26,925 Matching Annotations
  1. Nov 2023
    1. eLife assessment

      This is an important study that extends our understanding of how the medial prefrontal cortex regulates goal-directed action during threat. The authors provide convincing evidence that prefrontal cortex parvalbumin neurons suppress conditional freezing responses, permitting the initiation of active controlling responses over shock onset (termed 'avoidance'); also, this cell-type function does not generalize to appetitive situations or general locomotion. These findings are expected to be of great benefit to multiple neuroscience subfields interested in the mechanisms of adaptive behavior.

    2. Joint Public Review:

      This study examined the role of parvalbumin (PV) cells in the rodent ventromedial prefrontal cortex (vmPFC) in active avoidance behavior. Using behavior combined with fiber photometry and optogenetics, the results indicate that prefrontal parvalbumin (PV) neurons play a permissive role in acquiring and performing signaled active avoidance learning. Notably, parvalbumin neurons suppress conditional freezing, enabling subjects to acquire the instrumental avoidance contingency and its subsequent performance. These findings advance our understanding of how the prefrontal cortex supports aversively motivated instrumental behavior and may provide insight into both stress vulnerability and resilience processes.

      Strengths

      All reviewers noted that the paper is well-written and compelling. The experiments themselves were well-designed using state-of-the-art methods and impressive and rigorous analyses. The reviewers appreciated that the authors included multiple controls to demonstrate that the uncovered prefrontal mechanism is selective for the initiation of operant behavior under aversive circumstances, rather than a role for cue offset in triggering changes in PV neuron activity, and for a nonspecific role in movement initiation. The results are all consistent with a conceptual model in which vmPFC PV neurons inhibit freezing to enable avoidance movements

      Weaknesses

      In general, no substantive weaknesses were noted. Minor weaknesses were noted across two areas, noted below.

      Additional Discussion Points

      1. There is not much exploration of potential mechanisms, i.e., the impact of PV neuron activity on the broader circuit. Additionally, the study exclusively focuses on PV cells and does not explore the role of other prefrontal populations, particularly those known to respond to cue-evoked fear states. The discussion should consider how PV activity might impact the broader circuit and whether the present findings are specific to PV cells or applicable to other interneuron subtypes.

      2. There is some discordance between changes in neural activity and behavior. For example, in Figure 4C, the relationship between PV neuron activity and movement emerges almost immediately during learning, but successful active avoidance emerges much more gradually. Why is this?

      3. vmPFC was defined here as including the infralimbic (IL) and dorsal peduncular (DP) regions. While the role of IL has been frequently characterized for motivated behavior, relatively few studies have examined DP. Perhaps the authors are just being cautious, given the challenges involved in the viral targeting of the IL region without leakage to nearby regions such as DP. But since the optical fibers were positioned above the IL region, it is possible that DP did not contribute much to either the fiber photometry signals or the effects of the optogenetic manipulations. Perhaps DP should be completely omitted, which is more consistent with the definitions of vmPFC in the field.

      4. In the Discussion, the authors should consider why PV cells exhibit increased activity during both movement initiation and successful chamber crossing during avoidance. While the functional contribution of the PV signal during movement initiation was tested with optogenetic inhibition, some discussion on the possible role of the additional PV signal during chamber crossing is of interest readers who are intrigued by the signaling of two events. Is the chamber crossing signal related to successful avoidance or learned safety (e.g., see Sangha, Diehl, Bergstrom, Drew 2020)?

      5. The primary conclusion here that PV cells control the fear response should be considered within the context of prior findings by the Herry laboratory. Courtin et al (2014) demonstrated a select role of prefrontal PV cells in the regulation of fear states, accomplished through their control over prefrontal output to the basolateral amygdala. The observations in this paper, which used both ChR2 and Arch-T to address the impact of vmPFC PV activity on reactive behavior, are highly relevant to issues raised both in the Introduction and Discussion.

      Additional analyses

      1. As avoidance trials progress (particularly on days 2 and 3), do PFC PV responses attenuate? That is, does continued unreinforced tone presentations lead to reduced reliance of PV cell-mediated suppression in order for successful avoidance to occur?

      2. In Figure 3D, it would be very informative and further support the claim of "no role for movement during reward" if the response of these cells during the "initiation of movement during reward-approach" was shown (similar to Figure 1F for threat avoidance).

    1. eLife assessment

      This study provides an important contribution to understanding how parafoveal words are neurally processed. The study employs a state-of-the-art frequency tagging paradigm to study the MEG response to words during natural reading. It provides solid evidence that semantic information of parafoveal words can be extracted.

    2. Reviewer #1 (Public Review):

      The authors' primary research question revolves around the inquiry of "how far in advance semantic information might become available from parafoveal preview." In contrast to prior studies, the current research seeks to achieve a breakthrough in terms of timing by employing innovative technology. They mention in the manuscript that "most of these studies have been limited to measuring parafoveal preview from fixations to an immediately adjacent word... We tackle these core issues using a new technique that combines the use of frequency tagging and the measurement of magnetoencephalography (MEG)-based signals." However, the argumentation for how this new technology constitutes a breakthrough is not sufficiently substantiated. Specifically, there are two aspects that require further clarification. Firstly, the authors should clarify the importance of investigating the timing of semantic integration in their research question. They need to justify why previous studies focusing on the preview effect during fixations to an immediately adjacent word cannot address their specific inquiry about "how far in advance semantic information might become available from parafoveal preview," which requires examining parafoveal processing (POF). Secondly, in terms of the research methodology, the authors should provide a more comprehensive explanation of the advantages offered by MEG technology in the observation of the timing of semantic integration compared to the techniques employed in prior research. Indeed, the authors have overlooked some rather significant studies in this area. For instance, the research conducted by Antúnez, Milligan, Hernández-Cabrera, Barber, & Schotter in 2022 addresses the same research question mentioned in the current study and employs a similar experimental design. Importantly, they utilize a natural reading paradigm with synchronized ERP and eye-tracking recordings. Collectively, these studies, along with the series of prior research studies employing ERP techniques and RSVP paradigms discussed by the authors in their manuscript, provide ample evidence that semantic information becomes available and integrated from words before fixation occurs. Therefore, the authors should provide a more comprehensive citation of relevant research and delve deeper into explaining the potential contributions of their chosen technology to this field.

      Further, the authors emphasize semantic integration in their observed results but overlook the intricate relationship between access, priming, and integration. This assertion appears overly confident. Despite using low-constraint sentences and low-predicted targets (lines 439-441), differences between congruent and incongruent conditions may be influenced by word-level factors. For instance, in the first coherent sentence, such as "Last night, my lazy brother came to the party one minute before it was over" (line 1049), replacing the keyword "brother" with an incongruent word could create an incoherent sentence, possibly due to semantic violation, relation mismatch with "lazy," or prediction error related to animate objects. A similar consideration applies to the second example sentence, "Lily says this blue jacket will be a big fashion trend this fall" (line 1050), where the effect might result from a discrepancy between "blue" and an incongruent word. However, the authors do not provide incongruent sentences to substantiate their claims. I recommend that the authors discuss alternative explanations and potentially control for confounding factors before asserting that their results unequivocally reflect semantic integration. My intention is not to dispute the semantic integration interpretation but to stress the necessity for stronger evidence to support this assertion.

    3. Reviewer #2 (Public Review):

      This MEG study used co-registered eye-tracking and Rapid Invisible Frequency Tagging (RIFT) to track the effects of semantic parafoveal preview during natural sentence reading. Unpredictable target words could either be congruent or incongruent with sentence context. This modulated the RIFT response already while participants were fixating on the preceding word. This indicates that the semantic congruency of the upcoming word modulates visual attention demands already in parafoveal preview.<br /> The quest for semantic parafoveal preview in natural reading has attracted a lot of attention in recent years, especially with the development of co-registered EEG and MEG. Evidence from dynamic neuroimaging methods using innovative paradigms as in this study is important for this debate.

      Major points:<br /> 1) The authors frame their study in terms of "congruency with sentence context". However, it is the congruency between adjective-noun pairs that determines congruency (e.g. "blue brother" vs "blue jacket", and examples p. 16 and appendix). This is confirmed by Suppl Figure 1, which shows a significantly larger likelihood of refixations to the pre-target word for incongruent sentences, probably because the pre-target word is most diagnostic for the congruency of the target word. The authors discuss some possibilities as to why there is variability in parafoveal preview effects in the literature. It is more likely to see effects for this simple and local congruency, rather than congruency that requires an integration and comprehension of the full sentence. I'm not sure whether the authors really needed to present their stimuli in a full-sentence context to obtain these effects. This should be explicitly discussed and also mentioned in the introduction (or even the abstract).

      2) The authors used MEG and provided a source estimate for the tagging response (Figure 2), which unsurprisingly is in the visual cortex. The most important results are presented at the sensor level. This does not add information about the brain sources of the congruency effect, as the RIFT response probably reflects top-down effects on visual attention etc. Was it necessary to use MEG? Would EEG have produced the same results? In terms of sensitivity, EEG is better than MEG as it is more sensitive to radial and deeper sources. This should be mentioned in the discussion and/or methods section.

      3) The earliest semantic preview effects occurred around 100ms after fixating the pre-target word (discussed around l. 323). This means that at this stage the brain must have processed the pre-target and the target word and integrated their meanings (at some level). Even in the single-word literature, semantic effects at 100 ms are provocatively early. Even studies that tried to determine the earliest semantic effects arrived at around 200 ms (e.g. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3382728/, https://psycnet.apa.org/record/2013-17451-002). The present results need to be discussed in a bit more detail in the context of the visual word recognition literature.

      4) As in previous EEG/MEG studies, the authors found a neural but no behavioural preview effect. As before, this raises the question of whether the observed effect is really "critical" for sentence comprehension. The authors provide a correlation analysis with reading speed, but this does not allow causal conclusions: Some people may simply read slowly and therefore pay more attention and get a larger preview response. Some readers may hurry and therefore not pay attention and not get a preview response. In order to address this, one would have to control for reading speed and show an effect of RIFT response on comprehension performance (or vice versa, with a task that is not close to ceiling performance). The last sentence of the discussion is currently not justified by the results.

      5) L. 577f.: ICA components were selected by visual inspection. I would strongly recommend including EOG in future recordings when the control of eye movements is critical.

      6) The authors mention "saccade planning" a few times. I would suggest looking at the SWIFT model of eye movement control, which is less mechanistic than the dominant EZ-Reader model (https://psycnet.apa.org/record/2005-13637-003). It may be useful for the framing of the study and interpretation of the results (e.g. second paragraph of discussion).

    1. Reviewer #1 (Public Review):

      Summary:<br /> This study focuses on the role of GABA in semantic memory and its neuroplasticity. The researchers stimulated the left ATL and control site (vertex) using cTBS, measured changes in GABA before and after stimulation using MRS, and measured changes in BOLD signals during semantic and control tasks using fMRI. They analyzed the effects of stimulation on GABA, BOLD, and behavioral data, as well as the correlation between GABA changes and BOLD changes caused by the stimulation. The authors also analyzed the relationship between individual differences in GABA levels and behavioral performance in the semantic task. They found that cTBS stimulation led to increased GABA levels and decreased BOLD activity in the ATL, and these two changes were highly correlated. However, cTBS stimulation did not significantly change participants' behavioral performance on the semantic task, although behavioral changes in the control task were found after stimulation. Individual levels of GABA were significantly correlated with individuals' accuracy on the semantic task, and the inverted U-shaped (quadratic) function provides a better fit than the linear relationship. The authors argued that the results support the view that GABAergic inhibition can sharpen activated distributed semantic representations. They also claimed that the results revealed, for the first time, a non-linear, inverted-U-shape relationship between GABA levels in the ATL and semantic function, by explaining individual differences in semantic task performance and cTBS responsiveness

      Strengths:<br /> The findings of the research regarding the increase of GABA and decrease of BOLD caused by cTBS, as well as the correlation between the two, appear to be reliable. This should be valuable for understanding the biological effects of cTBS.

      Weaknesses:<br /> Regarding the behavioral effects of GABA on semantic tasks, especially its impact on neuroplasticity, the results presented in the article are inadequate to support the claims made by the authors. There are three aspects of results related to this: 1) the effects of cTBS stimulation on behavior, 2) the positive correlation between GABA levels and semantic task accuracy, and 3) the nonlinear relationship between GABA levels and semantic task accuracy. Among these three pieces of evidence, the clearest one is the positive correlation between GABA levels and semantic task accuracy. However, it is important to note that this correlation already exists before the stimulation, and there are no results supporting that it can be modulated by the stimulation. In fact, cTBS significantly increases GABA levels but does not significantly improve performance on semantic tasks. According to the authors' interpretation of the results in Table 1, cTBS stimulation may have masked the practice effects that were supposed to occur. In other words, the stimulation decreased rather than enhanced participants' behavioral performance on the semantic task.

      The stimulation effect on behavioral performance could potentially be explained by the nonlinear relationship between GABA and performance on semantic tasks proposed by the authors. However, the current results are also insufficient to support the authors' hypothesis of an inverted U-shaped curve. Firstly, in Figure 3C and Figure 3D, the last one-third of the inverted U-shaped curve does not have any data points. In other words, as the GABA level increases the accuracy of the behavior first rises and then remains at a high level. This pattern of results may be due to the ceiling effect of the behavioral task's accuracy, rather than an inverted U-shaped ATL GABA function in semantic memory. Second, the article does not provide sufficient evidence to support the existence of an optimal level of GABA in the ATL. Fortunately, this can be tested with additional data analysis. The authors can estimate, based on pre-stimulus data from individuals, the optimal level of GABA for semantic functioning. They can then examine two expectations: first, participants with pre-stimulus GABA levels below the optimal level should show improved behavioral performance after stimulation-induced GABA elevation; second, participants with pre-stimulus GABA levels above the optimal level should exhibit a decline in behavioral performance after stimulation-induced GABA elevation. Alternatively, the authors can categorize participants into groups based on whether their behavioral performance improves or declines after stimulation, and compare the pre- and post-stimulus GABA levels between the two groups. If the improvement group shows significantly lower pre-stimulus GABA levels compared to the decline group, and both groups exhibit an increase in GABA levels after stimulation, this would also provide some support for the authors' hypothesis.

      Another issue in this study is the confounding of simulation effects and practice effects. According to the results, there is a significant improvement in performance after the simulation, at least in the control task, which the authors suggest may reflect a practice effect. The authors argue that the results in Table 1 suggest a similar practice effect in the semantic task, but it is masked by the simulation of the ATL. However, since no significant effects were found in the ANOVA analysis of the semantic task, it is actually difficult to draw a conclusion. This potential confound increases the risk in data analysis and interpretation. Specifically, for Figure 3D, if practice effects are taken into account, the data before and after the simulation should not be analyzed together.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The authors combined inhibitory neurostimulation (continuous theta-burst stimulation, cTBS) with subsequent MRI measurements to investigate the impact of inhibition of the left anterior temporal lobe (ATL) on task-related activity and performance during a semantic task and link stimulation-induced changes to the neurochemical level by including MR spectroscopy (MRS). cTBS effects in the ATL were compared with a control site in the vertex. The authors found that relative to stimulation of the vertex, cTBS significantly increased the local GABA concentration in the ATL. cTBS also decreased task-related semantic activity in the ATL and potentially delayed semantic task performance by hindering a practice effect from pre to post. Finally, pooled data from their previous MRS study suggest an inverted U-shape between GABA concentration and behavioral performance. These results help to better understand the neuromodulatory effects of non-invasive brain stimulation on task performance.

      Strengths:<br /> Multimodal assessment of neurostimulation effects on the behavioral, neurochemical, and neural levels. In particular, the link between GABA modulation and behavior is timely and potentially interesting.

      Weaknesses:<br /> The analyses are not sound. Some of the effects are very weak and not all conclusions are supported by the data since some of the comparisons are not justified. There is some redundancy with a previous paper by the same authors, so the novelty and contribution to the field are overall limited. A network approach might help here.

    3. Reviewer #3 (Public Review):

      Summary:<br /> The authors used cTBS TMS, magnetic resonance spectroscopy (MRS), and functional magnetic resonance imaging (fMRI) as the main methods of investigation. Their data show that cTBS modulates GABA concentration and task-dependent BOLD in the ATL, whereby greater GABA increase following ATL cTBS showed greater reductions in BOLD changes in ATL. This effect was also reflected in the performance of the behavioural task response times, which did not subsume to practice effects after AL cTBS as opposed to the associated control site and control task. This is in line with their first hypothesis. The data further indicates that regional GABA concentrations in the ATL play a crucial role in semantic memory because individuals with higher (but not excessive) GABA concentrations in the ATLs performed better on the semantic task. This is in line with their second prediction. Finally, the authors conducted additional analyses to explore the mechanistic link between ATL inhibitory GABAergic action and semantic task performance. They show that this link is best captured by an inverted U-shaped function as a result of a quadratic linear regression model. Fitting this model to their data indicates that increasing GABA levels led to better task performance as long as they were not excessively low or excessively high. This was first tested as a relationship between GABA levels in the ATL and semantic task performance; then the same analyses were performed on the pre and post-cTBS TMS stimulation data, showing the same pattern. These results are in line with the conclusions of the authors.

      Strengths:<br /> I thoroughly enjoyed reading the manuscript and appreciate its contribution to the field of the role of the ATL in semantic processing, especially given the efforts to overcome the immense challenges of investigating ATL function by neuroscientific methods such as MRS, fMRI & TMS. The main strengths are summarised as follows:

      • The work is methodologically rigorous and dwells on complex and complementary multimethod approaches implemented to inform about ATL function in semantic memory as reflected in changes in regional GABA concentrations. Although the authors previously demonstrated a negative relationship between increased GABA levels and BOLD signal changes during semantic processing, the unique contribution of this work lies within evidence on the effects of cTBS TMS over the ATL given by direct observations of GABA concentration changes and further exploring inter-individual variability in ATL neuroplasticity and consequent semantic task performance.

      • Another major asset of the present study is implementing a quadratic regression model to provide insights into the non-linear relationship between inhibitory GABAergic activity within the ATLs and semantic cognition, which improves with increasing GABA levels but only as long as GABA levels are not extremely high or low. Based on this finding, the authors further pinpoint the role of inter-individual differences in GABA levels and cTBS TMS responsiveness, which is a novel explanation not previously considered (according to my best knowledge) in research investigating the effect of TMS on ATLs.

      • There are also many examples of good research practice throughout the manuscript, such as the explicitly stated exploratory analyses, calculation of TMS electric fields, using ATL optimised dual echo fRMI, links to open source resources, and a part of data replicates a previous study by Jung et. al (2017).

      Weaknesses:<br /> • Research on the role of neurotransmitters in semantic memory is still very rare and therefore the manuscript would benefit from more context on how GABA contributes to individual differences in cognition/behaviour and more justification on why the focus is on semantic memory. A recommendation to the authors is to highlight and explain in more depth the particular gaps in evidence in this regard.

      • The focus across the experiments is on the left ATL; how do the authors justify this decision? Highlighting the justification for this methodological decision will be important, especially given that a substantial body of evidence suggests that the ATL should be involved in semantics bilaterally (e.g. Hoffman & Lambon Ralph, 2018; Lambon Ralph et al., 2009; Rice et al., 2017; Rice, Hoffman, et al., 2015; Rice, Ralph, et al., 2015; Visser et al., 2010).

      • When describing the results, (Pg. 11; lines 233-243), the authors first show that the higher the BOLD signal intensity in ATL as a response to the semantic task, the lower the GABA concentration. Then, they state that individuals with higher GABA concentrations in the ATL perform the semantic task better. Although it becomes clearer with the exploratory analysis described later, at this point, the results seem rather contradictory and make the reader question the following: if increased GABA leads to less task-induced ATL activation, why at this point increased GABA also leads to facilitating and not inhibiting semantic task performance? It would be beneficial to acknowledge this contradiction and explain how the following analyses will address this discrepancy.

      • There is an inconsistency in reporting behavioural outcomes from the performance on the semantic task. While experiment 1 (cTBS modulates regional GANA concentrations and task-related BOLD signal changes in the ATL) reports the effects of cTBS TMS on response times, experiment 2 (Regional GABA concentrations in the ATL play a crucial role in semantic memory) and experiment 3 (The inverted U-shaped function of ATL GABA concentration in semantic processing) report results on accuracy. For full transparency, the manuscript would benefit from reporting all results (either in the main text or supplementary materials) and providing further explanations on why only one or the other outcome is sensitive to the experimental manipulations across the three experiments.

      Overall, the most notable impact of this work is the contribution to a better understanding of individual differences in semantic behaviour and the potential to guide therapeutic interventions to restore semantic abilities in neurological populations. While I appreciate that this is certainly the case, I would be curious to read more about how this could be achieved.

    1. eLife assessment

      This study provides a valuable contribution to understanding the neural mechanisms underlying age-related changes in attention and speech understanding. The large dataset (N=105) provides solid evidence for how speech recognition behaviour and neural tracking of speech separately evolve in about 2 years. The work would be of interest to psychologists, neuroscientists, and audiologists.

    2. Reviewer #2 (Public Review):

      Summary:<br /> This study examined the longitudinal brain-behaviour link between attentional neural filtering and listening behaviour among a sample of aging individuals. The results based on the latent change score modeling showed that neither attentional neural filtering at T1 nor its T1-T2 change predicted individual two-year listening performance change. The findings suggest that neural filtering and listening behaviour may follow independent developmental trajectories. This study focuses on an interesting topic and has the potential to contribute a better understanding of the neurobiological mechanisms of successful communication across the lifespan.

      Strengths:<br /> Although research suggests that speech comprehension is neurally supported by an attention-guided filter mechanism, the evidence of their causal association is limited. This study addresses this gap by testing the longitudinal stability of neural filtering as a neural mechanism upholding listening performance, potentially shedding light on translational efforts aiming at the preservation of speech comprehension abilities among aging individuals.

      The latent change score modeling approach is appropriately used as a tool to examine key developmental questions and distinguish the complex processes underlying lifespan development in brain and behaviour with longitudinal data.

      Weaknesses:<br /> Although the paper does have strengths in principle, the weaknesses of the paper are that the findings are merely based on a single listening task. Since both neural and behavioral indicators are derived from the same task, the results may be applicable only to this specific task, and it is difficult to extrapolate them to cognitive and listening abilities measured by the other tasks. Therefore, more listening tasks are required to comprehensively measure speech comprehension and neural markers.

      The age span of the sample is relatively large. Although no longitudinal change from T1 to T2 was found at the group-level, from the cross-sectional and longitudinal change results (see Figure 3), individuals of different age groups showed different development patterns. Particularly, individuals over the age of 70 show a clear downward trend in both neural filtering index and accuracy. Therefore, different results may be found based on different age groups, especially older groups. However, due to sample limitations, this study was unable to examine whether age has a moderating effect on this brain-behaviour link.

      In the Dichotic listening task, valid and invalid cues were manipulated. According to the task description, the former could invoke selective attention, whereas the latter could invoke divided attention. It is possible that under the two conditions, the neural filtering index may reflect different underlying cognitive processes, and thus may differ in its predictive effect on behavioral performance. The author could perform a more in-depth data analysis on indicators under different conditions.

    3. Reviewer #3 (Public Review):

      Summary:<br /> The study investigates the longitudinal changes in hearing threshold, speech recognition behavior, and speech neural responses in 2 years, and how these changes correlate with each other. A slight change in the hearing threshold is observed in 2 years (1.2 dB on average) but the speech recognition performance remains stable. The main conclusion is that there is no significant correlation between longitudinal changes in neural and behavioral measures.

      Strengths:<br /> The sample size (N>100) is remarkable, especially for longitudinal studies.

      Weaknesses:<br /> The participants are only tracked for 2 years and relatively weak longitudinal changes are observed, limiting how the data may shed light on the relationships between basic auditory function, speech recognition behavior, and speech neural responses.

      Suggestions<br /> First, it's not surprising that a 1.2 dB change in hearing threshold does not affect speech recognition, especially for the dichotic listening task and when speech is always presented 50 dB above the hearing threshold. For the same listener, if the speech level is adjusted for 1.2 dB or much more, the performance will not be influenced during the dichotic listening task. Therefore, it is important to mention in the abstract that "sensory acuity" is measured using the hearing threshold and the change in hearing threshold is only 1.2 dB.

      Second, the lack of correlation between age-related changes in "neuronal filtering" and behavior may not suggest that they follow independent development trajectories. The index for "neuronal filtering" does not seem to be stable and the correlation between the two tests is only R = 0.21. This low correlation probably indicates low test-retest reliability, instead of a dramatic change in the brain between the two tests. In other words, if the "neuronal filtering" index only very weakly correlates with itself between the two tests, it is not surprising that it does not correlate with other measures in a different test. If the "neuronal filtering" index is measured on two consecutive days and the index remains highly stable, I'm more convinced that it is a reliable measure that just changes a lot within 2 years, and the change is dissociated with the changes in behavior.

      The authors attempted to solve the problem in the section entitled "Neural filtering reliably supports listening performance independent of age and hearing status", but I didn't follow the logic. As far as I could tell, the section pooled together the measurements from two tests and did not address the test-retest stability issue.

      Third, the behavioral measure that is not correlated with "neuronal filtering" is the response speed. I wonder if the participants are asked to respond as soon as possible (not mentioned in the method). If not, the response speed may strongly reflect general cognitive function or a personal style, which is not correlated with the changes in auditory functions. This can also explain why the hearing threshold affects speech recognition accuracy but not the response speed (lines 263-264).

    1. eLife assessment

      The aim of this valuable study is to uncover developmental roles of the neuropeptide prothoracicotropic hormone (PTTH) and ecdysone, which later regulate female receptivity of Drosophila melanogaster. The work combines spatially and temporally restricted genetic manipulation with behavior quantification to explore these molecular pathways and the neuronal substrates participating in the control of female sexual receptivity. At present, the implication of both signaling pathways in this process is convincing but the strength of the evidence is incomplete to support the main claim that PTTH pathway controls female sexual receptivity through the function of ecdysone in pC1 neurons.

    2. Reviewer #1 (Public Review):

      Summary: This article explores the role of Ecdysone in regulating female sexual receptivity in Drosophila. The researchers found that PTTH, throughout its role as a positive regulator of ecdysone production, negatively affects the receptivity of adult virgin females. Indeed, loss of larval PTTH before metamorphosis significantly increases female receptivity right after adult eclosion and also later. However, during metamorphic neurodevelopment, Ecdysone, primarily through its receptor EcR-A, is required to properly develop the P1 neurons since its silencing led to morphological changes associated with a reduction in adult female receptivity. Nonetheless, the result shown in this manuscript sheds light on how Ecdysone plays a dual role in female adult receptivity, inhibiting it during larval development and enhancing it during metamorphic development. Unfortunately, this dual and opposite effect in two temporally different developmental stages has not been highlighted or explained.

      Strengths: This paper exhibits multiple strengths in its approach, employing a well-structured experimental methodology that combines genetic manipulations, behavioral assays, and molecular analysis to explore the impact of Ecdysone on regulating virgin female receptivity in Drosophila. The study provides clear and substantial findings, highlighting that removing PTTH, a positive Ecdysone regulator, increases virgin female receptivity. Additionally, the research expands into the temporal necessity of PTTH and Ecdysone function during development.

      Weaknesses:<br /> There are two important caveats with the data that are reflecting a weakness:

      1-Contradictory Effects of Ecdysone and PTTH: One notable weakness in the data is the contrasting effects observed between Ecdysone and its positive regulator PTTH. PTTH loss of function increases female receptivity, while ecdysone loss of function reduces it. Given that PTTH positively regulates Ecdysone, one would expect that the loss of function of both would result in a similar phenotype or at least a consistent directional change.

      2- Discordant Temporal Requirements for Ecdysone and PTTH: Another weakness lies in the different temporal requirements for Ecdysone and PTTH. The data from the manuscript suggest that PTTH is necessary during the larval stage, as shown in Figure 2 E-G, while Ecdysone is required during the pupal stage, as indicated in Figure 5 I-K. Ecdysone is a crucial developmental hormone with precisely regulated expression throughout development, exhibiting several peaks during both larval and pupal stages. PTTH is known to regulate Ecdysone during the larval stage, specifically by stimulating the kinetics of Ecdysone peaking at the wandering stage. However, it remains unclear whether pupal PTTH, expressed at higher levels during metamorphosis, can stimulate Ecdysone production during the pupal stage. Additionally, given the transient nature of the Ecdysone peak produced at wandering time, which disappears shortly before the end of the prepupal stage, it is challenging to infer that larval PTTH will regulate Ecdysone production during the pupal stage based on the current state of knowledge in the neuroendocrine field.

      Considering these two caveats, the results suggest that the authors are witnessing distinct temporal and directional effects of Ecdysone on virgin female receptivity.

    3. Reviewer #2 (Public Review):

      Summary: The authors tried to identify novel adult functions of the classical Drosophila juvenile-adult transition axis (i.e. ptth-ecdysone). Surprisingly, larval ptth-expressing neurons expressed the sex-specific doublesex gene, thus belonging to the sexual dimorphic circuit. Lack of ptth during late larval development caused enhanced female sexual receptivity, an effect rescued by supplying ecdysone in the food. Among many other cellular players, pC1 neurons control receptivity by encoding the mating status of females. Interestingly, during metamorphosis, a subtype of pC1 neurons required Ecdysone Receptor A in order to regulate such female receptivity. A transcriptomic analysis using pC1-specific Ecdyone signaling down-regulation gives some hints of possible downstream mechanisms.

      Strengths: the manuscript showed solid genetic evidence that lack of ptth during development caused enhanced copulation rate in female flies, which includes ptth mutant rescue experiments by over-expressing ptth as well as by adding ecdysone-supplemented food. They also present elegant data dissecting the temporal requirements of ptth-expressing neurons by shifting animals from non-permissive to permissive temperatures, in order to inactivate neuronal function (although not exclusively ptth function). By combining different drivers together with a EcR-A RNAi line authors also identified the Ecdysone receptor requirements of a particular subtype of pC1 neurons during metamorphosis. Convincing live calcium imaging showed no apparent effect of EcR-A in neural activity, although some effect on morphology is uncovered. Finally, bulk RNAseq shows differential gene expression after EcR-A down-regulation.

      Weaknesses: the paper has three main weaknesses. The first one refers to temporal requirements of ptth and ecdysone signaling. Whereas ptth is necessary during larval development, the ecdysone effect appears during pupal development. ptth induces ecdysone synthesis during larval development but there is no published evidence about a similar role for ptth during pupal stages. Furthermore, larval and pupal ecdysone functions are different (triggering metamorphosis vs tissue remodeling). The second caveat is the fact that ptth and ecdysone loss-of-function experiments render opposite effects (enhancing and decreasing copulation rates, respectively). The most plausible explanation is that both functions are independent of each other, also suggested by differential temporal requirements. Finally, in order to identify the effect in the transcriptional response of down-regulating EcR-A in a very small population of neurons, a scRNAseq study should have been performed instead of bulk RNAseq.

      In summary, despite the authors providing convincing evidence that ptth and ecdysone signaling pathways are involved in female receptivity, the main claim that ptth regulates this process through ecdysone is not supported by results. More likely, they'd rather be independent processes.

    4. Reviewer #3 (Public Review):

      Summary:<br /> This manuscript shows that mutations that disable the gene encoding the PTTH gene cause an increase in female receptivity (they mate more quickly), a phenotype that can be reversed by feeding these mutants the molting hormone, 20-hydoxyecdysone (20E). The use of an inducible system reveals that inhibition or activation of PTTH neurons during the larval stages increases and decreases female receptivity, respectively, suggesting that PTTH is required during the larval stages to affect the receptivity of the (adult) female fly. Showing that these neurons express the sex-determining gene dsx leads the authors to show that interfering with 20E actions in pC1 neurons, which are dsx-positive neurons known to regulate female receptivity, reduces female receptivity and increases the arborization pattern of pC1 neurons. The work concludes by showing that targeted knockdown of EcRA in pC1 neurons causes 527 genes to be differentially expressed in the brains of female flies, of which 123 passed a false discovery rate cutoff of 0.01; interestingly, the gene showing the greatest down-regulation was the gene encoding dopamine beta-monooxygenase.

      Stengths<br /> This is an interesting piece of work, which may shed light on the basis for the observation noted previously that flies lacking PTTH neurons show reproductive defects ("... females show reduced fecundity"; McBrayer, 2007; DOI 10.1016/j.devcel.2007.11.003).

      Weaknesses:<br /> There are some results whose interpretation seem ambiguous and findings whose causal relationship is implied but not demonstrated.<br /> 1- At some level, the findings reported here are not at all surprising. Since 20E regulates the profound changes that occur in the central nervous system (CNS) during metamorphosis, it is not surprising that PTTH would play a role in this process. Although animals lacking PTTH (rather paradoxically) live to adulthood, they do show greatly extended larval instars and a corresponding great delay in the 20E rise that signals the start of metamorphosis. For this reason, concluding that PTTH plays a SPECIFIC role in regulating female receptivity seems a little misleading, since the metamorphic remodeling of the entire CNS is likely altered in PTTH mutants. Since these mutants produce overall normal (albeit larger--due to their prolonged larval stages) adults, these alterations are likely to be subtle. Courtship has been reported as one defect expressed by animals lacking PTTH neurons, but this behavior may stand out because reduced fertility and increased male-male courtship (McBrayer, 2007) would be noticeable defects to researchers handling these flies. By contrast, detecting defects in other behaviors (e.g., optomotor responses, learning and memory, sleep, etc) would require closer examination. For this reason, I would ask the authors to temper their statement that PTTH is SPECIFICALLY involved in regulating female receptivity.<br /> 2- The link between PTTH and the role of pC1 neurons in regulating female receptivity is not clear. Again, since 20E controls the metamorphic changes that occur in the CNS, it is not surprising that 20E would regulate the arborization of pC1 neurons. And since these neurons have been implicated in female receptivity, it would therefore be expected that altering 20E signaling in pC1 neurons would affect this phenotype. However, this does not mean that the defects in female receptivity expressed by PTTH mutants are due to defects in pC1 arborization. For this, the authors would at least have to show that PTTH mutants show the changes in pC1 arborization shown in Fig. 6. And even then the most that could be said is that the changes observed in these neurons "may contribute" to the observed behavioral changes. Indeed, the changes observed in female receptivity may be caused by PTTH/20E actions on different neurons.<br /> 3- Some of the results need commenting on, or refining, or revising:<br /> a- For some assays PTTH behaves sometimes like a recessive gene and at other times like a semi-dominant, and yet at others like a dominant gene. For instance, in Fig. 1D-G, PTTH[-]/+ flies behave like wildtype (D), express an intermediate phenotype (E-F), or behave like the mutant (G). This may all be correct but merits some comment.<br /> b- Some of the conclusions are overstated. i) Although Fig. 2E-G does show that silencing the PTTH neurons during the larval stages affects copulation rate (E) the strength of the conclusion is tempered by the behavior of one of the controls (tub-GAL80[ts]/+, UAS-Kir2.1/+) in panels F and G, where it behaves essentially the same as the experimental group (and quite differently from the PTTH-GAL4/+ control; blue line).(Incidentally, the corresponding copulation latency should also be shown for these data.). ii) For Fig. 5I-K, the conclusion stated is that "Knock-down of EcR-A during pupal stage significantly decreased the copulation rate." Although strictly correct, the problem is that panel J is the only one for which the behavior of the control lacking the RNAi is not the same as that of the experimental group. Thus, it could just be that when the experiment was done at the pupal stage is the only situation when the controls were both different from the experimental. Again, the results shown in J are strictly speaking correct but the statement is too definitive given the behavior of one of the controls in panels I and K. Note also that panel F shows that the UAS-RNAi control causes a massive decrease in female fertility, yet no mention is made of this fact.

    1. eLife assessment

      This important and elegant study makes a significant step towards harmonisation of two perspectives on synaptic plasticity in the brain: Bayesian inference and energy efficiency. Through a combination of analytical derivations and numerical simulations, the authors make a compelling case that the two perspectives, which on the surface seem very different, are in fact closely related. In addition, they provide moderate experimental evidence that corroborates predictions of their synaptic plasticity models.

    2. Joint Public Review:

      Summary:<br /> Given the cost of producing action potentials and transmitting them along axons, it has always seemed a bit strange that there are synaptic failures: when a spike arrives at a synapse, about half the time nothing happens. One explanation comes from a Bayesian inference perspective: because of noise and limited information, the best a synapse can do is compute a probability distribution over its true weight; to communicate the resulting uncertainty it samples from that distribution. In this view, failures are a means of sampling from a synapse's probability distribution. Here the authors offer another explanation: energy efficiency. In this view, synaptic parameters (mean and variance of the synaptic weights) are adapted to perform some task while penalising small variances, which, the authors show, are energetically expensive.

      The authors show both numerically and analytically the strong link between those two frameworks. In particular, both frameworks predict that (a) synaptic variance should decrease when the input firing rate increases and (b) the learning rate should increase when the weight variances increase. Both predictions have some experimental support.

      Finally, the authors relate the cost of small variance to the cost used in variational Bayesian inference. Intriguingly, the biophysical cost provides a lower bound on the variational inference cost. This is intellectually satisfying, as it answers a "why" question: why would evolution evolve to produce the kind of costs seen in the brain?

      Strengths:<br /> 1. The paper is very well written and the arguments are clearly presented. The tight link between the Bayesian inference and energy efficiency perspectives is elegant and well-supported, both with numerical simulations as well as with analytical arguments.

      2. A key component of the paper is the derivation of the reliability cost as a function of different biophysical mechanisms (calcium efflux, vesicle membrane, actin, and trafficking). Independent of the proposed mapping between the Bayesian inference perspective and the energy efficiency perspective, those reliability costs (expressed as power-law relationships) will be important for further studies on synaptic energetics.

      3. The extended appendices, which are generally easy to read, provide additional mathematical insight.

      Weaknesses:<br /> 1. The authors face a technical challenge (which they acknowledge): they use two numbers (mean and variance) to characterize synaptic variability, whereas in the brain there are three numbers (number of vesicles, release probability, and quantal size). Turning biological constraints into constraints on the variance, as is done in the paper, seems somewhat arbitrary. This by no means invalidates the results, but it means that future experimental tests of their model will be somewhat nuanced.

      2. The prediction that the learning rate should increase with variability relies on an optimization scheme in which the learning rate is scaled by the inverse of the magnitude of the gradients (Eq. 7). This seems like an extra assumption; the energy efficiency framework by itself does not predict that the learning rate should increase with variability. Further work will be needed to disentangle the assumption about the optimization scheme from the energy efficiency framework.

    1. eLife assessment

      Winter months with short days are commonly associated with seasonal depression and hypersomnolence; the mechanisms behind this hypersomnolence however remain unclear. Chen and colleagues identify a genetic basis for this phenomenon in the fly Drosophila - mutations in the circadian photoreceptor cryptochrome resulted in increased sleep under short photoperiods. These findings are potentially valuable insights into the genetic mechanisms regulating sleep under short days. The data supporting the neurobiological basis of these effects is however incomplete.

    2. Reviewer #1 (Public Review):

      Summary:<br /> In this paper, Chen et al. identified a role for the circadian photoreceptor CRYPTOCHROME (cry) in promoting wakefulness under short photoperiods. This research is potentially important as hypersomnolence is often seen in patients suffering from SAD during winter times. The mechanisms underlying these sleep effects are poorly known.

      Strengths:<br /> The authors clearly demonstrated that mutations in cry lead to elevated sleep under 4:20 Light-Dark (LD) cycles. Furthermore, using RNAi, they identified GABAergic neurons as a primary site of cry action to promote wakefulness under short photoperiods. They then provide genetic and pharmacological evidence demonstrating that cry acts on GABAergic transmission to modulate sleep under such conditions.

      Weaknesses:<br /> The authors then went on to identify the neuronal location of this cry action on sleep. This is where this reviewer is much more circumspect about the data provided. The authors hypothesize that the l-LNvs which are known to be arousal-promoting may be involved in the phenotypes they are observing. To investigate this, they undertook several imaging and genetic experiments.

      Major concerns:<br /> 1. Figure 2 A-B: The authors show that knocking down cry expression in GABAergic neurons mimics the sleep increase seen in cryb mutants under short photoperiod. However, they do not provide any other sleep parameters such as sleep bout numbers, sleep bout duration, and more importantly waking activity measurements. This is an essential parameter that is needed to rule out paralysis and/or motor defects as the cause of increased "sleep". Any experiments looking at sleep need to include these parameters.

      2. For all Figures displaying immunostaining and imaging data the resolution of the images is quite poor. This makes it difficult to assess whether the authors' conclusions are supported by the data or not.

      3. In Figure 4-S1A it appears that the syt-GFP signal driven by Gad1-GAL4 is colabeling the l-LNvs. This would imply that the l-LNvs are GABAergic. The authors suggest that this experiment suggests that l-LNvs receive input from GABAergic neurons. I am not sure the data presented support this.

      4. In Figure 4-S1B. The GRASP experiment is not very convincing. The resolution of the image is quite poor. In addition, the authors used Pdf-LexA to express the post t-GRASP construct in l-LNvs, but Pdf-LexA also labels the s-LNvs, so it is possible that the GRASP signal the authors observe is coming from the s-LNvs and not the l-LNvs. The authors could use a l-LNvs specific tool to do this experiment and remove any doubts. Altogether this reviewer is not convinced that the data presented supports the conclusion "All in all, these results demonstrate that GABAergic neurons project to the l-LNvs and form synaptic connections." (Line 176). In addition, the authors could have downregulated the expression of Rdl specifically in l-LNvs to support their conclusions. The data they are providing supports a role for RDL but does not prove that RDL is involved in l-LNvs.

      5. In Figures 4 A and C: it appears that GABA is expressed in the l-LNvs. Is this correct? Can the authors clarify this? Maybe the authors could do an experiment where they co-label using Gad1-GAL4 and Pdf-LexA to clearly demonstrate that l-LNvs are not GABAergic. Also, the choice of colors could be better. It is very difficult to see what GABA is and what is PDF.

      6. Figure 4G: Pdf-GAL4 expresses in both s-LNvs and l-LNvs. So, in this experiment, the authors are silencing both groups, not only the l-LNvs. Why not use a l-LNvs specific tool?

      7. Figure 4H-I: The C929-GAL4 driver expresses in many peptidergic neurons. This makes the interpretation of these data difficult. The effects could be due to peptidergic cells being different than the l-LNvs. Why not use a more specific l-LNvs specific tool? I am also confused as to why some experiments used Pdf-GAL4 and some others used C929-GAL4 in a view to specifically manipulate l-LNvs? This is confusing since both drivers are not specific to the l-LNvs.

      8. Figure 5-S1B: Why does the pdf-GAL80 construct not block the sleep increase seen when reducing expression of cry in Gad1-GAL4 neurons? This suggests that there are GABAergic neurons that are not PDF expressing involved in the cry-mediated effect on sleep under short photoperiods.

      In conclusion, it is not clear that the authors demonstrated that they are looking at a cry-mediated effect on GABA in s-LNvs resulting in a modulation of the activity of the l-LNvs. Better images and more-suited genetic experiments could be used to address this.

    3. Reviewer #2 (Public Review):

      Summary:<br /> The sleep patterns of animals are adaptable, with shorter sleep durations in the winter and longer sleep durations in the summer. Chen and colleagues conducted a study using Drosophila (fruit flies) and discovered that a circadian photoreceptor called cryptochrome (cry) plays a role in reducing sleep duration during day/night cycles resembling winter conditions. They also found that cry functions in specific GABAergic circadian pacemaker cells known as s-LNvs inhibit these neurons, thereby promoting wakefulness in the animals in the winter. They also identified l-LNvs, known as arousal-promoting cells, as the downstream neurons.

      Strengths:<br /> Detailed mapping of the neural circuits cry acts to mediate the shortened sleep in winter-like day/night cycles.

      Weaknesses:<br /> The supporting evidence for s-LNvs being GABAergic neurons is not particularly strong. Additionally, there is a lack of direct evidence regarding changes in neural activity for s-LNvs and l-LNvs under varying day/night cycles, as well as in cry mutant flies.

    4. Reviewer #3 (Public Review):

      Summary:<br /> In humans, short photoperiods are associated with hypersomnolence. The mechanisms underlying these effects are, however, unknown. Chen et al. use the fly Drosophila to determine the mechanisms regulating sleep under short photoperiods. They find that mutations in the circadian photoreceptor cryptochrome (cry) increase sleep specifically under short photoperiods (e.g. 4h light : 20 h dark). They go on to show that cry is required in GABAergic neurons. Further, they suggest that the relevant subset of GABAergic neurons are the well-studied small ventral lateral neurons that they suggest inhibit the arousal-promoting large ventral neurons via GABA signalling.

      Strengths:<br /> Genetic analysis to show that cryptochrome (but not other core clock genes) mediates the increase in sleep in short photoperiods, and circuit analysis to localise cry function to GABAergic neurons.

      Weaknesses:<br /> The authors' conclusion that the sLNvs are GABAergic is not well supported by the data. Better immunostaining experiments and perhaps more specific genetic driver lines would help with this point (details below).

      1. The sLNvs are well known as a key component of the circadian network. The finding that they are GABAergic would if true, be of great interest to the community. However, the data presented in support of this conclusion are not convincing. Much of the confocal images are of insufficient resolution to evaluate the paper's claims. The Anti-GABA immunostaining in Fig 4 and 5 seem to have a high background, and the GRASP experiments in Fig 4 supplement 1 low signal.

      Transcriptomic datasets are available for the components of the circadian network (e.g. PMID 33438579, and PMID 19966839). It would be of interest to determine if transcripts for GAD or other GABA synthesis/transport components were detected in sLNvs. Further, there are also more specific driver lines for GAD, and the lLNvs, sLNVs that could be used.

      2. The authors' model posits that in short photoperiods, cry functions to suppress GABA secretion from sLNvs thereby disinhibiting the lNVs. In Fig 4I they find that activating the lLNvs (and other peptidergic cells) by c929>NaChBac in a cryb background reduces sleep compared to activating lLNVs in a wild-type background. It's not clear how this follows from the model. A similar trend is observable in Fig 4H with TRP-mediated activation of lNVs, although it is not clear from the figure if the difference b/w cryb vs wild-type background is significant.

    1. eLife assessment

      This study reports valuable findings that corticostriatal projections (specifically, from M1 and MCC ) target direct and indirect pathway striatal projection neurons in partially segregated ways. Moreover, this partial segregation is biased, implying that specific engagement of the direct pathway may be achieved through the selective activation of unique cortical neurons. The evidence for this conclusion is solid, though the key experiments (rabies tracing controls, etc.) are incomplete. Otherwise, the experiments are rigorously designed, and the results are solid. This work will be of interest to those interested in brain anatomy and/or circuitry, cortical and/or basal ganglia function, locomotor activity, reinforcement learning, or diseases related to these.

    2. Reviewer #1 (Public Review):

      Summary:<br /> The study by Klug et al. investigated the pathway specificity of corticostriatal projections, focusing on two cortical regions. Using a G-deleted rabies system in D1-Cre and A2a-Cre mice to retrogradely deliver channelrhodopsin to cortical inputs, the authors found that M1 and MCC inputs to direct and indirect pathway spiny projection neurons (SPNs) are both partially segregated and asymmetrically overlapping. In general, corticostriatal inputs that target indirect pathway SPNs are likely to also target direct pathway SPNs, while inputs targeting direct pathway SPNs are less likely to also target indirect pathway SPNs. Such asymmetric overlap of corticostriatal inputs has important implications for how the cortex itself may determine striatal output. Indeed, the authors provide behavioral evidence that optogenetic activation of M1 or MCC cortical neurons that send axons to either direct or indirect pathway SPNs can have opposite effects on locomotion and different effects on action sequence execution. The conclusions of this study add to our understanding of how cortical activity may influence striatal output and offer important new clues about basal ganglia function.

      The conceptual conclusions of the manuscript are supported by the data, but the details of the magnitude of afferent overlap and causal role of asymmetric corticostriatal inputs on behavioral outcomes were not yet fully resolved.

      After virally labeling either direct pathway (D1) or indirect pathway (D2) SPNs to optogenetically tag pathway-specific cortical inputs, the authors report that a much larger number of "non-starter" D2-SPNs from D2-SPN labeled mice responded to optogenetic stimulation in slices than "non-starter" D1 SPNs from D1-SPN labeled mice did. Without knowing the relative number of D1 or D2 SPN starters used to label cortical inputs, it is difficult to interpret the exact meaning of the lower number of responsive D2-SPNs in D1 labeled mice (where only ~63% of D1-SPNs themselves respond) compared to the relatively higher number of responsive D1-SPNs (and D2-SPNs) in D2 labeled mice. While relative differences in connectivity certainly suggest that some amount of asymmetric overlap of inputs exists, differences in infection efficiency and ensuing differences in detection sensitivity in slice experiments make determining the degree of asymmetry problematic.

      It is also unclear if retrograde labeling of D1-SPN- vs D2-SPN- targeting afferents labels the same densities of cortical neurons. This gets to the point of specificity in the behavioral experiments. If the target-based labeling strategies used to introduce channelrhodopsin into specific SPN afferents label significantly different numbers of cortical neurons, might the difference in the relative numbers of optogenetically activated cortical neurons itself lead to behavioral differences?

      In general, the manuscript would also benefit from more clarity about the statistical comparisons that were made and sample sizes used to reach their conclusions.

    3. Reviewer #2 (Public Review):

      Summary:<br /> Klug et al. use monosynaptic rabies tracing of inputs to D1- vs D2-SPNs in the striatum to study how separate populations of cortical neurons project to D1- and D2-SPNs. They use rabies to express ChR2, then patch D1-or D2-SPNs to measure synaptic input. They report that cortical neurons labeled as D1-SPN-projecting preferentially project to D1-SPNs over D2-SPNs. In contrast, cortical neurons labeled as D2-SPN-projecting project equally to D1- and D2-SPNs. They go on to conduct pathway-specific behavioral stimulation experiments. They compare direct optogenetic stimulation of D1- or D2-SPNs to stimulation of MCC inputs to DMS and M1 inputs to DLS. In three different behavioral assays (open field, intra-cranial self-stimulation, and a fixed ratio 8 task), they show that stimulating MCC or M1 cortical inputs to D1-SPNs is similar to D1-SPN stimulation, but that stimulating MCC or M1 cortical inputs to D2-SPNs does not recapitulate the effects of D2-SPN stimulation (presumably because both D1- and D2-SPNs are being activated by these cortical inputs).

      Strengths:<br /> Showing these same effects in three distinct behaviors is strong. Overall, the functional verification of the consequences of the anatomy is very nice to see. It is a good choice to patch only from mCherry-negative non-starter cells in the striatum.

      Weaknesses:<br /> One limitation is that all inputs to SPNs are expressing ChR2, so they cannot distinguish between different cortical subregions during patching experiments. Their results could arise because the same innervation patterns are repeated in many cortical subregions or because some subregions have preferential D1-SPN input while others do not. There are also some caveats with respect to the efficacy of rabies tracing. Although they only patch non-starter cells in the striatum, only 63% of D1-SPNs receive input from D1-SPN-projecting cortical neurons. It's hard to say whether this is "high" or "low," but one question is how far from the starter cell region they are patching. Without this spatial indication of where the cells that are being patched are relative to the starter population, it is difficult to interpret if the cells being patched are receiving cortical inputs from the same neurons that are projecting to the starter population. Convergence of cortical inputs onto SPNs may vary with distance from the starter cell region quite dramatically, as other mapping studies of corticostriatal inputs have shown specialized local input regions can be defined based on cortical input patterns (Hintiryan et al., Nat Neurosci, 2016, Hunnicutt et al., eLife 2016, Peters et al., Nature, 2021). A caveat for the optogenetic behavioral experiments is that these optogenetic experiments did not include fluorophore-only controls. Another point of confusion is that other studies (Cui et al, J Neurosci, 2021) have reported that stimulation of D1-SPNs in DLS inhibits rather than promotes movement.

    4. Reviewer #3 (Public Review):

      In the manuscript by Klug and colleagues, the investigators use a rabies virus-based methodology to explore potential differences in connectivity from cortical inputs to the dorsal striatum. They report that the connectivity from cortical inputs onto D1 and D2 MSNs differs in terms of their projections onto the opposing cell type, and use these data to infer that there are differences in cross-talk between cortical cells that project to D1 vs. D2 MSNs. Overall, this manuscript adds to the overall body of work indicating that there are differential functions of different striatal pathways which likely arise at least in part by differences in connectivity that have been difficult to resolve due to difficulty in isolating pathways within striatal connectivity and several interesting and provocative observations were reported. Several different methodologies are used, with partially convergent results, to support their main points.

      However, I have significant technical concerns about the manuscript as presented that make it difficult for me to interpret the results of the experiments. My comments are below.

      Major:<br /> There is generally a large caveat to the rabies studies performed here, which is that both TVA and the ChR2-expressing rabies virus have the same fluorophore. It is thus essentially impossible to determine how many starter cells there are, what the efficiency of tracing is, and which part of the striatum is being sampled in any given experiment. This is a major caveat given the spatial topography of the cortico-striatal projections. Furthermore, the authors make a point in the introduction about previous studies not having explored absolute numbers of inputs, yet this is not at all controlled in this study. It could be that their rabies virus simply replicates better in D1-MSNs than D2-MSNs. No quantifications are done, and these possibilities do not appear to have been considered. Without a greater standardization of the rabies experiments across conditions, it is difficult to interpret the results.

      The authors claim using a few current clamp optical stimulation experiments that the cortical cells are healthy, but this result was far from comprehensive. For example, membrane resistance, capacitance, general excitability curves, etc are not reported. In Figure S2, some of the conditions look quite different (e.g., S2B, input D2-record D2, the method used yields quite different results that the authors write off as not different). Furthermore, these experiments do not consider the likely sickness and death that occurs in starter cells, as has been reported elsewhere. The health of cells in the circuit is overall a substantial concern that alone could invalidate a large portion, if not all, of the behavioral results. This is a major confound given those neurons are thought to play critical roles in the behaviors being studied. This is a major reason why first-generation rabies viruses have not been used in combination with behavior, but this significant caveat does not appear to have been considered, and controls e.g., uninfected animals, infected with AAV helpers, etc, were not included.

      The overall purity (e.g., EnvA pseudotyping efficiency) of the RABV prep is not shown. If there was a virus that was not well EnvA-pseudotyped and thus could directly infect cortical (or other) inputs, it would degrade specificity.

      While most of the study focuses on the cortical inputs, in slice recordings, inputs from the thalamus are not considered, yet likely contribute to the observed results. Related to this, in in vivo optogenetic experiments, technically, if the thalamic or other inputs to the dorsal striatum project to the cortex, their method will not only target cortical neurons but also terminals of other excitatory inputs. If this cannot be ruled it, stating that the authors are able to selectively activate the cortical inputs to one or the other population should be toned down.

      The statements about specificity of connectivity are not well-founded. It may be that in the specific case where they are assessing outside of the area of injections, their conclusions may hold (e.g., excitatory inputs onto D2s have more inputs onto D1s than vice versa). However, how this relates to the actual site of injection is not clear. At face value, if such a connectivity exists, it would suggest that D1-MSNs receive substantially more overall excitatory inputs than D2s. It is thus possible that this observation would not hold over other spatial intervals. This was not explored and thus the conclusions are over-generalized. e.g., the distance from the area of red cells in the striatum to recordings was not quantified, what constituted a high level of cortical labeling was not quantified, etc. Without more rigorous quantification of what was being done, it is difficult to interpret the results.

      The results in figure 3 are not well controlled. The authors show contrasting effects of optogenetic stimulation of D1-MSNs and D2-MSNs in the DMS and DLS, results which are largely consistent with the canon of basal ganglia function. However, when stimulating cortical inputs, stimulating the inputs from D1-MSNs gives the expected results (increased locomotion) while stimulating putative inputs to D2-MSNs had no effect. This is not the same as showing a decrease in locomotion - showing no effect here is not possible to interpret.

      In light of their circuit model, the result showing that inputs to D2-MSNs drive ICSS is confusing. How can the authors account for the fact that these cells are not locomotor-activating, stimulation of their putative downstream cells (D2-MSNs) does not drive ICSS, yet the cortical inputs drive ICSS? Is the idea that these inputs somehow also drive D1s? If this is the case, how do D2s get activated, if all of the cortical inputs tested net activate D1s and not D2s? Same with the results in figure 4 - the inputs and putative downstream cells do not have the same effects. Given the potential caveats of differences in viral efficiency, spatial location of injections, and cellular toxicity, I cannot interpret these experiments.

    1. eLife assessment

      This MEG study reports valuable new findings regarding the nature of memory reactivation during cued recall. It replicates previous work showing that such reactivation can be sequential or clustered, with sequential reactivation being more prevalent in low performers. It adds solid evidence, even though based on limited data, that item strengths during clustered reactivation vary with item distance in the learned graph structure. The study will be of interest to human and rodent neuroscientists working on memory replay.

    2. Reviewer #1 (Public Review):

      Summary:<br /> Previous work in humans and non-human animals suggests that during offline periods following learning, the brain replays newly acquired information in a sequential manner. The present study uses a MEG-based decoding approach to investigate the nature of replay/reactivation during a cued recall task directly following a learning session, where human participants are trained on a new sequence of 10 visual images embedded in a graph structure. During retrieval, participants are then cued with two items from the learned sequence, and neural evidence is obtained for the simultaneous or sequential reactivation of future sequence items. The authors find evidence for both sequential and clustered (i.e., simultaneous) reactivation. Replicating previous work by Wimmer et al. (2020), low-performing participants tend to show sequential, temporally segregated reactivation of future items, whereas high-performing participants show more clustered reactivation. Adding to previous work, the authors show that an image's reactivation strength varies depending on its proximity to the retrieval cue within the graph structure.

      Strengths:<br /> As the authors point out, work on memory reactivation has largely been limited to the retrieval of single associations. Given the sequential nature of our real-life experiences, there is clearly value in extending this work to structured, sequential information. State-of-the-art decoding approaches for MEG are used to characterize the strength and timing of item reactivation. The manuscript is very well written with helpful and informative figures in the main sections. The task includes an extensive localizer with 50 repetitions per image, allowing for stable training of the decoders and the inclusion of several sanity checks demonstrating that on-screen items can be decoded with high accuracy.

      Weaknesses:<br /> Of major concern, the experiment is not optimally designed for analysis of the retrieval task phase, where only 4 min of recording time and a single presentation of each cue item are available for the analyses of sequential and non-sequential reactivation. The authors could consider including data from the (final) learning blocks in their analysis. These blocks follow the same trial structure as the retrieval task, and apart from adding more data points could also reveal important insights regarding a possible shift from sequential to clustered reactivation as learning of the graph structure progresses.

      On a more conceptual note, the main narrative of the manuscript implies that sequential and clustered reactivation are mutually exclusive, such that a single participant would show either one or the other type. With the analytic methods used here, however, it seems possible to observe both types of reactivation. For example, the observation that mean reactivation strength (across the entire trial, or in a given time window of interest) varies with graph distance does not exclude the possibility that this reactivation is also sequential. In fact, the approach of defining one peak time window of reactivation may be biased towards simultaneous, graded reactivation. It would be helpful if the authors could clarify this conceptual point. A strong claim that the two types of reactivation are mutually exclusive would need to be supported by further evidence, for instance, a metric contrasting sequenceness vs clusteredness.

      On the same point, the non-sequential reactivation analyses often use a time window of peak decodability that appears to be determined based on the average reactivation of all future items, irrespective of graph distance. In a sequential forward cascade of reactivations, it seems reasonable to assume that the reactivation of near items would peak earlier than the reactivation of far items. The manuscript would be strengthened by showing the "raw" timecourses of item decodability at different graph distances, clearly demonstrating their peak reactivation times.

    3. Reviewer #2 (Public Review):

      Summary:<br /> The authors investigate replay (defined as sequential reactivation) and clustered reactivation during retrieval of an abstract cognitive map. Replay and clustered reactivation were analysed based on MEG recordings combined with a decoding approach. While the authors state to find evidence for both, replay and clustered reactivation during retrieval, replay was exclusively present in low performers. Further, the authors show that reactivation strength declined with an increasing graph distance.

      Strengths:<br /> The paper raises interesting research questions, i.e., replay vs. clustered reactivation and how that supports retrieval of cognitive maps. The paper is well-written, well-structured, and easy to follow. The methodological approach is convincing and definitely suited to address the proposed research questions.

      The paper is a great combination between replicating previous findings (Wimmer et al. 2020) with a new experimental approach but at the same time presenting novel findings (reactivation strength declines as a function of graph distance).<br /> What I also want to positively highlight is their transparency. They pre-registered this study but with a focus on a different part of the data and outlined this explicitly in the paper.

      The paper has very interesting, individual findings but there are some shortcomings.

      Weaknesses:<br /> Even though the individual findings are interesting, it is not easy to grasp how they are related. For example, the authors show that replay is present in low but not in high performers with the assumption that high performers tend to simultaneously reactivate items. But then, the authors do not investigate clustered reactivation (= simultaneous reactivation) as a function of performance (due to ceiling effects for most participants).

      Unfortunately, the evidence for clustered reactivation is not well supported by the analysis approach and the observed evidence. The analysis approach still holds the possibility of replay driving the observed clustered reactivation effect.

      A third shortcoming is that at least some analyses are underpowered (very low number of trials, n = ~10, and for some analyses, very low number of participants, n = 14). In both cases (low trial number and low participant number) the n could be increased by including the learning part in the analyses as well. It is not clear to me why the authors restricted their analyses to the retrieval period only (especially given that participants also have to retrieve during learning).

    1. eLife assessment

      This valuable study provides molecular-level insights into the functional mechanism of bacterial ice-nucleating proteins, detailing electrostatic interactions in the domain architecture of multimeric assemblies. The evidence supporting the claims of the authors is solid, with results from protein engineering experiments, functional assays, and cryo-electron tomography, while the proposed structural model of protein self-assembly remains hypothetical. The work is of broad interest to researchers in the fields of protein structural biology, biochemistry, and biophysics, with implications in microbial ecology and atmospheric glaciation.

    1. eLife assessment

      This manuscript presents a useful analysis of allosteric communication in the CFTR protein using a coarse-grained dynamic model and characterized the role of disease-causing mutations. The results and analyses are generally solid and validated with available experimental observations. The findings provide comprehensive insights into the allosteric mechanism of this protein.

    1. eLife assessment

      This important paper reports major technical advances for in vivo intramuscular electrical recording from multiple motor units in behaving animals. The paper includes compelling demonstrations of the efficacy of this new technique in multiple animal species. This new muscle recording method has the potential to provide new insight into a wide range of questions in motor neuroscience.

    2. Reviewer #1 (Public Review):

      Motoneurons constitute the final common pathway linking central impulse traffic to behavior, and neurophysiology faces an urgent need for methods to record their activity at high resolution and scale in intact animals during natural movement. In this consortium manuscript, Chung et al. introduce high-density electrode arrays on a flexible substrate that can be implanted into muscle, enabling the isolation of multiple motor units during movement. They then demonstrate these arrays can produce high-quality recordings in a wide range of species, muscles, and tasks. The methods are explained clearly, and the claims are justified by the data. While technical details on the arrays have been published previously, the main significance of this manuscript is the application of this new technology to different muscles and animal species during naturalistic behaviors. Overall, we feel the manuscript will be of significant interest to researchers in motor systems and muscle physiology.

      The authors have thoroughly addressed all our original comments, and we have no further concerns.

    3. Reviewer #2 (Public Review):

      This work provides a novel design of implantable and high-density EMG electrodes to study muscle physiology and neuromotor control at the level of individual motor units. Current methods of recording EMG using intramuscular fine-wire electrodes do not allow for isolation of motor units and are limited by the muscle size and the type of behavior used in the study. The authors of myomatrix arrays had set out to overcome these challenges in EMG recording and provided compelling evidence to support the usefulness of the new technology.

      Strengths:<br /> • They presented convincing examples of EMG recordings with high signal quality using this new technology from a wide array of animal species, muscles, and behavior.<br /> • The design included suture holes and pull-on tabs that facilitate implantation and ensure stable recordings over months.<br /> • Clear presentation of specifics of the fabrication and implantation, recording methods used, and data analysis

      I am satisfied with the authors' response to my previous concerns on the weaknesses of the study.

    1. eLife assessment

      This is a valuable computational study that applies the machine learning method of bilinear modeling to the problem of relating gene expression to connectivity. Specifically, the author attempts to use transcriptomic data from mouse retinal neurons to predict their known connectivity. The results are promising, although the reviewers felt that demonstration of the general applicability of the approach required testing it against a second data set. Hence the present results were felt to provide borderline incomplete support for a key premise of the paper.

    1. eLife assessment

      In this paper, the authors introduce fundamental work on mathematical methods for inferring evolutionary parameters of interest from RNA data in healthy tissue and during hematopoiesis. By combining single cell and bulk sequencing analyses, the authors use a stochastic process to inform different aspects of genetic heterogeneity; the strength of evidence in support of the authors' claim is exceptional. The work will be of broad interest to cell biologists and theoretical biologists.

    2. Reviewer #1 (Public Review):

      Authors propose mathematical methods for inferring evolutionary parameters of interest from bulk/single cell sequencing data in healthy tissue and hematopoiesis. Authors attempt to go beyond previous models by including three phases of human development: early development, growth and maintenance, and mature phase. Introductory figures (1 and 2) provide the connection to previous analytical results (based on power laws), while figure 3 denotes the role of sampling effects, and figure 4 provides a real-world example.

      This approach dovetails nicely with previous literature, providing clear insight into when previous theoretical results are valid and when they break down. Much of the previous literature is devoted to bulk sequencing, leading the authors to investigate the role of (sub)-sampling due to single cell data, where mutation burden and mutation rate distributions are easily recapitulated. Although not strongly emphasized in the manuscript, sub-sampling does increase noise leading to differences between population and sample distributions. From my view, these results provide an important contribution to the literature and are able to nicely describe and make inferences in a single cell HSC data set.

    3. Reviewer #2 (Public Review):

      Summary: The authors provide a nice summary on the possibility to study genetic heterogeneity and how to measure the dynamics of stem cells. By combining single cell and bulk sequencing analyses, they aim to use a stochastic process and inform on different aspects of genetic heterogeneity.

      Strengths: Well designed study and strong methods.

    1. eLife assessment

      This review examines seasonal dormancy in various species, including hibernating mammals (excluding bats and bears) and ectotherms. It tests hypotheses on dormancy timing, considering energetic constraints and life history as alternative drivers. While the review is valuable, ecological differences between males and females can drive differences in energy balance, hence the idea that sex differences in dormancy timing are associated with non-energy constraints. Evidence supporting a life-history hypothesis is therefore somewhat incomplete. Nonetheless, examining these alternative hypotheses is of interest to evolutionary biologists, and including a diverse range of species, population-level traits, and some ecological context would enhance the value of the review.

    2. Reviewer #1 (Public Review):

      Summary:<br /> Dormancy/diapause/hibernation (depending on how the terms are defined) is a key life history strategy that allows the temporal escape from unfavorable conditions. Although environmental conditions do play a major role in inducing and terminating dormancy (authors call this energy limitation hypothesis), the authors test a mutually non-exclusive hypothesis (life-history hypothesis) that sex-specific selection pressures, at least to some extent, would further shape the timing of these life-history events. Authors use a metanalytic approach to collect data (mainly on rodents) on various life-history traits to test trade-offs among these traits between sexes and how they affect entry and termination of dormancy.

      Strengths:<br /> I found the theoretical background in the Introduction quite interesting, to the point and the arguments were well-placed. How sex-specific selection pressures would drive entry and termination of diapause in insects (e.g. protandry), especially in temperate butterflies, is very well investigated. Authors attempt to extend these ideas to endotherms and trying to find general patterns across ectotherms and endotherms is particularly exciting. This work and similar evidence could make a great contribution to the life-history theory, specifically understanding factors that drive the regulation of life cycle timing.

      Weaknesses:<br /> 1. I felt that including 'ectotherms' in the title is a bit misleading as there is hardly (in fact any?) any data presented on ectotherms. Also, most of the focus of the discussion is heavily mammal (rodent) focussed. I believe saying endotherms in the title as well is a bit misleading as the data is mammal-focused.

      2. I think more information needs to be provided early on to make readers aware of the diversity of animals included in the study and their geographic distribution. Are they mostly temperate or tropical? What is the span of the latitude as day length can have a major influence on dormancy timings? I think it is important to point out that data is more rodent-centric. Along the line of this point, is there a reason why the extensively studied species like the Red Deer or Soay Sheep and other well-studied temperate mammals did not make it into the list?

      3. Isn't the term 'energy limitation hypothesis' which is used throughout the manuscript a bit endotherm-centric? Especially if the goal is to draw generalities across ectotherms and endotherms. Moreover, climate (e.g. interaction of photoperiod and temperature in temperatures) most often induces or terminates diapause/dormancy in ectotherms so I am not sure if saying 'energy limitation hypothesis' is general enough.

      4. Since for some species, the data is averaged across studies to get species-level trait estimates, is there a scope to examine within population differences (e.g. across latitudes)? This may further strengthen the evidence and rule out the possibility of the environment, especially the length of the breeding season, affecting the timing of emergence and immergence.

      5. Although the authors are looking at the broader patterns, I felt like the overall ecology of the species (habitat, tropical or temperate, number of broods, etc.) is overlooked and could act as confounding factors.

      6. I strongly think the data analysis part needs more clarity. As of now, it is difficult for me to visualize all the fitted models (despite Table 1), and the large number of life-history traits adds to this complexity. I would recommend explicitly writing down all the models in the text. Also, the Table doesn't make it clear whether interaction was allowed between the predictors or not. More information on how PGLS were fitted needs to be provided in the main text which is in the supplementary right now. I kept wondering if the authors have fit multiple models, for example, with different correlation structures or by choosing different values of lambda parameter. And, in addition to PGLS, authors are also fitting linear regressions. Can you explain clearly in the text why was this done?

      7. Figure 2 is unclear, and I do not understand how these three regression lines were computed. Please provide more details.

    3. Reviewer #2 (Public Review):

      Summary:<br /> An article with lots of interesting ideas and questions regarding the evolution of timing of dormancy, emphasizing mammalian hibernation but also including ectotherms. The authors compare selective forces of constraints due to energy availability versus predator avoidance and requirements and consequences of reproduction in a review of between and within species (sex) differences in the seasonal timing of entry and exit from dormancy.

      Strengths:<br /> The multispecies approach including endotherms and ectotherms is ambitious. This review is rich with ideas if not in convincing conclusions.

      Weaknesses:<br /> The differences between physiological requirements for gameatogenesis between sexes that affect the timing of heterothermy and the need for euthermy during mammalian hibernator are significant issues that underlie but are under-discussed, in this contrast of selective pressures that determine seasonal timing of dormancy. Some additional discussion of the effects of rapid climate change on between and within species phenologies of dormancy would have been interesting.

    1. eLife assessment

      This study presents fundamental findings on the evolution of extremely elongated mandibular symphysis and tusks in longirostrine gomphotheres from the Early and Middle Miocene of northern China. The integration of multiple methods provides compelling results in the eco-morphology, behavioral ecology, and co-evolutionary biology of these taxa. In doing so, the authors elucidate the diversification of fossil proboscideans and their likely evolutionary responses to late Cenozoic global climatic changes.

    2. Reviewer #1 (Public Review):

      Summary:<br /> The authors were trying to understand the relationship between the development of large trunks and longirrostrine mandibles in bunodont proboscideans of Miocene, and how it reflects the variation in diet patterns.

      Strengths:<br /> The study is very well supported, written, and illustrated, with plenty of supplementary material. The findings are highly significant for the understanding of the diversification of bunodont proboscideans in Asia during Miocene, as well as explaining the cranial/jaw disparity of fossil lineages. This work elucidates the diversification of paleobiological aspects of fossil proboscideans and their evolutionary response to open environments in the Neogene using several methods. The authors included all Asian bunodont proboscideans with long mandibles and I suggest that they should use the expression "bunodont proboscideans" instead of gomphotheres.

      Weaknesses:<br /> I believe that the only weakness is the lack of discussion comparing their results with the development of gigantism and long limbs in proboscideans from the same epoch.

    3. Reviewer #2 (Public Review):

      This study focuses on the eco-morphology, the feeding behaviors, and the co-evolution of feeding organs of longirostrine gomphotheres (Amebelodontidae, Choerolophodontidae, and Gomphotheriidae) which are characterised by their distinctive mandible and mandible tusk morphologies. They also have different evolutionary stages of food acquisition organs which may have co-evolve with extremely elongated mandibular symphysis and tusks. Although these three longirostrine gomphothere families were widely distributed in Northern China in the Early-Middle Miocene, the relative abundances and the distribution of these groups were different through time as a result of the climatic changes and ecosysytems.

      These three groups have different feeding behaviors indicated by different mandibular symphysis and tusk morphologies. Additionally, they have different evolutionary stages of trunks which are reflected by the narial region morphology. To be able to construct the feeding behavior and the relation between the mandible and the trunk of early elephantiformes, the authors examined the crania and mandibles of these three groups from the Early and Middle Miocene of northern China from three different museums and also made different analyses.

      The analyses made in the study are:<br /> 1. Finite Element (FE) analysis: They conducted two kinds of tests: the distal forces test, and the twig-cutting test. With the distal forces test, advantageous and disadvantageous mechanical performances under distal vertical and horizontal external forces of each group are established. With the twig-cutting test, a cylindrical twig model of orthotropic elastoplasity was posed in three directions to the distal end of the mandibular task to calculate the sum of the equivalent plastic strain (SEPS). It is indicated that all three groups have different mandible specializations for cutting plants.

      2. Phylogenetic reconstruction: These groups have different narial region morphology, and in connection with this, have different stages of trunk evolution. The phylogenetic tree shows the degree of specialization of the narial morphology. And narial region evolutionary level is correlated with that of character-combine in relation to horizontal cutting. In the trilophodont longirostrine gomphotheres, co-evolution between the narial region and horizontal cutting behaviour is strongly suggested.

      3. Enamel isotopes analysis: The results of stable isotope analysis indicate an open environment with a diverse range of habitats and that the niches of these groups overlapped without obvious differentiation.

      The analysis shows that different eco-adaptations have led to the diverse mandibular morphology and open-land grazing has driven the development of trunk-specific functions and loss of the long mandible. This conclusion has been achieved with evidence on palaecological reconstruction, the reconstruction of feeding behaviors, and the examination of mandibular and narial region morphology from the detailed analysis during the study.

      All of the analyses are explained in detail in the supplementary files. The 3D models and movies in the supplementary files are detailed and understandable and explain the conclusion. The conclusions of the study are well supported by data.

    1. eLife assessment

      This valuable manuscript reports on the relationship between GTP hydrolysis parameters and kinase activity of LRRK2, which is associated with Parkinson's disease. The authors provide a detailed accounting of the catalytic efficiency of the ROC GTPase domain of pathogenic variants of LRRK2, in comparison with the wild-type enzyme. The authors propose that phosphorylation of T1343 inhibits kinase activity and influences monomer-dimer transitions, but the experimental evidence is currently incomplete.

    2. Reviewer #1 (Public Review):

      Summary:<br /> This study presents careful biochemical experiments to understand the relationship between LRRK2 GTP hydrolysis parameters and LRRK2 kinase activity. The authors report that incubation of LRRK2 with ATP increases the KM for GTP and decreases the kcat. From this, they suppose an autophosphorylation process is responsible for enzyme inhibition. LRRK2 T1343A showed no change, consistent with it needing to be phosphorylated to explain the changes in G-domain properties. The authors propose that phosphorylation of T1343 inhibits kinase activity and influences monomer-dimer transitions.

      Strengths:<br /> The strengths of the work are the very careful biochemical analyses and the interesting result for wild-type LRRK2.

      Weaknesses:<br /> A major unexplained weakness is why the mutant T1343A starts out with so much lower activity--it should be the same as wild-type, non-phosphorylated protein. Also, if a monomer-dimer transition is involved, it should be either all or nothing. Other approaches would add confidence to the findings.

    3. Reviewer #2 (Public Review):

      This study addresses the catalytic activity of a Ras-like ROC GTPase domain of LRRK2 kinase, a Ser/Thr kinase linked to Parkinson's disease (PD). The enzyme is associated with gain-of-function variants that hyper-phosphorylate substrate Rab GTPases. However, the link between the regulatory ROC domain and activation of the kinase domain is not well understood.

      It is within this context that the authors detail the kinetics of the ROC GTPase domain of pathogenic variants of LRRK2, in comparison to the WT enzyme. Their data suggest that LRRK2 kinase activity negatively regulates the ROC GTPase activity and that PD variants of LRRK2 have differential effects on the Km and catalytic efficiency of GTP hydrolysis.

      Based on mutagenesis, kinetics, and biophysical experiments, the authors suggest a model in which autophosphorylation shifts the equilibrium toward monomeric LRRK2 (locked GTP state of ROC). The authors further conclude that T1343 is a crucial regulatory site, located in the P-loop of the ROC domain, which is necessary for the negative feedback mechanism. Unfortunately, the data do not support this hypothesis, and further experiments are required to confirm this model for the regulation of LRRK2 activity.

      Specific comments are below:

      - Although a couple of papers are cited, the rationale for focusing on the T1343 site is not evident to readers. It should be clarified that this locus, and perhaps other similar loci in the wider ROCO family, are likely important for direct interactions with the GTP molecule.

      - Similar to the above, readers are kept in the dark about auto-phosphorylation and its effects on the monomer/dimer equilibrium. This is a critical aspect of this manuscript and a major conceptual finding that the authors are making from their data. However, the idea that auto-phosphorylation is (likely) to shift the monomer/dimer equilibrium toward monomer, thereby inactivating the enzyme, is not presented until page 6, AFTER describing much of their kinetics data. This is very confusing to readers, as it is difficult to understand the meaning of the data without a conceptual framework. If the model for the LRRK2 function is that dimerization is necessary for the phosphorylation of substrates, then this idea should be presented early in the introduction, and perhaps also in the abstract. If there are caveats, then they should be discussed before data are presented. A clear literature trail and the current accepted (or consensus) mechanism for LRRK2 activity is necessary to better understand the context for these data.

      - Following on the above concepts, I find it interesting that the authors mention monomeric cyotosolic states, and kinase-active oligomers (dimers??), with citations. Again here, it would be useful to be more precise. Are dimers (oligomers?) only formed at the membrane? That would suggest mechanisms involving lipid or membrane-attached protein interactions. Also, what do the authors mean by oligomers? Are there more than dimers found localized to the membrane?

      - Fig 5 is a key part of their findings, regarding the auto-phosphorylation induced monomer formation of LRRK2. From these two bar graphs, the authors state unequivocally that the 'monomer/dimer equilibrium is abolished', and therefore, that the underlying mechanism might be increased monomerization (through maintenance of a GTP-locked state). My view is that the authors should temper these conclusions with caveats. One is that there are still plenty of dimers in the auto-phosphorylated WT, and also in the T1343A mutant. Why is that the case? Can the authors explain why only perhaps a 10% shift is sufficient? Secondly, the T1343A mutant appears to have fewer overall dimers to begin with, so it appears to readers that 'abolition' is mainly due to different levels prior to ATP treatment at 30 deg. I feel these various issues need to be clarified in a revised manuscript, with additional supporting data. Finally, on a minor note, I presume that there are no statistically significant differences between the two sets of bar graphs on the right panel. It would be wise to place 'n.s.' above the graphs for readers, and in the figure legend, so readers are not confused.

      - Figure 6B, Westerns of phosphorylation, the lanes are not identified and it is unclear what these data mean.

    1. eLife assessment

      This is a theoretical analysis that gives compelling evidence that length control of bundles of actin filaments undergoing assembly and disassembly emerges even in the absence of a length control mechanism at the individual filament level. Furthermore, the length distribution should exhibit a variance that grows quadratically with the average bundle length. The experimental data are compatible with these fundamental theoretical findings, but further investigations are necessary to make the work conclusive concerning the validity of the inferences for filamentous actin structures in cells.

    2. Reviewer #1 (Public Review):

      Actin filaments and their kinetics have been the subject of extensive research, with several models for filament length control already existing in the literature. The work by Rosario et al. focuses instead on bundle length dynamics and how their fluctuations can inform us of the underlying kinetics. Surprisingly, the authors show that irrespective of the details, typical "balance point" models for filament kinetics give the wrong scaling of bundle length variance with mean length compared to experiments. Instead, the authors show that if one considers a bundle made of several individual filaments, length control for the bundle naturally emerges even in the absence of such a mechanism at the individual filament level. Furthermore, the authors show that the fluctuations of the bundle length display the same scaling with respect to the average as experimental measurements from different systems. This work constitutes a simple yet nuanced and powerful theoretical result that challenges our current understanding of actin filament kinetics and helps relate accessible experimental measurements such as actin bundle length fluctuations to their underlying kinetics. Finally, I found the manuscript to be very well written, with a particularly clear structure and development which made it very accessible.

    1. eLife assessment

      The authors present 16 new well-preserved specimens from the early Cambrian Chengjiang biota. These specimens potentially represent a new taxon which could be useful in sorting out the problematic topology of artiopodan arthropods - a topic of interest to specialists in Cambrian arthropods. Because the anatomic features in the new specimens were neither properly revealed nor correctly interpreted, the evidence for several conclusions is inadequate.

    2. Reviewer #1 (Public Review):

      Summary:<br /> Du et al. report 16 new well-preserved specimens of atiopodan arthropods from the Chengjiang biota, which demonstrate both dorsal and ventral anatomies of a potential new taxon of antipodeans that are closely related to trilobites. Authors assigned their specimens to Acanthomeridion serratum and proposed A. anacanthus as a junior subjective synonym of Acanthomeridion serratum. Critically, the presence of ventral plates (interpreted as cephalic liberigenae), together with phylogenic results, lead authors to conclude that the cephalic sutures originated multiple times within the Artiopoda.

      Strengths:<br /> New specimens are highly qualified and informative. The morphology of the dorsal exoskeleton, except for the supposed free cheek, was well illustrated and described in detail, which provides a wealth of information for taxonomic and phylogenic analyses.

      Weaknesses:<br /> The weaknesses of this work are obvious in a number of aspects. Technically, ventral morphology is less well revealed and is poorly illustrated. Additional diagrams are necessary to show the trunk appendages and suture lines. Taxonomically, I am not convinced by the authors' placement. The specimens are markedly different from either Acanthomeridion serratum Hou et al. 1989 or A. anacanthus Hou et al. 2017. The ontogenetic description is extremely weak and the morpholical continuity is not established. Geometric and morphometric analyses might be helpful to resolve the taxonomic and ontogenic uncertainties. I am confused by the author's description of the free cheek (libragena) and ventral plate. Are they the same object? How do they connect with other parts of the cephalic shield, e.g. hypostome, and fixgena? Critically, the homology of cephalic slits (eye slits, eye notch, dorsal suture, facial suture) is not extensively discussed either morphologically or functionally. Finally, the authors claimed that phylogenic results support two separate origins rather than a deep origin. However, the results in Figure 4 can explain a deep homology of the cephalic suture at molecular level and multiple co-options within the Atiopoda.

    3. Reviewer #3 (Public Review):

      Summary: Well-illustrated new material is documented for Acanthomeridion, a formerly incompletely known Cambrian arthropod. The formerly known facial sutures are shown to be associated with ventral plates that the authors very reasonably homologise with the free cheeks of trilobites. A slight update of a phylogenetic dataset developed by Du et al, then refined slightly by Chen et al, then by Schmidt et al, and again here, permits another attempt to optimise the number of origins of dorsal ecdysial sutures in trilobites and their relatives.

      Strengths: Documentation of an ontogenetic series makes a sound case that the proposed diagnostic characters of a second species of Acanthomeridion are variations within a single species. New microtomographic data shed some light on appendage morphology that was not formerly known. The new data on ventral plates and their association with the ecdysial sutures are valuable in underpinning homologies with trilobites.

      Weaknesses: The main conclusion remains clouded in ambiguity because of a poorly resolved Bayesian consensus and is consistent with work led by the lead author in 2019 (thus compromising the novelty of the findings). The Bayesian trees being majority rules consensus trees, optimising characters onto them (Figure 7b, d) is problematic. Optimising on a consensus tree can produce spurious optimisations that inflate tree length or distort other metrics of fit. Line 264 refers to at least three independent origins of cephalic sutures in artiopodans but the fully resolved Figure 7c requires only two origins. We can't say how many origins are required by Figures 7b and 7d.

      The question of how many times dorsal ecdysial sutures evolved in Artiopoda was addressed by Hou et al (2017), who first documented the facial sutures of Acanthomeridion and optimised them onto a phylogeny to infer multiple origins, as well as in a paper led by the lead author in Cladistics in 2019. Du et al. (2019) presented a phylogeny based on an earlier version of the current dataset wherein they discussed how many times sutures evolved or were lost based on their presence in Zhiwenia/Protosutura, Acanthomeridion, and Trilobita. To their credit, the authors acknowledge this (lines 62-65). The answer here is slightly different (because some topologies unite Acanthomeridion and trilobites).

      The following points are not meant to be "Weaknesses" but rather are refinements:

      I recommend changing the title of the paper from "cephalic sutures" to "dorsal ecdysial sutures" to be more precise about the character that is being tracked evolutionarily. Lots of arthropods have cephalic sutures (e.g., the ventral marginal suture of xiphosurans; the Y-shaped dorsomedian ecdysial line in insects). The text might also be updated to change other instances of "cephalic sutures" to a more precise wording.

      The authors have provided (but not explicitly identified) support values for nodes in their Bayesian trees but not in their parsimony ones. Please do the jackknife or bootstrap for the parsimony analyses and make it clear that the Bayesian values are posterior probabilities.

      In line 65 or somewhere else, it might be noted that a single origin of the dorsal facial sutures in trilobites has itself been called into question. Jell (2003) proposed that separate lineages of Eutrilobita evolved their facial sutures independently from separate sister groups within Olenellina.

      I have provided minor typographic or terminological corrections to the authors in a list of recommendations that may not be publicly available.

    1. eLife assessment

      This is a useful study examining the determinants and mechanisms of LRMP inhibition of cAMP regulation of HCN4 channel gating. The evidence provided to support the main conclusions is unfortunately incomplete, with discrepancies in the work that reduce the strength of mechanistic insights.

    2. Reviewer #1 (Public Review):

      Summary:<br /> The authors use truncations, fragments, and HCN2/4 chimeras to narrow down the interaction and regulatory domains for LRMP inhibition of cAMP-dependent shifts in the voltage dependence of activation of HCN4 channels. They identify the N-terminal domain of HCN4 as a binding domain for LRMP, and highlight two residues in the C-linker as critical for the regulatory effect. Notably, whereas HCN2 is normally insensitive to LRMP, putting the N-terminus and 5 additional C-linker and S5 residues from HCN4 into HCN2 confers LRMP regulation in HCN2.

      Strengths:<br /> The work is excellent, the paper well written, and the data convincingly support the conclusions which shed new light on the interaction and mechanism for LRMP regulation of HCN4, as well as identifying critical differences that explain why LRMP does not regulate other isoforms such as HCN2.

    3. Reviewer #2 (Public Review):

      Summary:<br /> HCN-4 isoform is found primarily in the sino-atrial node where it contributes to the pacemaking activity. LRMP is an accessory subunit that prevents cAMP-dependent potentiation of HCN4 isoform but does not have any effect on HCN2 regulation. In this study, the authors combine electrophysiology, FRET with standard molecular genetics to determine the molecular mechanism of LRMP action on HCN4 activity. Their study shows that parts of N- and C-termini along with specific residues in C-linker and S5 of HCN4 are crucial for mediating LRMP action on these channels. Furthermore, they show that the initial 224 residues of LRMP are sufficient to account for most of the activity. In my view, the highlight of this study is Fig. 7 which recapitulates LRMP modulation on HCN2-HCN4 chimera. Overall, this study is an excellent example of using time-tested methods to probe the molecular mechanisms of regulation of channel function by an accessory subunit.

      Weaknesses:<br /> 1. Figure 5A- I am a bit confused with this figure and perhaps it needs better labeling. When it states Citrine, does it mean just free Citrine, and "LRMP 1-230" means LRMP fused to Citrine which is an "LF" construct? Why not simply call it "LF"? If there is no Citrine fused to "LRMP 1-230", this figure would not make sense to me.

      2. Related to the above point- Why is there very little FRET between NF and LRMP 1-230? The FRET distance range is 2-8 nm which is quite large. To observe baseline FRET for this construct more explanation is required. Even if one assumes that about 100 amino are completely disordered (not extended) polymers, I think you would still expect significant FRET.

      3. Unless I missed this, have all the Cerulean and Citrine constructs been tested for functional activity?

    4. Reviewer #3 (Public Review):

      Summary:<br /> Using patch clamp electrophysiology and Förster resonance energy transfer (FRET), Peters and co-workers showed that the disordered N-terminus of both LRMP and HCN4 are necessary for LRMP to interact with HCN4 and inhibit the cAMP-dependent potentiation of channel opening. Strikingly, they identified two HCN4-specific residues, P545 and T547 in the C-linker of HCN4, that are close in proximity to the cAMP transduction centre (elbow Clinker, S4/S5-linker, HCND) and account for the LRMP effect.

      Strengths:<br /> Based on these data, the authors propose a mechanism in which LRMP specifically binds to HCN4 via its isotype-specific N-terminal sequence and thus prevents the cAMP transduction mechanism by acting at the interface between the elbow Clinker, the S4S5-linker, the HCND.

      Weaknesses:<br /> Although the work is interesting, there are some discrepancies between data that need to be addressed.

      1. I suggest inserting in Table 1 and in the text, the Δ shift values (+cAMP; + LRMP; +cAMP/LRMP). This will help readers.

      2. Figure 1 is not clear, the distribution of values is anomalously high. For instance, in 1B the distribution of values of V1/2 in the presence of cAMP goes from - 85 to -115. I agree that in the absence of cAMP, HCN4 in HEK293 cells shows some variability in V1/2 values, that nonetheless cannot be so wide (here the variability spans sometimes even 30 mV) and usually disappears with cAMP (here not).

      This problem is spread throughout the manuscript, and the measured mean effects are indeed always at the limit of statistical significance. Why so? Is this a problem with the analysis, or with the recordings?

      There are several other problems with Figure 1 and in all figures of the manuscript: the Y scale is very narrow while the mean values are marked with large square boxes. Moreover, the exemplary activation curve of Figure 1A is not representative of the mean values reported in Figure 1B, and the values of 1B are different from those reported in Table 1.

      On this ground, it is difficult to judge the conclusions and it would also greatly help if exemplary current traces would be also shown.

      3. "....HCN4-P545A/T547F was insensitive to LRMP (Figs. 6B and 6C; Table 1), indicating that the unique HCN4 C-linker is necessary for regulation by LRMP. Thus, LRMP appears to regulate HCN4 by altering the interactions between the C-linker, S4-S5 linker, and N-terminus at the cAMP transduction centre."

      Although this is an interesting theory, there are no data supporting it. Indeed, P545 and T547 at the tip of the C-linker elbow (fig 6A) are crucial for LRMP effect, but these two residues are not involved in the cAMP transduction centre (interface between HCND, S4S5 linker, and Clinker elbow), at least for the data accumulated till now in the literature. Indeed, the hypothesis that LRMP somehow inhibits the cAMP transduction mechanism of HCN4 given the fact that the two necessary residues P545 and T547 are close to the cAMP transduction centre, remains to be proven.

      Moreover, I suggest analysing the putative role of P545 and T547 in light of the available HCN4 structures. In particular, T547 (elbow) points towards the underlying shoulder of the adjacent subunit and, therefore, is in a key position for the cAMP transduction mechanism. The presence of bulky hydrophobic residues (very different nature compared to T) in the equivalent position of HCN1 and HCN2 also favours this hypothesis. In this light, it will be also interesting to see whether a single T547F mutation is sufficient to prevent the LRMP effect.

    1. eLife assessment

      This important study provides proof of the principle that C. elegans models can be used to accelerate the discovery of candidate treatments for human Mendelian diseases by detailed high-throughput phenotyping of strains harboring mutations in orthologs of human disease genes. The data presented are solid and would potentially be convincing if complete data sets were to be made available to the scientific community. This approach enables the potential rapid repurposing of FDA-approved drugs to treat rare diseases for which there are currently no effective treatments.

    2. Reviewer #1 (Public Review):

      Summary:<br /> As the scientific community identifies increasing numbers of genetic variants that cause rare human diseases, a challenge is how the field can most quickly identify pharmacological interventions to address known deficits. The authors point out that defining phenotypic outcomes required for drug screen assays is often challenging, and emphasize how invertebrate models can be used for quick ID of compounds that may address genetic deficits. A major contribution of this work is to establish a framework for potential intervention drug screening based on quantitative imaging of morphology and mobility behavior, using methods that the authors show can define subtle phenotypes in a high proportion of disease gene knockout mutants.

      Overall, the work constitutes an elegant combination of previously developed high-volume imaging with highly detailed quantitative phenotyping (and some paring down to specific phenotypes) to establish proof of principle on how the combined applications can contribute to screens for compounds that may address specific genetic deficits, which can suggest both mechanism and therapy.

      In brief, the authors selected 25 genes for which loss of function is implicated in human neuro-muscular disease and engineered deletions in the corresponding C. elegans homologs. The authors then imaged morphological features and behaviors prior to, during, and after blue light stimuli, quantitating features, and clustering outcomes as they elegantly developed previously (PMID 35322206; 30171234; 30201839). In doing so, phenotypes in 23/25 tested mutants could be separated enough to distinguish WT from mutant and half of those with adequate robustness to permit high-throughput screens, an outcome that supports the utility of general efforts to ID phenotypes in C. elegans disease orthologs using this approach. A detailed discussion of 4 ciliopathy gene defects, and NACLN-related channelopathy mutants reveals both expected and novel phenotypes, validating the basic approach to modeling vetted targets and underscoring that quantitative imaging approaches reiterate known biology. The authors then screened a library of nearly 750 FDA-approved drugs for the capacity to shift the unc-80 NACLN channel-disrupted phenotype closer to the wild type. Top "mover" compound move outcome in the experimental outcome space; and also reveal how "side effects" can be evaluated to prioritize compounds that confer the fewest changes of other parameters away from the center.

      Strengths:<br /> Although the imaging and data analysis approaches have been reported and the screen is limited in scope and intervention exposure, it is important that the authors strongly combine individual approach elements to demonstrate how quantitative imaging phenotypes can be integrated with C. elegans genetics to accelerate the identification of potential modulators of disease (easily extendable to other goals). Generation of deletion alleles and documentation of their associated phenotypes (available in supplemental data) provide potentially useful reagents/data to the field. The capacity to identify "over-shooting" of compound applications with suggestions for scale back and to sort efficacious interventions to minimize other changes to behavioral and physical profiles is a strong contribution.

      Weaknesses:<br /> The work does not have major weaknesses, although it may be possible to expand the discussion to increase utility in the field:

      1) Increased discussion of the challenges and limitations of the approach may enhance successful adaptation application in the field.

      --It is quite possible that morphological and behavioral phenotypes have nothing to do with disease mechanisms and rather reflect secondary outcomes, such that positive hits will address "off-target" consequences.

      --The deletion approach is adequately justified in the text, but the authors may make the point somewhere that screening target outcomes might be enhanced by the inclusion of engineered alleles that match the human disease condition. Their work on sod-1 alleles (PMID 35322206) might be noted in this discussion.

      --Drug testing here involved a strikingly brief exposure to a compound, which holds implications for how a given drug might engage in adult animals. The authors might comment more extensively on extended treatments that include earlier life or more extended targeting. The assumption is that administering different exposure periods and durations, but if the authors are aware as to whether there are challenges associated with more prolonged applications, larger scale etc. it would be useful to note them.

      2) More justification of the shift to only a few target parameters for judging compound effectiveness.<br /> -In the screen in Figure 4D and text around 313, 3 selected core features of the unc-80 mutant (fraction that blue-light pause, speed, and curvature) were used to avoid the high replicate requirements to identify subtle phenotypes. Although this strategy was successful as reported in Figure 5, the pared-down approach seems a bit at odds with the emphasis on the range of features that can be compared mutant/wt with the author's powerful image analysis. Adding details about the reduced statistical power upon multiple comparisons, with a concrete example calculated, might help interested scientists better assess how to apply this tool in experimental design.

      3) More development of the side-effect concept. The side effects analysis is interesting and potentially powerful. Prioritization of an intervention because of minimal perturbation of other phenotypes might be better documented and discussed a bit further; how reliably does the metric of low side effects correlate with drug effectiveness?

    3. Reviewer #2 (Public Review):

      Summary and strengths:

      O'Brien et al. present a compelling strategy to both understand rare disease that could have a neuronal focus and discover drugs for repurposing that can affect rare disease phenotypes. Using C. elegans, they optimize the Brown lab worm tracker and Tierpsy analysis platform to look at the movement behaviors of 25 knockout strains. These gene knockouts were chosen based on a process to identify human orthologs that could underlie rare diseases. I found the manuscript interesting and a powerful approach to making genotype-phenotype connections using C. elegans. Given the rate at which rare Mendelian diseases are found and candidate genes suggested, human geneticists need to consider orthologous approaches to understand the disease and seek treatments on a rapid time scale. This approach is one such way. Overall, I have a few minor suggestions and some specific edits.

      Weaknesses:<br /> (1) Throughout the text on figures, labels are nearly impossible to read. I had to zoom into the PDF to determine what the figure was showing. Please make text in all figures a minimum of 10-point font. Similarly, the Figure 2D point type is impossible to read. Points should be larger in all figures. Gene names should be in italics in all figures, following C. elegans convention.

      (2) I have a strong bias against the second point in Figure 1A. Sequencing of trios, cohorts, or individuals NEVER identifies causal genes in the disease. This technique proposes a candidate gene. Future experiments (oftentimes in model organisms) are required to make those connections to causality. Please edit this figure and parts of the text.

      (3) How were the high-confidence orthologs filtered from 767 to 543 (lines 128-131)? Also, the choice of the final list of 25 genes is not well justified. Please expand more about how these choices were made.

      (4) Figures 3 and 4, why show all 8289 features? It might be easier to understand and read if only the 256 Tierpsy features were plotted in the heat maps.

      (5) The unc-80 mutant screen is clever. In the feature space, it is likely better to focus on the 256 less-redundant Tierpsy features instead of just a number of features. It is unclear to me how many of these features are correlated and not providing more information. In other words, the "worsening" of less-redundant features is far more of a concern than the "worsening" of 1000 correlated features.

    4. Reviewer #3 (Public Review):

      In this study, O'Brien et al. address the need for scalable and cost-effective approaches to finding lead compounds for the treatment of the growing number of Mendelian diseases. They used state-of-the-art phenotypic screening based on an established high-dimensional phenotypic analysis pipeline in the nematode C. elegans.

      First, a panel of 25 C. elegans models was created by generating CRISPR/Cas9 knock-out lines for conserved human disease genes. These mutant strains underwent behavioral analysis using the group's published methodology. Clustering analysis revealed common features for genes likely operating in similar genetic pathways or biological functions. The study also presents results from a more focused examination of ciliopathy disease models.

      Subsequently, the study focuses on the NALCN channel gene family, comparing the phenotypes of mutants of nca-1, unc-77, and unc-80. This initial characterization identifies three behavioral parameters that exhibit significant differences from the wild type and could serve as indicators for pharmacological modulation.

      As a proof-of-concept, O'Brien et al. present a drug repurposing screen using an FDA-approved compound library, identifying two compounds capable of rescuing the behavioral phenotype in a model with UNC80 deficiency. The relatively short time and low cost associated with creating and phenotyping these strains suggest that high-throughput worm tracking could serve as a scalable approach for drug repurposing, addressing the multitude of Mendelian diseases. Interestingly, by measuring a wide range of behavioural parameters, this strategy also simultaneously reveals deleterious side effects of tested drugs that may confound the analysis.

      Considering the wealth of data generated in this study regarding important human disease genes, it is regrettable that the data is not actually made accessible. This diminishes the study's utility. It would have a far greater impact if an accessible and user-friendly online interface were established to facilitate data querying and feature extraction for specific mutants. This would empower researchers to compare their findings with the extensive dataset created here. Otherwise, one is left with a very limited set of exploitable data.

      Another technical limitation of the study is the use of single alleles. Large deletion alleles were generated by CRISPR/Cas9 gene editing. At first glance, this seems like a good idea because it limits the risk that background mutations, present in chemically-generated alleles, will affect behavioral parameters. However, these large deletions can also remove non-coding RNAs or other regulatory genetic elements, as found, for example, in introns. Therefore, it would be prudent to validate the behavioral effects by testing additional loss-of-function alleles produced through early stop codons or targeted deletion of key functional domains.

    1. Reviewer #1 (Public Review):

      De Seze et al. investigated the role of guanine exchange factors (GEFs) in controlling cell protrusion and retraction. In order to causally link protein activities to the switch between the opposing cell phenotypes, they employed optogenetic versions of GEFs which can be recruited to the plasma membrane upon light exposure and activate their downstream effectors. Particularly the RhoGEF PRG could elicit both protruding and retracting phenotypes. Interestingly, the phenotype depended on the basal expression level of the optoPRG. By assessing the activity of RhoA and Cdc42, the downstream effectors of PRG, the mechanism of this switch was elucidated: at low PRG levels, RhoA is predominantly activated and leads to cell retraction, whereas at high PRG levels, both RhoA and Cdc42 are activated but PRG also sequesters the active RhoA, therefore Cdc42 dominates and triggers cell protrusion. Finally, they create a minimal model that captures the key dynamics of this protein interaction network and the switch in cell behavior.

      The conclusions of this study are strongly supported by data. Perhaps the manuscript could include some further discussion to for example address the low number of cells (3 out of 90) that can be switched between protrusion and retraction by varying the frequency of the light pulses to activate opto-PRG. Also, the authors could further describe their "Cell finder" software solution that allows the identification of positive cells at low cell density, as this approach will be of interest for a wide range of applications.

    2. Reviewer #2 (Public Review):

      Summary:

      This manuscript builds from the interesting observation that local recruitment of the DHPH domain of the RhoGEF PRG can induce local retraction, protrusion, or neither. The authors convincingly show that these differential responses are tied to the level of expression of the PRG transgene. This response depends on the Rho-binding activity of the recruited PH domain and is associated with and requires (co?)-activation of Cdc42. This begs the question of why this switch in response occurs. They use a computational model to predict that the timing of protein recruitment can dictate the output of the response in cells expressing intermediate levels and found that, "While the majority of cells showed mixed phenotypes irrespectively of the activation pattern, in few cells (3 out of 90) we were able to alternate the phenotype between retraction and protrusion several times at different places of the cell by changing the frequency while keeping the same total integrated intensity (Figure 6F and Supp Movie)."

      Strengths:

      The experiments are well-performed and nicely documented. However, the molecular mechanism underlying the shift in response is not clear (or at least clearly described). In addition, it is not clear that a prediction that is observed in ~3% of cells should be interpreted as confirming a model, though the fit to the data in 6B is impressive.

      Overall, the main general biological significance of this work is that RhoGEF can have "off target effects". This finding is significant in that an orthologous GEF is widely used in optogenetic experiments in drosophila. It's possible that these findings may likewise involve phenotypes that reflect the (co-)activation of other Rho family GTPases.

      Weaknesses:

      The manuscript makes a number of untested assumptions and the underlying mechanism for this phenotypic shift is not clearly defined.

      This manuscript is missing a direct phenotypic comparison of control cells to complement that of cells expressing RhoGEF2-DHPH at "low levels" (the cells that would respond to optogenetic stimulation by retracting); and cells expressing RhoGEF2-DHPH at "high levels" (the cells that would respond to optogenetic stimulation by protruding). In other words, the authors should examine cell area, the distribution of actin and myosin, etc in all three groups of cells (akin to the time zero data from figures 3 and 5, with a negative control). For example, does the basal expression meaningfully affect the PRG low-expressing cells before activation e.g. ectopic stress fibers? This need not be an optogenetic experiment, the authors could express RhoGEF2DHPH without SspB (as in Fig 4G).

      Relatedly, the authors seem to assume ("recruitment of the same DH-PH domain of PRG at the membrane, in the same cell line, which means in the same biochemical environment." supplement) that the only difference between the high and low expressors are the level of expression. Given the chronic overexpression and the fact that the capacity for this phenotypic shift is not recruitment-dependent, this is not necessarily a safe assumption. The expression of this GEF could well induce e.g. gene expression changes.

      The third paragraph of the introduction, which begins with the sentence, "Yet, a large body of works on the regulation of GTPases has revealed a much more complex picture with numerous crosstalks and feedbacks allowing the fine spatiotemporal patterning of GTPase activities" is potentially confusing to readers. This paragraph suggests that an individual GTPase may have different functions whereas the evidence in this manuscript demonstrates, instead, that *a particular GEF* can have multiple activities because it can differentially activate two different GTPases depending on expression levels. It does not show that a particular GTPase has two distinct activities. The notion that a particular GEF can impact multiple GTPases is not particularly novel, though it is novel (to my knowledge) that the different activities depend on expression levels.

      These descriptions are not precise. What is the nature of the competition between RhoA and Cdc42? Is this competition for activation by the GEFs? Is it a competition between the phenotypic output resulting from the effectors of the GEFs? Is it competition from the optogenetic probe and Rho effectors and the Rho biosensors? In all likelihood, all of these effects are involved, but the authors should more precisely explain the underlying nature of this phenotypic switch. Some of these points are clarified in the supplement, but should also be explicit in the main text.

    1. eLife assessment

      This valuable study presents presents solid evidence that an anti-CTLA-4 antibody drug conjugate transiently depletes circulating B cells in a mouse model, showing how dysregulation of the T cell immune system can impact B cell homeostasis. The work will be of broad interest to immunologists and medical biologists, but a major limitation is that the mechanism of B-cell reduction remains unclear, as evidence of killing of B-cells by T-cells is not presented.

    1. eLife assessment

      This study presents valuable information that an anti-CTLA-4 antibody drug conjugate transiently depletes circulating B-lymphocytes in a mouse model. It shows how dysregulation of the T cell immune system can impact B cell homeostasis. The work will be of broad interest to immunologists and medical biologists, but the strength of evidence is incomplete at this time mainly because they only analyzed circulating B cells.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      1. The manuscript study would be improved by further discussion of the mechanistic relationship between this class of sex-biased DHS and the other 2/3 of liver DHS that also show male-biased accessibility but whose chromatin does not respond directly to GH-stimulated STAT5.

      Response: We added a new paragraph to the Discussion (lines 608-618) discussing our novel finding that sex-biased H3K36me3 marks uniquely distinguish Static sex-biased DHS from Dynamic sex-biased DHS (see Fig. 6C) in light of a recent study in a different biological system showing that H3K36me3 marks comprise an important mechanism for maintaining cell type-specific identity by inhibiting the spread of H3K27me3 repressive marks at cell type-specific enhancers [Nat Cell Biol, 25 (2023) 1121-1134]. Further, we now discuss the potential mechanistic significance of this mark in insuring the sex-biased chromatin accessibility at Static sex-biased DHS:

      “Finally, we discovered that sex-biased H3K36me3 marks are a unique distinguishing feature of static sex-biased DHS, with male-biased H3K36me3 marks being highly enriched at static male-biased DHS but not at dynamic male-biased DHS, and female-biased H3K36me3 marks highly enriched at static female-biased DHS (Fig. 6C). H3K36me3 marks are classically associated with the demarcation of actively transcribed genes [50] but are also used to maintain cell type identity by inhibiting the spread of H3K27me3 repressive marks at cell type-specific enhancers [35, 51]. The enrichment of H3K36me3 marks at static male-biased DHS described here could thus be an important mechanism to maintain sex-dependent hepatocyte identity by keeping static male-biased enhancers constitutively open and free of H3K27me3 repressive marks in male liver, and similarly for H3K36me3 marks enriched at static female-biased DHS in female liver. Further study is needed to elucidate the underlying mechanisms whereby these and the other sex-specific histone marks discussed above are deposited on chromatin in a sex-dependent and site-specific manner and the roles that GH plays in regulating these epigenetic events”.

      1. Previous studies, including those in the Waxman lab (PMIDs: 26959237, 18974276, 35396276) suggest castration of males or gonadectomy of both sexes eliminates most sex differences in mRNA expression in mouse liver, and/or that androgens such as DHT or testosterone administered in adulthood potentially reverses the effects of gonadectomy and/or masculinizes liver gene expression. It is not clear from the present discussion whether the GH/STAT5 cyclic effects to masculinize chromatin status require the presence of androgens in adulthood to masculinize pituitary GH secretion. Are there analyses of the present (or past) data that might provide evidence about a dual role for GH and androgen acting on the same genes? For example, are sex-biased DHS bound by androgen-dependent factors or show other signs of androgen sensitivity? Are histone marks associated with DHS regulated by androgens? Moreover, it would help if the authors indicate whether they believe that the "constitutive" static sex differences in the larger 2/3 set of male-biased DHS are the result of "constitutive" (but variable) action of testicular androgens in adulthood. Although the present study is nicely focused on the GH pulse-sensitive DHS, is there mechanistic overlap in sex-biasing mechanisms with the larger static class of sex-biased liver DHS?

      Response: The Reviewer poses an intriguing set of question regarding the potential role of androgens in directly regulating, perhaps by working together with GH or GH-activated STAT5 at the level of chromatin, to co-regulate the set of Static male-biased DHS. We have now addressed these questions in full in a new Discussion paragraph, entitled, “Pituitary GH secretory patterns vs. gonadal steroids as regulators of sex-biased liver chromatin accessibility and gene expression” (lines 640-661), as follows:

      “While testosterone has a well-established role in programming hypothalamic control of pituitary GH secretory patterns [9-11], it is also possible that androgens and estrogens could regulate sex differences in hepatocytes directly at the epigenetic or transcriptional level. However, our findings support the proposal that plasma GH patterns, and not gonadal steroids, dominate epigenetic control of liver sex differences. First, the ability of a single exogenous plasma GH pulse to rapidly reopen dynamic male-biased DHS closed by hypophysectomy – in the face of ongoing ablation of pituitary stimulated gonadal steroid production and secretion – implicates GH signaling per se in the direct regulation of chromatin accessibility for this class of male-biased DHS. Second, GH regulates the sex bias of static male-biased DHS as well, as evidenced by their widespread closure in male liver following continuous GH infusion (Table S2E). It is important to note, however, that hepatocyte-specific knockout of androgen receptor (AR) does, in fact, dysregulate ~15% of sex-biased genes, albeit with a much lower effect size than global AR knockout [52] due to the systemic disruption of the somatotropic axis and circulating GH secretory profiles [53, 54]. Conceivably, AR could regulate these genes by a direct binding mechanism, acting either alone or in concert with GH-activated STAT5 to keep chromatin open constitutively at a subset of static male-biased DHS, of which 32% undergo at least partial closure in male liver following hypophysectomy (Fig. 4C). Estrogen receptor (ERa) likely plays only a minor role in regulating sex-biased liver DHS enhancers, given the lack of effect of hepatocyte-specific ERa knockout on sex-biased liver gene expression [22] and our finding that only 12% of static female-biased DHS close in female liver following hypophysectomy, which decreases circulating estradiol levels [55].”.

      Reviewer #2 (Public Review):

      The Reviewer did not raise any points of criticism.

      Reviewer #2 Recommendations:

      Line 121. "highly enriched for genes of the corresponding sex bias" is unclear. Does this mean that the genes near the DHS have the same bias in level of transcription as the bias in open chromatin? Please clarify.

      Response: Text was changed to: “were highly enriched for mapping to genes showing the corresponding sex bias in the level transcription, but not for genes whose expression shows the opposite sex bias”.

      Line 161. "STAT5 activity-dependent patterns" seems not to be supported by the data. The patterns correlate with STAT5 activity, but the authors can't conclude that they depend on STAT5 activity based on these data alone.

      Response: Text was changed to: “patterns of DNase-released fragments that correlate with STAT5 activity”

      Line 171. "identify genomic regions where chromatin dynamically opens or closes in male mouse liver in response to GH pulse activation of STAT5" This statement assumes a causal relationship between STAT5 and the status of differential sites. The data do not support this assumption of causality, because the data correlate STAT5 with status of the differential sites.

      Response: Text was changed to: “identify genomic regions where chromatin dynamically opens or closes in male mouse liver in close association with GH pulse activation of STAT5”.

      Line 176. The "binary pattern" in figure 2D seems not to be as binary as the authors suggest. The blue and red samples overlap in their distribution, and the lower green samples are intermediate between most of the blue and red samples. The "arbitrary" dotted line suggests the binary status, but this line is less convincing because it is arbitrary and drawn by eye; some samples don't obey the binary dichotomy.

      Response: Text was changed to: “This pattern, where individual male mouse livers largely show either high or low DNase-seq read count distributions at the top differential genomic sites, was also seen…”.

      Line 224 "independent" also implies causality.

      Response: No changes were made.

      Line 284. The effects of hypophysectomy on liver chromatin accessibility is attributed here to the loss of GH secretions. Hypophysectomy will also reduce testicular androgen secretion. To what extent can the results of Hypox be attributed to STAT5-dependent mechanisms as opposed to the loss of androgens?

      Response: This question is now discussed in full in the new Discussion section, entitled, “Pituitary GH secretory patterns vs. gonadal steroids as regulators of sex-biased liver chromatin accessibility and gene expression” (lines 640-661), as noted above.

      Line 505. "euthanized between plasma GH pulses". The authors are making an inference here because I do not think they measured GH levels. It would be more accurate to say that the time of euthanasia is inferred to be between GH pulses based on the measurement of STAT5 which is GH-dependent.

      Response: Text was changed to: “a time inferred to be between plasma GH pulses”.

      Reviewer #3 Recommendations:

      In Figure 1A the differences between female-biased enhancers and sex-independent enhancers seem greater than those comparing female-biased insulators and sex-independent insulators, and yet only the latter are significant. Please could you clarify?

      Response: Figure legend was corrected to indicate that Enhancers + Weak Enhancers were analyzed as a single group. Furthermore, the location of the Enhancer asterisks above the bars on the figure was adjusted to reflect this.

      Line 257, I could not find Table S1B.

      Response: Text in Figure legend was corrected to specify Table S7A as the source of this data.

      Line 265 "BCL6 binding was also enriched at dynamic sex-independent DHS (Table S7B)." The p-value of this enrichment was particularly high. Could this have a biological correlation?

      Response: We cannot rule out that possibility.

      Line 277 "identified a Fox family factor as a close match for one of the top enriched motifs in the set of 278 static but not in the set of dynamic male-biased DHS", Maybe authors could add that this holds true for FOXI1 and not for FOXD1.

      Response: Text was changed to specify FOXI1 as the factor.

      Line 368, please clarify the affirmation because in Table 1A we do not see the data of dynamic and static male-biased DHS, but only male-biased, female-biased, and sex-independent DHS subsets.

      Response: Text was corrected to read: “Our initial analyses revealed no major differences between dynamic and static male-biased DHS regarding the distribution of enhancer vs insulator vs promoter classifications (Fig. S7A) or their overall chromatin state distributions (Fig. S7B)”.

      Figure 7A and 7B. It would visually help the reader if in E1, E2, etc. you could include the short definitions (as in Figure 1B: Inactive, Inactive, Low signal, etc.)

      Response: We thank the reviewer for this suggestion, and have now added the X-axis labels suggested by the Reviewer.

      Line 570 The sentence was difficult to read "similar to E6, but unlike E6," Maybe removing the comma after "unlike E6" would help.

      Response: Text has been edited to avoid this cumbersome construct. It now reads: “…characterized by a high frequency of same activating chromatin marks as chromatin state E6, i.e., H3K27ac and H3K4me1 (E9) or H3K27ac alone (E10), but unlike E6 they are both deficient in…”.

      Other changes include revisions to the Abstract to take into account the new discussion concerning the impact of sex-biased H3K36me3 marks along with related and other revisions to the Discussion, and a revision to the manuscript Title to better capture its main message.

    2. Reviewer #1 (Public Review):

      Summary:

      Sex differences in the liver gene expression and function have previously been proposed to be caused by sex differences in the pattern growth hormone (GH) secretion by the pituitary, which are established by the effects of testicular hormones that act on the hypothalamus perinatally to masculinize control of pituitary GH secretion beginning at puberty and for the rest of the animal's life. The Waxman lab has previously implicated GH control of STAT5 as a critical event leading to a masculine pattern of gene expression. The present study separates male-biased regulatory sites associated with the male-biased genes into different classes based on their responsiveness to the cyclic male pattern of STAT5 activity, and investigates DNAse hypersensitivity sites (DHS) of different classes showing cyclic sex-bias or not. It further reports on the binding of transcription factors to STAT5-sensitive DHS, and involvement of specific histone marks at these sites. The study argues that STAT5 is the proximate factor regulating chromatin accessibility in about 1/3 of male-biased DHS that are sexually differentiated by GH secretion. The authors propose the pulsatile GH secretion as a novel proximate mechanism of regulating chromatin accessibility to cause sex differences.

      Strengths:

      The study offers new insight into the effects of hypophysectomy and injection of GH on different classes of sex-biased genes in mouse liver. The results support the general conclusion of the authors. Cyclic secretion of other hormones (for example, estrous secretion of estrogens and progesterone) are well known to cause sex differences in multiple organs in rodents, and it will be interesting to assess if these cyclic secretions induce similar changes in chromatin accessibility causing female tissue gene expression to differ from that of males.

      Weaknesses:

      The authors argue for two major mechanisms controlling sexual bias in liver gene expression, and analyze in depth one of these mechanisms. The focus is on the group of DHS (about 1/3 of all male-biased DHS) in which the sex bias is controlled by cyclic secretion of growth hormone (GH) in males, compared to static and low growth hormone in adult females. The sex difference in pituitary secretion of GH is induced by permanent effects of androgens acting on the hypothalamus perinatally. The manuscript study would be improved by further discussion of the mechanistic relationship between this class of sex-biased DHS and the other 2/3 of liver DHS that also show male-biased accessibility but whose chromatin does not respond directly to GH-stimulated STAT5. Previous studies, including those in the Waxman lab (PMIDs: 26959237, 18974276, 35396276) suggest castration of males or gonadectomy of both sexes eliminates most sex differences in mRNA expression in mouse liver, and/or that androgens such as DHT or testosterone administered in adulthood potentially reverses the effects of gonadectomy and/or masculinizes liver gene expression. It is not clear from the present discussion whether the GH/STAT5 cyclic effects to masculinize chromatin status require the presence of androgens in adulthood to masculinize pituitary GH secretion. Are there analyses of the present (or past) data that might provide evidence about a dual role for GH and androgen acting on the same genes? For example, are sex-biased DHS bound by androgen-dependent factors or show other signs of androgen sensitivity? Are histone marks associated with DHS regulated by androgens? Moreover, it would help if the authors indicate whether they believe that the "constitutive" static sex differences in the larger 2/3 set of male-biased DHS are the result of "constitutive" (but variable) action of testicular androgens in adulthood. Although the present study is nicely focused on the GH pulse-sensitive DHS, is there mechanistic overlap in sex-biasing mechanisms with the larger static class of sex-biased liver DHS?

    3. eLife assessment

      This important study offers new and convincing support for the idea that about a third of mouse liver DNAse hypersensitivity sites (DHS) showing male-biased chromatin opening are sex-biased because of the male-specific cyclic action of growth hormone pulses to alter chromatin accessibility, as compared to the relative ineffectiveness of the more static pattern of growth hormone secretion in females. Supporting evidence is found in the impact of hypophysectomy and growth hormone treatment on chromatin accessibility, and the binding of specific transcription factors and epigenetic marks at STAT5-sensitive sites. This work uncovers mechanisms underlying sex differences in liver function and will be of broad interest to endocrinologists and hepatologists.

    4. Reviewer #2 (Public Review):

      Summary:<br /> The present work addresses the mechanisms linking the sex-dependent temporal GH secretion patterns to the robust sex differences in chromatin accessibility and transcription factor binding that ultimately regulate sexually dimorphic liver gene expression. Using DNAseq analysis genomic sites hypersensitive to cleavage by DNase I, DNase hypersensitive sites [DHS] were studied in hepatocytes from male and female mice. DHS in the genome correspond to accessible chromatin regions and encompass key regulatory elements, including enhancers, promoters, insulators, and silencers, often flanked by specific histone modifications, and all of these players were described in different settings of GH action. Importantly, the dynamics of sex-dependent and independent chromatin accessibility linked to STAT5 binding were evaluated. For that purpose, hepatic samples from mice were divided into STAT high and STAT low binding by EMSA screening. With this information changes in DHS related to STAT binding were calculated in both sexes, giving an approximation of chromatin opening in response to STAT5, or alternatively to hypophsectomy, or a single GH pulse. More the 800 male-biased DHS (from a total of more than 70000 DHS) regions were identified in the STAT5 high groups, implying that the binding of a plasma GH pulse activates STAT5, and evokes a dynamic cycle of male liver chromatin opening and closing at sites that comprised 31% of all male-biased DHS. This proves that the pulsatility of plasma GH stimulation confers significant male bias in chromatin accessibility, and STAT5 binding at a fraction of the genomic sites linked to sex-biased liver gene expression and liver disease. As a proof of concept, authors show that a single physiological replacement dose or pulse of GH given to hypophysectomized mice recapitulate, within 30 min, the pulsatile re-opening of chromatin seen in pituitary-intact male mouse liver.

      In another male-biased DHS set (69% of male-biased DHS), chromatin accessibility was static, that is unchanged across the peaks and valleys of GH-induced liver STAT5 activity and mapped to a set of target genes and processes distinct though sometimes overlapping those of the dynamic male-biased DHS.

      In view of these distinct dynamic and static DHS in males, authors evaluated key epigenetic features distinguishing the dynamic STAT5-driven mechanism of chromatin opening from that of static male-biased DHS, which are constitutively open in the male liver but closed in the female liver. The analysis of histone marks enriched at each class of sex-biased DHS indicated exquisite differences in the epigenetic mechanisms that mediate sex-specific gene repression in each sex. For example, H3K27me3 and H3K9me3, two widely used repressive histone marks, are used in a unique way in each sex to enforce sex differences in chromatin states at sex-biased DHS.

      Finally, the work recapitulates and explains the classifications of sex dimorphic genes made in previous works. Sex-biased and pituitary hormone-dependent DHS act as regulatory elements with a positive enhancer potential, to induce or maintain gene expression in the intact liver by sustaining an open chromatin in the case of class I male-biased DHS and class I male-biased genes in the male liver. Contrariwise DHS may participate in the inhibition of gene expression by maintaining a closed chromatin state, as in the case of class II male-biased DHS and class II female-biased genes in male liver.

      These results as a whole present a complex mechanism by which GH regulates the sexual dimorphism of liver genes in order to cope with the metabolic needs of each sex. In a complete story, the information on chromatin accessibility, histone modification, and transcription factor binding was integrated to elucidate the complex patterns of transcriptional regulation, which is sexually dimorphic in the liver.

      Strengths:<br /> The work presents a novel insight into the fundamental underlying epigenetic mechanisms of sex-biased gene regulation.<br /> Results are supported by numerous Tables, and Supplementary Tables with the raw data, which present the advantage that they may be reanalyzed in the future to prove new hypotheses.

      Weaknesses<br /> It is a complicated work to analyze, even though the main messages are clearly conveyed.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their time and effort to review our manuscript. We have provided a response to their thoughtful questions below. In our revised manuscript, we have expanded the Discussion to comment on the significance of reversible modification of APC with polyubiquitin, and how the APC transport defect might be rescued (lines 335 to 346). A new Supplementary Figure 3 has been added to show a replicate DUB assay and the uncropped gel of Figure 1C in the main text.

      Reviewer #1 (Recommendations For The Authors):

      To address the weaknesses outlined below, I have the following comments and suggestions for experiments:

      1) Functional link between mouse phenotypes and proposed mechanism: could the authors rescue neuron/glia cell density or motor defects by restoring axonal trafficking of APC?

      We have shown that inhibition of glycogen synthase kinase 3 (GSK3) abolished APC ubiquitylation (PMID 22761442). Etienne-Manneville and Hall have reported that GSK3 inactivation promotes APC association with microtubule plus ends to drive polarised astrocyte migration (PMID 12610628). It is therefore conceivable that treating Trabid mutant neurons with a GSK3 inhibitor could suppress APC ubiquitylation, restore APC transport, and rescue the defective axon growth. GSK3 has multiple targets so there are caveats to using potent inhibitors of this kinase. But such an experiment is integral to a future study aimed at rescuing Trabid mutant mouse phenotypes by GSK3 inhibition.

      Does perturbation of APC trafficking phenocopy the defects of TRABID p.R438W and p.A451V knock in mice during neurodevelopment? I appreciate that these experiments might not be easily feasible.

      Presently we do not know how to directly perturb APC transport (besides generating a Trabid mutation). Speculatively, APC phosphosite mutants which mimic constitutive phosphorylation by GSK3 might accumulate polyubiquitin, aggregate, and exhibit disrupted axonal transport. We predict that such APC mutants will cause neurodevelopmental abnormalities in mouse models.

      Thus, alternatively, could the authors provide evidence from unbiased proteomic approaches that APC is a major substrate of TRABID- and STRIPAK-dependent deubiquitylation during neurodevelopment? E.g., what are the changes in the ubiquitylome of neural progenitor cells isolated from mouse embryos with TRABID mutant alleles and is APC amongst the top dysregulated hits? What are the changes in the interactome of TRABID p.A451V and is the STRIPAK complex a major interactor that is lost?

      We are generating antibodies capable of immunoprecipitating endogenous Trabid from mouse cells. This antibody tool will allow us to characterise the Trabid-STRIPAK complex using advanced ubiquitin proteomic approaches to determine interactors and changes to the ubiquitylome of Trabid mutant cells.

      2) Related to the point 1, given that TRABID has been reported to be a regulator of immune signaling pathways (PMID: 26808229, 37237031), can the authors exclude a contribution of this function to the observed phenotypes during neurodevelopment?

      We have not observed any cellular or tissue phenotypes in young or aged Trabid mutant mice indicative of immune system dysregulation. We and others have shown that Trabid deficiency has no impact on the transcription of interferon and NF-B-stimulated genes or cytokine production in mouse and human cells (PMID 18281465; 17991829; unpublished). Nevertheless, a formal investigation is required to determine any changes to immune signalling pathways in our Trabid mutant mice.

      3) Based on previously published interactions, the authors propose that TRABID uses the STRIPAK complex to recruit its substrate APC. Could the authors provide experimental evidence for this by using their cellular model in Figure 4? Would depleting components of the STRIPAK complex in HEK 293T cells stably transfected with DOX-inducible WT-TRABID stabilize APC ubiquitylation upon dox induction?

      We have demonstrated that RNAi-mediated depletion of all 3 striatin proteins in HEK293T cells increased the levels of ubiquitin-modified APC (PMID 23277359). Moreover, depleting Trabid and the 3 Striatins together strongly increased the ubiquitin-modified APC pool, consistent with our model that Trabid and STRIPAK function together to deubiquitylate APC. In our inducible system, we would likely need to eliminate the expression of the STRIPAK component that directly recruits Trabid to achieve a null effect of Trabid overexpression on APC deubiquitylation. Experiments are in progress to determine which STRIPAK component binds directly to Trabid.

      4) Related to point 3, given that A451, the residue that mediates STRIPAK binding is in close proximity to the catalytic cysteine residue, how do the authors envision STRIPAK binding and OTU-dependent cleavage activity to work together at a structural level?

      A451 resides at the back of the active site in a pocket hypothesised to accommodate a short peptide from an interacting protein. The A451V mutant AnkOTU domain purified from bacteria retained full DUB activity, suggesting that Trabid’s ability to cleave polyubiquitin is independent of its ability to bind STRIPAK. Striatin proteins contain WD40 repeats which is a protein fold that binds ubiquitin (PMID 21070969). While the DUB- and STRIPAK-binding activities of Trabid might not be coupled structurally, it is plausible that Striatin could modulate Trabid’s ubiquitin linkage specificity in cells through allosteric interactions with the ubiquitin chain on the substrate.

      5) Is it known why APC needs to be reversibly modified with ubiquitin to be transported in axons and how increased APC ubiquitylation leads to impaired transport or could the authors speculate on this?

      We have shown that APC ubiquitin modification correlated with its binding to Axin in the -catenin destruction complex (PMID 22761442). Conversely, non-ubiquitin-modified APC accumulates in membrane protrusions (PMID 23277359). From this we have proposed that ubiquitin regulates the distribution of APC between its two major functional pools in cells. Chronic APC ubiquitylation in Trabid deficient/mutant neurons might result in increased APC sequestration into Axin destruction complexes and/or promote spurious interactions with ubiquitin binding proteins that cause APC to aggregate, and therefore retard its transport in axons.

      Additional minor comments to consider:

      • Figure 1C: What are the protein smears in the in vitro assays of A541V 15min and CS 120min? I would assume that contaminants from the protein preparations should be the same across different conditions and in particular across different time points of the same Trabid mutant.

      In replicate DUB assays using the same AnkOTU protein preparations we did not detect any smears (Supplementary Figure 3A). It is unclear what caused the smears in Figure 1C, but it is plausible that contaminants in specific tubes/assays are contributing factors.

      • Figure 1D: why is the amount of AnkOTU protein reduced for WT, R438W, and A541 in a time-dependent manner?

      With increasing incubation time in DUB assays, adducts of various molecular weights may form between ubiquitin and the AnkOTU domain. It is plausible that some of these adducts are non-gel-resolved high molecular weight aggregates that sequester some of the AnkOTU proteins. These aggregates, which could have been retained in the loading wells, were presumably washed away during our silver staining procedure hence we do not see them in the full-length gel (Supplementary Figure 3B).

      Reviewer #2 (Recommendations For The Authors):

      • The partial penetrance of the mouse knockin phenotype is confusing, especially as this is evident on an apparently inbred background. Can authors explain the factors that contribute to these differences?

      Low mutant Trabid protein expression in distinct neural crest or progenitor populations could contribute to the reduced penetrance of the cell number phenotype. APC dysfunction in Trabid mutant cells might also impact its role as a negative regulator of the Wnt signalling pathway which regulates neuronal and glial cell fates in the developing brain (PMID 9845073). It is conceivable that in some Trabid mutant mice where APC dysfunction is mild (due to low levels of mutant Trabid protein expression), compensatory mechanisms overcome APC’s reduced function in Wnt signalling and cytoskeleton organization to permit normal brain development. A future study to investigate perturbations of Wnt signalling pathways in Trabid mutant mice is warranted.

      • The use of the term 'hemizygous' is confusing, as it typically refers to when one copy of a gene is present as in X-linked conditions. Might the authors mean 'heterozygous'?

      All instances of ‘hemizygous’ in the manuscript have been amended to ‘heterozygous’.

      • Fig. 3A y-axis units is confusing. Do the authors mean number of TH+ SNc neurons evident per section?

      We have amended the y-axis in Fig. 3A to indicate number of TH+ neurons evident per section.

      • Since the TH phenotype is one of the phenotypes that is partially penetrant, did authors include both penetrant and non-penetrant mice in Fig. 3 and other figures? Shouldn't there be error bars in Fig. 3A, since multiple mice were presumably used for analysis for each condition?

      Each data point in Fig. 3A represents one mouse in a set of littermate mice with the indicated age, sex, and genotype. Generating midbrain SNc sections at similar bregma positions across wild-type and mutant littermate brains for accurate IHC comparison proved challenging. Unanticipated technical issues limited the quantification of equivalent midbrain sections to 3 sets of littermate mice from each respective R438W or A451V mutant colony. The cell number reduction is more obvious in some mutants than others, but the effect is observed across all ages and gender, providing confidence that the phenotype is robust. In Fig. 2 we have included only mutant mice with clearly fewer brain cells than wild-type littermates. We have not performed comprehensive IHC analysis of brains from all the mice used for the rotarod assay in Fig. 3E, but predict that mutant mice have a spectrum of neural/glial cell deficits in one or more brain areas that adversely impacted the motor circuitry causing their impaired motor function.

    2. Reviewer #2 (Public Review):

      Although Trabid missense mutations are identified across a range of neurodevelopmental disorders, its role in neurodevelopment is not understood. Here the authors study two different patient mutations and implicate defects in its deubiquitylating activity and interactions with STRIPAK. Knockin mice for these mutations impaired trafficking of APC to microtubule plus ends, with consequent defects in neuronal growth cone and neurite outgrowth.

      The authors focus on R438W and A451V, two missense mutations seen in patients. Recombinant fragments showed R438W is nearly completely DUB-dead whereas A451V showed normal activity but failed to efficiently precipitate STRIPAK. Knockin of these mutations showed a partially penetrant reduced cortical neuronal and glial cell numbers and reduced TH+ neurons and their neuronal processes. Cell culture demonstrated that both DUB and STRIPAK-binding activities of Trabid are required for efficient deubiquitylation of APC in cells, and alter APC transport along neurites. APC-tdTomato fluorescent reporter mice crossed with the Trabid mutants confirmed these results. The results suggest that Trabid's mechanism of action is to suppress APC ubiquitylation to regulate its intracellular trafficking and neurite formation.

    3. eLife assessment

      This study defines the roles for two different missense mutations observed in patients in the Trabid/ZRANB1 gene associated in children with a range of congenital disorders including reduced brain size. The study is important because the findings have theoretical or practical implications beyond a single subfield, as the study of DUB and cytoskeletal alterations have implications for neurodevelopment broadly. The methods are convincing as they utilize appropriate and validated methodology in line with current state-of-the-art by incorporating knock-in mice of the patient mutations. Many of the reviewer comments were focused on potential next experiments, rather than on evaluation of the data at hand, and the authors have considered these as future studies. The work as presented suggests critical roles for Trabid in the STRIPAK complex mediating APC deubiquitylation.

    4. Reviewer #1 (Public Review):

      In this work, Frank, Bergamasco, Mlodzianoski et al study two microcephaly-associated patient variants in TRABID to identify and characterize a previously unrecognized role of this deubiquitylation enzyme during neurodevelopment. The authors generate TRABID p.R438W and p.A451V knock in mice, which exhibit smaller neuronal and glial cell densities as well as motor deficits, phenotypes that are consistent with the congenital defects observed in the patients. Through in vitro and cellular immunoprecipitation assays, the authors demonstrate that the p.R438W variant impairs the K29- and K63-chain cleavage activity of TRABID, while the p.A451V variant reduces binding to the STRIPAK complex, a previously identified TRABID interactor with established functions in cytoskeletal organization and neural development. Ubiquitylation assays performed in HEK293T cells further reveal that the hypomorphic patient variants are deficient in deubiquitylating APC, a previously identified substrate of TRABID that has been shown to control the neuronal cortical cytoskeleton during neurite outgrowth. Ex vivo experiments provide evidence that axonal APC trafficking and neurite outgrowth is disturbed in differentiating neural progenitors isolated from mouse embryos carrying Trabid patient alleles. From these experiments the authors propose a model in which TRABID- and STRIPAK-dependent APC deubiquitylation regulates its axonal trafficking to ensure faithful neurite outgrowth and misregulation of this function leads to neurodevelopmental phenotypes in TRABID/ZRANB1 patients.

    1. eLife assessment

      This work presents important findings regarding the use of soil environmental DNA for non-invasive monitoring of the endangered kākāpō parrot population in New Zealand. The approach based on sequence analysis is convincing but comparisons to established methods are lacking. The tools presented in this study are innovative and will be relevant to those working with environmental DNA and the conservation of biodiversity.

    1. eLife assessment

      This valuable data study presents convincing data that expression of the C. elegans transcription factor NHR-67 is sufficient to drive an invasive fate, and that the alternative proliferative fate is associated with NHR-67 transcriptional down-regulation. While the observation that NHR-67 forms punctae associated with transcriptional repressors in non-invasive cells is intriguing, the work does not yet established a clear link between the formation and dissolution of NHR-67 condensates with the activation of downstream genes that NHR-67 is actively repressing. The work will be of interest to developmental biologists studying transcriptional control of cell fate specification in animals, especially once issues around the functional significance of the NHR-67 contiaining punctae are resolved.

    1. Author Response

      We thank the Editors and the Reviewers for their comments on the importance of our work “showing a new role of caveolin-1 as an individual protein instead of the main molecular component of caveolae” in building membrane rigidity and also for constructive and thoughtful remarks that shall allow to improve the manuscript.

      Indeed, we here establish the contributing role of caveolin-1 to membrane mechanics by a molecular mechanism that needs to be further addressed. To that respect, we thank the reviewers for suggesting avenues to improve the presentation and discussion of our hypotheses based on results of theoretical model and independent biophysical measurements in tube pulling from plasma membrane spheres, which concur to support the key role of caveolin-1 in building membrane rigidity.

      To fulfill the recommendations of the reviewers we will amend the manuscript as discussed below.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Because of the role of membrane tension in the process, and that caveloae regulate membrane tension, the authors looked at the formation of TEMs in cells depleted of Caveolin1 and Cavin1 (PTRF): They found a higher propensity to form TEMs, spontaneously (a rare event) and after toxin treatment, in both Caveolin 1 and Cavin 1. They show that in both siRNA-Caveolin1 and siRNA-Cavin1 cells, the cytoplasm is thinner. They show that in siCaveolin1 only, the dynamics of opening are different, with notably much larger TEMs. From the dynamic model of opening, they predict that this should be due to a lower bending rigidity of the membrane. They measure the bending rigidity from Cell-generated Giant liposomes and find that the bending rigidity is reduced by approx. 50%.

      Strengths:

      They also nicely show that caveolin1 KO mice are more susceptible to death from infections with pathogens that create TEMs.

      Overall, the paper is well-conducted and nicely written. There are however a few details that should be addressed.

      Reviewer #2 (Public Review):

      Summary:

      The manuscript by Morel et al. aims to identify some potential mechano-regulators of transendothelial cell macro-aperture (TEM). Guided by the recognized role of caveolar invaginations in buffering the membrane tension of cells, the authors focused on caveolin-1 and associated regulator PTRF. They report a comprehensive in vitro work based on siRNA knockdown and optical imaging approach complemented with an in vivo work on mice, a biophysical assay allowing measurement of the mechanical properties of membranes, and a theoretical analysis inspired by soft matter physics.

      Strengths:

      The authors should be complimented for this multi-faceted and rigorous work. The accumulation of pieces of evidence collected from each type of approach makes the conclusion drawn by the authors very convincing, regarding the new role of cavolin-1 as an individual protein instead of the main molecular component of caveolae. On a personal note, I was very impressed by the quality of STORM images (Fig. 2) which are very illuminating and useful, in particular for validating some hypotheses of the theoretical analysis.

      Weaknesses:

      While this work pins down the key role of caveolin-1, its mechanism remains to be further investigated. The hypotheses proposed by the authors in the discussions about the link between caveolin and lipids/cholesterol are very plausible though challenging. Even though we may feel slightly frustrated by the absence of data in this direction, the quality and merit of this paper remain.

      In the current study, we did not find the technical conditions allowing us to properly address the role of cholesterol in the dynamics of TEM due to adverse effects of cholesterol depletion with methyl-beta-cyclodextrin on the morphology of HUVEC. To answer the Reviewer remark, we will mention our attempts to address a role of cholesterol in the dynamics of TEM in the results section. Moreover, we will thoroughly discuss in the section related to data of tube pulling experiments from PMS that caveolin-1 by controlling membrane lipid composition, may indirectly affect membrane rigidity (see comments below about the presence or absence of caveolin-1 in the tubes pulled from PMS and our hypotheses about a direct or indirect role of caveolin-1 in the control of membrane rigidity).

      The analogy with dewetting processes drawn to derive the theoretical model is very attractive. However, although part of the model has already been published several times by the same group of authors, the definition of the effective membrane rigidity of a plasma membrane including the underlying actin cortex, was very vague and confusing.

      In the revised manuscript, we will clearly define the membrane bending rigidity parameter, which was missing in the current version. The membrane bending rigidity is defined as the energy required to locally bend the membrane surface. In a liposome, a rigorous derivation leads to a relationship between the membrane tension relation and the variation of the projected area, which are related by the bending rigidity: this relationship is known as the Helfrich law. This statistical physics approach is only rigorously valid for a liposome, whereas its application to a cell is questionable due to the presence of cytoskeletal forces acting on the membrane. Nevertheless, application of the Helfrich law to cell membranes may be granted on short time scales, before active cell tension regulation takes place (Sens P and Plastino J, 2015 J Phys Condens Matter), especially in cases where cytoskeletal forces play a modest role, such as red blood cells (Helfrich W 1973 Z Naturforsch C). The fact that the cytoskeletal structure and actomyosin contraction are significantly disrupted upon cell intoxication-driven inhibition of the small GTPase RhoA supports the applicability of Helfrich law to describe TEM opening. Because of the presence of proteins, carbohydrates, and the adhesion of the remaining actin meshwork after toxin treatment, we expect the Helfrich relationship to somewhat differ from the case of a pure lipidic membrane. We account for these effects via an “effective bending rigidity”, a term used in the detailed discussion of the model hypotheses, which corresponds to an effective value describing the relationship between membrane tension and projected area variation in our cells. These considerations will be included in the revised manuscript.

      Here, for the first time, thanks to the STORM analysis, the authors show that HUVECs intoxicated by ExoC3 exhibit a loose and defective cortex with a significantly increased mesh size. This argues in favor of the validity of Helfrich formalism in this context. Nonetheless, there remains a puzzle. Experimentally, several TEMs are visible within one cell. Theoretically, the authors consider a simultaneous opening of several pores and treat them in an additive manner. However, when one pore opens, the tension relaxes and should prevent the opening of subsequent pores. Yet, experimentally, as seen from the beautiful supplementary videos, several pores open one after the other. This would suggest that the tension is not homogeneous within an intoxicated cell or that equilibration times are long. One possibility is that some undegraded actin pieces of the actin cortex may form a barrier that somehow isolates one TEM from a neighboring one.

      As pointed by the Reviewer, we expect that membrane tension is neither a purely global nor a purely local parameter. Opening of a TEM will relax membrane tension over a certain distance, not over the whole cell. Moreover, once the TEM closes back, membrane tension will increase again. This spatial and temporal localization of membrane tension relaxation explains that the opening of a first TEM does not preclude the opening of a second one. On the other hand, membrane tension is not a purely local property. Indeed, we observe that when two TEMs enlarge next to each other, their shape becomes anisotropic, as their enlargement is mutually hampered in the region separating them. We account for this interaction by treating TEM membrane relaxation in an additive fashion. We emphasize that this simplified description is used to predict maximum TEM size, corresponding to the time at which TEM interaction is strongest. As the reviewer points out, it would be more questionable to use this additive treatment to predict the likelihood of nucleation of a new TEM, which is not done here.

      Could the authors look back at their STORM data and check whether intoxicated cells do not exhibit a bimodal population of mesh sizes and possibly provide a mapping of mesh size at the scale of a cell?

      To address the question raised by the Reviewer we decided to plot the whole distribution of mesh sizes in addition to the average value per cell. We did not observe a bimodal distribution but rather a very heterogeneous distribution of mesh size going up to a few microns square in all conditions of siRNA treatments. Moreover, we did not observe a specific pattern in the distribution of mesh size at the scale of the cell, with very large mesh sizes being surrounded by small ones. We also did not observe any specific pattern for the localization of TEM opening, as described in the paper, making the correlation between mesh size and TEM opening difficult.

      In particular, it is quite striking that while bending rigidity of the lipid membrane is expected to set the maximal size of the aperture, most TEMs are well delimited with actin rings before closing. Is it because the surrounding loose actin is pushed back by the rim of the aperture? Could the authors better explain why they do not consider actin as a player in TEM opening?

      Actin ring assembly and stiffening is indeed a player in TEM opening, and it is included in our differential equation describing TEM opening dynamics (second term on the left-hand side of Eq. 3). In some cases, actin ring assembly is the dominant player, such as in TEM opening after laser ablation (ex novo TEM opening), as we previously reported (Stefani et al. 2017 Nat comm). In contrast, here we investigate de novo TEM opening, for which we expect that bending rigidity can be estimated without accounting for actin assembly, as we previously reported (Gonzalez-Rodriguez et al. 2012 Phys Rev Lett). Such a bending rigidity estimate (Eq. 5) is obtained by considering two different time scales: the time scale of membrane tension relaxation, governed by bending rigidity, and the time scale of cable assembly, governed by actin dynamics. We expect the first-time scale to be shorter, and thus the maximum size of de novo TEMs to be mainly constrained by membrane tension relaxation. The discussion of these two different time scales will be added to the revised manuscript.

      Instead of delegating to the discussion the possible link between caveolin and lipids as a mechanism for the enhanced bending rigidity provided by caveolin-1, it could be of interest for the readership to insert the attempted (and failed) experiments in the result section. For instance, did the authors try treatment with methyl-beta-cyclodextrin that extracts cholesterol (and disrupts caveolar and clathrin pits) but supposedly keeps the majority of the pool of individual caveolins at the membrane?

      We will state in the results section that we could not find appropriate experimental conditions allowing us to deplete cholesterol with methyl-beta cyclodextrin without interfering with the shape of HUVECs, thereby preventing the proper analysis of TEM dynamics.

      Tether pulling experiments on Plasma membrane spheres (PMS) are real tours de force and the results are quite convincing: a clear difference in bending rigidity is observed in controlled and caveolin knock-out PMS. However, one recurrent concern in these tether-pulling experiments is to be sure that the membrane pulled in the tether has the same composition as the one in the PMS body. The presence of the highly curved neck may impede or slow down membrane proteins from reaching the tether by convective or diffusive motion. Could the authors propose an experiment to demonstrate that caveolin-1 proteins are not restricted to the body of the PMS and can access to the nanometric tether?

      As pointed out by the reviewer, a concern with tube pulling experiments is related to the dynamics of equilibration of membrane composition between the nanotube and the rest of the membrane. In our experiments, we have waited about 30 seconds after tube pulling and after changing membrane tension. We have checked that after this time, the force remained constant, implying that we have performed experiments of tube pulling from PMS in technical conditions of equilibrium that ensure that lipids and membrane proteins had enough time to reach the tether by convective or diffusive motion. We will add a representative example of force vs time plot in our revision. In principle, this could be further checked using cells expressing GFP-caveolin-1 to generate PMS as done in Sinha et al., 2011: a steady protein signal in the tube will further confirm the equilibration, provided that caveolin is recruited in the nanotube due to mechanical reasons. Indeed, since caveolin-1 is inserted in the cytosolic leaflet of the plasma membrane, when a nanotube is pulled towards the exterior of the cell as in our experiments, we can expect 2 situations depending on the ability of caveolin-1 to deform membranes, which is not clear, in particular after the paper of Porta et al, Sci. Adv., 2022. i) If caveolin-1 (Cav1) does not bend membranes, it could be recruited in the nanotubes, at a density similar to the PMS body. The tube force measurement in this case would reflect the bending rigidity of the PMS membrane. Then, Cav1 could stiffen membrane either as a stiff inclusion at high density or/and by affecting lipid composition, as suggested in our text. ii) If Cav1 bends the membrane (i.e. it has a non-zero spontaneous curvature), it should create a positive curvature considering the geometry of the caveolae, opposite to the curvature of the nanotubes that we pull, and thus be excluded of the nanotubes. In this case, the force would reflect the bending rigidity of the membrane depleted of Cav1 and should be the same in both types of experiments (WT and Cav1 depleted conditions) if the lipid composition remains unchanged upon Cav1 depletion. Our measurements suggest again that Cav1 depletion affects the plasma membrane composition, probably by reducing the quantity of sphingomyelin and cholesterol. Note that the presence of a very reduced concentration of Cav1 as compared to the plasma membrane has been reported in tunneling nanotubes (TNT) connecting two neighboring cells (A. Li et al., Front. Cell Dev. Biol., 2022). These TNTs have typical diameters of similar scale than diameters of tubes pulled from PMS. Some of us have addressed these specific questions related to Cav-1 spontaneous curvature and its effect on the lipid composition of the plasma membrane in two separate manuscripts (in preparation). They represent comprehensive studies by themselves that clarify these points. We propose to add this discussion in the manuscript, with perspectives on future studies, but stressing the point that the presence of Cav1 stiffens plasma membranes, and that the exact origin of this effect must be further investigated.

    2. eLife assessment

      This important study identifies the role of Caveolin1 and Cavin1 as regulators of TransEndothelial Macroaperture (TEM). The methodology used is rigorous and compelling, and further research can point to a more mechanistic understanding of the process.

    3. Reviewer #1 (Public Review):

      Summary:

      Because of the role of membrane tension in the process, and that caveloae regulate membrane tension, the authors looked at the formation of TEMs in cells depleted of Caveolin1 and Cavin1 (PTRF): They found a higher propensity to form TEMs, spontaneously (a rare event) and after toxin treatment, in both Caveolin 1 and Cavin 1. They show that in both siRNA-Caveolin1 and siRNA-Cavin1 cells, the cytoplasm is thinner. They show that in siCaveolin1 only, the dynamics of opening are different, with notably much larger TEMs. From the dynamic model of opening, they predict that this should be due to a lower bending rigidity of the membrane. They measure the bending rigidity from Cell-generated Giant liposomes and find that the bending rigidity is reduced by approx. 50%.

      Strengths:

      They also nicely show that caveolin1 KO mice are more susceptible to death from infections with pathogens that create TEMs.

      Overall, the paper is well-conducted and nicely written. There are however a few details that should be addressed.

    4. Reviewer #2 (Public Review):

      Summary:

      The manuscript by Morel et al. aims to identify some potential mechano-regulators of transendothelial cell macro-aperture (TEM). Guided by the recognized role of caveolar invaginations in buffering the membrane tension of cells, the authors focused on caveolin-1 and associated regulator PTRF. They report a comprehensive in vitro work based on siRNA knockdown and optical imaging approach complemented with an in vivo work on mice, a biophysical assay allowing measurement of the mechanical properties of membranes, and a theoretical analysis inspired by soft matter physics.

      Strengths:

      The authors should be complimented for this multi-faceted and rigorous work. The accumulation of pieces of evidence collected from each type of approach makes the conclusion drawn by the authors very convincing, regarding the new role of cavolin-1 as an individual protein instead of the main molecular component of caveolae. On a personal note, I was very impressed by the quality of STORM images (Fig. 2) which are very illuminating and useful, in particular for validating some hypotheses of the theoretical analysis.

      Weaknesses:

      While this work pins down the key role of caveolin-, its mechanism remains to be further investigated. The hypotheses proposed by the authors in the discussions about the link between caveolin and lipids/cholesterol are very plausible though challenging. Even though we may feel slightly frustrated by the absence of data in this direction, the quality and merit of this paper remain.

      - The analogy with dewetting processes drawn to derive the theoretical model is very attractive. However, although part of the model has already been published several times by the same group of authors, the definition of the effective membrane rigidity of a plasma membrane including the underlying actin cortex, was very vague and confusing. Here, for the first time, thanks to the STORM analysis, the authors show that HUVECs intoxicated by ExoC3 exhibit a loose and defective cortex with a significantly increased mesh size. This argues in favor of the validity of Helfrich formalism in this context. Nonetheless, there remains a puzzle. Experimentally, several TEMs are visible within one cell. Theoretically, the authors consider a simultaneous opening of several pores and treat them in an additive manner. However, when one pore opens, the tension relaxes and should prevent the opening of subsequent pores. Yet, experimentally, as seen from the beautiful supplementary videos, several pores open one after the other. This would suggest that the tension is not homogeneous within an intoxicated cell or that equilibration times are long. One possibility is that some undegraded actin pieces of the actin cortex may form a barrier that somehow isolates one TEM from a neighboring one. Could the authors look back at their STORM data and check whether intoxicated cells do not exhibit a bimodal population of mesh sizes and possibly provide a mapping of mesh size at the scale of a cell? In particular, it is quite striking that while bending rigidity of the lipid membrane is expected to set the maximal size of the aperture, most TEMs are well delimited with actin rings before closing. Is it because the surrounding loose actin is pushed back by the rim of the aperture? Could the authors better explain why they do not consider actin as a player in TEM opening?

      - Instead of delegating to the discussion the possible link between caveolin and lipids as a mechanism for the enhanced bending rigidity provided by caveolin-1, it could be of interest for the readership to insert the attempted (and failed) experiments in the result section. For instance, did the authors try treatment with methyl-beta-cyclodextrin that extracts cholesterol (and disrupts caveolar and clathrin pits) but supposedly keeps the majority of the pool of individual caveolins at the membrane?

      - Tether pulling experiments on Plasma membrane spheres (PMS) are real tours de force and the results are quite convincing: a clear difference in bending rigidity is observed in controlled and caveolin knock-out PMS. However, one recurrent concern in these tether-pulling experiments is to be sure that the membrane pulled in the tether has the same composition as the one in the PMS body. The presence of the highly curved neck may impede or slow down membrane proteins from reaching the tether by convective or diffusive motion. Could the authors propose an experiment to demonstrate that caveolin-1 proteins are not restricted to the body of the PMS and can access to the nanometric tether?

    1. eLife assessment

      This fundamental work proposes a novel mechanism for memory consolidation where short-term memory provides a gating signal for memories to be consolidated into long-term storage. The work combines extensive analytical and numerical work applied to three different scenarios and provides a convincing analysis of the benefits of the proposed model, although some of the analyses are limited to the type of memory consolidation the authors consider (and don't consider), which limits the impact. The work could be revised to include a more thorough comparison to existing models of memory consolidation and a discussion of its limitations, and the revision could also streamline the technical terminology. The work will be of interest to neuroscientists and many other researchers interested in the mechanistic underpinnings of memory.

    2. Reviewer #1 (Public Review):

      Summary:

      The authors develop a memory consolidation theory utilizing the recall quality in the short-term memory system to decide what to consolidate in the long-term memory (LTM). The theory is based on a set of previously proposed models identifying memories and synaptic weights (without neuronal activity) with an addition of the second set of weights responsible for long-term storage. The rigorous analysis and numerical experiments show that under some assumptions, the long-term system achieves a high signal-to-noise ratio, particularly much higher than concurrently learning or localized in the same synapses LTM.

      Strengths:

      The authors take on an important problem of designing robust memory consolidation that fits the numerous experimental observations and, to a large extent, they succeed. The proposed solution is general and generalized to multiple contexts. The mathematical treatment is solid and convincing.

      Weaknesses:

      The presented model seems to be tuned for learning repetitive events. However, single-shot learning, for example, under fear conditioning or if a presented stimulus is astonishing, seems to contradict the proposed framework. I would assume that part of the load could be taken by a reply system that could vigorously replay more surprising events, but it seems to still not exactly match the proposed scheme.

      For context, I would like to see the comparison/discussion of the wide range of models on synaptic tagging for consolidation by various types of signals. Notably, studies from Wulfram Gerstner's group (e.g., Brea, J., Clayton, N. S., & Gerstner, W. (2023). Computational models of episodic-like memory in food-caching birds. Nature Communications, 14(1); and studies on surprise).

      The models that are taken for comparison with the slow but otherwise identical to STM LTM could be incapable per design. Reducing the probability of switching independently of the previous presentation does not make the system "slow"; instead, it should integrate previous signals (and thus slowly remove independent noise).

      The usage of terms and streamlining of writing could be improved for better understanding.

    3. Reviewer #2 (Public Review):

      Summary:

      In the manuscript "Recall-Gated Consolidation: A Model for Learning and Memory in Neural Systems," the authors suggest a computational mechanism called recall-gated consolidation, which prioritizes the storage of previously experienced synaptic updates in memory. The authors investigate the mechanism with different types of learning problems including supervised learning, reinforcement learning, and unsupervised auto-associative memory. They rigorously analyse the general mechanism and provide valuable insights into its benefits.

      Strengths:

      The authors establish a general theoretical framework, which they translate into three concrete learning problems. For each, they define an individual mathematical formulation. Finally, they extensively analyse the suggested mechanism in terms of memory recall, consolidation dynamics, and learnable timescales.

      The presented model of recall-gated consolidation covers various aspects of synaptic plasticity, memory recall, and the influence of gating functions on memory storage and retrieval. The model's predictions align with observed spaced learning effects.

      The authors conduct simulations to validate the recall-gated consolidation model's predictions, and their simulated results align with theoretical predictions. These simulations demonstrate the model's advantages over consolidating any memory and showcase its potential application to various learning tasks.

      The suggestion of a novel consolidation mechanism provides a good starting point to investigate memory consolidation in diverse neural systems and may inspire artificial learning algorithms.

      Weaknesses:

      I appreciate that the authors devoted a specific section to the model's predictions, and point out how the model connects to experimental findings in various model organisms. However, the connection is rather weak and the model needs to make more specific predictions to be distinguishable from other theories of memory consolidation (e.g. those that the authors discuss) and verifiable by experimental data.

      While the article extensively discusses the strengths and advantages of the recall-gated consolidation model, it provides a limited discussion of potential limitations or shortcomings of the model, such as the missing feature of generalization, which is part of previous consolidation models. The model is not compared to other consolidation models in terms of performance and how much it increases the signal-to-noise ratio. It is only compared to a simple STM or a parallel LTM, which I understand to be essentially the same as the STM but with a different timescale (so not really an alternative consolidation model). It would be nice to compare the model to an actual or more sophisticated existing consolidation model to allow for a fairer comparison.

      The article is lengthy and dense and it could be clearer. Some sections are highly technical and may be challenging to follow. It could benefit from more concise summaries and visual aids to help convey key points.

    4. Reviewer #3 (Public Review):

      Summary:

      In their article "Theory of systems memory consolidation via recall-gated plasticity ", Jack Lindsey and Ashok Litwin-Kumar describe a new model for systems memory consolidation. Their idea is that a short-term memory acts not as a teacher for a long-term memory - as is common in most complementary learning systems - but as a selection module that determines which memories are eligible for long-term storage. The criterion for the consolidation of a given memory is a sufficient strength of recall in the short-term memory.

      The authors provide an in-depth analysis of the suggested mechanism. They demonstrate that it allows substantially higher SNRs than previous synaptic consolidation models, provide an extensive mathematical treatment of the suggested mechanism, show that the required recall strength can be computed in a biologically plausible way for three different learning paradigms, and illustrate how the mechanism can explain spaced training effects.

      Strengths:

      The suggested consolidation mechanism is novel and provides a very interesting alternative to the classical view of complementary learning systems. The analysis is thorough and convincing.

      Weaknesses:

      The main weakness of the paper is the equation of recall strength with the synaptic changes brought about by the presentation of a stimulus. In most models of learning, synaptic changes are driven by an error signal and hence cease once the task has been learned. The suggested consolidation mechanism would stop at that point, although recall is still fine. The authors should discuss other notions of recall strength that would allow memory consolidation to continue after the initial learning phase. Aside from that, I have only a few technical comments that I'm sure the authors can address with a reasonable amount of work.

    1. Author Response

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors characterize S. enterica WbaP biochemically and structurally. The enzyme catalyzes the initial step in O antigen biosynthesis by transferring a phospho-galactosyl unit from UDP-galactose to undecaprenyl-phosphate. This initial primer is then extended by other glycosyltransferases to form the O antigen repeat unit.

      To preserve the biologically functional unit of WbaP, the authors chose a 'detergent-free' purification method based on membrane extraction using SMALP polymers. The obtained material was characterized biochemically and by single-particle cryo-electron microscopy.

      Strengths:

      The authors were able to isolate WbaP in a catalytically active and oligomeric form and determined a low-resolution cryo-EM structure of the dimeric complex. Using a disulfide cross-linking approach and other biophysical methods, the authors validated an AlphaFold predicted WbaP model used to interpret the experimental cryo-EM map.

      Weaknesses:

      The rationale for using SMALP to extract WbaP from the membrane was to 'preserve' the native lipid bilayer surrounding the protein. However, the physical properties of the lipids co-purifying with the protein are unclear. The volume of the EM map assigned to the SMALP polymers suggests a more micellar character.

      Overall, the obtained cryo-EM map appears to be at fairly low resolution. Based on Figure 6, individual helices are not resolved, suggesting an overall resolution significantly below the stated 4.1 Å. Thus, the presented structure is the one of an AlphaFold WbaP model.

      I believe the UMP titration analysis could be improved. The authors assume that a 'domain of unknown function (DUF)' binds UMP and regulates the enzyme's activity. UMP, a reaction product of WbaP, may also inhibit the enzyme competitively. Therefore, deleting the DUF for the UMP inhibition studies could help with data interpretation.

      We appreciate the reviewer’s careful analysis of our manuscript, and their attention to detail regarding the structural data. In a revised version of this manuscript, we will modify the discussion section to include a brief section focused on the liponanoparticle itself, comparing to other experimental structures in SMALP. Investigating the lipid microenvironment in SMALPs around both Lg- and Sm-PGTs is of great interest to our group. We have published initial data related to PglC from Campylobacter, but a systematic analysis of co-purified lipids from the growing number of SMALP-solubilized PGTs is an exciting future direction for this project. Expression and analysis of truncated constructs containing the catalytic domain of Lg-PGTs (including WbaP) has been attempted in our laboratory, with no success. This limits our ability to decouple DUF-mediated modulation of activity from interactions in the catalytic domain. Efforts to address this challenge are underway but will be the focus of future publications. Regarding the overall resolution – for transparency - we will add a new figure that shows the local resolution throughout the experimental map.

      Reviewer #2 (Public Review):

      Summary:

      The authors focused on delivering a comprehensive structural characterization of WbaP, a membrane-bound phosphoglycosyl transferase from Salmonella that is instrumental in bacterial glycoconjugate synthesis. Notably, the authors employed SMALP-200, an amphipathic copolymer, to extract WbaP in the form of native lipid bilayer nanodiscs. They then determined its oligomerization state through cross-linking and procured higher-resolution structural data via cryo-electron microscopy (cryo-EM). While the authors successfully characterized WbaP in a native-like lipid bilayer setting, and their findings support this, the paper's claim of introducing a novel methodology is not robust. The real contribution of this work lies in the newfound insights about WbaP's structure.

      Strengths:

      The manuscript provides novel insights into WbaP's structure and oligomerization state, highlighting potentially significant interactions. The methodologies employed represent state-of-the-art practices in the field. Most of the drawn conclusions are well-supported by either experimental or computational data, with a few exceptions noted below.

      Weaknesses:

      • Organization: The manuscript's organization lacks clarity. The authors seem to describe their processes in the sequence they occurred rather than a logical flow, leading to potential confusion. For instance, the authors delve into a series of inconclusive experiments to determine the oligomerization state of WbaP, utilizing techniques like SEC, SEC-MALS, mass photometry, and mass spectrometry. They then transition to cryo-EM but subsequently return to address the oligomerization issue, which they conclusively resolve using cross-linking experiments. Following this, they shift their focus to interpreting and discussing the structural features obtained from the cryo-EM data.

      • Ambiguous and incorrect statements: There are instances of vague and at times inaccurate statements. Using more precise terminology like "native nanodiscs" or "lipid bilayer nanodiscs" would enhance clarity compared to the term "liponanoparticles." The claim on page 8 concerning the refractive index increment of SMA polymers needs rectification. The real reason why SEC-MALS cannot provide absolute particle masses in this case is that using two independent concentration detectors (typically, absorbance and refractive index), the decomposition of elution profiles is necessarily limited to two chemical species of a known molar or specific absorbance and refractive index. Thus, it is clear that nanodiscs containing a protein, a polymer, and a chemically undefined mixture of native lipids cannot be analyzed by this technique.

      • Overstating of technical aspects: The technical aspects seem overstated. While the extraction of membrane proteins into native lipid bilayer nanodiscs and their characterization by cross-linking and cryo-EM are standard (and were published before by the same authors in ref. 29), the authors appear to promote them as groundbreaking. The statement that this study presents a novel, universal strategy and toolkit for examining small membrane proteins within liponanoparticles seems overstated, especially given the previous existence of similar methods.

      We appreciate the reviewer’s careful consideration of the steps that were taken and how they were presented. However, we need to reinforce that although the initial biophysical experiments do not provide the exact oligomeric state of the WbaP, they provide important new data. Together these data support that the intact liponanoparticle is large enough to accommodate a higher order oligomerization state along with native lipids and stabilizing SMA polymer – this was not known at the outset and led to Fig 2D showing the first demonstration of dimer that was then validated via XLMS and disulfide crosslinking. The process was logical and essential to this work. We recognize the reviewer’s point on the SEC-MALs experiment and will adjust the text accordingly.

      We sought to distinguish the stabilization method used here from canonical MSP nanodiscs by using the term styrene maleic acid liponanoparticle (SMALP). The term SMALP is widely used in literature utilizing this technology, thus the use of other terms may lead to confusion.

      Our manuscript in PExpPur was focused on enabling expression of sufficient quality and quantity for sophisticated downstream biophysical applications – that MS was intended to be enabling to the greater membrane protein community and is highly recognized and appreciated in “its own right.” This work presents the first in class structure of the large monoPGTs. Further only a single structure of the PGT domain itself has been solved and appears as an experimental structure in the PDB (also from our group) addressing the enigmatic additional domains and potential physiological relevance. It is also noteworthy that the Lg-monoPGTs dominate the superfamily. This is also the first time that any protein in SMALP has been characterized using direct mass technology, which provided the most accurate mass determination of the intact liponanoparticle/protein complex.

    2. eLife assessment:

      This valuable manuscript provides solid methodologies for utilizing SMALP nanodisks for oligomer characterization. The authors present a platform for capturing and studying native membrane protein oligomerization and subsequent cryoEM analysis. The specific application of the method to WbaP, a membrane-bound phosphoglycosyl transferase, adds to our understanding of glycoconjugate production in bacteria. This manuscript would be of interest to those focusing on native membrane protein studies and antimicrobial resistance.

    3. Reviewer #1 (Public Review):

      Summary:<br /> The authors characterize S. enterica WbaP biochemically and structurally. The enzyme catalyzes the initial step in O antigen biosynthesis by transferring a phospho-galactosyl unit from UDP-galactose to undecaprenyl-phosphate. This initial primer is then extended by other glycosyltransferases to form the O antigen repeat unit.

      To preserve the biologically functional unit of WbaP, the authors chose a 'detergent-free' purification method based on membrane extraction using SMALP polymers. The obtained material was characterized biochemically and by single-particle cryo-electron microscopy.

      Strengths:<br /> The authors were able to isolate WbaP in a catalytically active and oligomeric form and determined a low-resolution cryo-EM structure of the dimeric complex. Using a disulfide cross-linking approach and other biophysical methods, the authors validated an AlphaFold predicted WbaP model used to interpret the experimental cryo-EM map.

      Weaknesses:<br /> The rationale for using SMALP to extract WbaP from the membrane was to 'preserve' the native lipid bilayer surrounding the protein. However, the physical properties of the lipids co-purifying with the protein are unclear. The volume of the EM map assigned to the SMALP polymers suggests a more micellar character.

      Overall, the obtained cryo-EM map appears to be at fairly low resolution. Based on Figure 6, individual helices are not resolved, suggesting an overall resolution significantly below the stated 4.1 Å. Thus, the presented structure is the one of an AlphaFold WbaP model.

      I believe the UMP titration analysis could be improved. The authors assume that a 'domain of unknown function (DUF)' binds UMP and regulates the enzyme's activity. UMP, a reaction product of WbaP, may also inhibit the enzyme competitively. Therefore, deleting the DUF for the UMP inhibition studies could help with data interpretation.

    4. Reviewer #2 (Public Review):

      Summary:<br /> The authors focused on delivering a comprehensive structural characterization of WbaP, a membrane-bound phosphoglycosyl transferase from Salmonella that is instrumental in bacterial glycoconjugate synthesis. Notably, the authors employed SMALP-200, an amphipathic copolymer, to extract WbaP in the form of native lipid bilayer nanodiscs. They then determined its oligomerization state through cross-linking and procured higher-resolution structural data via cryo-electron microscopy (cryo-EM). While the authors successfully characterized WbaP in a native-like lipid bilayer setting, and their findings support this, the paper's claim of introducing a novel methodology is not robust. The real contribution of this work lies in the newfound insights about WbaP's structure.

      Strengths:<br /> The manuscript provides novel insights into WbaP's structure and oligomerization state, highlighting potentially significant interactions. The methodologies employed represent state-of-the-art practices in the field. Most of the drawn conclusions are well-supported by either experimental or computational data, with a few exceptions noted below.

      Weaknesses:<br /> • Organization: The manuscript's organization lacks clarity. The authors seem to describe their processes in the sequence they occurred rather than a logical flow, leading to potential confusion. For instance, the authors delve into a series of inconclusive experiments to determine the oligomerization state of WbaP, utilizing techniques like SEC, SEC-MALS, mass photometry, and mass spectrometry. They then transition to cryo-EM but subsequently return to address the oligomerization issue, which they conclusively resolve using cross-linking experiments. Following this, they shift their focus to interpreting and discussing the structural features obtained from the cryo-EM data.


      • Ambiguous and incorrect statements: There are instances of vague and at times inaccurate statements. Using more precise terminology like "native nanodiscs" or "lipid bilayer nanodiscs" would enhance clarity compared to the term "liponanoparticles." The claim on page 8 concerning the refractive index increment of SMA polymers needs rectification. The real reason why SEC-MALS cannot provide absolute particle masses in this case is that using two independent concentration detectors (typically, absorbance and refractive index), the decomposition of elution profiles is necessarily limited to two chemical species of a known molar or specific absorbance and refractive index. Thus, it is clear that nanodiscs containing a protein, a polymer, and a chemically undefined mixture of native lipids cannot be analyzed by this technique.

      • Overstating of technical aspects: The technical aspects seem overstated. While the extraction of membrane proteins into native lipid bilayer nanodiscs and their characterization by cross-linking and cryo-EM are standard (and were published before by the same authors in ref. 29), the authors appear to promote them as groundbreaking. The statement that this study presents a novel, universal strategy and toolkit for examining small membrane proteins within liponanoparticles seems overstated, especially given the previous existence of similar methods.

    1. Reviewer #1 (Public Review):

      Summary:

      The goal of Pawel et al. is to provide a more rigorous and quantitative approach for judging whether or not an initial null finding (conventionally with p >= 0.05) has been replicated by a second similarly null finding. They discuss important objections to relying on the qualitative significant/non-significant dichotomy to make this judgement. They present two complementary methods (one frequentist and the other Bayesian) which provide a superior quantitative framework for assessing the replicability of null findings.

      Strengths:

      Clear presentation; illuminating examples drawn from the well-known Reproducibility Project: Cancer Biology data set; R-code that implements suggested analyses. Using both methods as suggested provides a superior procedure for judging the replicability of null findings.

      Weaknesses:

      The proposed frequentist and the Bayesian methods both rely on binary assessments of an original finding and its replication. I'm not sure if this is a weakness or is inherent to making binary decisions based on continuous data.

      For the frequentist method, a null finding is considered replicated if the original and replication 90% confidence intervals for the effects both fall within the equivalence range. According to this approach, a null finding would be considered replicated if p-values of both equivalences tests (original and replication) were, say, 0.049, whereas would not be considered replicated if, for example, the equivalence test of the original study had a p-value of 0.051 and the replication had a p-value of 0.001. Intuitively, the evidence for replication would seem to be stronger in the second instance. The recommended Bayesian approach similarly relies on a dichotomy (e.g. Bayes factor > 1).

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors report the results of QM/MM simulations and kinetic measurements for the phosphoryl-transfer step in adenylate kinase. The main assertion of the paper is that a wide transition state ensemble is a key concept in enzyme catalysis as a strategy to circumvent entropic barriers. This assertion is based on the observation of a "structurally wide" set of energetically equivalent configurations that lie along the reaction coordinate in QM/MM simulations, together with kinetic measurements that suggest a decrease in the entropy of activation.

      Strengths:<br /> The study combines theoretical calculations and supporting experiments.

      Weaknesses:<br /> The role(s) of entropy in enzyme catalysis has been discussed extensively in the literature, from the Circe effect proposed by Jencks and many other works. The current paper hypothesizes a "wide" transition state ensemble as a catalytic strategy and key concept in enzyme catalysis. Overall, it is not clear the degree to which this hypothesis is supported by the data. The reasons are as follows:

      1. Enzyme catalysis reflects a rate enhancement with respect to a baseline reaction in solution. In order to assert that something is part of a catalytic strategy of an enzyme, it would be necessary to demonstrate from simulations that the activation entropy for the baseline reaction is indeed greater and the transition state ensemble less "wide". Alternatively stated, when indicating there is a "wide transition state ensemble" for the enzyme system - one needs to indicate that is with respect to the non-enzymatic reaction. However, these simulations were not performed and the comparisons were not demonstrated.

      2. The observation of a "wide conformational ensemble" is not a quantitative measure of entropy. In order to make a meaningful computational prediction of the entropic contribution to the activation of free energy, one would need to perform free energy simulations over a range of temperatures (for the enzymatic and non-enzymatic systems). Such simulations were not performed, and the entropy of activation was thus not quantified by the computational predictions.

      3. The authors indicate that lid-opening, essential for product release, and not P-transfer is the rate-limiting step in the catalytic cycle and Mg2+ accelerates both steps. How is it certain that the kinetic measurements are reporting on the chemical steps of the reaction, and not other factors such as metal ion binding or conformational changes?

      4. The authors explore different starting states for the chemical steps of the reaction (e.g., different metal ion binding and protonation states), and conclude that the most reactive enzyme configuration is the one with the more favorable reaction-free energy barrier. However, it is not clear what is the probability of observing the system in these different states as a function of pH and metal ion concentration without performing appropriate pKa and metal ion binding calculations. This was not done, and hence these results seem somewhat inconclusive.

    2. eLife assessment

      This is a potentially important study that integrates QM/MM free energy simulations and experimental kinetic analyses to probe the nature of phosphoryl transfer transition state in adenylate kinase. The idea that the transition state ensemble encompasses conformations with substantially different structural features (including the breaking/forming bonds) is interesting and potentially applicable to many other enzyme systems. In the current form, however, the study is considered incomplete since the connection between the putative transition state ensemble from the computations and key experimental observables, such as the activation entropy, is not well established.

    3. Reviewer #1 (Public Review):

      Summary:<br /> This study investigated the phosphoryl transfer mechanism of the enzyme adenylate kinase, using SCC-DFTB quantum mechanical/molecular mechanical (QM/MM) simulations, along with kinetic studies exploring the temperature and pH dependence of the enzyme's activity, as well as the effects of various active site mutants. Based on a broad free energy landscape near the transition state, the authors proposed the existence of wide transition states (TS), characterized by the transferring phosphoryl group adopting a meta-phosphate-like geometry with asymmetric bond distances to the nucleophilic and leaving oxygens. In support of this finding, kinetic experiments were conducted with Ca2+ ions (instead of Mg2+) at different temperatures, which revealed a negative entropy of activation. Overall, in its present form, the manuscript has more weaknesses in terms of interpretation of the simulation results than strengths, which need to be addressed by the authors.

      There are several major concerns:

      First, the authors' claim that the catalytic mechanism of adenylate kinase (Adk) has not been previously studied by QM/MM free energy simulations is somewhat inaccurate. In fact, two different groups have previously investigated the catalytic mechanism of Adk. The first study, cited by the authors themselves, used the string method to determine the minimum free energy profile, but resulted in an unexpected intermediate; note that they obtained a minimum free energy profile, not a minimum energy profile. The second study (Ojedat-May et al., Biochemistry 2021 and Dulko-Smith et al., J Chem Inf Model 2023) overlaps substantially with the present study, but its main conclusions differ from those of the present study. Therefore, a thorough discussion comparing the results of these studies is needed.

      Second, the interpretation of the TS ensemble needs deeper scrutiny. In general, the TS is defined as the hypersurface separating the reactant and product states. Consequently, if a correct reaction coordinate is defined, trajectories initiated at the TS should have equal probabilities of reaching either the reactant or product state; if an approximate reaction coordinate, such as the distance difference used in this study, is used, recrossing may be introduced as a correction into the probabilities. Thus, in order to establish the presence of a wide TS region, it is necessary to characterize the TS ensemble through a commitment analysis across the TS region.

      The relatively flat free energy surface observed near TS in Figures 1c and 2a, may be attributed to the cleavage and formation of P-O bonds relative to the marginally stable phosphorane intermediate, as described in Zhou et al.'s work (Chem Rev 1998, 98:991). This scenario is clearly different from a wide TS ensemble concept. In addition, given the inherent similarity in reactivity of the two oxygens towards the phosphoryl atom, it is reasonable to expect a single TS as shown in Figure 1 - supplement 9, rather than two TSs with a marginally stable intermediate as shown in Figure 1c. Consequently, it remains uncertain whether the elongated P-O bonds observed near the TS and their asymmetry are realistic or potentially an artifact of the pulling/non-equilibrium MD simulations. Further validation in this regard is required.

      Third, there are several inconsistencies in the free energy results and their discussion. First, the data from Kerns et al. (Kerns, NSMB, 2015, 22:124) indicate that the ATP/AMP -> ADP/ADP reaction proceeds at a faster rate than the ADP/ADP -> ATP/AMP reaction, suggesting that the ADP/ADP state has a lower free energy (approximately -1.0 kcal/mol) compared to the ATP/ATP state. This contrasts with Figure 1c, which shows a higher free energy of 6.0 kcal/mol for the ATP/ADP state. This discrepancy needs to be discussed. Furthermore, the barrier for ATP/AMP -> ADP/ADP, calculated to be 20 kcal/mol for the fully charged state, exceeds the corresponding barrier for the monoprotonated state. This cautions against the conclusion that the fully charged state is the reactive state. In addition, the difference in the barrier for the no-Mg2+ system compared to the barriers with Mg2+ is substantially too large (21 kcal/mol from the calculation versus 7 kcal/mol from the experimental values). These inconsistencies raise questions as to their origins, whether they result from the use of the pulling/non-equilibrium MD simulation approach, which may yield unrealistic TS geometries, or from potential issues related to the convergence of the determined free energy values. To address this issue, a comparison of results obtained by umbrella sampling and similar methodologies is necessary.

    4. Reviewer #3 (Public Review):

      Summary:<br /> By conducting QM/MM free energy simulations, the authors aimed to characterize the mechanism and transition state for the phosphoryl transfer in adenylate kinase. The qualitative reliability of the QM/MM results has been supported by several interesting experimental kinetic studies. However, the interpretation of the QM/MM results is not well supported by the current calculations.

      Strengths:<br /> The QM/MM free energy simulations have been carefully conducted. The accuracy of the semi-empirical QM/MM results was further supported by DFT/MM calculations, as well as qualitatively by several experimental studies.

      Weaknesses:<br /> 1. One key issue is the definition of the transition state ensemble. The authors appear to define this by simply considering structures that lie within a given free energy range from the barrier. However, this is not the rigorous definition of transition state ensemble, which should be defined in terms of committor distribution. This is not simply an issue of semantics, since only a rigorous definition allows a fair comparison between different cases - such as the transition state in an enzyme vs in solution, or with and without the metal ion. For a chemical reaction in a complex environment, it is also possible that many other variables (in addition to the breaking and forming P-O bonds) should be considered when one measures the diversity in the conformational ensemble.

      2. While the experimental observation that the activation entropy differs significantly with and without the Ca2+ ion is interesting, it is difficult to connect this result with the "wide" transition state ensemble observed in the QM/MM simulations so far. Even without considering the definition of the transition state ensemble mentioned above, it is unlikely that a broader range of P-O distances would explain the substantial difference in the activation entropy measured in the experiment. Since the difference is sufficiently large, it should be possible to compute the value by repeating the free energy simulations at different temperatures, which would lead to a much more direct evaluation of the QM/MM model/result and the interpretation.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Using a state-of-the-art image analysis pipeline the authors report that muscle cell hypertrophy in mice and humans occurs primarily through an increase in the number of myofibrils (myofibrillogenesis) and not myofibril hypertrophy.

      Strengths:<br /> A strength of the study is the development and validation of an automated image analysis pipeline to quantify myofibril size and abundance in mouse and human muscle cells. In addition to the pipeline, which requires relatively readily available microscopy equipment (an additional strength) is the development of a methodology to optimally prepare muscle samples for high-resolution imaging.

      Weaknesses:<br /> A weakness of the study was that only one time-point was assessed during hypertrophy. As mentioned by the authors, this precluded an assessment of the myofibril splitting mechanism. The second weakness was the criteria (aspect ratio of <2.5:1) used to identify a myofibril which excluded a significant number of myofibrils from analysis. How might the inclusion of these odd-shaped myofibrils impact the outcome of the study?

    2. Reviewer #2 (Public Review):

      Summary:<br /> In this work, the authors sought to 1) establish a method for measuring muscle fiber subcellular structure (myofibrils) using common, non-specialized laboratory techniques and equipment, and 2) use this method to provide evidence on whether loading-induced muscle fiber growth was the result of myofibril growth (of existing myofibrils) or myofbrillogenesis (creation of new myofibrils) in mice and humans. The latter is a fundamental question in the muscle field. The authors succeeded in their aims and provided useful methods for the muscle field and detailed insight into muscle fiber hypertrophy; specifically, that loading-induced muscle fiber hypertrophy may be driven mostly by myofibrillogenesis.

      Strengths:<br /> 1) The usage of murine and human samples to provide evidence on myofibril hypertrophy vs myofibrillogenesis.<br /> 2) A nice historical perspective on myofibrillogenesis in skeletal muscle.<br /> 3) The description of a useful and tractable IHC imaging method for the muscle biology field supported by extensive validation against electron microscopy.<br /> 4) Fundamental information on how myofiber hypertrophy ensues.

      Weaknesses:<br /> 1) The usage of young growing mice (8-10 weeks) versus adult mice (>4 months) in the murine mechanical overload experiments, as well as no consideration for biological sex. The former point is partly curtailed by the adult human data that is provided (male only). Still, the usage of adult mice would be preferable for these experiments given that maturational growth may somehow affect the outcomes. For the latter point, it is not clear whether male or female mice were used.

      2) Information on whether myofibrillogenesis is dependent on hypertrophy induced by loading, or just hypertrophy in general. To provide information on this, the authors could use, for instance, inducible Myostatin KO mice (a model where hypertrophy and force production are not always in lockstep) to see whether hypertrophy independent from load induces the same result as muscle loading regarding myofibrillogenesis.

      3) Limited information on Type 1 fiber hypertrophy. A "dual overload" model is used for the mouse where the soleus is also overloaded, but presumably, the soleus was too damaged to analyze. Exploring hypertrophy of murine Type 1 fibers using a different model (weight pulling, weighted wheel running, or forced treadmill running) would be a welcome addition.

    3. Reviewer #3 (Public Review):

      Summary:<br /> Radial muscle growth involves an increase in overall muscle cross-sectional area. For decades this process has been described as the splitting of myofibrils to produce more myofibrils during the growth process. However, a closer look at the original papers shows that the evidence underlying this description was incomplete. In this paper, the authors have developed a novel method using fluorescence microscopy to directly measure myofibril size and number. Using a mouse model of mechanical loading and a human model of resistance exercise they discovered that myofibrillogenesis is playing a key role in the radial growth of muscle fibers.

      Strengths:<br /> 1. Well-written and clear description of hypothesis, background, and experiments.<br /> 2. Compelling series of experiments.<br /> 3. Different approaches to test the hypothesis.<br /> 4. Rigorous study design.<br /> 5. Clear interpretation of results.<br /> 6. Novel findings that will be beneficial to the muscle biology field.<br /> 7. Innovative microscopy methods that should be widely available for use in other muscle biology labs.

      Weaknesses:<br /> Supplemental Figure 1 is not very clear.

    1. eLife assessment

      This manuscript describes structures of HER4 homo- and HER4/HER2 hetero-dimer complexes using single particle cryo-EM. This important work describes convincingly new structural details of these complexes that expand our understanding of their function. This work will be of interest to researchers working on cell surface signalling and kinase activity.

    2. Reviewer #2 (Public Review):

      With the data presented in this manuscript, the authors help complete the set of high-resolution HER2-associated complex heterodimer structures as well as HER4 homodimer structures in the presence of NRG1b and BTC. Purification of HER2-HER4 heterodimers appears to be inherently challenging due to the propensity of HER4 to form homodimers. The authors have used an effective scheme to isolate these HER2-HER4 heterodimers and have employed graphene-oxide grid chemistry to presumably overcome the issues of low sample yield for solving cryo-EM structures of these complexes. The authors conclude HER2-HER4 heterodimers with either ligand are conformationally homogeneous relative to the HER4 homodimers. The HER2-HER4 heterodimers also appear to be better stabilized compared to other published HER2 heterodimers. The ability to model glycans in the context of HER4 homodimers is exciting to see and provides a strong rationale for the stability of these structures. Overall, the work is of great interest and the methods described in this work would benefit a wide variety of structural biology projects.

      Major comments-<br /> 1. The HER2-HER4 heterodimer with BTC appears to be the lowest resolution of the reported structures. Although the authors claim the overall structure is similar to the HER2-HER4 heterodimer with NRG1b, it is therefore unclear whether the lower resolution of the BTC is due to challenging data collection conditions, sample preparation, or conformational dynamics not discernible due to the lower resolution. The authors should minimally clarify where they see the possible issues arising for the lower resolution as this is a key aspect of the work.

      2. For all maps, authors should display Euler angle plots from their final refinements to assess the degree of preferred orientation. Judging by the sphericity, it appears all the structures, except HER2-HER4-BTC, have well-sampled projection distributions. However, a formal clarification would be useful to the reader.

      3. The authors should also include map-model FSCs to ascertain the quality of the map with respect to model building, as this is currently missing in the submission.

      Minor comments-<br /> 1. With respect to complex formation, is there a reason why HER2 expression is dramatically lower than HER4?

      2. Figures S1e authors should clarify if HER2 substitutions are VR alone or do these include GD substitutions as well. These should be suitably clarified in the main text.

      3. The validation reports for all 4 reported structures suggest the user-provided FSC-derived resolutions are different from those calculated by the deposition server. Are the masks deposited significantly different compared to the ones generated within cryoSPARC?

      4. For interpretation regarding activation through phosphorylation in Figure 2e, have the authors considered HER4 could homodimerize as well? It appears from the data presented in Figure 4 and S12 that the propensity to form homodimers is greater for HER4 than to heterodimerize with HER2, despite the VR/IQ substitutions. This also appears to be supported by the reasonable amount of signal for pERK in lanes with HER4-IQ alone in the presence of NRG1b. It is recommended that the authors comment on this possibility.

      5. In the following line, "NRG1b-induced phosphorylation of HER2, HER4, ERK and AKT was not notably affected by substitution of the HER4 dimerization arm to a GS-arm relative to wild type receptors", it is unclear what the authors mean by wild-type receptors? There is presently no wild-type HER2 and/or HER4 tested in this blot.

      6. Considering the asparagine residues can potentially mediate stabilization of HER2-HER4 dimers through glycosylation, the authors should include western blot data for receptor-activation for mutants where glycosylation can be disrupted. This could minimally instruct the reader on how functionally relevant the identified interactions like N576-N358 are.

    1. eLife assessment

      The work is a useful contribution towards understanding the role of archaeal and plant D-aminoacyl-tRNA deacylase 2 (DTD2) in deacylation and detoxification of D-Tyr-tRNATyr modified by various aldehydes produced as metabolic byproducts in plants. It integrates convincing results from both in vitro and in vivo experiments to address the long-standing puzzle of why plants outperform bacteria in handling reactive aldehydes and suggests a new strategy for stress-tolerant crops. The impact of the paper is limited by the fact that only one modified D-aminoacyl tRNA was examined, in lack of evidence that plant eEF1A mimics EF-Tu in protecting L-aminoacyl tRNAs from modification, and in failure to measure accumulation of toxic D-aminoacyl tRNAs or impairment of translation in plant cells lacking DTD2.

    2. Reviewer #1 (Public Review):

      Summary:<br /> This work is an extension of the authors' earlier work published in Sci Adv in 2001, wherein the authors showed that DTD2 deacylates N-ethyl-D-aminoacyl-tRNAs arising from acetaldehyde toxicity. The authors in this study, investigate the role of archaeal/plant DTD2 in the deacylation/detoxification of D-Tyr-tRNATyr modified by multiple other aldehydes and methylglyoxal (produced by plants). Importantly, the authors take their biochemical observations to plants, to show that deletion of DTD2 gene from a model plant (Arabidopsis thaliana) makes them sensitive to the aldehyde supplementation in the media especially in the presence of D-Tyr. These conclusions are further supported by the observation that the model plant shows increased tolerance to the aldehyde stress when DTD2 is overproduced from the CaMV 35S promoter. The authors propose a model for the role of DTD2 in the evolution of land plants. Finally, the authors suggest that the transgenic crops carrying DTD2 may offer a strategy for stress-tolerant crop development. Overall, the authors present a convincing story, and the data are supportive of the central theme of the story.

      Strengths:<br /> Data are novel and they provide a new perspective on the role of DTD2, and propose possible use of the DTD2 lines in crop improvement.

      Weaknesses:<br /> (a) Data obtained from a single aminoacyl-tRNA (D-Tyr-tRNATyr) have been generalized to imply that what is relevant to this model substrate is true for all other D-aa-tRNAs (term modified aa-tRNAs has been used synonymously with the modified Tyr-tRNATyr). This is not a risk-free extrapolation. For example, the authors see that DTD2 removes modified D-Tyr from tRNATyr in a chain-length dependent manner of the modifier. Why do the authors believe that the length of the amino acid side chain will not matter in the activity of DTD2?<br /> (b) While the use of EFTu supports that the ternary complex formation by the elongation factor can resist modifications of L-Tyr-tRNATyr by the aldehydes or other agents, in the context of the present work on the role of DTD2 in plants, one would want to see the data using eEF1alpha. This is particularly relevant because there are likely to be differences in the way EFTu and eEF1alpha may protect aminoacyl-tRNAs (for example see description in the latter half of the article by Wolfson and Knight 2005, FEBS Letters 579, 3467-3472).

    3. Reviewer #2 (Public Review):

      In bacteria and mammals, metabolically generated aldehydes become toxic at high concentrations because they irreversibly modify the free amino group of various essential biological macromolecules. However, these aldehydes can be present in extremely high amounts in archaea and plants without causing major toxic side effects. This fact suggests that archaea and plants have evolved specialized mechanisms to prevent the harmful effects of aldehyde accumulation.

      In this study, the authors show that the plant enzyme DTD2, originating from archaea, functions as a D-aminoacyl-tRNA deacylase. This enzyme effectively removes stable D-aminoacyl adducts from tRNAs, enabling these molecules to be recycled for translation. Furthermore, they demonstrate that DTD2 serves as a broad detoxifier for various aldehydes in vivo, extending its function beyond acetaldehyde, as previously believed. Notably, the absence of DTD2 makes plants more susceptible to reactive aldehydes, while its overexpression offers protection against them. These findings underscore the physiological significance of this enzyme.

    1. eLife assessment

      The work by Johnson and co-workers has identified an important role of 2-Hydroxybutyrate in skeletal muscle oxidative capacity in the early stages of exercise. Mechanistically, they show convincing data to support a role of 2-Hydroxybutyrate in the regulation of BCAA metabolism via SIRT4, ADP-Ribosylation, and CEBP. However, whether this is the sole mechanism and if these translate to longer exercise training regimes requires future experiments.

    2. Reviewer #1 (Public Review):

      The authors aimed to investigate if 2-hydroxybutyrate (2HB), a metabolite induced by exercise, influences physiological changes, particularly metabolic alterations post-exercise training. They treated young mice and cultured myoblasts with 2HB, conducted exercise tests, metabolomic profiling, gene expression analysis, and knockdown experiments to understand 2HB's mechanisms. Their findings indicate that 2HB enhances exercise tolerance, boosts branch chain amino acid (BCAA) enzyme gene expression in skeletal muscles, and increases oxidative capacity. They also highlight the role of SIRT4 in these effects. This study establishes 2HB, once considered a waste product, as a regulator of exercise-induced metabolic processes. The study's strength lies in its consistent results across in vitro, in vivo, and ex vivo analyses. The authors propose a mechanism in which 2HB inhibits BCAA breakdown, raises NAD+/NADH ratio, activates SIRT4, increases ADP ribosylation, and controls gene expression.

      However, some questions remain unclear based on these findings:

      This study focused on the effects of short-term exercise (1 or 5 bouts of treadmill running) and short-term 2HB treatment (1 or 4 days of treatment). Adaptations to exercise training typically occur progressively over an extended period. It's important to investigate the effects of long-term 2HB treatment and whether extended combined 2HB treatment and exercise training have independent, synergistic, or antagonistic effects.

      Exercise training leads to significant mitochondrial changes, including increased mitochondrial biogenesis in skeletal muscle. It would be valuable to compare the impact of 2HB treatment on mitochondrial content and oxidative capacity in treated mice to that in exercised mice.

      The authors demonstrate that 2-ketobutyrate (2KB) can serve as an oxidative fuel, suggesting a role for the intact BCAA catabolic pathway. However, it's puzzling that the knockout of BCKDHA, a subunit crucial for the second step of BCAA catabolism, did not result in changes in oxidative capacity in cultured myoblasts.

      Nevertheless, this innovative model of metabolic signaling during exercise will serve as a valuable reference for informing future.

    3. Reviewer #2 (Public Review):

      Summary:<br /> The manuscript entitled "A 2-HB-mediated feedback loop regulates muscular fatigue" by the Johnson group reports interesting findings with implications for the health benefits of exercise. The authors use a combination of metabolic/biochemical in vivo and in vitro assays to delineate a metabolic route triggered by 2-HB (a relatively stable metabolite induced by exercise in humans and mice) that controls branched-chain amino transferase enzymes and mitochondrial oxidative capacity. Mechanistically, the author shows that 2-HB is a direct inhibitor of BCAT enzymes that in turn control levels of SIRT4 activity and ADp-ribosylation in the nucleus targeting C/EBP transcription factor, affecting BCAA oxidation genes (see Fig 4i in the paper). Overall, these are interesting and novel observations and findings with relevance to human exercise, with the potential implication of using these metabolites to mimic exercise benefits, or conditions or muscular fatigue that occurs in different human chronic diseases including rheumatic diseases or long COVID.

      Weaknesses:<br /> There are several experiments/comments that will strengthen the manuscript-

      1- A final model in Figure 6 integrating the exercise/mechanistic findings, expanding on Fig 4i) will clarify the findings.

      2- In some of the graphs, statistics are missing (e.g Fig 6G).

      3- The conclusions on SIRT4 dependency should be carefully written, as it is likely that this is only one potential mechanism, further validation with mouse models would be necessary.

      4- One of the needed experiments to support the oxidative capacity effects that could be done in cultured cells, is the use of radiosotope metabolites including BCCAs to determine the ability to produce CO2. Alternatively or in combination metabolite flux using isotopes would be useful to strengthen the current results.

    1. eLife assessment

      The manuscript "Structure Guided mutatgensis of OSCAs reveals differential activation to mechanical stimuli" seeks to dissect the molecular underpinnings of poke and stretch activation in OSCA channels. While the structural and functional experiments are well done, and the authors present some important data, the reviewers identified weaknesses in experimental design and interpretation that render the data incomplete in supporting some of the main conclusions of the paper. Nevertheless, this work will be of interest to those working in the fields of mechanosensation, sensory biology, and ion channels.

    2. Reviewer #1 (Public Review):

      Summary:<br /> The OSCA/TMEM63 channels have recently been identified as mechanosensitive channels. In a previous study, the authors found that OSCA subtypes (1, 2, and 3) respond differently to stretch and poke stimuli. For example, OSCA1.2 is activated by both poke and stretch, while OSCA3.1, responds strongly to stretch but poorly to poke stimuli. In this study, the authors use cryo-EM, mutagenesis, and electrophysiology to dissect the mechanistic determinants that underlie the channels' ability to respond to poke and stretch stimuli.

      The starting hypothesis of the study is that the mechanical activation of OSCA channels relies on the interactions between the protein and the lipid bilayer and that the differential responses to poke and stretch might stem from variations in the lipid-interacting regions of OSCA proteins. The authors specifically identify the amphipathic helix (AH), the fenestration, and the Beam Like Domain (BLD) as elements that might play a role in mechanosensing.

      The strength of this paper lies in the technically sound data - the structural work and electrophysiology are both very well done. For example, the authors produce a high-resolution OSCA3.1 structure which will be a useful tool for many future studies. Also, the study identifies several interesting mutants that seemingly uncouple the OSCA1.2 poke and stretch responses. These might be valuable in future studies of OSCA mechanosensation.

      However, the experimental approach employed by the authors to dissect the molecular mechanisms of poke and stretch falls short of enabling meaningful mechanistic conclusions. For example, we are left with several unanswered questions surrounding the role of AH and the fenestration lipids in mechanosensation: Is the AH really important for the poke response if mutating residues conserved between OSCA1.2 and OSCA3.1 disrupts the OSCA1.2 ability to respond to poke but mutating the OSCA1.2 AH to resemble that of OSCA3.1 results in no change to its "pokability"? Similar questions arise in response to the study of the fenestration-lining residues.

    3. Reviewer #2 (Public Review):

      Summary:<br /> Jojoa-Cruz et al. determined a high-resolution cryo-EM structure in the Arabidopsis thaliana (At) OSCA3.1 channel. Based on a structural comparison between OSCA3.1 and OSCA1.2 and the difference between these two paralogs in their mechanosensitivity to poking and membrane stretch, the authors performed structural-guided mutagenesis and tested the roles of three structural domains, including an amphipathic helix, a beam-like domain, and a lipid fenestration site at the pore domain, for mechanosensation of OSCA channels.

      Strengths:<br /> The authors successfully determined a structure of the AtOSCA3.1 channel reconstituted in lipid nanodiscs by cryo-EM to a high resolution of 2.6 Å. The high-resolution EM map enabled the authors to observe putative lipid EM densities at various sites where lipid molecules are associated with the channel. Overall, the structural data provides the information for comparison with other OSCA paralogs.

      In addition, the authors identified OSCA1.2 mutants that exhibit differential responses to mechanical stimulation by poking and membrane stretch (i.e., impaired response to poke assay but intact response to membrane stretch). This interesting behavior will be useful for further study on differentiating the mechanisms of OSCA activation by distinct mechanical stimuli.

      Major weakness:<br /> 1. The major weaknesses of this study are the mutagenesis design and the functional characterization of the three structural domains - an amphipathic helix (AH), a beam-like domain (BLD), and the fenestration site at the pore, in OSCA mechanosensation.

      1) First of all, it is confusing to the reviewer, whether the authors set out to test these structural domains as a direct sensor(s) of mechanical stimuli or as a coupling domain(s) for downstream channel opening and closing (gating). The data interpretations are vague in this regard as the authors tend to interpret the effects of mutations on the channel 'sensitivity' to different mechanical stimuli (poking or membrane stretch). The authors ought to dissect the molecular bases of sensing mechanical force and opening/closing (gating) the channel pore domain for the structural elements that they want to study.

      Furthermore, the authors relied on the functional discrepancies between OSCA1.2 (sensitive to both membrane poking and stretch) and OSCA3.1 (little or weak sensitivity to poking but sensitive to membrane stretch). But the experimental data presented in the study are not clear to address the mechanisms of channel activation by poking vs. by stretch, and why the channels behave differently.

      2) The reviewer questions if the "apparent threshold" of poke-induced membrane displacement and the threshold of membrane stretch are good measures of the change in the channel sensitivity to the different mechanical stimuli.

      3) Overall, the mutagenesis design in the various structural domains lacks logical coherence and the interpretation of the functional data is not sufficient to support the authors' hypothesis. Essentially the authors mutated several residues on the hotspot domains, observed some effects on the channel response to poking and membrane stretch, then interpreted the mutated residues/regions are critical for OSCA mechanosensation. Examples are as follows.

      In the section "Mutation of key residues in the amphipathic helix", the authors mutated W75 and L80, which are located on the N- and C-terminal of the AH in OSCA1.2, and mutated Pro in the OSCA1.2 AH to Arg at the equivalent position in OSCA3.1 AH. W75 and L80 are conserved between OSCA 1.2 and OSCA3.1. Mutations of W75 and/or L80 impaired OSCA1.2 activation by poking, but not by membrane stretch. In comparison, the wildtype OSCA3.1 which contains W and L at the equivalent position of its AH exhibits little or weak response to poking. The loss of response to poking in the OSCA1.2 W/L mutants does not indicate their roles in poking-induced activation.

      Besides, the P2R mutation on OSCA1.2 AH showed no effect on the channel activation by poking, suggesting Arg in OSCA3.1 AH is not responsible for its weak response to poking. Together the mutagenesis of W75, L80, and P2R on OSCA1.2 AH does not support the hypothesis of the role of AH involved in OSCA mechanosensation.

      In the section "Replacing the OSCA3.1 BLD in OSCA1.2", the authors replaced the BLD in OSCA 1.2 with that from OSCA3.1, and only observed slightly stronger displacement by poking stimuli. The authors still suggest that BLD "appears to play a role" in the channel sensitivity to poke despite the evidence not being strong.

      OSCA1.2 has four Lys residues in TM4 and TM6b at the pore fenestration site, which were shown to interact with the lipid phosphate head group, whereas two of the equivalent residues in OSCA3.1 are Ile. In the section "Substitution of potential lipid-interacting lysine residues", the authors made K435I/K536I double mutant for OSCA1.2 to mimic OSCA3.1 and observed poor response to poking but an intact response to stretch. Did the authors mutate the Ile residues in OSCA3.1 to Lys, and did the mutation confer channel sensitivity to poking stimuli resembling OSCA1.2? The reviewer thinks it is necessary to perform such an experiment, to thoroughly suggest the importance of the four Lys residues in lipid interaction for channel mechanoactivation.

    4. Reviewer #3 (Public Review):

      Summary:<br /> Jojoa-Cruz et al provide a new structure of At-OSCA3.1. The structure of OSCA 3.1 is similar to previous OSCA cryo-em structures of both OSCA3.1 and other homologues validating the new structure. Using the novel structure of OSCA3.1 as a guide they created several point mutations to investigate two different mechanosensitive modalities: poking and stretching. To investigate the ability of OSCA channels to gate in response to poking they created point mutations in OSCA1.2 to reduce sensitivity to poking based on the differences between the OSCA1.2 and 3.1 structures. Their results suggest that two separate regions are responsible for gating in response to poking and stretching.

      Strengths:<br /> Through a detailed structure-based analysis, the authors identified structural differences between OSCA3.1 and OSCA1.2. These subtle structural changes identify regions in the amphipathic helix and near the pore that are essential for the gating of OSCA1.2 in response to poking and stretching. The use of point mutations to understand how these regions are involved in mechanosensation clearly shows the role of these residues in mechanosensation.

      Weaknesses:<br /> In general, the point mutations selected all show significant alterations to the inherent mechanosensitive regions. This often suggests that any mutation would disrupt the function of the region, additional mutations that are similar in function to the WT channel would support the claims in the manuscript. Mutations in the amphipathic helix at W75 and L80 show reduced gating in response to poking stimuli. The gating observed occurs at poking depths similar to cellular rupture, the similarity in depths suggests that these mutations could be a complete loss of function. For example, a mutation to L80I or L80Q would show that the addition of the negative charge is responsible for this disruption not just a change in the steric space of the residue in an essential region.

    1. Author Response

      Reviewer #1 (Public Review):

      The authors present a detailed analysis of a set of molecular dynamics computer simulations of several variants of a T-cell receptor (TCR) in isolation and bound to a Major Histocompatibility Complex with peptide (pMHC), with the aim of improving our understanding of the mechanism T cell activation in immunity. By analyzing simulations of peptide mutants and partially truncated TCRs, the authors find that native peptide agonists lead to a so-called catch-bond response, whereby tensile force applied in the direction of separation between TCR/pMHC appears to strengthen the TCR/pMHC interface, whereas mutated peptides exhibit the more common slip-bond response, in which applied force destabilizes the binding interface. Using various computational metrics and simulation statistics, the authors propose a model in which tensile force preferentially suppresses thermal fluctuations in the variable α domain of the TCR (vs the β domain) in a peptide-dependent manner, which orders and strengthens the binding interface by bringing together the complementarity-determining regions (CDRs) in the TCR variable chains, but only if the peptide is correctly matched to the TCR.

      R1-0. The study is detailed and written clearly, and conclusions appear convincing and are supported by the simulation data. However, the actual motions at the molecular or amino-acid level of how the catch-bond vs slip bond response originates remain somewhat unclear, and will probably warrant further investigations. Specific hypotheses that could be testable in experiments, such as predictions of which peptide (or TCR) mutations or which peptides could generate a catch-vs-slip response or activation, would have especially strengthened this study.

      Catch bonds have been observed in different αβ TCRs that differ in sequence when paired with their matching pMHC. Thus, there should be a general principle that apply irrespective of particular TCR sequences, as summarized in Fig. 8. The predictive capacity of this model in terms of understanding experiments is explained in our reply R0-3. Here, we discuss about designing specific point mutations to TCR that have not been studied previously. In our simulations, we can identify high-occupancy contacts that are present mainly in the high-load case as target for altering the catch bond behavior. An example is V7-G100 between the peptide and Vβ (Fig. 2C, bottom panel). The V7R mutant peptide is a modified agonist that we have already studied, where R7 forms hydrogen bonds and nonpolar contacts with residues other than βG100, albeit with lower occupancy (page 11, lines 280–282 and page 32, Fig. 5–figure supplement 2B). Instead of the V7R mutation to the peptide, mutating βG100 to other residues may lead to different effects. For example, compared to G100A, mutation to a bulkier residue such as G100F may cause opposing effects: It may induce steric mismatch that destabilizes the interface. Conversely, a stronger hydrophobic effect might increase the baseline bond lifetime. Also, mutating G100 to a polar residue may have even greater effect, leading to a slip bond or absence of measurable binding.

      As the reviewer suggested in R1-5, it will also be interesting to crosslink Vα and Cα by a disulfide bond to suppress its motion. Again, there are different possible outcomes. The lack of Vα-Cα motion could stabilize the interface with pMHC, resulting in a longer bond lifetime. Conversely, if the disulfide bond alters the V-C angle, it would have an opposite effect of destabilizing the interface by tilting it relative to the loading direction, similar to the dFG mutant in Appendix 1 (page 24).

      To make better predictions, simulations of such mutants should to be performed under different conditions and analyzed, which would be beyond the scope of the present study.

      Change made:

      • Page 14, Concluding Discussion, lines 395–402: We added a discussion about using simulations for designing and testing point mutants.

      Reviewer #2 (Public Review):

      In this work, Chang-Gonzalez and co-workers investigate the role of force in peptide recognition by T-cells using a model T-cell/peptide recognition complex. By applying forces through a harmonic restraint on distances, the authors probe the role of mechanical pulling on peptide binding specificity. They point to a role for force in distinguishing the different roles played by agonist and antagonist peptides for which the bound configuration is not clearly distinguishable. Overall, I would consider this work to be extensive and carefully done, and noteworthy for the number of mutant peptides and conditions probed. From the text, I’m not sure how specific these conclusions are to this particular complex, but I do not think this diminishes the specific studies.

      I have a couple of specific comments on the methodology and analysis that the authors could consider:

      R2-1. 1) It is not explained what is the origin of force on the peptide-MHC complex. Although I do know a bit about this, it’s not clear to me how the force ends up applied across the complex (e.g. is it directional in any way, on what subdomains/residues do we expect it to be applied), and is it constant or stochastic. I think it would be important to add some discussion of this and how it translates into the way the force is applied here (on terminal residues of the complex).

      As explained in our reply R0-1, force on the TCRαβ-pMHC complex arises during immune surveillance where the T-cell moves over APC. Generated by the cellular machinery such as actin retrograde flow and actomyosin motility, the applied force fluctuates, which would be on top of spontaneous fluctuation in force by thermal motion. This has been directly measured for the T-cell using a pMHC-coated bead via optical tweezers (see Feng et al., 2017, Fig. 1) and by DNA tension sensors (Liu, et al., 2016, Fig. 4; already cited in the manuscript). The direction of force also fluctuates that is longitudinal on average (see R1-6). How force distributes across the molecule is a great question, for which we plan to develop a computational method to quantify.

      Changes made.

      • Pages 3–4, newly added Results section ‘Applying loads to TCRαβ-pMHC complexes:’ We included the origin of force and its fluctuating nature, and the question of how loads are distributed across the molecule.

      • The reference (Feng et al., 2017) has been added in the above section.

      R2-2. 2) In terms of application of the force, I find the use of a harmonic restraint and then determining a distance at which the force has a certain value to be indirect and a bit unphysical. As just mentioned, since the origin of the force is not a harmonic trap, it would be more straightforward to apply a pulling force which has the form -F*d, which would correspond to a constant force (see for example comment articles 10.1021/acs.jpcb.1c10715,10.1021/acs.jpcb.1c06330). While application of a constant force will result in a new average distance, for small forces it does so in a way that does not change the variance of the distance whereas a harmonic force pollutes the variance (see e.g. 10.1021/ct300112v in a different context). A constant force could also shift the system into a different state not commensurate with the original distance, so by applying a harmonic trap, one could be keeping ones’ self from exploring this, which could be important, as in the case of certain catch bond mechanisms. While I certainly wouldn’t expect the authors to redo these extensive simulations, I think they could at least acknowledge this caveat, and they may be interested in considering a comparison of the two ways of applying a force in the future.

      Thanks for the suggestions and references. The paper by Stirnemann (2022) is a review including different computational methods of applying forces, mainly constant force and constant pulling velocity (steered molecular dynamics; SMD). The second one by Gomez et al., (2021) is a rather broad review of mechanosensing where discussion about computer simulation was mainly on SMD. In the third one by Pitera and Chodera (2012), potential limitations of using harmonic potentials in sampling nonlinear potential of mean force (PMF) are discussed.

      In the above references, loads or restraints are used to study conformational transitions or to sample the PMF, which are different from the use of positional restraints in our work. As explained in R0-1, positional restraint better mimics reality where the terminal ends of TCR and pMHC are anchored on the membranes of respective cells. Also, the concern raised by the reviewer about ruling out different states would be applicable to the case when there are multiple conformational states with local free energy minima at different extensions. Here, we are probing changes in the conformational dynamics (deformation and conformational fluctuation), rather than transitions between well-defined states.

      In Pitera and Chodera (2012) and also in other approaches such as umbrella sampling, the spring constant of the harmonic potential should be chosen sufficiently soft so that sampling around the neighborhood of the center of the potential can be made. On the other hand, if the harmonic potential is much stiffer than the local curvature of the PMF, although sampling may suffer, local gradient of the PMF, i.e, the force about the center of the potential, can be made. This has been studied earlier by one of us in Hwang (2007), which forms the basis for using a stiff harmonic potential for measuring the load on the TCRαβ-pMHC complex. The 1-kcal/(mol·˚A2) spring constant used in our study (page 17, line 540) was selected such that the thermally driven positional fluctuation is on the order of 0.8 ˚A. Hence, it is sufficiently stiff considering the much larger size of the TCRαβ-pMHC complex and the flexible added strands.

      Changes made:

      • Page 4, lines 117–119, newly added Results section ‘Applying loads to TCRαβ-pMHC complexes:’ The above explanation about the use of stiff harmonic restraint for measuring forces is added.

      • The 4 references mentioned above have been added to the above section.

      R2-3. 3) For the PCA analysis, I believe the authors learn separate PC vectors from different simulations and then take the dot product of those two vectors. Although this might be justified based on the simplified coordinate upon which the PCA is applied, in general, I am not a big fan of running PCA on separate data sets and then comparing the outputs, as the meaning seems opaque to me. To compare the biggest differences between many simulations, it would make more sense to me to perform PCA on all of the data combined, and see if there are certain combinations of quantities that distinguish the different simulations. Alternatively and probably better, one could perform linear discriminant analysis, which is appropriate in this case because one already knows that different simulations are in different states, and hence the LDA will directly give the linear coordinate that best distinguishes classes.

      As explained in R0-2, triads and BOC models are assigned to the same TCR across different simulations in identical ways. For the purpose of examining the relative Vα-Vβ and V-C motions, we believe comparing them across different simulations is a valid approach. When the motions are very distinct, it would be possible to combine all data and perform PCA or LDA to classify them. However, when behaviors differ subtly, analysis on the combined data may not capture individual behaviors. By analogy, consider two sets of 2-dimensional data obtained for the same system under different conditions. If each set forms an elliptical shape with the major axis differing slightly in direction, performing PCA separately on the two sets and comparing the angle between the major axes informs the difference between the two sets. If PCA were performed on the combined data (superposition of two ellipses forming an angle), it will be difficult to find the difference. LDA would likewise be difficult to apply without a very clear separation of behaviors.

      As also explained in R0-2, PCA is just one of multiple analyses we carried out to establish a coherent picture. The main use of PCA to this end was to compare directions of motion and relative amplitude of the motion among the subdomains.

      Changes made:

      • Page 6, lines 171–175 and page 8, lines 226–227: The rationale for applying PCA on triads and BOC models in different simulations are explained.

    1. Author Response

      Reviewer #1 (Public Review):

      This work introduces a novel framework for evaluating the performance of statistical methods that identify replay events. This is challenging because hippocampal replay is a latent cognitive process, where the ground truth is inaccessible, so methods cannot be evaluated against a known answer. The framework consists of two elements:

      1) A replay sequence p-value, evaluated against shuffled permutations of the data, such as radon line fitting, rank-order correlation, or weighted correlation. This element determines how trajectory-like the spiking representation is. The p-value threshold for all accepted replay events is adjusted based on an empirical shuffled distribution to control for the false discovery rate.

      2) A trajectory discriminability score, also evaluated against shuffled permutations of the data. In this case, there are two different possible spatial environments that can be replayed, so the method compares the log odds of track 1 vs. track 2.

      The authors then use this framework (accepted number of replay events and trajectory discriminability) to study the performance of replay identification methods. They conclude that sharp wave ripple power is not a necessary criterion for identifying replay event candidates during awake run behavior if you have high multiunit activity, a higher number of permutations is better for identifying replay events, linear Bayesian decoding methods outperform rank-order correlation, and there is no evidence for pre-play.

      The authors tackle a difficult and important problem for those studying hippocampal replay (and indeed all latent cognitive processes in the brain) with spiking data: how do we understand how well our methods are doing when the ground truth is inaccessible? Additionally, systematically studying how the variety of methods for identifying replay perform, is important for understanding the sometimes contradictory conclusions from replay papers. It helps consolidate the field around particular methods, leading to better reproducibility in the future. The authors' framework is also simple to implement and understand and the code has been provided, making it accessible to other neuroscientists. Testing for track discriminability, as well as the sequentiality of the replay event, is a sensible additional data point to eliminate "spurious" replay events.

      However, there are some concerns with the framework as well. The novelty of the framework is questionable as it consists of a log odds measure previously used in two prior papers (Carey et al. 2019 and the authors' own Tirole & Huelin Gorriz, et al., 2022) and a multiple comparisons correction, albeit a unique empirical multiple comparisons correction based on shuffled data.

      With respect to the log odds measure itself, as presented, it is reliant on having only two options to test between, limiting its general applicability. Even in the data used for the paper, there are sometimes three tracks, which could influence the conclusions of the paper about the validity of replay methods. This also highlights a weakness of the method in that it assumes that the true model (spatial track environment) is present in the set of options being tested. Furthermore, the log odds measure itself is sensitive to the defined ripple or multiunit start and end times, because it marginalizes over both position and time, so any inclusion of place cells that fire for the animal's stationary position could influence the discriminability of the track. Multiple track representations during a candidate replay event would also limit track discriminability. Finally, the authors call this measure "trajectory discriminability", which seems a misnomer as the time and position information are integrated out, so there is no notion of trajectory.

      The authors also fail to make the connection with the control of the false discovery rate via false positives on empirical shuffles with existing multiple comparison corrections that control for false discovery rates (such as the Benjamini and Hochberg procedure or Storey's q-value). Additionally, the particular type of shuffle used will influence the empirically determined p-value, making the procedure dependent on the defined null distribution. Shuffling the data is also considerably more computationally intensive than the existing multiple comparison corrections.

      Overall, the authors make interesting conclusions with respect to hippocampal replay methods, but the utility of the method is limited in scope because of its reliance on having exactly two comparisons and having to specify the null distribution to control for the false discovery rate. This work will be of interest to electrophysiologists studying hippocampal replay in spiking data.

      We would like to thank the reviewer for the feedback.

      Firstly, we would like to clarify that it is not our intention to present this tool as a novel replay detection approach. It is indeed merely a novel tool for evaluating different replay detection methods. Also, while we previously used log odds metrics to quantify contextual discriminability within replay events (Tirole et al., 2021), this framework is novel in how it is used (to compare replay detection methods), and the use of empirically determined FPR-matched alpha levels. We have now modified the manuscript to make this point more explicit.

      Our use of the term trajectory-discriminability is now changed to track-discriminability in the revised manuscript, given we are summing over time and space, as correctly pointed out by the reviewer.

      While this approach requires two tracks in its current implementation, we have also been able to apply this approach to three tracks, with a minor variation in the method, however this is beyond the scope of our current manuscript. Prior experience on other tracks not analysed in the log odds calculation should not pose any issue, given that the animal likely replays many experiences of the day (e.g. the homecage). These “other” replay events likely contribute to candidate replay events that fail to have a statistically significant replay score on either track.

      With regard to using a cell-id randomized dataset to empirically estimate false-positive rates, we have provided a detailed explanation behind our choice of using an alpha level correction in our response to the essential revisions above. This approach is not used to examine the effect of multiple comparisons, but rather to measure the replay detection error due to non-independence and a non-uniform p value distribution. Therefore we do not believe that existing multiple comparison corrections such as Benjamini and Hochberg procedure are applicable here (Author response image 1-3). Given the potential issues raised with a session-based cell-id randomization, we demonstrate above that the null distribution is sufficiently independent from the four shuffle-types used for replay detection (the same was not true for a place field randomized dataset) (Author response image 4).

      Author response image 1.

      Distribution of Spearman’s rank order correlation score and p value for false events with random sequence where each neuron fires one (left), two (middle) or three (right) spikes.

      Author response image 2.

      Distribution of Spearman’s rank order correlation score and p value for mixture of 20% true events and 80% false events where each neuron fires one (left), two (middle) or three (right) spikes.

      Author response image 3.

      Number of true events (blue) and false events (yellow) detected based on alpha level 0.05 (upper left), empirical false positive rate 5% (upper right) and false discovery rate 5% (lower left, based on BH method)

      Author response image 4.

      Proportion of false events detected when using dataset with within and cross experiment cell-id randomization and place field randomization. The detection was based on single shuffle including time bin permutation shuffle, spike train circular shift shuffle, place field circular shift shuffle, and place bin circular shift shuffle.

      Reviewer #2 (Public Review):

      This study proposes to evaluate and compare different replay methods in the absence of "ground truth" using data from hippocampal recordings of rodents that were exposed to two different tracks on the same day. The study proposes to leverage the potential of Bayesian methods to decode replay and reactivation in the same events. They find that events that pass a higher threshold for replay typically yield a higher measure of reactivation. On the other hand, events from the shuffled data that pass thresholds for replay typically don't show any reactivation. While well-intentioned, I think the result is highly problematic and poorly conceived.

      The work presents a lot of confusion about the nature of null hypothesis testing and the meaning of p-values. The prescription arrived at, to correct p-values by putting animals on two separate tracks and calculating a "sequence-less" measure of reactivation are impractical from an experimental point of view, and unsupportable from a statistical point of view. Much of the observations are presented as solutions for the field, but are in fact highly dependent on distinct features of the dataset at hand. The most interesting observation is that despite the existence of apparent sequences in the PRE-RUN data, no reactivation is detectable in those events, suggesting that in fact they represent spurious events. I would recommend the authors focus on this important observation and abandon the rest of the work, as it has the potential to further befuddle and promote poor statistical practices in the field.

      The major issue is that the manuscript conveys much confusion about the nature of hypothesis testing and the meaning of p-values. It's worth stating here the definition of a p-value: the conditional probability of rejecting the null hypothesis given that the null hypothesis is true. Unfortunately, in places, this study appears to confound the meaning of the p-value with the probability of rejecting the null hypothesis given that the null hypothesis is NOT true-i.e. in their recordings from awake replay on different mazes. Most of their analysis is based on the observation that events that have higher reactivation scores, as reflected in the mean log odds differences, have lower p-values resulting from their replay analyses. Shuffled data, in contrast, does not show any reactivation but can still show spurious replays depending on the shuffle procedure used to create the surrogate dataset. The authors suggest using this to test different practices in replay detection. However, another important point that seems lost in this study is that the surrogate dataset that is contrasted with the actual data depends very specifically on the null hypothesis that is being tested. That is to say, each different shuffle procedure is in fact testing a different null hypothesis. Unfortunately, most studies, including this one, are not very explicit about which null hypothesis is being tested with a given resampling method, but the p-value obtained is only meaningful insofar as the null that is being tested and related assumptions are clearly understood. From a statistical point of view, it makes no sense to adjust the p-value obtained by one shuffle procedure according to the p-value obtained by a different shuffle procedure, which is what this study inappropriately proposes. Other prescriptions offered by the study are highly dataset and method dependent and discuss minutiae of event detection, such as whether or not to require power in the ripple frequency band.

      We would like to thank the reviewer for their feedback. The purpose of this paper is to present a novel tool for evaluating replay sequence detection using an independent measure that does not depend on the sequence score. As the reviewer stated, in this study, we are detecting replay events based on a set alpha threshold (0.05), based on the conditional probability of rejecting the null hypothesis given that the null hypothesis is true. For all replay events detected during PRE, RUN or POST, they are classified as track 1 or track 2 replay events by comparing each event’s sequence score relative to the shuffled distribution. Then, the log odds measure was only applied to track 1 and track 2 replay events selected using sequence-based detection. Its important to clarify that we never use log odds to select events to examine their sequenceness p value. Therefore, we disagree with the reviewer’s claim that for awake replay events detected on different tracks, we are quantifying the probability of rejecting the null hypothesis given that the null hypothesis is not true.

      However, we fully understand the reviewer’s concerns with a cell-id randomization, and the potential caveats associated with using this approach for quantifying the false positive rate. First of all, we would like to clarify that the purpose of alpha level adjustment was to facilitate comparison across methods by finding the alpha level with matching false-positive rates determined empirically. Without doing this, it is impossible to compare two methods that differ in strictness (e.g. is using two different shuffles needed compared to using a single shuffle procedure). This means we are interested in comparing the performance of different methods at the equivalent alpha level where each method detects 5% spurious events per track rather than an arbitrary alpha level of 0.05 (which is difficult to interpret if statistical tests are run on non-independent samples). Once the false positive rate is matched, it is possible to compare two methods to see which one yields more events and/or has better track discriminability.

      We agree with the reviewer that the choice of data randomization is crucial. When a null distribution of a randomized dataset is very similar to the null distribution used for detection, this should lead to a 5% false positive rate (as a consequence of circular reasoning). In our response to the essential revisions, we have discussed about the effect of data randomization on replay detection. We observed that while place field circularly shifted dataset and cell-id randomized dataset led to similar false-positive rates when shuffles that disrupt temporal information were used for detection, a place field circularly shifted dataset but not a cell-id randomized dataset was sensitive to shuffle methods that disrupted place information (Author response image 4). We would also like to highlight one of our findings from the manuscript that the discrepancy between different methods can be substantially reduced when alpha level was adjusted to match false-positive rates (Figure 6B). This result directly supports the utility of a cell-id randomized dataset in finding the alpha level with equivalent false positive rates across methods. Hence, while imperfect, we argue cell-id randomization remains an acceptable method as it is sufficiently different from the four shuffles we used for replay detection compared to place field randomized dataset (Author response image 4).

      While the use of two linear tracks was crucial for our current framework to calculate log odds for evaluating replay detection, we acknowledge that it limits the applicability of this framework. At the same time, the conclusions of the manuscript with regard to ripples, replay methods, and preplay should remain valid on a single track. A second track just provides a useful control for how place cells can realistically remap within another environment. However, with modification, it may be applied to a maze with different arms or subregions, although this is beyond the scope of our current study.

      Last of not least, we partly agree with the reviewer that the result can be dataset-specific such that the result may vary depending on animal’s behavioural state and experimental design. However, our results highlight the fact that there is a very wide distribution of both the track discriminability and the proportion of significant events detected across methods that are currently used in the field. And while we see several methods that appear comparable in their effectiveness in replay detection, there are also other methods that are deeply flawed (that have been previously been used in peer-reviewed publications) if the alpha level is not sufficiently strict. Regardless of the method used, most methods can be corrected with an appropriate alpha level (e.g. using all spikes for a rank order correlation). Therefore, while the exact result may be dataset-specific, we feel that this is most likely due to the number of cells and properties of the track more than the use of two tracks. Reporting of the empirically determined false-positive rate and use of alpha level with matching false-positive rate (such as 0.05) for detection does not require a second track, and the adoption of this approach by other labs would help to improve the interpretability and generalizability of their replay data.

      Reviewer #3 (Public Review):

      This study tackles a major problem with replay detection, which is that different methods can produce vastly different results. It provides compelling evidence that the source of this inconsistency is that biological data often violates assumptions of independent samples. This results in false positive rates that can vary greatly with the precise statistical assumptions of the chosen replay measure, the detection parameters, and the dataset itself. To address this issue, the authors propose to empirically estimate the false positive rate and control for it by adjusting the significance threshold. Remarkably, this reconciles the differences in replay detection methods, as the results of all the replay methods tested converge quite well (see Figure 6B). This suggests that by controlling for the false positive rate, one can get an accurate estimate of replay with any of the standard methods.

      When comparing different replay detection methods, the authors use a sequence-independent log-odds difference score as a validation tool and an indirect measure of replay quality. This takes advantage of the two-track design of the experimental data, and its use here relies on the assumption that a true replay event would be associated with good (discriminable) reactivation of the environment that is being replayed. The other way replay "quality" is estimated is by the number of replay events detected once the false positive rate is taken into account. In this scheme, "better" replay is in the top right corner of Figure 6B: many detected events associated with congruent reactivation.

      There are two possible ways the results from this study can be integrated into future replay research. The first, simpler, way is to take note of the empirically estimated false positive rates reported here and simply avoid the methods that result in high false positive rates (weighted correlation with a place bin shuffle or all-spike Spearman correlation with a spike-id shuffle). The second, perhaps more desirable, way is to integrate the practice of estimating the false positive rate when scoring replay and to take it into account. This is very powerful as it can be applied to any replay method with any choice of parameters and get an accurate estimate of replay.

      How does one estimate the false positive rate in their dataset? The authors propose to use a cell-ID shuffle, which preserves all the firing statistics of replay events (bursts of spikes by the same cell, multi-unit fluctuations, etc.) but randomly swaps the cells' place fields, and to repeat the replay detection on this surrogate randomized dataset. Of course, there is no perfect shuffle, and it is possible that a surrogate dataset based on this particular shuffle may result in one underestimating the true false positive rate if different cell types are present (e.g. place field statistics may differ between CA1 and CA3 cells, or deep vs. superficial CA1 cells, or place cells vs. non-place cells if inclusion criteria are not strict). Moreover, it is crucial that this validation shuffle be independent of any shuffling procedure used to determine replay itself (which may not always be the case, particularly for the pre-decoding place field circular shuffle used by some of the methods here) lest the true false-positive rate be underestimated. Once the false positive rate is estimated, there are different ways one may choose to control for it: adjusting the significance threshold as the current study proposes, or directly comparing the number of events detected in the original vs surrogate data. Either way, with these caveats in mind, controlling for the false positive rate to the best of our ability is a powerful approach that the field should integrate.

      Which replay detection method performed the best? If one does not control for varying false positive rates, there are two methods that resulted in strikingly high (>15%) false positive rates: these were weighted correlation with a place bin shuffle and Spearman correlation (using all spikes) with a spike-id shuffle. However, after controlling for the false positive rate (Figure 6B) all methods largely agree, including those with initially high false positive rates. There is no clear "winner" method, because there is a lot of overlap in the confidence intervals, and there also are some additional reasons for not overly interpreting small differences in the observed results between methods. The confidence intervals are likely to underestimate the true variance in the data because the resampling procedure does not involve hierarchical statistics and thus fails to account for statistical dependencies on the session and animal level. Moreover, it is possible that methods that involve shuffles similar to the cross-validation shuffle ("wcorr 2 shuffles", "wcorr 3 shuffles" both use a pre-decoding place field circular shuffle, which is very similar to the pre-decoding place field swap used in the cross-validation procedure to estimate the false positive rate) may underestimate the false positive rate and therefore inflate adjusted p-value and the proportion of significant events. We should therefore not interpret small differences in the measured values between methods, and the only clear winner and the best way to score replay is using any method after taking the empirically estimated false positive rate into account.

      The authors recommend excluding low-ripple power events in sleep, because no replay was observed in events with low (0-3 z-units) ripple power specifically in sleep, but that no ripple restriction is necessary for awake events. There are problems with this conclusion. First, ripple power is not the only way to detect sharp-wave ripples (the sharp wave is very informative in detecting awake events). Second, when talking about sequence quality in awake non-ripple data, it is imperative for one to exclude theta sequences. The authors' speed threshold of 5 cm/s is not sufficient to guarantee that no theta cycles contaminate the awake replay events. Third, a direct comparison of the results with and without exclusion is lacking (selecting for the lower ripple power events is not the same as not having a threshold), so it is unclear how crucial it is to exclude the minority of the sleep events outside of ripples. The decision of whether or not to select for ripples should depend on the particular study and experimental conditions that can affect this measure (electrode placement, brain state prevalence, noise levels, etc.).

      Finally, the authors address a controversial topic of de-novo preplay. With replay detection corrected for the false positive rate, none of the detection methods produce evidence of preplay sequences nor sequenceless reactivation in the tested dataset. This presents compelling evidence in favour of the view that the sequence of place fields formed on a novel track cannot be predicted by the sequential structure found in pre-task sleep.

      We would like to thank the reviewer for the positive and constructive feedback.

      We agree with the reviewer that the conclusion about the effect of ripple power is dataset-specific and is not intended to be a one-size-fit-all recommendation for wider application. But it does raise a concern that individual studies should address. The criteria used for selecting candidate events will impact the overall fraction of detected events, and makes the comparison between studies using different methods more difficult. We have updated the manuscript to emphasize this point.

      “These results emphasize that a ripple power threshold is not necessary for RUN replay events in our dataset but may still be beneficial, as long as it does not excessively eliminate too many good replay events with low ripple power. In other words, depending on the experimental design, it is possible that a stricter p-value with no ripple threshold can be used to detect more replay events than using a less strict p-value combined with a strict ripple power threshold. However, for POST replay events, a threshold at least in the range of a z-score of 3-5 is recommended based on our dataset, to reduce inclusion of false-positives within the pool of detected replay events.”

      “We make six key observations: 1) A ripple power threshold may be more important for replay events during POST compared to RUN. For our dataset, the POST replay events with ripple power below a z-score of 3-5 were indistinguishable from spurious events. While the exact ripple z-score threshold to implement may differ depending on the experimental condition (e.g. electrode placement, behavioural paradigm, noise level and etc) and experimental aim, our findings highlight the benefit of using ripple power threshold for detecting replay during POST. 2) ”

    1. Author Response

      Reviewer #1 (Public Review):

      In this exciting and well-written manuscript, Alvarez-Buylla and colleagues report a fascinating discovery of an alkaloid-binding protein in the plasma of poison frogs, which may help explain how these animals are able to sequester a diversity of alkaloids with different target sites. This work is a major advance in our knowledge of how poison frogs are able to sequester and even resist such a panoply of alkaloids. Their study also adds to our understanding of how toxic animals resist the effects of their own defenses. Although target site insensitivity and other mechanisms acting to prevent the binding of alkaloids to their targets (often ion channels) are well characterized now in poison frogs, less is known regarding how they regulate the movement of toxins throughout the animal and in blood in particular. In the fugu (pufferfish) a protein binds saxitoxin and tetrodotoxin and in some amphibians possibly the protein saxiphilin has been proposed to be a toxin sponge for saxitoxin. However, little is known about poison frogs in particular and if toxin-binding proteins are involved in their sequestration and auto-resistance mechanisms.

      The authors use a clever approach wherein a fluorescently labeled probe of a pumiliotoxin analog (an alkaloid toxin sequestered by some poison frogs) is able to be crosslinked to proteins to which it binds. The authors then use sophisticated mass spectroscopy to identify the proteins and find an outlier 'hit' that is a serpin protein. A competition assay, as well as mutagenesis studies, revealed that this ~50-60 kDa plasma protein is responsible for binding much of the pumiliotoxin and a few other alkaloids known to be sequestered in the in vivo assay, but not nicotine, an alkaloid not sequestered by these frogs.

      In general, their results are convincing, their methods and analyses robust and the writing excellent. Their findings represent a major breakthrough in the study of toxin sequestration in poison frogs. Below, a more detailed summary and both major and minor constructive comments are given on the nature of the discoveries and some ways that the manuscript could be improved.

      Many thanks for this positive summary of our work! We greatly appreciate your time and thoroughness in giving us feedback.

      Detailed Summary

      The authors functionally characterize a serine-protease inhibitor protein in Oophaga sylvatica frog plasma, which they name O. sylvatica alkaloid-binding globulin (OsABG), that can bind toxic alkaloids. They show that OsABG is the most highly expressed serpin in O. sylvatica liver and that its expression is higher than that of albumin, a major small molecule carrier in vertebrates. Using a toxin photoprobe combined with competitive protein binding assays, their data suggest that OsABG is able to bind specific poison frog toxins including the two most abundant alkaloids in O. sylvatica skin. Their in vitro isolation of toxin-bound OsABG shows that the protein binds most free pumiliotoxin in solution and suggests that OsABG may play an important role in its sequestration. The authors further show that mutations in the binding pocket of OsABG remove its ability to bind toxins and that the binding pocket is structurally similar to that of other vertebrate serpins.

      These results are an exciting advance in understanding how poison frogs, which make and use alkaloids as chemical defenses, prevent self-intoxication. The authors provide convincing evidence that OsABG can function as a toxin sponge in O. sylvatica which sets a compelling precedent for future work needed to test the role of OsABG in vivo.

      The study could be improved by shifting the focus to O. sylvatica specifically rather than the convergent evolution of sequestration among different dendrobatid species. The reason for this is that most of the results (aside from some of the photoprobe binding results presented in Fig. 1 and Fig. 4) and the proteomics identification of OsABG itself are based on O. sylvatica. It's unclear whether ABG proteins are major toxin sponges in D. tinctorius or E. tricolor since these frogs may contain different toxin cocktails. The competitive binding results suggest that putative ABG proteins in D. tinctorius and E. tricolor have reduced binding affinity at higher toxin concentrations than ABG proteins in O. sylvatica. Although molecular convergence in toxin sponges may be at play in the dendrobatid poison frogs, more work is needed in non-O. sylvatica species to determine the extent of convergence.

      We understand and appreciate you raising this concern. As is partially described in the “essential revisions” section above, we have been more cautious throughout the results and discussion to not describe the plasma binding in E. tricolor and D. tinctorius as definitively due to ABG proteins, and to shift the overall focus to O. sylvatica.

      Major constructive comments:

      Although the protein gels in Fig.1-2 show clearly the role of ABG, a ~50 kDa protein, it's unclear whether transferrin-like proteins, which are ~80 kDa, may also play a role because the gels show proteins between 39-64 kDa (Fig.1). The gel in Fig.2A is specific to one O. sylvatica and extends this range, but the gel does not appear to be labeled accordingly, making it unclear whether other larger proteins could have been detected in addition to ABG. Clarifying this issue would facilitate the interpretation of the results.

      Thank you for this suggestion, please see our response above in the “essential revisions” section.

      There is what seems to be a significant size difference between the O. sylvatica bands and bands from the other toxic frog species, namely D. tinctorius and E. tricolor. Could the photoprobe be binding to other non-ABG proteins of different sizes in different frog species? Given that O. sylvatica bands are bright and this species was the only one subject to proteomics quantification, a possible conclusion may be that the ABG toxin sponge is a lineage-specific adaptation of O. sylvatica rather than a common mechanism of toxin sequestration among multiple independent lineages of poison frogs. It would be helpful if the authors could address this observation of their binding data and the hypothesis flowing from that in the manuscript.

      Thank you for this suggestion, please see our response above in the “essential revisions” section.

      Figure 1B: The species names should be labeled alongside the images in the phylogeny. In addition, please include symbols indicating the number of times toxicity has evolved (for example, once in the ancestors of O. sylvatica and D. tinctorius frogs and once in the ancestors of E. tricolor frogs).

      These suggested changes have been added to Figure 1B. We were not able to fit the full species names into the figure, instead we added an abbreviated version that is spelled out completely in the figure caption.

      Figure 4B-C: Photoprobe binding results in the presence of epi and nicotine appear to be missing for D. tinctorius and those in the presence of PTX and nicotine are missing for D. tricolor. Adding these results would make for a more complete picture of alkaloid binding by ABG in non-O. sylvatica species.

      Thank you for this suggestion, please see our response above in the “essential revisions” section.

      Using recombinant proteins with mutations at residues forming the binding pocket of O. sylvatica ABG (as inferred from docking simulations), the authors found that all binding pocket mutations disrupted photoprobe binding completely in vitro (L221-222, Fig. 4E). However, there is no information presented on non-binding pocket mutations. Mutations outside of the binding pocket would presumably maintain photoprobe binding - barring any indirect structural changes that might disrupt binding pocket interactions with the photoprobe. This result is important for the conclusion that the binding pocket itself is the sole mediator of toxin interactions. The authors do show that one binding pocket mutation (D383A) results in some degree of photoprobe binding (Fig. 4E) but more detail on the mutations in the binding pocket per se being causal would be helpful.

      Thank you for this suggestion, please see our response above in the “essential revisions” section.

      Please include concentrations in the descriptions of gel lanes in the main figures. The relative concentrations of the photoprobe and other toxins (eg., PTX, DHQ, epi, and nic) are essential for interpreting the competitive binding images. For example, this was done in Fig. S1 (e.g., PB + 10x PTX).

      The photoprobe and competitor concentrations have been added beneath the gels in Figures 1, 4, and 6 as suggested. Additionally, in the crosslinking experiments involving purified protein the amount of protein per well has been added to the top of the TAMRA gel.

      For clarity, the section "OsABG sequesters free PTX in solution with high affinity" could be presented directly after the section titled "Proteomic analysis identifies an alkaloid-binding globulin". The former highlights in vitro experiments confirming the binding affinity of the ABG protein identified in the latter.

      While we see how this rearrangement might work, we think that the current order of figures creates a more compelling story and provides the evidence in a more intuitive manner. For instance, it is necessary to show that recombinant protein recapitulates the plasma photoprobe results and that binding pocket mutants disrupt photoprobe binding (Figure 4), prior to showing the direct binding assays with the recombinant wild type and mutant proteins. For this reason, we believe that this rearrangement might cause confusion, and are leaving it as is.

      Fig. 6E-F should be included as part of Fig. 1 or 2. Although complementary to the RNA sequencing data, these protein results are more closely related to the results in the first two figures which show the degree of competitive binding affinity of PB in the presence of different toxins. The expanded competitive binding results for total skin alkaloids and the two most abundant skin alkaloids from wild samples are most appropriate here.

      We understand the reasoning behind this, however we feel that including these results in Figure 6 is more appropriate and that moving it would disrupt the flow of the story. The identification of ABG and its binding activity happened before we fully understood the alkaloid profiles of wild-collected O. sylvatica, therefore we did not think to test additional alkaloids like histrionicotoxin and indolizidines till we saw that these were very abundant on the skin of field collected poison frogs. Furthermore, we would like to leave this section at the end because we feel it contributes important ecological relevance that we want to leave readers with.

    1. Author Response

      Reviewer #1 (Public Review):

      This work aims to evaluate the use of pressure insoles for measurements that are traditionally done using force platforms in the assessment of people with knee osteoarthritis and other arthropathies. This is vital for providing an affordable assessment that does not require a fully equipped gait lab as well as utilizing wearable technology for personalized healthcare.

      Towards these aims, the authors were able to demonstrate that individual subjects can be identified with high precision using raw sensor data from the insoles and a convolutional neural network model. The authors have done a great job creating the models and combining an already available public dataset of force platform signals and utilizing them for training models with transferable ability to be used with data from pressure insoles. However, there are a few concerns, regarding substantiating some of the goals that this manuscript is trying to achieve.

      In addressing these concerns, if the results are further corroborated using the suggestions provided to the authors, this provides an exciting tool for identifying an individual's gait patterns out of a cluster of data, which is extremely useful for providing identifiable labels for personalized healthcare using wearable technologies.

      Thank you for this enthusiasm for our work, and we hope that our responses are adequate to address what we can of these comments. Please note that we have made every effort to address comments that we can and appreciated the detailed feedback you provided.

      Reviewer #2 (Public Review):

      The authors aimed to investigate whether digital insoles are an appropriate alternative to laboratory assessment with force plates when attempting to identify the knee injury status. The methods are rigorous and appropriate in the context of this research area. The results are impressive, and the figures are exceptional. The findings of this study can have a great impact on the field, showing that digital insoles can be accurately used for clinical purposes. The authors successfully achieved their aims.

      We thank the reviewer for this enthusiasm and hope our edits adequately address the points the reviewer made to strengthen the manuscript.

      Reviewer #3 (Public Review):

      In this manuscript, the authors describe the development of a machine-learning model to be used for gait assessment using insole data. They first developed a machine learning model using an existing, large data set of ground reaction forces collected during walking with force plates in a lab, from healthy adults and a group of people with knee injuries. Subsequently, they tested this model on ground reaction forces derived from insoles worn by a group of 19 healthy adults and a group of n=44 people with knee osteoarthritis (OA). The model was able to accurately identify individuals belonging to the knee OA group or the healthy group using the ground reaction forces during walking. Note: I do not have expertise on machine learning and will therefore refrain from reviewing the ML methods that were applied in this paper.

      Strengths: The authors successfully externally validated the trained model for GRF on insole data. Insole data carries potentially rich information, including the path of the CoP during the stance phase. The additional value of insoles over force plates in itself is clear, as insoles can be used independently of laboratory facilities. Moreover, insoles provide information on the COP path, which can have added value over other mobile assessment methods such as inertial sensors.

      Limitations: The second ML model, using only insole data to identify knee arthropathy from healthy subjects, was trained on a small sample of subjects. Although I have no background in ML, I can imagine that external validation in an independent and larger sample is needed to support the current findings.

      Gait speed has a major influence on the majority of gait-related outcomes. Slow or more cautious gait, due to pain or other causes, is reflected in vertical GRF's with less pronounced peaks. A difference in gait speed between people with pain in their knee (due to injury) and healthy subjects can be expected. This raises the question of what the added value of a model to estimate vertical GRF is over a simpler output (e.g. gait speed itself). Moreover, the paper does not elucidate what the added value of machine learning is over a simpler statistical model.

      This is a good point, however, clinically we are interested in weight bearing and difference in pressure related metrics in this musculoskeletal group, which speed will simply not provide. So we are looking at additional metrics.

      There are numerous publications suggesting that non-speed related metrics are important to predict disease progression in a variety of conditions (e.g., D’Lima DD, Fregly BJ, Pail S, Steklov N, Colwell CW. Knee joint forces: prediction, measurement and significance. Proc Inst Mech Eng H. 2012:226:95–102. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324308/). In OA, the vector on ground force in medial knee OA (not vertical) creates torque and that is correlated with disease progression. We have modified the text throughout to address these points.

      In line with this issue, the current analyses are not strongly convincing me that the model described resulted in an identification of knee arthropathy-specific signature. Only knee arthropathy vs healthy (relatively young) subjects was compared, and we cannot rule out that this group only reflects general cautious, slow, or antalgic gait. As such, the data does not provide any evidence that the tool might be valuable to identify people with more or less severity of symptoms, or that the tool can be used to discriminate knee osteoarthritis from hip, or ankle osteoarthritis, or even to discriminate between people with musculoskeletal diseases and people with neurological gait disorders. This substantially limits the relevance for clinical (research) practice. In short, the output of the model seems to be restricted to "something is going on here", without further specification. Further development towards more specific aims using the insole data may substantially amplify clinical relevance.

      While no dataset (or model) is perfect, we feel that this is the first time that this model has been developed and applied in this cohort/clinical context, and of course acknowledge that future work is needed to further validate and examine how clinically meaningful this model is.

      We have broken out and added to a Study limitations section within the manuscript to reflect these caveats more clearly.

    1. eLife assessment

      This study reports valuable findings on the correlation between the positions of dendritic mitochondria and the orientation preference of calcium responses of individual spines. The conclusion about the biased localization of dendritic mitochondria near functional diverse spines is informative to understand the functions of dendritic mitochondria. The experimental evidence supporting the conclusion is compelling.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important paper exploits new cryo-EM tomography tools to examine the state of chromatin in situ. The experimental work is meticulously performed and convincing, with a vast amount of data collected. The main findings are interpreted by the authors to suggest that the majority of yeast nucleosomes lack a stable octameric conformation. Despite the possibly controversial nature of this report, it is our hope that such work will spark thought-provoking debate, and further the development of exciting new tools that can interrogate native chromatin shape and associated function in vivo.

      We thank the Editors and Reviewers for their thoughtful and helpful comments. We also appreciate the extraordinary amount of effort needed to assess both the lengthy manuscript and the previous reviews. Below, we provide our point-by-point response in bold blue font. Nearly all comments have been addressed in the revised manuscript. For a subset of comments that would require us to speculate, we have taken a conservative approach because we either lack key information or technical expertise: Instead of adding the speculative replies to the main text, we think it is better to leave them in the rebuttal for posterity. Readers will thereby have access to our speculation and know that we did not feel confident enough to include these thoughts in the Version of Record.

      Reviewer #1 (Public Review):

      This manuscript by Tan et al is using cryo-electron tomography to investigate the structure of yeast nucleosomes both ex vivo (nuclear lysates) and in situ (lamellae and cryosections). The sheer number of experiments and results are astounding and comparable with an entire PhD thesis. However, as is always the case, it is hard to prove that something is not there. In this case, canonical nucleosomes. In their path to find the nucleosomes, the authors also stumble over new insights into nucleosome arrangement that indicates that the positions of the histones is more flexible than previously believed.

      Please note that canonical nucleosomes are there in wild-type cells in situ, albeit rarer than what’s expected based on our HeLa cell analysis and especially the total number of yeast nucleosomes (canonical plus non-canonical). The negative result (absence of any canonical nucleosome classes in situ) was found in the histone-GFP mutants.

      Major strengths and weaknesses:

      Personally, I am not ready to agree with their conclusion that heterogenous non-canonical nucleosomes predominate in yeast cells, but this reviewer is not an expert in the field of nucleosomes and can't judge how well these results fit into previous results in the field. As a technological expert though, I think the authors have done everything possible to test that hypothesis with today's available methods. One can debate whether it is necessary to have 35 supplementary figures, but after working through them all, I see that the nature of the argument needs all that support, precisely because it is so hard to show what is not there. The massive amount of work that has gone into this manuscript and the state-of-the art nature of the technology should be warmly commended. I also think the authors have done a really great job with including all their results to the benefit of the scientific community. Yet, I am left with some questions and comments:

      Could the nucleosomes change into other shapes that were predetermined in situ? Could the authors expand on if there was a structure or two that was more common than the others of the classes they found? Or would this not have been found because of the template matching and later reference particle used?

      Our best guess (speculation) is that one of the class averages that is smaller than the canonical nucleosome contains one or more non-canonical nucleosome classes. However, we do not feel confident enough to single out any of these classes precisely because we do not yet know if they arise from one non-canonical nucleosome structure or from multiple – and therefore mis-classified – non-canonical nucleosome structures (potentially with other non-nucleosome complexes mixed in). We feel it is better to leave this discussion out of the manuscript, or risk sending the community on wild goose chases.

      Our template-matching workflow uses a low-enough cross-correlation threshold that any nucleosome-sized particle (plus minus a few nanometers) would be picked, which is why the number of hits is so large. So unless the noncanonical nucleosomes quadrupled in size or lost most of their histones, they should be grouped with one or more of the other 99 class averages (WT cells) or any of the 100 class averages (cells with GFP-tagged histones). As to whether the later reference particle could have prevented us from detecting one of the non-canonical nucleosome structures, we are unable to tell because we’d really have to know what an in situ non-canonical nucleosome looks like first.

      Could it simply be that the yeast nucleoplasm is differently structured than that of HeLa cells and it was harder to find nucleosomes by template matching in these cells? The authors argue against crowding in the discussion, but maybe it is just a nucleoplasm texture that side-tracks the programs?

      Presumably, the nucleoplasmic “side-tracking” texture would come from some molecules in the yeast nucleus. These molecules would be too small to visualize as discrete particles in the tomographic slices, but they would contribute textures that can be “seen” by the programs – in particular RELION, which does the discrimination between structural states. We are not sure what types of density textures would side-track RELION’s classification routines.

      The title of the paper is not well reflected in the main figures. The title of Figure 2 says "Canonical nucleosomes are rare in wild-type cells", but that is not shown/quantified in that figure. Rare is comparison to what? I suggest adding a comparative view from the HeLa cells, like the text does in lines 195-199. A measure of nucleosomes detected per volume nucleoplasm would also facilitate a comparison.

      Figure 2’s title is indeed unclear and does not align with the paper’s title and key conclusion. The rarity here is relative to the expected number of nucleosomes (canonical plus non-canonical). We have changed the title to:

      “Canonical nucleosomes are a minority of the expected total in wild-type cells”.

      We would prefer to leave the reference to HeLa cells to the main text instead of as a figure panel because the comparison is not straightforward for a graphical presentation. Instead, we now report the total number of nucleosomes estimated for this particular yeast tomogram (~7,600) versus the number of canonical nucleosomes classified (297; 594 if we assume we missed half of them). This information is in the revised figure legend:

      “In this tomogram, we estimate there are ~7,600 nucleosomes (see Methods on how the calculation is done), of which 297 are canonical structures. Accounting for the missing disc views, we estimate there are ~594 canonical nucleosomes in this cryolamella (< 8% the expected number of nucleosomes).”

      If the cell contains mostly non-canonical nucleosomes, are they really non-canonical? Maybe a change of language is required once this is somewhat sure (say, after line 303).

      This is an interesting semantic and philosophical point. From the yeast cell’s “perspective”, the canonical nucleosome structure would be the form that is in the majority. That being said, we do not know if there is one structure that is the majority. From the chromatin field’s point of view, the canonical nucleosome is the form that is most commonly seen in all the historical – and most contemporary – literature, namely something that resembles the crystal structure of Luger et al, 1997. Given these two lines of thinking, we added the following clarification as lines 312 – 316:

      “At present, we do not know what the non-canonical nucleosome structures are, meaning that we cannot even determine if one non-canonical structure is the majority. Until we know the non-canonical nucleosomes’ structures, we will use the term non-canonical to describe all the nucleosomes that do not have the canonical (crystal) structure.”

      The authors could explain more why they sometimes use conventional the 2D followed by 3D classification approach and sometimes "direct 3-D classification". Why, for example, do they do 2D followed by 3D in Figure S5A? This Figure could be considered a regular figure since it shows the main message of the paper.

      Since the classification of subtomograms in situ is still a work in progress, we felt it would be better to show one instance of 2-D classification for lysates and one for lamellae. While it is true that we could have presented direct 3-D classification for the entire paper, we anticipate that readers will be interested to see what the in situ 2-D class averages look like.

      The main message is that there are canonical nucleosomes in situ (at least in wild-type cells), but they are a minority. Therefore, the conventional classification for Figure S5A should not be a main figure because it does not show any canonical nucleosome class averages in situ.

      Figure 1: Why is there a gap in the middle of the nucleosome in panel B? The authors write that this is a higher resolution structure (18Å), but in the even higher resolution crystallography structure (3Å resolution), there is no gap in the middle.

      There is a lower concentration of amino acids at the middle in the disc view; unfortunately, the space-filling model in Figure 1A hides this feature. The gap exists in experimental cryo-EM density maps. See Author response image 1 for an example (pubmed.ncbi.nlm.nih.gov/29626188). The size of the gap depends on the contour level and probably the contrast mechanism, as the gap is less visible in the VPP subtomogram averages. To clarify this confusing phenomenon, we added the following lines to the figure legend:

      “The gap in the disc view of the nuclear-lysate-based average is due to the lower concentration of amino acids there, which is not visible in panel A due to space-filling rendering. This gap’s visibility may also depend on the contrast mechanism because it is not visible in the VPP averages.”

      Author response image 1.

      Reviewer #2 (Public Review):

      Nucleosome structures inside cells remain unclear. Tan et al. tackled this problem using cryo-ET and 3-D classification analysis of yeast cells. The authors found that the fraction of canonical nucleosomes in the cell could be less than 10% of total nucleosomes. The finding is consistent with the unstable property of yeast nucleosomes and the high proportion of the actively transcribed yeast genome. The authors made an important point in understanding chromatin structure in situ. Overall, the paper is well-written and informative to the chromatin/chromosome field.

      We thank Reviewer 2 for their positive assessment.

      Reviewer #3 (Public Review):

      Several labs in the 1970s published fundamental work revealing that almost all eukaryotes organize their DNA into repeating units called nucleosomes, which form the chromatin fiber. Decades of elegant biochemical and structural work indicated a primarily octameric organization of the nucleosome with 2 copies of each histone H2A, H2B, H3 and H4, wrapping 147bp of DNA in a left handed toroid, to which linker histone would bind.

      This was true for most species studied (except, yeast lack linker histone) and was recapitulated in stunning detail by in vitro reconstitutions by salt dialysis or chaperone-mediated assembly of nucleosomes. Thus, these landmark studies set the stage for an exploding number of papers on the topic of chromatin in the past 45 years.

      An emerging counterpoint to the prevailing idea of static particles is that nucleosomes are much more dynamic and can undergo spontaneous transformation. Such dynamics could arise from intrinsic instability due to DNA structural deformation, specific histone variants or their mutations, post-translational histone modifications which weaken the main contacts, protein partners, and predominantly, from active processes like ATP-dependent chromatin remodeling, transcription, repair and replication.

      This paper is important because it tests this idea whole-scale, applying novel cryo-EM tomography tools to examine the state of chromatin in yeast lysates or cryo-sections. The experimental work is meticulously performed, with vast amount of data collected. The main findings are interpreted by the authors to suggest that majority of yeast nucleosomes lack a stable octameric conformation. The findings are not surprising in that alternative conformations of nucleosomes might exist in vivo, but rather in the sheer scale of such particles reported, relative to the traditional form expected from decades of biochemical, biophysical and structural data. Thus, it is likely that this work will be perceived as controversial. Nonetheless, we believe these kinds of tools represent an important advance for in situ analysis of chromatin. We also think the field should have the opportunity to carefully evaluate the data and assess whether the claims are supported, or consider what additional experiments could be done to further test the conceptual claims made. It is our hope that such work will spark thought-provoking debate in a collegial fashion, and lead to the development of exciting new tools which can interrogate native chromatin shape in vivo. Most importantly, it will be critical to assess biological implications associated with more dynamic - or static forms- of nucleosomes, the associated chromatin fiber, and its three-dimensional organization, for nuclear or mitotic function.

      Thank you for putting our work in the context of the field’s trajectory. We hope our EMPIAR entry, which includes all the raw data used in this paper, will be useful for the community. As more labs (hopefully) upload their raw data and as image-processing continues to advance, the field will be able to revisit the question of non-canonical nucleosomes in budding yeast and other organisms. 

      Reviewer #1 (Recommendations For The Authors):

      The manuscript sometimes reads like a part of a series rather than a stand-alone paper. Be sure to spell out what needs to be known from previous work to read this article. The introduction is very EM-technique focused but could do with more nucleosome information.

      We have added a new paragraph that discusses the sources of structural variability to better prepare readers, as lines 50 – 59:

      “In the context of chromatin, nucleosomes are not discrete particles because sequential nucleosomes are connected by short stretches of linker DNA. Variation in linker DNA structure is a source of chromatin conformational heterogeneity (Collepardo-Guevara and Schlick, 2014). Recent cryo-EM studies show that nucleosomes can deviate from the canonical form in vitro, primarily in the structure of DNA near the entry/exit site (Bilokapic et al., 2018; Fukushima et al., 2022; Sato et al., 2021; Zhou et al., 2021). In addition to DNA structural variability, nucleosomes in vitro have small changes in histone conformations (Bilokapic et al., 2018). Larger-scale variations of DNA and histone structure are not compatible with high-resolution analysis and may have been missed in single-particle cryo-EM studies.”

      Line 165-6 "did not reveal a nucleosome class average in..". Add "canonical", since it otherwise suggests there were no nucleosomes.

      Thank you for catching this error. Corrected.

      Lines 177-182: Why are the disc views missed by the classification analysis? They should be there in the sample, as you say.

      We suspect that RELION 3 is misclassifying the disc-view canonical nucleosomes into the other classes. The RELION developers suspect that view-dependent misclassification arises from RELION 3’s 3-D CTF model. RELION 4 is reported to be less biased by the particles’ views. We have started testing RELION 4 but do not have anything concrete to report yet.

      Line 222: a GFP tag.

      Fixed.

      Line 382: "Note that the percentage .." I can't follow this sentence. Why would you need to know how many chromosome's worth of nucleosomes you are looking at to say the percentage of non-canonical nucleosomes?

      Thank you for noticing this confusing wording. The sentence has been both simplified and clarified as follows in lines 396 – 398:

      “Note that the percentage of canonical nucleosomes in lysates cannot be accurately estimated because we cannot determine how many nucleosomes in total are in each field of view.”

      Line 397: "We're not implying that..." Please add a sentence clearly stating what you DO mean with mobility for H2A/H2B.

      We have added the following clarifying sentence in lines 412 – 413:

      “We mean that H2A-H2B is attached to the rest of the nucleosome and can have small differences in orientation.”

      Line 428: repeated message from line 424. "in this figure, the blurring implies.."

      Redundant phrase removed.

      Line 439: "on a HeLa cell" - a single cell in the whole study?

      Yes, that study was done on a single cell.

      A general comment is that the authors could help the reader more by developing the figures and making them more pedagogical, a list of suggestions can be found below.

      Thank you for the suggestions. We have applied all of them to the specific figure callouts and to the other figures that could use similar clarification.

      Figure 2: Help the reader by avoiding abbreviations in the figure legend. VPP tomographic slice - spell out "Volta Phase Plate". Same with the term "remapped" (panel B) what does that mean?

      We spelled out Volta phase plate in full and explained “remapped” the additional figure legend text:

      “the class averages were oriented and positioned in the locations of their contributing subtomograms”.

      Supplementary figures:

      Figure S3: It is unclear what you mean with "two types of BY4741 nucleosomes". You then say that the canonical nucleosomes are shaded blue. So what color is then the non-canonical? All the greys? Some of them look just like random stuff, not nucleosomes.

      “Two types” is a typo and has been removed and “nucleosomes” has been replaced with “candidate nucleosome template-matching hits” to accurately reflect the particles used in classification.

      Figure S6: Top left says "3 tomograms (defocus)". I wonder if you meant to add the defocus range here. I have understood it like this is the same data as shown in Figure S5, which makes me wonder if this top cartoon should not be on top of that figure too (or exclusively there).

      To make Figures S6 (and S5) clearer, we have copied the top cartoon from Figure S6 to S5.

      Note that we corrected a typo for these figures (and the Table S7): the number of template-matched candidate nucleosomes should be 93,204, not 62,428.

      The description in the parentheses (defocus) is shorthand for defocus phase contrast and was not intended to also display a defocus range. All of the revised figure legends now report the meaning of both this shorthand and of the Volta phase plate (VPP).

      To help readers see the relationship between these two figures, we added the following clarifying text to the Figure S5 and S6 legends, respectively:

      “This workflow uses the same template-matched candidate nucleosomes as in Figure S6; see below.”

      “This workflow uses the same template-matched candidate nucleosomes as in Figure S5.”

      Figure S7: In the first panel, it is unclear why the featureless cylinder is shown as it is not used as a reference here. Rather, it could be put throughout where it was used and then put the simulated EM-map alone here. If left in, it should be stated in the legend that it was not used here.

      It would indeed be much clearer to show the featureless cylinder in all the other figures and leave the simulated nucleosome in this control figure. All figures are now updated. The figure legend was also updated as follows:

      “(A) A simulated EM map from a crystal structure of the nucleosome was used as the template-matching and 3-D classification reference.”

      Figure S18: Why are there classes where the GFP density is missing? Mention something about this in the figure legend.

      We have appended the following speculations to explain the “missing” GFP densities:

      “Some of the class averages are “missing” one or both expected GFP densities. The possible explanations include mobility of a subpopulation of GFPs or H2A-GFPs, incorrectly folded GFPs, or substitution of H2A for the variant histone H2A.Z.”

      Reviewer #2 (Recommendations For The Authors):

      My specific (rather minor) comments are the following:

      1) Abstract:

      yeast -> budding yeast.

      All three instances in the abstract have been replaced with “budding yeast”.

      It would be better to clarify what ex vivo means here.

      We have appended “(in nuclear lysates)” to explain the meaning of ex vivo.

      2) Some subtitles are unclear.

      e.g., "in wild-type lysates" -> "wild-type yeast lysates"

      Thank you for this suggestion. All unclear instances of subtitles and sample descriptions throughout the text have been corrected.

      3) Page 6, Line 113. "...which detects more canonical nucleosomes." A similar thing was already mentioned in the same paragraph and seems redundant.

      Thank you for noticing this redundant statement, which is now deleted.

      4) Page 25, Line 525. "However, crowding is an unlikely explanation..." Please note that many macromolecules (proteins, RNAs, polysaccharides, etc.) were lost during the nuclei isolation process.

      This is a good point. We have rewritten this paragraph to separate the discussion on technical versus biological effects of crowding, in lines 538 – 546:

      “Another hypothesis for the low numbers of detected canonical nucleosomes is that the nucleoplasm is too crowded, making the image processing infeasible. However, crowding is an unlikely technical limitation because we were able to detect canonical nucleosome class averages in our most-crowded nuclear lysates, which are so crowded that most nucleosomes are butted against others (Figures S15 and S16). Crowding may instead have biological contributions to the different subtomogram-analysis outcomes in cell nuclei and nuclear lysates. For example, the crowding from other nuclear constituents (proteins, RNAs, polysaccharides, etc.) may contribute to in situ nucleosome structure, but is lost during nucleus isolation.”

      5) Page 7, Line 126. "The subtomogram average..." Is there any explanation for this?

      Presumably, the longer linker DNA length corresponds to the ordered portion of the ~22 bp linker between consecutive nucleosomes, given the ~168 bp nucleosome repeat length. We have appended the following explanation as the concluding sentence, lines 137 – 140:

      “Because the nucleosome-repeat length of budding yeast chromatin is ~168 bp (Brogaard et al., 2012), this extra length of DNA may come from an ordered portion of the ~22 bp linker between adjacent nucleosomes.”

      6) "Histone GFP-tagging strategy" subsection:

      Since this subsection is a bit off the mainstream of the paper, it can be shortened and merged into the next one.

      We have merged the “Histone GFP-tagging strategy” and “GFP is detectable on nucleosome subtomogram averages ex vivo” subsections and shortened the text as much as possible. The new subsection is entitled “Histone GFP-tagging and visualization ex vivo”

      7) Page 16, Line 329. "Because all attempts to make H3- or H4-GFP "sole source" strains failed..." Is there a possible explanation here? Cytotoxic effect because of steric hindrance of nucleosomes?

      Yes, it is possible that the GFP tag is interfering with the nucleosomes interactions with its numerous partners. It is also possible that the histone-GFP fusions do not import and/or assemble efficiently enough to support a bare-minimum number of functional nucleosomes. Given that the phenotypic consequences of fusion tags is an underexplored topic and that we don’t have any data on the (dead) transformants, we would prefer to leave out the speculation about the cause of death in the attempted creation of “sole source” strains.

    2. eLife assessment

      This important paper exploits new cryo-EM tomography tools to examine the state of chromatin in situ. The experimental work is meticulously performed, with a vast amount of data collected, with convincing interpretation of possible nucleosomal structures in yeast. The majority of these nucleosomes appear not to possess stable octameric configurations. Although it cannot be excluded that there could be an unknown bias in class detection, we agree that the authors have gone as far as is possible, given constraints in current technology and analysis, to support their model. Despite the provocative nature of this report, it is our hope that such work will spark debate, and further the development of exciting new tools that can interrogate the dynamic nature of the nucleosome, and its associated functions in situ.

    3. Reviewer #1 (Public Review):

      This manuscript by Tan et al is using cryo-electron tomography to investigate the structure of yeast nucleosomes both ex vivo (nuclear lysates) and in situ (lamellae and cryosections). The sheer number of experiments and results are astounding and comparable with an entire PhD thesis. However, as is always the case, it is hard to prove that something is not there. In this case, canonical nucleosomes. In their path to find the nucleosomes, the authors also stumble over new insights into nucleosome arrangement that indicates that the positions of the histones is more flexible than previously believed.

      Major strengths and weaknesses:

      Personally, I am not ready to agree with their conclusion that heterogenous non-canonical nucleosomes predominate in yeast cells, but this reviewer is not an expert in the field of nucleosomes and can't judge how well these results fit into previous results in the field. As a technological expert though, I think the authors have done everything possible to test that hypothesis with today's available methods. One can debate whether it is necessary to have 35 supplementary figures, but after working through them all, I see that the nature of the argument needs all that support, precisely because it is so hard to show what is not there. The massive amount of work that has gone into this manuscript and the state-of-the art nature of the technology should be warmly commended. I also think the authors have done a really great job with including all their results to the benefit of the scientific community. Yet, I am left with some questions and comments:

      Could the nucleosomes change into other shapes that were predetermined in situ? Could the authors expand on if there was a structure or two that was more common than the others of the classes they found? Or would this not have been found because of the template matching and later reference particle used?

      Could it simply be that the yeast nucleoplasm is differently structured than that of HeLa cells and it was harder to find nucleosomes by template matching in these cells? The authors argue against crowding in the discussion, but maybe it is just a nucleoplasm texture that side-tracks the programs?

      The title of the paper is not well reflected in the main figures. The title of Figure 2 says "Canonical nucleosomes are rare in wild-type cells", but that is not shown/quantified in that figure. Rare is comparison to what? I suggest adding a comparative view from the HeLa cells, like the text does in lines 195-199. A measure of nucleosomes detected per volume nucleoplasm would also facilitate a comparison.

      If the cell contains mostly non-canonical nucleosomes, are they really non-canonical? Maybe a change of language is required once this is somewhat sure (say, after line 303).

      The authors could explain more why they sometimes use conventional the 2D followed by 3D classification approach and sometimes "direct 3-D classification". Why, for example, do they do 2D followed by 3D in Figure S5A? This Figure could be considered a regular figure since it shows the main message of the paper.

      Figure 1: Why is there a gap in the middle of the nucleosome in panel B? The authors write that this is a higher resolution structure (18Å), but in the even higher resolution crystallography structure (3Å resolution), there is no gap in the middle.

    4. Reviewer #2 (Public Review):

      Nucleosome structures inside cells remain unclear. Tan et al. tackled this problem using cryo-ET and 3-D classification analysis of yeast cells. The authors found that the fraction of canonical nucleosomes in the cell could be less than 10% of total nucleosomes. The finding is consistent with the unstable property of yeast nucleosomes and the high proportion of the actively transcribed yeast genome. The authors made an important point in understanding chromatin structure in situ. Overall, the paper is well-written and informative to the chromatin/chromosome field.

    5. Reviewer #3 (Public Review):

      Several labs in the 1970s published fundamental work revealing that almost all eukaryotes organize their DNA into repeating units called nucleosomes, which form the chromatin fiber. Decades of elegant biochemical and structural work indicated a primarily octameric organization of the nucleosome with 2 copies of each histone H2A, H2B, H3 and H4, wrapping 147bp of DNA in a left handed toroid, to which linker histone would bind.

      This was true for most species studied (except, yeast lack linker histone) and was recapitulated in stunning detail by in vitro reconstitutions by salt dialysis or chaperone-mediated assembly of nucleosomes. Thus, these landmark studies set the stage for an exploding number of papers on the topic of chromatin in the past 45 years.

      An emerging counterpoint to the prevailing idea of static particles is that nucleosomes are much more dynamic and can undergo spontaneous transformation. Such dynamics could arise from intrinsic instability due to DNA structural deformation, specific histone variants or their mutations, post-translational histone modifications which weaken the main contacts, protein partners, and predominantly, from active processes like ATP-dependent chromatin remodeling, transcription, repair and replication.

      This paper is important because it tests this idea whole-scale, applying novel cryo-EM tomography tools to examine the state of chromatin in yeast lysates or cryo-sections. The experimental work is meticulously performed, with vast amount of data collected. The main findings are interpreted by the authors to suggest that majority of yeast nucleosomes lack a stable octameric conformation. The findings are not surprising in that alternative conformations of nucleosomes might exist in vivo, but rather in the sheer scale of such particles reported, relative to the traditional form expected from decades of biochemical, biophysical and structural data. Thus, it is likely that this work will be perceived as controversial. Nonetheless, we believe these kinds of tools represent an important advance for in situ analysis of chromatin. We also think the field should have the opportunity to carefully evaluate the data and assess whether the claims are supported, or consider what additional experiments could be done to further test the conceptual claims made. It is our hope that such work will spark thought-provoking debate in a collegial fashion, and lead to the development of exciting new tools which can interrogate native chromatin shape in vivo. Most importantly, it will be critical to assess biological implications associated with more dynamic - or static forms- of nucleosomes, the associated chromatin fiber, and its three-dimensional organization, for nuclear or mitotic function.

    6. Author Response

      eLife assessment

      This important paper exploits new cryo-EM tomography tools to examine the state of chromatin in situ. The experimental work is meticulously performed and convincing, with a vast amount of data collected. The main findings are interpreted by the authors to suggest that the majority of yeast nucleosomes lack a stable octameric conformation. Despite the possibly controversial nature of this report, it is our hope that such work will spark thought-provoking debate, and further the development of exciting new tools that can interrogate native chromatin shape and associated function in vivo.

      We thank the Editors and Reviewers for their thoughtful and helpful comments. We also appreciate the extraordinary amount of effort needed to assess both the lengthy manuscript and the previous reviews. Below, we provide our provisional responses in bold blue font. The majority of the comments are straightforward to address. We have taken a more conservative approach with the subset of comments that would require us to speculate because we either lack key information or we lack technical expertise. Instead of adding the speculative replies to the main text, we think it will be better to leave them in the rebuttal for posterity. Readers will therefore have access to our speculation and know that we did not feel confident enough to include these thoughts in the Version of Record.

      Reviewer #1 (Public Review):

      This manuscript by Tan et al is using cryo-electron tomography to investigate the structure of yeast nucleosomes both ex vivo (nuclear lysates) and in situ (lamellae and cryosections). The sheer number of experiments and results are astounding and comparable with an entire PhD thesis. However, as is always the case, it is hard to prove that something is not there. In this case, canonical nucleosomes. In their path to find the nucleosomes, the authors also stumble over new insights into nucleosome arrangement that indicates that the positions of the histones is more flexible than previously believed.

      We want to point out that canonical nucleosomes are there in wild-type cells in situ, albeit rarer than what’s expected based on our HeLa cell analysis. The negative result (absence of any canonical nucleosome classes in situ) was found in the histone-GFP mutants.

      Major strengths and weaknesses:

      Personally, I am not ready to agree with their conclusion that heterogenous non-canonical nucleosomes predominate in yeast cells, but this reviewer is not an expert in the field of nucleosomes and can't judge how well these results fit into previous results in the field. As a technological expert though, I think the authors have done everything possible to test that hypothesis with today's available methods. One can debate whether it is necessary to have 35 supplementary figures, but after working through them all, I see that the nature of the argument needs all that support, precisely because it is so hard to show what is not there. The massive amount of work that has gone into this manuscript and the state-of-the art nature of the technology should be warmly commended. I also think the authors have done a really great job with including all their results to the benefit of the scientific community. Yet, I am left with some questions and comments:

      Could the nucleosomes change into other shapes that were predetermined in situ? Could the authors expand on if there was a structure or two that was more common than the others of the classes they found? Or would this not have been found because of the template matching and later reference particle used?

      Our best guess (speculation) is that one of the class averages that is smaller than the canonical nucleosome contains one or more non-canonical nucleosome classes. We do not feel confident enough to single out any of these classes precisely because we do not yet know if they arise from one non-canonical nucleosome structure or from multiple – and therefore mis-classified – non-canonical nucleosome structures (potentially with other non-nucleosome complexes mixed in). We feel it is better to leave this discussion out of the manuscript, or risk sending the community on wild goose chases.

      Our template-matching workflow uses a low-enough cross-correlation threshold that any nucleosome-sized particle (plus minus a few nanometers) would be picked, which is why the number of hits is so large. So unless the noncanonical nucleosomes quadrupled in size or lost most of their histones, they should be grouped with one or more of the other 99 class averages (WT cells) or any of the 100 class averages (cells with GFP-tagged histones). As to whether the later reference particle could have prevented us from detecting one of the non-canonical nucleosome structures, we are unable to tell because we’d really have to know what an in situ non-canonical nucleosome looks like first.

      Could it simply be that the yeast nucleoplasm is differently structured than that of HeLa cells and it was harder to find nucleosomes by template matching in these cells? The authors argue against crowding in the discussion, but maybe it is just a nucleoplasm texture that side-tracks the programs?

      Presumably, the nucleoplasmic “side-tracking” texture would come from some molecules in the yeast nucleus. These molecules would be too small to visualize as discrete particles in the tomographic slices, but they would contribute textures that can be “seen” by the programs – in particular RELION, which does the discrimination between structural states. We do not know the inner-workings of RELION well enough to say what kinds of density textures would side-track its classification routines.

      The title of the paper is not well reflected in the main figures. The title of Figure 2 says "Canonical nucleosomes are rare in wild-type cells", but that is not shown/quantified in that figure. Rare is comparison to what? I suggest adding a comparative view from the HeLa cells, like the text does in lines 195-199. A measure of nucleosomes detected per volume nucleoplasm would also facilitate a comparison.

      Figure 2’s title is indeed unclear and does not align with the paper’s title and key conclusion. The rarity here is relative to the expected number of nucleosomes (canonical plus non-canonical). We have changed the title to “Canonical nucleosomes are a minority of the expected total in wild-type cells”. We would prefer to leave the reference to HeLa cells to the main text instead of as a figure panel because the comparison is not straightforward for a graphical presentation. Instead, we will report the total number of nucleosomes estimated for this particular tomogram (~7,600) versus the number of canonical nucleosomes classified (297; 594 if we assume we missed half of them).

      If the cell contains mostly non-canonical nucleosomes, are they really non-canonical? Maybe a change of language is required once this is somewhat sure (say, after line 303).

      This is an interesting semantic and philosophical point. From the yeast cell’s “perspective”, the canonical nucleosome structure would be the form that is in the majority. That being said, we do not know if there is one structure that is the majority. From the chromatin field’s point of view, the canonical nucleosome is the form that is most commonly seen in all the historical – and most contemporary – literature, namely something that resembles the crystal structure of Luger et al, 1997. Given these two lines of thinking, we will add the following clarification after line 303:

      “At present, we do not know what the non-canonical nucleosome structures are, meaning that we cannot even determine if one non-canonical structure is the majority. Until we know what the family of non-canonical nucleosome structures are, we will use the term non-canonical to describe the nucleosomes that do not have the canonical (crystal) structure”.

      The authors could explain more why they sometimes use conventional the 2D followed by 3D classification approach and sometimes "direct 3-D classification". Why, for example, do they do 2D followed by 3D in Figure S5A? This Figure could be considered a regular figure since it shows the main message of the paper.

      Because the classification of subtomograms in situ is still a work in progress, we felt it would be better to show one instance of 2-D classification for lysates and one for lamellae. While it is true that we could have presented direct 3-D classification for the entire paper, we anticipate that readers will be interested to see what the in situ 2-D class averages look like.

      The main message is that there are canonical nucleosomes in situ (at least in wild-type cells), but they are a minority. Therefore, the conventional classification for Figure S5A should not be a main figure because it does not show any canonical nucleosome class averages in situ.

      Figure 1: Why is there a gap in the middle of the nucleosome in panel B? The authors write that this is a higher resolution structure (18Å), but in the even higher resolution crystallography structure (3Å resolution), there is no gap in the middle.

      There is a lower concentration of amino acids at the middle in the disc view; unfortunately, the space-filling model in Figure 1A hides this feature. The gap exists in experimental cryo-EM density maps. See below for an example. The size of the gap depends on the contour level and probably the contrast mechanism, as the gap is less visible in the VPP subtomogram averages. To clarify this confusing phenomenon, we will add the following lines to the figure legend:

      “The gap in the disc view of the nuclear-lysate-based average is due to the lower concentration of amino acids there, which is not visible in panel A due to space-filling rendering. This gap’s size may depend on the contrast mechanism because it is not visible in the VPP averages.”

      Reviewer #2 (Public Review):

      Nucleosome structures inside cells remain unclear. Tan et al. tackled this problem using cryo-ET and 3-D classification analysis of yeast cells. The authors found that the fraction of canonical nucleosomes in the cell could be less than 10% of total nucleosomes. The finding is consistent with the unstable property of yeast nucleosomes and the high proportion of the actively transcribed yeast genome. The authors made an important point in understanding chromatin structure in situ. Overall, the paper is well-written and informative to the chromatin/chromosome field.

      We thank Reviewer 2 for their positive assessment.

      Reviewer #3 (Public Review):

      Several labs in the 1970s published fundamental work revealing that almost all eukaryotes organize their DNA into repeating units called nucleosomes, which form the chromatin fiber. Decades of elegant biochemical and structural work indicated a primarily octameric organization of the nucleosome with 2 copies of each histone H2A, H2B, H3 and H4, wrapping 147bp of DNA in a left handed toroid, to which linker histone would bind.

      This was true for most species studied (except, yeast lack linker histone) and was recapitulated in stunning detail by in vitro reconstitutions by salt dialysis or chaperone-mediated assembly of nucleosomes. Thus, these landmark studies set the stage for an exploding number of papers on the topic of chromatin in the past 45 years.

      An emerging counterpoint to the prevailing idea of static particles is that nucleosomes are much more dynamic and can undergo spontaneous transformation. Such dynamics could arise from intrinsic instability due to DNA structural deformation, specific histone variants or their mutations, post-translational histone modifications which weaken the main contacts, protein partners, and predominantly, from active processes like ATP-dependent chromatin remodeling, transcription, repair and replication.

      This paper is important because it tests this idea whole-scale, applying novel cryo-EM tomography tools to examine the state of chromatin in yeast lysates or cryo-sections. The experimental work is meticulously performed, with vast amount of data collected. The main findings are interpreted by the authors to suggest that majority of yeast nucleosomes lack a stable octameric conformation. The findings are not surprising in that alternative conformations of nucleosomes might exist in vivo, but rather in the sheer scale of such particles reported, relative to the traditional form expected from decades of biochemical, biophysical and structural data. Thus, it is likely that this work will be perceived as controversial. Nonetheless, we believe these kinds of tools represent an important advance for in situ analysis of chromatin. We also think the field should have the opportunity to carefully evaluate the data and assess whether the claims are supported, or consider what additional experiments could be done to further test the conceptual claims made. It is our hope that such work will spark thought-provoking debate in a collegial fashion, and lead to the development of exciting new tools which can interrogate native chromatin shape in vivo. Most importantly, it will be critical to assess biological implications associated with more dynamic - or static forms- of nucleosomes, the associated chromatin fiber, and its three-dimensional organization, for nuclear or mitotic function.

      Thank you for putting our work in the context of the field’s trajectory. We hope our EMPIAR entry, which includes all the raw data used in this paper, will be useful for the community. As more labs (hopefully) upload their raw data and as image-processing continues to advance, the field will be able to revisit the question of non-canonical nucleosomes in budding yeast and other organisms.

    7. eLife assessment

      This important paper exploits new cryo-EM tomography tools to examine the state of chromatin in situ. The experimental work is meticulously performed and convincing, with a vast amount of data collected. The main findings are interpreted by the authors to suggest that the majority of yeast nucleosomes lack a stable octameric conformation. Despite the possibly controversial nature of this report, it is our hope that such work will spark thought-provoking debate, and further the development of exciting new tools that can interrogate native chromatin shape and associated function in vivo.

    8. Reviewer #1 (Public Review):

      This manuscript by Tan et al is using cryo-electron tomography to investigate the structure of yeast nucleosomes both ex vivo (nuclear lysates) and in situ (lamellae and cryosections). The sheer number of experiments and results are astounding and comparable with an entire PhD thesis. However, as is always the case, it is hard to prove that something is not there. In this case, canonical nucleosomes. In their path to find the nucleosomes, the authors also stumble over new insights into nucleosome arrangement that indicates that the positions of the histones is more flexible than previously believed.

      Major strengths and weaknesses:

      Personally, I am not ready to agree with their conclusion that heterogenous non-canonical nucleosomes predominate in yeast cells, but this reviewer is not an expert in the field of nucleosomes and can't judge how well these results fit into previous results in the field. As a technological expert though, I think the authors have done everything possible to test that hypothesis with today's available methods. One can debate whether it is necessary to have 35 supplementary figures, but after working through them all, I see that the nature of the argument needs all that support, precisely because it is so hard to show what is not there. The massive amount of work that has gone into this manuscript and the state-of-the art nature of the technology should be warmly commended. I also think the authors have done a really great job with including all their results to the benefit of the scientific community. Yet, I am left with some questions and comments:

      Could the nucleosomes change into other shapes that were predetermined in situ? Could the authors expand on if there was a structure or two that was more common than the others of the classes they found? Or would this not have been found because of the template matching and later reference particle used?

      Could it simply be that the yeast nucleoplasm is differently structured than that of HeLa cells and it was harder to find nucleosomes by template matching in these cells? The authors argue against crowding in the discussion, but maybe it is just a nucleoplasm texture that side-tracks the programs?

      The title of the paper is not well reflected in the main figures. The title of Figure 2 says "Canonical nucleosomes are rare in wild-type cells", but that is not shown/quantified in that figure. Rare is comparison to what? I suggest adding a comparative view from the HeLa cells, like the text does in lines 195-199. A measure of nucleosomes detected per volume nucleoplasm would also facilitate a comparison.

      If the cell contains mostly non-canonical nucleosomes, are they really non-canonical? Maybe a change of language is required once this is somewhat sure (say, after line 303).

      The authors could explain more why they sometimes use conventional the 2D followed by 3D classification approach and sometimes "direct 3-D classification". Why, for example, do they do 2D followed by 3D in Figure S5A? This Figure could be considered a regular figure since it shows the main message of the paper.

      Figure 1: Why is there a gap in the middle of the nucleosome in panel B? The authors write that this is a higher resolution structure (18Å), but in the even higher resolution crystallography structure (3Å resolution), there is no gap in the middle.

    9. Reviewer #2 (Public Review):

      Nucleosome structures inside cells remain unclear. Tan et al. tackled this problem using cryo-ET and 3-D classification analysis of yeast cells. The authors found that the fraction of canonical nucleosomes in the cell could be less than 10% of total nucleosomes. The finding is consistent with the unstable property of yeast nucleosomes and the high proportion of the actively transcribed yeast genome. The authors made an important point in understanding chromatin structure in situ. Overall, the paper is well-written and informative to the chromatin/chromosome field.

    10. Reviewer #3 (Public Review):

      Several labs in the 1970s published fundamental work revealing that almost all eukaryotes organize their DNA into repeating units called nucleosomes, which form the chromatin fiber. Decades of elegant biochemical and structural work indicated a primarily octameric organization of the nucleosome with 2 copies of each histone H2A, H2B, H3 and H4, wrapping 147bp of DNA in a left handed toroid, to which linker histone would bind.

      This was true for most species studied (except, yeast lack linker histone) and was recapitulated in stunning detail by in vitro reconstitutions by salt dialysis or chaperone-mediated assembly of nucleosomes. Thus, these landmark studies set the stage for an exploding number of papers on the topic of chromatin in the past 45 years.

      An emerging counterpoint to the prevailing idea of static particles is that nucleosomes are much more dynamic and can undergo spontaneous transformation. Such dynamics could arise from intrinsic instability due to DNA structural deformation, specific histone variants or their mutations, post-translational histone modifications which weaken the main contacts, protein partners, and predominantly, from active processes like ATP-dependent chromatin remodeling, transcription, repair and replication.

      This paper is important because it tests this idea whole-scale, applying novel cryo-EM tomography tools to examine the state of chromatin in yeast lysates or cryo-sections. The experimental work is meticulously performed, with vast amount of data collected. The main findings are interpreted by the authors to suggest that majority of yeast nucleosomes lack a stable octameric conformation. The findings are not surprising in that alternative conformations of nucleosomes might exist in vivo, but rather in the sheer scale of such particles reported, relative to the traditional form expected from decades of biochemical, biophysical and structural data. Thus, it is likely that this work will be perceived as controversial. Nonetheless, we believe these kinds of tools represent an important advance for in situ analysis of chromatin. We also think the field should have the opportunity to carefully evaluate the data and assess whether the claims are supported, or consider what additional experiments could be done to further test the conceptual claims made. It is our hope that such work will spark thought-provoking debate in a collegial fashion, and lead to the development of exciting new tools which can interrogate native chromatin shape in vivo. Most importantly, it will be critical to assess biological implications associated with more dynamic - or static forms- of nucleosomes, the associated chromatin fiber, and its three-dimensional organization, for nuclear or mitotic function.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Trebino et al. investigated the BRAF activation process by analysing the interactions of BRAF N-terminal regulatory regions (CRD, RBD, and BSR) with the C-terminal kinase domain and with the upstream regulators HRAS and KRAS. To this end, they generated four constructs comprising different combinations of N-terminal domains of BRAF and analysed their interaction with HRAS as well as conformational changes that occur. By HDX-MS they confirmed that the RBD is indeed the main mediator of interaction with HRAS. Moreover, they observed that HRAS binding leads to conformational changes exposing the BSR to the environment. Next, the authors used OpenSPR to determine the binding affinities of HRAS to the different BRAF constructs. While BSR+RBD, RBD+CRD, and RBD bound HRAS with nanomolar affinity, no binding was observed with the construct comprising all three domains. Based on these experiments, the authors concluded that BSR and CRD negatively regulate binding to HRAS and hypothesised that BSR may confer some RAS isoform specificity. They corroborated this notion by showing that KRAS bound to BRAF-NT1 (BSR+RBD+CRD) while HRAS did not. Next, the authors analysed the autoinhibitory interaction occurring between the N-terminal regions and the kinase domain. Through pulldown and OpenSPR experiments, they confirm that it is mainly the CRD that makes the necessary contacts with the kinase domain. In addition, they show that the BSR stabilizes these interactions and that the addition of HRAS abolishes them. Finally, the D594G mutation within the KD of BRAF is shown to destabilise these autoinhibitory interactions, which could explain its oncogenic potential.

      Overall, the in vitro study provides new insights into the regulation of BRAF and its interactions with HRAS and KRAS through a comprehensive in vitro analysis of the BRAF N-terminal region. Also, the authors report the first KD values for the N- and C-terminal interactions of BRAF and show that the BSR might provide isoform specificity towards KRAS. While these findings could be useful for the development of a new generation of inhibitors, the overall impact of the manuscript could probably be enhanced if the authors were to investigate in more detail how the BSR-mediated specificity of BRAF towards certain RAS isoforms is achieved. Moreover, though the very "clean" in vitro approach is appreciated, it also seems useful to examine whether the observed interactions and conformational changes occur in the full-length BRAF molecule and in more physiological contexts. Some of the results could be compared with studies including full-length constructs.

      Public Response: We would like to express our gratitude for your valuable feedback on our manuscript. Your insightful suggestions have significantly improved the quality and completeness of our research. In response to your comments, we have conducted additional experiments and incorporated new data into the revised manuscript.

      To gain a deeper understanding of how the BSR-mediated specificity of BRAF towards certain RAS isoforms is achieved, we performed HDX-MS to investigate the impact of KRAS interactions on the BSR. Our findings indicate that when KRAS is bound to BRAF NT2, there is no significant difference in hydrogen-deuterium exchange rates in the BSR compared to the apo-NT2 state (Figure 4). This observation contrasts with the effect of HRAS binding, where peptides from the BRAF-BSR exhibit an increased rate change, suggesting that HRAS induces a conformationally more dynamic state (Figure 2).

      Our results align with the conclusions of Terrell et al. in their 2019 publication, which propose that isoform preferences in the RAS-RAF interaction are driven by opposite charge attractions between BRAF-BSR and KRAS-HVR, promoting the interaction.1 Our data offers a potential mechanistic explanation, suggesting that HRAS disrupts the conformational stability of the BSR provided by the RBD, while KRAS-HVR restores stability and enhances interaction favorability. It is important to note that our results do not directly confirm a long-lasting interaction between the BRAF-BSR and KRAS-HVR, but they do not rule out the possibility of a transient, low-affinity interaction or close proximity between the two.

      Furthermore, our binding kinetics measurements conducted using OpenSPR support these findings. Particularly, in the case of NT1, when the CRD accompanies the BSR and RBD, no interactions with HRAS were observed. Additionally, we quantified the binding affinities between NT3:KRAS and NT4:KRAS, demonstrating that they are equally strong and that the presence of the BSR or CRD does not singularly affect the primary RBD interaction, consistent with HRAS. The BSR appears to exert an inhibitory effect on HRAS when the entire N-terminal region (BSR+RBD+CRD) is present. The BSR-mediated specificity is achieved through a coordinated interplay with the CRD.

      Moreover, we have addressed your concern regarding the physiological relevance of our conclusions. In response, we utilized active, full-length (FL) BRAF purified from HEK293F cells in OpenSPR experiments. Our findings indicate that FL-BRAF behaves similarly to BRAF-NT1, as it does not bind to HRAS but binds to KRAS with a deviation comparable to NT1. We have demonstrated that post-translational modifications or native intramolecular interactions do not alter our initial results. Several literature sources, employing cell systems or expressing proteins from insect or mammalian cells, further support the findings presented in our study.2–5

      Thank you once again for your constructive feedback, which has contributed significantly to the refinement of our work.

      For the author:

      Major points:

      1. Figure 1D: Negative control is missing.

      Response: We have incorporated the negative control into this figure as suggested.

      1. Figure 3F and G: negative controls (GST only) are missing.

      Response: We have incorporated the negative control into this figure as suggested.

      1. The authors demonstrate that BRAF NT1 (BSR+RBD+CRD) interacts with KRAS but not HRAS in SPR experiments (Figure 4). What about the conformational change that affects the positioning of BSR when NT2 (BSR+RBD) binds to HRAS (Figure 2)? Does it also occur with KRAS or not? When a rate change is observed between free protein and bound protein in HDX, particularly when this rate change results in a sigmoidal curve that closely parallels the reference curve, it signifies that all residues within the peptide share a uniform protection factor. This suggests that they collectively undergo conformational changes at the same rate, likely due to a concerted opening as a cohesive unit. In the context of our time plots, we observe this distinctive characteristic in the curves derived from the BSR peptides, indicating that HRAS binding perturbs this region, alters its flexibility, and induces a coordinated conformational shift. This compelling evidence strongly supports our assertion that HRAS instigates a reorientation of the BSR.

      Response: In response to the reviewer's comments, we conducted additional experiments to explore whether KRAS elicits any comparable alterations in the H-D exchange of the BSR within BRAF-NT2. Our findings indicate that KRAS does not induce a similar conformational change in the BSR. We have detailed these results in the Results section under the heading "BSR Differentiates the BRAF-KRAS Interaction from the BRAF-HRAS Interaction" and have included corresponding panels in Figure 4 to visually illustrate these observations.

      1. Related to point 3: The authors mention that the HVR domain is responsible for isoform-specific differences. Does the BSR interact with the HVR domain of KRAS (but not HRAS)?

      Response: It has been suggested by Terrell and colleagues1 that the BRAF-BSR and KRASHVR are directly responsible for the isoform specific interactions. We have no direct evidence confirming an interaction between the HVR and BSR. However, we deduce the possibility of such interaction based on previous research findings. Our HDX-MS experiments have demonstrated that the BRAF-BSR does not engage with HRAS. In our new HDX-MS experiments involving KRAS, we observed that the presence of KRAS does not lead to any discernible increase or decrease in the rate of deuterium exchange within the BRAF-BSR. It is important to emphasize that the absence of a rate change does not necessarily negate the occurrence of binding; rather, it might indicate a transient interaction with an affinity level below the detection threshold of HDX-MS.

      Given that the only major difference between H- and K-RAS isoforms is the HVR, we hypothesize that binding differences between BRAF and RAS isoforms can be attributed to the HVR. Notably, BRAF-NT3 resembles CRAF, which also behaves in line with the findings from Terrell et al. in which the BSR is not present to impact RAS-RAF association. We have updated some of the discussion section to include the new results and draw relevant conclusion.

      We mention in the text in the results section, “The HVR is an important region for regulating RAS isoform differences, like membrane anchoring, localization, RAS dimerization, and RAF interactions6… These results, combined with HDX-MS results, which showed that the BSR is exposed when bound to HRAS, suggest that the electrostatic forces surrounding the BSR promote BRAF autoinhibition and the specificity of RAF-RAS interactions.”

      We also write in the discussion, “However, BRET assays suggest that CRAF does not show preference for either H- or KRAS, while BRAF appears to prefer KRAS.1 This preference is suggested to result from the potential favorable interactions between the negatively charged BSR of BRAF and the positively charged, poly-lysine region of the HVR of KRAS1… Our binding data provide additional examples of isoform-specific activity. We speculate that diminished BRAF-NT1 binding to HRAS and increased BSR exposure upon HRAS binding may be due to electrostatic repulsion between HRAS and the BSR. Our full-length KRAS and its interaction with NT1 support the hypothesis that the BSR attenuates fast binding to HRAS but not to KRAS.”

      1. The authors might consider including NRAS in their study to give more weight to this interesting aspect.

      Response: While this suggestion is intriguing and could contribute to the expanding body of literature on RAS signaling, particularly in the context of NRAS-mutant tumors, we believe that delving into this topic would be beyond the scope of the present manuscript.

      1. Figure 6A: In this pulldown experiment the authors wish to demonstrate that binding of HRAS abolishes the autoinhibitory binding between NT1 and the kinase domain. However, the experimental design (i.e., pulldown of RAS) does not allow us to assess whether NT1 and KD are bound to each other in these conditions at all. The authors should rather pull down the KD and show that the interaction with NT1 is abolished when RAS is added.

      Response: We appreciate your suggestion. The experimental design for this study was intentionally structured to focus on the specific subset of NT1 that interacts with HRAS. The BRAF N-terminal region has the capacity to bind both HRAS and KD, resulting in two distinct populations within BRAF-NT1: NT1:KD and NT1:HRAS, although we believe the ratio between those two populations is not 1:1. If we were to design the experiment by isolating either the KD or NT1, it would lead to the observation of both populations simultaneously, making it challenging to distinguish between them. Our pulldown experiments are performed under the same conditions (i.e. all the proteins were maintained in a molar ratio of 1:1 and exposed to the same buffer components), and we rely on pulldown assays, such as those depicted in Figure 5, to clearly demonstrate the binding interactions between NT1 and KD.

      1. The authors have chosen a purely in vitro approach for their interaction studies, which initially makes sense for the addressed questions. However, since the BRAF constructs studied are only fragments and neither BRAF nor K/HRAS has any posttranslational modifications, the question arises to what extent the findings obtained hold up in vivo. Therefore, the manuscript would greatly benefit from monitoring the described interactions in full-length proteins and in cells or at least with proteins purified from cells.

      Response: Thank you for your valuable suggestion, which we take very seriously to enhance the quality of our manuscript. Upon carefully reviewing your comments, we conducted additional experiments involving full-length, wild-type BRAF (FL-BRAF) that was purified from mammalian cells, encompassing the post-translational modifications and scaffolding proteins such as 14-3-3 (Supplementary Fig 8A). We have incorporated the findings from these OpenSPR experiments into the revised manuscript within the Results Section titled "BSR Differentiates the BRAF-KRAS Interaction from the BRAFHRAS Interaction" and Figure 4. In summary, our results with FL-BRAF affirm the extension of our initial observations. Both NT1 and FL-BRAF interact with KRAS with comparable affinities, and neither NT1 nor FL-BRAF demonstrates an interaction with HRAS using OpenSPR. These results underscore that BRAF fragments accurately represent active, fully processed BRAF, lending support to our in vitro approach.

      Moreover, the conserved interactions we report in this manuscript are supported by literature. The interaction between RAF-RBD and RAS has been extensively documented, spanning investigations conducted in both insect and mammalian cell lines. For instance, Tran et al. (2021) utilized mammalian expression systems to explore the role of RBD in mediating BRAF activation through RAS interaction, identifying the same binding surfaces that we highlighted using HDX-MS.2 They quantified the KRAS-CRAF interaction yielding binding affinities in the low nanomolar range, similar to our findings for BRAF-NT:KRAS OpenSPR.2 In the manuscript text, we compared the binding affinity of BRAF residues 1245 purified from insect cells3 to our BRAF 1-227 (NT2 from E. coli), noting that the published value falls within the standard deviation of our experimental value. Additionally, our results align with the autoinhibited FL-BRAF:MEK:14-3-3 structure, which was expressed in Sf9 insect cells and reveals the central role of the CRD in maintaining autoinhibition through interactions with KD.4 In 2005, Tran and colleagues revealed specific domains within the BRAF N-terminal region are involved in binding to KD through Co-IP experiments conducted in mammalian cells.5

      While we are fully aware of the limitations of taking a purely in vitro approach to study the role of BRAF regulatory domains in RAS-RAF interactions and autoinhibition, as well as to quantify the affinity of these interactions, we emphasize that this approach enables us to dissect and examine the specific regions of RAF that are under investigation. As we write in the manuscript: “Our in vitro studies were conducted using proteins purified from E. coli, which lack the membrane, post-translational modifications, and regulatory, scaffolding, or chaperone proteins that are involved in BRAF regulation. Nonetheless, our study provides a direct characterization of the intra- and inter-molecular protein-protein interactions involved in BRAF regulation, without the complications that arise in cell-based assays.” We have added the following comment to clarify the advantages of our in vitro approach and the challenges associated with cell-based assays: “… without the complications and false-positives that can arise in cell-based assays, which often cannot distinguish between proximity and biochemical interactions.”

      Once again, we appreciate your insight feedback, which has contributed significantly to the improvement of our manuscript.

      Minor:

      1. Page 7, paragraph 2, line 6: It should probably read "BRAF autoinhibition" not "BRAF autoinhibitory".

      Response: Thank you for bringing this to our attention. We have fixed this typo.

      1. Figure 3G: In the first lane (time point 0 min) there is no input band for His/MBP-NT1. Probably a mistake when cropping the image from the original photo.

      Response: We sincerely appreciate your diligence in identifying cropping errors, and we have taken comprehensive measures to review the manuscript and correct any such errors. Regarding this specific figure, it is important to note that NT1 was not added at the "0" minute time point, which explains the absence of an input band at that stage. To avoid any confusion, we have revised the notation from "0" to "-" for clarity.

      Reviewer #2 (Public Review):

      In the manuscript entitled 'Unveiling the Domain-Specific and RAS Isoform-Specific Details of BRAF Regulation', the authors conduct a series of in vitro experiments using Nterminal and C-terminal BRAF fragments (SPR, HDX-MS, pull-down assays) to interrogate BRAF domain-specific autoinhibitory interactions and engagement by H- and KRAS GTPases. Of the three RAF isoforms, BRAF contains an extended N-terminal domain that has yet to be detected in X-ray and cryoEM reconstructions but has been proposed to interact with the KRAS hypervariable region. The investigators probe binding interactions between 4 N-terminal (NT) BRAF fragments (containing one more NT domain (BRS, RBD, and CRD)), with full-length bacterial expressed HRAS, KRAS as well as two BRAF C-terminal kinase fragments to tease out the underlying contribution of domainspecific binding events. They find, consistent with previous studies, that the BRAF BSR domain may negatively regulate RAS binding and propose that the presence of the BSR domain in BRAF provides an additional layer of autoinhibitory constraints that mediate BRAF activity in a RAS-isoform-specific manner. One of the fragments studied contains an oncogenic mutation in the kinase domain (BRAF-KDD594G). The investigators find that this mutant shows reduced interactions with an N-terminal regulatory fragment and postulate that this oncogenic BRAF mutant may promote BRAF activation by weakening autoinhibitory interactions between the N- and C-terminus.

      While this manuscript sheds light on B-RAF specific autoinhibitory interactions and the identification and partial characterization of an oncogenic kinase domain (KD) mutant, several concerns exist with the vitro binding studies as they are performed using taggedisolated bacterial expressed fragments, 'dimerized' RAS constructs, lack of relevant citations, controls, comparisons and data/error analysis. Detailed concerns are listed below.

      1. Bacterial-expressed truncated BRAF constructs are used to dissect the role of individual domains in BRAF autoinhibition. Concerns exist regarding the possibility that bacterial expression of isolated domains or regions of BRAF could miss important posttranslational modifications, intra-molecular interactions, or conformational changes that may occur in the context of the full-length protein in mammalian cells. This concern is not addressed in the manuscript.

      Response: Reviewer 1 raised a similar concern, and we have duplicated our response below for your reference:

      Thank you for your valuable suggestion, which we take very seriously to enhance the quality of our manuscript. Upon carefully reviewing your comments, we conducted additional experiments involving full-length, wild-type BRAF (FL-BRAF) that was purified from mammalian cells, encompassing the post-translational modifications and scaffolding proteins such as 14-3-3 (Supplementary Fig 8A). We have incorporated the findings from these OpenSPR experiments into the revised manuscript within the Results Section titled "BSR Differentiates the BRAF-KRAS Interaction from the BRAF-HRAS Interaction" and Figure 4. In summary, our results with FL-BRAF affirm the extension of our initial observations. Both NT1 and FL-BRAF interact with KRAS with comparable affinities, and neither NT1 nor FL-BRAF demonstrates an interaction with HRAS using OpenSPR. These results underscore that BRAF fragments accurately represent active, fully processed BRAF, lending support to our in vitro approach.

      Moreover, the conserved interactions we report in this manuscript are supported by literature. The interaction between RAF-RBD and RAS has been extensively documented, spanning investigations conducted in both insect and mammalian cell lines. For instance, Tran et al. (2021) utilized mammalian expression systems to explore the role of RBD in mediating BRAF activation through RAS interaction, identifying the same binding surfaces that we highlighted using HDX-MS.2 They quantified the KRAS-CRAF interaction yielding binding affinities in the low nanomolar range, similar to our findings for BRAF-NT:KRAS OpenSPR.2 In the manuscript text, we compared the binding affinity of BRAF residues 1245 purified from insect cells3 to our BRAF 1-227 (NT2 from E. coli), noting that the published value falls within the standard deviation of our experimental value. Additionally, our results align with the autoinhibited FL-BRAF:MEK:14-3-3 structure, which was expressed in Sf9 insect cells and reveals the central role of the CRD in maintaining autoinhibition through interactions with KD.4 In 2005, Tran and colleagues revealed specific domains within the BRAF N-terminal region are involved in binding to KD through Co-IP experiments conducted in mammalian cells.5

      While we are fully aware of the limitations of taking a purely in vitro approach to study the role of BRAF regulatory domains in RAS-RAF interactions and autoinhibition, as well as to quantify the affinity of these interactions, we emphasize that this approach enables us to dissect and examine the specific regions of RAF that are under investigation. As we write in the manuscript: “Our in vitro studies were conducted using proteins purified from E. coli, which lack the membrane, post-translational modifications, and regulatory, scaffolding, or chaperone proteins that are involved in BRAF regulation. Nonetheless, our study provides a direct characterization of the intra- and inter-molecular protein-protein interactions involved in BRAF regulation, without the complications that arise in cell-based assays.” We have added the following comment to clarify the advantages of our in vitro approach and the challenges associated with cell-based assays: “… without the complications and false-positives that can arise in cell-based assays, which often cannot distinguish between proximity and biochemical interactions.”

      Once again, we appreciate your insight feedback, which has contributed significantly to the improvement of our manuscript.

      1. The experiments employ BRAF NT constructs that retain an MBP tag and RAS proteins with a GST tag. Have the investigators conducted control experiments to verify that the tags do not induce or perturb native interactions?

      Response: Thank you for highlighting this important issue. We have conducted control experiments whenever feasible, particularly in cases where tags were not required for visualization, immobilization, or where cleave sites were present. We have subsequently included these control experiments in the supplementary figures and accompanying text within the manuscript.

      It is essential to note that many of the techniques employed in this manuscript rely on tags, such as immobilizing proteins onto NTA OpenSPR sensors and employing various resins/beads for pulldown assays. Utilizing tags for protein immobilization in OpenSPR applications offers distinct advantages, including homogeneous and site-specific immobilization of the protein, ensuring that binding sites remain accessible for the study of protein-protein interactions (PPIs) of interest. Furthermore, in all BRAF-RAS SPR experiments, the MBP protein serves as the reference channel "blocking" protein. This reference channel is instrumental in mitigating any potential false-positive signals resulting from binding interactions with the MBP protein. Any such signal is subsequently subtracted out during data analysis.

      To provide a comprehensive understanding of these aspects, we have incorporated these details into the manuscript text for clarity:

      “Maltose bind protein (MBP) is immobilized on the OpenSPR reference channel, which accounts for any non-specific binding or impacts to the native PPIs that may result from the presence of tags. Kinetic analysis is performed on the corrected binding curves, which subtracts any response in the reference channel.”

      We describe the control experiment to examine whether His/MBP-tag affects NT1 binding with BRAF-KD: “Similarly, we removed the His/MBP-tag from BRAF-NT1 through a TEV protease cleavage reaction and flowed over untagged NT1. Kinetic analysis confirmed that the interaction is preserved with the KD=13 nM (Supplemental Figure 6F).”

      We show that the GST-tag does not affect KRAS interactions with NTs in supplemental figure 6. We purified full-length, His/MBP-KRAS and subsequently removed the tag through TEV cleavage. BRAF-NT interactions are preserved with untagged KRAS. GST alone, also does not interact with BRAF-NTs. We updated the text in the results section “BSR differentiates the BRAF-KRAS interaction from the BRAF-HRAS interaction.”

      Additionally, Vojtek and colleagues used the same fusion-protein combinations (GSTRAS and MBP-RAF) in pulldown experiments and also found no perturbations from these tags.8

      1. The investigators state that the GST tag on the RAS constructs was used to promote RAS dimerization, as RAS dimerization is proposed to be key for RAF activation. However, recent findings argue against the role of RAS dimers in RAF dimerization and activation (Simanshu et al, Mol. Cell 2023). Moreover, while GST can dimerize, it is unclear whether this promotes RAS dimerization as suggested. In methods for the OpenSPR experiments probing NT BRAF:RAS interactions, it is stated that "monomeric KRAS was flowed...". This terminology is a bit confusing. How was the monomeric state of KRAS determined and what was the rationale behind the experiment? Is there a difference in binding interactions between "monomeric vs dimeric KRAS"?

      Response: Thank you for conducting such a comprehensive review of our manuscript and for identifying the mention of "monomeric KRAS" in the experimental section, which was inadvertently included and should not have been present. This terminology originally referred to a series of experiments involving "monomeric" KRAS that were initially considered for inclusion in the main body of the manuscript but were subsequently removed before submission. Furthermore, we adjusted the terminology to prevent any confusion or unwarranted implications.

      To clarify, this "monomeric" construct refers to the tagless, full-length KRAS variant that was confirmed to exist in a monomeric state through Size Exclusion Chromatography, eluting at a volume equivalent to 21 kDa. We have incorporated the findings from experiments involving this untagged KRAS variant into the supplementary figures to provide supporting evidence, particularly in response to comment #2, that the GST-tag does not interfere with native interactions. Supplementary Figure 1 illustrates that both GST-HRAS (45 kDa) and GST-KRAS (45 kDa) elute as dimers in solution, at approximately 90 kDa. It is important to note that the main text figures primarily feature the GST-tagged, "dimeric" RAS constructs. Our research results do not suggest any significant differences between "monomeric," untagged KRAS and "dimeric" GST-tagged KRAS, indicating that the binding kinetics between RAS and RAF are not influenced by oligomerization state (Supplementary Fig 6). To mitigate any potential confusion, we have made the necessary distinctions in the text and have revised the methods description to accurately reflect these aspects.

      While the recent findings summarized by Simanshu and colleagues were published concurrently with our manuscript submission, we would like to address this comment in the following manner. The authors assert that RAS does not engage in dimerization through the G domain, a hypothesis that contrasts with certain prior research findings. Instead, they propose that the plasma membrane plays a pivotal role in the clustering of RAS. Furthermore, the authors mention the involvement of RAS "dimerization" in RAF dimerization and activation in the subsequent statements:

      “Recruitment of two RAF proteins by RAS proteins in close proximity facilitate RAF activation but are not required for RAF dimerization.”

      “However, the PM recruitment of two RAF proteins by two non-dimerized but co- localized RAS proteins would serve equally well to promote RAF dimerization. Moreover, recent work on the activation cycle of RAF dimers (ref 20–23) argues strongly against a role for RAS dimers while revealing regulation by the 14-3-3 and SHOC2-MRAS- PP1C complexes. (Ref 24)”

      The primary focus of our study centers on elucidating the intricate details of the RAS-RAF interaction and the mechanisms underlying RAF autoinhibition, rather than emphasizing RAF dimerization as the sole pathway to RAF activation. It is important to recognize that RAF activation encompasses multiple steps, including RAS-mediated relief of RAF autoinhibition.

      To mimic physiological conditions as closely as possible, we employed a GST-tag on RAS in our experiments. It's worth noting that GST has a dimerization property,9 which brings RAS molecules into close proximity to one another, effectively emulating conditions akin to the plasma membrane. Our primary objective is not solely to facilitate interactions by bringing RAS into close proximity. Instead, our aim is to replicate cellular conditions to the greatest extent feasible, especially within the predominantly in vitro framework of our studies. Furthermore, we have revised the sentence pertaining to HRAS as follows: “As verified by size exclusion chromatography (Supplementary Fig 1A), the GST-tag dimerizes and forces HRAS into close proximity to recapitulate physiological conditions. (ref. 35)”

      1. The investigators determine binding affinities between GST-HRAS and NT BRAF domains (NT2 7.5 {plus minus} 3.5; NT3 22 {plus minus} 11 nM) by SPR, and propose that the BRS domain has an inhibitory role HRAS interactions with the RAF NT. However, it is unclear whether these differences are statistically meaningful given the error.

      Response: Thank you for bringing up this matter for further discussion. We are fully aware that these distinctions (NT2 and NT3), considering the overlapping error, lack statistical significance. Our conclusion points toward the most notable differences occurring when comparing NT1 to either NT2 or NT3, highlighting that the presence of the BSR has an inhibitory effect, particularly when the CRD is also present. It's important to note that we did not directly compare NT2 and NT3 to each other. Our comparison primarily elucidates that BSR without the CRD, and conversely, CRD without the BSR, do not exhibit the inhibitory effect. This collective evidence leads to the conclusion that all three domains collaboratively play a role in negatively regulating BRAF against HRAS.

      1. It is unclear why NT1 (BSR+RBD+CRD) was not included in the HDX experiments, which makes it challenging to directly compare and determine specific contributions of each domain in the presence of HRAS. Including NT1 in the experimental design could provide a more comprehensive understanding of the interplay between the domains and their respective roles in the HRAS-BRAF interaction. Further, excluding certain domains from the constructs, such as the BSR or CRD, may overlook potential domain-domain interactions and their influence on the conformational changes induced by HRAS binding.

      Response: We acknowledge that incorporating NT1 into the HDX experiments would have provided clearer insights into the specific contributions of each domain. Originally, it was our intention to include NT1 in these experiments. Unfortunately, we encountered challenges with the HDX experiments when it came to BRAF-NT1, as it yielded a significantly low sequence coverage after MS/MS analysis. We made multiple attempts to address this issue, which included additional protein purifications involving reducing agents, increasing the concentration of reaction buffer components, and extending the incubation time with reducing agents before injection. Despite these efforts, we were unable to obtain the desired sequence coverage for NT1. Consequently, we switched our approach to analyze NT2 and NT3 as the next best alternative.

      1. The authors perform pulldown experiments with BRAF constructs (NT1: BSR+RBD+CRD, NT2: BSR+RBD, NT3: RBD+CRD, NT4: RBD alone), in which biotinylated BRAF-KD was captured on streptavidin beads and probed for bound His/MBP-tagged BRAF NTs. Western blot results suggest that only NT1 and NT3 bind to the KD (Figure 5). However, performing a pulldown experiment with an additional construct, CRD alone, it would help to determine whether the CRD alone is sufficient for the interaction or if the presence of the RBD is required for higher affinity binding. This additional experiment would strengthen the authors' arguments and provide further insights into the mechanism of BRAF autoinhibition.

      Response: We are grateful for this valuable suggestion, and in response, we have taken the initiative to clone and purify a CRD-only construct (NT5) to strengthen our arguments. Subsequently, we conducted OpenSPR experiments to measure the binding affinity between NT5 and KD. Our findings clearly indicate that the CRD alone is not sufficient to mediate the autoinhibitory interactions and that the presence of the RBD is indeed necessary. These results have been incorporated into Figure 5 and are described within the Results Section for enhanced clarity and support.

      1. While the investigators state that their findings indicate that H- and KRAS differentially interact with BRAF, most of the experiments are focused on HRAS, with only a subset on KRAS. As SPR & pull-down experiments are only conducted on NT1 and NT2, evidence for RAS isoform-specific interactions is weak. It is unclear why parallel experiments were not conducted with KRAS using BRAF NT3 & NT4 constructs.

      Response: We sincerely appreciate your suggestion, which has contributed to enhancing the overall robustness of the evidence regarding isoform-specific differences between H- and K-RAS. In response, we performed additional experiments involving NT3 and NT4. The outcomes of these experiments have been integrated into Figure 4, and we have provided a comprehensive description of these results within the Results section “BSR differentiates the BRAF-KRAS interaction from the BRAF-HRAS interaction” of the manuscript.

      1. The investigators do not cite the AlphaFold prediction of full-length BRAF (AFP15056-F1) or the known X-ray structure of the BRAF BRS domain. Hence, it is unclear how Alpha-Fold is used to gain new structural information, and whether it was used to predict the structure of the N-terminal regulatory or the full-length protein.

      Response: We greatly appreciate the reviewer’s commitment to upholding good scientific practices and ensuring the inclusion of relevant citations in publications. In our original manuscript, we employed the UniProt ID P15056 to reference the specific AlphaFold structure used in our study. This was clarified as follows: "Since the full-length structure of BRAF is still unresolved, we applied the AlphaFold Protein Structure Database for a model of BRAF to display the conformation of the N-terminal domains and the HDX-MS results.40,41” Additionally, we referenced AlphaFold using the two citations recommended on their website (references 35 and 36 in the original manuscript). To prevent any potential confusion in the future, we have incorporated "AF-P15056-F1," as suggested.

      We are sorry for any misunderstanding that may have arisen regarding the use of AlphaFold for gaining new structural insights. Our sole intention was to utilize AlphaFold as a tool for modeling HDX, as a full-length structure of BRAF, encompassing the entire N-terminal domain, remains unavailable. We have taken steps to clarify our objectives in the manuscript to ensure the purpose of our AlphaFold utilization is unambiguous.

      Furthermore, we wish to emphasize that our utilization of AlphaFold was never intended to exclude the known X-ray structure of the BRAF-BSR domain. In our revised text, we have added clarity to our purposes and cited the Lavoie et al. Nature publication from 2018, which provides alignment between the X-ray structure and the AlphaFold model, thereby enhancing the confidence in the latter.

      1. In HDX-MS experiments, it is unclear how the authors determine whether small differences in deuterium uptake observed for some of the peptide fragments are statistically significant, and why for some of the labeling reaction times the investigators state " {plus minus} HRAS only" for only 3 time points?

      Response: First, in reference to the question about " ‘{plus minus} HRAS only’ for only 3 time points,” we write:

      “Both constructs were incubated with and without GMPPNP-HRAS in D2O buffer for set labeling reaction times (NT3: 2 sec [NT3 ± HRAS only], 6 sec [NT3 ± HRAS only], 20 sec, 30 sec [NT3 ± HRAS only], 60 sec, 5 min, 10 min, 30 min, 90 min, 4.5 h, 15 h, and 24 h)...”

      We realize how this can be confusing. To avoid such confusion, we fixed the text to read instead:<br /> “Both constructs were incubated with and without GMPPNP-HRAS in D2O buffer for set labeling reaction times (NT3: 2 sec, 6 sec, 20 sec, 30 sec, 60 sec, 5 min, 10 min, 30 min, 90 min, 4.5 h, 15 h, 45 h and 24 h at RT; NT2: 20 sec, 60 sec, 5 min, 10 min, 30 min, 90 min, 4.5 h, 15 h, and 24 h at RT)...”

      Next, with regard to assessing significance, we determine it by closely examining a consistent trend in smooth time course plots. To establish this trend, we rely on the presence of more than four overlapping peptides, each with multiple charge states, within a specific sequence range. When we observe multiple peptides showing even a small difference in rate exchange, we can confidently infer that structural changes have taken place. This confidence stems from the inherent reliability and redundancy in the data analysis approach we have employed.11,12 It is noteworthy that our focus is primarily on reporting the binding or no binding, rather than quantifying the magnitude of exchange. As such, conducting multiple replicates or statistical testing is not deemed necessary.13,14 This is true for multiple reasons:

      1) Instead of small deuterium changes (y-axis), we are focusing on the x-axis changes, which provides a slowing factor and how much that H-D exchange rate has changed.

      • In a publication investigating the ideal HDX-MS data set, the author explains, “with the availability of high resolution HDX-MS raw data, it may be the time to shift the data analysis paradigm from determination of centroid values and presentation of deuteration levels to deconvolution of isotope envelopes and presentation of exchange rates.” 15

      • Presentation of data through rate changes provides a physical chemistry measurement, as opposed to a relative measurement with percent deuteration. For example, slowing with a factor of 10 equates to the energy in 1 kCal. By quick visual estimation, we see a slowing factor of about 2 when RAS is bound to the BRAF-RBD.

      • We made some changes to the text to clear up any confusion about measuring D uptake vs rate.

      2) Looking at sigmoidal curves only—the “smooth time course” shows that the timedependent deuterium changes are not random, artifacts, or false positives/negatives. When parallel sigmoidal curves are present, any x-axis change is a measure of H-D exchange. Only plots with a smooth time course are used to make conclusions about BRAF’s conformational changes or binding interfaces.

      3) Wide time range- the extended time also confirms that any observed difference is reliable and accurate. This extended time frame provides coverage for deuteration levels from 0 to 100% for peptides. A smooth time course is present in complete coverage.

      • A narrow time window is a common flaw in HDX-MS studies14,15

      4) The rate change is observed at multiple time points (at least 4 for each peptide), which are all independent reactions, and show reproducibility of change

      5) Many overlapping peptides show the same pattern- the exchange rate difference is observed in at least 4 peptide time plots without contradictory evidence within the sequence range.

      • We included the complete set of peptide time plots in the supplemental materials.

      6) The many other peptide time plots that do not show any difference with and without RAS is a form of reproducibility, that no difference means no difference.

      1. The investigators find that KRAS binds NT1 in SPR experiments, whereas HRAS does not. However, the pull-down assays show NT1 binding to both KRAS and HRAS. SI Fig 5 attributes this to slow association, yet both SPR (on/off rates) and equilibrium binding measurements are conducted. This data should be able to 'tease' out differences in association.

      Response: Thank you for bringing up this important point. It's crucial to note that the experiments conducted at slow flow rates generated low responses, making it challenging to perform kinetic analyses effectively. Consequently, we are unable to provide accurate equilibrium binding measurements (on/off rates) for NT1 and HRAS. Regrettably, comparing the association rates between KRAS and HRAS is not feasible due to the differing flow rates employed. We have addressed this limitation in the manuscript as follows:

      “We therefore immobilized NT1 and flowed over HRAS at a much slower flow rate (5 µL/min), during which we saw minimal but consistent binding (Supplementary Fig 5A). The low response and long timeframe of each injection, however, makes the dissociation constant (KD) unmeasurable and incomparable to our other NT-HRAS OpenSPR results.”

      1. The model in Figure 7B highlights BSR interactions with KRAS, however, BSR interactions with the KRAS HVR (proximal to the membrane) are not shown, as supported by Terrell et al. (2019).

      Response: Thank you for the suggestion. We reoriented the BSR closer to HVR of KRAS rather than G-domain.

      1. The investigators state that 'These findings demonstrate that HRAS binding to BRAF directly relieves BRAF autoinhibition by disrupting the NT1-KD interaction, providing the first in vitro evidence of RAS-mediated relief of RAF autoinhibition, the central dogma of RAS-RAF regulation. However, in Tran et al (2005) JBC, they report pulldown experiments using N-and C-terminal fragments of BRAF and state that 'BRAF also contains an N-terminal autoinhibitory domain and that the interaction of this domain with the catalytic domain was inhibited by binding to active HRAS'. This reference is not cited.

      Response: We appreciate the concern raised regarding our statement. We want to clarify that it was never our intention to disregard this JBC publication, and we apologize for any misunderstanding caused by our phrasing. We recognize that our initial statement was contentious, and we have removed the word "first" from the phrase "first in vitro evidence." In the section of the discussion where we originally cited the Tran et al. (2005) publication, we have revised the language to eliminate "first" and have rephrased the sentence, as provided below:

      “Our in vitro binding studies align with previous implications that RAS relieves RAF autoinhibition shown through cell-based coIP’s.5”

      1. In Fig 2, panels A and C, it is unclear what the grey dotted line in is each plot.

      Response: Thank you for drawing our attention to the additional explanation needed here. The gray dotted lines represent the maximum deuterium exchange. We added the following description to the figure 2 legend:

      “Gray dotted lines represent the theoretical exchange behavior for specified peptide that is fully unstructured (top) or for specified peptide with a uniform protection factor (fraction of time the residue is involved in protecting the H-bond) of 100 (lower).”

      1. In Fig 3, error analysis is not provided for panel E.

      Response: We added the standard deviation values to this panel. We additionally added these for Fig 4C and Fig 5B.

      1. How was RAS GMPPNP loading verified?

      Response: Ras loading is a well-established protocol with a solid foundation in the literature.16– 21 We followed this accepted method for nucleotide exchange. Our controls, as evident in pulldown and OpenSPR experiments (fig 1C, 4E), unequivocally demonstrate that GMPPNPloaded RAS is active, while unloaded RAS is inactive, as evidenced by the absence of no binding. We also added supplemental figure 6E to show that inactive (unloaded) GST-KRAS does not bind to BRAF during OpenSPR analysis. To exemplify this, we included binding curves of 1 µM GST-KRAS- GMPPNP and -GDP flowed over NTA-immobilized BRAF-NT2 at a flow rate of 30 µl/min.

      References

      (1) Terrell, E. M.; Durrant, D. E.; Ritt, D. A.; Sealover, N. E.; Sheffels, E.; Spencer-Smith, R.; Esposito, D.; Zhou, Y.; Hancock, J. F.; Kortum, R. L.; Morrison, D. K. Distinct Binding Preferences between Ras and Raf Family Members and the Impact on Oncogenic Ras Signaling. Mol. Cell 2019, 76 (6), 872-884.e5. https://doi.org/10.1016/j.molcel.2019.09.004.

      (2) Tran, T. H.; Chan, A. H.; Young, L. C.; Bindu, L.; Neale, C.; Messing, S.; Dharmaiah, S.; Taylor, T.; Denson, J. P.; Esposito, D.; Nissley, D. V.; Stephen, A. G.; McCormick, F.; Simanshu, D. K. KRAS Interaction with RAF1 RAS-Binding Domain and Cysteine-Rich Domain Provides Insights into RAS-Mediated RAF Activation. Nat. Commun. 2021, 12 (1176), 1–16. https://doi.org/10.1038/s41467-021-21422-x.

      (3) Fischer, A.; Hekman, M.; Kuhlmann, J.; Rubio, I.; Wiese, S.; Rapp, U. R. B- and C-RAF Display Essential Differences in Their Binding to Ras: The Isotype-Specific N Terminus of B-RAF Facilitates Ras Binding. J. Biol. Chem. 2007, 282 (36), 26503–26516. https://doi.org/10.1074/jbc.M607458200.

      (4) Park, E.; Rawson, S.; Li, K.; Kim, B. W.; Ficarro, S. B.; Pino, G. G. Del; Sharif, H.; Marto, J. A.; Jeon, H.; Eck, M. J. Architecture of Autoinhibited and Active BRAF–MEK1–14-3-3 Complexes. Nature 2019, 575 (7783), 545–550. https://doi.org/10.1038/s41586-0191660-y.

      (5) Tran, N. H.; Wu, X.; Frost, J. A. B-Raf and Raf-1 Are Regulated by Distinct Autoregulatory Mechanisms. J. Biol. Chem. 2005, 280 (16), 16244–16253. https://doi.org/10.1074/jbc.M501185200.

      (6) Prior, I. A.; Hancock, J. F. Ras Trafficking, Localization and Compartmentalized Signalling. Semin. Cell Dev. Biol. 2012, 23 (2), 145–153.

      (7) Herrmann, C.; Martin, G. A.; Wittinghofer, A. Quantitative Analysis of the Complex between P21 and the Ras-Binding Domain of the Human Raf-1 Protein Kinase. J. Biol. Chem. 1995, 270 (7), 2901–2905. https://doi.org/10.1074/jbc.270.7.2901.

      (8) Vojtek, A. B.; Hollenberg, S. M.; Cooper, J. A. Mammalian Ras Interacts Directly with the Serine/Threonine Kinase Raf. Cell 1993, 74 (1), 205–214. https://doi.org/10.1016/00928674(93)90307-C.

      (9) Parker, M. W.; Bello, M. Lo; Federici, G. Crystallization of Glutathione S-Transferase from Human Placenta. J. Mol. Biol. 1990, 213 (2), 221–222. https://doi.org/10.1016/S00222836(05)80183-4.

      (10) Inouye, K.; Mizutani, S.; Koide, H.; Kaziro, Y. Formation of the Ras Dimer Is Essential for Raf-1 Activation. J. Biol. Chem. 2000, 275 (6), 3737–3740. https://doi.org/10.1074/JBC.275.6.3737.

      (11) Z. Y. Kan, X. Ye, J. J. Skinner, L. Mayne, S. W. E. ExMS2: An Integrated Solution for Hydrogen-Deuterium Exchange Mass Spectrometry Data Analysis. Anal Chem 2019, 91 (11), 7474–7481.

      (12) Mayne, L.; Kan, Z. Y.; Sevugan Chetty, P.; Ricciuti, A.; Walters, B. T.; Englander, S. W. Many Overlapping Peptides for Protein Hydrogen Exchange Experiments by the Fragment Separation-Mass Spectrometry Method. J. Am. Soc. Mass Spectrom. 2011, 22 (11), 1898–1905. https://doi.org/10.1007/S13361-011-0235-4.

      (13) Ye, X.; Lin, J.; Mayne, L.; Shorter, J.; Englander, S. W. Hydrogen Exchange Reveals Hsp104 Architecture, Structural Dynamics, and Energetics in Physiological Solution. Proc. Natl. Acad. Sci. 2019, 116 (15), 7333–7342. https://doi.org/10.1073/pnas.1816184116.

      (14) Ye, X.; Lin, J.; Mayne, L.; Shorter, J.; Englander, S. W. Structural and Kinetic Basis for the Regulation and Potentiation of Hsp104 Function. Proc. Natl. Acad. Sci. 2020, 117 (17), 9384–9392. https://doi.org/10.1073/pnas.1921968117.

      (15) Hamuro, Y. Determination of Equine Cytochrome c Backbone Amide Hydrogen/Deuterium Exchange Rates by Mass Spectrometry Using a Wider Time Window and Isotope Envelope. J. Am. Soc. Mass Spectrom. 2017, 28 (3), 486–497. https://doi.org/10.1007/s13361-016-1571-1.

      (16) Herrmann, C.; Horn, G.; Spaargaren, M.; Wittinghofer, A. Differential Interaction of the Ras Family GTP-Binding Proteins H-Ras, Rap1A, and R-Ras with the Putative Effector Molecules Raf Kinase and Ral-Guanine Nucleotide Exchange Factor. J. Biol. Chem. 1996, 271 (12), 6794–6800. https://doi.org/10.1074/jbc.271.12.6794.

      (17) Miller, A. F.; Halkides, C. J.; Redfield, A. G. An NMR Comparison of the Changes Produced by Different Guanosine 5’-Triphosphate Analogs in Wild-Type and Oncogenic Mutant P21ras. Biochemistry 1993, 32 (29), 7367–7376. https://doi.org/10.1021/bi00080a006.

      (18) Amendola, C. R.; Mahaffey, J. P.; Parker, S. J.; Ahearn, I. M.; Chen, W. C.; Zhou, M.; Court, H.; Shi, J.; Mendoza, S. L.; Morten, M. J.; Rothenberg, E.; Gottlieb, E.; Wadghiri, Y. Z.; Possemato, R.; Hubbard, S. R.; Balmain, A.; Kimmelman, A. C.; Philips, M. R. KRAS4A Directly Regulates Hexokinase 1. Nature 2019. https://doi.org/10.1038/s41586019-1832-9.

      (19) John, J.; Sohmen, R.; Feuerstein, J.; Linke, R.; Wittinghofer, A.; Goody, R. S. Kinetics of Interaction of Nucleotides with Nucleotide-Free H-Ras P21. Biochemistry 1990, 29 (25), 6058–6065. https://doi.org/10.1021/bi00477a025.

      (20) Dharmaiah, S.; Tran, T. H.; Messing, S.; Agamasu, C.; Gillette, W. K.; Yan, W.; Waybright, T.; Alexander, P.; Esposito, D.; Nissley, D. V.; McCormick, F.; Stephen, A. G.; Simanshu, D. K. Structures of N-Terminally Processed KRAS Provide Insight into the Role of N-Acetylation. Sci. Reports 2019 91 2019, 9 (1), 1–15. https://doi.org/10.1038/s41598-019-46846-w.

      (21) Rathinaswamy, M. K.; Gaieb, Z.; Fleming, K. D.; Borsari, C.; Harris, N. J.; Moeller, B. E.; Wymann, M. P.; Amaro, R. E.; Burke, J. E. Disease-Related Mutations in PI3Kγ Disrupt Regulatory C-Terminal Dynamics and Reveal a Path to Selective Inhibitors. Elife 2021, 10. https://doi.org/10.7554/eLife.64691.

    2. eLife assessment

      This manuscript describes useful information on the interactions of the BRAF N-terminal regulatory regions (CRD, RBD and BSR) with the C-terminal kinase domain and with the upstream regulators HRAS and KRAS. The authors provide solid evidence that the BRAF BSR domain may negatively regulate RAS binding and propose that the presence of the BSR domain in BRAF provides an additional layer of autoinhibitory constraints. The data will be of interest for researchers in the RAS/RAF and general kinase regulation fields.

    3. Reviewer #1 (Public Review):

      Trebino et al. investigated the BRAF activation process by analysing the interactions of BRAF N-terminal regulatory regions (CRD, RBD and BSR) with the C-terminal kinase domain and with the upstream regulators HRAS and KRAS. To this end, they generated four constructs comprising different combinations of N-terminal domains of BRAF and analysed their interaction with HRAS as well as conformational changes that occur. By HDX-MS they confirmed that the RBD is indeed the main mediator of interaction with HRAS. Moreover, they observed that HRAS binding leads to conformational changes exposing the BSR to the environment. Next, the authors used OpenSPR to determine the binding affinities of HRAS to the different BRAF constructs. While BSR+RBD, RBD+CRD and RBD bound HRAS with nanomolar affinity, no binding was observed with the construct comprising all three domains. Based on these experiments, the authors concluded that BSR and CRD negatively regulate binding to HRAS and hypothesised that BSR may confer some RAS isoform specificity. They corroborated this notion by showing that KRAS bound to BRAF-NT1 (BSR+RBD+CRD) while HRAS did not. Next, the authors analysed the autoinhibitory interaction occurring between the N-terminal regions and the kinase domain. Through pulldown and OpenSPR experiments, they confirm that it is mainly the CRD that makes the necessary contacts with the kinase domain. In addition, they show that the BSR stabilizes these interactions and that the addition of HRAS abolishes them. Finally, the D594G mutation within the KD of BRAF is shown to destabilise these autoinhibitory interactions, which could explain its oncogenic potential.

      Overall, the in vitro study provides new insights into the regulation of BRAF and its interactions with HRAS and KRAS through a comprehensive in vitro analysis of the BRAF N-terminal region. Also, the authors report the first KD values for the N- and C-terminal interactions of BRAF and show that the BSR might provide isoform specificity towards KRAS. While these findings could be useful for the development of a new generation of inhibitors, the overall impact of the manuscript could probably be enhanced if the authors were to investigate in more detail how the BSR-mediated specificity of BRAF towards certain RAS isoforms is achieved. Moreover, though the very "clean" in vitro approach is appreciated, it also seems useful to examine whether the observed interactions and conformational changes occur in the full-length BRAF molecule and in more physiological contexts. Some of the results could be compared with studies including full length constructs.

    4. Reviewer #2 (Public Review):

      In the manuscript the authors conduct a series of in vitro experiments using N-terminal and C-terminal BRAF fragments (SPR, HDX-MS, pull-down assays) to interrogate BRAF domain-specific autoinhibitory interactions and engagement by H- and KRAS GTPases. Of the three RAF isoforms, BRAF contains an extended N-terminal domain that has yet to be detected in X-ray and cryoEM reconstructions but has been proposed to interact with the KRAS hypervariable region. The investigators probe binding interactions between 4 N-terminal (NT) BRAF fragments (containing one more NT domain (BRS, RBD, and CRD)), with full-length bacterial expressed HRAS, KRAS as well as two BRAF C-terminal kinase fragments to tease out the underlying contribution of domain-specific binding events. They find, consistent with previous studies, that the BRAF BSR domain may negatively regulate RAS binding and propose that the presence of the BSR domain in BRAF provides an additional layer of autoinhibitory constraints that mediate BRAF activity in a RAS-isoform-specific manner. One of the fragments studied contains an oncogenic mutation in the kinase domain (BRAF-KDD594G). The investigators find that this mutant shows reduced interactions with an N-terminal regulatory fragment and postulate that this oncogenic BRAF mutant may promote BRAF activation by weakening autoinhibitory interactions between the N- and C-terminus.

      The manuscript is now significantly improved. The inclusion of additional controls and new experiments with KRAS strengthen the manuscript and aid in establishing RAS isoform-specific BRAF interactions.

    1. eLife assessment

      This important study evaluates the outcomes of a single-institution pilot program designed to provide graduate students and postdoctoral fellows with internship opportunities in areas representing diverse career paths in the life sciences. The data convincingly show the benefit of internships to students and postdocs, their research advisors, and potential employers, without adverse impacts on scientific productivity. This work will be of interest to multiple stakeholders in graduate and postgraduate life sciences education and should stimulate further research into how such programs can best be broadly implemented.

    2. Reviewer #1 (Public Review):

      The goal of this study was to determine whether short (1 month) internships for biomedical science trainees (mostly graduate students but some post-docs) were beneficial for the trainees, their mentors, and internship hosts. Over a 5 year period, the outcomes of trainees who completed internships were compared with peers who did not. Both quantitative results in terms of survey responses and qualitative results obtained from discussion groups were provided. Overall, the data suggest that internships aid graduate students in multiple ways and do not harm progress on dissertation projects. 'Buy-in' from mentors and prospective mentors appeared to increase over time, and hosts also gained from the contributions of the interns even in a short time period. While the program also appeared valuable for post-doctoral trainees, it was less favorably considered by post-doc mentors.

      Strengths:

      The internship program that was examined here appears to have been very well designed in terms of availability to students, range of internship offerings, length of time away from PhD lab, and assessments.<br /> Having a built-in peer control group of graduate students who did not do internships was valuable for much of the quantitative analyses. However, as the authors acknowledge, those who did opt for internships are a self-selected group who may have character traits that would help them overcome the potential negative impacts of the internship.<br /> The quantitative data is convincing and addresses important considerations for all stakeholders.<br /> The manuscript is well-constructed to individually address the impact of the program on each set of stakeholders, while also showcasing areas of mutual benefit.<br /> The discussion of challenges and limitations, from the perspectives of participating stakeholders, program leaders, and also institutions, is comprehensive and very thoughtful.

      Weaknesses:

      The qualitative data that resulted from the 'focus groups' of faculty mentors was somewhat difficult to evaluate given the very limited number of participants (n=7).

      Overall, the data support the authors' conclusions with respect to the utility of internship programs for all stakeholders. As the authors note, the data relate to a specific program where internship length was defined, costs were covered by a grant or institutional funding, and there were multiple off-site internship hosts available. Thus, the results here may not replicate for other programs with different criteria.

      This work provides a valuable assessment of how relatively short internships can impact graduate students, both in terms of their graduate tenure and in their decision-making for careers post-graduation. As more graduate programs are heeding calls from funding agencies and professional societies to increase knowledge about, and familiarity with, multiple career paths beyond academia for PhD students, there is a need to evaluate the best ways to accomplish that goal. Hands-on internships are valuable across many spheres so it makes sense that they would be for life science graduates too. However, the fear that time-to-degree and/or productivity would be negatively impacted is important to acknowledge. By providing clear data that this is not the case, these investigators have increased the likelihood that internships could be considered by more institutions. The one big drawback, and one that the authors discuss at some length, is the funding model that could enable internship programs to be used more widely.

    3. Reviewer #2 (Public Review):

      Summary:

      The authors describe five-year outcomes of an internship program for graduate students and postdoctoral fellows at their institution spurred by pilot funding from an NIH BEST grant. They hypothesized that such a program would be beneficial to interns, internship hosts, and research advisors. The mixed methods study used surveys and focus groups to gather qualitative and quantitative data from the stakeholder groups, and the authors acknowledge the limitation that the study subjects were self-selected and also had research advisors who agreed to allow them to participate. Thus the generally favorable outcomes may not be applicable to students such as those who are struggling in the lab and/or lack career focus or supportive research advisors. Nonetheless, the overall findings support the hypothesis and also suggest additional benefits, including in some cases positive impact for the lab, improved communication between the intern and their research advisor, and an advantage for recruitment of students to the institution. The data refute one of the principal concerns of research advisors: that by taking students out of the lab, internships reduce individual and overall lab productivity. Students who did internships were significantly less likely to pursue postdoctoral fellowships before entering the biomedical workforce and were more likely to have science-related careers versus research careers than control students who did not do internships, although the study design cannot determine whether this was due to selection bias or to the internship.

      Strengths:

      1. The sample size is good (123 internships).

      2. The internship program is well described. Outcomes are clearly defined.

      3. Methods and statistical analyses appear to be appropriate (although I am not an expert in mixed methods).

      4. "Take-home" lessons for institutions considering implementing internship programs are clearly stated.

      Weaknesses:

      1. It is possible that interns, hosts, and research advisers with positive experiences were more likely to respond to surveys than those with negative experiences. The response rate and potential bias in responses should be discussed in the Results, not just given in a table legend in Methods.

      2. With regard to the biased selection of participants, do the authors know many subjects requested but were not permitted to do internships?

      3. While the authors mention internships in professional degree programs in fields such as law and business, some mention of internship practices in non-biomedical STEM PhD programs such as engineering or computer science would be helpful. Is biomedical science rediscovering lessons learned when it comes to internships?

      4. Figure 1 k, l - internships did not appear to change career goals, but are the 76% who agreed pre-internship the same individuals as the 75% who agreed post-internship? What percentage gave discordant responses?

      Appraisal:

      Overall the authors achieve their aims of describing outcomes of an internship program for graduate career development and offering lessons learned for other institutions seeking to create their own internship programs.

      Impact:

      The paper will be very useful for other institutions to dispel some of the concerns of research advisers about internships for PhD students (although not necessarily for postdoctoral fellows). In the long run, wider adoption of internships as part of PhD training will depend not only on faculty buy-in but also on the availability of resources and changes to the graduate school funding model so that such programs are not viewed as another "unfunded mandate" in graduate education. Perhaps the industry will be motivated to support internships by the positive outcomes for hosts reported in this paper. Additionally, NIH could allow a certain amount of F, T, or even RPG funds to be used to support internships for purposes of career development.

    1. eLife assessment

      This study presents a valuable new approach for efficient computation of statistics on correlations between genetic variants (linkage disequilibrium, or LD), which the authors apply to quantify the extent of LD across chromosomes. The method appears solid, although the presentation of equations needs clarification and improvement. The authors document that cross-chromosome LD can be substantial, which has implications for geneticists who are interested in population structure and its impact on genetic association studies.

    2. Reviewer #1 (Public Review):

      Summary:<br /> Huang and colleagues present a method for approximation of linkage disequilibrium (LD) matrices. The problem of computing LD matrices is the problem of computing a correlation matrix. In the cases considered by the authors, the number of rows (n), corresponding to individuals, is small compared to the number of columns (m), corresponding to the number of variants. Computing the correlation matrix has cubic time complexity [O(nm^2)], which is prohibitive for large samples. The authors approach this using three main strategies: 1. they compute a coarsened approximation of the LD matrix by dividing the genome into variant-wise blocks which statistics are effectively averaged over; 2. they use a trick to get the coarsened LD matrix from a coarsened genomic relatedness matrix (GRM), which, with O(n^2 m) time complexity, is faster when n << m; 3. they use the Mailman algorithm to improve the speed of basic linear algebra operations by a factor of log(max(m,n)). The authors apply this approach to several datasets.

      Strengths:<br /> - the authors demonstrate that their proposed method performs in line with theoretical explanations<br /> - the coarsened LD matrix is useful for describing global patterns of LD, which do not necessarily require variant-level resolution<br /> - they provide an open-source implementation of their software

      Weaknesses:<br /> - the coarsened LD matrix is of limited utility outside of analyzing macroscale LD characteristics<br /> - the method still essentially has cubic complexity--albeit the factors are smaller and Mailman reduces this appreciably. It would be interesting if the authors were able to apply randomized or iterative approaches to achieve more fundamental gains. The algorithm remains slow when n is large and/or the grid resolution is increased.

    3. Reviewer #2 (Public Review):

      Summary:<br /> In this paper, the authors point out that the standard approach of estimating LD is inefficient for datasets with large numbers of SNPs, with a computational cost of O(nm^2), where n is the number of individuals and m is the number of SNPs. Using the known relationship between the LD matrix and the genomic-relatedness matrix, they can calculate the mean level of LD within the genome or across genomic segments with a computational cost of O(n^2m). Since in most datasets, n<<br /> Strengths:<br /> Generally, for computational papers like this, the proof is in the pudding, and the authors appear to have been successful at their aim of producing an efficient computational tool. The most compelling evidence of this in the paper is Figure 2 and Supplementary Figure S2. In Figure 2, they report how well their X-LD estimates of LD compare to estimates based on the standard approach using PLINK. They appear to have very good agreement. In Figure S2, they report the computational runtime of X-LD vs PLINK, and as expected X-LD is faster than PLINK as long as it is evaluating LD for more than 8000 SNPs.

      Weakness:<br /> While the X-LD software appears to work well, I had a hard time following the manuscript enough to make a very good assessment of the work. This is partly because many parameters used are not defined clearly or at all in some cases. My best effort to intuit what the parameters meant often led me to find what appeared to be errors in their derivation. As a result, I am left worrying if the performance of X-LD is due to errors cancelling out in the particular setting they consider, making it potentially prone to errors when taken to different contexts.

      Impact:<br /> I feel like there is value in the work that has been done here if there were more clarity in the writing. Currently, LD calculations are a costly step in tools like LD score regression and Bayesian prediction algorithms, so a more efficient way to conduct these calculations would be useful broadly. However, given the difficulty I had following the manuscript, I was not able to assess when the authors' approach would be appropriate for an extension such as that.

    1. eLife assessment

      This study presents important findings regarding the local dynamics at the anion binding site in the SLC26 transporter prestin that is responsible for electromotility in outer hair cells. The authors reveal critical differences to homologous proteins and thereby provide insight into prestin's unique function. The evidence is generally convincing, although orthogonal evidence would be required to fully support the claims concerning the mechanistic basis for voltage sensitivity.

    2. Reviewer #1 (Public Review):

      The manuscript by Lin, Sosnick et al investigates the functional conformational dynamics of two members of the SLC26 family of anion transporters (Prestin and SLC26A9). A key aspect of the work is that the authors use HDX-MS to convincingly identify that the folding of the unstable anion binding site is related to the fast electromechanical changes that are important for the function of Prestin. In good apparent agreement, such folding-related changes upon anion binding are absent in the related non-piezoelectric SLC26A9 that it does not exhibit similar electro-motile transport. Overall, I find the work very interesting and generally well carried out - and it should be of considerable interest to researchers studying transmembrane transporters or just membrane proteins in general.

    3. Reviewer #2 (Public Review):

      In this manuscript, Xiaoxuan Lin and colleagues provide new insights into the dynamics of prestin using H/D exchange coupled with mass spectrometry. The authors aim to reveal how local changes in folding upon anion binding sustain the unique electro-transduction capabilities of prestin.

      Prestin is an unusual member of the SLC26 family, that changes its cross-sectional area in the membrane upon binding of a chloride ion. In contrast to SLC26 homologs, prestin is not an anion transporter per se but requires an anion to sense voltage. Binding of Cl- at a conserved binding site located between the end of TM3 and TM10 drives the displacement of a conserved arginine (R399), that causes major conformational changes, transmitting the voltage sensing into a mechanical force exerted on the membrane.

      Cryo-EM structures are available for the protein bound to various anions, including Cl-, but these structures do not explain how a conserved couple of positive (R399) and negative (the Cl- anion) charge pair transforms voltage sensitivity into mechanical changes in the membrane. To address this challenge, the authors explore local dynamics of the anion binding site and compare it with that of a "real" anion transporter SLC26A9. The authors make a convincing case that the differences in local dynamics they measure are the molecular basis for voltage sensing and its translation into electromotility.

      Practically the authors make a thorough HDX-MS investigation of prestin in the presence of different anions Cl-, SO4-, salicylate as well as in the apo form, and provide insight mostly on local dynamics of the anion binding site. The experiments are well-designed and conducted and their quality and reproducibility allows for quantitative interpretation by deriving ΔΔG values of changes in dynamics at specific sites. Furthermore, the authors show by comparing the apo condition with Cl- bound condition that the absence of Cl- causes fraying of the TM3 and TM10 helices. They deduce that Cl- binding allows for directional helix structuration, leading to local structural changes that cause a rearrangement of the charge configuration at the anion binding site that lays the molecular basis for voltage sensitivity. They demonstrate based on a detailed analysis of their HDX data that such helix fraying is a specific feature of the binding site and differs from the cooperative unfolding happening elsewhere on the prestin.

      However, the main question that the authors are addressing is how voltage sensitivity translates at the molecular level in the requirement for a negative-positive charge pair. The interpretation that the binding site instability observed only for prestin is a feature required for this voltage dependent is a bit speculative. Could other lines of evidence support the claim that the charge ion gap is reduced upon Cl- binding and that this leads to cross-section area expansion? An obvious option that comes to mind is MD simulations There are differences in time-scale between HDX and simulations, but the propensity for H-bond destabilization can be quantified even at short timescales. It might be that such data is already available out there but it should be explicit in the discussion. The discussion section itself is a bit narrow in scope at the moment. Discussing the data in the context of the available structures would help the non-specialist reader.

    4. Reviewer #3 (Public Review):

      Synopsis:<br /> The lack of visualizing the dynamic nature of biomolecules is a major weakness of crystallography or electron microscopy to study structure-function relationship of proteins. Such a challenge can be exemplified by the case of prestin, which shares high structural similarity to SLC26A9 anion transporter but is not an ion transporter. In this study, Lin et al aimed to use hydrogen-deuterium exchange and mass spectrometry (HDX-MS) to investigate the mobility of prestin and its response to anions. The authors exploited the nature of anion-dependent folding of this type of transporter to systematically analyze the mobility of transmembrane helices of both transporters by HDX. The authors found that the anion-binding helices engage in the stabilization of the anion-binding site. When stripped from Cl-, the site exposes to the transporter's extracellular side. More importantly, the authors narrowed down TM3 and TM10 with experimental data supporting the notion of R399's unique role in prestin's function. The results thus provide a working model of how the charged residue works in conjunction with the cooperativity of helix unfolding at the anion-binding site to drive the electromotive force of prestin.

      Strengths:<br /> The use of HDX-MS to probe the dynamic nature of prestin is a major strength of this study, which provides experimental evidence revealing the global and local differences in the folding events between prestin and SLC26A9. The mass experimental data led to the identification of TM3 and TM10 as the primary contributors to the folding changes, as well as a calculation of ΔΔG of ~2.4 kcal/mol, within the thermodynamic range of the dipole between the two helices. The latter also suggests the role of R399 as previously speculated in cryo-EM structures.

      This study went further to dissect the cooperativity during the folding and unfolding events on TM3, in which the authors observed a helix fraying at the anion-binding site and cooperative unfolding at the distal lipid-facing helices. This provides strong evidence of why prestin can undergo fast electromechanical rearrangement.

      Weakness:<br /> The authors tried to investigate the allostery by probing the intermediate folding/unfolding states by using sulfate or salicylate in the absence of chloride. Sulfate-bound proteins appear in an apo state earlier than normal chloride binding, and salicylate treatment led to a stable TMD state with slower HDX. It is unclear from the data (Fig 4) how the allostery works without titrating chloride ions into the reaction. The sulfate or salicylate experiments seem to show two extreme folding events outside the normal chloride conditions.

      TM3 and TM10 contribute to the anion-binding site together, and the authors beautifully showed the cooperativity of TM3. Does TM10 show the same cooperativity in prestin and SLC26A9? In addition, it is unclear whether the folding model at the anion-binding helices (Fig. 5B) remains the same when expressing prestin on live cells, such as thermodynamic data derived from electrophysiology studies.

      The authors observed increased stability upon chloride binding at the subunit interface in the cytosol for both prestin and SLC26A9 (Fig 1). How does this similarity in the cytosolic region contribute to the differential mechanisms as seen in the TMD in both transporters? It is unclear in this version of the manuscript.

    1. eLife assessment

      This study presents valuable observations on a potential role of creatine (Cr) as a novel neurotransmitter. While the data provide compelling evidence that Cr is present in synaptic vesicles, the evidence that Cr is synaptically released and binds to a post-synaptic receptor is incomplete, as no receptor is described. With further evidence, these results will be of wide interest to the field of neuroscience.

    2. Reviewer #1 (Public Review):

      This is an interesting and somewhat unusual paper supporting the idea that creatine is a neurotransmitter in the central nervous system of vertebrates. The idea is not entirely new, and the authors carefully weigh the evidence, both past and newly acquired, to make their case. The strength of the paper lies in the importance of the potential discovery - as the authors point out, creatine ticks more boxes on criteria of neurotransmitters than some of the ones listed in textbooks - and the list of known transmitters (currently 16) certainly is textbook material. A further strength of the manuscript is the careful consideration of a list of criteria for transmitters and newly acquired evidence for four of these criteria: 1. evidence that creatine is stored in synaptic vesicles, 2. mutants for creatine synthesis and a vesicular transporter show reduced storage and release of creatine, 3. functional measurement that creatine release has an excitatory or inhibitory (here inhibitory) effect in vivo, and 4. ATP-dependence. The key weakness of the paper is that there is no single clear 'smoking gun', like a postsynaptic creatine receptor, that would really demonstrate the function as a transmitter. Instead, the evidence is of a cumulative nature, and not all bits of evidence are equally strong. On balance, I found the path to discovery and the evidence assembled in this manuscript to establish a clear possibility, positive evidence, and to provide a foundation for further work in this direction.

    3. Reviewer #2 (Public Review):

      Summary:<br /> Bian et al studied creatine (Cr) in the context of central nervous system (CNS) function. They detected Cr in synaptic vesicles purified from mouse brains with anti-Synaptophysin using capillary electrophoresis-mass spectrometry. Cr levels in the synaptic vesicle fraction were reduced in mice lacking the Cr synthetase AGAT, or the Cr transporter SLC6A8. They provide evidence for Cr release within several minutes after treating brain slices with KCl. This KCl-induced Cr release was partially calcium-dependent and was attenuated in slices obtained from AGAT and SLC6A8 mutant mice. Cr application also decreased the excitability of cortical pyramidal cells in one third of the cells tested. Finally, they provide evidence for SLC6A8-dependent Cr uptake into synaptosomes, and ATP-dependent Cr loading into synaptic vesicles. Based on these data, the authors propose that Cr may act as a neurotransmitter in the CNS.

      Strengths:<br /> 1. A major strength of the paper is the broad spectrum of tools used to investigate Cr.<br /> 2. The study provides strong evidence that Cr is present in/loaded into synaptic vesicles.

      Weaknesses:<br /> (in sequential order)<br /> 1. Are Cr levels indeed reduced in Agat-/-? The decrease in Cr IgG in Agat-/- (and Agat+/-) is similar to the corresponding decrease in Syp (Fig. 3B). What is the explanation for this? Is the decrease in Cr in Agat-/- significant when considering the drop in IgG? The data should be normalized to the respective IgG control.<br /> 2. The data supporting that depolarization-induced Cr release is SLC6A8 dependent is not convincing because the relative increase in KCl-induced Cr release is similar between SLC6A8-/Y and SLC6A8+/Y (Fig. 5D). The data should be also normalized to the respective controls.<br /> 3. The majority (almost 3/4) of depolarization-induced Cr release is Ca2+ independent (Fig. 5G). Furthermore, KCl-induced, Ca2+-independent release persists in SLC6A8-/Y (Fig. 5G). What is the model for Ca2+-independent Cr release? Why is there Ca2+-independent Cr release from SLC6A8 KO neurons?<br /> How does this relate to the prominent decrease in Ca2+-dependent Cr release in SLC6A8-/Y (Fig. 5G)? They show a prominent decrease in Cr control levels in SLC6A8-/Y in Fig. 5D. Were the data shown in Fig. 5D obtained in the presence or absence of Ca2+? Could the decrease in Ca2+-dependent Cr release in SLC6A8-/Y (Fig. 5G) be due to decreased Cr baseline levels in the presence of Ca2+ (Fig. 5D)?<br /> 4. Cr levels are strongly reduced in Agat-/- (Fig. 6B). However, KCl-induced Cr release persists after loss of AGAT (Fig. 6B). These data do not support that Cr release is Agat dependent.<br /> 5. The authors show that Cr application decreases excitability in ~1/3 of the tested neurons (Fig. 7). How were responders and non-responders defined? What justifies this classification? The data for all Cr-treated cells should be pooled. Are there indeed two distributions (responders/non-responders)? Running statistics on pre-selected groups (Fig. 7H-J) is meaningless. Given that the effects could be seen 2-8 minutes after Cr application - at what time points were the data shown in Fig. 7E-J collected? Is the Cr group shown in Fig. 7F significantly different from the control group/wash?<br /> 6. Indirect effects: The phenotypes could be partially caused by indirect effects of perturbing the Cr/PCr/CK system, which is known to play essential roles in ATP regeneration, Ca2+ homeostasis, neurotransmission, intracellular signaling systems, axonal and dendritic transport... Similarly, high GAMT levels were reported for astrocytes (e.g., Schmidt et al. 2004; doi: 10.1093/hmg/ddh112), and changes in astrocytic Cr may underlie the phenotypes. Cr has been also reported to be an osmolyte: a hyperosmotic shock of astrocytes induced an increase in Cr uptake, suggesting that Cr can work as a compensatory osmolyte (Alfieri et al. 2006; doi: 10.1113/jphysiol.2006.115006). Potential indirect effects are also consistent with a trend towards decreased KCl-induced GABA (and Glutamate) release in SLC6A8-/Y (Fig. 5C). These indirect effects may in part explain the phenotypes seen after perturbing Agat, SLC6A8, and should be thoroughly discussed.<br /> 7. As stated by the authors, there is some evidence that Cr may act as a co-transmitter for GABAA receptors (although only at high concentrations). Would a GABAA blocker decrease the fraction of cells with decreased excitability after Cr exposure?<br /> 8. The statement "Our results have also satisfied the criteria of Purves et al. 67,68, because the presence of postsynaptic receptors can be inferred by postsynaptic responses." (l.568) is not supported by the data and should be removed.

    4. Reviewer #3 (Public Review):

      SUMMARY:<br /> The manuscript by Bian et al. promotes the idea that creatine is a new neurotransmitter. The authors conduct an impressive combination of mass spectrometry (Fig. 1), genetics (Figs. 2, 3, 6), biochemistry (Figs. 2, 3, 8), immunostaining (Fig. 4), electrophysiology (Figs. 5, 6, 7), and EM (Fig. 8) in order to offer support for the hypothesis that creatine is a CNS neurotransmitter.

      STRENGTHS:<br /> There are many strengths to this study.<br /> • The combinatorial approach is a strength. There is no shortage of data in this study.<br /> • The careful consideration of specific criteria that creatine would need to meet in order to be considered a neurotransmitter is a strength.<br /> • The comparison studies that the authors have done in parallel with classical neurotransmitters are helpful.<br /> • Demonstration that creatine has inhibitory effects is another strength.<br /> • The new genetic mutations for Slc6a8 and AGAT are strengths and potentially incredibly helpful for downstream work.

      WEAKNESSES:<br /> • Some data are indirect. Even though Slc6a8 and AGAT are helpful sentinels for the presence of creatine, they are not creatine themselves. Therefore, the conclusions that are drawn should be circumspect.<br /> • Regarding Slc6a8, it seems to work only as a reuptake transporter - not as a transporter into SVs. Therefore, we do not know what the transporter is.<br /> • Puzzlingly, Slc6a8 and AGAT are in different cells, setting up the complicated model that creatine is created in one cell type and then processed as a neurotransmitter in another.<br /> • No candidate receptor for creatine has been identified postsynaptically.<br /> • Because no candidate receptor has been identified, is it possible that creatine is exerting its effects indirectly through other inhibitory receptors (e.g., GABAergic Rs)?<br /> • More broadly, what are the other possibilities for roles of creatine that would explain these observations other than it being a neurotransmitter? Could it simply be a modifier that exists in the SVs (lots of molecules exist in SVs)?<br /> • The biochemical studies are helpful in terms of comparing relevant molecules (e.g., Figs. 8 and S1), but the images of the westerns are all so fuzzy that there are questions about processing and the accuracy of the quantification.

      APPRAISAL OF WHETHER THE AUTHORS ACHIEVED THEIR AIMS AND WHETHER THE RESULTS SUPPORT THE CONCLUSIONS:<br /> There are several criteria that define a neurotransmitter. The authors nicely delineated many criteria in their discussion, but it is worth it for readers to do the same with their own understanding of the data.

      By this reviewer's understanding (and the Purves' textbook definition) a neurotransmitter: 1) must be present within the presynaptic neuron and stored in vesicles; 2) must be released by depolarization of the presynaptic terminal; 3) must require Ca2+ influx upon depolarization prior to release; 4) must bind specific receptors present on the postsynaptic cell; 5) exogenous transmitter can mimic presynaptic release; 6) there exists a mechanism of removal of the neurotransmitter from the synaptic cleft.

      For a paper to claim that the work has identified a new neurotransmitter, several of these criteria would be met - and the paper would acknowledge in the discussion which ones have not been met. For this particular paper, this reviewer finds that condition 1 is clearly met.

      Conditions 2 and 3 seem to be met by electrophysiology, but there are caveats here. High KCl stimulation is a blunt instrument that will depolarize absolutely everything in the prep all at once and could result in any number of non-specific biological reactions as a result of K+ rushing into all neurons in the prep. Moreover, the results in 0 Ca2+ are puzzling. For creatine (and for the other neurotransmitters), why is there such a massive uptick in release, even when the extracellular saline is devoid of calcium?

      Condition 4 is not discussed in detail at all. In the discussion, the authors elide the criterion of receptors specified by Purves by inferring that the existence of postsynaptic responses implies the existence of receptors. True, but does it specifically imply the existence of creatinergic receptors? This reviewer does not think that is necessarily the case. The authors should be appropriately circumspect and consider other modes of inhibition that are induced by activation or potentiation of other receptors (e.g., GABAergic or glycinergic).

      Condition 5 may be met, because the authors applied exogenous creatine and observed inhibition (Fig. 7). However, this is tough to know without understanding the effects of endogenous release of creatine. if they were to test if the absence of creatine caused excess excitation (at putative creatinergic synapses), then that would be supportive of the same.

      For condition 6, the authors made a great effort with Slc6a8. This is a very tough criterion to understand for many synapses and neurotransmitters.

      DISCUSSION OF THE LIKELY IMPACT OF THE WORK:<br /> In terms of fundamental neuroscience, the story would be impactful if proven correct. There are certainly more neurotransmitters out there than currently identified.

      The impact as framed by the authors in the abstract and introduction for intellectual disability is uncertain (forming a "new basis for ID pathogenesis") and it seems quite speculative beyond the data in this paper.

    1. eLife assessment

      This is a valuable comparative study of local adaptation using gene-by-environment and gene-by-phenotype correlations. The analyses seemed still incomplete, as the biological take-home messages were obscured by the statistical approaches used, and it remains unclear how to best interpret the level of genome-wide convergence and in inversions. The repeatability of local adaptation across species, and the role of inversions in local adaptation, are questions of considerable empirical interest.

    2. Reviewer #1 (Public Review):

      Soudi, Jahani et al. provide a valuable comparative study of local adaptation in four species of sunflowers and investigate the repeatability of observed genomic signals of adaptation and their link to haploblocks, known to be numerous and important in this system. The study builds on previous work in sunflowers that have investigated haploblocks in those species and on methodologies developed to look at repeated signals of local adaptations. The authors provide solid evidence of both genotype-environment associations (GEA) and genome-wide association study (GWAS), as well as phenotypic correlations with the environment, to show that part of the local adaptation signal is repeatable and significantly co-occur in regions harboring haploblocks. Results also show that part of the signal is species specific and points to high genetic redundancy. The authors rightfully point out the complexities of the adaptation process and that the truth must lie somewhere between two extreme models of evolutionary genetics, i.e. a population genetics view of large effect loci and a quantitative genetics model. The authors take great care in acknowledging and investigating the multiple biases inherent to the used methods (GEA and GWAS) and use a conservative approach to draw their conclusions. The multiplicity of analyses and their interdependence make them slightly hard to understand and the manuscript would benefit from more careful explanations of concepts and logical links throughout. This work will be of interest to evolutionary biologists and population geneticists in particular, and constitutes an additional applied example to the comparative local adaptation literature.

      Some thoughts on the last paragraph of the discussion (L481-497): I think it would be fine to have some more thoughts here on the processes that could contribute to the presence/absence of inversions, maybe in an "Ideas and Speculation" subsection. To me, your results point to the fact that though inversions are often presented as important for local adaptation, they seem to be highly contingent on the context of adaptation in each species. First, repeatability results are only at the window/gene level in your results, the specific mutations are not under scrutiny. Is it possible that inversions are only necessary when sets of small effect mutations are used, opposite to a large effect mutation in other species? Additionally, in a model with epistasis, fitness effects of mutations are dependent on the genomic background and it is possible that inversions were necessary in only certain contexts, even for the same mutations, i.e. some adaptive path contingency. Finally, do you have specific demographic history knowledge in this system that maps to the observations of the presence of inversions or not? For example, have the species "using" inversions been subject to more gene flow compared to others?

    3. Reviewer #2 (Public Review):

      In this study the authors sought to understand the extent of similarity among species in intraspecific adaptation to environmental heterogeneity at the phenotypic and genetic levels. A particular focus was to evaluate if regions that were associated with adaptation within putative inversions in one species were also candidates for adaptation in another species that lacked those inversions. This study is timely for the field of evolutionary genomics, due to recent interest surrounding how inversions arise and become established in adaptation.

      Major strengths

      Their study system was well suited to addressing the aims, given that the different species of sunflower all had GWAS data on the same phenotypes from common garden experiments as well as landscape genomic data, and orthologous SNPs could be identified. Organizing a dataset of this magnitude is no small feat. The authors integrate many state-of-the-art statistical methods that they have developed in previous research into a framework for correlating genomic Windows of Repeated Association (WRA, also amalgamated into Clusters of Repeated Association based on LD among windows) with Similarity In Phenotype-Environment Correlation (SIPEC). The WRA/CRA methods are very useful and the authors do an excellent job at outlining the rationale for these methods.

      Major weaknesses

      The study results rely heavily on the SIPEC measure, but I found the values reported difficult to interpret biologically. For example, in Figure 4 there is a range of SIPEC from 0 to 0.03 for most species pairs, with some pairs only as high as ~0.01. This does not appear to be a high degree of similarity in phenotype-environment correlation. For example, given the equation on line 517 for a single phenotype, if one species has a phenotype-environment correlation of 1.0 and the other has a correlation of 0.02, I would postulate that these two species do not have similar evolutionary responses, but the equation would give a value of (1+0.02)*1*0.02/1 = 0.02 which is pretty typical "higher" value in Figure 4. I also question the logic behind using absolute values of the correlations for the SIPEC, because if a trait increases with an environment in one species but decreases with the environment in another species, I would not predict that the genetic basis of adaptation would be similar (as a side note, I would not question the logic behind using absolute correlations for associations with alleles, due to the arbitrary nature of signing alleles). I might be missing something here, so I look forward to reading the author's responses on these thoughts.

      An additional potential problem with the analysis is that from the way the analysis is presented, it appears that the 33 environmental variables were essentially treated as independent data points (e.g. in Figure 4, Figure 5). It's not appropriate to treat the environmental variables independently because many of them are highly correlated. For example in Figure 4, many of the high similarity/CRA values tend to be categorized as temperature variables, which are likely to be highly correlated with each other. This seems like a type of pseudo replication and is a major weakness of the framework.

      Below I highlight the main claims from the study and evaluate how well the results support the conclusions.

      * "We find evidence of significant genome-wide repeatability in signatures of association to phenotypes and environments" (abstract)<br /> * Given the questions above about SIPEC, I did not find this conclusion well supported with the way the data are presented in the manuscript.

      * "We find evidence of significant genome-wide repeatability in signatures of association to phenotypes and environments, which are particularly enriched within regions of the genome harbouring an  inversion in one species. " (Abstract) And "increased repeatability found in regions of the genome that harbour inversions" (Discussion)<br /> * These claims are supported by the data shown in Figure 4, which shows that haploblocks are enriched for WRAs. I want to clarify a point about the wording here, as my understanding of the analysis is that the authors test if *haploblocks* are enriched with *WRAs*, not whether *WRAs* are enriched for *haploblocks*. The wording of the abstract is claiming the latter, but I think what they tested was the former. Let me know if I'm missing something here.<br /> * Notwithstanding the concerns about highly correlated environments potentially inflating some of the patterns in the manuscript, to my knowledge this is the first attempt in the literature to try this kind of comparison, and the results does generally suggest that inversions are more likely capturing, rather than accumulating adaptive variation. However, I don't think the authors can claim that repeated signatures are enriched with haploblock regions, and the authors should take care to refrain from stating the relative importance of different regions of the genome to adaptation without an analysis.


      * "While a large number of genomic regions show evidence of repeated adaptation, most of the strongest signatures of association still tend to be species-specific, indicating substantial genotypic redundancy for local adaptation in these species." (Abstract)<br /> * Figure 3B certainly makes it look like there is very little similarity among species in the genetic basis of adaptation, which leaves the question as to how important the repeated signatures really are for adaptation if there are very few of them. (Is 3B for the whole genome or only that region?). This result seems to be at odds with the large number of CRAs and the claims about the importance of haploblock regions to adaptation, which extend from my previous point.


      * "we have shown evidence of significant repeatability in the basis of local adaptation (Figure 4, 5), but also an abundance of species-specific, non-repeated signatures (Figure 3)"<br /> * While the claim is a solid one, I am left wondering how much of these genomes show repeated vs. non-repeated signatures, how much of these genomes have haploblocks, and how much overlap there really is. Finding a way to intuitively represent these unknowns would greatly strengthen the manuscript.

      Overall, I think the main claims from the study, the statistical framework, and the results could be revised to better support each other.

      Although the current version of the manuscript has some potential shortcomings with regards to the statistical approaches, and the impact of this paper in its present form could be stifled because the biology tended to get lost in the statistics, these shortcomings may be addressed by the authors.

      With some revisions, the framework and data could have a high impact and be of high utility to the community.

    1. eLife assessment

      This is a valuable information-theoretic re-analysis of human intracranial recordings during reward and punishment learning. It provides solid evidence that reward and punishment learning is represented in overlapping regions of the brain while relying on specific inter-regional interactions. However, there are weaknesses in the analysis approach that raise concerns about the consistency of the effects across participants and the interpretation of the findings. This preprint will be interesting to researchers in systems and cognitive neuroscience.

    2. Reviewer #1 (Public Review):

      Summary:

      The work by Combrisson and colleagues investigates the degree to which reward and punishment learning signals overlap in the human brain using intracranial EEG recordings. The authors used information theory approaches to show that local field potential signals in the anterior insula and the three sub regions of the prefrontal cortex encode both reward and punishment prediction errors, albeit to different degrees. Specifically, the authors found that all four regions have electrodes that can selectively encode either the reward or the punishment prediction errors. Additionally, the authors analyzed the neural dynamics across pairs of brain regions and found that the anterior insula to dorsolateral prefrontal cortex neural interactions were specific for punishment prediction errors whereas the ventromedial prefrontal cortex to lateral orbitofrontal cortex interactions were specific to reward prediction errors. This work contributes to the ongoing efforts in both systems neuroscience and learning theory by demonstrating how two differing behavioral signals can be differentiated to a greater extent by analyzing neural interactions between regions as opposed to studying neural signals within one region.

      Strengths:

      The experimental paradigm incorporates both a reward and punishment component that enables investigating both types of learning in the same group of subjects allowing direct comparisons.

      The use of intracranial EEG signals provides much needed insight into the timing of when reward and punishment prediction errors signals emerge in the studied brain regions.

      Information theory methods provide important insight into the interregional dynamics associated with reward and punishment learning and allows the authors to assess that reward versus punishment learning can be better dissociated based on interregional dynamics over local activity alone.

      Weaknesses:

      The analysis presented in the manuscript focuses solely on gamma band activity. The presence and potential relevance of other frequency bands is not discussed. It is possible that slow oscillations, which are thought to be important for coordinating neural activity across brain regions could provide additional insight.

      The data is averaged across all electrodes which could introduce biases if some subjects had many more electrodes than others. Controlling for this variation in electrode number across subjects would ensure that the results are not driven by a small subset of subjects with more electrodes.

      The potential variation in reward versus punishment learning across subjects is not included in the manuscript. While the time course of reward versus punishment prediction errors is symmetrical at the group level, it is possible that some subjects show faster learning for one versus the other type which can bias the group average. Subject level behavioral data along with subject level electrode numbers would provide more convincing evidence that the observed effects are not arising from these potential confounds.

      It is unclear if the findings in Figures 3 and 4 truly reflect the differential interregional dynamics in reward versus punishment learning or if these results arise as a statistical byproduct of the reward vs punishment bias observed within each region. For instance, the authors show that information transfer from anterior insula to dorsolateral prefrontal cortex is specific to punishment prediction error. However, both anterior insula and dorsolateral prefrontal cortex have higher prevalence of punishment prediction error selective electrodes to begin with. Therefore the findings in Fig 3 may simply be reflecting the prevalence of punishment specificity in these two regions above and beyond a punishment specific neural interaction between the two regions. Either mathematical or analytical evidence that assesses if the interaction effect is simply reflecting the local dynamics would be important to make this result convincing.

    3. Reviewer #2 (Public Review):

      Summary:

      Reward and punishment learning have long been seen as emerging from separate networks of frontal and subcortical areas, often studied separately. Nevertheless, both systems are complimentary and distributed representations of rewards and punishments have been repeatedly observed within multiple areas. This raised the unsolved question of the possible mechanisms by which both systems might interact, which this manuscript went after. The authors skillfully leveraged intracranial recordings in epileptic patients performing a probabilistic learning task combined with model-based information theoretical analyses of gamma activities to reveal that information about reward and punishment was not only distributed across multiple prefrontal and insular regions, but that each system showed specific redundant interactions. The reward subsystem was characterized by redundant interactions between orbitofrontal and ventromedial prefrontal cortex, while the punishment subsystem relied on insular and dorsolateral redundant interactions. Finally, the authors revealed a way by which the two systems might interact, through synergistic interaction between ventromedial and dorsolateral prefrontal cortex.

      Strengths:

      Here, the authors performed an excellent reanalysis of a unique dataset using innovative approaches, pushing our understanding on the interaction at play between prefrontal and insular cortex regions during learning. Importantly, the description of the methods and results is truly made accessible, making it an excellent resource to the community.

      This manuscript goes beyond what is classically performed using intracranial EEG dataset, by not only reporting where a given information, like reward and punishment prediction errors, is represented but also by characterizing the functional interactions that might underlie such representations. The authors highlight the distributed nature of frontal cortex representations and propose new ways by which the information specifically flows between nodes. This work is well placed to unify our understanding of the complementarity and specificity of the reward and punishment learning systems.

      Weaknesses:

      The conclusions of this paper are mostly supported by the data, but whether the findings are entirely generalizable would require further information/analyses.

      First, the authors found that prediction errors very quickly converge toward 0 (less than 10 trials) while subjects performed the task for sets of 96 trials. Considering all trials, and therefore having a non-uniform distribution of prediction errors, could potentially bias the various estimates the authors are extracting. Separating trials between learning (at the start of a set) and exploiting periods could prove that the observed functional interactions are specific to the learning stages, which would strengthen the results.

      Importantly, it is unclear whether the results described are a common feature observed across subjects or the results of a minority of them. The authors should report and assess the reliability of each result across subjects. For example, the authors found RPE-specific interactions between vmPFC and lOFC, even though less than 10% of sites represent RPE or both RPE/PPE in lOFC. It is questionable whether such a low proportion of sites might come from different subjects, and therefore whether the interactions observed are truly observed in multiple subjects. The nature of the dataset obviously precludes from requiring all subjects to show all effects (given the known limits inherent to intracerebral recording in patients), but it should be proven that the effects were reproducibly seen across multiple subjects.

      Finally, the timings of the observed interactions between areas preclude one of the authors' main conclusions. Specifically, the authors repeatedly concluded that the encoding of RPE/PPE signals are "emerging" from redundancy-dominated prefrontal-insular interactions. However, the between-region information and transfer entropy between vmPFC and lOFC for example is observed almost 500ms after the encoding of RPE/PPE in these regions, questioning how it could possibly lead to the encoding of RPE/PPE. It is also noteworthy that the two information measures, interaction information and transfer entropy, between these areas happened at non overlapping time windows, questioning the underlying mechanism of the communication at play (see Figures 3/4). As an aside, when assessing the direction of information flow, the authors also found delays between pairs of signals peaking at 176ms, far beyond what would be expected for direct communication between nodes. Discussing this aspect might also be of importance as it raises the possibility of third-party involvement.

    4. Reviewer #3 (Public Review):

      Summary:

      The authors investigated that learning processes relied on distinct reward or punishment outcomes in probabilistic instrumental learning tasks were involved in functional interactions of two different cortico-cortical gamma-band modulations, suggesting that learning signals like reward or punishment prediction errors can be processed by two dominated interactions, such as areas lOFC-vmPFC and areas aINS-dlPFC, and later on integrated together in support of switching conditions between reward and punishment learning. By performing the well-known analyses of mutual information, interaction information, and transfer entropy, the conclusion was accomplished by identifying directional task information flow between redundancy-dominated and synergy-dominated interactions. Also, this integral concept provided a unifying view to explain how functional distributed reward and/or punishment information were segregated and integrated across cortical areas.

      Strengths:

      The dataset used in this manuscript may come from previously published works (Gueguen et al., 2021) or from the same grant project due to the methods. Previous works have shown strong evidence about why gamma-band activities and those 4 areas are important. For further analyses, the current manuscript moved the ideas forward to examine how reward/punishment information transfer between recorded areas corresponding to the task conditions. The standard measurements such mutual information, interaction information, and transfer entropy showed time-series activities in the millisecond level and allowed us to learn the directional information flow during a certain window. In addition, the diagram in Figure 6 summarized the results and proposed an integral concept with functional heterogeneities in cortical areas. These findings in this manuscript will support the ideas from human fMRI studies and add a new insight to electrophysiological studies with the non-human primates.

      Weaknesses:

      After reading through the manuscript, the term "non-selective" in the abstract confused me and I did not actually know what it meant and how it fits the conclusion. If I learned the methods correctly, the 4 areas were studied in this manuscript because of their selective responses to the RPE and PPE signals (Figure 2). The redundancy- and synergy-dominated subsystems indicated that two areas shared similar and complementary information, respectively, due to the negative and positive value of interaction information (Page 6). For me, it doesn't mean they are "non-selective", especially in redundancy-dominated subsystem. I may miss something about how you calculate the mutual information or interaction information. Could you elaborate this and explain what the "non-selective" means?

      The directional information flows identified in this manuscript were evidenced by the recording contacts of iEEG with levels of concurrent neural activities to the task conditions. However, are the conclusions well supported by the anatomical connections? Is it possible that the information was transferred to the target via another area? These questions may remain to be elucidated by using other approaches or animal models. It would be great to point this out here for further investigation.

    1. eLife assessment

      This fundamental study addresses the earliest events that enable plant roots to reorient growth in response to gravity. Compelling molecular and cell biological data establish that plasma membrane localization of the LAZY or NEGATIVE GRAVITROPIC RESPONSE OF ROOTS (NGR) protein family is required for rapid and polar redirection of D6 protein kinase, an activator of the PIN3 auxin transporter. This work complements recent publications on the NGR family in gravity sensing (Chen et al., PMID: 37741279 and Nishimura et al., PMID: 37561884). Collectively these papers advance our understanding of rapid plant gravity sensing and response.

    2. Reviewer #1 (Public Review):

      Summary:

      The current work by Kulich et al. examines the dynamic relocalization of NGR1 (LAZY2) a member of the LAZY protein family which is key for auxin redistribution during gravitropic responses. After gravistimulation of the triple mutant ngr123 (lazy234), the PIN3 activating kinase D6PK is not polarized in the columella cells.

      Strengths:

      The authors show a thorough characterization of NGR1 relocalization dynamics after gravistimulation.

      Weaknesses:

      Genetically the relocalization of D6PK depends on the LAZY protein family, but some essential details are missing in this study. On the one hand, NGR1-GFP does not associate with the BFA compartments and maintains its association with the PM and amyloplasts. On the other hand, D6PK relies on GNOM, via vesicle trafficking sensitive to BFA, suggesting that D6PK follows a different relocalization route than NGR1 which is BFA-insensitive. Based on these observations, D6PK relocalization requires the LAZY proteins, but D6PK and NGR1 relocalize through independent routes. How can this be interpreted or reconciled?

      Two other works (now published) provide valuable and fundamental findings related to the mechanism examined in the current manuscript and display complementary and similar results to the ones shown in the current manuscript. Given the similarities in the examined mechanisms, these preprints should be referenced, recognized, and discussed in the manuscript under review. It is assumed that the three projects were independently developed, but the results of these previous works should be addressed and taken into account at least during the discussion and when drawing any conclusions. This does not mean that this work is less relevant. On the contrary, some of the observations that seem to be redundant are more solid, and firm conclusions can now be drawn from them.

    3. Reviewer #2 (Public Review):

      Summary: This manuscript addresses what rapid molecular events underly the earliest responses after gravity-sensing via the sedimentation of starch-enriched amyloplasts in columella cells of the plant root cap. The LAZY or NEGATIVE GRAVITROPIC RESPONSE OF ROOTS (NGR) protein family is involved in this process and localizes to both the amyloplast and to the plasma membrane (PM) of columella cells.

      The current manuscript complements and extends Nishimura et al., Science, 2023. Kulich and colleagues describe the role of the LZY2 protein, also called NGR1, during this process, imaging its fast relocation and addressing additional novel points such as molecular mechanisms underlying NGR1 plasma membrane association as well as revealing the requirement of NGR1/LZY2, 3,4 for the polar localization of the AGCVIII D6 protein kinase at the PM of columella cells, in which NGR1/LZY2 acts redundantly with LZY3 and LZY4.

      The authors initially monitored relocalization of functional NGR1-GFP in columella cells of the ngr1 ngr2 ngr3 triple mutant after 180-degree reorientation of the roots. Within 10 -15 min NGR1-GFP signal disappeared from the upper PM after reorientation and reappeared at the lower PM of the reoriented cells in close proximity to the sedimented amyloplasts. Reorientation of NGR1-GFP occurred substantially faster than PIN3-GFP reorientation, at about the same time or slightly later than a rise in a calcium sensor (GCaMP3) just preceding a change in D2-Venus auxin sensor alterations. Reorientation of NGR1-GFP proved to be fast and not dependent on a brefeldin A-sensitive ARF GEF-mediated vesicle trafficking, unlike the trafficking of PIN proteins, like PIN3, or the AGCVIII D6 protein kinase. Strikingly, the PM association of NGR1-GFP was highly sensitive to pharmacological interference with sterol composition or concentration and phosphatidylinositol (4)kinase inhibition as well as dithiothreitol (DTT) treatment interfering with thioester bond formation e.g. during S-acylation. Indeed, combined mutation of a palmitoylation site and polybasic regions of NRG1 abolished its PM but not its amyloplast localization and rendered the protein non-functional during the gravitropic response, suggesting NRG1 PM localization is essential for the gravitropic response. Targeting the protein to the PM via an artificially introduced N-terminal myristoylation and an ROP2-derived polybasic region and geranylgeranylation site partially restored its functionality in the gravitropic response.

      Strengths: This timely work should be of broad interest to plant, cell and developmental biologists across the field as gravity sensing and signaling may well be of general interest. The point that NGR1 is rapidly responsive to gravistimulation, polarizes at the PM in the vicinity to amyloplast and that this is required for repolarization of D6 protein kinase, prior to PIN relocation is really compelling. The manuscript is generally well-written and accessible to a general readership. The figures are clear and of high quality, and the methods are sufficiently explained for reproduction of the experiments.

      Weaknesses: Statistical analysis has been performed for some figures but is lacking for most of the quantitative analyses in the figure legends.

      The title claims a bit more than what is actually shown in the manuscript: While auxin response reporter alterations are monitored, "rapid redirection of auxin fluxes" are not really directly addressed and, while D6PK can activate PIN proteins in other contexts, it is not explicitly shown in the manuscript that PIN3 is a target in the context of columella cells in vivo. A title such as "Rapid redirection of D6 protein kinase during Arabidopsis root gravitropism relies on plasma membrane translocation of NGR proteins" would reflect the results better.

      Fig. 4: The point that D6PK is transcytosed cannot be made here based on the data of these authors. They should have used a photoswitchable version of NGR1 to show that the same molecules observed at the upper PM are translocated to the lower PM. Nishimura and colleagues actually did that for NGR4. However, this is a lot of work and maybe for NGR1 that fusion would have too low fluorescence intensity (as it was the case for NGR3). So, I think a rewording would be sufficient such as NGR-dependent reorientation of D6PK plasma membrane localization" as this does not say, from where it comes to the lower PM. Theoretically, the signal could also be amyloplast-derived or newly synthesized (or just folded) NGR1-GFP.

      The authors make a model in which D6PK AGCVIII kinase-dependent on NGRs activates PIN3 to drive auxin fluxes. However, alterations in auxin responses are observed prior to PIN3 reorientation. They should explain this discrepancy better and clearly describe that this is a working hypothesis for the future rather than explicitly proven, yet.

    4. Reviewer #3 (Public Review):

      The mechanism controlling plant gravity sensing has fascinated researchers for centuries. It has been clear for at least the past decade that starch-filled plastids (termed statoliths) in specialised gravity-sensing columella cells sense changes in root orientation, triggering an asymmetric auxin gradient that alters root growth direction. Nevertheless, exactly how statolith movement triggers PIN auxin efflux carrier activation and auxin gradient formation has remained unclear until very recently. A series of new papers (in Science and Cell) and this manuscript report how LAZY proteins (also referred to as NEGATIVE GRAVITROPIC 50 RESPONSE OF ROOTS; NGR) play a pivotal role in regulating root gravitropism. In terms of their overall significance, their collective findings provide seminal insights into the very earliest steps for how plant roots sense gravity which are arguably the most important papers about root gravitropism in the past decade.

      In the current manuscript, Kulich et al initially report (through creating a functional NGR1-GFP reporter) that "NGR1-GFP displayed a highly specific columella expression, which was most prominent at the PM and the statolith periphery." Is NGR1-GFP expressed in shoot tissues? If yes, is it in starch sheath (the gravity-sensing equivalent of root columella cells)? The authors also note "NGR1-GFP signal from the PM was not evenly distributed, but rather polarized to the lower side of the columella cells in the vicinity of the sedimented statoliths (Fig. 1A)." and (when overexpressing NGR-GFP) "chloroplasts in the vicinity of the PM strongly correlated with NGR1 accumulating at the PM nearby, similar to the scenario in columella" suggesting that NGR1 does not require additional tissue-specific factors (i.e. trafficking proteins or lipids) to assist in its intracellular movement from plastid to PM.

      Next, the authors study the spatiotemporal dynamics of NGR1-GFP re-localisation with other early gravitropic signals and/or components Calcium, auxin, and PIN3. The temporal data presented in Figure 1 illustrates how the GCaMP calcium reporter (in panel E) revealed "the first signaling event in the root gravitropic bending is the statolith removal from the top membrane, rather than its arrival at the bottom" It appeared that the auxin DII-VENUS reporter was also changing rapidly (panel G) - was this detectable BEFORE statolith re-sedimentation?<br /> Please can the authors explain their NPA result in Fig 1E? Why would treatment with the auxin transport inhibitor NPA block Ca signalling (unless the latter was dependent on the former)?<br /> They go on to note "This initial auxin asymmetry is mediated by PIN-dependent auxin transport, despite visible polarization of PIN3 can be detected only later" which suggests that PIN activity was being modified prior to PIN polarisation.

      In contrast to other proteins involved in gravity response like RLDs and PINs, NGR1 localization and gravity-induced polarization does not undergo BFA-sensitive endocytic recycling by ARF-GEF GNOM. This makes sense given NGR1 is initially targeted to plastids, THEN the PM. Does NGR1 contain a cleavable plastid targeting signal? The authors go on to elegantly demonstrate that NGR1 PM targeting relies on palmitoylation through imaging and mutagenesis-based transgenic ngr rescue assays.

      Finally, the authors demonstrate that gravitropic-induced auxin gradient formation is initially dependent on PIN3 auxin efflux activation (prior to PIN3 re-localisation). This early PIN3 activation process is dependent on NGR1 re-targeting D6PK (a PIN3 activating kinase). This elegant molecular mechanism integrates all the regulatory components described in the paper into a comprehensive root gravity sensing model.

    1. eLife assessment

      This manuscript provides a fundamental contribution to the understanding of the role of intrinsically disordered proteins in circadian clocks and the potential involvement of phase separation mechanisms. The authors convincingly report on the structural and biochemical aspects and the molecular interactions of the intrinsically disordered protein FRQ. This paper will be of interest to scientists focusing on circadian clock regulation, liquid-liquid phase separation, and phosphorylation.

    2. Reviewer #1 (Public Review):

      Summary:<br /> "Phosphorylation, disorder, and phase separation govern the behavior of Frequency in the fungal circadian clock" is a convincing manuscript that delves into the structural and biochemical aspects of FRQ and the FFC under both LLPS and non-LLPS conditions. Circadian clocks serve as adaptations to the daily rhythms of sunlight, providing a reliable internal representation of local time.

      All circadian clocks are composed of positive and negative components. The FFC contributes negative feedback to the Neurospora circadian oscillator. It consists of FRQ, CK1, and FRH. The FFC facilitates close interaction between CK1 and the WCC, with CK1-mediated phosphorylation disrupting WCC:c-box interactions necessary for restarting the circadian cycle.

      Despite the significance of FRQ and the FFC, challenges associated with purifying and stabilizing FRQ have hindered in vitro studies. Here, researchers successfully developed a protocol for purifying recombinant FRQ expressed in E. coli.

      Armed with full-length FRQ, they utilized spin-labeled FRQ, CK1, and FRH to gain structural insights into FRQ and the FFC using ESR. These studies revealed a somewhat ordered core and a disordered periphery in FRQ, consistent with prior investigations using limited proteolysis assays. Additionally, p-FRQ exhibited greater conformational flexibility than np-FRQ, and CK1 and FRH were found in close proximity within the FFC. The study further demonstrated that under LLPS conditions in vitro, FRQ undergoes phase separation, encapsulating FRH and CK1 within LLPS droplets, ultimately diminishing CK1 activity within the FFC. Intriguingly, higher temperatures enhanced LLPS formation, suggesting a potential role of LLPS in the fungal clock's temperature compensation mechanism.

      Biological significance was supported by live imaging of Neurospora, revealing FRQ foci at the periphery of nuclei consistent with LLPS. The amino acid sequence of FRQ conferred LLPS properties, and a comparison of clock repressor protein sequences in other eukaryotes indicated that LLPS formation might be a conserved process within the negative arms of these circadian clocks.

      In summary, this manuscript represents a valuable advancement with solid evidence in the understanding of a circadian clock system that has proven challenging to characterize structurally due to obstacles linked to FRQ purification and stability. The implications of LLPS formation in the negative arm of other eukaryotic clocks and its role in temperature compensation are highly intriguing.

      Strengths:<br /> The strengths of the manuscript include the scientific rigor of the experiments, the importance of the topic to the field of chronobiology, and new mechanistic insights obtained.

      Weaknesses:<br /> This reviewer had questions regarding some of the conclusions reached.

    3. Reviewer #2 (Public Review):

      Summary:<br /> This study presents data from a broad range of methods (biochemical, EPR, SAXS, microscopy, etc.) on the large disordered protein FRQ relevant to circadian clocks and its interaction partners FRH and CK1, providing novel and fundamental insight into oligomerization state, local dynamics, and overall structure as a function of phosphorylation and association. Liquid-liquid phase separation is observed. These findings have bearings on the mechanistic understanding of circadian clocks, and on functional aspects of disordered proteins in general.

      Strengths:<br /> This is a thorough work that is well presented. The data are of overall high quality given the difficulty of working with an intrinsically disordered protein, and the conclusions are sufficiently circumspect and qualitative to not overinterpret the mostly low-resolution data.

      Weaknesses:<br /> None

    4. Reviewer #3 (Public Review):

      Summary:<br /> The manuscript from Tariq and Maurici et al. presents important biochemical and biophysical data linking protein phosphorylation to phase separation behavior in the repressive arm of the Neurospora circadian clock. This is an important topic that contributes to what is likely a conceptual shift in the field. While I find the connection to the in vivo physiology of the clock to be still unclear, this can be a topic handled in future studies.

      Strengths: The ability to prepare purified versions of unphosphorylated FRQ and P-FRQ phosphorylated by CK-1 is a major advance that allowed the authors to characterize the role of phosphorylation in structural changes in FRQ and its impact on phase separation in vitro.

      Weaknesses: The major question that remains unanswered from my perspective is whether phase separation plays a key role in the feedback loop that sustains oscillation (for example by creating a nonlinear dependence on overall FRQ phosphorylation) or whether it has a distinct physiological role that is not required for sustained oscillation.

    1. eLife assessment

      This manuscript describes fundamental single-molecule correlative force and fluorescence microscopy experiments to visualize the 1D diffusion dynamics and long-range nucleosome sliding activity of the yeast chromatin remodelers, RSC and ISW2. Compelling evidence shows that both remodelers exhibit 1D diffusion on bare DNA but utilize different mechanisms, with RSC primarily hopping and ISW2 mainly sliding on DNA. These results will be of interest to researchers working on chromatin remodeling.

    2. Reviewer #1 (Public Review):

      Single-molecule visualization of chromatin remodelers on long chromatin templates-a long sought-after goal-is still in its infancy. This work describes the behaviors of two remodelers RSC and ISW2, from SWI/SNF and ISWI families respectively, with well-conducted experiments and rigorous quantitative analysis, thus representing a significant advance in the field of chromatin biology and biophysics. Overall, the conclusions are supported by the data and the manuscript is clearly written. However, there are a few occasions where the strength of the conclusion suffers from low statistics. Some of the statements are too strong given the evidence presented.

      Specific comments:

      1. It is confusing what is the difference between the "non-diffusive" behavior of the remodeler upon nucleosome encounter and the nucleosome-translocating behavior in the presence of ATP. For example, in Figure 3F, readers can see a bit of nucleosome translocation in the first segment. Is the lower half-life of "non-diffusive" ISW2 with ATP on a nucleosome array because it is spending more time translocating nucleosomes? The solid and dashed green lines in Figure 3F and 3G are not explained. It is also not explained why Figure 3H and 3I are fit by double exponentials.<br /> 2. What is the fraction of 1D vs. 3D nucleosome encountered by the remodelers? This is an important parameter to compare between RSC and ISW2.<br /> 3. A major conclusion stated repeatedly in the manuscript is that nucleosome translocation by a remodeler is terminated by a downstream nucleosome. But this is based on a total of 4 events. The problem of dye photobleaching was mentioned, which is a bit surprising considering that the green excitation was already pulsed. The authors should try to get more events by lowering the laser power or toning down the conclusion that translocation termination is prominently due to blockage by a downstream nucleosome. Quantifying the translocation distances before termination, in addition to the durations (Figure 4G and 4H), would also be helpful.<br /> 4. The claim on nucleosome translocation directionality is also based on a small number of events, particularly for RSC. 6/9 is hardly over 50% if one considers the Poisson counting error (RSC was also found to switch directions.) If the authors would like to make a firm statement to support the "push-pull" model, they should obtain more events.<br /> 5. At 5 pN of tether tension, the outer wrap of nucleosomes is destabilized, which could impact nucleosome translocation dynamics. Additionally, a low buffer flow was kept on during data acquisition, which could bias remodeler diffusion behavior. The authors should rule out or at a minimum discuss these possibilities.

    3. Reviewer #2 (Public Review):

      Summary:<br /> The authors use a dual optical trap instrument combined with 2-color fluorescence imaging to analyze the diffusion of RSC and ISW2 on DNA, both in the presence and absence of nucleosomes, as well as long-range nucleosome sliding by these remodelers. This allowed them to demonstrate that both enzymes can participate in 1D diffusion along DNA for rather long ranges, with ISW2 predominantly tracking the DNA strand, while RSC diffusion involves hopping. In an elegant two-color assay, the authors were able to analyze interactions of diffusing remodeler molecules, both of the same or different types, observing their collisions, co-diffusion, and bypassing. The authors demonstrate that nucleosomes act as barriers for remodeler diffusion, either repelling or sequestering them upon collision. In the presence of ATP, they observed surprisingly processive unidirectional nucleosome sliding with a strong bias in the direction opposite to where the remodeler approached the nucleosome from for ISW2. These results have fundamentally important implications for the mechanism of nucleosome positioning at promoters in vivo, will be of great interest to the scientific community, and will undoubtedly spark exciting future research.

      Strengths:<br /> The mechanism of target search for chromatin-interacting protein machines is a 'hot' topic, and this manuscript provides extremely important and timely new information about how RSC and ISW2 find the nucleosomes they slide. Intriguingly, although both remodelers analyzed in this study can diffuse along DNA, the diffusion mechanisms are substantially different, with extremely interesting mechanistic implications.<br /> The strong directional preference in nucleosome sliding by ISW2 dictated by the direction it approaches the nucleosomes from during 1D sliding on DNA is a very intriguing result with interesting implications for the regulation of nucleosome organization around promoters. It will be of great interest to the scientific community and will undoubtedly inspire future research.<br /> Relatively little is known about nucleosome sliding at longer ranges (>100bp), and this manuscript provides a unique view into such sliding and also establishes a versatile methodology for future studies.

      Weaknesses:<br /> All measurements were conducted at 5pN tension, which induces unwrapping of the outer DNA gyre from nucleosomes. This could potentially represent a limitation for experiments involving nucleosomes, since partial nucleosome unwrapping could affect the behavior of remodelers, especially their sliding of nucleosomes.

    1. eLife assessment

      This important study examined whether the BMP signaling pathway has a role in H3.3K27M DMG tumors, regardless of the presence of ACRVR1 activating mutations. The authors show compelling evidence that BMP2/7 synergizes with H3.3K27M to induce a transcriptomic rewiring associated with a quiescent but invasive cell state. Although this work could be further enhanced by the inclusion of additional models as well as further consideration of elements, such as the location of the tumor, in the datasets used, overall this work suggests that BMP2/7 could be considered as a target for future therapies in this deadly cancer.

    2. Reviewer #1 (Public Review):

      Summary:<br /> Mutational analysis of diffuse midline glioma (DMG) found that ACVR1 mutations, which up-regulate the BMP signaling pathway are found in most H3.1K27M, but not H3.3K27M DMG cases. In this manuscript, Huchede et al attempted to determine whether the BMP signaling pathway has any role in H3.3K27M DMG tumors. They found that the BMP signaling is activated to a similar level in H3.3K27M DMG cells with wild-type ACVR1 compared to ACVR1 DMG cells, likely due to the expression of BMP7 or BMP2. They went on to test whether cells treated with BMP7 or BMP2 treatments affected the gene expression and cell fitness of tumor cells with H3.3K27M mutation. They concluded that BMP2/7 synergizes with H3.3K27M to induce a transcriptomic rewiring associated with a quiescent but invasive cell state. The major issue for this conclusion is that the authors did not use the right models/controls to obtain results to support this conclusion as detailed below. Therefore, in order to strengthen the conclusion, the authors need to address the major concerns below.

      Strength:<br /> This paper addresses an important question in the DMG field.

      Major concerns/weakness:<br /> 1) All the results in Fig. 2 utilized two glioma lines SF188 and Res259. The authors should repeat all these experiments in a couple of H3.3K27M DMG lines by deleting the H3.3K27M mutation first.<br /> 2) Fig. 3. The experiments of BMP2 treatment should be repeated in other H3.3K27M DMG lines using H3.1K27M ACVR1 mutant tumor lines as controls.

      Minor concerns<br /> Fig.2A. BMP2 expression increased in H3.3K27M SF188 cells. Therefore, the statement "whereas BMP2 and BMP4 expressions are not significantly modified (Figure 2A and Figure 2-figure supplement A-B)" is not accurate.

    3. Reviewer #2 (Public Review):

      The manuscript by Huchede et al investigates the BMP pathway in H3K27M-mutant gliomas carrying or not activating mutations in ALK2 (ACVR1). Their results in cell lines and in datasets acquired from the literature on patient tumors indicate that the BMP signaling pathway is activated at similar levels between ACVR1 wild-type and mutant tumors. The group further identifies BMP2 and BMP7 as possibly the main activators of the pathway in cells. They then show that BMP2 and 7 crosstalk with the H3 mutation and synergize to induce transcriptomic rewiring leading to an invasive cell state.

      The paper is well-written and easy to follow with a robust experimental plan and datasets supporting the claims. While previous work (acknowledged by the authors) indicated activation of BMP in H3K27M tumors, wild type for the ACVR1 mutation this paper is a nice addition and provides further mechanistic cues as to the importance of the BMP pathway and specific members in these deadly brain cancers. The effect of these BMPs in quiescence and invasion is of particular interest.

      A few suggestions to clarify the message are provided below<br /> 1- In thalamic diffuse midline gliomas, the BMP pathway should not be activated as it is in the pons. The authors should identify thalamic tumors in the datasets they explored and patients-derived cell lines from thalamic tumors available to investigate whether this pathway is active across all H3.3K27M mutants in the brain midline or specifically in tumors from the pons.

      2- There are ~20% H3.3K27M tumors that carry an ACVR1 mutation and similar numbers of H3.1K27M that are wild type for this gene. Can the authors identify these outliers in their datasets and assess the activation of BMP2 and 7 or other BMP pathway members in this context?

      In all this is an interesting paper that provides meaningful data to pursue clinical targeting of the BMP pathway, which would be a nice addition to the field.

    1. eLife assessment

      This study presents a useful finding on the role of GABRD and its downstream target CDK1 in the progression of breast cancer. The evidence supporting the claims of the authors is somewhat incomplete and the elaboration of the mechanistic details on GABARD/CDK1 regulation would have strengthened the study. The work will be of interest to clinicians and biologists working on breast cancer.

    2. Reviewer #1 (Public Review):

      Summary:<br /> The paper titled "GABRD promotes the progression of breast cancer through CDK1-dependent cell cycle regulation" investigates the role of GABRD, a subunit of the GABAA receptor, in breast cancer progression and its potential association with CDK1-dependent cell cycle regulation. The study is commendable for shedding light on the role of GABRD in breast cancer, but a few areas can be further improved to enhance the significance and completeness of the research.

      Strengths:<br /> The study presents valuable insights into the role of GABRD and its potential interaction with CDK1 in breast cancer progression.

      Recent literature suggests that the neurotransmitter GABA and its receptors play a vital role in regulating various tumors. The paper's innovation lies in revealing GABRD as the most relevant subunit within the GABA receptor family concerning breast cancer and exploring its potential mechanisms in regulating breast cancer progression, including the proposed GABRD-CDK1 axis.

      The methods in the study are sufficiently documented to allow replication studies and the quality of the figures and tables is very satisfactory.

      In general, this manuscript is well-crafted and addresses a compelling and pertinent topic.

      Weaknesses:<br /> The following minor issues should be addressed:

      1. While the study demonstrates the impact of GABRD expression on patient overall survival, it would be beneficial to supplement this with additional survival indicators. Analyzing other survival metrics, such as disease-free survival or progression-free survival, could provide a more comprehensive understanding of GABRD's clinical relevance in breast cancer.

      2. The manuscript alludes to GABRD's regulation of the cell cycle through its interaction with CDK1. Elaborating on the specific binding mechanisms and molecular interactions involved in this regulation would provide a more detailed insight into the proposed GABRD-CDK1 axis.

      3. The criteria for high and low expression of GABRD In Table 1 and Fig. 1D should be clearly defined.

      4. It would be helpful to explain the reason for classifying the tumor size with 3cm (not 2 or 5cm) in Table 2. It would also be helpful to explain whether the differences in GABRD expression in breast cancer subtypes with different HR and HER-2 expression statuses were analyzed.

    3. Reviewer #2 (Public Review):

      Summary:<br /> The study demonstrated that GABRD was significantly overexpressed in breast cancer tissues and had correlations with disease progression and patient survival rates. When GABRD was downregulated in breast cancer cells, it resulted in reduced cell growth, increased apoptosis, and hindered cell migration and invasion. The study has identified CDK1 as a downstream target of GABRD in mediating its effects on breast cancer. These findings suggest that GABRD is a promising target for therapies related to cell cycle regulation in breast cancer, potentially enhancing the effectiveness of CDK1 inhibitors.

      Strengths:<br /> The study identifies GABRD as a potential target in breast cancer and provides a new direction for developing breast cancer treatments. The study presents strong clinical correlations of GABARD and the functional studies show that CDK1 is a downstream target of GABARD. The in-vivo studies highlight its therapeutic potential for breast cancer.

      Weaknesses:<br /> The data heavily relies on cell lines and the results lack the mechanistic details on GABARD/CDK1 regulation.

    1. eLife assessment

      This important study substantially advances our understanding of pediatric Crohn's disease, mapping the cellular make-up of this disease and how patients respond to treatment. The evidence supporting the conclusions is compelling, with thorough bioinformatic analyses, underpinned by rigorous methodology and data integration. The work will be of broad interest to pediatric clinicians, immunologists and bioinformaticians.

    2. Reviewer #1 (Public Review):

      Summary: Crohn's disease is a prevalent inflammatory bowel disease that often results in patient relapse post anti-TNF blockades. This study employs a multifaceted approach utilizing single-cell RNA sequencing, flow cytometry, and histological analyses to elucidate the cellular alterations in pediatric Crohn's disease patients pre and post-anti-TNF treatment and comparing them with non-inflamed pediatric controls. Utilizing an innovative clustering approach, the research distinguishes distinct cellular states that signify the disease's progression and response to treatment. Notably, the study suggests that the anti-TNF treatment pushes pediatric patients towards a cellular state resembling adult patients with persistent relapses. This study's depth offers a nuanced understanding of cell states in CD progression that might forecast the disease trajectory and therapy response.

      Robust Data Integration: The authors adeptly integrate diverse data types: scRNA-seq, histological images, flow cytometry, and clinical metadata, providing a holistic view of the disease mechanism and response to treatment.

      Novel Clustering Approach: The introduction and utilization of ARBOL, a tiered clustering approach, enhances the granularity and reliability of cell type identification from scRNA-seq data.

      Clinical Relevance: By associating scRNA-seq findings with clinical metadata, the study offers potentially significant insights into the trajectory of disease severity and anti-TNF response; which might help with the personalized treatment regimens.

      Treatment Dynamics: The transition of the pediatric cellular ecosystem towards an adult, more treatment-refractory state upon anti-TNF treatment is a significant finding. It would be beneficial to probe deeper into the temporal dynamics and the mechanisms underlying this transition.

      Comparative Analysis with Adult CD: The positioning of on-treatment biopsies between treatment-naïve pediCD and on-treatment adult CD is intriguing. A more in-depth exploration comparing pediatric and adult cellular ecosystems could provide valuable insights into disease evolution.

      Areas of improvement:<br /> 1. The legends accompanying the figures are quite concise. It would be beneficial to provide a more detailed description within the legends, incorporating specifics about the experiments conducted and a clearer representation of the data points.

      2. Statistical significance is missing from Fig. 1c WBC count plot, Fig. 2 b-e panels. Please provide it even if it's not significant. Also, the legend should have the details of stat test used.

      3. In the study, the NOA group is characterized by patients who, after thorough clinical evaluations, were deemed to exhibit milder symptoms, negating the need for anti-TNF prescriptions. This mild nature could potentially align the NOA group closer to FIGD-a condition intrinsically defined by its low to non-inflammatory characteristics. Such an alignment sparks curiosity: is there a marked correlation between these two groups? A preliminary observation suggesting such a relationship can be spotted in Figure 6, particularly panels A and B. Given the prevalence of FIGD among the pediatric population, it might be prudent for the authors to delve deeper into this potential overlap, as insights gained from mild-CD cases could provide valuable information for managing FIGD.

      4. Furthermore, Figure 7 employs multi-dimensional immunofluorescence to compare CD, encompassing all its subtypes, with FIGD. If the data permits, subdividing CD into PR, FR, and NOA for this comparison could offer a more nuanced understanding of the disease spectrum. Such a granular perspective is invaluable for clinical assessments. The key question then remains: do the sample categorizations for the immunofluorescence study accommodate this proposed stratification?

      5. The study's most captivating revelation is the proximity of anti-TNF-treated pediatric CD (pediCD) biopsies to adult treatment-refractory CD. Such an observation naturally raises the question: How does this alignment compare to a standard adult colon, and what proportion of this similarity is genuinely disease-specific versus reflective of an adult state? To what degree does the similarity highlight disease-specific traits?<br /> Delving deeper, it will be of interest to see whether anti-TNF treatment is nudging the transcriptional state of the cells towards a more mature adult stage or veering them into a treatment-resistant trajectory. If anti-TNF therapy is indeed steering cells toward a more adult-like state, it might signify a natural maturation process; however, if it's directing them toward a treatment-refractory state, the long-term therapeutic strategies for pediatric patients might need reconsideration.

    3. Reviewer #2 (Public Review):

      Summary:<br /> Through this study, the authors combine a number of innovative technologies including scRNAseq to provide insight into Crohn's disease. Importantly samples from pediatric patients are included. The authors develop a principled and unbiased tiered clustering approach, termed ARBOL. Through high-resolution scRNAseq analysis the authors identify differences in cell subsets and states during pediCD relative to FGID. The authors provide histology data demonstrating T cell localisation within the epithelium. Importantly, the authors find anti-TNF treatment pushes the pediatric cellular ecosystem toward an adult state.

      Strengths:<br /> This study is well presented. The introduction clearly explains the important knowledge gaps in the field, the importance of this research, the samples that are used, and study design.<br /> The results clearly explain the data, without overstating any findings. The data is well presented. The discussion expands on key findings and any limitations to the study are clearly explained.

      I think the biological findings from, and bioinformatic approach used in this study, will be of interest to many and significantly add to the field.

      Weaknesses:<br /> 1. The ARBOL approach for iterative tiered clustering on a specific disease condition was demonstrated to work very well on the datasets generated in this study where there were no obvious batch effects across patients. What if strong batch effects are present across donors where PCA fails to mitigate such effects? Are there any batch correction tools implemented in ARBOL for such cases?

      2. The authors mentioned that the clustering tree from the recursive sub-clustering contained too much noise, and they therefore used another approach to build a hierarchical clustering tree for the bottom-level clusters based on unified gene space. But in general, how consistent are these two trees?

    1. eLife assessment

      The authors analyzed the causative association between circulating immune cells and periodontitis, and reported three risk immune cells related to periodontitis. The significance of the findings is fundamental, which substantially advances our understanding of periodontitis. The strength of evidence is convincing.

    2. Reviewer #1 (Public Review):

      Ye et al. used Mendelian randomization method to evaluate the causative association between circulating immune cells and periodontitis and finally screened out three risk immune cells related to periodontitis. Overall, this is an important and novel piece of work that has the potential to contribute to our understanding of the causal relationship between circulating immune cells related to periodontitis. However, there are still some concerns that need to be addressed.

      1. The authors used 1e-9 as the threshold to select effective instrumental variables (IVs), which should give the corresponding references. Meanwhile, the authors should test and discuss the potential impact of inconsistent thresholds for exposure (1e-9, 5e-6 were selected by the author respectively) and outcome IVs (5e-8) on the robustness of the results.<br /> 2. What is the reference for selecting Smoking, Fasting plasma glucose, and BMI as covariates? They do not seem to be directly related to immune cells as confounding factors.<br /> 3. It is not entirely clear about the correction of P-value for the total number of independent statistical tests.<br /> 4. The author used whole blood data to apply FUSION algorithm. Although whole blood is a representative site, the authors should add FUSION testing of periodontally relevant tissues, such as oral mucosa.<br /> 5. The authors chose gingival hyperplasia as a secondary validation phenotype of periodontitis in this study. However, gingival recession, as another important phenotype associated with periodontitis, should also be tested and discussed.<br /> 6. This study used GLIDE data as a replicated validation, but the results were inconsistent with FinnGen's dataset.

    3. Reviewer #2 (Public Review):

      This manuscript presents a well-designed study that combines multiple Mendelian randomization analyses to investigate the causal relationship between circulating immune cells and periodontitis. The main conclusions of the manuscript are appropriately supported by the statistics, and the methodologies used are comprehensive and rigorous.

      These findings have significant implications for periodontal care and highlight the potential for systemic immunomodulation management on periodontitis, which is of interest to readers in the fields of periodontology, immunology, and epidemiology.

    1. eLife assessment

      This manuscript reports important in vitro biochemical and in planta experiments to study the receptor activation mechanism of plant membrane receptor kinase complexes with non-catalytic intracellular kinase domains. Several lines of evidence convincingly show that one such putative pseudokinase, the immune receptor EFR achieves an active conformation following phosphorylation by a co-receptor kinase, and then in turn activates the co-receptor kinase allosterically to enable it to phosphorylate down-stream signaling components. This manuscript will be of interest to scientists focusing on cell signalling and allosteric regulation.

    2. Reviewer #1 (Public Review):

      Summary<br /> The authors use an elegant but somewhat artificial heterodimerisation approach to activate the isolated cytoplasmic domains of different receptor kinases (RKs) including the receptor kinase BRI1 and EFR. The developmental RK BRI1 is known to be activated by the co-receptor BAK1. Active BRI1 is then able to phosphorylate downstream substrates. The immune receptor EFR is also an active protein kinase also activated by the co-receptor BAK1. EFR however appears to have little or no kinase activity but seems to use an allosteric mechanism to in turn enable BAK1 to phosphorylate the substrate kinase BIK1. EFR tyrosine phosphorylation by BAK1 appears to trigger a conformational change in EFR, activating the receptor. Likewise, kinase activating mutations can cause similar conformational transitions in EFR and also in BAK1 in vitro and in planta.

      Strengths: I particularly liked The HDX experiments coupled with mutational analysis (Fig. 2) and the design and testing of the kinase activating mutations (Fig. 3), as they provide novel mechanistic insights into the activation mechanisms of EFR and of BAK1. These findings are nicely extended by the large-scale identification of EFR-related RKs from different species with potentially similar activation mechanisms (Fig. 5).

      Weaknesses: In my opinion, there are currently two major issues with the present manuscript. (1) Due o the small effect sizes it is absolutely critical that the EFRD849N mutant is indeed 100% inactive and based on previous reports from the same group I am not certain it is (https://pubmed.ncbi.nlm.nih.gov/34531323/) (Fig. 1). Along these lines quantitative enzyme kinetic assays and additional controls in the immune assays could help to improve and substantiate the different trans-phosphorylation events depicted in Fig.1 (2) How the active-like conformation of EFR is in turn activating BAK1 is poorly characterized, but appears to be the main step in the activation of the receptor complex. Extending the HDX analyses to resting and Rap-activated receptor complexes could be a first step to address this question.

      Overall this is an interesting study that aims to advance our understanding of the activation mechanisms of different plant receptor kinases with important functions in plant immunity.

    3. Reviewer #2 (Public Review):

      Summary:<br /> Transmembrane signaling in plants is crucial for homeostasis. In this study, the authors set out to understand to what extent catalytic activity in the EFR tyrosine kinase is required in order to transmit a signal. This work was driven by mounting data that suggest many eukaryotic kinases do not rely on catalysis for signal transduction, relying instead on conformational switching to relay information. The crucial findings reported here involve the realisation that a kinase-inactive EFR can still activate (ie lead to downstream phosphorylation) its partner protein BAK1. Using a convincing set of biochemical, mass spectrometric (HD-exchange), and in vivo assays, the team suggests a model in which EFR is likely phosphorylated in the canonical activation segment (where two Ser residues are present), which is sufficient to generate a conformation that can activate BAK1 through dimerisation. A model is put forward involving C-helix positioning in BAK1, and the model is extended to other 'non-RD' kinases in Arabidopsis kinases that likely do not require activity for signaling.

      Strengths:<br /> The work uses logical and well-controlled approaches throughout, and is clear and convincing in most areas, linking data from IPs, kinase assays (including clear 32P-based biochemistry), HD-MX data (from non-phosphorylated EFR) structural biology, oxidative burst data, and infectivity assays. Repetitions and statistical analysis all appear appropriate.

      Overall, the work builds a convincing story and the discussion does a clear job of explaining the potential impact of these findings (and perhaps an explanation of why so many Arabidopsis kinases are 'pseudokinases', including XPS1 and XIIa6, where this is shown explicitly).

      Weaknesses:<br /> No major weaknesses are noted from reviewing the data and the paper follows a logical course built on solid foundations; the use of Tables to explain various experimental data pertinent to the reported studies is appreciated.

      1. The use of a, b,c, d in Figures 2C and 3C etc is confusing to this referee.

      2. The debate about kinase v pseudokinases is well over a decade old. For non-experts, the kinase alignments/issues raised are in PMID: 23863165 and might prove useful if cited.

      3. Early on in the paper, the concept of kinases and pseudokinases related to R-spine (and extended R-spine) stability and regulation really needs to be more adequately introduced to explain what comes next; e.g. some of the key work in this area for RAF and Tyr kinases where mutual F-helix Phe amino acid changes are evaluated (conceptually similar to this study of the E-helix Tyr to Phe changes in EFR) should be cited (PMID: 17095602, 24567368 and 26925779).

      4. In my version, some of the experimental text is also currently in the wrong order (and no page numbers, so hard for me to state exactly where in the manuscript); However, I am certain that Figure 2C is mentioned in the text when the data are actually shown in Figure 3C for the EFR-SSAA protein.

      5. Tyr 156 in PKA is not shown in Supplement 1, 2A as suggested in the text; for readers, it will be important to show the alignment of the Tyr residue in other kinases. Although it is clearly challenging to generate phosphorylated EFR (seemingly through Codon-expansion here?), it appears unlikely that a phosphorylated EFR protein, even semi-pure, couldn't have been assayed to test the idea that the phosphorylation drives/supports downstream signaling. What about a DD or EE mutation, as commonly used (perhaps over-used) in MEK-type studies?

      Impact:<br /> The work is an important new step in the huge amount of follow-up work needed to examine how kinases and pseudokinases 'talk' to each other in (especially) the plant kingdom, where significant genetic expansions have occurred. The broader impact is that we might understand better how to manipulate signaling for the benefit of plants and mankind; as the authors suggest, their study is a natural progression both of their own work, and the kingdom-wide study of the Kannan group.

    4. Reviewer #3 (Public Review):

      The study presents strong evidence for allosteric activation of plant receptor kinases, which enhances our understanding of the non-catalytic mechanisms employed by this large family of receptors.

      Plant receptor kinases (RKs) play a critical role in transducing extracellular signals. The activation of RKs involves homo- or heterodimerization of the RKs, and it is believed that mutual phosphorylation of their intracellular kinase domains initiates downstream signaling. However, this model faces a challenge in cases where the kinase domain exhibits pseudokinase characteristics. In their recent study, Mühlenbeck et al. reveal the non-catalytic activation mechanisms of the EFR-BAK1 complex in plant receptor kinase signaling. Specifically, they aimed to determine that the EFR kinase domain activates BAK1 not through its kinase activity, but rather by utilizing a "conformational toggle" mechanism to enter an active-like state, enabling allosteric trans-activation of BAK1. The study sought to elucidate the structural elements and mutations of EFR that affect this conformational switch, as well as explore the implications for immune signaling in plants. To investigate the activation mechanisms of the EFR-BAK1 complex, the research team employed a combination of mutational analysis, structural studies, and hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis. For instance, through HDX-MS analysis, Mühlenbeck et al. discovered that the EFR (Y836F) mutation impairs the accessibility of the active-like conformation. On the other hand, they identified the EFR (F761H) mutation as a potent intragenic suppressor capable of stabilizing the active-like conformation, highlighting the pivotal role of allosteric regulation in BAK1 kinase activation. The data obtained from this methodology strengthens their major conclusion. Moreover, the researchers propose that the allosteric activation mechanism may extend beyond the EFR-BAK1 complex, as it may also be partially conserved in the Arabidopsis LRR-RK XIIa kinases. This suggests a broader role for non-catalytic mechanisms in plant RK signaling.

      The allosteric activation mechanism was demonstrated for receptor tyrosine kinases (RTKs) many years ago. A similar mechanism has been suggested for the activation of plant RKs, but experimental evidence for this conclusion is lacking. Data in this study represent a significant advancement in our understanding of non-catalytic mechanisms in plant RK signaling. By shedding light on the allosteric regulation of BAK1, the study provides a new paradigm for future research in this area.

    1. eLife assessment

      This useful manuscript reports mechanisms behind the increase in fecundity in response to sub-lethal doses of pesticides in the crop pest, the brown plant hopper. The authors hypothesize that the pesticide works by inducing the JH titer, which through the JH signaling pathway induces egg development. Evidence for this is, however, inadequate.

    2. Reviewer #1 (Public Review):

      Summary:<br /> Gao et al. have demonstrated that the pesticide emamectin benzoate (EB) treatment of brown planthopper (BPH) leads to increased egg-laying in the insect, which is a common agricultural pest. The authors hypothesize that EB upregulates JH titer resulting in increased fecundity.

      Strengths:<br /> The finding that a class of pesticide increases the fecundity of brown planthopper is interesting.

      Weaknesses:<br /> 1. EB is an allosteric modulator of GluCl. That means EB physically interacts with GluCl initiating a structural change in the cannel protein. Yet the authors' central hypothesis here is about how EB can upregulate the mRNA of GluCl. I do not know whether there is any evidence that an allosteric modulator can function as a transcriptional activator for the same receptor protein. The basic premise of the paper sounds counterintuitive. This is a structural problem and should be addressed by the authors by giving sufficient evidence about such demonstrated mechanisms before.

      2. I am surprised to see a 4th instar larval application or treatment with EB results in the upregulation of JH in the adult stages. Complicating the results further is the observation that a 4th instar EB application results in an immediate decrease in JH titer. There is a high possibility that this late JH titer increase is an indirect effect.

      3. The writing quality of the paper needs improvement. Particularly with respect to describing processes and abbreviations. In several instances the authors have not adequately described the processes they have introduced, thus confusing readers.

      4. In the section 'EB promotes ovarian development' the authors have shown that EB treatment results in increased detention of eggs which contradicts their own results which show that EB promotes egg laying. Again, this is a serious contradiction that nullifies their hypothesis.

      5. Furthermore, the results suggest that oogenesis is not affected by EB application. The authors should devote a section to discussing how they are observing increased egg numbers in EB-treated insects while not impacting Oogenesis.

      6. Met is the receptor of JH and to my understanding, remains mostly constant in terms of its mRNA or protein levels throughout various developmental periods in many different insects. Therefore, the presence of JH becomes the major driving factor for physiological events and not the presence of the receptor Met. Here the authors have demonstrated an increase in Met mRNA as a result of EB treatment. Their central hypothesis is that EB increases JH titer to result in enhanced fecundity. JH action will not result in the activation of Met. Although not contradictory to the hypothesis, the increase in mRNA content of Met is contrary to the findings of the JH field thus far.

      7. As pointed out before, it is hard to rationalize how a 4th instar exposure to EB can result in the upregulation of key genes involved in JH synthesis at the adult stage. The authors must consider providing a plausible explanation and discussion in this regard.

      8. I have strong reservations against such an irrational hypothesis that Met (the receptor for JH) and JH-Met target gene Kr-h1 regulate JH titer (Line 311, Fig 3 supplemental 2D). This would be the first report of such an event on the JH field and therefore must be analysed in depth. I strongly suggest the authors remove such claims from the manuscript without substantiating it.

      9. Kr-h1 is JH/Met target gene. The authors demonstrate that silencing of Kr-h1 results in inhibition of FAMeT, which is a gene involved in JH synthesis. A feedback loop in JH synthesis is unreported. It is the view of this reviewer that the authors must go ahead with a mechanistic detail of Kr-h1 mediated JH upregulation before this can be concluded. Mere qPCR experiments are not sufficient to substantiate a claim that is completely contrary to the current understanding of the JH signalling pathway.

      10. The authors have performed knockdowns of JHAMT, Met, and Kr-h1 to demonstrate the effect of these factors on fecundity in BPH. Additionally, they have performed rescue experiments with EB application on these knockdown insects (Figure 3K-M). This, I believe, is a very flawed experiment. The authors demonstrate EB works through JHAMT in upregulating JH titer. In the absence of JHAMT, EB application is not expected to rescue the phenotype. But the authors have reported a complete rescue here. In the absence of Met, the receptor of JH, either EB or JH is not expected to rescue the phenotype. But a complete rescue has been reported. These two experimental results contradict their own hypothesis.

      11. A significant section of the paper deals with how EB upregulates JH titer. JH is a hormone synthesized in the Corpora Allata. Yet the authors have chosen to use the whole body for all of their experiment. Changes in the whole body for mRNA of those enzymes involved in JH synthesis may not reflect the situation in Corpora Allata. Although working with Corpora Allata is challenging, discarding the abdomen and thorax region and working with the head and neck region of the insect is easily doable. Results from such sampling are always more convincing when it comes to JH synthesis studies.

      12. The phenomenon reported was specific to BPH and not found in other insects. This limits the implications of the study.

      13. Overall, the molecular experiments are very poorly designed and can at best be termed superficial. There are several contradictions within the paper and no discussion or explanation has been provided for that.

    3. Reviewer #2 (Public Review):

      The brown plant hopper (BPH) is a notorious crop pest and pesticides are the most widespread means of controlling its population. This manuscript shows that in response to sublethal doses of the pesticide (EB), BPH females show enhanced fecundity. This is in keeping with field reports of population resurgence post-pesticide treatment. The authors work out the mechanism behind this increase in fecundity. They show that in response to EB exposure, the expression of its target receptor, GluCl, increases. This, they show, results in an increase in the expression of genes that regulate the synthesis of juvenile hormone (JH) and JH itself, which, in turn, results in enhanced egg-production and egg-laying. Interestingly, these effects of EB exposure are species-specific, as the authors report that other species of plant hoppers either don't show enhanced fecundity or show reduced fecundity. As the authors point out, it is unclear how an increase in GluCl levels could result in increased JH regulatory genes.

    1. eLife assessment

      This study describes important results from cardiac-specific overexpression of adenylyl cyclase type 8 (TGAC8) mice that was integrated with transcriptomic and proteomic evidence. The paper convincingly provides new insights into how one can interpret signals from visceral organs.

    2. Reviewer #1 (Public Review):

      In this study the authors attempt to describe alterations in gene expression, protein expression, and protein phosphorylation as a consequence of chronic adenylyl cyclase 8 overexpression in a mouse model. This model is claimed to have resilience to cardiac stress.

      Major strengths of the study include 1) the large dataset generated which will have utility further scientific inquiry for the authors and others in the field, 2) the innovative approach of using cross-analyses linking transcriptomic data to proteomic and phosphoproteomic data. One weakness is the lack of a focused question and clear relevance to human disease. These are all critical biological pathways that the authors are studying and essentially, they have compiled a database that could be surveyed to generate and test future hypotheses.

    3. Reviewer #2 (Public Review):

      In this study, the investigators describe an unbiased phosphoproteomic analysis of cardiac-specific overexpression of adenylyl cyclase type 8 (TGAC8) mice that was then integrated with transcriptomic and proteomic data. The phosphoproteomic analysis was performed using tandem mass tag-labeling mass spectrometry of left ventricular (LV) tissue in TGAC8 and wild-type mice. The initial principal component analysis showed differences between the TGAC8 and WT groups. The integrated analysis demonstrated that many stress-response, immune, and metabolic signaling pathways were activated at transcriptional, translational, and/or post-translational levels.

      The authors are to be commended for a well-conducted study with quality control steps described for the various analyses. The rationale for following up on prior transcriptomic and proteomic analyses is described. The analysis appears thorough and well-integrated with the group's prior work. Confirmational data using Western blot is provided to support their conclusions. Their findings have the potential of identifying novel pathways involved in cardiac performance and cardioprotection.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you again to the reviewers and editors for all constructive feedback. We have made several edits to the manuscript and data to address concerns raised during the initial review and strengthen the completeness of this study. Please find below our response to each, with referee comments in black and our responses in blue.

      eLIFE Assessment:

      The authors report that Dbp5 functions in parallel with Los1 in tRNA export, in a manner dependent on Gle1 and requiring the ATPase cycle of Dbp5, but independent of Mex67, Dbp5's partner in mRNA export. The evidence for this conclusion is still incomplete, as is the biochemical evidence that Dbp5 interacts directly with tRNA in vitro with Gle1 and co-factor InsP6 triggering Dbp5 ATPase activity in the Dbp5-tRNA complex. The evidence that Dbp5 interacts with tRNA in cells independently of Los1, Msn5 and Mex67 is, however, solid.”

      Thank you for the constructive feedback and assessment of our article. We have made several improvements to the quality of data (Figure 1E, Figure 3C, Figure 4), added additional tRNA Northern Blot/FISH targets to further generalize observed phenotypes beyond pre-tRNAIleUAU (Supplement 1C/D/E/F), provided growth assays for los1Δ/msn5 Δ/dbp5R423A (Supplement 1B), add added data showing gle1-4/los1Δ double mutants phenocopy los1Δ/dbp5R423A to further support the involvement of Gle1 and the Dbp5 ATPase cycle in tRNA export (Figure 5D).

      Additionally, we added quantification to assess the extent of overexpression of Dbp5 mutants in Figure 3 and a discussion of how these mutants alter the localization of the protein to better assess how they may impact tRNA export (lines 211-226). Furthermore, several minor edits to the text/figures have been made to remove typos and improve readability (e.g., labels of FISH/Northern data in Figure 1). Additional edits include adjusting the text and the model presented in Figure 6 to improve conclusions drawn from our data. This includes lines 106-107 and lines 366-371 which clarifies that the Dbp5 mediated tRNA export pathway may not be entirely independent of Mex67.

      Reviewer #1 (Public Review):

      "At least one result suggests that the idea of these pathways in parallel may be too simplistic as deletion of the LOS1 gene, which is not essential decreases the interaction of tRNA export substrate with Dbp5 (Figure 2A). If the two pathways were working in parallel, one might have expected removing one pathway to lead to an increase in the use of the other pathway and hence the interaction with a receptor in that pathway…. The obvious missing experiment here with respect to genetics is the test of whether deletion of the MSN5 gene in the cells, which combines deletion of LOS1 and the dbp5_R423A allele, shown in Figure 1D would be lethal…. The authors provide evidence of a model where the helicase Dbp5 plays a role in tRNA export from the nucleus. Further evidence is required to determine whether Dbp5 could function in the same pathway as the previously defined tRNA export receptors, Los1 and Msn5. There are genetic tests that could be performed to explore this question. Some of the biochemistry presented would show when Los1 is absent that the interaction of Dbp5 with tRNA decreases, which could support a model where Dbp5 plays a role in coordination with Los1”

      Author Response: We thank the reviewers for this suggestion and consideration. We have added data showing growth phenotypes for the los1Δ/msn5Δ/dbp5R423A triple mutants. We discuss possible explanations and alternative hypothesis for why these triple mutants are viable and the observed reduction in Dbp5-pre-tRNA interaction in the context of los1Δ (lines 128131; lines 172-174).

      Reviewer #1 (Public Review):

      “While some of the binding assays show rather modest band shifts (Figure 4B for example), the data in Figure 4A showing that there is no binding detected unless a non-hydrolyzable ATP analogue is employed, argues for specificity in nucleic acid binding. The question that does arise is whether the binding is specific for tRNA.”

      Author Response: We have adjusted brightness/contrast of the EMSAs in Figure 4 to allow for better visualization of band shifts. Additionally, a discussion of the specificity of Dbp5-nucleic acid binding and the observed tRNA binding has been added (lines 313-322)

      Reviewer #1 (Public Review):

      “With the exception of the binding studies, which also employ a mixture of yeast tRNAs, this study relies primarily on a single tRNA species to come to the conclusions drawn. Many other studies have used multiple tRNAs to explore whether pathways characterized are generalizable to other tRNAs.“

      Author Response: We have added additional tRNA targets for FISH/Northerns in Supplement 1C/D/E/F)

      Reviewer #2 (Public Review):

      “There are some pieces of data that are misinterpreted. (Figure 1A and B look the same; in Fig 1E, the DAPI staining is abnormal; in Fig 4 the bands can't be seen.)”

      Author Response: Thank you for your constructive feedback. We have replaced FISH images to improve DAPI staining (Figure 1E), adjusted EMSAs to allow for better visualization of band shifts. (Figure 4), improved Northern Blots for quality (Figure 3C), and rearranged Figure 1A/B for readability. We maintain that the results from Figure 1A/B are not misinterpreted but agree that the readability of the figure was poor and have adjusted labels/formatting accordingly. The results of these experiments show that the deletion of Los1 does not alter Dbp5 localization and conversely loss of Dbp5 does not alter Los1 localization. As such the localization patterns under loss-of-function conditions look the same as wild-type for each protein respectively.

    2. eLife assessment

      The work is a valuable contribution to understanding the mechanism of nuclear export of tRNA in budding yeast. The authors present solid evidence that Dbp5 functions in parallel with Los1 and Msn5 in tRNA export, in a manner dependent on Gle1 for activation of its ATPase activity but independently of Mex67, Dbp5's partner in mRNA export. It further presents solid biochemical evidence that Dbp5 can bind tRNA but that Gle1 and InsP6 are required for activating ATP hydrolysis by the Dbp5-tRNA complex, suggesting a possible mechanism for tRNA export by Dbp5.

    3. Joint Public Review:

      In the manuscript by Rajan et al., the authors have highlighted the direct interaction between Dbp5 and tRNA, wherein Dbp5 serves as a mediator for tRNA export. This export process is subject to spatial regulation, as Dbp5 ATPase activation occurs specifically at nuclear pore complexes. Notably, this regulation is independent of the Los1-mediated pre-tRNA export route and instead relies on Gle1.

      The manuscript is well constructed and nicely written. The authors have addressed the concerns as raised by the previous reviewers and added additional experiments.

      I have a few comments for polishing the manuscript.

      Major comments:<br /> 1. In their previous paper (Lari et al, 2019; Azra Lari Arvind Arul Nambi Rajan Rima Sandhu Taylor Reiter Rachel Montpetit Barry P Young Chris JR Loewen Ben Montpetit (2019) A nuclear role for the DEAD-box protein Dbp5 in tRNA export eLife 8:e48410.) as well as in the current manuscript the authors states that Dbp5 is involved in the export of tRNA that is independent of and parallel to Los1. They state that Dbp5 binds to the tRNA independent of known tRNA export proteins. The obtained conclusion is both intriguing and innovative, since it suggests that there are other variables, beyond the ones previously identified as tRNA factors, that might interact with Dbp5 to facilitate the export process. In order to find out additional factors aiding this process the authors may employ total RNA‐associated protein purification (TRAPP) experiments ( Shchepachevto et al., 2019; Shchepachev V, Bresson S, Spanos C, Petfalski E, Fischer L, Rappsilber J, Tollervey D. Defining the RNA interactome by total RNA-associated protein purification. Mol Syst Biol. 2019 Apr 8;15(4):e8689. doi: 10.15252/msb.20188689. PMID: 30962360; PMCID: PMC6452921) to identify extra factors involved in conjunction with Dbp5. The process elucidates hitherto uninvestigated tRNA export components that function in conjunction with Dbp5.

      2. Various reports suggest that eukaryotic translation elongation factor 1 eEF1A is involved tRNA export Bohnsack et al., 2002 (Bohnsack MT, Regener K, Schwappach B, Saffrich R, Paraskeva E, Hartmann E, Görlich D. Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm. EMBO J. 2002 Nov 15;21(22):6205-15. doi: 10.1093/emboj/cdf613. PMID: 12426392; PMCID: PMC137205), Grosshans etal., 2002; Grosshans H, Hurt E, Simos G. An aminoacylation-dependent nuclear tRNA export pathway in yeast. Genes Dev. 2000 Apr 1;14(7):830-40. PMID: 10766739; PMCID: PMC316491). The presence of mutations in eEF1A has been seen to hinder the nuclear export process of all transfer RNAs (tRNAs). eEF1A has been shown to interact with Los1 aiding in tRNA export. The authors can also explore the crosstalk between Dbp5 and eEF1A in this study. Additionally, suppressor screening analysis in dbp5R423A , los1∆dbp5R423A los1∆msn∆dbp5R423A could shed more light on this.

      3. Unfortunately, this article is not significantly different from that published in eLife in 2018. In fact, it raises more questions than it brings answers by not identifying a transporter for export and not identifying a role for the helicase activity of Dbp5. The addition of Gle1 is potentially novel but it's unclear why the authors didn't address the potential involvement of IP6.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their service and are pleased to see that they were positive about the overall study. The reviewers provided several very good suggestions that we feel have improved the revised manuscript. In response to their suggestions, we have added four new figures of additional data (Figure 1, Supplement 2; Figure 2, Supplement 2; Figure 3, Supplements 1 and 2) in this revision. We have addressed the specific review comments/suggestions point-by-point below. Text changes in the manuscript are indicated in red with line numbers indicated.

      Public Reviews:

      Reviewer #1 (Public Review):

      This important study from Jahncke et al. demonstrates inhibitory synaptic defects and elevated seizure susceptibility in multiple models of dystroglycanopathy. A strength of the paper is the use of a wide range of genetic models to disrupt different aspects of dystroglycan protein or glycosylation in forebrain neurons. The authors use a combination of immunohistochemistry and electrophysiology to identify cellular migration, lamination, axonal targeting, synapse formation/function, and seizure phenotypes in forebrain neurons. This is an elegant study with extensive data supporting the conclusions. The role of dystroglycan and the dystrophin glycoprotein complex (DGC) in cellular migration and synapse formation are of broad interest.

      • A strength of this paper is the use of several transgenic mouse lines with mutations in genes involved in glycosylation of dystroglycan. Knockout of POMT2 abolishes the majority of dystroglycan glycosylation, while point mutations in B4GAT and FKRP presumably produce more minor changes in glycosylation. This is a powerful approach to inves5gate the role of glycosylation in dystroglycan function. However, the authors do not address how mutations in these genes may affect glycosylation or expression of proteins other than dystroglycan. It is possible, even likely, that some of the phenotypes observed are due to changing glycosylation in any number of other proteins. The paper would be strengthened by addressing this possibility more directly.

      We are glad to see that the reviewer appreciated the range of transgenic models used to define the role of Dag1 glycosylation. It is certainly possible that glycosylation of proteins other than Dag1 is affected by deletion of Pomt2, B4Gat1 and/or FKRP. Indeed, Cadherin and Plexin proteins undergo Omannosylation in the brain. However, recent work has shown that these proteins are not dependent on Pomt1/2 for their O-mannosylation, and use an alternative glycosylation pathway. Therefore, they unlikely to contribute to the phenotypes we observed in our Pomt2, B4Gat1 and/or FKRP mutants. Furthermore, we did not observe any phenotypes in these models that was not also observed in the Dag1 conditional knockouts. We have clarified this point in the results section (lines 117-121) with additional references, and added the caveat that Pomt2, B4gat1, and Fkrp could play a role in the glycosylation of proteins other than Dag1.

      • It would be helpful to have a more clear description of how dystroglycan glycosylation is altered in B4GAT1M155T or FKRPP448L mice. For example, Figure 1 makes it appear that the distal sugar moieties are missing, however, the IIH6 antibody, which binds to terminal matriglycan repeats on the glycan chain, recognizes dystroglycan in these mutants.

      We apologize for the confusion caused by our schematic in Figure 1. We have adjusted the opacity of the schematic in Figure 1A to better illustrate that the matriglycan chain is s5ll present, albeit at reduced levels, in the B4Gat1 and FKRP mutants. In addition, this is directly shown in the western blot in Figure 1B.

      • In Figure 1, the authors use the IIH6 antibody, which recognizes the terminal portion of the dystroglycan glycan chain, to label dystroglycan in the hippocampus. As expected, Emx1Cre,POMT2cKO mice, which lack glycosylation of dystroglycan, do not show any labelling. However, this experiment does not reveal anything about dystroglycan expression, only that the IIH6 antibody no longer recognizes dystroglycan. It would be very helpful in interpreting the later results to know whether the level and pattern of dystroglycan expression is normal or absent in the POMT2cKO mice, perhaps using another antibody that does not target the glycosylated region. For example, figure 3 shows reduced axon targeting to the cell body layer in POMT2cKO, however, it is unclear whether this is due to absence/mislocalization of dystroglycan at the cell surface, or if dystroglycan expression is normal, but glycosylation is directly required for axon targeting.

      Addressed in the “Recommendation for Authors” section below

      • In Figures 3 and 5, the authors use CB1R labelling to measure axon targeting and synapses formation. However, it is not clear how the authors measure axon targeting and synapses number separately using the same CB1R antibody. In addition, figure 3 shows reduced CB1R labelling in Dag1cyto pyramidal cell layer, but Figure 5 shows no change in CB1R labelling in the same mice. These results would appear to be contradictory.

      In Figure 3, the data reflects fluorescent intensity of CB1R+ axons measured across the en5re hippocampal depth. In contrast, the synapse number in Figure 5 is measured as VGat+ and CB1R+ puncta (axonal swellings) within the pyramidal cell layer (SP). The discrepancy between these measurements in the Dag1Cyto mutants likely reflects a change in the distribution of the synaptic contacts in SP (ie: increased contacts in the upper portion of the SP relative to the bottom). This is clarified in the text, lines 315-319.

      • The authors measure spontaneous IPSCs (sIPSC) in CA1 pyramidal neurons to measure inhibitory synaptic function. This measure assesses inhibitory synaptic input from all sources, but dystroglycan mutations primarily impairs synapses arising from CCK+/CB1R interneurons, leaving synapses arising from PV or other interneurons relatively unchanged. To assess changes in CCK+/CB1R interneurons the authors apply the cholinergic receptor agonist Carbachol (which selectively activates CCK+/CB1R interneurons) and measure the change in sIPSC amplitude and frequency. While this is an interesting and reasonable experiment, the observed effects could be due to altered carbachol sensitivity in the transgenic mice. Control experiments showing that the effect of Carbachol on excitability of CCK+/CB1R interneurons is similar across mouse lines is missing.

      The reviewer is correct that we did not show that CCK/CB1R+ interneurons have the same sensitivity to CCh in controls and the various mutants. Indeed, this is something we have struggled with over the course of the study, and is an inherent limitation of the current study. Unfortunately, these cells are relatively sparse in the CA1, and therefore patching onto presumptive CCK/CB1R+ INs at random to test this directly is not feasible. There are also no genetic or viral tools that we are aware of at this time to fluorescently label these cells for targeted recordings (this would need to be a Cre-independent transgenic mouse line since we are using Cre to delete Dag1 and Pomt2). We tried to assess this by measuring c-fos immunohistochemistry staining as a proxy for activity in response to CCh. Briefly, we incubated acute slices with NBQX, SR95531, and Kynurenic Acid to block synaptic activity, and added CCh in the bath for 30, 60, and 90 minutes to induce CCK/CB1R+ INs firing. Slices were then fixed and stained for c-fos and NECAB1 to identify the CCK/CB1R+ interneurons.

      Unfortunately, we had a very difficult time imaging these slices, and we were not confident in our ability to localize c-fos+/NECAB1+ cells. We have clarified that this is an inherent limitation to the study in the text, lines 394-396.

      • Earlier work has shown that selective deletion of dystroglycan from pyramidal neurons produces near complete loss of CCK+/CB1R interneurons and synapse formation, a more severe deficit than observed here using a more widespread Cre-driver. This finding is surprising, as generally more wide-spread gene deletion results in more severe, not less severe, phenotypes. The authors make the reasonable claim that more wide-spread gene deletion better mimics human pathologies. However, possible speculation on why this is the case for dystroglycan could provide insight into the nature of CNS deficits in different forms of dystroglycanopathies.

      The reviewer is correct that previous work from both our lab and others have shown that deletion of Dag1 from only pyramidal neurons with NEX-cre leads to a complete loss of CCK/CB1R+ INs, and is thus more severe than the phenotype seen with the broader deletion of Dag1 with Emx1-Cre. We were also surprised by this result, so we also generated Dag1;Nestin-Cre mice. These mice show an iden5cal phenotype as the Dag1;Emx1-Cre mutants (new data; Figure 3, Supplement 1; text lines 226-233). This makes us confident in the validity of the Dag1;Emx-Cre mutants with regards to modeling the human disease. We do not know why the NEX-Cre line shows a more severe phenotype; it is possible that this is due to an unknown epistatic interaction between Dag1 and NEX-Cre.

      Reviewer #2 (Public Review):

      The manuscript by Jahncke and colleagues is centered on the CCK+ synaptic defects that are a consequence of Dystroglycanopathy and/or impaired dystroglycan-related protein function. The authors use conditional mouse models for Dag1 and Pomt2 to ablate their function in mouse forebrain neurons and demonstrate significant impairment of CCK+/CB1R+ interneuron (IN) development in addition to being prone to seizures. Mice lacking the intracellular domain of Dystroglycan have milder defects, but impaired CCK+/CB1R+ IN axon targeting. The authors conclude that the milder dystroglycanopathy is due to the par5ally reduced glycosylation that occurs in the milder mouse models as opposed to the more severe Pomt2 models. Additionally, the authors postulate that inhibitory synaptic defects and elevated seizure susceptibility are hallmarks of severe dystroglycanopathy and are required for the organization of functional inhibitory synapse assembly.

      The manuscript is overall, fairly well-written and the description of the phenotypic impact of disruption of Dystroglycan forebrain neurons (and similar glycosyltransferase pathway proteins) demonstrate impairment in axon targeting and organization.

      There are some questions with regards to interpretation of some of the results from these conditional mouse models.

      • The study is mostly descriptive, and some validation of subunits of the dystroglycanglycoprotein complex and laminin interactions would go towards defining the impact of disruption of dystroglycan's function in the brain.

      Addressed in the “Recommendation for Authors” section below

      • The statistics and basic analysis of the manuscript appear to be appropriate and within parameters for a study of this nature.

      • Some clarification between the discrepancies between the Walker Warburg Syndrome (WWS) patient phenotypes and those observed in these conditional mouse models is warranted. This manuscript has the potential to be impactful in the Dystroglycanopathy and general neurobiology fields.

      Addressed in the “Recommendation for Authors” section below

      Reviewer #3 (Public Review):

      The study presents a systematic analysis of how a range of dystroglycan mutations alter CCK/CB1 axonal targeting and inhibition in hippocampal CA1 and impact seizure susceptibility. The study follows up on prior literature identifying a role for dystroglycan in CCK/CB1 synapse formation. The careful assay includes comparison of 5 distinct dystroglycan mutation types known to be associated with varying degrees of muscular dystrophy phenotypes: a forebrain specific Dag1 knockout in excitatory neurons at 10.5, a forebrain specific knockout of the glycosyltransferase enzyme in excitatory neurons, mice with deletion of the intracellular domain of beta-Dag1 and 2 lines with missense mutations with milder phenotypes. They show that forebrain glutamatergic deletion of Dag1 or glycosyltransferase alters cortical lamination while lamination is preserved in mice with deletion of the intracellular domain or missense mutation.

      The study extends prior works by identifying that forebrain deletion of Dag1 or glycosyltransferase in excitatory neurons impairs CCK/CB1 and not PV axonal targeting and CB1 basket formation around CA1 pyramidal cells. Mice with deletion of the intracellular domain or missense mutation show limited reductions in CCK/CB1 fibers in CA1. Carbachol enhancement of CA1 IPSCs was reduced both in forebrain knockouts. Interestingly, carbachol enhancement of CA1 IPSCs was reduced when the intracellular domain of beta-Dag1was deleted, but not I the missense mutations, suggesting a role of the intracellular domain in synapse maintenance. All lines except the missense mutations, showed increased susceptibility to chemically induced behavioral seizures. Together, the study, is carefully designed, well controlled and systematic. The results advance prior findings of the role for dystroglycans in CCK/CB1 innervations of PCs by demonstrating effects of more selective cellular deletions and site specific mutations in extracellular and intracellular domains. The interesting finding that deletion of intracellular domain reduces both CB1 terminals in CA1 and carbachol modulation of IPSCs warrants further analysis. Lack of EEG evaluation of seizure latency is a limitation.

      Specific comments

      • Whether CCK/CB1 cell numbers in the CA1 are differentially affected in the transgenic mice is not clarified.

      This is a good point; we have now addressed this in Figure 3, Supplement 2 (new data; text lines 234-245). In brief, using two different markers (NECAB1 and NECAB2), we see no change in the number of CCK+/CB1R+ INs in the mutant mice.

      • 2. Whether basal synaptic inhibition is altered by the changes in CCK innervation is not examined.

      We apologize for the confusion. This is addressed in the text, lines 371-375:

      “Notably, even baseline sIPSC frequency was reduced in Dag1cyto/- mutants (2.27±1.70 Hz) compared to WT controls (4.46±2.04 Hz, p = 0.002), whereas baseline sIPSC frequencies appeared normal in all other mutants when compared to their respective controls.”

      Reviewer #1 (Recommendations For The Authors):

      Line 321- CCH-mediated CHANGE in sIPSC amplitude...

      This has been corrected (now line 356)

      Reviewer #2 (Recommendations For The Authors):

      Major Comments:

      • Disruption of the dystroglycan (and subsequent glycosyltransferase proteins) in the brain would likely impact laminin localization and cytoskeletal stability of the dystroglycanprotein complex. The authors should assess (via immunolabeling) the disruption laminin using laminin IF in the various conditional mouse model forebrain sections.

      We have stained brains from Dag1, Pomt2, and Dag1cyto mutants with an antibody to Laminin (new data; Figure 2, Supplement 2; text lines 191-205). Briefly, the data clearly shows that laminin staining is abnormal on the pial surface and in the blood vessels of the Dag1;Emx1-cre mutants. This is less severe in the Pomt2;Emx1 mutants, and normal in the Dag1cyto mutants. We also examined higher magnification of laminin staining in hippocampal SP around the pyramidal cells. Laminin in the region was diffuse (not synaptically localized) and there was no difference between any of the mutants and their respective controls (data not shown).

      • 2. The biggest question(s) I have is if the synaptic defects that were measured (Fig 6) in the spontaneous inhibitory post-synaptic currents (sIPSCs) could be rescued as a function of the glycosylation of dystroglycan? While ribitol/CDP-ribose has been shown to enhance alpha-dystroglycan glycosylation and total glycosylation, it might be appropriate here. NADplus exogenous supplementation has been (Ortez-Cordero et al., eLife, 2021) has a faster acting effect on glycosylation of dystroglycan and may work in this context. Can the authors add NADplus prior to their CCK+/CB1R+ IN recordings and evaluate synaptic current effects to determine if glycosylation rescue can actually occur?

      We are very much interested in the potential to rescue synaptic defects in the various mutants, and this is an active area of study for us going forward. However, we do not think the suggested experiments involving ribitol/NADplus supplementation are likely to work in our specific experiments with these models. In Dag1;Emx1-Cre and Pomt2;Emx1-Cre mice, which show the most dramatic phenotype, there is no O-mannosyl chain ini5ated for ribitol to act upon. In the Dag1Cyto mice, matriglycan is normal and therefore ribitol supplementation is unlikely to have an effect. In B4Gat1 and FKRP mutants, while matriglycan is reduced, there is no significant functional synaptic defect observed. Therefore, even if ribitol was able to increase matriglycan in these two mutants, we would be unable to detect a functional difference. As a side note, while the NADplus supplementation is an interesting idea, the previous study cited did these experiments in vitro in cell lines, so it is not clear if this would have the same effect in vivo. In addition, the time frame that they analyzed was following 24-72 hours of supplementation in cultured cells, which led to ~10% increase in IIH6 at 24 hours. We are unable to incubate acute slices for that amount of time prior to our recordings.

      • 3. Minor point. Genetic abbreviation for POMT2 should be "Pomt2", unless some other justification is provided by the authors. I believe the other mutations introduced (e.g. FKRP P448L are humanized mutations).

      This has been corrected throughout

      • 4. While dystroglycan glycosylation using the IIHC6 antibody is important for proper localization, the core DAG-6F4 monocloncal antibody (DSHB Iowa Hybridoma Bank) would inform you if there is actual disruption in the amount of dystroglycan protein translation and/or production in the forebrain. Can the authors address this question on total dystroglycan production?

      This is a great suggestion. We obtained both the DAG-6F4 monoclonal antibody from DSHB and a monoclonal antibody to alpha-Dag1 from Abcam (45-3) and tried using them for immunostaining, but they did not work with brain tissue. However, we were able to use an antibody to beta-Dag1 (Leica, B-DG-CE) for immunostaining. This new data is included in Figure 1, Supplement 2 (text lines 134-140) and shows that as expected, beta-Dag1 is completely gone in Dag1;Emx1-Cre and Dag1Cyto mutants. In the Pomt2;Emx1-Cre mutants, betaDag1 is present but no longer has the punctate appearance consistent with synaptic localization. We have added a section in the discussion expanding on the interpretation of the data, lines 449-462.

      • 5. Please comment more on the structural changes in the forebrain and the presence or lack thereof cobblestone (e.g. lissencephaly) in the POMT2 mutant mice (and the other dystroglycanopathy models)? There appears to be some discordance with that and the human Walker Warburg Syndrome (WWS) patients.

      The Pomt2;Emx1-cre mutants show a cobblestone phenotype (identical to the Dag1;Emx1-Cre mutants), see Figure 2. This is consistent with these two models having a complete loss of Dag1 function, and therefore modeling the most severe forms of dystroglycanopathy (WWS, MEB). In contrast, the B4Gat1 and FKRP mutants show relatively normal cortical migration because these mutants are hypomorphic and therefore retain some degree of functional Dag1. These two mice model a milder form of dystroglycanopathy. We have clarified this on lines 188-190 and 573-578.

      • 6. Line 577. Minor typo, statement ended in a comma, versus a period.

      Done

      • 7. Methods. Please report on the sex of the mice used in the experiments.

      Mice of both sexes were used throughout the study. This has been clarified in the methods section, and we have added information regarding how many mice of each sex were used in each experiment in supplemental table 1

      Reviewer #3 (Recommendations For The Authors):

      Additional Specific Comments,

      • Although authors include n slice/animals and other details in the methodology, including data as % changes and n (slices/animals) in results will greatly improve the readability.

      We have clarified that only one cell per slice was used for physiological recordings (Figure 6) in the methods section, as CCh does not wash out.

      • 2. IPSCs are measured as inward currents in high chloride with AMPA blockers which is appropriate. However, Mg was appears to be low (1 mM) in cutting solution. Was this the case in the recording solution. If so, why were NMDA blockers not used.

      To clarify, 10mM Mg was included in the cutting solution, and 1mM Mg was included in the recording solution. When the cell is clamped at -70mV, 1mM Mg2+ is sufficient to block NMDA receptors: haps://www.nature.com/ar5cles/309261a0

    1. Author Response

      Reviewer 1:

      1. The missing mouse gender information will be incorporated into the revised manuscript. For flow cytometry, two male and two female mice of each genotype were used. For single cell RNA sequencing, two female and one male mouse of each genotype were used. For the bulk RNA sequencing four male cd47−/− mice and four male wildtype mice were used.

      2. The bulk RNA sequencing analysis identified elevated expression of erythropoietic genes in CD8+ spleen cells from cd47−/− versus wildtype mice that were obtained using magnetic bead depletion of all other lineages. Therefore, we used the same Miltenyi negative selection kit as the first step to prepare the cells for single cell RNA sequencing. These untouched cells were then depleted of most mature CD8 T cells using a Miltenyi CD8a(Ly2) antibody positive selection kit. An important consideration underlying this approach was recognizing that the commercial magnetic bead depletion kits used for preparing specific immune cell types are optimized to give relatively pure populations of the intended immune cells using wildtype mice. Our previous experience studying NK cell development in the cd47−/− mice taught us that NK precursors, which are rare in wildtype mouse spleens, accumulate in cd47−/− spleens and were not removed by the antibody cocktail optimized for wildtype spleen cells (Nath et al Front Immunol 2018). The present data indicate that erythroid precursors behave similarly.

      3. Anemia is a prevalent side effect of several CD47 therapeutic antibodies being developed for cancer therapy. Anemia would be expected to induce erythropoiesis in bone marrow and possibly at extramedullary sites. Human spleen cells are not accessible to directly evaluate extramedullary erythropoiesis in cancer patients, but analysis of circulating erythroid precursors or liquid biopsy methods could be useful to detect induction of extramedullary erythropoiesis by these therapeutics. We are currently investigating the ability of CD47 antibodies to directly induce erythropoiesis using a human in vitro model.

      Reviewer 2:

      1. The reviewer asked, “whether the increased splenic erythropoiesis is a direct consequence of CD47-KO or a response to the anemic stress in this mouse model.” Our data supports both a direct role for CD47 and an indirect role resulting from the response to anemic stress. We cited our previous publications describing increased Sox2+ stem cells in spleens of Cd47 and Thbs1 knockout mice, but we neglected to emphasize another study where we found that bone marrow from cd47−/− mice subjected to the stress of ionizing radiation exhibited more colony forming units for erythroid (CFU-E) and burst-forming unit-erythroid (BFU-E) progenitors compared to bone marrow from irradiated wildtype mice (Maxhimer Sci Transl Med 2009). Taken together, our published data demonstrates that loss of CD47 results in an intrinsic protection of hematopoietic stem cells from genotoxic stress. This function of CD47 is thrombospondin-1-dependent and is consistent with the up-regulation of early erythroid precursors in the spleens of both knockout mice but cannot explain why the Thbs1−/− mice have fewer committed erythroid precursors than wildtype. We cited studies that documented increased red cell turnover in cd47−/− mice but less red cell turnover in Thbs1−/− mice compared to wildtype mice. Increased red cell clearance in cd47−/− mice is mediated by loss of the “don’t eat me” function of CD47 on red cells. In wildtype mice, clearance is augmented by thrombospondin-1 binding to the clustered CD47 on aging red cells (Wang, Aging Cell 2020). Thus, anemic stress in the mouse strains studied here decreases in the order cd47−/− > WT > Thbs−/−. This is consistent with the increased committed erythroid progenitors reported here in cd47−/− spleens and decreased committed progenitors in the Thbs1−/− spleens.

      2. The cd47−/− mice used for the current study are the same strain as those reported by Lindberg et al in 1996, with additional backcrossing onto a C57BL/6 background.

    1. Author Response

      We are grateful to the editor and the reviewers for recognizing the importance of our theoretical study on the mechanisms of centrosome size control. We appreciate their thoughtful critiques and suggested improvements, all of which we intend to address in the revised manuscript as outlined below. We acknowledge that the experimental evidence supporting the proposed theory is currently incomplete. We anticipate that our study will serve as inspiration for future experiments aimed at testing the proposed theory.

      As noted by both reviewers, our model is built on the assumption that the diffusion of molecular components is much faster than any reactive time scales. To explore the impact of diffusion on centrosome size regulation, we are presently working on a spatial model of centrosome growth within a spatially extended system. Our objective is to analyze the influence of diffusion, and we plan to integrate these findings into the revised manuscript.

      To address the concerns raised by both the reviewers regarding the applicability of our model to various organisms, we plan to revise the manuscript to clearly delineate the parameter ranges within which our model could be relevant for different organisms such as C. elegans or Drosophila. While centrosomal components may vary among different organisms, the underlying pathways of interactions exhibit similarities. Leveraging the generality of our theory, it has the capability to capture diverse centrosomal growth behaviors contingent on the parameter choices. Our objective is to emphasize these distinctions, illustrating how the modulation of growth cooperativity and enzyme concentration can influence size regulation and size scaling behaviors. Given the limited availability of quantitative experimental data across diverse organisms, we recognize the challenge in directly comparing our theory with data. Nevertheless, we are committed to presenting a thorough motivation for such comparisons to prevent any confusion or readability issues.

      We acknowledge the reviewers' concerns regarding the limited details provided on the simulation methods and the rationale behind the choice of model parameters. To address this, we will provide detailed explanations on the stochastic simulations, how the model parameters were calibrated, accompanied by appropriate references for the selected parameter values. Additionally, we thank reviewer 1 for the excellent suggestion to incorporate a linear stability analysis of the ordinary differential equations underlying the model. This analysis will offer valuable insights into how the physical parameters of the model influence the tendency to produce equal-sized centrosomes, and we are committed to including this in the revised manuscript. Additionally, we thank reviewer 2 for proposing the use of Polo pulse dynamics to more precisely constrain the parameter regime for centrosome growth dynamics in Drosophila. We will strive to incorporate this into the revised manuscript, recognizing the challenge of quantitatively interpreting centrosome size or subunit concentration values from experimental data on fluorescence intensities. We also plan to discuss enzyme pulse dynamics in C. elegans in the revised manuscript, as it presents a valuable prediction from our model.

      We disagree with reviewer 1's assertion that Reference 8 (Zwicker et al., PNAS 2014) effectively addresses the robustness of centrosome size equality in the presence of positive feedback. The linear stability analysis presented in Figure 5 of Reference 8 demonstrates stability of centrosome size around the fixed point, leading to the inference that Ostwald ripening can be inhibited by the catalytic activity of the centriole. In our manuscript (see Supplementary Figure 3), we demonstrate that the existence of the stable fixed point does not necessarily give rise to equal-sized centrosomes due to the slow dynamics of the solution around the fixed point. With an appreciable amount of positive feedback in the growth dynamics, the solution moves very slowly around the fixed point (similar to a line attractor), and cannot reach the fixed point within a biologically relevant timescale leaving the centrosomes at unequal sizes. Therefore, we argue that the model in Reference 8 lacks a robust mechanism for size control in the presence of autocatalytic growth. Additionally, we wish to emphasize that the choice of initial size difference in our model does not qualitatively alter the results for robustness in centrosome size equality, as shown in Supplementary Figure 3. Nevertheless, we acknowledge the need for a quantitative analysis of the dependence of size regulation on the initial discrepancy in centrosome size. We will incorporate such an analysis into the revised manuscript to strengthen our conclusions. Reviewer 2 has questioned the dismissal of the non-cooperative growth model, suggesting that minor adjustments in that model, such as incorporating size-dependent addition or loss rates due to surface assembly/disassembly, could potentially maintain equally sized organelles with sigmoidal growth dynamics. However, this conclusion is inaccurate. Any auto-regulatory positive feedback would result in size inequality, unless the positive feedback is shared between the organelles. The introduction of size-dependent addition rates due to surface-mediated assembly, would result in auto-regulatory positive feedback, leading to unequal sizes. We have explored a similar scenario of growth dynamics involving assembly and disassembly throughout the pericentriolic material volume in Supplementary Section II, demonstrating significant size inequality in that model and a lack of robustness in size control. We will provide a detailed response to this point in our reply, along with an explicit examination of the surface assembly model.

      In addition to the aforementioned modifications, we will revise the section discussing the predictions of the proposed model in the revised manuscript to rectify any lack of clarity in testable model predictions. We aim to provide clearer demonstrations of how our model predictions differ from those of previous models.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We are grateful to the 3 reviewers and the editorial team for agreeing that our work is rigorous and valuable for the fields of olfaction and developmental biology. We provide a revised version of the manuscript that addresses major concerns raised by the reviewers and adheres to their suggestions.

      Specifically:

      -We clarify what is novel in this work and we cover the appropriate literature.

      -We tone down the language and interpretation of our data

      -We clarify the categorization of zones and improve the readability to the best of our ability.

      We have also made every effort to address minor points raised by the 3 reviewers and made clarifications wherever requested.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In order to find small molecules capable of enhancing regenerative repair, this study employed a high throughput YAP-activity screen method to query the ReFRAME library, identifying CLK2 inhibitor as one of the hits. Further studies showed that CLK2 inhibition leads to AMOTL2 exon skipping, rendering it unable to suppress YAP.

      The novelty of the study is that it showed that inhibition of a kinase not previously associated with the HIPPO pathway can influence YAP activity through modification of mRNA splicing. The major arguments appear solid.

      We thank the Reviewer for their thoughtful assessment of this work. We have fully addressed each comment below in a point-by-point fashion.

      There are several noteworthy points when assessing the results. In Figure S1C, 100nM drug was toxic to cells at 72 hours and 1nM drug suppressed cell proliferation by 60%. Yet such concentrations were used in Figure 1B and C to argue CLK2 inhibition liberates YAP activity (which one would assume will increase cellular proliferation). In Figure 1C it appears that 1nM drug treatment led to some kind of cellular stress, as cells are visibly enlarged. In Figure 1D, 1nM drug, which would have suppressed cell growth by 60%, did not affect YAP phosphorylation. Taken together, it appears even though CLK2 inhibitor (at high concentrations) liberates YAP activity, its toxicity may override the potential use of this drug as a YAP-activator to salve tissue regenerative repair, which was one of the goals hinted in the background section.

      We do not claim that CLK2 inhibition is useful as a YAP activator, either as a precise pharmacological tool or as a therapeutic mechanism for inducing regenerative repair. Instead, the key finding of this work is to describe a novel, unanticipated cellular mechanism for activating YAP, one that should be considered when optimizing pharmacological candidates that modulate alternative splicing for diseases where potential proliferation is undesirable.

      However, to address this point, we have included additional experimentation. Specifically, we show that cytotoxicity with compound treatment at 24 hours, a timepoint at which we perform most evaluation of alternative splicing induced by compound, is considerably less than that observed at 72 hours. Now included as Figure S1C, this panel shows while the compound displays some cytotoxicity at ~1 nM at 72 hours, the half maximal inhibitory potency at 24 hours is ~300 nM. As such, we believe there is not incongruity between YAP activity, cellular proliferation, and SM04690-induced cytotoxicity. It is simply such that higher concentrations of compound, and thus increased engagement of CLK2 and other targets of the inhibitor, result in a cumulative cytotoxic effect over time.

      In Figure 2D, at 100nM concentration, the drug did not appear to affect AMOTL2 splicing. Even though at higher concentrations it did, this potentially put into question whether YAP activity liberated by this drug at 1nM (Fig 2A), 10-50nM (Fig 2C) concentrations is caused by altered AMOTL2 splicing. Discussions should be provided on the difference in drug concentrations in these experiments. Does the drug decay very fast, and is that why later studies required higher dose?

      We believe this comment is in reference to Fig. 3D, and we argue that, while faint, there is the presence of AMOTL2 splicing at 100 nM SM04690 treatment as seen by a faint lower molecular weight band. However, to further understand the extent to which AMOTL2 is alternatively spliced in response to compound treatment, we performed RT-qPCR analysis of AMOTL2 splicing with an expanded concentration response. These results indicate that high magnitude exon skipping of AMOTL2 occurs starting at 10 nM with 24-hour treatment of compound (now in the manuscript as Fig. S4A). This result matches with our data in Fig. 2C, wherein YAP phosphorylation begins decreasing at 10 nM SM04690 treatment.

      Likely impact of the work on the field: this study presented a high throughput screen method for YAP activators and showed that such an approach works. The hit compound found from ReFRAME library, a CLK2 inhibitor, may not be actually useful as a YAP activator, given its clear toxicity. Applying this screen method on other large compound libraries may help find a YAP activator that helps regenerative repair. The finding that CLK2 inhibition could alter AMOTL2 splicing to affect HIPPO pathway could bring a new angle to understanding the regulation of HIPPO pathway.

      Reviewer #2 (Public Review):

      In this manuscript, the authors have screened the ReFRAME library and identified candidate small molecules that can activate YAP. The found that SM04690, an inhibitor of the WNT signaling pathway, could efficiently activate YAP through CLK2 kinase which has been shown to phosphorylate SR proteins to alter gene alternative splicing. They further demonstrated that SM04690 mediated alternative splicing of AMOTL2 and rendered it unlocalized on the membrane. Alternatively spliced AMOTL2 prevented YAP from anchoring to the cell membrane which results in decreased YAP phosphorylation and activated YAP. Previous findings showed that WNT signaling more or less activates YAP. The authors revealed that an inhibitor of WNT signaling could activate YAP. Thus, these findings are potentially interesting and important. However, the present manuscript provided a lot of indirect data and lacked key experiments.

      We thank the Reviewer for their thorough review of this work. We have responded to each comment below.

      Major points:

      1. In Figure S3, since inhibition of CLK2 resulted in extensive changes in alternative splicing, why did the authors choose AMOTL2? How to exclude other factors such as EEF1A1 and HSPA5, do they affect YAP activation? Angiomotin-related AMOTL1 and AMOTL2 were identified as negative regulators of YAP and TAZ by preventing their nuclear translocation. It has been reported that high cell density promoted assembly of the Crumbs complex, which recruited AMOTL2 to tight junctions. Ubiquitination of AMOTL2 K347 and K408 served as a docking site for LATS2, which phosphorylated YAP to promote its cytoplasmic retention and degradation. How to determine that alternative splicing rather than ubiquitination of AMOTL2 affects YAP activity? Does AMOTL2 Δ5 affect the ubiquitination of AMOTL2? Does overexpression of AMOTL2 Δ5Δ9 cause YAP and puncta to co-localize?

      AMOTL2 is the relevant cellular target, because among the entire transcriptome it was the third most alternatively spliced in response to CLK2 inhibition (Fig. S3). No other targets relevant to the Hippo pathway were identified.

      We have shown that overexpression of exon skipped AMOTL2 (Fig. 3F) recapitulates the effect of compound, indicating that splicing per se is what drives the YAP activation phenotype. While AMOTL2 is ubiquitinated, these established sites of ubiquitination do not lie within exons 5 or 9. Thus, we anticipate that ubiquitination is less likely a driving factor in the observed phenotype. The manuscript is written as not to exclude this as a possibility, but it is downstream of what we describe, and we believe out of scope to explore this further in this preliminary report.

      1. The author proposed that AMOTL2 splicing isoform formed biomolecular condensates. However, there was no relevant experimental data to support this conclusion. AMOTL2 is located not only on the cell membrane but also on the circulating endosome of the cell, and the puncta formed after AMOTL2 dissociation from the membrane is likely to be the localization of the circulating endosome. The author should co-stain AMOTL2 with markers of circulating endosomes or conduct experiments to prove the liquidity of puncta to verify the phase separation of AMOTL2 splicing isoform.

      We do not claim AMOTL2 forms biomolecular condensates. Instead, we hypothesize in the Discussion section that AMOTL2 could possibly phase separate into biomolecular condensates based on its similarity to AMOT, which has been shown to phase separate and form cytoplasmic puncta (PMID: 36318920). AMOT has also been shown to colocalize with endosomes (PMID: 25995376), which also appear as puncta.

      1. The localization of YAP in cells is regulated by cell density, and YAP usually translocates to the nucleus at low cell density. In Figure 2E, the cell densities of DMSO and SM04690-treated groups are inconsistent. In Figure 4A, the magnification of t DMSO and SM04690-treated groups is inconsistent, and the SM04690treated group seems to have a higher magnification.

      In immunofluorescence experiments, cells were plated at the same density and grown for the same amount of time before treatment. Additionally, within an experiment, images were taken at the same magnification. Any apparent differences in cell density are due to effects of the compound.

      1. There have been many reports that the WNT signaling pathway and the Hippo signaling pathway can crosstalk with each other. The authors should exclude the influence of the WNT signaling pathway by using SM04690.

      While the WNT pathway has been shown to influence Hippo pathway activity, we have shown a direct effect of CLK2 inhibition by SM04690. Any WNT potential pathway effects are in addition to the splicing-based mechanism we described.

      Reviewer #3 (Public Review):

      This study on drug repurposing presents the identification of potent activators of the Hippo pathway. The authors successfully screen a drug library and identify two CLK kinase inhibitors as YAP activators, with SM04690 targeting specifically CLK2. They further investigate the molecular basis of SM04690-induced YAP activity and identify splicing events in AMOTL2 as strongly affected by CLK2 inhibition. Exon skipping within AMOTL2 decreases the interactions with membrane bound proteins and is sufficient to induce YAP target gene expression. Overall the study is well designed, the conclusions are supported by sufficient data and represent an exciting connection between alternative splicing and the HIPPO pathway. The specificity of the inhibitor towards CLK2 and the mode of action via AMOTL2 could be supported by further data:

      We thank the Reviewer for their close examination of our work. We respond below.

      1. The inconsistent inhibitor concentrations and varying results reported in the paper can be distracting. For instance, the response of endogenous targets to 100 nM concentration is described as a >5-fold increase in Figure 2B, whereas it is reported as a 1-1.5-fold response to 1000 nM in Figure 2D. This inconsistency should be addressed and clarified to provide a more accurate and reliable representation of the findings.

      In Figure 2D, we have transduced cells with lentivirus, which most likely suppresses their responsiveness to compound treatment. We have addressed the issue of varying inhibitor concentrations in response to Reviewer 1.

      1. In the absence of a strong inhibitor induced YAP target gene expression (Figure 2D), it is difficult to conclude the dependency on YAP expression, as investigated by siRNA mediated knockdown. In a similar experiment, the dependency of the inhibitor on CLK2 expression could be confirmed

      While the sample with Scramble virus does not respond to the same extent that WT HEK293A cells do (e.g., Fig. 2B), there is still responsiveness to compound. Likewise, YAP knockdown cells display statistically significant decreases in YAP-controlled transcripts. This decrease of transcript is therefore sufficient evidence that SM04690 requires YAP for its activity. We have shown that multiple CLK2 inhibitors recapitulate the effect of SM04690, abrogating the need to show dependency of CLK2.

      1. To further support the conclusion that CLK2 is the direct target of SM04690, it would be informative to investigate the effects of CLK1/4 inhibition on AMOTL2 exons (for example within RNA-seq data). If CLK1/4 inhibitors do not induce changes in AMOTL2 exons, it would strengthen the evidence for CLK2's role as the direct target. Including the results in the discussion would enhance the comprehensiveness of the study.

      We showed that CLK1/4 inhibition with small molecules ML167 and TG003 does not affect YAP activity in our luciferase reporter assay (Fig. S2D), which we believe is sufficient evidence that CLK1/4 is neither the direct target of SM04690 nor relevant to the splicing mechanism we describe.

      1. It would be important to determine the specific dose of SM04690 required to induce changes in AMOTL2 splicing. The authors observe that AMOTL2 protein levels appear unaffected at doses below 50 nM in Figure 3D, while YAP target genes are already affected at 20 nM in Figure 3G. Although Western blotting may not be the most sensitive method to detect minor changes in splicing, performing PCR experiments at lower doses could provide more insight into the splicing changes. Therefore, it is suggested that the authors include PCR experiments at lower doses to determine if changes in splicing are visible and to better establish the relationship between splicing and gene expression changes.

      We agree with the Reviewer that this experiment is essential to better understand splicing changes with SM04690 treatment. Accordingly, we have added RT-qPCR-based analysis of AMOTL2 exon inclusion at lower concentrations between 10 nM and 100 nM (Fig. S4A). We included a similar discussion in response to a point from Reviewer 1.

      Reviewer #1 (Recommendations For The Authors):

      As stated in the public review section, it will be helpful to discuss the differences in drug concentration. Although no one should require or expect a perfect drug dose match throughout any study, in this study the drug dose clearly demarcated when CLK2 inhibitor help/hurt proliferation, when CLK2 inhibitor was able to affect YAP phosphorylation, and when CLK2 inhibitor was able to affect AMOTL2 splicing. This is not to challenge the major conclusions of the paper, but it is hard to ignore if no discussion is provided.

      Several suggestions on data presentation:

      1. Scale bar information is missing in Fig. 2E, 4A and 4B.

      We have corrected this mistake in the revised manuscript.

      1. For Fig.3 D and 3E, it's better if kD information was labeled alongside the AMOTL2 Western blot.

      Thank you for the suggestion; we have added the appropriate labeling.

      1. It's better to label Figure2D as sh YAP-1, sh YAP-2; Figure 3A as sh CLK2-1, sh CLK2-2 etc. Currently they are all labeled shRNA-1, shRNA-2, which can be confusing.

      We have altered the labeling for clarity as requested.

      Reviewer #3 (Recommendations For The Authors):

      1. The use of asterisks in Figure 2D is unclear, especially their placement on the "Scramble" sample.

      We have amended the asterisks and have also added more detail to the figure legend.

      1. When designing primers for splicing-sensitive PCR, it is recommended that the skipping isoform is larger than 100 bp. This will help to avoid quantitative issues with ethidium bromide staining. In the results part, the text reads as if only the skipping isoform is present after SM04690 treatment.

      This experiment was performed to confirm the presence of exon skipping in the treated samples. Accordingly, we did not optimize the ethidium bromide staining of the lower bp bands. We will take the size of the isoform into consideration in any future experiments. We thank the reviewer for catching the textual error and have amended the text in the manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      My main request is to show the phylogeny in the main text, so the reader knows what nodes are being compared.

      Full phylogeny was added to the main text as Fig. 2. Additionally, phylogenetic tree in Newick format is presented as a Supplementary file 2.

      I also suggest the authors check their figure legends carefully. At least in figure one, I think there is some mix-up with the letter labelling of the panels.

      Our mistake. Figure legend was corrected. In this version of the manuscript Figure 1 was split into Fig. 1 and Fig. 3. Corrected version is presented in the legend to Fig. 3.

      And lastly, I urge the authors to deposit the tree, alignment, and reconstructed sequences in a public repository.

      Alignment in fasta format and phylogenetic tree in Newick format were added as supplementary files to the publication (supplementary file 1 and supplementary file 2, respectively). Reconstructed sequences (both Most likely and AltAll variants) were shown as a figure supplement (Figure 3 – figure supplement 2). Posterior probabilities for all positions of the reconstructed sequences were added as a supplementary file (supplementary file 3).

      Reviewer #2 (Recommendations For The Authors):

      -I find the term "secondarily single sHsp" to be a little confusing, especially because it is often used in relation to IbpA/B, but it is just IbpA in another species. I think it would be more clear for the reader to consistently refer to it as Erwiniaceae IbpA vs Escherichia IbpA, or something similar.

      In the introduction we clarified (page 4 lines 11-13) that the term “secondarily single” IbpA refers to IbpA that lacks partner protein as a result of ibpB gene loss. This is in opposition to “single-protein” IbpA from a clade in which gene duplication leading to creation of two – protein sHsp system did not occur (like Vibrionaceae or Aeromonadaceae) - see Obuchowski et al., 2019.

      -Figure 1B. The labels are not defined. What is L? A and B refer to IbpA and IbpB but this should be made more clear to the reader. Why is this panel only referred to in the Introduction and not the Results? Why is there a second panel for E.amy, rather than including it in the same panel, as for other experiments? What are the error bars? (That goes for every error bar in the paper, none are defined).

      Labels in Fig.1B were corrected; “L” was used in reference to “luciferase alone” and it has been corrected for consistency to “no sHsp”. The sHsps activity measurements (obtained in the same experiment) were split into two separate panels as a correspondence to the two branches of the simplified tree in Fig. 1. The figure was modified to make it clearer and avoid confusion. Definitions of error bars were added to this and other figures.

      -"AncA0 exhibited sequestrase activity on the level comparable to IbpA from Escherichia coli (IbpAE.coli). AncA1 was moderately efficient in this process and IbpA from Erwinia amylovora (IbpAE.amyl) was the least efficient sequestrase (Fig. 1D)." - First, this should be referring to Fig. 1C. Second, the text doesn't quite match the panel. A0 appears to have the strongest sequestrase activity over most concentrations. Can the authors comment on in what concentration range these differences are most meaningful?

      Figure legend was corrected. Descriptions of panels C and D were fixed. Now these data are presented in panels A and B of a new Fig. 3. In our opinion differences in sequestration are most meaningful at lower sHsp concentrations (in this case lower than 5 µM), as with high enough sHsp concentration even less effective sequestrases seem to be able to effectively sequester aggregated proteins. Comment about it was added to the main text (page 5, line 6)

      -"Ancestral proteins' interaction with the aggregated substrates was stronger than in the case of extant E. amylovora IbpA, but weaker than in the case of extant E. coli IbpA (Fig. 1C)." - Is this referring to Fig. 1C, or to the unlabelled panel on the bottom right panel of Fig 1 (that is not referred to in the legend)? Can the authors comment on why they think the 2 ancestral proteins are much more similar to each other than they are to either of the native IbpAs?

      Due to our mistake descriptions of panels C and D were switched.

      Figure 1 was rearranged and split into Figures 1 and 3. Former figure S1 (full phylogeny) was inserted into the main text, as Fig. 2, per request of reviewer #1. Former panel 1D (now 3B) was rearranged, as graph was not apparent to be a part of that panel and looked as if it was unlabeled.

      The fact that the two ancestral proteins are more similar to each other than to the extant E. coli and E. amylovora proteins in their interaction with model substrate might be caused by higher sequence identity between the two ancestral proteins than between ancestral and extant proteins (10 amino acid differences between AncA0 and AncA1 compared to 20 differences between AncA1 and IbpA from E. amylovora or 11 differences between AncA0 and IbpA from E. coli). One also has to remember that this property is only one aspect of sHsp activity – proteins AncA0 and AncA1 are much less similar to each other if other activities such as sequestrase activity are considered. Substrate affinity and sequestrase activity are connected to each other, but there isn’t a strict correlation, as can be seen in the case of free ACD domains, which strongly bind aggregated substrate while effectively lacking sequestrase activity (fig. 5 A, fig. 5 – figure supplement 4 A,B).

      -Figure 1E should have E. coli IbpA and IbpB, by themselves, included for comparison. Strangely, it seems, by comparison to Fig 1B, that the "inhibitory" activity of A0 is not present in the E. coli protein, and the authors should comment on this. Similarly, A1 disaggregation looks like it might not be significantly different than the E. coli protein. Can the authors comment on why disaggregation might be so low in A1 compared to E.amy?

      E. coli IbpA alone was added to Fig. 1E (Fig. 3C in the new version) as suggested.

      AncA1 indeed exhibits similar activity to extant IbpA from E. coli, which, at the conditions of the experiment, does not possess inhibitory effect observed for AncA0. This suggests that:

      -There was an additional increase in ability to stimulate luciferase disaggregation between AncA1 and extant IbpA from E. amylovora

      -There was also an increase of ability to stimulate luciferase refolding between AncA0 and extant E. coli IbpA, albeit to a significantly lesser degree than in the Erwiniaceae branch.

      It is quite likely that after separation of Erwiniaceae and Enterobacteriaceae sHsp systems, they underwent further optimization through evolution. This might have led to observed higher effectiveness of modern IbpAs from both clades in refolding stimulation in comparison to the reconstructed ancestral proteins.

      Despite the above, effects of substitutions on positions 66 and 109 on activities of the extant E. coli and E. amylovora proteins suggests that the two identified positions still play key role in differentiating extant IbpAs from Erwiniaceae and Enterobacteriaceae.

      Nevertheless, additional mutations that lead to increased ability to stimulate luciferase reactivation must have occurred in both Erwiniaceae and Enterobacteriaceae branches of the phylogeny during evolution. These substitutions would be a worthwhile subject of further study.

      -Fig 1D - lizate should be lysate.

      The typo was corrected.

      -What is the bottom right panel in Fig 1? It doesn't seem to be referred to in the legend.

      This panel was intendent to be the part of figure 1D, but it was not clearly visible. This figure was rearranged to make it clearer. Now these data are presented as Fig. 3B.

      -Sequences are provided for the ancestral proteins, but I don't see them anywhere for the alternative ancestral proteins. How similar are the Anc proteins to the AltAlls? If they are very similar, this may not tell us anything about "robustness".

      Sequences of alternative proteins are added as a figure supplement (Fig. 3 - figure supplement 2). Full sequences of ML and alternative ancestors with posterior probabilities for each reconstructed position are presented in supplementary file 3

      The testing of the robustness to statistical uncertainty was intended to test to what extent properties of reconstructed ancestral proteins could be influenced by uncertainty present in a given reconstruction due to probabilistic nature of the process. Relatively high similarity between ML and AltAll sequences would indicate low uncertainty of the reconstruction (most likely due to high conservation during evolution). In such a case similar properties of AltAll and ML proteins would simply indicate that they are robust to the level of uncertainty present in a given reconstruction (which may be low). It would not tell us much about “general” robustness to mutations, but it was not relevant to research questions considered.

      -If the functional gain by IbpA comes down to only two amino acid substitutions, I'm not convinced this would be meaningfully reflected in any tests of positive selection.

      After considering Reviewer #1’s comments about limitations of models used for selection analysis we added acknowledgment in the discussion (page 9, line 9 - 13) that results indicating positive selection in our dataset should not be considered conclusive (see answer to Reviewer #1’s public review below).

      -The full MSA should be provided as supplemental material.

      The full MSA in fasta format is presented in the supplementary file 1.

      -For the aggregate binding panels in Figs 3 and 4, it would be helpful to show the native and ancestral proteins for comparison. I know this is a bit redundant, as they're present in Fig 1, but I find it hard to judge the scale of change. This is especially important because A0 and A1 are very similar in Fig 1, so I want to see what kind of difference the 2 mutations make.

      Data presented in Fig. 3C (Fig. 5C in the new version) refer to the binding of α-crystallin domains (A0ACD and A0ACD Q66H G109D) and not full length sHsps to E. coli proteins aggregated on a BLI sensor. Our intention was to show the influence of the two crucial substitutions (Q66H G109D) on the properties of A0 ancestral α-crystallin domain.

      Figure 4 (Fig. 6 in the new version) represent the effects of the substitutions on the identified positions 66 and 109 on the properties of extant IbpA orthologs from E. coli and E. amylovora, showing that these two positions play a key role in differentiating properties of those extant proteins. Changes in binding to aggregated substrate caused by those substitutions, as shown in Figure 6 B,C (new version), are indeed larger than observed between AncA0 and AncA1, as shown in Fig. 3B (new version).

      One has to remember, however, that the experiment shown in Fig.3 (new version) shows the effects of all 10 amino acid changes between the nodes A0 and A1 and not only the two analyzed substitutions, as was the case in experiment shown in Fig. 6 B,C (new version). Moreover, due to relatively large number of differences between ancestral and extant sequences (11 differences between AncA0 and E. coli IbpA, 20 differences between AncA1 and E. amylovora IbpA), substitutions in the two experiments are introduced into different sequence context.

      Because of the above, we believe that direct comparison of the results obtained for ancestral proteins with the results obtained for substitutions introduced into extant proteins would not meaningfully contribute to answering the question of the role of analyzed substitution in the context of extant proteins, while decreasing clarity of presented information.

      -Some of the luciferase plots show a time course, but others just show a single %. What is the time point used for the single % plots?

      Information was added to appropriate figure legends that for experiments showing a single timepoint the luciferase activity was measured after 1h of refolding.

      Reviewer #3 (Recommendations For The Authors):

      1. In the Introduction, it would be beneficial to explore additional instances where this evolutionary simplification process has been observed in nature. Investigating the prevalence of this phenomenon and identifying other multi-protein systems that have undergone simplification could enhance the understanding of its significance and implications.

      The section of the introduction concerning gene loss and differential paralog retention was expanded with additional examples of gene loss that is considered adaptive (page 3 lines 1 - 12).

      1. I am intrigued by the reasons why certain organisms continue to maintain a two-protein system despite the viability of a single-protein system. This aspect is particularly relevant for bacteria, considering the fitness cost associated with maintaining extra gene copies. Do you have any hypotheses or theories that may shed light on this intriguing observation?

      Refolding of proteins from aggregates requires the functional cooperation of sHsps and chaperones from Hsp70 system and Hsp100 disaggregase. In two protein sHsps system one sHsp (IbpA) is specialized in substrate binding, while the second one (IbpB) possesses low substrate binding potential and enhances sHps dissociation from substrates (Obuchowski et al, 2019). Thus, the presence of IbpB reduces the amount of chaperones from Hsp70 system required to outcompete sHsps from aggregated substrates to initiate refolding process. The cost associated with maintaining extra sHsp gene copy (ibpB) in bacteria might be compensated by lower requirement for Hsp70 chaperones for efficient and fast protein refolding following stress conditions.

      In this study we have demonstrated how such a system could have been simplified to a single – protein system capable of efficient substrate sequestration as well as stimulation of reactivation. This indeed leads to the question why such single – protein system isn’t more prevalent in Enterobacterales.

      One possibility may be that there are very specific requirements for efficient reactivation by a single – protein sHsp system. We have shown that new, more efficient IbpA functionality observed in Erwiniaceae required at least two separate mutations. It is possible, that such combinations of two substitutions simply did not occur in Enterobacteriaceae clade, in which IbpA still required partner protein for efficient reactivation stimulation.

      One must also remember that experiments performed in this study were performed in vitro in a specific set of conditions, which most likely does not represent whole spectrum of challenges faced by different bacteria. It is possible that two – protein system has some other additional adaptive effects, counterbalancing the additional cost of gene maintenance. It was for example recently shown (Miwa & Taguchi, PNAS, 120 (32) e2304841120) that bacterial sHsps play an important role in regulation of stress response. Two – protein system could potentially allow for more complex regulation.

      1. Incorporating X-ray crystallization as an additional technique in the methodology would offer detailed molecular insights into the effects of Q66H and G109D substitutions on ACD-C-terminal peptide and ACD-substrate interactions. The inclusion of such data would further strengthen the results section and provide robust support for your findings. Since the x-ray data might be difficult to collect, the authors might think to get alphafold model or some rosetta score for the model to discuss the finding further.

      In response to reviewer comment we added the comparison of the structural models of AncA0 and AncA0 Q66H G109D ACD dimers complexed with the C-terminal peptides, representing middle structures of largest clusters obtained from equilibrium molecular dynamics simulation trajectories based on the AlphaFold2 prediction and in silico mutagenesis (Fig. 5 – figure supplement 2). Model comparison as well as C-terminal peptide – ACD contact analysis did not reveal any major changes in mode of peptide binding or α-crystallin domain conformation, although we do acknowledge that simulation timescale limits the conformational sampling.

      Reviewer #1 (Public Review):

      The work in this paper is in general done carefully. Reconstructions are done appropriately and the effects of statistical uncertainty are quantified properly. My only slight complaint is that I couldn't find statistics about posterior probabilities anywhere and that the sequences and trees do not seem to be deposited.

      Posterior probabilities for all positions of reconstructed proteins were added as a supplementary file 3. MSA of all sequences used for ancestral reconstruction as well as phylogenetic tree in Newick format were added as supplementary files 1 and 2, respectively.

      I would also have preferred to have the actual phylogeny in the main text. This is a crucial piece of data that the reader needs to see to understand what exactly is being reconstructed.

      Full phylogeny was added to the main text as Fig. 2.

      The paper identifies which mutations are crucial for the functional differences between the ancestors tested. This is done quite carefully - the authors even show that the same substitutions also work in extant proteins. My only slight concern was the authors' explanation of what these substitutions do. They show that these substitutions lower the affinity of the C-terminal peptide to the alpha-crystallin domain - a key oligomeric interaction. But the difference is very small - from 4.5 to 7 uM. That seems so small that I find it a bit implausible that this effect alone explains the differences in hydrodynamic radius shown in Figure S8. From my visual inspection, it seems that there is also a noticeable change in the cooperativity of the binding interaction. The binding model the authors use is a fairly simple logarithmic curve that doesn't appear to consider the number of binding sites or potential cooperativity. I think this would have been nice to see here.

      The binding model we used is equivalent to the Hill equation as it accounts for the variable slope of sigmoid function by inclusion of input scaling factor k, which is equivalent to the hill coefficient. Simple one site binding model and two site binding model were also considered but provided worse fits to the data than model including binding cooperativity. Not providing values of fitted parameter k was our mistake, and it was corrected (Fig. 5. with a legend). Additionally, output scaling parameter L is not necessary as fraction bound takes values from 0 to 1, therefore we have fitted the curves again without this parameter. The new values of fitted parameters are very similar to the previous ones. To make text more accessible to the reader, we have used a conventional form of Hill equation. Indeed, AncA0 Q66H G109D ACD displays higher binding cooperativity than more ancestral AncA0 ACD (hill coefficient 2.3 for AncA0 vs 3.7 for AncA0 Q66H G109D). Fitted values of Hill coefficients are higher than one can expect for 2-site ACD dimer, which is probably caused by an experimental setup of BLI, where C-terminal peptide is immobilized on the sensor and ACD is present in solution as bivalent analyte leading to emergence of avidity effects. Both cooperativity and avidity are reflected in the value of Hill coefficient, however as ligand density on the sensor is the same in all experiments only change in ACD binding cooperativity can account for observed difference in the value of Hill coefficients. Difference in the C-terminal peptide binding cooperativity may influence the process of sHsp oligomerization and assembly formation despite similar binding affinity, especially if avidity of multiple binding sites within oligomer is considered.

      In addition, we changed the legend to Figure S8 (now called Fig. 5 – figure supplement 4A ) to clarify the fact that the differences in average hydrodynamic radius are in fact ferly small. To highlight the observation that there are two populations of particles in AncA0 and AncA0 Q66H G109D measured at 25, 35 and 45 °C with different hydrodynamic diameters, we used % of intensity in DLS measurement. It allows us to show the change in the hydrodynamic diameter distribution that is relatively small. We recognize it was not properly explained in the article and added a clarification in figure description.

      Lastly, the authors use likelihood methods to test for signatures of selection. This reviewer is not a fan of these methods, as they are easily misled by common biological processes (see PMID 37395787 for a recent critique). Perhaps these pitfalls could simply be acknowledged, as I don't think the selection analysis is very important to the impact of the work.

      We thank the reviewer for pointing to the recent research about limitations of methods used in our work in selection analysis. As per recommendation we added acknowledgment of limitations of methods used to discussion (page 9, line 9 - 13), modifying wording of our conclusions to deemphasize significance of selection analysis results.

    1. Author Response:

      We thank the editors and reviewers for their time in reviewing our manuscript. We would like to post a brief response to the peer reviews at this stage, and we will revise the manuscript and re-post at a later time.

      The main concerns regarding our molecular dating approach consist of the limited number of marker genes used for phylogenetic reconstruction, the molecular clock model employed, and the calibrations used. Firstly, regarding the marker genes that we used in our phylogenetic reconstruction, we will point out that we have extensively benchmarked these methods in a previous study (Martinez-Gutierrez and Aylward, 2021). We initially planned on presenting all of these results together in the same manuscript, but we decided that benchmarking phylogenetic marker genes across all Bacteria and Archaea together with an extensive molecular dating analysis was too much for a single study, and we therefore divided the results into two papers. In short, we agree with R1 that the use of different marker genes will lead to marked differences in the posterior ages of our Bayesian molecular dating analysis; however, we demonstrated that several of the few marker genes shared between Bacteria and Archaea lack of a strong phylogenetic signal and therefore introduce topological biases in the final phylogeny (i.e., long branch attraction). Consequently, using poorly-performing marker genes for molecular dating does not add valuable information to the overall analysis.

      Secondly, regarding the autocorrelated Log-normal model used in our study (-ln on Phylobayes), we believe this is appropriate. Besides being biologically meaningful for our study, it represents a compromise between a relaxed model with rate variation across branches and the assumption of correlation between parent and descent branches (Thorne et al., 1998). In contrast, a fully uncorrelated model that assumes rate independence across branches would make our analysis extremely time-consuming and intractable given our study encompasses all of Bacteria and Archaea. Nonetheless we understand the concerns raised, and in a future manuscript we will include age estimates resulting from the CIR and UGAM models in order to explore the potential effect of model selection in posterior dates.

      Thirdly and lastly, we will point out that calibrations for molecular dating of Bacteria and Archaea are always highly controversial, and there are essentially no calibrations for the early evolution of life on Earth that would not be contested to some degree. Researchers are therefore left to use their best judgment and provide reasonable rationale, which we have done here. We understand that strong opinions abound in this area, and many researchers will disagree with our approach, but that alone does not invalidate our study. Moreover, the main novelty of our approach is the use of a large tree that combines Bacteria and Archaea; extensive benchmarking of different calibration points on such a large tree is not possible here as it may be on a smaller set. One of the main concerns is the use of the age estimate of the Great Oxidation Event (GOE, 2.4 Ga) as minimum and maximum constraints for oxygenic Cyanobacteria, and Ammonia Oxidizing Archaea and aerobic Marinimicrobia, respectively. We agree that oxygen may have existed before the GOE as proposed previously (e.g., Ostrander et al., 2021), however; the strongest geochemical evidence so far (Mass Independent Fractionation of Sulfur, MIFs, (Farquhar et al., 2000)) indicates a significant accumulation of oxygen around that time. We therefore feel that this is a reasonable calibration to use for microbial lineages that have a physiology that is tightly linked to the production or consumption of oxygen. Similar reasoning has been used in other molecular dating studies, so our logic is not out of step with much research in the field (Liao et al., 2022; Ren et al., 2019).

      Due to the limitations of molecular dating studies of microorganisms, we have been very careful to avoid strong conclusions based on the absolute dates we calculated, and the primary interest of readers will likely be the relative divergence times of the marine clades we study (i.e., the overall timeline of microbial diversification in the ocean). We will provide a more in-depth assessment of models and calibrations for Bacteria and Archaea in a future draft, but in the meantime we hope to convey that our study is not without merit despite the substantial challenges of research in this area.

      References:

      • Farquhar J, Bao H, Thiemens M. 2000. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–759.
      • Liao T, Wang S, Stüeken EE, Luo H. 2022. Phylogenomic Evidence for the Origin of Obligate Anaerobic Anammox Bacteria Around the Great Oxidation Event. Mol Biol Evol 39. doi:10.1093/molbev/msac170
      • Martinez-Gutierrez CA, Aylward FO. 2021. Phylogenetic Signal, Congruence, and Uncertainty across Bacteria and Archaea. Mol Biol Evol 38:5514–5527.
      • Ren M, Feng X, Huang Y, Wang H, Hu Z, Clingenpeel S, Swan BK, Fonseca MM, Posada D, Stepanauskas R, Hollibaugh JT, Foster PG, Woyke T, Luo H. 2019. Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. ISME J 13:2150–2161.
      • Ostrander CM, Johnson AC, Anbar AD. 2021. Earth's first redox revolution. Annu Rev Earth Planet Sci. 49, 337-366.
      • Thorne JL, Kishino H, Painter IS. 1998. Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol 15:1647–1657.
    2. eLife assessment

      This important paper addresses the challenging problem of dating the origin of several groups of marine microorganisms. However, while much of the analyses are solid, the lack of robustness analysis in molecular dating component such as using alternative time calibrations, clock models, and input gene sets makes the study incomplete. Despite some concerns, this work is a commendable attempt at an extremely difficult problem and will be of broad interest to microbiologists, geologists, and evolutionary biologists.

    3. Reviewer #1 (Public Review):

      Martinez-Gutierrez and colleagues presented a timeline of important bacteria and archaea groups in the ocean and based on this they correlated the emergence of these microbes with GOE and NOE, the two most important geological events leading to the oxygen accumulation of the Earth. The whole study builds on molecular clock analysis, but unfortunately, the clock analysis contains important errors in the calibration information the study used, and is also oversimplified, leaving many alternative parameters that are known to affect the posterior age estimates untested. Therefore, the main conclusion that the oxygen availability and redox state of the ocean is the main driver of marine microbial diversification is not convincing.

      Basically, what the molecular clock does is to propagate the temporal information of the nodes with time calibrations to the remaining nodes of the phylogenetic tree. So, the first and the most important step is to set the time constraints appropriately. But four of the six calibrations used in this study are debatable and even wrong.

      (1) The record for biogenic methane at 3460 Ma is not reliable. The authors cited Ueno et al. 2006, but that study was based on carbon isotope, which is insufficient to demonstrate biogenicity, as mentioned by Alleon and Summons 2019.

      (2) Three calibrations at Aerobic Nitrososphaerales, Aerobic Marinimicrobia, and Nitrite oxidizing bacteria have the same problem - they are all assumed to have evolved after the GOE where the Earth started to accumulate oxygen in the atmosphere, so they were all capped at 2320 Ma. This is an important mistake and will significantly affect the age estimates because maximum constraint was used (maximum constraint has a much greater effect on age estimates and minimum constraint), and this was used in three nodes involving both Bacteria and Archaea. The main problem is that the authors ignored the numerous evidence showing that oxygen can be produced far before GOE by degradation of abiotically-produced abundant H2O2 by catalases equipped in many anaerobes, also produced by oxygenic cyanobacteria evolved at least 500 Ma earlier than the onset of GOE (2500 Ma), and even accumulated locally (oxygen oasis). It is well possible that aerobic microbes could have evolved in the Archaean.

      Once the phylogenetic tree is appropriately calibrated with fossils and other time constraints, the next important step is to test different clock models and other factors that are known to significantly affect the posterior age estimates. For example, different genes vary in evolutionary history and evolutionary rate, which often give very different age estimates. So it is very important to demonstrate that these concerns are taken into account. These are done in many careful molecular dating studies but missing in this study.

    4. Reviewer #2 (Public Review):

      In this paper, Martinez-Gutierrez and colleagues present a dated, multidomain (= Archaea+Bacteria) phylogenetic tree, and use their analyses to directly compare the ages of various marine prokaryotic groups. They also perform ancestral gene content reconstruction using stochastic mapping to determine when particular types of genes evolved in marine groups.

      Overall, there are not very many papers that attempt to infer a dated tree of all prokaryotes, and this is a distinctive and up-to-date new contribution to that oeuvre. There are several particularly novel and interesting aspects - for example, using the GOE as a (soft) maximum age for certain groups of strictly aerobic Bacteria, and using gene content enrichment to try to understand why and how particular marine groups radiated.

      Comments:

      One overall feature of the results is that marine groups tend to be quite young, and there don't seem to be any modern marine groups that were in the ocean prior to the GOE. It might be interesting to study the evolution of the marine phenotype itself over time; presumably some of the earlier branches were marine? What was the criterion for picking out the major groups being discussed in the paper? My (limited) understanding is that the earliest prokaryotes, potentially including LUCA, LBCA and LACA, was likely marine, in the sense that there would not yet have been any land above sea level at such times. This might merit discussion in the paper. Might there have been earlier exclusively marine groups that went extinct at some point?

      What do the stochastic mapping analyses indicate about the respective ancestors of Gracilicutes and Terrabacteria? At least in the latter case, the original hypothesis for the group was that they possessed adaptations to life on land - which seems connected/relevant to the idea of radiating into the sea discussed here - so it might be interesting to discuss what your analyses say about that idea.

      I very much appreciate that finding time calibrations for microbes is challenging, but I nonetheless have a couple of comments or concerns about the calibrations used here:

      The minimum age for LBCA and LACA (Nodes 1 and 2 in Fig. 1) was calibrated with the earliest evidence of biogenic methane ~3.4Ga. In the case of LACA, I suppose this reflects the view that LACA was a methanogen, which is certainly plausible although perhaps not established with certainty. However, I'm less clear about the logic of calibrating the minimum age of Bacteria using this evidence, as I am not aware that there is much evidence that LBCA was a methanogen. Perhaps the line of reasoning here could be stated more explicitly. An alternative, slightly younger minimum age for Bacteria could perhaps be obtained from isotope data ~3.2Ga consistent with Cyanobacteria (e.g., see https://pubmed.ncbi.nlm.nih.gov/30127539/).

      I am also unclear about the rationale for setting the minimum age of the photosynthetic Cyanobacteria crown to the time of the GOE. Presumably, oxygen-generating photosynthesis evolved on the stem of (photosynthetic) Cyanobacteria, and it therefore seems possible that the GOE might have been initiated by these stem Cyanobacteria, with the crown radiating later? My confusion here might be a comprehension error on my part - it is possible that in fact one node "deeper" than the crown was being calibrated here, which was not entirely clear to me from Figure 1. Perhaps mapping the node numbers directly to the node, rather than a connected branch, would help? (I am assuming, based on nodes 1 and 2, that the labels are being placed on the branch directly antecedent to the node of interest)?

    5. Author Response

      The following is the authors’ response to the original reviews.

      Thank you for your time and effort in handling and reviewing our manuscript. We have responded to all comments below.

      Reviewer #1 (Public Review):

      Martinez-Gutierrez and colleagues presented a timeline of important bacteria and archaea groups in the ocean and based on this they correlated the emergence of these microbes with GOE and NOE, the two most important geological events leading to the oxygen accumulation of the Earth. The whole study builds on molecular clock analysis, but unfortunately, the clock analysis contains important errors in the calibration information the study used, and is also oversimplified, leaving many alternative parameters that are known to affect the posterior age estimates untested. Therefore, the main conclusion that the oxygen availability and redox state of the ocean is the main driver of marine microbial diversification is not convincing.

      We do not conclude that “oxygen availability and redox state of the ocean is the main driver of marine microbial diversification”. Our conclusion is much more nuanced. We merely discuss our findings in light of the major oxygenation events and oxygen availability (among other things) given the important role this molecule has played in shaping the redox state of the ocean.

      Regarding the methodological concerns, to address them we have provided additional analyses to account for different clock models and calibration points.

      Basically, what the molecular clock does is to propagate the temporal information of the nodes with time calibrations to the remaining nodes of the phylogenetic tree. So, the first and the most important step is to set the time constraints appropriately. But four of the six calibrations used in this study are debatable and even wrong.

      (1) The record for biogenic methane at 3460 Ma is not reliable. The authors cited Ueno et al. 2006, but that study was based on carbon isotope, which is insufficient to demonstrate biogenicity, as mentioned by Alleon and Summons 2019.

      Thank you for pointing out the limitations of using the geochemical evidence of methane as calibrations. Indeed, several commentaries have suggested that the biotic and abiotic origin of the methane reported by Ueno et al. are equally plausible (Alleon and Summons, 2019; Lollar and McCollom, 2006), however; we used that calibration as a minimum for the presence of life on Earth, not methanogenesis. Despite the controversy regarding the origin of methane, there are other lines of evidence suggesting the presence of life around ~3.4 Ga. For example stromatolites from the Dresser Formation, Pilbara, Western Australia (Djokic et al., 2017; Walter et al., 1980; Buick and Dunlop, 1990), and more recently (Hickman-Lewis et al., 2022). To avoid confusion, we have added a more extended explanation for the use of that calibration and additional evidence of life around that time in Table 1 and lines 100-104.

      (2) Three calibrations at Aerobic Nitrososphaerales, Aerobic Marinimicrobia, and Nitrite oxidizing bacteria have the same problem - they are all assumed to have evolved after the GOE where the Earth started to accumulate oxygen in the atmosphere, so they were all capped at 2320 Ma. This is an important mistake and will significantly affect the age estimates because maximum constraint was used (maximum constraint has a much greater effect on age estimates and minimum constraint), and this was used in three nodes involving both Bacteria and Archaea. The main problem is that the authors ignored the numerous evidence showing that oxygen can be produced far before GOE by degradation of abiotically-produced abundant H2O2 by catalases equipped in many anaerobes, also produced by oxygenic cyanobacteria evolved at least 500 Ma earlier than the onset of GOE (2500 Ma), and even accumulated locally (oxygen oasis). It is well possible that aerobic microbes could have evolved in the Archaean.

      We appreciate the suggestion of assessing the validity of the calibrations used in our analyses. We initially evaluated the informative power of the priors used for the Bayesian molecular dating (Supplemental File 5), and found that the only calibration that lacked enough information for the purposes of our study was Ammonia Oxidizing Archaea (AOA). In contrast to previous evidence (Ren et al., 2019; Yang et al., 2021), we associate this finding to the potential earlier diversification of AOA. Due to the limitations of several of the calibrations used, we performed an additional molecular dating analysis on 1000 replicate trees using a Penalized Likelihood strategy. This analysis consisted in excluding the calibrations that assumed the presence of oxygen as a maximum constraint. Our analysis shows similar age estimates of the marine microbial clades regardless of the exclusion of these calibrations (Supplemental File 8; TreePL Priors set 2). Our findings thus suggest that the age estimates reported in our study are consistent regardless of whether or not the presence of oxygen is used to calibrate several nodes in the tree. We describe the results of this analysis in lines 490-499 and include estimates in Supplemental File 8. Our results are therefore robust regardless of the use of these somewhat controversial calibrations.

      Once the phylogenetic tree is appropriately calibrated with fossils and other time constraints, the next important step is to test different clock models and other factors that are known to significantly affect the posterior age estimates. For example, different genes vary in evolutionary history and evolutionary rate, which often give very different age estimates. So it is very important to demonstrate that these concerns are taken into account. These are done in many careful molecular dating studies but missing in this study.

      We agree that the selection of marker genes will have a profound impact on the final age estimates. First, it is important to understand that very few genes present in modern Bacteria and Archaea can be traced back to the Last Universal Common Ancestor, so there are very few genes to use for this purpose. Studies that focus on particular groups of Bacteria and Archaea may have larger selections of genes to choose from, but for our purposes there are only about ~40 different genes - mostly encoding for ribosomal proteins, RNA polymerase subunits, and tRNA synthetases - that can be use for this purpose (Creevey et al., 2011; Wu and Scott, 2012). In a previous study we have extensively benchmarked methods for the reconstruction of high-resolution phylogenetic trees of Bacteria and Archaea using these genes (Martinez-Gutierrez and Aylward, 2021). Our analyses demonstrated that some of these genes (mainly tRNA synthetases) have undergone ancient lateral gene transfer events and are not suitable for deep phylogenetics or molecular dating. In this previous study we also evaluated different sets of marker genes to examine which provide the most robust phylogenetic inference. We arrived at a set of ribosomal proteins and RNA polymerase subunits that performs best for phylogenetic reconstruction, and we have used that in the current study.

      Furthermore, we tested the role of molecular dating model selection on the final Bayesian estimates by running four independent chains under the models UGAM and CIR, respectively. Overall, the results did not vary substantially compared with the ages obtained using the log-normal model reported on our manuscript (Supplemental File 8). The additional results are described in lines 478-488 and shown in Supplemental File 8. The clades that showed more variation when using different Bayesian models were SAR86, SAR11, and Crown Cyanobacteria (Supplemental File 8). Despite observing some differences in the age estimates when using different molecular models, the conclusion that the different marine microbial clades presented in our study diversified during distinct periods of Earth’s history remains. Moreover, the main goal of our study is to provide a relative timeline of the diversification of abundant marine microbial clades without focusing on absolute dates.

      Reviewer #2 (Public Review):

      In this paper, Martinez-Gutierrez and colleagues present a dated, multidomain (= Archaea+Bacteria) phylogenetic tree, and use their analyses to directly compare the ages of various marine prokaryotic groups. They also perform ancestral gene content reconstruction using stochastic mapping to determine when particular types of genes evolved in marine groups.

      Overall, there are not very many papers that attempt to infer a dated tree of all prokaryotes, and this is a distinctive and up-to-date new contribution to that oeuvre. There are several particularly novel and interesting aspects - for example, using the GOE as a (soft) maximum age for certain groups of strictly aerobic Bacteria, and using gene content enrichment to try to understand why and how particular marine groups radiated.

      Thank you for your thorough evaluation and comments on our manuscript.

      Comments

      One overall feature of the results is that marine groups tend to be quite young, and there don't seem to be any modern marine groups that were in the ocean prior to the GOE. It might be interesting to study the evolution of the marine phenotype itself over time; presumably some of the earlier branches were marine? What was the criterion for picking out the major groups being discussed in the paper? My (limited) understanding is that the earliest prokaryotes, potentially including LUCA, LBCA and LACA, was likely marine, in the sense that there would not yet have been any land above sea level at such times. This might merit discussion in the paper. Might there have been earlier exclusively marine groups that went extinct at some point?

      Thank you for pointing this out - this is a very interesting idea.<br /> Firstly, the major marine lineages that we study here have largely already been defined in previous studies and are known to account for a large fraction of the total diversity and biomass of prokaryotes in the ocean. For example, Giovannoni and Stingl described most of these groups previously when discussing cosmopolitan and abundant marine lineages (Giovannoni and Stingl, 2005). The main criteria to select the marine clades studied here are 1) these groups have large impacts in the marine biogeochemical cycles and represent a large fraction of the microbial biomass in the open ocean, 2) they have an appropriate representation on genomic databases such that they can be confidently included in a phylogenetic tree, 3) the clades included can be confidently classified as being marine, in the sense that consequently the last common ancestor had a marine origin. This is explained in lines 83-86. We were primarily interested in lineages that encompassed a broad phylogenetic breadth, and we therefore did not include many groups that can be found in the ocean but are also readily isolated from a range of other environments (i.e., Pseudomonas spp., some Actinomycetes, etc.).

      We agree that some of the earlier microbial branches in the Tree of Life were likely marine. The study of the marine origin of LUCA, LBCA, LACA, although interesting, is out of the scope of our study, and our results cannot offer any direct evidence of their habitat. We have therefore sought to focus on the origins of extant marine lineages.

      What do the stochastic mapping analyses indicate about the respective ancestors of Gracilicutes and Terrabacteria? At least in the latter case, the original hypothesis for the group was that they possessed adaptations to life on land - which seems connected/relevant to the idea of radiating into the sea discussed here - so it might be interesting to discuss what your analyses say about that idea.

      Thank you for your recommendation to perform additional analysis regarding the characterization of the ancestor of the superphyla Gracilicutes and Terrabacteria. We agree that this analysis would be very interesting, but we wish to focus the manuscript primarily on the marine clades in question, and other supergroups are listed in Figure 2 mainly for context. However, we did check the results of the stochastic mapping analysis and we now report the list of genes predicted to be gained and lost at the ancestor of the Gracilicutes and Terrabacteria clades, however; it is out of the scope of this study.

      I very much appreciate that finding time calibrations for microbes is challenging, but I nonetheless have a couple of comments or concerns about the calibrations used here:

      The minimum age for LBCA and LACA (Nodes 1 and 2 in Fig. 1) was calibrated with the earliest evidence of biogenic methane ~3.4Ga. In the case of LACA, I suppose this reflects the view that LACA was a methanogen, which is certainly plausible although perhaps not established with certainty. However, I'm less clear about the logic of calibrating the minimum age of Bacteria using this evidence, as I am not aware that there is much evidence that LBCA was a methanogen. Perhaps the line of reasoning here could be stated more explicitly. An alternative, slightly younger minimum age for Bacteria could perhaps be obtained from isotope data ~3.2Ga consistent with Cyanobacteria (e.g., see https://pubmed.ncbi.nlm.nih.gov/30127539/).

      Thank you for pointing this out. We used the presence of methane as a minimum for life on Earth, not as a minimum for methanogenesis. Despite using this calibration as a minimum for the root of Bacteria and not having methanogenic representatives within this domain, there are independent lines of evidence that point to the presence of microbial life around the same time (~3.5 Ga, for example stromatolites from the Dresser Formation, Pilbara, Western Australia (~3.5 Ga) (Djokic et al., 2017; Walter et al., 1980; Buick and Dunlop, 1990), and more recently (Hickman-Lewis et al., 2022). We added a rationale for the use of the evidence of methane as a minimum age for life on Earth to the manuscript (Table 1 and 100104).

      I am also unclear about the rationale for setting the minimum age of the photosynthetic Cyanobacteria crown to the time of the GOE. Presumably, oxygen-generating photosynthesis evolved on the stem of (photosynthetic) Cyanobacteria, and it therefore seems possible that the GOE might have been initiated by these stem Cyanobacteria, with the crown radiating later? My confusion here might be a comprehension error on my part - it is possible that in fact one node "deeper" than the crown was being calibrated here, which was not entirely clear to me from Figure 1. Perhaps mapping the node numbers directly to the node, rather than a connected branch, would help? (I am assuming, based on nodes 1 and 2, that the labels are being placed on the branch directly antecedent to the node of interest)?

      Thank you so much for your suggestion. As pointed out, the calibrations used were applied at the crown node of existing Cyanobacterial clades, not at the stem of photosynthetic Cyanobacteria. We agree that photosynthesis and therefore the production of molecular oxygen may have been present in more ancient Cyanobacterial clades, however; these groups have not been discovered yet or went extinct. We have improved Fig. 1 to avoid confusion and now it is part of the updated version of our manuscript.

      Alleon J, Summons RE. 2019. Organic geochemical approaches to understanding early life. Free Radic Biol Med 140:103–112.

      Buick R, Dunlop JSR. 1990. Evaporitic sediments of Early Archaean age from the Warrawoona Group, North Pole, Western Australia. Sedimentology 37: 247-277.

      Creevey CJ, Doerks T, Fitzpatrick DA, Raes J, Bork P. 2011. Universally distributed single-copy genes indicate a constant rate of horizontal transfer. PLoS One 6:e22099.

      Djokic T, Van Kranendonk MJ, Campbell KA, Walter MR, Ward CR. 2017. Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nat Commun 8:15263.

      Giovannoni SJ, Stingl U. 2005. Molecular diversity and ecology of microbial plankton. Nature 437: 343-348. Hickman-Lewis K, Cavalazzi B, Giannoukos K, D'Amico L, Vrbaski S, Saccomano G, et al. 2023. Advanced two-and three-dimensional insights into Earth's oldest stromatolites (ca. 3.5 Ga): Prospects for the search for life on Mars. Geology 51: 33-38.

      Lollar BS, McCollom TM. 2006. Geochemistry: biosignatures and abiotic constraints on early life. Nature. Martinez-Gutierrez CA, Aylward FO. 2021. Phylogenetic Signal, Congruence, and Uncertainty across Bacteria and Archaea. Mol Biol Evol 38:5514–5527.

      Ren M, Feng X, Huang Y, Wang H, Hu Z, Clingenpeel S, Swan BK, Fonseca MM, Posada D, Stepanauskas R, Hollibaugh JT, Foster PG, Woyke T, Luo H. 2019. Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. ISME J 13:2150–2161.

      Walter M R, R Buick, JSR Dunlop. 1980. Stromatolites 3,400–3,500 Myr old from the North pole area, Western Australia. Nature 284: 443-445.

      Wu M, Scott AJ. 2012. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 28:1033–1034.

      Yang Y, Zhang C, Lenton TM, Yan X, Zhu M, Zhou M, Tao J, Phelps TJ, Cao Z. 2021. The Evolution Pathway of Ammonia-Oxidizing Archaea Shaped by Major Geological Events. Mol Biol Evol 38:3637–3648.

    6. eLife assessment

      This important paper addresses the challenging problem of dating the origin of several groups of marine microorganisms. The analyses are solid, with various test of clock models and time calibrations used, however given the uncertainty of many of the dates used to anchor ancient geological events, further studies are needed to support or refute the hypotheses put forth in this paper. Despite some methodological concerns, this work is a commendable attempt at an extremely difficult problem and will be of broad interest to microbiologists, geologists, and evolutionary biologists.

    7. Reviewer #1 (Public Review):

      Martinez-Gutierrez and colleagues presented a timeline of important bacteria and archaea groups in the ocean and based on this they correlated the emergence of these microbes with GOE and NOE, the two most important geological events leading to the oxygen accumulation of the Earth.

      The following suggestion is very important and requires additional clock analysis.

      "Three calibrations at Aerobic Nitrososphaerales, Aerobic Marinimicrobia, and Nitrite oxidizing bacteria have the same problem - they are all assumed to have evolved after the GOE where the Earth started to accumulate oxygen in the atmosphere, so they were all capped at 2320 Ma. This is an important mistake and will significantly affect the age estimates because maximum constraint was used (maximum constraint has a much greater effect on age estimates and minimum constraint), and this was used in three nodes involving both Bacteria and Archaea. The main problem is that the authors ignored the numerous evidence showing that oxygen can be produced far before GOE by degradation of abiotically-produced abundant H2O2 by catalases equipped in many anaerobes, also produced by oxygenic cyanobacteria evolved at least 500 Ma earlier than the onset of GOE (2500 Ma), and even accumulated locally (oxygen oasis). It is well possible that aerobic microbes could have evolved in the Archaean."

    8. Reviewer #2 (Public Review):

      In this paper, Martinez-Gutierrez and colleagues present a dated, multidomain (= Archaea+Bacteria) phylogenetic tree, and use their analyses to directly compare the ages of various marine prokaryotic groups. They also perform ancestral gene content reconstruction using stochastic mapping to determine when particular types of genes evolved in marine groups.

      Overall, there are not very many papers that attempt to infer a dated tree of all prokaryotes, and this is a distinctive and up-to-date new contribution to that oeuvre. There are several particularly novel and interesting aspects - for example, using the GOE as a (soft) maximum age for certain groups of strictly aerobic Bacteria, and using gene content enrichment to try to understand why and how particular marine groups radiated.

      One overall feature of the results is that marine groups tend to be quite young, and there don't seem to be any modern marine groups that were in the ocean prior to the GOE. This seems an interesting strand to pursue in future work. Presumably, the earliest branches of the bacterial tree were marine, so what happened in the intervening period? The authors' character mapping approach could also be used to infer the habitat of the Gracilicutes and Terrabacteria ancestors, and it might be interesting to revisit the question of the ancestral ecological differences between these groups, if any can be clearly distinguished.

      Finally, some comments in which I disagree with a couple of the authors' methodological decisions. I don't think these disagreements are likely to have a major impact on the findings, but I feel it is worth mentioning them in any case, to stimulate future discussion and work. I very much appreciate that finding time calibrations for microbes is challenging, but I nonetheless have a couple of comments or concerns about the calibrations used here.

      1. It is not clear that the earliest evidence for biogenic methane provides a minimum age for both Bacteria and Archaea. For Archaea, potentially --- if the methane is indeed biogenic, and if the last archaeal common ancestor was a methanogen. For Bacteria (and extant life as a whole), the link is harder to draw. The authors pointed out that there is other evidence from around this time for life, for example from the Strelley Pool at ~3.3Ga. This is a reasonable argument for a minimum on LUCA, but then the optimal approach would be to calibrate the root node with this minimum, rather than the two descendant clades.

      2. I am also unclear about the rationale for setting the minimum age of the photosynthetic Cyanobacteria crown to the time of the GOE. Presumably, oxygen-generating photosynthesis evolved on the stem of (photosynthetic) Cyanobacteria - since the crown seems to have had it ancestrally - and it therefore seems possible that the GOE might have been initiated by these stem Cyanobacteria, with the crown radiating later. In their response to my comment, the authors confirm that they are calibrating the crown Cyanobacteria using the GOE as a minimum. I don't agree with the logic here: it seems a formal possibility that crown Cyanobacteriia are younger than the GOE. The authors argued that, although oxygenic photosynthesis likely evolved on the stem, due to extinction (or non-sampling) of intervening lineages there are no nodes on the tree that directly sample that event. I agree, but I would then suggest placing the minimum on the older, not the younger, end of the stem.

    1. eLife assessment

      This paper identifies a subset of neurons within adult mouse myenteric ganglia that are not labeled via canonical neural-crest labeling, and argues, based on extensive lineage tracing, imaging and genomic data that these neurons are derived from mesoderm. There is convincing evidence for the existence of an unusual cell type in the gut that expresses neuronal markers, but which is derived from cells expressing markers of the mesoderm rather than the expected neural crest, which is an intriguing and important observation. While the data do not definitively establish the molecular taxonomy of this lineage, there is sufficient evidence to support the provocative and paradigm-shifting hypothesis of the non-ectodermal origin for enteric neurons to warrant further deeper investigation.

    1. Reviewer #3 (Public Review):

      This is an interesting manuscript that builds off of this group's previous work focused on the interface between Hsf1, heat shock protein (HSP) mRNA production, and 3D genome topology. Here the group subjects the yeast Saccharomyces cerevisiae to either heat stress (HS) or ethanol stress (ES) and examines Hsf1 and Pol II chromatin binding, Histone occupancy, Hsf1 condensates, HSP gene coalescence (by 3C and live cell imaging), and HSP mRNA expression (by RT-qPCR and live cell imaging). The manuscript is well written, and the experiments seem well done, and generally rigorous, with orthogonal approaches performed to support conclusions. The main findings are that both HS and ES result in Hsf1/Pol II-dependent intergenic interactions, along with the formation of Hsf1 condensates. Yet, while HS results in rapid and strong induction of HSP gene expression and Hsf1 condensate resolution, ES results in slow and weak induction of HSP gene expression without Hsf1 condensate resolution. Thus, the conclusion is somewhat phenomenological - that the same transcription factor can drive distinct transcription, topologic, and phase-separation behavior in response to different types of stress. While identifying a mechanistic basis for these results would be a tough task perhaps beyond the scope of this study, it would nevertheless be helpful to place these results in context with a series of other studies demonstrating across various organisms showing Hsf1 driving distinct activities dependent on the context of activation. Perhaps even more importantly, this work left out PMID: 32015439 which is particularly relevant considering that it shows that it is human HSF1 condensate resolution rather than simple condensate formation that is associated with HSF1 transcriptional activity - which is similar to the findings here with this particular dose of HS resulting in resolution and high transcriptional activity versus ES resulting in resolution failure and lower activity. It is also worth noting that the stresses themselves are quite different - ethanol can be used as a carbon source and so beyond inducing proteotoxic stress, the yeast are presumably adapting to this distinct metabolic state. Basically, it is not clear whether these differences are due to the dose of stress, versus we are looking at an early timepoint as ES initiates a genome-wide chromatin restructuring and gene expression reprogramming that goes beyond a response to proteotoxic stress. This reviewer is not suggesting a barrage of new experiments, but perhaps discussion points to contextualize results.

    1. eLife assessment

      This important study sheds light on the role of sphingolipids on the maturation of Parkinson's disease-associated Synphilin-1 inclusion bodies (SY1 IBs) on the mitochondrial surface in a yeast model using Synthetic Genetic Array (SGA) and state-of-the-art imaging techniques. The authors provide solid evidence that downregulating the sphingolipid biosynthesis pathway leads to defective maturation and enhanced toxicity of SY1 IBs in both yeast and mammalian cells. However, these data neither explain the role of mitochondrial surface sphingolipids in SY1 IB maturation (the cellular site of maturation of smaller toxic aggregates to bigger less toxic IBs), nor the requirement of mitochondrial activity in IB maturation.

    2. Reviewer #1 (Public Review):

      The authors have shown the following:<br /> 1. SY1 aggregation enhances (in terms of number of aggregates) when Sphingolipid biosynthesis is blocked.<br /> 2. In a normal cell (where sphingolipid biosynthesis is not hampered), the aggregate of SY1 (primarily the Class I aggregate) is localized only on the mitochondrial endomembrane system.<br /> 3. The localization is due to the association of SY1 (aggregates) with mitochondrial proteins like Tom70, Tim44, etc. (Is the localization completely lost? What happens to the toxicity when the aggregates are not localized on mitochondria?)<br /> 4. This fuels the loss of mitochondrial function.<br /> 5. Mitochondrial function is further abrogated when there is a block in sphingolipid biosynthesis.<br /> 6. A similar phenomenon is conserved in mammalian cell lines.

      However, my major concern is that the role of sphingolipid in the mitochondrial association of the aggregates is not proven beyond doubt. I am also missing the importance of mitochondrial association in the context of IB maturation and cellular toxicity.

    3. Reviewer #2 (Public Review):

      Summary:<br /> The authors used a yeast model for analyzing Parkinson's disease-associated synphilin-1 inclusion bodies (SY1 IBs). In this model system, large SY1 IBs are efficiently formed from smaller potentially more toxic SY1 aggregates. Using a genome-wide approach (synthetic genetic array, SGA, combined with a high-content imaging approach), the authors identified the sphingolipid metabolic pathway as pivotal for SY1 IBs formation. Disturbances of this pathway increased SY1-triggered growth deficits, loss of mitochondrial membrane potential, increased production of reactive oxygen species (ROS), and decreased cellular ATP levels pointing to an increased energy crisis within affected cells. Notably, SY1 IBs were found to be surrounded by mitochondrial membranes using state-of-the-art super-resolution microscopy. Finally, the effects observed in the yeast for SY1 IBs turned out to be evolutionarily conserved in mammalian cells. Thus, sphingolipid metabolism might play an important role in the detoxification of misfolded proteins by large IBs formation at the mitochondrial membrane.

      Strengths:<br /> • The SY1 IB yeast model is very suitable for the analysis of genes involved in IB formation.<br /> • The genome-wide approach combining a synthetic genetic array (SGA) with a high-content imaging approach is a compelling approach and enables the reliable identification of novel genes. The authors tightly checked the output of the screen.<br /> • The authors clearly showed, including a couple of control experiments, that the sphingolipid metabolic pathway is crucial for SY1 IB formation and cytotoxicity.<br /> • The localization of SY1 IBs at mitochondrial membranes has been clearly demonstrated with state-of-the-art super-resolution microscopy and biochemical methods.<br /> • Pharmacological manipulation of the sphingolipid pathway influenced mitochondrial function and cell survival.

      Weaknesses:<br /> • It remains unclear how sphingolipids are involved in SY1 IB formation.<br /> • It remains undefined whether failure of sphingolipid-dependent SY1 IB formation from smaller potentially more toxic aggregates occurs at the mitochondrial membrane.<br /> • It remains open whether mitochondrial activity (e.g., respiratory activity) is needed for sphingolipid-dependent SY1 IB formation.