation of the results.

      (2) The study focuses on the transition from rest to active states following pulsatile activity of PVNOT neurons. However, the physiological significance of this pulsatile activity remains unclear. According to the authors, pulsatile activity occurred with an approximately 20% probability within 100 seconds prior to the end of the resting state. This implies that, in the remaining 80% of rest-to-active transitions, pulsatile PVNOT activity did not occur, suggesting that it is not essential for initiating the transition. A comparative analysis of behavioral and thermogenic changes between transitions with and without pulsatile PVNOT activity would help to further clarify the functional relevance of this phenomenon and strengthen the authors' interpretation of the findings.

      (3) The study identifies a correlation between pulsatile activity of PVNOT neurons and rest-to-active transitions, and tests for a causal relationship using optogenetic stimulation. However, since PVNOT neurons are known to co-release other neurotransmitters such as glutamate, it remains unclear whether the observed effects are mediated specifically through oxytocin receptor signaling. To address this question, functional intervention experiments using oxytocin receptor antagonists or receptor knockout mice are necessary.

      (4) The authors attempted to detect BAT thermogenesis and skin vasomotion using infrared thermography. This technique measures only skin hair temperatures (since the skin was not shaved), but does not measure "BAT temperature" or "vasomotor tone". As seen in Figure 5E, the temperatures of the body surface areas ("BAT", "Rump", and "Dorsal surface") mostly changed in parallel, indicating that these temperatures are strongly affected by body core temperature. Therefore, the thermographic measurements in this study did not provide convincing information on BAT thermogenesis or skin vasomotion. To avoid misleading reports, the authors need to use other techniques to directly measure temperatures, such as telemetry.

      (5) Photostimulation of PVNOT neurons increased Tb after 400 sec (6.6 min) (Figure 5). This latency is too long to conclude that the neuronal stimulation elicited BAT thermogenesis. A more reasonable explanation is that the increase in Tb was caused by the induction of physical activity (Figure S4C), which slowly generates heat and contributes to the elevation of Tb. However, this view contradicts the authors' claim. To address this concern, the authors should directly measure BAT thermogenesis and compare it with the rate of Tb elevation. If BAT thermogenesis occurs, the rate at which the BAT temperature increases must exceed the rate at which Tb rises.

    5. Author response:

      (1) Maternal lactation assay and PVN oxytocin neuron identity

      Reviewers and editors noted that the maternal lactation assay felt out of place (Editors, R1, R2) and asked for clearer validation of AAV specificity in the PVN (R3). These issues are linked: the primary purpose of the lactation assay was to physiologically validate that the recorded neurons are oxytocinergic, as PVNOT neurons exhibit well-established pulsatile activity during lactation.

      In response, we will (i) explicitly frame the lactation assay as a validation experiment, (ii) streamline its presentation to sit naturally with our identity-validation rationale, and (iii) clarify our AAV targeting and expression controls; we will also address our oxytocin immunohistochemistry quantification and its limitations (we observed notable intra-individual and technical variability in oxytocin immunoreactivity), which motivated the complementary physiological approach.

      (2) Clarifications and analyses.

      The reviewers pointed to several analyses, inferences, and conclusions that should be clarified. We will clarify: (i) the oxytocin histology in Figure 1 (marker definitions and quantification), (ii) the roles of floor versus ambient temperature, and (iii) further elucidate some of the quantitative links among behavioral state, neural activity, and body temperature (e.g., behavior bout duration vs. neural responses and Tb), (iv) the computer vision methodology. These additions will address the reviewers’ requests for clearer inferences and presentation.

      (3) Optogenetic inhibition. 

      We appreciate the suggestion to include an inhibition experiment (Editors, R1, R2). While interesting, this is beyond the scope of the current revision. Our stimulation experiments were designed to functionally test a specific observation from calcium imaging, namely, that PVNOT neurons show bursts of heightened activity at transitions from quiescence to arousal/thermogenesis, and to assess causal sufficiency for thermogenic/arousal-related readouts. We will make this rationale explicit, discuss the scope limits of the current dataset, and note inhibition as an important direction for future work.

    1. eLife Assessment

      This valuable study identifies a brown adipose tissue-specific heat shock factor 1-alcohol dehydrogenase 5 (ADH5) molecular cascade as a regulator of systemic aging, showing that ADH5 deficiency contributes to BAT dysfunction and health decline in aged mice. While there is evidence to support this mechanism, the conclusions remain incomplete, particularly regarding statistical rigor and clarity in data presentation.

    2. Reviewer #1 (Public review):

      Sebag et al. addressed the role of ADH5 in BAT in the development of aging and metabolic disarrangements associated with it. This is a follow-up study after the authors' demonstration of the role of BAT ADH5 in glucose homeostasis, obesity, and cold tolerance. By ablating ADH5 specifically in brown adipocytes or pharmacologically modulating ADH5 through activation of its transcription factor, the authors conclude that preservation of BAT function is crucial for healthy aging and ADH5 is causally involved in this process. The topic is appealing given the rise in the aging population and the unclear role of BAT function in this process. Overall, the study uses several techniques, is easy to follow, and addresses several physiological and molecular manifestations of aging. However, the study lacks an appropriate statistical analysis, which severely affects the conclusions of the work. Therefore, interpretation of the findings is limited and must be done with caution.

    3. Reviewer #2 (Public review):

      Summary:

      This study investigates the role of the enzyme Alcohol Dehydrogenase 5 (ADH5) in brown adipose tissue (BAT) during aging. BAT is crucial for thermogenesis and energy balance, but its function and mass diminish with age, contributing to metabolic dysfunction and age-related diseases. ADH5, also known as S-nitrosoglutathione reductase, regulates nitric oxide (NO) signaling by damaging S-nitrosylation modifications from proteins. The authors show that aging in mice leads to increased protein S-nitrosylation but reduced ADH5 expression in BAT, resulting in impaired metabolic and cognitive functions. Deletion of ADH5 in BAT accelerates tissue senescence and systemic metabolic decline.

      Mechanisticaremoving lly, aging suppresses ADH5 via downregulation of heat shock factor 1 (HSF1), a master regulator of protein homeostasis. Importantly, pharmacologically boosting HSF1 improves BAT function and mitigates both metabolic and cognitive declines in aged mice. The findings highlight a critical HSF1-ADH5 pathway in BAT that protects against aging-related dysfunction, suggesting that targeting this pathway may offer new therapeutic strategies for improving metabolic health and cognition during aging.

      Strengths:

      This research provides insight into the interplay between redox biology, proteostasis, and metabolic decline in aging. By identifying a specific enzyme that controls SNO status in BAT and further developing a therapy to target ADH5 in BAT to prevent age-related decline, the authors have identified a putative mechanism to combat age-related decline in BAT function.

      Weaknesses:

      (1) Sex needs to be considered as a biological variable, at a minimum in the reporting of the phenotypes observed in this manuscript, but also potentially by further experimentation. The only mention of sex I could find is that the authors reported the general protein SNO status in BAT is increased with age in male C57Bl/6J mice. Is this also true in female mice? For all of the ADH5 knockout mouse data, are these also male mice? Do female ADH5 knockout mice have a consistent phenotype, or are the sex differences?

      (2) It would be helpful to know the extent of ADH5 loss in the adipose tissue of knockout mice, either by mRNA or by immunoblotting for ADH5. It could also be helpful to know if ADH5 is deleted from the inguinal adipose tissue of these mice, especially since they seem to accumulate fat mass as they age (Figure 2B).

      (3) For Figure 4D, the ChiP, it would be better to show the IgG control pulldowns. Also, there's an unexpected thing where all the values for the Adh5 flox mice are exactly the same - how is this possible? Finally, it's not clear how these BAT samples were treated with HSF1A - was this done in vivo or ex vivo?

      (4) I didn't understand what was on the y-axis in Figure 5A, nor how it was measured. I assume it's HSF1A, and maybe it's the part in the methods with the Metabolomic Analysis, but this wasn't clear. It would also help if release from the NC-Vehicle formulation could be included as a negative control.

      (5) What happens to BAT protein S-nitrosylation in HSF1A-treated mice?

      (6) Figure 1B: What is the age of the positive (ADH5BKO) and negative (Adh5 fl) mice?

      (7) Figure 1F: Can you clarify what I'm looking at in the P16ink4a panels? The red staining? Is the blue staining DAPI? This is also a problem in Figures 3C, 3D and 5G, and 5I. Figure 4B looks great - maybe this could be used as an example?

      (8) Figure 3B looks a bit odd since 7 of the 12 total mice seem to have an IL-beat level of exactly 5. I was a bit unclear about why arbitrary units were used for IL-1β levels since it says an ELISA was used to quantify IL-1β; however, in the methods the authors describe a Bio-Rad Laboratories Bio-plex Pro Mouse Cytokine 23-Plex approach, which I don't think is an ELISA. Can the approach to measuring IL-1β be clarified, and could the authors explain why they can't show units of mass for IL-1β levels?

      (9) Figure 2C and 2D: I don't really understand why the Heat or VO2 need to be expressed as fold changes. Can't these just be expressed with absolute units? It's also confusing why the heat fold change is 1.0 in the light and the dark for the floxed animal. I bet this is because the knockout is normalized to the floxed animal for light and then normalized again for the dark period, but since both are on the same graph, readers could be confused into thinking there is no difference in the heat production or VO2 between light and dark, which would be surprising. This could all just be solved if absolute units were used.

    4. Author response:

      Reviewer #1 (Public review):

      The topic is appealing given the rise in the aging population and the unclear role of BAT function in this process. Overall, the study uses several techniques, is easy to follow, and addresses several physiological and molecular manifestations of aging.  However, the study lacks an appropriate statistical analysis, which severely affects the conclusions of the work. Therefore, interpretation of the findings is limited and must be done with caution. 

      We greatly appreciate the reviewer’s encouragement. Our team is fully committed to maintaining clarity and rigor in the design, execution, and reporting of this study. We are grateful to the reviewers for bringing these issues to our attention. We also acknowledge and are working on that several statistical analyses could be reperformed to better emphasize our focus on the genetic effect of ADH5 deletion in mice of the same age.

      Reviewer #2 (Public review):

      Strengths: 

      This research provides insight into the interplay between redox biology, proteostasis, and metabolic decline in aging. By identifying a specific enzyme that controls SNO status in BAT and further developing a therapy to target ADH5 in BAT to prevent age-related decline, the authors have identified a putative mechanism to combat age-related decline in BAT function. 

      We greatly appreciate the reviewer’s encouragement. 

      Weaknesses: 

      (1) Sex needs to be considered as a biological variable, at a minimum in the reporting of the phenotypes observed in this manuscript, but also potentially by further experimentation. 

      We thank the reviewer for the insightful remark, and we agree with the reviewer that sex needs to be considered as a biological variable. We will assess ADH5 expression in aged female mice.

      (2)  It would be helpful to know the extent of ADH5 loss in the adipose tissue of knockout mice, either by mRNA or by immunoblotting for ADH5. It could also be helpful to know if ADH5 is deleted from the inguinal adipose tissue of these mice, especially since they seem to accumulate fat mass as they age (Figure 2B). 

      We thank the reviewer for the comment/suggestion. Indeed, we have measured the ADH5 expression in both brown adipose tissue (BAT) and inguinal adipose tissue (iWAT). We regret that we did not include our results in the first submission and will provide these results in the revised manuscript.

      (3)  For Figure 4D, the ChiP, it would be better to show the IgG control pulldowns. Finally, it's not clear how these BAT samples were treated with HSF1A - was this done in vivo or ex vivo? 

      We thank the reviewer for their thoughtful comment and will provide detailed information in the revised manuscript.

      (4) I didn't understand what was on the y-axis in Figure 5A, nor how it was measured.

      We apologize for not making these critical points clearer in the first submission. In the revised manuscript we will include, in detail, the logistics of the experiments in the materials and methods section, figure annotation and figure legends.  

      (5) What happens to BAT protein S-nitrosylation in HSF1A-treated mice? 

      We thank the reviewer for the insightful remark, and we will measure general protein Snitrosylation status in the BAT of HSF1A-treated mice. 

      (6) Figure 1B: What is the age of the positive (ADH5BKO) and negative (Adh5 fl) mice? 

      We regret that we did not describe our results clearly in the first submission and will provide detailed information in the revised manuscript.

      (7) Figure 1F: Can you clarify what I'm looking at in the P16ink4a panels? The red staining? Is the blue staining DAPI? This is also a problem in Figures 3C, 3D and 5G, and 5I. Figure 4B looks great - maybe this could be used as an example?  

      We regret that we did not present results clearly in the first submission and will provide detailed information in the revised manuscript.

      (8) Figure 3B looks a bit odd. Can the approach to measuring IL-1β be clarified, and could the authors explain why they can't show units of mass for IL-1β levels? 

      We will provide detailed information in the revised manuscript.

      (9) Figure 2C and 2D: I don't really understand why the Heat or VO2 need to be expressed as fold changes. Can't these just be expressed with absolute units? 

      We thank the reviewer for the insightful comment. We will present these results as suggested in the revised manuscript.

    1. eLife Assessment

      This modelling study tests several hypotheses describing how seasonality and migration drive the epidemiology of Rift Valley Fever Virus among transhumant cattle in The Gambia. The work is methodologically solid, and findings offer valuable insights into how the movement of cattle in and out of the Gambia River and Sahel ecoregions could lead to source-sink transmission dynamics among cattle subpopulations, sustaining endemic transmission.

    2. Joint Public Review:

      Summary:

      This study uses data from a recent RVFV serosurvey among transhumant cattle in The Gambia to inform the development of an RVFV transmission model. The model incorporates several hypotheses that capture the seasonal nature of both vector-borne RVFV transmission and cattle migration. These natural phenomena are driven by contrasting wet and dry seasons in The Gambia's two main ecoregions and are purported to drive cyclical source-sink transmission dynamics. Although the Sahel is hypothesized to be unsuitable for year-long RVFV transmission, findings suggest that cattle returning from the Gambia River to the Sahel at the beginning of the wet season could drive repeated RVFV introductions and ensuing seasonal outbreaks. The model is also used to evaluate the potential impacts of cattle movement bans on transmission dynamics, although there is doubt about the certainty of these latter findings in light of various simplifying assumptions.

      Strengths:

      Like most infectious diseases in animal systems in low- and middle-income countries, the transmission dynamics of RVFV in cattle in The Gambia are poorly understood. This study harnesses important data on RVFV seroepidemiology to develop and parameterize a novel transmission model, providing plausible estimates of several epidemiological parameters and transmission dynamic patterns.

      This study is well written and easy to follow.

      The authors consider both deterministic and stochastic formulations of their model, demonstrating potential impacts of random events (e.g., extinctions) and providing confidence regarding model robustness.

      The authors use well-established Bayesian estimation techniques for model fitting and confront their transmission model with a seroepidemiological model to assess model fit.

      Elasticity analyses help to understand the relative importance of competing demographic and epidemiological drivers of transmission in this system.

      Weaknesses:

      The model predicts relatively stable annual dynamics reminiscent of a seasonal endemic pathogen, but RVF in sub-Saharan Africa is often characterized as causing periodic epizootics with sustained lulls in between outbreaks. Do the authors believe this conventional wisdom regarding RVF epidemiology is wrong, and that their results better support that transmission patterns are seasonal but truly relatively stable year-over-year, at least in the Gambia? The authors should discuss whether these predicted dynamics could be an artefact of the model's structure, and what ramifications this could have for their conclusions.

      It is unclear how the network analysis is used to inform the model. The network (Figure S2) suggests a highly fragmented population, which could better support, for example, a herd metapopulation approach. The first results section highlights that transhumant movements cover large distances (perhaps to justify the assumption of homogenous mixing within each ecoregion?), but the median (13.5km) is quite short.

      The model does not include an impact of infection on cattle birth rates, but the authors highlight the well-known impacts of RVF epizootics on cattle abortion and neonatal death.

      ODEs for M herds in the dry season are missing from the appendix. Even in the absence of transmission among this subpopulation in this season, demographic turnover should influence its SIR population dynamics. Were these not included in the model or simply omitted from the text?

      The importance of the LVFV positivity decay rate is highlighted, but the loss of immunity is not considered in the SIR model. The authors do discuss uncertainty regarding model structure, but could better justify their choice. Is there evidence of reduced infection risk among previously infected seronegatives, and why was an SIRS model not considered? How might findings be expected to differ under an SIRS model?

      Shouldn't disease-induced host death be included in the serocatalytic model? A high RVF mortality rate has been estimated, and FOI is relatively high, suggesting a non-negligible impact of RVF death on seroprevalence dynamics, and indeed possibly a greater impact than seroreversion.

      It is helpful that the authors have described findings from the previously conducted household survey, which is a key foundation for the model, but it needs to be made clearer what work was already conducted as part of the previous study, in particular the Methods sections RVFV seroprevalence & household survey data and Epidemiological setting & cattle population structure. Same for the sections Study Area and Data Collection in the appendix.

      The study limitations paragraph is vague. What modelling assumptions have introduced the greatest uncertainty, and what implications could this have for study conclusions?

      Two main issues with the simulations of a ban on transhuman movement:

      The introduction rightly highlights the importance of pastoral lifestyles for subsistence farmers in the Gambia. It therefore seems likely that transhumant movement bans would have great socioeconomic and ethical challenges in addition to obvious practical challenges. Is such an intervention even a remote possibility?

      The model's structure, including homogenous mixing within each ecoregion and step-change seasonality, allows for estimation of generalized transmission rates at a macro scale. However, it greatly simplifies the movement process itself and assumes that transhumant cattle movement is the only mechanism for RVF reintroduction into the Sahel region. The model is therefore likely to misrepresent the potential impacts of movement bans on transmission. As studies, for example, in healthcare settings have shown, where fine-scaled contact data are available, incorporating the specific and complex nature of inter-individual contact can change not only the magnitude but the direction of intervention impacts relative to predictions from a model with homogenous mixing assumptions. Conclusions from this work regarding the impacts of movement bans, therefore, seem poorly supported.

      This model seems perhaps better suited to exploring, for example, cattle vaccination, and potential differential efficiency when targeting T herds relative to M or L.

    3. Author response:

      (1) Stable annual dynamics vs. episodic outbreaks

      We agree that RVF is classically described as producing periodic epidemics interspersed with long inter-epidemic periods, often linked to extreme rainfall events. Our model predicts more regular seasonal dynamics, which reflects the endemic transmission patterns we have observed in The Gambia through serological surveys. In the revision, we will:

      Clarify that while epidemics occur in other parts of sub-Saharan Africa, our results may indicate a different epidemiological narrative in The Gambia, with sustained but low-level circulation (hyperendemicity).

      Discuss how model assumptions (e.g. seasonality, homogenous mixing) may bias results toward stable dynamics.

      Highlight the implications of this for interpretation and for public health decision-making.

      (2) Use of network analysis

      We acknowledge the reviewer’s concern. The network analysis was conducted descriptively to characterize cattle movement patterns and the structure of herd connections, but it was not formally incorporated into the model. In revisions we will:

      Clarify this distinction in the manuscript to avoid overinterpretation.

      Emphasize the need for future modelling work using finer-scale movement data, which could support more realistic herd metapopulation dynamics and better capture heterogeneity in transmission.

      (3) RVFV reproductive impacts

      While RVF outbreaks are known to cause abortions and neonatal deaths, these occur during relatively rare epidemics. In the Gambian context, where we’re not observing such large episodic outbreaks but rather low-level circulation, the annual impact of RVF infection on births is likely modest compared to baseline herd turnover. Moreover, cattle demography is partly managed, with replacement and movement buffering birth rates against short-term losses.

      Our model includes birth as a constant demographic process, it’s reasonable to assume stable population since we are not explicitly modelling outbreak-scale reproductive losses. This is consistent with other RVF transmission models that adopt a similar simplifying assumption. However, we will acknowledge this simplification as a limitation in the revised manuscript.

      (4) Missing ODEs for M herds in the dry season

      We thank the reviewer for identifying this omission. The ODEs for M herds in the dry season were not included in the appendix due to an oversight, though demographic turnover was incorporated in the model code. We will add the missing equations to the appendix.

      (5) Role of immunity loss and model structure (SIR vs. SIRS)

      We acknowledge that the decline of detectable antibodies over time (seropositivity decay/seroreversion) is an important consideration in RVFV serology, but whether this reflects true loss of protective immunity after natural infection remains unknown. Biologically, it is plausible that infected cattle develop long-lasting protection, as suggested by studies in humans, but there is an absence of longitudinal field data. From a modelling perspective, our aim was to predict age-seroprevalence curve dependent on FOI estimates and assess its ability to reproduce observed cross-sectional seroprevalence patterns. We therefore adopted a parsimonious SIR framework, treating loss of seropositivity as a potential explanation for the observed age disparity rather than modelling it as loss of immunity. In revisions we will:

      Clarify this rationale, emphasising that there is no direct evidence for waning immunity following natural RVFV infection in cattle, although evidence of seropositivity decay has been suggested in human.

      Further discuss the seropositivity decay rates predicted in our survey and their possible relation to test sensitivity.

      Highlight that while a SIRS structure could generate different long-term dynamics, evaluating this requires stronger evidence for true immunity loss; we consider this an important future modelling direction.

      (6) RVFV induced mortality in serocatalytic model

      We thank the reviewer for this comment. Disease-induced mortality was included in the serocatalytic model through the mortality parameter (γ), but we recognise that this might not have been sufficiently clear in the text. In revisions we will clarify in the Methods and Appendix.

      (7) Clarifying previous vs. current study components

      We will revise the Methods and Appendix to make clearer distinctions between our previous work (e.g. household survey data collection, seroprevalence estimates) and the analyses undertaken for this manuscript (e.g. model development and fitting).

      (8) Limitations paragraph

      We will expand the limitations section to specifically identify the assumptions contributing most to uncertainty. We will then outline how these may bias transmission dynamics and intervention estimates.

      (9) Movement ban simulations & suitability of model for vaccination interventions

      We appreciate the reviewer’s concerns regarding the movement ban simulation. On reassessment, we agree that our model structure might not be ideally suited to exploring them. In the revised manuscript, we will remove this analysis and emphasize how our modelling framework is more suited to exploring cattle vaccination scenarios, including targeting of specific herd types (e.g. T vs. M vs. L). We note that we are currently developing separate work focused on vaccination strategies in cattle, where this model structure might be more directly applicable, and will reserve a deeper investigation of vaccination interventions for that forthcoming publication.

    1. eLife Assessment

      This important study identifies a putative iron and zinc transporter in the plasma membrane of the obligate intracellular pathogen, Toxoplasma gondii. Using an array of different approaches, the authors convincingly demonstrate that this transporter regulates diverse cellular processes, including parasite metabolism and differentiation. This work will be of broad interest to cell biologists and biochemists studying metal ion transport mechanisms.

    2. Reviewer #1 (Public review):

      In this manuscript, Aghabi et al. present a comprehensive characterization of ZFT, a metal transporter located at the plasma membrane of the eukaryotic parasite Toxoplasma gondii. The authors provide convincing evidence that ZFT plays a crucial role in parasite fitness, as demonstrated by the generation of a conditional knockdown mutant cell line, which exhibits a marked impact on mitochondrial respiration, a process dependent on several iron-containing proteins. Consistent with previous reports, the authors also show that disruption of mitochondrial metabolism leads to conversion into the persistent bradyzoite stage. The study then employed advanced techniques, such as inductively coupled plasma-mass spectrometry (ICP-MS) and X-ray fluorescence microscopy (XFM), to demonstrate that ZFT depletion results in reduced parasite-associated metals, particularly iron and zinc. Additionally, the authors show that ZFT expression is modulated by the availability of these metals, although defects in the transporter could not be compensated for by exogenous addition of iron or zinc.

      While the manuscript does not directly investigate the transport function of ZFT through biochemical assays, the authors indirectly support the notion that ZFT can transport zinc by demonstrating its ability to compensate for a lack of zinc transport in a yeast heterologous system. Furthermore, phenotypic analyses suggest defects in iron availability, particularly with regard to Fe-S mitochondrial proteins and mitochondrial function. Overall, the manuscript provides a solid, well-rounded argument for ZFT's role in metal transport, using a combination of complementary approaches. Although direct biochemical evidence for the transporter's substrate specificity and transport activity is lacking, the converging evidence, including changes in metal concentrations upon ZFT depletion, yeast complementation data, and phenotypic changes linked to iron deficiency, presents a convincing case. Some aspects of the results may appear somewhat unbalanced, particularly since iron transport could not be confirmed through heterologous complementation, while zinc-related phenotypes in the parasites have not been thoroughly explored (which is challenging given the limited number of zinc-dependent proteins characterized in Toxoplasma). Nevertheless, given that metal acquisition remains largely uncharacterized in Toxoplasma, this manuscript provides an important first step in identifying a metal transporter in these parasites, and the data presented are generally convincing and insightful.

    3. Reviewer #2 (Public review):

      Summary:

      The intracellular pathogen Toxoplasma gondii scavenges metal ions such as iron and zinc to support its replication; however, mechanistic studies of iron and zinc uptake are limited. This study investigates the function of a putative iron and zinc transporter, ZFT. In this paper, the authors provide evidence that ZFT mediates iron and zinc uptake by examining the regulation of ZFT expression by iron and zinc levels, the impact of altered ZFT expression on iron sensitivity, and the effects of ZFT depletion on intracellular iron and zinc levels in the parasite. The effects of ZFT depletion on parasite growth are also investigated, showing the importance of ZFT function for the parasite.

      Strengths:

      A key strength of the study is the use of multiple complementary approaches to demonstrate that ZFT is involved in iron and zinc uptake. Additionally, the authors build on their finding that loss of ZFT impairs parasite growth by showing that ZFT depletion induces stage conversion and leads to defects in both the apicoplast and mitochondrion.

      Weaknesses:

      (1) Excess zinc was shown not to alter ZFT expression, but a cation chelator (TPEN) did lead to decreased expression. While TPEN is often used to reduce zinc levels, does it have any effect on iron levels? Could the reduction in ZFT after TPEN treatment be due to a reduction in the level of iron or another cation?

      (2) ZFT expression was found to be dynamic depending on the size of the vacuole, based on mean fluorescence intensity measurements. Looking at protein levels by Western blot at different times during infection would strengthen this finding.

      (3) ZFT localization remained at the parasite periphery under low iron conditions. However, in the images shown in Figure S1c, larger vacuoles (containing 4-8 parasites) are shown for the untreated conditions, and single parasite-containing vacuoles are shown for the low iron condition. As ZFT localization is predominantly at the basal end of the parasite in larger PV and at the parasite periphery for smaller vacuoles, it would be better to compare vacuoles of similar size between the untreated and low-iron conditions.

    4. Reviewer #3 (Public review):

      Summary:

      Aghabi et al set out to characterize a T. gondii transmembrane protein with a ZIP domain, termed ZFT. The authors investigate the consequences of ZFT downregulation and overexpression for parasite fitness. Downregulation of ZFT causes defects in the parasite's endosymbiotic organelles, the apicoplast and the mitochondrion. Specifically, lack of ZFT causes a decrease in mitochondrial respiration, consistent with its role as an iron transporter. This impact on the mitochondria appears to trigger partial differentiation to bradyzoites. The authors furthermore demonstrate that expression of TgZFT can rescue a yeast mutant lacking its zinc transporter and perform an array of direct metal ion measurements, including X-ray fluorescence microscopy and inductively coupled mass spectrometry (ICP-MS). These reveal reduced metal ions in parasites depleted in ZFT. Overall, the data by Aghabi et al. reveal that ZFT is a major metal ion transporter in T. gondii, importing iron and zinc for diverse essential processes.

      Strengths:

      This study's strength lies in the thorough characterization of the transporter. The authors combine a number of techniques to measure the impact of ZFT depletion, ranging from the direct measurement of metal ions to determining the consequences for the parasite's metabolism (mitochondrial respiration), as well as performing a yeast mutant complementation. This work is very thorough and clearly presented, leaving little doubt about this protein's function.

      Weaknesses:

      This study offers no major novel insights into the biology of T. gondii. The transporter was already annotated as a zinc transporter (ToxoDB), was deemed essential (PMID: 27594426), and localized to the plasma membrane (PMID: 33053376). This study mostly confirms and validates these previous datasets. The authors identify three other proteins with a ZIT domain. Particularly, the role of TGME49_225530 is intriguing, as it is likely fitness-conferring (score: -2.8, PMID: 27594426) and has no subcellular localization assigned. Characterizing this protein as well, revealing its localization, and identifying if and how these transporters coordinate metal ion transport would have been worthwhile.

      Another weakness is the data related to the impact of ZFT downregulation on the apicoplast in Figure 4. The authors show that downregulation of ZFT causes an increase in elongated apicoplasts (Figure 4d). The subsequent panels seem to show that the parasites present a dramatic growth defect at that time point. This growth arrest can directly explain the elongated apicoplast, but does not allow any conclusion about an impact on the organelle. In any case, an assessment of 'delayed death' as presented in Figure 4c seems futile, since the many other processes affected by zinc and iron depletion likely cause a rapid death, masking any potential delayed death.

    1. eLife Assessment

      In this manuscript, the authors report the fundamental finding that a secreted ubiquitin ligase of Shigella, called IpaH1.4, mediates the degradation of a host defense factor, RNF213. The data are convincing and represent a major contribution to our understanding of cell-autonomous immunity and bacterial pathogenesis as they provide new mechanistic insight into how the cytosolic bacterial pathogen Shigella flexneri evades IFN-induced host immunity.

    2. Reviewer #1 (Public review):

      Shigella flexneri is a bacterial pathogen that is an important globally significant cause of diarrhea. Shigella pathogenesis remains poorly understood. In their manuscript, Saavedra-Sanchez et al report their discovery that a secreted E3 ligase effector of Shigella, called IpaH1.4, mediates the degradation of a host E3 ligase called RNF213. RNF213 was previously described to mediate ubiquitylation of intracellular bacteria, an initial step in their targeting to xenophagosomes. Thus, Shigella IpaH1.4 appears to be an important factor to permit evasion of RNF213-mediated host defense. Strengths: The work is focused, convincing, well-performed and important, and the manuscript is well-written. The revised version addressed all the concerns raised during the initial review.

    3. Reviewer #2 (Public review):

      Summary:

      The authors find that the bacterial pathogen Shigella flexneri uses the T3SS effector IpaH1.4 to induce degradation of the IFNg-induced protein RNF213. They show that in the absence of IpaH1.4, cytosolic Shigella is bound by RNF213. Furthermore, RNF213 conjugates linear and lysine-linked ubiquitin to Shigella independently of LUBAC. Intriguingly, they find that Shigella lacking ipaH1.4 or mxiE, which regulates the expression of some T3SS effectors, are not killed even when ubiquitylated by RNF213 and that these mutants are still able to replicate within the cytosol, suggesting that Shigella encodes additional effectors to escape from host defenses mediated by RNF213-driven ubiquitylation.

      Strengths:

      The authors take a variety of approaches, including host and bacterial genetics, gain-of-function and loss-of-function assays, cell biology, biochemistry, . Overall, the experiments are elegantly designed, rigorous, and convincing.

    4. Reviewer #3 (Public review):

      Summary:

      In this study the authors set out to investigate whether and how Shigella avoids cell autonomous immunity initiated through M1-linked ubiquitin and the immune sensor and E3 ligase RNF213. The key findings are that the Shigella flexneri T3SS effector, IpaH1.4 induces degradation of RNF213. Without IpaH1.4, the bacteria are marked with RNF213 and ubiquitin following stimulation with IFNg. Interestingly, this is not sufficient to initiate the destruction of the bacteria, leading the authors to conclude that Shigella deploys additional virulence factors to avoid this host immune response. The second key finding of this study is that M1 chains decorate the mxiE/ipaH Shigella mutant independent of LUBAC, which is by and large, considered the only enzyme capable of generating M1-linked ubiquitin chains. These findings are fundamental in nature and of general interest.

      Strengths and weaknesses:

      The data is well-controlled and clearly presented with appropriate methodology. The authors provide compelling evidence that demonstrates that IpaH1.4 is the effector responsible for the degradation of RNF213 via the proteasome and their conclusions are well supported. They have clearly demonstrated how Shigella disarms RNF213-mediated immunity.

      This work builds on prior work from the same laboratory that suggests that M1 ubiquitin chains can be formed independently of LUBAC (in the prior publication this related to Chlamydia inclusions). Two key pieces of evidence support this statement - fluorescence microscopy-based images and accompanying quantification in Hoip and Hoil knockout cells for association of M1-ub, using an M1 specific antibody, and the use of an internally tagged Ub-K7R mutant. Whilst it remains possible that the M1 antibody is non-specific, as acknowledged by the authors, the data in supplementary figure 1, comparing K7R-ub and the N-terminally tagged K7R ub variant, provides evidence that during Shigella infection, LUBAC independent M1-ubiquitin chains are indeed formed. This represents an important new angle in ubiquitin biology.

      The importance of IFNgamma priming for RNF213 association to the mxiE or ipaH1.4 remains an interesting question that awaits future studies that compare different intracellular bacteria and the role of RNF213.

      Overall, the findings are important for the host-pathogen field, cell autonomous/innate immune signaling fields and microbial pathogenesis fields and the work is a very valuable addition to the recent advances in understanding the role of RNF213 in host immune responses to bacteria.

    5. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Shigella flexneri is a bacterial pathogen that is an important globally significant cause of diarrhea. Shigella pathogenesis remains poorly understood. In their manuscript, Saavedra-Sanchez et al report their discovery that a secreted E3 ligase effector of Shigella, called IpaH1.4, mediates the degradation of a host E3 ligase called RNF213. RNF213 was previously described to mediate ubiquitylation of intracellular bacteria, an initial step in their targeting of xenophagosomes. Thus, Shigella IpaH1.4 appears to be an important factor in permitting evasion of RNF213-mediated host defense.

      Strengths:

      The work is focused, convincing, well-performed, and important. The manuscript is well-written.

      We would like to thank the reviewer for their time evaluating our manuscript and the positive assessment of the novelty and importance of our study. We provide a comprehensive response to each of the reviewer’s specific recommendations below and highlight any changes made to the manuscript in response to those recommendations.

      Reviewer #1 (Recommendations for the authors):

      (1) In the abstract (and similarly on p.10), the authors claim to have shown "IpaH1.4 protein as a direct inhibitor of mammalian RNF213". However, they do not show the interaction is direct. This, in my opinion, would require demonstrating an interaction between purified recombinant proteins. I presume that the authors are relying on their UBAIT data to support the direct interaction, but this is a fairly artificial scenario that might be prone to indirect substrates. I would therefore prefer that the 'direct' statement be modified (or better supported with additional data). Similarly, on p.7, the section heading states "S. flexneri virulence factors IpaH1.4 and IpaH2.5 are sufficient to induce RNF213 degradation". The corresponding experiment is to show sufficiency in a 293T cell, but this leaves open the participation of additional 293T-expressed factors. So I would remove "are sufficient to", or alternatively add "...in 293T cells".

      We agree with the reviewer and made the recommended changes to the text in the abstract, in the results section on page 7, and in the Discussion on page 11. During the revision of our manuscript two additional studies were published that provide convincing biochemical evidence for the direct interaction between IpaH1.4 and RNF213 (PMID: 40205224; PMID: 40164614). These studies address the reviewer’s concern extensively and are now briefly discussed and cited in our revised MS.

      (2) In the abstract the authors state "Linear (M1-) and lysine-linked ubiquitin is conjugated to bacteria by RNF213 independent of the linear ubiquitin chain assembly complex (LUBAC)." However, it is not shown that RNF213 is able to directly perform M1-ubiquitylation. It is shown that RNF213 is required for M1-linked ubiquitylation in IpaH1.4 or MxiE mutants, this is different than showing conjugation is done by RNF213 itself. This should be reworded.

      We agree and edited the text accordingly

      (3) Introduction: one of the main points of the paper is that RNF213 conjugates linear ubiquitin to the surface of bacteria in a manner independent of the previously characterized linear ubiquitin conjugation (LUBAC) complex. This is indeed an interesting result, but the introduction does not put this discovery in much context. I would suggest adding some discussion of what was known, if anything, about the type of Ub chain formed by RNF213, and specifically whether linear Ub had previously been observed or not.

      We now provide context in the Introduction on page 3 and briefly discuss previous work that had implicated LUBAC in the ubiquitylation of cytosolic bacteria. We emphasize that LUBAC specifically generates linear (M1-linked) ubiquitin chains, while the types of ubiquitin linkages deposited on bacteria through RNF213-dependent pathways had remained unidentified.

      (4) Figure 3C: is the difference in 7KR-Ub between WT and HOIP KO cells significant? If so, the authors may wish to acknowledge the possibility that HOIP partially contributes to M1-Ub of MxiE mutant Shigella

      The frequencies at which bacteria are decorated with 7KR-Ub is not statistically different between WT and HOIP KO cells. We have included this information in the panel description of Figure 3.

      (5) On page 11, the authors state that "...we observed that LUBAC is dispensable for M1-linked ubiquitylation of cytosolic S. flexneri ∆ipaH1.4. We found that lysine-less internally tagged ubiquitin or an M1-specific antibody bound to S. flexneri ∆ipaH1.4 in cells lacking LUBAC (HOIL-1KO or HOIPKO) but failed to bind bacteria in RNF213-deficient cells". In fact, what is shown is that M1-ubiquitylation in ∆ipaH1.4 infection is RNF213-dependent (5E), but the work with lysine mutants, HOIP or HOIL-1 KOs are all with ∆mxiE, not ∆ipaH1.4 (3B) in this version of the manuscript. Ideally, the data with ∆ipaH1.4 could be added, but alternatively, the conclusion could be re-worded.

      We now include the data demonstrating that staining of ∆ipaH1.4 with an M1-specific antibody is unchanged from WT cells in HOIL-1 KO and HOIP KO cells. These data are shown in supplementary data (Fig. S3E) and referred to on page 9 of the revised manuscript.

      (6) The UBAIT experiment should be explained in a bit more detail in the text. The approach is not necessarily familiar to all readers, and the rationale for using Salmonella-infected ceca/colons is not well explained (and seems odd). Some appropriate caution about interpreting these data might also be welcome. Did HOIP or HOIL show up in the UBAIT? This perhaps also deserves some discussion.

      As expected, HOIP (listed under its official gene name Rnf31 in the table of Fig.S2B) was identified as a candidate IpaH1.4 interaction partner as the third most abundant hit from the UBAIT screen. Remarkably, Rnf213 was the hit with the highest abundance in the IpaH1.4 UBAIT screen. To address the reviewer’s comments, we now explain the UBAIT approach in more detail and provide the rational for using intestinal protein lysates from Salmonella infected mice. The text on page 8 reads as follows: “To investigate potential physical interactions between IpaH1.4 and IpaH2.5, we reanalyzed a previously generated dataset that employed a method known as ubiquitin-activated interaction traps (UBAITs) (32). As shown in Fig. S2A, the human ubiquitin gene was fused to the 3′ end of IpaH2.5, producing a C-terminal IpaH2.5-ubiquitin fusion protein. When incubated with ATP, ubiquitin-activating enzyme E1, and ubiquitin-conjugating enzyme E2, the IpaH2.5-ubiquitin "bait" protein is capable of binding to and ubiquitylating target substrates. This ubiquitylation creates an iso-peptide bond between the IpaH2.5 bait and its substrate, thereby enabling purification via a Strep affinity tag incorporated into the fusion construct (32). IpaH2.5-ubiquitin bait and IpaH3-ubiquitin control proteins were incubated with lysates from murine intestinal tissue. To detect interaction partners in a physiologically relevant setting, we used intestinal lysates derived from mice infected with Salmonella, which in contrast to Shigella causes pronounced inflammation in WT mice and therefore better simulates human Shigellosis in an animal model. Using UBAIT we identified HOIP (Rnf31) as a likely IpaH2.5 binding partner (Fig. S2B), thus confirming previous observations (28) and validating the effectiveness our approach. Strikingly, we identified mouse Rnf213 as the most abundant interaction partner of the IpaH2.5-ubiquitin bait protein (Fig. S2B). Collectively, our data and concurrent reports showing direct interactions between IpaH1.4 and human RNF213 (36, 37) indicate that the virulence factors IpaH1.4 and IpaH2.5 directly bind and degrade mouse as well as human RNF213.”

      (7) It would be helpful if the authors discussed their results in the context of the prior work showing IpaH1.4/2.5 mediate the degradation of HOIP. Do the authors see HOIP degradation? If indeed HOIP and RNF213 are both degraded by IpaH1.4 and IpaH2.5, are there conserved domains between RNF213 and HOIP being targeted? Or is only one the direct target? A HOIP-RNF213 interaction has previously been shown (https://doi.org/10.1038/s41467-024-47289-2). Since they interact, is it possible one is degraded indirectly? To help clarify this, a simple experiment would be to test if RNF213 degraded in HOIP KO cells (or vice-versa)?

      We appreciate the reviewer’s suggestions. We conducted the proposed experiments and found that WT S. flexneri infections result in RNF213 degradation in both WT and HOIP KO cells. Similarly, we found that HOIP degradation was independent of RNF213. We have included these data in Figs. 5A and S3B of our revised submission. A study published during revisions of our paper demonstrates that the LRR of IpaH1.4 binds to the RING domains of both RNF213 and LUBAC (PMID: 40205224). We refer to this work in our revised manuscript.

      Reviewer #2 (Public review):

      Summary:

      The authors find that the bacterial pathogen Shigella flexneri uses the T3SS effector IpaH1.4 to induce degradation of the IFNg-induced protein RNF213. They show that in the absence of IpaH1.4, cytosolic Shigella is bound by RNF213. Furthermore, RNF213 conjugates linear and lysine-linked ubiquitin to Shigella independently of LUBAC. Intriguingly, they find that Shigella lacking ipaH1.4 or mxiE, which regulates the expression of some T3SS effectors, are not killed even when ubiquitylated by RNF213 and that these mutants are still able to replicate within the cytosol, suggesting that Shigella encodes additional effectors to escape from host defenses mediated by RNF213-driven ubiquitylation.

      Strengths:

      The authors take a variety of approaches, including host and bacterial genetics, gain-of-function and loss-of-function assays, cell biology, and biochemistry. Overall, the experiments are elegantly designed, rigorous, and convincing.

      Weaknesses:

      The authors find that ipaH1.4 mutant S. flexneri no longer degrades RNF213 and recruits RNF213 to the bacterial surface. The authors should perform genetic complementation of this mutant with WT ipaH1.4 and the catalytically inactive ipaH1.4 to confirm that ipaH1.4 catalytic activity is indeed responsible for the observed phenotype.

      We would like to thank the reviewer for their time evaluating our manuscript and the positive assessment of our work, especially its scientific rigor. We conducted the experiment suggested by the reviewer and included the new data in the revised manuscript. As expected, complementation of the ∆ipaH1.4 with WT IpaH1.4 but not with the catalytically dead C338S mutant restored the ability of Shigella to efficiently escape from recognition by RNF213 (Figs. 5C-D).

      Reviewer #2 (Recommendations for the authors):

      The authors should perform genetic complementation of the ipaH1.4 mutant with WT ipaH1.4 and the catalytically inactive ipaH1.4 to confirm that ipaH1.4 catalytic activity is indeed responsible for the observed phenotype.

      We performed the suggested experiment and show in Figs. 5C-D that complementation of the ∆ipaH1.4 mutant with WT IpaH1.4 but not with the catalytically dead C338S mutant restored the ability of Shigella to efficiently escape from recognition by RNF213. These data demonstrate that the catalytic activity of IpaH1.4 is required for evasion of RNF213 binding to the bacteria.

      Reviewer #3 (Public review):

      Summary:

      In this study, the authors set out to investigate whether and how Shigella avoids cell-autonomous immunity initiated through M1-linked ubiquitin and the immune sensor and E3 ligase RNF213. The key findings are that the Shigella flexneri T3SS effector, IpaH1.4 induces degradation of RNF213. Without IpaH1.4, the bacteria are marked with RNF213 and ubiquitin following stimulation with IFNg. Interestingly, this is not sufficient to initiate the destruction of the bacteria, leading the authors to conclude that Shigella deploys additional virulence factors to avoid this host immune response. The second key finding of this paper is the suggestion that M1 chains decorate the mxiE/ipaH Shigella mutant independent of LUBAC, which is, by and large, considered the only enzyme capable of generating M1-linked ubiquitin chains.

      Strengths:

      The data is for the most part well controlled and clearly presented with appropriate methodology. The authors convincingly demonstrate that IpaH1.4 is the effector responsible for the degradation of RNF213 via the proteasome, although the site of modification is not identified.

      Weaknesses:

      (1)The work builds on prior work from the same laboratory that suggests that M1 ubiquitin chains can be formed independently of LUBAC (in the prior publication this related to Chlamydia inclusions). In this study, two pieces of evidence support this statement -fluorescence microscopy-based images and accompanying quantification in Hoip and Hoil knockout cells for association of M1-ub, using an antibody, to Shigella mutants and the use of an internally tagged Ub-K7R mutant, which is unable to be incorporated into ubiquitin chains via its lysine residues. Given that clones of the M1-specific antibody are not always specific for M1 chains, and because it remains formally possible that the Int-K7R Ub can be added to the end of the chain as a chain terminator or as mono-ub, the authors should strengthen these findings relating to the claim that another E3 ligase can generate M1 chains de novo.

      (2) The main weakness relating to the infection work is that no bacterial protein loading control is assayed in the western blots of infected cells, leaving the reader unable to determine if changes in RNF213 protein levels are the result of the absent bacterial protein (e.g. IpaH1.4) or altered infection levels.

      (3)The importance of IFNgamma priming for RNF213 association to the mxiE or ipaH1.4 strain could have been investigated further as it is unclear if RNF213 coating is enhanced due to increased protein expression of RNF213 or another factor. This is of interest as IFNgamma priming does not seem to be needed for RNF213 to detect and coat cytosolic Salmonella.<br /> Overall, the findings are important for the host-pathogen field, cell-autonomous/innate immune signaling fields, and microbial pathogenesis fields. If further evidence for LUBAC independent M1 ubiquitylation is achieved this would represent a significant finding.

      We would like to thank the reviewer for their time evaluating our manuscript and the positive assessment of our work and its significance. We provide a comprehensive response to the main three critiques listed under ‘weaknesses’ and also have responded to each of the reviewer’s specific recommendations below. We highlight any changes made to the manuscript in response to those recommendations.

      (1) As the reviewer correctly pointed out, 7KR ubiquitin cannot only be used for linear ubiquitylation but can also function as a donor ubiquitin and can be attached as mono-ubiquitin to a substrate or to an existing ubiquitin chain as a chain terminator. To distinguish between 7KR INT-Ub signals originating from linear versus mono-ubiquitylation, we followed the reviewer’s advice and generated a N-terminally tagged 7KR INT-Ub variant. The N-terminal tag prevents linear ubiquitylation but still allows 7KR INT-Ub to be attached as a mono-ubiquitin. We found that the addition of this N-terminal tag significantly reduced but not completely abolished the number of Δ_mxiE_ bacteria decorated with 7KR INT-Ub. These data are shown in a new Fig. S1 and indicate that 7KR lacking the N-terminal tag is attached to bacteria both in the form of linear (M1-linked) ubiquitin and as donor ubiquitin, possibly as a chain terminator. While we cannot rule out that the anti-M1 antibodies used here cross-react with other ubiquitin linkages, we reason that the 7KR data strongly argues that linear ubiquitin is part of the ubiquitin coat encasing IpaH1.4-deficient cytosolic Shigella. Collectively, our data show that both linear and lysine-linked (especially K27 and K63) ubiquitin chains are part of the RNF213-dependent ubiquitin coat on the surface of IpaH1.4 mutants. And furthermore, our data strongly indicate that this ubiquitylation of IpaH1.4 mutants is independent of LUBAC.

      (2) We used GFP-expressing strains of S. flexneri for our infection studies and were therefore able to use GFP expression as a loading control. We have incorporated these data into our revised figures. These new data (Figs. 4A, 5A, and S3B) show that bacterial infection levels were comparable between WT and mutant infections and that therefore the degradation of RNF213 (or HOIP – see new data in Fig. S3B) is not due to differences in infection efficiency.

      (3) We agree with the reviewer that the mechanism by which RNF213 binds to bacteria is an important unanswered question. Similarly, whether other ISGs have auxiliary functions in this process or whether binding efficiencies vary between different bacterial species are important questions in the field. However, these questions go far beyond the scope of this study and were therefore not addressed in our revisions.

      Reviewer #3 (Recommendations for the authors):

      (1) An N-terminally tagged K7R-ub should be used as a control to test whether the signal found around the mutant shigella is being added via the N terminal Met into chains. As it is known that certain batches of the M1-specific antibodies are in fact not specific and able to detect other chain types, the authors should test the specificity of the antibody used in this study (eg against different di-Ub linkage types) and include this data in the manuscript.

      We agree with the reviewer in principle. The anti-linear ubiquitin (anti-M1) monoclonal antibody, clone 1E3, prominently used in this study was tested by the manufacturer (Sigma) by Western blotting analysis and according to the manufacturer “this antibody detected ubiquitin in linear Ub, but not Ub K11, Ub K48, Ub K63.” However, this analysis did not include all possible Ub linkage types and thus the reviewer is correct that the anti-M1 antibody could theoretically also detect some other linkage types. To address this concern, we added new data during revisions demonstrating that 7KR INT-Ub targeting to S. flexneri is largely dependent on the N-terminus (M1) of ubiquitin. Our combined observations therefore overwhelmingly support the conclusion that linear (M1-linked) as well as K-linked ubiquitin is being attached to the surface of IpH1.4 S. flexneri bacteria in an RNF213-dependent and LUBAC-independent manner.

      (2) The M1 signal detected on bacteria with the antibody is still present in either Hoip or Hoil KO’s but due to the potential non-specificity of the antibody, the authors should test whether K7R ub is detected on bacteria in the Hoil ko (in addition to Hoip KO). This would strengthen the authors’ data on LUBAC-independent M1 and is important because Hoil can catalyse non-canonical ubiquitylation.

      The specific linear ubiquitin-ligating activity of LUBAC is enacted by HOIP. We show that linear ubiquitylation of susceptible S. flexneri mutants as assessed by anti-M1 ubiquitin staining or 7KR INT-Ub recruitment occurs in HOIPKO cells at WT levels (Figs. 3B, 3C, S3E [new data]). In our view , these data unequivocally show that the observed linear ubiquitylation of cytosolic S. flexneri ipaH1.4 and mxiE mutants is independent of LUBAC.

      (3) For Figure 4A, do mxiE bacteria show similar invasion - authors should include a bacterial protein control to show levels of bacteria in WT and mxiE infected conditions. A similar control should be included in Figure 5A.

      We used GFP-expressing strains of S. flexneri for our infection studies and were therefore able to use GFP expression as a loading control. We have incorporated these data into our revised figures. These new data (Figs. 4A, 5A, and S3B) show that bacterial infection levels were comparable between WT and mutant infections and that therefore the degradation of RNF213 (or HOIP – see new data in Fig. S3B) is not due to differences in infection efficiency.

      (4) Can the authors speculate why IFNg priming is needed for the coating of Shigella mxiE mutant but not in the case of Salmonella or Burkholderia? Is this just amounts of RNF213 or something else?

      In our studies we did not directly compare ubiquitylation rates of cytosolic Shigella, Burkholderia, and Salmonella bacteria with each other under the same experimental conditions. However, such a direct comparison is needed to determine whether IFNgamma priming is required for RNF213-dependent bacterial ubiquitylation of some but not other pathogens. Two papers published during the revisions of our manuscript (PMID: 40164614, PMID: 40205224) reports robust RNF213 targeting to IpaH1.4 Shigella mutants in unprimed cells HeLa cells (whereas we used A549 and HT29 cells). Therefore, differences in reagents, cell lines, and/or other experimental conditions may determine whether IFNgamma priming is necessary to observe substantial RNF213 translocation to cytosolic bacteria.

      (5) Typos - there are several, but this is hard to annotate with line numbers so the authors should proofread again carefully.

      We proofread the manuscript and corrected the small number of typos we identified

    1. eLife Assessment

      This study presents important methodologies for repeated brain ultrasound localization microscopy (ULM) in awake mice and a set of results indicating that wakefulness reduces vascularity and blood flow velocity. The data supporting these findings are solid. This study is relevant for scientists investigating vascular physiology in the brain.

    2. Reviewer #1 (Public review):

      Summary:

      Wang and Colleagues present a study aimed at demonstrating the feasibility of repeated ultrasound localization microscopy (ULM) recording sessions on mice chronically implanted with a cranial window transparent to US. They provided quantitative information on their protocol, such as the required number of Contrast enhancing microbubbles (MBs) to get a clear image of the vasculature of a brain coronal section. Also, they quantified the co-registration quality over time-distant sessions and the vasodilator effect of isoflurane.

      Strengths:

      Strengths:

      The study showed a remarkable performance in recording precisely the same brain coronal section over repeated imaging sessions. In addition, it sheds light on the vasodilator effect of isoflurane (an anesthetic whose effects are not fully understood) on the different brain vasculature compartments, although, as the Authors stated, some insights in this aspect have already been published with other imaging techniques. The experimental setting and protocol are very well described.

      In this newly revised version, the Authors made evident efforts to strengthen the messages of their study. All the limitations of their research have been clearly acknowledged.

      A central issue remains. To answer my concerns about the need for multivariate analyses, the Author stated that: "Due to the limited number of animals used, the analyses presented in this work should be interpreted as example case studies." Although this sentence does not convince me, if the purpose of this study was to showcase the potentialities of ULM for future longitudinal awake studies, why don't they avoid any statistics? The trend for decreased vein size and increased arterial blood flow during wakefulness is evident from the plot and physiologically plausible. Why impose wrong statistics instead of dropping them altogether? I do not see the lack of statistics as detrimental to this study, based on the feedback received from the Authors.

    3. Reviewer #2 (Public review):

      Summary:

      The authors present a very interesting collection of methods and results using brain ultrasound localization microscopy (ULM) in awake mice. They emphasize the effect of the level of anesthesia on the quantifiable elements assessable with this technique (i.e. vessel diameter, flow speed, in veins and arteries, area perfused, in capillaries) and demonstrate the possibility of achieving longitudinal cerebrovascular assessment in one animal during several weeks with their protocol.

      The authors made a good rewriting the article based on the reviewers' comments. One of the message of the first version of the manuscript was that variability in measurements (vessel diameter, flow velocity, vascularity) were much more pronounced under changes of anesthesia than when considering longitudinal imaging across several weeks. This message is now not quite mitigated, as longitudinal imaging seems to show a certain variability close to the order of magnitude observed under anesthesia. In that sense, the review process was useful in avoiding hasty conclusion and calls for further caution in ULM awake longitudinal imaging, in particular regarding precision of positioning and cancellation of tissue motion.

      Strengths:

      Even if the methods elements considered separately are not new (brain ULM in rodents, setup for longitudinal awake imaging similar to those used in fUS imaging, quantification of vessel diameters/bubble flow/vessel area), when masterfully combined as it is done in this paper, they answer two questions that have been long-running in the community: what is the impact of anesthesia on the parameters measured by ULM (and indirectly in fUS and other techniques)? Is it possible to achieve ULM in awake rodents for longitudinal imaging? The manuscript is well constructed, well written, and graphics are appealing.

      The manuscript has been much strengthened by the round of review, with more animals for the longitudinal imaging study.

      Weaknesses:

      The manuscript has been only marginally modified since our last round of review, so there is probably not much we reviewers can additionally elaborate to improve it. Therefore my last concerns about the reliability of longitudinal quantifications and on certain discrepancies remains for this paper. As a general piece of advice, I would just say that every claim (' is higher', is lower', is stable') should be supported by evidence and statistical testing if it is not already the case.

      Response 06: the authors' response is not satisfactory. Even if the difference in terms of ROI boundaries between fig 4e and fig 4j has been underlined by the authors, they only provide a wordy comment and no additional quantitative analysis that could explain the discrepancy I pointed out. By doing so they take the risk of making misinterpretations. The reader is left with a discrepancy that could be explained by 2 mechanisms: -pial vessel population behave differently from penetrating arterioles and venules OR - the imaging of pial vessels with ULM is not good enough to enable proper quantification because the vessels are not clearly visible (out of plane extent). In any case Figure 4j does not "provides a more comprehensive representation of cortical vasculature" as stated. If the changes in pial vessels cannot be reliably measured, they should be excluded from the ROI.

      Line 161: be careful with the use of vessel density, as pointed by reviewer 1.

      Line 196: "the decrease in venous vessel area (averaging 55% across mice) was greater than that of arterial (averaging 35%)" no stat test has been performed.

    4. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Wang and Colleagues present a study aimed at demonstrating the feasibility of repeated ultrasound localization microscopy (ULM) recording sessions on mice chronically implanted with a cranial window transparent to US. They provided quantitative information on their protocol, such as the required number of Contrast enhancing microbubbles (MBs) to get a clear image of the vasculature of a brain coronal section. Also, they quantified the co-registration quality over time-distant sessions and the vasodilator effect of isoflurane.

      Strengths:

      The study showed a remarkable performance in recording precisely the same brain coronal section over repeated imaging sessions. In addition, it sheds light on the vasodilator effect of isoflurane (an anesthetic whose effects are not fully understood) on the different brain vasculature compartments, although, as the Authors stated, some insights in this aspect have already been published with other imaging techniques. The experimental setting and protocol are very well described.

      Wang and co-authors submitted a revised version of their study, which shows improvements in the clarity of the data description.

      However, the flaws and limitations of this study are substantially unchanged.

      The main issues are:

      Statistics are still inadequate. The TOST test proposed in this revised version is not equivalent to an ANOVA. Indeed, multivariate analyses should be the most appropriate, given that some quantifications were probably made on multiple vessels from different mice. The 3 reviewers mentioned the flaws in statistics as the primary concern.

      Response 01: We thank the reviewer for raising this important point. We fully acknowledge the limitations of our current statistical analysis. We would like to clarify that the TOST procedure was applied exclusively to the measurements taken from the same vessel segment in the same animal across different time points, with the purpose of evaluating the consistency of vessel diameter measurements. We recognize that the statistical analysis in this study remains limited, which we have acknowledged as a key limitation in the manuscript. This constraint arises primarily from the limited number of animals, and our analysis should be interpreted as a representative case study rather than a generalized statistical conclusion. We have revised the manuscript to clarify these points and to more explicitly acknowledge the statistical limitations.

      (Line 329) “Our current study primarily focused on demonstrating the feasibility of longitudinal ULM imaging in awake animals, instead of conducting a systematic investigation of how isoflurane anesthesia alters cerebral blood flow. Due to the limited number of animals used, the analyses presented in this work should be interpreted as example case studies. While the trends observed across animals were consistent, the small sample size restricts the scope of statistical inference. For future work, it would be valuable to design more rigorous control experiments with larger sample sizes to systematically compare the effects of isoflurane anesthesia, awake states, and other anesthetics that do not induce vasodilation on cerebral blood flow.”

      No new data has been added, such as testing other anesthetics.

      Response 02: We acknowledge that the current study does not include data involving other anesthetics, and we have also discussed this point in our initial response. In fact, we did attempt to use other anesthetics such as ketamine. However, we found it difficult to draw reliable conclusions due to experimental limitations such as variable anesthesia recovery profiles and injection timing, as elaborated in the following paragraphs. Therefore, we decided not to include these data in the current study to avoid potential misinterpretation.

      One major limitation of our experimental setup is that imaging in the awake state is necessarily conducted after a brief period of isoflurane-anesthesia. This brief anesthesia allows for the intravenous injection of microbubbles via the tail vein. Isoflurane is particularly suited for this purpose due to its rapid onset and offset. Mice can recover quickly once the gas is withdrawn, which enables relatively consistent post-anesthesia imaging in the awake state.

      In contrast, other anesthetic agents present challenges. Their recovery profiles are slower, more variable, and less controllable. Reversal drugs can be administered to awaken the animals, but they add another variability. These may lead to greater fluctuations in cerebral hemodynamics and factors introduce uncertainty in the timing of bolus microbubble injection. As such, our current setup is not ideal for systematically comparing different anesthetics and could yield misleading results.

      A more appropriate strategy for comparing awake ULM imaging with different anesthetics would be performing awake imaging first, followed by imaging under anesthesia. This would ensure that the awake condition is free from residual anesthetic effects. However, this method raises higher requirement in bubble delivery, as no anesthesia can be used for the intravenous injection.

      To address this, we are actively exploring another solution using indwelling jugular vein catheterization. By surgically implanting a catheter into the jugular vein prior to imaging, we can establish a stable and reproducible route for microbubble delivery in fully awake animals without any anesthesia induction. This method has the potential to enable direct and reliable comparisons across different physiological states. However, the implementation of this technique and the associated experimental findings go beyond the scope of the current study and will be presented in a future manuscript.

      In the present work, we have emphasized the methodological limitations of our approach and clarified that our primary goal is to highlight the necessity and feasibility of awake-state ULM imaging. The focus is not to comprehensively characterize the effects of different anesthetic agents on microvascular brain flow. We appreciate your understanding and interest in this important future direction. 

      Based the responses and previous revision, we have further refined the discussion of the relevant limitations:

      (Line 324) “Although isoflurane is widely used in ultrasound imaging because it provides long-lasting and stable anesthetic effects, it is important to note that the vasodilation observed with isoflurane is not representative of all anesthetics. Some anesthesia protocols, such as ketamine combined with medetomidine, do not produce significant vasodilation and are therefore preferred in experiments where vascular stability is essential, such as functional ultrasound imaging. Our current study primarily focused on demonstrating the feasibility of longitudinal ULM imaging in awake animals, instead of conducting a systematic investigation of how isoflurane anesthesia alters cerebral blood flow. Due to the limited number of animals used, the analyses presented in this work should be interpreted as example case studies. While the trends observed across animals were consistent, the small sample size restricts the scope of statistical inference. For future work, it would be valuable to design more rigorous control experiments with larger sample sizes to systematically compare the effects of isoflurane anesthesia, awake states, and other anesthetics that do not induce vasodilation on cerebral blood flow.”

      (Line 347) “Another limitation of this study is the potential residual vasodilatory effect of isoflurane anesthesia on awake imaging sessions and the short imaging window available after bolus injection. The awake imaging sessions were conducted shortly after the mice had emerged from isoflurane anesthesia, required for the MB bolus injections. The lasting vasodilatory effects of isoflurane may have influenced vascular responses, potentially contributing to an underestimation of differences in vascular dynamics between anesthetized and awake state. In addition, since microbubbles are rapidly cleared from circulation, the duration of effective imaging is limited to only a few minutes, which also overlaps with the anesthesia recovery period, constraining the usable awake-state imaging window. Future improvement on microbubble infusion using an indwelling jugular vein catheter presents a promising alternative to address these limitations. This method allows for stable microbubble infusion without the need for anesthesia induction, ensuring that the awake imaging condition is free from residual anesthetic effects. Moreover, it has the potential to extend the duration of imaging sessions, offering a longer and more stable time window for data acquisition. Furthermore, by performing ULM imaging in the awake state first, instead of starting with anesthetized imaging, researchers can achieve a more rigorous comparison of how various anesthetics influence cerebral microvascular dynamics relative to the awake baseline.”

      The Authors still insist on using the term Vascularity which they define as: 'proportion of the pixel count occupied by blood vessels within each ROI, obtained by binarizing the ULM vessel density maps and calculating the percentage of the pixels with MB signal.'. Why not use apparent cerebral blood volume or just CBV? Introducing an unnecessary and redundant term is not scientifically acceptable. In this revised version, vascularity is also used to indicate a higher vascular density (Line 275), which does not make sense: blood vessels do not generate from the isoflurane to the awake condition in a few minutes. Rev2 also raised this point.

      Response 03: Thank you for revisiting this important point. We acknowledge that the term vascularity is difficult to interpret for readers, and we also recognize that we did not sufficiently justify its use in the earlier version.

      Based on your suggestion, we have now replaced all instances of “vascularity” with “fractional vessel area”. While the underlying definition remains the same, fractional vessel area offers a more intuitive description. The term “fractional” denotes that the vessel area is normalized to the total area of the selected ROI. This normalization is essential for fair comparisons across ROIs of different sizes, such as Figures 4i–k to evaluate various brain regions. We would also like to clarify that this was not introduced as an unnecessary or redundant term, but rather as a more suitable metric for longitudinal ULM analysis. We did consider using apparent cerebral blood volume (CBV), estimated from microbubble counts. However, we found that it was less robust and meaningful in the context of longitudinal ULM comparisons. Below we provide further justification for using the vessel area instead:

      (1) Using the vessel area is more robust:

      In longitudinal ULM comparisons, normalization across time points is essential to enable fair and meaningful comparisons. In our study, we normalized the data based on a cumulative 5 million microbubbles (e.g., Fig. 2). Other normalization strategies could also be adopted, as long as the resulting vascular maps reach a sufficiently saturated state. However, even with normalization, it remains important to use a quantitative metric that is minimally biased and invariant to experimental fluctuations across time points. Vessel area, derived from binarized vessel maps, is less sensitive to variations in acquisition time and microbubble concentration. This is because repeated microbubble trajectories through the same location are not counted multiple times. In contrast, apparent CBV, calculated from the microbubble counts, is more susceptible to different concentration conditions. Since repeated detections in the same location accumulate, the metric can be dependent on injection efficiency and imaging duration. While CBV may still be valid under well-controlled, steady-state conditions, we found the vessel area to be a more robust and reliable metric for longitudinal analysis under our current bolus-injection protocol.

      (2) Using the vessel area is more meaningful:

      Compared to CBV, the vessel area provides a more direct representation of structural characteristics such as vessel diameter. Anesthesia-induced vasodilation leads to an increase in vessel diameter. Although local diameter changes can be assessed by manually selecting vessel segments, this approach is labor-intensive and prone to selection bias. To enable a more comprehensive and objective assessment of such morphological changes, fractional vessel area provides a more informative alternative to CBV, as it captures diameter-related variations at a global or regional scale, and avoids potential biases associated with manually selecting specific vessels or regions.

      In response to: vascularity is also used to indicate a higher vascular density (Line 275), which does not make sense: blood vessels do not generate from the isoflurane to the awake condition in a few minutes.

      We agree that blood vessels cannot be generated in a few minutes. Vascularity (now fractional vessel area) should be interpreted as apparent vessel density, which reflects a probabilistic estimate of vessel density based on the detectable microbubble. 

      Both apparent vessel density and apparent CBV are indirect, sampling-based approximations of vascular features, and both are fundamentally limited by microbubble detection sensitivity. Low microbubble concentrations lead to underestimation of both CBV and vessel area. A change from zero to non-zero in these metrics does not imply the physical appearance or disappearance of vessels, but rather reflects a change in the likelihood of detecting flow in each region.

      In summary, while neither fractional vessel area (vascularity in previous versions) nor apparent CBV is a perfect metric due to the inherent limitations of ULM, we believe the vessel area provides a more robust and meaningful parameter for our longitudinal comparisons. We have revised the main text to include this explanation and acknowledge the limitations and interpretation of fractional vessel area more explicitly.

      Revision in Results:

      (Line 181) “To validate the broader applicability of our findings, we conducted ROI-based analyses using fractional vessel area and mean velocity as primary metrics. These metrics extended the analysis of vessel diameter and flow velocity to entire brain regions or selected ROIs, which provides a more objective assessment of cerebral blood flow changes at a global scale and reduces the bias associated with manually selecting vessel segments. For vessel area measurements, the term fractional denotes that the vessel area is normalized to the total area of the selected ROI. This normalization is essential for fair comparisons across ROIs of different sizes.”

      Revision in Methods: definition of vascularity

      (Line 571) “In ROI-based analysis, we focused on two primary parameters: fractional vessel area and mean velocity. Fractional vessel area was defined as the proportion of the pixel count occupied by blood vessels within each ROI, obtained by binarizing the ULM vessel density maps and calculating the percentage of the pixels with MB signal. Mean velocity was calculated by averaging all non-zero pixel of velocity estimates within the ROI. The velocity distribution within each ROI was also visualized using violin plots, as shown in Fig. 2, 4 and 6, to illustrate the range and density of flow velocity estimates across different acquisition. In this study, we focused on these two metrics because they represent the most straightforward extension of single-vessel analysis to brain-wide vascular changes.”

      We put our ROI analysis code on GitHub and added a “Code availability” section. We hope it can serve as a foundation for users to explore different quantitative metrics in their own longitudinal ULM studies. We hope to provide an example to inspire further exploration.

      (Line 578) “Code availability

      To support quantitative longitudinal analysis of ULM data, we developed an open-source MATLAB application (https://github.com/ekerwang/ULMQuantitativeAnalysis). This tool is designed to facilitate ROI-based analysis of ULM images for longitudinal comparisons. It supports multiple quantification metrics, including but not limited to vessel area and mean velocity used in this study. Users can select and adapt different metrics based on their specific applications, as a wide range of ULM-based quantification metrics have been developed for different pathological and pharmacological studies.”

      The long-term recordings mentioned by the Authors refer to the 3-week time frame analyzed in this study. However, within each acquisition, the time available from imaging is only a few minutes (< 10', referring to most of the plots showing time courses) after the animals' arousal from isoflurane and before bubbles disappear. This limitation should be acknowledged.

      Response 04: Thank you for this comment. We agree that the current imaging sessions are constrained by the short time window available after the animal’s arousal from isoflurane and before bubbles disappear. This limitation indeed restricts the duration of usable awake-state imaging in our current bolus injection protocol. As discussed earlier, we are actively exploring the use of a jugular vein catheterization approach to address this limitation. This approach has the potential to extend the imaging session duration and provide a longer, more stable time window. We have now acknowledged this limitation more explicitly in the revised Discussion section.

      (Line 347) “Another limitation of this study is the potential residual vasodilatory effect of isoflurane anesthesia on awake imaging sessions and the short imaging window available after bolus injection. The awake imaging sessions were conducted shortly after the mice had emerged from isoflurane anesthesia, required for the MB bolus injections. The lasting vasodilatory effects of isoflurane may have influenced vascular responses, potentially contributing to an underestimation of differences in vascular dynamics between anesthetized and awake state. In addition, since microbubbles are rapidly cleared from circulation, the duration of effective imaging is limited to only a few minutes, which also overlaps with the anesthesia recovery period, constraining the usable awake-state imaging window. Future improvement on microbubble infusion using an indwelling jugular vein catheter presents a promising alternative to address these limitations. This method allows for stable microbubble infusion without the need for anesthesia induction, ensuring that the awake imaging condition is free from residual anesthetic effects. Moreover, it has the potential to extend the duration of imaging sessions, offering a longer and more stable time window for data acquisition. Furthermore, by performing ULM imaging in the awake state first, instead of starting with anesthetized imaging, researchers can achieve a more rigorous comparison of how various anesthetics influence cerebral microvascular dynamics relative to the awake baseline.”

      The more precise description of the number of mice and blood vessels analyzed in Figure 6 makes it apparent the limited number of independent samples used to support the findings of this work. A limitation that should be acknowledged. The newly provided information added as Supplementary Figure 1 should be moved to the main text, eventually in the figure legends. The limited data in support of the findings was also highlighted by Rev2 and, indirectly, by Rev3.

      Response 05: We acknowledge the limited number of independent samples used in this study. In the revised manuscript, we have explicitly emphasized this limitation in the Discussion section. Specifically, we added the following statement:

      (Line 329) “Our current study primarily focused on demonstrating the feasibility of longitudinal ULM imaging in awake animals, instead of conducting a systematic investigation of how isoflurane anesthesia alters cerebral blood flow. Due to the limited number of animals used, the analyses presented in this work should be interpreted as example case studies. While the trends observed across animals were consistent, the small sample size restricts the scope of statistical inference. For future work, it would be valuable to design more rigorous control experiments with larger sample sizes to systematically compare the effects of isoflurane anesthesia, awake states, and other anesthetics that do not induce vasodilation on cerebral blood flow.”

      Following your suggestion, we have also moved the newly provided information (the table in Supplementary Figure 1) into figure captions. In addition, we have modified in the Methods section to ensure that this information is clear.

      (Line 406) “Eight healthy female C57 mice (8-12 weeks) were used for this study, numbered as Mouse 1 to Mouse 8. Three mice (Mouse 1–3) were used to compare imaging results between awake and anesthetized states (Fig. 3 and 4). Three additional mice (Mouse 4–6) underwent longitudinal imaging over a three-week period (Fig. 5 and 6). Among them, Mouse 4 was also used as an example to demonstrate the overall system schematic and saturation conditions (Fig. 1 and 2). Several mice (Mouse 2, 6, 7, and 8) exhibited suboptimal cranial window quality or image artifacts and were included to illustrate common surgical or imaging issues (Supplementary Fig. 1). The specific usage of each animal is also annotated in the corresponding figure captions.”

      Reviewer #2 (Public Review):

      The authors present a very interesting collection of methods and results using brain ultrasound localization microscopy (ULM) in awake mice. They emphasize the effect of the level of anesthesia on the quantifiable elements assessable with this technique (i.e. vessel diameter, flow speed, in veins and arteries, area perfused, in capillaries) and demonstrate the possibility of achieving longitudinal cerebrovascular assessment in one animal during several weeks with their protocol.

      The authors made a good rewriting of the article based on the reviewers' comments. One of the message of the first version of the manuscript was that variability in measurements (vessel diameter, flow velocity, vascularity) were much more pronounced under changes of anesthesia than when considering longitudinal imaging across several weeks. This message is now not quite mitigated, as longitudinal imaging seems to show a certain variability close to the order of magnitude observed under anesthesia. In that sense, the review process was useful in avoiding hasty conclusion and calls for further caution in ULM awake longitudinal imaging, in particular regarding precision of positioning and cancellation of tissue motion.

      Strengths:

      Even if the methods elements considered separately are not new (brain ULM in rodents, setup for longitudinal awake imaging similar to those used in fUS imaging, quantification of vessel diameters/bubble flow/vessel area), when masterfully combined as it is done in this paper, they answer two questions that have been longrunning in the community: what is the impact of anesthesia on the parameters measured by ULM (and indirectly in fUS and other techniques)? Is it possible to achieve ULM in awake rodents for longitudinal imaging? The manuscript is well constructed, well written, and graphics are appealing.

      The manuscript has been much strengthened by the round of review, with more animals for the longitudinal imaging study.

      Weaknesses:

      Some weaknesses remain, not hindering the quality of the work, that the authors might want to answer or explain.

      When considering fig 4e and fig 4j together: it seems that in fig 4e the vascularity reduction in the cortical ROI is around 30% for downward flow, and around 55% for upward flow; but when grouping both cortical flows in fig 4j, the reduction is much smaller (~5%), even at the individual level (only mouse 1 is used in fig 4e). Can you comment on that?

      Response 06: Thank you for carefully pointing this out. This discrepancy arises primarily from differences in ROI selections.

      The vascularity metric (now we changed the term into fractional vessel area, based on Reviewer 1’s comments) is calculated as the proportion of vessel-occupied pixels relative to the total ROI area. As such, it is best suited for longitudinal comparisons within the same ROI rather than across-ROI comparisons, particularly when the size and vessel composition of the ROIs differ.

      In Fig. 4e, the cortical ROI includes mostly the penetrating vessels, which are selected due to their clear distinction between upward (venous) and downward (arterial) flow directions. Pial vessels were intentionally excluded because flow direction alone does not reliably distinguish arteries from veins in these surface vessels. Thus, the goal of this analysis was to indicate arteriovenous differences, rather than to represent the full cortical vascular changes.

      In contrast, the ROIs used in Fig. 4j aim to provide a more comprehensive view of cortical vascular responses without distinguishing flow direction. That’s why both penetrating and pial vessels are included. Since pial vessels showed relatively smaller vascularity changes within the coronal cross-sections analyzed in our study, their inclusion in the cortical ROI likely contributed to the smaller overall reduction in vascularity observed in Figure 4j.

      To address this potential confusion, we have added further clarification in the Results section of the revised manuscript.

      (Line 209) “It is worth noting that prior analyses (Fig. 4d–h) aimed to illustrate arteriovenous differences. Since pial vessels are difficult to distinguish as arteries or veins based on flow direction in coronal plane imaging, they were excluded from the ROI selection in those analyses. In the current whole-brain comparisons (Fig. 4i-k), the cortical ROIs no longer exclude pial vessels, since distinguishing between arteries and veins is not required. This aims to provide a more comprehensive representation of cortical vasculature.”

      When considering fig 4e, fig 4j, fig 6e and fig 6i altogether, it seems that vascularity can be highly variable, whether it be under anesthesia or vascular imaging, with changes between 5 to 40%. Is this vascularity quantification worth it (namely, reliable for example to quantify changes in a pathological model requiring longitudinal imaging)?

      Response 07: Thank you for raising this important point. We found that imaging in the awake state is inherently more variable than under anesthesia. In contrast, anesthetized imaging offers a more controlled and stable physiological condition, as anesthesia suppresses many sources of variation. For pathological studies, if the vascular or hemodynamic changes induced by anesthesia do not interfere with the scientific question being addressed, imaging under anesthesia can still be a practical and effective approach, due to its experimental simplicity and better physiological consistency.

      The higher variability observed in awake imaging arises from both physiological fluctuations in animals and unavoidable experimental inconsistencies, such as small misalignment on the imaging plane across sessions. If the research question aims to avoid the confounding effects of anesthesia, then instead of suppressing variation through anesthesia, it is important to acknowledge the natural baseline variation in the awake state. However, efforts should be made to minimize technical sources of variation. We have added a brief discussion of this issue at the end of the manuscript to reflect this consideration.

      (Line 396) “However, it is also important to note that although longitudinal awake imaging presents promise to avoid the confounding effects of anesthetics, imaging under anesthesia remains more convenient and controllable in many cases. For applications where the physiological question of interest is not sensitive to anesthesia-induced vascular effects, anesthetized imaging still offers a simpler and more stable approach. Awake imaging inherently exhibits greater physiological variability. However, care must be taken at the experimental level to minimize confounding sources of variation, such as stress level of the animal or handling inconsistencies, to ensure that the measurements are physiologically meaningful.”

      Regarding whether fractional vessel area (formerly referred to as vascularity) is a worthwhile metric for longitudinal quantification: based on our experience and comparisons, we found vessel area to be relatively robust and informative (see also Response 02 to Reviewer 1 for details). However, we acknowledge that other quantitative metrics—such as microbubble count, tortuosity, or flow directionality—may be more suitable depending on the specific pathological model or research question. How these metrics perform in awake imaging and longitudinal disease models is indeed an open and important question. We hope our work can serve as a foundation to inspire further investigation in this direction. To facilitate such exploration, we have developed and open-sourced a MATLAB-based analysis tool that supports multiple quantitative ULM metrics for longitudinal comparison. We encourage users to adapt and extend this framework to evaluate different quantitative metrics.

      (Line 578) “Code availability

      To support quantitative longitudinal analysis of ULM data, we developed an open-source MATLAB application (https://github.com/ekerwang/ULMQuantitativeAnalysis). This tool is designed to facilitate ROI-based analysis of ULM images for longitudinal comparisons. It supports multiple quantification metrics, including but not limited to vessel area and mean velocity used in this study. Users can select and adapt different metrics based on their specific applications, as a wide range of ULM-based quantification metrics have been developed for different pathological and pharmacological studies.”

      Reviewer #2 (Recommendations For The Authors):

      Images in figure 4 lack color bars.

      Response 08: Thank you for pointing this out. The color bars for the images in Figure 4 are the same as those used in the corresponding images in Figure 3. We have now added the explanation of color bars to the revised version of Figure 4 caption.

      Fig 4d: upward and downward are probably swapped.

      Response 09: Thank you for pointing this out, and we apologize for the oversight. They were mistakenly swapped. We have corrected this error in the revised figure.

      No quantitative conclusions are drawn regarding the changes in vessel diameter under anesthesia? Is it not significant? If it is not then why bring changes in diameter to our attention in fig 3 (white arrows) and figure 4b?

      Response 10: Our intention in highlighting diameter changes in Figure 3 (white arrows) and Figure 4b was to provide an illustrative example of isoflurane-induced diameter changes at the single-vessel level. These examples are meant to serve as case studies, not as the basis for broad statistical conclusions.

      In the initial version of the manuscript, we attempted to draw quantitative conclusions by measuring vessel diameters from ten manually selected vessel segments at each location. However, based on feedback from other reviewers, we decided to remove this analysis in the revised version. Manual selection of vessel segments is highly subjective and prone to bias, limiting its reliability for quantitative interpretation.

      Instead, we focused on ROI-based analysis using fractional vessel area (formerly referred to as vascularity), which reflects widespread changes in vessel diameter across regions. It is a more generalizable and less biased metric for quantifying vascular diameter changes.

      We further explained this in the Results section:

      (Line 181) “To validate the broader applicability of our findings, we conducted ROI-based analyses using fractional vessel area and mean velocity as primary metrics. These metrics extended the analysis of vessel diameter and flow velocity to entire brain regions or selected ROIs, which provides a more objective assessment of cerebral blood flow changes at a global scale and reduces the bias associated with manually selecting vessel segments. For vessel area measurements, the term fractional denotes that the vessel area is normalized to the total area of the selected ROI. This normalization is essential for fair comparisons across ROIs of different sizes.”

      Line 210 "In summary, statistical analysis revealed a decrease in individual vessel diameter" this does not seem to be supported by this version of the manuscript as no analysis is done on a representative group of vessels for the diameter.

      Response 11: Thank you for pointing out this important issue. In line with our previous response (Response 10), we would like to clarify that the analysis of individual vessel diameter was intended to serve as an example study, rather than a statistically supported conclusion based on a group of vessels. To avoid confusion, we have removed the phrase “statistical analysis revealed a decrease in individual vessel diameter” from the manuscript. 

      The meaning of the *** in fig 6b and 6c should be clarified as: -it is not explicitly stated - the equivalence test interpretation is less usual than other tests.

      Response 12: We thank the reviewer for pointing out this important issue. We agree that the use of asterisks (***) in Fig. 6b and 6c may have led to confusion, as such markers are typically associated with statistical significance in difference testing. In our case, the analysis was based on the two one-sided test (TOST) procedure to assess statistical equivalence, which is indeed less commonly used and could be misinterpreted.

      To address this, we have replaced the asterisks *** in the figure with the label “equiv.”, which more clearly reflects the intended interpretation. Additionally, we have revised the figure caption and the main text to explicitly state that these markers denote statistical equivalence (not difference) as determined by TOST, with the equivalence margin defined as three times the standard deviation of one week.

      (Figure 6 Caption) “Statistical analysis was performed using the two one-sided test (TOST) to evaluate consistency of measurement. The label “equiv.” indicates statistically equivalent measurements (p < 0.001), defined as interweek differences smaller than three times the standard deviation of one week.”

      (Line 240) “Statistical testing of equivalence was conducted using the two one-sided test (TOST) procedure, which evaluates whether the difference between two time points falls within a predefined equivalence margin. Specifically, equivalence is defined as the inter-week difference being smaller than three times the standard deviation of one week. A statistically significant result in TOST (p < 0.001) supports the interpretation that the measurements are statistically equivalent, which is denoted as “equiv.” in the figures.”

      Line 237 and following: please consider rephrasing into "To further generalize these findings and examine longitudinal variation in ROI-based analysis, we used Mouse 4 as an example to show the consistency of blood flow density across different flow directions in the cortex (Fig. 6d) and extended the quantitative analysis to all three mice (Fig. 6e) (individual ULM upward and downward flow images for all three mice over the threeweek longitudinal study period can be found in Supplementary Fig. 4)." The paragraph will make much more sense.

      Response 13: We appreciate your helpful rephrasing. We have fully adopted your proposed revision to enhance the clarity and coherence of the text. The sentence now reads exactly as you recommended:

      (Line 250): “To further generalize these findings and examine longitudinal variation in ROI-based analysis, we used Mouse 4 as an example to show the consistency of blood flow density across different flow directions in the cortex (Fig. 6d) and extended the quantitative analysis to all three mice (Fig. 6e) (individual ULM upward and downward flow images for all three mice over the three-week longitudinal study period can be found in Supplementary Fig. 4).”

      Line 248: "While arterial and venous flow velocity distributions exhibit clear distinctions, their variations over the three weeks remained acceptable" the meaning of acceptable remains elusive.

      Response 14: Thank you for pointing out the ambiguity in the phrase “remained acceptable”. To improve clarity and precision, we have revised the sentence to provide a more informative description. The updated sentence now reads:

      (Line 261) “While arterial and venous flow velocity distributions exhibit clear distinctions, the distribution shapes remained relatively consistent across the three weeks. Specifically, variation in median velocity were within 1 mm/s. In contrast, anesthesia-induced changes can lead to velocity shifts exceeding 1 mm/s.”

      Line 253: consider rephrasing in "Despite subcortical regions showing the largest vascularity variability consecutive to anesthesia-induced changes, vascularity in those regions was relatively stable values in the longitudinal study" as otherwise the link between the 2 parts of the sentence feels odd.

      Response 15: Thank you for your constructive suggestion regarding the logical flow of the sentence. We fully agree with your point and have revised the sentence exactly as you proposed.

      (Line 268) “Despite subcortical regions showing the largest vascularity variability consecutive to anesthesia-induced changes, vascularity in those regions was relatively stable values in the longitudinal study.”

    1. eLife Assessment

      This important study investigates why the 13-lined ground squirrel (13LGS) retina is unusually rich in cone photoreceptors, the cells responsible for color and daylight vision. The authors perform deep transcriptomic and epigenetic comparisons between the mouse and the 13-lined ground squirrel (13LGS) to provide convincing evidence that identifies mechanisms that drive rod vs cone-rich retina development. Overall, this key question is investigated using an impressive collection of new data, cross-species analysis, and subsequent in vivo experiments. However, the functional analysis showing the sufficiency and necessity of Zic3 and Mef2C remains incomplete, and further analyses are needed to support the claim that these enhancers are newly evolved in 13LGS.

    2. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Weir et al. investigate why the 13-lined ground squirrel (13LGS) retina is unusually rich in cone photoreceptors, the cells responsible for color and daylight vision. Most mammals, including humans, have rod-dominant retinas, making the 13LGS retina both an intriguing evolutionary divergence and a valuable model for uncovering novel mechanisms of cone generation. The developmental programs underlying this adaptation were previously unknown.

      Using an integrated approach that combines single-cell RNA sequencing (scRNAseq), scATACseq, and histology, the authors generate a comprehensive atlas of retinal neurogenesis in 13LGS. Notably, comparative analyses with mouse datasets reveal that in 13LGS, cones can arise from late-stage neurogenic progenitors, a striking contrast to mouse and primate retinas, where late progenitors typically generate rods and other late-born cell types but not cones. They further identify a shift in the timing (heterochrony) of expression of several transcription factors. Further, the authors show that these factors act through species-specific regulatory elements. And overall, functional experiments support a role for several of these candidates in cone production.

      Strengths:

      This study stands out for its rigorous and multi-layered methodology. The combination of transcriptomic, epigenomic, and histological data yields a detailed and coherent view of cone development in 13LGS. Cross-species comparisons are thoughtfully executed, lending strong evolutionary context to the findings. The conclusions are, in general, well supported by the evidence, and the datasets generated represent a substantial resource for the field. The work will be of high value to both evolutionary neurobiology and regenerative medicine, particularly in the design of strategies to replace lost cone photoreceptors in human disease.

      Weaknesses:

      (1) Overall, the conclusions are strongly supported by the data, but the paper would benefit from additional clarifications. In particular, some of the conclusions could be toned down slightly to reflect that the observed changes in candidate gene function, such as those for Zic3 by itself, are modest and may represent part of a more complex regulatory network.

      (2) Additional explanations about the cell composition of the 13LGS retina are needed. The ratios between cone and rod are clearly detailed, but do those lead to changes in other cell types?

      (3) Could the lack of a clear trajectory for rod differentiation be just an effect of low cell numbers for this population?

      (4) The immunohistochemistry and RNA hybridization experiments shown in Figure S2 would benefit from supporting controls to strengthen their interpretability. While it has to be recognized that performing immunostainings on non-conventional species is not a simple task, negative controls are necessary to establish the baseline background levels, especially in cases where there seems to be labeling around the cells. The text indicates that these experiments are both immunostainings and ISH, but the figure legend only says "immunohistochemistry". Clarifying these points would improve readers' confidence in the data.

      (5) Figure S3: The text claims that overexpression of Zic3 alone is sufficient to induce the cone-like photoreceptor precursor cells as well as horizontal cell-like precursors, but this is not clear in Figure S3A nor in any other figure. Similarly, the effects of Pou2f1 overexpression are different in Figure S3A and Figure S3B. In Figure S3B, the effects described (increased presence of cone-like and horizontal-like precursors) are very clear, whereas it is not in Figure S3A. How are these experiments different?

      (6) The analyses of Zic3 conditional mutants (Figure S4) reveal an increase in many cone, rod, and pan-photoreceptor genes with only a reduction in some cone genes. Thus, the overall conclusion that Zic3 is essential for cones while repressing rod genes doesn't seem to match this particular dataset.

      (7) Throughout the text, the authors used the term "evolved". To substantiate this claim, it would be important to include sequence analyses or to rephrase to a more neutral term that does not imply evolutionary inference.

    3. Reviewer #2 (Public review):

      Summary:

      This paper aims to elucidate the gene regulatory network governing the development of cone photoreceptors, the light-sensing neurons responsible for high acuity and color vision in humans. The authors provide a comprehensive analysis through stage-matched comparisons of gene expression and chromatin accessibility using scRNA-seq and scATAC-seq from the cone-dominant 13-lined ground squirrel (13LGS) retina and the rod-dominant mouse retina. The abundance of cones in the 13LGS retina arises from a dominant trajectory from late retinal progenitor cells (RPCs) to photoreceptor precursors and then to cones, whereas only a small proportion of rods are generated from these precursors.

      Strengths:

      The paper presents intriguing insights into the gene regulatory network involved in 13LGS cone development. In particular, the authors highlight the expression of cone-promoting transcription factors such as Onecut2, Pou2f1, and Zic3 in late-stage neurogenic progenitors, which may be driven by 13LGS-specific cis-regulatory elements. The authors also characterize candidate cone-promoting genes Zic3 and Mef2C, which have been previously understudied. Overall, I found that the across-species analysis presented by this study is a useful resource for the field.

      Weaknesses:

      The functional analysis on Zic3 and Mef2C in mice does not convincingly establish that these factors are sufficient or necessary to promote cone photoreceptor specification. Several analyses lack clarity or consistency, and figure labeling and interpretation need improvement.

    4. Reviewer #3 (Public review):

      Summary:

      The authors perform deep transcriptomic and epigenetic comparisons between mouse and 13-lined ground squirrel (13LGS) to identify mechanisms that drive rod vs cone-rich retina development. Through cross-species analysis, the authors find extended cone generation in 13LGS, gene expression within progenitor/photoreceptor precursor cells consistent with a lengthened cone window, and differential regulatory element usage. Two of the transcription factors, Mef2c and Zic3, were subsequently validated using OE and KO mouse lines to verify the role of these genes in regulating competence to generate cone photoreceptors.

      Strengths:

      Overall, this is an impactful manuscript with broad implications toward our understanding of retinal development, cell fate specification, and TF network dynamics across evolution and with the potential to influence our future ability to treat vision loss in human patients. The generation of this rich new dataset profiling the transcriptome and epigenome of the 13LGS is a tremendous addition to the field that assuredly will be useful for numerous other investigations and questions of a variety of interests. In this manuscript, the authors use this dataset and compare it to data they previously generated for mouse retinal development to identify 2 new regulators of cone generation and shed insights into their regulation and their integration into the network of regulatory elements within the 13LGS compared to mouse.

      Weaknesses:

      (1) The authors chose to omit several cell classes from analyses and visualizations that would have added to their interpretations. In particular, I worry that the omission of 13LGS rods, early RPCs, and early NG from Figures 2C, D, and F is notable and would have added to the understanding of gene expression dynamics. In other words, (a) are these genes of interest unique to late RPCs or maintained from early RPCs, and (b) are rod networks suppressed compared to the mouse?

      (2) The authors claim that the majority of cones are generated by late RPCs and that this is driven primarily by the enriched enhancer network around cone-promoting genes. With the temporal scRNA/ATACseq data at their disposal, the authors should compare early vs late born cones and RPCs to determine whether the same enhancers and genes are hyperactivated in early RPCs as well as in the 13LGS. This analysis will answer the important question of whether the enhancers activated/evolved to promote all cones, or are only and specifically activated within late RPCs to drive cone genesis at the expense of rods.

      (3) The authors repeatedly use the term 'evolved' to describe the increased number of local enhancer elements of genes that increase in expression in 13LGS late RPCs and cones. Evolution can act at multiple levels on the genome and its regulation. The authors should consider analysis of sequence level changes between mouse, 13LGS, and other species to test whether the enhancer sequences claimed to be novel in the 13LGS are, in fact, newly evolved sequence/binding sites or if the binding sites are present in mouse but only used in late RPCs of the 13LGS.

      (4) The authors state that 'Enhancer elements in 13LGS are predicted to be directly targeted by a considerably greater number of transcription factors than in mice'. This statement can easily be misread to suggest that all enhancers display this, when in fact, this is only the cone-promoting enhancers of late 13LGS RPCs. In a way, this is not surprising since these genes are largely less expressed in mouse vs 13LGS late RPCs, as shown in Figure 2. The manuscript is written to suggest this mechanism of enhancer number is specific to cone production in the 13LGS- it would help prove this point if the authors asked the opposite question and showed that mouse late RPCs do not have similar increased predicted binding of TFs near rod-promoting genes in C7-8.

    1. eLife Assessment

      This important study shows that calcium stores in the endoplasmic reticulum of the parasitic protozoan, Toxoplasma gondii play a major role in buffering calcium levels in the cytosol as well as other organelles such as the mitochondrion. Advanced imaging techniques, including use of genetically encoded calcium indicators provide compelling evidence for the role of the SERCA-Ca2+ ATPase pump in regulating organellar calcium levels. However, it remains unclear whether intra-organellar calcium transport occurs via ER-mitochondria membrane contact sites or other mechanisms. This work will be of interest to cell and molecular biologists interested in calcium signalling in divergent eukaryotes.

    2. Reviewer #1 (Public review):

      Li et al. investigate Ca2+ signaling in T. gondii and argue that Ca2+ tunnels through the ER to other organelles to fuel multiple aspects of T. gondii biology. They focus in particular on TgSERCA as the presumed primary mechanism for ER Ca2+ filling. Although, when TgSERCA was knocked out there was still a Ca2+ release in response to TG present. Overall the data supports a model where the Ca2+ filling state of the ER modulates Ca2+ dynamics in other organelles.

      Comments on revisions:

      I thank the authors for their careful revisions and response to my comments, which have been addressed.

      Regarding the most critical point of the paper that is Ca2+ transfer from the ER to other organelles, the authors in their rebuttal and in the revised manuscript argue that ER Ca2+ is critical to redistribute and replenish Ca2+ in other organelles in the cell. I agree this conclusion and think it is best stated in the authors' response to point #7: "We propose that this leaked calcium is subsequently taken up by other intracellular compartments. This effect is observed immediately upon TG addition. However, pre-incubation with TG or knockdown of SERCA reduces calcium storage in the ER, thereby diminishing the transfer of calcium to other stores."

      In their rebuttal the authors particularly highlight experiments in Figures 1H-K, 4G-H, and 5H-K in support of this conclusion. The data in Fig 1H-K show that with TG there is increased Ca2+ release from acidic stores. In all cases TG results in a rise in cytoplasmic Ca2+ that could load the acidic stores. So under those conditions the increased acidic organelle Ca2+ is likely due to a preceding high cytosolic Ca2+ transient due to TG. The experiments in 4G-H and 5H-K are more convincing and supportive of an important role of ER Ca2+ to maintain Ca2+ levels in other organelles. Overall, and to avoid a detailed, lengthy discussion of every point, the data support a model where in the absence of SERCA activity ER Ca2+ is reduced as well as Ca2+ in other organelles. I think it would be helpful to present and discuss this finding throughout the manuscript as under physiological conditions ER Ca2+ is regularly mobilized for signaling and homeostasis and this maintains Ca2+ levels in other organelles. This is supported by the new experiment in Supp Fig. 2A.

    3. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Li et al. investigate Ca2+ signaling in T. gondii and argue that Ca2+ tunnels through the ER to other organelles to fuel multiple aspects of T. gondii biology. They focus in particular on TgSERCA as the presumed primary mechanism for ER Ca2+ filling. Although, when TgSERCA was knocked out there was still a Ca2+ release in response to TG present.

      Note that we did not generate a complete SERCA knockout, as this gene is essential, and its complete loss would not permit the isolation of viable parasites. Instead, we created conditional mutants that downregulate the expression of SERCA. Importantly, some residual activity is present in the mutant after 24 h of ATc treatment as shown in Fig 4C. This is consistent with our Western blots, which demonstrate the presence of residual SERCA protein at 1, 1.5 and 2 days post ATc treatment (Fig. 3B). We have clarified this point in the revised manuscript (lines 232233). See also lines 97-102.

      Overall the Ca2+ signaling data do not support the conclusion of Ca2+ tunneling through the ER to other organelles in fact they argue for direct Ca2+ uptake from the cytosol. The authors show EM membrane contact sites between the ER and other organelles, so Ca2+ released by the ER could presumably be taken up by other organelles but that is not ER Ca2+ tunneling. They clearly show that SERCA is required for T. gondii function.

      Overall, the data presented to not fully support the conclusions reached

      We agree that the data does not support Ca<sup>2+</sup> tunneling as defined and characterized in mammalian cells. In response to this comment, we have modified the title and the text accordingly.

      However, we respectfully would like to emphasize that the study demonstrates more than just the role of SERCA in T. gondii “function”. Our findings reveal that the ER, through SERCA activity, sequesters calcium following influx through the PM (see reviewer 2 comment). The ER calcium pool is important for replenishing other intracellular compartments.

      The experiments support a model in which the ER actively takes up cytosolic Ca²⁺ as it enters the parasite and contributes to intracellular Ca²⁺ redistribution during transitions between distinct extracellular calcium environments. We believe that the role of the ER in modulating intracellular calcium dynamics is demonstrated in Figures 1H–K, 4G-H, and 5H–K. To highlight the relevance of these findings, we have included an expanded discussion in the revised manuscript. See lines 443-449 and 510-522.

      Data argue for direct Ca2+ uptake from the cytosol

      The ER most likely takes up calcium from the cytosol following its entry through the PM and redistributes it to the other organelles. We deleted any mention of the word “tunneling” and replaced it with transfer and re-distribution as they reflect our experimental findings more accurately.

      We interpret the experiments shown in Figure 1 H and I as re-distribution because the amount of calcium released after nigericin or GPN are greatly enhanced after TG addition. We first add calcium to allow intracellular stores to become filled, followed by the addition of TG, which allows calcium leakage from the ER. This leaked calcium can either enter the cytosol and be pumped out or be taken up by other organelles. Our interpretation is that this process leads to an increased calcium content in acidic compartments.

      We conducted an additional experiment in which SERCA was inhibited prior to calcium addition, allowing cytosolic calcium to be exported or taken up by acidic stores. We observed a change in the GPN response (Fig. S2A), possibly indicating that the PLVAC can sequester calcium when SERCA is inactive. While this may support the reviewer’s view, TG treatment does not reflect physiological conditions and may enhance calcium transfer to other compartments. Although the result is interesting, interpretation is complicated by the use of parasites in suspension and drug exposure in solution. Single-parasite measurements are not feasible due to weak signals, and adhered parasites are even less physiological than those in suspension.

      In support of our view, the experiments shown in Figs 4G and H show that down regulating SERCA reduces significantly the response to GPN indicating diminished acidic store loading. In Fig 5I we observe that mitochondrial calcium uptake is reduced in the iDSERCA (+ATc) mutant in response to GPN. Fig 2B demonstrates that TgSERCA can take up calcium at 55 nM, close to resting cytosolic calcium while in Figures 5E and S5B we show that the mitochondrion is not responsive to an increase of cytosolic calcium. Uptake by the mitochondria requires much higher concentrations (Fig 5B-C), which may be achieved within microdomains at MCS between the ER and mitochondrion. This is also consistent with findings reported by Li et al (Nat Commun. 2021) where similar microdomains mediated transfer of calcium to the apicoplast (Fig. 7 E and F of the mentioned reference) was observed.

      Reviewer 2 (Public review):

      The role of the endoplasmic reticulum (ER) calcium pump TgSERCA in sequestering and redistributing calcium to other intracellular organelles following influx at the plasma membrane.

      T. gondii transitions through life cycle stages within and exterior to the host cells, with very different exposures to calcium, adds significance to the current investigation of the role of the ER in redistributing calcium following exposure to physiological levels of extracellular calcium

      They also use a conditional knockout of TgSERCA to investigate its role in ER calcium store-filling and the ability of other subcellular organelles to sequester and release calcium. These knockout experiments provide important evidence that ER calcium uptake plays a significant role in maintaining the filling state of other intracellular compartments.

      We thank the reviewer.

      While it is clearly demonstrated, and not surprising, that the addition of 1.8 mM extracellular CaCl2 to intact T. gondii parasites preincubated with EGTA leads to an increase in cytosolic calcium and subsequent enhanced loading of the ER and other intracellular compartments, there is a caveat to the quantitation of these increases in calcium loading. The authors rely on the amplitude of cytosolic free calcium increases in response to thapsigargin, GPN, nigericin, and CCCP, all measured with fura2. This likely overestimates the changes in calcium pool sizes because the buffering of free calcium in the cytosol is nonlinear, and fura2 (with a Kd of 100-200 nM) is a substantial, if not predominant, cytosolic calcium buffer. Indeed, the increases in signal noise at higher cytosolic calcium levels (e.g. peak calcium in Figure 1C) are indicative of fura2 ratio calculations approaching saturation of the indicator dye.

      We acknowledge the limitations associated with using Fura-2 for cytosolic calcium measurements. However, according to the literature (Grynkiewicz, Get al. (1985). J. Biol. Chem. 260 (6): 3440–3450. PMID 3838314) Fura-2 is suited for measurements between 100 nM and 1 µM calcium. The responses in our experiments were within that range and the experiments with the SERCA mutant and mitochondrial GCaMPfs supports the conclusions of our work.

      However, we agree with the reviewer that the experiment shown in Fig 1C (now Fig 1D) presents a response that approaches the limit of the linear range of Fura-2. In response to this, we have replaced this panel with a more representative experiment that remains within the linear range of the indicator (revised Fig 1D). Additionally, we have included new experiments adding GPN along with corresponding quantifications, which further support our conclusions regarding calcium dynamics in the parasite.

      Another caveat, not addressed, is that loading of fura2/AM can result in compartmentalized fura2, which might modify free calcium levels and calcium storage capacity in intracellular organelles.

      We are aware of the potential issue of Fura-2 compartmentalization, and our protocol was designed to minimize this effect. We load cells with Fura-2 for 26 min at room temperature, then maintain them on ice, and restrict the use of loaded parasites to 2-3 hours. We have observed evidence of compartmentalization as this is reflected in increasing concentrations of resting calcium with time. We carry out experiments within a time frame in which the resting calcium stays within the 100 nM range. We have included a sentence in the Materials and Methods section. Lines 604-606.

      Additionally, following this reviewer’s suggestion, we performed further experiments to directly assess compartmentalization. See below the full response to reviewer 2.

      The finding that the SERCA inhibitor cyclopiazonic acid (CPA) only mobilizes a fraction of the thapsigargin-sensitive calcium stores in T. gondii coincides with previously published work in another apicomplexan parasite, P. falciparum, showing that thapsigargin mobilizes calcium from both CPA-sensitive and CPA-insensitive calcium pools (Borges-Pereira et al., 2020, DOI: 10.1074/jbc.RA120.014906). It would be valuable to determine whether this reflects the off-target effects of thapsigargin or the differential sensitivity of TgSERCA to the two inhibitors.

      This is an interesting observation, and we now include a discussion of this result considering the Plasmodium study and include the citation. Lines 436-442.

      Figure S1 suggests differential sensitivity, and it shows that thapsigargin mobilizes calcium from both CPA-sensitive and CPA-insensitive calcium pools in T. gondii. Also important is that we used 1 µM TG as we are aware that TG has shown off-target effects at higher concentrations. TG is a well-characterized, irreversible SERCA inhibitor that ensures complete and sustained inhibition of SERCA activity. In contrast, CPA is a reversible inhibitor whose effectiveness is influenced by ATP levels, and it may only partially inhibit SERCA or dissociate over time, allowing residual Ca²⁺ reuptake into the ER.

      Additionally, as suggested by the reviewer we performed experiments using the Mag-Fluo-4 protocol to compare the inhibitory effects of CPA and TG. These results are presented in Fig. S3 (Lines 217-223). Under the conditions of the Mag-Fluo-4 assay with digitonin-permeabilized cells, both TG and CPA showed similar rates of Ca<sup>2+</sup> leakage following the addition of the inhibitor. This may indicate that under the conditions of the Mag-Fluo-4 experiments the rate of Ca<sup>2+</sup> leak is mostly determined by the intrinsic leak mechanism and not by the nature of the inhibitor. By contrast, in intact Fura-2–loaded cells, CPA induces a smaller cytosolic Ca²⁺ increase than TG, consistent with less efficient SERCA inhibition likely due to its reversibility and possibly incomplete inhibition under cellular conditions.

      The authors interpret the residual calcium mobilization response to Zaprinast observed after ATc knockdown of TgSERCA (Figures 4E, 4F) as indicative of a target calcium pool in addition to the ER. While this may well be correct, it appears from the description of this experiment that it was carried out using the same conditions as Figure 4A where TgSERCA activity was only reduced by about 50%.

      We partially agree with the reviewer that 50% knockdown of TgSERCA means that the ER may still be targeted by zaprinast, and that there is no definitive evidence of the involvement of another calcium pool. The Mag-Fluo-4 experiment, while we acknowledge that the fluorescence of MagFluo-4 is not linear to calcium, indicates that SERCA activity is present even after 24 hr of ATc treatment. However, when Zaprinast is added after TG, we observed a significant calcium release in wild type cells. This result suggests the presence of another large calcium pool than the one mobilized by TG (PMID: 2693306).

      We recently published work describing the Golgi as a calcium store in Toxoplasma (PMID: 40043955) and we showed in Fig. S4 D-G of that work, that GPN treatment of tachyzoites loaded with Fura-2 diminished the Zaprinast response indicating that they could be impacting a similar store. In the present study we performed additional experiments in which TG was followed by GPN and Zaprinast showing a similar pattern. GPN significantly diminished the Zaprinast response. These results are shown now in Figure S2B. We address these possibilities in the discussion and interpretation of the result. Lines 451-460.

      The data in Figures 4A vs 4G and Figures 4B vs 4H indicate that the size of the response to GPN is similar to that with thapsigargin in both the presence and absence of extracellular calcium. This raises the question of whether GPN is only releasing calcium from acidic compartments or whether it acts on the ER calcium stores, as previously suggested by Atakpa et al. 2019 DOI: 10.1242/jcs.223883. Nonetheless, Figure 1H shows that there is a robust calcium response to GPN after the addition of thapsigargin.

      The results of the indicated experiments did not exclude the possibility that GPN can also mobilize some calcium from the ER besides acidic organelles. We don’t have any evidence to support that GPN can mobilize calcium from the ER either. Based on our unpublished work, we think GPN mainly release calcium from the PLVAC. We included the mentioned citation and discuss the result considering the possibility that GPN may be acting on more than one store. Lines 451-460.

      An important advance in the current work is the use of state-of-the-art approaches with targeted genetically encoded calcium indicators (GECIs) to monitor calcium in important subcellular compartments. The authors have previously done this with the apicoplast, but now add the mitochondria to their repertoire. Despite the absence of a canonical mitochondrial calcium uniporter (MCU) in the Toxoplasma genome, the authors demonstrate the ability of T. gondii mitochondrial to accumulate calcium, albeit at high calcium concentrations. Although the calcium concentrations here are higher than needed for mammalian mitochondrial calcium uptake, there too calcium uptake requires calcium levels higher than those typically attained in the bulk cytosolic compartment. And just like in mammalian mitochondria, the current work shows that ER calcium release can elicit mitochondrial calcium loading even when other sources of elevated cytosolic calcium are ineffective, suggesting a role for ER-mitochondrial membrane contact sites. With these new tools in hand, it will be of great value to elucidate the bioenergetics and transport pathways associated with mitochondrial calcium accumulation in T. gondii.

      We thank this reviewer praising our work. Studies of bioenergetics and transport pathways associated with mitochondrial calcium accumulation is part of our future plans mentioned in lines 520-522 and 545.

      The current studies of calcium pools and their interactions with the ER and dependence on SERCA activity in T. gondi are complemented by super-resolution microscopy and electron microscopy that do indeed demonstrate the presence of close appositions between the ER and other organelles (see also videos). Thus, the work presented provides good evidence for the ER acting as the orchestrating organelle delivering calcium to other subcellular compartments through contact sites in T. gondi, as has become increasingly clear from work in other organisms.

      Thank you

      Reviewer #3 (Public review):

      This manuscript describes an investigation of how intracellular calcium stores are regulated and provides evidence that is in line with the role of the SERCA-Ca2+ATPase in this important homeostasis pathway. Calcium uptake by mitochondria is further investigated and the authors suggest that ER-mitochondria membrane contact sites may be involved in mediating this, as demonstrated in other organisms.

      The significance of the findings is in shedding light on key elements within the mechanism of calcium storage and regulation/homeostasis in the medically important parasite Toxoplasma gondii whose ability to infect and cause disease critically relies on calcium signalling. An important strength is that despite its importance, calcium homeostasis in Toxoplasma is understudied and not well understood.

      We agree with the reviewer. Thank you

      A difficulty in the field, and a weakness of the work, is that following calcium in the cell is technically challenging and thus requires reliance on artificial conditions. In this context, the main weakness of the manuscript is the extrapolation of data. The language used could be more careful, especially considering that the way to measure the ER calcium is highly artificial - for example utilising permeabilization and over-loading the experiment with calcium. Measures are also indirect - for example, when the response to ionomycin treatment was not fully in line with the suggested model the authors hypothesise that the result is likely affected by other storage, but there is no direct support for that.

      The Mag-Fluo-4-based protocol for measuring intraluminal calcium is well established and has been extensively used in mammalian cells, DT40 cells and other cells for measuring intraluminal calcium, activity of SERCA and response to IP3 (Some examples: PMID: 32179239, PMID: 15963563, PMID: 19668195, PMID: 30185837, PMID: 19920131).

      Furthermore, we have successfully employed this protocol in previous work, including the characterization of the Trypanosoma brucei IP3R (PMID: 23319604) and the assessment of SERCA activity in Toxoplasma (PMID: 40043955 and 34608145). The citation PMID: 32179239 provides a detailed description of the protocol, including references to its prior use. In addition, the schematic at the top of Figure 2 summarizes the experimental workflow, reinforcing that the protocol follows established methodologies. We included more references and an expanded discussion, lines 425-435.

      We respectfully disagree with the concern regarding potential calcium overloading. The cells used in our assays were permeabilized, which is a critical step that allows to precisely control calcium concentrations. All experiments were conducted at 220 nM free calcium, a concentration within the physiological range of cytosolic calcium fluctuations. This concentration was consistently used across all studies described above. Importantly, permeabilization ensures that the dye present in the cytosol becomes diluted, and allows MgATP (which cannot cross intact membranes) to access the ER membrane, in addition to be able to expose the ER to precise calcium concentrations.

      The Mag-Fluo-4 loading conditions are designed to allow compartmentalization of the indicator to all intracellular compartments and the calcium uptake stimulated by MgATP exclusively occurs in the compartment occupied by SERCA as only SERCA is responsive to MgATP-dependent transport in this experimental setup

      Regarding the use of IO, we would like to clarify that its broad-spectrum activity is welldocumented. As a calcium ionophore, IO facilitates calcium release across multiple membranes, and not just the ER leading to a more substantial calcium release compared to the more selective effect of TG. The results observed with IO were consistent with this expected broader activity and support our interpretation.

      Lastly, we emphasize that the experiment in Figure 2 was designed specifically to assess SERCA activity in situ under defined conditions. It was not intended to provide a comprehensive characterization of the role of TgSERCA in the parasite. We now clarify this distinction in the revised Discussion lines 425-435.

      Below we provide some suggestions to improve controls, however, even with those included, we would still be in favour of revising the language and trying to avoid making strong and definitive conclusions. For example, in the discussion perhaps replace "showed" with "provide evidence that are consistent with..."; replace or remove words like "efficiently" and "impressive"; revise the definitive language used in the last few lines of the abstract (lines 13-17); etc. Importantly we recommend reconsidering whether the data is sufficiently direct and unambiguous to justify the model proposed in Figure 7 (we are in favour of removing this figure at this early point of our understanding of the calcium dynamic between organelles in Toxoplasma).

      We thank the reviewer for the suggestions and we modified the language as suggested. We limited the use of the word "showed" to references to previously published work. We deleted the other words

      Figure 7 is intended as a conceptual model to summarize our proposed pathways, and, like all models, it represents a working hypothesis that may not fully capture the complexity of calcium dynamics in the parasite. In light of the reviewer’s comments, we revised the figure and legend to clearly distinguish between pathways for which there is experimental evidence from those that are hypothetical.

      Another important weakness is poor referencing of previous work in the field. Lines 248250 read almost as if the authors originally hypothesised the idea that calcium is shuttled between ER and mitochondria via membrane contact sites (MCS) - but there is extensive literature on other eukaryotes which should be first cited and discussed in this context. Likewise, the discussion of MCS in Toxoplasma does not include the body of work already published on this parasite by several groups. It is informative to discuss observations in light of what is already known.

      The sentence in which we state the hypothesis about the calcium transfer refers specifically to Toxoplasma. To clarify this, we have now added the phrase “In mammalian cells” (Line 311) and included additional citations, as suggested by the reviewer. While only a few studies have described membrane contact sites (MCSs) in Toxoplasma, we do cite several pertinent articles (e.g., lines 479-486). We believe that we cited all articles mentioning MCS in T. gondii

      However, we must clarify to the reviewer that the primary focus of our study is not to characterize or confirm the presence of MCSs in T. gondii, but rather to demonstrate functional calcium transfer between the ER and mitochondria. Our data support the conclusion that this transfer requires close apposition of these organelles, consistent with the presence of MCSs.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Line 45: change influx to release as Ca2+ influx usually referred to Ca2+ entry from the extracellular space. Same for line 71.

      Corrected, line 47 and 73

      (2) Line 54: consider toning down the strong statement of 'widely' accepted as ER Ca2+ subdomain heterogeneity remains somewhat debated.

      Changed the sentence to “it has been proposed”, Line 56

      (3) Line 119-21: A lower release in response to TG is typical and does not reflect TG specific for SERCA. It is due to the slow kinetics of Ca2+ leak out of the ER allowing other buffering and transport mechanisms to act. Also, could be a reflection of the duration after TG treatment to allow complete store depletion. Figure S1A-B shows that there is still Ca2+ in the stores following TG but the TG signal does not go back to baseline arguing that the leak is still active. Hence the current data does not address the specificity of TG for TgSERCA. Please revise the statement accordingly.

      Thank for the suggestion, we changed the sentence to this: “This result could reflect the slow kinetics of Ca²⁺ leak from the ER, allowing other buffering and transport mechanisms to mitigate the phenomenon. Alternatively, it may indicate the duration after TG treatment allowing time to complete store depletion. As shown in Figure S1A-B, residual Ca²⁺ remains in the stores after TG treatment, and the TG-induced phenomenon does not return to baseline, suggesting that the leak remains active”. Lines 124-128

      (4) Figure 1C: the authors interpret the data 'This Ca2+ influx appeared to be immediately taken up by the ER as the response to TG was much greater in parasites previously exposed to extracellular Ca2+'. I don't understand this interpretation, in Ca2+-containing solution it would expected to have a larger signal as TG is likely to activate store-operated Ca2+ entry which would contribute to a larger cytosolic Ca2+ transient. Does T. gondii have SOCE? It cannot be uptake into the ER as SERCA is blocked. Unless the authors are arguing for another ER Ca2+ uptake pathway? But why are Ca2+ uptake in the ER would lower the signal whereas the data show an increased signal?

      We pre-incubated the suspension with calcium to allow filling of the stores, while SERCA is still active, and added thapsigargin (TG) at 400 seconds to measure calcium release. The experiment was designed to introduce the concept that the ER may have access to extracellular calcium, a phenomenon not yet clearly demonstrated in Toxoplasma. We did not expect to have less release by TG but if the ER is not efficient in filling after extracellular calcium entry it would be expected to have a similar response to TG. Yes, it is very possible that when we add TG we are also seeing more calcium entry through the PM as we previously proposed that the increased cytosolic Ca<sup>2+</sup> may regulate Ca<sup>2+</sup> entry. However, the evidence does not support that this increased entry would be triggered by store depletion. The experiments with the SERCA mutant (Fig. 4D) shows that in the conditional knockout mutant, the ER is partially depleted, yet this does not lead to enhanced calcium entry, suggesting that the depletion alone is not sufficient to trigger increased influx.

      There is no experimental evidence supporting the regulation of calcium entry by store depletion in Toxoplasma (PMID: 24867952). We revised the text to clarify this point and expanded the discussion on store-operated calcium entry (SOCE). While it is possible that a channel similar to Orai exists in Toxoplasma, it is highly unlikely to be regulated by store depletion, as there is no gene homologous to STIM. If store-regulated calcium entry does occur in Toxoplasma, it is likely mediated through a different, still unidentified, mechanism. Lines 461-467.

      (5) The choice of adding Ca2+ first followed by TG is curious as it is more difficult to interpret. Would be more informative to add TG, allow the leak to complete, and then add Ca2+ which would allow temporal separation between Ca2+ release from stores and Ca2+ influx from the extracellular space. Was this experiment done? If not would be useful to have the data.

      Yes, this experiment was already published: PMID: 24867952 and PMID: 38382669.

      It mainly highlighted that increased cytosolic calcium may regulate calcium entry most likely through a TRP channel. See our response to point 4 and the description of the new Fig. S2 in the response to point 7.

      (6) Line 136-39: these experiments as designed - partly because of the issues discussed above - do not address the ability of organelles to access extracellular Ca2+ or the state of refilling of intracellular Ca2+ stores. They can simply be interpreted as the different agents (TG, Nig, GPN, CCCP) inducing various levels of Ca2+ influx.

      Concerning TG, the experiment shown in Fig. 4D shows that depletion of the ER calcium does not result in stimulation of calcium entry, indicating the absence of classical SOCE activation in Toxoplasma.

      To our knowledge, neither mitochondria nor lysosomes (or other acidic compartments) are capable of triggering classical SOCE in mammalian cells.

      Given that the ER in Toxoplasma lacks the canonical components required to initiate SOCE, it is unclear why the mitochondria or acidic compartments would be able to do so. While it is possible that T. gondii utilizes an alternative mechanism for store-operated calcium entry, investigating such a pathway would require a comprehensive study. In mammalian systems, it took almost 15 years and the efforts of multiple research groups to identify the molecular components of SOCE. Expecting this complex question to be resolved within the scope of a single study is unrealistic.

      Our current data show that the mitochondrion is unable to access calcium from the cytosol, as shown in Figure 5E. Performing a similar experiment for the PLVAC would be ideal; however, expression of fluorescent calcium indicators in this organelle has not been successful. This is likely due to the presence of several proteases that degrade expressed proteins, as well as the acidic environment, which quenches fluorescence. These challenges have made studying calcium dynamics in the PLVAC particularly difficult.

      To address the reviewer’s comment, we performed an additional experiment presented in Fig. S2A. In this experiment, we first inhibited SERCA with thapsigargin (TG), preventing calcium uptake into the ER, and subsequently added calcium to the suspension. Under these conditions, calcium cannot be sequestered by the ER. We then applied GPN and quantified the response, comparing it to a similar experimental condition without TG. Indeed, under these conditions, we observed a significant but modest increase in the GPN-induced response, suggesting that the PLVAC may be capable of directly taking up calcium from the cytosol. However, this occurs under conditions of SERCA inhibition which creates nonphysiological conditions with elevated cytosolic calcium levels and the presence of TG may promote additional ER leakage, both of which could artificially enhance PLVAC uptake. Under physiological conditions, with functional SERCA activity, the ER would likely sequester cytosolic calcium more efficiently, thereby limiting calcium availability for PLVAC direct uptake. Thus, while the result is intriguing, it may not reflect calcium handling under normal cellular conditions. See lines 172-178.

      (7) Figure 1H-I: I disagree with the authors' interpretation of the results (lines 144-153). The data argue that by blocking ER Ca2+ uptake by TG, other organelles take up Ca2+ from the cytosol where it accumulates due to the leak and Ca2+ influx as is evident from the data allowing more release. The data does not argue for ER Ca2+ tunneling to other organelles. Tunneling would be reduced in the presence of TG (see PMID: 30046136, 24867608).

      We partially agree with this concern. In our experiments, TG was used to inhibit SERCA and block calcium uptake into the ER, allowing calcium to leak into the cytosol. We propose that this leaked calcium is subsequently taken up by other intracellular compartments. This effect is observed immediately upon TG addition. However, pre-incubation with TG or knockdown of SERCA reduces calcium storage in the ER, thereby diminishing the transfer of calcium to other stores.

      To further support our claim, we performed additional experiments in the absence of extracellular calcium, now presented in Figure 1J-K. We observed that calcium release triggered by GPN or nigericin was significantly enhanced when both agents were added after TG. These results suggest that calcium initially released from the ER can be sequestered by other compartments. As mentioned, we deleted any mention of “tunneling,” but we believe the data support the occurrence of calcium transfer. New results described in lines 166-171.

      The experiment in Fig S2A described in the response to (6) also addresses this concern. Under physiological conditions with functional SERCA, cytosolic calcium would likely be rapidly sequestered by the ER, limiting its availability to other compartments. See lines 172178.

      (8) Line 175: SERCA-dependent Ca2+ uptake is higher at 880 nM as would be expected yet the authors state that it's optimal at 220 nM Ca2+ ?

      Yes, it is true that the SERCA-dependent Ca<sup>2+</sup> uptake rate is higher at elevated Ca²⁺ concentrations. We chose to use 220 nM free calcium because of several reasons: 1) this concentration is close to physiological cytosolic levels fluctuations; 2) it is commonly used in studies of mammalian SERCA; and 3) calcium uptake is readily detectable at this level. While this may not represent the maximal activity conditions for SERCA, we believe it is a reasonable and physiologically relevant choice for assessing calcium transport activity SERCA-dependent. We added one sentence to the results explaining this reasoning (lines 204-207) and we deleted the word optimal.

      (9) Figure 3H: the saponin egress data support the conclusion that organelles Ca2+ take up cytosolic Ca2+ directly without the need for ER tunneling.

      The saponin concentration used permeabilizes the host cell membrane, allowing the intracellular tachyzoite to be surrounded with the added higher extracellular calcium concentration. The saponin concentration used does not affect the tachyzoite membrane as the parasite is still moving and calcium oscillations were clearly seen under similar conditions (PMID: 26374900 ). The resulting calcium increase in the tachyzoite cytosol is what stimulates parasite motility and egress. Since SERCA activity is reduced in the mutant, cytosolic calcium accumulates more rapidly, reaching the threshold for egress sooner and thereby accelerating parasite exit. The result does not support that the other stores contribute to this because of the Ionomycin response, which shows that egress is diminished in the mutant, likely because the calcium stores are depleted. We added an explanation in the results, lines 262-269 and the discussion, lines 532-539.

      (10) Figure S2: the HA and SERCA signals do not match perfectly? Could this reflect issues with HA tagging, potentially off-target effects? Was this tested?

      These are not off-target effects, as we did not observe them in the control cells lacking HA tagging. The HA signal also disappeared after treatment with ATc, further confirming that the IFA signal is specific. We agree with the reviewer that the signals do not align perfectly. This discrepancy could be due to differences in antibody accessibility or the fact that the two antibodies recognize different regions of the protein. We added a sentence about this in the result; lines 240-243.

      Reviewer #2 (Recommendations for the authors):

      The description of the data of Figures 1B and S1A starting on line 108 would be easier to follow if Figure S1A was actually incorporated into Figure 1. It is not clear why these two complementary experiments were separated since they are both equally important in understanding and interpreting the data.

      We re-arranged figure 1 and incorporated S1A now as Fig 1C.

      As noted in the public comments, loading of fura2/AM can result in compartmentalized fura2, which can contaminate the cytosolic calcium measurements and might modify free calcium levels and calcium storage capacity in intracellular organelles. This can be assessed using the digitonin permeabilization method used in the MagFluo4 measurements, but in this case, detecting the fura2 signal remaining after cell permeabilization.

      As suggested by the reviewer, we measured Fura-2 compartmentalization by permeabilizing cells with digitonin as we do for the Mag-Fluo-4 and the fluorescence was reduced almost completely and was unresponsive to any additions (see Author response image 1).

      Author response image 1.

      T. gondii tachyzoites in suspension exposed to Thapsigargin Calcium and GPN. The dashed lines shows and experiments using the same conditions but parasites were permeabilized with digitonin shows a similar experiment with parasites exposed to MgATP.to release the cytosolic Fura. Part B

      Following the public comment regarding the residual calcium mobilization response to Zaprinast observed after 24 h ATc knockdown of SERCA (Figsures 4E, 4F, as explained in the legend to Figure 4), was there still a response to Zaprinast after 48 h knockdown, where the thapsigargin response was apparently fully ablated?

      Unfortunately, we were unable to perform this experiment as it is not possible to obtain sufficient cells at 48 h with ATc. Due to the essential role of TgSERCA, parasites are unable to replicate after 24 h.

      As noted in the public comments, the data in Figure 4A vs 4G and Figure 4B vs 4H appear to show that the calcium responses to GPN are similar to that with thapsigargin, which seems unexpected if the acidic compartment is loaded from the ER. The results with GPN addition after thapsigargin (Figure 1H) argue against this, but the authors should still cite the work of Atakpa et al.

      We think that the reviewer is concerned that GPN may also be acting on the ER. This is a possibility that we considered, and we now included the suggested citation (line 457). However, we believe that it is difficult to directly compare the responses, as the kinetics of calcium release from the ER may differ from those of release from the PLVAC. This could be due to differences in the calcium buffering capacity between the two compartments. Additionally, it is possible that calcium leaked from the ER is more efficiently sequestered by other stores or extruded through the plasma membrane than calcium released from the PLVAC. Besides, GPN is known to have a more disruptive effect on membranes compared to TG, which may also influence their responses. As noted by the reviewer, Figure 1H also supports the idea that the acidic compartment is loaded from the ER.

      The abbreviation for the plant-like vacuolar compartment (PLVAC) only appears in a figure legend but should be defined in the main text on first use.

      Corrected, lanes 140-143

      The authors should cite the previous study of Borges-Pereira et al., 2020 (PMID: 32848018) that also demonstrates the incomplete overlap of the calcium pools mobilized by thapsigargin and CPA in P. falciparum. The ability to measure calcium in intracellular stores using MagFluo4 opens the possibility to further investigate this discrepancy between CPA and thapsigargin, but CPA does not appear to have been used in the permeabilized cell experiments with MagFluo4. I would suggest that this could be added to Figure 2 and/or Figure 4, or at least as a supplementary figure.

      In response to this reviewer’s critique we performed additional experiments with Mag-Fluo4 loaded parasites. These are presented in the new Figure S3. We added CPA and TG and combined them to inhibit SERCA and to allow calcium leak from the loaded organelle. Under these conditions, we observed a very similar leak rate after the addition of the inhibitors as measured by the slope of Ca<sup>2+</sup> leak. We believe that the leak rate is most likely determined by the intrinsic ER mechanism. See the discussion of this result in lines 436442 and the previous response to the same reviewer comment.

      Reviewer #3 (Recommendations for the authors):

      Suggestions for improved or additional experiments, data, or analyses

      (1) Figure 1A is not mentioned in the main text even though it is discussed.

      Corrected

      (2) Figure 1G: Values do not match, how can GPN be so high?

      These figures were replaced by new traces and individual quantification analyses for each experiment.

      (3) Figure 1H and I: Is this type of data/results also available for the mitochondrion?

      Unfortunately, we were not able to include this experiment because we were unable to accurately quantify the mitochondrial calcium release. Instead, we used mitochondrial GECIs and the results are shown in Figure 5 to study mitochondrial calcium uptake.

      (4) Figure 1H: where does the calcium go after GPN addition? Taken up by another calcium store?

      Most likely calcium is extruded through the plasma membrane by the activity of the Calcium ATPase TgA1.

      However, the reviewer’s suggestion is also possible, and calcium could be taken by another store like the mitochondrion. In this regard, we did observe a large mitochondrial calcium increase (parasites expressing SOD2-GCaMp6) after adding GPN (Fig 5I) suggesting that the mitochondrion may take calcium from the organelle targeted by GPN. However, the calcium affinity of the mitochondrion is very low, so the concentration of calcium needs to be very high to activate it and these concentrations are most likely achieved at the microdomains formed between the mitochondrion and other organelles.

      (5) Figure 2B-C: Further explanation of why these particular values were chosen for the follow-up experiments would be helpful for the reader.

      We tested a wide range of MgATP and free calcium concentrations to measure ER Ca<sup>2+</sup> uptake catalyzed by TgSERCA. The concentrations shown fall within the linear range.

      We followed the free calcium concentrations used by studies of mammalian SERCA (https://doi.org/10.1016/j.ceca.2020.102188 ). In this protocol they used 220 nM free calcium, which was close to cytosolic Ca<sup>2+</sup> levels. TgSERCA can take up calcium efficiently at this concentration, as shown in Fig 2. We used less MgATP than the mammalian cell protocols, since we did not observe a significant increase in SERCA activity beyond 0.5 mM MgATP. We added one more sentence explaining in the results, lines 204-207.

      (6) Figure 3E: Revise the error bar? (and note that colours do not match the graph legend).

      The colors do match; the problem visualizing it is because vacuoles containing a single parasite are virtually absent in the control group without ATc treatment.

      (7) Figure 3H: 'Interestingly, when testing egress after the addition of saponin in the presence of extracellular Ca2+, we observed that the tachyzoites egressed sooner (Figure 3H, saponin egress).' This is the only graph showing egress timing, and thus it is not clear what is the comparison. The egressed here is sooner compared to what condition? Egress in the absence of Ca2+? This requires clarification and might require the control data to be added.

      In the saponin experiment we compare time to egress of the mutant grown with or without ATc. The measurement is for time to egress after adding saponin. This experiment is in the presence of extracellular calcium. The protocol was previously used to measure time to egress: PMID: 40043955, PMID: 38382669, PMID: 26374900. See also response to question 9 of reviewer 1.

      (8) Figure 4C: There is a small peak appearing right after TG addition this should be discussed and explained.

      This trace was generated in a different fluorometer, F-4000. This was an artifact due to jumping of the signal when adding TG. Multiple repeats of the same experiment in the newer F7000 did not show the peak. We included in the MM the use of the F-4000 fluorometer for some experiments. We apologize for the omission. Lines 609-610

      (9) Figure 5A: An important control that is missing is co-localisation with a mitochondrial marker.

      The expression of the SOD2-GCaMP6 has been characterized: PMID: 31758454

      (10) Figure 5H: This line was made for this study however the line genetic verification is missing.

      In response to this concern we now include a new Figure S5 showing the fluorescence of GCaMP6 in the mitochondrion of the iDTgSERCA mutant (Fig. S5A). We include several parasites. In addition, we show fluorescence measurements after addition of Calcium showing that the cells are unresponsive indicating that the indicator is not in the cytosol. Lines 650-651 and 344-348.

      (11) Figure 6D: since the membranes are hard to see, it is not clear whether the arrows show structures that are in line with the definition of membrane contact sites. The authors should provide an in-depth analysis of the length of the interaction between the membranes where the distance is less than 30 nM, and discuss how many structures corresponding to the definition were analysed.

      All the requested details are now included in the legend to Figure S3.

      Minor corrections to the text and figures

      (1) Unify statistical labelling throughout the paper replacing *** with p values.

      Corrected. We changed the *** with the actual p value in some figures. For figure 2 and Fig S1, we still use the *** due to the space limitation.

      (2) Unify ATC vs ATc throughout the paper.

      Corrected

      (3) Unify capitalization of line name (iΔTgserca/i ΔTgSERCA) throughout the paper.

      Corrected

      (4) Unify capitalization of p value (p/P) throughout the paper.

      Corrected in figures

      (5) Unify Fig X vs Fig. X throughout the text.

      Corrected

      (6) Add values of scale bars to legends (eg Figure S2).

      Corrected

      (7) What is the time point for the data in Figures 4E-H, 5H, and S3? 24hrs? include in the legend.

      Added 24 h to the legends. Fig S3 is now S4.

      (8) Figure 3F: The second graph is NS thus perhaps no need for the p-value?

      Corrected

      (8) Figure 3G: Worth considering swapping the two around: first attachment and then invasion?

      Corrected. Invasion and attachment bars were swapped.

      (10) Figure 4A/B: Wrong colour match for Figure 4B.

      Corrected

      (11) Figure 4F: In the main text, the authors reference to Figure 1F, correct to 4F.

      Corrected

      (12) Figure 4H: In the main text, authors reference to Figure 1H, correct to 4H.

      Corrected

    1. eLife Assessment

      Whole-brain imaging of neuronal activity in freely behaving animals holds great promise for neuroscience, but numerous technical challenges limit its use. In this important study, the authors describe a new set of deep learning-based tools to track and identify the activity of head neurons in freely moving nematodes (C. elegans) and jellyfish (Clytia hemisphaerica). While the tools convincingly enable high tracking speed and accuracy in the settings in which the authors have evaluated them, the claim that these tools should be easily generalizable to a wide variety of datasets is incompletely supported.

    2. Reviewer #1 (Public review):

      In this important study, the authors develop a suite of machine vision tools to identify and align fluorescent neuronal recording images in space and time according to neuron identity and position. The authors provide compelling evidence for the speed and utility of these tools. While such tools have been developed in the past (including by the authors), the key advancement here is the speed and broad utility of these new tools. While prior approaches based on steepest descent worked, they required hundreds of hours of computational time, while the new approaches outlined here are >600-fold faster. The machine vision tools here should be immediately useful to readers specifically interested in whole-brain C. elegans data, but also for more general readers who may be interested in using BrainAlignNet for tracking fluorescent neuronal recordings from other systems.

      I really enjoyed reading this paper. The authors had several ground truth examples to quantify the accuracy of their algorithms and identified several small caveats users should consider when using these tools. These tools were primarily developed for C. elegans, an animal with stereotyped development, but whose neurons can be variably located due to internal motion of the body. The authors provide several examples of how BrainAlignNet reliably tracked these neurons over space and time. Neuron identity is also important to track, and the authors showed how AutoCellLoader can reliably identify neurons based on their fluorescence in the NeuroPAL background. A challenge with NeuroPAL though, is the high expression of several fluorophores, which compromises behavioral fidelity. The authors provide some possible avenues where this problem can be addressed by expressing fewer fluorophores. While using all four channels provided the best performance, only using the tagRFP and CyOFP channels was sufficient for performance that was close to full performance using all 4 NeuroPAL channels. This result indicates that the development of future lines with less fluorophore expression could be sufficient for reliable neuronal identification, which would decrease the genetic load on the animal, but also open other fluorescent channels that could be used for tracking other fluorescent tools/markers. Even though these tools were developed for C. elegans specifically, they showed BrainAlignNet can be applied to other organisms as well (in their case, the cnidarian C. hemisphaerica), which broadens the utility of their tools.

      Strengths:

      (1) The authors have a wealth of ground-truth training data to compare their algorithms against, and provide a variety of metrics to assess how well their new tools perform against hand annotation and/or prior algorithms.

      (2) For BrainAlignNet, the authors show how this tool can be applied to other organisms besides C. elegans.

      (3) The tools are publicly available on GitHub, which includes useful README files and installation guidance.

      Weaknesses:

      (1) Most of the utility of these algorithms is for C. elegans specifically. Testing their algorithms (specifically BrainAlignNet) on more challenging problems, such as whole-brain zebrafish, would have been interesting. This is a very, very minor weakness, though.

      (2) The tools are benchmarked against their own prior pipeline, but not against other algorithms written for the same purpose.

      (3) Considerable pre-processing was done before implementation. Expanding upon this would improve accessibility of these tools to a wider audience.

    3. Reviewer #2 (Public review):

      Summary:

      The paper introduced the pipeline to analyze brain imaging of freely moving animals: registering deforming tissues and maintaining consistent cell identities over time. The pipeline consists of three neural networks that are built upon existing models: BrainAlignNet for non-rigid registration, AutoCellLabeler for supervised annotation of over 100 neuronal types, and CellDiscoveryNet for unsupervised discovery of cell identities. The ambition of the work is to enable high-throughput and largely automated pipelines for neuron tracking and labeling in deforming nervous systems.

      Strengths:

      (1) The paper tackles a timely and difficult problem, offering an end-to-end system rather than isolated modules.

      (2) The authors report high performance within their dataset, including single-pixel registration accuracy, nearly complete neuron linking over time, and annotation accuracy that exceeds individual human labelers.

      (3) Demonstrations across two organisms suggest the methods could be transferable, and the integration of supervised and unsupervised modules is of practical utility.

      Weaknesses:

      (1) Lack of solid evaluation. Despite strong results on their own data, the work is not benchmarked against existing methods on community datasets, making it hard to evaluate relative performance or generality.

      (2) Lack of novelty. All three models do not incorporate state-of-the-art advances from the respective fields. BrainAlignNet does not learn from the latest optical flow literature, relying instead on relatively conventional architectures. AutoCellLabeler does not utilize the advanced medNeXt3D architectures for supervised semantic segmentation. CellDiscoveryNet is presented as unsupervised discovery but relies on standard clustering approaches, with limited evaluation on only a small test set.

      (3) Lack of robustness. BrainAlignNet requires dataset-specific training and pre-alignment strategies, limiting its plug-and-play use. AutoCellLabeler depends heavily on raw intensity patterns of neurons, making it brittle to pose changes. By contrast, current state-of-the-art methods incorporate spatial deformation atlases or relative spatial relationships, which provide robustness across poses and imaging conditions. More broadly, the ANTSUN 2.0 system depends on numerous manually tuned weights and thresholds, which reduces reproducibility and generalizability beyond curated conditions.

      Evaluation:

      To make the evaluation more solid, it would be great for the authors to (1) apply the new method on existing datasets and (2) apply baseline methods on their own datasets. Otherwise, without comparison, it is unclear if the proposed method is better or not. The following papers have public challenging tracking data: https://elifesciences.org/articles/66410, https://elifesciences.org/articles/59187, https://www.nature.com/articles/s41592-023-02096-3.

      Methodology:

      (1) The model innovations appear incrementally novel relative to existing work. The authors should articulate what is fundamentally different (architectural choices, training objectives, inductive biases) and why those differences matter empirically. Ablations isolating each design choice would help.

      (2) The pipeline currently depends on numerous manually set hyperparameters and dataset-specific preprocessing. Please provide principled guidelines (e.g., ranges, default settings, heuristics) and a robustness analysis (sweeps, sensitivity curves) to show how performance varies with these choices across datasets; wherever possible, learn weights from data or replace fixed thresholds with data-driven criteria.

      Appraisal:

      The authors partially achieve their aims. Within the scope of their dataset, the pipeline demonstrates impressive performance and clear practical value. However, the absence of comparisons with state-of-the-art algorithms such as ZephIR, fDNC, or WormID, combined with small-scale evaluation (e.g., ten test volumes), makes the strength of evidence incomplete. The results support the conclusion that the approach is useful for their lab's workflow, but they do not establish broader robustness or superiority over existing methods.

      Impact:

      Even though the authors have released code, the pipeline requires heavy pre- and post-processing with numerous manually tuned hyperparameters, which limits its practical applicability to new datasets. Indeed, even within the paper, BrainAlignNet had to be adapted with additional preprocessing to handle the jellyfish data. The broader impact of the work will depend on systematic benchmarking against community datasets and comparison with established methods. As such, readers should view the results as a promising proof of concept rather than a definitive standard for imaging in deformable nervous systems.

    4. Reviewer #3 (Public review):

      Context:

      Tracking cell trajectories in deformable organs, such as the head neurons of freely moving C. elegans, is a challenging task due to rapid, non-rigid cellular motion. Similarly, identifying neuron types in the worm brain is difficult because of high inter-individual variability in cell positions.

      Summary:

      In this study, the authors developed a deep learning-based approach for cell tracking and identification in deformable neuronal images. Several different CNN models were trained to: (1) register image pairs without severe deformation, and then track cells across continuous image sequences using multiple registration results combined with clustering strategies; (2) predict neuron IDs from multicolor-labeled images; and (3) perform clustering across multiple multicolor images to automatically generate neuron IDs.

      Strengths:

      Directly using raw images for registration and identification simplifies the analysis pipeline, but it is also a challenging task since CNN architectures often struggle to capture spatial relationships between distant cells. Surprisingly, the authors report very high accuracy across all tasks. For example, the tracking of head neurons in freely moving worms reportedly reached 99.6% accuracy, neuron identification achieved 98%, and automatic classification achieved 93% compared to human annotations.

      Weaknesses:

      (1) The deep networks proposed in this study for registration and neuron identification require dataset-specific training, due to variations in imaging conditions across different laboratories. This, in turn, demands a large amount of manually or semi-manually annotated training data, including cell centroid correspondences and cell identity labels, which reduces the overall practicality and scalability of the method.

      (2) The cell tracking accuracy was not rigorously validated, but rather estimated using a biased and coarse approach. Specifically, the accuracy was assessed based on the stability of GFP signals in the eat-4-labeled channel. A tracking error was assumed to occur when the GFP signal switched between eat-4-negative and eat-4-positive at a given time point. However, this estimation is imprecise and only captures a small subset of all potential errors. Although the authors introduced a correction factor to approximate the true error rate, the validity of this correction relies on the assumption that eat-4 neurons are uniformly distributed across the brain - a condition that is unlikely to hold.

      (3) Figure S1F demonstrates that the registration network, BrainAlignNet, alone is insufficient to accurately align arbitrary pairs of C. elegans head images. The high tracking accuracy reported is largely due to the use of a carefully designed registration sequence, matching only images with similar postures, and an effective clustering algorithm. Although the authors address this point in the Discussion section, the abstract may give the misleading impression that the network itself is solely responsible for the observed accuracy.

      (4) The reported accuracy for neuron identification and automatic classification may be misleading, as it was assessed only on a subset of neurons labeled as "high-confidence" by human annotators. Although the authors did not disclose the exact proportion, various descriptions (such as Figure 4f) imply that this subset comprises approximately 60% of all neurons. While excluding uncertain labels is justifiable, the authors highlight the high accuracy achieved on this subset without clearly clarifying that the reported performance pertains only to neurons that are relatively easy to identify. Furthermore, they do not report what fraction of the total neuron population can be accurately identified using their methods-an omission of critical importance for prospective users.

    5. Author response:

      Reviewer #1 (Public review):

      In this important study, the authors develop a suite of machine vision tools to identify and align fluorescent neuronal recording images in space and time according to neuron identity and position. The authors provide compelling evidence for the speed and utility of these tools. While such tools have been developed in the past (including by the authors), the key advancement here is the speed and broad utility of these new tools. While prior approaches based on steepest descent worked, they required hundreds of hours of computational time, while the new approaches outlined here are >600-fold faster. The machine vision tools here should be immediately useful to readers specifically interested in whole-brain C. elegans data, but also for more general readers who may be interested in using BrainAlignNet for tracking fluorescent neuronal recordings from other systems.

      I really enjoyed reading this paper. The authors had several ground truth examples to quantify the accuracy of their algorithms and identified several small caveats users should consider when using these tools. These tools were primarily developed for C. elegans, an animal with stereotyped development, but whose neurons can be variably located due to internal motion of the body. The authors provide several examples of how BrainAlignNet reliably tracked these neurons over space and time. Neuron identity is also important to track, and the authors showed how AutoCellLoader can reliably identify neurons based on their fluorescence in the NeuroPAL background. A challenge with NeuroPAL though, is the high expression of several fluorophores, which compromises behavioral fidelity. The authors provide some possible avenues where this problem can be addressed by expressing fewer fluorophores. While using all four channels provided the best performance, only using the tagRFP and CyOFP channels was sufficient for performance that was close to full performance using all 4 NeuroPAL channels. This result indicates that the development of future lines with less fluorophore expression could be sufficient for reliable neuronal identification, which would decrease the genetic load on the animal, but also open other fluorescent channels that could be used for tracking other fluorescent tools/markers. Even though these tools were developed for C. elegans specifically, they showed BrainAlignNet can be applied to other organisms as well (in their case, the cnidarian C. hemisphaerica), which broadens the utility of their tools.

      Strengths:

      (1) The authors have a wealth of ground-truth training data to compare their algorithms against, and provide a variety of metrics to assess how well their new tools perform against hand annotation and/or prior algorithms.

      (2) For BrainAlignNet, the authors show how this tool can be applied to other organisms besides C. elegans.

      (3) The tools are publicly available on GitHub, which includes useful README files and installation guidance.

      We thank the reviewer for noting these strengths of our study.

      Weaknesses:

      (1) Most of the utility of these algorithms is for C. elegans specifically. Testing their algorithms (specifically BrainAlignNet) on more challenging problems, such as whole-brain zebrafish, would have been interesting. This is a very, very minor weakness, though.

      We appreciate the reviewer’s point that expanding to additional animal models would be valuable. In the study, we have so far tested our approaches on C. elegans and Jellyfish. Given that this is considered a ‘very, very minor weakness’ and that it does not directly affect the results or analyses in the paper, we think this might be better to address in future work.

      (2) The tools are benchmarked against their own prior pipeline, but not against other algorithms written for the same purpose.

      We agree that it would be valuable to benchmark other labs’ software pipelines on our datasets. We note that most papers in this area, which describe those pipelines, provide the same performance metrics that we do (accuracy of neuron identification, tracking accuracy, etc), so a crude, first-order comparison can be obtained by comparing the numbers in the papers. But, we agree that a rigorous head-to-head comparison would require applying these different pipelines to a common dataset. We considered performing these analyses, but we were concerned that using other labs’ software ‘off the shelf’ on our data might not represent those pipelines in their best light when compared to our pipeline that was developed with our data in mind. Data from different microscopy platforms can be surprisingly different and we wouldn’t want to perform an analysis that had this bias. Therefore, we feel that this comparison would be best pursued by all of these labs collaboratively (so that they can each provide input on how to run their software optimally). Indeed, this is an important area for future study. In this spirit, we have been sharing our eat-4::GFP datasets (that permit quantification of tracking accuracy) with other labs looking for additional ways to benchmark their tracking software.

      We also note that there are not really any pipelines to directly compare against CellDiscoveryNet, as we are not aware of any other fully unsupervised approach for neuron identification in C. elegans.

      (3) Considerable pre-processing was done before implementation. Expanding upon this would improve accessibility of these tools to a wider audience.

      Indeed, some pre-processing was performed on images before registration and neuron identification -- understanding these nuances can be important. The pre-processing steps are described in the Results section and detailed in the Methods. They are also all available in our open-source software. For BrainAlignNet, the key steps were: (1) selecting image registration problems, (2) cropping, and (3) Euler alignment. Steps (1) and (3) were critically important and are extensively discussed in the Results and Discussion sections of our study (lines 142-144, 218-234, 318-323, 704-712). Step (2) is standard in image processing. For AutoCellLabeler and CellDiscoveryNet, the pre-processing was primarily to align the 4 NeuroPAL color channels to each other (i.e. make sure the blue/red/orange/etc channels for an animal are perfectly aligned). This is also just a standard image processing step to ensure channel alignment. Thus, the more “custom” pre-processing steps were extensively discussed in the study and the more “common” steps are still described in the Methods. The implementation of all steps is available in our open-source software.

      Reviewer #2 (Public review):

      Summary:

      The paper introduced the pipeline to analyze brain imaging of freely moving animals: registering deforming tissues and maintaining consistent cell identities over time. The pipeline consists of three neural networks that are built upon existing models: BrainAlignNet for non-rigid registration, AutoCellLabeler for supervised annotation of over 100 neuronal types, and CellDiscoveryNet for unsupervised discovery of cell identities. The ambition of the work is to enable high-throughput and largely automated pipelines for neuron tracking and labeling in deforming nervous systems.

      Strengths:

      (1) The paper tackles a timely and difficult problem, offering an end-to-end system rather than isolated modules.

      (2) The authors report high performance within their dataset, including single-pixel registration accuracy, nearly complete neuron linking over time, and annotation accuracy that exceeds individual human labelers.

      (3) Demonstrations across two organisms suggest the methods could be transferable, and the integration of supervised and unsupervised modules is of practical utility.

      We thank the reviewer for noting these strengths of our study.

      Weaknesses:

      (1) Lack of solid evaluation. Despite strong results on their own data, the work is not benchmarked against existing methods on community datasets, making it hard to evaluate relative performance or generality.

      We agree that it would be valuable to benchmark many labs’ software pipelines on some common datasets, ideally from several different research labs. We note that most papers in this area, which describe the other pipelines that have been developed, provide the same performance metrics that we do (accuracy of neuron identification, tracking accuracy, etc), so a crude, first-order comparison can be obtained by comparing the numbers in the papers. But, we agree that a rigorous head-to-head comparison would require applying these different pipelines to a common dataset. We considered performing these analyses, but we were concerned that using other labs’ software ‘off the shelf’ and comparing the results to our pipeline (where we have extensive expertise) might bias the performance metrics in favor of our software. Therefore, we feel that this comparison would be best pursued by all of these labs collaboratively (so that they can each provide input on how to run their software optimally). Indeed, this is an important area for future study. In this spirit, we have been sharing our eat-4::GFP datasets (that permit quantification of tracking accuracy) with other labs looking for additional ways to benchmark their tracking software.

      We also note that there are not really any pipelines to directly compare against CellDiscoveryNet, as we are not aware of any other fully unsupervised approach for neuron identification in C. elegans.

      (2) Lack of novelty. All three models do not incorporate state-of-the-art advances from the respective fields. BrainAlignNet does not learn from the latest optical flow literature, relying instead on relatively conventional architectures. AutoCellLabeler does not utilize the advanced medNeXt3D architectures for supervised semantic segmentation. CellDiscoveryNet is presented as unsupervised discovery but relies on standard clustering approaches, with limited evaluation on only a small test set.

      We appreciate that the machine learning field moves fast. Our goal was not to invent entirely novel machine learning tools, but rather to apply and optimize tools for a set of challenging, unsolved biological problems. We began with the somewhat simpler architectures described in our study and were largely satisfied with their performance. It is conceivable that newer approaches would perhaps lead to even greater accuracy, flexibility, and/or speed. But, oftentimes, simple or classical solutions can adequately resolve specific challenges in biological image processing.

      Regarding CellDiscoveryNet, our claim of unsupervised training is precise: CellDiscoveryNet is trained end-to-end only on raw images, with no human annotations, pseudo-labels, external classifiers, or metadata used for training, model selection, or early stopping. The loss is defined entirely from the input data (no label signal). By standard usage in machine learning, this constitutes unsupervised (often termed “self-supervised”) representation learning. Downstream clustering is likewise unsupervised, consuming only image pairs registered by CellDiscoveryNet and neuron segmentations produced by our previously-trained SegmentationNet (which provides no label information).

      (3) Lack of robustness. BrainAlignNet requires dataset-specific training and pre-alignment strategies, limiting its plug-and-play use. AutoCellLabeler depends heavily on raw intensity patterns of neurons, making it brittle to pose changes. By contrast, current state-of-the-art methods incorporate spatial deformation atlases or relative spatial relationships, which provide robustness across poses and imaging conditions. More broadly, the ANTSUN 2.0 system depends on numerous manually tuned weights and thresholds, which reduces reproducibility and generalizability beyond curated conditions.

      Regarding BrainAlignNet: we agree that we trained on each species’ own data (worm, jellyfish) and we would suggest other labs working on new organisms to do the same based on our current state of knowledge. It would be fantastic if there was an alignment approach that generalized to all possible cases of non-rigid-registration in all animals – an important area for future study. We also agree that pre-alignment was critical in worms and jellyfish, which we discuss extensively in our study (lines 142-144, 318-321, 704-712).

      Regarding AutoCellLabeler: the animals were not recorded in any standardized pose and were not aligned to each other beforehand – they were basically in a haphazard mix of poses and we used image augmentation to allow the network to generalize to other poses, as described in our study. It is still possible that AutoCellLabeler is somehow brittle to pose changes (e.g. perhaps extremely curved worms) – while we did not detect this in our analyses, we did not systematically evaluate performance across all possible poses. However, we do note that this network was able to label images taken from freely-moving worms, which by definition exhibit many poses (Figure 5D, lines 500-525); aggregating the network’s performance across freely-moving data points allowed it to nearly match its performance on high-SNR immobilized data. This suggests a degree of robustness of the AutoCellLabeler network to pose changes.

      Regarding ANTSUN 2.0: we agree that there are some hyperparameters (described in our study) that affect ANTSUN performance. We agree that it would be worthwhile to fully automate setting these in future iterations of the software.

      Evaluation:

      To make the evaluation more solid, it would be great for the authors to (1) apply the new method on existing datasets and (2) apply baseline methods on their own datasets. Otherwise, without comparison, it is unclear if the proposed method is better or not. The following papers have public challenging tracking data: https://elifesciences.org/articles/66410, https://elifesciences.org/articles/59187, https://www.nature.com/articles/s41592-023-02096-3.

      Please see our response to your point (1) under Weaknesses above.

      Methodology:

      (1) The model innovations appear incrementally novel relative to existing work. The authors should articulate what is fundamentally different (architectural choices, training objectives, inductive biases) and why those differences matter empirically. Ablations isolating each design choice would help.

      There are other efforts in the literature to solve the neuron tracking and neuron identification problems in C. elegans (please see paragraphs 4 and 5 of our Introduction, which are devoted to describing these). However, they are quite different in the approaches that they use, compared to our study. For example, for neuron tracking they use t->t+1 methods, or model neurons as point clouds, etc (a variety of approaches have been tried). For neuron identification, they work on extracted features from images, or use statistical approaches rather than deep neural networks, etc (a variety of approaches have been tried). Our assessment is that each of these diverse approaches has strengths and drawbacks; we agree that a meta-analysis of the design choices used across studies could be valuable.

      We also note that there are not really any pipelines to directly compare against CellDiscoveryNet, as we are not aware of any other fully unsupervised approach for neuron identification in C. elegans.

      (2) The pipeline currently depends on numerous manually set hyperparameters and dataset-specific preprocessing. Please provide principled guidelines (e.g., ranges, default settings, heuristics) and a robustness analysis (sweeps, sensitivity curves) to show how performance varies with these choices across datasets; wherever possible, learn weights from data or replace fixed thresholds with data-driven criteria.

      We agree that there are some ANTSUN 2.0 hyperparameters (described in our Methods section) that could affect the quality of neuron tracking. It would be worthwhile to fully automate setting these in future iterations of the software, ensuring that the hyperparameter settings are robust to variation in data/experiments.

      Appraisal:

      The authors partially achieve their aims. Within the scope of their dataset, the pipeline demonstrates impressive performance and clear practical value. However, the absence of comparisons with state-of-the-art algorithms such as ZephIR, fDNC, or WormID, combined with small-scale evaluation (e.g., ten test volumes), makes the strength of evidence incomplete. The results support the conclusion that the approach is useful for their lab's workflow, but they do not establish broader robustness or superiority over existing methods.

      We wish to remind the reviewer that we developed BrainAlignNet for use in worms and jellyfish. These two animals have different distributions of neurons and radically different anatomy and movement patterns. Data from the two organisms was collected in different labs (Flavell lab, Weissbourd lab) on different types of microscopes (spinning disk, epifluorescence). We believe that this is a good initial demonstration that the approach has robustness across different settings.

      Regarding comparisons to other labs’ C. elegans data processing pipelines, we agree that it will be extremely valuable to compare performance on common datasets, ideally collected in multiple different research labs. But we believe this should be performed collaboratively so that all software can be utilized in their best light with input from each lab, as described above. We agree that such a comparison would be very valuable.

      Impact:

      Even though the authors have released code, the pipeline requires heavy pre- and post-processing with numerous manually tuned hyperparameters, which limits its practical applicability to new datasets. Indeed, even within the paper, BrainAlignNet had to be adapted with additional preprocessing to handle the jellyfish data. The broader impact of the work will depend on systematic benchmarking against community datasets and comparison with established methods. As such, readers should view the results as a promising proof of concept rather than a definitive standard for imaging in deformable nervous systems.

      Regarding worms vs jellyfish pre-processing: we actually had the exact opposite reaction to that of the reviewer. We were surprised at how similar the pre-processing was for these two very different organisms. In both cases, it was essential to (1) select appropriate registration problems to be solved; and (2) perform initialization with Euler alignment. Provided that these two challenges were solved, BrainAlignNet mostly took care of the rest. This suggests a clear path for researchers who wish to use this approach in another animal. Nevertheless, we also agree with the reviewer’s caution that a totally different use case could require some re-thinking or re-strategizing. For example, the strategy of how to select good registration problems could depend on the form of the animal’s movement.

      Reviewer #3 (Public review):

      Context:

      Tracking cell trajectories in deformable organs, such as the head neurons of freely moving C. elegans, is a challenging task due to rapid, non-rigid cellular motion. Similarly, identifying neuron types in the worm brain is difficult because of high inter-individual variability in cell positions.

      Summary:

      In this study, the authors developed a deep learning-based approach for cell tracking and identification in deformable neuronal images. Several different CNN models were trained to: (1) register image pairs without severe deformation, and then track cells across continuous image sequences using multiple registration results combined with clustering strategies; (2) predict neuron IDs from multicolor-labeled images; and (3) perform clustering across multiple multicolor images to automatically generate neuron IDs.

      Strengths:

      Directly using raw images for registration and identification simplifies the analysis pipeline, but it is also a challenging task since CNN architectures often struggle to capture spatial relationships between distant cells. Surprisingly, the authors report very high accuracy across all tasks. For example, the tracking of head neurons in freely moving worms reportedly reached 99.6% accuracy, neuron identification achieved 98%, and automatic classification achieved 93% compared to human annotations.

      We thank the reviewer for noting these strengths of our study.

      Weaknesses:

      (1) The deep networks proposed in this study for registration and neuron identification require dataset-specific training, due to variations in imaging conditions across different laboratories. This, in turn, demands a large amount of manually or semi-manually annotated training data, including cell centroid correspondences and cell identity labels, which reduces the overall practicality and scalability of the method.

      We performed dataset-specific training for image registration and neuron identification, and we would encourage new users to do the same based on our current state of knowledge. This highlights how standardization of whole-brain imaging data across labs is an important issue for our field to address and that, without it, variations in imaging conditions could impact software utility. We refer the reviewer to an excellent study by Sprague et al. (2025) on this topic, which is cited in our study.

      However, at the same time, we wish to note that it was actually reasonably straightforward to take the BrainAlignNet approach that we initially developed in C. elegans and apply it to jellyfish. Some of the key lessons that we learned in C. elegans generalized: in both cases, it was critical to select the right registration problems to solve and to preprocess with Euler registration for good initialization. Provided that those problems were solved, BrainAlignNet could be applied to obtain high-quality registration and trace extraction. Thus, our study provides clear suggestions on how to use these tools across multiple contexts.

      (2) The cell tracking accuracy was not rigorously validated, but rather estimated using a biased and coarse approach. Specifically, the accuracy was assessed based on the stability of GFP signals in the eat-4-labeled channel. A tracking error was assumed to occur when the GFP signal switched between eat-4-negative and eat-4-positive at a given time point. However, this estimation is imprecise and only captures a small subset of all potential errors. Although the authors introduced a correction factor to approximate the true error rate, the validity of this correction relies on the assumption that eat-4 neurons are uniformly distributed across the brain - a condition that is unlikely to hold.

      We respectfully disagree with this critique. We considered the alternative suggested by the reviewer (in their private comments to the authors) of comparing against a manually annotated dataset. But this annotation would require manually linking ~150 neurons across ~1600 timepoints, which would require humans to manually link neurons across timepoints >200,000 times for a single dataset. These datasets consist of densely packed neurons rapidly deforming over time in all 3 dimensions. Moreover, a single error in linking would propagate across timepoints, so the error tolerance of such annotation would be extremely low. Any such manually labeled dataset would be fraught with errors and should not be trusted. Instead, our approach relies on a simple, accurate assumption: GFP expression in a neuron should be roughly constant over a 16min recording (after bleach correction) and the levels will be different in different neurons when it is sparsely expressed. Because all image alignment is done in the red channel, the pipeline never “peeks” at the GFP until it is finished with neuron alignment and tracking. The eat-4 promoter was chosen for GFP expression because (a) the nuclei labeled by it are scattered across the neuropil in a roughly salt-and-pepper fashion – a mixture of eat-4-positive and eat-4-negative neurons are found throughout the head; and (b) it is in roughly 40% of the neurons, giving very good overall coverage. Our view is that this approach of labeling subsets of neurons with GFP should become the standard in the field for assessing tracking accuracy – it has a simple, accurate premise; is not susceptible to human labeling error; is straightforward to implement; and, since it does not require manual labeling, is easy to scale to multiple datasets. We do note that it could be further strengthened by using multiple strains each with different ‘salt-and-pepper’ GFP expression patterns.

      (3) Figure S1F demonstrates that the registration network, BrainAlignNet, alone is insufficient to accurately align arbitrary pairs of C. elegans head images. The high tracking accuracy reported is largely due to the use of a carefully designed registration sequence, matching only images with similar postures, and an effective clustering algorithm. Although the authors address this point in the Discussion section, the abstract may give the misleading impression that the network itself is solely responsible for the observed accuracy.

      Our tracking accuracy requires (a) a careful selection of registration problems, (b) highly accurate registration of the selected registration problems, and (c) effective clustering. We extensively discussed the importance of the choosing of the registration problems in the Results section (lines 218-234 and 318-321), Discussion section (lines 704-708), and Methods section (955-970 and 1246-1250) of our paper. We also discussed the clustering aspect in the Results section (lines 247-259), Discussion section (lines 708-712), and Methods section (lines 1162-1206). In addition, our abstract states that the BrainAlignNet needs to be “incorporated into an image analysis pipeline,” to inform readers that other aspects of image analysis need to occur (beyond BrainAlignNet) to perform tracking.

      (4) The reported accuracy for neuron identification and automatic classification may be misleading, as it was assessed only on a subset of neurons labeled as "high-confidence" by human annotators. Although the authors did not disclose the exact proportion, various descriptions (such as Figure 4f) imply that this subset comprises approximately 60% of all neurons. While excluding uncertain labels is justifiable, the authors highlight the high accuracy achieved on this subset without clearly clarifying that the reported performance pertains only to neurons that are relatively easy to identify. Furthermore, they do not report what fraction of the total neuron population can be accurately identified using their methods-an omission of critical importance for prospective users.

      The reviewer raises two points here: (1) whether AutoCellLabeler accuracy is impacted by ease of human labeling; and (2) what fraction of total neurons are identified. We address them one at a time.

      Regarding (1), we believe that the reviewer overlooked an important analysis in our study. Indeed, to assess its performance, one can only compare AutoCellLabeler’s output against accurate human labels – there is simply no way around it. However, we noted that AutoCellLabeler was identifying some neurons with high confidence even when humans had low confidence or had not even tried to label the neurons (Fig. 4F). To test whether these were in fact accurate labels, we asked additional human labelers to spend extra time trying to label a random subset of these neurons (they were of course blinded to the AutoCellLabeler label). We then assessed the accuracy of AutoCellLabeler against these new human labels and found that they were highly accurate (Fig. 4H). This suggests that AutoCellLabeler has strong performance even when some human labelers find it challenging to label a neuron. However, we agree that we have not yet been able to quantify AutoCellLabeler performance on the small set of neuron classes that humans are unable to identify across datasets.

      Regarding (2), we agree that knowing how many neurons are labeled by AutoCellLabeler is critical. For example, labeling only 3 neurons per animal with 100% accuracy isn’t very helpful. We wish to emphasize that we did not omit this information: we reported the number of neurons labeled for every network that we characterized in the study, alongside the accuracy of those labels (please see Figures 4I, 5A, and 6G; Figure 4I also shows the number of human labels per dataset, which the reviewer requested). We also showed curves depicting the tradeoff between accuracy and number of neurons labeled, which fully captures how we balanced accuracy and number of neurons labeled (Figures 5D and S4A). It sounds like the reviewer also wanted to know the total number of recorded neurons. The typical number of recorded neurons per dataset can also be found in the paper in Fig. 2E.

    1. eLife Assessment

      This study makes a novel and valuable contribution by adapting step selection functions, traditionally used in animal ecology, to explore human movement and environmental risk exposure in urban slums, offering a promising framework for spatial epidemiology, particularly regarding leptospirosis. The integration of GPS telemetry with environmental data and the stratification by gender and serostatus are notable strengths that enhance the study's relevance for public health applications. The strength of evidence is compelling.

    2. Reviewer #1 (Public review):

      Summary:

      The study investigated how individuals living in urban slums in Salvador, Brazil, interact with environmental risk factors, particularly focusing on domestic rubbish piles, open sewers, and a central stream. The study makes use of the step selection functions using telemetry data, which is a method to estimate how likely individuals move towards these environmental features, differentiating among groups by gender, age, and leptospirosis serostatus. The results indicated that women tended to stay closer to the central stream while avoiding open sewers more than men. Furthermore, individuals who tested positive for leptospirosis tended to avoid open sewers, suggesting that behavioral patterns might influence exposure to risk factors for leptospirosis, hence ensuring more targeted interventions.

      Strengths:

      (1) The use of step selection functions to analyze human movement represents an innovative adaptation of a method typically used in animal ecology. This provides a robust quantitative framework for evaluating how people interact with environmental risk factors linked to infectious diseases (in this case, leptospirosis).

      (2) Detailed differentiation by gender and serological status allows for nuanced insights, which can help tailor targeted interventions and potentially improve public health measures in urban slum settings.

      (3) The integration of real-world telemetry data with epidemiological risk factors supports the development of predictive models that can be applied in future infectious disease research, helping to bridge the gap between environmental exposure and health outcomes.

    3. Reviewer #2 (Public review):

      Summary:

      Pablo Ruiz Cuenca et al. conducted a GPS logger study with 124 adult participants across four different slum areas in Salvador, Brazil, recording GPS locations every 35 seconds for 48 hours. The aim of their study was to investigate step-selection models, a technique widely used in movement ecology to quantify contact with environmental risk factors for exposure to leptospires (open sewers, community streams, and rubbish piles). The authors built two different types of models based on distance and based on buffer areas to model human environmental exposure to risk factors. They show differences in movement/contact with these risk factors based on gender and seropositivity status. This study shows the existence of modest differences in contact with environmental risk factors for leptospirosis at small spatial scales based on socio-demographics and infection status.

      Strengths:

      The authors assembled a rich dataset by collecting human GPS logger data, combined with field-recorded locations of open sewers, community streams, and rubbish piles, and testing individuals for leptospirosis via serology. This study was able to capture fine-scale exposure dynamics within an urban environment and shows differences by gender and seropositive status, using a method novel to epidemiology (step selection).

      [Editors' note: I have reviewed the authors' revised submission and confirm that they have adequately addressed the reviewers' comments for this manuscript.]

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      The study investigated how individuals living in urban slums in Salvador, Brazil, interact with environmental risk factors, particularly focusing on domestic rubbish piles, open sewers, and a central stream. The study makes use of the step selection functions using telemetry data, which is a method to estimate how likely individuals move towards these environmental features, differentiating among groups by gender, age, and leptospirosis serostatus. The results indicated that women tended to stay closer to the central stream while avoiding open sewers more than men. Furthermore, individuals who tested positive for leptospirosis tended to avoid open sewers, suggesting that behavioral patterns might influence exposure to risk factors for leptospirosis, hence ensuring more targeted interventions. 

      Strengths: 

      (1) The use of step selection functions to analyze human movement represents an innovative adaptation of a method typically used in animal ecology. This provides a robust quantitative framework for evaluating how people interact with environmental risk factors linked to infectious diseases (in this case, leptospirosis). 

      (2) Detailed differentiation by gender and serological status allows for nuanced insights, which can help tailor targeted interventions and potentially improve public health measures in urban slum settings. 

      (3) The integration of real-world telemetry data with epidemiological risk factors supports the development of predictive models that can be applied in future infectious disease research, helping to bridge the gap between environmental exposure and health outcomes. 

      Weaknesses: 

      (1) The sample size for the study was not calculated, although it was a nested cohort study. 

      We thank Reviewer #1 for highlighting this weakness. We will make sure that this is explained in the next version of the manuscript. At the time of recruiting participants, we found no literature on how to perform a sample size calculation for movement studies involving GPS loggers and associated methods of analysis. Therefore, we aimed to recruit as many individuals as possible within the resource constraints of the study.  

      “Participants who were already enrolled in the cohort study were recruited to take part in the movement analysis study. At the time of recruitment, we found no published scientific studies detailing how to perform sample size calculations for research using GPS data in humans. Therefore, we opted to use convenience sampling instead. A target of 30 people per study area, balanced by gender and blind to their serological status, was chosen for this study.” [Lines 163 - 169]

      (2) The step‐selection functions, though a novel method, may face challenges in fully capturing the complexity of human decision-making influenced by socio-cultural and economic factors that were not captured in the study. 

      We agree with Reviewer #1 that this model may fail to capture the full breadth of human decisionmaking when it comes to moving through local environments. We included a section discussing the aspect of violence and how this influences residents’ choices, along with some possibilities on how to record and account for this. Although it is outside of the scope of this study, we believe that coupling these quantitative methods with qualitative studies would provide a comprehensive understanding of movement in these areas.  

      (3) The study's context is limited to a specific urban slum in Salvador, Brazil, which may reduce the generalizability of its findings to other geographical areas or populations that experience different environmental or socio-economic conditions. 

      We thank the reviewer for highlighting this limitation. We have made this more clear in the discussion section: 

      “As a result, the findings are biased towards the more represented individuals, limiting their generalisability. Additionally, all participants are from specific areas in Salvador, which may further limit the generalisability to similar contexts.” [Lines 561 - 564]

      (4) The reliance on self-reported or telemetry-based movement data might include some inaccuracies or biases that could affect the precision of the selection coefficients obtained, potentially limiting the study's predictive power. 

      We agree that telemetry data has inherent inaccuracies, which we have tried to account for by using only those data points within the study areas. We would like to clarify that there is no self-reported movement data used in this study. All movement data was collected using GPS loggers.  

      (5) Some participants with less than 50 relocations within the study area were excluded without clear justification, see line 149. 

      We found that the SSF models would not run properly if there weren’t enough relocations. Therefore, we decided to remove these individuals from the analysis. They are also removed from any descriptive statistics presented. We have now clarified this in the manuscript.  

      “Individuals with less than 50 relocations within the study area were excluded from the analysis to ensure good model convergence. Details of these excluded individuals can be found in Supplementary Material I.” [Lines 183 – 186]

      (6) Some figures are not clear (see Figure 4 A & B). 

      We have improved the resolution of the image and believe it is more clear now. Please let us know if the resolution still is not clear enough.  

      (7) No statement on conflict of interest was included, considering sponsorship of the study. 

      The conflict of interest forms for each author were sent to eLife separately. I believe these should be made available upon publication, but please reach out if these need to be re-sent.  

      Reviewer #2 (Public review): 

      Summary: 

      Pablo Ruiz Cuenca et al. conducted a GPS logger study with 124 adult participants across four different slum areas in Salvador, Brazil, recording GPS locations every 35 seconds for 48 hours. The aim of their study was to investigate step-selection models, a technique widely used in movement ecology to quantify contact with environmental risk factors for exposure to leptospires (open sewers, community streams, and rubbish piles). The authors built two different types of models based on distance and based on buffer areas to model human environmental exposure to risk factors. They show differences in movement/contact with these risk factors based on gender and seropositivity status. This study shows the existence of modest differences in contact with environmental risk factors for leptospirosis at small spatial scales based on socio-demographics and infection status. 

      Strengths: 

      The authors assembled a rich dataset by collecting human GPS logger data, combined with fieldrecorded locations of open sewers, community streams, and rubbish piles, and testing individuals for leptospirosis via serology. This study was able to capture fine-scale exposure dynamics within an urban environment and shows differences by gender and seropositive status, using a method novel to epidemiology (step selection). 

      Weaknesses: 

      Due to environmental data being limited to the study area, exposure elsewhere could not be captured, despite previous research by Owers et al. showing that the extent of movement was associated with infection risk. Limitations of step selection for use in studying human participants in an urban environment would need to be explicitly discussed. 

      The environmental factors used in the study required research teams to visit the sites and map the locations. Given that individuals travelled throughout the city of Salvador, performing this task at a large scale would be unachievable. Therefore, we limited the data to only those points within the study area boundaries to avoid any biases from interactions with unrecorded environmental factors.  

      Reviewing Editor Comments: 

      The manuscript would benefit from clearer articulation of SSF assumptions, data exclusions, and buffer choices, as well as improvements in figure clarity, to strengthen its generalizability and impact. 

      Please see replies to Reviewer #2 below regarding the assumptions (2.3), data exclusions (2.1) and buffer choices (2.2). We have improved Figure 4 clarity, please let us know if this is not sufficient.  

      Reviewer #1 (Recommendations for the authors): 

      (1) Provide comprehensive details on telemetry data collection for improved data quality and reproducibility. 

      Details for this are included under the “Methods/GPS Data” section. We have included a sentence to explain that we used to GPS device manufacturer’s software to programme them. We believe this provides enough information on how to collect the data for reproducibility, but please let us know if there is further information that we could provide.  

      “Individuals who consented to take part in this study were asked to wear GPS loggers for continuous periods of up to 48 hours, which could be repeated. The GPS loggers used were i-got U GT-600, set to record their location every 35 seconds. We used the manufacturer’s software to programme the devices. Data were collected between March and November 2022.” [Lines 172 - 176]

      (2) Check all figures and improve on clarity (see Figure 4). 

      We have updated Figure 4 and believe the resolution is better now. Please let us know if this it not the case from the readers perspective.  

      (3) Revisit sentence structures to improve readability and reduce overly complex phrasing. 

      We have reviewed the manuscript and made some changes to improve readability. 

      Reviewer #2 (Recommendations for the authors): 

      I thank Ruiz Cuenca et al. for putting together this interesting manuscript on the use of step selection functions for understanding exposure to leptospires in urban Brazil. I thoroughly enjoyed reading it and have a few suggestions that may improve the manuscript. 

      I also apologise, but I was not able to find some of the supplementary materials, for instance, Supplementary Material I. That may have been my oversight. 

      To eLife: These should have been included with the submitted manuscript file. Please let me know if it has to be resubmitted to eLife.

      (1) Descriptive statistics 

      Some more descriptive statistics would be helpful. For instance, what was the leptospirosis infection status of the six individuals who were removed due to having <50 points inside the area? As part of the analysis relies on exposure, defined as GPS locations within a 20m buffer of open sewers, community streams, and rubbish piles, it would be good to have some descriptive statistics around this. How many visits to these different sites did people make, and how did these statistics vary by study area, age, gender, and leptospirosis infection status? 

      We thank Reviewer #2 for highlighting this. Thanks to their comment, we noticed a mistake in the code which excluded more individuals from the summary statistics table than were actually excluded from the full analysis. There were only 2 individuals that had less than 50 relocations across the whole day (5 am to 9 pm) which were excluded from further analysis. The mistake has been rectified and the summary statistics updated. (see table 1)

      We have included the demographic details of excluded participants as a table in the supplementary material, which we have referenced to in the manuscript. We have also explained that the exclusion is to aid model convergence, as we found that too few relocations would result in SSF models not working properly.  

      “Individuals with less than 50 relocations within the study area were excluded from the analysis to ensure good model convergence. Details of these excluded individuals can be found in Supplementary Material I.” [Lines 183 – 186]

      We have also now included a table (Table 2),  to show more descriptive statistics of how much time individuals spent within each of the environmental buffers. 

      (2) Definitions of buffers 

      I was surprised that the authors chose a 20m buffer for each factor but 10m around the household.Could this be more clearly justified, especially given that there will be location errors in both the GPS location point and the GPS logger points? These buffers do appear quite small, particularly in an urban environment where obstruction from buildings can be expected to yield substantial GPS errors. 

      The 20 meter buffer represents an intense interaction with the point of interest. This distance was decided after visiting the sites and seeing the points of interest in person. The 10 meter buffer accounts for the size of dwellings in these areas. We have included these explanations in the new manuscript:  

      “The buffer rasters, one for each factor, were created using a 20 meter buffer around each reference point. The size of this buffer was decided after visiting the study areas and represented an area within which it could be considered a strong interaction with the point of interest.” [Lines 198 – 202]

      “Buffer rasters were also created for each individual’s household location, with a 10 meter buffer around each location.This represented space within and immediately outside each house.  This buffer size accounted for the size of dwellings in these study areas.” [Lines 205 - 208]

      (3) Assumptions of the step selection function 

      Step selection functions (SSFs) rely on a number of assumptions. Whether these assumptions are met needs to be critically discussed within the article. (For a discussion of the assumptions, I am relying on points raised in this article: Integrated step selection analysis: bridging the gap between resource selection and animal movement (2015): Tal Avgar, Jonathan R. Potts, Mark A. Lewis, Mark S. Boyce, DOI: https://doi.org/10.1111/2041-210X.12528). 

      First, SSFs typically assume each step is independent, conditional only on the previous step (Markovian process). This is violated in circular movements, for instance. Circular movements are highly likely in human movement as people will leave and return to their homes during the day. While this is partially addressed by conducting separate analyses by time of day, circular journeys can still exist within these segments. 

      Second, SSFs do not account for goal-oriented behaviour like intentional destination-seeking. So, for instance, when someone executes a plan to visit a specific stream to fetch drinking water, such behaviour is poorly approximated using SSFs because SSFs compare observed steps to random alternatives drawn from a movement kernel, assuming movement is opportunistic rather than intentional. 

      This is true of SSF that do not include movement attributes. However, in our SSF we have included both step lengths and turning angles, which, according to Avgar et al, should be enough to account for this goal-oriented behaviour. It may be clearer to call the model an integrated step selection function (iSSF), as they do in Avgar et al., which we can change in the next version of the manuscript.  

      Third, turning angles in human movement are often sharp due to regular street layout, which can violate the assumptions of SSFs, which usually assume smooth, correlated movement. 

      As this paper proposes SSFs as a novel method to measure exposure to environmentally transmitted pathogens, a discussion on the extent to which assumptions of SSFs are valid for this purpose should be included in the paper. 

      We thank Reviewer #2 for highlighting these points. We have included a section discussing these assumptions in detail: 

      “Additionally, these models have some underlying assumptions that may be violated in this study. Step-selection functions assume each step is independent, conditioned on the previous step. This can be violated by circular journeys. Although we attempted to account for these by analysing specific periods of the day, a higher temporal resolution of analysis may be needed if circular journeys are still present within each period. Another assumption is that movement is smooth through the environment. In urban environments this may not hold true, as street layouts may force sharp corners in movements. The effect of violating this assumption is not immediately clear and requires further methodological research to understand its significance. Finally, we assumed that by including movement characteristics (step lengths and turning angles) into our models, we were accounting for goal-oriented behaviour. These assumptions need to be considered in future studies that attempt to use step-selection functions to analyse human mobility.” [Lines 593 - 607]

      (4) Abstract 

      While it is highlighted in the abstract that this "study introduces a novel method for analysing human telemetry data in infectious disease research, providing critical insights for targeted interventions", I did not see any discussion about how the findings can inform interventions. 

      We thank Reviewer #2 for highlighting this. We have now removed this wording from the abstract to avoid misunderstanding.  

      (5) Effect sizes 

      It would have helped me if there had been some discussion around the size of these effects. Especially for the distance-based models, the effects seem very small. Maybe this is a misinterpretation on my part, but it would help to contextualise if the observed effect were small or large. 

      We agree with Reviewer #2 on this point and have now included a paragraph explaining that these effect sizes are indeed very small. We believe that this may be linked to the spatial scale of the rasters used (1 meter), as the selection coefficients represent changes with regards to increasing distances of 1 meter. This may not be that significant for human mobility. However, given the focus on analysing fine scale movement, we decided to keep the spatial scale of the rasters as small as possible. 

      “It is important to highlight that the effect sizes of the selection coefficients for the distance based rasters are very small and could be considered negligible. This may be linked to the spatial scale used, as these values represent increases of 1 meter. A coarser scale may have produced larger effect sizes that may have been easier to conceptualise. However, given the focus on fine-scale movement, we decided to keep this spatial scale for the analysis.” [Lines 421 - 427]

    1. eLife Assessment

      This valuable study presents a theoretical model of how punctuated mutations influence multistep adaptation, supported by empirical evidence from some TCGA cancer cohorts. This solid model is noteworthy for cancer researchers as it points to the case for possible punctuated evolution rather than gradual genomic change. However, the parametrization and systematic evaluation of the theoretical framework in the context of tumor evolution remain incomplete, and alternative explanations for the empirical observations are still plausible.

    2. Reviewer #1 (Public review):

      Summary:

      Grasper et al. present a combined analysis of the role of temporal mutagenesis in cancer, which includes both theoretical investigation and empirical analysis of point mutations in TCGA cancer patient cohorts. They find that temporally elevated mutation rates contribute to cancer fitness by allowing fast adaptation when the fitness drops (due to previous deleterious mutations). This may be relevant in the case of tumor suppressor genes (TSG), which follow the 2-hit hypothesis (i.e., biallelic 2 mutations are necessary to deactivate TS), and in cases where temporal mutagenesis occurs (e.g., high APOBEC, ROS). They provide evidence that this scenario is likely to occur in patients with some cancer types. This is an interesting and potentially important result that merits the attention of the target audience. Nonetheless, I have some questions (detailed below) regarding the design of the study, the tools and parametrization of the theoretical analysis, and the empirical analysis, which I think, if addressed, would make the paper more solid and the conclusion more substantiated.

      Strengths:

      Combined theoretical investigation with empirical analysis of cancer patients.

      Weaknesses:

      Parametrization and systematic investigation of theoretical tools and their relevance to tumor evolution.

    3. Reviewer #2 (Public review):

      This work presents theoretical results concerning the effect of punctuated mutation on multistep adaptation and empirical evidence for that effect in cancer. The empirical results seem to agree with the theoretical predictions. However, it is not clear how strong the effect should be on theoretical grounds, and there are other plausible explanations for the empirical observations.

      For various reasons, the effect of punctuated mutation may be weaker than suggested by the theoretical and empirical analyses:

      (1) The effect of punctuated mutation is much stronger when the first mutation of a two-step adaptation is deleterious (Figure 2). For double inactivation of a TSG, the first mutation--inactivation of one copy--would be expected to be neutral or slightly advantageous. The simulations depicted in Figure 4, which are supposed to demonstrate the expected effect for TSGs, assume that the first mutation is quite deleterious. This assumption seems inappropriate for TSGs, and perhaps the other synergistic pairs considered, and exaggerates the expected effects.

      (2) More generally, parameter values affect the magnitude of the effect. The authors note, for example, that the relative effect decreases with mutation rate. They suggest that the absolute effect, which increases, is more important, but the relative effect seems more relevant and is what is assessed empirically.

      (3) Routes to inactivation of both copies of a TSG that are not accelerated by punctuation will dilute any effects of punctuation. An example is a single somatic mutation followed by loss of heterozygosity. Such mechanisms are not included in the theoretical analysis nor assessed empirically. If, for example, 90% of double inactivations were the result of such mechanisms with a constant mutation rate, a factor of two effect of punctuated mutagenesis would increase the overall rate by only 10%. Consideration of the rate of apparent inactivation of just one TSG copy and of deletion of both copies would shed some light on the importance of this consideration.

      Several factors besides the effects of punctuated mutation might explain or contribute to the empirical observations:

      (1) High APOBEC3 activity can select for inactivation of TSGs (references in Butler and Banday 2023, PMID 36978147). This selective force is another plausible explanation for the empirical observations.

      (2) Without punctuation, the rate of multistep adaptation is expected to rise more than linearly with mutation rate. Thus, if APOBEC signatures are correlated with a high mutation rate due to the action of APOBEC, this alone could explain the correlation with TSG inactivation.

      (3) The nature of mutations caused by APOBEC might explain the results. Notably, one of the two APOBEC mutation signatures, SBS13, is particularly likely to produce nonsense mutations. The authors count both nonsense and missense mutations, but nonsense mutations are more likely to inactivate the gene, and hence to be selected.

    4. Author response:

      eLife Assessment

      This valuable study presents a theoretical model of how punctuated mutations influence multistep adaptation, supported by empirical evidence from some TCGA cancer cohorts. This solid model is noteworthy for cancer researchers as it points to the case for possible punctuated evolution rather than gradual genomic change. However, the parametrization and systematic evaluation of the theoretical framework in the context of tumor evolution remain incomplete, and alternative explanations for the empirical observations are still plausible.

      We thank the editor and the reviewers for their thorough engagement with our work. The reviewers’ comments have drawn our attention to several important points that we have addressed in the updated version. We believe that these modifications have substantially improved our paper.

      There were two major themes in the reviewers’ suggestions for improvement. The first was that we should demonstrate more concretely how the results in the theoretical/stylized modelling parts of our paper quantitatively relate to dynamics in cancer.

      To this end, we have now included a comprehensive quantification of the effect sizes of our results across large and biologically-relevant parameter ranges. Specifically, following reviewer 1’s suggestion to give more prominence to the branching process, we have added two figures (Fig S3-S4) quantifying the likelihood of multi-step adaptation in a branching process for a large range of mutation rates and birth-death ratios. Formulating our results in terms of birth-death ratios also allowed us to provide better intuition regarding how our results manifest in models with constant population size vs models of growing populations. In particular, the added figure (Fig S3) highlights that the effect size of temporal clustering on the probability of successful 2-step adaptation is very sensitive to the probability that the lineage of the first mutant would go extinct if it did not acquire a second mutation. As a result, the phenomenon we describe is biologically likely to be most effective in those phases during tumor evolution in which tumor growth is constrained. This important pattern had not been described sufficiently clearly in the initial version of our manuscript, and we thank both reviewers for their suggestions to make these improvements.

      The second major theme in the reviewers’ suggestions was focused on how we relate our theoretical findings to readouts in genomic data, with both reviewers pointing to potential alternative explanations for the empirical patterns we describe.

      We have now extended our empirical analyses following some of the reviewers’ suggestions. Specifically, we have included analyses investigating how the contribution of reactive oxygen species (ROS)-related mutation signatures correlates with our proxies for multi-step adaptation; and we have included robustness checks in which we use Spearman instead of Pearson correlations. Moreover, we have included more discussion on potential confounds and the assumptions going into our empirical analyses as well as the challenges in empirically identifying the phenomena we describe.

      Below, we respond in detail to the individual comments made by each reviewer.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Grasper et al. present a combined analysis of the role of temporal mutagenesis in cancer, which includes both theoretical investigation and empirical analysis of point mutations in TCGA cancer patient cohorts. They find that temporally elevated mutation rates contribute to cancer fitness by allowing fast adaptation when the fitness drops (due to previous deleterious mutations). This may be relevant in the case of tumor suppressor genes (TSG), which follow the 2-hit hypothesis (i.e., biallelic 2 mutations are necessary to deactivate TS), and in cases where temporal mutagenesis occurs (e.g., high APOBEC, ROS). They provide evidence that this scenario is likely to occur in patients with some cancer types. This is an interesting and potentially important result that merits the attention of the target audience. Nonetheless, I have some questions (detailed below) regarding the design of the study, the tools and parametrization of the theoretical analysis, and the empirical analysis, which I think, if addressed, would make the paper more solid and the conclusion more substantiated.

      Strengths:

      Combined theoretical investigation with empirical analysis of cancer patients.

      Weaknesses:

      Parametrization and systematic investigation of theoretical tools and their relevance to tumor evolution.

      We sincerely thank Reviewer 1 for their comments. As communicated in more detail in the point-by-point replies to the “Recommendations for the authors”, we have revised the paper to address these comments in various ways. To summarize, Reviewer 1 asked for (1) more comprehensive analyses of the parameter space, especially in ranges of small fitness effects and low mutation rates; (2) additional clarifications on details of mechanisms described in the manuscript; and (3) suggested further robustness checks to our empirical analyses. We have addressed these points as follows: we have added detailed analyses of dynamics and effect sizes for branching processes (see Sections SI2 and SI3 in the Supplementary Information, as well as Figures S3 and S4). As suggested, these additions provide characterizations of effect sizes in biologically relevant parameter ranges (low mutation rates and smaller fitness effect sizes), and extend our descriptions to processes with dynamically changing population sizes. Moreover, we have added further clarifications at suggested points in the manuscript, e.g. to elaborate on the non-monotonicities in Fig 3. Lastly, we have undertaken robustness checks using Spearman rather than Pearson correlation coefficients to quantify relations between TSG deactivation and APOBEC signature contribution, and have performed analyses investigating dynamics of reactive oxygen species-associated mutagenesis instead of APOBEC.

      Reviewer #2 (Public review):

      This work presents theoretical results concerning the effect of punctuated mutation on multistep adaptation and empirical evidence for that effect in cancer. The empirical results seem to agree with the theoretical predictions. However, it is not clear how strong the effect should be on theoretical grounds, and there are other plausible explanations for the empirical observations.

      Thank you very much for these comments. We have now substantially expanded our investigations of the parameter space as outlined in the response to the “eLife Assessment” above and in the detailed comments below (A(1)-A(3)) to convey more quantitative intuition for the magnitude of the effects we describe for different phases of tumor evolution. We agree that there could be potential additional confounders to our empirical investigations besides the challenges regarding quantification that we already described in our initial version of the manuscript. We have thus included further discussion of these in our manuscript (see replies to B(1)-B(3)), and we have expanded our empirical analyses as outlined in the response to the “eLife Assessment”.

      For various reasons, the effect of punctuated mutation may be weaker than suggested by the theoretical and empirical analyses:

      (A1) The effect of punctuated mutation is much stronger when the first mutation of a two-step adaptation is deleterious (Figure 2). For double inactivation of a TSG, the first mutation--inactivation of one copy--would be expected to be neutral or slightly advantageous. The simulations depicted in Figure 4, which are supposed to demonstrate the expected effect for TSGs, assume that the first mutation is quite deleterious. This assumption seems inappropriate for TSGs, and perhaps the other synergistic pairs considered, and exaggerates the expected effects.

      Thank you for highlighting this discrepancy between Figure 2 and Figure 4. For computational efficiency and for illustration purposes, we had opted for high mutation rates and large fitness effects in Figure 2; however, our results are valid even in the setting of lower mutation rates and fitness effects. To improve the connection to Figure 4, and to address other related comments regarding parameter dependencies, we have now added more detailed quantification of the effects we describe (Figures SF3 and SF4) to the revised manuscript. These additions show that the effects illustrated in Figure 2 retain large effect sizes when going to much lower mutation rates and much smaller fitness effects. Indeed, while under high mutation rates we only see the large relative effects if the first mutation is highly deleterious, these large effects become more universal when going to low mutation rates.

      In general, it is correct that the selective disadvantage (or advantage) conveyed by the first mutation affects the likelihood of successful 2-step adaptations. It is also correct that the magnitude of the ‘relative effect’ of temporal clustering on valley-crossing is highest if the lineage with only the first of the two mutations is vanishingly unlikely to produce a second mutant before going extinct. If the first mutation is strongly deleterious, the lineage of such a first mutant is likely to quickly go extinct – and therefore also more likely to do so before producing a second mutant.

      However, this likelihood of producing the second mutant is also low if the mutation rate is low. As our added figure (Figure SF3) illustrates, at low mutation rates appropriate for cancer cells, is insensitive to the magnitude of the fitness disadvantage for large parts of the parameter space. Especially in populations of constant size (approximated by a birth/death ratio of 1), the relative effects for first mutations that reduce the birth rate by 0.5 or by 0.05 are indistinguishable (Figure SF3f).

      Moreover, the absolute effect (f<sub>k</sub> - f<sub>1</sub>), as we discuss in the paper (Figures SF2 and SF3) is largest in regions of the parameter space in which the first mutant is not infinitesimally unlikely to produce a second mutant (and f<sub>k</sub>  and f<sub>1</sub> would be infinitesimally small), but rather in parameter regions in which this first mutant has a non-negligible chance to produce a second mutant. The absolute effect (f<sub>k</sub> - f<sub>1</sub>) therefore peaks around fitness-neutral first mutations. While the next comment (below) says that our empirical investigations more closely resemble comparisons of relative effects and not absolute effects, we would expect that the observations in our data come preferentially from multi-step adaptations with large absolute effect since the absolute effect is maximal when both f<sub>k</sub> and f<sub>1</sub> are relatively high.

      In summary, we believe Figure 2, while having exaggerated parameters for very defendable reasons, is not a misleading illustration of the general phenomenon or of its applicability in biological settings, as effect sizes remain large when moving to biologically realistic parameter ranges. To clarify this issue, we have largely rewritten the relevant paragraphs in the results section and have added two additional figures (Figures SF3 and SF4) as well as a section in the SI with detailed discussion (SI2).

      (A2) More generally, parameter values affect the magnitude of the effect. The authors note, for example, that the relative effect decreases with mutation rate. They suggest that the absolute effect, which increases, is more important, but the relative effect seems more relevant and is what is assessed empirically.

      Thank you for this comment. As noted in the replies to the above comments, we have now included extensive investigations of how sensitive effect sizes are to different parameter choices. We also apologize for insufficiently clearly communicating how the quantities in Figure 4 relate to the findings of our theoretical models.

      The challenge in relating our results to single-timepoint sequencing data is that we only observe the mutations that a tumor has acquired, but we do not directly observe the mutation rate histories that brought about these mutations. As an alternative readout, we therefore consider (through rough proxies: TSGs and APOBEC signatures) the amount of 2-step adaptations per acquired/retained mutation. While we unfortunately cannot control for the average mutation rate in a sample, we motivate using this “TSG-deactivation score” by the hypothesis that for any given mutation rate, we expect a positive relationship between the amount of temporal clustering and the amount of 2-step adaptations per acquired/retained mutation. This hypothesis follows directly from our theoretical model where it formally translates to the statement that for a fixed μ, f<sub>k</sub> is increasing in k.

      However, while both quantities f<sub>k</sub>/f<sub>1</sub> or f<sub>k</sub> - f<sub>1</sub> from our theoretical model relate to this hypothesis – both are increasing in k –, neither of them maps directly onto the formulation of our empirical hypothesis.

      We have now rewritten the relevant passages of the manuscript to more clearly convey our motivation for constructing our TSG deactivation score in this form (P. 4-6).

      (A3) Routes to inactivation of both copies of a TSG that are not accelerated by punctuation will dilute any effects of punctuation. An example is a single somatic mutation followed by loss of heterozygosity. Such mechanisms are not included in the theoretical analysis nor assessed empirically. If, for example, 90% of double inactivations were the result of such mechanisms with a constant mutation rate, a factor of two effect of punctuated mutagenesis would increase the overall rate by only 10%. Consideration of the rate of apparent inactivation of just one TSG copy and of deletion of both copies would shed some light on the importance of this consideration.

      This is a very good point, thank you. In our empirical analyses, the main motivation was to investigate whether we would observe patterns that are qualitatively consistent with our theoretical predictions, i.e. whether we would find positive associations between valley-crossing and temporal clustering. Our aim in the empirical analyses was not to provide a quantitative estimate of how strongly temporally clustered mutation processes affect mutation accumulation in human cancers. We hence restricted attention to only one mutation process which is well characterized to be temporally clustered (APOBEC mutagenesis) and to only one category of (epi)genomic changes (SNPs, in which APOBEC signatures are well characterized). Of course, such an analysis ignores that other mutation processes (e.g. LOH, copy number changes, methylation in promoter regions, etc.) may interact with the mechanisms that we consider in deactivating Tumor suppressor genes.

      We have now updated the text to include further discussion of this limitation and further elaboration to convey that our empirical analyses are not intended as a complete quantification of the effect of temporal clustering on mutagenesis in-vivo (P. 10,11).

      Several factors besides the effects of punctuated mutation might explain or contribute to the empirical observations:

      (B1) High APOBEC3 activity can select for inactivation of TSGs (references in Butler and Banday 2023, PMID 36978147). This selective force is another plausible explanation for the empirical observations.

      Thank you for making this point. We agree that increased APOBEC3 activity, or any other similar perturbation, can change the fitness effect that any further changes/perturbations to the cell would bring about. Our empirical analyses therefore rely on the assumption that there are no major confounding structural differences in selection pressures between tumors with different levels of APOBEC signature contributions. We have expanded our discussion section to elaborate on this potential limitation (P. 10-11).

      While the hypothesis that APOBEC3 activity selects for inactivation of TSGSs has been suggested, there remain other explanations. Either way, the ways in which selective pressures have been suggested to change would not interfere relevantly with the effects we describe. The paper cited in the comment argues that “high APOBEC3 activity may generate a selective pressure favoring” TSG mutations as “APOBEC creates a high [mutation] burden, so cells with impaired DNA damage response (DDR) due to tumor suppressor mutations are more likely to avert apoptosis and continue proliferating”. To motivate this reasoning, in the same passage, the authors cite a high prevalence of TP53 mutations across several cancer types with “high burden of APOBEC3-induced mutations”, but also note that “this trend could arise from higher APOBEC3 expression in p53-mutated tumors since p53 may suppress APOBEC3B transcription via p21 and DREAM proteins”.

      Translated to our theoretical framework, this reasoning builds on the idea that APOBEC3 activity increases the selective advantage of mutants with inactivation of both copies of a TSG. In contrast, the mechanism we describe acts by altering the chances of mutants with only one TSG allele inactivated to inactivate the second allele before going extinct. If homozygous inactivation of TSGs generally conveys relatively strong fitness advantages, lineages with homozygous inactivation would already be unlikely to go extinct. Further increasing the fitness advantage of such lineages would thus manifest mostly in a quicker spread of these lineages, rather than in changes in the chance that these lineages survive. In turn, such a change would have limited effect on the “rate” at which such 2-step adaptations occur, but would mostly affect the speed at which they fixate. It would be interesting to investigate these effects empirically by quantifying the speed of proliferation and chance of going extinct for lineages that newly acquired inactivating mutations in TSGs.

      Beyond this explicit mention of selection pressures, the cited paper also discusses high occurrences of mutations in TSGs in relation to APOBEC. These enrichments, however, are not uniquely explained by an APOBEC-driven change in selection pressures. Indeed, our analyses would also predict such enrichments.

      (B2) Without punctuation, the rate of multistep adaptation is expected to rise more than linearly with mutation rate. Thus, if APOBEC signatures are correlated with a high mutation rate due to the action of APOBEC, this alone could explain the correlation with TSG inactivation.

      Thank you for making this point. Indeed, an identifying assumption that we make is that average mutation rates are balanced between samples with a higher vs lower APOBEC signature contribution. We cannot cleanly test this assumption, as we only observe aggregate mutation counts but not mutation rates. However, the fact that we observe an enrichment for APOBEC-associated mutations among the set of TSG-inactivating mutations (see Figure 4F) would be consistent with APOBEC-mutations driving the correlations in Fig 4D, rather than just average mutation rates. We have now added a paragraph to our manuscript to discuss these points (P. 10-11).

      (B3) The nature of mutations caused by APOBEC might explain the results. Notably, one of the two APOBEC mutation signatures, SBS13, is particularly likely to produce nonsense mutations. The authors count both nonsense and missense mutations, but nonsense mutations are more likely to inactivate the gene, and hence to be selected.

      Thank you for making this point.  We have included it in our discussion of potential confounders/limitations in the revised manuscript (P. 10-11).

    1. eLife Assessment

      This important work fills a gap in the characterization of motor architecture and chemical coupling of the male reproductive system, crucial to understanding male reproduction and fertility. The convincing analysis reveals two distinct types of glutamatergic neurons that co-release either serotonin or octopamine. While serotonergic neurons are required for male fertility, octopaminergic neurons are dispensable, indicating a division of labour. This work lays the foundations for future investigations into the conserved key principles by which multi-transmitter systems control coordinated motor outputs.

    2. Reviewer #1 (Public review):

      Summary:

      This very thorough anatomical study addresses the innervation of the Drosophila male reproductive tract. Two distinct glutamatergic neuron types were classified: serotonergic (SGNs) and octopaminergic (OGNs). By expansion microscopy, it was established that glutamate and serotonin /octopamine are co-released. The expression of different receptors for 5-HT and OA in muscles and epithelial cells of the innervation target organs was characterized. The pattern of neurotransmitter receptor expression in the target organs suggests that seminal fluid and sperm transport and emission are subjected to complex regulation. While silencing of abdominal SGNs leads to male infertility and prevents sperm from entering the ejaculatory duct, silencing of OGNs does not render males infertile.

      Strengths:

      The studied neurons were analysed with different transgenes and methods, as well as antibodies against neurotransmitter synthesis enzymes, building a consistent picture of their neurotransmitter identity. The careful anatomical description of innervation patterns together with receptor expression patterns of the target organs provides a solid basis for advancing the understanding of how seminal fluid and sperm transport and emission are subjected to complex regulation. The functional data showing that SGNs are required for male fertility and for the release of sperm from the seminal vesicle into the ejaculatory duct is convincing.

      Weaknesses:

      The functional analysis of the characterized neurons is not as comprehensive as the anatomical description, and phenotypic characterization was limited to simple fertility assays. It is understandable that a full functional dissection is beyond the scope of the present work. The paper contains experiments showing neuron-independent peristaltic waves in the reproductive tract muscles, which are thematically not very well integrated into the paper. Although very interesting, one wonders if these experiments would not fit better into a future work that also explores these peristaltic waves and their interrelation with neuromodulation mechanistically.

    3. Reviewer #2 (Public review):

      Summary:

      Cheverra et al. present a comprehensive anatomical and functional analysis of the motor neurons innervating the male reproductive tract in Drosophila melanogaster, addressing a gap in our understanding of the peripheral circuits underlying ejaculation and male fertility. They identify two classes of multi-transmitter motor neurons-OGNs (octopamine/glutamate) and SGNs (serotonin/glutamate)-with distinct innervation patterns across reproductive organs. The authors further characterize the differential expression of glutamate, octopamine, and serotonin receptors in both epithelial and muscular tissues of these organs. Behavioral assays reveal that SGNs are essential for male fertility, whereas OGNs and glutamatergic transmission are dispensable. This work provides a high-resolution map linking neuromodulatory identity to organ-specific motor control, offering a valuable framework to explore the neural basis of male reproductive function.

      Strengths:

      Through the use of an extensive set of GAL4 drivers and antibodies, this work successfully and precisely defines the neurons that innervate the male reproductive tract, identifying the specific organs they target and the nature of the neurotransmitters they release. It also characterizes the expression patterns and localization of the corresponding neurotransmitter receptors across different tissues. The authors describe two distinct groups of dual-identity neurons innervating the male reproductive tract: OGNs, which co-express octopamine and glutamate, and SGNs, which co-express serotonin and glutamate. They further demonstrate that the various organs within the male reproductive system differentially express receptors for these neurotransmitters. Based on these findings, the authors propose that a single neuron capable of co-releasing a fast-acting neurotransmitter alongside a slower-acting one may more effectively synchronize and stagger events that require precise timing. This, together with the differential expression of ionotropic glutamate receptors and metabotropic aminergic receptors in postsynaptic muscle tissue, adds an additional layer of complexity to the coordinated regulation of fluid secretion, organ contractility, and directional sperm movement-all contributing to the optimization of male fertility.

      Weaknesses:

      The main weakness of the manuscript is the lack of detail in the presentation of the results. Specifically, all microscopy image figures are missing information about the number of samples (N), and in the case of colocalization experiments, quantitative analyses are not provided. Additionally, in the first behavioral section, it would be beneficial to complement the data table with figures similar to those presented later in the manuscript for consistency and clarity.

      Wider context:

      This study delivers the first detailed anatomical map connecting multi-transmitter motor neurons with specific male reproductive structures. It highlights a previously unrecognized functional specialization between serotonergic and octopaminergic pathways and lays the groundwork for exploring fundamental neural mechanisms that regulate ejaculation and fertility in males. The principles uncovered here may help explain how males of Drosophila and other organisms adjust reproductive behaviors in response to environmental changes. Furthermore, by shedding light on how multi-transmitter systems operate in reproductive control, this model could provide insights into therapeutic targets for conditions such as male infertility and prostate cancer, where similar neuronal populations are involved in humans. Ultimately, this genetically accessible system serves as a powerful tool for uncovering how multi-transmitter neurons orchestrate coordinated physiological actions necessary for the functioning of complex organs.

    4. Reviewer #3 (Public review):

      Summary:

      This work provides an overview of the motor neuron landscape in the male reproductive system. Some work had been done to elucidate the circuits of ejaculation in the spine, as well as the cord, but this work fills a gap in knowledge at the level of the reproductive organs. Using complementary approaches, the authors show that there are two types of motor neurons that are mutually exclusive: neurons that co-express octopamine and glutamate and neurons that co-express serotonin and glutamate. They also show evidence that both types of neurons express large dense core vesicles, indicating that neuropeptides play a role in male fertility. This paper provides a thorough characterization of the expression of the different glutamate, octopamine, and serotonin receptors in the different organs and tissues of the male reproductive system. The differential expression in different tissues and organs allows building initial theories on the control of emission and expulsion. Additionally, the authors characterize the expression of synaptic proteins and the neuromuscular junction sites. On a mechanistic level, the authors show that neither octopamine/glutamate neuron transmission nor glutamate transmission in serotonin/glutamate neurons is required for male fertility. This final result is quite surprising and opens up many questions on how ejaculation is coordinated.

      Strengths:

      This work fills an important gap in the characterization of innervation of the male reproductive system by providing an extensive characterization of the motor neurons and the potential receptors of motor neuron release. The authors show convincing evidence of glutamate/monoamine co-release and of mutual exclusivity of serotonin/glutamate and octopamine/glutamate neurons.

      Weaknesses:

      (1) Often, it is mentioned that the expression is higher or lower or regional without quantification or an indication of the number of samples analysed.

      (2) The experiment aimed at tracking sperm in the male reproductive system is difficult to interpret when it is not assessed whether ejaculation has occurred.

      (3) The experiment looking at peristaltic waves in the male organs is missing labeling of the different regions and quantification of the observed waves.

    1. eLife Assessment

      This useful study uses creative scalp EEG decoding methods to attempt to demonstrate that two forms of learned associations in a Stroop task are dissociable, despite sharing similar temporal dynamics. However, the evidence supporting the conclusions is incomplete due to concerns with the experimental design and methodology. This paper would be of interest to researchers studying cognitive control and adaptive behavior, if the concerns raised in the reviews can be addressed satisfactorily.

    2. Reviewer #1 (Public review):

      Summary:

      This study focuses on characterizing the EEG correlates of item-specific proportion congruency effects. In particular, two types of learned associations are characterized. One being associations between stimulus features and control states (SC), and the other being stimulus features and responses (SR). Decoding methods are used to identify SC and SR correlates and to determine whether they have similar topographies and dynamics.

      The results suggest SC and SR associations are simultaneously coactivated and have shared topographies, with the inference being that these associations may share a common generator.

      Strengths:

      Fearless, creative use of EEG decoding to test tricky hypotheses regarding latent associations.

      Nice idea to orthogonalize the ISPC condition (MC/MI) from stimulus features.

      Weaknesses:

      (1) I'm relatively concerned that these results may be spurious. I hope to be proven wrong, but I would suggest taking another look at a few things.

      While a nice idea in principle, the ISPC manipulation seems to be quite confounded with the trial number. E.g., color-red is MI only during phase 2, and is MC primarily only during Phase 3 (since phase 1 is so sparsely represented). In my experience, EEG noise is highly structured across a session and easily exploited by decoders. Plus, behavior seems quite different between Phase 2 and Phase 3. So, it seems likely that the classes you are asking the decoder to separate are highly confounded with temporally structured noise.

      I suggest thinking of how to handle this concern in a rigorous way. A compelling way to address this would be to perform "cross-phase" decoding, however I am not sure if that is possible given the design.

      The time courses also seem concerning. What are we to make of the SR and SC timecourses, which have aggregate decoding dynamics that look to be <1Hz?

      Some sanity checks would be one place to start. Time courses were baselined, but this is often not necessary with decoding; it can cause bias (10.1016/j.jneumeth.2021.109080), and can mask deeper issues. What do things look like when not baselined? Can variables be decoded when they should not be decoded? What does cross-temporal decoding look like - everything stable across all times, etc.?

      (2) The nature of the shared features between SR and SC subspaces is unclear.

      The simulation is framed in terms of the amount of overlap, revealing the number of shared dimensions between subspaces. In reality, it seems like it's closer to 'proportion of volume shared', i.e., a small number of dominant dimensions could drive a large degree of alignment between subspaces.

      What features drive the similarity? What features drive the distinctions between SR and SC? Aside from the temporal confounds I mentioned above, is it possible that some low-dimensional feature, like EEG congruency effect (e.g., low-D ERPs associated with conflict), or RT dynamics, drives discriminability among these classes? It seems plausible to me - all one would need is non-homogeneity in the size of the congruency effect across different items (subject-level idiosyncracies could contribute: 10.1016/j.neuroimage.2013.03.039).

      (3) The time-resolved within-trial correlation of RSA betas is a cool idea, but I am concerned it is biased. Estimating correlations among different coefficients from the same GLM design matrix is, in general, biased, i.e., when the regressors are non-orthogonal. This bias comes from the expected covariance of the betas and is discussed in detail here (10.1371/journal.pcbi.1006299). In short, correlations could be inflated due to a combination of the design matrix and the structure of the noise. The most established solution, to cross-validate across different GLM estimations, is unfortunately not available here. I would suggest that the authors think of ways to handle this issue.

      (4) Are results robust to running response-locked analyses? Especially the EEG-behavior correlation. Could this be driven by different RTs across trials & trial-types? I.e., at 400 ms post-stim onset, some trials would be near or at RT/action execution, while others may not be nearly as close, and so EEG features would differ & "predict" RT.

      (5) I suggest providing more explanation about the logic of the subspace decoding method - what trialtypes exactly constitute the different classes, why we would expect this method to capture something useful regarding ISPC, & what this something might be. I felt that the first paragraph of the results breezes by a lot of important logic.

      In general, this paper does not seem to be written for readers who are unfamiliar with this particular topic area. If authors think this is undesirable, I would suggest altering the text.

    3. Reviewer #2 (Public review):

      Summary:

      In this EEG study, Huang et al. investigated the relative contribution of two accounts to the process of conflict control, namely the stimulus-control association (SC), which refers to the phenomenon that the ratio of congruent vs. incongruent trials affects the overall control demands, and the stimulus-response association (SR), stating that the frequency of stimulus-response pairings can also impact the level of control. The authors extended the Stroop task with novel manipulation of item congruencies across blocks in order to test whether both types of information are encoded and related to behaviour. Using decoding and RSA, they showed that the SC and SR representations were concurrently present in voltage signals, and they also positively co-varied. In addition, the variability in both of their strengths was predictive of reaction time. In general, the experiment has a solid design, but there are some confounding factors in the analyses that should be addressed to provide strong support for the conclusions.

      Strengths:

      (1) The authors used an interesting task design that extended the classic Stroop paradigm and is potentially effective in teasing apart the relative contribution of the two different accounts regarding item-specific proportion congruency effect, provided that some confounds are addressed.

      (2) Linking the strength of RSA scores with behavioural measures is critical to demonstrating the functional significance of the task representations in question.

      Weakness:

      (1) While the use of RSA to model the decoding strength vector is a fitting choice, looking at the RDMs in Figure 7, it seems that SC, SR, ISPC, and Identity matrices are all somewhat correlated. I wouldn't be surprised if some correlations would be quite high if they were reported. Total orthogonality is, of course, impossible depending on the hypothesis, but from experience, having highly covaried predictors in a regression can lead to unexpected results, such as artificially boosting the significance of one predictor in one direction, and the other one to the opposite direction. Perhaps some efforts to address how stable the timed-resolved RSA correlations for SC and SR are with and without the other highly correlated predictors will be valuable to raising confidence in the findings.

      (2) In "task overview", SR is defined as the word-response pair; however, in the Methods, lines 495-496, the definition changed to "the pairing between word and ISPC" which is in accordance with the values in the RDMs (e.g., mccbb and mcirb have similarity of 1, but they are linked to different responses, so should they not be considered different in terms of SR?). This needs clarification as they have very different implications for the task design and interpretation of results, e.g., how correlated the SC and SR manipulations were.

    1. eLife Assessment

      This important study used five metrics to compare the cost-effectiveness of intramural and extramural research funded by the National Institutes of Health in the United States between 2009 and 2019. They found that each type of research had its own set of strengths: extramural research was more cost-effective in terms of publications, whereas intramural research was more cost-effective in terms of influencing clinical work. The evidence supporting these findings is mostly solid, but there are a number of questions about the methods and data - notably about indirect cost recovery and other non-NIH sources of funding - that need to be answered.

    2. Reviewer #1 (Public review):

      Summary:<br /> This article carefully compares intramural vs. extramural National Institutes of Health funded research during 2009-2019, according to a variety of bibliometric indices. They find that extramural awards more cost-effectively fund outputs commonly used for academic review such as number of publications and citations per dollar, while intramural awards are more cost-effective at generating work that influences future clinical work, more closely in line with agency health goals.

      Strengths:<br /> Great care was taken in selecting and cleaning the data, and in making sure that intramural vs. extramural projects were compared appropriately. The data has statistical validation. The trends are clear and convincing.

      Weaknesses:<br /> The Discussion is too short and descriptive, and needs more perspective - why are the findings important and what do they mean? Without recommending policy, at least these should discuss possible implications for policy.

      The biggest problem I have with this submission is Figure 3, which shows a big decrease in clinical-related parameters between 2014 and 2019 in both intramural and extramural research (panels C, D and E). There is no obvious explanation for this and I did not see any discussion of this trend, but it cries out for investigation. This might, for example, reflect global changes in funding policies which might also influence the observed closing gaps between intramural and extramural research.

    3. Reviewer #2 (Public review):

      Summary:<br /> This article reports a cost-effectiveness comparison of intramural and extramural that NIH funded between 2009 and 2019. Using data obtained from NIH RePORTER, they linked total project costs to publication output, using robust validated metrics including Relative Citation Ratio (RCR), Approximate Potential to Translate (APT), and clinical citations. They find that after adjusting for confounders in regression and propensity-score analyses, extramural projects were generally more cost-effective, though intramural projects were more cost effective for generating clinical citations. They also describe differences in the topics of intramural- and extramural-funded publications, with intramural projects more likely to generate papers on viral infections and immunity or cancer metastases and survival, but less likely to generate papers on pregnancy and maternal health, brain connectivity and tasks, and adolescent experiences and depression. The authors aptly describe the different natures of the intramural and extramural funding models, including that extramural researchers spend much time writing grant applications and that the work described in extramural publications often receives funding from sources other than NIH grants.

      Strengths:<br /> The authors leveraged publicly available data (including RePORTER and the iCite repository) and used robust validated metrics (RCR, APT, clinical citations). They carefully considered a large number of confounders, including those related to the PI, and performed several well-described regression analyses.

      Weaknesses:<br /> Figure 3A shows intramural projects producing about 2.75 papers per year in 2009, whereas extramural projects are producing just over 1 paper per year. Extramural projects appear to catch up over the next five years. While the authors attempt to explain the difference in their figure legend, another explanation is that the intramural projects started well before 2009 but, as the authors state, intramural data only became available in 2009.

      As the authors note, funding information is often complex and difficult to characterize for an analysis like this. How did the authors handle: i) publications linked to multiple extramural grants; ii) publications linked to intramural and extramural grants; iii) publications linked NIH grants and non-NIH grants?<br /> I would think it necessary to somehow apportion credit, as otherwise it would appear that extramural projects are more productive than they truly are.

      Also, it is not clear if the authors took account of the indirect costs paid by the NIH to universities that have received extramural grants.

    4. Reviewer #3 (Public review):

      Summary:<br /> The manuscript "Comparing the outputs of intramural and extramural grants funded by National Institutes of Health" demonstrates a comparative study on two funding mechanisms adopted by the National Institutes of Health (NIH). The authors adopted a quantitative approach and introduced five metrics to compare the output of intramural and extramural grants. These findings reveal the impacts of intramural and extramural grants on the scientific community, providing funders with insights into the future decisions of funding mechanisms they should take.

      Strengths:<br /> The authors clearly presented their methods for processing the NIH project data and classifying projects into either intramural or extramural categories. The limitations of the study are also well-addressed.

      Weaknesses:<br /> The article would benefit from a more thorough discussion of the literature, a clearer presentation of the results (especially in the figure captions), and the inclusion of evidence to support some of the claims.

    1. eLife Assessment

      This paper presents important new findings about the impact of the TAK-003 vaccine against dengue based on a convincing reanalysis of trial data. The results corroborate those of the original trial analyses, but with reduced uncertainty about the estimates of the impact of the vaccine. The findings will be of interest to clinicians, infectious disease epidemiologists, trial statisticians and policymakers seeking to understand the vaccine's efficacy profile and associated uncertainties.

    2. Reviewer #1 (Public review):

      Summary:

      The authors reduce uncertainties in TAK-003 vaccine efficacy estimates by applying a multi-level model to all published Phase III clinical trial case data and sharing parameters across strata consistent with the data generation process. In line with our current understanding of the vaccine, they show that its efficacy depends on the serostatus and infecting serotype.

      Strengths:

      The methodology is well-described and technically sound, with clear explanations of how the authors reduce uncertainty through the model structure. The comparison of model estimates with and without independence parameter assumptions is particularly valuable. The data come from the Phase III RCT conducted over 4.5 years in 8 countries, and the study is the first to model efficacy using available country-specific data. The analysis is timely and addresses important public health questions regarding TAK-003 efficacy.

      Weaknesses:

      It is unclear whether the simulation study used to validate the model sampled from the priors (as stated in the methods) or the posterior distributions. Supplementary figures 19-28 show that sampled parameters often derive from narrower distributions than the priors, with sampled areas varying by subgroup. Sampling from posterior distributions makes the validation somewhat circular. As many parameters are estimated stratified by multiple subgroups, identifiability issues may arise. Model variations with fewer parameter dependencies could impact the resulting estimates.

      Assessment of aims and conclusions:

      The authors achieve their aims of reducing uncertainty in efficacy estimates and show that efficacy varies by serostatus and serotype. The conclusions are well-justified, although they could be strengthened by clarifying the model validation, as discussed above.

      Impact and utility:

      This work contributes valuable evidence demonstrating TAK-003's serostatus and serotype-specific efficacy and highlights remaining uncertainties in the protection or risk against DENV3/4 in seronegative individuals. The methods are well-described and would be useful to other modellers, and could be applied to additional dengue vaccines like the Butantan-DV vaccine currently under development.

      Additional context:

      Several factors may influence the estimates but cannot be addressed using public data, including the role of subclinical infections, flavivirus cross-immunity, and the imperfect use of hospitalisation as a proxy for severe disease.

    3. Reviewer #2 (Public review):

      Summary:

      In this paper, the authors used a multi-level modelling approach to reanalyse trial data from Takeda's Phase III randomised control trial investigating the efficacy of the TAK-003 vaccine against dengue. The aim of the paper is to refine uncertainty by incorporating all the available data into the model and pooling across stratifications that are correlated. A major challenge in constructing a likelihood that allows for data available at differing levels of aggregation by group and outcome, and at different time intervals. This is done by first supposing that the data is available without aggregation for all groups, outcomes and time points, and then marginalising over the aggregated levels. The model is validated using simulations and then applied to trial data from Takeda. Results appear to corroborate those of Takeda with reduced uncertainty in the estimates.

      Strengths:

      The main strength of the paper is the multi-level modelling approach. It is a particularly natural one for this setting. One reason for this, as discussed in the paper, is that correlations across stratifications can arise when there are similarities in their underlying causal structure. It is more realistic to model this nested data structure hierarchically. Another reason, also well discussed in the paper, is the reduction in uncertainty you get when you pool estimates across related groups. Multi-level modelling is also beneficial when group sizes are different. For example, there were too few cases of DENV-4 from seronegatives, which resulted in hospitalised disease for the original analysis to produce estimates, but by using multi-level modelling, this paper can produce estimates. The modelling framework developed in this paper will be simple to extend to further trial data collected in the future.

      Another strength is that it is reanalysing existing trial data, which is both cost-effective and beneficial for scientific reproducibility. This approach also helps to assess the robustness of conclusions about the efficacy of the TAK-003 vaccine to use of different analytical methods.

      The paper is well-written. The tables and figures presented in this paper are particularly informative. Protection conferred by the vaccine varies depending upon which variant a person is exposed to, their serostatus, and time since vaccination. The analysis presented supports the discussed conclusions. Comparisons between the results of this paper and the results of the original trial analysis are also shown and demonstrate a reduction in the uncertainty of parameter estimates, as desired.

      Weaknesses:

      The weakness of the paper is that it reports per-exposure protection instead of vaccine efficacy. This is methodologically sound, but it does limit the comparability of this study with the original trial analyses, which reported vaccine efficacy. It is therefore unclear whether the reduction in uncertainty observed is due solely to the multi-level modelling approach or whether it may be due in part to the parameters of interest being slightly different.

    4. Reviewer #3 (Public review):

      Summary:

      The authors provide estimates of the efficacy of the dengue vaccine, which is notoriously complex given the different serotypes and complex immunity. Through their method using publicly available data, the estimates have less uncertainty and are of use to the field in understanding the future possible impact of the vaccine.

      Strengths:

      This is an elegant analysis addressing an important question. The pooling of common factors for estimation is nice and adds strength to the analysis. It is an important analysis for the field and our understanding of the vaccine, and for the analysis of future multi-site trials for the dengue vaccine.

      Weaknesses:

      It would be useful to have more understanding of how the way the vaccine efficacy is defined here is related to the previous estimates and a greater understanding of how the estimated impact changes over time.

    1. eLife Assessment

      This study makes a valuable contribution by separating two timescales of adaptation: rapid, within block reductions in learning rate, and slower, location specific, meta-learned adjustments. Behavioural data and computational modeling converge to support both processes. The evidence is solid with neuroimaging results suggesting that meta-learned learning rates are encoded in the orbitofrontal cortex, while prediction errors are represented in a distributed network including the ventral striatum and are modulated by expected error magnitude, though the specificity of these effects requires further contextualization. The manuscript is timely and clearly written; its main limitation is the weak linkage between neural signals and behavior, leaving uncertainty over whether the reported signals play a mechanistic role in learning.

    2. Reviewer #1 (Public review):

      Summary:

      Simoens and colleagues use a continuous estimation task to disentangle learning rate adjustments on shorter and longer timescales. They show that participants rapidly decrease learning rates within a block of trials in a given "location", but that they also adjust learning rates for the very first trial based on information accrued gradually about the statistics of each location, which can be viewed as a form of metalearning. The authors show that the metalearned learning rates are represented in patterns of neural activity in the orbitofrontal cortex, and that prediction errors are represented in a constellation of brain regions, including the ventral striatum, where they are modulated by expectations about error magnitude to some degree. Overall, the work is interesting, timely, and well communicated. My primary concern with the work was that the link between the brain signals and their role in the behavior of interest was not well explored, raising some questions about the degree to which signals are really involved in the learning process, versus playing some downstream role.

      Strengths:

      The authors build on an interesting task design, allowing them to distinguish moment-to-moment adjustments in learning rate from slower adjustments in learning rate corresponding to slowly-gained knowledge about the statistics of specific "locations". Behavior and computational modeling clearly demonstrate that individuals adjust to environmental statistics in a sort of metalearning. fMRI data reveal representations of interest, including those related to adjusted learning rates and their impact on the degree of prediction error encoding in the striatum.

      Weaknesses:

      It was nice to see that the authors could distinguish differences between the OFC signals that they observed and those in the visual regions based on changes through the session. However, the linkage between these brain activations and a functional role in generating behavior was left unexplored. Without further exploration, it is hard to tell exactly what role the signals might be playing, if any, in the behavior of interest.

    3. Reviewer #2 (Public review):

      Summary:

      Across two experiments, this work presents a novel spatial predictive inference paradigm that facilitates the investigation of meta-learning across multiple environments with distinct statistics, as well as more local learning from sequences of observations within an environment. The authors present behavioral data indicating that people can indeed learn to distinguish between noise levels and calibrate their learning rates accordingly across environments, even on initial trials when revisiting an environment. They complement their behavioral results with computational modeling, further bolstering claims of both local and global adaptation. Additional fMRI results support the role of OFC in this meta-learning process, with central OFC activity reflecting similarity between environments. This similarity emerges over time with task experience. Holistically, this paradigm and these data add to our understanding of how humans dynamically adapt their behavior on different timescales.

      Strengths:

      The novel paradigm represents a clever and creative expansion of spatial predictive inference tasks. The cover story was well chosen to facilitate an intuitive understanding of both the differences between environments and the estimation of the mean within environments.

      Additionally, the authors present complementary results from two experiments, which strengthen the behavioral findings. This is especially effective as the initial experiment's results were a bit noisy, and the modifications within the second experiment increased both power and the specificity/accuracy of participant predictions. Taken together, the behavioral results provide convincing evidence that participants did distinguish environments based on their underlying statistics and adapted their initial behavior accordingly.

      Beyond this, the combination of behavioral results, computational modeling, and neuroimaging enhances the impact of the work. It paints a fuller picture of whether and how humans meta-learn the global statistics of environments, and this is an important direction for the field of adaptive learning.

      Weaknesses:

      (1) The authors make the distinction between meta-learned "global" learning rates and within-environment learning rate adaptation in response to "local" fluctuations/observations. Though the experimental paradigm is novel, there are certainly links to prior work - for instance, though change point structures don't entail revisiting unique environments, they do require meta-learning from environmental statistics that is distinct from transient local adaptation to prediction errors. This tendency to increase one's learning rate after large prediction errors is appropriate in change point environments, though, as is true in this study, the amount of increase should be dependent on. This represents a similar kind of slower-timescale learning or reuse of more "global" parameters, and can be seen to different extents in prior work. It might benefit readers if the authors were to link the current work to previous research more explicitly to draw clearer connections between the approaches and findings.

      (2) Throughout much of the paper, the authors refer to the distinctions between environments primarily as differences in "initial learning rates" or "environment-specific learning rates." This is particularly prominent when discussing fMRI results. Though the optimal initial learning rate did differ across environments, this was the result of differences in underlying task statistics. It will be important to clarify this throughout the text, because of the confounds between task statistics and initial learning rate (and to some extent, the position on the screen), it is not possible to separate the impact of these specific variables. This is also relevant to understanding the justification for using methods like RSA to test whether brain regions represent task states similarly. If the main hypothesis is that neural activity reflects the (initial) learning rate itself, then a univariate analysis approach would seem more natural.

      (3) For the neuroimaging results in particular, the specificity of some of the results (e.g. ventral striatum showing an effect of prediction error only in the low noise condition in the second half of task experience, only on the first trial) is a bit surprising. Additional justification of or context for these results would be useful to help readers gauge how expected or surprising these findings are.

      (4) There are some methodological details that are unclear (e.g., how were the positions of the crabs selected relative to the location they emerged from? Looking at Figure 1C, it looks like the crabs spread out unevenly, and that the single position they emerge from is not necessarily at the center of the crab locations.) Additional detail and clarity would help address some unanswered questions (more details below).

    1. eLife Assessment

      The authors make an important advance in enzyme annotation by fusing biochemical knowledge with language‑model-based learning to predict catalytic residues from sequence alone. Squidly, a new ML method, outperforms existing tools on standard benchmarks and on the CataloDB dataset. The work has solid support, yet clarifications on dataset biases, ablation analyses, and uncertainty filtering would strengthen its efficiency claims.

    2. Reviewer #1 (Public review):

      In this well-written and timely manuscript, Rieger et al. introduce Squidly, a new deep learning framework for catalytic residue prediction. The novelty of the work lies in the aspect of integrating per-residue embeddings from large protein language models (ESM2) with a biology-informed contrastive learning scheme that leverages enzyme class information to rationally mine hard positive/negative pairs. Importantly, the method avoids reliance on the use of predicted 3D structures, enabling scalability, speed, and broad applicability. The authors show that Squidly outperforms existing ML-based tools and even BLAST in certain settings, while an ensemble with BLAST achieves state-of-the-art performance across multiple benchmarks. Additionally, the introduction of the CataloDB benchmark, designed to test generalization at low sequence and structural identity, represents another important contribution of this work.

      I have only some minor comments:

      (1) The manuscript acknowledges biases in EC class representation, particularly the enrichment for hydrolases. While CataloDB addresses some of these issues, the strong imbalance across enzyme classes may still limit conclusions about generalization. Could the authors provide per-class performance metrics, especially for underrepresented EC classes?

      (2) An ablation analysis would be valuable to demonstrate how specific design choices in the algorithm contribute to capturing catalytic residue patterns in enzymes.

      (3) The statement that users can optionally use uncertainty to filter predictions is promising but underdeveloped. How should predictive entropy values be interpreted in practice? Is there an empirical threshold that separates high- from low-confidence predictions? A demonstration of how uncertainty filtering shifts the trade-off between false positives and false negatives would clarify the practical utility of this feature.

      (4) The excerpt highlights computational efficiency, reporting substantial runtime improvements (e.g., 108 s vs. 5757 s). However, the comparison lacks details on dataset size, hardware/software environment, and reproducibility conditions. Without these details, the speedup claim is difficult to evaluate. Furthermore, it remains unclear whether the reported efficiency gains come at the expense of predictive performance.

      (5) Given the well-known biases in public enzyme databases, the dataset is likely enriched for model organisms (e.g., E. coli, yeast, human enzymes) and underrepresents enzymes from archaea, extremophiles, and diverse microbial taxa. Would this limit conclusions about Squidly's generalisability to less-studied lineages?

    3. Reviewer #2 (Public review):

      Summary:

      The authors aim to develop Squidly, a sequence-only catalytic residue prediction method. By combining protein language model (ESM2) embedding with a biologically inspired contrastive learning pairing strategy, they achieve efficient and scalable predictions without relying on three-dimensional structure. Overall, the authors largely achieved their stated objectives, and the results generally support their conclusions. This research has the potential to advance the fields of enzyme functional annotation and protein design, particularly in the context of screening large-scale sequence databases and unstructured data. However, the data and methods are still limited by the biases of current public databases, so the interpretation of predictions requires specific biological context and experimental validation.

      Strengths:

      The strengths of this work include the innovative methodological incorporation of EC classification information for "reaction-informed" sample pairing, thereby enhancing the discriminative power of contrastive learning. Results demonstrate that Squidly outperforms existing machine learning methods on multiple benchmarks and is significantly faster than structure prediction tools, demonstrating its practicality.

      Weaknesses:

      Disadvantages include the lack of a systematic evaluation of the impact of each strategy on model performance. Furthermore, some analyses, such as PCA visualization, exhibit low explained variance, which undermines the strength of the conclusions.

    1. Author response:

      We thank the reviewers for their constructive feedback on the article’s strengths and weaknesses. In response, we plan to strengthen our work in a revised version by (i) providing an additional example of our method’s implementation and (ii) framing our contribution more clearly as a continuation of the line of research that characterises neuronal models in terms of their bifurcation structure.

      Experimental validation, however, is beyond the scope of this study. Constructing experimental bifurcation diagrams remains a major challenge, particularly for unstable branches. Although some techniques exist to approximate branches of unstable steady states, unstable limit cycles are far more difficult to capture. Additionally, in practice, many factors vary during recordings, and generating reliable diagrams would require a large number of tightly controlled experimental repetitions whose stability often cannot be ensured. Two-dimensional bifurcation diagrams, as needed for the analysis in our manuscript, are even more challenging to obtain because the extensive and stable recordings would have to be available from the same cell at different values of the second parameter (such as different extracellular potassium concentrations). At this stage, our method can be applied to the reduction of detailed conductance-based models, which themselves are constrained by experimental data (for example, gating functions fitted to voltage-clamp recordings). This way, simple yet dynamically faithful phenomenological models for efficient use in network analysis and simulation can be derived from more complex, biophysical models. In contrast to the traditional voltage fitting approach, these models can also capture changes in additional parameters (such as extracellular potassium concentration).

    2. Reviewer #2 (Public review):

      Summary:

      The authors derive an integrate-and-fire model to describe the dynamics of a more complex Wang-Buzsaki model and compare the two models. A detailed discussion of bifurcation schemes in both models is convincing and allows us to evaluate the simpler model.

      Strengths:

      The idea is interesting, and the mathematical approach appears to be convincing. In addition, differences between the simple and original models are also discussed.

      Weaknesses:

      A comparison to experimental data is necessary to support the theoretical work.

    3. Reviewer #1 (Public review):

      Summary:

      From a big picture viewpoint, this work aims to provide a method to fit parameters of reduced models for neural dynamics so that the resulting tuned model has a bifurcation diagram that matches that of a more complex, computationally expensive model. The matching of bifurcation diagrams ensures that the model dynamics agree on a region of parameter space, rather than just at specially tuned values, and that the models share properties such as qualitative features of their phase response curves, as the authors demonstrate. A notable point is the inclusion of extracellular potassium concentration dynamics into the reduced model - here, the quadratic integrate-and-fire model; this is straightforward but nonetheless useful for studying certain phenomena.

      Strengths:

      The paper demonstrates the method specifically on the fitting of the quadratic integrate-and-fire model, with potassium concentration dynamics included, to the Wang-Buzsaki model extended to include the potassium component. The method works very well overall in this instance. The resulting model is thoroughly compared with the original, in terms of bifurcation diagrams, production of various activity patterns, phase response curves, and associated phase-locking and synchronization properties.

      Weaknesses:

      It is important to note that the proposed method requires that a target bifurcation diagram be known. In practical terms, this means that the method may be well suited to fitting a reduced model to another, more complicated model, but is not likely to be useful for fitting the model to data. Certainly, the authors did not illustrate any such application. Secondly, the authors do not provide any sort of general algorithm but rather give a demonstration of a single example of fitting one specific reduced model to one specific conductance-based model. Finally, the main idea of the paper seems to me to be a natural descendant of the chain of reasoning, starting from Rinzel - continuing through Bertram; Golubitsky/Kaper/Josic; Izhikevich; and others - that a fundamental way to think about neuronal models, especially those involving bursting dynamics, is in terms of their bifurcation structure. According to this line of reasoning, two models are "the same" if they have the same bifurcation structure. Thus, it becomes natural to fit a reduced model to a more complicated model based on the bifurcation structure. The authors deserve credit for recognizing and implementing this step, and their work may be a useful example to the community. But the manuscript should have described and cited this chain of works to put the current study in the correct context.

    4. eLife Assessment

      This work demonstrates an objective way to select parameter values for a quadratic integrate-and-fire model so that its bifurcation diagram matches a specific target diagram, generated from the Wang-Buzsaki model. The method is useful for the field and is presented with convincing evidence. The method is currently limited in its ability to be applied to data, but improves our mathematical tools to treat a rarely studied type of bifurcation.

    1. eLife Assessment

      In this important study, the authors conducted extensive atomistic and coarse-grained simulations as well as a lattice Monte Carlo analysis to probe the driving force and functional impact of supercomplex formation in the inner mitochondrial membrane. The study highlighted the major contribution from membrane mechanics to the supercomplex formation and revealed interesting differences in structural and dynamical features of the protein components upon complex formation. Upon revision, the analysis is considered solid, although the magnitude of estimated membrane deformation energies seem somewhat surprisingly large. Overall, the study is thorough, creative and the impact on the field of bioenergetics is expected to be significant.

    2. Reviewer #1 (Public review):

      This paper by Poverlein et al reports the substantial membrane deformation around the oxidative phosphorylation super complex, proposing that this deformation is a key part of super complex formation. I found the paper interesting and well-written.

      * Analysis of the bilayer curvature is challenging on the fine lengthscales they have used and produces unexpectedly large energies (Table 1). Additionally, the authors use the mean curvature (Eq. S5) as input to the (uncited, but it seems clear that this is Helfrich) Helfrich Hamiltonian (Eq. S7). If an errant factor of one half has been included with curvature, this would quarter the curvature energy compared to the real energy, due to the squared curvature. The bending modulus used (ca. 5 kcal/mol) is small on the scale of typically observed biological bending moduli. This suggests the curvature energies are indeed much higher even than the high values reported. Some of this may be due to the spontaneous curvature of the lipids and perhaps the effect of the protein modifying the nearby lipids properties.

      * It is unclear how CDL is supporting SC formation if its effect stabilizing the membrane deformation is strong or if it is acting as an electrostatic glue. While this is a weakenss for a definite quantification of the effect of CDL on SC formation, the study presents an interesting observation of CDL redistribution and could be an interesting topic for future work.

      In summary, the qualitative data presented are interesting (especially the combination of molecular modeling with simpler Monte Carlo modeling aiding broader interpretation of the results). The energies of the membrane deformations are quite large. This might reflect the roles of specific lipids stabilizing those deformations, or the inherent difficulty in characterizing nanometer-scale curvature.

    3. Reviewer #3 (Public review):

      Summary:

      In this contribution, the authors report atomistic, coarse-grained and lattice simulations to analyze the mechanism of supercomplex (SC) formation in mitochondria. The results highlight the importance of membrane deformation as one of the major driving forces for the SC formation, which is not entirely surprising given prior work on membrane protein assembly, but certainly of major mechanistic significance for the specific systems of interest.

      Strengths:

      The combination of complementary approaches, including an interesting (re)analysis of cryo-EM data, is particularly powerful, and might be applicable to the analysis of related systems. The calculations also revealed that SC formation has interesting impacts on the structural and dynamical (motional correlation) properties of the individual protein components, suggesting further functional relevance of SC formation. In the revision, the authors further clarified and quantified their analysis of membrane responses, leading to further insights into membrane contributions. They have also toned down the decomposition of membrane contributions into enthalpic and entropic contributions, which is difficult to do. Overall, the study is rather thorough, highly creative and the impact on the field is expected to be significant.

      Weaknesses:

      Upon revision, I believe the weakness identified in previous work has been largely alleviated.

    4. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      This paper by Poverlein et al reports the substantial membrane deformation around the oxidative phosphorylation super complex, proposing that this deformation is a key part of super complex formation. I found the paper interesting and well-written but identified a number of technical issues that I suggest should be addressed:

      We thank Reviewer 1 for finding our work interesting. We have addressed the technical issues below.

      (1) Neither the acyl chain chemical makeup nor the protonation state of CDL are specified. The acyl chain is likely 18:2/18:2/18:2/18:2, but the choice of the protonation state is not straightforward.

      We thank the Reviewer for highlighting this missing information. We have now added this information in the Materials and Methods section:

      "…were performed in a POPC:POPE:cardiolipin (2:2:1) membrane containing 5 mol% QH<sub>2</sub> / Q (1:1 ratio). Cardiolipin was modeled as tetraoleoyl cardiolipin (18:1/18:1/18:1/18:1) with a headgroup modeled in a singly protonated state (with Q<sub>tot</sub>=-1)."

      (2) The analysis of the bilayer deformation lacks membrane mechanical expertise. Here I am not ridiculing the authors - the presentation is very conservative: they find a deformed bilayer, do not say what the energy is, but rather try a range of energies in their Monte Carlo model - a good strategy for a group that focuses on protein simulations. The bending modulus and area compressibility modulus are part of the standard model for quantifying the energy of a deformed membrane. I suppose in theory these might be computed by looking at the per-lipid distribution in thickness fluctuations, but this route is extremely perilous on a per-molecule basis. Instead, the fluctuation in the projected area of a lipid patch is used to imply the modulus [see Venable et al "Mechanical properties of lipid bilayers from molecular dynamics simulation" 2015 and citations within]. Variations in the local thickness of the membrane imply local variations of the leaflet normal vector (the vector perpendicular to the leaflet surface), which is curvature. With curvature and thickness, the deformation energy is analyzed.

      See:

      Two papers: "Gramicidin A Channel Formation Induces Local Lipid Redistribution" by Olaf Andersen and colleagues. Here the formation of a short peptide dimer is experimentally linked to hydrophobic mismatch. The presence of a short lipid reduces the influence of the mismatch. See below regarding their model cardiolipin, which they claim is shorter than the surrounding lipid matrix.

      Also, see:

      Faraldo-Gomez lab "Membrane transporter dimerization driven by differential lipid solvation energetics of dissociated and associated states", 2021. Mondal et al "Membrane Driven Spatial Organization of GPCRs" 2013 and many citations within these papers.

      While I strongly recommend putting the membrane deformation into standard model terms, I believe the authors should retain the basic conservative approach that the membrane is strongly deformed around the proteins and that making the SC reduces the deformation, then exploring the consequences with their discrete model.

      We thank the Reviewer for the suggestions and for pointing out the additional references, which are now cited in the revised manuscript. The analysis is indeed significantly more complex for large multi-million atom supercomplexes in comparison to small peptides (gramicidin A) or model systems of lipid membranes. However, in the revised manuscript, we have conducted further analysis on the membrane curvature effects based on the suggestions. We were able to estimate the energetic contribution of the changes in local membrane thickness and curvature, which are now summarized in Table 1, and described in the main text and SI. We find that both the curvature and local thickness contribute to the increased stability of SC.

      We have now extensively modified the result to differentiate between different components of membrane strain properly:

      "We observe a local decrease in the membrane thickness at the protein-lipid interface (Fig. 2G, Fig S2A,D,E), likely arising from the thinner hydrophobic belt region of the OXPHOS proteins (ca. 30 Å, Fig. S1A) relative to the lipid membrane (40.5 Å, Fig. S1). We further observe ∼30% accumulation of cardiolipin at the thinner hydrophobic belt regions (Fig. 2H, Fig. S2B,F,G), with an inhomogeneous distribution around the OXPHOS complexes. While specific interactions between CDL and protein residues may contribute to this enrichment (Fig. 2N), CDL prefers thermodynamically thinner membranes (∼38 Å, Fig. S1B, Fig. S5F). These changes are further reflected in the reduced end-toend distance of lipid chains in the local membrane belt (see Methods, Fig. S6, cf. also Refs. (41-44). In addition to the perturbations in the local membrane thickness, the OXPHOS proteins also induce a subtle inward curvature towards the protein-lipid interface (Fig. S5G), which could modulate the accessibility of the Q/QH2 substrate into the active sites of CI and CIII<sub>2</sub> (see below, section Discussion). This curvature is accompanied by a distortion of the local membrane plane itself (Fig. 2A-F, Fig. S4AC, Fig. S7), with perpendicular leaflet displacements reaching up to ~2 nm relative to the average leaflet plane.

      To quantify the membrane strain effects, we analyzed the cgMD trajectories by projecting the membrane surface onto a 2-dimensional grid and calculating the local membrane height and thickness at each grid point. From these values, we quantified the local membrane curvature (Fig. S5H), which measures the energetic cost of deforming the membrane from a flat geometry (ΔG<sub>curv</sub>). We also computed the energetics associated with changes in the membrane thickness, assessed from the deviations from an ideal local membrane in the absence of embedded proteins (ΔG<sub>thick</sub>, see Supporting Information, for technical details). Our analysis suggests that both contributions are substantially reduced upon formation of the SC, with the curvature decreasing by 19.8 ± 1.3 kcal mol-1 and the thickness penalty by 2.8 ± 2.0 kcal mol-1 (Table 1). These results indicate a significant thermodynamic advantage for SC formation, as it minimizes lipid deformation and stabilizes the membrane environment surrounding Complex I and III.”

      […]

      “Taken together, the analysis suggests that the OXPHOS complexes affect the mechanical properties of the membranes by inducing a small inwards curvature towards the protein-lipid interface (Fig. S5), resulting in a membrane deformation effect, while the SC formation releases some deformation energy relative to the isolated OXPHOS complexes. The localization of specific lipids around the membrane proteins, as well as local membrane perturbation effects, is also supported by simulations of other membrane proteins (45, 46), suggesting that the effects could arise from general protein-membrane interactions.”

      Our Supporting Information section now provides additional information about the membrane curvature.

      (41) R. M. Venable, F. L. H. Brown, R. W. Pastor, Mechanical properties of lipid bilayers from molecular dynamics simulation. Chemistry and Physics of Lipids 192, 60-74 (2015).

      (42) R. Chadda et al., Membrane transporter dimerization driven by differential lipid solvation energetics of dissociated and associated states. eLife 10, e63288 (2021).

      (43) S. Mondal et al., Membrane Driven Spatial Organization of GPCRs. Scientific Reports 3, 2909 (2013).

      (44) J. A. Lundbæk, S. A. Collingwood, H. I. Ingólfsson, R. Kapoor, O. S. Andersen, Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. Journal of The Royal Society Interface 7, 373-395 (2009).

      We also expanded our SI Method section to account for the new calculations:

      “Analysis of lipid chain end-to-end length

      To probe the protein-induced deformation effect of the membrane, the membrane curvature (H), and the end-to-end distance between the lipid chains, were computed based on aMD and cgMD simulations. The lipid chain length was computed from simulations A1-A6 and C1 based on the first and last carbon atoms of each lipid chain. For example, the end-to-end length of a cardiolipin chain was determined as the distance between atom “CA1” and atom “CA18”.

      “Membrane Curvature and Deformation Energy

      The local mean curvature of the membrane midplane was computed by approximating the membrane surface as a height function Z(x,y), defined as the average location of the N-side and P-side leaflets at each grid point. Based on this, the mean curvature H(x,y) was calculated as,

      where the derivatives are defined as .

      The thickness deformation energy was computed from the local thickness d(x,y) relative to a reference thickness distribution F(d), derived from membrane-only simulations, and converted to a free energy profile via Boltzmann inversion. At each grid point, the F(d) was summed over the grid,

      The bending deformation energy was computed from the mean curvature field H(x,y), assuming a constant bilayer bending modulus κ (taken as 20 kJ mol-1 = 4.78 kcal mol-1):

      where Δ_A_ is the area of the grid cell.

      The thickness and curvature fields were obtained by projecting the coarse-grained MD trajectories (one frame per ns) onto a 2D-grid with a resolution of 0.5 nm. Grid points with low occupancy were downweighted to mitigate noise. More specifically, points with counts below 50% of the median grid count were scaled linearly by their relative count value. To focus the analysis on the region around the protein– membrane interface, only grid points within a radius of 20 nm from the center of the complex were included in the energy calculations. Energies were normalized to an effective membrane area of 1000 nm2 to facilitate the comparison between systems. Bootstrapping with resampling over frames was performed to estimate the standard deviations of G<sub>thick</sub> and G<sub>curv</sub>.

      We find that G<sub>curve</sub> converges slowly due to its sensitivity to local derivatives and the small grid size required to resolve the curvature contribution near the protein. Consequently, tens of microseconds of simulations were necessary to obtain well-converged estimates of the curvature energy.”

      (1) If CDL matches the hydrophobic thickness of the protein it would disrupt SC formation, not favor it. The authors' hypothesis is that the SC stabilizes the deformed membrane around the separated elements. Lipids that are compatible with the monomer deformed region stabilize the monomer, similarly to a surfactant. That is, if CDL prefers the interface because the interface is thin and their CDL is thin, CDL should prevent SC formation. A simpler hypothesis is that CDL's unique electrostatics are part of the glue.

      We rephrased the corresponding paragraph in the Discussion section to reflect the role of electrostatics for the behavior of cardiolipin.

      "…supporting the involvement of CDL as a "SC glue". In this regard, electrostatic effects arising from the negatively charged cardiolipin headgroup could play an important role in the interaction of the OXPHOS complexes."

      Generally our simulations suggest that CDL prefers thinner membranes, which could rationalize these findings.

      "We find that CDL prefers thinner membranes relative to the neutral phospholipids (PE/PC, Fig. S5F),[…]”

      (2) Error bars for lipid and Q* enrichments should be computed averaging over multi-lipid regions of the protein interface, e.g., dividing the protein-lipid interface into six to ten domains, in particular functionally relevant regions. Anionic lipids may have long, >500 ns residence times, which makes lipid enrichment large and characterization of error bars challenging in short simulations. Smaller regions will be noisy. The plots depicted in, for example, Figure S2 are noisy.

      It is indeed challenging to capture lipid movements on the timescales accessible for atomistic MD, and hence the data in Figure S2 contains some noise. In this regard, for the cgMD data presented in the revised Fig. S2H,I, the concentration data was averaged for six domains of the protein-lipid interface.

      (3) The membrane deformation is repeatedly referred to as "entropic" without justification. The bilayer has significant entropic and enthalpic terms just like any biomolecule, why are the authors singling out entropy? The standard "Helfrich" energetic Hamiltonian is a free energy model in that it implicitly integrates over many lipid degrees of freedom.

      We apologize for the unclear message – our intention was not to claim that the effects are purely entropic, but could arise from a combination of both entropic and enthalpic effects. We hope that this has now been better clarified in the revised manuscript. We also agree that it is difficult to separate between entropic and enthalpic effects. However, we wish to point out that, e.g., the temperature-dependence of the SC formation suggests that the entropic contribution is also affecting the process.

      Regarding the Helfrich Hamiltonian, we note that the standard model assumes a homogeneous fluid-like sheet. We have thus difficulties in relating this model to capture the local effects.

      Revisions / clarifications in the main manuscript:

      "SC formation is affected by both enthalpic and entropic effects."

      "We have shown here that the respiratory chain complexes perturb the IMM by affecting the local membrane dynamics. The perturbed thickness and alteration in the lipid dynamics lead to an energetic penalty, which can be related to molecular strain effects, as suggested by the changes of both the internal energy of lipid and their interaction with the surroundings (Fig. S2, S5, S6), which are likely to be of enthalpic origin. However, lipid binding to the OXPHOS complex also results in a reduction in the translational and rotational motion of the lipids and quinone (Fig. S8-S9), which could result in entropic changes. The strain effects are therefore likely to arise from a combination of enthalpic and entropic effects."

      (4) Figure S7 shows the surface area per lipid and leaflet height. This appears to show a result that is central to the interpretation of SC formation but which makes very little sense. One simply does not increase both the height and area of a lipid. This is a change in the lipid volume! The bulk compressibility of most anything is much higher than its Young's modulus [similar to area compressibility]. Instead, something else has happened. My guess is that there is *bilayer* curvature around these proteins and that it has been misinterpreted as area/thickness changes with opposite signs of the two leaflets. If a leaflet gets thin, its area expands. If the manuscript had more details regarding how they computed thickness I could help more. Perhaps they measured the height of a specific atom of the lipid above the average mid-plane normal? The mid-plane of a highly curved membrane would deflect from zero locally and could be misinterpreted as a thickness change.

      We thank the Reviewer for this insightful comment. We chose to define the membrane thickness based on the height of the lipid P-atoms above the average midplane normal. The Reviewer is correct that this measurement gives a changing thickness for a highly curved membrane. However, in this scenario, the thickness would always be overestimated [d<sub>true</sub> = d<sub>measured</sub> / cos (angle between global mid-plane normal and local mid-plane normal)]. Therefore, since we observe a smaller thickness at the protein-lipid interface, the effect is not likely to result from an artifact. For further clarification, see Fig. S4I showing the averaged local position of the Patoms in the cgMD simulations, which further supports that there is a local deformation of the lipid.

      The changes in the local membrane thickness are also supported by our analysis of the membrane thickness (Fig.S2A) and by the lipid chain length distributions (Fig.S6).

      (5) The authors write expertly about how conformational changes are interpreted in terms of function but the language is repeatedly suggestive. Can they put their findings into a more quantitative form with statistical analysis? "The EDA thus suggests that the dynamics of CI and CIII2 are allosterically coupled."

      We extended our analysis on the allosteric effects, which is now described in the revised main text, the SI and the Methods section:

      "In this regard, our graph theoretical analysis (Fig. S11C,D) further indicates that ligand binding to Complex I induces a dynamic crosstalk between NDUFA5 and NDUFA10, consistent with previous work (50, 51), and affecting also the motion of UQCRC2 with respect to its surroundings. Taken together, these effects suggest that the dynamics of CI and CIII<sub>2</sub> show some correlation that could result in allosteric effects, as also indicated based on cryo-EM analysis (40)."

      “Extended Methods

      Allosteric Network Analysis. Interactions between amino acid residues were modeled as an interaction graph, where each residue was represented by a vertex. Two nodes were connected by an edge, if the Ca atoms of the corresponding amino acid residues were closer than 7.5 Å for more than 50% of the frames of simulations S1-S6 (time step of frames: 1 ns). (7) This analysis was carried out for the aMD simulations of the supercomplex, analyzing differences between the Q bound and apo states (simulations A1+A2+A3 vs. A4+A5+A6).”

      (6) The authors write "We find that an increase in the lipid tail length decreases the relative stability of the SC (Figure S5C)" This is a critical point but I could not interpret Figure S5C consistently with this sentence. Can the authors explain this?

      We apologize for this oversight. This sentence should refer to Fig. S5F, which has now been corrected. We have additionally updated the figure to provide an improved estimation of the thickness contribution based on the lipid tail length.

      "We find that an increase in the lipid tail length decreases the relative stability of the SC (Fig. S5F)"

      (7) The authors use a 6x6 and 15x15 lattice to analyze SC formation. The SC assembly has 6 units of E_strain favoring its assembly, which they take up to 4 kT. At 3 kT, the SC should be favored by 18 kT, or a Boltzmann factor of 10^8. With only 225 sites, specific and non-specific complex formation should be robust. Can the authors please check their numbers or provide a qualitative guide to the data that would make clear what I'm missing?

      In the revised manuscript, we have now clarified the definition of the lattice model and the respective energies:

      In summary, the qualitative data presented are interesting (especially the combination of molecular modeling with simpler Monte Carlo modeling aiding broader interpretation of the results) ... but confusing in terms of the non-standard presentation of membrane mechanics and the difficulty of this reviewer to interpret some of the underlying figures: especially, the thickness of the leaflets around the protein and the relative thickness of cardiolipin. Resolving the quantitative interpretation of the bilayer deformation would greatly enhance the significance of their Monte Carlo model of SC formation.

      We thank the Reviewer for the helpful suggestion. We hope that the revisions help to clarify the non-standard presentation and connect to concepts used in the lipid membrane community.

      Reviewer #2 (Public review):

      Summary:

      The authors have used large-scale atomistic and coarse-grained molecular dynamics simulations on the respiratory chain complex and investigated the effect of the complex on the inner mitochondrial membrane. They have also used a simple phenomenological model to establish that the super complex (SC) assembly and stabilisation are driven by the interplay between the "entropic" forces due to strain energy and the enthalpies forces (specific and non-specific) between lipid and protein domains. The authors also show that the SC in the membrane leads to thinning and there is preferential localisation of certain lipids (Cardiolipin) in the annular region of the complex. The data reports that the SC assembly has an effect on the conformational dynamics of individual proteins making up the assembled complex and they undergo "allosteric crosstalk" to maintain the stable functional complex. From their conformational analyses of the proteins (individual and while in the complex) and membrane "structural" properties (such as thinning/lateral organization etc) as well from the out of their phenomenological lattice model, the authors have provided possible implications and molecular origin about the function of the complex in terms of aspects such as charge currents in internal mitochondrion membrane, proton transport activity and ATP synthesis.

      Strengths:

      The work is bold in terms of undertaking modelling and simulation of such a large complex that requires simulations of about a million atoms for long time scales. This requires technical acumen and resources. Also, the effort to make connections to experimental readouts has to be appreciated (though it is difficult to connect functional pathways with limited (additive forcefield) simulations.

      We thank the Reviewer for recognizing the challenge in simulating multimillion atom membrane proteins. We also thank the Reviewer for recognizing the connections we have made to different experiments. Our work indeed relies on atomistic and coarse-grained molecular simulations, which are widely recognized to provide accurate models of membrane proteins.

      Weakness:

      There are several weaknesses in the paper (please see the list below). Claims such as "entropic effect", "membrane strain energy" and "allosteric cross talks" are not properly supported by evidence and seem far-fetched at times. There are other weaknesses as well. Please see the list below.

      We thank the Reviewer for pointing out that key concepts needed further clarification. Please see answers to specific questions below:

      (i) Membrane "strain energy" has been loosely used and no effort is made to explain what the authors mean by the term and how they would quantify it. If the membrane is simulated in stress-free conditions, where are strains building up from?

      We thank the Reviewer for this important question. In the revised manuscript, we have toned down the assignment of the effects into pure entropic or enthalpic effects. We have also provided further clarification of the effects observed in the membrane.

      Example of revisions / clarifications in the main text:

      "SC formation is affected by both enthalpic and entropic effects."

      "We have shown here that the respiratory chain complexes perturb the IMM by affecting the local membrane dynamics. The perturbed thickness and alteration in the lipid dynamics lead to an energetic penalty, which can be related to molecular strain effects, as suggested by the changes of both the internal energy of lipid and their interaction with the surroundings (Fig. S2, S5, S6), which are likely to be of enthalpic origin. However, lipid binding to the OXPHOS complex, also results in a reduction in the translational and rotational motion of the lipids and quinone (Fig. S8-S9), which could result in entropic changes. The strain effects are therefore likely to arise from a combination of enthalpic and entropic effects."

      We have also revised the result section, where we now have explicitly defined and clarified the different contributions to membrane strain, observed in our simulations:

      In the following, we define membrane strain as the local perturbations of the lipid bilayer induced by protein-membrane interactions. These include changes in (i) membrane thickness, (ii) the local membrane composition, (iii) lipid chain configurations, and (iv) local curvature of the membrane plane relative to an undisturbed, protein-free bilayer. Together, these phenomena reflect the thermodynamic effects associated with accommodating large protein complexes within the membrane.

      We now also provide a more quantitative estimation of the membrane strain based on the contribution of changes in local thickness and curvature, summarize in Table 1.

      (ii) In result #1 (Protein membrane interaction modulates the lipid dynamics ....), I strongly feel that the readouts from simulations are overinterpreted. Membrane lateral organization in terms of lipids having preferential localisation is not new (see doi: 10.1021/acscentsci.8b00143) nor membrane thinning and implications to function (https://doi.org/10.1091/mbc.E20-12-0794). The distortions that are visible could be due to a mismatch in the number of lipids that need to be there between the upper and lower leaflets after the protein complex is incorporated. Also, the physiological membrane will have several chemically different lipids that will minimise such distortions as well as would be asymmetric across the leaflets - none of which has been considered. Connecting chain length to strain energy is also not well supported - are the authors trying to correlate membrane order (Lo vs Ld) with strain energy?

      We thank the Reviewer for the suggestions. The role of the membrane in driving supercomplex formation has not, to our knowledge, been suggested before. There are certainly many important studies, which have been better highlighted in the revised manuscript. In this context, we also now cite the papers Srivastava & coworkers and Tielemann & coworkers.

      “The localization of specific lipids around the membrane proteins, as well as local membrane perturbation effects, are also supported by simulations of other membrane proteins (45, 46), suggesting that the effects could arise from general protein-membrane interactions.”

      (45) V. Corradi et al., Lipid–Protein Interactions Are Unique Fingerprints for Membrane Proteins. ACS Central Science 4 (June 13, 2018).

      (46) K. Baratam, K. Jha, A. Srivastava, Flexible pivoting of dynamin pleckstrin homology domain catalyzes fission: insights into molecular degrees of freedom. Molecular Biology of the Cell 32 (2021 Jul 1).

      Physiological membrane will have several chemically different lipids that will minimise such distortions as well as would be asymmetric across the leaflets

      We agree with this point. As shown in Figs. 2H,N, S6, S13, we suggest that cardiolipin functions as a buffer molecule. However, very little is experimentally known about the asymmetric distribution of lipids in the IMM. Therefore, modelling the effect of asymmetry across the left is outside the scope of this study. Moreover, as now better clarified in the revised manuscript, we agree that it is difficult to unambiguously divide the effect into enthalpic and entropic contributions.

      To address the main concern of the Reviewer, we have updated the main text and Supporting Information to clearly state the different aspects of how the proteinmembrane interactions induce perturbations of the lipid bilayer. We define these effects as membrane strain. We now use the changes in local thickness and local curvature to quantify the effect of membrane strain on the stability of the respiratory SC.

      (iii) Entropic effect: What is the evidence towards the entropic effect? If strain energy is entropic, the authors first need to establish that. They discuss enthalpy-entropy compensation but there is no clear data or evidence to support that argument. The lipids will rearrange themselves or have a preference to be close to certain regions of the protein and that generally arises because of enthalpies reasons (see the body of work done by Carol Robinson with Mass Spec where certain lipids prefer proteins in the GAS phase, certainly there is no entropy at play there). I find the claims of entropic effects very unconvincing.

      We agree that it is difficult to distinguish the entropic vs. enthalpic contributions. In the revised manuscript, we better clarify that both effects are likely to be involved.

      The native MS work by Robinson and coworkers and others support that many lipids are strongly bound to membrane proteins, as also supported by the local binding of certain lipid molecules, such as CDL to the SC (Figs. S2, S6, S13).

      We suggest that the accumulation of cardiolipin at the protein-lipid interface involves a combination of entropic and enthalpic effects, arising from the reduction of the lipid mobility (entropy) as indicated by lowered diffusion (Fig. S9), and formation of noncovalent bonds between the lipid and the OXPHOS protein (Fig. S14).

      We added further clarification to the Discussion section.

      “Taken together, our combined findings suggest that the SC formation is affected by thermodynamic effects that reduce the molecular strain in the lipid membrane, whilst the perturbed micro-environment also affects the lipid and Q dynamics, as well as the dynamics of the OXPHOS proteins (see below).”

      (iv) The changes in conformations dynamics are subtle as reported by the authors and the allosteric arguments are made based on normal mode analyses. In the complex, there are large overlapping regions between the CI, CIII2, and SCI/III2. I am not sure how the allosteric crosstalk claim is established in this work - some more analyses and data would be useful. Normal mode analyses (EDA) suggest that the motions are coupled and correlated - I am not convinced that it suggests that there is allosteric cross-talk.

      Our analysis suggests that the SC changes the dynamics of the system. Although it is difficult to assign how these effects result in activity modulation of the system, we note these changes relate to sites that are central for the charge transfer reactions. We thank the Reviewer for suggesting to extend the analysis, which further suggests that regions of the proteins could be allosterically coupled.

      (v) The lattice model should be described better and the rationale for choosing the equation needs to be established. Specific interactions look unfavourable in the equation as compared to non-specific interactions.

      We have now provided further clarification of the lattice model in the Methods section. Addition to the main text:

      “Lattice model of SC formation. A lattice model of the CI and CIII<sub>2</sub> was constructed (Fig. 4A,B) by modeling the OXPHOS proteins in unique grid positions on a 2D N×N lattice. Depending on the relative orientation, the protein-protein interaction was described by specific interactions (giving rise to the energetic contribution E<sub>specific</sub> < 0) and non-specific interactions (E<sub>non-specific</sub> > 0). The membrane-protein interaction determined the strain energy of the membrane (E<sub>strain</sub>), based on the number of neighboring "lipid" occupied grids that are in contact with proteins (Fig. 4A). The interaction between the lipids was indirectly accounted for by the background energy of the model. The proteins could occupy four unique orientations on a grid ([North, East, South, West]). The states and their respective energies that the system can visit are summarized in Table S6.”

      “The conformational landscape was sampled by Monte Carlo (MC) using 10<sup>7</sup> MC iterations with 100 replicas. Temperature effects were modeled by varying β, and the effect of different protein-to-lipid ratios by increasing the grid area. The simulation details can be found in Table S7.”

      Reviewer #3 (Public review):

      Summary:

      In this contribution, the authors report atomistic, coarse-grained, and lattice simulations to analyze the mechanism of supercomplex (SC) formation in mitochondria. The results highlight the importance of membrane deformation as one of the major driving forces for SC formation, which is not entirely surprising given prior work on membrane protein assembly, but certainly of major mechanistic significance for the specific systems of interest.

      Strengths:

      The combination of complementary approaches, including an interesting (re)analysis of cryo-EM data, is particularly powerful and might be applicable to the analysis of related systems. The calculations also revealed that SC formation has interesting impacts on the structural and dynamical (motional correlation) properties of the individual protein components, suggesting further functional relevance of SC formation. Overall, the study is rather thorough and highly creative, and the impact on the field is expected to be significant.

      Weaknesses:

      In general, I don't think the work contains any obvious weaknesses, although I was left with some questions.

      We thank the Reviewer for acknowledging that our work is thorough and creative, and that it is likely to have a significant impact on the field.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Diffusion is quantified in speed units (Figure S8). The authors should explain why they have used an apparently incorrect model for quantifying diffusion. The variance of the distribution of a diffusing molecule is linear with time, not its standard deviation (as I suppose I would use for computing effective molecular speed). Perhaps they are quantifying residence times, in which molecules near a wall (protein) will appear to have half the movements of a bulk molecule. This is confusing.

      We thank the Reviewer for the comment. The data shown in previous version of Figure S8 corresponded to the effective molecular velocity, which is now clarified in the revised figure (now Fig. S9). This measure was used to reflect the average residence time of the groups in the vicinity of the sites.

      However, as suggested by the Reviewer, we now also analyzed the positiondependent diffusion of the quinone in the new Figure S9:

      (2) With a highly charged bilayer a large water layer is necessary to verify that the concentration of salt is plateauing at 150 mM at the box edge. 45 A appears to be the default in CHARMM-GUI, but this default guidance is not based on the charge of the bilayer. I suggest the authors plot the average concentration of both anions and cations in mM units along the z coordinate of the simulation cell.

      We thank the Reviewer for the suggestion. We have now provided an analysis of the average ion concentrations along the z coordinate, supporting that the salt concentration plateaus at 150 mM at the box edge.

      Typos:

      SI: "POPC/POPE or CLD" should be CDL

      We apologize for the mistake. We have corrected the typos:

      "of the membrane thickness in a POPC/POPE/CDL/QH2 membrane and a CDL membrane."

      "a pure CDL membrane"

      Reviewer #2 (Recommendations for the authors):

      (1) Suggestion regarding membrane strain energy claims:

      Changes in area per lipid and membrane thinning are surely not akin to membrane strain energy changes. At best, the authors should calculate the area compressibility (both in bilayers with and without proteins) and then make comments. In general, if they are talking about the in-plane properties (bilayer being liquid in 2D), I do not see how they can discuss membrane strain energy with NPT=1 atms barostat reservoir that they are simulating against. At least they can try to plot the membrane lateral pressures in various conditions and then start making such comments. If it was a closed vesicle, I would expect some tension in the membrane due to the closed surface but in the conditions in which the simulations are run, I do not see how strain is so important. If the authors want to be more rigorous, they can calculate "atomic viral" values by doing a tessellation and showing the data to make their point. Strain energy would mean that there is a modulus in-plane. Bending modulus would surely change with membrane thinning and area compressibility changes (simple plate theory) but linear strain is surely something to be defined well before making claims out of it.

      Our work shows that the OXPHOS proteins alter the local membrane thickness and curvature, and we now quantify the deformation penalty associated with that (Table 1). As stated above, we now provide a better definition and description 'membrane strain’ and the observed effect, which is likely to contain both enthalpic and entropic contributions.

      As suggested by the Reviewer, we have computed the lateral pressure profiles around the OXPHOS proteins, further supporting that there are energetic effects related to the "solvation" of the membrane proteins in the IMM. To this end, Figs. S2D,E; Figure S4I and Fig. S5G,H shows the membrane distortion effect; while in Fig. S5A supports that there the 'internal energy' of the lipids changes as result of the SC formation, further justifying that these effects can be assigned as 'strain effects'. The analysis has also been extended by computing the end-to-end distances, shown in Fig. S6.

      Unfortunately, it is technically unfeasible to accurately estimate the area compressibility, bending modulus, or the atomic virial for the present multi-million membrane protein simulations.

      Summary of Revisions/Additions:

      Fig. S2 [...] (D, E) Difference in the membrane thickness around the SC relative to CI (left) or relative to CIII<sub>2</sub> (right) from (D) aMD and (E) cgMD.

      Fig. S4. [...] (I) Visualization of the membrane distortion effect.

      Fig. S5. Analysis of membrane-induced distortion effects. (A) Relative strain effect relative to a lipid membrane from atomistic MD simulations of the SCI/III2, CI, and CIII<sub>2</sub>, suggesting reduction of the membrane strain (blue patches) in the SC surroundings. The figure shows the non-bonded energies relative to the average non-bonded energies from membrane simulations (simulation M4, Table S1). (B) The lipid strain contribution for different lipids calculated from non-bonded interaction energies of the lipids relative to the average lipid interaction in a IMM membrane model (simulation M4). The figure shows the relative strain contribution for nearby lipids (r < 2 Å, in color from panel (C), and lipids >5 Å from the OXPHOS proteins. (C) Selection of lipids (< 2 Å) interacting with the OXPHOS proteins. (D) Potential of mean force (PMF) of membrane thickness derived from thickness distributions from cgMD simulations of a membrane, the SCI/III2, CI, and CIII<sub>2</sub>. (E) Membrane thickness as a function of CDL concentration from cgMD simulations. (F) ΔGthick of the SC as a function of membrane thickness based on cgMD simulations. (G) Membrane curvature around the SCI/III2 (left), CI (middle), and CIII<sub>2</sub> (right) from atomistic simulations. (H) Squared membrane curvature obtained from cgMD simulations, within a 20 nm radius around the center of the system. These maps correspond to the curvature field used in the calculation of the bending deformation energy term (G<sub>curv</sub>).

      Fig. S6. Analysis of lipid end-to-end distance from aMD simulations of (A) SC, (B) CI, (C) CIII<sub>2</sub>.

      (2) Membrane distortions:

      Membrane distortions can arise due to a mismatch in the area between the upper leaflet and the lower left especially when a protein is embedded. Authors can carefully choose the numbers to keep the membrane stable.

      We have further clarified in the revised manuscript that the membranes are stable in all simulation setups. During building the simulation setups, it was carefully considered that no leaflet introduced higher lipid densities that could result in artificial displacements. Our results of the local changes in the lipid dynamics and structure around the OXPHOS complexes are independently supported by both our atomistic and coarse-grained simulations, which contain significantly larger membranes. Moreover, as discussed in our work, the local membrane distortion is also experimentally supported by cryoEM analysis as well as recent in situ cryoTEM data, showing that the OXPHOS proteins indeed affect the local membrane properties.

      Clarifications/Additions to the main text:

      “We find that the individual OXPHOS complexes, CI and CIII<sub>2</sub>, induce pronounced membrane strain effects, supported both by our aMD (Fig. S2A) and cgMD simulations with a large surrounding membrane (Fig. 2G).“

      ” The localization of specific lipids around the membrane proteins, as well as local membrane perturbation effects, are also supported by simulations of other membrane proteins (45, 46), suggesting that the effects could arise from general protein-membrane interactions.”

      "During construction of the simulation setups, it was carefully considered that no leaflet introduced higher lipid densities that could result in artificial displacement effects."

      (3) Strain energy as an entropic effect:

      Please establish that the strain energy (if at all present) can be called an entropic effect.

      We have now better clarified that the SC formation results from combined enthalpic and entropic effects. We apologize that the previous version of the text was unclear in this respect.

      To further probe the involvement of entropic effects, we derived entropic and enthalpic contributions from our lattice model. The model supports that increased strain contributions also alters the entropic contributions, further supporting the coupling between the effects.

      We have also clarified our definition of the effects:

      " The perturbed thickness and alteration in the lipid dynamics leads to an energetic penalty, which can be related to molecular strain effects, as suggested by the changes of both the internal energy of lipid and their interaction with the surroundings (Fig. S2, S5, S6), which are likely to be of enthalpic origin. However, lipid binding to the OXPHOS complex, also results in a reduction in the translational and rotational motion of the lipids and quinone (Fig. S8-S9), which could result in entropic changes. The strain effects are therefore likely to arise from a combination of enthalpic and entropic effects."

      (4) Allosteric cross-talk:

      A thorough network analysis (looking at aspects like graph laplacian, edge weights, eigenvector centrality, changes in characteristic path length, etc can be undertaken to establish allostery (see https://doi.org/10.1093/glycob/cwad094, Ruth Nussinov/Ivet Bahar papers).

      We have expanded the network analysis as suggested by the Reviewer. In this regard, we have expanded the analysis by computing the covariance matrix, further supporting that the SC could involve correlated protein dynamics. We observe a prominent change especially with respect to the ligand state of Complex I, indicative of some degree of allostery, while we find that the apo state of Complex I leads to a slight uncoupling of the motion between CI and CIII<sub>2</sub>.

      Additions in the main text:

      In this regard, our graph theoretical analysis (Fig. S11) further indicates that ligand binding to Complex I induces a dynamic crosstalk between NDUFA5 and NDUFA10, consistent with previous work (48, 49), and affecting also the motion of UQCRC2 with respect to its surroundings_._ Taken together, these effects suggest that the dynamics of CI and CIII<sub>2</sub> show some correlation that could result in allosteric effects, as also indicated based on the cryoEM analysis.

      (5) Lattice model:

      The equation needs to be rationalised. For example, specific interaction (g_i g_j favours separation (lower energy when i and j are not next to each other), and nonspecific interaction favours proximity. Why is that? Also, the notation for degeneracy in partition function and the notation for lattice point. It is mentioned that the "interaction between the lipids was indirectly accounted for by the "background energy" of the model". If the packing/thinning etc are so important to the molecular simulations, will not the background energy change with changing lipid organising during complex formation?

      We have further expanded the technical discussion of the energy terms in our lattice model.

      For example, specific interaction (g_i g_j favours separation (lower energy when i and j are not next to each other), and non-specific interaction favours proximity. Why is that

      "The g<sub>i</sub>g<sub>j</sub> -term assigns a specific energy contribution when the OXPHOS complexes are in adjacent lattice points only in a correct orientation (modeling a specific non-covalent interaction between the complexes such as the Arg29<sup>FB4</sup>-Asp260<sup>C1</sup>/Glu259<sup>C1</sup> interaction between CI and CIII<sub>2</sub>). The d<sub>i</sub>d<sub>j</sub> -term assigns a non-specific interaction for the OXPHOS complexes when they are in adjacent lattice points, but in a "wrong" orientation relative to each other to form a specific interaction. The term introduces a strain into all lattice points surrounding an OXPHOS complex, mimicking the local membrane perturbation effects observed in our molecular simulations.

      This leads to the partition function,

      where wi is the degeneracy of the state, modeling that the SC and OXPHOS proteins can reside at any lattice position of the membrane, and where β=1/k<sub>B</sub>T (k<sub>B</sub>, Boltzmann's constant; T, temperature). The probability of a given state i was calculated as,

      with the free energy (G) defined as,

      This discussion has been included in the methods sections to ensure that our work remains readable for the biological community studying supercomplexes from a biochemical, metabolic, and physiological perspectives.

      (6) This is a minor issue but the paper is poorly organised and can be fixed readily. The figures are not referenced in order. For example, Figure 2G is discussed before discussing Figures 2A-2F (never discussed). Figure S2 is referenced before Figure S1.

      Answer: We thank the Reviewer for pointing this out. The order of the figures was revised.

      Reviewer #3 (Recommendations for the authors):

      A few minor questions/suggestions, not necessarily in the order of importance:

      (1) The discussion of the timescale of simulations is a bit misleading. For example, the discussion cites a timescale of 0.3 ms of CG simulations. The value is actually the sum of multiple CG simulations on the order of 50-75 microseconds. These are already very impressive lengths of CG simulations, there is no need to use the aggregated time to claim even longer time scales.

      We thank the Reviewer for the suggestion on this important clarification. We have now modified the text and tables accordingly:

      "(0.3 ms in cumulative simulation time, 50-75 μs/cgMD simulation)"

      (2) The observation of cardiolipin (CDL) accumulation is interesting. How close are the head groups, relative to the electrostatic screening length at the interface? Should one worry about the potential change of protonation state coupled with the CDL redistribution?

      Answer: We thank the Reviewer for this excellent comment, which has also been on our mind. The CDL indeed form contacts with various functional groups at the protein interface (as shown in Fig. S13), as well as bulk ions (sodium) that could tune the p_K_a of the CDLs, and result in a protonation change. We have clarified these effects in the revised manuscript:

      "While CDL was modeled here in the singly anionic charged state (but cf. Fig. S5E), we note that the local electrostatic environment could tune their p_K_a that result in protonation changes of the lipid, consistent with its function as a proton collecting antenna (62)."

      (3) The authors refer to the membrane strain effect as entropic. Since membrane bending implicates a free energy change that includes both enthalpic and entropic components, I wonder how the authors reached the conclusion that the effect is largely entropic in nature.

      We agree with the Reviewer that the effects are likely to comprise both enthalpic and entropic contributions, which are difficult to separate in practice. To reflect this, we have now better clarified why we consider that both contributions are involved. We apologize that our previous version of the manuscript was unclear in this respect. Clarifications in the main text:

      “The perturbed thickness and alteration in the lipid dynamics lead to an energetic penalty, which can be related to molecular strain effects, as suggested by the changes of both the internal energy of lipid and their interaction with the surroundings (Fig. S2, S5, S6), which are likely to be of enthalpic origin. However, lipid binding to the OXPHOS complex also results in a reduction in the translational and rotational motion of the lipids and quinone (Fig. S8-S9), which could result in entropic changes. The strain effects are therefore likely to arise from a combination of enthalpic and entropic effects."

      (4) The authors refer to the computed dielectric constant as epsilon_perpendicular. Did the authors really distinguish the parallel and perpendicular component of the dielectric tensor, as was done by, for example, R. Netz and co-workers for planar surfaces?

      We have extracted the perpendicular dielectric constant from the total dielectric profiles. We clarify that this differs from the formal definition of by Netz and coworkers.

      “The calculations were performed by averaging the total M over fixed z values from the membrane plane. Note that this treatment differs from extraction of radial and axial contributions of the dielectric tensor, as developed by Netz and co-workers (cf. Ref. (3) and refs therein) that requires a more elaborate treatment, which is outside the scope of the present work.”

      (3) P. Loche, C. Ayaz, A. Schlaich, Y. Uematsu, R.R. Netz. Giant Axial Dielectric Response in Water-Filled Nanotubes and Effective Electrostatic Ion-Ion Interactions from a Tensorial Dielectric Model. J Phys Chem B 123, 10850-10857 (2019).

      (5) Regarding the effect of SC formation on protein structure and dynamics, especially allosteric effects, most of the discussions are rather qualitative in nature. More quantitative analysis would be valuable. For example, the authors did compute covariance matrix although it appears that they chose not to discuss the results in depth. Is the convergence of concern and therefore no thorough discussion is given?

      We have now expanded the analysis by computing the covariance matrix, further supporting that the SC could involve correlated protein dynamics. We observe a prominent change, especially with respect to the ligand state of Complex I, indicative of some degree of allostery, while we find that the apo state of Complex I leads to a slight uncoupling of the motion between CI and CIII<sub>2</sub>.

      Additions in the main text:

      “In this regard, our graph theoretical analysis (Fig. S11) further indicates that ligand binding to Complex I induces a dynamic crosstalk between NDUFA5 and NDUFA10, consistent with previous work (48, 49), and affecting also the motion of UQCRC2 with respect to its surroundings. Taken together, these effects suggest that the dynamics of CI and CIII<sub>2</sub> show some correlation that could result in allosteric effects, as also indicated based on the cryoEM analysis (40).”

      (6) The discussion of quinone diffusion is interesting, although I'm a bit intrigued by the unit of the diffusion constant cited in the discussion. Perhaps a simple typo?

      The plot showed the molecular velocity, which roughly corresponding to the residence times. However, as suggested by the Reviewer, we now also analyzed the position-dependent diffusion of the quinone in the new Figure S9:

    1. eLife Assessment

      This is an important study describing the morphological changes during boundary formation between sensory and non-sensory tissues of the inner ear. The authors provided solid evidence that a transcription factor, Lmx1a and ROCK-dependent actinomyosin are key for border formation in the inner ear. However, future studies will be needed to investigate the direct relationships among boundary formation, Lmx1a and ROCK. This work will be of interest to developmental biologists interested in boundary formation.

    2. Reviewer #1 (Public review):

      Summary:

      This manuscript investigated the mechanism underlying boundary formation necessary for proper separation of vestibular sensory end organs. In both chick and mouse embryos, it was shown that a population of cells abutting the sensory (marked by high Sox2 expression) /nonsensory cell populations (marked by Lmx1a expression) undergo apical expansion, elongation, alignment and basal constriction to separate the lateral crista (LC) from the utricle. Using Lmx1a mouse mutant, organ cultures, pharmacological and viral-mediated Rock inhibition, it was demonstrated that the Lmx1a transcription factor and Rock-mediated actomyosin contractility is required for boundary formation and LC-utricle separation.

      Strengths:

      Overall, the morphometric analyses were done rigorously and revealed novel boundary cell behaviors. The requirement of Lmx1a and Rock activity in boundary formation was convincingly demonstrated.

      Weaknesses:

      However, the precise roles of Lmx1a and Rock in regulating cell behaviors during boundary formation were not clearly fleshed out. For example, phenotypic analysis of Lmx1a was rather cursory; it is unclear how Lmx1a, expressed in half of the boundary domain, control boundary cell behaviors and prevent cell mixing between Lmx1a+ and Lmx1a- compartments? Well-established mechanisms and molecules for boundary formation were not investigated (e.g. differential adhesion via cadherins, cell repulsion via ephrin-Eph signaling). Moreover, within the boundary domain, it is unclear whether apical multicellular rosettes and basal constrictions are drivers of boundary formation, as boundary can still form when these cell behaviors were inhibited. Involvement of other cell behaviors, such as directional cell intercalation and oriented cell division also warrant consideration. With these lingering questions, the mechanistic advance of the present study is modest.

      Revision: The clarity of the text was improved. The open questions regarding the mechanisms were not experimentally addressed but discussed.

    3. Reviewer #3 (Public review):

      Summary:

      Lmx1a is an orthologue of apterous in flies, which is important for dorsal-ventral border formation in the wing disc. Previously, this research group has described the importance of the chicken Lmx1b in establishing the boundary between sensory and non-sensory domains in the chicken inner ear. Here, the authors described a series of cellular changes during border formation in the chicken inner ear, including alignment of cells at the apical border and concomitant constriction basally. The authors extended these observations to the mouse inner ear and showed that these morphological changes occurred at the border of Lmx1a positive and negative regions, and these changes failed to develop in Lmx1a mutants. Furthermore, the authors demonstrated that the ROCK-dependent actomyosin contractility is important for this border formation and blocking ROCK function affected epithelial basal constriction and border formation in both in vitro and in vivo systems.

      Strengths:

      The morphological changes described during border formation in the developing inner ear are interesting. Linking these changes to the function of Lmx1a and ROCK dependent actomyosin contractile function are provocative.

      Weaknesses:

      There are several outstanding issues that need to be clarified before one can pin the morphological changes observed being causal to border formation and that Lmx1a and ROCK are involved.

      Comments on the latest version:

      The revised manuscript has provided clarity of their results on some levels, but unfortunately, the basal restriction during border formation remains unclear and the study did not advance the understanding of role of Lmx1a in boundary formation. Overall comments are indicated below:

      (1) The authors states in the rebuttal, "we do not think that ROCK activity is required for the formation or maintenance of the basal constriction at the interface of Lmx1a-expressing and non-expressing cells"<br /> If the above is the sentiment of the authors, then the manuscript is not written to support this sentiment clearly, starting with this misleading sentence in the Abstract, "The boundary domain is absent in Lmx1a-deficient mice, which exhibit defects in sensory organ segregation, and is disrupted by the inhibition of ROCK-dependent actomyosin contractility."

      (2) As acknowledged by the authors, the data as they currently stand could be explained by Lmx1a functioning in specifying the non-sensory fate and may not function directly in boundary formation. With this caveat in mind, the role of Lmx1a in boundary formation remains unclear.

      (3) I feel like the word "orchestrate" in the title is an overstatement.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      This manuscript investigated the mechanism underlying boundary formation necessary for proper separation of vestibular sensory end organs. In both chick and mouse embryos, it was shown that a population of cells abutting the sensory (marked by high Sox2 expression) /nonsensory cell populations (marked by Lmx1a expression) undergo apical expansion, elongation, alignment and basal constriction to separate the lateral crista (LC) from the utricle. Using Lmx1a mouse mutant, organ cultures, pharmacological and viral-mediated Rock inhibition, it was demonstrated that the Lmx1a transcription factor and Rock-mediated actomyosin contractility is required for boundary formation and LC-utricle separation.

      Strengths:

      Overall, the morphometric analyses were done rigorously and revealed novel boundary cell behaviors. The requirement of Lmx1a and Rock activity in boundary formation was convincingly demonstrated.

      Weaknesses:

      However, the precise roles of Lmx1a and Rock in regulating cell behaviors during boundary formation were not clearly fleshed out. For example, phenotypic analysis of Lmx1a was rather cursory; it is unclear how Lmx1a, expressed in half of the boundary domain, control boundary cell behaviors and prevent cell mixing between Lmx1a+ and Lmx1a- compartments? Well-established mechanisms and molecules for boundary formation were not investigated (e.g. differential adhesion via cadherins, cell repulsion via ephrin-Eph signaling). Moreover, within the boundary domain, it is unclear whether apical multicellular rosettes and basal constrictions are drivers of boundary formation, as boundary can still form when these cell behaviors were inhibited. Involvement of other cell behaviors, such as radial cell intercalation and oriented cell division, also warrant consideration. With these lingering questions, the mechanistic advance of the present study is somewhat incremental.

      We have acknowledged the lingering questions this referee points out in our Discussion and agree that the roles of differential cell adhesion and cell intercalation would be worth exploring in further studies. Despite these remaining questions, the conceptual advances are significant, since this study provides the first evidence that a tissue boundary forms in between segregating sensory organs in the inner ear (there are only a handful of embryonic tissues in which a tissue boundary has been found in vertebrates) and highlights the evolutionary conservation of this process. This work also provides a strong descriptive basis for any future study investigating the mechanisms of tissue boundary formation in the mouse and chicken embryonic inner ear. 

      Reviewer #2 (Public review):

      Summary:

      Chen et al. describe the mechanisms that separate the common pan-sensory progenitor region into individual sensory patches, which presage the formation of the sensory epithelium in each of the inner ear organs. By focusing on the separation of the anterior and then lateral cristae, they find that long supra-cellular cables form at the interface of the pansensory domain and the forming cristae. They find that at these interfaces, the cells have a larger apical surface area, due to basal constriction, and Sox2 is down-regulated. Through analysis of Lmx1 mutants, the authors suggest that while Lmx1 is necessary for the complete segregation of the sensory organs, it is likely not necessary for the initial boundary formation, and the down-regulation of Sox2.

      Strengths:

      The manuscript adds to our knowledge and provides valuable mechanistic insight into sensory organ segregation. Of particular interest are the cell biological mechanisms: The authors show that contractility directed by ROCK is important for the maintenance of the boundary and segregation of sensory organs.

      Weaknesses:

      The manuscript would benefit from a more in-depth look at contractility - the current images of PMLC are not too convincing. Can the authors look at p or ppMLC expression in an apical view? Are they expressed in the boundary along the actin cables? Does Y-27362 inhibit this expression?

      The authors suggest that one role for ROCK is the basal constriction. I was a little confused about basal constriction. Are these the initial steps in the thinning of the intervening nonsensory regions between the sensory organs? What happens to the basally constricted cells as this process continues?

      In our hands, the PMLC immunostaining gave a punctate staining in epithelial cells and was difficult to image and interpret in whole-mount preparations, which did not allow us to investigate its specific association to the actin-cable-like structures. It is a very valuable suggestion to try alternative methods of fixation to improve the quality of the staining and images in future work. 

      The basal constriction of the cells at the border of the sensory organs was not always clearly visible in freshly-fixed samples, and was absent in the majority of short-term organotypic cultures in control medium, which made it impossible to ascertain the role of ROCK in its formation using pharmacological approaches in vitro (see Figure 7 and corresponding Result section).  On the other hand, the overexpression of a dominant-negative form of ROCK (RCII-GFP) in ovo using RCAS revealed a persistence of basal constriction in transfected cells despite a disorganisation of the boundary domain (Figure 8). We conclude from these experiments that ROCK activity is not necessary for the formation and maintenance of the basal constriction. We also remain uncertain about the exact role of this basal constriction. It could be either a cause or consequence of the expansion of the apical surface of cells in the boundary domain, it could contribute to the limitation of cell intermingling and the formation of the actin-cable-like structure at the interface of Lmx1a-expressing and non-expressing cells, and may indeed prefigure some of the further changes in cell morphology occurring in non-sensory domains separating the sensory organs (cell flattening and constrictions of the epithelial walls in between sensory organs). 

      The steps the authors explore happen after boundaries are established. This correlates with a down-regulation of Sox2, and the formation of a boundary. What is known about the expression of molecules that may underlie the apparent interfacial tension at the boundaries? Is there any evidence for differential adhesion or for Eph-Ephrin signalling? Is there a role for Notch signalling or a role for Jag1 as detailed in the group's 2017 paper?

      Great questions. It is indeed likely that some form of differential cell tension and/or adhesion participates to the formation and maintenance of this boundary, and we have mentioned in the discussion some of the usual suspects (cadherins, eph/ephrin signalling,…) although it is beyond the scope of this paper to determine their roles in this context. 

      As we have discussed in this paper and in our 2017 study (see also Ma and Zhang, Development,  2015 Feb 15;142(4):763-73. doi: 10.1242/dev.113662) we believe that Notch signalling is maintaining prosensory character, and its down-regulation by Lmx1a/b expression is required for the specification of the non-sensory domains in between segregating sensory organs. Although we have not tested this directly in this study, any disruption in Notch signalling would be expected to affect indirectly the formation or maintenance of the boundary domain. 

      A comment on whether cellular intercalation/rearrangements may underlie some of the observed tissue changes.

      We have not addressed this topic directly in the present study but we have included a brief comment on the potential implication of cellular intercalation and rearrangements in the discussion: “It is also possible that the repositioning of cells through medial intercalation could contribute to the straightening of the boundary as well as the widening of the nonsensory territories in between sensory patches.”

      The change in the long axis appears to correlate with the expression of Lmx1a (Fig 5d). The authors could discuss this more. Are these changes associated with altered PCP/Vangl2 expression?

      We are not sure about the first point raised by the referee. We have quantified cell elongation and orientation in Lmx1a-GFP heterozygous and homozygous (null) mice, and our results suggest that the elongation of the cells occurs throughout the boundary domain, and is probably not dependent on Lmx1a expression (boundary cells are in fact more elongated in the Lmx1a mutant).  We have not investigated the expression of components of the planar cell polarity pathway. This is a very interesting suggestion, worth exploring in further studies.

      Reviewer #3 (Public review):

      Summary:

      Lmx1a is an orthologue of apterous in flies, which is important for dorsal-ventral border formation in the wing disc. Previously, this research group has described the importance of the chicken Lmx1b in establishing the boundary between sensory and non-sensory domains in the chicken inner ear. Here, the authors described a series of cellular changes during border formation in the chicken inner ear, including alignment of cells at the apical border and concomitant constriction basally. The authors extended these observations to the mouse inner ear and showed that these morphological changes occurred at the border of Lmx1a positive and negative regions, and these changes failed to develop in Lmx1a mutants. Furthermore, the authors demonstrated that the ROCK-dependent actomyosin contractility is important for this border formation and blocking ROCK function affected epithelial basal constriction and border formation in both in vitro and in vivo systems.

      Strengths:

      The morphological changes described during border formation in the developing inner ear are interesting. Linking these changes to the function of Lmx1a and ROCK dependent actomyosin contractile function are provocative.

      Weaknesses:

      There are several outstanding issues that need to be clarified before one could pin the morphological changes observed being causal to border formation and that Lmx1a and ROCK are involved.

      We have addressed the specific comments and suggestions of the reviewer below. We wish however to point out that we do not think that ROCK activity is required for the formation or maintenance of the basal constriction at the interface of Lmx1a-expressing and nonexpressing cells (see previous answer to referee #2)

      Reviewer #1 (Recommendations for the authors):

      Specific comments:

      (1) Figures 1 and 2, and related text. Based on the whole-mount images shown, the anterior otocyst appeared to be a stratified epithelium with multiple cell layers. If so, it should be clarified whether the x-y view of in the "apical" and "basal" plane are from cells residing in the apical and basal layers, respectively. Moreover, it would be helpful to include a "stage 4", a later stage to show if and when basal constrictions resolve.

      In fact, at these early stages of development, the otic epithelium is “pseudostratified”: it is formed by a single layer of irregularly shaped cells, each extending from the base to the apical aspect of the epithelium, but with their nuclei residing at distinct positions along this basal-apical axis as mitotic cells progress through the cell cycle.  The nuclei divide at the surface of the epithelium, then move back to the most basal planes within daughter cells during interphase. This process, known as interkinetic nuclear migration, has been well described in the embryonic neural tube and occurs throughout the developing otic epithelium (e.g. Orr, Dev Biol. 1975, 47,325-340, Ohta et al., Dev Biol. 2010 Sep 15;347(2):369–381. doi: 10.1016/j.ydbio.2010.09.002; ). Consequently, the nuclei visible in apical or basal planes in x-y views belong to cells extending from the base to the apex of the epithelium, but which are at different stages of the cell cycle. 

      We have not included a late stage of sensory organ segregation in this study (apart from a P0 stage in the mouse inner ear, see Figure 4) since data about later stages of sensory organ morphogenesis are available in other studies, including our Mann et al. eLife 2017 paper describing Lmx1a-GFP expression in the embryonic mouse inner ear.

      (2) Related to above, the observed changes in cell organization raised the possibility that the apical multicellular rosettes and basal constrictions observed in Stage 3 (and 2) could be intermediates of radial cell intercalations, which would lead to expansion of the space between sensory organs and thinning of the boundary domains. To see if it might be happening, it would be helpful to include DAPI staining to show the overall tissue architecture at different stages and use optical reconstruction to assess the thickness of the epithelium in the presumptive boundary domain over time.

      We agree with this referee. Besides cell addition by proliferation and/or changes in cell morphology, radial cell intercalations could indeed contribute to the spatial segregation of inner ear sensory organs (a brief statement on this possibility was added to the Discussion). It is clear from images shown in Figure 4 (and from other studies) that the non-sensory domain separating the cristae from the utricle gets flatter and its cells also enlarge as development proceeds. We do not think that DAPI staining is required to demonstrate this. Perhaps the best way to show that radial cell intercalations occur would be to perform liveimaging of the otic epithelium, but this is technically challenging in the mouse or chicken inner ear. An alternative model system might be the zebrafish inner ear, in which some liveimaging data have shown a progressive down-regulation of Jag1 expression during sensory organ segregation (and a flattening of “boundary domains”), suggesting a conservation of the basic mechanisms at play (Ma and Zhang, Development,  2015 Feb 15;142(4):763-73. doi: 10.1242/dev.113662).

      (3) Similarly, it would be helpful to include the DAPI counterstain in Figures 4, 7, and 8 to show the overall tissue architecture.

      We do not have DAPI staining for these particular images but in most cases, Sox2 immunostaining gives a decent indication of tissue morphology. 

      (4) Figure 2(z) and Figure 4d. The arrows pointing at the basal constrictions are obstructing the view of the basement membrane area, making it difficult to appreciate the morphological changes. They should be moved to the side. Can the authors comment whether they saw evidence for radial intercalations (e.g. thinning of the boundary domain) or partial unzippering of adjoining compartments along the basal constrictions?

      The arrows in Figure 2(z) and Figure 4d have been moved to the side of the panels. 

      See previous comment. Besides the presence of multicellular rosettes, we have not seen direct evidence of radial cell intercalation – this would be best investigated using liveimaging. As development proceeds, the epithelial domain separating adjoining sensory organs becomes wider. The cells that compose it gradually enlarge and flatten, as can be seen for example at P0 in the mouse inner ear (Figure 4g). 

      (5) Figures 3 and 5, and related text. It should be clarified whether the measurements were all taken from the surface cells. For Fig. 3e and 5d, the mean alignment angles of the cell long axis in the boundary regions should be provided in the text.

      The sensory epithelium in the otocyst is pseudostratified, hence, the measurement was taken from the surface of all epithelial cells labelled with F-actin. 

      We have added histograms representing the angular distribution of the cell long axis orientations in the boundary region to Figure 3 and Figure 5 Supplementary 1. We believe that this type of representation is more informative than the numerical value of the mean alignment angles of the cell long axis for defined sub-domains. 

      (6) It would be helpful to also quantify basal constrictions using the cell skeleton analysis. In addition, it would be helpful to show x-y views of cell morphology at the level of basal constrictions in the mouse tissue, similar to the chick otocyst shown in Figure 2.

      The data that we have collected do not allow a precise quantification of basal constrictions with cell skeleton analysis, due to the generally fuzzy nature of F-actin staining in the basal planes of the epithelium. However, we have followed the referee’s advice and analysed Factin staining in x-y views in the Lmx1a-GFP knock-in (heterozygous) mice. We found that the first signs of basal F-actin enrichment and multicellular actin-cable like structures at the interface of Lmx1a-positive and negative cells are visible at E11.5, and F-actin staining in the basal planes increases in intensity and extent at E13.5. (shown in new Figure 4 – Supplementary Figure 1).

      (7) Figure 5 and related text. It would be informative to analyze Lmx1a mutants at early stages (E11-E13) to pinpoint cell behavior defects during boundary formation.

      We chose the E15 stage because it is one at which we can unequivocally recognize and easily image and analyse the boundary domain from a cytoarchitectural point of view. We recognize that it would have been worth including earlier stages in this analysis but have not been able to perform these additional studies due to time constraints and unavailability of biological material. 

      (8) Figure 5-Figure S1, the quantifications suggest that Lmx1a loss had both cellautonomous and non-autonomous effects on boundary cell behaviors. This is an interesting finding, and its implication should be discussed.

      It is well-known that the absence of Lmx1a function induces a very complex (and variable) phenotype in terms of inner ear morphology and patterning defects. It is also clear from this study that the absence of Lmx1 causes non-cell autonomous defects in the boundary domain and we have already mentioned this in the discussion: “Finally, the patterning abnormalities in Lmx1a<sup>GFP/GFP</sup> samples occurred in both GFP-positive and negative territories, which points at some type of interaction between Lmx1a-expressing and nonexpressing cells, and the possibility that the boundary domain is also a signalling centre influencing the differentiation of adjacent territories.”

      (9) Figure 6 and related text. To correlate myosin II activity with boundary cell behaviors, it would be important to immunolocalize pMLC in the boundary domain in whole-mount otocyst preparations from stage 1 to stage 3.

      We tried to perform the suggested immunostaining experiments, but in our hands at least, the antibody used did not produce good quality staining in whole-mount preparations. We have therefore included images of sectioned otic tissue, which show some enrichment in pMLC immunostaining at the interface of segregating organs (Figure 6).

      (10) Figures 7 and 8. A caveat of long-term Rock inhibition is that it can affect cell proliferation and differentiation of both sensory and non-sensory cells, which would cause secondary effects on boundary formation. This caveat was not adequately addressed. For example, does Rock signaling control either the rate or the orientation of cell division to promote boundary formation? Together with the mild effect of acute Rock inhibition, the precise role of Rock signaling in boundary formation remains unclear.

      We absolutely agree that the exact function of ROCK could not be ascertained in the in vitro experiments, for the reasons we have highlighted in the manuscript (no clear effect in short term treatments, great level of tissue disorganisation in long-term treatments). This prompted us to turn to an in ovo approach. The picture remains uncertain in relation to the role of ROCK in regulating cell division/intercalation but we have been at least able to show a requirement for the maintenance of an organized and regular boundary. 

      (11) Figure 8. RCII-GFP likely also have non-autonomous effects on cell apical surface area. In 8d, it would be informative to include cell area quantifications of the GFP control for comparison.

      It is possible that some non-autonomous effects are produced by RCII-GFP expression, but these were not the focus of the present study and are not particularly relevant in the context of large patches of overexpression, as obtained with RCAS vectors. 

      We have added cell surface area quantifications of the control RCAS-GFP construct for comparison (Figure 8e).

      (12) The significance of the presence of cell divisions shown in Figure 9 is unclear. It would be informative to include some additional analysis, such as a) quantify orientation of cell divisions in and around the boundary domain and b) determine whether patterns of cell division in the sensory and nonsensory regions are disrupted in Lmx1a mutants.

      These are indeed fascinating questions, but which would require considerable work to answer and are beyond the scope of this paper. 

      Minor comments:

      (1) Figure 1. It should be clarified whether e', h' and k' are showing cortical F-actin of surface cells. Do the arrowheads in i' and l' correspond to the position of either of the arrowheads in h' and k', respectively?

      The epithelium in the otocyst is pseudostratified. Therefore, images e’, h’, k’ display F-actin labelling on the surface of tissue composed of a single cell layer. We have added arrows to images e”, h”, and k” to indicate the corresponding position of z-projections and included appropriate explanation in the legend of Figure 1: “Black arrows on the side of images e”, h”, and k” indicate the corresponding position of z-projections.”

      (2) Figure 3-Figure S1. Please mark the orientation of the images shown.

      We labelled the sensory organs in the figure to allow for recognizing the orientation. 

      (3) Figure 4. Orthogonal reconstructions should be labeled (z) to be consistent with other figures.

      We have corrected the labelling in the orthogonal reconstruction to (z). 

      (4) Figure 4g. It is not clear what is in the dark area between the two bands of Lmx1a+ cells next to the utricle and the LC. Are those cells Lmx1a negative? It is unclear whether a second boundary domain formed or the original boundary domain split into two between E15 and P0? Showing the E15 control tissue from Figure 5 would be more informative than P0.

      In this particular sample there seems to be a folding of the tissue (visible in z-reconstructions) that could affect the appearance of the projection shown in 4g. We believe the P0 is a valuable addition to the E15 data, showing a slightly later stage in the development of the vestibular organs.

      (5) Figure 5a, e. Magnified regions shown in b and f should be boxed correspondingly.

      This figure has been revised. We realized that the previous low-magnification shown in (e) (now h) was from a different sample than the one shown in the high-magnification view. The new figure now includes the right low-magnification sample (in h) and the regions shown in the high-magnification views have been boxed.

      (6) Figure 8f, h, j. Magnified regions shown in g, i and k should be boxed correspondingly.

      The magnified regions were boxed in Figure 8 f, h, and j. Additionally, black arrows have been placed next to images 8g", 8i", and 8k" to highlight the positions of the z-projections. An appropriate explanation has also been added to the figure legend.

      (9) Figure 8. It would be helpful to show merged images of GFP and F-actin, to better appreciate cell morphology of GFP+ and GFP- cells.

      As requested, we have added images showing overlap of GFP and F-actin channels in Figure 8.

      Reviewer #2 (Recommendations for the authors):

      The PMLC staining could be improved. Two decent antibodies are the p-MLC and pp-MLC antibodies from CST. pp-MLC works very well after TCA fixation as detailed in https://www.researchsquare.com/article/rs-2508957/latest . As phalloidin does not work well after TCA fixation, affadin works very well for segmenting cells.

      If the authors do not wish to repeat the pMLC staining, the details of the antibody used should be mentioned.

      We used mouse IgG1 Phospho-Myosin Light Chain 2 (Ser19) from Cell Signaling Technology (catalogue number #3675) in our immunohistochemistry for PMLC. This is one of the two antibodies recommended by the reviewer #2. Information about this antibody has now been included in material and methods. This antibody has been referenced by many manuscripts, but unfortunately, in our hands at least, it did not perform well in whole-mount preparations.

      A statement on the availability of the data should be included.

      We have included a statement on the data availability: “All data generated or analysed during this study is available upon request.”

      Reviewer #3 (Recommendations for the authors):

      Outstanding issues:

      (1) Morphological description: The apical alignment of epithelial cells at the border is clear but not the upward pull of the basal lamina. Very often, it seems to be the Sox2 staining that shows the upward pull better than the F-actin staining. Perhaps, adding an anti-laminin staining to indicate the basement membrane may help.

      Indeed, the upward pull of the basement membrane is not always very clear. We performed some anti-laminin immunostaining on mouse cryosections and provide below (Figure 1) an example of such experiment. The results appear to confirm an upward displacement of the basement membrane in the region separating the lateral crista from the utricle in the E13 mouse inner ear, but given the preliminary nature of these experiments, we believe that these results do not warrant inclusion in the manuscript. The term “pull” is somehow implying that the epithelial cells are responsible for the upward movement of the basement membrane, but since we do not have direct evidence that this is the case, we have replaced “pull” by “displacement” throughout the text. 

      (2) It is not clear how well the cellular changes are correlated with the timing of border formation as some of the ages shown in the study seem to be well after the sensory patches were separated and the border was established.

      For some experiments (for example E15 in the comparison of mouse Lmx1a-GFP heterozygous and homozygous inner ear tissue; E6 for the RCAS experiments), the early stages of boundary formation are not covered because we decided to focus our analysis on the late consequences of manipulating Lmx1a/ROCK activity in terms of sensory organ segregation. The dataset is more comprehensive for the control developmental series in the chicken and mouse inner ear. 

      (3) The Lmx1a data, as they currently stand could be explained by Lmx1a being required for non-sensory development and not necessarily border formation. Additionally, the relationship between ROCK and Lmx1a was not investigated. Since the investigators have established the molecular mechanisms of Lmx1 function using the chicken system previously, the authors could try to correlate the morphological events described here with the molecular evidence for Lmx1 functioning during border formation in the same chicken system. Right now, only the expression of Sox2 is used to correlate with the cellular events, and not Lmx1, Jag1 or notch.

      These are valid points. Exploring in detail the epistatic relationships between Notch signalling/Lmx1a/ROCK/boundary formation in the chicken model would be indeed very interesting but would require extensive work using both gain and loss-of-function approaches, combined with the analysis of multiple markers (Jag1/Sox2/Lmx1b/PMLC/Factin..). At this point, and in agreement with the referee’s comment, we believe that Lmx1a is above all required for the adoption of the non-sensory fate. The loss of Lmx1a function in the mouse inner ear produce defects in the patterning and cellular features of the boundary domain, but these may be late consequences of the abnormal differentiation of the nonsensory domains that separate sensory organs. Furthermore, ROCK activity does not appear to be required for Sox2 expression (i.e. adoption or maintenance of the sensory fate) since the overexpression of RCII-GFP does not prevent Sox2 expression in the chicken inner ear. This fits with a model in which Notch/Lmx1a regulate cell differentiation whilst ROCK acts independently or downstream of these factors during boundary formation. 

      Specific comments:

      (1) Figure 1. The downregulation of Sox2 is consistent between panels h and k, but not between panels e and h. The orthogonal sections showing basal constriction in h' and k' are not clear.

      The downregulation is noticeable along the lower edge of the crista shown in h; the region selected for the high-magnification view sits at an intermediate level of segregation (and Sox2 downregulation). 

      The basal constriction is not very clear in h, but becomes easier to visualize in k. We have displaced the arrow pointing at the constriction, which hopefully helps. 

      (2) Figure 2. Where was the Z axis taken from? One seems to be able to imagine the basal constriction better in the anti-Sox2 panel than the F-actin panel. A stain outlining the basement membrane better could help.

      Arrows have been added on the side of the horizontal views to mark the location of the zreconstruction. See our previous replies to comments addressing the upward displacement of the basement membrane.

      (3) Figure 4

      I question the ROI being chosen in this figure, which seems to be in the middle of a triad between LC, prosensory/utricle and the AC, rather than between AC and LC. If so, please revise the title of the figure. This could also account for the better evidence of the apical alignment in the upper part of the f panel.

      We have corrected the text. 

      In this figure, the basal constriction is a little clearer in the orthogonal cuts, but it is not clear where these sections were taken from.

      We have added black arrows next to images 4c’, 4f’, and 4i’ to indicate the positions of the zprojections.  

      By E13.5, the LC is a separate entity from the utricle, it makes one wonder how well the basal constriction is correlated with border formation. The apical alignment is also present by P0, which raises the question that the apical alignment and basal restriction may be more correlated with differentiation of non-sensory tissue rather than associated with border formation.

      We agree E13.5 is a relatively late stage, and the basal constriction was not always very pronounced. The new data included in the revised version include images of basal planes of the boundary domain at E11.5, which reveal F-actin enrichment and the formation of an actin-cable-like structure (Figure 4 suppl. Fig1). Furthermore, the chicken dataset shows that the changes in cell size, alignment, and the formation of actin-cable-like structure precede sensory patch segregation and are visible when Sox2 expression starts to be downregulated in prospective non-sensory tissue (Figure 1, Figure 2). Considering the results from both species, we conclude that these localised cellular changes occur relatively early in the sequence of events leading to sensory patch segregation, as opposed to being a late consequence of the differentiation of the non-sensory territories.  

      I don't follow the (x) cuts for panels h and I, as to where they were taken from and why there seems to be an epithelial curvature and what it was supposed to represent.

      We have added black arrows next to the panels 4c’, 4f’, and 4i’ to indicate the positions of the z-projections and modified the legend accordingly. The epithelial curvature is probably due to the folding of the tissue bordering the sensory organs during the manipulation/mounting of the tissue for imaging.

      (4) Figure 5 The control images do not show the apical alignment and the basal constriction well. This could be because of the age of choice, E15, was a little late. Unfortunately, the unclarity of the control results makes it difficult for illustrating the lack of cellular changes in the mutant. The only take-home message that one could extract from this figure is a mild mixing of Sox2 and Lmx1a-Gfp cells in the mutant and not much else. Also, please indicate the level where (x) was taken from.

      Black arrows have been placed next to images 5e and 5l to highlight the positions of the zprojections. The stage E15 chosen for analysis was appropriate to compare the boundary domains once segregation is normally completed. We believe the results show some differences in the cellular features of the boundary domain in the Lmx1a-null mouse, and we have in fact quantified this using Epitool in Figure 5 – Suppl. Fig 1. Cells are more elongated and better aligned in the Lmx1a-null than in the heterozygous samples.  

      (5) Figure 7. I think the cellular disruption caused by the ROCK inhibitor, shown in q', is too severe to be able to pin to a specific effect of ROCK on border formation. In that regard, the ectopic expression of the dominant negative form of ROCK using RCAS approach is better, even though because it is a replication competent form of RCAS, it is still difficult to correlate infected cells to functional disruption.

      We used a replication-competent construct to induce a large patch of infection, increasing our chances of observing a defect in sensory organ segregation and boundary formation. We agree that this approach does not allow us to control the timing of overexpression, but the mosaicism in gene expression, allowing us to compare in the same tissue large regions with/without perturbed ROCK activity, proved more informative than the pharmacological/in vitro experiments.

      (6) Figure 8. Outline the ROI of i in h, and k in j. Outline in k the comparable region in k'. In k", F-actin staining is not uniform. Indicate where (x) was taken from in K.

      The magnified regions were boxed in Figure 8 f, h, and j. Region outlined in figures k’-k” has also been outlined in corresponding region in figure k. Additionally, black arrows have been placed next to images 8g", 8i", and 8k" to highlight the positions of the z-projections. An appropriate explanation has also been added to the figure legend.

      Minor comments:

      (1) P.18, 1st paragraph, extra bracket at the end of the paragraph.

      Bracket removed

      (2) P.22, line 11, in ovo may be better than in vivo in this case.

      We agree, this has been corrected. 

      (3) P.25, be consistent whether it is GFP or EGFP.

      Corrected to GFP.

      (4) P.26, line 5. Typo on "an"

      Corrected to “and”

      Author response image 1.

      Expression of Laminin and Sox2 in the E13 mouse inner ear. a-a’’’) Low magnification view of the utricle, the lateral crista, and the non-sensory (Sox2-negative) domain separating these. Laminin staining is detected at relatively high levels in the basement membrane underneath the sensory patches. At higher magnification (b-b’’’), an upward displacement of the basement membrane (arrow) is visible in the region of reduced Sox2 expression, corresponding to the “boundary domain” (bracket). 

    1. eLife Assessment

      This valuable study expands the inventory of polyadenylated RNAs cleaved by the double-stranded RNA endonuclease Rnt1 in budding yeast, using solid methodology based on high-throughput sequencing. Previous studies had anecdotally discovered mRNA substrates, and this global characterization is comprehensive with multiple complementary controls. This study sets the stage for deeper investigations into the biological function of Rnt1 and substrate cleavage.

    2. Reviewer #1 (Public review):

      Sarpaning et al. provide a thorough characterization of putative Rnt1 cleavage of mRNA in S. cerevisiae. Previous studies have discovered Rnt1 mRNA substrates anecdotally, and this global characterization expands the known collection of putative Rnt1 cleavage sites. The study is comprehensive, with several types of controls to show that Rnt1 is required for several of these cleavages.

      Comments on revisions:

      The authors have responded appropriately to the review.

    3. Reviewer #2 (Public review):

      This study presents a useful inventory of polyadenylated RNAs cleaved by the double-stranded RNA endonuclease Rnt1 in yeast. The data were obtained with solid methodology based on high-throughput sequencing, and the evidence that Rnt1 contributes to cellular homeostasis through controlling the turnover of selected mRNAs is convincing.

      Comments on revisions:

      I appreciate the authors' thorough and thoughtful response, and I find that the manuscript has been substantially strengthened by the additional data, analyses, and textual clarifications.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Strengths: 

      Sarpaning et al. provide a thorough characterization of putative Rnt1 cleavage of mRNA in S. cerevisiae. Previous studies have discovered Rnt1 mRNA substrates anecdotally, and this global characterization expands the known collection of putative Rnt1 cleavage sites. The study is comprehensive, with several types of controls to show that Rnt1 is required for several of these cleavages.

      Weaknesses: 

      (1) Formally speaking, the authors do not show a direct role of Rnt1 in mRNA cleavage - no studies were done (e.g., CLIP-seq or similar) to define direct binding sites. Is the mutant Rnt1 expected to trap substrates? Without direct binding studies, the authors rely on genetics and structure predictions for their argument, and it remains possible that a subset of these sites is an indirect consequence of rnt1. This aspect should be addressed in the discussion.

      We have added to this point in the discussion, as requested. We do not, however, agree that CLIP-seq or other methods are needed to address this point, or would even be helpful in the question the reviewer raises. 

      Importantly, we show that recombinant Rnt1 purified from E. coli cleaves the same sites as those mapped in vivo. This does provide direct evidence that Rnt1 directly binds those RNAs. Furthermore, it shows that it can bind these RNAs without the need of other proteins. Our observation that many mRNAs are cleaved at -14 and +16 positions from NGNN stem loops to leave 2-nt 3’ overhangs provides further support that these are the products of an RNase III enzyme, and Rnt1 is the only family member in yeast. Thus, we disagree with the reviewer that our studies do not show direct targeting.

      CLIP-seq experiments would be valuable, but they would address a different point. CLIP-seq measures protein binding to RNA targets, and it is likely that Rnt1 binds some RNAs without cleaving them. In addition, only a transient interaction are needed for cleavage and such transient interactions might not be readily detected by CLIP-seq. Thus, CLIP-seq would reveal the RNAs bound by Rnt1, but would not help identify which ones are cleaved. Catala et al (2004) showed that the catalytically inactive mutant of Rnt1 carries out some functions that are important for the cell cycle. The CLIP-seq studies would be valuable to determine these non-catalytic roles of Rnt1, but we consider those questions beyond the scope of the current study.

      (2) The comprehensive list of putative Rnt1 mRNA cleavage sites is interesting insofar as it expands the repertoire of Rnt1 on mRNAs, but the functional relevance of the majority of these sites remains unknown. Along these lines, the authors should present a more thorough characterization of putative Rnt1 sites recovered from in vitro Rnt1 cleavage.

      We have included new data that confirm that YDR514C cleavage by Rnt1 is relevant to yeast cell physiology. We show that YDR514C overexpression is indeed toxic, as we previously postulated. More importantly, we generated an allele of YDR514C that has synonymous mutations designed to disrupt the stem-loop recognized by Rnt1. We show that at 37 °C, both the wild-type and mutant allele are toxic to rnt1∆ cells, but that in cells that express Rnt1, the wild-type cleavable allele is more toxic than the allele with the mutated stem-loop. This genetic interaction provides strong evidence that cleavage of YDR514C by Rnt1 is relevant to cell physiology. 

      We have also added PARE analysis of poly(A)-enriched and poly(A)-depleted reactions and show that compared to Dcp2, Rnt1 preferentially targets poly(A)+ mRNAs, consistent with it targeting nuclear RNAs. We discuss in more detail that by cleaving nuclear RNA, Rnt1 provides a kinetic proofreading mechanism for mRNA export competence.

      (3) The authors need to corroborate the rRNA 3'-ETS tetraloop mutations with a northern analysis of 3'-ETS processing to confirm an ETS processing defect (which might need to be done in decay mutants to stabilize the liberated ETS fragment). They state that the tetraloop mutation does not yield a growth defect and use this as the basis for concluding that rRNA cleavage is not the major role of Rnt1 in vivo, which is a surprising finding. But it remains possible that tetraloop mutations did not have the expected disruptive effect in vivo; if the ETS is processed normally in the presence of tetraloop mutations, it would undermine this interpretation. This needs to be more carefully examined.

      We have removed the rRNA 3'-ETS tetraloop mutations, because initial northern blot analysis indicated that Rnt1 cleavage is not completely blocked by the mutations we designed. Therefore, the reviewer is correct that tetraloop mutations did not have the expected disruptive effect in vivo. Future investigations will be required to fully understand this. This was a minor point and removing this focuses the paper on its major contributions

      (4) To support the assertion that YDR514C cleavage is required for normal "homeostasis," and more specifically that it is the major contributor to the rnt1∆ growth defect, the authors should express the YDR514C-G220S mutant in the rDNA∆ strains with mutations in the 3'-ETS (assuming they disrupt ETS processing, see above). This simple experiment should provide a relative sense of "importance" for one or the other cleavage being responsible for the rnt1∆ defect. Given the accepted role of Rnt1 cleavage in rRNA processing and a dogmatic view that this is the reason for the rnt1∆ growth defect, such a result would be surprising and elevate the functional relevance and significance of Rnt1 mRNA cleavage.

      We agree that the experiment proposed by the reviewer is very simple, but we are puzzled by the rationale. First, our experiments do not support that there is anything special about the G220S mutation in YDR514C. A complete loss of function (ydr514c∆) also suppresses the growth defect, suggesting that ydr514c-G220S is a simple loss of function allele. We have clarified that the G220S mutation is distant from the stem-loop recognized by Rnt1 and is unlikely to affect cleavage by Rnt1. Instead, Rnt1 cleavage and the G220S mutation are independent alternative ways to reduce Ydr514c function. We have clarified this point in the text. 

      As mentioned in response to point #3, we have included other additional experiments that address the same overall question raised here – the importance of YDR514C mRNA cleavage by Rnt1.    

      (5) Given that some Rnt1 mRNA cleavage is likely nuclear, it is possible that some of these targets are nascent mRNA transcripts, as opposed to mature but unexported mRNA transcripts, as proposed in the manuscript. A role for Rnt1 in co-transcriptional mRNA cleavage would be conceptually similar to Rnt1 cleavage of the rRNA 3'-ETS to enable RNA Pol I "torpedo" termination by Rat1, described by Proudfoot et al (PMID 20972219). To further delineate this point, the authors could e.g., examine the poly-A tails on abundant Rnt1 targets to establish whether they are mature, polyadenylated mRNAs (e.g., northern analysis of oligo-dT purified material). A more direct test would be PARE analysis of oligo-dT enriched or depleted material to determine the poly-A status of the cleavage products. Alternatively, their association with chromatin could be examined. 

      We have added the requested PARE analysis of oligo-dT enriched or depleted material to determine the polyA status of the cleavage products and related discussions. These confirm our proposal that Rnt1 cleaves mature but unexported mRNA transcripts

      We also note that the northern blots shown in figures 2E, 4C, and 5B use oligo dT selected RNA because the signal was undetectable when we used total RNA. This suggests that the cleaved mRNAs are indeed polyadenylated. 

      The term nascent is somewhat ambiguous, but if the reviewer means RNA that is still associated with Pol II and has not yet been cleaved by the cleavage and polyadenylation machinery, we think that is inconsistent with our findings. We have also re-analyzed the NET-seq data from https://pubmed.ncbi.nlm.nih.gov/21248844/ and find no prominent peaks for our Rnt1 sites in Pol II associated RNAs, although for BDF2 NET-seq does suggest that “spliceosome-mediated decay” is co-transcriptional as would be expected. Altogether these data confirm our previous proposal that Rnt1 mainly cleaves mRNAs that have completed polyadenylated but are not yet exported.

      (6) While laboratory strains of budding yeast have a single RNase III ortholog Rnt1, several other budding yeast have a functional RNAi system with Dcr and Ago (PMID 19745116), and laboratory yeast strains are a derived state due to pressure from the killer virus to lose the RNAi system (PMID 21921191). The current study could provide new insight into the relative substrate preferences of Rnt1 and budding yeast Dicer, which could be experimentally confirmed by expressing Dcr in RNT1 and rnt1∆ strains. In lieu of experiments, discussion of the relevance of Rnt1 cleavage compared to yeast RNAi should be included in the discussion before the "human implications" section.

      The reviewer points out that most other eukaryotic species have multiple RNase III family members, which is a general point we discussed and have now expanded on. The reviewer specifically points to papers that study a species that was incorrectly referred to as Saccharomyces castellii in PMID 19745116, but whose current name is Naumovozyma castellii, reflecting that it is not that closely related to S. cerevisiae (diverged about 86 million years ago; for the correct species phylogeny, see http://ygob.ucd.ie/browser/species.html, as both of the published papers the reviewer cites have some errors in the phylogeny). 

      The other species discussed in PMID 19745116 (Vanderwaltozyma polyspora and Candida albicans) are even more distant. There have been several studies on substrate specificity of Dcr1 versus Rnt1 (including PMID 19745116). 

      The reviewer suggests that expressing Dcr1 in S. cerevisiae would be a valuable addition. However, we can’t envision a mechanism by which S. cerevisiae maintained physiologically relevant Dcr1 substrates in the absence of Dcr1. The results from the proposed study would, in our opinion, be limited to identifying RNAs that can be cleaved in this particular artificial system. We think an important implication of our work is that similar studies to ours should be caried out in rnt1∆, dcr1∆, and double mutants in either S. pombe or N. castellii, as well as in drosha knock outs in animals, and we discuss this in more detail in the revised paper. 

      (7) For SNR84 in Figure S3D, it appears that the TSS may be upstream of the annotated gene model. Does RNA-seq coverage (from external datasets) extend upstream to these additional mapped cleavages? The assertion that the mRNA is uncapped is concerning; an alternative explanation is that the nascent mRNA has a cap initially but is subsequently cleaved by Rnt1. This point should be clarified or reworded for accuracy.

      We agree with the reviewer that the most likely explanation is that the primary SNR84 transcript is capped, and 5’ end processed by Rnt1 and Rat1 to make a mature 5’ monophosphorylated SNR84 and have clarified the text accordingly. We suspect our usage of “uncapped” might have been confusing. “uncapped” was not meant to indicate that the primary transcript did not receive a cap, but instead that the mature transcript did not have a cap. We now use “5’ end processed” and “5’ monophosphorylated”. 

      Reviewer #2 (Public review):  

      The yeast double-stranded RNA endonuclease Rnt1, a homolog of bacterial RNase III, mediates the processing of pre-rRNA, pre-snRNA, and pre-snoRNA molecules. Cells lacking Rnt1 exhibit pronounced growth defects, particularly at lower temperatures. In this manuscript, Notice-Sarpaning examines whether these growth defects can be attributed at least in part to a function of Rnt1 in mRNA degradation. To test this, the authors apply parallel analysis of RNA ends (PARE), which they developed in previous work, to identify polyA+ fragments with 5' monophosphates in RNT1 yeast that are absent in rnt1Δ cells. Because such RNAs are substrates for 5' to 3' exonucleolytic decay by Rat1 in the nucleus or Xrn1 in the cytoplasm, these analyses were performed in a rat1-ts xrn1Δ background. The data recapitulate known Rtn1 cleavage sites in rRNA, snRNAs, and snoRNAs, and identify 122 putative novel substrates, approximately half of which are mRNAs. Of these, two-thirds are predicted to contain double-stranded stem loop structures with A/UGNN tetraloops, which serve as a major determinant of Rnt1 substrate recognition. Rtn1 resides in the nucleus, and it likely cleaves mRNAs there, but cleavage products seem to be degraded after export to the cytoplasm, as analysis of published PARE data shows that some of them accumulate in xrn1Δ cells. The authors then leverage the slow growth of rnt1Δ cells for experimental evolution. Sequencing analysis of thirteen faster-growing strains identifies mutations predominantly mapping to genes encoding nuclear exosome co-factors. Some of the strains have mutations in genes encoding a laratdebranching enzyme, a ribosomal protein nuclear import factor, poly(A) polymerase 1, and the RNAbinding protein Puf4. In one of the puf4 mutant strains, a second mutation is also present in YDR514C, which the authors identify as an mRNA substrate cleaved by Rnt1. Deletion of either puf4 or ydr514C marginally improves the growth of rnt1Δ cells, which the authors interpret as evidence that mRNA cleavage by Rnt1 plays a role in maintaining cellular homeostasis by controlling mRNA turnover. 

      While the PARE data and their subsequent in vitro validation convincingly demonstrate Rnt1mediated cleavage of a small subset of yeast mRNAs, the data supporting the biological significance of these cleavage events is substantially less compelling. This makes it difficult to establish whether Rnt1-mediated mRNA cleavage is biologically meaningful or simply "collateral damage" due to a coincidental presence of its target motif in these transcripts.

      We thank the reviewer and have added additional data to support our conclusion that mRNA cleavage, at least for YDR514C, is not simply collateral damage, but a physiologically relevant function of Rnt1. From an evolutionary perspective, cleavage of mRNAs by Rnt1 might have initially been collateral damage, but if there is a way to use this mechanism, evolution is probably going to use it.

      (1) A major argument in support of the claim that "several mRNAs rely heavily on Rnt1 for turnover" comes from comparing number of PARE reads at the transcript start site (as a proxy for fraction of decapped transcripts) and at the Rnt1 cleavage site (as a proxy for fraction of Rnt1-cleaved transcripts). The argument for this is that "the major mRNA degradation pathway is through decapping". However, polyA tail shortening usually precedes decapping, and transcripts with short polyA tails would be strongly underrepresented in PARE sequencing libraries, which were constructed after two rounds of polyA+ RNA selection. This will likely underestimate the fraction of decapped transcripts for each mRNA. There is a wide range of well-established methods that can be used to directly measure differences in the half-life of Rnt1 mRNA targets in RNT1 vs rnt1Δ cells. Because the PARE data rely on the presence of a 5' phosphate to generate sequencing reads, they also cannot be used to estimate what fraction of a given mRNA transcript is actually cleaved by Rnt1. 

      The reviewer is correct that decapping preferentially affects mRNAs with shortened poly(A) tails, that Rnt1 cleavage likely affects mostly newly made mRNAs with long poly(A) tails, and that PARE may underestimate the decay of mRNAs with shortened poly(A) tails. We have reanalyzed our previously published data where we performed PARE on both the poly(A)-enriched fraction and the poly(A)-depleted fraction (that remains after two rounds of oligo dT selection). Rnt1 products are over-represented in the poly(A)-enriched fraction, while decapping products are enriched in the poly(A)-depleted fraction, providing further support to our conclusion that Rnt1 cleaves nuclear RNA. We have re-written key sections of the paper accordingly.

      The reviewer also points out that “There is a wide range of well-established methods that can be used to directly measure differences in the half-life of Rnt1 mRNA targets in RNT1 vs rnt1Δ cells.” However, all of those methods measure mRNA degradation rates from the steady state pool, which is mostly cytoplasmic. We have, in different contexts, used these methods, but as we pointed out they are inappropriate to measure degradation of nuclear RNA. There are some studies that measure nuclear degradation rates, but this requires purifying nuclei. There are two major drawbacks to this. First, it cannot distinguish between degradation in the nucleus and export from the nucleus because both processes cause disappearance from the nucleus. Second, the purification of yeast nuclei requires “spheroplasting” or enzymatically removing the rigid cell wall. This spheroplasting is likely to severely alter the physiological state of the yeast cell. Given these significant drawbacks and the substantial time and money required, we chose not to perform this experiment.  

      (2) Rnt1 is almost exclusively nuclear, and the authors make a compelling case that its concentration in the cytoplasm would likely be too low to result in mRNA cleavage. The model for Rnt1-mediated mRNA turnover would therefore require mRNAs to be cleaved prior to their nuclear export in a manner that would be difficult to control. Alternatively, the Rnt1 targets would need to re-enter prior to cleavage, followed by export of the cleaved fragments for cytoplasmic decay. These processes would need to be able to compete with canonical 5' to 3' and 3' to 5' exonucleolytic decay to influence mRNA fate in a biologically meaningful way.

      We disagree that mRNA export would be difficult to control, as is elegantly demonstrated by the 13 KDa HIV Rev protein. The export of many other RNAs is tightly controlled such that many RNAs are rapidly degraded in the nucleus by, for example, Rat1 and the RNA exosome, while other RNAs are rapidly exported. Indeed, the competition between RNA export and nuclear degradation is generally thought to be an important quality control for a variety of mRNAs and ncRNAs. We do agree with the reviewer that re-import of mRNAs appears unlikely (which is why we do not discuss it), although it occurs efficiently for other Rnt1-cleaved RNAs such as snRNAs. We have clarified the text accordingly, including in the introduction, results, and discussion. 

      (3) The experimental evolution clearly demonstrates that mutations in nuclear exosome factors are the most frequent suppressors of the growth defects caused by Rnt1 loss. This can be rationalized by stabilization of nuclear exosome substrates such as misprocessed snRNAs or snoRNAs, which are the major targets of Rnt1. The rescue mutations in other pathways linked to ribosomal proteins (splicing, ribosomal protein import, ribosomal mRNA binding) support this interpretation. By contrast, the potential suppressor mutation in YDR514C does not occur on its own but only in combination with a puf4 mutation; it is also unclear whether it is located within the Rnt1 cleavage motif or if it impacts Rnt1 cleavage at all. This can easily be tested by engineering the mutation into the endogenous YDR514C locus with CRISPR/Cas9 or expressing wild-type and mutant YDR514C from a plasmid, along with assaying for Rnt1 cleavage by northern blot. Notably, the growth defect complementation of YDR514C deletion in rnt1Δ cells is substantially less pronounced than the growth advantage afforded by nuclear exosome mutations (Figure S9, evolved strains 1 to 5). These data rather argue for a primary role of Rnt1 in promoting cell growth by ensuring efficient ribosome biogenesis through pre-snRNA/pre-snoRNA processing. 

      The reviewer makes several points. 

      First, we have clarified that the ydr514c-G220S mutation is not near the Rnt1 cleavage motif and is unlikely to affect cleavage by Rnt1. This is exactly what would be expected for a mutation that was selected for in an rnt1∆ strain. Although the reviewer appears to expect it, a mutation that affects Rnt1 cleavage could not be selected for in a strain that lacks Rnt1.

      Second, the reviewer points out that the original ydr514c mutations arose in a strain that also had a puf4 deletion. However, we show that ydr514c∆ also suppresses rnt1∆. Furthermore, we have added additional data that overexpressing an uncleavable YDR514C mRNA affects yeast growth at 37 °C more than the wild-type cleavable form further supporting that the cleavage of YDR154C by Rnt1 is physiologically relevant. 

      Reviewer #2 (Recommendations for the authors): 

      (1) The description of the PARE library construction protocol and data analysis workflow is insufficient to ensure their robustness and reproducibility. The library construction protocol should include details of the individual steps, and the data analysis workflow description should include package versions and exact commands used for each analysis step.

      We have clarified that the experiments were performed exactly as previously described and have included very detailed methods. The Galaxy server does not require commands and instead we have indicated the parameters chosen in the various steps. We have also added that the PARE libraries for poly(A)+ and poly(A)- fractions were generated in the lab of Pam Green according to their protocol, which is not exactly the same as ours. Nevertheless, the Rnt1 sites are also evident from those libraries, further demonstrating the robustness of our data. 

      (2) PARE signal is expressed as a ratio of sequencing coverage at a given nucleotide in RNT1 vs rnt1Δ cells. This poses challenges to estimating fold changes: by definition, there should be no coverage at Rnt1 cleavage sites in rnt1Δ cells, as there will not be any 5' monophosphate-containing mRNA fragments to be ligated to the library construction linker. This should be accounted for in the data analysis pipeline - the DESeq2 package, for example, handles this very well (https://support.bioconductor.org/p/64014/).

      The reviewer is correct and we have clarified how we do account for the possibility of having 0 reads by adding an arbitrary 0.01 cpm to all PARE scores for wild type and mutant. In the original manuscript this was not explicitly mentioned and the reader would have to go to our previous paper to learn about this detail. Adding this 0.01 cpm pseudocount avoids dividing by 0 when we calculate a comPARE score. This means we actually underestimate the fold change. As can be seen in the red line in the image below, the y-axis modified log2FC score maxes out along a diagonal line at log2([average RNT1 reads]/0.01) instead of at infinity. That is, at a wild type peak height of 1 cpm, the maximum possible score is log2(1.01/.01), which equals 6.66, and at 10 cpm, the maximum score is ~10, etc.). As can be seen, many of the scores fall along this diagonal, reflecting that indeed, there are 0 reads in the rnt1∆ samples.

      Author response image 1.

      There are multiple ways to deal with this issue, and ours is not uncommon. DESeq2, suggested by the reviewer, uses a different method, which relies on the assumption that the dispersion of read counts for genes of any given expression strength is constant, and then uses that dispersion to “correct” the 0 read counts. While this is a valid way for differential gene expression when comparing similar RNAs, the underlying assumption that the dispersion of expression of all genes is similar for similar expression level is questionable for comparing, for example, mRNAs, snoRNAs, and snRNAs. Thus, we are not convinced that this is a better way to deal with 0 counts. Our analysis accepts that 0 might be the best estimate for the number of counts that are expected from rnt1∆ samples. 

      (3) The analysis in Figure S8 is insufficient to demonstrate that the four mRNAs depicted are significantly more abundant in rnt1Δ vs RNT1 cells - differences in coverage could simply be a result of different sequencing depth. Please use an appropriate method for estimating differential expression from RNA-Seq data (e.g., DESeq2). 

      Unfortunately, the previously published data we included as figure S8 (now figure S9) did not include replicates, and we agree that it does not rigorously show an effect. The reviewer suggests that we analyze the data by DESeq2, which requires replicates, and thus, cannot be done. Instead we have clarified this. If the reviewer is not satisfied with this, we are prepared to delete it.

    1. eLife Assessment

      This study combines mathematical models and experimental data to analyse the emergence of heterogeneity within clonal NK cell responses during antigen-specific cell expansion. It comprises different experimental data and extensively explores various mathematical models, to study NK cell turnover during acute immune responses and homeostatic turnover within murine cytomegalovirus infection (MCMV). The solid study presents valuable findings and provides insights on heterogeneous NK cell development