6,971 Matching Annotations
  1. Sep 2024
    1. Author Response

      The following is the authors’ response to the current reviews.

      Reviewer #1 (Public Review):

      The authors present a number of deep learning models to analyse the dynamics of epithelia. In this way they want to overcome the time-consuming manual analysis of such data and also remove a potential operator bias. Specifically, they set up models for identifying cell division events and cell division orientation. They apply these tools to the epithelium of the developing Drosophila pupal wing. They confirm a linear decrease of the division density with time and identify a burst of cell division after healing of a wound that they had induced earlier. These division events happen a characteristic time after and a characteristic distance away from the wound. These characteristic quantities depend on the size of the wound.

      Strengths:

      The methods developed in this work achieve the goals set by the authors and are a very helpful addition to the toolbox of developmental biologists. They could potentially be used on various developing epithelia. The evidence for the impact of wounds on cell division is compelling.

      The methods presented in this work should prove to be very helpful for quantifying cell proliferation in epithelial tissues.

      We thank the reviewer for the positive comments!

      Reviewer #2 (Public Review):

      In this manuscript, the authors propose a computational method based on deep convolutional neural networks (CNNs) to automatically detect cell divisions in two-dimensional fluorescence microscopy timelapse images. Three deep learning models are proposed to detect the timing of division, predict the division axis, and enhance cell boundary images to segment cells before and after division. Using this computational pipeline, the authors analyze the dynamics of cell divisions in the epithelium of the Drosophila pupal wing and find that a wound first induces a reduction in the frequency of division followed by a synchronised burst of cell divisions about 100 minutes after its induction.

      Comments on revised version:

      Regarding the Reviewer's 1 comment on the architecture details, I have now understood that the precise architecture (number/type of layers, activation functions, pooling operations, skip connections, upsampling choice...) might have remained relatively hidden to the authors themselves, as the U-net is built automatically by the fast.ai library from a given classical choice of encoder architecture (ResNet34 and ResNet101 here) to generate the decoder part and skip connections.

      Regarding the Major point 1, I raised the question of the generalisation potential of the method. I do not think, for instance, that the optimal number of frames to use, nor the optimal choice of their time-shift with respect to the division time (t-n, t+m) (not systematically studied here) may be generic hyperparameters that can be directly transferred to another setting. This implies that the method proposed will necessarily require re-labeling, re-training and re-optimizing the hyperparameters which directly influence the network architecture for each new dataset imaged differently. This limits the generalisation of the method to other datasets, and this may be seen as in contrast to other tools developed in the field for other tasks such as cellpose for segmentation, which has proven a true potential for generalisation on various data modalities. I was hoping that the authors would try themselves testing the robustness of their method by re-imaging the same tissue with slightly different acquisition rate for instance, to give more weight to their work.

      We thank the referee for the comments. Regarding this particular biological system, due to photobleaching over long imaging periods (and the availability of imaging systems during the project), we would have difficulty imaging at much higher rates than the 2 minute time frame we currently use. These limitations are true for many such systems, and it is rarely possible to rapidly image for long periods of time in real experiments. Given this upper limit in framerate, we could, in principle, sample this data at a lower framerate, by removing time points of the videos but this typically leads to worse results. With some pilot data, we have tried to use fewer time intervals for our analysis but they always gave worse results. We found we need to feed the maximum amount of information available into the model to get the best results (i.e. the fastest frame rate possible, given the data available). Our goal is to teach the neural net to identify dynamic space-time localised events from time lapse videos, in which the duration of an event is a key parameter. Our division events take 10 minutes or less to complete therefore we used 5 timepoints in the videos for the deep learning model. If we considered another system with dynamic events which have a duration T when we would use T/t timepoints where t is the minimum time interval (for our data t=2min). For example if we could image every minute we would use 10 timepoints. As discussed below, we do envision other users with different imaging setups and requirements may need to retrain the model for their own data and to help with this, we have now provided more detailed instructions how to do this (see later).

      In this regard, and because the authors claimed to provide clear instructions on how to reuse their method or adapt it to a different context, I delved deeper into the code and, to my surprise, felt that we are far from the coding practice of what a well-documented and accessible tool should be.

      To start with, one has to be relatively accustomed with Napari to understand how the plugin must be installed, as the only thing given is a pip install command (that could be typed in any terminal without installing the plugin for Napari, but has to be typed inside the Napari terminal, which is mentioned nowhere). Surprisingly, the plugin was not uploaded on Napari hub, nor on PyPI by the authors, so it is not searchable/findable directly, one has to go to the Github repository and install it manually. In that regard, no description was provided in the copy-pasted templated files associated to the napari hub, so exporting it to the hub would actually leave it undocumented.

      We thank the referee for suggesting the example of (DeXtrusion, Villars et al. 2023). We have endeavoured to produce similarly-detailed documentation for our tools. We now have clear instructions for installation requiring only minimal coding knowledge, and we have provided a user manual for the napari plug-in. This includes information on each of the options for using the model and the outputs they will produce. The plugin has been tested by several colleagues using both Windows and Mac operating systems.

      Author response image 1.

      Regarding now the python notebooks, one can fairly say that the "clear instructions" that were supposed to enlighten the code are really minimal. Only one notebook "trainingUNetCellDivision10.ipynb" has actually some comments, the other have (almost) none nor title to help the unskilled programmer delving into the script to guess what it should do. I doubt that a biologist who does not have a strong computational background will manage adapting the method to its own dataset (which seems to me unavoidable for the reasons mentioned above).

      Within the README file, we have now included information on how to retrain the models with helpful links to deep learning tutorials (which, indeed, some of us have learnt from) for those new to deep learning. All Jupyter notebooks now include more comments explaining the models.

      Finally regarding the data, none is shared publicly along with this manuscript/code, such that if one doesn't have a similar type of dataset - that must be first annotated in a similar manner - one cannot even test the networks/plugin for its own information. A common and necessary practice in the field - and possibly a longer lasting contribution of this work - could have been to provide the complete and annotated dataset that was used to train and test the artificial neural network. The basic reason is that a more performant, or more generalisable deep-learning model may be developed very soon after this one and for its performance to be fairly compared, it requires to be compared on the same dataset. Benchmarking and comparison of methods performance is at the core of computer vision and deep-learning.

      We thank the referee for these comments. We have now uploaded all the data used to train the models and to test them, as well as all the data used in the analyses for the paper. This includes many videos that were not used for training but were analysed to generate the paper’s results. The link to these data sets is provided in our GitHub page (https://github.com/turleyjm/cell-division-dl- plugin/tree/main). In the folder for the data sets and in the GitHub repository, we have included the Jupyter notebooks used to train the models and these can be used for retraining. We have made our data publicly available at Zenodo dataset https://zenodo.org/records/10846684 (added to last paragraph of discussion). We have also included scripts that can be used to compare the model output with ground truth, including outputs highlighting false positives and false negatives. Together with these scripts, models can be compared and contrasted, both in general and in individual videos. Overall, we very much appreciate the reviewer’s advice, which has made the plugin much more user- friendly and, hopefully, easier for other groups to train their own models. Our contact details are provided, and we would be happy to advise any groups that would like to use our tools.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The authors present a number of deep-learning models to analyse the dynamics of epithelia. In this way, they want to overcome the time-consuming manual analysis of such data and also remove a potential operator bias. Specifically, they set up models for identifying cell division events and cell division orientation. They apply these tools to the epithelium of the developing Drosophila pupal wing. They confirm a linear decrease of the division density with time and identify a burst of cell division after the healing of a wound that they had induced earlier. These division events happen a characteristic time after and a characteristic distance away from the wound. These characteristic quantities depend on the size of the wound.

      Strength:

      The methods developed in this work achieve the goals set by the authors and are a very helpful addition to the toolbox of developmental biologists. They could potentially be used on various developing epithelia. The evidence for the impact of wounds on cell division is solid.

      Weakness:

      Some aspects of the deep-learning models remained unclear, and the authors might want to think about adding details. First of all, for readers not being familiar with deep-learning models, I would like to see more information about ResNet and U-Net, which are at the base of the new deep-learning models developed here. What is the structure of these networks?

      We agree with the Reviewer and have included additional information on page 8 of the manuscript, outlining some background information about the architecture of ResNet and U-Net models.

      How many parameters do you use?

      We apologise for this omission and have now included the number of parameters and layers in each model in the methods section on page 25.

      What is the difference between validating and testing the model? Do the corresponding data sets differ fundamentally?

      The difference between ‘validating’ and ‘testing’ the model is validating data is used during training to determine whether the model is overfitting. If the model is performing well on the training data but not on the validating data, this a key signal the model is overfitting and changes will need to be made to the network/training method to prevent this. The testing data is used after all the training has been completed and is used to test the performance of the model on fresh data it has not been trained on. We have removed refence to the validating data in the main text to make it simpler and add this explanation to the methods. There is no fundamental (or experimental) difference between each of the labelled data sets; rather, they are collected from different biological samples. We have now included this information in the Methods text on page 24.

      How did you assess the quality of the training data classification?

      These data were generated and hand-labelled by an expert with many years of experience in identifying cell divisions in imaging data, to give the ground truth for the deep learning model.

      Reviewer #1 (Recommendations For The Authors):

      You repeatedly use 'new', 'novel' as well as 'surprising' and 'unexpected'. The latter are rather subjective and it is not clear based on what prior knowledge you make these statements. Unless indicated otherwise, it is understood that the results and methods are new, so you can delete these terms.

      We have deleted these words, as suggested, for almost all cases.

      p.4 "as expected" add a reference or explain why it is expected.

      A reference has now been included in this section, as suggested.

      p.4 "cell divisions decrease linearly with time" Only later (p.10) it turns out that you think about the density of cell divisions.

      This has been changed to "cell division density decreases linearly with time".

      p.5 "imagine is largely in one plane" while below "we generated a 3D z-stack" and above "our in vivo 3D image data" (p.4). Although these statements are not strictly contradictory, I still find them confusing. Eventually, you analyse a 2D image, so I would suggest that you refer to your in vivo data as being 2D.

      We apologise for the confusion here; the imaging data was initially generated using 3D z-stacks but this 3D data is later converted to a 2D focused image, on which the deep learning analysis is performed. We are now more careful with the language in the text.

      p.7 "We have overcome (...) the standard U-Net model" This paragraph remains rather cryptic to me. Maybe you can explain in two sentences what a U-Net is or state its main characteristics. Is it important to state which class you have used at this point? Similarly, what is the exact role of the ResNet model? What are its characteristics?

      We have included more details on both the ResNet and U-Net models and how our model incorporates properties from them on Page 8.

      p.8 Table 1 Where do I find it? Similarly, I could not find Table 2.

      These were originally located in the supplemental information document, but have been moved to the main manuscript.

      p.9 "developing tissue in normal homeostatic conditions" Aren't homeostatic and developing contradictory? In one case you maintain a state, in the other, it changes.

      We agree with the Reviewer and have removed the word ‘homeostatic’.

      p.9 "Develop additional models" I think 'models' refers to deep learning models, not to physical models of epithelial tissue development. Maybe you can clarify this?

      Yes, this is correct; we have phrased this better in the text.

      p.12 "median error" median difference to the manually acquired data?

      Yes, and we have made this clearer in the text, too.

      p.12 "we expected to observe a bias of division orientation along this axis" Can you justify the expectation? Elongated cells are not necessarily aligned with the direction of a uniaxially applied stress.

      Although this is not always the case, we have now included additional references to previous work from other groups which demonstrated that wing epithelial cells do become elongated along the P/D axis in response to tension.

      p.14 "a rather random orientation" Please, quantify.

      The division orientations are quantified in Fig. 4F,G; we have now changed our description from ‘random’ to ‘unbiased’.

      p.17 "The theories that must be developed will be statistical mechanical (stochastic) in nature" I do not understand. Statistical mechanics refers to systems at thermodynamic equilibrium, stochastic to processes that depend on, well, stochastic input.

      We have clarified that we are referring to non-equilibrium statistical mechanics (the study of macroscopic systems far from equilibrium, a rich field of research with many open problems and applications in biology).

      Reviewer #2 (Public Review):

      In this manuscript, the authors propose a computational method based on deep convolutional neural networks (CNNs) to automatically detect cell divisions in two-dimensional fluorescence microscopy timelapse images. Three deep learning models are proposed to detect the timing of division, predict the division axis, and enhance cell boundary images to segment cells before and after division. Using this computational pipeline, the authors analyze the dynamics of cell divisions in the epithelium of the Drosophila pupal wing and find that a wound first induces a reduction in the frequency of division followed by a synchronised burst of cell divisions about 100 minutes after its induction.

      In general, novelty over previous work does not seem particularly important. From a methodological point of view, the models are based on generic architectures of convolutional neural networks, with minimal changes, and on ideas already explored in general. The authors seem to have missed much (most?) of the literature on the specific topic of detecting mitotic events in 2D timelapse images, which has been published in more specialized journals or Proceedings. (TPMAI, CCVPR etc., see references below). Even though the image modality or biological structure may be different (non-fluorescent images sometimes), I don't believe it makes a big difference. How the authors' approach compares to this previously published work is not discussed, which prevents me from objectively assessing the true contribution of this article from a methodological perspective.

      On the contrary, some competing works have proposed methods based on newer - and generally more efficient - architectures specifically designed to model temporal sequences (Phan 2018, Kitrungrotsakul 2019, 2021, Mao 2019, Shi 2020). These natural candidates (recurrent networks, long-short-term memory (LSTM) gated recurrent units (GRU), or even more recently transformers), coupled to CNNs are not even mentioned in the manuscript, although they have proved their generic superiority for inference tasks involving time series (Major point 2). Even though the original idea/trick of exploiting the different channels of RGB images to address the temporal aspect might seem smart in the first place - as it reduces the task of changing/testing a new architecture to a minimum - I guess that CNNs trained this way may not generalize very well to videos where the temporal resolution is changed slightly (Major point 1). This could be quite problematic as each new dataset acquired with a different temporal resolution or temperature may require manual relabeling and retraining of the network. In this perspective, recent alternatives (Phan 2018, Gilad 2019) have proposed unsupervised approaches, which could largely reduce the need for manual labeling of datasets.

      We thank the reviewer for their constructive comments. Our goal is to develop a cell detection method that has a very high accuracy, which is critical for practical and effective application to biological problems. The algorithms need to be robust enough to cope with the difficult experimental systems we are interested in studying, which involve densely packed epithelial cells within in vivo tissues that are continuously developing, as well as repairing. In response to the above comments of the reviewer, we apologise for not including these important papers from the division detection and deep learning literature, which are now discussed in the Introduction (on page 4).

      A key novelty of our approach is the use of multiple fluorescent channels to increase information for the model. As the referee points out, our method benefits from using and adapting existing highly effective architectures. Hence, we have been able to incorporate deeper models than some others have previously used. An additional novelty is using this same model architecture (retrained) to detect cell division orientation. For future practical use by us and other biologists, the models can easily be adapted and retrained to suit experimental conditions, including different multiple fluorescent channels or number of time points. Unsupervised approaches are very appealing due to the potential time saved compared to manual hand labelling of data. However, the accuracy of unsupervised models are currently much lower than that of supervised (as shown in Phan 2018) and most importantly well below the levels needed for practical use analysing inherently variable (and challenging) in vivo experimental data.

      Regarding the other convolutional neural networks described in the manuscript:

      (1) The one proposed to predict the orientation of mitosis performs a regression task, predicting a probability for the division angle. The architecture, which must be different from a simple Unet, is not detailed anywhere, so the way it was designed is difficult to assess. It is unclear if it also performs mitosis detection, or if it is instead used to infer orientation once the timing and location of the division have been inferred by the previous network.

      The neural network used for U-NetOrientation has the same architecture as U-NetCellDivision10 but has been retrained to complete a different task: finding division orientation. Our workflow is as follows: firstly, U-NetCellDivision10 is used to find cell divisions; secondly, U-NetOrientation is applied locally to determine the division orientation. These points have now been clarified in the main text on Page 14.

      (2) The one proposed to improve the quality of cell boundary images before segmentation is nothing new, it has now become a classic step in segmentation, see for example Wolny et al. eLife 2020.

      We have cited similar segmentation models in our paper and thank the referee for this additional one. We had made an improvement to the segmentation models, using GFP-tagged E-cadherin, a protein localised in a thin layer at the apical boundary of cells. So, while this is primarily a 2D segmentation problem, some additional information is available in the z-axis as the protein is visible in 2-3 separate z-slices. Hence, we supplied this 3-focal plane input to take advantage of the 3D nature of this signal. This approach has been made more explicit in the text (Pages 14, 15) and Figure (Fig. 2D).

      As a side note, I found it a bit frustrating to realise that all the analysis was done in 2D while the original images are 3D z-stacks, so a lot of the 3D information had to be compressed and has not been used. A novelty, in my opinion, could have resided in the generalisation to 3D of the deep-learning approaches previously proposed in that context, which are exclusively 2D, in particular, to predict the orientation of the division.

      Our experimental system is a relatively flat 2D tissue with the orientation of the cell divisions consistently in the xy-plane. Hence, a 2D analysis is most appropriate for this system. With the successful application of the 2D methods already achieving high accuracy, we envision that extension to 3D would only offer a slight increase in effectiveness as these measurements have little room for improvement. Therefore, we did not extend the method to 3D here. However, of course, this is the next natural step in our research as 3D models would be essential for studying 3D tissues; such 3D models will be computationally more expensive to analyse and more challenging to hand label.

      Concerning the biological application of the proposed methods, I found the results interesting, showing the potential of such a method to automatise mitosis quantification for a particular biological question of interest, here wound healing. However, the deep learning methods/applications that are put forward as the central point of the manuscript are not particularly original.

      We thank the referee for their constructive comments. Our aim was not only to show the accuracy of our models but also to show how they might be useful to biologists for automated analysis of large datasets, which is a—if not the—bottleneck for many imaging experiments. The ability to process large datasets will improve robustness of results, as well as allow additional hypotheses to be tested. Our study also demonstrated that these models can cope with real in vivo experiments where additional complications such as progressive development, tissue wounding and inflammation must be accounted for.

      Major point 1: generalisation potential of the proposed method.

      The neural network model proposed for mitosis detection relies on a 2D convolutional neural network (CNN), more specifically on the Unet architecture, which has become widespread for the analysis of biology and medical images. The strategy proposed here exploits the fact that the input of such an architecture is natively composed of several channels (originally 3 to handle the 3 RGB channels, which is actually a holdover from computer vision, since most medical/biological images are gray images with a single channel), to directly feed the network with 3 successive images of a timelapse at a time. This idea is, in itself, interesting because no modification of the original architecture had to be carried out. The latest 10-channel model (U-NetCellDivision10), which includes more channels for better performance, required minimal modification to the original U-Net architecture but also simultaneous imaging of cadherin in addition to histone markers, which may not be a generic solution.

      We believe we have provided a general approach for practical use by biologists that can be applied to a range of experimental data, whether that is based on varying numbers of fluorescent channels and/or timepoints. We envisioned that experimental biologists are likely to have several different parameters permissible for measurement based on their specific experimental conditions e.g., different fluorescently labelled proteins (e.g. tubulin) and/or time frames. To accommodate this, we have made it easy and clear in the code on GitHub how these changes can be made. While the model may need some alterations and retraining, the method itself is a generic solution as the same principles apply to very widely used fluorescent imaging techniques.

      Since CNN-based methods accept only fixed-size vectors (fixed image size and fixed channel number) as input (and output), the length or time resolution of the extracted sequences should not vary from one experience to another. As such, the method proposed here may lack generalization capabilities, as it would have to be retrained for each experiment with a slightly different temporal resolution. The paper should have compared results with slightly different temporal resolutions to assess its inference robustness toward fluctuations in division speed.

      If multiple temporal resolutions are required for a set of experiments, we envision that the model could be trained over a range of these different temporal resolutions. Of course, the temporal resolution, which requires the largest vector would be chosen as the model's fixed number of input channels. Given the depth of the models used and the potential to easily increase this by replacing resnet34 with resnet50 or resnet101 the model would likely be able to cope with this, although we have not specifically tested this. (page 27)

      Another approach (not discussed) consists in directly convolving several temporal frames using a 3D CNN (2D+time) instead of a 2D, in order to detect a temporal event. Such an idea shares some similarities with the proposed approach, although in this previous work (Ji et al. TPAMI 2012 and for split detection Nie et al. CCVPR 2016) convolution is performed spatio-temporally, which may present advantages. How does the authors' method compare to such an (also very simple) approach?

      We thank the Reviewer for this insightful comment. The text now discusses this (on Pages 8 and 17). Key differences between the models include our incorporation of multiple light channels and the use of much deeper models. We suggest that our method allows for an easy and natural extension to use deeper models for even more demanding tasks e.g. distinguishing between healthy and defective divisions. We also tested our method with ‘difficult conditions’ such as when a wound is present; despite the challenges imposed by the wound (including the discussed reduction in fluorescent intensities near the wound edge), we achieved higher accuracy compared to Nie et al. (accuracy of 78.5% compared to our F1 score of 0.964) using a low-density in vitro system.

      Major point 2: innovatory nature of the proposed method.

      The authors' idea of exploiting existing channels in the input vector to feed successive frames is interesting, but the natural choice in deep learning for manipulating time series is to use recurrent networks or their newer and more stable variants (LSTM, GRU, attention networks, or transformers). Several papers exploiting such approaches have been proposed for the mitotic division detection task, but they are not mentioned or discussed in this manuscript: Phan et al. 2018, Mao et al. 2019, Kitrungrotaskul et al. 2019, She et al 2020.

      An obvious advantage of an LSTM architecture combined with CNN is that it is able to address variable length inputs, therefore time sequences of different lengths, whereas a CNN alone can only be fed with an input of fixed size.

      LSTM architectures may produce similar accuracy to the models we employ in our study, however due to the high degree of accuracy we already achieve with our methods, it is hard to see how they would improve the understanding of the biology of wound healing that we have uncovered. Hence, they may provide an alternative way to achieve similar results from analyses of our data. It would also be interesting to see how LTSM architectures would cope with the noisy and difficult wounded data that we have analysed. We agree with the referee that these alternate models could allow an easier inclusion of difference temporal differences in division time (see discussion on Page 20). Nevertheless, we imagine that after selecting a sufficiently large input time/ fluorescent channel input, biologists could likely train our model to cope with a range of division lengths.

      Another advantage of some of these approaches is that they rely on unsupervised learning, which can avoid the tedious relabeling of data (Phan et al. 2018, Gilad et al. 2019).

      While these are very interesting ideas, we believe these unsupervised methods would struggle under the challenging conditions within ours and others experimental imaging data. The epithelial tissue examined in the present study possesses a particularly high density of cells with overlapping nuclei compared to the other experimental systems these unsupervised methods have been tested on. Another potential problem with these unsupervised methods is the difficulty in distinguishing dynamic debris and immune cells from mitotic cells. Once again despite our experimental data being more complex and difficult, our methods perform better than other methods designed for simpler systems as in Phan et al. 2018 and Gilad et al. 2019; for example, analysis performed on lower density in vitro and unwounded tissues gave best F1 scores for a single video was 0.768 and 0.829 for unsupervised and supervised respectively (Phan et al. 2018). We envision that having an F1 score above 0.9 (and preferably above 0.95), would be crucial for practical use by biologists, hence we believe supervision is currently still required. We expect that retraining our models for use in other experimental contexts will require smaller hand labelled datasets, as they will be able to take advantage of transfer learning (see discussion on Page 4).

      References :

      We have included these additional references in the revised version of our Manuscript.

      Ji, S., Xu, W., Yang, M., & Yu, K. (2012). 3D convolutional neural networks for human action recognition. IEEE transactions on pattern analysis and machine intelligence, 35(1), 221-231. >6000 citations

      Nie, W. Z., Li, W. H., Liu, A. A., Hao, T., & Su, Y. T. (2016). 3D convolutional networks-based mitotic event detection in time-lapse phase contrast microscopy image sequences of stem cell populations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 55-62).

      Phan, H. T. H., Kumar, A., Feng, D., Fulham, M., & Kim, J. (2018). Unsupervised two-path neural network for cell event detection and classification using spatiotemporal patterns. IEEE Transactions on Medical Imaging, 38(6), 1477-1487.

      Gilad, T., Reyes, J., Chen, J. Y., Lahav, G., & Riklin Raviv, T. (2019). Fully unsupervised symmetry-based mitosis detection in time-lapse cell microscopy. Bioinformatics, 35(15), 2644-2653.

      Mao, Y., Han, L., & Yin, Z. (2019). Cell mitosis event analysis in phase contrast microscopy images using deep learning. Medical image analysis, 57, 32-43.

      Kitrungrotsakul, T., Han, X. H., Iwamoto, Y., Takemoto, S., Yokota, H., Ipponjima, S., ... & Chen, Y. W. (2019). A cascade of 2.5 D CNN and bidirectional CLSTM network for mitotic cell detection in 4D microscopy image. IEEE/ACM transactions on computational biology and bioinformatics, 18(2), 396-404.

      Shi, J., Xin, Y., Xu, B., Lu, M., & Cong, J. (2020, November). A Deep Framework for Cell Mitosis Detection in Microscopy Images. In 2020 16th International Conference on Computational Intelligence and Security (CIS) (pp. 100-103). IEEE.

      Wolny, A., Cerrone, L., Vijayan, A., Tofanelli, R., Barro, A. V., Louveaux, M., ... & Kreshuk, A. (2020). Accurate and versatile 3D segmentation of plant tissues at cellular resolution. Elife, 9, e57613.

    1. I along with others think the Anthropocene is morea boundary event than an epoch, like the K-Pg boundary between the Cretaceous and thePaleogene. 4 The Anthropocene marks severe discontinuities; what comes after will not be likewhat came before.

      It is discussed and argued what the Anthropocene represents and how long it will last. Nixon talks about how the Anthropocene had started when humans affected the biophysical along with the climate and atmosphere. But it is hard to distinguish the exact time and space the Anthropocene represents and measure how long it may last. Thinking about our effect in the Earth as humans, some may consider us invaders or weapons of destruction. Haraway calls us “ refugees”. I would consider the refugees the people of exploited communities and countries where environmental destruction takes place at the fault of our imperialist core. Because looking past the nihilistic perspective that we as humans are a poison to a once abundant and plentiful Earth, there are people who have always valued the planet and their relationship to it over everything else. And these are often the communities that are most exploited and unsupported.

    2. But, is there an inflection point of consequence that changes the name of the “game” oflife on earth for everybody and everything?

      To me this question was something that could not be easily answered. I say that because I would say yes and no to this question. I feel us as humans create the not so good changes to the earth and we also adapt to a lot of things that may not always benefit us. Even though there may be an inflection point of consequence that slows us down persuading us to create a change, I think that more than likely it is something that will be subsided or something that will soon be deemed as "normal".

    1. NASA website, can you see how the other answers may have a vested interest in encouraging readers to believe a particular theory? The encyclopedia may not intentionally attempt to mislead readers; however, the write-up is not current. And Wikipedia, being an open-source site where anyone may upload information, is not reliable enough to lend full credence to the articles. A professional, government organization that does not sell items related to the topic and provides its ethics policy for review is worthy of more consideration and research. This level of critical thinking and examined consideration is the only way to ensure you have all the information you need to make decisions. You likely know how to find some sources when you conduct research. And remember—we think and research all the time, not just in school or on the job. If you’re out with friends and someone asks where to find the best Italian food, someone will probably consult a phone app to present choices. This quick phone search may suffice to provide an address, hours, and possibly even menu choices, but you’ll have to dig more deeply if you want to evaluate the restaurant by finding reviews, negative press, or personal testimonies. Why is it important to verify sources? The words we write (or speak) and the sources we use to back up our ideas need to be true and honest, or we would not have any basis for distinguishing facts from opinions that may be, at the least damaging level, only uninformed musings but, at the worst level, intentionally misleading and distorted versions of the truth. Maintaining a strict adherence to verifiable facts is a hallmark of a strong thinker. You probably see information presented as fact on social media daily, but as a critical thinker, you must practice validating facts, especially if something you see or read in a post conveniently fits your perception.

      Looking through things is important as it helps a better understanding and looking at every detail to understand it more in depth.

    1. First: For those of us who are historians of "beyond the Americas and the modern," how have we had to renegotiate meanings of gender and sexuality as well as their analytic utility? And what can we bring back to the Americas and the modern from this conceptual travel?3

      I think this line underscores the importance of understanding that concepts like gender and sexuality are historically and culturally specific. In many societies outside of the Western framework, these categories may not exist in the same form or may intersect with other societal structures like religion.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This preprint explores the involvement of cyclic di-GMP in genome stability and antibiotic persistence regulation in bacterial biofilms. The authors proposed a novel mechanism that, due to bacterial adhesion, increases c-di-GMP levels and influences persister formation through interaction with HipH. While the work may provide useful insights that could attract researchers in biofilm studies and persistence mechanisms, the main findings are inadequately supported and require further validation and refinement in experimental design.

      We sincerely thank eLife for the through assessment of our manuscript. We appreciate the constructive criticism and see it as an opportunity to strengthen our research. In response to the reviewers' comments and suggestions, we have made significant improvements to our study. We have refined our experimental design and conducted additional experiments to provide more robust evidence supporting our findings. We believe that with these additional experiments and refinements, our study provides robust evidence for this novel mechanism, contributing significantly to the fields of biofilm research and bacterial persistence.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors propose a UPEC TA system in which a metabolite, c-di-GMP, acts as the AT with the toxin HipH. The idea is novel, but several key ideas are missing in regard to the relevant literature, and the experimental design is flawed. Moreover, they are absolutely not studying persister cells as Figure 1b clearly shows they are merely studying dying cells since no plateau in killing (or anything close to a plateau) was reached. So in no way has persistence been linked to c-di-GMP. Moreover, I do not think the authors have shown how the c-di-GMP sensor works. Also, there is no evidence that c-di-GMP is an antitoxin as no binding to HipH has been shown. So at best, this is an indirect effect, not a new toxin/antitoxin system as for all 7 TAs, a direct link to the toxin has been demonstrated for antitoxins.

      Thank you for your constructive comments on our manuscript. Your insights have prompted us to revisit our data and experimental design, leading to significant improvements in our study.

      (1) Clarification on Persister Cell Detection: We sincerely appreciate your astute observation regarding the interpretation of our killing curve in Figure 1B. Upon careful re-examination, we concur that our initial methodology had limitations in revealing the characteristic biphasic pattern associated with persister cells. To address these limitations, we have implemented two key modifications: shortening the sampling interval and extending the antibiotic treatment duration. ​These adjustments have resulted in an updated killing curve that now exhibits a more pronounced biphasic pattern and a prominent plateau in the late stage of killing, as illustrated in Response Figure 1.​ This refined pattern aligns with established characteristics of persister cell behavior in antibiotic tolerance studies, providing a more accurate representation of the persister population dynamics in our experimental system. We believe these methodological enhancements significantly improve the reliability and interpretability of our results, offering a clearer insight into the persister cell phenomenon under investigation.

      (2) Validation of c-di-GMP Sensor: We appreciate your point about the c-di-GMP sensor. The c-di-GMP sensor, developed by Howard C. Berg's team, is specifically designed to detect relative intracellular concentrations of c-di-GMP in Escherichia coli cells. This capability is crucial for understanding the dynamic regulation of c-di-GMP during bacterial responses to environmental stimuli. We have expanded our explanation of the sensor's detection mechanism in lines 138-146 of the manuscript, detailing how it functions to reflect changes in c-di-GMP levels within the cells accurately. The mechanism operates through a series of signaling events that are initiated when c-di-GMP binds to the sensor, leading to measurable outputs that correlate with intracellular concentrations. Additionally, we have provided a schematic chart in Figure S1B to visually support our description regarding the sensor. This figure demonstrates the sensor's responsiveness and specificity in detecting fluctuations in c-di-GMP levels, effectively linking the signaling molecule to cellular behavior. We hope these additions clarify the role of the c-di-GMP sensor in our research and address your concerns regarding its functionality.​

      (3) HipH and c-di-GMP Interaction: Our pull-down experiments presented in Figure 5A-E provide robust and compelling evidence for a direct physical interaction between HipH and c-di-GMP, and the effects of their interaction reminiscent of toxin-antitoxin systems. Yet we acknowledge c-di-GMP is not a traditional antitoxin since it is not genetically linked to HipH. We have revised our terminology to "TA-like system" to reflect this difference more accurately.

      Weaknesses:

      (1) L 53: biofilm persisters are no different than any other persisters (there is no credible evidence of any different persister cells) so this reviewer suggests changing 'biofilm persisters' to 'persisters' throughout the text.

      Thank you for your thoughtful consideration. Upon careful consideration of the current scientific literature, we agree that there is no substantial evidence supporting a distinct category of persister cells specific to biofilms. We have systematically replaced 'biofilm persisters' with 'persisters' throughout the manuscript​.

      (2) L 51: persister cells do not mutate and, once resuscitated, mutate like any other growing cell so this sentence should be deleted as it promotes an unnecessary myth about persistence.

      We sincerely appreciate your astute observation regarding the inaccuracy in line 51. We have removed the sentence in question from line 51​. And we also have thoroughly reviewed the entire manuscript to ensure no similar misconceptions are present elsewhere in the text.

      (3) L 69: please include the only metabolic model for persister cell formation and resuscitation here based on single cells (e.g., doi.org/10.1016/j.bbrc.2020.01.102 , https://doi.org/10.1016/j.isci.2019.100792 ); otherwise, you write as if there are no molecular mechanisms for persistence/resuscitation.

      Thank you for your valuable suggestion. We appreciate the opportunity to enhance the scientific context of our manuscript. We have added a brief explanation of how ppGpp mediates ribosome dimerization, leading to persistence, and how its degradation triggers resuscitation [1-3] (lines 68-74). We have described the role of cAMP-CRP in regulating persistence through its effects on metabolism and stress responses [4, 5] (lines 74-78). We also explore potential interactions or synergies between our proposed mechanisms and these established metabolic models [6] (lines 383-409). We believe this revision significantly enhances our manuscript by providing a more accurate representation of the current state of knowledge in the field and demonstrating how our work builds upon and contributes to existing models of bacterial persistence.

      (4) The authors should cite in the Intro or Discussion that others have proposed similar novel TAs including a ppGpp metabolic toxin paired with an enzymatic antitoxin SpoT that hydrolyzes the toxin (http://dx.doi.org/10.1016/j.molcel.2013.04.002).

      We are grateful for your expertise in pointing out this crucial reference. We sincerely appreciate your suggestion to include the reference to previously proposed novel toxin-antitoxin (TA) systems, particularly the ppGpp-SpoT system [6]. In light of this reference, we have expanded our discussion to include: 1) A brief overview of the ppGpp-SpoT system as a novel TA-like mechanism. 2) Comparisons between the ppGpp-SpoT system and our findings on the HipH-c-di-GMP interaction. 3) Reflections on how these systems challenge and expand traditional definitions of TA systems (lines 383-409). We believe this addition significantly enhances the context and strengthens the rationale for considering the HipH-c-di-GMP interaction as a TA-like system. Thank you for your valuable input in helping us situate our research within the broader landscape of TA system biology.

      (5) Figure 1b: there are no results in this paper related to persister cells. Figure 1b simply shows dying cells were enumerated. Hence, the population of stressed cells increased, not 'persister cells' (Figure 1f), in the course of these experiments.

      We sincerely appreciate your astute observation regarding the interpretation of our killing curve in Figure 1B. Upon careful re-examination, we concur that our initial methodology had limitations in revealing the characteristic biphasic pattern associated with persister cells. To address these limitations, we have implemented 1) Shortened sampling interval: We have reduced the interval between measurements to one hour. 2) Extended sampling duration: The total duration of sampling has been increased to 6 hours (Response Figure 1). The updated killing curve now exhibits a more pronounced biphasic pattern and a prominent plateau in the late stage of killing: 1) Initial rapid decline: From 0-1hours, we observe a steep decrease in bacterial survival (slope ≈ -3~-1.8); 2) Slower decline phase: From 4.5-6 hours, the rate of decline is markedly reduced (slope ≈ -0.17~-0.06). This pattern aligns more closely with established characteristics of persister cell behavior in antibiotic tolerance studies.

      (6) Figure S1: I see no evidence that the authors have shown this c-di-GMP detects different c-di-GMP levels since there appears to be no data related to varying c-di-GMP concentrations with a consistent decrease. Instead, there is a maximum. What are the concentration of c-di-GMP on the X-axis for panels C, D, and E? How were c-di-GMP levels varied such that you know the c-di-GMP concentration?

      We appreciate your point about the c-di-GMP sensor. To address this, we have included additional data on the sensor's mechanism and validation. The sensor, developed by Howard C. Berg's team, is designed for detecting intracellular c-di-GMP concentrations in E. coli [7].

      Sensor Design and Mechanism:The sensor developed for detecting c-di-GMP levels in Escherichia coli cells is based on a single fluorescent protein biosensor. The protein includes a Fluorescent Protein Base and a c-di-GMP Binding Domain. The fluorescent protein base is mVenusNB, which is the fastest-folding yellow fluorescent protein (YFP). The c-di-GMP binding domain is the MrkH protein is inserted between Y145 and N146 of mVenusNB. MrkH is a transcription factor with a high affinity for c-di-GMP. When MrkH binds to c-di-GMP, it undergoes a significant conformational change. The amino-terminal domain of MrkH rotates 138° relative to its carboxyl-terminal domain upon c-di-GMP binding.This rotation disrupts the mVenusNB chromophore environment, resulting in reduced fluorescence. The sensor system co-expresses mScarletI, a bright, rapidly folding red fluorescent protein. mScarletI serves as a reference for ratiometric measurements. Such design allows for ratiometric measurement of real-time monitoring of c-di-GMP levels in individual cells and control of variations in protein expression levels between cells. This enables the observation of dynamic changes in c-di-GMP concentration, such as the increase seen after E. coli surface attachment.

      Functioning and Accuracy: The sensor is designed to detect c-di-GMP in the 100 to 700 nM range, which is the physiological range in E. coli. The use of a low copy plasmid for expression ensures detection at low concentrations. The ratio (R) of mVenusNB to mScarletI fluorescence emission is measured for individual cells. The sensor shows at least a twofold dynamic range between low and high c-di-GMP conditions. Cells with low c-di-GMP (expressing phosphodiesterase PdeH) show higher R values compared to cells with high c-di-GMP (expressing constitutively active diguanylate cyclase WspR:D70E). A mutant biosensor (Sensor*) with the R113A mutation in MrkH is used as a control. This mutation eliminates c-di-GMP binding ability, allowing differentiation between specific c-di-GMP effects and other cellular changes.

      This biosensor system provides a sophisticated tool for visualizing and quantifying c-di-GMP levels in individual bacterial cells with high sensitivity and temporal resolution.​ By combining a c-di-GMP-sensitive fluorescent protein with a reference fluorescent protein and utilizing ratiometric analysis, the system can accurately reflect changes in intracellular c-di-GMP levels while controlling for other cellular variables.

      We have expanded our explanation of its detection mechanism in lines 138-146 and Figure S1B.

      (7) The viable portion of the VBNC population are persister cells so there is no reason to use VBNC as a separate term. Please see the reported errors often made with nucleic acid staining dyes in regard to VBNCs.

      We appreciate the opportunity to clarify the distinction between VBNC cells and persister cells in our manuscript. It is essential to recognize that VBNC cells and persister cells represent two fundamentally different states of bacterial dormancy. While both may exhibit viability under certain conditions, persister cells are characterized by their ability to resuscitate and grow when environmental conditions become favorable [8]. In contrast, VBNC cells are in a deep dormant state where they cannot be revived through normal culture conditions [9, 10]. This distinction is critical for accurately representing bacterial survival strategies and population dynamics, which is why we maintain the use of the term VBNC separately from persister cells. We have added related references in lines 259.

      Regarding the reported errors associated with nucleic acid staining dyes for identifying VBNC cells, we acknowledge that these methods can exhibit limitations. Specifically, nucleic acid stains may fail to reliably differentiate between metabolically active and inactive cells, leading to inaccuracies in quantifying the true VBNC population [11]. In our study, we have opted to utilize propidium iodide (PI) staining to assess cell viability more accurately, as it effectively distinguishes dead cells from viable cells based on membrane integrity [12]. By employing this methodology, we ensure a more precise estimation of the VBNC proportion without conflating it with persister cell dynamics.

      Reviewer #2 (Public Review):

      Summary:

      Hebin et al reported a fascinating story about antibiotic persistence in the biofilms. First, they set up a model to identify the increased persisters in the biofilm status. They found that the adhesion of bacteria to the surface leads to increased c-di-GMP levels, which might lead to the formation of persisters. To figure out the molecular mechanism, they screened the E.coli Keio Knockout Collection and identified the HipH. Finally, the authors used a lot of data to prove that c-di-GMP not only controls HipH over-expression but also inhibits HipH activity, though the inhibition might be weak.

      Thank you for your insightful summary of our research. We greatly appreciate your thoughtful consideration of our work.

      Strengths:

      They used a lot of state-of-the-art technologies, such as single-cell technologies as well as classical genetic and biochemistry approaches to prove the concept, which makes the conclusions very solid. Overall, it is a very interesting and solid story that might attract diverse readers working with c-di-GMP, persisters, and biofilm.

      Weaknesses:

      (1) Is HipH the only target identified by screening the E. coli Keio Knockout Collection?

      We appreciate your inquiry about our screening process and the identification of HipH. We did not screen the entire E. coli Keio Knockout Collection. Our approach was more targeted, focusing on mutants relevant to enzyme activity regulation. We selected specific mutants based on their potential involvement in c-di-GMP-mediated regulatory pathways. This focused approach allowed us to efficiently identify candidates likely to be involved in persister formation. Among the screened mutants, HipH emerged as a significant hit. Its identification was particularly noteworthy due to its known role in persister formation and its potential as a regulatory target of c-di-GMP. We acknowledge that our targeted approach may have overlooked other potential candidates. We are considering a more comprehensive screening approach in future studies to identify additional targets.

      (2) Since the story is complicated, a diagrammatic picture might be needed to illustrate the whole story. And the title does not accurately summarize the novelty of this study.

      Thank you for your valuable feedback. We fully agree with your assessment that a visual representation would greatly enhance the clarity of our complex findings. In response to your suggestion, we have added Response Figure 2 (Fig. 6 in revised manuscript, lines 976-981) to our manuscript. This new figure provides a comprehensive visual summary of the key processes and mechanisms uncovered in our study. This graphic summary provides a clear overview of the interconnected nature of surface adhesion, c-di-GMP signaling, and HipH regulation. It also highlights the complex role of c-di-GMP in persister formation and offers readers a visual aid to better understand the molecular mechanisms underlying our findings.

      We sincerely appreciate your thoughtful comment regarding the title and its reflection of the study's novelty. ​After careful consideration, we believe that our original title adequately captures the essence and significance of our research.​ We have strived to ensure that it accurately represents the scope and novelty of our work while maintaining clarity and conciseness. Nevertheless, we value your input and thank you for taking the time to provide this feedback, as it encourages us to critically evaluate our presentation.

      (3) The ratio of mVenusNB to mScarlet-I (R) negatively correlates with the concentration of c-di-GMP. Therefore, R-1 demonstrates a positive correlation with the concentration of c-di-GMP. Is this method validated with other methods to quantify c-di-GMP, or used in other studies?

      We appreciate your point about the c-di-GMP sensor. To address this, we have included additional data on the sensor's mechanism and validation. The sensor, developed by Howard C. Berg's team, is designed for detecting intracellular c-di-GMP concentrations in E. coli [7].

      Sensor Design and Mechanism:The sensor developed for detecting c-di-GMP levels in Escherichia coli cells is based on a single fluorescent protein biosensor. The protein includes a Fluorescent Protein Base and a c-di-GMP Binding Domain. The fluorescent protein base is mVenusNB, which is the fastest-folding yellow fluorescent protein (YFP). The c-di-GMP binding domain is the MrkH protein is inserted between Y145 and N146 of mVenusNB. MrkH is a transcription factor with a high affinity for c-di-GMP. When MrkH binds to c-di-GMP, it undergoes a significant conformational change. The amino-terminal domain of MrkH rotates 138° relative to its carboxyl-terminal domain upon c-di-GMP binding.This rotation disrupts the mVenusNB chromophore environment, resulting in reduced fluorescence. The sensor system co-expresses mScarletI, a bright, rapidly folding red fluorescent protein. mScarletI serves as a reference for ratiometric measurements. Such design allows for ratiometric measurement of real-time monitoring of c-di-GMP levels in individual cells and control of variations in protein expression levels between cells. This enables the observation of dynamic changes in c-di-GMP concentration, such as the increase seen after E. coli surface attachment.

      Functioning and Accuracy: The sensor is designed to detect c-di-GMP in the 100 to 700 nM range, which is the physiological range in E. coli. The use of a low copy plasmid for expression ensures detection at low concentrations. The ratio (R) of mVenusNB to mScarletI fluorescence emission is measured for individual cells. The sensor shows at least a twofold dynamic range between low and high c-di-GMP conditions. Cells with low c-di-GMP (expressing phosphodiesterase PdeH) show higher R values compared to cells with high c-di-GMP (expressing constitutively active diguanylate cyclase WspR:D70). A mutant biosensor (Sensor*) with the R113A mutation in MrkH is used as a control. This mutation eliminates c-di-GMP binding ability, allowing differentiation between specific c-di-GMP effects and other cellular changes.

      This biosensor system provides a sophisticated tool for visualizing and quantifying c-di-GMP levels in individual bacterial cells with high sensitivity and temporal resolution.​ By combining a c-di-GMP-sensitive fluorescent protein with a reference fluorescent protein and utilizing ratiometric analysis, the system can accurately reflect changes in intracellular c-di-GMP levels while controlling for other cellular variables.

      We have expanded our explanation of its detection mechanism in lines 138-146 and Figure S1B.

      (4) References are missing throughout the manuscript. Please add enough references for every conclusion.

      We appreciate your feedback regarding the references in our manuscript. We acknowledge the importance of proper citation to support our conclusions and provide context for our work. ​In response to your comment, we have conducted a comprehensive review of our manuscript and have significantly enhanced our referencing throughout.​ We have added appropriate citations to support each key statement and conclusion presented in our study. These additional references provide a robust foundation for our findings and place our work within the broader context of the field. The complete list of all references, including the newly added ones, can be found at the end of this response letter as well as in the revised manuscript.

      (5) The novelty of this study should be clearly written and compared with previous references. For example, is it the first study to report the mechanism that the adhesion of bacteria to the surface leads to increased persister formation?

      We sincerely appreciate the opportunity to highlight and elaborate the novelty of our research. This study provides novel insights into the relationship between bacterial adhesion to surfaces and the subsequent increase in persister cell formation, which has not been explicitly detailed in previous literature. While existing research has established that biofilms typically harbor higher numbers of persister cells, this investigation not only corroborates that finding but also elucidates the mechanisms through which surface adhesion contributes to this phenomenon.

      Past studies have predominantly focused on the general characteristics of persister cells and their role in biofilm resilience and antibiotic tolerance without specifically addressing the mechanistic link between adhesion and persister formation [13, 14]. For instance, previous work has shown that surface attachment leads to changes in metabolic activity and signaling pathways within bacterial cells, which could promote persistence, but it has not definitively established a causal relationship between adhesion and increased persister formation. Our study highlights that the elevation of cyclic di-GMP levels after surface adhesion triggers a cascade of physiological changes that significantly enhance the formation of persister cells. In particular, we report that adhesion-induced signaling pathways promote dormancy and tolerance to antibiotics, marking an important advancement from the previous understanding that treated persister cells might arise from random phenotypic variation during biofilm development. we have expanded our discussion in lines 366-381.

      In summary, we believe this study stands as one of the first to clearly delineate the mechanism by which bacterial adhesion leads to increased persister formation, providing a valuable contribution to the current understanding of bacterial persistence and biofilm ecology. Thus, we can assert that our findings are not only novel but also essential for informing future research and therapeutic strategies aimed at managing bacterial infections.

      (6) in vitro DNA cleavage assay. Why not use bacterial genomic DNA to test the cleaving of HipH on the bacterial genome?

      Thank you for your feedback regarding our experimental approach. The decision of not directly using genomic DNA in our experiments was made after careful consideration. The high molecular weight of genomic DNA, which presents significant challenges in handling and analysis. The difficulty in extracting intact genomic DNA, which could potentially compromise the integrity of our results. The challenges associated with electrophoretic separation of such large DNA molecules, which could limit our ability to accurately interpret the data.

      Instead, following established practices in molecular biology research and drawing from similar studies in the field [15-17], we opted to use plasmids as model DNA for our experiments.​ This approach offers several advantages: Plasmids are smaller and more manageable, making them easier to manipulate in laboratory conditions; They can be more readily extracted in intact form, ensuring the quality of our experimental material; Plasmid DNA is more amenable to electrophoretic separation, allowing for clearer and more precise analysis. Despite their smaller size, plasmids retain many of the key characteristics of genomic DNA that are relevant to our study. We believe this approach provides a robust and reliable model for our research while overcoming the practical limitations associated with genomic DNA. It allows us to investigate the fundamental principles we're interested in, while maintaining experimental feasibility and data integrity. We have added related references in lines 314 and 599.

      (7) C-di-GMP -HipH is not a TA, it does not fit in the definition of the TA systems. You can say C-di-gmp is an antitoxin based on your study, but C-di-gmp -HipH is not a TA pair.

      We appreciate your insightful feedback regarding the classification of the c-di-GMP-HipH interaction. We acknowledged that while our study suggests c-di-GMP may function as an antitoxin to HipH, the c-di-GMP-HipH pair does not constitute a classical TA system due to the lack of genetic linkage. We have replaced the term "TA system" with "TA-like system" when referring to the c-di-GMP-HipH interaction. This more accurately reflects the nature of their relationship while acknowledging that it differs from traditional TA systems.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Either indent or skip a line to indicate a new paragraph; there is no need to do both.

      Thank you for your feedback regarding the formatting of our manuscript. We have revised the formatting throughout the main text by using a single blank line to separate paragraphs, without indentation.

      (2) L 77: need to define 'c-di-GMP' without using another abbreviation; please write '3,5-cyclic diguanylic acid', etc.

      Thank you for your valuable feedback regarding the proper introduction of abbreviations in our manuscript. We have revised line 86 to introduce the full name of c-di-GMP as "3,5-cyclic diguanylic acid". Following this initial introduction, we consistently use the abbreviation "c-di-GMP" throughout the rest of the manuscript.

      Reviewer #2 (Recommendations For The Authors):

      This is a fascinating story, but the title and the manuscript need careful revision to make it more clear. The novelty and logic are not very easy to follow.

      (1) Figure 1B, " h" is missing

      We sincerely thank you for your attentive review and for pointing out the missing "h" in Figure 1B. We have carefully reviewed and revised the figure legend in Figure 1B.​ The unit of time has been corrected to include "h" (hours) where appropriate, ensuring consistency and accuracy throughout the figure.

      (2) Line 222, the in vivo mice model should be cited with the reference.

      Thank you for the reminding. We have cited the following reference related to the mice model (line 231).

      Pang Y, et al., (2022) Bladder epithelial cell phosphate transporter inhibition protects mice against uropathogenic Escherichia coli infection. Cell reports 39: 110698

      References

      (1) Wood, T.K. and S. Song, Forming and waking dormant cells: The ppGpp ribosome dimerization persister model. Biofilm, 2020. 2: p. 100018.

      (2) Song, S. and T.K. Wood, ppGpp ribosome dimerization model for bacterial persister formation and resuscitation. Biochem Biophys Res Commun, 2020. 523(2): p. 281-286.

      (3) Wood, T.K., S. Song, and R. Yamasaki, Ribosome dependence of persister cell formation and resuscitation. J Microbiol, 2019. 57(3): p. 213-219.

      (4) Niu, H., J. Gu, and Y. Zhang, Bacterial persisters: molecular mechanisms and therapeutic development. Signal Transduct Target Ther, 2024. 9(1): p. 174.

      (5) Mok, W.W., M.A. Orman, and M.P. Brynildsen, Impacts of global transcriptional regulators on persister metabolism. Antimicrob Agents Chemother, 2015. 59(5): p. 2713-9.

      (6) Amato, S.M., M.A. Orman, and M.P. Brynildsen, Metabolic control of persister formation in Escherichia coli. Mol Cell, 2013. 50(4): p. 475-87.

      (7) Vrabioiu, A.M. and H.C. Berg, Signaling events that occur when cells of Escherichia coli encounter a glass surface. Proc Natl Acad Sci U S A, 2022. 119(6).

      (8) Liu, J., et al., Viable but nonculturable (VBNC) state, an underestimated and controversial microbial survival strategy. Trends Microbiol, 2023. 31(10): p. 1013-1023.

      (9) Pan, H. and Q. Ren, Wake Up! Resuscitation of Viable but Nonculturable Bacteria: Mechanism and Potential Application. Foods, 2022. 12(1).

      (10) Ayrapetyan, M., T. Williams, and J.D. Oliver, Relationship between the Viable but Nonculturable State and Antibiotic Persister Cells. J Bacteriol, 2018. 200(20).

      (11) Zhao, S., et al., Absolute Quantification of Viable but Nonculturable Vibrio cholerae Using Droplet Digital PCR with Oil-Enveloped Bacterial Cells. Microbiol Spectr, 2022. 10(4): p. e0070422.

      (12) Zhao, S., et al., Enumeration of Viable Non-Culturable Vibrio cholerae Using Droplet Digital PCR Combined With Propidium Monoazide Treatment. Front Cell Infect Microbiol, 2021. 11: p. 753078.

      (13) Pan, X., et al., Recent Advances in Bacterial Persistence Mechanisms. Int J Mol Sci, 2023. 24(18).

      (14) Patel, H., H. Buchad, and D. Gajjar, Pseudomonas aeruginosa persister cell formation upon antibiotic exposure in planktonic and biofilm state. Sci Rep, 2022. 12(1): p. 16151.

      (15) Maki, S., et al., Partner switching mechanisms in inactivation and rejuvenation of Escherichia coli DNA gyrase by F plasmid proteins LetD (CcdB) and LetA (CcdA). J Mol Biol, 1996. 256(3): p. 473-82.

      (16) Hockings, S.C. and A. Maxwell, Identification of four GyrA residues involved in the DNA breakage-reunion reaction of DNA gyrase. J Mol Biol, 2002. 318(2): p. 351-9.

      (17) Chan, P.F., et al., Structural basis of DNA gyrase inhibition by antibacterial QPT-1, anticancer drug etoposide and moxifloxacin. Nat Commun, 2015. 6: p. 10048.

    1. Reviewer #2 (Public review):

      Summary

      This work investigates how multiple DNA elements combine to regulate gene expression. The authors use an episomal reporter assay which measures the transcriptional output of the reporter under the regulation of an enhancer-enhancer-promoter triple. The authors test all combinations of 8 promoters and 59 enhancers in this assay. There are two main findings: (1) enhancer pairs generally combine additively on reporter output (2) the extent to which enhancers increase reporter output over the promoter (individually and as enhancer-enhancer pairs) is inversely related to the intrinsic strength of the promoter. Both of these findings are interesting and are well supported by the data.

      This study extends previous results on enhancer-promoter combinations to enhancer-enhancer-promoter triples. For example the near equivalence of Fig. 5b and Fig. S7b is intriguing. This experimental design also provides the ability to investigate the notion of selectivity (also commonly referred to as compatibility) between enhancer-enhancer pairs and promoters.

      The authors note many limitations, including the selection of the elements and the size and spacing of the tested elements. Some of the enhancer-enhancer-promoter triples they test were also investigated by a different experimental design in Brosh et al 2023. Brosh et al observed non-additivity between these elements while this study did not. Ultimately we do not know which mechanisms produce the non-additivity that has been observed in native loci and which experimental designs would preserve such mechanisms.

      Overall this is a nice experimental design and a great dataset for probing how enhancers and promoters combine to regulate gene expression. I have no major concerns, but I will try to clarify some methodological points I found confusing.

      Methodology<br /> The following two comments are meant to help the reader understand the methodology/terminology used in this paper and how it relates to other similar studies.

      The interpretation that "promoters scale enhancer signals in a non-linear manner" is potentially confusing. I believe that the authors use "non-linear" to refer to the slopes (represented by the letter 'b' in Fig. 5b) being not equal to 1. Given how the boost index is defined, this implies the relationship

      Activity of EEP = (Activity of CCP) * (Average Linear Boost)^b

      One potential source of confusion is that the Average Linear Boost term itself depends on the set of promoters that are assayed. Averaging across (many) promoters may alleviate this concern, in which case Average Linear Boost may be considered some form of intrinsic enhancer strength. If so, there is a correspondence between this terminology and the terminology presented in Bergman et al 2022. If b not equal to 1 refers to a non-linear scaling, then the reader may think that b=1 refers to a linear scaling. But if b=1, and the Average Linear Boost term is interpreted as intrinsic enhancer strength, then the equation above implies that the activity of EEP is equal to an intrinsic promoter strength times an intrinsic enhancer strength. This is essentially the relationship that is considered in Bergman et al 2022 and which is referred to in that paper as 'multiplicative'. The purpose of this comment is not to argue for what is the relationship that best explains the data, it is just to clarify the terminology.

      Enhancer-promoter selectivity: As a follow-up to a previous study (Martinez-Ara et al, Molecular Cell 2022) the authors mention that the data in this study also shows that enhancers show selectivity for certain promoters. I found the methodology hard to follow, so this section of the review is meant to guide the reader in understanding how the authors define 'selectivity'. The authors consider an enhancer to be not selective if its 'boost index' is the same across a set of promoters. 'Boost index' is defined to be the ratio of the reporter output with the enhancer and promoter divided by the reporter output with just the promoter. Conceptually, I think that considering the boost index is a reasonable way to quantify selectivity. The authors use a frequentist approach to classify each enhancer as selective or not selective. The null hypothesis is that the boost index of the enhancer is equal across a set of promoters. This can be visualized in Fig. 2C where the null hypothesis is that the mean of each vertical distribution is equal. Note that in Figure S4b of this paper (and in Figure 4B of their 2022 paper) the within-group variance is not plotted. Statistical significance is assessed using a Welch F-test.

    2. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      We thank the reviewer for the positive and constructive comments. We apologize for the very long delay in submitting this revised manuscript; due to personal circumstances we were not able to do this earlier.

      This manuscript by Martinez-Ara et al investigates how combinations of cis-regulatory elements combine to influence gene expression. Using a clever iteration on massively parallel reporter assays (MPRAs), the authors measure the combinatorial effects of pairs of enhancers on specific promoters. Specifically, they assayed the activity of 59x59 different enhancer-enhancer (E-E) combinations on 8 different promoters in mouse embryonic stem cells. The main claims of the paper are that E-E pairs combine nearly additively, and that supra-additive E-E pairs are rare and often promoter-dependent. The data in this study generally support these claims.

      This paper makes a good contribution to the ongoing discussions about the selectivity of gene regulatory elements. Recent works, such as those by Martinez-Ara et al. and Burgman et al., have indicated limited selectivity between E-P pairs on plasmid-based assays; this paper adds another layer to that by suggesting a similar lack of selectivity between E-E pairs.

      An interesting result in this manuscript is the observation that weak promoters allow more supra-additive E-E interactions than strong promoters (Figure 4b). This nonlinear promoter response to enhancers aligns with the model previously proposed in Hong et al. (from my own group), which posited that core promoter activities are nonlinearly scaled by the genomic environment, and that (similar to the trend observed in Figure 5b) the steepness of the scaling is negatively correlated with promoter strength.

      We now discuss the parallel with the Hong 2022 study (Discussion, lines 307-310).

      My only suggestion for the authors is that they include more plots showing how much the intrinsic strengths of the promoters and enhancers they are working with explain the trends in their data.

      Agreed, see below.

      Specific Suggestions

      Supplementary Figure 4 is presented as evidence for selectivity between single enhancers and promoters. Could the authors inspect the relationship between enhancer/promoter strength and this selectivity? Generating plots similar to Figure 4B and Figure 5B, but for single enhancers, should show if the ability of an enhancer to boost a promoter is inversely correlated to that promoter's intrinsic strength...

      Thank you for the suggestion, we have now repeated the analysis of Figure 5 for EP pairs instead of EEP triplets, and included it as new Supplementary Figure S7. Despite the lower statistical power, the trends are very similar. 

      ...Also, in Supplementary Figure 4, coloring each point by promoter type would clarify if certain promoters (the weak ones) consistently show higher boost indices across all enhancers. If they do not, the authors may want to speculate how single enhancers can show selectivity for promoters while the effect of adding a second enhancer to an existing E-P has little selectivity. An alternate explanation, based solely on the strength of the elements, would be that when the expression of a gene is low the addition of enhancer(s) has large effects, but when the expression of a gene is high (closer to saturation) the addition of enhancer(s) have small effects.

      We now added colour coding for each of the promoters in figure S4. We agree this clarifies the contribution of each promoter to the selectivity of each enhancer and it further confirms the responsiveness trends observed in Figure 5.

      Can anything more be said about the enhancers in E-E-P combinations that exhibit supra-additivity? Specifically, it would be interesting to know if certain enhancers, e.g. strong enhancers or enhancers with certain motifs, are more likely to show supra-additivity with a given promoter.

      Unfortunately, even with the number of enhancers that we tested, we lack statistical power to identify sequence motifs that may favour supra-additivity.

      Reviewer #2 (Public Review):

      We thank the reviewer for the supportive and constructive comments. We apologize for the very long delay in submitting this revised manuscript; due to personal circumstances we were not able to do this earlier.

      Summary

      This work investigates how multiple regulatory elements combine to regulate gene expression. The authors use an episomal reporter assay which measures the transcriptional output of the reporter under the regulation of an enhancer-enhancer-promoter triple. The authors test all combinations of 8 promoters and 59 enhancers in this assay. The main finding is that enhancer pairs generally combine additively on reporter output. The authors also find that the extent to which enhancers increase reporter output is inversely related to the intrinsic strength of the promoter.

      This manuscript presents a compact experiment that investigates an important open question in gene regulation. The results and data will be of interest to researchers studying enhancers. Given that my expertise is in modeling and computation, I will take the experimental results at face value and focus my review on the interpretation of the results and the computational methodology. I find the result of additivity between enhancers to be well supported. The findings on differential responsiveness between promoters are very interesting but the interpretation of such responses as 'non-linear' or 'following a power-law' may be misleading. More broadly, I think a more rigorous description of the mathematical methodology would increase the clarity and accessibility of this manuscript. A major unanswered question is whether the findings in this study apply to enhancers in their native genomic context. Regardless, investigating such questions in an episomal reporter assay is valuable.

      Main comments

      Applicability to native genomic context: The applicability of the results in this paper to enhancers in their native genomic context is unclear. As the authors state in the discussion section, the reporter gene is not integrated into the genome, the spacing between enhancers does not match their native context etc. It is thus unclear whether this experimental design is able to detect the non-additivity between enhancers which is known to be present in the genome. This could be investigated by testing the enhancer-enhancer-promoter tuples for which non-additivity has been observed in the genome (references are given in the introduction) in this assay.

      We appreciate the suggestion, but we chose not to go back to the lab to generate additional data to address this point. Of the cited previous studies, two are comparable to our study because they also used mESCs and included loci that we also studied:  Thomas et al. (2021) and Brosh et al. (2023). We now discuss how the findings of these two studies relate to our observations in the Discussion, lines 336-345.

      Interpretation of promoter responses as non-linear and following a power-law: In Fig 5, the authors demonstrate that enhancer-enhancer pairs boost reporter output more for weak promoters as opposed to strong promoters. I agree the data supports this finding, but I find the interpretation of such data as promoters scaling enhancers according to a power-law (as stated in the abstract) to be misleading. As mentioned on line 297, it is not possible to define an intrinsic measure of enhancer strength, thus the authors assign the base of the power-law to be the average boost index of the enhancer-enhancer pair across the 8 promoters. But this measure incorporates some aspect of a promoter and is not solely a property of enhancers...

      We agree that the power-law conclusion in the abstract was too strong; we have rephrased it as "non-linear".

      ...It would also be useful to know whether the results in Fig 5 apply to only enhancer-enhancer-promoter triples or also to enhancer-promoter pairs.

      We have now added this EP analysis as new Supplemental Figure S7. Although the statistical power is much lower, this shows very similar trends as the EEP analysis. We briefly report this, lines 275-278.

      Enhancer-promoter selectivity: As a follow-up to a previous study (Martinez-Ara et al, Molecular Cell 2022) the authors mention that the data in this study also shows that enhancers show selectivity for certain promoters. The authors mention that both studies use the same statistical methodology and the data in this study is consistent with the data from the 2022 paper. However, I think the statistical methodology in both studies needs further exposition. This section of the review is thus meant to ensure that I understand the author's methodology, to guide the reader in understanding how the authors define 'selectivity', and to probe certain assumptions underlying the methodology.

      My understanding of the approach is as follows: The authors consider an enhancer to be not selective if its 'boost index' is the same across a set of promoters. 'Boost index' is defined to be the ratio of the reporter output with the enhancer and promoter divided by the reporter output with just the promoter. Conceptually, I think that considering the boost index is a reasonable way to quantify selectivity.

      The authors use a frequentist approach to classify each enhancer as selective or not selective. The null hypothesis is that the boost index of the enhancer is equal across a set of promoters. This can be visualized in Fig. 2C where the null hypothesis is that the mean of each vertical distribution is equal. Note that in Figure S4 of this paper (and in Figure 4B of their 2022 paper) the within-group variance is not plotted. Statistical significance is assessed using a Welch F-test. This is a parametric test that assumes that the observations within each vertical distribution in Fig 2C are normally distributed (this test does allow for heteroskedasticity - which means that the variance may differ within each vertical distribution). Does the normality assumption hold? This analysis should be reported. If this assumption does not hold, is the Welch test well calibrated?

      We have tested the normality of all of the single enhancer + promoter combinations that were tested using the welch F-test. 94.1% of the 439 single enhancers + Promoter combinations show normal distributions (at a 1% FDR). We have added this to the methods section of the revised manuscript. Apart from this, non-normality has little to no influence on the Welch F-test performance (https://rips-irsp.com/articles/10.5334/irsp.198). Therefore, the use of the Welch F-test to score enhancer selectivity on these data is valid. Apart from this, we agree that a simple binary classification of selective vs non-selective is not descriptive enough for these kinds of data. We addressed this in our previous publication by exploring the relationship between selectivity and enhancer strength. However, in the objective in this publication was solely to show that this new dataset follows similar selectivity patterns to our previous publication. Furthermore, our analysis on the non-linearity of promoter response is a more quantitative continuation on the analysis on selectivity as this is probably one of the major contributors to enhancer selectivity. This was probably present in our previous paper but could not be analyzed as there were less combinations per promoter.

      For further clarity, we have now highlighted the individual promoters in Figure S4 by colors.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      I found this to be an interesting manuscript and am glad this experiment was conducted. As I wrote in my public review, I think that clarifying the computational methods/ideas would really help. I also think it would be helpful to properly define the terms that are being used. For example, this manuscript uses the terminology cooperativity and synergy. Are these meant to be synonymous with supra-addivity?

      Thank you for this point. The revised manuscript no longer uses the word “cooperativity”. We now use “supra-additivity” when describing our data, and “synergy” as biological interpretation. In the Introduction we now clarify this distinction.

      Comments on enhancer selectivity:

      In the public review, I have given comments on the statistical methodology employed to assess enhancer selectivity. On a more subjective note, I'm not convinced that a frequentist approach to a binary classification of 'selective' vs 'not selective' is that useful here. I think it would be more useful to report an 'effect size' of the extent to which an enhancer is selective and to study the sources of this effect size. I think you've tried to do this in lines 329-339 of the discussion but I think the exposition could be clearer.

      Figure S4B may suggest how to do this. It appears that the distribution of boost indices for a given enhancer is trimodal (this is most obvious for the stronger enhancers on the top of the plot). Is it the case that each mode (for each enhancer) consists of the same set of promoters? I think what is implied by Figure 5B is that the stronger promoters are not boosted as much as the weaker promoters. So does the leftmost mode consist of Ap1m1, the middle mode consist of Klf2/Otx2/Nanog, and the rightmost mode of Sox2/Fgf5/Lefty1/Tbx3? If so, I would recommend emphasizing this in the text/figure and clarifying how this relates to selectivity. It seems that the chain of logic is as follows: (1) We define an enhancer to be selective if its boost indices across a set of promoters are not the same. (2) We generally observe that stronger promoters get boosted less than weaker promoters. (3) Thus selectivity arises due to differences in intrinsic strengths of the promoter. I think this is what is being implied in lines 329-339 of the discussion, but it took me multiple readings to understand this and I'm not convinced the power-law explanation is justified (see public review).

      We have modified this paragraph of the Discussion (now lines 350-359).

      Regarding the power-law: in the Results we state “roughly a power-law function”. We have removed the power-law claim from the abstract, that conclusion as phrased was indeed too firm.

      Reference to Zuin et al

      Lines 323 - 325: A reference is made to the data from Zuin et al "following approximately a power-law". What data in Zuin et al does this statement refer to? I do not believe the authors in Zuin et al claim that the relationship between GFP intensity and enhancer-promoter distance (Figure 1h,i from Zuin et al) follows a power law. It is certainly non-linear, but I have taken a look at this data myself and do not find it follows a power-law. Please either explain this further and rigorously justify the claim or adjust the wording accordingly.

      Good point, in the discussion of Zuin et al we have replaced “power law” with “non-linear decay function”

    1. Author response:

      Reviewer #1:

      Summary:

      One enduring mystery involving the evolution of genomes is the remarkable variation they exhibit with respect to size. Much of that variation is due to differences in the number of transposable elements, which often (but not always) correlates with the overall quantity of DNA. Amplification of TEs is nearly always either selectively neutral or negative with respect to host fitness. Given that larger effective population sizes are more efficient at removing these mutations, it has been hypothesized that TE content, and thus overall genome size, may be a function of effective population size. The authors of this manuscript test this hypothesis by using a uniform approach to analysis of several hundred animal genomes, using the ratio of synonymous to nonsynonymous mutations in coding sequence as a measure of the overall strength of purifying selection, which serves as a proxy for effective population size over time. The data convincingly demonstrates that it is unlikely that effective population size has a strong effect on TE content and, by extension, overall genome size (except for birds).

      Strengths:

      Although this ground has been covered before in many other papers, the strength of this analysis is that it is comprehensive and treats all the genomes with the same pipeline, making comparisons more convincing. Although this is a negative result, it is important because it is relatively comprehensive and indicates that there will be no simple, global hypothesis that can explain the observed variation.

      Weaknesses:

      In several places, I think the authors slip between assertions of correlation and assertions of cause-effect relationships not established in the results. 

      Several times in the text we use the expression “effect of dN/dS on…” which might indeed suggest a causal relationship. The phrasing refers to dN/dS being used in the regression as an independent variable that can be able to predict the variation of the dependent variables genome size and TE content. We are going to rephrase these expressions so that correlation is not mistaken with causation.

      In other places, the arguments end up feeling circular, based, I think, on those inferred causal relationships. It was also puzzling why plants (which show vast differences in DNA content) were ignored altogether.

      The analysis focuses on metazoans for two reasons: one practical and one fundamental. The practical reason is computational. Our analysis included TE annotation, phylogenetic estimation and dN/dS estimation, which would have been very difficult with the hundreds, if not thousands, of plant genomes available. If we had included plants, it would have been natural to include fungi as well, to have a complete set of multicellular eukaryotic genomes, adding to the computational burden. The second fundamental reason is that plants show important genome size differences due to more frequent whole genome duplications (polyploidization) than in animals. It is therefore possible that the effect of selection on genome size is different in these two groups, which would have led us to treat them separately, decreasing the interest of this comparison. For these reasons we chose to focus on animals that still provide very wide ranges of genome size and population size well suited to test the impact of drift.

      Reviewer #2:

      Summary:

      The Mutational Hazard Hypothesis (MHH) is a very influential hypothesis in explaining the origins of genomic and other complexity that seem to entail the fixation of costly elements. Despite its influence, very few tests of the hypothesis have been offered, and most of these come with important caveats. This lack of empirical tests largely reflects the challenges of estimating crucial parameters.

      The authors test the central contention of the MHH, namely that genome size follows effective population size (Ne). They martial a lot of genomic and comparative data, test the viability of their surrogates for Ne and genome size, and use correct methods (phylogenetically corrected correlation) to test the hypothesis. Strikingly, they not only find that Ne is not THE major determinant of genome size, as is argued by MHH, but that there is not even a marginally significant effect. This is remarkable, making this an important paper.

      Strengths:

      The hypothesis tested is of great importance.

      The negative finding is of great importance for reevaluating the predictive power of the tested hypothesis.

      The test is straightforward and clear.

      The analysis is a technical tour-de-force, convincingly circumventing a number of challenges of mounting a true test of the hypothesis.

      Weaknesses:

      I note no particular strengths, but I believe the paper could be further strengthened in three major ways.

      (1) The authors should note that the hypothesis that they are testing is larger than the MHH. The MHH hypothesis says that

      (i) low-Ne species have more junk in their genomes and

      (ii) this is because junk tends to be costly because of increased mutation rate to nulls, relative to competing non/less-junky alleles.

      The current results reject not just the compound (i+ii) MHH hypothesis, but in fact any hypothesis that relies on i. This is notably a (much) more important rejection. Indeed, whereas MHH relies on particular constructions of increased mutation rates of varying plausibility, the more general hypothesis i includes any imaginable or proposed cost to the extra sequence (replication costs, background transcription, costs of transposition, ectopic expression of neighboring genes, recombination between homologous elements, misaligning during meiosis, reduced organismal function from nuclear expansion, the list goes on and on). For those who find the MHH dubious on its merits, focusing this paper on the MHH reduces its impact - the larger hypothesis that the small costs of extra sequence dictate the fates of different organisms' genomes is, in my opinion, a much more important and plausible hypothesis, and thus the current rejection is more important than the authors let on.

      The MHH is arguably the most structured and influential theoretical framework proposed to date based on the null assumption (i), therefore setting the paper up with the MHH is somehow inevitable. Because of this, in the manuscript, we mostly discuss the peculiarities of TE biology that can drive the genome away from the MHH expectations, focusing on the mutational aspect. We however agree that the hazard posed by extra DNA is not limited to the gain of function via the mutation process, but can be linked to many other molecular processes as mentioned above. In a revised manuscript, we will make the concept of hazard more comprehensive and further stress that this applies not only to TEs but any nearly-neutral mutation affecting non-coding DNA.

      (2) In addition to the authors' careful logical and mathematical description of their work, they should take more time to show the intuition that arises from their data. In particular, just by looking at Figure 1b one can see what is wrong with the non-phylogenetically-corrected correlations that MHH's supporters use. That figure shows that mammals, many of which have small Ne, have large genomes regardless of their Ne, which suggests that the coincidence of large genomes and frequently small Ne in this lineage is just that, a coincidence, not a causal relationship. Similarly, insects by and large have large Ne, regardless of their genome size. Insects, many of which have large genomes, have large Ne regardless of their genome size, again suggesting that the coincidence of this lineage of generally large Ne and smaller genomes is not causal. Given that these two lineages are abundant on earth in addition to being overrepresented among available genomes (and were even more overrepresented when the foundational MHH papers collected available genomes), it begins to emerge how one can easily end up with a spurious non-phylogenetically corrected correlation: grab a few insects, grab a few mammals, and you get a correlation. Notably, the same holds for lineages not included here but that are highly represented in our databases (and all the more so 20 years ago): yeasts related to S. cerevisiae (generally small genomes and large median Ne despite variation) and angiosperms (generally large genomes (compared to most eukaryotes) and small median Ne despite variation). Pointing these clear points out will help non-specialists to understand why the current analysis is not merely a they-said-them-said case, but offers an explanation for why the current authors' conclusions differ from the MHH's supporters and moreover explain what is wrong with the MHH's supporters' arguments.

      We agree that comparing dispersion of the points from the non-phylogenetically corrected correlation with the results of the phylogenetic contrasts intuitively emphasizes the importance of accounting for species relatedness. Just looking at the clade colors in Figure 2 makes immediately stand out that a simple regression hides phylogenetic structure. We will stress this in the discussion to make the point clear.

      (3) A third way in which the paper is more important than the authors let on is in the striking degree of the failure of MHH here. MHH does not merely claim that Ne is one contributor to genome size among many; it claims that Ne is THE major contributor, which is a much, much stronger claim. That no evidence exists in the current data for even the small claim is a remarkable failure of the actual MHH hypothesis: the possibility is quite remote that Ne is THE major contributor but that one cannot even find a marginally significant correlation in a huge correlation analysis deriving from a lot of challenging bioinformatic work. Thus this is an extremely strong rejection of the MHH. The MHH is extremely influential and yet very challenging to test clearly. Frankly, the authors would be doing the field a disservice if they did not more strongly state the degree of importance of this finding.

      We respectfully disagree with the reviewer that there is currently no evidence for an effect of Ne on genome size evolution. While it is accurate that our large dataset allows us to reject the universality of Ne as the major contributor to genome size variation, this does not exclude the possibility of such an effect in certain contexts. Notably, there are several pieces of evidence that find support for Ne to determine genome size variation and to entail nearly-neutral TE dynamics under certain circumstances, e.g. of particularly strongly contrasted Ne and moderate divergence times (Lefébure et al. 2017; Mérel et al. 2024; Tollis and Boissinot 2013; Ruggiero et al. 2017). The strength of such works is to analyze the short-term dynamics of TEs in response to Ne within groups of species/populations, where the cost posed by extra DNA is likely to be similar. Indeed, the MHH predicts genome size to vary according to the combination of drift and mutation under the nearly-neutral theory of molecular evolution. Our work demonstrates that it is not true universally but does not exclude that it could exist locally. Moreover, defense mechanisms against TEs proliferation are often complex molecular machineries that might or might not evolve according to different constraints among clades. We have detailed these points in the discussion.

      Reviewer #3:

      Summary

      The Mutational Hazard Hypothesis (MHH) suggests that lineages with smaller effective population sizes should accumulate slightly deleterious transposable elements leading to larger genome sizes. Marino and colleagues tested the MHH using a set of 807 vertebrate, mollusc, and insect species. The authors mined repeats de novo and estimated dN/dS for each genome. Then, they used dN/dS and life history traits as reliable proxies for effective population size and tested for correlations between these proxies and repeat content while accounting for phylogenetic nonindependence. The results suggest that overall, lineages with lower effective population sizes do not exhibit increases in repeat content or genome size. This contrasts with expectations from the MHH. The authors speculate that changes in genome size may be driven by lineage-specific host-TE conflicts rather than effective population size.

      Strengths

      The general conclusions of this paper are supported by a powerful dataset of phylogenetically diverse species. The use of C-values rather than assembly size for many species (when available) helps mitigate the challenges associated with the underrepresentation of repetitive regions in short-read-based genome assemblies. As expected, genome size and repeat content are highly correlated across species. Nonetheless, the authors report divergent relationships between genome size and dN/dS and TE content and dN/dS in multiple clades: Insecta, Actinopteri, Aves, and Mammalia. These discrepancies are interesting but could reflect biases associated with the authors' methodology for repeat detection and quantification rather than the true biology.

      Weaknesses

      The authors used dnaPipeTE for repeat quantification. Although dnaPipeTE is a useful tool for estimating TE content when genome assemblies are not available, it exhibits several biases. One of these is that dnaPipeTE seems to consistently underestimate satellite content (compared to repeat masker on assembled genomes; see Goubert et al. 2015). Satellites comprise a significant portion of many animal genomes and are likely significant contributors to differences in genome size. This should have a stronger effect on results in species where satellites comprise a larger proportion of the genome relative to other repeats (e.g. Drosophila virilis, >40% of the genome (Flynn et al. 2020); Triatoma infestans, 25% of the genome (Pita et al. 2017) and many others). For example, the authors report that only 0.46% of the Triatoma infestans genome is "other repeats" (which include simple repeats and satellites). This contrasts with previous reports of {greater than or equal to}25% satellite content in Triatoma infestans (Pita et al. 2017). Similarly, this study's results for "other" repeat content appear to be consistently lower for Drosophila species relative to previous reports (e.g. de Lima & Ruiz-Ruano 2022). The most extreme case of this is for Drosophila albomicans where the authors report 0.06% "other" repeat content when previous reports have suggested that 18%->38% of the genome is composed of satellites (de Lima & Ruiz-Ruano 2022). It is conceivable that occasional drastic underestimates or overestimates for repeat content in some species could have a large effect on coevol results, but a minimal effect on more general trends (e.g. the overall relationship between repeat content and genome size).

      There are indeed some discrepancies between our estimates of low complexity repeats and those from the literature due to the approach used. Hence, occasional underestimates or overestimates of repeat content are possible. As noted, the contribution of “Other” repeats to the overall repeat content is generally very low, meaning an underestimation bias. We thank the reviewer for providing this interesting review. We will emphasize it in the discussion of our revised manuscript.

      Not being able to correctly estimate the quantity of satellites might pose a problem for quantifying the total content of junk DNA. However, the overall repeat content mostly composed of TEs correlates very well with genome size, both in the overall dataset and within clades (with the notable exception of birds) so we are confident that this limitation is not the explanation of our negative results. Moreover, while satellite information might be missing, this is not problematic to test our a priori hypothesis since we focus our attention on TEs, whose proliferation mechanism is very different from that of tandem repeats.

      Finally, divergence from the consensus can be estimated only for TEs. Therefore, recently active elements do not include simple and tandem repeats: yet the results based on recent TE content are very similar to those based on the overall repeat content.

      Another bias of dnaPipeTE is that it does not detect ancient TEs as well as more recently active TEs (Goubert et al. 2015). Thus, the repeat content used for PIC and coevolve analyses here is inherently biased toward more recently inserted TEs. This bias could significantly impact the inference of long-term evolutionary trends.

      Indeed, dnaPipeTE is not good at detecting old TE copies due to the read-based approach, biasing the outcome towards new elements. We agree on TE content being underestimated, especially in those genomes that tend to accumulate TEs rather than getting rid of them. However, the sum of old TEs and recent TEs is extremely well correlated to genome size (Pearson’s correlation: r = 0.87, p-value < 2.2e-16; PIC: slope = 0.22, adj-R2 = 0.42, p-value < 2.2e-16). Our main result therefore does not rely on an accurate estimation of old TEs. In contrast, we hypothesized that recent TEs could be interesting if selection acted on TEs insertion and dynamics rather than on non-coding DNA. Our results demonstrate that this is not the case: it should be noted that in spite of its limits for old TEs, dnaPipeTE is especially fitting for this specific analysis as it is not biased by very repetitive new TE families that are problematic to assemble. We will clearly emphasize the limitation of dnaPipeTE and discuss the consequences on our results in the discussion of the revised manuscript.

      Finally, in a preliminary analysis on the dipteran species, we show that the TE content estimated with dnaPipeTE is generally similar to that estimated from the assembly with earlGrey (Baril et al. 2024) across a good range of genome sizes going from drosophilid-like to mosquito-like (Pearson’s correlation: r = 0.88, p-value = 3.22e-10; see also the corrected Supplementary Figure S2 below). While for these species TEs are probably dominated by recent to moderately recent TEs, Aedes albopictus is an outlier for its genome size and the estimations with the two methods are largely consistent. However, the computation time required to estimate TE content using EarlGrey was significantly longer, with a ~300% increase in computation time, making it a very costly option (a similar issue is applicable to other assembly-based annotation pipelines). Given the rationale presented above, we decided to use dnaPipeTE instead of EarlGrey.

    1. Reviewer #2 (Public review):

      Summary:

      Fei, Lu, Shi, et al. present a thorough evaluation of the immune cell landscape in pre-eclamptic human placentas by single-cell multi-omics methodologies compared to normal control placentas. Based on their findings of elevated frequencies of inflammatory macrophages and memory-like Th17 cells, they employ adoptive cell transfer mouse models to interrogate the coordination and function of these cell types in pre-eclampsia immunopathology. They demonstrate the putative role of the IGF1-IGF1R axis as the key pathway by which inflammatory macrophages in the placenta skew CD4+ T cells towards an inflammatory IL-17A-secreting phenotype that may drive tissue damage, vascular dysfunction, and elevated blood pressure in pre-eclampsia, leaving researchers with potential translational opportunities to pursue this pathway in this indication.

      They present a major advance to the field in their profiling of human placental immune cells from pre-eclampsia patients where most extant single-cell atlases focus on term versus preterm placenta, or largely examine trophoblast biology with a much rarer subset of immune cells. While the authors present vast amounts of data at both the protein and RNA transcript level, we, the reviewers, feel this manuscript is still in need of much more clarity in its main messaging, and more discretion in including only key data that supports this main message most effectively.

      Strengths:

      (1) This study combines human and mouse analyses and allows for some amount of mechanistic insight into the role of pro-inflammatory and anti-inflammatory macrophages in the pathogenesis of pre-eclampsia (PE), and their interaction with Th17 cells.

      (2) Importantly, they do this using matched cohorts across normal pregnancy and common PE comorbidities like gestation diabetes (GDM).

      (3) The authors have developed clear translational opportunities from these "big data" studies by moving to pursue potential IGF1-based interventions.

      Weaknesses:

      (1) Clearly the authors generated vast amounts of multi-omic data using CyTOF and single-cell RNA-seq (scRNA-seq), but their central message becomes muddled very quickly. The reader has to do a lot of work to follow the authors' multiple lines of inquiry rather than smoothly following along with their unified rationale. The title description tells fairly little about the substance of the study. The manuscript is very challenging to follow. The paper would benefit from substantial reorganizations and editing for grammatical and spelling errors. For example, RUPP is introduced in Figure 4 but in the text not defined or even talked about what it is until Figure 6. (The figure comparing pro- and anti-inflammatory macrophages does not add much to the manuscript as this is an expected finding).

      (2) The methods lack critical detail about how human placenta samples were processed. The maternal-fetal interface is a highly heterogeneous tissue environment and care must be taken to ensure proper focus on maternal or fetal cells of origin. Lacking this detail in the present manuscript, there are many unanswered questions about the nature of the immune cells analyzed. It is impossible to figure out which part of the placental unit is analyzed for the human or mouse data. Is this the decidua, the placental villi, or the fetal membranes? This is of key importance to the central findings of the manuscript as the immune makeup of these compartments is very different. Or is this analyzed as the entirety of the placenta, which would be a mix of these compartments and significantly less exciting?

      (3) Similarly, methods lack any detail about the analysis of the CyTOF and scRNAseq data, much more detail needs to be added here. How were these clustered, what was the QC for scRNAseq data, etc? The two small paragraphs lack any detail.

      (4) There is also insufficient detail presented about the quantities or proportions of various cell populations. For example, gdT cells represent very small proportions of the CyTOF plots shown in Figures 1B, 1C, & 1E, yet in Figures 2I, 2K, & 2K there are many gdT cells shown in subcluster analysis without a description of how many cells are actually represented, and where they came from. How were biological replicates normalized for fair statistical comparison between groups?

      (5) The figures themselves are very tricky to follow. The clusters are numbered rather than identified by what the authors think they are, the numbers are so small, that they are challenging to read. The paper would be significantly improved if the clusters were clearly labeled and identified. All the heatmaps and the abundance of clusters should be in separate supplementary figures.

      (6) The authors should take additional care when constructing figures that their biological replicates (and all replicates) are accurately represented. Figure 2H-2K shows N=10 data points for the normal pregnant (NP) samples when clearly their Table 1 and test denote they only studied N=9 normal subjects.

      (7) There is little to no evaluation of regulatory T cells (Tregs) which are well known to undergird maternal tolerance of the fetus, and which are well known to have overlapping developmental trajectory with RORgt+ Th17 cells. We recommend the authors evaluate whether the loss of Treg function, quantity, or quality leaves CD4+ effector T cells more unrestrained in their effect on PE phenotypes. References should include, accordingly: PMCID: PMC6448013 / DOI: 10.3389/fimmu.2019.00478; PMC4700932 / DOI: 10.1126/science.aaa9420.

      (8) In discussing gMDSCs in Figure 3, the authors have missed key opportunities to evaluate bona fide Neutrophils. We recommend they conduct FACS or CyTOF staining including CD66b if they have additional tissues or cells available. Please refer to this helpful review article that highlights key points of distinguishing human MDSC from neutrophils: https://doi.org/10.1038/s41577-024-01062-0. This will both help the evaluation of potentially regulatory myeloid cells that may suppress effector T cells as well as aid in understanding at the end of the study if IL-17 produced by CD4+ Th17 cells might recruit neutrophils to the placenta and cause ROS immunopathology and fetal resorption.

      (9) Depletion of macrophages using several different methodologies (PLX3397, or clodronate liposomes) should be accompanied by supplementary data showing the efficiency of depletion, especially within tissue compartments of interest (uterine horns, placenta). The clodronate piece is not at all discussed in the main text. Both should be addressed in much more detail.

      (10) There are many heatmaps and tSNE / UMAP plots with unhelpful labels and no statistical tests applied. Many of these plots (e.g. Figure 7) could be moved to supplemental figures or pared down and combined with existing main figures to help the authors streamline and unify their message.

      (11) There are claims that this study fills a gap that "only one report has provided an overall analysis of immune cells in the human placental villi in the presence and absence of spontaneous labor at term by scRNA-seq (Miller 2022)" (lines 362-364), yet this study itself does not exhaustively study all immune cell subsets...that's a monumental task, even with the two multi-omic methods used in this paper. There are several other datasets that have performed similar analyses and should be referenced.

      (12) Inappropriate statistical tests are used in many of the analyses. Figures 1-2 use the Shapiro-Wilk test, which is a test of "goodness of fit", to compare unpaired groups. A Kruskal-Wallis or other nonparametric t-test is much more appropriate. In other instances, there is no mention of statistical tests (Figures 6-7) at all. Appropriate tests should be added throughout.

    2. Author response:

      Reviewer #1:

      Strengths:

      Utilization of both human placental samples and multiple mouse models to explore the mechanisms linking inflammatory macrophages and T cells to preeclampsia (PE).<br /> Incorporation of advanced techniques such as CyTOF, scRNA-seq, bulk RNA-seq, and flow cytometry.

      Identification of specific immune cell populations and their roles in PE, including the IGF1-IGF1R ligand-receptor pair in macrophage-mediated Th17 cell differentiation.<br /> Demonstration of the adverse effects of pro-inflammatory macrophages and T cells on pregnancy outcomes through transfer experiments.

      Weaknesses:

      Comment 1. Inconsistent use of uterine and placental cells, which are distinct tissues with different macrophage populations, potentially confounding results.

      Response1: We thank the reviewers' comments. We have done the green fluorescent protein (GFP) pregnant mice-related animal experiment, which was not shown in this manuscript. The wild-type (WT) female mice were mated with either transgenic male mice, genetically modified to express GFP, or with WT male mice, in order to generate either GFP-expressing pups (GFP-pups) or their genetically unmodified counterparts (WT-pups), respectively. Mice were euthanized on day 18.5 of gestation, and the uteri of the pregnant females and the placentas of the offspring were analyzed using flow cytometry. The majority of macrophages in the uterus and placenta are of maternal origin, which was defined by GFP negative. In contrast, fetal-derived macrophages, distinguished by their expression of GFP, represent a mere fraction of the total macrophage population, signifying their inconsequential or restricted presence amidst the broader cellular landscape. We will added the GPF pregnant mice-related data in Figure 4-figure supplement 1 to explain the different macrophage populations in the uterine and placental cells.

      Comment 2. Missing observational data for the initial experiment transferring RUPP-derived macrophages to normal pregnant mice.

      Response 2: We thank the reviewers' comments. In our experiments, PLX3397 or Clodronate Liposomes was used to deplete the macrophages of pregnant mice, and then we injected RUPP-derived pro-inflammatory macrophages and anti-inflammatory macrophages back into PLX3397 or Clodronate Liposomes-treated pregnant mice. And We found that RUPP-derived F480+CD206- pro-inflammatory macrophages induced immune imbalance at the maternal-fetal interface and PE-like symptoms (Figure 4E-4H and Figure 4-figure supplement 1 A-C).

      Comment 3. Unclear mechanisms of anti-macrophage compounds and their effects on placental/fetal macrophages.

      Response 3: We thank the reviewers' comments. PLX3397, the inhibitor of CSF1R, which is needed for macrophage development (Nature. 2023, PMID: 36890231; Cell Mol Immunol. 2022, PMID: 36220994), we have stated that on line 189-191. However, PLX3397 is a small molecule compound that possesses the potential to cross the placental barrier and affect fetal macrophages. We will discuss the impact of this factor on the experiment in the discussion section.

      Comment 4. Difficulty in distinguishing donor cells from recipient cells in murine single-cell data complicates interpretation.

      Response 4: We thank the reviewers' comments. Upon analysis, we observed a notable elevation in the frequency of total macrophages within the CD45+ cell population. Then we subsequently performed macrophage clustering and uncovered a marked increase in the frequency of Cluster 0, implying a potential correlation between Cluster 0 and donor-derived cells. RNA sequencing revealed that the F480+CD206- pro-inflammatory donor macrophages exhibited a Folr2+Ccl7+Ccl8+C1qa+C1qb+C1qc+ phenotype, which is consistent with the phenotype of cluster 0 in macrophages observed in single-cell RNA sequencing (Figure 4D and Figure 5E). Therefore, we believe that the donor cells is cluster 0 in macrophages.

      Comment 5. Limitation of using the LPS model in the final experiments, as it more closely resembles systemic inflammation seen in endotoxemia rather than the specific pathology of PE.

      Response 5: We thank the reviewers' comments. Firstly, our other animal experiments in this manuscript used the Reduction in Uterine Perfusion Pressure (RUPP) mouse model to simulate the pathology of PE. However, the RUPP model requires ligation of the uterine arteries in pregnant mice on day 12.5 of gestation, which hinders T cells returning from the tail vein from reaching the maternal-fetal interface. In addition, this experiment aims to prove that CD4+ T cells are differentiated into memory-like Th17 cells through IGF-1R receptor signalling to affect pregnancy by clearing CD4+ T cells in vivo with an anti-CD4 antibody followed by injecting IGF-1R inhibitor-treated CD4+ T cells. And we proved that injection of RUPP-derived memory-like CD4+ T cells into pregnant rats induces PE-like symptoms (Figure 6). In summary, the application of the LPS model in Figure 8 does not affect the conclusions.

      Reviewer #2:

      Strengths:

      (1) This study combines human and mouse analyses and allows for some amount of mechanistic insight into the role of pro-inflammatory and anti-inflammatory macrophages in the pathogenesis of pre-eclampsia (PE), and their interaction with Th17 cells.

      (2) Importantly, they do this using matched cohorts across normal pregnancy and common PE comorbidities like gestation diabetes (GDM).

      (3) The authors have developed clear translational opportunities from these "big data" studies by moving to pursue potential IGF1-based interventions.

      Weaknesses:

      Comment 1. Clearly the authors generated vast amounts of multi-omic data using CyTOF and single-cell RNA-seq (scRNA-seq), but their central message becomes muddled very quickly. The reader has to do a lot of work to follow the authors' multiple lines of inquiry rather than smoothly following along with their unified rationale. The title description tells fairly little about the substance of the study. The manuscript is very challenging to follow. The paper would benefit from substantial reorganizations and editing for grammatical and spelling errors. For example, RUPP is introduced in Figure 4 but in the text not defined or even talked about what it is until Figure 6. (The figure comparing pro- and anti-inflammatory macrophages does not add much to the manuscript as this is an expected finding).

      Response 1: We thank the reviewers' comments. According to the reviewer's suggestion, we will proceed with making the necessary revisions. Firstly, We will modify the title of the article to be more specific. Then, we will introduce the RUPP mouse model when interpreted Figure 4. Thirdly, we plan to simplify or consolidate the images from Figure5 to Figure7 to make them easier to follow. Finally, We will diligently correct the grammatical and spelling errors in the article. As for the figure comparing pro- and anti-inflammatory macrophages, The Editor requested a more comprehensive description of the macrophage phenotype during the initial submission. As a result, we conducted the transcriptomes of both uterine-derived pro-inflammatory and anti-inflammatory macrophages and conducted a detailed analysis of macrophages in single-cell data.

      Comment 2. The methods lack critical detail about how human placenta samples were processed. The maternal-fetal interface is a highly heterogeneous tissue environment and care must be taken to ensure proper focus on maternal or fetal cells of origin. Lacking this detail in the present manuscript, there are many unanswered questions about the nature of the immune cells analyzed. It is impossible to figure out which part of the placental unit is analyzed for the human or mouse data. Is this the decidua, the placental villi, or the fetal membranes? This is of key importance to the central findings of the manuscript as the immune makeup of these compartments is very different. Or is this analyzed as the entirety of the placenta, which would be a mix of these compartments and significantly less exciting?

      Response 2: We thank the reviewers' comments. Placental villi rather than fetal membranes and decidua were used for CyToF in this study. This detail about how human placenta samples were processed will be added to the Materials and Methods section.

      Comment 3. Similarly, methods lack any detail about the analysis of the CyTOF and scRNAseq data, much more detail needs to be added here. How were these clustered, what was the QC for scRNAseq data, etc? The two small paragraphs lack any detail.

      Response 3: We thank the reviewers' comments. The detail about the analysis of the CyTOF and scRNAseq data will be added in the Materials and Methods section.

      Comment 4. There is also insufficient detail presented about the quantities or proportions of various cell populations. For example, gdT cells represent very small proportions of the CyTOF plots shown in Figures 1B, 1C, & 1E, yet in Figures 2I, 2K, & 2K there are many gdT cells shown in subcluster analysis without a description of how many cells are actually represented, and where they came from. How were biological replicates normalized for fair statistical comparison between groups?

      Response 4: We thank the reviewers' comments. In Figure 1, CD45+ immune cells were clustered into 10 subpopulations, which included gdT cells. While Figure 2 displays the further clustering analysis of CD4+T, CD8+T, and gdT cells, with gdT cells being further subdivided into 22 clusters (Figure 2-figure supplement 1C). The number of biological replicates (samples) is consistent with Figure 1.

      Comment 5. The figures themselves are very tricky to follow. The clusters are numbered rather than identified by what the authors think they are, the numbers are so small, that they are challenging to read. The paper would be significantly improved if the clusters were clearly labeled and identified. All the heatmaps and the abundance of clusters should be in separate supplementary figures.

      Response 5: We thank the reviewers' comments. The t-SNE distributions of the 15 clusters of CD4+ T cells, 18 clusters of CD8+ T cells, and 22 clusters of gdT cells are shown separately in Figure 2A, F, and I. The heatmaps displaying the expression levels of markers in these clusters of CD4+ T cells, CD8+ T cells, and gdT cells are presented in Figure 2-figure supplement 1A, B, and C, respectively. The t-SNE distributions of the 29 clusters of CD11b+ cells are shown in Figure 3A, and the heatmap displaying the expression levels of markers in these clusters is presented in Figure 3B. As for sc-RNA sequencing, the heatmap and UMAP distributions of the 15 clusters of macrophages are shown separately in Figure 5C and 5D. The UMAP distributions and heatmap of the 12 clusters of T/NK cells are shown in Figure 6A and 6B. The UMAP distributions and heatmap of the 9 clusters of T/NK cells are shown in Figure 7A and 7B.

      Comment 6. The authors should take additional care when constructing figures that their biological replicates (and all replicates) are accurately represented. Figure 2H-2K shows N=10 data points for the normal pregnant (NP) samples when clearly their Table 1 and test denote they only studied N=9 normal subjects.

      Response 6: We thank the reviewers' careful checking. During our verification, we found that one sample in the NP group had pregnancy complications other than PE and GMD. The data in Figure 2H-2K was not updated in a timely manner. We will promptly update this data and reanalyze it.

      Comment 7. There is little to no evaluation of regulatory T cells (Tregs) which are well known to undergird maternal tolerance of the fetus, and which are well known to have overlapping developmental trajectory with RORgt+ Th17 cells. We recommend the authors evaluate whether the loss of Treg function, quantity, or quality leaves CD4+ effector T cells more unrestrained in their effect on PE phenotypes. References should include, accordingly: PMCID: PMC6448013 / DOI: 10.3389/fimmu.2019.00478; PMC4700932 / DOI: 10.1126/science.aaa9420.

      Response 7: We thank the reviewers' comments. We have done the Treg-related animal experiment, which was not shown in this manuscript. We will add the Treg-related data in Figure 6. The injection of CD4+ T cells derived from RUPP mouse, characterized by a reduced frequency of Tregs, could induce PE-like symptoms in pregnant mice. Additionally, we will add a necessary discussion about Tregs.

      Comment 8. In discussing gMDSCs in Figure 3, the authors have missed key opportunities to evaluate bona fide Neutrophils. We recommend they conduct FACS or CyTOF staining including CD66b if they have additional tissues or cells available. Please refer to this helpful review article that highlights key points of distinguishing human MDSC from neutrophils: https://doi.org/10.1038/s41577-024-01062-0. This will both help the evaluation of potentially regulatory myeloid cells that may suppress effector T cells as well as aid in understanding at the end of the study if IL-17 produced by CD4+ Th17 cells might recruit neutrophils to the placenta and cause ROS immunopathology and fetal resorption.

      Response 8: We thank the reviewers' comments. Although we do not have additional tissues or cells available to conduct FACS or CyTOF staining, including for CD66b, we plan to utilize CD15 and CD66b antibodies for immunofluorescence staining of placental tissue. Suppressing effector T cells is a signature feature of MDSCs, and T cells may also influence the functions of MDSCs, we will refer to this review and discuss it in the Discussion section of the article.

      Comment 9. Depletion of macrophages using several different methodologies (PLX3397, or clodronate liposomes) should be accompanied by supplementary data showing the efficiency of depletion, especially within tissue compartments of interest (uterine horns, placenta). The clodronate piece is not at all discussed in the main text. Both should be addressed in much more detail.

      Response 9: We thank the reviewers' comments. We already have the additional data on the efficiency ofmacrophage depletion involving PLX3397 and clodronate liposomes, which were not present in this manuscript, and we'll add it to the manuscript. The clodronate piece is mentioned in the main text (Line 197-201), but only briefly described, because the results using clodronate we obtained were similar to those using PLX3397.

      Comment 10. There are many heatmaps and tSNE / UMAP plots with unhelpful labels and no statistical tests applied. Many of these plots (e.g. Figure 7) could be moved to supplemental figures or pared down and combined with existing main figures to help the authors streamline and unify their message.

      Response 10: We thank the reviewers' comments. We plan to simplify or consolidate the images from Figure5 to Figure7 to make them easier to follow.

      Comment 11. There are claims that this study fills a gap that "only one report has provided an overall analysis of immune cells in the human placental villi in the presence and absence of spontaneous labor at term by scRNA-seq (Miller 2022)" (lines 362-364), yet this study itself does not exhaustively study all immune cell subsets...that's a monumental task, even with the two multi-omic methods used in this paper. There are several other datasets that have performed similar analyses and should be referenced.

      Response 11: We thank the reviewers' comments. We will search for more literature and reference additional studies that have conducted similar analyses.

      Comment 12. Inappropriate statistical tests are used in many of the analyses. Figures 1-2 use the Shapiro-Wilk test, which is a test of "goodness of fit", to compare unpaired groups. A Kruskal-Wallis or other nonparametric t-test is much more appropriate. In other instances, there is no mention of statistical tests (Figures 6-7) at all. Appropriate tests should be added throughout.

      We thank the reviewers' comments. As stated in the Statistical Analysis section (lines 601-604), the Kruskal-Wallis test was used to compare the results of experiments with multiple groups. Comparisons between the two groups in Figures 6-7 were conducted using Student's t-test. The aforementioned statistical methods will be included in the figure legends.

    1. De-scribing them will require great attention to detail: beneathevery setof figures, we must seek not a meaning, but a precautionl we mustsituate them not only in the inextricability of a functioning, but inthe coherenceof a tactic.

      He makes a point here of using these examples as a warning for the future. Being able to notice similarities or a rapid change in general thought due to political influence (although this may not always be public knowledge). I think this is a good point to ensure the take away from this is to be asking the right question.

    1. In all things purely social we can be as separate as the five fin-gers, and yet one as the hand in all things essential to mutual progress.

      Everyone is able to think their own thoughts and have their own opinions which may divide them like "fingers" but things that will move their society foward and benefit everyone will make everyone stand together as "one hand".

    1. Author response:

      Reviewer #1 (Public Review):

      Weakness #1: The authors claim to have identified drivers that label single DANs in Figure 1, but their confocal images in Figure S1 suggest that many of those drivers label additional neurons in the larval brain. It is also not clear why only some of the 57 drivers are displayed in Figure S1.

      As introduced in the results section, we screened 57 driver strains based on previous studies, either they were reported identifying a single (a pair of) dopaminergic neuron (DAN) in larvae or identifying only several DANs in the adult brain indicating the potential of identifying single dopaminergic neuron in larvae. In Figure 1, TH-GAL4 was used to cover all neurons in the DL1 cluster, while R58E02 and R30G08 were well known drivers for pPAM. Fly strains in Figure 1h, k, l, and m were reported as single DAN strains in larvae4, while strains in Figure 1e, f, g were reported identifying only several DANs in adult brains5,6. We examined these strains and only some of them labeled single DANs in 3rd instar larval brains (Figure 1f, g, h, l and m). Among them, only strains in Figure 1f and h labeled single DAN in the brain hemisphere, without labeling other non-DANs. Other strains labeled non-DANs in addition to single DANs (Figure 1g, l and m). Taking ventral nerve cord (VNC) into consideration, strain in Figure 1h also labeled neurons in VNC (Figure S1e), while strain in Figure 1f did not (Figure S1c).

      In summary, the strain in Figure 1f (R76F02AD;R55C10DBD, labeling DAN-c1) is a strain we screened labeling only a single DAN in the 3rd instar larval brains. Others (Figure 1g, h, l, and m) we still describe them as strains labeling single DANs, but they also label one to several non-DANs. In Figure 1, we mainly showed the strains labeling single DANs. The labeling patterns of other screened driver strains were summarized in Table1. Since all brain images of the rest 47 strains are available, we will state in Fig S1 that additional brain images can be provided upon request.

      Weakness #2: Critically, R76F02-AD; R55C10-DBD labels more than one neuron per hemisphere in Figure S1c, and the authors cite Xie et al. (2018) to note that this driver labels two DANs in adult brains. Therefore, the authors cannot argue that the experiments throughout their paper using this driver exclusively target DAN-c1.

      Figure S1c shows single DA neuron in each brain hemisphere. Additional GFP (+) signals were often observed, but not from cell bodies of DANs because they were not stained by a TH antibody. These additional GFP (+) signals were mainly neurites, including axonal terminals, but could be false positive signals or weakly stained non-neuronal cell bodies. This conclusion was based on analysis of a total of 22 larval brains. We will add this in the text or Fig S1 caption. Enlarged insert of GFP (+) signals will be added also to Figure S1c.  

      Weakness #3: Missing from the screen of 57 drivers is the driver MB320C, which typically labels only PPL1-γ1pedc in the adult and should label DAN-c1 in the larva. If MB320C labels DAN-c1 exclusively in the larva, then the authors should repeat their key experiments with MB320C to provide more evidence for DAN-c1 involvement specifically.

      We thank the reviewer for the suggestion. MB320C mainly labels PPL1-y1pedc in the adult brain, with one or two other weakly labeled cells. It will be interesting to investigate the pattern of this driver in 3rd instar larval brains. If it only covers DAN-c1, we can try to knock-down D2R in this strain to check whether it can repeat our results. This will be an interesting fly strain to test, but we believe that it will not be necessary for our current manuscript as DAN-c1 driver is very specific (for details, refer to our response to Reviewer#3). However, this line will be very useful for future experiments.

      Weakness #4: The authors claim that the SS02160 driver used by Eschbach et al. (2020) labels other neurons in addition to DAN-c1. Could the authors use confocal imaging to show how many other neurons SS02160 labels? Given that both Eschbach et al. and Weber et al. (2023) found no evidence that DAN-c1 plays a role in larval aversive learning, it would be informative to see how SS02160 expression compares with the driver the authors use to label DAN-c1.

      We did not have our own images showing DANs in brains of SS02160 driver cross line. However, Extended Data Figure 1 in the paper of Eschbach et al. (2020) shows strongly labeled four neurons on each brain hemisphere9, indicating that this driver is not a strain only labeling one neuron, DAN-c1.

      Weakness #5: The claim that DAN-c1 is both necessary and sufficient in larval aversive learning should be reworded. Such a claim would logically exclude any other neuron or even the training stimuli from being involved in aversive learning (see Yoshihara and Yoshihara (2018) for a detailed discussion of the logic), which is presumably not what the authors intended because they describe the possible roles of other DANs during aversive learning in the discussion.

      We agree that the words ‘necessary’ and ‘sufficient’ are too exclusive for other neurons. As mentioned in the Discussion part, we do think other dopaminergic neurons may also be involved in larval aversive learning. We are going to re-phrase these words by replacing them with more logically appropriate words, such as ‘important’, ‘essential’, or ‘mediating’.

      Weakness #6: Moreover, if DAN-c1 artificial activation conveyed an aversive teaching signal irrespective of the gustatory stimulus, then it should not impair aversive learning after quinine training (Figure 2k). While the authors interpret Figure 2k (and Figure 5) to indicate that artificial activation causes excessive DAN-c1 dopamine release, an alternative explanation is that artificial activation compromises aversive learning by overriding DAN-c1 activity that could be evoked by quinine.

      This is a great point! Yes, we cannot rule out the possibility that artificial activation compromises aversive learning by overriding DAN-c1 activity that could be evoked by quinine. The experimental results with TRPA1 could be caused by depletion of dopamine, or DA inactivation due to prolonged depolarization or adaptation. However, we still think that our hypothesis on the over-excitation of DAN-c1 is more consistent with our experimental results and other published data. Our justification is as follows:

      (1) Associative learning occurs only when the CS and US are paired. In wild type larvae, a specific odor (conditioned stimulus, CS, such as pentyl acetate) depolarizes a subset of Kenyon cells in the mushroom body, while gustatory unconditioned stimulus (US, quinine) induces dopamine release from DAN-c1 to the lower peduncle (LP) compartment in the mushroom body (Figure 7a). Only when the CS and US are paired, calcium influx caused by CS and Gas activated by D1R binding to dopamine will turn on a mushroom body specific version of adenylyl cyclase, rutabaga, which is the co-incidence detector in associative learning (Figure 7d).

      (2) Rutabaga transforms ATP into cAMP, activating PKA signaling pathway and modifying the synaptic strength from mushroom body neurons (MBN, also called Kenyan cells) to the mushroom body output neurons (MBON, Figure 7d). This change in synaptic strength will lead to learned responses when the same odor appears again.

      (3) In our work, we found D2R is expressed in DAN-c1, and knockdown D2R in DAN-c1 impairs larval aversive learning. As D2R reduces cAMP level and neuronal excitability3, we hypothesized that knockdown of D2R in DAN-c1 would remove the inhibition of D2R auto-receptor, and lead to more dopamine (DA) release when US (quinine) was delivered compared to the wild type larvae. The elevated DA release along with calcium influx caused by CS increases the cAMP level in MBN, which leads to the learning deficit (over-excitation, Figure 7b). Mutant larvae with excessive cAMP, dunce, showed aversive learning deficiency, supporting our hypothesis2.

      (4) Our results of TRPA1 can be explained by this over-excitation hypothesis. When DAN-c1 is activated (34C) in distilled water group, the artificial activation mimicked the gustatory activation of quinine. The larvae showed the aversive learning responses towards the odor (Figure 2k DW group). When DAN-c1 is activated (34C) in sucrose group, the artificial activation mimicked the gustatory activation of quinine, so the larvae showed a learning response combining both appetitive and aversive learning (Figure 2k SUC group).

      (5) When DAN-c1 is activated (34C) in quinine group, the artificial activation and the gustatory activation of quinine lead to elevated DA release from DAN-c1. During training, this elevated DA caused over-excitation of MBN, leading to failure of aversive learning (Figure 2k QUI group), which had a similar phenotype compared to larvae with D2R knockdown in DAN-c1.

      (6) Similarly, optogenetic activation of DAN-c1 during aversive training, leads to elevated DA release from DAN-c1 (both gustatory activation of quinine and artificial activation). This would also cause over-excitation of MBN, and lead to failure of aversive learning. Artificial activation in other stages (resting or testing) won’t cause elevated DA release during training, so the aversive learning was not affected (Figure 5b).

      (7) However, when optogenetic activation was applied during training, we did not observe aversive learning responses in the distilled water group, or a reduction in the sucrose group (Figure 5c, Figure 5d). Our explanation is that the optogenetic stimulus we applied is too strong, DAN-c1 has already released elevated DA in both groups. So, the aversive learning in these groups has already been impaired, they just showed the corresponding learning responses to distilled water or sucrose.

      (8) We also applied this over-excitation to activate MBNs. As MBN takes over both appetitive and aversive learnings, over-excitation of MBNs led to deficit in both types of learning, which follows our hypothesis (Figure 6).

      In summary, we hypothesized that DAN-c1 restricts DA release via activation of D2R, which is important for larval aversive learning. D2R knockdown or artificial activation of DAN-c1 during training would induce elevated DA release, leading to over-excitation of MBNs and failure of aversive learning.

      Weakness #7: The authors should not necessarily expect that D2R enhancer driver strains would reflect D2R endogenous expression, since it is known that TH-GAL4 does not label p(PAM) dopaminergic neurons.

      Just like the example of TH-GAL4, it is possible that the D2R driver strains may partially reflect the expression pattern of endogenous D2R in larval brains. When we crossed the D2R driver strains with the GFP-tagged D2R strain, however, we observed co-localization in DM1 and DL2b dopaminergic neurons, as well as in mushroom body neurons (Figure S3 c to h). In addition, D2R knockdown with D2R-miR directly supported that the GFP-tagged D2R strain reflected the expression pattern of endogenous D2R (Figure 4b to d, signals were reduced in DM1). In summary, we think the D2R driver strains supported the expression pattern we observed from the GFP-tagged D2R strain, especially in DM1 DANs.

      Weakness #8: Their observations of GFP-tagged D2R expression could be strengthened with an anti-D2R antibody such as that used by Lam et al., (1999) or Love et al., (2023).

      Love et al., (2023) used the antibody from Draper et al.10. We have tried the same antibody, but we were not able to observe clear signals after staining. Maybe it is not specific for the neurons in the fly larval brain, or our staining protocol did not fit with this antibody.

      Unfortunately, we were not able to find Lam (1999) paper.

      Weakness #9: Finally, the authors could consider the possibility other DANs may also mediate aversive learning via D2R. Knockdown of D2R in DAN-g1 appears to cause a defect in aversive quinine learning compared with its genetic control (Figure S4e). It is unclear why the same genetic control has unexpectedly poor aversive quinine learning after training with propionic acid (Figure S5a). The authors could comment on why RNAi knockdown of D2R in DAN-g1 does not similarly impair aversive quinine learning (Figure S5b).

      We also think that other DANs may be involved in aversive learning. We re-analyzed the learning assay data, seemingly D2R knockdown in DAN-g1 with miR partially affected aversive learning when trained with pentyl acetate (Figure S4e). We are going to build single statistic panels for DAN-g1 and DAN-d1. However, neither larvae with D2R knockdown in DAN-g1 using miR trained with propionic acid (Figure S5a), nor larvae with D2R knockdown in DAN-g1 using RNAi trained with pentyl acetate (Figure S5b) showing aversive learning deficit. We will add paragraphs about this in both Results and Discussion sections.

      Reviewer #2 (Public Review):

      Weakness#1: Is not completely clear how the system DAN-c1, MB neurons and Behavioral performance work. We can be quite sure that DAN-c1;Shits1 were reducing dopamine release and impairing aversive memory (Figure 2h). Similarly, DAN-c1;ChR2 were increasing dopamine release and also impaired aversive memory (Figure 5b). However, is not clear what is happening with DAN-c1;TrpA1 (Figure 2K). In this case the thermos-induction appears to impair the behavioral performance of all three conditions (QUI, DW and SUC) and the behavior is quite distinct from the increase and decrease of dopamine tone (Figure 2h and 5b).

      The study successfully examined the role of D2R in DAN-c1 and MB neurons in olfactory conditioning. The conclusions are well supported by the data, with the exception of the claim that dopamine release from DAN-c1 is sufficient for aversive learning in the absence of unconditional stimulus (Figure 2K). Alternatively, the authors need to provide a better explanation of this point.

      Please refer to our response to Weakness #6 of Public Reviewer #1.

      Reviewer #3 (Public Review):

      Weakness #1: It is a strength of the paper that it analyses the function of dopamine neurons (DANs) at the level of single, identified neurons, and uses tools to address specific dopamine receptors (DopRs), exploiting the unique experimental possibilities available in larval Drosophila as a model system. Indeed, the result of their screening for transgenic drivers covering single or small groups of DANs and their histological characterization provides the community with a very valuable resource. In particular the transgenic driver to cover the DANc1 neuron might turn out useful. However, I wonder in which fraction of the preparations an expression pattern as in Figure 1f/ S1c is observed, and how many preparations the authors have analyzed. Also, given the function of DANs throughout the body, in addition to the expression pattern in the mushroom body region (Figure 1f) and in the central nervous system (Figure S1c) maybe attempts can be made to assess expression from this driver throughout the larval body (same for Dop2R distribution).

      We thank the reviewer for the positive comments and the suggestions. For the strain R76F02AD; R55C10DBD, we examined 22 third instar larval brains expressing GFP or Syt-GFP and Den-mCherry, all of them clearly labeled DAN-c1. Half of them only labeled DAN-c1, the rest have 1 to 5 weak labeled soma without neurites. Barely 1 or 2 strong labeled cells appear. These non-DAN-c1 neurons are seldom dopaminergic neurons. In VNC, 8 out of 12 do not label cells, 3 have 2-4 strong labeled cells. These data supported that R76F02AD;R55C10DBD exclusively labeled DAN-c1 in 3rd instar larval brains.

      For the question about the pattern of R76F02AD; R55C10DBD and the expression pattern of D2R in larval body, it is an interesting question. However, our main focus was on the central nervous system and the learning behaviors in fruit fly larvae, we may investigate this question in the future.

      Weakness #2: A first major weakness is that the main conclusion of the paper, which pertains to associative memory (last sentence of the abstract, and throughout the manuscript), is not justified by their evidence. Why so? Consider the paradigm in Figure 2g, and the data in Figure 2h (22 degrees, the control condition), where the assay and the experimental rationale used throughout the manuscript are introduced. Different groups of larvae are exposed, for 30min, to an odour paired with either i) quinine solution (red bar), ii) distilled water (yellow bar), or iii) sucrose solution (blue bar); in all cases this is followed by a choice test for the odour on one side and a distilled-water blank on the other side of a testing Petri dish. The authors observe that odour preference is low after odour-quinine pairing, intermediate after odour-water pairing and high after odour-sucrose pairing. The differences in odour preference relative to the odour-water case are interpreted as reflecting odour-quinine aversive associations and odour-sucrose appetitive associations, respectively. However, these differences could just as well reflect non-associative effects of the 30-min quinine or sucrose exposure per se (for a classical discussion of such types of issues see Rescorla 1988, Annu Rev Neurosci, or regarding Drosophila Tully 1988, Behav Genetics, or with some reference to the original paper by Honjo & Furukubo-Tokunaga 2005, J Neurosci that the authors reference, also Gerber & Stocker 2007, Chem Sens).<br /> As it stands, therefore, the current 3-group type of comparison does not allow conclusions about associative learning.

      We adopted this single odor larval learning paradigm from Honjo’s papers1,2. In these works, Honjo et al. first designed and performed this single odor paradigm for larval olfactory associative learning. To address the reviewer’s question about the potential non-associative effects of the 30-min quinine or sucrose exposure, we would like to defend it primarily based on results from Honjo et al. (2005 and 2009). They applied the odorant to the larvae after training, only the ones had paired training with both odor and unconditioned stimulus (quinine or sucrose) showed learning responses. Larvae exposed 30 min in only odorant or unconditioned stimulus did not show different response to the odor compared to the naïve group1,2. To validate this paradigm induces associative learning responses, they also tested the paradigm from three aspects:

      (1) The odor responses are associative. Honjo et al. showed only when the odorant paired with unconditioned stimulus would induce corresponding attraction or repulsion of larvae to the odor. Neither odorant alone, unconditioned stimulus alone, nor temporal dissociation of odorant and unconditioned stimulus would induce learning responses.

      (2) The odor responses are odor specific. When applied a second odorant that was not used for training, larvae only showed learning responses to the unconditioned stimulus paired odor. This result ruled out the explanation of a general olfactory suppression and indicates larvae can discriminate and specifically alter the responses to the odor paired with unconditioned stimulus. Although the two-odor reciprocal training is not used, these results can show the association of unconditioned stimulus and the corresponding paired odor.

      (3) Well known learning deficit mutants did not show learned responses in this learning paradigm. Honjo et al. tested mutants (e.g., rut and dnc) showing learning deficits in the adult stage with two odor reciprocal learning paradigm. These mutant larvae also failed to show learning responses tested with the single odor larval learning paradigm.

      (4) In our study, we used two distinct odorants (pentyl acetate and propionic acid), as well as two D2R knockdown strains (UAS-miR and UAS-RNAi for D2R). We obtained similar results for larvae with D2R knockdown in DAN-c1. In addition, our naïve olfactory, naïve gustatory, and locomotion data ruled out the possibilities that the responses were caused by impaired sensory or motor functions. Comparison with the control group (odor paired with distilled water) ruled out the potential effects if habituation existed. All these results supported this single odor learning paradigm is reliable to assess the learning abilities of Drosophila larvae. And the failure of reduction in R.I when larvae with D2R knockdown in DAN-c1 were trained in quinine paired with the odorant is caused by deficit in aversive learning ability. We will add a paragraph to address this in the Discussion part.

      Weakness #3: A second major weakness is apparent when considering the sketch in Figure 2g and the equation defining the response index (R.I.) (line 480). The point is that the larvae that are located in the middle zone are not included in the denominator. This can inflate scores and is not appropriate. That is, suppose from a group of 30 animals (line 471) only 1 chooses the odor side and 29, bedazzled after 30-min quinine or sucrose exposure or otherwise confused by a given opto- or thermogenetic treatment, stay in the middle zone... a P.I. of 1.0 would result.

      It is a good question. We gave 5 min during the testing stage to allow the larvae to wander in the testing plate. Under most conditions, more than half of larvae (>50%) will explore around, and the rest may stay in the middle zone (will not be calculated). We used 25-50 larvae in each learning assay, so finally around 10-30 larvae will locate in two semicircular areas. Indeed, based on our raw data, a R.I. of 1 seldom appears. Most of the R.I.s fall into a region from -0.2 to 0.8. We should admit that the calculation equation of R. I. is not linear, so it would be sharper (change steeply) when it approaching to -1 and 1. However, as most of the values fall into the region from -0.2 to 0.8, we think ‘border effects’ can be neglected if we have enough numbers of larvae in the calculation (10-30).

      Weakness #4: Unless experimentally demonstrated, claims that the thermogenetic effector shibire/ts reduces dopamine release from DANs are questionable. This is because firstly, there might be shibire/ts-insensitive ways of dopamine release, and secondly because shibire/ts may affect co-transmitter release from DANs.

      Shibirets1 gene encodes a thermosensitive mutant of dynamin, expressing this mutant version in target neurons will block neurotransmitter release at the ambient temperature higher than 30C, as it represses vesicle recycling1. It is a widely used tool to examine whether the target neuron is involved in a specific physiological function. We cannot rule out that there might be Shibirets1 insensitive ways of dopamine release exist. However, blocking dopamine release from DAN-c1 with Shibirets1 has already led to learning responses changing (Figure 2h). This result indicated that the dopamine release from DAN-c1 during training is important for larval aversive learning, which has already supported our hypothesis.

      For the second question about the potential co-transmitter release, we think it is a great question. Recently Yamazaki et al. reported co-neurotransmitters in dopaminergic system modulate adult olfactory memories in Drosophila_11, and we cannot rule out the roles of co-released neurotransmitters/neuropeptides in larval learning. Ideally, if we could observe the real time changes of dopamine release from DAN-c1 in wild type and TH knockdown larvae would answer this question. However, live imaging of dopamine release from one dopaminergic neuron is not practical for us at this time. On the other hand, the roles of dopamine receptors in olfactory associative learning support that dopamine is important for _Drosophila learning. D1 receptor, dDA1, has been proven to be involved in both adult and larval appetitive and aversive learning12,13. In our work, D2R in the mushroom body showed important roles in both larval appetitive and aversive learning (Figure 6a). All this evidence reveals the importance of dopamine in Drosophila olfactory associative learning. In addition, there is too much unknow information about the co-release neurotransmitter/neuropeptides, as well as their potential complex ‘interaction/crosstalk’ relations. We believe that investigation of co-released neurotransmitter/neuropeptides is beyond the scope of this study at this time.

      Weakness #5: It is not clear whether the genetic controls when using the Gal4/ UAS system are the homozygous, parental strains (XY-Gal4/ XY-Gal4 and UAS-effector/ UAS-effector), or as is standard in the field the heterozygous driver (XY-Gal4/ wildtype) and effector controls (UAS-effector/ wildtype) (in some cases effector controls appear to be missing, e.g. Figure 4d, Figure S4e, Figure S5c).

      Almost all controls we used were homozygous parental strains. They did not show abnormal behaviors in either learnings or naïve sensory or locomotion assays. The only exception is the control for DAN-c1, the larvae from homozygous R76F02AD; R55C10DBD strain showed much reduced locomotion speed (Figure S6). To prevent this reduced locomotion speed affecting the learning ability, we used heterozygous R76F02AD; R55C10DBD/wildtype as control, which showed normal learning, naïve sensory and locomotion abilities (Figure 4e to i).

      For Figure 4d, it is a column graph to quantify the efficiency of D2R knockdown with miR. Because we need to induce and quantify the knockdown effect in specific DANs (DM1), only TH-GAL4 can be used as the control group, rather than UAS-D2R-miR.

      For the missing control groups in Figure S4e and S5c, we have shown them in other Figures (Figure 4e). We will re-organize the figures to make them easier to understand.

      Weakness #6: As recently suggested by Yamada et al 2024, bioRxiv, high cAMP can lead to synaptic depression (sic). That would call into question the interpretation of low-Dop2R leading to high-cAMP, leading to high-dopamine release, and thus the authors interpretation of the matching effects of low-Dop2R and driving DANs.

      We will read through this paper and try to add it as possible explanations for the learning mechanisms. As we introduced in the Discussion section, the learning mechanism is quite complex, mixing both non-linear neuronal circuits and multiple signaling pathways, in responding to complex environmental learning contexts. We will try to develop a better hypothesis with the best compatibility to accommodate our results with published data.

      Reference

      (1) Honjo, K. & Furukubo-Tokunaga, K. Induction of cAMP response element-binding protein-dependent medium-term memory by appetitive gustatory reinforcement in Drosophila larvae. J Neurosci 25, 7905-7913 (2005). https://doi.org/10.1523/JNEUROSCI.2135-05.2005

      (2) Honjo, K. & Furukubo-Tokunaga, K. Distinctive neuronal networks and biochemical pathways for appetitive and aversive memory in Drosophila larvae. J Neurosci 29, 852-862 (2009). https://doi.org/10.1523/JNEUROSCI.1315-08.2009

      (3) Neve, K. A., Seamans, J. K. & Trantham-Davidson, H. Dopamine receptor signaling. J Recept Signal Transduct Res 24, 165-205 (2004). https://doi.org/10.1081/rrs-200029981

      (4) Saumweber, T. et al. Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila. Nat Commun 9, 1104 (2018). https://doi.org/10.1038/s41467-018-03130-1

      (5) Aso, Y. & Rubin, G. M. Dopaminergic neurons write and update memories with cell-type-specific rules. Elife 5 (2016). https://doi.org/10.7554/eLife.16135

      (6) Xie, T. et al. A Genetic Toolkit for Dissecting Dopamine Circuit Function in Drosophila. Cell Rep 23, 652-665 (2018). https://doi.org/10.1016/j.celrep.2018.03.068

      (7) Hartenstein, V., Cruz, L., Lovick, J. K. & Guo, M. Developmental analysis of the dopamine-containing neurons of the Drosophila brain. J Comp Neurol 525, 363-379 (2017). https://doi.org/10.1002/cne.24069

      (8) Aso, Y. et al. The neuronal architecture of the mushroom body provides a logic for associative learning. Elife 3, e04577 (2014). https://doi.org/10.7554/eLife.04577

      (9) Eschbach, C. et al. Recurrent architecture for adaptive regulation of learning in the insect brain. Nat Neurosci 23, 544-555 (2020). https://doi.org/10.1038/s41593-020-0607-9

      (10) Draper, I., Kurshan, P. T., McBride, E., Jackson, F. R. & Kopin, A. S. Locomotor activity is regulated by D2-like receptors in Drosophila: an anatomic and functional analysis. Dev Neurobiol 67, 378-393 (2007). https://doi.org/10.1002/dneu.20355

      (11) Yamazaki, D., Maeyama, Y. & Tabata, T. Combinatory Actions of Co-transmitters in Dopaminergic Systems Modulate Drosophila Olfactory Memories. J Neurosci 43, 8294-8305 (2023). https://doi.org/10.1523/jneurosci.2152-22.2023

      (12) Selcho, M., Pauls, D., Han, K. A., Stocker, R. F. & Thum, A. S. The role of dopamine in Drosophila larval classical olfactory conditioning. PLoS One 4, e5897 (2009). https://doi.org/10.1371/journal.pone.0005897

      (13) Kim, Y. C., Lee, H. G. & Han, K. A. D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila. J Neurosci 27, 7640-7647 (2007). https://doi.org/10.1523/JNEUROSCI.1167-07.2007

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Thank you very much for your editorial handling of our manuscript entitled 'A conserved fungal Knr4/Smi1 protein is vital for maintaining cell wall integrity and host plant pathogenesis'. We have taken on board the reviewers' comments and thank them for their diligence and time in improving our manuscript.

      Please find our responses to each of the comments below.

      Reviewer(s)' comments

      Reviewer #1


      Major comments:


      __1.1. As a more critical comment, I find the presentation of the figures somewhat confusing, especially with the mixing of main figures, supplements to the main figures, and actual supplemental data. On top of that, the figures are not called up in the right order (e.g. Figure 4 follows 2D, while 3 comes after 4; Figure 6 comes before 5...), and some are never called up (I think) (e.g. Figure 1B, Figure 2B). __


      __Response: __The figure order has been revised according to the reviewer's suggestion, while still following eLife's formatting guidelines for naming supplementals. Thank you.

      1.2. I agree that there should be more CWI-related genes in the wheat module linked to the FgKnr4 fungal module, or, vice-versa, CW-manipulating genes in the fungal module. It would at least be good if the authors could comment further on if they find such genes, and if not, how this fits their model.


      Response: Thank you for your insightful suggestion regarding the inclusion of more CWI-related genes in the wheat module linked to the FgKnr4 fungal module F16, or vice versa. We did observe a co-regulated response between the wheat module W05 which is correlated to the FgKnr4 module F16. Namely, we observed an enrichment of oxidative stress genes including respiratory burst oxidases and two catalases (lines 304 - 313) in the correlated wheat module (W05). Early expression of these oxidative stress inducing genes likely induces the CWI pathway in the fungus, which is regulated by FgKnr4. Knr4 functions as both a regulatory protein in the CWI pathway and as a scaffolding protein across multiple pathways in S. cerevisiae (Martin-Yken et al., 2016, https://onlinelibrary.wiley.com/doi/10.1111/cmi.12618 ). Scaffolding protein-encoding genes are typically expressed earlier than the genes they regulate to enable pre-assembly with their interacting partners, ensuring that signaling pathways are ready to activate when needed. In this context, the CWI integrity MAPKs Bck1 and Mkk1 are part of module F05, which includes two chitin synthases and a glucan synthase. This module is highly expressed during the late symptomless phase. The MAPK Mgv1, found in module F13, is expressed consistently throughout the infection process, which aligns with the expectation that MAPKs are mainly post-transcriptionally regulated. Thank you for bringing our attention to this, this is now included in the discussion (lines 427 - 443) along with eigengene expression plots of all modules added to the supplementary (Figure 3 - figure supplement 1).

      To explore potential shared functions of FgKnr4 with other genes in its module, we re-analyzed the high module membership genes within module F16, which includes FgKnr4, using Knetminer (Hassani-Pak et al., 2021; https://onlinelibrary.wiley.com/doi/10.1111/pbi.13583 ). This analysis revealed that 8 out of 15 of these genes are associated with cell division and ATP binding. Four of the candidate genes are also part of a predicted protein-protein interaction subnetwork of genes within module F16, which relate to cell cycle and ATP binding. In S. cerevisiae, the absence of Knr4 results in cell division dysfunction (Martin-Yken et al., 2016, https://onlinelibrary.wiley.com/doi/10.1111/cmi.12618 ). Accordingly, we tested sensitivity of ΔFgknr4 to microtubule inhibitor benomyl (a compound commonly used to identify mutants with cell division defects; Hoyt et al., 1991 https://www.cell.com/cell/pdf/0092-8674(81)90014-3.pdf). We found that the ΔFgknr4 mutant was more susceptible to benomyl, both when grown on solid agar and in liquid culture. This data has now been added Figure 7, and referred to in lines 338-348.

      __Specific issues: __


      1.3. In the case of figure 5, I generally find it hard to follow. In the text (line 262/263), the authors state that 5C shows "eye-shaped lesions" caused by ΔFgknr4 and ΔFgtri5, but I can't see neither (5C appears to be a ΔFgknr4 complementation experiment). The figure legend also states nothing in this regard.

      __Response: __Thank you for your suggestion. We have amended the manuscript to include an additional panel that shows the dissected spikelet without its outer glumes, making the eye shaped diseased regions more visible in Figure 5.

      __1.4. Figure 5D supposedly shows 'visibly reduced fungal burden' in ΔFgknr4-infected plants, but I can't really see the fungal burden in this picture, but the infected section looks a lot thinner and more damaged than the control stem, so in a way more diseased. __


      Response: __Thank you for your insight. We have revised our conclusions based on this image to state that while ΔFgknr4 can colonise host tissue, it does so less effectively compared to the wild-type strain as we are unable to quantitatively evaluate fungal burden using image-colour thresholding due to the overlapping colours of the fungal cells and wheat tissues. Decreased host colonisation is evidenced by (i) reduced fungal hyphae proliferation, particularly in the thicker adaxial cell layer, (ii) collapsed air spaces in wheat cells, and (iii) increased polymer deposition at the wheat cell walls, indicating an enhanced defence response. __Figure 5 has been amended to include these observations in the corresponding figure legend and the resin images now include insets with detailed annotation.

      __1.5. The authors then go on to state (lines 272-273) that they analyzed the amounts of DON mycotoxin in infected tissues, but don't seem to show any data for this experiment. __

      Response: __We have amended this to now include the data in __Figure 5 - figure supplement 2B, thank you.

      Reviewer #2


      __Major issues: __


      2.1 If Knf4 is involved in the CWI pathway, what other genes involved in the CWI pathway are in this fungal module? one of the reasons for developing modules or sub-networks is to assign common function and identify new genes contributing to the function. since FgKnr4 is noted to play a role in the CWI pathways, then genes in that module should have similar functions. If WGCN does not do that, what is the purpose of this exercise?


      Response: __Thank you for raising this point regarding the role of FgKnr4 in the CWI pathway and the expectations for genes of shared function within the FgKnr4 module F16. We did observe that the module containing FgKnr4 (F16) was also correlated to a wheat module (W05) which was significantly enriched for oxidative stress genes. This pathogen-host correlated pattern led us to study module F16, which otherwise lacks significant gene ontology term enrichment, unique gene set enrichments, and contains few characterised genes. This is now highlighted in __lines 233-246. This underscores the strength of the WGCNA. By using high-resolution RNA-seq data to map modules to specific infection stages, we identified an important gene that would have otherwise been overlooked. This approach contrasts with other network analyses that often rely on the guilt-by-association principle to identify novel virulence-related genes within modules containing known virulence factors, potentially overlooking significant pathways outside the scope of prior studies. Therefore, our analysis has already benefited from several advantages of WGCNA, including the identification of key genes with high module membership that may be critical for biological processes, as well as generating a high-resolution, stage-specific co-expression map of the F. graminearum infection process in wheat. This point is now emphasised in lines 233-252. As discussed in response to reviewer 1, Knr4 functions as both a regulatory protein in the CWI pathway and as a scaffolding protein across multiple pathways in S. cerevisiae (Martin-Yken et al., 2016, https://onlinelibrary.wiley.com/doi/10.1111/cmi.12618 ) which would explain its clustering separate from the CWI pathway genes. The high module membership genes within module F16 containing FgKnr4 were re-analysed using Knetminer (Hassani-Pak et al., 2021; https://onlinelibrary.wiley.com/doi/10.1111/pbi.13583 ), which found that 8/15 of these genes were related to cell division and ATP binding. Four of the candidate genes are also part of a predicted protein-protein interaction subnetwork of genes within module F16, which relate to cell cycle and ATP binding. In S. cerevisiae, the absence Knr4 leads to dysfunction in cell division. Accordingly, we tested sensitivity of ΔFgknr4 to the microtubule inhibitor benomyl (a compound commonly used to identify mutants with cell division defects; Hoyt et al., 1991 https://www.cell.com/cell/pdf/0092-8674(81)90014-3.pdf). We found that the ΔFgknr4 mutant was more susceptible to benomyl, both when grown on solid agar and in liquid culture. This data has now been added as Figure 7 and referred to in lines 338-348.


      2.2. Due to development defects in the Fgknr1 mutant, I would not equate to as virulence factor or an effector gene.


      __Response: __We are in complete agreement with the reviewer and are not suggesting that FgKnr4 is an effector or virulence factor, we have been careful with our wording to indicate that FgKnr4 is simply necessary for full virulence and its disruption results in reduced virulence and have outlined how we believe FgKnr4 participates in a fungal signaling pathway required for infection of wheat.


      2.3. What new information is provided with WGCN modules compared with other GCN network in Fusarium (examples of GCN in Fusarium is below) ____https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069591/ https://doi.org/10.1186/s12864-020-6596-y____ DOI: 10.1371/journal.pone.0013021. The GCN networks from Fusarium have already identified modules necessary/involved in pathogenesis.

      Response: __The 2016 New Phytologist gene regulatory network (GRN) by Guo et al. is large and comprehensive. However, only three of the eleven datasets are in planta, with just one dataset focusing on F. graminearum infection on wheat spikes. The other two in planta datasets involve barley infection and Fusarium crown rot. By combining numerous in planta and in vitro datasets, the previous GRNs lack the fine resolution needed to identify genetic relationships under specific conditions, such as the various stages of symptomatic and symptomless F. graminearum infection of mature flowering wheat plants. This limitation is highlighted in the 2016 paper itself. This network is expanded in the Guo et al., 2020 BMC genomics paper where it includes one additional in planta and nine in vitro datasets. However, the in planta dataset involves juvenile wheat coleoptile infection, which serves as an artificial model for wheat infection but is not on mature flowering wheat plants reminiscent of Fusarium Head Blight of cereals in the field. This model differs significantly in the mode of action of F. graminearum, notably DON mycotoxin is not essential for virulence in this context (Armer et al. 2024, https://pubmed.ncbi.nlm.nih.gov/38877764/ ). The Guo et al., 2020 paper still faces the same issues in terms of resolution and the inability to draw conclusions specific to the different stages of F. graminearum infection. Additionally, these GRNs use Affymetrix data, which miss over 400 genes (~ 3 % of the genome) from newer gene models. In contrast, our study addresses these limitations by analysing a meticulously sampled, stage- and tissue-specific in planta RNA-seq dataset using the latest reference annotation. Our approach provides higher resolution and insights into host transcriptomic responses during the infection process. The importance of our study in the context of these GRNs is now addressed in the introduction (__lines 85-92).


      2.4. Ideally, the WGCN should have been used identify plant targets of Fusarium pathogenicity genes. This would have provided credibility and usefulness of the WGCN. Many bioinformatic tools are available to identify virulence factors and the utility of WGCN in this regard is not viable. However, if the authors had overlapped the known virulence factors in a fungal module to a particular wheat module, the impact of the WGCN would be great. The module W12 has genes from numerous traits represented and WGCN could have been used to show novel links between Fg and wheat. For example, does tri5 mutant affect genes in other traits?

      __Response: __Thank you for your suggestions. In this study we have shown the association between the main fungal virulence factor of F. graminearum, DON mycotoxin, with wheat detoxification responses. Through this we have identified a set of tri5 responsive genes and validated this correlation in two genes belonging to the phenylalanine pathway and one transmembrane detoxification gene. Although we could validate more genes in this tri5 responsive wheat module, our paper aimed to investigate previously unstudied aspects of the F. graminearum infection process and how the fungus responded to changing conditions within the host environment. We accomplished this by characterising a gene within a fungal module that had limited annotation enrichment and few characterised genes. Tri5 on the other hand is the most extensively studied gene in F. graminearum and while the network we generated may offer new insights into tri5 responsive genes, this is beyond the scope of our current study. In addition to the tri5 co-regulated response, we have also demonstrated the coordinated response between the fungal module F16, which contains FgKnr4 that is necessary for tolerance to oxidative stress, and the wheat module W05, which is enriched for oxidative stress genes.


      While our co-expression network approach can be used to explore and validate other early downstream signaling and defense components in wheat cells, several challenges must be considered: (a) the poor quality of wheat gene calls, (b) genetic redundancy due to both homoeologous genes and large gene families, and (c) the presence of DON, which can inhibit translation and prevent many transcriptional changes from being realised within the host responses. Additionally, most plant host receptors are not transcriptionally upregulated in response to pathogen infection (most R gene studies for the NBS-LRR and exLRR-kinase classes), making their discovery through a transcriptomics approach unlikely. These points will be included in our discussion (lines 408-413), thank you.

      Specific issues

      • *

      2.5. Since tri5 mutant was used a proof of concept to link wheat/Fg modules, it would have been useful to show that TRI14, which is not involved DON biosynthesis, but involved in virulence ( https://doi.org/10.3390/applmicrobiol4020058____) impact the wheat module genes.


      Response: __Our goal was to show that wheat genes respond to the whole TRI cluster, not just individual TRI genes. Therefore, the tri5 mutant serves as a solid proof-of-concept, because TRI5 is essential for DON biosynthesis, the primary function of the TRI gene cluster, thereby representing the function of the cluster as a whole. This is now clarified in __lines 217-219. Additionally, the uncertainties surrounding other TRI mutants would complicate the question we were addressing-namely, whether a wheat module enriched in detoxification genes is responding to DON mycotoxin, as implied by shared co-expression patterns with the TRI cluster. For instance, the referenced TRI14 paper indicates that DON is produced in the same amount in vitro in a single media. Although the difference is not significant, the average DON produced is lower for the two Δtri14 transformants tested. Therefore, we cannot definitively rule out that TRI14 is involved in DON biosynthesis and extrapolate this to DON production in planta. Despite this, the suggestion is interesting, and would make a nice experiment but we believe it does not contribute to the overall aim of this study.

      2.6. Moreover, prior RNAseq studies with tri5 mutant strain on wheat would have revealed the expression of PAL and other phenylpropanoid pathway genes?

      __Response: __We agree that this would be an interesting comparison to make but unfortunately no dataset comparing in planta expression of the tri5 mutant within wheat spikes exists.

      2.7. Table S1 lists 15 candidate genes of the F16 module; however, supplementary File 1 indicates 74 genes in the same module. The basis of exclusion should be explained. The author has indicated genes with high MM was used as representative of the module. The 59 remaining genes of this module did not meet this criteria? Give examples.


      Response: __The 15 genes with the highest module membership were selected as initial candidates for further shortlisting from the 74 genes within module F16. In WGCNA, genes with high module membership (MM) (i.e. intramodular connectivity) are predicted to be central to the biological functions of the module (Langfelder and Horvath, 2008; https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-559 ) and continues to be a metric to identify biologically significant genes within WGCN analyses (https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-024-05366-0 Tominello-Ramirez et al., 2024; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9151341/ ;Zheng et al., 2022; https://www.nature.com/articles/s41598-020-80945-3 Panahi and Hejazi et al 2021). Following methods by Mateus et al. (2019) (https://academic.oup.com/ismej/article/13/5/1226/7475138 ) key genes were defined as those exhibiting elevated MM within the module, which were also strongly correlated (R > |0.70|) with modules of the partner organism (wheat). We have clarified this point in the manuscript. Thank you for the suggestion. (__Lines 253-263).

      2.____8. A list from every module that pass this criteria will be useful resource for functional characterization studies.


      __Response: __A supplementary spreadsheet has been generated which includes full lists of the top 15 genes with the highest module membership within the five fungal modules correlated to wheat modules and a summary of shared attributes among them. Thank you for this suggestion.

      2.9. Figure 3 indicates TRI genes in the module F12; your PHI base in Supp File S2 lists only TRI14. Why other TRI genes such as TRI5 not present in this File?


      Response: For clarity, the TRI genes in module F12 are TRI3, TRI4, TRI11, TRI12, and TRI14 which was stated in Table 1. TRI5 clusters with its neighboring regulatory gene TRI6 in module F11, which exhibits a similar but reduced expression pattern compared to module F12. To improve clarity on this the TRI genes in module F12 are also listed in-text in line 168 and added to Figure 4. The enrichment and correlated relationship of W12 to a cluster's expression still imply a correlated response of the wheat gene to the TRI cluster's biosynthetic product (DON), which is absent in the Δtri5 mutant.

      TRI14 and TRI12 are listed in PHI-base. TRI12 was mistakenly excluded due to an unmapped Uniprot ID, which were added separately in the spreadsheet. We will recheck all unmapped ID lists to ensure all PHI-base entries are included in the final output. Thank you for pointing out this error.


      2.10. What is purpose of listing the same gene multiple times? Example, osp24 (a single gene in Fg) is listed 13 times in F01 module.


      __Response: __This is a consequence of each entry having a separate PHI ID, which represents different interactions including inoculations on different cultivar. Cultivar and various experimental details were omitted from the spreadsheet to reduce information density, however the multiple PHI base ID's will be kept separate to make the data more user friendly when working with the PHI-base database. An explanation for this is now provided in the file's explanatory worksheet, thank you.

      Reviewer #3:


      3.1. Why only use of high confidence transcripts maize to map the reads and not the full genome like Fusarium graminearum? I have never analyzed plant transcriptome.


      __Response: __ In the wheat genome, only high-confidence gene calls are used by the global community (Choulet et al., 2023; https://link.springer.com/chapter/10.1007/978-3-031-38294-9_4 ) until a suitable and stable wheat pan-genome becomes available.

      3.2. The regular output of DESeq are TPMs, how did the authors obtain the FPKM used in the analysis?


      Response: FPKM was calculated using the GenomicFeatures package and included on GitHub to enhance accessibility for other users. However, the input for WGCNA and this study as a whole was normalised counts rather than FPKM. The FPKM analysis was done to improve interoperability of the data for future users and made available on Github. To complement this, the information regarding FPKM calculation is now included in the methods section of the revised manuscript (line 491).

      3.3. Do the authors have a Southern blot to prove the location of the insertion and number of insertions in Zymoseptoria tritici mutant and complemented strains?


      __Response: __No, but the phenotype is attributed to the presence or absence of ZtKnr4, as the mutant was successfully complemented in multiple phenotypic aspects. This satisfies Koch's postulates which is the gold standard for reverse genetics experimentation (Falkow 1988; https://www.jstor.org/stable/4454582 ).

      __3.4. Boxplots and bar graphs should have the same format. In Figures 5 B and F and supplementary figure 6.3 the authors showed the distribution of samples but it is lacking in figure 3 B and all bar graphs. __


      __Response: __Graphs have been modified to display the distribution of all samples, thank you.

      3.5. Line 247 FGRAMPH1_0T23707 should be FGRAMPH1_01T23707


      __Response: __Thank you this has now been amended.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This paper reports a number of somewhat disparate findings on a set of colorectal tumour and infiltrating T-cells. The main finding is a combined machine-learning tool which combines two previous state-of-the-art tools, MHC prediction, and T-cell binding prediction to predict immunogenicity. This is then applied to a small set of neoantigens and there is a small-scale validation of the prediciton at the end.

      Strengths:

      The prediction of immunogenic neoepitopes is an important and unresolved question.

      Weaknesses:

      The paper contains a lot of extraneous material not relevant to the main claim. Conversely, it lacks important detail on the major claim.

      (1) The analysis of T cell repertoire in Figure 2 seems irrelevant to the rest of the paper. As far as I could ascertain, this data is not used further.

      We appreciate the reviewer for their valuable feedback. We concur with the reviewer's observation that the analysis of the TCR repertoire in Figure 2 should be moved to the supplementary section. We have moved Figures 2B to 2F to Supplementary Figure 2.

      However, the analysis of TCR profiles is still presented in Figure 2, as it plays a pivotal role in the process of neoantigen selection. This is because the TCR profiles of eight (out of 28) patients were used for neoantigen prediction. We have added the following sentences to the results section to explain the importance of TCR profiling: “Furthermore, characterizing T cell receptors (TCRs) can complement efforts to predict immunogenicity.” (Results, Lines 311-312, Page 11)

      (2) The key claim of the paper rests on the performance of the ML algorithm combining NETMHC and pmtNET. In turn, this depends on the selection of peptides for training. I am unclear about how the negative peptides were selected. Are they peptides from the same databases as immunogenic petpides but randomised for MHC? It seems as though there will be a lot of overlap between the peptides used for testing the combined algorithm, and the peptides used for training MHCNet and pmtMHC. If this is so, and depending on the choice of negative peptides, it is surely expected that the tools perform better on immunogenic than on non-immunogenic peptides in Figure 3. I don't fully understand panel G, but there seems very little difference between the TCR ranking and the combined. Why does including the TCR ranking have such a deleterious effect on sensitivity?

      We thank the reviewer for their valuable feedback. We believe the reviewer implies 'MHCNet' as NetMHCpan and 'pmtMHC' as pMTnet tools. First, the negative peptides, which have been excluded from PRIME (1), were not randomized with MHC (HLA-I) but were randomized with TCR only. Secondly, the positive peptides selected for our combined algorithms are chosen from many databases such as 10X Genomics, McPAS, VDJdb, IEDB, and TBAdb, while MHCNet uses peptides from the IEDB database and pMTNet uses a totally different dataset from ours for training. Therefore, there is not much overlap between our training data and the training datasets for MHCNet and pMTNet. Thus, the better performance of our tool is not due to overlapping training datasets with these tools or the selection of negative peptides.

      To enhance the clarity of the dataset construction, we have added Supplementary Figure 1, which demonstrates the workflow of peptide collection and the random splitting of data to generate the discovery and validation datasets. Additionally, we have revised the following sentence: "To objectively train and evaluate the model, we separated the dataset mentioned above into two subsets: a discovery dataset (70%) and a validation dataset (30%). These subsets are mutually exclusive and do not overlap.” (Methods, lines 221-223, page 8).

      Initially, the "combine" label in Figure 3G was confusing and potentially misleading when compared to our subsequent approach using a combined machine learning model. In Figure 3G, the "combine" approach simply aggregates the pHLA and pHLA-TCR criteria, whereas our combined machine learning model employs a more sophisticated algorithm to integrate these criteria effectively. The combined analysis in Figure 3G utilizes a basic "AND" algorithm between pHLA and pHLA-TCR criteria, aiming for high sensitivity in HLA binding and high specificity. However, this approach demonstrated lower efficacy in practice, underscoring the necessity for a more refined integration method through machine learning. This was the key point we intended to convey with Figure 3G. To address this issue, we have revised Figure 3G to replace "combined" with "HLA percentile & TCR ranking" to clarify its purpose and minimize confusion.

      (3) The key validation of the model is Figure 5. In 4 patients, the authors report that 6 out 21 neo-antigen peptides give interferon responses > 2 fold above background. Using NETMHC alone (I presume the tool was used to rank peptides according to binding to the respective HLAs in each individual, but this is not clear), identified 2; using the combined tool identified 4. I don't think this is significant by any measure. I don't understand the score shown in panel E but I don't think it alters the underlying statistic.

      Acknowledging the limitations of our study's sample size, we proceeded to further validate our findings with four additional patients to acquire more data. The final results revealed that our combined model identified seven peptides eliciting interferon responses greater than a two-fold increase, compared to only three peptides identified by NetMHCpan (Figure 5)

      In conclusion, the paper demonstrates that combining MHCNET and pmtMHC results in a modest increase in the ability to discriminate 'immunogenic' from 'non-immunogenic' peptide; however, the strength of this claim is difficult to evaluate without more knowledge about the negative peptides. The experimental validation of this approach in the context of CRC is not convincing.

      Reviewer #2 (Public Review):

      Summary:

      This paper introduces a novel approach for improving personalized cancer immunotherapy by integrating TCR profiling with traditional pHLA binding predictions, addressing the need for more precise neoantigen CRC patients. By analyzing TCR repertoires from tumor-infiltrating lymphocytes and applying machine learning algorithms, the authors developed a predictive model that outperforms conventional methods in specificity and sensitivity. The validation of the model through ELISpot assays confirmed its potential in identifying more effective neoantigens, highlighting the significance of combining TCR and pHLA data for advancing personalized immunotherapy strategies.

      Strengths:

      (1) Comprehensive Patient Data Collection: The study meticulously collected and analyzed clinical data from 27 CRC patients, ensuring a robust foundation for research findings. The detailed documentation of patient demographics, cancer stages, and pathology information enhances the study's credibility and potential applicability to broader patient populations.

      (2) The use of machine learning classifiers (RF, LR, XGB) and the combination of pHLA and pHLA-TCR binding predictions significantly enhance the model's accuracy in identifying immunogenic neoantigens, as evidenced by the high AUC values and improved sensitivity, NPV, and PPV.

      (3) The use of experimental validation through ELISpot assays adds a practical dimension to the study, confirming the computational predictions with actual immune responses. The calculation of ranking coverage scores and the comparative analysis between the combined model and the conventional NetMHCpan method demonstrate the superior performance of the combined approach in accurately ranking immunogenic neoantigens.

      (4) The use of experimental validation through ELISpot assays adds a practical dimension to the study, confirming the computational predictions with actual immune responses.

      Weaknesses:

      (1) While multiple advanced tools and algorithms are used, the study could benefit from a more detailed explanation of the rationale behind algorithm choice and parameter settings, ensuring reproducibility and transparency.

      We thank the reviewer for their comment. We have revised the explanation regarding the rationale behind algorithm choice and parameter settings as follows: “We examined three machine learning algorithms - Logistic Regression (LR), Random Forest (RF), and Extreme Gradient Boosting (XGB) - for each feature type (pHLA binding, pHLA-TCR binding), as well as for combined features. Feature selection was tested using a k-fold cross-validation approach on the discovery dataset with 'k' set to 10-fold. This process splits the discovery dataset into 10 equal-sized folds, iteratively using 9 folds for training and 1 fold for validation. Model performance was evaluated using the ‘roc_auc’ (Receiver Operating Characteristic Area Under the Curve) metric, which measures the model's ability to distinguish between positive and negative peptides. The average of these scores provides a robust estimate of the model's performance and generalizability. The model with the highest ‘roc_auc’ average score, XGB, was chosen for all features.” (Method, lines 225-234, page 8).

      (2) While pHLA-TCR binding displayed higher specificity, its lower sensitivity compared to pHLA binding suggests a trade-off between the two measures. Optimizing the balance between sensitivity and specificity could be crucial for the practical application of these predictions in clinical settings.

      We appreciate the reviewer's suggestion. Due to the limited availability of patient blood samples and time constraints for validation, we have chosen to prioritize high specificity and positive predictive value to enhance the selection of neoantigens.

      (3) The experimental validation was performed on a limited number of patients (four), which might affect the generalizability of the findings. Increasing the number of patients for validation could provide a more comprehensive assessment of the model's performance.

      This has been addressed earlier. Here, we restate it as follows: Acknowledging the limitations of our study's sample size, we proceeded to further validate our findings with four additional patients to acquire more data. The final results revealed that our combined model identified seven peptides eliciting interferon responses greater than a two-fold increase, compared to only three peptides identified by NetMHCpan (Figure 5).

      Reviewer #3 (Public Review):

      Summary:

      This study presents a new approach of combining two measurements (pHLA binding and pHLA-TCR binding) in order to refine predictions of which patient mutations are likely presented to and recognized by the immune system. Improving such predictions would play an important role in making personalized anti-cancer vaccinations more effective.

      Strengths:

      The study combines data from pre-existing tools pVACseq and pMTNet and applies them to a CRC patient population, which the authors show may improve the chance of identifying immunogenic, cancer-derived neoepitopes. Making the datasets collected publicly available would expand beyond the current datasets that typically describe caucasian patients.

      Weaknesses:

      It is unclear whether the pNetMHCpan and pMTNet tools used by the authors are entirely independent, as they appear to have been trained on overlapping datasets, which may explain their similar scores. The pHLA-TCR score seems to be driving the effects, but this not discussed in detail.

      The HLA percentile from NetMHCpan and the TCR ranking from pMTNet are independent. NetMHCpan predicts the interaction between peptides and MHC class I, while pMTNet predicts the TCR binding specificity of class I MHCs and peptides.Additionally, we partitioned the dataset mentioned above into two subsets: a discovery dataset (70%) and a validation dataset (30%), ensuring no overlap between the training and testing datasets.

      To enhance the clarity of the dataset construction, we have added Supplementary Figure 1, which demonstrates the workflow of peptide collection and the random splitting of data to generate the discovery and validation datasets. Additionally, we have revised the following sentence: "To objectively train and evaluate the model, we separated the dataset mentioned above into two subsets: a discovery dataset (70%) and a validation dataset (30%). These subsets are mutually exclusive and do not overlap.” (Methods, lines 221-223, page 8). We also included the dataset construction workflow in Supplementary Figure 1.

      Due to sample constraints, the authors were only able to do a limited amount of experimental validation to support their model; this raises questions as to how generalizable the presented results are. It would be desirable to use statistical thresholds to justify cutoffs in ELISPOT data.

      We chose a cutoff of 2 for ELISPOT, following the recommendation of the study by Moodie et al. (2). The study provides standardized cutoffs for defining positive responses in ELISPOT assays. It presents revised criteria based on a comprehensive analysis of data from multiple studies, aiming to improve the precision and consistency of immune response measurements across various applications.

      Some of the TCR repertoire metrics presented in Figure 2 are incorrectly described as independent variables and do not meaningfully contribute to the paper. The TCR repertoires may have benefitted from deeper sequencing coverage, as many TCRs appear to be supported only by a single read.

      We appreciate the reviewer’s feedback. We have moved Figures 2B through 2F to Supplementary Figure 2. We agree with the reviewer that deeper sequencing coverage could potentially benefit the repertoires. However, based on our current sequencing depth, we have observed that many of our samples (14 out of 28) have reached sufficient saturation, as indicated by Figure 2C. The TCR clones selected in our studies are unique molecular identifier (UMI)-collapsed reads, each representing at least three raw reads sharing the same UMI. This approach ensures that the data is robust despite the variability. It is important to note that Tumor-Infiltrating Lymphocytes (TILs) differ across samples, resulting in non-uniform sequencing coverage among them.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      (1) Please open source the raw and processed data, code, and software output (NetMHCpan, pMTnet), which are important to verify the results.

      NetMHCpan and pMTNet are publicly available software tools (3, 4). In our GitHub repository, we have included links to the GitHub repositories for NetMHCpan and pMTNet (https://github.com/QuynhPham1220/Combined-model).

      (2) Comparison with more state-of-the-art neoantigen prediction models could provide a more comprehensive view of the combined model's performance relative to the current field.

      To further evaluate our model, we gathered additional public data and assessed its effectiveness in comparison to other models. We utilized immunogenic peptides from databases such as NEPdb (5), NeoPeptide (6), dbPepneo (7), Tantigen (8), and TSNAdb (9), ensuring there was no overlap with the datasets used for training and validation. For non-immunogenic peptides, we used data from 10X Genomics Chromium Single Cell Immune Profiling (10-13).The findings indicate that the combined model from pMTNet and NetMHCpan outperforms NetTCR tool (14). To address the reviewer's inquiry, we have incorporated these results in Supplementary Table 6.

      (3) While the combined model shows a positive overall rank coverage score, indicating improved ranking accuracy, the scores are relatively low. Further refinement of the model or the inclusion of additional predictive features might enhance the ranking accuracy.

      We appreciate the reviewer’s suggestion. The RankCoverageScore provides an objective evaluation of the rank results derived from the final peptide list generated by the two tools. The combined model achieved a higher RankCoverageScore than pMTNet, indicating its superior ability to identify immunogenic peptides compared to existing in silico tools. In order to provide a more comprehensive assessment, we included an additional four validated samples to recalculate the rank coverage score. The results demonstrate a notable difference between NetMHCpan and the Combined model (-0.37 and 0.04, respectively). We have incorporated these findings into Supplementary Figure 6 to address the reviewer's question. Additionally, we have modified Figure 5E to present a simplified demonstration of the superior performance of the combined model compared to NetMHCpan.

      (4) Collect more public data and fine-tune the model. Then you will get a SOTA model for neoantigen selection. I strongly recommend you write Python scripts and open source.

      We thank the reviewer for their feedback. We have made the raw and processed data, as well as the model, available on GitHub. Additionally, we have gathered more public data and conducted evaluations to assess its efficiency compared to other methods. You can find the repository here: https://github.com/QuynhPham1220/Combined-model.

      Reviewer #3 (Recommendations For The Authors):

      The Methods section seems good, though HLA calling is more accurate using arcasHLA than OptiType. This would be difficult to correct as OptiType is integrated into pVACtools.

      We chose Optitype for its exceptional accuracy, surpassing 99%, in identifying HLA-I alleles from RNA-Seq data. This decision was informed by a recent extensive benchmarking study that evaluated its performance against "gold-standard" HLA genotyping data, as described in the study by Li et al.(15). Furthermore, we have tested two tools using the same RNA-Seq data from FFPE samples. The allele calling accuracy of Optitype was found to be superior to that of Acras-HLA. To address the reviewer's question, we have included these results in Supplementary Table 2, along with the reference to this decision (Method, line 200, page 07).

      I am not sufficiently expert in machine learning to assess this part of the methods.<br /> TCR beta repertoire analysis of biopsy is highly variable; though my expertise lies largely in sequencing using the 10X genomics platform, typically one sees multiple RNAs per cell. Seeing the majority of TCRs supported by only a single read suggests either problems with RNA capture (particularly in this case where the recovered RNA was split to allow both RNAseq and targeted TCR seq) or that the TCR library was not sequenced deeply enough. I'd like to have seen rarefaction plots of TCR repertoire diversity vs the number of reads to ensure that sufficiently deep sequencing was performed.

      We appreciate the suggestions provided by the reviewer. We agree that deeper sequencing coverage could potentially benefit the repertoires. However, based on our current sequencing depth, we have observed that many of our samples (14 out of 28) have reached sufficient saturation, as indicated by Figure 2C. In addition, the TCR clones selected in our studies are unique molecular identifier (UMI)-collapsed reads, each representing at least three raw reads sharing the same UMI. This approach ensures that the data is robust despite variability. It is important to note that Tumor-Infiltrating Lymphocytes (TILs) differ across samples, resulting in non-uniform sequencing coverage among them. We have already added the rarefaction plots of TCR repertoire diversity versus the number of reads in Figure 2C. These have been added to the main text (lines 329-335).

      In order to support the authors' conclusions that MSI-H tumors have fewer TCR clonotypes than MSS tumors (Figure S2a) I would have liked to see Figure 2a annotated so that it was easy to distinguish which patient was in which group, as well as the rarefaction plots suggested above, to be sure that the difference represented a real difference between samples and not technical variance (which might occur due to only 4 samples being in the MSI-H group).

      We thank the reviewer for their recommendation. Indeed, it's worth noting that the number of MSI-H tumors is fewer than the MSS groups, which is consistent with the distribution observed in colorectal cancer, typically around 15%. This distribution pattern aligns with findings from several previous studies, as highlighted in these studies (16, 17). To provide further clarification on this point, we have included rarefaction plots illustrating TCR repertoire diversity versus the number of reads in Supplementary Figure 3 (line 339). Additionally, MSI-H and MSS samples have been appropriately labeled for clarity.

      The authors write: "in accordance with prior investigations, we identified an inverse relationship between TCR clonality and the Shannon index (Supplementary Figure S1)" >> Shannon index is measure of TCR clonality, not an independent variable. The authors may have meant TCR repertoire richness (the absolute number of TCRs), and the Shannon index (a measure of how many unique TCRs are present in the index).

      We thank the reviewer for their comment regarding the correlation between the number of TCRs and the Shannon index. We have revised the figure to illustrate the relationship between the number of TCRs and the Shannon index, and we have relocated it to Figure 2B.

      The authors continue: "As anticipated, we identified only 58 distinct V (Figure 2C) and 13 distinct J segments (Figure 2D), that collectively generated 184,396 clones across the 27 tumor tissue samples, underscoring the conservation of these segments (Figure 2C & D)" >> it is not clear to me what point the authors are making: it is well known that TCR V and J genes are largely shared between Caucasian populations (https://pubmed.ncbi.nlm.nih.gov/10810226/), and though IMGT lists additional forms of these genes, many are quite rare and are typically not included in the reference sequences used by repertoire analysis software. I would clarify the language in this section to avoid the impression that patient repertoires are only using a restricted set of J genes.

      We thank for the reviewer’s feedback. We have revised the sentence as follows: " As anticipated, we identified 59 distinct V segments (Supplementary Figure 2C) and 13 distinct J segments (Supplementary Figure 2D), collectively sharing 185,627 clones across the 28 tumor tissue samples. This underscores the conservation of these segments (Supplementary Figure 2C & D)” (Result, lines 354-356, page 12)

      As a result I would suggest moving Figure 2 with the exception of 2A into the supplementals - I would have been more interested in a plot showing the distribution of TCRs by frequency, i.e. how what proportion of clones are hyperexpanded, moderately expanded etc. This would be a better measure of the likely immune responses.

      We thank the reviewer for their comment. With the exception of Figure 2A, we have relocated Figures 2B through 2F to Supplementary Figure 2.

      The authors write "To accomplish this, we gathered HLA and TCRβ sequences from established datasets containing immunogenic and non-immunogenic peptides (Supplementary Table 3)" >> The authors mean to refer to Table S4.

      We appreciate the reviewer's feedback. Here's the revised sentence: "To accomplish this, we gathered HLA and TCRβ sequences from established datasets containing immunogenic and non-immunogenic pHLA-TCR complexes (Supplementary Table 5)” (lines 368-370).

      The authors write "As anticipated, our analysis revealed a significantly higher prevalence of peptides with robust HLA binding (percentile rank < 2%) among immunogenic peptides in contrast to their non-immunogenic counterparts (Figure 3A & B, p< 0.00001)" >> this is not surprising, as tools such as NetMHCpan are trained on databases of immunogenic peptides, and thus it is likely that these aren't independent measures (in https://academic.oup.com/nar/article/48/W1/W449/5837056 the authors state that "The training data have been vastly extended by accumulating MHC BA and EL data from the public domain. In particular, EL data were extended to include MA data"). In the pMTNet paper it is stated that pMNet encoded pMHC information using "the exact data that were used to train the netMHCpan model" >> While I am not sufficiently expert to review details on machine learning training models, it would seem that the pHLA scores from NetMHCpan and pMTNet may not be independent, which would explain the concordance in scores that the authors describe in Figures 3B and 3D. I would invite the authors to comment on this.

      The HLA percentiles from NetMHCpan and TCR rankings from pMTNet are independent. NetMHCpan predicts the interaction between peptides and MHC class I, while pMTNet predicts the TCR binding specificity of class I MHCs and peptides. NetMHCpan is trained to predict peptide-MHC class I interactions by integrating binding affinity and MS eluted ligand data, using a second output neuron in the NNAlign approach. This setup produces scores for both binding affinity and ligand elution. In contrast, pMTNet predicts TCR binding specificity of class I pMHCs through three steps:

      (1) Training a numeric embedding of pMHCs (class I only) to numerically represent protein sequences of antigens and MHCs.

      (2) Training an embedding of TCR sequences using stacked auto-encoders to numerically encode TCR sequence text strings.

      (3) Creating a deep neural network combining these two embeddings to integrate knowledge from TCRs, antigenic peptide sequences, and MHC alleles. Fine-tuning is employed to finalize the prediction model for TCR-pMHC pairing.

      Therefore, pHLA scores from NetMHCpan and pMTNet are independent. Furthermore, Figures 3B and 3D do not show concordance in scores, as there was no equivalence in the percentage of immunogenic and non-immunogenic peptides in the two groups (≥2 HLA percentile and ≥2 TCR percentile).

      Many of the authors of this paper were also authors of the epiTCR paper, would this not have been a better choice of tool for assessing pHLA-TCR binding than pMTNet?

      When we started this project, EpiTCR had not been completed. Therefore, we chose pMTNet, which had demonstrated good performance and high accuracy at that time. The validated performance of EpiTCR is an ongoing project that will implement immunogenic assays (ELISpot and single-cell sequencing) to assess the prediction and ranking of neoantigens. This study is also mentioned in the discussion: "Moreover, to improve the accuracy and effectiveness of the machine learning model in predicting and ranking neoantigens, we have developed an in-house tool called EpiTCR. This tool will utilize immunogenic assays, such as ELISpot and single-cell sequencing, for validation." (lines 532-535).

      In Figure 3G it would appear that the pHLA-TCR score is driving the interaction, could the authors comment on this?

      The authors sincerely appreciate the reviewer for their valuable feedback. Initially, the "combine" label in Figure 3G was confusing and potentially misleading when compared to our subsequent approach using a combined machine learning model. In Figure 3G, the "combine" approach simply aggregates the pHLA and pHLA-TCR criteria, whereas our combined machine learning model employs a more sophisticated algorithm to integrate these criteria effectively.

      The combined analysis in Figure 3G utilizes a basic "AND" algorithm between pHLA and pHLA-TCR criteria, aiming for high sensitivity in HLA binding and high specificity. However, this approach demonstrated lower efficacy in practice, underscoring the necessity for a more refined integration method through machine learning. This was the key point we intended to convey with Figure 3G. To address this issue, we have revised Figure 3G to replace "combined" with "HLA percentile & TCR ranking" to clarify its purpose and minimize confusion.

      In Figure 4A I would invite the authors to comment on how they chose the sample sizes they did for the discovery and validation datasets: the numbers seem rather random. I would question whether a training dataset in which 20% of the peptides are immunogenic accurately represents the case in patients, where I believe immunogenic peptides are less frequent (as in Figure 5).

      We aimed to maximize the number of experimentally validated immunogenic peptides, including those from viruses, with only a small percentage from tumors available for training. This limitation is inherent in the field. However, our ultimate objective is to develop a tool capable of accurately predicting peptide immunogenicity irrespective of their source. Therefore, the current percentage of immunogenic peptides may not accurately reflect real-world patient cases, but this is not crucial to our development goals.

      For Figure 5C I would invite the authors to consider adding a statistical test to justify the cutoff at 2fold enrichments.

      Thank you for your feedback. Instead of conducting a statistical test, we have implemented standardized cutoffs as defined in the cited study (2). This research introduces refined criteria for identifying positive responses in ELISPOT assays through a comprehensive analysis of data from multiple studies. These criteria aim to improve the accuracy and consistency of immune response measurements across various applications. The reference to this study has been properly incorporated into the manuscript (Method, line 281, page 10).

      Minor points:

      "paired white blood cells" >> use "paired Peripheral Blood Mononuclear Cells".

      We appreciate the reviewer for the feedback. We agree with the reviewer's observation. The sentence has been revised as follows: "Initially, DNA sequencing of tumor tissues and paired Peripheral Blood Mononuclear Cells identifies cancer-associated genomic mutations. RNA sequencing then determines the patient's HLA-I allele profile and the gene expression levels of mutated genes." (Introduction, lines 55-58, page 2).

      "while RNA sequencing determines the patient's HLA-I allele profile and gene expression levels of mutated genes." >> RNA sequencing covers both the mutant and reference form of the gene, allowing assessment of variant allele frequency.

      "the current approach's impact on patient outcomes remains limited due to the scarcity of effective immunogenic neoantigens identified for each patient" >> Some clearer language here would have been preferred as different tumor types have different mutational loads

      We thank the reviewer for their valuable feedback. We agree with the reviewer's observation. The passage has been revised accordingly: “The current approach's impact on patient outcomes remains limited due to the scarcity of mutations in cancer patients that lead to effective immunogenic neoantigens.” (Introduction, lines 62-64, page 3).

      References

      (1) J. Schmidt et al., Prediction of neo-epitope immunogenicity reveals TCR recognition determinants and provides insight into immunoediting. Cell Rep Med 2, 100194 (2021).

      (2) Z. Moodie et al., Response definition criteria for ELISPOT assays revisited. Cancer Immunol Immunother 59, 1489-1501 (2010).

      (3) V. Jurtz et al., NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data. J Immunol 199, 3360-3368 (2017).

      (4) T. Lu et al., Deep learning-based prediction of the T cell receptor-antigen binding specificity. Nat Mach Intell 3, 864-875 (2021).

      (5) J. Xia et al., NEPdb: A Database of T-Cell Experimentally-Validated Neoantigens and Pan-Cancer Predicted Neoepitopes for Cancer Immunotherapy. Front Immunol 12, 644637 (2021).

      (6) W. J. Zhou et al., NeoPeptide: an immunoinformatic database of T-cell-defined neoantigens. Database (Oxford) 2019 (2019).

      (7) X. Tan et al., dbPepNeo: a manually curated database for human tumor neoantigen peptides. Database (Oxford) 2020 (2020).

      (8) G. Zhang, L. Chitkushev, L. R. Olsen, D. B. Keskin, V. Brusic, TANTIGEN 2.0: a knowledge base of tumor T cell antigens and epitopes. BMC Bioinformatics 22, 40 (2021).

      (9) J. Wu et al., TSNAdb: A Database for Tumor-specific Neoantigens from Immunogenomics Data Analysis. Genomics Proteomics Bioinformatics 16, 276-282 (2018).

      (10) https://www.10xgenomics.com/resources/datasets/cd-8-plus-t-cells-of-healthy-donor-1-1-standard-3-0-2.

      (11) https://www.10xgenomics.com/resources/datasets/cd-8-plus-t-cells-of-healthy-donor-2-1-standard-3-0-2.

      (12) https://www.10xgenomics.com/resources/datasets/cd-8-plus-t-cells-of-healthy-donor-3-1-standard-3-0-2.

      (13) https://www.10xgenomics.com/resources/datasets/cd-8-plus-t-cells-of-healthy-donor-4-1-standard-3-0-2.

      (14) A. Montemurro et al., NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRalpha and beta sequence data. Commun Biol 4, 1060 (2021).

      (15) G. Li et al., Splicing neoantigen discovery with SNAF reveals shared targets for cancer immunotherapy. Sci Transl Med 16, eade2886 (2024).

      (16) Z. Gatalica, S. Vranic, J. Xiu, J. Swensen, S. Reddy, High microsatellite instability (MSI-H) colorectal carcinoma: a brief review of predictive biomarkers in the era of personalized medicine. Fam Cancer 15, 405-412 (2016).

      (17) N. Mulet-Margalef et al., Challenges and Therapeutic Opportunities in the dMMR/MSI-H Colorectal Cancer Landscape. Cancers (Basel) 15 (2023).

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary: 

      This paper applies methods for segmentation, annotation, and visualization of acoustic analysis to zebra finch song. The paper shows that these methods can be used to predict the stage of song development and to quantify acoustic similarity. The methods are solid and are likely to provide a useful tool for scientists aiming to label large datasets of zebra finch vocalizations. The paper has two main parts: 1) establishing a pipeline/ package for analyzing zebra finch birdsong and 2) a method for measuring song imitation. 

      Strengths: 

      It is useful to see existing methods for syllable segmentation compared to new datasets. 

      It is useful, but not surprising, that these methods can be used to predict developmental stage, which is strongly associated with syllable temporal structure. 

      It is useful to confirm that these methods can identify abnormalities in deafened and isolated songs. 

      Weaknesses: 

      For the first part, the implementation seems to be a wrapper on existing techniques. For instance, the first section talks about syllable segmentation; they made a comparison between whisperseg (Gu et al, 2024), tweetynet (Cohen et al, 2022), and amplitude thresholding. They found that whisperseg performed the best, and they included it in the pipeline. They then used whisperseg to analyze syllable duration distributions and rhythm of birds of different ages and confirmed past findings on this developmental process (e.g. Aronov et al, 2011). Next, based on the segmentation, they assign labels by performing UMAP and HDBScan on the spectrogram (nothing new; that's what people have been doing). Then, based on the labels, they claimed they developed a 'new' visualization - syntax raster ( line 180 ). That was done by Sainburg et. al. 2020 in Figure 12E and also in Cohen et al, 2020 - so the claim to have developed 'a new song syntax visualization' is confusing. The rest of the paper is about analyzing the finch data based on AVN features (which are essentially acoustic features already in the classic literature). 

      First, we would like to thank this reviewer for their kind comments and feedback on this manuscript. It is true that many of the components of this song analysis pipeline are not entirely novel in isolation. Our real contribution here is bringing them together in a way that allows other researchers to seamlessly apply automated syllable segmentation, clustering, and downstream analyses to their data. That said, our approach to training TweetyNet for syllable segmentation is novel. We trained TweetyNet to recognize vocalizations vs. silence across multiple birds, such that it can generalize to new individual birds, whereas Tweetynet had only ever been used to annotate song syllables from birds included in its training set previously. Our validation of TweetyNet and WhisperSeg in combination with UMAP and HDBSCAN clustering is also novel, providing valuable information about how these systems interact, and how reliable the completely automatically generated labels are for downstream analysis. 

      Our syntax raster visualization does resemble Figure 12E in Sainburg et al. 2020, however it differs in a few important ways, which we believe warrant its consideration as a novel visualization method. First, Sainburg et al. represent the labels across bouts in real time; their position along the x axis reflects the time at which each syllable is produced relative to the start of the bout. By contrast, our visualization considers only the index of syllables within a bout (ie. First syllable vs. second syllable etc) without consideration of the true durations of each syllable or the silent gaps between them. This makes it much easier to detect syntax patterns across bouts, as the added variability of syllable timing is removed. Considering only the sequence of syllables rather than their timing also allows us to more easily align bouts according to the first syllable of a motif, further emphasizing the presence or absence of repeating syllable sequences without interference from the more variable introductory notes at the start of a motif. Finally, instead of plotting all bouts in the order in which they were produced, our visualization orders bouts such that bouts with the same sequence of syllables will be plotted together, which again serves to emphasize the most common syllable sequences that the bird produces. These additional processing steps mean that our syntax raster plot has much starker contrast between birds with stereotyped syntax and birds with more variable syntax, as compared to the more minimally processed visualization in Sainburg et al. 2020. There doesn’t appear to be any similar visualizations in Cohen et al. 2020. 

      The second part may be something new, but there are opportunities to improve the benchmarking. It is about the pupil-tutor imitation analysis. They introduce a convolutional neural network that takes triplets as an input (each tripled is essentially 3 images stacked together such that you have (anchor, positive, negative), Anchor is a reference spectrogram from, say finch A; positive means a different spectrogram with the same label as anchor from finch A, and negative means a spectrogram not related to A or different syllable label from A. The network is then trained to produce a low-dimensional embedding by ensuring the embedding distance between anchor and positive is less than anchor and negative by a certain margin. Based on the embedding, they then made use of earth mover distance to quantify the similarity in the syllable distribution among finches. They then compared their approach performance with that of sound analysis pro (SAP) and a variant of SAP. A more natural comparison, which they didn't include, is with the VAE approach by Goffinet et al. In this paper (https://doi.org/10.7554/eLife.67855, Fig 7), they also attempted to perform an analysis on the tutor pupil song. 

      We thank the reviewer for this suggestion, and plan to include a comparison of the triplet loss embedding space to the VAE space for song similarity comparisons in the revised manuscript.

      Reviewer #2 (Public Review):

      Summary: 

      In this work, the authors present a new Python software package, Avian Vocalization Network (AVN) aimed at facilitating the analysis of birdsong, especially the song of the zebra finch, the most common songbird model in neuroscience. The package handles some of the most common (and some more advanced) song analyses, including segmentation, syllable classification, featurization of song, calculation of tutor-pupil similarity, and age prediction, with a view toward making the entire process friendlier to experimentalists working in the field. 

      For many years, Sound Analysis Pro has served as a standard in the songbird field, the first package to extensively automate songbird analysis and facilitate the computation of acoustic features that have helped define the field. More recently, the increasing popularity of Python as a language, along with the emergence of new machine learning methods, has resulted in a number of new software tools, including the vocalpy ecosystem for audio processing, TweetyNet (for segmentation), t-SNE and UMAP (for visualization), and autoencoder-based approaches for embedding. 

      Strengths: 

      The AVN package overlaps several of these earlier efforts, albeit with a focus on more traditional featurization that many experimentalists may find more interpretable than deep learning-based approaches. Among the strengths of the paper are its clarity in explaining the several analyses it facilitates, along with high-quality experiments across multiple public datasets collected from different research groups. As a software package, it is open source, installable via the pip Python package manager, and features high-quality documentation, as well as tutorials. For experimentalists who wish to replicate any of the analyses from the paper, the package is likely to be a useful time saver. 

      Weaknesses: 

      I think the potential limitations of the work are predominantly on the software end, with one or two quibbles about the methods. 

      First, the software: it's important to note that the package is trying to do many things, of which it is likely to do several well and few comprehensively. Rather than a package that presents a number of new analyses or a new analysis framework, it is more a codification of recipes, some of which are reimplementations of existing work (SAP features), some of which are essentially wrappers around other work (interfacing with WhisperSeg segmentations), and some of which are new (similarity scoring). All of this has value, but in my estimation, it has less value as part of a standalone package and potentially much more as part of an ecosystem like vocalpy that is undergoing continuous development and has long-term support. 

      We appreciate this reviewer’s comments and concerns about the structure of the AVN package and its long-term maintenance. We have considered incorporating AVN into the VocalPy ecosystem but have chosen not to for a few key reasons. (1) AVN was designed with ease of use for experimenters with limited coding experience top of mind. VocalPy provides excellent resources for researchers with some familiarity with object-oriented programming to manage and analyze their datasets; however, we believe it may be challenging for users without such experience to adopt VocalPy quickly. AVN’s ‘recipe’ approach, as you put it, is very easily accessible to new users, and allows users with intermediate coding experience to easily navigate the source code to gain a deeper understanding of the methodology. AVN also consistently outputs processed data in familiar formats (tables in .csv files which can be opened in excel), in an effort to make it more accessible to new users, something which would be challenging to reconcile with VocalPy’s emphasis on their `dataset`classes. (2) AVN and VocalPy differ in their underlying goals and philosophies when it comes to flexibility vs. standardization of analysis pipelines. VocalPy is designed to facilitate mixing-and-matching of different spectrogram generation, segmentation, annotation etc. approaches, so that researchers can design and implement their own custom analysis pipelines. This flexibility is useful in many cases. For instance, it could allow researchers who have very different noise filtering and annotation needs, like those working with field recordings versus acoustic chamber recordings, analyze their data using this platform. However, when it comes to comparisons across zebra finch research labs, this flexibility comes at the expense of direct comparison and integration of song features across research groups. This is the context in which AVN is most useful. It presents a single approach to song segmentation, labeling, and featurization that has been shown to generalize well across research groups, and which allows direct comparisons of the resulting features. AVN’s single, extensively validated, standard pipeline approach is fundamentally incompatible with VocalPy’s emphasis on flexibility. We are excited to see how VocalPy continues to evolve in the future and recognize the value that both AVN and VocalPy bring to the songbird research community, each with their own distinct strengths, weaknesses, and ideal use cases. 

      While the code is well-documented, including web-based documentation for both the core package and the GUI, the latter is available only on Windows, which might limit the scope of adoption. 

      We thank the reviewer for their kind words about AVN’s documentation. We recognize that the GUI’s exclusive availability on Windows is a limitation, and we would be happy to collaborate with other researchers and developers in the future to build a Mac compatible version, should the demand present itself. That said, the python package works on all operating systems, so non-Windows users still have the ability to use AVN that way.  

      That is to say, whether AVN is adopted by the field in the medium term will have much more to do with the quality of its maintenance and responsiveness to users than any particular feature, but I believe that many of the analysis recipes that the authors have carefully worked out may find their way into other code and workflows. 

      Second, two notes about new analysis approaches: 

      (1) The authors propose a new means of measuring tutor-pupil similarity based on first learning a latent space of syllables via a self-supervised learning (SSL) scheme and then using the earth mover's distance (EMD) to calculate transport costs between the distributions of tutors' and pupils' syllables. While to my knowledge this exact method has not previously been proposed in birdsong, I suspect it is unlikely to differ substantially from the approach of autoencoding followed by MMD used in the Goffinet et al. paper. That is, SSL, like the autoencoder, is a latent space learning approach, and EMD, like MMD, is an integral probability metric that measures discrepancies between two distributions.

      (Indeed, the two are very closely related: https://stats.stackexchange.com/questions/400180/earth-movers-distance-andmaximum-mean-discrepency.) Without further experiments, it is hard to tell whether these two approaches differ meaningfully. Likewise, while the authors have trained on a large corpus of syllables to define their latent space in a way that generalizes to new birds, it is unclear why such an approach would not work with other latent space learning methods. 

      We recognize the similarities between these approaches, and plan to include a comparison of triplet loss embeddings compared with MMD and VAE embeddings compared with MMD and EMD in the revised manuscript. Thank you for this suggestion.  

      (2) The authors propose a new method for maturity scoring by training a model (a generalized additive model) to predict the age of the bird based on a selected subset of acoustic features. This is distinct from the "predicted age" approach of Brudner, Pearson, and Mooney, which predicts based on a latent representation rather than specific features, and the GAM nicely segregates the contribution of each. As such, this approach may be preferred by many users who appreciate its interpretability. 

      In summary, my view is that this is a nice paper detailing a well-executed piece of software whose future impact will be determined by the degree of support and maintenance it receives from others over the near and medium term. 

      Reviewer #3 (Public Review):

      Summary: 

      The authors invent song and syllable discrimination tasks they use to train deep networks. These networks they then use as a basis for routine song analysis and song evaluation tasks. For the analysis, they consider both data from their own colony and from another colony the network has not seen during training. They validate the analysis scores of the network against expert human annotators, achieving a correlation of 80-90%. 

      Strengths: 

      (1) Robust Validation and Generalizability: The authors demonstrate a good performance of the AVN across various datasets, including individuals exhibiting deviant behavior. This extensive validation underscores the system's usefulness and broad applicability to zebra finch song analysis, establishing it as a potentially valuable tool for researchers in the field. 

      (2) Comprehensive and Standardized Feature Analysis: AVN integrates a comprehensive set of interpretable features commonly used in the study of bird songs. By standardizing the feature extraction method, the AVN facilitates comparative research, allowing for consistent interpretation and comparison of vocal behavior across studies. 

      (3) Automation and Ease of Use. By being fully automated, the method is straightforward to apply and should introduce barely an adoption threshold to other labs. 

      (4) Human experts were recruited to perform extensive annotations (of vocal segments and of song similarity scores). These annotations released as public datasets are potentially very valuable. 

      Weaknesses: 

      (1) Poorly motivated tasks. The approach is poorly motivated and many assumptions come across as arbitrary. For example, the authors implicitly assume that the task of birdsong comparison is best achieved by a system that optimally discriminates between typical, deaf, and isolated songs. Similarly, the authors assume that song development is best tracked using a system that optimally estimates the age of a bird given its song. My issue is that these are fake tasks since clearly, researchers will know whether a bird is an isolated or a deaf bird, and they will also know the age of a bird, so no machine learning is needed to solve these tasks. Yet, the authors imagine that solving these placeholder tasks will somehow help with measuring important aspects of vocal behavior. 

      We appreciate this reviewer’s concerns and apologize for not providing sufficiently clear rationale for the inclusion of our phenotype classifier and age regression models in the original manuscript. These tasks are not intended to be taken as a final, ultimate culmination of the AVN pipeline. Rather, we consider the carefully engineered 55-interpretable feature set to be AVN’s final output, and these analyses serve merely as examples of how that feature set can be applied. That said, each of these models do have valid experimental use cases that we believe are important and would like to bring to the attention of the reviewer.

      For one, we showed how the LDA model that can discriminate between typical, deaf, and isolate birds’ songs not only allows us to evaluate which features are most important for discriminating between these groups, but also allows comparison of the FoxP1 knock-down (FP1 KD) birds to each of these phenotypes. Based on previous work (Garcia-Oscos et al. 2021), we hypothesized that FP1 KD in these birds specifically impaired tutor song memory formation while sparing a bird’s ability to refine their own vocalizations through auditory feedback. Thus, we would expect their songs to resemble those of isolate birds, who lack a tutor song memory, but not to resemble deaf birds who lack a tutor song memory and auditory feedback of their own vocalizations to guide learning. The LDA model allowed us to make this comparison quantitatively for the first time and confirm our hypothesis that FP1 KD birds’ songs are indeed most like isolates’. In the future, as more research groups publish their birds’ AVN feature sets, we hope to be able to make even more fine-grained comparisons between different groups of birds, either using LDA or other similar interpretable classifiers. 

      The age prediction model also has valid real-world use cases. For instance, one might imagine an experimental manipulation that is hypothesized to accelerate or slow song maturation in juvenile birds. This age prediction model could be applied to the AVN feature sets of birds having undergone such a manipulation to determine whether their predicted ages systematically lead or lag their true biological ages, and which song features are most responsible for this difference. We didn’t have access to data for any such birds for inclusion in this paper, but we hope that others in the future will be able to take inspiration from our methodology and use this or a similar age regression model with AVN features in their research. We will revise the original manuscript to make this clearer. 

      Along similar lines, authors assume that a good measure of similarity is one that optimally performs repeated syllable detection (i.e. to discriminate same syllable pairs from different pairs). The authors need to explain why they think these placeholder tasks are good and why no better task can be defined that more closely captures what researchers want to measure. Note: the standard tasks for self-supervised learning are next word or masked word prediction, why are these not used here? 

      There appears to be some misunderstanding regarding our similarity scoring embedding model and our rationale for using it. We will explain it in more depth here and provide some additional explanation in the manuscript. First, we are not training a model to discriminate between same and different syllable pairs. The triplet loss network is trained to embed syllables in an 8-dimensional space such that syllables with the same label are closer together than syllables with different labels. The loss function is related to the relative distance between embeddings of syllables with the same or different labels, not the classification of syllables as same or different. This approach was chosen because it has repeatedly been shown to be a useful data compression step (Schorff et al. 2015, Thakur et al. 2019) before further downstream tasks are applied on its output, particularly in contexts where there is little data per class (syllable label). For example, Schorff et al. 2015 trained a deep convolutional neural network with triplet loss to embed images of human faces from the same individual closer together than images of different individuals in a 128-dimensional space. They then used this model to compute 128-dimensional representations of additional face images, not included in training, which were used for individual facial recognition (this is a same vs. different category classifier), and facial clustering, achieving better performance than the previous state of the art. The triplet loss function results in a model that can generate useful embeddings of previously unseen categories, like new individuals’ faces, or new zebra finches’ syllables, which can then be used in downstream analyses. This meaningful, lower dimensional space allows comparisons of distributions of syllables across birds, as in Brainard and Mets 2008, and Goffinet et al. 2021. 

      Next word and masked word prediction are indeed common self-supervised learning tasks for models working with text data, or other data with meaningful sequential organization. That is not the case for our zebra finch syllables, where every bird’s syllable sequence depends only on its tutor’s sequence, and there is no evidence for strong universal syllable sequencing rules (James et al. 2020). Rather, our embedding model is an example of a computer vision task, as it deals with sets of twodimensional images (spectrograms), not sequences of categorical variables (like text). It is also not, strictly speaking, a self-supervised learning task, as it does require syllable labels to generate the triplets. A common self-supervised approach for dimensionality reduction in a computer vision task such as this one would be to train an autoencoder to compress images to a lower dimensional space, then faithfully reconstruct them from the compressed representation.  This has been done using a variational autoencoder trained on zebra finch syllables in Goffinet et al. 2021. In keeping with the suggestions from reviewers #1 and #2, we plan to include a comparison of our triplet loss model with the Goffinet et al. VAE approach in the revised manuscript.  

      (2) The machine learning methodology lacks rigor. The aims of the machine learning pipeline are extremely vague and keep changing like a moving target. Mainly, the deep networks are trained on some tasks but then authors evaluate their performance on different, disconnected tasks. For example, they train both the birdsong comparison method (L263+) and the song similarity method (L318+) on classification tasks. However, they evaluate the former method (LDA) on classification accuracy, but the latter (8-dim embeddings) using a contrast index. In machine learning, usually, a useful task is first defined, then the system is trained on it and then tested on a held-out dataset. If the sensitivity index is important, why does it not serve as a cost function for training?

      Again, there appears to be some misunderstanding of our similarity scoring methodology. Our similarity scoring model is not trained on a classification task, but rather on an embedding task. It learns to embed spectrograms of syllables in an 8dimensional space such that syllables with the same label are closer together than syllables with different labels. We could report the loss values for this embedding task on our training and validation datasets, but these wouldn’t have any clear relevance to the downstream task of syllable distribution comparison where we are using the model’s embeddings. We report the contrast index as this has direct relevance to the actual application of the model and allows comparisons to other similarity scoring methods, something that the triplet loss values wouldn’t allow. 

      The triplet loss method was chosen because it has been shown to yield useful lowdimensional representations of data, even in cases where there is limited labeled training data (Thakur et al. 2019). While we have one of the largest manually annotated datasets of zebra finch songs, it is still quite small by industry deep learning standards, which is why we chose a method that would perform well given the size of our dataset. Training a model on a contrast index directly would be extremely computationally intensive and require many more pairs of birds with known relationships than we currently have access to. It could be an interesting approach to take in the future, but one that would be unlikely to perform well with a dataset size typical to songbird research. 

      Also, usually, in solid machine learning work, diverse methods are compared against each other to identify their relative strengths. The paper contains almost none of this, e.g. authors examined only one clustering method (HDBSCAN). 

      We did compare multiple methods for syllable segmentation (WhisperSeg,  TweetyNet, and Amplitude thresholding) as this hadn’t been done previously. We chose not to perform extensive comparison of different clustering methods as Sainburg et al. 2020 already did so and we felt no need to reduplicate this effort. We encourage this reviewer to refer to Sainburg et al.’s excellent work for comparisons of multiple clustering methods applied to zebra finch song syllables.  

      (3) Performance issues. The authors want to 'simplify large-scale behavioral analysis' but it seems they want to do that at a high cost. (Gu et al 2023) achieved syllable scores above 0.99 for adults, which is much larger than the average score of 0.88 achieved here (L121). Similarly, the syllable scores in (Cohen et al 2022) are above 94% (their error rates are below 6%, albeit in Bengalese finches, not zebra finches), which is also better than here. Why is the performance of AVN so low? The low scores of AVN argue in favor of some human labeling and training on each bird. 

      Firstly, the syllable error rate scores reported in Cohen et al. 2022 are calculated very differently than the F1 scores we report here and are based on a model trained with data from the same bird as was used in testing, unlike our more general segmentation approach where the model was tested on different birds than were used in testing. Thus, the scores reported in Cohen et al. and the F1 scores that we report cannot be compared. 

      The discrepancy between the F1seg scores reported in Gu et al. 2023 and the segmentation F1 scores that we report are likely due to differences in the underlying datasets. Our UTSW recordings tend to have higher levels of both stationary and nonstationary background noise, which make segmentation more challenging. The recordings from Rockefeller were less contaminated by background noise, and they resulted in slightly higher F1 scores. That said, we believe that the primary factor accounting for this difference in scores with Gu et al. 2023 is the granularity of our ‘ground truth’ syllable segments. In our case, if there was ever any ambiguity as to whether vocal elements should be segmented into two short syllables with a very short gap between them or merged into a single longer syllable, we chose to split them. WhisperSeg had a strong tendency to merge the vocal elements in ambiguous cases such as these. This results in a higher rate of false negative syllable onset detections, reflected in the low recall scores achieved by WhisperSeg (see supplemental figure 2b), but still very high precision scores (supplemental figure 2a). While WhisperSeg did frequently merge these syllables in a way that differed from our ground truth segmentation, it did so consistently, meaning it had little impact on downstream measures of syntax entropy (Fig 3c) or syllable duration entropy (supplemental figure 7a). It is for that reason that, despite a lower F1 score, we still consider AVN’s automatically generated annotations to be sufficiently accurate for downstream analyses. 

      Should researchers require a higher degree of accuracy and precision with their annotations (for example, to detect very subtle changes in song before and after an acute manipulation) and be willing to dedicate the time and resources to manually labeling a subset of recordings from each of their birds, we suggest they turn toward one of the existing tools for supervised song annotation, such as TweetyNet.  

      (4) Texas bias. It is true that comparability across datasets is enhanced when everyone uses the same code. However, the authors' proposal essentially is to replace the bias between labs with a bias towards birds in Texas. The comparison with Rockefeller birds is nice, but it amounts to merely N=1. If birds in Japanese or European labs have evolved different song repertoires, the AVN might not capture the associated song features in these labs well. 

      We appreciate the reviewer’s concern about a bias toward birds from the UTSW colony. However, this paper shows that despite training (for the similarity scoring) and hyperparameter fitting (for the HDBSCAN clustering) on the UTSW birds, AVN performs as well if not better on birds from Rockefeller than from UTSW. To our knowledge, there are no publicly available datasets of annotated zebra finch songs from labs in Europe or in Asia but we would be happy to validate AVN on such datasets, should they become available. Furthermore, there is no evidence to suggest that there is dramatic drift in zebra finch vocal repertoire between continents which would necessitate such additional validation. While we didn’t have manual annotations for this dataset (which would allow validation of our segmentation and labeling methods), we did apply AVN to recordings share with us by the Wada lab in Japan, where visual inspection of the resulting annotations suggested comparable accuracy to the UTSW and Rockefeller datasets.  

      (5) The paper lacks an analysis of the balance between labor requirement, generalizability, and optimal performance. For tasks such as segmentation and labeling, fine-tuning for each new dataset could potentially enhance the model's accuracy and performance without compromising comparability. E.g. How many hours does it take to annotate hundred song motifs? How much would the performance of AVN increase if the network were to be retrained on these? The paper should be written in more neutral terms, letting researchers reach their own conclusions about how much manual labor they want to put into their data. 

      With standardization and ease of use in mind, we designed AVN specifically to perform fully automated syllable annotation and downstream feature calculations. We believe that we have demonstrated in this manuscript that our fully automated approach is sufficiently reliable for downstream analyses across multiple zebra finch colonies. That said, if researchers require an even higher degree of annotation precision and accuracy, they can turn toward one of the existing methods for supervised song annotation, such as TweetyNet. Incorporating human annotations for each bird processed by AVN is likely to improve its performance, but this would require significant changes to AVN’s methodology and is outside the scope of our current efforts.  

      (6) Full automation may not be everyone's wish. For example, given the highly stereotyped zebra finch songs, it is conceivable that some syllables are consistently mis-segmented or misclassified. Researchers may want to be able to correct such errors, which essentially amounts to fine-tuning AVN. Conceivably, researchers may want to retrain a network like the AVN on their own birds, to obtain a more fine-grained discriminative method. 

      Other methods exist for supervised or human-in-the-loop annotation of zebra finch songs, such as TweetyNet and DAN (Alam et al. 2023). We invite researchers who require a higher degree of accuracy than AVN can provide to explore these alternative approaches for song annotation. Incorporating human annotations for each individual bird being analyzed using AVN was never the goal of our pipeline, would require significant changes to AVN’s design, and is outside the scope of this manuscript.  

      (7) The analysis is restricted to song syllables and fails to include calls. No rationale is given for the omission of calls. Also, it is not clear how the analysis deals with repeated syllables in a motif, whether they are treated as two-syllable types or one. 

      It is true that we don’t currently have any dedicated features to describe calls. This could be a useful addition to AVN in the future. 

      What a human expert inspecting a spectrogram would typically call ‘repeated syllables’ in a bout are almost always assigned the same syllable label by the UMAP+HDBSCAN clustering. The syntax analysis module includes features examining the rate of syllable repetitions across syllable types. See https://avn.readthedocs.io/en/latest/syntax_analysis_demo.html#SyllableRepetitions

      (8) It seems not all human annotations have been released and the instruction sets given to experts (how to segment syllables and score songs) are not disclosed. It may well be that the differences in performance between (Gu et al 2023) and (Cohen et al 2022) are due to differences in segmentation tasks, which is why these tasks given to experts need to be clearly spelled out. Also, the downloadable files contain merely labels but no identifier of the expert. The data should be released in such a way that lets other labs adopt their labeling method and cross-check their own labeling accuracy. 

      All human annotations used in this manuscript have indeed been released as part of the accompanying dataset. Syllable annotations are not provided for all pupils and tutors used to validate the similarity scoring, as annotations are not necessary for similarity comparisons. We will expand our description of our annotation guidelines in the methods section of the revised manuscript. All the annotations were generated by one of two annotators. The second annotator always consulted with the first annotator in cases of ambiguous syllable segmentation or labeling, to ensure that they had consistent annotation styles. Unfortunately, we haven’t retained records about which birds were annotated by which of the two annotators, so we cannot share this information along with the dataset. The data is currently available in a format that should allow other research groups to use our annotations either to train their own annotation systems or check the performance of their existing systems on our annotations.  

      (9) The failure modes are not described. What segmentation errors did they encounter, and what syllable classification errors? It is important to describe the errors to be expected when using the method. 

      As we discussed in our response to this reviewer’s point (3), WhisperSeg has a tendency to merge syllables when the gap between them is very short, which explains its lower recall score compared to its precision on our dataset (supplementary figure 2). In rare cases, WhisperSeg also fails to recognize syllables entirely, again impacting its precision score. TweetyNet hardly ever completely ignores syllables, but it does tend to occasionally merge syllables together or over-segment them. Whereas WhisperSeg does this very consistently for the same syllable types within the same bird, TweetyNet merges or splits syllables more inconsistently. This inconsistent merging and splitting has a larger effect on syllable labeling, as manifested in the lower clustering v-measure scores we obtain with TweetyNet compared to WhisperSeg segmentations. TweetyNet also has much lower precision than WhisperSeg, largely because TweetyNet often recognizes background noises (like wing flaps or hopping) as syllables whereas WhisperSeg hardly ever segments nonvocal sounds. 

      Many errors in syllable labeling stem from differences in syllable segmentation. For example, if two syllables with labels ‘a’ and ‘b’ in the manual annotation are sometimes segmented as two syllables, but sometimes merged into a single syllable, the clustering is likely to find 3 different syllable types; one corresponding to ‘a’, one corresponding to ‘b’ and one corresponding to ‘ab’ merged. Because of how we align syllables across segmentation schemes for the v-measure calculation, this will look like syllable ‘b’ always has a consistent cluster label, but syllable ‘a’ can carry two different cluster labels, depending on the segmentation. In certain cases, even in the absence of segmentation errors, a group of syllables bearing the same manual annotation label may be split into 2 or 3 clusters (it is extremely rare for a single manual annotation group to be split into more than 3 clusters). In these cases, it is difficult to conclusively say whether the clustering represents an error, or if it actually captured some meaningful systematic difference between syllables that was missed by the annotator. Finally, sometimes rare syllable types with their own distinct labels in the manual annotation are merged into a single cluster. Most labeling errors can be explained by this kind of merging or splitting of groups relative to the manual annotation, not to occasional mis-classifications of one manual label type as another. 

      For examples of these types of errors, we encourage this reviewer and readers to refer to the example confusion matrices in figure 2f and supplemental figure 4b&e. We will also expand our discussion of these different types of errors in the revised manuscript. 

      (10) Usage of Different Dimensionality Reduction Methods: The pipeline uses two different dimensionality reduction techniques for labeling and similarity comparison - both based on the understanding of the distribution of data in lower-dimensional spaces. However, the reasons for choosing different methods for different tasks are not articulated, nor is there a comparison of their efficacy. 

      We apologize for not making this distinction sufficiently clear in the manuscript and will add additional explanation to the main text to make the reasoning more apparent. We chose to use UMAP for syllable labeling because it is a common embedding methodology to precede hierarchical clustering and has been shown to result in reliable syllable labels for birdsong in the past (Sainburg et al. 2020). However, it is not appropriate for similarity scoring, because comparing EMD scores between birds requires that all the birds’ syllable distributions exist within the same shared embedding space. This can be achieved by using the same triplet loss-trained neural network model to embed syllables from all birds. This cannot be achieved with UMAP because all birds whose scores are being compared would need to be embedded in the same UMAP space, as distances between points cannot be compared across UMAPs. In practice, this would mean that every time a new tutor-pupil pair needs to be scored, their syllables would need to be added to a matrix with all previously compared birds’ syllables, a new UMAP would need to be computed, and new EMD scores between all bird pairs would need to be calculated using their new UMAP embeddings. This is very computationally expensive and quickly becomes unfeasible without dedicated high power computing infrastructure. It also means that similarity scores couldn’t be compared across papers without recomputing everything each time, whereas EMD scores obtained with triplet loss embeddings can be compared, provided they use the same trained model (which we provide as part of AVN) to embed their syllables in a common latent space.  

      (11) Reproducibility: are the measurements reproducible? Systems like UMAP always find a new embedding given some fixed input, so the output tends to fluctuate. 

      There is indeed a stochastic element to UMAP embeddings which will result in different embeddings and therefore different syllable labels across repeated runs with the same input. Anecdotally, we observed that v-measures scores were quite consistent within birds across repeated runs of the UMAP, but we will add an additional supplementary figure to the revised manuscript showing this.

    1. Author response:

      The following is the authors’ response to the original reviews.

      General Response

      We are grateful for the constructive comments from reviewers and the editor.

      The main point converged on a potential alternative interpretation that top-down modulation to the visual cortex may be contributing to the NC connectivity we observed. For this revision, we address that point with new analysis in Fig. S8 and Fig. 6. These results indicate that top-down modulation does not account for the observed NC connectivity.

      We performed the following analyses.

      (1) In a subset of experiments, we recorded pupil dynamics while the mice were engaged in a passive visual stimulation experiment (Fig. S8A). We found that pupil dynamics, which indicate the arousal state of the animal, explained only 3% of the variance of neural dynamics. This is significantly smaller than the contribution of sensory stimuli and the activity of the surrounding neuronal population (Fig. S8B). In particular, the visual stimulus itself typically accounted for 10-fold more variance than pupil dynamics (Fig. S8C). This suggests that the population neural activity is highly stimulus-driven and that a large portion of functional connectivity is independent of top-down modulation. In addition, after subtracting the neural activity from the pupil-modulated portion, the cross-stimulus stability of the NC was preserved (Fig. S8D).

      We note that the contribution from pupil dynamics to neural activity in this study is smaller than what was observed in an earlier study (Stringer et al. 2019 Science). That can be because mice were in quiet wakefulness in the current study, while mice were in spontaneous locomotion in the earlier study. We discuss this discrepancy in the main text, in the subsection “Functional connectivity is not explained by the arousal state”.

      (2) We performed network simulations with top-down input (Fig. 6F-H). With multidimensional top-down input comparable to the experimental data, recurrent connections within the network are necessary to generate cross-stimulus stable NC connectivity (Fig. 6G). It took increasing the contribution from the top-down input (i.e., to more than 1/3 of the contribution from the stimulus), before the cross-stimulus NC connectivity can be generated by the top-down modulation (Fig. 6H). Thus, this analysis provides further evidence that top-down modulation was not playing a major role in the NC connectivity we observed.

      These new results support our original conclusion that network connectivity is the principal mechanism underlying the stability of functional networks.

      Public Reviews:

      Reviewer #1 (Public Review):

      Using multi-region two-photon calcium imaging, the manuscript meticulously explores the structure of noise correlations (NCs) across the mouse visual cortex and uses this information to make inferences about the organization of communication channels between primary visual cortex (V1) and higher visual areas (HVAs). Using visual responses to grating stimuli, the manuscript identifies 6 tuning groups of visual cortex neurons and finds that NCs are highest among neurons belonging to the same tuning group whether or not they are found in the same cortical area. The NCs depend on the similarity of tuning of the neurons (their signal correlations) but are preserved across different stimulus sets - noise correlations recorded using drifting gratings are highly correlated with those measured using naturalistic videos. Based on these findings, the manuscript concludes that populations of neurons with high NCs constitute discrete communication channels that convey visual signals within and across cortical areas.

      Experiments and analyses are conducted to a high standard and the robustness of noise correlation measurements is carefully validated. However, the interpretation of noise correlation measurements as a proxy from network connectivity is fraught with challenges. While the data clearly indicates the existence of distributed functional ensembles, the notion of communication channels implies the existence of direct anatomical connections between them, which noise correlations cannot measure.

      The traditional view of noise correlations is that they reflect direct connectivity or shared inputs between neurons. While it is valid in a broad sense, noise correlations may reflect shared top-down input as well as local or feedforward connectivity. This is particularly important since mouse cortical neurons are strongly modulated by spontaneous behavior (e.g. Stringer et al, Science, 2019). Therefore, noise correlation between a pair of neurons may reflect whether they are similarly modulated by behavioral state and overt spontaneous behaviors. Consequently, noise correlation alone cannot determine whether neurons belong to discrete communication channels.

      Behavioral modulation can influence the gain of sensory-evoked responses (Niell and Stryker, Neuron, 2010). This can explain why signal correlation is one of the best predictors of noise correlations as reported in the manuscript. A pair of neurons that are similarly gain-modulated by spontaneous behavior (e.g. both active during whisking or locomotion) will have higher noise correlations if they respond to similar stimuli. Top-down modulation by the behavioral state is also consistent with the stability of noise correlations across stimuli. Therefore, it is important to determine to what extent noise correlations can be explained by shared behavioral modulation.

      We thank the reviewer for the constructive and positive feedback on our study.

      The reviewer acknowledged the quality of our experiments and analysis and stated a concern that the noise correlation can be explained by top-down modulation. We have addressed this concern carefully in the revision, please see the General Response above.

      Reviewer #2 (Public Review):

      Summary:

      This groundbreaking study characterizes the structure of activity correlations over a millimeter scale in the mouse cortex with the goal of identifying visual channels, specialized conduits of visual information that show preferential connectivity. Examining the statistical structure of the visual activity of L2/3 neurons, the study finds pairs of neurons located near each other or across distances of hundreds of micrometers with significantly correlated activity in response to visual stimulation. These highly correlated pairs have closely related visual tuning sharing orientation and/or spatial and/or temporal preference as would be expected from dedicated visual channels with specific connectivity.

      Strengths:

      The study presents best-in-class mesoscopic-scale 2-photon recordings from neuronal populations in pairs of visual areas (V1-LM, V1-PM, V1-AL, V1-LI). The study employs diverse visual stimuli that capture some of the specialization and heterogeneity of neuronal tuning in mouse visual areas. The rigorous data quantification takes into consideration functional cell groups as well as other variables that influence trial-to-trial correlations (similarity of tuning, neuronal distance, receptive field overlap). The paper convincingly demonstrates the robustness of the clustering analysis and of the activity correlation measurements. The calcium imaging results convincingly show that noise correlations are correlated across visual stimuli and are strongest within cell classes which could reflect distributed visual channels. A simple simulation is provided that suggests that recurrent connectivity is required for the stimulus invariance of the results. The paper is well-written and conceptually clear. The figures are beautiful and clear. The arguments are well laid out and the claims appear in large part supported by the data and analysis results (but see weaknesses).

      Weaknesses:

      An inherent limitation of the approach is that it cannot reveal which anatomical connectivity patterns are responsible for observed network structure. The modeling results presented, however, suggest interestingly that a simple feedforward architecture may not account for fundamental characteristics of the data. A limitation of the study is the lack of a behavioral task. The paper shows nicely that the correlation structure generalizes across visual stimuli. However, the correlation structure could differ widely when animals are actively responding to visual stimuli. I do think that, because of the complexity involved, a characterization of correlations during a visual task is beyond the scope of the current study.

      An important question that does not seem addressed (but it is addressed indirectly, I could be mistaken) is the extent to which it is possible to obtain reliable measurements of noise correlation from cell pairs that have widely distinct tuning. L2/3 activity in the visual cortex is quite sparse. The cell groups laid out in Figure S2 have very sharp tuning. Cells whose tuning does not overlap may not yield significant trial-to-trial correlations because they do not show significant responses to the same set of stimuli, if at all any time. Could this bias the noise correlation measurements or explain some of the dependence of the observed noise correlations on signal correlations/similarity of tuning? Could the variable overlap in the responses to visual responses explain the dependence of correlations on cell classes and groups?

      With electrophysiology, this issue is less of a problem because many if not most neurons will show some activity in response to suboptimal stimuli. For the present study which uses calcium imaging together with deconvolution, some of the activity may not be visible to the experimenters. The correlation measure is shown to be robust to changes in firing rates due to missing spikes. However, the degree of overlap of responses between cell pairs and their consequences for measures of noise correlations are not explored.

      Beyond that comment, the remaining issues are relatively minor issues related to manuscript text, figures, and statistical analyses. There are typos left in the manuscript. Some of the methodological details and results of statistical testing also seem to be missing. Some of the visuals and analyses chosen to examine the data (e.g., box plots) may not be the most effective in highlighting differences across groups. If addressed, this would make a very strong paper.

      We thank the reviewer for acknowledging the contributions of our study.

      We agree with the reviewer that future studies on behaviorally engaged animals are necessary. Although we also agree with the reviewer that behavior studies are out the scope of the current manuscript, we have included additional analysis and discussion on whether and how top-down input would affect the NC connectivity in the revision. Please see the General Response above.

      Reviewer #3 (Public Review):

      Summary:

      Yu et al harness the capabilities of mesoscopic 2P imaging to record simultaneously from populations of neurons in several visual cortical areas and measure their correlated variability. They first divide neurons into 65 classes depending on their tuning to moving gratings. They found the pairs of neurons of the same tuning class show higher noise correlations (NCs) both within and across cortical areas. Based on these observations and a model they conclude that visual information is broadcast across areas through multiple, discrete channels with little mixing across them.

      NCs can reflect indirect or direct connectivity, or shared afferents between pairs of neurons, potentially providing insight on network organization. While NCs have been comprehensively studied in neuron pairs of the same area, the structure of these correlations across areas is much less known. Thus, the manuscripts present novel insights into the correlation structure of visual responses across multiple areas.

      Strengths:

      The study uses state-of-the art mesoscopic two-photon imaging.

      The measurements of shared variability across multiple areas are novel.

      The results are mostly well presented and many thorough controls for some metrics are included.

      Weaknesses:

      I have concerns that the observed large intra-class/group NCs might not reflect connectivity but shared behaviorally driven multiplicative gain modulations of sensory-evoked responses. In this case, the NC structure might not be due to the presence of discrete, multiple channels broadcasting visual information as concluded. I also find that the claim of multiple discrete broadcasting channels needs more support before discarding the alternative hypothesis that a continuum of tuning similarity explains the large NCs observed in groups of neurons.

      Specifically:

      Major concerns:

      (1) Multiplicative gain modulation underlying correlated noise between similarly tuned neurons

      (1a) The conclusion that visual information is broadcasted in discrete channels across visual areas relies on interpreting NC as reflecting, direct or indirect connectivity between pairs, or common inputs. However, a large fraction of the activity in the mouse visual system is known to reflect spontaneous and instructed movements, including locomotion and face movements, among others. Running activity and face movements are some of the largest contributors to visual cortex activity and exert a multiplicative gain on sensory-evoked responses (Niell et al, Stringer et al, among others). Thus, trial-by-fluctuations of behavioral state would result in gain modulations that, due to their multiplicative nature, would result in more shared variability in cotuned neurons, as multiplication affects neurons that are responding to the stimulus over those that are not responding ( see Lin et al, Neuron 2015 for a similar point).<br /> As behavioral modulations are not considered, this confound affects most of the conclusions of the manuscript, as it would result in larger NCs the more similar the tuning of the neurons is, independently of any connectivity feature. It seems that this alternative hypothesis can explain most of the results without the need for discrete broadcasting channels or any particular network architecture and should be addressed to support its main claims.

      (1b) In Figure 5 the observations are interpreted as evidence for NCs reflecting features of the network architecture, as NCs measured using gratings predicted NC to naturalistic videos. However, it seems from Figure 5 A that signal correlations (SCs) from gratings had non-zero correlations with SCs during naturalistic videos (is this the case?). Thus, neurons that are cotuned to gratings might also tend to be coactivated during the presentation of videos. In this case, they are also expected to be susceptible to shared behaviorally driven fluctuations, independently of any circuit architecture as explained before. This alternative interpretation should be addressed before concluding that these measurements reflect connectivity features.

      We thank the reviewer for acknowledging the contributions of our study.

      The reviewer suggested that gain modulation might be interfering with the interpretation of the NC connectivity. We have addressed this issue in the General Response above.

      Here, we will elaborate on one additional analysis we performed, in case it might be of interest. We carried out multiplicative gain modeling by implementing an established method (Goris et al. 2014 Nat Neurosci) on our dataset. We were able to perform the modeling work successfully. However, we found that it is not a suitable model for explaining the current dataset because the multiplicative gain induced a negative correlation. This seemed odd but can be explained. First, top-down input is not purely multiplicative but rather both additive and multiplicative. Second, the top-down modulation is high dimensional. Third, the firing rate of layer 2/3 mouse visual cortex neurons is lower than the firing rates for non-human primate recordings used in the development of the method (Goris et al. 2014 Nat Neurosci). Thus, we did not pursue the model further. We just mention it here in case the outcome might be of interest to fellow researchers.

      (2) Discrete vs continuous communication channels

      (2a) One of the author's main claims is that the mouse cortical network consists of discrete communication channels. This discreteness is based on an unbiased clustering approach to the tuning of neurons, followed by a manual grouping into six categories in relation to the stimulus space. I believe there are several problems with this claim. First, this clustering approach is inherently trying to group neurons and discretise neural populations. To make the claim that there are 'discrete communication channels' the null hypothesis should be a continuous model. An explicit test in favor of a discrete model is lacking, i.e. are the results better explained using discrete groups vs. when considering only tuning similarity? Second, the fact that 65 classes are recovered (out of 72 conditions) and that manual clustering is necessary to arrive at the six categories is far from convincing that we need to think about categorically different subsets of neurons. That we should think of discrete communication channels is especially surprising in this context as the relevant stimulus parameter axes seem inherently continuous: spatial and temporal frequency. It is hard to motivate the biological need for a discretely organized cortical network to process these continuous input spaces.

      (2b) Consequently, I feel the support for discrete vs continuous selective communication is rather inconclusive. It seems that following the author's claims, it would be important to establish if neurons belong to the same groups, rather than tuning similarity is a defining feature for showing large NCs.

      Thanks for pointing this out so that we can clarify.

      We did not mean to argue that the tuning of neurons is discrete. Our conclusions are not dependent on asserting a particular degree of discreteness. We performed GMM clustering to label neurons with an identity so that we could analyze the NC connectivity structure with a degree of granularity supported by the data. Our analysis suggested that communication happens within a class, rather than through mixed classes. We realized that using the term “discrete” may be confusing. In the revised text we used the term “unmixed” or “non-mixing” instead to emphasize that the communication happens between neurons belonging to the same tuning cluster, or class. 

      However, we do see how the question of discreteness among classes might be interesting to readers. To provide further information, we have included a new Fig. S2 to visualize the GMM classes using t-SNE embedding.

      Finally, as stated in point 1, the larger NCs observed within groups than across groups might be due to the multiplicative gain of state modulations, due to the larger tuning similarity of the neurons within a class or group.

      We have addressed this issue in the General Response above and the response to comment (1).

      Recommendations for the authors:

      Reviewing Editor (Recommendations For The Authors):

      A general recommendation discussed with the reviewers is to make use of behavioural recording to assess whether shared behaviourally driven modulations can explain the observed relation between SC and NC, independently of the network architecture. Alternatively, a simulation or model might also address this point as well as the possibility that the relation of SC and NC might be also independent of network architecture given the sparseness of the sensory responses in L2/3.

      We have addressed this in the General Response above.

      Broadly speaking, inferring network architecture based on NCs is extremely challenging. Consequently, the study could also be substantially improved by reframing the results in terms of distributed co-active ensembles without insinuation of direct anatomical connectivity between them.

      We agree that the inferring network architecture based on NCs is challenging. The current study has revealed some principles of functional networks measured by NCs, and we showed that cross-stimulus NC connectivity provides effective constraints to network modeling. We are explicit about the nature of NCs in the manuscript. For example, in the Abstract, we write “to measure correlated variability (i.e., noise correlations, NCs)”, and in the Introduction, we write “NCs are due to connectivity (direct or indirect connectivity between the neurons, and/or shared input)”. We are following conventions in the field (e.g., Sporns 2016; Cohen and Kohn 2011).

      Notice also that the abstract or title should make clear that the study was made in mice.

      Sorry for the confusion, we now clearly state the study was carried out in mice in the Abstract and Introduction.

      Reviewer #1 (Recommendations For The Authors):

      The manuscript presents a meticulous characterization of noise correlations in the visual cortical network. However, as I outline in the public review, I think the use of noise correlations to infer communication channels is problematic and I urge the authors to carefully consider this terminology. Language such as "strength of connections" (Figure 4D) should be avoided.

      We now state in the figure legend that the plot in Fig. 4D shows the average NC value.

      My general suggestion to the authors, which primarily concerns the interpretation of analyses in Figures 4-6, is to consider the possible impact of shared top-down modulation on noise correlations. If behavioral data was recorded simultaneously (e.g. using cameras to record face and body movements), behavioral modulation should be considered alongside signal correlation as a possible factor influencing NCs.

      We have addressed this issue in the General Response above.

      I may be misunderstanding the analysis in Figure 4C but it appears circular. If the fraction of neurons belonging to a particular tuning group is larger, then the number of in-group high NC pairs will be higher for that group even if high NC pairs are distributed randomly. Can you please clarify? I frankly do not understand the analysis in Figure 4D and it is unclear to me how the analyses in Figure 4C-D address the hypotheses depicted in the cartoons.

      Sorry for the confusion, we have clarified this in the Fig. 4 legend.

      Each HVA has a SFTF bias (Fig. 1E,F; Marshel et al., 2011; Andermann et al., 2011; Vries et al., 2020). Each red marker on the graph in Fig. 4C is a single V1-HVA pair (blue markers are within an area) for a particular SFTF group (Fig. 1). The x-axis indicates the number of high NC pairs in the SFTF group in the V1-HVA pair divided by the total number of high NC pairs per that V1-HVA pair (summed over all SFTF groups). The trend is that for HVAs with a bias towards a particular SFTF group, there are also more high NC pairs in that SFTF group, and thus it is consistent with the model on the right side. This is not circular because it is possible to have a SFTF bias in an HVA and have uniformly low NCs. The reviewer is correct that a random distribution of high NCs could give a similar effect, which is still consistent with the model: that the number of high NC pairs (and not their specific magnitudes) can account for SFTF biases in HVAs.

      To contrast with that model, we tested whether the average NC value for each tuning group varies. That is, can a small number of very high NCs account for SFTF biases in HVAs? That is what is examined in Fig. 4D. We found that the average NC value does not account for the SFTF biases. Thus, the SFTF biases were not related to the modulation in NC (i.e., functional connection strength). 

      I found the discussion section quite odd and did not understand the relevance of the discussion of the coefficient of variation of various quantities to the present manuscript. It would be more useful to discuss the limitations and possible interpretations of noise correlation measurements in more detail.

      We have revised the discussion section to focus on interpreting the results of the current study and comparing them with those of previous studies.

      Figure 3B: please indicate what the different colors mean - I assume it is the same as Figure 3A but it is unclear.

      We added text to the legend for clarification.

      Typos: Page 7: "direct/indirection wiring", Page 11: "pooled over all texted areas"

      We have fixed the typos.

      Reviewer #2 (Recommendations For The Authors):

      The significance of the results feels like it could be articulated better. The main conclusion is that V1 to HVA connections avoid mixing channels and send distinctly tuned information along distinct channels - a more explicit description of what this functional network understanding adds would be useful to the reader.

      Thanks for the suggestion. We have edited the introduction section and the discussion section to make the take-home message more clear.

      Previous studies with anatomical data already indicate distinctly tuned channels - several of which the authors cite - although inconsistently:

      • Kim et al 2018 https://doi.org/10.1016/j.neuron.2018.10.023

      • Glickfeld et al., 2013 (cited)

      • Han et al., 2022 (cited)

      • Han and Bonin 2023 (cited)

      Thanks for the suggestion, we now cite the Kim et al. 2018 paper.

      I think the information you provide is valuable - but the value should be more clearly spelled out - This section from the end of the discussion for example feels like abdicates that responsibility:<br /> "In summary, mesoscale two-photon imaging techniques open up the window of cellular-resolution functional connectivity at the system level. How to make use of the knowledge of functional connectivity remains unclear, given that functional connectivity provides important constraints on population neuron behavior."

      A discussion of how the results relate to previous studies and a section on the limitations of the study seems warranted.

      Thanks for the suggestion, we have extensively edited the discussion section to make the take-home message clear and discuss prior studies and limitations of the present study.

      Details:

      Analyses or simulations showing that the dependency of correlations on similarity of tuning is not an artifact of how the data was acquired is in my mind missing and if that is the case it is crucial that this be addressed.

      At each step of data analysis, we performed control analysis to assess the fidelity of the conclusion. For example, on the spike train inference (Fig. S4), GMM clustering (Fig. S1), and noise correlation analysis (Figs. 2, S5).

      None of the statistical testing seems to use animals as experimental units (instead of neurons). This could over-inflate the significance of the results. Wherever applicable and possible, I would recommend using hierarchical bootstrap for testing or showing that the differences observed are reproducible across animals.

      We analyzed the tuning selectivity of HVAs (Fig. 1F) using experimental units, rather than neurons. It is very difficult to observe all tuning classes in each experiment, so pooling neurons across animals is necessary for much of the analysis. We do take care to avoid overstating statistical results, and we show the data points in most figure to give the reader an impression of the distributions.

      Page 2. "The number of neurons belonged to the six tuning groups combined: V1, 5373; LM, 1316; AL, 656; PM, 491; LI, 334." Yet the total recorded number of neurons is 17,990. How neurons were excluded is mentioned in Methods but it should be stated more explicitly in Results.

      We have added text in the Fig. 1 legend to direct the audience to the Methods section for information on the exclusion / inclusion criteria.

      Figure 1C, left. I don't understand how correlation is the best way to quantify the consistency of class center with a subset of data. Why not use for example as the mean square error. The logic underlying this analysis is not explained in Methods.

      Sorry for the confusion, we have clarified this in the Methods section.

      We measured the consistency of the centers of the Gaussian clusters, which are 45-dimensional vectors in the PC dimensions. We measured the Pearson correlation of Gaussian center vectors independently defined by GMM clustering on random subsets of neurons. We found the center of the Gaussian profile of each class was consistent (Fig. 1C). The same class of different GMMs was identified by matching the center of the class.

      Figure 1E. There are statements in the text about cell groups being more represented in certain visual areas. These differences are not well represented in the box plots. Can't the individual data points be plotted? I have also not found the description and results of statistical testing for these data.

      We have replotted the figure (now Fig. 1F) with dot scatters which show all of the individual experiments.

      Figure 2A, right, since these are paired data, I am not quite sure why only marginal distributions are shown. It would be interesting to know the distributions of correlations that are significant.

      This is only for illustration showing that NCs are measurable and significantly different from zero or shuffled controls. The distribution of NCs is broad and has both positive and negative values. We are not using this for downstream analysis.

      Figure 4A, I wonder if it would not be better to concentrate on significant correlations.

      We focused on large correlation values rather than significant values because we wanted to examine the structure of “strongly connected” neuron pairs. Negative and small correlation values can be significant as well. Focusing on large values would allow us to generate a clear interpretation.  

      Figure 4B, 'Mean strength of connections' which I presume mean correlations is not defined anywhere that I can see.

      I believe the reviewer means Fig. 4D. It means the average NC value. We have edited the figure legend to add clarity.

      Figure 4F, a few words explaining how to understand the correlation matrix in text or captions would be helpful.

      Sorry for the confusion, we have clarified this part in figure legend for Fig. 4F.

      Page 5, right column: Incomplete sentence: "To determine whether it is the number of high NC pairs or the magnitude of the NCs,".

      We have edited this sentence.

      Page 5, right column: "Prior findings from studies of axonal projections from V1 to HVAs indicated that the number of SF-TF-specific boutons -rather than the strength of boutons- contribute to the SF-TF biases among HVAs (Glickfeld et al., 2013)." Glickfeld et al. also reported that boutons with tuning matched to the target area showed stronger peak dF/F responses.

      Thank you. We have revised this part accordingly.

      Page 9, the Discussion and Figure 7 which situates the study results in a broader context is welcome and interesting, but I have the feeling that more words should be spent explaining the figure and conceptual framework to a non-expert audience. I am a bit at a loss about how to read the information in the figure.

      Sorry for the confusion, we have added an explanation about this section (page 10, right column).

      As far as I can see, data availability is not addressed in the manuscript. The data, code to analyze the data and generate the figures, and simulation code should be made available in a permanent public repository. This includes data for visual area mapping, calcium imaging data, and any data accessory to the experiments.

      We have stated in the manuscript that code and data are available upon request. We regularly share data with no conditions (e.g., no entitlement to authorship), and we often do so even prior to publication.

      The sex of the mice should be indicated in Figure T1.

      The sex of the mice was mixed. This is stated in the Methods section.

      Methods:

      Section on statistical testing, computation of explained variance missing, etc. I feel many analyses are not thoroughly described.

      Sorry for the confusion, we have improved our method section.

      Signal correlation (similarity between two neurons' average responses to stimuli) and its relation to noise correlation is not formally defined.

      We have included the definition of signal correlation in the Methods.

      Number of visual stimulation trials is not stated in Methods. Only stated figure caption.

      The number of visual stimulus trials is provided in the last paragraph of the Methods section (Visual Stimuli).

      Fix typos: incorrect spelling, punctuation, and missing symbols (e.g. closing parentheses).

      We have carefully examined the spelling, punctuation, and grammar. We have corrected errors and we hope that none remain.

      Why use intrinsic imaging to locate retinotopic boundaries in mice already expressing GCaMP6s?

      We agree with the reviewer that calcium imaging of visual cortex can be used to identify the visual cortex.

      It is true that areas can be mapped using the GCaMP signals. That is not our preferred approach. Using intrinsic imaging to define the boundary between V1 and HVAs has been a well refined routine in our lab for over a decade. It is part of our standard protocol. One advantage is that the data (from intrinsic signals) is of the same nature every time. This enables us to use the same mapping procedure no matter what reporters mice might be expressing (and the pattern, e.g., patchy or restricted to certain cell types).

      Reviewer #3 (Recommendations For The Authors):

      The possibilty that larger intra-group NCs observed simply reflect a multiplicative gain on cotuned neurons could be addressed using pupil and/or face recordings: Does pupil size or facial motion predict NCs and if factored out, does signal correlation still predict NCs?

      Perhaps a variant of the network model presented in Figure 6 with multiplicative gain could also be tested to investigate these issues.

      We have addressed this issue in general response.

      Here, we will elaborate on one additional analysis we performed, in case it might be of interest. We carried out multiplicative gain modeling by implementing an established method (Goris et al. 2014 Nat Neurosci) on our dataset. We were able to perform the modeling work successfully. However, we found that it is not a suitable model for explaining the current dataset because the multiplicative gain induced a negative correlation. This seemed odd but can be explained. First, top-down input is not purely multiplicative but rather both additive and multiplicative. Second, the top-down modulation is high dimensional. Third, the firing rate of layer 2/3 mouse visual cortex neurons is lower than the firing rates for non-human primate recordings used in the development of the method (Goris et al. 2014 Nat Neurosci). Thus, we did not pursue the model further. We just mention it here in case the outcome might be of interest to fellow researchers.

      Similarly further analyses can be done to strengthen support for the claims that the observed NCs reflect discrete communication channels. A direct test of continuous vs categorical channels would strengthen the conclusions. One possible analysis would be to compare pairs with similar tuning (same SC) belonging to the same or different groups.

      Thanks for pointing this out so that we can clarify.

      We did not mean to argue that the tuning of neurons is discrete. Our conclusions are not dependent on asserting a particular degree of discreteness. We performed GMM clustering to label neurons with an identity so that we could analyze the NC connectivity structure with a degree of granularity supported by the data. Our analysis suggested that communication happens within a class, rather than through mixed classes. We realized that using the term “discrete” may be confusing. In the revised text we used the term “unmixed” or “non-mixing” instead to emphasize that the communication happens between neurons belonging to the same tuning cluster, or class. 

      However, we do see how the question of discreteness among classes might be interesting to readers. To provide further information, we have included a new Fig. S2 to visualize the GMM classes using t-SNE embedding.

      I also found many places where the manuscript needs clarification and /or more methodological details:<br /> • How many times was each of the stimulus conditions repeated? And how many times for the two naturalistic videos? What was the total duration of the experiments?

      The number of visual stimulus trials is provided in the last paragraph of the Methods section entitled Visual Stimuli. About 15 trials were recorded for each drifting grating stimulus, and about 20 trials were recorded for each naturalistic video.

      • Typo: Suit2p should be Suite2p (section Calcium image processing - Methods).

      We have fixed the typo.

      • What do the error bars in Figure 1E represent? Differences in group representation across areas from Figure 1E are mentioned in the text without any statistical testing.

      We have revised the Figure 1E (current Fig. 1F), and we now show all data points.

      • The manuscript would benefit from a comparison of the observed area-specific tuning biases across areas (Figure 1E and others) with the previous literature.

      We have included additional discussion on this in the last paragraph of the section entitled Visual cortical neurons form six tuning groups.

      • Why are inferred spike trains used to calculate NCs? Why can't dF/F be used? Do the results differ when using dF/F to calculate NC? Please clarify in the text.

      We believe inferred spike trains provide better resolution and make it easier to compare with quantitative values from electrical recordings. Notice that NC values computed using dF/F can be much larger than those computed by inferred spike trains. For example, see Smith & Hausser 2010 Nat Neurosci. Supplementary Figure S8.

      • The sentence seems incomplete or unclear: "That is, there are more high NC pairs that are in-group." Explicit vs what?

      We have revised this sentence.

      • Figure 1E is unclear to me. What is being plotted? Please add a color bar with the metric and the units for the matrix (left) and in the tuning curves (right panels). If the Y and X axes represent the different classes from the GMM, why are there more than 65 rows? Why is the matrix not full?

      We have revised this figure. Fig. 1D is the full 65 x 65 matrix. Fig. 1F has small 3x3 matrices mapping the responses to different TF and SF of gratings. We hope the new version is clearer.

      • How are receptive fields defined? How are their long and short axes calculated? How are their limits defined when calculating RF overlap?

      We have added further details in the Methods section entitled “Receptive field analysis”.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 Public:

      - The authors should carefully address the potential confounding of not counterbalancing the conditions of the first trial in both interoceptive tasks for the 9-month and 18-month age groups. The results of these groups could indeed be driven by having seen the synchronous trial first. 

      Upon addressing this comment, we noticed an error in our presentation scripts that resulted in a fixed-experimental design for most of the infants. Therefore, it is crucial to investigate the impact of the fixed-experimental design on our results. We have conducted extensive additional analyses comparing data from infants with the inadvertent fixed design to data from infants for whom the randomization was achieved as intended, which can be found in Supplementary Materials A. In summary, we do not find that the fixed order design had a strong impact on the findings, as we do not find that looking behavior differed systematically between different randomization orders, while also looking patterns across ages and tasks indicate that we were able to adequately capture variance associated with these features. Further, we have adapted the interpretation of the results across the manuscript to acknowledge the experimental error and its implications on the interpretation of the results.

      For instance, on pages 30 and 31 we have added the following paragraphs:

      “The data presented in this study holds several limitations. First, due to an error in our experimental scripts we unintentionally used a fixed-order design, in which almost all infants saw the same fixed order of condition (always starting with a synchronous trial), image assigned to condition, and location of the image (left/right) instead of a semi-randomized design. Such a fixed-order design holds several important limitations as visual preferences might be influenced by the experimental design, i.e., the first trial always being synchronous might have influenced a mean group preference. Further, we cannot rule out that mean group preferences were influenced by the stimuli used (as in most cases the same stimuli were used for synchronous/asynchronous trials) or by the location of the image in a given trial (left/right). Still, there is no strong theoretical argument as to why image used or location should have an impact on infants’ preferences. The stimuli were selected to be similar to each other, in order not to evoke a piori preferences. To further illustrate the impact of the fixed order design we have conducted several additional analyses, which can be found in Supplementary Materials A, which do not indicate that there was a strong impact of the fixed-order design. Specifically, we find no evidence for systematic differences between infants tested with the fixed design and infants tested with a randomized design.

      Despite these limitations fixed-order designs also hold advantages, as they are more suitable to investigate individual differences (Dang et al., 2020; Hedge et al., 2018). When each participant is exposed to the same procedure, individual differences are less likely to be attributed to effects of randomization but are more likely to reflect real differences between participants. Also, when considering the impact of the randomization, one must consider our results in relation to earlier studies (Maister et al. 2017, Weijs et al. 2022, Imafuku et al. 2023), some of which used the exact same stimuli as we did (Maister et al., 2017), with fully randomized designs. Results of these studies indicate no looking times differences depending on the stimulus assigned to each condition or systematic preferences for one of the stimuli.”

      - The conclusion that cardiac interoception remains stable across infancy is not fully warranted by the data. Given the small sample size of 18-month-old toddlers included in the final analyses, it might be misleading to state this without including the caveat that the study may be underpowered. In other words, the small sample size could explain the direction of the results for this age group. 

      We agree with the reviewer and explicitly acknowledge this issue now in the discission, p.  23: 

      “However, due to the small sample size at 18 months the results regarding changes and stability of interoceptive sensitivity in the second year of life must be considered speculative and need to be validated in further research.”

      Reviewer #1 (Recommendations For The Authors): 

      Below are some comments that the authors may wish to take into account: 

      - Why did the authors choose to apply different statistical analyses across the dataset (i.e. Bayesian t-test is used with the 3-month-old sample, whereas a paired t-test is used for the 9 and 18-month-olds)? 

      The use of different statistical analyses was driven by the timeline of the project, as we had to update our initial plans. Due to challenges related to the Covid-19 pandemic, it was not possible to recruit 3-month-old babies for out study at the time we started the data collection. Thus, we first collected the 9- and 18-month-olds, and the 3-month-olds later. For the 9- and 18-month-old samples we aimed at directly replicating the approach by Maister et al. (2017). However, for the 3-month-olds we wanted to focus more on classification of the strength of evidence in favor/against an effect, taking the results of the equivalence tests for the 9- and 18-month-olds into account.

      The following parts have been added to the manuscript to clarify our approach:

      Sample (p 33): “The 3-month-old sample was tested after completion of the 9- and 18-monthold samples. Initially, we had planned to start data collection with the 3-month-old sample.

      However, due to the Covid-19 pandemic this was not possible.”

      Statistical analysis (p. 41): “At 3 months we used a Bayesian paired t-test as the data collection was done after having collected the 9- and 18-month-old samples. Our intention in the analysis of the 3-month-old sample was to focus more strongly on strength of evidence in favor of/against an effect instead of a binary classification for/against an effect.”

      - I found the way in which sample sizes are reported a little unclear. This may be due to having the Results section before the Methods section (in line with journal requirements), but it would be helpful if the authors could clarify their sample size from the outset. For example, sample size for the 3-month-olds first says N = 80 (page 9), but then it becomes apparent that N = 53 completed the iBEAT and N = 40 completed the iBREATH. I think for the purpose of explaining the results, it might be more helpful to the reader to only know the final sample size and then specify recruited participants and dropout in the Methods. 

      We have adapted the description of sample sizes in the Results section. We now only refer to the number of infants included in a given analysis when reporting the results of the analysis. In addition, we have added the following clarification for the MEGA analysis (p. 11): “This approach allowed us to include 135 observations for the iBEATs from 125 infants, and 120 observations for the iBREATH from 107 infants. The sample size differs slightly from our preregistered approach given that we used the same preprocessing approach for the MEGAanalysis for all samples. “ 

      In addition, we now refer to the sample of the MEGA-analysis in the abstract, to make the understanding of our approach more intuitive.

      - I think the sentence "Interestingly, we find evidence for a positive relationship between cardiac and respiratory perception in our 18-month-old sample" at page 25 could be deleted given that the small sample size of 18-month-olds suggests this result should be interpreted with caution. The authors already explained this in the earlier paragraph (page 24) and simply re-stating this (weak) effect without further elaborating may not be necessary. 

      We have removed the sentence.

      - In multiple places in the manuscript, the authors hint at the association between interoception and certain social and self-related abilities (e.g. joint attention, mirror self-recognition), however, these are not fully elaborated on. Could the authors elaborate on the relation between mirror self-recognition and respiratory interoception (page 30)? Why would the ability to recognise the self-face be associated with the individual's ability to perceive their breathing pattern? How these two processes may be linked is not immediately obvious. 

      We have rephrased the sentence on page 30 to highlight that the increase in respiratory perception found in our results happens at a similar age as increases in other domains that might be related to interoception. “A hypothesis to be tested in future research is that developmental improvement in respiratory perception might be related to increases in other domains that show links to interoception. For instance, self-perception matures towards the end of the second year of life and has been conceptually related to interoception (Fotopoulou & Tsakiris, 2017; Musculus et al., 2021). Further, gross motor development may be considered in future research, which drastically matures in the first two years of life (WHO Multicentre Growth Reference Study Group, 2006) and has been shown to be related to respiratory function in children with cerebral palsy (Kwon & Lee, 2014).”

      - Aren't the 18-month-old infants effectively 19-month-olds? The mean age is 576.65 days, and the age window of recruitment was between 18 and 20 months. 

      We have added a sentence clarifying how we refer to the infants age ranges. “To stay coherent, we refer to each age group throughout the manuscript with regard to the lower end of the age range in which we included infants (e.g., we tested infants between 9 and 10 months, but refer to them as the 9-month-old group).”

      Reviewer #2 Public:

      Weaknesses: 

      (1) My primary concern is that this study did not counterbalance the conditions of the first trial in both iBEAT and iBREATH tests for the 9-month and 18-month age groups. In these tests, the first trial invariably involved a synchronous stimulus. I believe that the order of trials can significantly influence an infant's looking duration, and this oversight could potentially impact the results, especially where a marked preference for synchronous stimuli was observed among infants. 

      Upon conducting further analyses to address this comment, we noticed an error in our presentation scripts that resulted in the inadvertent use of a fixed-experimental design for most infants. Therefore, we have conducted extensive additional analysis which can be found in Supplementary Materials A. Specifically, we compared data from infants who were tested with the inadvertent fixed design to data from infants for whom the randomization was achieved as intended. Further, we have adapted the interpretation of the results across the manuscript to acknowledge the experimental error and its potential implications for the interpretation of the results.

      (2) The analysis indicated that the study's sample size was too small to effectively assess the effects within each age group. This limitation fundamentally undermines the reliability of the findings. 

      We have added a statement addressing this issue to the limitation section: “The reduced sample size might have impacted the statistical power to detect mean preferences for some age groups. Still, it must be noted that even the smaller sample sizes included were of similar size as used in previous studies on infant interoceptive sensitivity (Imafuku et al., 2023; Maister et al., 2017; Weijs et al., 2023).”

      (3) The authors attribute the infants' preferential-looking behavior solely to the effects of familiarity and novelty. However, the meaning of "familiarity" in relation to external stimuli moving in sync with an infant's heartbeat or breathing is not clearly defined. A deeper exploration of the underlying mechanisms driving this behavior, such as from the perspectives of attention and perception, is necessary. 

      We have adapted the respective paragraph in the discussion to clarify the term familiarity, and to also address that other aspects of attention and perception, might be relevant (p. 25): 

      “In this context familiarity might refer to the infant’s perception of congruence between internal signal and external stimuli which might drive the infant’s attention. Specifically, the synchronous condition should be easier to process due to the intersensory redundancy and predictability between interoceptive and external signals. “

      “However, it is important to consider that other cognitive and attentional mechanisms could also influence these responses.”

      Reviewer #2 (Recommendations For The Authors):  

      Introduction: 

      (1) The relevance of respiration to self-regulation and social interaction was not clearly described. 

      We have rephrased the relevant section to highlight that the increase in respiratory perception found in our results happens at a similar age as increases in other domains that might be related to interoception. “A hypothesis to be tested in future research is that developmental improvement in respiratory perception might be related to increases in other domains that show links to interoception. For instance, self-perception matures towards the end of the second year of life and has been conceptually related to interoception (Fotopoulou & Tsakiris, 2017; Musculus et al., 2021). Further, gross motor development may be considered in future research, which drastically matures in the first two years of life (WHO Multicentre Growth Reference Study Group, 2006) and has been shown to be related to respiratory function in children with cerebral palsy (Kwon & Lee, 2014).”

      (2) In the last line of page 5, it might be more appropriate to use the term "meta-cognitive awareness" instead of "meta-perception," as the latter can refer to a different concept. 

      We have changed the word as recommended. 

      (3) The authors predicted a positive correlation in sensitivity between the cardiac and respiratory domains, despite studies in adults suggesting these are not related. How did the authors arrive at this prediction, and how do they interpret the results showing a correlation only in 18-montholds, the age group closest to adults in this study? 

      We have elaborated on our reasoning for our prediction (p. 7): “Adult cardiac and respiratory interoception paradigms typically use two conceptually different paradigms. Thus, null results in the adult literature might be due to the unique characteristics of those paradigms.”

      Further, we have expanded on this result in the discussion (p. 24): “Still, we find a relationship between cardiac and respiratory signals in the oldest sample tested here, the 18-month-olds, which is closest to adults. Although this effect needs to be interpreted with caution due to the small sample size, this might indicate that using conceptually similar experimental paradigms might be a promising avenue to investigate relationships between different interoceptive modalities in adults.”

      Results: 

      (4) Please provide the descriptive statistics (means and standard deviations of looking time) for each independent condition, especially for the 18-month and 3-month age groups where this information is missing and only differences in looking times between conditions were mentioned. Furthermore, since the asynchronous condition includes both fast and slow stimuli, descriptive statistics for each should be included to help readers determine whether effects are due to synchronicity or stimulus speed. 

      We have added the information on mean and sd of looking times to synch and asynch trials to the results section. Mean looking times to both types of asynchronous trials can be found in supplementary materials C. We have added the information about standard deviations to this part. 

      (5) Regarding the MEGA analysis for iBEATs, where a main effect of condition was found (OR = 1.13, t(1769) = 2.541, p = .011), are these t-value and p-value based on the GLMM analysis, or did the authors conduct a separate t-test? This query arises because the p-value of the main effect differs from that in Table 2. Also, is it conventional to present GLMM results in the manner of Table 2, comparing specific level combinations (i.e., synchronous condition and 3month age group), instead of listing main effects and interactions? 

      Thank you very much for pointing out that the results of the GLMM were not reported as precise as possible, which might lead to confusion over the presented p-values. The main effect of condition refers to a post-hoc comparison using estimated marginal means from the GLMM across all age groups, while Table 2 refers to the main effect of condition for age group 3 months. 

      To make the results more accessible we have restructured parts of the manuscript following your suggestions: In the main manuscript we now focus on the interaction effects for condition and age, as well as the post hoc comparison, while we now report null-full model comparison, and tables for all age groups in the supplements. 

      We have added the following clarifying sentences to the manuscript, p. 12:

      “In reporting these results we focus on whether we found evidence for interactions between age groups, and whether we found evidence for a general effect across age groups. In-depth results and tables can be found in Supplementary Materials C. 

      […]

      Next, we computed post hoc comparisons using estimated marginal means from the MEGAanalysis across all age groups to investigate whether we find indications for a similar effect across ages.”

      (6) I am confused about the results indicating a significant effect of condition for the iBREATH dataset excluding 18-month-olds (Table 5, OR = 1.15, t(1050) = 2.397, p = .017), as the description in Table 5 suggests no statistical significance (p = .070). The decision to exclude the 18-month group seems arbitrary, particularly since the age-by-condition interaction was not significant in the GLMM across all three age groups. 

      Thank you very much for the comment, we have removed the analysis excluding the 18-month-old group

      (7) Regarding the relationship between cardiac and respiratory interoceptive sensitivity, the statement "However, we found a significant interaction between iBEATs scores and age at the 18-month level" (p16) seems unclear. Clarification is needed, as mentioning age interaction at a specific age stage is unusual. A pairwise comparison between 3 and 9 months should also be included. 

      Thank you for pointing out that the results could be presented more clearly! Similar to the other MEGA analyses we have put detailed tables of the results of the beta regression in the supplements and have kept a single table with the most important results in the main manuscript. Further, we have clarified the text passage as follows: “However, we found a significant interaction between the iBEATs scores and age, specifically comparing the 3- and 18-month-old groups (β = 3.13, SE = 1.41, p = .027). This interaction indicates that the relationship between iBEATs and iBREATH scores changes between 3 and 18 months of age.”  Also, we have now included a pairwise comparison between 3- and 9-month-olds. 

      Discussion: 

      (8) In pages 27-28, the authors discuss the results of the specification curve analysis, but there is no explanation for the 7th entry (statistical analysis) in Table 9. This entry seems particularly important. 

      We did not include an explanation for the 7th entry, as the impact of the statistical test used was comparatively less pronounced. However, to acknowledge this result we have added the following sentence to the discussion: “Moreover, the statistical test used (paired t-test vs linear mixed model, Table 9, 7th entry) had a rather small impact on the results. However, given the large number of analyses conducted, this might be related to not being able to precisely formulate the model to fit the complexity of the data for each specification.”

      Methods: 

      (9) What were the colors of the stimuli? 

      We have added the colors of the stimuli to the methods section. Further, the stimuli can be found in the osf project associated with the manuscript.

      (10) The percentage of trials excluded during preprocessing should be stated. Additionally, the number of trials included in the statistical analyses for each condition (including synchronous, fast, and slow) should be detailed separately. 

      We have added information on numbers of trials completed and included in Table 7.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Amason et al. investigated the formation of granulomas in response to Chromobacterium violaceum infection, aiming to uncover the cellular mechanisms governing the granuloma response. They identify spatiotemporal gene expression of chemokines and receptors associated with the formation and clearance of granulomas, with a specific focus on those involved in immune trafficking. By analyzing the presence or absence of chemokine/receptor RNA expression, they infer the importance of immune cells in resolving infection. Despite observing increased expression of neutrophil-recruiting chemokines, treatment with reparixin (an inhibitor of CXCR1 and CXCR2) did not inhibit neutrophil recruitment during infection. Focusing on monocyte trafficking, they found that CCR2 knockout mice infected with C. violaceum were unable to form granulomas, ultimately succumbing to infection.

      The spatial transcriptomics data presented in the figures could be considered a valuable resource if shared, with the potential for improved and clarified analyses. The primary conclusion of the paper, that C. violaceum infection in the liver cannot be contained without macrophages, would benefit from clarification.

      We thank the reviewer for their time and effort in evaluating our manuscript.

      While the spatial transcriptomic data generated in the figures are interesting and valuable, they could benefit from additional information. The manual selection of regions of granulomas for analysis could use additional context - was the rest of the liver not sequenced, or excluded for other reasons? Including a healthy liver in the analysis could serve as a control for any lasting effects at the final time point of 21 days.

      We revised the text in the methods section to include additional information about manual selection of regions. The entire tissue section was sequenced, but using H&E as a guide, we manually selected each representative lesion and a surrounding layer of healthy hepatocytes at each timepoint. We agree that an uninfected control could be useful, however we did not include an uninfected mouse in the experiment because we were most interested in the cells that make up the granuloma, not hepatocytes outside the lesion. Additionally, we find that in the 21 DPI timepoint the surrounding hepatocytes appear to have returned to a homeostatic transcriptional state; at 21 DPI the majority of mice have undetectable CFU burdens.

      Providing more context for the scalebars throughout the spatial analyses, such as whether the data are raw counts or normalized based on the number of reads per spatial spot, would be helpful for interpretation, as changes in expression could signal changes in the numbers of cells or changes in the gene expression of cells.

      The scalebars for the SpatialFeaturePlots display the normalized gene expression values. The data are normalized based on the number of reads per spatial spot, using the sctransform method published in (Hafemeister & Satija, 2019). We agree that the changes in expression could result from changes in cell numbers and/or changes in gene expression on a per cell basis. However, the sctransform method is designed to preserve biological variation while minimizing technical effects observed in transcriptomics platforms. Regardless of the heterogeneity of sequencing depth, it is clear from these plots that gene expression changes dynamically over time and space, which was the focus of our analysis. We have updated the figure legends to clarify scalebar units, and revised the methods section. 

      In Figure 4, qualitative measurements are valuable, but having an idea of the raw data for a few of the pursued chemokines/receptors would aid interpretation

      All of the SpatialFeaturePlots utilized to generate Figure 4 have been included in the manuscript, either in the main figures or in the supplemental figures. For example, the SpatialFeaturePlots of Cxcl4, Cxcl9, and Cxcl10 are all in Figure 4 – figure supplement 1.

      In Figure 4 it would also be beneficial to clarify whether the reported values are across all clusters and consider focusing on clusters with the greatest change in expression.

      Figure 4 summarizes the expression of each gene at each timepoint for the entire selected area, independently of cluster identity. Different clusters do show variability in the relative change in expression. To better show these data, we have included an additional graphic that summarizes the top twenty upregulated genes for each cluster, many of which include chemokines (new Table 4). The average log2FC values for each of these genes can be found in Table 4 – source data 1.   

      Figures 5E and F would benefit from clarification regarding the x-axis units and whether the expression levels are summed across all clusters for each time point

      Figures 5E and 5F display the normalized gene expression values for all spots (independent of cluster identity) at each timepoint. We have updated the figure legend to reflect this clarification.

      Additionally, information on the sequencing depth of the samples would be helpful, particularly as shallow sequencing of RNA can result in poor capture of low-expression transcripts.

      We agree with the reviewer that sequencing depth is an additional factor to take into consideration. We have included an additional supplemental figure (Figure 1 – figure supplement 1A-B) to display raw counts spatially at the various timepoints, and within each cluster.

      Regarding the conclusion of the essentiality of macrophages in granuloma formation, it may be prudent to further investigate the role of macrophages versus CCR2. Consideration of experiments deleting macrophages directly, instead of CCR2, could provide more definitive evidence of the necessity of macrophage migration in containing infections.

      While CCR2 is expressed on a number of other cells besides monocytes, it is well-documented that loss of CCR2 results in accumulation of monocytes in the bone marrow and a significant reduction in the blood-monocyte population. As a result, monocytes are not recruited to the site of infection in numerous prior publications in the field; we confirm this as shown by flow cytometry and IHC. Nonetheless, future studies will aim to rescue Ccr2–/– mice via adoptive transfer of monocytes to further show that monocyte-derived macrophages are essential for defense against infection. We also intend to perform clodronate depletion experiments at various timepoints, however, clodronate will also deplete Kupffer cells and has off-target effects on neutrophils. Overall, the established importance of CCR2 for monocyte egress from the bone marrow and our observation that the macrophage ring fails to form give us sufficient confidence to conclude that monocyte-derived macrophages are essential for this innate granuloma.

      Analyzing total cell counts in the liver after infection could provide insight into whether the decrease in the fraction of macrophages is due to decreased numbers or infiltration of other cell types...

      Our flow data suggest that the decrease in macrophages in Ccr2–/– mice is due to both a decrease in macrophage number and an increase in the infiltration of other cell types (namely neutrophils). To better illustrate this, we now include an additional quantification of the total cell counts in the liver and spleen (new Figure 6 – figure supplement 1), which supports our conclusion that Ccr2–/– mice have a defect in granuloma macrophage numbers. We have also repeated the experiment to reach sufficient numbers to perform statistical analysis (revised Figure 6F–K).

      Reviewer #2 (Public Review):

      Summary:

      In this study, Amason et al employ spatial transcriptomics and intervention studies to probe the spatial and temporal dynamics of chemokines and their receptors and their influence on cellular dynamics in C. violaceum granulomas. As a result of their spatial transcriptomic analysis, the authors narrow in on the contribution of neutrophil- and monocyte-recruiting pathways to host response. This results in the observation that monocyte recruitment is critical for granuloma formation and infection control, while neutrophil recruitment via CXCR2 may be dispensable.

      We thank the reviewer for their thoughtful comments and suggestions.

      Strengths:

      Since C. violaceum is a self-limiting granulomatous infection, it makes an excellent case study for 'successful' granulomatous inflammation. This stands in contrast to chronic, unproductive granulomas that can occur during M. tuberculosis infection, sarcoidosis, and other granulomatous conditions, infectious or otherwise. Given the short duration of C. violaceum infection, this study specifically highlights the importance of innate immune responses in granulomas.

      Another strength of this study is the temporal analysis. This proves to be important when considering the spatial distribution and timing of cellular recruitment. For example, the authors observe that the intensity and distribution of neutrophil- and monocyte-recruiting chemokines vary substantially across infection time and correlate well with their previous study of cellular dynamics in C. violaceum granulomas.

      The intervention studies done in the last part of the paper bolster the relevance of the authors' focus on chemokines. The authors provide important negative data demonstrating the null effect of CXCR1/2 inhibition on neutrophil recruitment during C. violaceum infection. That said, the authors' difficulty with solubilizing reparixin in PBS is an important technical consideration given the negative result...

      We agree with the reviewer, and the limited solubility of reparixin and other chemokine-receptor inhibitors is a major caveat of this study and others in the field. In future studies, there are several other inhibitors that could be used to further assess the role of CXCR1/2.

      On the other hand, monocyte recruitment via CCR2 proves to be indispensable for granuloma formation and infection control. I would hesitate to agree with the authors' interpretation that their data proves macrophages are serving as a physical barrier from the uninvolved liver. It is possible and likely that they are contributing to bacterial control through direct immunological activity and not simply as a structural barrier.

      We agree that macrophages do not form a physical or structural barrier, a word that implies epithelial-like function. Instead, we agree that macrophages mostly act immunologically. We revised the text to remove the term barrier.

      Weaknesses:

      There are several shortcomings that limit the impact of this study. The first is that the cohort size is very limited. While the transcriptomic data is rich, the authors analyze just one tissue from one animal per time point. This assumes that the selected individual will have a representative lesion and prevents any analysis of inter-individual variability.

      Granulomas in other infectious diseases, such as schistosomiasis and tuberculosis, are very heterogeneous, both between and within individuals. It will be difficult to assert how broadly generalizable the transcriptomic features are to other C. violaceum granulomas...

      We thank the reviewers for highlighting this key difference between granulomas in other infectious diseases, and granulomas induced by C. violaceum. Based on many prior experiments, we observe that C. violaceum-induced granulomas are very reproducible between and within individuals (highlighted in our previous publication). As this is a major advantage of this model system, we chose specific timepoints based on key events that consistently occur in the majority of lesions assessed at each timepoint, allowing us to be confident in the selection of representative granulomas. However, it is worth noting that granulomas within an individual mouse are seeded and resolved somewhat asynchronously. This did indeed affect our spatial transcriptomic data, as the 7 DPI timepoint was not histologically representative of a typical 7 DPI granuloma. Therefore, we excluded the 7 DPI timepoint from our analyses.

      Furthermore, this undermines any opportunity for statistical testing of features between time points, limiting the potential value of the temporal data.

      We agree with the reviewer that there is much more characterization and quantification that can be done. As demonstrated by the abundance of spatial and temporal data for the chemokine family alone, the spatial transcriptomics dataset is rich and will likely supply us with many years of analyses and investigations. Our current approach is to use the spatial transcriptomics dataset as a hypothesis-generating tool, followed by in vivo studies that seek to uncover physiological relevance for our observations. In the current paper, the strength of the spatial transcriptomic data for CCL2, CCL7 and their receptor CCR2 prompted us to study Ccr2–/– mice. These mice then prove the relevance of the spatial transcriptomic data. In regard to conclusions about temporal changes in chemokine expression, in this manuscript we do not make conclusions that CCL2 is important at one timepoint but not another. We are characterizing the broad temporal trends of expression in order to cast a broad net to inform future in vivo studies. There is much work for us to do to explore all the induced chemokines and their receptors.

      Another caveat to these data is the limited or incompletely informative data analysis. The authors use Visium in a more targeted manner to interrogate certain chemokines and cytokines. While this is a great biological avenue, it would be beneficial to see more general analyses considering Visum captures the entire transcriptome. Some important questions that are left unanswered from this study are:

      What major genes defined each spatial cluster?...

      The initial characterization of each spatial cluster was performed in Harvest et al., 2023. In brief, we used a mixture of published single-cell sequencing data, histological-based parameters, and ImmGen to define each cluster. We have not re-stated those methods in the current manuscript, but instead reference our prior paper.

      What were the top differentially expressed genes across time points of infection?...

      Though the top differentially expressed genes for each cluster can be informative in some situations, we chose a more targeted approach because of the obvious importance of chemokines. Nonetheless, we have included an additional graphic that summarizes the top twenty upregulated genes for each cluster (new Table 4). The average log2FC values for each of these genes can be found in Table 4 – source data 1.  

      Did the authors choose to focus on chemokines/receptors purely from a hypothesis perspective or did chemokines represent a major signature in the transcriptomic differences across time points?

      We chose to focus on chemokines because of their obvious importance for recruitment of immune cells. They were also among the highest induced genes in the spatial transcriptome (new Table 4).

      In addition to the absence of deep characterization of the spatial transcriptomic data, the study lacks sufficient quantitative analysis to back up the authors' qualitative assessments...

      See above comment regarding statistical comparisons.

      Furthermore, the authors are underutilizing the spatial information provided by Visium with no spatial analysis conducted to quantify the patterning of expression patterns or spatial correlation between factors.

      Several factors make quantification challenging. Lesions grow considerably in size in the first few days of infection, and then shrink in size in the latter days. This makes quantification challenging between timepoints. Radial quantification is also challenging due to the irregular shapes of each granuloma (see comment below for further discussion). Most importantly, the key next experiments are to validate the importance of each chemokine and receptor in vivo. Once we know which ones are the most important, this will justify putting more effort into spatial quantitative analysis and patterning of expression for those chemokines. 

      Impact:

      The author's analysis helps highlight the chemokine profiles of protective, yet host protective granulomas. As the authors comment on in their discussion, these findings have important similarities and differences with other notable granulomatous conditions, such as tuberculosis. Beyond the relevance to C. violaceum infection, these data can help inform studies of other types of granulomas and hone candidate strategies for host-directed therapy strategies.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      The Visium analysis would be strengthened by

      (1) Showing several histology examples of granulomas at each timepoint to help aid the reader in seeing how 'representative' each Visium sample is...

      These histological analyses are performed in our previous manuscript, and indeed were a crucial aspect of the initial characterization of the spatial transcriptomics dataset, which was performed in Harvest et al., 2023. Full liver sections are shown in that paper at each timepoint, and readers can see that the architecture is highly reproducible.

      (2) Validating their results in other tissues, either with Visium or with more targeted assays for their study's key molecules, such as immunohistochemistry or in situ hybridization

      We agree on the importance of validation studies and have plans to perform single-cell RNA sequencing experiments to further enhance resolution. With key genes in mind, we then plan to perform more in vivo studies to assess physiological relevance of upregulated genes in specific cell types.

      At the very least it would be important to validate the expression of CXCL1 and CXCL2 in other tissues and at the protein level, given the importance of those findings

      We think that the reviewer is asking us to validate that CXCL1 and CXCL2 are actually expressed given the negative reparixin data. However, if we do prove that they are expressed, this will not resolve whether they have critical roles in neutrophil recruitment. To prove this, we would need either a better CXCR2 inhibitor or Cxcr2 knockout mice. Therefore, we are saving further exploration for the future. Regarding validating other chemokines, we establish that CCR2 is critical, and we now show by immunofluorescence and ELISA (new Figure 7 – figure supplement 4) that CCL2 is highly expressed in WT mice, and Ccr2–/– mice actually have strongly elevated CCL2 expression at 3 DPI compared to WT mice.

      In Figure 1B, the UMAP here is largely uninformative. To display the clusters, the authors should instead show a heatmap or equivalent visualization of which genes defined each cluster. It would be helpful for the authors to also write out the full name of each cluster before using the abbreviations shown.

      Please see our previous comment about the initial characterization of clusters performed in Harvest et al., 2023, which details the characteristic genes for each cluster. We have written the full names of each cluster in the legend of Figure 1.

      In Figure 1C the authors, use a binary representation of whether a cluster is present or not at a particular time point. However, the spot size is arbitrary, and the colors of the dots are the same as the cluster color code. It is not clear what threshold the authors (or SpatialDimPlots) use to declare a given cluster is present at a given time point. Therefore, this chart does not give any sense of the extent of each cluster's presence at each time. The authors should revisualize these data to display the abundance of each cluster at each timepoint. This could simply be done by adjusting the size of the circle or using a more traditional heatmap.

      We have now updated this graphic to display the extent of a cluster’s presence, with the size of each dot corresponding to the abundance of each cluster.

      In Figures 2 and 3 the authors describe the kinetics of each chemokine by cluster. While the dynamic expression is evident in the images, it is challenging to determine which clusters are driving expression in the absence of cluster annotation in those figures. The authors should support their visual findings with quantification of each factor in each cluster across time points.

      In Figure 5, violin plots are shown for Cxcl1 and Ccl2 that depict gene expression by each cluster. However, because each capture area is approximately 50 µm in diameter, the data do not achieve single-cell resolution and are not as informative as one would hope. Therefore, violin plots for each chemokine were not shown, though we have generated these graphics. We did not add these graphics to the revision because we did not think readers would generally want to see several pages of violin plots in the supplement. As mentioned, we plan to do single-cell RNA sequencing to further assess chemokine expression by each cell type present within the granulomas at key timepoints.

      With respect to the lack of spatial analysis, the authors describe certain transcript signals (ie. peripheral region versus central region of the granuloma) across each lesion. To back up these qualitative assertions, the authors could use line profiles from the center of each granuloma to the outside to plot the variation in expression of each transcript over radial space. This would provide a more direct way to determine the spatial coordination between various transcripts.

      We considered using line profiles to quantify spatial variation within each lesion at each timepoint. However, this was exceptionally challenging due to the asymmetrical nature of some lesions, and the size discrepancy at different timepoints as the granulomas grow (during infection) and shrink (during resolution). When attempting to decide where to draw the line profiles, we determined that this approach did not enhance our analyses beyond using the cluster overlay and H&E to identify and interrogate different clusters.

      The data visualization in Figure 4 seems unnecessarily confusing. The authors put the transcriptomic signal into categories of 'absent', 'low', 'medium', and 'high.' Why not simply use a continuous scale? The data would also benefit from hierarchical clustering of the heatmap rows to highlight chemokines and their receptors with similar expression patterns across time.

      We considered using a continuous scale as suggested by the reviewer. However, we chose not to create a continuous scale because quantitation is challenging due to the size changes in the lesions over time, such that larger lesions have greater inclusion of surrounding hepatocytes as well as necrotic cores, which would dilute the signal if averaged with the active immunologic granuloma zones. Figure 4 was intended to simplify the entirety of the SpatialFeaturePlots in an easy-to-digest manner, to aid in hypothesis generation as we consider the potential function of each chemokine and receptor in this model. We chose to organize each chemokine ligand based on family, maintaining a numerical order to allow Figure 4 to serve as a quick reference for anyone who is interested in a particular chemokine ligand or receptor.

      Do the authors feel confident in the transcriptomic signal coming from regions of necrosis? Given that many of their bright signals are coming from within clusters annotated as necrosis or necrosis-adjacent this raises an important technical consideration. Can the authors use the H&E image to estimate the cellular density (based on nuclear counts) in each region annotated by Visium? Are there any studies supporting the accurate performance of spatial transcriptomic methods in necrosis? Necrosis can be a source of non-specific binding during in situ hybridization assays.

      The reviewer raises a good point. A defining characteristic of the areas of necrosis is the lack of defined cell borders, with faded or absent nuclei. In these regions, it is impossible to estimate cellular density. Given these concerns, we have included an additional figure (new Figure 1 – figure supplement 1A-B) to display raw counts in each cluster across all timepoints. Though regions of necrosis do display lower read quantity compared to other areas, we are still confident in the positive transcriptomic signal coming from adjacent regions because there are plenty of negative examples in which expression is not detected. In other words, temporal and spatial upregulation of key genes is still observed in the tissues, and future experiments will aim to interrogate the physiological relevance of each gene, while validating the spatial transcriptomics data with other methodologies.

      The methods should include a much more detailed description of the tissue preparation and collection for the Visium experiment. The section on the computational analysis of the Visium data is also extremely limited. At a minimum, the authors should include details on how they performed clustering of the Visium regions.

      The detailed description of tissue preparation, computational analysis, and clustering is in our previous manuscript, from which this dataset originates. We can add a direct quote of the methodology if the reviewer requests.

      The cluster labels in Figure 5 A-B are very difficult to see. Furthermore, it would help if the authors displayed the annotated cluster names (ie. Those shown in 5C) instead of their numerical coding for a more direct interpretation of the data.

      We agree and have updated this figure with annotated cluster names.

      The scale bars in Figure 7 are very difficult to see.

      The scale bars in histology images were kept small intentionally so as not to occlude data, and eLife is an online-only, digital media platform which allows readers to sufficiently zoom on high-resolution histology images. We have increased the DPI resolution for histology images to further aid in visualization.

      The information presented in Tables 2 and 3 is greatly appreciated and will really help guide the reader through the analyses.

      We assembled this information for our own learning about chemokines and hope that it is useful for the reader.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      It is suggested that for each limb the RG (rhythm generator) can operate in three different regimes: a non-oscillating state-machine regime, and in a flexor driven and a classical half-center oscillatory regime. This means that the field can move away from the old concept that there is only room for the classic half-center organization

      Strengths:

      A major benefit of the present paper is that a bridge was made between various CPG concepts ( "a potential contradiction between the classical half-center and flexor-driven concepts of spinal RG operation"). Another important step forward is the proposal about the neural control of slow gait ("at slow speeds ({less than or equal to} 0.35 m/s), the spinal network operates in a state regime and requires external inputs for phase transitions, which can come from limb sensory feedback and/or volitional inputs (e.g. from the motor cortex").

      Weaknesses:

      Some references are missing

      We thank the Reviewer for the thoughtful and constructive comments. We have added additional text to meet the specific Reviewer’s recommendations and several references suggested by the Reviewer.  

      Reviewer #2 (Public Review):

      Summary:

      The biologically realistic model of the locomotor circuits developed by this group continues to define the state of the art for understanding spinal genesis of locomotion. Here the authors have achieved a new level of analysis of this model to generate surprising and potentially transformative new insights. They show that these circuits can operate in three very distinct states and that, in the intact cord, these states come into successive operation as the speed of locomotion increases. Equally important, they show that in spinal injury the model is "stuck" in the low speed "state machine" behavior.

      Strengths:

      There are many strengths for the simulation results presented here. The model itself has been closely tuned to match a huge range of experimental data and this has a high degree of plausibility. The novel insight presented here, with the three different states, constitutes a truly major advance in the understanding of neural genesis of locomotion in spinal circuits. The authors systematically consider how the states of the model relate to presently available data from animal studies. Equally important, they provide a number of intriguing and testable predictions. It is likely that these insights are the most important achieved in the past 10 years. It is highly likely proposed multi-state behavior will have a transformative effect on this field.

      Weaknesses:

      I have no major weaknesses. A moderate concern is that the authors should consider some basic sensitivity analyses to determine if the 3 state behavior is especially sensitive to any of the major circuit parameters - e.g. connection strengths in the oscillators or?

      We thank the Reviewer for the thoughtful and constructive comments. The sensitivity analysis has been included as Supplemental file.

      Reviewer #3 (Public Review):

      Summary:

      This work probes the control of walking in cats at different speeds and different states (split-belt and regular treadmill walking). Since the time of Sherrington there has been ongoing debate on this issue. The authors provide modeling data showing that they could reproduce data from cats walking on a specialized treadmill allowing for regular and split-belt walking. The data suggest that a non-oscillating state-machine regime best explains slow walking - where phase transitions are handled by external inputs into the spinal network. They then show at higher speeds a flexor-driven and then a classical halfcenter regime dominates. In spinal animals, it appears that a non-oscillating state-machine regime best explains the experimental data. The model is adapted from their previous work, and raises interesting questions regarding the operation of spinal networks, that, at low speeds, challenge assumptions regarding central pattern generator function. This is an interesting study. I have a few issues with the general validity of the treadmill data at low speeds, which I suspect can be clarified by the authors.

      Strengths:

      The study has several strengths. Firstly the detailed model has been well established by the authors and provides details that relate to experimental data such as commissural interneurons (V0c and V0d), along with V3 and V2a interneuron data. Sensory input along with descending drive is also modelled and moreover the model reproduces many experimental data findings. Moreover, the idea that sensory feedback is more crucial at lower speeds, also is confirmed by presynaptic inhibition increasing with descending drive. The inclusion of experimental data from split-belt treadmills, and the ability of the model to reproduce findings here is a definite plus.

      Weaknesses:

      Conceptually, this is a very useful study which provides interesting modeling data regarding the idea that the network can operate in different regimes, especially at lower speeds. The modelling data speaks for itself, but on the other hand, sensory feedback also provides generalized excitation of neurons which in turn project to the CPG. That is they are not considered part of the CPG proper. In these scenarios, it is possible that an appropriate excitatory drive could be provided to the network itself to move it beyond the state-machine state - into an oscillatory state. Did the authors consider that possibility? This is important since work using L-DOPA, for example, in cats or pharmacological activation of isolated spinal cord circuits, shows the CPG capable of producing locomotion without sensory or descending input.

      We thank the Reviewer for the thoughtful and constructive comments. We have added additional texts, references, and discussed the issues raised by the Reviewer. Particularly, in section “Model limitations and future directions” we now admit that afferent feedback can provide some constant level excitation to the RG circuits after spinal transection which can partly compensate for the lack of supraspinal drive and hence affect (shift) the timing of transitions between the considered regimes. We mentioned that this is one of the limitations of the present model. The potential effects of neuroactive drugs, like DOPA, on CPG circuits after spinal transection were left out because they are outside the scope of the present modeling studies.    

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      specific feedback to the authors:

      Nevertheless, there are some minor points, worth considering.

      Link to HUMAN DATA

      Here the authors may be interested to know that human data supports their proposal. This is relevant since there is ample evidence for the operation of spinal CPG's in humans (Duysens and van de Crommert,1998). The present model predicts that the basic output of the CPG remains even at very slow speeds, thus leading to similarity in EMG output. This prediction fits the experimental data (den Otter AR, Geurts AC, Mulder T, Duysens J. Speed related changes in muscle activity from normal to very slow walking speeds. Gait Posture. 2004 Jun;19(3):270-8). To investigate whether the basic CPG output remains basically the same even at very slow speeds (as also predicted by the current model), humans walked slowly on a treadmill (speeds as slow as 0.28 m s−1). Results showed that the phasing of muscle activity remained relatively stable over walking speeds despite substantial changes in its amplitude. Some minor additions were seen, consistent with the increased demands of postural stability. Similar results were obtained in another study: Hof AL, Elzinga H, Grimmius W, Halbertsma JP. Speed dependence of averaged EMG profiles in walking. Gait Posture. 2002 Aug;16(1):78-86. doi:

      10.1016/s0966-6362(01)00206-5. PMID: 12127190.

      These authors wrote: "The finding that the EMG profiles of many muscles at a wide range of speeds can be represented by addition of few basic patterns is consistent with the notion of a central pattern generator (CPG) for human walking". The basic idea is that the same CPG can provide the motor program at slow and fast speeds but that the drive to the CPG differs. This difference is accentuated under some conditions in pathology, such as in Parkinson's Kinesia Paradoxa. It was argued that the paradox is not really a paradox but is explained as the CPGs are driven by different systems at slow and at fast speeds (Duysens J, Nonnekes J. Parkinson's Kinesia Paradoxa Is Not a Paradox. Mov Disord. 2021 May;36(5):1115-1118. doi: 10.1002/mds.28550. Epub 2021 Mar 3. PMID: 33656203.)

      These ideas are well in line with the current proposal ("Based on our predictions, slow (conditionally exploratory) locomotion is not "automatic", but requires volitional (e.g. cortical) signals to trigger stepby-step phase transitions because the spinal network operates in a state-machine regime. In contrast, locomotion at moderate to high speeds (conditionally escape locomotion) occurs automatically under the control of spinal rhythm-generating circuits receiving supraspinal drives that define locomotor speed, unless voluntary modifications or precise stepping are required to navigate complex terrain").

      As mentioned in the present paper, other examples exist from pathology ("...Another important implication of our results relates to the recovery of walking in movement disorders, where the recovered pattern is generally very slow. For example, in people with spinal cord injury, the recovered walking pattern is generally less than 0.1 m/s and completely lacks automaticity 77-79. Based on our predictions, because the spinal locomotor network operates in a state-machine regime at these slow speeds, subjects need volition, additional external drive (e.g., epidural spinal cord stimulation) or to make use of limb sensory feedback by changing their posture to perform phase transitions"). As mentioned above, another example is provided by Parkinson's disease. The authors may also be interested in work on flexible generators in SCI: Danner SM, Hofstoetter US, Freundl B, Binder H, Mayr W, Rattay F, Minassian K. Human spinal locomotor control is based on flexibly organized burst generators. Brain. 2015 Mar;138(Pt 3):577-88. doi: 10.1093/brain/awu372. Epub 2015 Jan 12. PMID: 25582580; PMCID: PMC4408427.

      We thank the reviewer for these additional and interesting insights. We added a new paragraph in the Discussion to bolster the link with human data that includes references suggested by the Reviewer.

      CHAIN OF REFLEXES

      It reads: "... in opposition to the previously prevailing viewpoint of Charles Sherrington 21,22 that locomotion is generated through a chain of reflexes, i.e., critically depends on limb sensory feedback (reviewed in 23)." This is correct but incomplete. The reference cited (23: Stuart, D.G. and Hultborn, H, "Thomas Graham Brown (1882--1965), Anders Lundberg (1920-), and the neural control of stepping," Brain Res. Rev. 59(1), 74-95 (2008)) actually reads: "Despite the above findings, the doctrinaire position in the early 1900s was that the rhythm and pattern of hind limb stepping movements was attributable to sequential hind limb reflexes. According to Graham Brown (1911c) this viewpoint was largely due to the arguments of Sherrington and a Belgian physiologist, Maurice Philippson (1877-1938). Philippson studied stepping movements in chronically maintained spinal dogs, using techniques he had acquired in the Strasbourg laboratory of the distinguished German physiologist, Friedrich Goltz (1834-1902). He also analyzed kinematically moving pictures of dog locomotion, which had been sent to him by the renowned French physiologist, Etienne-Jules Marey (1830-1904). Philippson (1905) certainly presented arguments explaining his perception of how sequential spinal reflexes contributed to the four phases of the step cycle (see Fig. 1 in Clarac, 2008). In retrospect, it is likely that Graham Brown was correct in attributing to Philippson and Sherrington the then-prevailing viewpoint that reflexes controlled spinal stepping. It is puzzling, nonetheless, that far less was said then and even now about Philippson's belief that the spinal control was due to a combination of central and reflex mechanisms (Clarac, 2008),4,5 4 We are indebted to François Clarac for drawing to our attention Philippson's statement on p. 37 of his 1905 article that "Nos expériences prouvent d'une part que la moelle lombaire séparée du reste de l'axe cérébro-spinal est capable de produire les mouvements coordonnés dans les deux types de locomotion, trot et gallop. [Our experiments prove that one side of the spinal cord separated from the cerebro-spinal axis is able to produce coordinated movements in two types of locomotion, trot and gallop]." Then, on p. 39 Philippson (1905) states that "Nous voyons donc, en résumé que la coordination locomotrice est une fonction exclusivement médullaire, soutenue d'une part par des enchainements de réflexes directs et croisés, dont l'excitant est tantot le contact avec le sol, tantot le mouvement même du membre. [In summary, we see that locomotor coordination is an exclusive function of the spinal cord supported by a sequencing of direct and crossed reflexes, which are activated sometimes by contact with the ground and sometimes even by leg movement]. A coté de cette coordination basée sur des excitations périphériques, il y a une coordination centrale provenant des voies d'association intra-médullaires. [In conjunction with this peripherally excited coordination, there is a central coordination arising from intraspinal pathways]." (The English translations have also been kindly supplied by François Clarac.) Clearly, Philippson believed in both a central spinal and a reflex control of stepping! 5 In part 1 of his 1913/1916 review Graham Brown discussed Philippson's 1905 article in much detail (pp. 345-350 in Graham Brown, 1913b). He concludes with the statement that "... Philippson die wesentlichen Factoren des Fortbewegungsaktes in das exterozeptive Nervensystem verlegt. Er nimmt an, dass die zyklischen Bewegungen automatisch durch äussere Reize erhalten werden, welche in sich selbst thythmisch als Folge der Reflexakte welche sie selbst erzeugen, wiederholt werden. [Philippson assigns the important factors of the act of locomotion to the exteroceptive nervous system. He assumes that the cyclic movements are automatically maintained by external stimuli which, by themselves, are rhythmically repeated as a consequence of the reflexive actions that they generate themselves]." (English translation kindly supplied by Wulfila Gronenberg). This interpretation clearly ignores Philippson's emphasis on a central spinal component in the control of stepping....). "

      Hence it is a simplification to give all credits to Sherrington and ignoring the role of Philippson concerning the chain of reflexes idea.

      We again thank the Reviewer for these additional and interesting insights. We added the Philippson (1905) and Clarac (2008) references. The important contribution of Philippson is now indicated.

      GTO Ib feedback

      It reads: "This effect and the role of Ib feedback from extensor afferents has been demonstrated and described in many studies in cats during real and fictive locomotion 2,57-59."

      These citations are appropriate but it is surprising to see that the Hultborn contribution is limited to the Gossard reference while the even more important earlier reference to Conway et al is missing (Conway BA, Hultborn H, Kiehn O. Proprioceptive input resets central locomotor rhythm in the spinal cat. Exp Brain Res. 1987;68(3):643-56. doi: 10.1007/BF00249807. PMID: 3691733).

      Yes, the Conway et al. reference has been added.

      Other species

      The authors may also look at other species. The flexible arrangement of the CPGs, as described in this article, is fully in line with work on other species, showing cpg networks capable to support gait, but also scratching, swimming ..etc (Berkowitz A, Hao ZZ. Partly shared spinal cord networks for locomotion and scratching. Integr Comp Biol. 2011 Dec;51(6):890-902. doi: 10.1093/icb/icr041. Epub 2011 Jun 22. PMID: 21700568. Berkowitz A, Roberts A, Soffe SR. Roles for multifunctional and specialized spinal interneurons during motor pattern generation in tadpoles, zebrafish larvae, and turtles. Front Behav Neurosci. 2010 Jun 28;4:36. doi: 10.3389/fnbeh.2010.00036. PMID: 20631847; PMCID: PMC2903196.)

      Similar ideas about flexible coupling can also be found in: Juvin L, Simmers J, Morin D. Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators. J Physiol. 2007 Aug 15;583(Pt 1):115-28. doi: 10.1113/jphysiol.2007.133413. Epub 2007 Jun 14. PMID: 17569737; PMCID: PMC2277226. Or zebrafish: Harris-Warrick RM. Neuromodulation and flexibility in Central Pattern Generator networks. Curr Opin Neurobiol. 2011 Oct;21(5):685-92. doi: 10.1016/j.conb.2011.05.011. Epub 2011 Jun 7. PMID: 21646013; PMCID: PMC3171584.

      We added a sentence in the Discussion along with supporting references.

      Standing

      In the view of the present reviewer, the model could even be extended to standing in humans. It reads: "at slow speeds ({less than or equal to} 0.35 m/s), the spinal network operates in a state regime and requires external inputs"; similarly (personal experience) when going from sit to stand: as soon as weight is over support, extension is initiated and the body raises, as one would expect when the extensor center is activated by reinforcing load feedback, replacing GTO inhibition (Faist M, Hoefer C, Hodapp M, Dietz V, Berger W, Duysens J. In humans Ib facilitation depends on locomotion while suppression of Ib inhibition requires loading. Brain Res. 2006 Mar 3;1076(1):87-92. doi:

      Yes, we agree that the model could be extended to standing and the transition from standing to walking is particularly interesting. However, for this paper, we will keep the focus on locomotion over a range of speeds.

      Reviewer #2 (Recommendations For The Authors):

      The presentation is exceedingly well done and very clear.

      A moderate concern is that the authors do not make use of the capacity of computer simulations for sensitivity analyses. Perhaps these have been previously published? In any case, the question here is whether the 3 state behavior is especially sensitive to excitability of one of the main classes of neurons or a crucial set of connections.

      The sensitivity analysis has been made and included as Supplemental file.

      Minor point. I have but two minor points. A bit more explanation should be provided for the use of the terms "state machine" to describe the lowest speed state. Perhaps this is a term from control theory? In any case, it is not clear why this is term is appropriate for a state in which the oscillator circuits are "stuck" in a constant output form and need to be "pushed" by sensory input.

      Yes, we now provide a definition in the Introduction.

      Minor point: it is of course likely that neuromodulation of multiple types of spinal neurons occurs via inputs that activate G protein coupled receptors. These types of inputs are absent from the model, which is fine, but some sort of brief discussion should be included. One possibility is to note that the circuit achieves transitions between different states without the need for neuromodulatory inputs. This appears to me to be a very interesting and surprising insight.

      In section “Model limitations and future directions” in the Discussion, we now mention that the term “supraspinal drive” in our model is used to represent supraspinal inputs providing both electrical and neuromodulator effects on spinal neurons increasing their excitability, which disappear after spinal transection.” We think that it is so far too early to simulate the exact effects of the descending neuromodulation, since there is almost no data on the effect of different modulators on specific types of spinal interneurons.

      Reviewer #3 (Recommendations For The Authors):

      Minor Comments  

      Page numbers would be useful.

      Abstract

      Following spinal transection, the network can only operate in a state-machine regime. This is a bit strong since it applies to computational data. Clarify this statement.

      We agree. Sentence has been changed to: “Following spinal transection, the model predicts that the spinal network can only operate in the state-machine regime.”

      Introduction

      Intro - "This is somewhat surprising...". It gives the impression that spinal cats are autonomously stable on the belt. They are stabilized by the experimenter.

      The text has been changed to: “This is somewhat surprising because intact and spinal cats rely on different control mechanisms. Intact cats walking freely on a treadmill engage vision for orientation in space and their supraspinal structures process visual information and send inputs to the spinal cord to control locomotion on a treadmill that maintains a fixed position of the animal relative to the external space. Spinal cats, whose position on the treadmill relative to the external space is fixed by an experimenter, can only use sensory feedback from the hindlimbs to adjust locomotion to the treadmill speed.”

      "Cannot consistently perform treadmill locomotion" - likely a context-dependent result. Certainly, cats can do this easily off a treadmill - stalking, for example. Perhaps somewhere, mention that treadmill locomotion is not entirely similar to overground locomotion.

      We completely agree. Stalking is an excellent example showing that during overground locomotion slow movements (and related phase transitions) can be controlled by additional voluntary commands from supraspinal structures, which differs from simple treadmill locomotion, performing out of specific goalor task-dependent contexts. Based on this, we suggest a difference between a relatively slow (exploratory-type, including stalking) and relatively fast (escape-type) overground locomotion. We added the following sentence to the introduction:” This is evidently context dependent and specific for the treadmill locomotion as cats, humans  and other animals can voluntarily decide to perform consistent overground locomotion at slow speeds.”

      The authors introduce the concept of the state machine regime. In my opinion, this could use some more explanation and citations to the literature. Was it a term coined by the authors, or is there literature reinforcing this point?

      This is a computer science and automata theory term that has already been used in descriptions of locomotion (see our references in the 2nd paragraph of Discussion). We added a definition and corresponding references in the Introduction.

      In terms of sensory feedback, particularly group II input, it would be interesting to calculate if the conduction delay to the spinal cord at higher speeds would have a certain cutoff point at which it would no longer be timed effectively for phase transitions. This could reinforce your point.

      This is an interesting proposition but it is unlikely to be a factor over the range of speeds that we investigated (0.1 to 1.0 m/s). Assuming that group II afferents transmit their signals to spinal circuits at a latency of 10-20 ms, this is more than enough time to affect phase transitions, even at the highest speed considered. This might be a factor at very high speeds (e.g. galloping) or in small animals with high stepping frequencies.

      Results.

      The assertion that intact cats are inconsistent in terms of walking at slow speeds needs to be bolstered. For example, if a raised platform were built for a tray of food, would the intact cat consistently walk at slower speeds and eat? I suspect so. By the same token, would they walk slowly during bipedal walking? It is pretty easy to check this. Also, reports from the literature show differential effects of runway versus treadmill gait analysis, specifically when afferent input is removed.

      The Reviewer is correct that raising a platform for a food tray or even having intact cats walk with their hindlimbs only (with forelimbs on a stationary platform) may allow for consistent stepping at slow speeds (0.1 – 0.3 m/s). However, this effectively removes voluntary control of locomotion and makes the pattern more automatic (spinal + limb sensory feedback). These examples provide additional specific contexts, and we have already mentioned (see above) that slow locomotion of intact cat is context dependent. 

      "We believe that intact animals walking on a treadmill..." Citations for this? Certainly, this is not a new point.

      No, this is not new. We changed the sentence and added a reference to the statement: “Intact animals walking on a treadmill use visual cues and supraspinal signals to adjust their speed and maintain a fixed position relative to the external space with reference to Salinas et al. (Salinas, M.M., Wilken, J M, and Dingwell, J B, "How humans use visual optic flow to regulate stepping during walking," Gait. Posture. 57, 15-20, 2017).

      The presentation of the results is somewhat disjointed. The intact data is presented for tied and splitbelt results, but this is not addressed explicitly until figure 4. Would it not be better to create a figure incorporating both intact and modelling data and present the intact data where appropriate?

      We tried to do this initially, but this way required changing the style of the whole paper and we decided against this idea. Therefore, we prefer to keep the presentation of results as it is now. 

      Regarding the role of sensory feedback being especially important at low speeds, it is interesting that egr3+ mice (lacking spindle input) show an inability to walk at high speeds >40 cm/s but can walk at lower speeds (up to 7 cm/s) (Takeoka et al 2014). Similar findings were found with a lesion affecting Group I afferents in general (Takeoka and Arber 2019). Also, Grillner and colleagues show that cats can produce fictive locomotion in the absence of sensory input.

      In the Takeoka experiments it is difficult to assess the effect of removing somatosensory feedback because animals can simply decide to not step at higher speeds to avoid injury. Their mice deprived of somatosensory feedback can walk at slow speeds, likely thanks to voluntary commands, and cannot do so at higher speeds because (1) maybe somatosensory feedback is indeed necessary and/or (2) because they feel threatened because of impaired posture and poor control in general. In other words, they choose to not walk at faster speeds to avoid injury.

      Fictive locomotion by definition is without phasic somatosensory feedback as the animals are curarized or studies are performed in isolated spinal cord preparations. Depending on the preparation, pharmacology or brainstem stimulation is required to evoke fictive locomotion. If animals are deafferented, pharmacology or brainstem stimulation are required to induce fictive locomotion to offset the loss of spinal neuronal excitability provided by primary afferents. At the same time, our preliminary analysis of old fictive locomotion data in the University of Manitoba Spinal Cord center (Drs. Markin and Rybak had an official access to these data base during our collaboration with Dr. David McCrea) has shown that the frequency of stable fictive locomotion in cats usually exceeded 0.6 - 0.7 Hz, which approximately corresponds to the speed above 0.3 - 0.4 m/s. These data and estimation are just approximate; they have not been statistically analyzed and published and hence have not been included in our paper.

      Discussion. The statement that sensory feedback is required for animals to locomote may need to be qualified. Animals need some sensory feedback to locomote is perhaps better. For example, lesion studies by Rossignol in the early 2000s showed that cutaneous feedback from the paw was seemingly quite critical (in spinal cats). Also, see previous comments above.

      We changed this to: “… requires some sensory feedback to locomote, …”

      Figures

      Figure 1C. This figure is somewhat confusing. If intact cats do not walk (arrow), how are the data for swing and stance computed? Also raw traces would be useful to indicate that there is variability. Also, while duration is useful, would you not want to illustrate the co-efficient of variation as well as another way to show that the stepping pattern was inconsistent?

      This is probably a misunderstanding. The left panel of Fig. 1C superimposes data of intact cats from panel A (with speed range from 0.4 m/s to 1.0 m/s) and data from spinal cats from panel B (with speed range from 0.1 m/s and 1.0 m/s). Therefore, the left part of this left panel 1C (with speed range from 0.1 m/s to 0.4 m/s (pointed out by the arrow) corresponds only to spinal cats (not to intact cats). The standard deviations of all measurements are shown. All these figures were reproduced from the previous publications. We did not apply new statistical analysis to these previously published data/figures.

      Figure 4. 'All supraspinal drives (and their suppression of sensory feedback) are eliminated from the schematic shown in A. ' However, it is labelled 'brainstem drives,' which is confusing. Moreover, many of the abbreviations are confusing. Do you need l-SF-E1 in the figure, or could you call it 'Feedback 1' and then refer to l-SF-E1 in the legend? The same goes for βr, etc. Can they move to the legend?

      In the intact model (Fig. 4A), we have supraspinal drives (𝛼𝐿 and 𝛼𝑅, and  𝛾𝐿 and 𝛾𝑅 ), some of which provide presynaptic inhibition of sensory feedback (SF-E1 and SF-E2) as shown in Fig. 4A. In spinaltransected model (Fig. 4B), the above brainstem drives and their effects (presynaptic inhibition) on both feedback types are eliminated (therefore, there is no label “Brainstem drives in Fig. 4B). Also, we do not see a strong reason to change the feedback names, since they are explained in the text.

      I appreciate the detail of these figures, but they are difficult to conceptualize. They are useful in the context of 3C. Perhaps move this figure to supplementary and then show the proposed schematics for the system operating at slow, medium, and fast speeds in a replacement figure?

      We apologize for the resistance, but we would like to keep the current presentation.

      There is a lack of raw data (models or experimental) data reinforcing the figures. I would add these to all figures, which would nicely complement the graphs.

      These raw data can be found in the cited manuscripts. It would be the same figures.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In their paper, Zhan et al. have used Pf genetic data from simulated data and Ghanaian field samples to elucidate a relationship between multiplicity of infection (MOI) (the number of distinct parasite clones in a single host infection) and force of infection (FOI). Specifically, they use sequencing data from the var genes of Pf along with Bayesian modeling to estimate MOI individual infections and use these values along with methods from queueing theory that rely on various assumptions to estimate FOI. They compare these estimates to known FOIs in a simulated scenario and describe the relationship between these estimated FOI values and another commonly used metric of transmission EIR (entomological inoculation rate).

      This approach does fill an important gap in malaria epidemiology, namely estimating the force of infection, which is currently complicated by several factors including superinfection, unknown duration of infection, and highly genetically diverse parasite populations. The authors use a new approach borrowing from other fields of statistics and modeling and make extensive efforts to evaluate their approach under a range of realistic sampling scenarios. However, the write-up would greatly benefit from added clarity both in the description of methods and in the presentation of the results. Without these clarifications, rigorously evaluating whether the author's proposed method of estimating FOI is sound remains difficult. Additionally, there are several limitations that call into question the stated generalizability of this method that should at minimum be further discussed by authors and in some cases require a more thorough evaluation.

      Major comments:

      (1) Description and evaluation of FOI estimation procedure.

      a. The methods section describing the two-moment approximation and accompanying appendix is lacking several important details. Equations on lines 891 and 892 are only a small part of the equations in Choi et al. and do not adequately describe the procedure notably several quantities in those equations are never defined some of them are important to understand the method (e.g. A, S as the main random variables for inter-arrival times and service times, aR and bR which are the known time average quantities, and these also rely on the squared coefficient of variation of the random variable which is also never introduced in the paper). Without going back to the Choi paper to understand these quantities, and to understand the assumptions of this method it was not possible to follow how this works in the paper. At a minimum, all variables used in the equations should be clearly defined. 

      We thank the reviewer for this useful comment. We plan to clarify the method, including all the relevant variables in our revised manuscript. The reviewer is correct in pointing out that there are more sections and equations in Choi et al., including the derivation of an exact expression for the steady-state queue-length distribution and the two-moment approximation for the queue-length distribution. Since only the latter was directly utilized in our work, we included in the first version of our manuscript only material on this section and not the other. We agree with the reviewer on readers benefiting from additional information on the derivation of the exact expression for the steady-state queue-length distribution. Therefore, we will summarize the derivation of this expression in our revised manuscript. Regarding the assumptions of the method we applied, especially those for going from the exact expression to the two-moment approximation, we did describe these in the Materials and Methods of our manuscript. We recognize from this comment that the writing and organization of this information may not have been sufficiently clear. We had separated the information on this method into two parts, with the descriptive summary placed in the Materials and Methods and the equations or mathematical formula placed in the Appendix. This can make it difficult for readers to connect the two parts and remember what was introduced earlier in the Materials and Methods when reading the equations and mathematical details in the Appendix. For our revised manuscript, we plan to cover both parts in the Materials and Methods, and to provide more of the technical details in one place, which will be easier to understand and follow.

      b. Additionally, the description in the main text of how the queueing procedure can be used to describe malaria infections would benefit from a diagram currently as written it's very difficult to follow. 

      We thank the reviewer for this suggestion. We will add a diagram illustrating the connection between the queueing procedure and malaria transmission.

      c. Just observing the box plots of mean and 95% CI on a plot with the FOI estimate (Figures 1, 2, and 10-14) is not sufficient to adequately assess the performance of this estimator. First, it is not clear whether the authors are displaying the bootstrapped 95%CIs or whether they are just showing the distribution of the mean FOI taken over multiple simulations, and then it seems that they are also estimating mean FOI per host on an annual basis. Showing a distribution of those per-host estimates would also be helpful. Second, a more quantitative assessment of the ability of the estimator to recover the truth across simulations (e.g. proportion of simulations where the truth is captured in the 95% CI or something like this) is important in many cases it seems that the estimator is always underestimating the true FOI and may not even contain the true value in the FOI distribution (e.g. Figure 10, Figure 1 under the mid-IRS panel). But it's not possible to conclude one way or the other based on this visualization. This is a major issue since it calls into question whether there is in fact data to support that these methods give good and consistent FOI estimates. 

      There appears to be some confusion on what we display in some key figures. We will clarify this further both here and in the revised text. In Figures 1, 2, and 10-14, we displayed the bootstrapped distributions including the 95% CIs. These figures do not show the distribution of the mean FOI taken over multiple simulations. We estimated mean FOI on an annual basis per host in the following sense. Both of our proposed methods require either a steady-state queue length distribution, or moments of this distribution for FOI inference. However, we only have one realization or observation for each individual host, and we do not have access to either the time-series observation of a single individual’s MOI or many realizations of a single individual’s MOI at the same sampling time. This is typically the case for empirical data, although numerical simulations could circumvent this limitation and generate such output. Nonetheless, we do have a queue length distribution at the population level for both the simulation output and the empirical data, which can be obtained by simply aggregating MOI estimates across all sampled individuals. We use this population-level queue length distribution to represent and approximate the steady-state queue length distribution at the individual level. Such representation or approximation does not consider explicitly any individual heterogeneity due to biology or transmission. The estimated FOI is per host in the sense of representing the FOI experienced by an individual host whose queue length distribution is approximated from the collection of all sampled individuals. The true FOI per host per year in the simulation output is obtained from dividing the total FOI of all hosts per year by the total number of all hosts. Therefore, our estimator, combined with the demographic information on population size, is for the total number of Plasmodium falciparum infections acquired by all individual hosts in the population of interest per year.

      We evaluated the impact of individual heterogeneity on FOI inference by introducing individual heterogeneity into the simulations. With a considerable amount of transmission heterogeneity across individuals (namely 2/3 of the population receiving more than 90% of all bites whereas the remaining 1/3 receives the rest of the bites), our two methods exhibit a similar performance than those of the homogeneous transmission scenarios.

      Concerning the second point, we will add a quantitative assessment of the ability of the estimator to recover the truth across simulations and include this information in the legend of each figure. In particular, we will provide the proportion of simulations where the truth is captured by the entire bootstrap distribution, in addition to some measure of relative deviation, such as the relative difference between the true FOI value and the median of the bootstrap distribution for the estimate. This assessment will be a valuable addition, but please note that the comparisons we have provided in a graphical way do illustrate the ability of the methods to estimate “sensible” values, close to the truth despite multiple sources of errors. “Close” is here relative to the scale of variation of FOI in the field and to the kind of precision that would be useful in an empirical context. From a practical perspective based on the potential range of variation of FOI, the graphical results already illustrate that the estimated distributions would be informative.

      d. Furthermore the authors state in the methods that the choice of mean and variance (and thus second moment) parameters for inter-arrival times are varied widely, however, it's not clear what those ranges are there needs to be a clear table or figure caption showing what combinations of values were tested and which results are produced from them, this is an essential component of the method and it's impossible to fully evaluate its performance without this information. This relates to the issue of selecting the mean and variance values that maximize the likelihood of observing a given distribution of MOI estimates, this is very unclear since no likelihoods have been written down in the methods section of the main text, which likelihood are the authors referring to, is this the probability distribution of the steady state queue length distribution? At other places the authors refer to these quantities as Maximum Likelihood estimators, how do they know they have found the MLE? There are no derivations in the manuscript to support this. The authors should specify the likelihood and include in an appendix an explanation of why their estimation procedure is in fact maximizing this likelihood, preferably with evidence of the shape of the likelihood, and how fine the grid of values they tested is for their mean and variance since this could influence the overall quality of the estimation procedure. 

      We thank the reviewer for pointing out these aspects of the work that can be further clarified. We will specify the ranges for the choice of mean and variance parameters for inter-arrival times as well as the grid of values tested in the corresponding figure caption or in a separate supplementary table. We maximized the likelihood of observing the set of individual MOI estimates in a sampled population given steady queue length distributions (with these distributions based on the two-moment approximation method for different combinations of the mean and variance of inter-arrival times). We will add a section to either the Materials and Methods or the Appendix in our revised manuscript including an explicit formulation of the likelihood.

      We will add example figures on the shape of the likelihood to the Appendix. We will also test how choices of the grid of values influence the overall quality of the estimation procedure. Specifically, we will further refine the grid of values to include more points and examine whether the results of FOI inference are consistent and robust against each other.

      (2) Limitation of FOI estimation procedure.

      a. The authors discuss the importance of the duration of infection to this problem. While I agree that empirically estimating this is not possible, there are other options besides assuming that all 1-5-year-olds have the same duration of infection distribution as naïve adults co-infected with syphilis. E.g. it would be useful to test a wide range of assumed infection duration and assess their impact on the estimation procedure. Furthermore, if the authors are going to stick to the described method for duration of infection, the potentially limited generalizability of this method needs to be further highlighted in both the introduction, and the discussion. In particular, for an estimated mean FOI of about 5 per host per year in the pre-IRS season as estimated in Ghana (Figure 3) it seems that this would not translate to 4-year-old being immune naïve, and certainly this would not necessarily generalize well to a school-aged child population or an adult population. 

      The reviewer is indeed correct about the difficulty of empirically measuring the duration of infection for 1-5-year-olds, and that of further testing whether these 1-5-year-olds exhibit the same distribution for duration of infection as naïve adults co-infected with syphilis. We will nevertheless continue to use the described method for duration of infection, while better acknowledging and discussing the limitations this aspect of the method introduces. We note that the infection duration from the historical clinical data we have relied on, is being used in the malaria modeling community as one of the credible sources for this parameter of untreated natural infections in malaria-naïve individuals in malaria-endemic settings of Africa (e.g. in the agent-based model OpenMalaria, see 1).

      It is important to emphasize that the proposed methods apply to the MOI estimates for naïve or close to naïve patients. They are not suitable for FOI inference for the school-aged children and the adult populations of high-transmission endemic regions, since individuals in these age classes have been infected many times and their duration of infection is significantly shortened by their immunity. To reduce the degree of misspecification in infection duration and take full advantage of our proposed methods, we will emphasize in the revision the need to prioritize in future data collection and sampling efforts the subpopulation class who has received either no infection or a minimum number of infections in the past, and whose immune profile is close to that of naïve adults, for example, infants. This emphasis is aligned with the top priority of all intervention efforts in the short term, which is to monitor and protect the most vulnerable individuals from severe clinical symptoms and death.

      Also, force of infection for naïve hosts is a key basic parameter for epidemiological models of a complex infectious disease such as falciparum malaria, whether for agent-based formulations or equation-based ones. This is because force of infection for non-naïve hosts is typically a function of their immune status and the force of infection of naïve hosts. Thus, knowing the force of infection of naïve hosts can help parameterize and validate these models by reducing degrees of freedom.

      b. The evaluation of the capacity parameter c seems to be quite important and is set at 30, however, the authors only describe trying values of 25 and 30, and claim that this does not impact FOI inference, however it is not clear that this is the case. What happens if the carrying capacity is increased substantially? Alternatively, this would be more convincing if the authors provided a mathematical explanation of why the carrying capacity increase will not influence the FOI inference, but absent that, this should be mentioned and discussed as a limitation. 

      Thank you for this question. We will investigate more values of the parameter c systematically, including substantially higher ones. We note however that this quantity is the carrying capacity of the queuing system, or the maximum number of blood-stage strains that an individual human host can be co-infected with. We do have empirical evidence for the value of the latter being around 20 (2). This observed value provides a lower bound for parameter c. To account for potential under-sampling of strains, we thus tried values of 25 and 30 in the first version of our manuscript.

      In general, this parameter influences the steady-state queue length distribution based on the two-moment approximation, more specifically, the tail of this distribution when the flow of customers/infections is high. Smaller values of parameter c put a lower cap on the maximum value possible for the queue length distribution. The system is more easily “overflowed”, in which case customers (or infections) often find that there is no space available in the queuing system/individual host upon their arrival. These customers (or infections) will not increment the queue length. The parameter c has therefore a small impact for the part of the grid resulting in low flows of customers/infection, for which the system is unlikely to be overflowed. The empirical MOI distribution centers around 4 or 5 with most values well below 10, and only a small fraction of higher values between 15-20 (2). When one increases the value of c, the part of the grid generating very high flows of customers/infections results in queue length distributions with a heavy tail around large MOI values that are not supported by the empirical distribution. We therefore do not expect that substantially higher values for parameter c would change either the relative shape of the likelihood or the MLE.

      Reviewer #2 (Public Review):

      Summary:

      The authors combine a clever use of historical clinical data on infection duration in immunologically naive individuals and queuing theory to infer the force of infection (FOI) from measured multiplicity of infection (MOI) in a sparsely sampled setting. They conduct extensive simulations using agent-based modeling to recapitulate realistic population dynamics and successfully apply their method to recover FOI from measured MOI. They then go on to apply their method to real-world data from Ghana before and after an indoor residual spraying campaign.

      Strengths:

      (1) The use of historical clinical data is very clever in this context. 

      (2) The simulations are very sophisticated with respect to trying to capture realistic population dynamics. 

      (3) The mathematical approach is simple and elegant, and thus easy to understand. 

      Weaknesses: 

      (1) The assumptions of the approach are quite strong and should be made more clear. While the historical clinical data is a unique resource, it would be useful to see how misspecification of the duration of infection distribution would impact the estimates. 

      We thank the reviewer for bringing up the limitation of our proposed methods due to their reliance on a known and fixed duration of infection from historical clinical data. Please see our response to reviewer 1 comment 2a.

      (2) Seeing as how the assumption of the duration of infection distribution is drawn from historical data and not informed by the data on hand, it does not substantially expand beyond MOI. The authors could address this by suggesting avenues for more refined estimates of infection duration. 

      We thank the reviewer for pointing out a potential improvement to the work. We acknowledge that FOI is inferred from MOI, and thus is dependent on the information contained in MOI. FOI reflects risk of infection, is associated with risk of clinical episodes, and can relate local variation in malaria burden to transmission better than other proxy parameters for transmission intensity. It is possible that MOI can be as informative as FOI when one regresses the risk of clinical episodes and local variation in malaria burden with MOI. But MOI by definition is a number and not a rate parameter. FOI for naïve hosts is a key basic parameter for epidemiological models. This is because FOI of non-naïve hosts is typically a function of their immune status and the FOI of naïve hosts. Thus, knowing the FOI of naïve hosts can help parameterize and validate these models by reducing degrees of freedom. In this sense, we believe the transformation from MOI to FOI provides a useful step.

      Given the difficulty of measuring infection duration, estimating infection duration and FOI simultaneously appears to be an attractive alternative, as the referee pointed out. This will require however either cohort studies or more densely sampled cross-sectional surveys due to the heterogeneity in infection duration across a multiplicity of factors. These kinds of studies have not been, and will not be, widely available across geographical locations and time. This work aims to utilize more readily available data, in the form of sparsely sampled single-time-point cross-sectional surveys.

      (3) It is unclear in the example how their bootstrap imputation approach is accounting for measurement error due to antimalarial treatment. They supply two approaches. First, there is no effect on measurement, so the measured MOI is unaffected, which is likely false and I think the authors are in agreement. The second approach instead discards the measurement for malaria-treated individuals and imputes their MOI by drawing from the remaining distribution. This is an extremely strong assumption that the distribution of MOI of the treated is the same as the untreated, which seems unlikely simply out of treatment-seeking behavior. By imputing in this way, the authors will also deflate the variability of their estimates. 

      We thank the reviewer for pointing out aspects of the work that can be further clarified. It is difficult to disentangle the effect of drug treatment on measurement, including infection status, MOI, and duration of infection. Thus, we did not attempt to address this matter explicitly in the original version of our manuscript. Instead, we considered two extreme scenarios which bound reality, well summarized by the reviewer. First, if drug treatment has had no impact on measurement, the MOI of the drug-treated 1-5-year-olds would reflect their true underlying MOI. We can then use their MOI directly for FOI inference. Second, if the drug treatment had a significant impact on measurement, i.e., if it completely changed the infection status, MOI, and duration infection of drug-treated 1-5-year-olds, we would need to either exclude those individuals’ MOI or impute their true underlying MOI. We chose to do the latter in the original version of the manuscript. If those 1-5-year-olds had not received drug treatment, they would have had similar MOI values than those of the non-treated 1-5-year-olds. We can then impute their MOI by sampling from the MOI estimates of non-treated 1-5-year-olds.

      The reviewer is correct in pointing out that this imputation does not add additional information and can potentially deflate the variability of MOI distributions, compared to simply throwing or excluding those drug-treated 1-5-year-olds from the analysis. Thus, we can include in our revision FOI estimates with the drug-treated 1-5-year-olds excluded in the estimation.

      - For similar reasons, their imputation of microscopy-negative individuals is also questionable, as it also assumes the same distributions of MOI for microscopy-positive and negative individuals. 

      We imputed the MOI values of microscopy-negative but PCR-positive 1-5-year-olds by sampling from the microscopy-positive 1-5-year-olds, effectively assuming that both have the same, or similar, MOI distributions. We did so because there is a weak relationship in our Ghana data between the parasitemia level of individual hosts and their MOI (or detected number of var genes, on the basis of which the MOI values themselves were estimated). Parasitemia levels underlie the difference in detection sensitivity of PCR and microscopy.

      We will elaborate on this matter in our revised manuscript and include information from our previous and on-going work on the weak relationship between MOI/the number of var genes detected within an individual host and their parasitemia levels. We will also discuss potential reasons or hypotheses for this pattern.

      Reviewer #3 (Public Review):

      Summary: 

      It has been proposed that the FOI is a method of using parasite genetics to determine changes in transmission in areas with high asymptomatic infection. The manuscript attempts to use queuing theory to convert multiplicity of infection estimates (MOI) into estimates of the force of infection (FOI), which they define as the number of genetically distinct blood-stage strains. They look to validate the method by applying it to simulated results from a previously published agent-based model. They then apply these queuing theory methods to previously published and analysed genetic data from Ghana. They then compare their results to previous estimates of FOI. 

      Strengths: 

      It would be great to be able to infer FOI from cross-sectional surveys which are easier and cheaper than current FOI estimates which require longitudinal studies. This work proposes a method to convert MOI to FOI for cross-sectional studies. They attempt to validate this process using a previously published agent-based model which helps us understand the complexity of parasite population genetics. 

      Weaknesses: 

      (1) I fear that the work could be easily over-interpreted as no true validation was done, as no field estimates of FOI (I think considered true validation) were measured. The authors have developed a method of estimating FOI from MOI which makes a number of biological and structural assumptions. I would not call being able to recreate model results that were generated using a model that makes its own (probably similar) defined set of biological and structural assumptions a validation of what is going on in the field. The authors claim this at times (for example, Line 153 ) and I feel it would be appropriate to differentiate this in the discussion. 

      We thank the reviewer for this comment, although we think there is a mis-understanding on what can and cannot be practically validated in the sense of a “true” measure of FOI that would be free from assumptions for a complex disease such as malaria. We would not want the results to be over-interpreted and will extend the discussion of what we have done to test the methods. We note that for the performance evaluation of statistical methods, the use of simulation output is quite common and often a necessary and important step. In some cases, the simulation output is generated by dynamical models, whereas in others, by purely descriptive ones. All these models make their own assumptions which are necessarily a simplification of reality. The stochastic agent-based model (ABM) of malaria transmission utilized in this work has been shown to reproduce several important patterns observed in empirical data from high-transmission regions, including aspects of strain diversity which are not represented in simpler models.

      In what sense this ABM makes a set of biological and structural assumptions which are “probably similar” to those of the queuing methods we present, is not clear to us. We agree that relying on models whose structural assumptions differ from those of a given method or model to be tested, is the best approach. Our proposed methods for FOI inference based on queuing theory rely on the duration of infection distribution and the MOI distribution among sampled individuals, both of which can be direct outputs from the ABM. But these methods are agnostic on the specific mechanisms or biology underlying the regulation of duration and MOI.

      Another important point raised by this comment is what would be the “true” FOI value against which to validate our methods. Empirical MOI-FOI pairs for FOI measured directly by tracking cohort studies are still lacking. There are potential measurement errors for both MOI and FOI because the polymorphic markers typically used in different cohort studies cannot differentiate hyper-diverse antigenic strains fully and well (5). Also, these cohort studies usually start with drug treatment. Alternative approaches do not provide a measure of true FOI, in the sense of the estimation being free from assumptions. For example, one approach would be to fit epidemiological models to densely sampled/repeated cross-sectional surveys for FOI inference. In this case, no FOI is measured directly and further benchmarked against fitted FOI values. The evaluation of these models is typically based on how well they can capture other epidemiological quantities which are more easily sampled or measured, including prevalence or incidence. This is similar to what is done in this work. We selected the FOI values that maximize the likelihood of observing the given distribution of MOI estimates. Furthermore, we paired our estimated FOI value for the empirical data from Ghana with another independently measured quantity EIR (Entomological Inoculation Rate), typically used in the field as a measure of transmission intensity. We check whether the resulting FOI-EIR point is consistent with the existing set of FOI-EIR pairs and the relationship between these two quantities from previous studies. We acknowledge that as for model fitting approaches for FOI inference, our validation is also indirect for the field data.

      Prompted by the reviewer’s comment, we will discuss this matter in more detail in our revised manuscript, including clarifying further certain basic assumptions of our agent-based model, emphasizing the indirect nature of the validation with the field data and the existing constraints for such validation.

      (2) Another aspect of the paper is adding greater realism to the previous agent-based model, by including assumptions on missing data and under-sampling. This takes prominence in the figures and results section, but I would imagine is generally not as interesting to the less specialised reader. The apparent lack of impact of drug treatment on MOI is interesting and counterintuitive, though it is not really mentioned in the results or discussion sufficiently to allay my confusion. I would have been interested in understanding the relationship between MOI and FOI as generated by your queuing theory method and the model. It isn't clear to me why these more standard results are not presented, as I would imagine they are outputs of the model (though happy to stand corrected - it isn't entirely clear to me what the model is doing in this manuscript alone). 

      We thank the reviewer for this comment. We will add supplementary figures for the MOI distributions generated by the queuing theory method (i.e., the two-moment approximation method) and our agent-based model in our revised manuscript.

      In the first version of our manuscript, we considered two extreme scenarios which bound the reality, instead of simply assuming that drug treatment does not impact the infection status, MOI, and duration of infection. See our response to reviewer 2 point (3). The resulting FOI estimates differ but not substantially across the two extreme scenarios, partially because drug-treated individuals’ MOI distribution is similar to that of non-treated individuals (or the apparent lack of drug treatment on MOI as pointed by the referee). We will consider potentially adding some formal test to quantify the difference between the two MOI distributions and how significant the difference is. We will discuss which of the two extreme scenarios reality is closer to, given the result of the formal test. We will also discuss in our revision possible reasons/hypotheses underlying the impact of drug treatment on MOI from the perspective of the nature, efficiency, and duration of the drugs administrated.

      Regarding the last point of the reviewer, on understanding the relationship between MOI and FOI, we are not fully clear about what was meant. We are also confused about the statement on what the “model is doing in this manuscript alone”. We interpret the overall comment as the reviewer suggesting a better understanding of the relationship between MOI and FOI, either between their distributions, or the moments of their distributions, perhaps by fitting models including simple linear regression models. This approach is in principle possible, but it is not the focus of this work. It will be equally difficult to evaluate the performance of this alternative approach given the lack of MOI-FOI pairs from empirical settings with directly measured FOI values (from large cohort studies). Moreover, the qualitative relationship between the two quantities is intuitive. Higher FOI values should correspond to higher MOI values. Less variable FOI values should correspond to more narrow or concentrated MOI distributions, whereas more variable FOI values should correspond to more spread-out ones. We will discuss this matter in our revised manuscript.

      (3) I would suggest that outside of malaria geneticists, the force of infection is considered to be the entomological inoculation rate, not the number of genetically distinct blood-stage strains. I appreciate that FOI has been used to explain the latter before by others, though the authors could avoid confusion by stating this clearly throughout the manuscript. For example, the abstract says FOI is "the number of new infections acquired by an individual host over a given time interval" which suggests the former, please consider clarifying. 

      We thank the reviewer for this helpful comment as it is fundamental that there is no confusion on the basic definitions. EIR, the entomological inoculation rate, is closely related to the force of infection but is not equal to it. EIR focuses on the rate of arrival of infectious bites and is measured as such by focusing on the mosquito vectors that are infectious and arrive to bite a given host. Not all these bites result in actual infection of the human host. Epidemiological models of malaria transmission clearly make this distinction, as FOI is defined as the rate at which a host acquires infection. This definition comes from more general models for the population dynamics of infectious diseases in general. (For diseases simpler than malaria, with no super-infection, the typical SIR models define the force of infection as the rate at which a susceptible individual becomes infected).  For malaria, force of infection refers to the number of blood-stage new infections acquired by an individual host over a given time interval. This distinction between EIR and FOI is the reason why studies have investigated their relationship, with the nonlinearity of this relationship reflecting the complexity of the underlying biology and how host immunity influences the outcome of an infectious bite.

      We agree however with the referee that there could be some confusion in our definition resulting from the approach we use to estimate the MOI distribution (which provides the basis for estimating FOI). In particular, we rely on the non-existent to very low overlap of var repertoires among individuals with MOI=1, an empirical pattern we have documented extensively in previous work (See 2, 3, and 4). The method of var_coding and its Bayesian formulation rely on the assumption of negligible overlap. We note that other approaches for estimating MOI (and FOI) based on other polymorphic markers, also make this assumption (reviewed in _5). Ultimately, the FOI we seek to estimate is the one defined as specified above and in both the abstract and introduction, consistent with the epidemiological literature. We will include clarification in the introduction and discussion of this point in the revision.

      (4) Line 319 says "Nevertheless, overall, our paired EIR (directly measured by the entomological team in Ghana (Tiedje et al., 2022)) and FOI values are reasonably consistent with the data points from previous studies, suggesting the robustness of our proposed methods". I would agree that the results are consistent, given that there is huge variation in Figure 4 despite the transformed scales, but I would not say this suggests a robustness of the method. 

      We will modify the relevant sentences to use “consistent” instead of “robust”.

      (5) The text is a little difficult to follow at times and sometimes requires multiple reads to understand. Greater precision is needed with the language in a few situations and some of the assumptions made in the modelling process are not referenced, making it unclear whether it is a true representation of the biology. 

      We thank the reviewer for this comment. As also mentioned in the response to reviewer 1’s comments, we will reorganize and rewrite parts of the text in our revision to improve clarity.

      References and Notes

      (1) Maire, N. et al. A model for natural immunity to asexual blood stages of Plasmodium falciparum malaria in endemic areas. Am J Trop Med Hyg., 75(2 Suppl):19-31 (2006).

      (2) Tiedje, K. E. et al. Measuring changes in Plasmodium falciparum census population size in response to sequential malaria control interventions. eLife, 12 (2023).

      (3) Day, K. P. et al. Evidence of strain structure in Plasmodium falciparum var gene repertoires in children from Gabon, West Africa. Proc. Natl. Acad. Sci. U.S.A., 114(20), 4103-4111 (2017).

      (4) Ruybal-Pesántez, S. et al. Population genomics of virulence genes of Plasmodium falciparum in clinical isolates from Uganda. Sci. Rep., 7(11810) (2017).

      (5) Labbé, F. et al. Neutral vs. non-neutral genetic footprints of Plasmodium falciparum multiclonal infections. PLoS Comput Biol 19(1) (2023).

    1. Author Response:

      Reviewer #1 (Public Review):

      [...] The conclusions of the in vitro experiments using cultured hippocampal slices were well supported by the data, but aspects of the in vivo experiments and proteomic studies need additional clarification.

      (1) In contrast to the in vitro experiments in which a γ-secretase inhibitor was used to exclude possible effects of Aβ, this possibility was not examined in in-vivo experiments assessing synapse loss and function (Figure 3) and cognitive function (Figure 4). The absence of plaque formation (Figure 4B) is not sufficient to exclude the possibility that Aβ is involved. The potential involvement of Aβ is an important consideration given the 4-month duration of protein expression in the in vivo studies.

      Response: We appreciate the reviewer for raising this question. While our current data did not exclude the potential involvement of Aβ-induced toxicity in the synaptic and cognitive dysfunction observed in mice overexpressing β-CTF, addressing this directly remains challenging. Treatment with γ-secretase inhibitors could potentially shed light on this issue. However, treatments with γ-secretase inhibitors are known to lead to brain dysfunction by itself likely due to its blockade of the γ-cleavage of other essential molecules, such as Notch[1, 2]. As a result, this approach is unlikely to provide a definitive answer, which also prevents us from pursuing it further in vivo. We hope the reviewer understands this limitation and agrees to a discussion of this issue in the revised manuscript instead.

      (2) The possibility that the results of the proteomic studies conducted in primary cultured hippocampal neurons depend in part on Aβ was also not taken into consideration.

      Response: We thank the reviewer for raising this interesting question. In the revised manuscript, we plan to address this experimentally by using a γ-secretase inhibitor to investigate the potential contribution of Aβ in this study.

      Likely impact of the work on the field, and the utility of the methods and data to the community:

      The authors' use of sparse expression to examine the role of β-CTF on spine loss could be a useful general tool for examining synapses in brain tissue.

      Response: We thank the reviewer for these comments. Indeed, it is a very robust assay and we would like to share this method with the scientific community as soon as possible.

      Additional context that might help readers interpret or understand the significance of the work:

      The discovery of BACE1 stimulated an international effort to develop BACE1 inhibitors to treat Alzheimer's disease. BACE1 inhibitors block the formation of β-CTF which, in turn, prevents the formation of Aβ and other fragments. Unfortunately, BACE1 inhibitors not only did not improve cognition in patients with Alzheimer's disease, they appeared to worsen it, suggesting that producing β-CTF actually facilitates learning and memory. Therefore, it seems unlikely that the disruptive effects of β-CTF on endosomes plays a significant role in human disease. Insights from the authors that shed further light on this issue would be welcome.

      Response: We would like to express our gratitude to the reviewer for raising this interesting question. It remains puzzling why BACE1 inhibition has failed to yield benefits in AD patients, while amyloid clearance via Aβ antibodies has been shown to slow disease progression. One possible explanation is that pharmacological inhibition of BACE1 may not be as effective as genetic removal. Indeed, genetic depletion of BACE1 leads to the clearance of existing amyloid plaques[3], whereas its pharmacological inhibition slows plaque growth and prevents the formation of new plaques but does not stop the growth of the existing ones[4]. We think the negative results of BACE1 inhibitors in clinical trials may not be sufficient to rule out the potential contribution of β-CTF to AD pathogenesis. Given that cognitive function continues to deteriorate rapidly in plaque-free patients after 1.5 years of treatment with Aβ antibodies in phase three clinical studies[5], it is important to consider the possible role of other Aβ-related fragments, such as β-CTF. We will include some further discussion in the revised manuscript.

      Reviewer #2 (Public Review):

      Summary:

      In this study, the authors investigate the potential role of other cleavage products of amyloid precursor protein (APP) in neurodegeneration. They combine in vitro and in vivo experiments, revealing that β-CTF, a product cleaved by BACE1, promotes synaptic loss independently of Aβ. Furthermore, they suggest that β-CTF may interact with Rab5, leading to endosomal dysfunction and contributing to the loss of synaptic proteins.

      Response: We would like to thank the reviewer for his/her insightful suggestions. We have addressed the specific comments in following sections.

      Weaknesses:

      Most experiments were conducted in vitro using overexpressed β-CTF. Additionally, the study does not elucidate the mechanisms by which β-CTF disrupts endosomal function and induces synaptic degeneration.

      Response: We would like to thank the reviewer for this insightful comment. While a significant portion of our experiments were conducted in vitro, the main findings were also confirmed in vivo (Figures 3 and 4). Repeating all the experiments in vivo would be challenging and may not be necessary. Regarding the use of overexpressed β-CTF, we acknowledge that this is a common issue in neurodegenerative disease studies. These diseases progress slowly over many years, sometimes even decades in patients. To model this progression in cell or mouse models within a time frame feasible for research, overexpression of certain proteins is often required. While not ideal, it is sometimes unavoidable. Since β-CTF levels are elevated in AD patients[6], its overexpression is a reasonable approach to investigate its potential effects.

      We did not further investigate the mechanisms by which β-CTF disrupted endosomal function because our preliminary results align with previous findings. Kim et al. demonstrated that β-CTF recruits APPL1 (a Rab5 effector) via the YENPTY motif to Rab5 endosomes, where it stabilizes active GTP-Rab5, leading to pathologically accelerated endocytosis, endosome swelling and selectively impaired transport of Rab5 endosomes[6]. In our manuscript, we observed that co-expression of Rab5S34N with β-CTF effectively mitigated β-CTF-induced spine loss in hippocampal slice cultures (Figures 6I-J), indicating that Rab5 overactivation-induced endosomal dysfunction contributed to β-CTF-induced spine loss, which was consistent with their conclusions.

      Reviewer #3 (Public Review):

      Summary:

      Most previous studies have focused on the contributions of Abeta and amyloid plaques in the neuronal degeneration associated with Alzheimer's disease, especially in the context of impaired synaptic transmission and plasticity which underlies the impaired cognitive functions, a hallmark in AD. But processes independent of Abeta and plaques are much less explored, and to some extent, the contributions of these processes are less well understood. Luo et all addressed this important question with an array of approaches, and their findings generally support the contribution of beta-CTF-dependent but non-Abeta-dependent process to the impaired synaptic properties in the neurons. Interestingly, the above process appears to operate in a cell-autonomous manner. This cell-autonomous effect of beta-CTF as reported here may facilitate our understanding of some potentially important cellular processes related to neurodegeneration. Although these findings are valuable, it is key to understand the probability of this process occurring in a more natural condition, such as when this process occurs in many neurons at the same time. This will put the authors' findings into a context for a better understanding of their contribution to either physiological or pathological processes, such as Alzheimer's. The experiments and results using the cell system are quite solid, but the in vivo results are incomplete and hence less convincing (see below). The mechanistic analysis is interesting but primitive and does not add much more weight to the significance. Hence, further efforts from the authors are required to clarify and solidify their results, in order to provide a complete picture and support for the authors' conclusions.

      Response: We would like to thank the reviewer for the constructive suggestions. We have addressed the specific comments in following sections.

      Strengths:

      (1) The authors have addressed an interesting and potentially important question

      (2) The analysis using the cell system is solid and provides strong support for the authors' major conclusions. This analysis has used various technical approaches to support the authors' conclusions from different aspects and most of these results are consistent with each other.

      Response: We would like to thank the reviewer for these comments.

      Weaknesses:

      (1) The relevance of the authors' major findings to the pathology, especially the Abeta-dependent processes is less clear, and hence the importance of these findings may be limited.

      Response: We would like to thank the reviewer for pointing this out. Phase 3 clinical trial data for Aβ antibodies show that cognitive function continues to decline rapidly, even in plaque-free patients, after 1.5 years of treatment[5]. This suggests that plaque-independent mechanisms may drive AD progression. Therefore, it is crucial to consider the potential contributions of other Aβ species or related fragments, such as alternative forms of Aβ and β-CTF. While it is too early to definitively predict how β-CTF contributes to AD progression, it is notable that β-CTF, rather than Aβ, induced synaptic deficits in mice, which recapitulates a key pathological feature of AD. Ultimately, the true role of β-CTF in AD pathogenesis can only be confirmed through clinical studies.

      (2) In vivo analysis is incomplete, with certain caveats in the experimental procedures and some of the results need to be further explored to confirm the findings.

      Response: We would like to thank the reviewer for this suggestion. We plan to correct these caveats in the revised manuscript.

      (3) The mechanistic analysis is rather primitive and does not add further significance.

      Response: We would like to thank the reviewer for this comment. We did not delve further into the underlying mechanisms because our analysis indicates that Rab5 dysfunction underlies β-CTF-induced endosomal dysfunction, which is consistent with another study and has been addressed in detail there[6]. We hope the reviewer could understand that our focus in this paper is on how β-CTF triggers synaptic deficits, which is why we did not investigate the mechanisms of β-CTF-induced endosomal dysfunction further.

      References:

      1. GüNER G, LICHTENTHALER S F. The substrate repertoire of γ-secretase/presenilin [J]. Seminars in cell & developmental biology, 2020, 105: 27-42.
      2. DOODY R S, RAMAN R, FARLOW M, et al. A phase 3 trial of semagacestat for treatment of Alzheimer's disease [J]. The New England journal of medicine, 2013, 369(4): 341-50.
      3. HU X, DAS B, HOU H, et al. BACE1 deletion in the adult mouse reverses preformed amyloid deposition and improves cognitive functions [J]. The Journal of experimental medicine, 2018, 215(3): 927-40.
      4. PETERS F, SALIHOGLU H, RODRIGUES E, et al. BACE1 inhibition more effectively suppresses initiation than progression of β-amyloid pathology [J]. Acta Neuropathol, 2018, 135(5): 695-710.
      5. SIMS J R, ZIMMER J A, EVANS C D, et al. Donanemab in Early Symptomatic Alzheimer Disease: The TRAILBLAZER-ALZ 2 Randomized Clinical Trial [J]. Jama, 2023, 330(6): 512-27.
      6. KIM S, SATO Y, MOHAN P S, et al. Evidence that the rab5 effector APPL1 mediates APP-βCTF-induced dysfunction of endosomes in Down syndrome and Alzheimer's disease [J]. Molecular psychiatry, 2016, 21(5): 707-16.
    1. Henry George, Progress and Poverty, Selections (1879) In 1879, the economist Henry George penned a massive bestseller exploring the contradictory rise of both rapid economic growth and crippling poverty. This association of poverty with progress is the great enigma of our times. It is the central fact from which spring industrial, social, and political difficulties that perplex the world, and with which statesmanship and philanthropy and education grapple in vain. From it come the clouds that overhang the future of the most progressive and self-reliant nations. It is the riddle which the Sphinx of Fate puts to our civilization, and which not to answer is to be destroyed. So long as all the increased wealth which modern progress brings goes but to build up great fortunes, to increase luxury and make sharper the contrast between the House of Have and the House of Want, progress is not real and cannot be permanent. The reaction must come. The tower leans from its foundations, and every new story but hastens the final catastrophe. To educate men who must be condemned to poverty, is but to make them restive; to base on a state of most glaring social inequality political institutions under which men are theoretically equal, is to stand a pyramid on its apex. … … the evils arising from the unjust and unequal distribution of wealth, which are becoming more and more apparent as modern civilization goes on, are not incidents of progress, but tendencies which must bring progress to a halt; that they will not cure themselves, but, on the contrary, must, unless their cause is removed, grow greater and greater, until they sweep us back into barbarism by the road every previous civilization has trod. But it also shows that these evils are not imposed by natural laws; that they spring solely from social mal-adjustments which ignore natural laws, and that in removing their cause we shall be giving an enormous impetus to progress. … Equality of political rights will not compensate for the denial of the equal right to the bounty of nature. Political liberty, when the equal right to land is denied, becomes, as population increases and invention goes on, merely the liberty to compete for employment at starvation wages. This is the truth that we have ignored. And so there come beggars in our streets and tramps on our roads; and poverty enslaves men whom we boast are political sovereigns; and want breeds ignorance that our schools cannot enlighten; and citizens vote as their masters dictate; and the demagogue usurps the part of the statesman; and gold weighs in the scales of justice; and in high places sit those who do not pay to civic virtue even the compliment of hypocrisy; and the pillars of the republic that we thought so strong already bend under an increasing strain. We honor Liberty in name and in form. We set up her statues and sound her praises. But we have not fully trusted her. And with our growth so grow her demands. She will have no half service! Liberty! it is a word to conjure with, not to vex the ear in empty boastings. For Liberty means Justice, and Justice is the natural law—the law of health and symmetry and strength, of fraternity and co-operation. They who look upon Liberty as having accomplished her mission when she has abolished hereditary privileges and given men the ballot, who think of her as having no further relations to the every-day affairs of life, have not seen her real grandeur—to them the poets who have sung of her must seem rhapsodists, and her martyrs fools! As the sun is the lord of life, as well as of light; as his beams not merely pierce the clouds, but support all growth, supply all motion, and call forth from what would otherwise be a cold and inert mass, all the infinite diversities of being and beauty, so is liberty to mankind. It is not for an abstraction that men have toiled and died; that in every age the witnesses of Liberty have stood forth, and the martyrs of Liberty have suffered. … The fiat has gone forth! With steam and electricity, and the new powers born of progress, forces have entered the world that will either compel us to a higher plane or overwhelm us, as nation after nation, as civilization after civilization, have been overwhelmed before. It is the delusion which precedes destruction that sees in the popular unrest with which the civilized world is feverishly pulsing only the passing effect of ephemeral causes. Between democratic ideas and the aristocratic adjustments of society there is an irreconcilable conflict. Here in the United States, as there in Europe, it may be seen arising. We cannot go on permitting men to vote and forcing them to tramp. We cannot go on educating boys and girls in our public schools and then refusing them the right to earn an honest living. We cannot go on prating of the inalienable rights of man and then denying the inalienable right to the bounty of the Creator. Even now, in old bottles the new wine begins to ferment, and elemental forces gather for the strife!   Source: Henry George, Progress and Poverty: An Inquiry into the Cause of Industrial Depressions and of Increase of Want with Increase of Wealth: The Remedy (1879).

      The contradiction between increasing economic growth and rising poverty is examined in Henry George's growth and Poverty. He contends that the unfair distribution of wealth, especially land ownership, is the root cause of economic inequality. George cautions that if society does not correct this imbalance, it could collapse due to the growing concentration of wealth within a small number of people. He claims that economic justice, especially equitable access to natural resources, is necessary for true liberty in addition to political rights. George's writings serve as an appeal for societal systems to be changed in order to stop the negative effects of unbridled inequality.

    1. What is evidence? It is a moment remembered from a novel, a story overheard, a movie, an experience. It’s anything you use to think through your concepts.

      I think from this concept we all have different stories and experiences but may have similarities in the way we are as humans.

    1. This may be due to some low level of introgression via gene flow between species, or some remnants of unsorted loci. The one sample from Fiji does contain some genetic material from the blue cluster (Fig. 2) and is unlikely to have experienced recent gene flow with Ulithi individuals. It is therefore more likely that the small amount of genetic material from alternative genetic clusters, as seen in a few individuals, is the result of unsorted ancestral shared loci.

      It is interesting to think about the possibility of gene flow between coral groups. We commonly think of gene flow more in mobile organisms, but it very much is possible with corals through breakage and broadcast spawning events (albeit much less likely in corals than it is in mobile organisms).

    1. this might

      This use of tentative language is something that appears a lot in math education research for learner-centered environments. Math processes are too-often presented as certainties - "Here is the way to solve this type of problem." "You did not follow the correct procedure." To open up a more creative, sense-making, problem solving culture, we should increase our usage of tentative language - "What are some possible ways to solve this type of problem?" Number Talks are great structure for opening learners up to creative new possibilities for solving problems. Many teachers and community members may criticize applying an open, creative approach to mathematics as inefficient. In reality, mathematics is an excellent vehicle for learning how to think in open, creative ways, to notice patterns and structure, to create logical arguments. When math is only taught with efficiency in mind, we end up excluding some of the most creative minds in heavy favor of those who are strong memorizers and/or rule-followers.

    1. Fighting climate change involves large, upfront costs in the form of foregone goods and services. Whether it taxes emissions or imposes a shrinking cap, the government takes away options from producers. Thus, measured GDP and per capita income will be lower, at least compared to what they would have been in the absence of emission curbs.

      I think what the author is trying to say her is that fighting climate change is expensive. It is often inefficient and substantially lowers productivity, and therefore output. This is a huge dilemma for countries. We talked about in class about the saying: "First get rich then get green". Developing countries like China or India simply will not use more resources to slow down economic growth, because it hinders their process as a country. Whereas on the other hand, developed countries like the US or EU often have huge competition across the globe, so tax on emissions may slow down their process to compete with other countries.

    1. “The culture of this extreme dissection of TV that recaps started has grown. There are just so many different formats where you can be doing that,” Emami says. At Vulture, recaps are “still a very big part of what we do, but I also think it’s now just one part of what we do. It’s one part of a coverage plan, and that can include explainers, think pieces, what are the biggest questions asked after this episode of Westworld.” Recaps were just one expression of an idea that still holds sway over the internet, and how audiences talk about TV in general: essentially, that it’s worth talking about — publicly, rigorously, and joyfully. As long as that philosophy remains intact, its execution is both flexible and secondary. Netflix shows may not make for good recaps, but they can still spawn a meme like Barb, a perfect fusion of internet weirdos and the unwitting object of their passion that followed the spirit of recaps, if not their letter. The permission to honor something you love by unpacking it, and the idea that affection itself is reason itself for unpacking, is a difficult dam to unburst.

      The passage reflects on the evolution of television criticism and audience engagement, highlighting the importance of discussion and analysis in a variety of formats while emphasizing the joy and affection that drive these conversations.

    1. we fear the visibility without which we cannot truly hv~

      I believe this part of the text refers to the anxiety people may have when exposing who they are to others. That happens because we, as humans, care about what others think of us and tend to fear rejection. However, if we're not being visible, we're not achieving any personal fulfillment.

    1. I wonder if there's a copy anywhere of the Macey business system book that they sold to explain how to use it?

      reply to u/atomicnotes at https://old.reddit.com/r/Zettelkasten/comments/1fa0240/early_1900s_3_x_5_inch_card_index_filing_cabinet/

      This is an excellent question. I strongly suspect you won't find a booklet or book from Macey after 1906 that does this, though there may have been something before that.

      You'll notice that on page 9, the 1906 Macy Catalog takes what I consider to be a pot shot at their Shaw-Walker competition in the section "Not a kindergarten". Shaw-Walker was selling not just furniture, but a more specific system, as well as a magazine. Since there's something to be learned for current knowledge managers and zettel-casters in the historical experience of these companies and the systems and methods they were selling, I'll quote that section here (substitute references to enterprise and business for yourself):

      Not a Kindergarten

      Every successful enterprise knows its own requirements best, and develops the best system for its own purpose. We manufacture business machinery. Our appliances and supplies are boiled down to a few parts, and simple forms, and will accommodate any system in any business. The office boy can understand and use them. If we undertook to teach the whole world how to run its business, we would have to saddle the cost on those who buy for what we tried to teach those who do not.

      System in business is desirable, but no system can make a business successful, where the management is deficient. So called ‘Systems’ often result in useless expense and disappointment. We retain what experience proves useful and practical; so far as possible, eliminating all complicated and useless features. This explains how we can employ the best workmanship and material, combined with pleasing designs, and sell our goods with profit at lower prices than the inferior articles offered by others.

      There may have been some booklets at some point, but I've not run across them for any of the major manufacturers of the time. (I've only loosely searched this area.) Some of the general principles were covered in various articles in System Magazine which was published by Shaw-Walker, a filing cabinet manufacturer, in the early century. System Magazine was sold to McGraw-Hill which renamed it Business Week, but it is now better known as Bloomberg Business Week. In the December 1906 issue of System, W. K. Kellogg, the President of the Toasted Corn Flake Company, is quoted touting the invaluable nature of the Shaw-Walker filing system at a time when his company was using 640 drawers of their system.

      To some extent the smaller discrete "system" was really a part of a broader range of information and knowledge of business and competition. This can be seen in the fact that System Magazine still exists, just under an alternate name, along with a much broader area of business schools and business systems. We've just "forgotten" (or take for granted) the art of the smaller systems and processes which seemed new in the late 1800s and early 1900s.

      Other companies had "systems" they sold or taught, much like Tiago Forte teaches his "Second Brain" method or Nick Milo teaches "Linking Your Thinking". However, most of them were really in the business of selling goods: furniture, filing cabinets, desks, index cards, card dividers, etc. and this was where the real money was to be found at the time.

      A similar example in the space is the Memindex System booklet that came with their box and index cards. The broad principles of the system can be described in a few paragraphs so that the average person can read it and modify it to their particular needs or use case. The company never felt the need to write an entire book along the lines of David Allen's Getting Things Done or Ryder Carroll's Bullet Journal Method. Allen and Carroll are selling systems by way of books or classes. Admittedly, Carroll does have custom printed notebooks for using his methods, but I suspect these are a tiny fraction of the overall notebook sales for those who use his method.

      Here's evidence of a correspondence course from the Library Bureau some time after 1927, which was when they'd been purchased by Remington Rand: https://www.ebay.com/itm/335534180049 . Library Bureau had an easier time as their system was standardized for libraries, though they did have efforts to cater to business concerns the way Shaw-Walker, The Macey Company, Globe-Wernicke and others certainly did.

      I think the best examples in broader book form from that time period are Kaiser's two books which still stand up pretty well today for those creating knowledge management systems, zettelkasten, commonplace books, getting things done/productivity systems, second brains, etc.

      Kaiser, J. Card System at the Office. The Card System Series 1. London: Vacher and Sons, 1908. http://archive.org/details/cardsystematoffi00kaisrich.

      ———. Systematic Indexing. The Card System Series 2. London: Sir Isaac Pitman & Sons, Ltd., 1911. http://archive.org/details/systematicindexi00kaisuoft.

    1. Author Response

      We thank the reviewers for their positive comments and constructive feedback following their thorough reading of the manuscript. In this provisional reply we will briefly address the reviewer’s comments and suggestions point by point. In the forthcoming revised manuscript, we will more thoroughly address the reviewer’s comments and provide additional supporting data.

      (1) The expression 'randomly clustered networks' needs to be explained in more detail given that in its current form risks to indicate that the network might be randomly organized (i.e., not organized). In particular, a clustered network with future functionality based on its current clustering is not random but rather pre-configured into those clusters. What the authors likely meant to say, while using the said expression in the title and text, is that clustering is not induced by an experience in the environment, which will only be later mapped using those clusters. While this organization might indeed appear as randomly clustered when referenced to a future novel experience, it might be non-random when referenced to the prior (unaccounted) activity of the network. Related to this, network organization based on similar yet distinct experiences (e.g., on parallel linear tracks as in Liu, Sibille, Dragoi, Neuron 2021) could explain/configure, in part, the hippocampal CA1 network organization that would appear otherwise 'randomly clustered' when referenced to a future novel experience.

      As suggested by the reviewer, we will revise the text to clarify that the random clustering is random with respect to any future, novel environment. The cause of clustering could be prior experiences (e.g. Bourjaily M & Miller P, Front. Comput. Neurosci. 5:37, 2011) or developmental programming (e.g. Perin R, Berger TK, & Markram H, Proc. Natl. Acad. Sci. USA 108:5419, 2011).

      (2) The authors should elaborate more on how the said 'randomly clustered networks' generate beyond chance-level preplay. Specifically, why was there preplay stronger than the time-bin shuffle? There are at least two potential explanations:

      (2.1) When the activation of clusters lasts for several decoding time bins, temporal shuffle breaks the continuity of one cluster's activation, thus leading to less sequential decoding results. In that case, the preplay might mainly outperform the shuffle when there are fewer clusters activating in a PBE. For example, activation of two clusters must be sequential (either A to B or B to A), while time bin shuffle could lead to non-sequential activations such as a-b-a-b-a-b where a and b are components of A and B;

      (2.2) There is a preferred connection between clusters based on the size of overlap across clusters. For example, if pair A-B and B-C have stronger overlap than A-C, then cluster sequences A-B-C and C-B-A are more likely to occur than others (such as A-C-B) across brain states. In that case, authors should present the distribution of overlap across clusters, and whether the sequences during run and sleep match the magnitude of overlap. During run simulation in the model, as clusters randomly receive a weak location cue bias, the activation sequence might not exactly match the overlap of clusters due to the external drive. In that case, the strength of location cue bias (4% in the current setup) could change the balance between the internal drive and external drive of the representation. How does that parameter influence the preplay incidence or quality?

      Based on our finding that preplay occurs only in networks that sustain cluster activity over multiple decoding time bins (Figure 5d-e), our understanding of the model’s function is consistent with the reviewers first explanation. We will provide additional analysis in the forthcoming revised manuscript in order to directly test the first explanation and will also test the intriguing possibility that the reviewer’s second suggestion contributes to above-chance preplay.

      (3) The manuscript is focused on presenting that a randomly clustered network can generate preplay and place maps with properties similar to experimental observations. An equally interesting question is how preplay supports spatial coding. If preplay is an intrinsic dynamic feature of this network, then it would be good to study whether this network outperforms other networks (randomly connected or ring lattice) in terms of spatial coding (encoding speed, encoding capacity, tuning stability, tuning quality, etc.)

      We agree that this is an interesting future direction, but we see it as outside the scope of the current work. There are two interesting avenues of future work: 1) Our current model does not include any plasticity mechanisms, but a future model could study the effects of synaptic plasticity during preplay on long-term network dynamics, and 2) Our current model does not include alternative approaches to constructing the recurrent network, but future studies could systematically compare the spatial coding properties of alternative types of recurrent networks.

      (4) The manuscript mentions the small-world connectivity several times, but the concept still appears too abstract and how the small-world index (SWI) contributes to place fields or preplay is not sufficiently discussed.

      For a more general audience in the field of neuroscience, it would be helpful to include example graphs with high and low SWI. For example, you can show a ring lattice graph and indicate that there are long paths between points at opposite sides of the ring; show randomly connected graphs indicating there are no local clustered structures, and show clustered graphs with several hubs establishing long-range connections to reduce pair-wise distance.

      How this SWI contributes to preplay is also not clear. Figure 6 showed preplay is correlated with SWI, but maybe the correlation is caused by both of them being correlated with cluster participation. The balance between cluster overlap and cluster isolation is well discussed. In the Discussion, the authors mention "...Such a balance in cluster overlap produces networks with small-world characteristics (Watts and Strogatz, 1998) as quantified by a small-world index..." (Lines 560-561). I believe the statement is not entirely appropriate, a network similar to ring lattice can still have the balance of cluster isolation and cluster overlap, while it will have small SWI due to a long path across some node pairs. Both cluster structure and long-range connection could contribute to SWI. The authors only discuss the necessity of cluster structure, but why is the long-range connection important should also be discussed. I guess long-range connection could make the network more flexible (clusters are closer to each other) and thus increase the potential repertoire.

      We agree that the manuscript would benefit from a more concrete explanation of the small-world index. We will revise the text and add illustrative figures.

      We note that while our most successful clustered networks are indeed those with small-world characteristics, there are other ways of producing small-world networks which may not show good place fields or preplay. We will test another type of small-world network if time permits.

      Our discussion of “cluster overlap” is specific to our type of small-world network in which there is no pre-determined spatial dimension (unlike the ring network of Watts and Strogatz). Therefore, because clusters map randomly to location once a particular spatial context is imposed, the random overlap between clusters produces long-range connections in that context (and any other context) so one can think of the amount of overlap between clusters as representing the number of long-range connections in a Watts-Strogatz model, except, we wish to iterate, such models involve a spatial topology within the network, which we do not include.

      (5) What drives PBE during sleep? Seems like the main difference between sleep and run states is the magnitude of excitatory and inhibitory inputs controlled by scaling factors. If there are bursts (PBE) in sleep, do you also observe those during run? Does the network automatically generate PBE in a regime of strong excitation and weak inhibition (neural bifurcation)?

      During sleep simulations, the PBEs are spontaneously generated by the recurrent connections in the network. The constant-rate Poisson inputs drive low-rate stochastic spiking in the recurrent network, which then randomly generates population events when there is sufficient internal activity to transiently drive additional spiking within the network.

      During run simulations, the spatially-tuned inputs drive greater activity in a subset of the cells at a given point on the track, which in turn suppress the other excitatory cells through the feedback inhibition.

      (6) Is the concept of 'cluster' similar to 'assemblies', as in Peyrache et al, 2010; Farooq et al, 2019? Does a classic assembly analysis during run reveal cluster structures?

      Yes, we are highly confident that the clusters in our network would correspond to the functional assemblies that have been studied through assembly analysis and will present the relevant data in a revision.

      (7) Can the capacity of the clustered network to express preplay for multiple distinct future experiences be estimated in relation to current network activity, as in Dragoi and Tonegawa, PNAS 2013?

      We agree this is an interesting opportunity to compare the results of our model to what has been previously found experimentally and will test this if time permits.

      Reviewer # 2

      Weaknesses:

      My main critiques of the paper relate to the form of the input to the network.

      First, because the input is the same across trials (i.e. all traversals are the same duration/velocity), there is no ability to distinguish a representation of space from a representation of time elapsed since the beginning of the trial. The authors should test what happens e.g. with traversals in which the animal travels at different speeds, and in which the animal's speed is not constant across the entire track, and then confirm that the resulting tuning curves are a better representation of position or duration.

      We agree that this is an important question, and we plan to run further simulations where we test the effects of varying the simulated speed. We will present results in the resubmission.

      Second, it's unclear how much the results depend on the choice of a one-dimensional environment with ramping input. While this is an elegant idealization that allows the authors to explore the representation and replay properties of their model, it is a strong and highly non-physiological constraint. The authors should verify that their results do not depend on this idealization. Specifically, I would suggest the authors also test the spatial coding properties of their network in 2-dimensional environments, and with different kinds of input that have a range of degrees of spatial tuning and physiological plausibility. A method for systematically producing input with varying degrees of spatial tuning in both 1D and 2D environments has been previously used in (Fang et al 2023, eLife, see Figures 4 and 5), which could be readily adapted for the current study; and behaviorally plausible trajectories in 2D can be produced using the RatInABox package (George et al 2022, bioRxiv), which can also generate e.g. grid cell-like activity that could be used as physiologically plausible input to the network.

      We agree that testing the robustness of our results to different models of feedforward input is important and we plan to do this in our revised manuscript for the linear track and W-track.

      Testing the model in a 2D environment is an interesting future direction, but we see it as outside the scope of the current work. To our knowledge there are no experimental findings of preplay in 2D environments, but this presents an interesting opportunity for future modeling studies.

      Finally, I was left wondering how the cells' spatial tuning relates to their cluster membership, and how the capacity of the network (number of different environments/locations that can be represented) relates to the number of clusters. It seems that if clusters of cells tend to code for nearby locations in the environment (as predicted by the results of Figure 5), then the number of encodable locations would be limited (by the number of clusters). Further, there should be a strong tendency for cells in the same cluster to encode overlapping locations in different environments, which is not seen in experimental data.

      Thank you for making this important point and giving us the opportunity to clarify. We do find that subsets of cells with identical cluster membership have correlated place fields, but as we show in Figure 7b the network place map as a whole shows low remapping correlations across environments, which is consistent with experimental data (Hampson RE et al, Hippocampus 6:281, 1996; Pavlides C, et al, Neurobiol Learn Mem 161:122, 2019). Our model includes a relatively small number of cells and clusters compared to CA3, and with a more realistic number of clusters, the level of correlation across network place maps should reduce even further in our model network. The reason for a low level of correlation is because cluster membership is combinatorial, whereby cells that share membership in one cluster can also belong to separate/distinct other clusters, rendering their activity less correlated than might be anticipated. In our revised manuscript we will address this point more carefully and cite the relevant experimental support.

      Reviewer # 3

      Weaknesses:

      To generate place cell-like activity during a simulated traversal of a linear environment, the authors drive the network with a combination of linearly increasing/decreasing synaptic inputs, mimicking border cell-like inputs. These inputs presumably stem from the entorhinal cortex (though this is not discussed). The authors do not explore how the model would behave when these inputs are replaced by or combined with grid cell inputs which would be more physiologically realistic.

      We chose the linearly varying spatial inputs as the minimal model of providing spatial input to the network so that we could focus on the dynamics of the recurrent connections. We agree our results will be strengthened by testing alternative types of border-like input so will present such additional results in our revised version. However, given that a sub-goal of our model was to show that place fields could arise in locations at which no neurons receive a peak in external input, whereas combining input from multiple grid cells produces peaked place-field like input, adding grid cell input (and the many other types of potential hippocampal input) is beyond the scope of the paper.

      Even though the authors claim that no spatially-tuned information is needed for the model to generate place cells, there is a small location-cue bias added to the cells, depending on the cluster(s) they belong to. Even though this input is relatively weak, it could potentially be driving the sequential activation of clusters and therefore the preplays and place cells. In that case, the claim for non-spatially tuned inputs seems weak. This detail is hidden in the Methods section and not discussed further. How does the model behave without this added bias input?

      First, we apologize for a lack of clarity if we have caused confusion about the type of inputs (linear and cluster-dependent as we had attempted to portray prominently in Figure 1, where it is described in the caption, l. 156-157, and Results, l. 189-190 & l. 497-499, as well as in the Methods, l. 671-683) and if we implied an absence of spatially-tuned information in the network. In the revision we will clarify that for reliable place fields to appear, the network must receive spatial information and that one point of our paper is that the information need not arrive as peaks of external input already resembling place cells or grid cells. We chose linearly ramping boundary inputs as the minimally place-field like stimulus (that still contains spatial information) but in our revision we will include alternatives. We should note that during sleep, when “preplay” occurs, there is no such spatial bias (which is why preplay can equally correlate with place field sequences in any context). In the revision, we will update Figure 1 to show more clearly the cluster-dependent linearly ramping input received by some specific cells with both similar and different place fields.

      Unlike excitation, inhibition is modeled in a very uniform way (uniform connection probability with all E cells, no I-I connections, no border-cell inputs). This goes against a long literature on the precise coordination of multiple inhibitory subnetworks, with different interneuron subtypes playing different roles (e.g. output-suppressing perisomatic inhibition vs input-gating dendritic inhibition). Even though no model is meant to capture every detail of a real neuronal circuit, expanding on the role of inhibition in this clustered architecture would greatly strengthen this work.

      This is an interesting future direction, but we see it as outside the scope of our current work. While inhibitory microcircuits are certainly important physiologically, we focus here on a minimal model that produces the desired place cell activity and preplay, as measured in excitatory cells.

      For the modeling insights to be physiologically plausible, it is important to show that CA3 connectivity (which the model mimics) shares the proposed small-world architecture. The authors discuss the existence of this architecture in various brain regions but not in CA3, which is traditionally thought of and modeled as a random or fully connected recurrent excitatory network. A thorough discussion of CA3 connectivity would strengthen this work.

      We agree this is an important point that is missing, and we will revise the text to specifically address CA3 connectivity (Guzman et al., Science 353 (6304), 1117-1123 2016) and the small-world structure therein due to the presence of “assemblies”.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *

      Reviewer #1 (Evidence, reproducibility, and clarity (Required)): This is an interesting manuscript from the Jagannathan laboratory, which addresses the interaction proteome of two satellite DNA-binding proteins, D1 and Prod. To prevent a bias by different antibody affinities they use GFP-fusion proteins of D1 and Prod as baits and purified them using anti GFP nanobodies. They performed the purifications in three different tissues: embryo, ovary and GSC enriched testes. Across all experiments, they identified 500 proteins with surprisingly little overlap among tissues and between the two different baits. Based on the observed interaction of prod and D1 with members of the canonical piRNA pathway the authors hypothesized that both proteins might influence the expression of transposable elements. However, neither by specific RNAi alleles or mutants that lead to a down regulation of D1 and Prod in the gonadal soma nor in the germline did they find an effect on the repression of transposable elements. They also did not detect an effect of a removal of piRNA pathway proteins on satellite DNA clustering, which is mediated by Prod and D1. However, they do observe a mis-localisation of the piRNA biogenesis complex to an expanded satellite DNA in absence of D1, which presumably is the cause of a mis-regulation of transposable elements in the F2 generation.This is an interesting finding linking satellite DNA and transposable element regulation in the germline. However, I find the title profoundly misleading as the link between satellite DNA organization and transgenerational transposon repression in Drosophila has not been identified by multi-tissue proteomics but by a finding of the Brennecke lab that the piRNA biogenesis complex has a tendency to localise to satellite DNA when the localisation to the piRNA locus is impaired. Nevertheless, the investigation of the D1 and Prod interactome is interesting and might reveal insights into the pathways that drive the formation of centromeres in a tissue specific manner.

      We thank the reviewer for the overall positive comments on our manuscript. As noted above, we have performed a substantial number of revision experiments and improved our text. We believe that our revised manuscript demonstrates a clear link between our proteomics data and the transposon repression. We would like to make three main points,

      1. Our proteomics data identified that D1 and Prod co-purified transposon repression proteins in embryos. To test the functional significance of this association, we have used Drosophila genetics to generate flies lacking embryonic D1. In adult ovaries from these flies, we observe a striking elevation in transposon expression and Chk2-dependent gonadal atrophy. Along with the results from the control genotypes (F1 D1 mutant, F2 D1 het), our data clearly indicate that embryogenesis (and potentially early larval development) are a period when D1 establishes heritable TE silencing that can persist throughout development.
      2. Based on the newly acquired RNA-seq and small RNA seq data, we have edited our title to more accurately reflect our data. Specifically, we have substituted the word 'transgenerational' with 'heritable', meaning that the presence of D1 during early development alone is sufficient to heritably repress TEs at later stages of development.
      3. In addition, our RNA seq and small RNA seq experiments demonstrate that D1 makes a negligible contribution to piRNA biogenesis and TE repression in adults, despite the significant mislocalization of the RDC complex. In this regard, our results are substantially different from the recent Kipferl study from the Brennecke lab (Baumgartner et al. 2022).

        Major comments Unfortunately, the proteomic data sets are not very convincing. Not even the corresponding baits are detected in all assays. I wonder whether the extraction procedure really allows the authors to analyze all functionally relevant interactions of Prod and D1. It would be good to see a western blot or an MS analysis of the soluble nuclear extract they use for purification compared to the insoluble chromatin. It may well be that a large portion of Prod or D1 is lost in this early step. I also find the description of the proteomic results hard to follow as the authors mostly list which proteins the find as interactors of Prod and D1 without stating in which tissue or with what bait they could purify them (i.e. p7: Importantly, our hits included known chromocenter-associated or pericentromeric heterochromatin-associated proteins, such as Su(var)3-9[52], ADD1[23,24], HP5[23,24],mei-S332[53], Mes-4[23], Hmr[24,39,54], Lhr[24,39], and members of the chromosome passenger complex, such as borr and Incenp[55]). It would be interesting to at least discuss tissue specific interactions.

      Out of six total AP-MS experiments in this manuscript (D1 x 3, Prod x 2 and Piwi), we observe a strong enrichment of the bait in 5/6 attempts (log2FC between 4-12). In the initial submission, the lack of a third high-quality biological replicate for the D1 testis sample meant that only the p-value (0.07) was not meeting the cutoff. To address this, we have repeated this experiment with an additional biological replicate (Fig. S2A), and our data now clearly show that D1 is significantly enriched in the testis sample.

      As suggested by the reviewer, we have also assessed our lysis conditions (450mM NaCl and benzonase) and the solubilization of our baits post-lysis. In Fig. S1D, we have blotted equivalent fractions of the soluble supernatant and insoluble pellet from GFP-Piwi embryos and show that both GFP-Piwi and D1 are largely solubilized following lysis. In Fig. S1E, we also show that our IP protocol works efficiently.

      GFP-Prod pulldown in embryos is the only instance in which we do not detect the bait by mass spectrometry. Here, one reason could be relatively low expression of GFP-Prod in comparison to GFP-D1 (Fig. S1E), which may lead to technical difficulties in detecting peptides corresponding to Prod. However, we note that Prod IP co-purified proteins such as Bocks that were previously suggested as Prod interactors from high-throughput studies (Giot et al. 2003; Guruharsha et al. 2011). In addition, Prod IP from embryos also co-purified proteins known to associate with chromocenters such as Hcs and Saf-B. Finally, the concordance between D1 and Prod co-purified proteins from embryo lysates (Fig. 2A, C) suggest that the Prod IP from embryos is of reasonable quality.

      We also acknowledge the reviewer's comment that the description of the proteomic data was hard to follow. Therefore, we have revised our text to clearly indicate which bait pulled down which protein in which tissue (lines 148-156). We have also highlighted and discussed bait-specific and tissue-specific interactions in the text (lines 162-173).

      Minor comments The authors may also want to provide a bit more information on the quantitation of the proteomic data such as how many values were derive from the match-between runs function and how many were imputed as this can severely distort the quantification.

      Figure 1: Distribution of data after imputation in embryo (left), ovary (middle) and testis (right) datasets. Imputation is performed with random sampling from the 1% least intense values generated by a normal distribution.

      To ensure the robustness of our data analysis, we considered only those proteins that were consistently identified in all replicates for at least one bait (GFP-D1, GFP-Prod or NLS-GFP). This approach resulted in a relative low number of missing values. However, it is also important to bear in mind that in an AP-MS experiment, the number of missing values is higher, as interactors are not identified in the control pulldown. Importantly, the imputation of missing values during the data analysis did not alter the normal distribution of the dataset (Fig. 1, this document). Detailed information regarding the imputed values is also provided (Table 1, this document). The coding script used for the data analysis is available in the PRIDE submission of the dataset (Table 2, this document). This information has been added to our methods section under data availability.

      Table 1: ____Number of match-between-runs and imputations for embryo, ovary and testis datasets

      Dataset

      #match-between-runs

      %match-between-runs

      %imputation

      Embryo

      5541/27543

      20.11%

      8.36%

      Ovary

      1936/9530

      20.30%

      8.18%

      Testis

      1748/7168

      24.39%

      3.12%

      Table 2: ____Access to the PRIDE submission of the datasets

      Name

      ID PRIDE

      UN reviewer

      PW reviewer

      IP-MS of D1 from Testis tissue

      PXD044026

      reviewer_pxd044026@ebi.ac.uk

      ydswDQVW

      IP-MS of Piwi from Embryo tissue

      PXD043237

      reviewer_pxd043237@ebi.ac.uk

      TMCoDsdx

      IP-MS of Prod and D1 proteins from Ovary tissue

      PXD043236

      reviewer_pxd043236@ebi.ac.uk

      VOHqPmaS

      IP-MS of Prod and D1 proteins from Embryo tissue

      PXD043234

      reviewer_pxd043234@ebi.ac.uk

      L77VXdvA

      **Referee Cross-Commenting** I agree with the two other reviewers that the connection between the interactome and the transgenerational phenotype is unclear. This is also what I meant i my comment that the title is somewhat misleading. A systematic analysis of the D1 and Prod knock down effect on mRNAs and small Rnas would indeed be helpful to better understand the interesting effect.

      As suggested by the reviewer, we have performed RNA seq and small RNA seq in control and D1 mutant ovaries (Fig. 4) to fully understand the contribution of D1 in piRNA biogenesis and TE repression. Briefly, the mislocalization of RDC complex in D1 mutant ovaries does not significantly affect TE-mapping piRNA biogenesis (Fig. 4C, E). In addition, loss of D1 does not substantially alter TE expression in the ovaries (Fig. 4B) or alter the expression of genes involved in TE repression (Fig. 4F). Along with the results presented in Fig. 5 and Fig. 6, our data clearly indicate that embryogenesis (and potentially early larval development) is a critical period during which D1 makes an important contribution to TE repression.

      Reviewer #1 (Significance (Required)): Nevertheless, the investigation of the D1 and Prod interactome is interesting and might reveal insights into the pathways that drive the formation of centromeres in a tissue specific manner. It may be mostly interesting for the Drosophila community but could also be exiting for a broader audience interested in the connection of heterochromatin and its indirect effect on the regulation of transposable elements.

      We thank the reviewer again for the helpful and constructive comments, which have enabled us to significantly improve our study. We are excited by the results from our study, which illuminate unappreciated aspects of transcriptional silencing in constitutive heterochromatin.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)): Chavan et al. set out to enrich our compendium of pericentric heterochromatin-associated proteins - and to learn some new biology along the way. An ambitious AP-Mass baited with two DNA satellite-binding proteins (D1 and Prod), conducted across embryos, ovaries, and testes, yielded hundreds of candidate proteins putatively engaged at chromocenters. These proteins are enriched for a restricted number of biological pathways, including DNA repair and transposon regulation. To investigate the latter in greater depth, the authors examine D1 and prod mutants for transposon activity changes using reporter constructs for multiple elements. These reporter constructs revealed no transposon activation in the adult ovary, where many proteins identified in the mass spec experiments restrict transposons. However, the authors suggest that the D1 mutant ovaries do show disrupted localization of a key member of a transposon restriction pathway (Cuff), and infer that this mislocalization triggers a striking, transposon derepression phenotype in the F2 ovaries.

      The dataset produced by the AP-Mass Spec offers chromosome biologists an unprecedented resource. The PCH is long-ignored chromosomal region that has historically received minimal attention; consequently, the pathways that regulate heterochromatin are understudied. Moreover, attempting to connect genome organization to transposon regulation is a new and fascinating area. I can easily envision this manuscript triggering a flurry of discovery; however, there is quite a lot of work to do before the data can fully support the claims.

      We appreciate the reviewer taking the time to provide thoughtful comments and constructive suggestions to improve the manuscript. We believe that we have addressed all the comments raised to the significant advantage of our paper.

      Major comments 1. The introduction requires quite a radical restructure to better highlight the A) importance of the work and B) limit information whose relevance is not clear early in the manuscript. A. Delineating who makes up heterochromatin is a long-standing problem in chromosome biology. This paper has huge potential to contribute to this field; however, it is not the first. Others are working on this problem in other systems, for example PMID:29272703. Moreover, we have some understanding of the distinct pathways that may impact heterochromatin in different tissues (e.g., piRNA biology in ovaries vs the soma). Also, the mutant phenotypes of prod and D1 are different. Fleshing out these three distinct points could help the reader understand what we know and what we don't know about heterochromatin composition and its special biology. Understanding where we are as a field will offer clear predictions about who the interactors might be that we expect to find. For example, given the dramatically different D1 and prod mutant phenotypes (and allele swap phenotypes), how might the interactors with these proteins differ? What do we know about heterochromatin formation differences in different tissues? And how might these differences impact heterochromatin composition?

      The reviewer brings up a fair point and we have significantly reworked our introduction. We share the reviewer's opinion that improved knowledge of the constitutive heterochromatin proteome will reveal novel biology.

      1. The attempt to offer background on the piRNA pathway and hybrid dysgenesis in the Introduction does not work. As a naïve reader, it was not clear why I was reading about these pathways - it is only explicable once the reader gets to the final third of the Results. Moreover, the reader will not retain this information until the TE results are presented many pages later. I strongly urge the authors to shunt the two TE restriction paragraphs to later in the manuscript. They are currently a major impediment to understanding the power of the experiment - which is to identify new proteins, pathways, and ultimately, biology that are currently obscure because we have so little handle on who makes up heterochromatin.

      We agree with this suggestion. We have introduced the piRNA pathway in the results section (lines 205 - 216), right before this information is needed. We've also removed the details on hybrid dysgenesis, since our new data argues against a maternal effect from the D1 mutant.

      The implications of the failure to rescue female fertility by the tagged versions of both D1 and Prod are not discussed. Consequently, the reader is left uneasy about how to interpret the data.

      We understand this point raised by the reviewer. However, in our proteomics experiments, we have used GFP-D1 and GFP-Prod ovaries from ~1 day old females (line 579, methods). These ovaries are morphologically similar to the wild type (Fig. S1C) and their early germ cell development appears to be intact. Moreover, chromocenter formation in female GSCs is comparable to the wildtype (Fig. 1C-D). These data, along with the rescue of the viability of the Prod mutant (Fig. S1A-B), suggest that the presence of a GFP tag is not compromising D1 or Prod function in the early stages of germline development and is consistent with published and unpublished data from our lab. In addition, D1 and Prod from ovaries co-purify proteins such as Rfc38 (D1), Smn (D1), CG15107 (Prod), which have been identified in previous high-throughput screens (Guruharsha et al. 2011; Tang et al. 2023). For these reasons, we believe that GFP-D1 and GFP-Prod ovaries are a good starting point for the AP-MS experiment. We speculate that the failure to completely rescue female fertility may be due to improper expression levels of GFP-D1 or GFP-Prod flies at later stages of oogenesis, which are not present in ovaries from newly eclosed females and therefore unlikely to affect our proteomic data.

      1. How were the significance cut-offs determined? Is the p-value reported the adjusted p-value? As a non-expert in AP-MS, I was surprised to find that the p-value, at least according to the Methods, was not adjusted based on the number of tests. This is particularly relevant given the large/unwieldy(?) number of proteins that were identified as signficant in this study. Moreover, the D1 hit in Piwi pull down is actually not significant according to their criteria of p We used a standard cutoff of log2FC>1 and p2FC and low p-value) since these are more likely to be bona fide interactors. Third, we have used string-DB for functional analyses where we can place our hits in existing protein-protein interaction networks. Using this approach, we detect that Prod (but not D1) pulls down multiple members of the RPA complex in the embryo (RPA2 and RpA-70, Fig. S2B) while embryonic D1 (but not Prod) pulls down multiple components of the origin recognition complex (Orc1, lat, Orc5, Orc6, Fig. S2C) and the condensin I complex (Cap-G, Cap-D2, barr, Fig. S2D). Altogether, these filtering strategies allow us to eliminate as many false positives as possible while making sure to minimize the loss of true hits through multiple testing correction.

      How do we know if the lack of overlap across tissues is indeed germline- or soma-specialization rather than noise?

      To address this part of the comment, we have amended our text (lines 162-173) as follows,

      'We also observed a substantial overlap between D1- and Prod-associated proteins (yellow points in Fig. 2A, B, Table S1-3), with 61 hits pulled down by both baits (blue arrowheads, Fig. 2C) in embryos and ovaries. This observation is consistent with the fact that both D1 and Prod occupy sub-domains within the larger constitutive heterochromatin domain in nuclei. Surprisingly, only 12 proteins were co-purified by the same bait (D1 or Prod) across different tissues (magenta arrowheads, Fig. 2C, Table S1-3). In addition, only a few proteins such as an uncharacterized DnaJ-like chaperone, CG5504, were associated with both D1 and Prod in embryos and ovaries (Fig. 2D). One interpretation of these results is that the protein composition of chromocenters may be tailored to cell- and tissue-specific functions in Drosophila. However, we also note that the large number of unidentified peptides in AP-MS experiments means that more targeted experiments are required to validate whether certain proteins are indeed tissue-specific interactors of D1 and Prod.'

      To make this inference, conducting some validation would be required. More generally, I was surprised to see no single interactor validated by reciprocal IP-Westerns to validate the Mass-Spec results, though I am admittedly only adjacent to this technique. Note that colocalization, to my mind, does not validate the AP-MS data - in fact, we would a priori predict that piRNA pathway members would co-localize with PCH given the enrichment of piRNA clusters there.

      Here, we would point out that we have conducted multiple validation experiments with a specific focus on the functional significance of the associations between D1/Prod and TE repression proteins in embryos. While the reviewer suggests that piRNA pathway proteins may be expected to enrich at the pericentromeric heterochromatin, this is not always the case. For example, Piwi and Mael are present across the nucleus (pulled down by D1/Prod in embryos) while Cutoff, which is present adjacent to chromocenters in nurse cells, was not observed to interact with either D1 or Prod in the ovary samples.

      Therefore, for Piwi, we performed a reciprocal AP-MS experiment in embryos due to the higher sensitivity of this method (GFP-Piwi AP-MS, Fig. 3B). Excitingly, this experiment revealed that four largely uncharacterized proteins (CG14715, CG10208, Ugt35D1 and Fit) were highly enriched in the D1, Prod and Piwi pulldowns and these proteins will be an interesting cohort for future studies on transposon repression in Drosophila (Fig. 3C).

      Furthermore, we believe that determining the localization of proteins co-purified by D1/Prod is an important and orthogonal validation approach. For Sov, which is implicated in piRNA-dependent heterochromatin formation, we observe foci that are in close proximity to D1- and Prod-containing chromocenters (Fig. 3A).

      As for suggestion to validate by IP-WBs, we would point out that chromocenters exhibit properties associated with phase separated biomolecular condensates. Based on the literature, these condensates tend to associate with other proteins/condensates through low affinity or transient interactions that are rarely preserved in IP-WBs, even if there are strong functional relationships. One example is the association between D1 and Prod, which do not pull each other down in an IP-WB (Jagannathan et al. 2019), even though D1 and Prod foci dynamically associate in the nucleus and mutually regulate each other's ability to cluster satellite DNA repeats (Jagannathan et al. 2019). Similarly, IP-WB using GFP-Piwi embryos did not reveal an interaction with D1 (Fig. S4B). However, our extensive functional validations (Figures 4-6) have revealed a critical role for D1 in heritable TE repression.

      The AlphaFold2 data are very interesting but seem to lack of negative control. Is it possible to incorporate a dataset of proteins that are not predicted to interact physically to elevate the impact of the ones that you have focused on? Moreover, the structural modeling might suggest a competitive interaction between D1 and piRNAs for Piwi. Is this true? And even if not, how does the structural model contribute to your understanding for how D1 engages with the piRNA pathway? The Cuff mislocalization?

      In the revised manuscript, we have generated more structural models using AlphaFold Multimer (AFM) for proteins (log2FC>2, p0.5 and ipTM>0.8), now elaborated in lines 175-177. Despite the extensive disorder in D1 and Prod, we identified 22 proteins, including Piwi, that yield interfaces with ipTM scores >0.5 (Table S4, Table S8). These hits are promising candidates to further understand D1 and Prod function in the future.

      For the predicted model between Prod/D1 and Piwi (Fig. S4A), one conclusion could indeed be competition between D1/Prod and piRNAs for Piwi. Another possibility is that a transient interaction mediated by disordered regions on D1/Prod could recruit Piwi to satellite DNA-embedded TE loci in the pericentromeric heterochromatin. These types of interactions may be especially important in the early embryonic cycles, where repressive histone modifications such as H3K9me2/3 must be deposited at the correct loci for the first time. We suggest that mutating the disordered regions on D1 and Prod to potentially abrogate the interaction with Piwi will be important for future studies.

      The absence of a TE signal in D1 and Prod mutant ovaries would be much more compelling if investigated more agnostically. The observation that not all TE reporter constructs show a striking signal in the F2 embryos makes me wonder if Burdock and gypsy are not regulated by these two proteins but possibly other TEs are. Alternatively, small RNA-seq would more directly address the question of whether D1 and Prod regulate TEs through the piRNA pathway.

      We completely agree with this comment from the reviewer. We have performed RNA seq on D1 heterozygous (control) and D1 mutant ovaries in a chk26006 background. Since Chk2 arrests germ cell development in response to TE de-repression and DNA damage(Ghabrial and Schüpbach 1999; Moon et al. 2018), we reasoned that the chk2 mutant background would prevent developmental arrest of potential TE-expressing germ cells and we observed that both genotypes exhibited similar gonad morphology (Fig. 4A). From our analysis, we do not observe a significant effect on TE expression in the absence of D1, except for the LTR retrotransposon tirant (Fig. 4B). We also do not observe differential expression of TE repression genes (Fig. 4F).

      We have complemented our RNA seq experiment with small RNA profiling from D1 heterozygous (control) and D1 mutant ovaries. Here, overall piRNA production and antisense piRNAs mapping to TEs were largely unperturbed (Fig. 4C-E).

      Overall, our data is consistent with the TE reporter data (Fig. S7) and suggests that zygotic depletion of D1 does not have a prominent role in TE repression. However, we have uncovered that the presence of D1 during embryogenesis is critical for TE repression in adult gonads (Fig. 6, Fig. S9).

      I had trouble understanding the significance of the Cuff mis-localization when D1 is depleted. Given Cuff's role in the piRNA pathway and close association with chromatin, what would the null hypothesis be for Cuff localization when a chromocenter is disrupted? What is the null expectation of % Cuff at chromocenter given that the chromocenter itself expands massively in size (Figure 4D). The relationship between these two factors seems rather indirect and indeed, the absence of Cuff in the AP would suggest this. The biggest surprise is the absence of TE phenotype in the ovary, given the Cuff mutant phenotype - but we can't rule out given the absence of a genome-wide analysis. I think that these data leave the reader unconvinced that the F2 phenotype is causally linked to Cuff mislocalization.

      We apologize that this data was not more clearly represented. In a wild-type context, Cuff is distributed in a punctate manner across the nurse cell nuclei, with the puncta likely representing piRNA clusters (Fig. 5A-B). We find that a small fraction of Cuff (~5%) is present adjacent to the nurse cell chromocenter (inset, Fig. 5A and Fig. 5D). In the absence of D1, the nurse cell chromocenters increase ~3-4 fold in size. However, the null expectation is still that ~5% of total Cuff would be adjacent to the chromocenter, since the piRNA clusters are not expected to expand in size. In reality, we observe ~27% of total Cuff is mislocalized to chromocenters. Our data indicate that the satellite DNA repeats at the larger chromocenters must be more accessible to Cuff in the D1 mutant nurse cells. This observation is corroborated by the significant increase in piRNAs corresponding to the 1.688 satellite DNA repeat family (Fig. 4E).

      The lack of TE expression in the F1 D1 mutant was indeed surprising based on the Cuff mislocalization but as the reviewers pointed out, we only analyzed two TE reporter constructs in the initial submission. In the revised manuscript, we have performed both RNA seq and small RNA seq. Surprisingly, our data reveal that the Cuff mislocalization does not significantly affect piRNA biogenesis (Fig. 4C, D) and piRNAs mapping to TEs. As a result, both TE repression (Fig. 4B) and fertility (Fig. 6D) are largely preserved in the absence of D1 in adult ovaries.

      Finally, we thank the reviewer for their excellent suggestion to incorporate the F2 D1 heterozygote (Fig. S9) in our analysis! This important control has revealed that the maternal effect of the D1 mutant is negligible for gonad development and fertility (Fig. 6B-D). Rather, our data clearly emphasize embryogenesis (or early larval development) as a key period during which D1 can promote heritable TE repression. Essentially, D1 is not required during adulthood for TE repression if it was present in the early stages of development.

      Apologies if I missed this, but Figure 5 shows the F2 D1 mutant ovaries only. Did you look at the TM6 ovaries as well? These ovaries should lack the maternally provisioned D1 (assuming that females are on the right side) but have the zygotic transcription.

      As mentioned above, this was a great suggestion and we've now characterized this important control in the context of germline development and fertility, to the significant advantage of our paper.

      Minor comments 9. Add line numbers for ease of reference

      We apologize for this. Line numbers have been added in the full revision.

      1. The function of satellite DNA itself is still quite controversial - I would recommend being a bit more careful here - the authors could refer instead to genomic regions enriched for satellite DNA are linked to xyz function (see Abstract line 2 and 7, for example.)

      The abstract has been rewritten and does not directly implicate satellite DNA in a specific cellular function. However, we have taken the reviewer's suggestion in the introduction (line 57-58).

      "Genetic conflicts" in the introduction needs more explanation.

      This sentence has been removed from the introduction in the revised manuscript.

      "In contrast" is not quite the right word. Maybe "However" instead (1st line second paragraph of Intro)

      Done. Line 57 of the revised manuscript.

      Results: what is the motivation for using GSC-enriched testis?

      We use GSC-enriched testes for practical reasons. First, they contain a relatively uniform population of mitotically dividing germ cells unlike regular testes which contain a multitude of post-mitotic germ cells such as spermatocytes, spermatids and sperm. Second, GSC-enriched testes are much larger than normal testes and reduced the number of dissections that were needed for each replicate.

      1. Clarify sentence about the 500 proteins in the Results section - it's not clear from context that this is the union of all experiments.

      Done. Lines 145-149 in the revised manuscript.

      The data reported are not the first to suggest that satellite DNA may have special DNA repair requirements. e.g., PMID: 25340780

      We apologize if we gave the impression that we were making a novel claim. Specialized DNA repair requirements at repetitive sequences have indeed been previously hypothesized(Charlesworth et al. 1994) and studied and we have altered the text to better reflect this (lines 193-195). We have cited the study suggested by the reviewer as well as studies from the Chiolo(Chiolo et al. 2011; Ryu et al. 2015; Caridi et al. 2018) and Soutoglou(Mitrentsi et al. 2022) labs, which have also addressed this fascinating question.

      Page 10: indicate-> indicates.

      Done.

      1. Page 14: revise for clarity: "investigate a context whether these interactions could not take place"

      We've incorporated this suggestion in the revised text (lines 383-386).

      1. Might be important to highlight the 500 interactions are both direct and indirect. "Interacting proteins" alone suggests direct interactions only.

      Done. Lines 145-149.

      The effect of the aub mutant on chromocenter foci did not seem modest to me - however, the bar graphs obscure the raw data - consider plotting all the data not just the mean and error?

      Done. This data is now represented by a box-and-whisker plot (Fig. S5), which shows the distribution of the data.

      Reviewer #2 (Significance (Required)):

      The dataset produced by the AP-Mass Spec offers chromosome biologists an unprecedented resource. The PCH is long-ignored chromosomal region that has historically received minimal attention; consequently, the pathways that regulate heterochromatin are understudied. Moreover, attempting to connect genome organization to transposon regulation is a new and fascinating area. I can easily envision this manuscript triggering a flurry of discovery; however, there is quite a lot of work to do before the data can fully support the claims.

      This manuscript represents a significant contribution to the field of chromosome biology.

      We thank the reviewer for the positive evaluation of our manuscript, and we really appreciate the great suggestion for the F2 D1 heterozygote control! Overall, we believe that our manuscript is substantially improved with the addition of RNA seq, small RNA seq and important genetic controls. Moreover, we are excited by the potential of our study to open new doors in the study of pericentromeric heterochromatin.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)): In the manuscript entitled "Multi-tissue proteomics identifies a link between satellite DNA organization and transgenerational transposon repression", the authors used two satellite DNA-binding proteins, D1 and Prod, as baits to identify chromocenter-associated proteins through quantitative mass spectrometry. The proteomic analysis identified ~500 proteins across embryos, ovaries, and testes, including several piRNA pathways proteins. Depletion of D1 or Prod did not directly contribute to transposon repression in ovary. However, in the absence of maternal and zygotic D1, there was a dramatic increase of agametic ovaries and transgenerational transposon de-repression. Although the study provides a wealth of proteomic data, it lacks mechanistic insights into how satellite DNA organization influence the interactions with other proteins and their functional consequences.

      We thank the reviewer for highlighting that this study will be a valuable resource for future studies on the composition and function of pericentromeric heterochromatin. Based on the reviewer's request for more mechanistic knowledge into how satellite DNA organization affects transposon repression, we have performed RNA seq and small RNA seq, added important genetic controls and significantly improved our text. In the revised manuscript, our data clearly demonstrate that embryogenesis (and potentially early larval development) is a critical time period when D1 contributes to heritable TE repression. Flies lacking D1 during embryogenesis exhibit TE expression in germ cells as adults, which is associated with Chk2-dependent gonadal atrophy. We are particularly excited by these data since TE loci are embedded in the satellite DNA-rich pericentromeric heterochromatin and our study demonstrates an important role for a satellite DNA-binding protein in TE repression.

      Major____ comments 1. While the identification of numerous interactions is significant, it would be helpful to acknowledge that lots of these proteins were known to bind DNA or heterochromatin regions. To strengthen the study, I recommend conducting functional validation of the identified interactions, in addition to the predictions made by Alphfold 2.

      We are happy to take this comment on board. In fact, we believe that the large number of DNA-binding and heterochromatin-associated proteins identified in this study are a sign of quality for the proteomic datasets. In the revised manuscript, we have highlighted known heterochromatin proteins co-purified by D1/Prod in lines 148-151 as well as proteins previously suggested to interact with D1/Prod from high-throughput studies in lines 153-156 (Guruharsha et al. 2011; Tang et al. 2023). In this study, we have focused on the previously unknown associations between D1/Prod and TE repression proteins and functionally validated these interactions as presented in Figures 3-6.

      The observation of transgenerational de-repression is intriguing. However, to better support this finding, it would be better to provide a mechanistic explanation based on the data presented.

      We appreciate this comment from the reviewer, which is similar to major comment #6 raised by reviewer #2. To generate mechanistic insight into the underlying cause of gonad atrophy in the F2 D1 mutant, we have performed RNA seq, small RNA seq and analyzed germline development and fertility in the F2 D1 heterozygous control (Fig. S9).

      For the RNA seq, we used D1 heterozygous (control) and D1 mutant ovaries in a chk26006 background. Since Chk2 arrests germ cell development in response to TE de-repression and DNA damage(Ghabrial and Schüpbach 1999; Moon et al. 2018), we reasoned that the chk2 mutant background would prevent developmental arrest of potential TE-expressing germ cells and we observed that both genotypes exhibited similar gonad morphology (Fig. 4A). From our analysis, we do not observe a significant effect on TE expression in the absence of D1, except for the LTR retrotransposon tirant (Fig. 4B). We also do not observe differential expression of TE repression genes (Fig. 4F).

      We have complemented our RNA seq experiment with small RNA profiling from D1 heterozygous (control) and D1 mutant ovaries. Here, overall piRNA production and antisense piRNAs mapping to TEs were largely unperturbed (Fig. 4C-E). Together, these data are consistent with the TE reporter data (Fig. S7) and suggests that zygotic depletion of D1 does not have a prominent role in TE repression.

      However, we have uncovered that the presence of D1 during embryogenesis is critical for TE repression in adult gonads (Fig. 6, Fig. S9). Essentially, either only maternal deposited D1 (F1 D1 mutant) or only zygotically expressed D1 (F2 D1 het) were sufficient to ensure TE repression and fertility. In contrast, a lack of D1 during embryogenesis (F2 D1 mutant) led to elevated TE expression and Chk2-mediated gonadal atrophy.

      Our results also explain why previous studies have not implicated either D1 or Prod in TE repression, since D1 likely persists during embryogenesis when using depletion approaches such as RNAi-mediated knockdown or F1 generation mutants.

      Minor____ comments 3. Given the maternal effect of the D1 mutant, in Figure 4, I suggest analyzing not only nurse cells but also oocytes to gain a more comprehensive understanding.

      We agree with the reviewer that this experiment can be informative. In the F2 D1 mutant ovaries, germ cell development does not proceed to a stage where oocytes are specified, thus limiting microscopy-based approaches. Nevertheless, we have gauged oocyte quality in all the genotypes using a fertility assay (Fig. 6D) since even ovaries that have a wild-type appearance can produce dysfunctional gametes. In this experiment, we observe that fertility is largely intact in the F1 D1 mutant and F2 D1 heterozygote strains, suggesting that it is the presence of D1 during embryogenesis (or early larval development) that is critical for heritable TE repression and proper oocyte development.

      The conclusion that D1 and Prod do not directly contribute to the repression of transposons needs further analysis from RNA-seq data. Alternatively, the wording could be adjusted to indicate that D1 and Prod are not required for specific transposon silencing, such as Burdock and gypsy.

      Agreed. We have performed RNA-seq in D1 heterozygous (control) and D1 mutant ovaries in a chk26006 background (Fig. 4A, B) as described above.

      As D1 mutation affects Cuff nuclear localization, it would be insightful to sequence the piRNA in the ovaries.

      Agreed. We have performed small RNA profiling from D1 heterozygous (control) and D1 mutant ovaries. Despite the significant mislocalization of the RDC complex, overall piRNA production and antisense piRNAs mapping to TEs were largely unaffected (Fig. 4C-E). However, we observed significant changes in piRNAs mapping to complex satellite DNA repeats (Fig. 4D), but these changes were not associated with a maternal effect on germline development or fertility (F2 D1 heterozygote, Fig. 6B-D).

      **Referee Cross-Commenting**

      I appreciate the valuable insights provided by the other two reviewers regarding this manuscript. I concur with their assessment that substantial improvements are needed before considering this manuscript for publication.

      1. The proteomics data has the potential to be a valuable resource for other scientific community. However, I share the concerns raised by reviewer 1 about the current quality of the data sets. Addressing this, it will augment the manuscript with additional data to show the success of the precipitation. Moreover, as reviewer 2 and I suggested, additional co-IP validations of the IP-MS results are needed to enhance the reliability.

      In the revised manuscript, we have performed multiple experiments to address the quality of the MS datasets based on comments raised by reviewer #1. They are as follows,

      Out of six total AP-MS experiments in this manuscript (D1 x 3, Prod x 2 and Piwi), we observe a strong enrichment of the bait in 5/6 attempts (log2FC between 4-12, Fig. 2A, B, Fig. S2A, Table S1-S3, Table S7). In the D1 testis sample from the initial submission, the lack of a third biological replicate meant that only the p-value (0.07) was not meeting the cutoff. To address this, we have repeated this experiment with an additional biological replicate (Fig. S2A), and our data now clearly show that D1 is also significantly enriched in the testis sample.

      As suggested by the reviewer #1, we have assessed our lysis conditions (450mM NaCl and benzonase) and the solubilization of our baits post-lysis. In Fig. S1D, we have blotted equivalent fractions of the soluble supernatant and insoluble pellet from GFP-Piwi embryos and show that both GFP-Piwi and D1 are largely solubilized following lysis. In Fig. S1E, we also show that our IP protocol works efficiently.

      The only instance in which we do not detect the bait by mass spectrometry is for GFP-Prod pulldown in embryos. Here, one reason could be relatively low expression of GFP-Prod in comparison to GFP-D1 (Fig. S1E), which may lead to technical difficulties in detecting peptides corresponding to Prod. However, we note that Prod IP from embryos co-purified proteins such as Bocks that were previously suggested as Prod interactors from high-throughput studies (Giot et al. 2003; Guruharsha et al. 2011). In addition, Prod IP from embryos also co-purified proteins known to associate with chromocenters such as Hcs(Reyes-Carmona et al. 2011) and Saf-B(Huo et al. 2020). Finally, the concordance between D1 and Prod co-purified proteins from embryo lysates (Fig. 2A, C) suggest that the Prod IP from embryos is of reasonable quality.

      As for the IP-WB validations, we would point out that chromocenters exhibit properties associated with phase separated biomolecular condensates. In our experience, these condensates tend to associate with other proteins/condensates through low affinity or transient interactions that are rarely preserved in IP-WBs, even if there are strong functional relationships. One example is the association between D1 and Prod, which do not pull each other down in an IP-WB (Jagannathan et al. 2019), even though D1 and Prod foci dynamically associate in the nucleus and mutually regulate each other's ability to cluster satellite DNA repeats (Jagannathan et al. 2019). Similarly, IP-WB using GFP-Piwi embryos did not reveal an interaction with D1 (Fig. S4B). However, our extensive functional validations (Figures 4-6) have revealed a critical role for D1 in heritable TE repression.

      I agree with reviewer 2 that the present conclusion is not appropriate regarding D1 and Prod do not contribute to transposon silencing. As reviewer 2 and I suggested, the systematical analysis by using both mRNA-seq and small RNA-seq is required to draw the conclusion.

      Agreed. We have performed RNA seq and small RNA seq as elaborated above. Our conclusions on the role of D1 in TE repression are now much stronger.

      1. The transgenerational phenotype is an intriguing aspect of the study. I agree with reviewer 2 that the inclusion of TM6 ovaries would be a nice control. Further, it is hard to connect this phenotype with the interactions identified in this manuscript. It would be appreciated if the author could provide a mechanistic explanation.

      We have significantly improved these aspects of our study in the revised manuscript. Through the analysis of germline development in the F2 D1 heterozygotes as suggested by reviewer #2, in addition to the recommended RNA seq and small RNA seq, we have now identified embryogenesis (and potentially early larval development) as a time period when D1 makes an important contribution to TE repression. Loss of D1 during embryogenesis leads to TE expression in adult germline cells, which is associated with Chk2-dependent gonadal atrophy. Taken together, we have pinpointed the specific contribution of a satellite DNA-binding protein to transposon repression.

      Reviewer #3 (Significance (Required)):

      Although this study successfully identified several interactions, the authors did not fully elucidate how these interactions contribute to the transgenerational silencing of transposons or ovary development.

      We thank the reviewer for the thoughtful comments and overall positive evaluation of our study, especially the proteomic dataset. We are confident that the revised manuscript has improved our mechanistic understanding of the contribution made by a satellite DNA-binding protein in TE repression.

      References

      Baumgartner L, Handler D, Platzer SW, Yu C, Duchek P, Brennecke J. 2022. The Drosophila ZAD zinc finger protein Kipferl guides Rhino to piRNA clusters eds. D. Bourc'his, K. Struhl, and Z. Zhang. eLife 11: e80067.

      Caridi CP, D'Agostino C, Ryu T, Zapotoczny G, Delabaere L, Li X, Khodaverdian VY, Amaral N, Lin E, Rau AR, et al. 2018. Nuclear F-actin and myosins drive relocalization of heterochromatic breaks. Nature 559: 54-60.

      Charlesworth B, Sniegowski P, Stephan W. 1994. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371: 215-220.

      Chiolo I, Minoda A, Colmenares SU, Polyzos A, Costes SV, Karpen GH. 2011. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144: 732-744.

      Ghabrial A, Schüpbach T. 1999. Activation of a meiotic checkpoint regulates translation of Gurken during Drosophila oogenesis. Nat Cell Biol 1: 354-357.

      Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E, et al. 2003. A protein interaction map of Drosophila melanogaster. Science 302: 1727-1736.

      Guruharsha KG, Rual JF, Zhai B, Mintseris J, Vaidya P, Vaidya N, Beekman C, Wong C, Rhee DY, Cenaj O, et al. 2011. A protein complex network of Drosophila melanogaster. Cell 147: 690-703.

      Huo X, Ji L, Zhang Y, Lv P, Cao X, Wang Q, Yan Z, Dong S, Du D, Zhang F, et al. 2020. The Nuclear Matrix Protein SAFB Cooperates with Major Satellite RNAs to Stabilize Heterochromatin Architecture Partially through Phase Separation. Molecular Cell 77: 368-383.e7.

      Jagannathan M, Cummings R, Yamashita YM. 2019. The modular mechanism of chromocenter formation in Drosophila eds. K. VijayRaghavan and S.A. Gerbi. eLife 8: e43938.

      Mitrentsi I, Lou J, Kerjouan A, Verigos J, Reina-San-Martin B, Hinde E, Soutoglou E. 2022. Heterochromatic repeat clustering imposes a physical barrier on homologous recombination to prevent chromosomal translocations. Molecular Cell 82: 2132-2147.e6.

      Moon S, Cassani M, Lin YA, Wang L, Dou K, Zhang ZZ. 2018. A Robust Transposon-Endogenizing Response from Germline Stem Cells. Dev Cell 47: 660-671 e3.

      Pascovici D, Handler DCL, Wu JX, Haynes PA. 2016. Multiple testing corrections in quantitative proteomics: A useful but blunt tool. PROTEOMICS 16: 2448-2453.

      Reyes-Carmona S, Valadéz-Graham V, Aguilar-Fuentes J, Zurita M, León-Del-Río A. 2011. Trafficking and chromatin dynamics of holocarboxylase synthetase during development of Drosophila melanogaster. Molecular Genetics and Metabolism 103: 240-248.

      Ryu T, Spatola B, Delabaere L, Bowlin K, Hopp H, Kunitake R, Karpen GH, Chiolo I. 2015. Heterochromatic breaks move to the nuclear periphery to continue recombinational repair. Nat Cell Biol 17: 1401-1411.

      Tang H-W, Spirohn K, Hu Y, Hao T, Kovács IA, Gao Y, Binari R, Yang-Zhou D, Wan KH, Bader JS, et al. 2023. Next-generation large-scale binary protein interaction network for Drosophila melanogaster. Nat Commun 14: 2162.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Chavan et al. set out to enrich our compendium of pericentric heterochromatin-associated proteins - and to learn some new biology along the way. An ambitious AP-Mass baited with two DNA satellite-binding proteins (D1 and Prod), conducted across embryos, ovaries, and testes, yielded hundreds of candidate proteins putatively engaged at chromocenters. These proteins are enriched for a restricted number of biological pathways, including DNA repair and transposon regulation. To investigate the latter in greater depth, the authors examine D1 and prod mutants for transposon activity changes using reporter constructs for multiple elements. These reporter constructs revealed no transposon activation in the adult ovary, where many proteins identified in the mass spec experiments restrict transposons. However, the authors suggest that the D1 mutant ovaries do show disrupted localization of a key member of a transposon restriction pathway (Cuff), and infer that this mislocalization triggers a striking, transposon derepression phenotype in the F2 ovaries.

      The dataset produced by the AP-Mass Spec offers chromosome biologists an unprecedented resource. The PCH is long-ignored chromosomal region that has historically received minimal attention; consequently, the pathways that regulate heterochromatin are understudied. Moreover, attempting to connect genome organization to transposon regulation is a new and fascinating area. I can easily envision this manuscript triggering a flurry of discovery; however, there is quite a lot of work to do before the data can fully support the claims.

      Major

      1. The introduction requires quite a radical restructure to better highlight the A) importance of the work and B) limit information whose relevance is not clear early in the manuscript. A. Delineating who makes up heterochromatin is a long-standing problem in chromosome biology. This paper has huge potential to contribute to this field; however, it is not the first. Others are working on this problem in other systems, for example PMID:29272703. Moreover, we have some understanding of the distinct pathways that may impact heterochromatin in different tissues (e.g., piRNA biology in ovaries vs the soma). Also, the mutant phenotypes of prod and D1 are different. Fleshing out these three distinct points could help the reader understand what we know and what we don't know about heterochromatin composition and its special biology. Understanding where we are as a field will offer clear predictions about who the interactors might be that we expect to find. For example, given the dramatically different D1 and prod mutant phenotypes (and allele swap phenotypes), how might the interactors with these proteins differ? What do we know about heterochromatin formation differences in different tissues? And how might these differences impact heterochromatin composition? B. The attempt to offer background on the piRNA pathway and hybrid dysgenesis in the Introduction does not work. As a naïve reader, it was not clear why I was reading about these pathways - it is only explicable once the reader gets to the final third of the Results. Moreover, the reader will not retain this information until the TE results are presented many pages later. I strongly urge the authors to shunt the two TE restriction paragraphs to later in the manuscript. They are currently a major impediment to understanding the power of the experiment - which is to identify new proteins, pathways, and ultimately, biology that are currently obscure because we have so little handle on who makes up heterochromatin.
      2. The implications of the failure to rescue female fertility by the tagged versions of both D1 and Prod are not discussed. Consequently, the reader is left uneasy about how to interpret the data.
      3. How were the significance cut-offs determined? Is the p-value reported the adjusted p-value? As a non-expert in AP-MS, I was surprised to find that the p-value, at least according to the Methods, was not adjusted based on the number of tests. This is particularly relevant given the large/unwieldy(?) number of proteins that were identified as signficant in this study. Moreover, the D1 hit in Piwi pull down is actually not significant according to their criteria of p <0.05 (D1 is p=0.05).
      4. How do we know if the lack of overlap across tissues is indeed germline- or soma-specialization rather than noise? To make this inference, conducting some validation would be required. More generally, I was surprised to see no single interactor validated by reciprocal IP-Westerns to validate the Mass-Spec results, though I am admittedly only adjacent to this technique. Note that colocalization, to my mind, does not validate the AP-MS data - in fact, we would a priori predict that piRNA pathway members would co-localize with PCH given the enrichment of piRNA clusters there.
      5. The AlphaFold2 data are very interesting but seem to lack of negative control. Is it possible to incorporate a dataset of proteins that are not predicted to interact physically to elevate the impact of the ones that you have focused on? Moreover, the structural modeling might suggest a competitive interaction between D1 and piRNAs for Piwi. Is this true? And even if not, how does the structural model contribute to your understanding for how D1 engages with the piRNA pathway? The Cuff mislocalization?
      6. The absence of a TE signal in D1 and Prod mutant ovaries would be much more compelling if investigated more agnostically. The observation that not all TE reporter constructs show a striking signal in the F2 embryos makes me wonder if Burdock and gypsy are not regulated by these two proteins but possibly other TEs are. Alternatively, small RNA-seq would more directly address the question of whether D1 and Prod regulate TEs through the piRNA pathway.
      7. I had trouble understanding the significance of the Cuff mis-localization when D1 is depleted. Given Cuff's role in the piRNA pathway and close association with chromatin, what would the null hypothesis be for Cuff localization when a chromocenter is disrupted? What is the null expectation of % Cuff at chromocenter given that the chromocenter itself expands massively in size (Figure 4D). The relationship between these two factors seems rather indirect and indeed, the absence of Cuff in the AP would suggest this. The biggest surprise is the absence of TE phenotype in the ovary, given the Cuff mutant phenotype - but we can't rule out given the absence of a genome-wide analysis. I think that these data leave the reader unconvinced that the F2 phenotype is causally linked to Cuff mislocalization.
      8. Apologies if I missed this, but Figure 5 shows the F2 D1 mutant ovaries only. Did you look at the TM6 ovaries as well? These ovaries should lack the maternally provisioned D1 (assuming that females are on the right side) but have the zygotic transcription.

      Minor

      1. Add line numbers for ease of reference
      2. The function of satellite DNA itself is still quite controversial - I would recommend being a bit more careful here - the authors could refer instead to genomic regions enriched for satellite DNA are linked to xyz function (see Abstract line 2 and 7, for example.)
      3. "Genetic conflicts" in the introduction needs more explanation.
      4. "In contrast" is not quite the right word. Maybe "However" instead (1st line second paragraph of Intro)
      5. Results: what is the motivation for using GSC-enriched testis?
      6. Clarify sentence about the 500 proteins in the Results section - it's not clear from context that this is the union of all experiments.
      7. The data reported are not the first to suggest that satellite DNA may have special DNA repair requirements. e.g., PMID: 25340780
      8. Page 10: indicate-> indicates.
      9. Page 14: revise for clarity: "investigate a context whether these interactions could not take place"
      10. Might be important to highlight the 500 interactions are both direct and indirect. "Interacting proteins" alone suggests direct interactions only.
      11. The effect of the aub mutant on chromocenter foci did not seem modest to me - however, the bar graphs obscure the raw data - consider plotting all the data not just the mean and error?

      Significance

      The dataset produced by the AP-Mass Spec offers chromosome biologists an unprecedented resource. The PCH is long-ignored chromosomal region that has historically received minimal attention; consequently, the pathways that regulate heterochromatin are understudied. Moreover, attempting to connect genome organization to transposon regulation is a new and fascinating area. I can easily envision this manuscript triggering a flurry of discovery; however, there is quite a lot of work to do before the data can fully support the claims.

      This manuscript represents a significant contribution to the field of chromosome biology.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review):

      Summary:

      The question of whether eyespots mimic eyes has certainly been around for a very long time and led to a good deal of debate and contention. This isn't purely an issue of how eyespots work either, but more widely an example of the potential pitfalls of adopting 'just-so-stories' in biology before conducting the appropriate experiments. Recent years have seen a range of studies testing eye mimicry, often purporting to find evidence for or against it, and not always entirely objectively. Thus, the current study is very welcome, rigorously analysing the findings across a suite of papers based on evidence/effect sizes in a meta-analysis.

      Strengths:

      The work is very well conducted, robust, objective, and makes a range of valuable contributions and conclusions, with an extensive use of literature for the research. I have no issues with the analysis undertaken, just some minor comments on the manuscript. The results and conclusions are compelling. It's probably fair to say that the topic needs more experiments to really reach firm conclusions but the authors do a good job of acknowledging this and highlighting where that future work would be best placed.

      Weaknesses:

      There are few weaknesses in this work, just some minor amendments to the text for clarity and information.

      We greatly appreciate Reviewer 1’s positive comments on our manuscript. We also revised our manuscript text and a figure in accordance with Reviewer 1’s recommendations.

      Reviewer #2 (Public Review):

      Many prey animals have eyespot-like markings (called eyespots) which have been shown in experiments to hinder predation. However, why eyespots are effective against predation has been debated. The authors attempt to use a meta-analytical approach to address the issue of whether eye-mimicry or conspicuousness makes eyespots effective against predation. They state that their results support the importance of conspicuousness. However, I am not convinced by this.

      There have been many experimental studies that have weighed in on the debate. Experiments have included manipulating target eyespot properties to make them more or less conspicuous, or to make them more or less similar to eyes. Each study has used its own set of protocols. Experiments have been done indoors with a single predator species, and outdoors where, presumably, a large number of predator species predated upon targets. The targets (i.e, prey with eyespot-like markings) have varied from simple triangular paper pieces with circles printed on them to real lepidopteran wings. Some studies have suggested that conspicuousness is important and eye-mimicry is ineffective, while other studies have suggested that more eye-like targets are better protected. Therefore, there is no consensus across experiments on the eye-mimicry versus conspicuousness debate.

      The authors enter the picture with their meta-analysis. The manuscript is well-written and easy to follow. The meta-analysis appears well-carried out, statistically. Their results suggest that conspicuousness is effective, while eye-mimicry is not. I am not convinced that their meta-analysis provides strong enough evidence for this conclusion. The studies that are part of the meta-analysis are varied in terms of protocols, and no single protocol is necessarily better than another. Support for conspicuousness has come primarily from one research group (as acknowledged by the authors), based on a particular set of protocols.

      Furthermore, although conspicuousness is amenable to being quantified, for e.g., using contrast or size of stimuli, assessment of 'similarity to eyes' is inherently subjective. Therefore, manipulation of 'similarity to eyes' in some studies may have been subtle enough that there was no effect.

      There are a few experiments that have indeed supported eye-mimicry. The results from experiments so far suggest that both eye-mimicry and conspicuousness are effective, possibly depending on the predator(s). Importantly, conspicuousness can benefit from eye-mimicry, while eye-mimicry can benefit from conspicuousness.

      Therefore, I argue that generalizing based on a meta-analysis of a small number of studies that conspicuousness is more important than eye-mimicry is not justified. To summarize, I am not convinced that the current study rules out the importance of eye-mimicry in the evolution of eyespots, although I agree with the authors that conspicuousness is important.

      We understand Reviewer 2’s concerns and have addressed them by adding some sentences in the discussion part (L506- 508, L538-L540). In addition, our findings, which were guided by current knowledge, support the conspicuousness hypothesis, but we acknowledge the two hypotheses are not mutually exclusive (L110-112). We also do not reject the eye mimicry hypothesis. As we have demonstrated, there are still several gaps in the current literature and our understanding (L501-553). Our aim is for this research to stimulate further studies on this intriguing topic and to foster more fruitful discussions.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Minor comments

      Lines 59/60: "it is possible that eyespots do not involve mimicry of eyes..."

      The sentence was revised (L59). To enhance readability, we have integrated Reviewer 1's suggestions by simplifying the relevant section instead of using the suggested sentence.

      Line 61: not necessarily aposematism. They might work simply through neophobia, unfamiliarity, etc even without unprofitability

      We changed the text in line with the comment from Reviewer 1 (L61-63).

      Lines 62/63 - this is a little hard to follow because I think you really mean both studies of real lepidopterans as well as artificial targets. Need to explain a bit more clearly.

      We provided an additional explanation of our included primary study type (L64-65).

      Lines 93/94 - not quite that they have nothing to do with predator avoidance, but more that any subjective resemblance to eyes is coincidental, or simply as a result of those marking properties being more effective through conspicuousness in their own right.

      Line 94 - similarly, not just aposematism. You explain the possible reasons above on l92 as also being neophobia, etc.

      We agreed with Reviewer 1’s comments and added more explanations about the conspicuousness hypothesis (L96-97). We have also rewritten the sentences that could be misleading to readers (L428).

      Line 96 - this is perhaps a bit misleading as it seems to conflate mechanism and function. The eye mimicry vs conspicuousness debate is largely about how the so-called 'intimidation' function of eyespots works. That is, how eyespots prevent predators from attacking. The deflection hypothesis is a second function of eyespots, which might also work via consciousness or eye mimicry (e.g. if predators try to peck at 'eyes') but has been less central to the mimicry debate.

      The explanations and suggestions from Reviewer 1 are very helpful. We revised this part of our manuscript (L103-108) and Figure 1 and its legend to make it clearer that the eyespot hypothesis and the conspicuousness hypothesis explain anti-predator functions from a different perspective than the deflection hypothesis.

      There is a third function of eyespots too, that being as mate selection traits. Note that Figure 1 should also be altered to reflect these points.

      We wanted to focus on explaining why eyespot patterns can contribute to prey survival. Therefore, we did not state that eyespot patterns function as mate selection traits in this paragraph. Alternatively, we have already mentioned this in the Discussion part (L455-L465) and rewrote it more clearly (L456).

      Were there enough studies on non-avian predators to analyse in any way? 

      We found a few studies on non-avian predators (e.g. fish, invertebrates, or reptiles), but not enough to conduct a meta-analysis.

      Line 171/72 - why? Can you explain, please.

      The reason we excluded studies that used bright or contrasting patterns as control stimuli in our meta-analysis is to ensure comparability across primary studies. We added an explanation in the text (L180-181).

      Line 177 - can you clarify this?

      Without control stimuli, it is challenging to accurately assess the effect of eyespots or other conspicuous patterns on predation avoidance. Control stimuli allow for a comparison of the effect of eyespots or patterns. We added a more detailed explanation to clarify here (L186-188).

      Line 309 - presumably you mean 33 papers, each of which may have multiple experiments? I might have missed it, but how many individual experiments in total? 

      There were 164 individual experiments. We have now added that information in the manuscript (L320).

      Line 320 - paper shaped in a triangle mostly?

      We cannot say that most artificial prey were triangular. After excluding the caterpillar type, 57.4% were triangular, while the remaining 43.6% were rectangular (Figure 2b).

      Line 406: Stevens.

      We fixed this name, thank you (L417).

      Discussion - nice, balanced and thorough. Much of the work done has been in Northern Europe where eyespot species are less common. Perhaps things may differ in areas where eyespots are more prevalent.

      We appreciate Reviewer 1’s kind words and comments. We agree with your comments and reflected them in our manuscript (L542-545).

      Line 477 - True, and predators often have forward-facing eyes making it likely both would often be seen, but a pair of eyes may not be absolutely crucial to avoidance since sometimes a prey animal may only see one eye of a predator (e.g. if the other is occluded, or only one side of the head is visible).

      We were grateful for Reviewer 1's comment. We added a sentence noting that the eyespots do not necessarily have to be in pairs to resemble eyes (L490-L492).

    1. of both race and gender that remained in place—particularly among its women employees known as computers..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }11211Darden’s arrival at Langley coincided with the early days of digital computing. Although Langley could claim one of the most advanced computing systems of the time—an IBM 704, the first computer to support floating-point math—its resources were still limited. For most data analysis tasks, Langley’s Advanced Computing Division relied upon human computers like Darden herself. These computers were all women, trained in math or a related field, and tasked with performing the calculations that determined everything from the best wing shape for an airplane, to the best flight path to the moon. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Aneta SwianiewiczBut despite the crucial roles they played in advancing this and other NASA research, they were treated like unskilled temporary workers.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }11. They were brought into research groups on a project-by-project basis, often without even being told anything about the source of the data they were asked to analyze..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Lena Zlock Most of the engineers, who were predominantly men, never even bothered to learn the computers’ names.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1111.These women computers have only recently.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Michela Banks begun to receive credit for their crucial work, thanks to scholars of the history of computing.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Roujia Wang—and to journalists like Margot Lee Shetterly, whose book, Hidden Figures: The American Dream and the Untold Story of the Black Women Who Helped Win the Space Race,.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Melinda Rossi along with its film adaptation.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Fagana Stone, is responsible for bringing Christine Darden’s story into the public eye.2 Her story, like those of her colleagues, is one of hard work under discriminatory conditions. Each of these women computers was required to advocate for herself—and some, like Darden, chose also to advocate for others. It is because of both her contributions to data science and her advocacy for women that we have chosen to begin our book, Data Feminism, with Darden’s story. For feminism begins with a belief in the “political, social, and economic equality of the sexes,”.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Michela Banks as the Merriam-Webster Dictionary defines the term—as does, for the record, Beyoncé.3 And any definition of feminism also necessarily includes the activist work that is required to turn that belief into reality.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Yolanda Yang. In Data Feminism, we bring these two aspects of feminism together, demonstrating a way of thinking about data, their analysis, and their display, that is informed by this tradition of feminist activism as well as the legacy of feminist critical thought..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1nyah beanAs for Darden, she did not only apply her skills of data analysis to spaceflight trajectories; she also applied them to her own career path..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Yasin Chowdhury After working at Langley for a number of years, she began to notice two distinct patterns in her workplace: men with math credentials were placed in engineering positions, where they could be promoted through the ranks of the civil service, while women with the same degrees were sent to the computing pools, where they languished until they retired or quit.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }211..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Joe Masnyy She did not want to become one of those women, nor did she want others to experience the same fate. So she gathered up her courage and decided to approach the chief of her division to ask him why..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Yasin Chowdhury As Darden, now seventy-five, told Shetterly in an interview for Hidden Figures, his response was sobering: “Well, nobody’s ever complained,” he told Darden. “The women seem to be happy doing that, so that’s just what they do.”.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }21111In today’s world, Darden might have gotten her boss fired—or at least served with an Equal Employment Opportunity Commission complaint. But at the time that Darden posed her question, stereotypical remarks about “what women do” were par for the course..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Roujia Wang In fact, challenging assumptions about what women could or couldn’t do—especially in the workplace—was the central subject of Betty Friedan’s best-selling book, The Feminine Mystique. Published in 1963, The Feminine Mystique.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Jillian McCarten is often credited with starting feminism’s so-called second wave.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Yolanda Yang.4 Fed up with the enforced return to domesticity following the end of World War II, and inspired by the national conversation about equality of opportunity prompted by the civil rights movement, women across the United States began to organize around a wide range of issues, including reproductive rights.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }21 and domestic violence, as well as the workplace inequality and restrictive gender roles that Darden faced at Langley.That said, Darden’s specific experience as a Black woman with a full-time job was quite different than that of a white suburban housewife—the central focus of The Feminine Mystique. And when critics rightly called out Friedan for failing to acknowledge the range of experiences of women in the United States (and abroad), it was women like Darden, among many others, whom they had in mind. In Feminist Theory: From Margin to Center, another landmark feminist book published in 1984, bell hooks puts it plainly: “[Friedan] did not discuss who would be called in to take care of the children and maintain the home if more women like herself were freed from their house labor and given equal access with white men to the professions. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }11She did not speak of the needs of women without men, without children, without homes. She ignored the existence of all non-white women and poor white women..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Melinda Rossi She did not tell readers whether it was more fulfilling to be a maid, a babysitter, a factory worker, a clerk, or a prostitute than to be a leisure-class housewife.”.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Jillian McCarten5In other words, Friedan had failed to consider how those additional dimensions of individual and group identity—like race and class, not to mention sexuality, ability, age, religion, and geography, among many others—intersect with each other to determine one’s experience in the world.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Jayri Ramirez. Although this concept—intersectionality.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }11—did not have a name when hooks described it, the idea that these dimensions cannot be examined in isolation from each other has a much longer intellectual history..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }116 Then, as now, key scholars and activists were deeply attuned to how the racism embedded in US culture.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }2Fagana Stone, Amanda Christopher, coupled with many other forms of oppression, made it impossible to claim a common experience.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Melinda Rossi—or a common movement—for all women everywhere. Instead, what was needed was “the development of integrated analysis and practice based upon the fact that the major systems of oppression are interlocking.”7 These words are from the Combahee River Collective Statement, written in 1978 by the famed Black feminist activist group out of Boston. In this book, we draw heavily from intersectionality and other concepts developed through the work of Black feminist scholars and activists because they offer some of the best ways for negotiating this multidimensional terrain.Indeed, feminism must be intersectional if it seeks to address the challenges of the present moment..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }2Angela Li, Cynthia Lisee We write as two straight, white women based in the United States, with four advanced degrees and five kids between us. We identify as middle-class and cisgender—meaning that our gender identity matches the sex that we were assigned at birth. We have experienced.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Jillian McCarten sexism in various ways at different points of our lives—being women in tech and academia, birthing and breastfeeding babies, and trying to advocate for ourselves and our bodies in a male-dominated health care system. But we haven’t experienced sexism in ways that other women certainly have or that nonbinary people have, for there are many dimensions of our shared identity, as the authors of this book, that align with dominant group positions. This fact makes it impossible for us to speak from experience about some oppressive forces—racism, for example. But it doesn’t make it impossible for us to educate ourselves.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Melinda Rossi and then speak about racism and the role that white people play in upholding it..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Peem Lerdp Or to challenge ableism and the role that abled people play in upholding it. Or to speak about class and wealth inequalities and the role that well-educated, well-off people play in maintaining those..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Fagana Stone Or to believe in the logic of co-liberation. Or to advocate for justice through equity. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1nyah beanIndeed, a central aim of this book is to describe a form of intersectional feminism that takes the inequities of the present moment as its starting point and begins its own work by asking: How can we use data to remake the world?8This is a complex and weighty task, and it will necessarily remain unfinished. But its size and scope need not stop us—or you, the readers of this book—from taking additional steps toward justice. Consider Christine Darden, who, after speaking up to her division chief, heard nothing from him but radio silence. But then, two weeks later, she was indeed promoted.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Amanda Christopher and transferred to a group focused on sonic boom research. In her new position, Darden was able to begin directing her own research projects and collaborate with colleagues of all genders as a peer. Her self-advocacy serves as a model: a sustained attention to how systems of oppression intersect with each other, informed by the knowledge that comes from direct experience. It offers a guide for challenging power and working toward justice.What Is Data Feminism?Christine Darden would go on to conduct groundbreaking research on sonic boom minimization techniques, author more than sixty scientific papers in the field of computational fluid dynamics, and earn her PhD in mechanical engineering—all while “juggling the duties of Girl Scout mom, Sunday school teacher, trips to music lessons, and homemaker,” Shetterly reports. But even as she ascended the professional ranks, she could tell that her scientific accomplishments were still not being recognized as readily as those of her male counterparts; the men, it seemed, received promotions far more quickly.Darden consulted with Langley’s Equal Opportunity Office, where a white woman by the name of Gloria Champine had been compiling a set of statistics about gender and rank. The data confirmed Darden’s direct experience: that women and men.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Jillian McCarten—even those with identical academic credentials, publication records, and performance reviews—were promoted at vastly different rates. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Aneta SwianiewiczChampine recognized that her data could support Darden in her pursuit of a promotion and, furthermore, that these data could help communicate the systemic nature of the problem at hand. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Yuanxi LiChampine visualized the data in the form of a bar chart, and presented the chart to the director of Darden’s division.9 He was “shocked at the disparity,” Shetterly reports, and Darden received the promotion she had long deserved.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }2Angela Li, Fagana Stone.10 Darden would advance to the top rank in the federal civil service, the first Black woman at Langley to do so. By the time that she retired from NASA, in 2007, Darden was a director herself..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Joe Masnyy11Although Darden’s rise into the leadership ranks at NASA was largely the result of her own knowledge, experience, and grit, her story is one that we can only tell as a result of the past several decades of feminist activism and critical thought. It was a national feminist movement that brought women’s issues to the forefront of US cultural politics, and the changes brought about by that movement were vast. They included both the shifting gender roles that pointed Darden in the direction of employment at NASA and the creation of reporting mechanisms.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; } like the one that enabled her to continue her professional rise..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }2Roujia Wang, Seyoon Ahn But Darden’s success in the workplace was also, presumably, the result of many unnamed colleagues and friends who may or may not have considered themselves feminists. These were the people who provided her with community and support.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Melinda Rossi—and likely a not insignificant number of casserole dinners—as she ascended the government ranks. These types of collective efforts have been made increasingly legible, in turn, because of the feminist scholars and activists whose decades of work have enabled us to recognize that labor—emotional as much as physical—as such today.As should already be apparent, feminism has been defined and used in many ways. Here and throughout the book, we employ the term feminism as a shorthand for the diverse and wide-ranging projects that name and challenge sexism and other forces of oppression, as well as those which seek to create more just, equitable, and livable futures. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }312Because of this broadness, some scholars prefer to use the term feminisms, which clearly signals the range of—and, at times, the incompatibilities among—these various strains of feminist activism and political thought. For reasons of readability, we choose to use the term feminism here, but our feminism is intended to be just as expansive. It includes the work of regular folks like Darden and Champine, public intellectuals like Betty Friedan and bell hooks, and organizing groups like the Combahee River Collective, which have taken direct action to achieve the equality of the sexes. It also includes the work of scholars and other cultural critics—like Kimberlé Crenshaw and Margot Lee Shetterly, among many more—who have used writing to explore the social, political, historical, and conceptual reasons behind the inequality of the sexes that we face today.In the process, these writers and activists have given voice to the many ways in which today’s status quo is unjust.12 These injustices are often the result of historical and contemporary differentials of power, including those among men, women, and nonbinary people, as well as those among white women and Black women, academic researchers and Indigenous communities, and people in the Global North and the Global South..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; } Feminists analyze these power differentials so that they can change them..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1athmar al-ghanim Such a broad focus—one that incorporates race, class, ability, and more—would have sounded strange to Friedan or to the white women largely credited for leading the fight for women’s suffrage in the nineteenth century.13 But the reality is that women of color have long insisted that any movement for gender equality must also consider the ways in which privilege and oppression are intersectional..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1nyah beanBecause the concept of intersectionality is essential for this whole book, let’s get a bit more specific. The term was coined by legal theorist Kimberlé Crenshaw in the late 1980s..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1nyah bean14 In law school, Crenshaw had come across the antidiscrimination case of DeGraffenreid v. General Motors. Emma DeGraffenreid was a Black working mother who had sought a job at a General Motors factory in her town. She was not hired and sued GM for discrimination. The factory did have a history of hiring Black people: many Black men worked in industrial and maintenance jobs there. They also had a history of hiring women: many white women worked there as secretaries. These two pieces of evidence provided the rationale for the judge to throw out the case. Because the company did hire Black people and did hire women, it could not be discriminating based on race or gender. But, Crenshaw wanted to know, what about discrimination on the basis of race and gender together? This was something different, it was real, and it needed to be named. Crenshaw not only named the concept, but would go on to explain and elaborate the idea of intersectionality in award-winning books, papers, and talks.15Key to the idea of intersectionality is that it does not only describe the intersecting aspects of any particular person’s identity (or positionalities, as they are sometimes termed).16 It also describes the intersecting forces of privilege and oppression at work in a given society. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }111Oppression involves the systematic mistreatment of certain groups of people by other groups. It happens when power is not distributed equally—when one group controls the institutions of law, education, and culture, and uses its power to systematically exclude other groups while giving its own group unfair advantages (or simply maintaining the status quo).17 In the case of gender oppression, we can point to the sexism, cissexism.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Amanda Christopher, and patriarchy that is evident in everything from political representation to the wage gap to who speaks more often (or more loudly.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Jillian McCarten) in a meeting..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Tegan Lewis18 In the case of racial oppression, this takes the form of racism and white supremacy. Other forms of oppression include ableism, colonialism, and classism. Each has its particular history and manifests differently in different cultures and contexts, but all involve a dominant group that accrues power and privilege at the expense of others. Moreover, these forces of power and privilege on the one hand and oppression on the other mesh together in ways that multiply their effects.The effects of privilege and oppression are not distributed evenly across all individuals and groups, however. For some, they become an obvious and unavoidable part of daily life, particularly for women and people of color and queer people and immigrants: the list goes on. If you are a member of any or all of these (or other) minoritized groups, you experience their effects everywhere, shaping the choices you make (or don’t get to make) each day. These systems of power are as real as rain..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }2Eva Maria Chavez But forces of oppression can be difficult to detect when you benefit from them (we call this a privilege hazard later in the book).d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }2Yolanda Yang, Jillian McCarten. And this is where data come in: it was a set of intersecting systems of power and privilege that Darden was intent on exposing when she posed her initial question to her division chief. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1g mAnd it was that same set of intersecting systems of power and privilege that Darden sought to challenge when she approached Champine. Darden herself didn’t need any more evidence of the problem she faced; she was already living it every day.19 But when her experience was recorded as data and aggregated with others’ experiences, it could be used to challenge institutional systems of power and have far broader impact than on her career trajectory alone..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1111In this way, Darden models what we call data feminism: a way of thinking about data, both their uses and their limits, that is informed by direct experience, by a commitment to action, and by intersectional feminist thought..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Tegan Lewis T.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }11he starting point for data feminism is something that goes mostly unacknowledged in data science: power is not distributed equally in the world. Those who wield power are disproportionately elite, straight, white, able-bodied, cisgender men from the Global North.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Seng Aung Sein Myint.20 The work of data feminism is first to tune into how standard practices in data science serve to reinforce these existing inequalities and second to use data science to challenge and change the distribution of power..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Megan Foesch21 Underlying data feminism is a belief in and commitment to co-liberation: the idea that oppressive systems of power harm all of us, that they undermine the quality and validity of our work, and that they hinder us from creating true and lasting social impact with data science..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1nyah beanWe wrote this book because we are data scientists and data feminists. Although we speak as a “we” in this book, and share certain identities, experiences, and skills, we have distinct life trajectories and motivations for our work on this project. If we were sitting with you right now, we would each introduce ourselves by answering the question: What brings you here today? Placing ourselves in that scenario, here is what we would have to say.Catherine: I am a hacker mama. I spent fifteen years as a freelance software developer and experimental artist, now professor, working on projects ranging from serendipitous news-recommendation systems to countercartography to civic data literacy to making breast pumps not suck. I’m here writing this book because, for one, the hype around big data and AI is deafeningly male and white and technoheroic .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Jillian McCartenand the time is now to reframe that world with a feminist lens. The second reason I’m here is that my recent experience running a large, equity-focused hackathon taught me just how much people like me—basically, well-meaning liberal white people—are part of the problem in struggling for social justice. This book is one attempt to expose such workings of power, which are inside us as much as outside in the world.22Lauren: I often describe myself as a professional nerd. I worked in software development before going to grad school to study English, with a particular focus on early American literature and culture. (Early means very early—like, the eighteenth century.) As a professor at an engineering school, I now work on research projects that translate this history into contemporary contexts. For instance, I’m writing a book about the history of data visualization, employing machine-learning techniques to analyze abolitionist newspapers, and designing a haptic recreation of a hundred-year-old visualization scheme that looks like a quilt. Through projects like these, I show how the rise of the concept of “data” (which, as it turns out, really took off in the eighteenth century.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Jillian McCarten) is closely connected to the rise of our current concepts of gender and race. So one of my reasons for writing this book is to show how the issues of racism and sexism that we see in data science today are by no means new. The other reason is to help translate humanistic thinking into practice and, in so doing, create more opportunities for humanities scholars to engage with activists, organizers, and communities.23We both strongly believe that data can do good in the world. But for it to do so, we must explicitly acknowledge that a key way that power and privilege operate in the world today has to do with the word data itself..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Seng Aung Sein Myint The word dates to the mid-seventeenth century, when it was introduced to supplement existing terms such as evidence and fact..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Tegan Lewis Identifying information as data, rather than as either of those other two terms, served a rhetorical purpose.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Jillian McCarten.24 It converted otherwise debatable information into the solid basis for subsequent claims. But what information needs to become data before it can be trusted? Or, more precisely, whose information needs to become data before it can be considered as fact and acted upon?.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }2Peem Lerdp, Fagana Stone25 Data feminism must answer these questions, too..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }211The story that begins with Christine Darden entering the gates of Langley, passes through her sustained efforts to confront the structural oppression she encountered there, and concludes with her impressive array of life achievements, is a story about the power of data. Throughout her career, in ways large and small, Darden used data to make arguments and transform lives. But that’s not all. Darden’s feel-good biography is just as much a story about the larger systems of power that required data—rather than the belief in her lived experience.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Cynthia Lisee—to perform that transformative work. An institutional mistrust of Darden’s experiential knowledge was almost certainly a factor in Champine’s decision to create her bar chart. Champine likely recognized, as did Darden herself, that she would need the bar chart to be believed..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }11In this way, the alliance between Darden and Champine, and their work together, underscores the flaws and compromises that are inherent in any data-driven project. The process of converting life experience into data always necessarily entails a reduction of that experience.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Tegan Lewis—along with the historical and conceptual burdens of the term. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }11That Darden and Champine were able to view their work as a success despite these inherent constraints underscores even more the importance of listening to and learning from people whose lives and voices are behind the numbers. No dataset or analysis or visualization or model or algorithm is the result of one person working alone. Data feminism can help to remind us that before there are data, there are people—people who offer up their experience to be counted and analyzed, people who perform that counting and analysis, people who visualize the data and promote the findings of any particular project, and people who use the product in the end..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1nyah bean There are also, always, people who go uncounted—for better or for worse.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }11. And there are problems that cannot be represented—or addressed—by data alone. And so data feminism, like justice, must remain both a goal and a process, one that guides our thoughts and our actions as we move forward toward our goal of remaking the world..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }111Data and Power.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Kaiyun ZhengIt took five state-of-the-art IBM System/360 Model 75 machines to guide the Apollo 11 astronauts to the moon. Each was the size of a car and cost $3.5 million dollars. Fast forward to the present. We now have computers in the form of phones that fit in our pockets and—in the case of the 2019 Apple iPhone XR—can perform more than 140 million more instructions per second than a standard IBM System/360..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Kotaro Garvin26 That rate of change is astounding; it represents an exponential growth in computing capacity (figure 0.2a). We’ve witnessed an equally exponential growth in our ability to collect and record information in digital form—and in the ability to have information collected about us (figure 0.2b).Figure 0.2: (a) The time-series chart included in the original paper on Moore’s law, published in 1965, which posited that the number of transistors that could fit on an integrated circuit (and therefore contribute to computing capacity) would double every year. Courtesy of Gordon Moore. (b) Several years ago, researchers concluded that transistors were approaching their smallest size and that Moore’s law would not hold. Nevertheless, today’s computing power is what enabled Dr. Katie Bouman, a postdoctoral fellow at MIT, to contribute to a project that involved processing and compositing approximately five petabytes of data captured by the Event Horizon Telescope to create the first ever image of a black hole. After the publication of this photo in April 2019 showing her excitement—as one of the scientists on the large team that worked for years to capture the image—Bouman was subsequently trolled and harassed online. Courtesy of Tamy Emma Pepin/Twitter.But the act of collecting and recording data about people is not new at all. From the registers of the dead that were published by church officials in the early modern era to the counts of Indigenous populations that appeared in colonial accounts of the Americas, data collection has long been employed as a technique of consolidating knowledge about the people whose data are collected, and therefore consolidating power over their lives..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Sara Blumenstein27 The close relationship between data and power is perhaps most clearly visible in the historical arc that begins with the logs of people captured and placed aboard slave ships, reducing richly lived lives to numbers and names..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }11 It passes through the eugenics movement, in the late nineteenth and early twentieth centuries, which sought to employ data to quantify the superiority of white people over all others. It continues today in the proliferation of biometrics technologies that, as sociologist Simone Browne has shown, are disproportionately deployed to surveil Black bodies..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }28When Edward Snowden, the former US National Security Agency contractor, leaked his cache of classified documents to the press in 2013, he revealed the degree to which the federal government routinely collects data on its citizens—often with minimal regard to legality or ethics..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Natalie Pei Xu29 At the municipal level, too, governments are starting to collect data on everything from traffic movement to facial expressions in the interests of making cities “smarter.”30 This often translates to reinscribing traditional urban patterns of power such as segregation, the overpolicing of communities of color, and the rationing of ever-scarcer city services..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Melinda Rossi31But the government is not alone in these data-collection efforts; corporations do it too—with profit as their guide. The words and phrases we search for on Google, the times of day we are most active on Facebook, and the number of items we add to our Amazon carts are all tracked and stored as data—data that are then converted into corporate financial gain.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }12. The most trivial of everyday actions—searching for a way around traffic, liking a friend’s cat video, or even stepping out of our front doors in the morning—are now hot commodities. This is not because any of these actions are exceptionally interesting (although we do make an exception for Catherine’s cats) but because these tiny actions can be combined with other tiny actions to generate targeted advertisements and personalized recommendations—in other words, to give us more things to click on, like, or buy.32.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Esmeralda OrrinThis is the data economy, and corporations, often aided by academic researchers, are currently scrambling to see what behaviors—both online and off—remain to be turned into data and then monetized. Nothing is outside of datafication.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Melinda Rossi, as this process is sometimes termed—not your search history, or Catherine’s cats, or the butt that Lauren is currently using to sit in her seat. To wit: Shigeomi Koshimizu, a Tokyo-based professor of engineering, has been designing matrices of sensors that collect data at 360 different positions around a rear end while it is comfortably ensconced in a chair.33 He proposes that people have unique butt signatures, as unique as their fingerprints. In the future, he suggests, our cars could be outfitted with butt-scanners instead of keys or car alarms to identify the driver..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Kotaro GarvinAlthough datafication may occasionally verge into the realm of the absurd, it remains a very serious issue. Decisions of civic, economic, and individual importance are already and increasingly being made by automated systems sifting through large amounts of data. For example, PredPol, a so-called predictive policing company founded in 2012 by an anthropology professor at the University of California, Los Angeles, has been employed by the City of Los Angeles for nearly a decade to determine which neighborhoods to patrol more heavily, and which neighborhoods to (mostly) ignore. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Jillian McCartenBut because PredPol is based on historical crime data and US policing practices have always disproportionately surveilled and patrolled neighborhoods of color, the predictions of where crime will happen in the future look a lot like the racist practices of the past..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }3Fagana Stone, Melinda Rossi, Amanda Christopher34 These systems create what mathematician and writer Cathy O’Neil, in Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy, calls a “pernicious feedback loop,” amplifying the effects of racial bias and of the criminalization of poverty that are already endemic to the United States..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Kaiyun ZhengO’Neil’s solution is to open up the computational systems that produce these racist results. Only by knowing what goes in, she argues, can we understand what comes out. This is a key step in the project of mitigating the effects of biased data. Data feminism additionally requires that we trace those biased data back to their source. PredPol and the “three most objective data points” that it employs certainly amplify existing biases, but they are not the root cause.35 The cause, rather, is the long history of the criminalization of Blackness in the United States, which produces biased policing practices, which produce biased historical data, which are then used to develop risk models for the future..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }36 Tracing these links to historical and ongoing forces of oppression can help us answer the ethical question, Should this system exist?37 In the case of PredPol, the answer is a resounding no.Understanding this long and complicated chain reaction is what has motivated Yeshimabeit Milner, along with Boston-based activists, organizers, and mathematicians, to found Data for Black Lives, an organization dedicated to “using data science to create concrete and measurable change in the lives of Black communities.”38 Groups like the Stop LAPD Spying coalition are using explicitly feminist and antiracist methods to quantify and challenge invasive data collection by law enforcement.39 Data journalists are reverse-engineering algorithms and collecting qualitative data at scale about maternal harm.40 Artists are inviting participants to perform ecological maps and using AI for making intergenerational family memoirs.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Melinda Rossi (figure 0.3a).41All these projects are data science. Many people think of data as numbers alone, but data can also consist of words or stories, colors or sounds, or any type of information that is systematically collected, organized, and analyzed .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }12(figures 0.3b, 0.3c).42 The science in data science simply implies a commitment to systematic methods of observation and experiment. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Peem LerdpThroughout this book, we deliberately place diverse data science examples alongside each other. They come from individuals and small groups, and from across academic, artistic, nonprofit, journalistic, community-based, and for-profit organizations. This is due to our belief in a capacious definition of data science, one that seeks to include rather than exclude and does not erect barriers based on formal credentials, professional affiliation, size of data, complexity of technical methods, or other external markers of expertise..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Cynthia Lisee Such markers, after all, have long been used to prevent women from fully engaging in any number of professional fields, even as those fields—which include data science and computer science, among many others—were largely built on the knowledge that women were required to teach themselves.43 An attempt to push back against this gendered history is foundational to data feminism, too.Throughout its own history, feminism has consistently had to work to convince the world that it is relevant to people of all genders.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }2Fagana Stone, Amanda Christopher. We make the same argument: that data feminism is for everybody. (And here we borrow a line from bell hooks.).d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }2Peem Lerdp, Vibha Sathish Kumar44 You will notice that the examples we use are not only about women, nor are they created only by women. That’s because data feminism isn’t only about women. It takes more than one gender to have gender inequality and more than one gender to work toward justice. Likewise, data feminism isn’t only for women. Men, nonbinary, and genderqueer people are proud to call themselves feminists and use feminist thought in their work. Moreover, data feminism isn’t only about gender. Intersectional feminists have keyed us into how race, class, sexuality, ability, age, religion, geography, and more are factors that together influence each person’s experience and opportunities in the world. Finally, data feminism is about power.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Peem Lerdp—about who has it and who doesn’t. Intersectional feminism examines unequal power.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Megan Foesch. And in our contemporary world, data is power too. Because the power of data is wielded unjustly, it must be challenged and changed..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1nyah beanData Feminism in ActionData is a double-edged sword. In a very real sense, data have been used as a weapon by those in power to consolidate their control—over places and things, as well as people. Indeed, a central goal of this book is to show how governments and corporations have long employed data and statistics as management techniques to preserve an unequal status quo. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }3Tegan Lewis, Melinda Rossi, Jillian McCartenWorking with data from a feminist perspective requires knowing and acknowledging this history. To frame the trouble with data in another way: it’s not a coincidence that the institution that employed Christine Darden and enabled her professional rise is the same that wielded the results of her data analysis to assert the technological superiority of the United States over its communist adversaries and to plant an American flag on the moon. But this flawed history does not mean ceding control of the future to the powers of the past. Data are part of the problem, to be sure. But they are also part of the solution. Another central goal of this book is to show how the power of data can be wielded back.Figure 0.3: We define data science expansively in this book—here are three examples. (a) Not the Only One by Stephanie Dinkins (2017), is a sculpture that features a Black family through the use of artificial intelligence. The AI is trained and taught by the underrepresented voices of Black and brown individuals in the tech sector. (b) Researcher Margaret Mitchell and colleagues, in “Seeing through the Human Reporting Bias” (2016), have worked on systems to infer what is not said in human speech for the purposes of image classification. For example, people say “green bananas” but not “yellow bananas” because yellow is implied as the default color of the banana. Similarly, people say “woman doctor” but do not say “man doctor,” so it is the words that are not spoken that encode the bias. (c) A gender analysis of Hollywood film dialogue, “Film Dialogue from 2,000 Screenplays Broken Down by Gender and Age,” by Hanah Anderson and Matt Daniels, created for The Pudding, a data journalism start-up (2017).To guide us in this work, we have developed seven core principles. Individually and together, these principles emerge from the foundation of intersectional feminist thought. Each of the following chapters is structured around a single principle. The seven principles of data feminism are as follows:.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Monserrat PadillaExamine power. Data feminism begins by analyzing how power operates in the world.Challenge power. Data feminism commits to challenging unequal power structures and working toward justice.Elevate emotion and embodiment. Data feminism teaches us to value multiple forms of knowledge, including the knowledge that comes from.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }11 people as living, feeling bodies in the world.Rethink binaries and hierarchies. Data feminism requires us to challenge the gender binary, along with other systems of counting and classification that perpetuate oppression..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Eva Maria ChavezEmbrace pluralism. Data feminism insists that the most complete knowledge comes from synthesizing multiple perspectives, with priority .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }3Eva Maria Chavez, Fagana Stone, Tegan Lewisgiven to local, Indigenous, and experiential ways of knowing.Consider context. Data feminism asserts that data are not neutral or objective. They are the products of unequal social relations, and this context is essential for conducting accurate, ethical analysis..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Natalie Pei XuMake labor visible. The work of data science, like all work in the world, is the work of many hands. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Melinda RossiData feminism makes this labor visible so that it can be recognized and valued.Each of the following chapters takes up one of these principles, drawing upon examples from the field of data science, expansively defined, to show how that principle can be put into action. Along the way, we introduce key feminist concepts like the matrix of domination (Patricia Hill Collins; see chapter 1), situated knowledge (Donna Haraway; see chapter 3), and emotional labor (Arlie Hochschild; see chapter 8), as well as some of our own ideas about what data feminism looks like in theory and practice. To this end, we introduce you to people at the cutting edge of data and justice. These include engineers and software developers, activists and community organizers, data journalists, artists, and scholars. This range of people, and the range of projects they have helped to create, is our way of answering the question: What makes a project feminist? As will become clear, a project may be feminist in content, in that it challenges power by choice of subject matter; in form, in that it challenges power by shifting the aesthetic and/or sensory registers of data communication; and/or in process, in that it challenges power by building participatory, inclusive processes of knowledge production.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }11. What unites this broad scope of data-based work is a commitment to action and a desire to remake the world..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Sara BlumensteinOur overarching goal is to take a stand against the status quo—against a world that benefits us, two white college professors, at the expense of others..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Justine Smith To work toward this goal, we have chosen to feature the voices of those who speak from the margins, whether because of their gender, sexuality, race, ability, class, geographic location, or any combination of those (and other) subject positions. We have done so, moreover, because of our belief that those with direct experience of inequality know better than we do about what actions to take next. For this reason, we have attempted to prioritize the work of people in closer proximity to issues of inequality over those who study inequality from a distance..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Natalie Pei Xu In this book, we pay particular attention to inequalities at the intersection of gender and race. This reflects our location in the United States, where the most entrenched issues of inequality have racism at their source. Our values statement, included as an appendix to this book, discusses the rationale for these authorial choices in more detail.Any book involves making choices about whose voices and whose work to include and whose voices and work to omit. We ask that those who find their perspectives insufficiently addressed or their work insufficiently acknowledged view these gaps as additional openings for conversation. Our sincere hope is to contribute in a small way to a much larger conversation, one that began long before we embarked upon this writing process and that will continue long after these pages are through.This book is intended to provide concrete steps to action for data scientists seeking to learn how feminism can help them work toward justice, and for feminists seeking to learn how their own work can carry over to the growing field of data science. It is also addressed to professionals in all fields in which data-driven decisions are being made.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Melinda Rossi, as well as to communities that want to resist or mobilize the data that surrounds them. It is written for everyone who seeks to better understand the charts and statistics that they encounter in their day-to-day lives, and for everyone who seeks to communicate the significance of such charts and statistics to others..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Peem LerdpOur claim, once again, is that data feminism is for everyone. It’s for people of all genders. It’s by people of all genders. And most importantly: it’s about much more than gender. Data feminism is about power, about who has it and who doesn’t, and about how those differentials of power can be challenged and changed using data.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Yolanda Yang. We invite you, the readers of this book, to join us on this journey toward justice and toward remaking our data-driven world.Connections1 of 2children and siblingsfilterA Translation of this Pubمقدمه: چرا علم داده به فمینیسم احتیاج داردby Catherine D'Ignazio and Lauren KleinShow DescriptionPublished on Mar 07, 2024data-feminism.mitpress.mit.eduDescriptionترجمه توسط امیرحسین پی‌براهA Translation of this PubIntroducción: por qué la ciencia de datos necesita feminismoby Catherine D'Ignazio and Lauren KleinShow DescriptionPublished on Apr 23, 2023data-feminism.mitpress.mit.eduDescriptionDataGénero (Coordinación: Mailén García. Traductoras: Ivana Feldfeber,Sofía García, Gina Ballaben, Giselle Arena y Mariángela Petrizzo. Revisión: Helena Suárez Val.Con la ayuda de Diana Duarte Salinas, Ana Amelia Letelier, y Patricia Maria Garcia Iruegas)Footnotes44LicenseCreative Commons Attribution 4.0 International License (CC-BY 4.0)Comments168 .discussion-list .discussion-thread-component.preview:hover, .discussion-list .discussion-thread-component.expanded-preview { border-left: 3px solid #2D2E2F; padding-left: calc(1em - 2px); } ?Login to discussHappy Polarbear: This passage describing the attitude of most male engineers towards their work is both painfully accurate and poignant, portraying them not as respected individuals deserving recognition for their achievements, but merely as inanimate objects, tools for calculation.?Cynthia Lisee: Such a fertile approach”?Cynthia Lisee: There is somethig immeasurable in lived experience, somethind stat would never reach. data not subject to an ethic of human relations based on "welcoming the Other" are mere abstractions and sources of violence Jamia Williams: Thank you! Reframing is essential when many of these events were deemed “riots” when it was Black folks rising up against various systems.Jamia Williams: Still happening today!?Jillian McCarten: The context in which numbers are collected?Jillian McCarten: The idea that some areas, and therefore some people don’t need to be monitored feels immoral. ?Jillian McCarten: I’ve been thinking about how it’s not what you’re doing but what your goal is, and corporations using our data to make more money off us definitely does not feel the same as collecting data on gender discrimination to stop the practice. ?Jillian McCarten: curious what examples it’s better?Jillian McCarten: It’s interesting what we need evidence to believe, and what we willingly believe without evidence ?Jillian McCarten: the word data origionaly meant to communicate that the fact is confirmed to be true- to shut down disputes ?Jillian McCarten: I love linguistic history, I’d like to learn more about this?Jillian McCarten: Yes, I’m afraid how how biases are baked into AI, and then reinforced ?Jillian McCarten: This reminds me of how priviledge is a lot less visible to those who hold it. ?Jillian McCarten: I wonder if she also had access to data on promotions across race. There’s all kinds of discrimination, and the kinds of data seen as worth collecting also reveal bias. I wonder if the white woman who collected the data focused on gender and missed other identities experiencing discrimination. ?Jillian McCarten: I appreciate how the authors directly state their most salient identities; this should be the norm. Oftentimes when I read a book like this I have to research the authors to learn their identities. Identities always influence the way we think and see the world. ?Jillian McCarten: Compelling quote about power?Jillian McCarten: It’s interesting to me that Darden’s story and the book are the two examples given so far. When I took Into to Women’s Studies in undergrad, this book was heavily criticized for mostly speaking on white feminist issues. I appreciate the author giving a more nuanced intersectional framing in the next paragraph. Jamia Williams: Love to know this! Jamia Williams: And it still far from being accomplished?Jillian McCarten: I’m curious which numbers would help communicate that, and how research can help illustrate the prevelence of this type of sexism. ?Jillian McCarten: This is a compelling example of how in our systems of power some people are seen as more valuable than others, and that likely connects to what data sources are seen as valuable.Jamia Williams: “Hidden figure” Jamia Williams: Thank you! Reframing is essential when many of these events were deemed “riots” when it was Black folks rising up against various systems.Jamia Williams: Still happening today!?Jillian McCarten: I think data is especially important in communicating how segregation persists, and how unofficial segregation is often harder to confront. ?Jillian McCarten: I think it’s important to confront the differences between the image of the US presented and the realities that people live in. I resonate with this statement- growing up I was told over and over how the US is the best place to live, and in the past few years I’ve been learning more about the historical and current harms perpetuated by our government?Jillian McCarten: So many decisions and judgement-calls that go into telling historical events, especially a quick summary like this. I’m glad that this author presents the police this way; I think a lot of authors I’ve read will ignore this reality. ?Amanda Christopher: This is a new term for me! ?Amanda Christopher: This makes me wonder how many women before her advocated for themselves, or if she was the first women at NASA to do so as her supervisor claimed. If she was not, why was her case different? What about the culture of the time at NASA allowed for her to be promoted? If she was the first, what would have happened if other women before her had the courage like Christine to speak up.?Melinda Rossi: Perfect for educators!?Melinda Rossi: I like that the authors are working to offer this knowledge to all.?Melinda Rossi: I like this. Giving credit where credit is due…what a concept!?Melinda Rossi: Ok, here’s the good-for-humanity stuff!?Melinda Rossi: The sad part is that it’s mostly used for financial gains, and not for the good of society/humanity. ?Melinda Rossi: This is sad and terrifying…and yet also seems about right. ?Melinda Rossi: I like this. Data can never capture all and that’s important to remember when we are looking at data and generalizing as if all are spoken for.?Tegan Lewis: This sums up our education system-using data and test scores to maintain the inequity in our school system.?Melinda Rossi: Yes! THIS! + 1 more...?Tegan Lewis: Data is more than numbers. What other data could be gathered in a school system??Tegan Lewis: Does it have to??Tegan Lewis: Would this be considered a misuse of data? Or more of the root of bias??Tegan Lewis: data feminism-can be used to expose inequity and challenge systems of power.Esmeralda Orrin: .Ah, capitalism,’?Tegan Lewis: gender oppression-was evident in the case of Darden?Tegan Lewis: Identity?Tegan Lewis: Would this apply to all forms of sexism, regardless of gender??Amanda Christopher: I would say absolutely, yes. I think one large misconception about feminism is that it only focuses on women, not all genders and sexes.Esmeralda Orrin: somehow I’m not surprised that men know what women are happy doing?Melinda Rossi: Finding a supportive community is key! ?Melinda Rossi: I think this part is so important. Being willing to educate themselves on issues that they might unconsciously contribute to is critical.?Melinda Rossi: We are not a monolith!?Melinda Rossi: bell hooks coming in hot with the truth.?Melinda Rossi: Hidden Figures was (sadly) the first time I had ever heard of Black women at NASA.Fagana Stone: The article could have had more power had the authors also included a note about countless studies that show invaluable contribution of diverse backgrounds and perspectives to innovation and progress. Fagana Stone: Not applicable to all cultures, as there are cultures ruled by matriarchs.?Amanda Christopher: Yes and in those cultures feminism may look differently as feminism is focused on equal rights for all genders. Many of the matriarchical cultures have more than two genders. And just about all societies have some form of gender inequalities.Fagana Stone: Wouldn’t the algorithm update itself as more surveillance data is available rather than fixate on old historical data??Melinda Rossi: That’s a good point. You would think it would be able to update with technology advancing as much as it has. + 1 more...Fagana Stone: In a capitalist country, it should be expected to have wealth inequalities… Not everyone can be wealthy nor can everyone struggle financially. Yes, there are systemic injustices, but it takes all parties involved to improve access to and understand importance of education. Dominated by two political parties running on opposing views, I can’t help but feel very pessimistic about significant progress on these issues in the near future (while the country is enacting backward looking policies and laws). Fagana Stone: “Racism” is a learned concept. Born and raised in Azerbaijan, we did not have a concept of racism, to which I was exposed to after having moved to the states. ?Amanda Christopher: Great point to add to the authors’; that it is “impossible to claim a common experience… for all women, everywhere.”Fagana Stone: It is important to note that men too struggle with sufficient paternity leave. It is critical to shift the thought from women being the only ones fit for childcare role to include men as well.Fagana Stone: Women in some states still fight for their reproductive rights!?Melinda Rossi: Fagana, that’s exactly what I was thinking. Some things change, and some things stay the same. Fagana Stone: Critical lesson in articulating the needs with the hope to identify and operationalize solutions.Fagana Stone: Excellent film! I highly recommend it.Fagana Stone: “The Soviet Union was responsible for launching the first human to space, carrying out the first spacewalk, sending the first woman to space, assembling the first modular space station in orbit around Earth (Mir) — and most of these achievements were accomplished using the same space capsule used in the 1960s.”Fagana Stone: Being from one of the former Soviet Union countries, it is also important to note that the Soviet Union had a more considerable tolerance for risk, hence the advancements mentioned in the field of astronautics. ?Rayon Ston: qKaiyun Zheng: I’ve listened to a podcast before, which is called What happens when an algorithm gets it wrong, In Machines We Trust, MIT Technology Review. It mainly talks about the technology of the use of facial recognition in public and where it can go wrong.The podcast begins with a story about a man who is accused of stealing because a computer matches his photo with a picture of the thief caught on a public camera. But in fact, it was a computer error. The computer can't tell whether the thief is a man or a black man, and the police blindly trust the computer's judgment, and moreover, he says that historically black people steal a lot. And based on the conversation in the podcast, the facial recognition technology isn't perfect, it makes mistakes and matches the wrong people. Such problems are not rare, and involve both privacy violations and potential discrimination.It made me realize that we have a lot more to do in data science.Kaiyun Zheng: We’ve learned about the differences between information and data in the very beginning lessons, and this makes me think about why we emphasize “data” instead of “info” here before the term "feminism".Kaiyun Zheng: The mention of the uneven distribution of power in this book piques my curiosity about how the topic will be addressed. I have previously read a book called "Foundation of Information," which discusses the relationship between power and information. The book suggests that when power is concentrated, the information gathered can sometimes deviate from the truth. As a result, I am curious about how data feminism ensures the authenticity and effectiveness of information collection.Additionally, the information of researching history is also mentioned in the later interview, which makes me curious about how the information of the past can be useful in the present so that it can be used as part of data feminism.Kaiyun Zheng: Intersectionality as a new term which appears after feminism is really interesting. I like how it is introduced here which talks about the example of a black woman since I thought it is the manifestation of a much broader phenomenon in the society. From Google, it is defined as "the interconnected nature of social categorizations such as race, class, and gender, regarded as creating overlapping and interdependent systems of discrimination or disadvantage" which strongly linked to the topic "feminism" (actually closer to equal rights).Each person has multiple identities. For example, I am a university student, an employee at a company, and a kid at home. These are just a few of the many labels that can be applied to an individual, including larger categories such as race, gender, and education. In an information-oriented society, labels can often obscure our understanding of the true nature of things and the individuality of a person can be overlooked. Intersectionality, while still categorizing individuals, does so in a more nuanced manner by connecting multiple labels to form a more specific and accurate representation. This can help individuals overcome challenges and reduce the oppression of vulnerable groups by dominant societal forces.Although from my personal point of view, classifying people is not a very good behavior after all, its emergence also reflects the response to various situations, so as to reduce the oppression of the dominant group of society on the vulnerable group.?Yuanxi Li: It's heartening that the value women create in terms of data has ultimately been validated by data itself, and this result has been achieved through mutual assistance among women.?Yuanxi Li: Intersectionality is an important term that shows how race, class, gender, and other individual characteristics affect with each other?Joe Masnyy: This story has shown the possibilities of this sort of advocation, though as stated early this is clearly not the norm. I appreciate the value of anecdotes such as these, although this text would benefit from hard data to show the scope and magnitude of the issue. Hopefully this is something that is explored further on in the text.?Joe Masnyy: This reality was, in the grand scheme of things, not very long ago. You could argue this still persists even today, with many STEM fields still being largely male in demographics. Even still, women tend to make less than men on average in the exact same fields.?Kotaro Garvin: We have so much more capability then before, but why does it seem like we are not making the same kind of progress? Is it not happening? or is it just unrecognized? ?Kotaro Garvin: I think this is one of the greatest ideas I have ever read, but it also shows why data is so important, everybody is unique but we can still be categorized using data. ?Justine Smith: taking a stand against system that is benefit you?Seng Aung Sein Myint: The decision making process is alway opaque. Hope there is some kind of US federal law which push the school to be a little bit transparent than before. ?Seng Aung Sein Myint: This kind of statistic of average, also make something very simple. No, I am not arguing about this data. ?Seng Aung Sein Myint: Hmm. It is strange to read now. ?Finch Brown: This is such a great line! No wonder someone has already commented on it. I have been thinking a lot recently about how subjective human experiences align and diverge, and how insufficient language and data are in describing experiences. A cool article I just read that reminds me of this is from the New Yorker: How We Should Think About Different Styles of Thinking. One main draw for me in data science is tackling the challenge of most accurately representing data and the stories it tells, given its inescapable constraints.?Yasin Chowdhury: Skill is important everywhere but in a different ways. so its good to have skills. ?Yasin Chowdhury: Without this line the entire story would not exist. But still now a days we do not see that courage specially in black women whoa really talented but chose towards non stem fields because of the difference in ratio. ?Jayri Ramirez: I believe that it is important to understand that it is more than ones gender that can affect the experiences of women. I think this statement is a good description of how there are many dimensions which affect racism and other forms of oppression. ?Roujia Wang: This shows that feminism can meet two kinds of human needs, the first is the detailed technical needs of NASA space agency, and the other is to meet the need of women also need equal status and need the same rights as men to achieve their dreams. In this process, feminism and data science are inextricably linked to each other's achievements.?Seyoon Ahn: As it was discussed in comment above, this part demonstrates the needs of feminism in data science and how not just the individuals but the society as a whole can benefit from data science with an approach of feminism. ?Roujia Wang: In that world, the stereotype of women was that women were not allowed to work in the sciences and that women were more at home with young children and taking care of the family than working outside the home. But such stereotypes prevented many talented women from having a chance to make a career out of it.?Roujia Wang: When people are misogynistic, female scientists contribute to data science research, because women can make up for the shortcomings of men in many ways. Women also use their abilities to change the perception of women in the world?Monserrat Padilla: I am really eager to learn and practice more methodically these principles. The key value in being able to analyze data holistically and seeing the subject matter as a whole at the intersections. Putting these principles into practice will allow for a more complete truth to be available while producing data and/or reading data.?Caroline Hayes: I think it is really moving that they decided to use someone as powerful as Darden’s story to start this textbook. As such a strong, smart women she was able to work in an intellectual field and challenge norms like she did in this instance. In a way she is breaking from the data so commonly released on women in and out of the work field. Instead of becoming one of the computers like 100% of the women before her, she became a part of the 1% who changed it for everyone.?Vibha Sathish Kumar: I agree, this part also resounded with me as well. It also makes you wonder about those other women who were stuck in the same situation for years. Many of those women likely didn’t have access to data or have the means to stand up for themselves in the environment set-up for them. I wonder if this issue is also relevant today, where some women do not have the opportunity to share their experience or have it accounted as data. It takes time to have others recognize their privilege and use it to bring others up - maybe data feminism could be a way to do that. ?Natalie Pei Xu: That is sad to notice that there are still many woman is being ignored and stay silence from some reasons. ?Natalie Pei Xu: First hand resource will be more helpful.?Natalie Pei Xu: This conscious awareness of “product of unequal social relation” is important while collecting, analyzing and concluding, since there is already been a lens filtered the primary source. ?Natalie Pei Xu: Besides using data as a powerful tool to pursuit justice, personal privacy is also a critical concern. ?Natalie Pei Xu: This is very inclusive and thoughtful description about feminism which makes it open up to various people among physical and mental features that aiming at the same thing: justice.Eva Maria Chavez: .Eva Maria Chavez: ecFagana Stone: If we were to focus on collecting unbiased data, then why would the authors even mention “priority” in qualifying it? + 1 more...Eva Maria Chavez: ECEva Maria Chavez: emEva Maria Chavez: collective powerEva Maria Chavez: EMCEva Maria Chavez: ?Kim Martin: test?nyah bean: -?nyah bean: -Fagana Stone: Qualitative data can be so powerful!?nyah bean: -?nyah bean: -?nyah bean: -?nyah bean: -?nyah bean: -?nyah bean: -?nyah bean: yes?nyah bean: -?nyah bean: -?nyah bean: -?nyah bean: -?nyah bean: -?nyah bean: -?nyah bean: -?Yolanda Yang: We should know that “We are under this situation.“?Yolanda Yang: Very personally, I am always shocked by how precise the content they suggest “what I may also interested.“ Also reminds me of Health on the phone, that it reminds us of our next coming period time, and usually also precise.?Melinda Rossi: Yes!?Yolanda Yang: People with privilege cannot recognize, even if they do, they are less likely to make any change, as this would decrease their benefit?Jillian McCarten: One quote that I think of often is “when one has held a position of privilege for so long, equality feels like oppression.” ?Yolanda Yang: “Speak“ and MeToo. Makes it visible.?Yolanda Yang: Looking for equality = we need make efforts ahead to it. Need to uncover it. ?Yolanda Yang: Reminds me of china girl or china head, that used at the beginning of analog films, those are females without names that contribute to film industry, but they were not even supposed to be presented to the audiences.?Yolanda Yang: Even though this has been desegregated for years, it still exists among people’s unconsciousness. ?Jeraldynne Gomez: systematically desgined so that women were stagnant in their positions. The disparity of power and the assertion of such system is correlated as it benefits the men who are implementing it ?Michela Banks: Important Annabel DeLair-Dobrovolny: Converting people into data as a means to assert power and dehumanize the “other”.?Michela Banks: definition ?Michela Banks: At least 50 years later. Why at this time??Michela Banks: power distance between men and women ?Michela Banks: were not recognized for intelligence ?Michela Banks: indicates perception of women in workplace?Michela Banks: note segregation during time of education?Michela Banks: describes environment?ethan chang: Shows how much has changed since then… even though can still be seen to this day.Annabel DeLair-Dobrovolny: Power imbalances contributing to the dehumanization of women in the workplace.?athmar al-ghanim: exactly!!! some individuals have such a negative connotation toward “feminism”. but here, it proves that feminism is just a group of like-minded individuals peacefully going after what they want. all feminists want is change, because for so long, there has been none. and it is about time we stopped neglecting the minority and start appreciating and uplifting them.?athmar al-ghanim: its quite sad to see how barely anything has changed in regard to men having the upper hand in workforces, especially those in STEM related fields. ?athmar al-ghanim: this passage resonates with me as it is a big fear of mine, a woman, going into STEM, that I will constantly have to fight twice as hard as a man, just to show that I am worthy of a position that I am qualified for.?Angela Li: I question how long this took and whether there was an internal fight for Darden to receive her long deserved promotion. The reason being is that I find it hard to believe that the men in power are so readily to accept change in which they lose power or control that benefits them. Earlier in this text, when Darden was working as a calculator with no respect or recognition, her supervisor said that the reason women and men lead such different career paths despite having the same credentials was because no one had ever complained. Through these quotes It sounds like the narrative being pushed is that main reason women are oppressed is because men are unaware of the the disparate treatment and effects of their actions which seems too excusable to not be questioned.Fagana Stone: I read this as the systemic discrimination against women was so normalized that it was essentially on everyone’s blindspot. Having such data showed a trend, a factual analysis that no one could ignore. Also, it takes a lot of courage to challenge the status quo, and these ladies found the way to communicate it to their superiors - through numbers!?Angela Li: I’d like to expand and connect on this idea to reaffirm the highlighted statement. I’m connecting it to to the text “Feminism is for Everybody” by Bell Hooks. In early stages of feminism there were a select few types of feminism that were identified. Of these types there were reformist and visionary feminism. reformist feminism focused mainly on equality with men in the workforce which overshadowed the original radical foundations of contemporary feminism which called for reform and restructuring of society to form a fundamentally anti-sexist nation. while white supremacist capitalist patriarchy suppressed visionary feminism, reformist feminists were also eager to silence them because they could maximize their freedom within the existing system and exploit the lower class of subordinated women.?Cynthia Lisee: Thank you for this important insight?Kat Rohrmeier: The definition of dehumanizing.?Melinda Rossi: Right? Gross.?Aneta Swianiewicz: ?Aneta Swianiewicz: ?Aneta Swianiewicz: ?Aneta Swianiewicz: data to expose inequality?Aneta Swianiewicz: ?g m: “institutional mistrust”?g m: Not only looking @ data, but the how. How was it collected? How has it been processed, and by who??Melinda Rossi: ^^^ Yes! Great point!?g m: Why data is important: challenges privileged hazard by making invisible systems visible.?Lena Zlock: Power dynamics and access to knowledge // needs an equitable foundation, clear statement of relations?Lena Zlock: DH as a countercultural phenomenon?Peem Lerdp: Target goals and audiecnes.?Peem Lerdp: Theme 2?Peem Lerdp: Theme 1?Vibha Sathish Kumar: I find it interesting that the authors mention this explicitly to the readers. A clear stated point that everyone is involved with change. ?Peem Lerdp: Insight on “science” in the phrase data science.?Peem Lerdp: Problems with distinction between what is data and what is information involve deciding who holds the power to make those distinction.Fagana Stone: It is important to add that how we interpret data matters as well.?Peem Lerdp: Def’n?Peem Lerdp: Using data to corroborate lived exp.?Peem Lerdp: Dissociating the identity of the author with the ideas discussed by the author.?Peem Lerdp: Intersectionality and its historic roots.?Peem Lerdp: History of gender inequality in workplace.?Megan Foesch: I think this is such an important lens to have when analyzing the world and what is important. Often times, we get caught up in trivial things that are not important in the bigger picture. We must remind ourselves that issues like justice, race, feminism, equality, and power are all crucial everyday issues that we must solve in order to live as a flourishing community. In order to have justice, each individual must be heard and seen which is currently not happening and needs to. ?Megan Foesch: Throughout this whole article I think that this sentence is one of the most important. The authors reflect on how data feminism is truly about power and how the lack of power between genders signifies that there is an inequality. It is important for us to acknowledge and address this inequality so women can feel as empowered, strong, and safe, as men feel. I think it is also important to point out that data feminism isn’t only for women but “men, nonbinary, and genderqueer people”. In order for a change to be made everyone must accept and acknowledge the imbalance of power that occurs in society. ?Megan Foesch: Before taking this class, I had very rarely heard the term Data Feminism, therefore this idea was somewhat new to me. I am familiar with the ideas of feminism however thinking about feminism from a scientific standpoint is one that can help reinforce popular opinions about lack of equality among genders. It is very difficult to argue something when it is science especially when focusing on systems of power and who holds that power as it is backed by scientific data and evidence.?Nick Klagge: It appears that a word or phrase is missing from the end of this sentence. Perhaps “lived experience” or something like that??Sara Blumenstein: What makes a project feminist??Sara Blumenstein: Data as “consolidating power over lives”?Sara Blumenstein: “Data feminism” as goal and process?Sara Blumenstein: Data vs. fact?Sara Blumenstein: Aggregating data to challenge institutional systems of power?will richardson: This is a very deep statement about feminism. It is also very relevent to the readings.?Sara Blumenstein: Defining “feminism” + 1 more...Data FeminismMIT PressRSSLegalPublished withCommunityData FeminismCollectionDData FeminismPubIntroduction: Why Data Science Needs FeminismcollectionData FeminismCite as D’Ignazio, C., & Klein, L. (2020). Introduction: Why Data Science Needs Feminism. In Data Feminism. Retrieved from https://data-feminism.mitpress.mit.edu/pub/frfa9szdduplicateCopymoreMore Cite OptionsTwitterRedditFacebookLinkedInEmailAuto Generated DownloadPDFWordMarkdownEPUBHTMLOpenDocumentPlain TextJATS XMLLaTeXWhat Is Data Feminism?Data and PowerData Feminism in ActiontickRelease #6Aug 25, 2021 3:54 PMdocument-shareRelease #5Aug 25, 2021 3:22 PMdocument-shareRelease #4Feb 11, 2021 10:25 AMdocument-shareRelease #3Jul 27, 2020 9:43 AMdocument-shareRelease #2Jul 27, 2020 9:42 AMdocument-shareRelease #1Mar 16, 2020 9:12 AMWhat Is Data Feminism?Data and PowerData Feminism in Action(function(){function c(){var b=a.contentDocument||a.contentWindow.document;if(b){var d=b.createElement('script');d.innerHTML="window.__CF$cv$params={r:'8be8b165eed78191',t:'MTcyNTU2NTI0Ni4wMDAwMDA='};var a=document.createElement('script');a.nonce='';a.src='/cdn-cgi/challenge-platform/scripts/jsd/main.js';document.getElementsByTagName('head')[0].appendChild(a);";b.getElementsByTagName('head')[0].appendChild(d)}}if(document.body){var a=document.createElement('iframe');a.height=1;a.width=1;a.style.position='absolute';a.style.top=0;a.style.left=0;a.style.border='none';a.style.visibility='hidden';document.body.appendChild(a);if('loading'!==document.readyState)c();else if(window.addEventListener)document.addEventListener('DOMContentLoaded',c);else{var e=document.onreadystatechange||function(){};document.onreadystatechange=function(b){e(b);'loading'!==document.readyState&&(document.onreadystatechange=e,c())}}}})();error

      This is another example of how we need more women in STEM. There are so many officially desegregated organizations. But segragation is embedded in behavior and that is what needs coaching.

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      In this manuscript by Kehrer et al., use an elegant Apex2 BioID method to identify novel putative microneme proteins by mass-spectrometry and pick one candidate for further characterization. They identify a novel putative microneme protein they name Akratin which they characterize through targeted gene deletion and a series of complementation experiments. This reveals first that akratin appears to be functioning in male gamete egress, and though complementation using a putative trafficking mutant, also in midgut traversal.

      Overall the study is thoroughly performed but some of the conclusions are not fully supported.

      1)The newly identified microneme protein is still putative in my mind as the authors have not co-localized it with another marker. This is crucial for conclusions about its putative function and crucial for the trafficking experiment as explained below. It is also important given the high number of putative false positives in the BioID experiment.

      2)I would consider it essential to also localise the Apex2 tagged SOAP protein as the authors cannot be sure that there is a partial mislocalisation of the protein leading to false positives.

      3)I am not convinced by the trafficking defect. This could be because the localsation in the images are not easy to distinguish and it may be much clearer looking down the microscope. I think co-localisation with another microneme marker would go a long way and demonstrating that akratin upon mutation actually localises elsewhere is important. It is even more important since there is no phenotype in male egress, but then later in ookinetes, which is a bit surprising if this is a proper conserved trafficking motif.

      4)The candidate selection section is poorly described. A flow chart or clearer inclusion/ exclusion criteria would be useful.

      5)I understand the approach to focus on more abundant biotinylated proteins, however, I think it may not be the best approach to use peptide counting. Apex2 labelling as the authors rightfully say, is mainly based on tyrosine labelling of surface exposed areas, so the abundance of proteins in the IP will depend on accessible tyrosines, protein abundance, distance from the bait, size of the protein and how many tryptic peptides can be generated. Reproducible results between 2 conditions are more likely to show true positives and may be the best way to prioritize, or assign confidence. Also: cOuld the authors use mean intensity values for the peptides covering proteins as a metric for abundance using label free quantification? This is not a requirement but may allow quantification in a slightly better way. I am not sure about the Table S1 colour scheme (the legend does not explain green, purple and blue shading). Are all green ones confirmed microneme proteins? Please add a proper descripton of the table and columns.

      6)Figure 2C and D are from PlasmoDB and should ideally not be included as figure panels. This is misleading and could either be mentioned in the text, or put into supplementary data with a clear note that the authors have not aquired these data. I would also suggest to move figures 3A-C into figure 2 and present the KO with the complementation data for a direct comparison.

      Minor:

      1)When the authors say "numbers of peptides identified": is this unique peptides or does it include non-unique peptides?

      2)Figures 1 I-K could move into supplementary as they are somewhat non-informative given the nature of BioID described in the main points.

      3)Line 253: Whether akratin is involved in membrane lysis directly, or important for microneme secretion so this is a knock-on effect is not known. This could be added to the discussion, but there is no evidence for this statement in the results section.

      4)Line 274: Refers to Figure 3F, which does not exist.

      5)Line 333: Overall I think this is a bit of an overstatement. The use of Apex2 in these conditions is definitely nice to see but for now the authors have validated none of the microneme proteins by co-localization. So we are still a bit in the dark how well the method works in terms of false positives. The targeting motif in my mind is not yet confirmed in the absence of co-localisations with other markers. An alternative explanation could be that the c-terminus of the protein is important for its function in one stage, but not another but that trafficking is not- or only marginally affected.

      Significance

      The significance of the manuscript in my mind lies in the application of Apex2 in Plasmodium parasites, which will be an advance for the field. However, we do not learn about labeling times, how short it can be so its potential is not fully looked at.

      The list of the putative micronemes will of course be of high interest for the community, but because of the limited validation in this study will require further validation by others.

      The identification of the dual function of this protein in transmission in egress and ookinete traversal is interesting and surely leads to further studies. The identification of a putative differential trafficking motif is intruiging, if, as stated in the major concerns, this can be validated.

      My expertise lies in Plasmodium biology with good knowledge of mass-spectrometry approaches.

      Referees Cross-commenting

      I agree with the assessment of the other reviewer, a slightly more detailed discussion of the hits would be desireable (exported proteins, why are they there). This could be a drawback of the system used, and mentioned.

      Western blot of the GFP is a very good idea to clarify whether the localization is maybe, in parts, GFP that is not fused to the full lenght protein, either by cleavage, or a breakdown product.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2024-02378

      Corresponding author(s): Angelika Böttger

      [Please use this template only if the submitted manuscript should be considered by the affiliate journal as a full revision in response to the points raised by the reviewers.

      • *

      If you wish to submit a preliminary revision with a revision plan, please use our "Revision Plan" template. It is important to use the appropriate template to clearly inform the editors of your intentions.]

      1. General Statements [optional]

      After we have carefully studied the four reviews we have received, we made some major revisions to the manuscript. These included the following main points:

      • Concerns regarding clarity of the manuscript: we have substantially edited the abstract, introduction and discussion part of the manuscript and added many more references to previous work by other authors, especially Cazet 2021, Tursch 2022 and Gahan 2017. We focused our introduction and discussion on organizer function and on the Gierer-Meinhardt-Model for pattern formation. We think that the conclusions are of great general interest because they suggest a function of the Hydra head organizer according to the original definition by Hans Spemann, that is “harmonious interlocking of separate processes which makes up development”. Notch signaling, in our interpretation, is an instrument for this function of the organizer. Comparison with Craspedacusta compellingly illustrates this idea.
      • Concerns regarding Craspedacusta experiments: we have isolated four Craspedacusta transcripts (CsSp5, CsWnt3, CsAlx and CsNOWA) and analyzed their response to DAPT during head regeneration in Craspedacusta. This revealed that DAPT did not inhibit CsWnt3 expression, in accordance with it not having an effect on head regeneration in Craspedacusta However, DAPT inhibited expression of the other potential CsNotch target genes, confirming that DAPT generally works in Craspedacusta polyps as Notch-inhibitor.
      • Concerns regarding HyKayak function: we have conducted a rescue experiment to show the function of Hykayak as a target for Notch-regulated repressor genes and a local inhibitor of Wnt-3 expression, which revealed that the expected up-regulation of HyWnt3 in DAPT-treated animals was very weak and did not rescue the DAPT-regeneration phenotype-this was discussed, but data were not included.

      2. Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *


      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Major: • The introduction is lacking a full description of what is known about transcriptional changes during Hydra regeneration and in particular the role of Wnt signalling in this process. Of note the authors do not cite several important studies from recent years including (but not limited to):

      *https://doi.org/10.1073/pnas.2204122119 *

      *https://doi.org/10.1186/s13072-020-00364-6 *

      *https://doi.org/10.1101/587147 *

      *https://doi.org/10.7554/eLife.60562 This problem is further compounded later when the authors do not cite/discuss work which has performed the same or similar analyses to their own. The authors should endeavor to give a more comprehensive background knowledge. *

      Answer:

      Our work focuses on the role of Notch-signalling during Hydra head regeneration, specifically when the head is removed at an apical position. We therefore now have included additional information about transcriptional changes during this process in the introduction. In addition, we have included the suggested citations in the introduction to give a more general background knowledge.

      e.g. .Following decapitation, the expression of Hyβ-catenin and HyTcf was upregulated earliest, followed by local activation of Wnt genes. Among these, HyWnt3 and HyWnt11 appeared within 1.5 h of head removal, followed by HyWnt1, HyWnt9/10c, HyWnt16, and HyWnt7, indicating their role in the formation of the Hydra head organizer (Hobmayer et al., 2001; Lengfeld et al., 2009; Philipp et al., 2009; Tursch et al., 2022).

      • The authors do not cite or reference at all the study by Cazet et al. which used iCRT14 along with RNAseq and ATACseq to probe the role of Wnt signaling during early regeneration. This is a major issue. Although I appreciate that the authors have done much longer time courses and that their data therefore add something to our understanding it will still be important to discuss here. For example, the authors show that Wnt3 is activated normally in iCRT14 animals. Is this also seen in the RNAseq from Cazet et al.*
      • *

      Answer:

      iCRT14 was used in Hydra regeneration experiments by Gufler et al (which we did cite) and Cazet et al, but the specific aspects of hypostome and tentacle regeneration were not addressed. Cazet et al. have analyzed HyWnt3expression after iCRT treatment during the first 12 hrs of regeneration. Our data show, in addition that HyWnt3 is not controlled by TCF-dependent transcription during Hydra head regeneration after apical cuts throughout the whole regeneration process including the morphogenesis state. Nevertheless, the other Wnt-genes, which are indicated in canonical Wnt-signalling are affected by iCRT14 also in our study.

      We have now included comparison of Cazet- and our data, we wrote:

      HyWnt3 and Wnt9/10c expression are swiftly induced by injuries. When HyWnt3 and HyWnt9/10 activities are sustained, organizers can be formed, which induce ectopic heads when the original organizer tissue (the head) is removed (Cazet et al., 2021; Tursch et al., 2022).”

      The effect of iCRT14 had been analyzed in previous studies (Cazet et al., 2021; Gufler et al., 2018; Tursch et al., 2022). All showed b-catenin-dependency for down-regulation of head specific genes in foot regenerates at time points up to 12 hrs after head removal, including HyWnt3. They also stated a failure of head regeneration in the presence of iCRT14 but, in accordance with our study, did not reveal that HyWnt3 expression at future heads depended on b-catenin. None of these studies analyzed the regeneration of tentacles and hypostomes separately and they did not report whether* the regeneration of hypostomes 48 hrs after head removal occurred normally upon iCRT14 treatment. *

      • The visualizations used in Figure 3 are quite difficult to interpret and do to in all cases match descriptions in the text. The way the same type data is displayed in figure 5 so much nicer. It is also better to treat the same types of data in the same manner consistently throughout the paper. For Hes, for example, the authors state that there is a reduction although the data shows that this is very small and taking into account the 95% confidence interval does not seem to be significant. If this is the case then the positive control is not working in this experiment. This would be much clear if individual time points were compared like in figure 5 and statistical tests shown. The authors then state that Alx is not affected but there is actually a larger effect than what they deemed significant for Hes (the axes are notably different between these two and I think a more consistent axis would make the genes more comparable). Similarly, Gsc is described as being not affected at 8 hours but it appears again to change more that the positive control Hes. Given this I would call into question the validity of this dataset and/or the interpretation by the authors. A more thorough analysis including taking better into account statistical significance would go a long way to increasing confidence in this data. • The same issues in interpretation described for Figure 3 also apply to figure 4. The authors state that Wnt7 is affected less than Wnt1 and 3 but this is not evident in the figure and no comparative analysis is performed to confirm this. The same for Wnt 11 and 9/10c where what the authors description is very difficult to see in the figure. Sp5 is apparently upregulated, but this is not discussed. Again the axes are notably different making it even more difficult to compare between samples. __Answer*____:__

      We have now presented the data by simple scatter blots with significance information for every data point. This allows comparison between samples as requested by the reviewer. The GAMs were moved to the supplement. We believe that some readers may appreciate GAM-representation of the data because of the accessibility of the confidence interval over time.

      Concerning DAPT:

      “We now performed RT-qPCR analysis to compare gene expression dynamics of these genes during head regeneration 0, 8, 24, 36 and 48 hrs after head removal. Animals were either treated with 30 µM DAPT in 1% DMSO, or 1% DMSO as control for the respective time frames. Timepoint 0 was measured immediately after head removal. The results of these analyses revealed that HyHes expression was clearly inhibited by DAPT during the first 36 hrs after head removal (Fig. 3B), confirming previously published data which had indicated HyHes as a direct target for NICD (Münder et al., 2010). HyAlx expression levels were slightly up-regulated after 24 hrs, but later partially inhibited by DAPT (Fig. 3C). CnGsc expression under DAPT treatment initially (8hrs) was comparable to control levels, but then it was strongly inhibited (Fig. 3D). This goes along with the observed absence of organizer activity in regenerating Hydra tips (Münder et al., 2013). Interestingly, a similar result was seen for HySp5 expression, which was also normal at 8 hrs but was then inhibited by DAPT at later time points (Fig. 3E). HyKayak, while expression is normal after 8 hrs, was strongly overexpressed between 24 and 36 hrs of regeneration in DAPT-treated polyps in comparison to control regenerates (Fig. 3F).

      Concerning iCRT14

      Next, following the same procedure as described for DAPT, we compared the gene expression dynamics of iCRT14-treated regenerates with control regenerates. We found that the expression of HyWnt3 was not inhibited by iCRT14. In fact, it even appeared slightly up-regulated at the 8 hrs time point (Fig. 4A). Normal HyWnt3-expression at the end of the regeneration period was confirmed by in-situ hybridization for HyWnt3 as shown in Fig. 1D, indicating that HyWnt3 expression patterns and expression levels in ecto- and endodermal cells of the hypostome were faithfully regenerated (Fig. 4A). In contrast, HyAlx expression was completely abolished by iCRT14 (Fig. 4B), consistent with the observation that iCRT14-treated head regenerates did not regenerate any tentacles (Fig. 1A). HySp5 expression was not significantly affected by iCRT14 treatment at any time point (Fig. 4C).

      Furthermore, we found that CnGsc levels in iCRT14 remained similar to control regenerates up to 24 hrs, but were attenuated at later time points (Fig. 4D), very similar to the expression dynamics of the Notch-target gene HyHes (Fig. 4E). The expression of HyKayak was decreased at 8 hrs after head removal in the presence of iCRT14, but then increased above control levels after 48 hrs (Fig. 4F). There were no significant changes in the expression dynamics of HyBMP2/4 and HyBMP5/8b between iCRT14-treated regenerates and controls (Fig. 4G, H).”

      The precise number of biological replicates can be seen in the individual diagrams, they included for most genes three biological replicates, with always three technical replicates for each data point. Biological replicates were obtained over several years by different researchers. For some genes, we obtained very consistent data with high confidence in every experiment (e.g. HyWnt3, HyBMP4). We illustrate this in table 1, where three arrows indicate all such cases. With some genes we observed greater variation, which we interpret as no effect or a minor effect in table 1. Some of these variations may be explained by our observation of wave-like patterns in the expression dynamics. Therefore, we have included the following statement:

      “In addition, the gene expression dynamics for many of the analyzed genes appears in wave-like patterns in some experiments (see Figs S3 and S4). As we have only four time points measured, we cannot draw strong conclusions from these observations, except that some of the deviations in our data points (e.g. 48 hrs HyHes)”

      • In their description of figure 4 the authors completely omit to discuss the Cazet et al dataset which has the exact same early timepoints for iCRT14 treatment. This must be discussed and compared and any difference noted. * Answer:

      We included the iCRT14 results from Cazet et al., in our revised manuscript (see above).

      • End of page 11: The authors propose a model thereby the role of Notch in Wnt3 expression may be due to the presence of a repressor. However, I don't see any putative evidence at that stage. The authors also do not cite relevant work from both Cazet et al. and Tursch et al which show that Wnt3 is likely upregulated by bZIP TFs. In both these cases the authors show evidence of bZIP TF binding sites in the Wnt3 promoter along with other analyses. This is very relevantto the model presented by the authors here and must be discussed and compared. - * In particular the authors put forward HyKayak as an inhibitor of Wnt3 and this should be discussed along with the previous work.

      Answer:

      Tursch et al. 2022 did not claim that HyWnt3 is upregulated by bZiP TFs. They showed that HyWnt3 was strongly upregulated in a position-independent manner upon inhibition of the p38 or JNK (c-Jun N-terminal kinase) pathways (i.e., stress-induced MAPK pathways). This would rather support our hypothesis that HyKayak (AP-1 protein) might be a repressor of Wnt3-expression.

      Cazet et al have indicated that injury-responsive bZIP TFs are the most plausible regulators of canonical Wnt-signalling components during the early generic wound response. They identified CRE-elements, which can be bound by bZIP TFs, in the putative regulatory sequences of HyWnt3. However, they focused on the early stage of regeneration (0-12hpa), and showed that bZIP TFs, including jun, fos and creb are transiently upregulated at 3hpa and hypothesise that they could induce the upregulation of HyWnt3 at this stage as an injury response. We have to point out that the Hydra fos-homolog Hykayak, which our work is concerned with, is not identical with the fos-gene described in Cazet’s paper. In addition, the Hykayak gene was downregulated by Notch signalling during the morphogenesis state of regeneration (24-36 hrs), which is not the same stage investigated by Cazet et al. To avoid confusion, we have now included the Cazet-fos-sequence in our sequence comparison in Fig. S1 (fos_Cazet_HYDVU). Moreover, we have included more information about fos_Cazet in the context of a comparison with HyKayak.

      • *

      Different bZiP transcriptional factors (TFs) may have different effects on the expression of Wnt genes, and these effects are context-dependent. In previous research, Cazet et al. identified another Hydra fos gene (referred to as fos_cazet) and bZiP TF binding sites in the putative regulatory sequences of HyWnt3 and HyWnt9/10c. They showed that bZiP TF-genes, including Jun and fos, were transiently upregulated 3 hrs after amputation, therefore they hypothesized that bZiP TFs could induce TCF-independent upregulation of HyWnt3 during the early generic wound response (Cazet et al., 2021). However, in our study HyKayak expression continuously increased throughout the entire head regeneration process (Fig. 3E and 4E) including the morphogenesis stages (24-48 hrs post-amputation). Another study reported that inhibition of the JNK pathway (which disrupts formation of the AP-1 complex) resulted in upregulation of HyWnt3 expression in both, head and foot regenerates (Tursch et al., 2022). This result might support our hypothesis, but it only included the first 6 hours after amputation, similar to Cazet’s research. Therefore, it appears that HyKayak and fos_Cazet may have opposing roles in the regulation of Wnt-gene expression and are possibly activated by different signaling pathways depending on the stages of regeneration.

      • On page 12 the authors conclude based on gene expression in inhibitor treatment that there is a “change in complex composition of the two transcription factors.” This is something which would require biochemical evidence and I therefore suggest they remove this entirely. * Answer:

      we have removed this sentence

      • The authors use experiments in Craspedacusta to test their hypothesis of the role of Wnt and Notch signaling in Hydra. There is, in my opinion, an incorrect logic here. Regardless of the outcome, the roles of Wnt and Notch could conceivably be different in the two species and therefore testing hypothesis from one is not possible in the other. The authors should reframe their discussion of this to be more of a comparative framework. Moreover, the results do not necessarily indicate what the authors say. In Hydra Notch signaling is required to form the hypostome/mouth and this is not the case in Craspedacusta while Wnt signaling is required. The authors do not cite an important study from another Hydrozoan Hydractinia (Gahan at al.,2017). In that study the authors show that DAPT inhibits tentacles during regeneration but that the hypostome (or at least the arrangement of neurons and cnidocytes around the mouth) forms normally. This would indicate that in Hydractinia the process of head formation is different to in Hydra and would be congruent with what is shown here in Craspedacusta. This should be more thoroughly discussed, and all relevant literature cited.* Answer:

      We have concentrated our Craspedacusta work on Notch-signalling now. We only show that DAPT does not inhibit the regeneration of Craspedacusta heads. We have included new data showing that nevertheless it has an effect on the expression of hypothetical Notch target genes, but not on CsWnt3 (new Fig. 7). We have re-written our discussion accordingly and included the Hydractinia-work about Notch (Gahan2017). Although the Hydractinia paper lacks gene expression studies making it difficult to directly compare with the Hydra data, it supports our claim that Notch is required for regeneration of polyps with head and tentacles. We indeed do not know anything about Wnt-signalling in Craspedacusta. Our new results show that it is probably expressed in the head, because we observe very low levels of expression in the polyps after head removal, which increases considerably during regeneration of the head. This was included in the results:

      Results:

      “Finally, we investigated the expression of the Craspedacusta Wnt3-gene and its response to DAPT treatment during head regeneration. We observed low expression level of CsWnt3 after head removal (t=0), which dramatically increased as the head regenerated, suggesting that Wnt3 is expressed in the head of Craspedacusta polyps as it is in the head of other cnidarians including Hydra, Hydractinia and Nematostella (Hobmayer et al., 2000; Kusserow et al., 2005; Plickert et al., 2006). In accordance with having no effect on head regeneration, DAPT also did not inhibit CsWnt3 expression during this process in Craspedacusta. This is opposite to the situation in Hydra. If CsWnt3 would be involved in the Craspedacusta head regeneration, this could explain the failure of DAPT to interfere with this process”.

      Discussion part

      “Head regeneration also occurs in the colonial sea water hydrozoan Hydractinia. Colonies consist of stolons covering the substrate and connecting polyps, including feeding polyps, which have hypostomes and tentacles, and are capable of head regeneration, similar to Hydra polyps. Wnt3 is expressed at the tip of the head and by RNAi mediated knockdown it was shown that this gene is required for head regeneration (Duffy et al., 2010). In the presence of DAPT, Gahan et al observed that proper heads did not regenerate, similar to Hydra. However, they observed regeneration of the nerve ring around the hypostome indicating the possibility that hypostomes had been regenerated. Unfortunately, this study did not include gene expression data and therefore it is not clear whether Wnt3 expression was affected or not (Gahan et al., 2017).

      …..

      An interesting question was whether regeneration of cnidarian body parts, which are only composed of one module, also requires Notch-signalling. This is certainly true for the Hydra foot, which regenerates fine in the presence of DAPT (Käsbauer et al. 2007). Moreover, we tested head regeneration in Craspedacusta polyps, which do not have tentacles, and show that DAPT does not have an effect on this regeneration process. This corroborates our idea that Notch is required for regeneration in cnidarians, when this process involves two pattern forming processes to produce two independent structures, which are controlled by different signalling modules. This would be the case for the Hydra and for the Hydractinia heads, but not for Craspedacusta. ”

      Moreover, we indicate at the end of our discussion that further studies about head regeneration in Craspedacusta and the genes involved would be desirable. We believe this would be beyond the scope of the current paper and we are working on a new Craspedacusta study.

      “Future studies on expression patterns of the genes that control formation of the Hydra head, including Sp5 and Alx in Craspedacusta could provide insights into the evolution of cnidarian body patterns. Sp5 and Alx appear to be conserved targets of Notch-signalling in the two cnidarians we have investigated. Wnt-3, while being inhibited by Notch-inhibition in Hydra head regenerates, is not a general target of Notch signalling. It was not affected by DAPT in our comparative transcriptome analysis (Moneer et al. 2021b) on uncut Hydra polyps, and it was also not affected by DAPT in regenerating heads of Craspedacusta.”

      • From reading the manuscript I do not fully understand the model the authors put forward. It is unclear what "coordinating two independent pattern forming systems" really means. It might be beneficial to make a schematic illustration of the model and how it goes wrong in both sets of inhibitor treatments. * Answer:

      We have edited the manuscript considerably and explained what we mean with the two pattern forming systems. It starts with the abstract:

      Hydra head regeneration consists of two parts, hypostome/organizer and tentacle development.”

      Thus, in accordance with regeneration of two head structures we find two signaling and gene expression modules with HyWnt3 and HyBMP4 part of a hypostome/organizer module, and BMP5/8, HyAlx and b-catenin part of a tentacle module. We conclude that Notch functions as an inhibitor of tentacle production in order to allow regeneration of hypostome/head organizer.

      “Polyps of Craspedacusta do not have tentacles and thus, after head removal only regenerate a hypostome with a crescent of nematocytes around the mouth opening. This corroborates the idea that Notch-signaling mediates between two pattern forming processes during Hydra head regeneration”

      We have included the description of the organizer concept in the introduction, because we consider this relevant for our model:

      “The “organizer effect” entails a “harmonious interlocking of separate processes which makes up development”, or a side-by-side development of structures independently of each other (Spemann, 1935). In addition to inducing the formation of such structures, the organizer must ensure their patterning (Anderson and Stern, 2016). With reference to Hydra’s hydranth formation after head removal or transplantation, this involves the side-by side induction of hypostome tissue and tentacle tissue. Moreover, it includes the establishment of a regularly organized ring of tentacles with the hypostome doming up in the middle. The function of the Hydra“center of organization” would then be to pattern hypostome and tentacles and to allow for their harmonious re-formation after head removal”.

      In the discussion we integrate the organizer concept with the Gierer-Meinhardt reaction-diffusion models which still explain many aspects of Hydra development.

      Is Notch part of the organizer? The organizer is defined as a piece of tissue with inductive and structuring capacity. Notch is expressed in all cells of Hydra polyps (Prexl et al., 2011) and overexpression of NICD does not induce second axes all over the Hydra body column (Pan et al., 2024), as seen with overexpression of stabilized b-catenin (Gee et al., 2010). Moreover, Notch functions differently during regeneration after apical and basal cuts. Phenotypically during head regeneration in DAPT, we clearly recognize a missing inhibition of tentacle tissue after apical cuts and missing inhibition of head induction after basal cuts (Pan et al., 2024). We would thus rather suggest that the organizer activity of Hydra tissue utilizes Notch-signaling as a mediator of inhibition. As our study of transgenic NICD overexpressing and knockdown polyps had suggested, the localization of Notch signaling cells depends on relative concentrations of Notch- and Notch-ligand proteins, which are established by gradients of signaling molecules that define the Hydra body axis (Pan et al., 2024; Sprinzak et al., 2010) . This is in very good agreement with a ”reaction-diffusion-model” provided by Alfred Gierer and Hans Meinhardt (Gierer and Meinhardt, 1972; Meinhardt and Gierer, 1974) suggesting a gradient of positional values across the Hydra body column. This gradient may determine the activities of two activation/inhibition systems, one for tentacles and one for the head. When the polyps regenerate new heads, Notch could provide inhibition for either system, depending on the position of the cut.

      We provide a new Fig. 8., which clearly illustrates the effects of DAPT and iCRT14 on hypostome and tentacle regeneration.

      Minor: • The abstract could be rewritten to have more of an introduction to the problem rather than jumping directly into results. It would also be beneficial if the abstract followed the logic of the paper.

      Answer: We agree and have re-written the abstract.

      • In Figure 3 and 4 it is not clear why they are divided into A and B. It appears that the categorization of genes into different groups lacks a clear rationale. This seems totally unnecessary. In addition, the order in which the genes are described in the text does not match what is seen in the figure making it confusing to follow. • In Figure 5 the authors use two different types of charts and I would stick with one. B is much better as it shows the individual data points as well as other information. I would use this throughout including in Figure 3 and 4. *

      __Answer: __

      We changed Fig. 3, 4 and 5 according to these comments and now present the data in one format over all three figures, in scatterplots (more detailed answer above).

      We are now describing the results in the order of the figures, with A and B omitted.

      Figure S3 is missing a description of panel C.

      In figure S3 it is not clear why the inhibitor was removed and not kept on throughout the experiment. Please discuss. __Answer: __

      Fig. S3 was removed.

      Figure S4 has no A or B in the figure, only in the legend. __Answer: __

      We have included A and B…

      *Reviewer #1 (Significance (Required)):

      Although some of the authors data appear to be novel I find the study makes only minor progress on the questions. In particular the authors do not properly cite the relevant literature and to put their manuscript into the correct context. The new model proposed by the authors is based entirely on qPCR data which is not thoroughly analyzed and are not strong enough in the absence of information about the spatial expression the genes they discuss. The proposal of HyKayak as a negative regulator of Wnt3 is interesting but the authors do not provide any solid direct evidence for this (ChIP, EMSA etc) and it is somewhat in disagreement with other models of bZIP function in the literature (which again are not discussed).*

      The manuscript is of limited general interest. It has a number of interesting observations which would be of interest to the Hydra community and the broader cnidarian community. The study lacks contextualization within a broader framework, whether it be in the context of regeneration or Wnt/Notch signaling. This limitation may narrow the overall interest in it.

      Answer:

      Our previous analysis of the effect of Notch on head regeneration in Hydra (Münder 2013) had suggested the inhibition model, which is part of Fig. 8. We show now that during head regeneration in Hydra formation of two structures is guided by different signaling/transcription modules, one using Wnt3 and BMP4, but not b-catenin; and one using BMP5/8 and b-catenin. We suggest that Notch functions as an inhibitor “of use” to the organizer when the “two-part” head structure is regenerated.

      We agree that our original manuscript was not well enough written to clearly put it into developmental context. We now focus the discussion of our work sharply on the organizer problem and think that the conclusions are of great general interest. In a simple view they suggest that the function of the Hydra head organizer is to allow harmonious development of head and tentacles, which we consider separate, and on a molecular basis independently regulated parts of the Hydra head. Notch signaling, in our interpretation, is an instrument of the organizer. Our comparison with Craspedacusta illustrates this idea. Craspedacusta only regenerates one head structure, which is possible in the absence of this instrument (also see reviewers 3 and 4).

      Concerning HyKayak, there is no disagreement with other authors as we analyze a fos-gene different from the one discussed by Cazet et al (see above). We have conducted a rescue experiments as suggested by reviewer 3 with the Kayak-inhibitor and with HyKayak shRNAi knockdown, however, rescue of the phenotype was not achieved although HyWnt3 was upregulated after DAPT treatment in the knockdown group. We attribute this to the very strong effect of DAPT. We have adjusted our hypothesis and only suggest that HyKayak could be a target for the Notch-induced repressor genes (e.g.HyHes). We mentioned this failed rescue in the manuscript (answer for see reviewer 3). Further experiments, e.g Chip/EMSA constitute a new project on the basis of these ideas and should be reserved for further studies of the Kayak-function in Hydra.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      *The study investigates the role of Notch and beta-catenin signaling in coordinating head regeneration in Hydra. It combines gene expression dynamics, inhibitor treatments, and comparisons with Craspedacusta polyps to propose a lateral inhibition model for Notch function during Hydra head regeneration, mediating between two pattern-forming systems.

      Three main concerns arise from this work:*

      • Lack of spatial expression data: The study proposes a model based on pattern-forming systems but falls short of providing direct spatial expression data for the genes under consideration in both control and treated scenarios. This gap weakens the empirical support for the proposed model. __Answer:*__

      The expression patterns for most of the presented genes including HyAlx and HyWnt3 in the presence and absence of DAPT have been published before (Münder 2013). Expression patterns for all other genes during regeneration (except Hykayak) are already known from literature. For Hykayak we have included expression data from Siebert et al (single cell transcriptome analysis) in the supplementary material. For iCRT14 treatment, we carried out a FISH-experiment and showed that HyWnt3 is expressed in the normal pattern at the hypostome. For further genes after DAPT and iCRT-treatment in situ hybridisation data are indeed lacking (e.g. BMP5/8). However, we have analyzed some very strongly downregulated regulated genes (e.g. HyAlx completely downregulated by iCRT14, all HyWnts and BMP2-4completely downregulated by DAPT) and for those in situ hybridisation could (1) be difficult due to low expression in treated samples and (2) may not be informative.

      • Clarity and relevance of Craspedacusta comparisons: The section discussing the regeneration in Craspedacusta polyps appears somewhat disjointed from the main narrative, with its contribution to the overarching story of Hydra regeneration remaining unclear. *

      Answer:

      We had not intended to explain gene expression during Craspedacusta head regeneration but wanted to prove our hypothesis that Notch is needed to allow side-by-side development of two newly arising structures, which use different signalling modules during head regeneration. That Notch is __not __needed for the regeneration of Craspedacusta, a polyp without tentacles, appears to strengthen our main hypothesis. In order to connect this point more clearly to the narrative we have included new data. We show that CsWnt3 expression lowers after head removal and rises when the head regenerates, indicating CsWnt3-expression in the head of Craspedacusta polyps. Moreover, we show now that Notch in Craspedacusta may have similar target genes as in Hydra (e.g. Sp5 and Alx), might also affect nematocyte differentiation as in Hydra, but does not inhibit Wnt3 expression. We also acknowledge that a precise understanding of the molecular pathways for head regeneration in Craspedacusta requires further work and have removed the results of iCRT14 treatment because of our lack of knowledge about the role of b-catenin in Craspedacusta patterning. Citations from our changed text are found in the answer to reviewer 1.

      • Accessibility of the text: The study's presentation, including its title, abstract, and main text, presents challenges in terms of clarity and accessibility, making it difficult for readers to follow and understand the research's scope, methodologies, and conclusions.*

      • *

      Answer:

      We agree and have completely re-written the abstract, and large parts of the introduction and discussion (also see above answer for reviewer 1).

      Reviewer #2 (Significance (Required)):

      In conclusion, while the study aims to advance our understanding of the complex signaling pathways governing Hydra head regeneration, it necessitates significant revisions. Enhancing the empirical evidence through detailed spatial patterning data, clarifying the comparative analysis with Craspedacusta polyps, and __refining the narrative __to improve accessibility are critical steps needed to solidify the study's contributions to the field.

      Answer:

      By including Kayak-expression data from Siebert et al and indicating the places of major expression of all analysed genes schematically in the Figs describing the qPCR data we revised our manuscript. We have added new data about Craspedacusta and believe that our re-written manuscript refines the narrative by focusing on the organizer (see answer to reviewer 1).



      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Major comments:

      - In the abstract, the authors assert that their findings "indicate competing pathways for hypostome and regeneration." However, the nature of this competition and its resolution is not adequately elucidated within the manuscript. The term "competition" lacks context and clarity, leaving the reader without a clear understanding of what pathways are competing, for what, and how this competition is resolved during regeneration. Furthermore, this concept is not further explored or referenced throughout the remainder of the manuscript, leaving it somewhat disconnected from the main body of the research. It is recommended that the authors either revise the statement in the abstract to provide more clarity on the competing pathways and their implications for regeneration, or alternatively, if the authors believe there is sufficient evidence to support the claim of competing pathways, they should expand upon this point within the main body of the manuscript. Additional argumentation and evidence would be necessary to substantiate such a claim and provide a deeper understanding of the mechanisms underlying regeneration in Hydra.

      Answer:

      We agree and have removed any reference to “competing” pathways from the abstract and the main text.

      - The abstract makes a significant assertion regarding the mechanism by which Notch signaling impacts the expression of HyWnt3, suggesting that it operates by inhibiting HyKayak-mediated repression of HyWnt3 rather than directly activating transcription at the HyWnt3 promoter. This claim is central to the goals outlined in the study, which aim to elucidate the functioning of Notch signaling in HyWnt3 expression. To bolster this assertion, it would be prudent for the authors to conduct experiments demonstrating the mediating role of Kayak. Specifically, demonstrating that downregulation of Kayak through RNAi can rescue the DAPT-mediated downregulation of Wnt3 would provide strong support for the authors' claim. Additionally, while not strictly necessary, it would be beneficial to investigate whether chemical inhibition of Wnt can rescue the phenotype resulting from Kayak RNAi. Conducting and analyzing such experiments within a 2-3-month revision period should be feasible given that the authors already possess all necessary materials and have developed the required methods. These additional experiments would not only strengthen the evidence supporting the authors' claim but also provide further insights into the regulatory mechanisms at play in Notch signaling and HyWnt3 expression.

      • *

      Answer:

      We have conducted the suggested rescue experiments with the kayak-inhibitor, however, rescue was not achieved. We also tried rescue experiments by combining DAPT treatment and Kayak shRNA knockdown. HyWnt3 was slightly upregulated after DAPT treatment in the Kayak knockdown group but the phenotype could not be rescued. We are therefore now only state that HyKayak could be a target for the Notch-induced repressor genes (e.g.HyHes). We mentioned the failed rescue experiments in the manuscript:

      Results:

      *The up-regulation of HyKayak by DAPT suggests that HyKayak may serve as a potential target gene for Notch-regulated repressors including HyHes and CnGsc, potentially acting as a repressor of HyWnt3 gene transcription. *

      Discussion:

      We therefore suggest that the Hydra Fos-homolog HyKayak inhibits HyWnt3 expression and can be a target for a Notch-induced transcriptional repressor (like HyHes) in the regenerating Hydra head. Nevertheless, we were not able to rescue the DAPT-phenotype by inhibiting HyKayak, neither by using the inhibitor nor by shRNA-treatment, probably due to the strength of the DAPT effect. Therefore, we cannot exclude that Notch activates HyWnt3 directly, or that it represses unidentified Wnt-inhibitors through HyHes or CnGsc.

      - The usage of the term "lateral inhibition" in the title and abstract of the manuscript carries specific implications, as it is commonly associated with distinct mechanisms in the context of Notch signaling and reaction-diffusion systems. Notably, in the Notch signaling context, lateral inhibition typically refers to the amplification of small differences between neighboring cells through direct interactions, facilitated by the limitations of Notch signaling to immediate neighbors. Conversely, in reaction-diffusion systems, such as the Gierer-Meinhardt model, lateral inhibition describes long-range inhibition associated with pattern formation.

      Given this discrepancy, it is crucial for the authors to clarify their interpretation of "lateral inhibition" to avoid ambiguity and ensure accurate understanding. If they are referring to Notch-specific lateral inhibition, they should provide evidence of adjacent localization of Notch and Delta cells to support their argument. Alternatively, if they are invoking the concept of long-range inhibition described by the Gierer-Meinhardt model, they must explain how a membrane-tethered ligand like Notch can exert effects beyond one cell diameter from the signaling center.

      * Regardless of the interpretation chosen by the authors, addressing this clarification will have significant implications for the subsequent treatment of their arguments. Depending on their chosen interpretation, experimental demonstrations may be necessary to substantiate their claims, which could be laborious and time-consuming. However, such demonstrations are essential for establishing the validity of the term "lateral inhibition" as used in the title and abstract of the manuscript.*

      Answer:

      We agree with the reviewer concerning the term “lateral inhibition” and have now removed it. Instead, we have emphasized that our data clearly show during apical regeneration a Notch-mediated inhibition of tentacle tissue formation. We also discuss data from our most recent publication (Pan 2024) showing that this is the opposite at basal cuts, where the loss of Notch function leads to the regeneration of two heads. We then discuss this in the context of the Gierer-Meinhardt Model and in the context of the organizer (also see above in answer to reviewer 1):

      It is true that it is difficult to reconcile the long-range signaling processes, on which the Gierer-Meinhardt model is based with the cell-cell interactions mediated by Notch-signaling. We have now published a mathematical model to explain our understanding of this for the role of Notch during budding and in steady state animals (Pan2024), which is based on work by Sprinzak et al 2010. For head regeneration, we do not have such a model yet. Here we are looking at expression patterns changing over time. Therefore, we assume waves of gene expression, relying on the autoinhibitory function of the HyHes-repressor. This is included in the discussion:

      In addition, the gene expression dynamics for many of the analyzed genes appears in wave-like patterns in some experiments (see Figs S3 and S4). As we have only four time points measured, we cannot draw strong conclusions from these observations, except that some of the deviations in our data points (e.g. 48 hrs HyHes) might be caused by oscillations. Nevertheless, we propose that the dynamic development of gene expression patterns over the time course of regeneration hint at a wave like expression of Notch-target genes (e.g. HyAlx, (Münder et al., 2013; Smith et al., 2000)). Hes-genes have been implicated in mediating waves of gene expression, e.g. during segmentation and as part of the circadian clock (Kageyama et al., 2007). This property is due to the capability of Hes-proteins to inhibit their own promoter. Future models for head regeneration in Hydra should consider the function of Notch to inhibit either module of the regeneration process and the potential for the Notch/Hes system to cause waves of gene expression. Such waves intuitively seem necessary to change the gene expression patterns underlying morphogenesis during the time course of head regeneration.

      - The utilization of Craspedacusta as a comparative model in the argumentation of the manuscript appears somewhat unclear. The authors posit that Notch is essential for organizer emergence in Hydra, while Wnt is not necessary, as indicated by the observed effects of iCRT14 beta-catenin/TCF inhibition. However, in Craspedacusta, which lacks tentacles but possesses an organizer, one might anticipate a conserved requirement for organizer formation but not tentacle development. Therefore, it would be reasonable to expect that Craspedacusta would still form an organizer under iCRT14 treatment but would not depend on Notch signaling, as the necessity to separate tentacle formation from organizer formation is absent. The authors' observation that Craspedacusta fails to form an organizer under iCRT14 treatment partially aligns with these expectations. However, the complexity of the results suggests a need for a deeper understanding of the involvement of different pathways in Craspedacusta. Before applying inhibitors, it would be crucial to elucidate the spatiotemporal differences in the expression of relevant Wnt and Notch pathway components between Hydra and Craspedacusta. This knowledge would provide valuable insights into the specific roles of these pathways in organizer formation and tentacle development in both species, helping to clarify the observed differences in response to iCRT14 treatment. Additionally, considering the possibility of differential sensitivity to iCRT14 (see comment below) between Hydra and Craspedacusta would be essential for accurately interpreting the results and drawing meaningful conclusions regarding the involvement of Notch and Wnt signaling pathways in these processes.

      Answer:

      We have clarified in our re-written manuscript that the organizer functions in Hydra heads and head regeneration to harmonize the development of two independent structures (see answer for reviewer 1) and that Notch-signalling is an instrument to achieve this. Craspedacusta polyps do not have tentacles, thus we do not see two independent structures. Correspondingly, we see that they do not need Notch-signaling. We do not know whether they have organizer tissue, because they are too small to perform transplantation experiments. Similarly, in situ hybridisation experiments to look for CsWnt expression are hard to envisage. What we have now done during the revision of this paper are RT-qPCR experiments to follow the expression of CsWnt3 after head removal until a new head is formed. This indicated the localization of CsWnt3 expression in the head (citations in response to reviewer 1).

      We agree that the role of Wnt/b-catenin for Craspedacusta cannot be sufficiently described with our iCRT14 experiment and therefore removed it. To strengthen the DAPT data, we also examined Craspedacusta homologs of the Hydra Notch-target genes that we had previously identified (Moneer2021). We found that expression of CsSp5 and CsAlx were inhibited by DAPT. This was also true for the nematocyte gene NOWA (see new Fig. 7). In Hydra, DAPT blocks one important differentiation step of nematocytes and therefore the expression of all genes expressed in differentiating capsule precursors, including NOWA is inhibited, while the number of mature capsules does not change. To see the same DAPT effect on NOWA-expression in Craspedacusta reassured us that DAPT had entered the animals and might also have a similar effect on nematocytes as in Hydra.

      Minor comments - The concentration-dependent effects of iCRT14 on beta-catenin signaling, as demonstrated by Gufler et al. 2018, suggest that the efficacy of inhibition may vary depending on the concentration used. Specifically, Gufler et al. found that a concentration of 10µM was sufficient for efficient inhibition of beta-catenin signaling. However, in the current study, the authors utilized a concentration of 5µM of iCRT14. Given the central role of the observed effects, particularly the persistence of Wnt3 expression, in the argumentation of the manuscript, it is plausible that these effects could be attributed to partial inhibition resulting from the lower concentration of iCRT14 used in the study. To address this potential limitation, the authors could consider conducting a quick examination of the effects of 10µM iCRT14 or utilizing other inhibitors of beta-catenin/TCF interaction, such as iCRT3. By comparing the effects of different concentrations or alternative inhibitors, the authors could ascertain whether the observed effects are indeed attributable to partial inhibition from 5µM iCRT14, or if they persist despite higher concentrations or alternative inhibitors. This additional experimentation would provide valuable insights into the specificity and efficacy of the inhibition and strengthen the validity of the conclusions drawn regarding the role of beta-catenin signaling in the observed phenomena.

      Answer:

      The iCRT14 concentration was adjusted to 5 µM because the initial 10µM proved to be too toxic. 5µM also produced the same phenotypes and results as seen before. Cazet et al. also used 5 µM iCRT14 in their study.

      - The use of Generalized Additive Models (GAMs) in Figures 3 and 4 to present the time series qPCR results may introduce some challenges in interpretation due to the potential for distortion of values at specific time points based on neighboring ones. Given the relatively low time resolution of the data, this approach could lead to a distorted depiction of the temporal dynamics. For instance, in Figure 3B, where Wnt3 peaks at 10 hours, the absence of measurements between 8 and 24 hours introduces uncertainty regarding the accuracy and reliability of this peak at 10 hours.

      * To address these concerns and enhance clarity, it may be advisable for the authors to consider presenting the data using simple boxplots instead of GAMs. Boxplots provide a more straightforward visualization of the distribution of data at each time point, allowing for a clearer interpretation of trends and fluctuations over time. This approach would mitigate the potential for distortion introduced by GAMs and provide a more accurate representation of the temporal dynamics observed in the qPCR results*

      • *

      Answer:

      We agree and have changed the data representation to simple scatterplots (see answers for reviewer 1).

      - The comparison of the effects of iCRT14 versus DAPT treatments would benefit from having consistent gene expression data across both treatments. However, in Figure 4A, there are fewer genes tested compared to Figure 3A, with Hes and Kayak omitted. While the authors interpretation suggests that these genes may not change after iCRT14 treatment due to their upstream position in the signaling pathways, it is essential to empirically demonstrate this relationship, as it is central to the conclusions drawn. To address this gap in the analysis, it would be valuable for the authors to provide a time series of differential expression for Hes and Kayak following iCRT14 treatment.

      Answer:

      We have provided a time series for expression of HyHes and HyKayak in responses to iCRT14 treatment during regeneration (see Fig.4).

      “We found that the expression the Notch-target gene HyHes remained similar to control regenerates up to 24 hrs, but then was attenuated (Fig. 4A), possibly due to failure of tentacle boundary formation, the tissue where HyHes is strongly expressed…The expression of HyKayak was decreased at 8 hrs after head removal in the presence of iCRT14, came back to normal up to 36 hrs and was suddenly increased after 48 hrs (Fig. 4E), correlating with inhibition of the HyHes repressor. There were no significant changes in the expression dynamics of HyBMP2/4 and HyBMP5/8b between iCRT14-treated regenerates and controls (Fig. 4F, G).”

      - The analysis of the impact of chemical inhibition of Notch and Wnt signaling in Figure 7 schematic highlights changes in spatial expression patterns of the target genes. However, the interpretation of their impact primarily relies on qPCR data. As evident from Figure 7, when Notch is inhibited, it is anticipated that Kayak expression will shift from the area of the tentacles to the tip. This spatial shift in expression patterns is a critical aspect of the authors' arguments, especially considering the centrality of Kayak in their findings. Notably, similar spatial expression patterns have been demonstrated for Alx using FISH in Pan et al., available on BioRxiv. Given the importance of Kayak in the presented arguments, it is advisable to also investigate its spatial expression patterns using techniques such as FISH.

      • *

      Answer:

      We have, instead of FISH-experiments, included expression data for HyKayak from Siebert et al 2019 (single cell transcriptome data) in Fig. S1D, which show its expression in head- and battery cells (tentacle cells). This is similar to HyAlx. Therefore, Kayak-FISH would be expected to reveal expression of the gene at the tip of the regenerate the whole time, similar to HyAlx, because tentacle gene inhibition or patterning does not occur (see Münder 2013). Due to the failure of our rescue experiment to demonstrate the function of kayak we have omitted kayak from Fig. 8 and only mention in the discussion that it could be a target for Notch activated transcriptional repressors, like HyHes or CnGsc.

      Reviewer #3 (Significance (Required)):

      *The paper introduces novelties to the field of regeneration and developmental biology by leveraging Craspedacusta polyp as a novel model system for investigating the evolutionary and developmental dynamics of tentacles. In doing so, it sheds new light on the intricate mechanisms underlying tentacle formation and patterning. Furthermore, the study implicates Kayak in the regulation of Wnt3, adding a fresh perspective to our understanding of the molecular pathways governing Hydra regeneration. Notably, the results of the research challenge the prevailing notion of autoregulation of Wnt3, which has long been considered fundamental to organizer formation in Hydra. While these findings offer intriguing insights, further investigation will be crucial to conclusively ascertain the validity of this assertion. *

      • *

      Despite the clarity of the data presented, the interpretation and integration of these findings in the manuscript are lacking. The narrative at times feels disjointed, with different storylines loosely connected. While the findings are intriguing and merit publication, a substantial revision of the manuscript is necessary to provide a more coherent and illuminating interpretation of the results. *The implications of this research extend beyond the specific confines of Craspedacusta polyp and Hydra biology. It holds significant relevance for both the Hydra biology community and the broader field of Notch signaling research. *

      By highlighting the pivotal role of Notch signaling in regeneration and patterning within Hydra, the study enriches our comprehension of this model organism and its evolutionary adaptations. Moreover, it provides a valuable lens through which the evolution of Notch signalling cascades can be examined. This interdisciplinary approach underscores the interconnectedness of diverse biological systems and underscores the importance of exploring novel model organisms to unravel the complexities of evolution and development.

      • *

      Answer:

      We have edited the manuscript considerably and re-written the introduction and the discussion parts. We are focusing on integrating this work with the organizer concept in developmental biology, and on the Gierer-Meinhardt-model, and point out that Notch-signaling is required for the development of two head structures by inhibiting the development of either one during head regeneration, which is necessary to enable the development of the other one. Which one is inhibited depends on the positional value of the tissue where the cut occurs. Craspedacusta polyps do only have one structure. We suggest that this is why head regeneration does not require Notch-signalling in Craspedacusta. In contrast, as we have included in our discussion now, Hydractinia polyps, again with head/mouth and tentacles, require Notch-signaling for head regeneration (according to Gahan 2019), see also answers for reviewers 1 and 2.



      Reviewer #4 (Evidence, reproducibility and clarity (Required)):

      Major comments:

      The conclusions from the experiments are drawn accurately, not overstating the results. The main conclusion, that in Hydra Notch pathway mediates between two patterning modules, hypostome and tentacle forming modules, is supported by in situ hybridization and qPCR analyses of hypostome and tentacle specific genes.

      OPTIONAL. Authors hypothesize, that Notch maintains expression of Wnt3 vie its targets, transcriptional repressors Goosecoid or Hes, which halt the expression of Wnt3 repressor HyKayak. Epistatic relationships between Notch, Goosecoid or Hes and HyKayak could be tested, first, by combining pharmacological inhibition of Notch by DAPT with shRNA-mediated knockdown and second, in double knockdowns generated by electroporating shRNAs for two genes simultaneously. If the proposed in the pathway relationships are correct the repressive effect of DAPT treatment on an organizer regeneration should be rescued in HyKayak shRNA-mediated knockdown. Regeneration of an organizer also should occur in Notch/HyKayak and Goosecoid (Hes)/HyKayak shRNA-mediated double knockdowns. Electroporation of shRNAs for multiple genes is an effective and quick way to generate double and triple knockdowns. The proposed experiments will much strengthen the conclusions drawn from this study. Given that the authors have successfully used shRNA-mediated technique to generate HyKayak knockdown animals, they should be able to complete the proposed experiments within in a couple of months. Answer:

      We very much like the suggested strategy to probe the regeneration pathways by shRNA-mediated knockdown experiments- this will be a basis for future investigations.

      We conducted the suggested rescue experiment by combining the DAPT treatment and Kayak shRNA knockdown. HyWnt3 was slightly upregulation after DAPT treatment in the Kayak knockdown group. However, this upregulation did not rescue the organizer’s regeneration. We think that the effect of DAPT is too strong. We have included this in the discussion of our results (see answer for reviewer 2).

      • The data are presented in a logical and clear manner. The paper is easy to read, and the conclusions are explicit for each experimental section. The methodology is described in detail and should be easy to reproduce.*

      • All experiments are done with multiple biological and technical replicates. However, the description of statistical analysis used in each case is missing, p values and error bars are missing in Fig. 2B and Fig. S4. Author should add this information in the main text or in the figure legends.*

      Answer:

      The statistical information was now added in the methods section.

      Minor comments:

      • Fig. 1E. It would be more convincing to present tentacle and hypostome regeneration data separately, comparing hypostome regeneration in treated animals with DMSO control, and in a separate analysis comparing tentacle regeneration with control. Provide the description of statistical method, p values and error bars. If authors prefer to stick to the current way of presenting they should also provide description of statistical analysis used and statistical data.*
      • *

      Answer:

      We changed the representation in Fig. 1E. We now use scatter plots in the main text with p-values added, and explained the statistics of the GAM representation in the supplementary material.

      • Results, section 4 Kayak. Authors use T5424 inhibitor to block the potential interactions between HyKayak with HyJun. The resulted increase in Wnt3 expression measured by qPCR clearly supports the idea of HyKayak being a repressor of Wnt3. However, authors are going further and present the phenotype of T5424 treatment, shortening of the tentacles. Many factors can influence the length of the tentacles. For example, shortening of tentacles is a strong indication of poisoning or animal being in general unwell. At a concentration double of the one used in the experiment T5424 causes a disintegration of the animals (Fig. 3S). It would be more convincing if the authors could provide an in situ hybridization image showing an expansion of Wnt3 expression domain down the hypostome. This is the result one would expect from the inhibition of HyKayak which, according to the proposed mechanism, restricts Wnt3 spatial expression to the most apical portion of the regenerating tip. Alternatively, authors could try to see if T5424 rescues the inhibition of an organizer formation resulted by DAPT treatment. The latter experiment might be difficult to perform due to a possible toxic effect of multidrug treatment. I suggest that authors either include the proposed experiments or leave the results of the Fig S3 out.*

      Answer:

      According to this suggestion we have removed the phenotypes of polyps after treatment with T5424.

      • Results, section 3.2, paragraph 4. 'This also applies for the suggested Hydra organizer gene CnGsc, and BMP2/4 (Broun, Sokol et al. 1999). Please, insert the citation for BMP2/4.*

      • *

      Answer:

      We inserted the citation for BMP2-4 (Watanabe 2014).


      Reviewer #4 (Significance (Required)):

      *Significance:

      The current study is a continuation of the author's previous work where they have characterized Notch pathway in Hydra and showed its role in the regeneration of an organizer and patterning of Hydra head. Here, they present the study of Notch pathway in the context of b-catenin pathway, a pathway that has been shown to be essential for the axis induction and patterning in Hydra. The authors challenge this dogma and show, that during head regeneration b-catenin transcriptional activity is not required either to maintain the expression of wnt3 nor to acquire an inductive activity of the regenerating organizer. Second, they show, that transcriptional fos-related factor Kayak is negatively regulated by Notch-signaling and, in turn, represses transcription of Wnt3. Based on those findings authors propose a function of the Notch pathway in Hydra head regeneration, particularly in spatial separation of the hypostome/organizer module from the tentacle module. The role of Notch pathway in lateral inhibition is well documented in bilaterians. However, in Cnidaria, a sister group to Bilateria, the function of Notch was so far restricted to neurogenesis. This study is very important for our understanding of the evolution of morphogenesis as it shows the ancient role that the Notch pathway is playing in axial patterning, possibly, through lateral inhibition.

      This study can be of a great interest to both researchers specializing in cnidarian development and to a broader audience interested in the evolution of morphogenesis.*

    1. Reviewer #1 (Public Review):

      Kreeger and colleagues have explored the balance of excitation and inhibition in the cochlear nucleus octopus cells of mice using morphological, electrophysiological, and computational methods. On the surface, the conclusion, that synaptic inhibition is present, does not seem like a leap. However, the octopus cells have been in the past portrayed as devoid of inhibition. This view was supported by the seeming lack of glycinergic fibers in the octopus cell area and the lack of apparent IPSPs. Here, Kreeger et al. used beautiful immunohistochemical and mouse genetic methods to quantify the inhibitory and excitatory boutons over the complete surface of individual octopus cells and further analysed the proportions of the different subtypes of spiral ganglion cell inputs. I think the analysis stands as one of the most complete descriptions of any neuron, leaving little doubt about the presence of glycinergic boutons.

      Kreeger et al then examined inhibition physiologically, but here I felt that the study was incomplete. Specifically, no attempt was made to assess the actual, biological values of synaptic conductance for AMPAR and GlyR. Thus, we don't really know how potent the GlyR could be in mediating inhibition. Here are some numbered comments:

      (1) "EPSPs" were evoked either optogenetically or with electrical stimulation. The resulting depolarizations are interpreted to be EPSPs. However previous studies from Oertel show that octopus cells have tiny spikes, and distinguishing them from EPSPs is tricky. No mention is made here about how or whether that was done. Thus, the analysis of EPSP amplitude is ambiguous.

      (2) For this and later analysis, a voltage clamp of synaptic inputs would have been a simple alternative to avoid contaminating spikes or shunts by background or voltage-gated conductances. Yet only the current clamp was employed. I can understand that the authors might feel that the voltage clamp is 'flawed' because of the failure to clamp dendrites. But that may have been a good price to pay in this case. The authors should have at least justified their choice of method and detailed its caveats.

      (3) The modeling raised several concerns. First, there is little presentation of assumptions, and of course, a model is entirely about its assumptions. For example, what excitatory conductance amplitudes were used? The same for inhibitory conductance? How were these values arrived at? The authors note that EPSGs and IPSGs had peaks at 0.3 and 3 ms. On what basis were these numbers obtained? The model's conclusions entirely depend on these values, and no measurements were made here that could have provided them. Parenthetical reference is made to Figure S5 where a range of values are tested, but with little explanation or justification.

      (4) In experiments that combined E and I stimulation, what exactly were time timecourses of the conductance changes, and how 'synchronous' were they, given the different methods to evoke them? (had the authors done voltage clamp they would know the answers).

      (5) Figure 4G is confusing to me. Its point, according to the text, is to show that changes in membrane properties induced by a block of Kv and HCN channels would not be expected to alter the amplitudes of EPSCs and IPSCs across the dendritic expanse. Now we are talking about currents (not shunting effects), and the presumption is that the blockers would alter the resting potential and thus the driving force for the currents. But what was the measured membrane potential change in the blockers? Surely that was documented. To me, the bigger concern (stated in the text) is whether the blockers altered exocytosis, and thus the increase in IPSP amplitude in blockers is due BOTH to loss of shunting and increase in presynaptic spike width. Added to this is that 4AP will reduce the spike threshold, thus allowing more ChR2-expressing axons to reach the threshold. Figure 4G does not address this point.

      (6) Figure 5F is striking as the key piece of biological data that shows that inhibition does reduce the amplitude of "EPSPs" in octopus cells. Given the other uncertainties mentioned, I wondered if it makes sense as an example of shunting inhibition. Specifically, what are the relative synaptic conductances, and would you predict a 25% reduction given the actual (not modeled) values?

      (7) Some of the supplemental figures, like 4 and 5, are hardly mentioned. Few will glean anything from them unless the authors direct attention to them and explain them better. In general, the readers would benefit from more complete explanations of what was done.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      I have mixed feelings regarding this manuscript. On the one hand, the authors did an impressive amount of work. On the other hand, the manuscript seems overly descriptive (writing should be more concise) without a clear message or hypothesis that is cohesive to all the presented evidence. Below, I will outline my concerns.

      We appreciate the comment about missing a cohesive presentation. We worked extensively to improve that in the revised manuscript.

      Reviewer #1- first part

      1. I am not an expert in the field of viral biology and immunology. I wonder how well the IFN treatment mimics the cellular response to infection (yet without the virus). Also, how good is ruxolitinib at blocking the IFN response ? I would appreciate it if you could explain both with one or two sentences and provide the necessary references.

      The reviewer is correct that we cannot claim that interferon treatment mimics exactly the cellular response. However, the expression of interferon-stimulated genes (ISGs) is a major arm of the antiviral response to HCMV (c.f. doi:10.3390/v10090447, doi:10.2217/fvl-2018-0189). In addition, Ruxolitinib is a potent and selective Janus kinase 1 and 2 inhibitor (doi:10.1021/ol900350k), and we have shown in the past that it very effectively reduces the expression of many ISGs (doi: 10.1038/s41590-018-0275-z). Since ISGs constitute a major part of the host response to HCMV infection, the fact that their expression leads to minor changes in the tRNA pool strongly suggests that it is mainly the virus (as opposed to the host cell) that mediates the changes seen in the tRNA pools during HCMV infection. In the revised version, these claims were amended, and relevant references were added (pages 5, lines 132-136).

      (MAJOR) Can these two treatments really allow the effects of host response and viral infection to be separated? OR in other words, are these two effects really orthogonal? In my opinion, they are NOT. Fig. 1E seems to support my opinion, as the changes seen for the "IFN" sample relative to the "uninfected" sample (referred to as "changes-A" below), are parallel to the changes seen for the "24hpi + ruxo" sample relative to the "24hpi" sample ("changes-B"). More specifically, changes-A represent the host response, as argued by the author, whereas changes-B represent the elimination of the host response (due to ruxo, conditioned on the virus-driven effect). If the virus-driven effect and the host response could really be separated, one would expect changes-A and changes-B are more or less opposite. However, they appeared to be parallel, suggesting that uninfected versus infected conditions can have totally different (even opposite) host responses. More importantly, if one cannot separate the host response from virus-driven effects, the conclusion of "tRNA changes are driven by virus, not host response" is then unfounded.

      This is an important point to clarify. Changes-A indeed represent the effect of the host antiviral response on the tRNA pool. Changes-B, however, represent a mix of two effects. 1: counteracting the effect of the host antiviral response on the tRNA pool, which we show is a minor effect, and 2: The enhanced effect of the virus, since ruxolitinib, by inhibiting the host antiviral response, enhances the viral infection. It may indeed be that both the virus and the host antiviral effects are in the same direction. However, it is clear that the antiviral effect is minor. Thus, it is likely that the second effect of ruxolitinib (i.e., allowing enhanced viral infection) is the more substantial one. Therefore, it seems as though the viral effect and the elimination of the host effect are in the same direction. This point was clarified in the revised version (page 6, lines 145-146).

      Even if we let go of this previous point and accept that these results indeed offer some support for the notion that the virus-driven effect are the main contributor to the shifts in tRNA pool, the support is at best moderate. A big gap here is "how?" I suggest the authors should at least give some insight on how virus can do that in Discussion (and mention it with one sentence in Results).

      We certainly welcome the challenge, which we now meet in the revision. In short, here, transcription regulation of tRNAs, mainly upon viral infection, is poorly studied. Unlike other herpesviruses, HCMV does not cause a host shut-off of the host transcripts. Upon HCMV infection, the tRNA transcription machinery is upregulated significantly, which probably contributes to the upregulation in pre-tRNA (doi.org/10.1016/j.semcdb.2023.01.011). However, it is still unknown what the viral factors are that promote upregulation in the tRNA transcription machinery. We now relate to this point in the results (page 6, lines 147-148) and discuss the known effects of viral infection of tRNA expression in the discussion section (page 15, lines 447-451).

      The authors compared the HCMV codon usage to the proliferation and differentiation signatures of human cells. But these two signatures are not compared with measured tRNA expression. It might shed some light on the general characteristics of tRNA pool shifts due to infection (towards a proliferation-like or differentiation-like signature). This fits in the general topic of virus-host interaction and might give more evidence for the point that HMCV is adapted to a differentiation signature (as it drives the host into that state).

      We performed the analysis suggested by the reviewer. We found that the tRNA pool of uninfected HFF cells correlated to the same extent with proliferation codon usage (r=0.29, p-value=0.029) and differentiation codon usage (r=0.26, p-value=0.05). Similar correlations to the proliferation and differentiation signature were found when analyzing the tRNA pool 72h post-infection (proliferation r=0.33, p-value=0.011, differentiation r=0.28, p-value=0.034). This result suggests no general shift in the tRNA pool towards a specific codon usage signature.

      How is the dashed box in Fig3A/B chosen?

      We determined the dashed lines based on the most prominent groups of transcripts best adapted to proliferation or differentiation codon usage signatures. Figure S3A clearly shows the two groups without viral genes. We emphasize this point in the legend of Figure S3A (page 36, lines 1157).

      The tAI values shown in Fig3C-E are extremely low (compared to other reports I am aware of). Does this mean that the adaptation of viral codon usage to human cell supply is actually very weak? This is in opposition to the major claims made in this section.

      We acknowledge that the tAI values presented here are lower than typically presented. However, this is due to how tAI was calculated rather than the potential weak adaptation between viral genes and tRNA supply. Specifically, unlike previous works that estimate tRNA availability based on tRNA gene copy number, here we calculated tAI using tRNA sequencing (in order to capture the dynamics in the tRNA pool during infection). Indeed, the value of tAI calculated by tRNA read counts is lower than tAI calculated by tRNA copy number. This is due to the skewed distribution of tRNA read counts (some tRNAs are highly expressed, and others are lowly expressed), while tRNA copy number is distributed more evenly. Thus, due to the mathematical nature of the tAI (computing geometric rather than arithmetic average of tRNA availability), the skewed distribution observed in the data results in lower tAI values. When computing tAI based on gene copy number, we get higher tAI values (0.3 on average). Nevertheless, as all tAI calculations here were done similarly, the comparisons between gene groups or genes are valid.

      I believe that the part about SARS-CoV-2 could be made more concise. It is sufficient to mention that results may differ from those obtained with HCMV in one paragraph.

      The section on SARS-Cov-2 is now made rather succinct. This virus is mainly given as a comparison to the primary virus studied in this paper - HCMV.

      Line 299 on page 11 - I do not believe codon usage between different viruses can be directly compared, let alone reaching such a conclusion. Some viruses have low CAI or tAI to humans, but they have co-evolved with humans for a long time. Furthermore, there are viruses that infect multiple hosts, but their CAI for a host with which they have long co-evolved is higher while their CAI for a host that is relatively new is lower.

      We agree with the reviewer that a direct link between co-evolution time and tAI may not always exist. Indeed, other factors might explain the observation that SARS-CoV-2 genes are less adapted than HCMV genes. These may include effective population sizes and mutation rates that vary substantially. We, therefore, removed this conclusion from the manuscript.

      (MAJOR) A more general comment is that there is a difference between tRNA expression and the abundance of translation-ready tRNA. The process of charging tRNA with amino acids may take a long time. It is the abundance of the charged-tRNA (the ternary complex of aminoacylated tRNA and EF-Tu-GTP) that is of biological importance. In this regard, the use of tRNA expression falls short.

      The reviewer raises a valid point. Indeed, our tRNA sequencing protocol measures both charged and uncharged tRNAs that constitute the cell's mature tRNA pool. Compared to previous studies that focus on the transcription process of tRNAs in viral-infection models by sequencing the pre-tRNAs, here we look at the mature tRNA pool that accounts for both transcription and post-transcription processes. Therefore, we changed the use of "tRNA expression" to "mature-tRNA levels" and "highly" or "lowly-abundant tRNAs" rather than “highly” or “lowly expressed tRNAs” in the manuscript. We note, however, that although limited in the ability to differentiate between charged and uncharged tRNAs, the tRNA sequencing protocol used here is commonly used and validated as a state-of-the-art protocol in tRNA sequencing (10.1016/j.molcel.2021.01.028, 10.1038/s41467-020-17879-x, etc.), mainly because it addresses the level of "ready-to-use" tRNA.

      Reviewer #1- second part

      1. (MAJOR) Prior to the actual competition assay in the first high-throughput screen (cell competition assay), the authors applied two days of antibiotic selection and two days of recovery. This could result in a serious problem of false negatives or drop outs. Specifically, an sgRNA targeting an essential gene with high efficiency would kill the cells, leaving no (or a small number of) cells in the ancestor population at the beginning of the competition process. A sgRNA's enrichment in competing populations cannot be reliably estimated in such situations. I am not certain that the FDR used in Figure 5B is sufficient to address this issue. Please clarify whether it could. Providing raw counts for competing and ancestor populations would also be helpful.

      As customary in CRISPR screens, the step of lentiviral transduction and antibiotic selection is necessary to ensure that only CRISPR-edited cells are left in the population. Indeed, essential genes like housekeeping genes are probably removed from the competing population relatively quickly, which might result in their dropouts. We could have lost some tRNA hits in the cell growth CRISPR screen (Figure 5B-C) because of their overall essentiality for cell growth. The MAGcK tool we used, the state-of-the-art in the field, filters out sgRNAs with low read counts to be able to calculate false discovery rates. Indeed, we identified 15 tRNAs that were depleted from the competing cells. We believe that our procedure minimizes the concern of dropouts. tRNA dropout in the HCMV infection CRISPR screen (Figure 6B-C) can also happen, which means our screen underestimates the essentiality of tRNAs to HCMV infection. However, this concern does not affect the significance of the hits we did find. We acknowledge this inherent difficulty in CRISPR screens and will provide the raw read counts of all samples upon full submission. We emphasize, though, that while valid, this concern applies to essentially any CRISPR screen that is commonplace in genomics these days.

      It is also highly questionable to me the nearly negligible effects of tRNA modification enzymes. This may be explained by the point above. Indeed, the dots of tRNA modification enzymes in general appear to have higher FDR (lower y values) when compared to red dots with similar enrichment levels.

      This is a valid point. We found a lack of essentiality of tRNA modification enzymes in both screens. We analyzed additional CRISPR screens and compared the effect of tRNA modification enzyme knockouts relative to the restriction and dependency factors we used in the library. The tested screens included 34 knockout CRISPR screens we downloaded from the BioGRID ORCS database that have similar parameters to our screen. Namely, they all test cell proliferation in a time-course manner, using a pooled sgRNA library and using the MAGeCK tool for data analysis. Overall, the screens use different human cell lines and diverse sgRNA libraries. Although potentially surprising, we found that the lack of essentiality of tRNA modification enzymes was also observed in the analyzed CRISPR screens (Figure S5B and on page 11, lines 322-330, and on page 18, lines 539-541). One potential reason is if some of these enzymes were "backed up" by others, which we mentioned. Another explanation is that most tRNA modification enzymes are indeed not essential for growth and for viral infection (now described in the Discussion, page 18, lines 544-545). Alternatively, dropouts can explain this result, as suggested by the reviewer. To examine the likelihood of the dropout option, we examined the average raw read count of the tRNA modification enzyme in the ancestor samples. We compared it to that of other sub-groups. We found that raw read counts of the tRNA modification enzymes are not different than other sub-groups in the CRISPR library. Thus, the dropout issue cannot explain our screens' lack of essentiality of tRNA modification enzymes.

      The screen based on IE2-GFP labeled HCMV measures a phenotype that is very difficult to interpret. Particularly, I am not sure if GFP2 and GFP3 are good controls for comparing GFP4 (GFP1 might be better). Various factors can affect GFP levels, including, but not limited to, dilution caused by a rapidly dividing host cell, unhealthy translational machinery resulting from infection or microenvironment. My point is supported by some observations in Fig6B. For example, SEC61B, a restriction factor for HCMV infection, is enriched in the GFP2 group, contrary to expectations. It is necessary for the authors to prove with firm evidence that their choice of GFP signal thresholds is appropriate.

      We acknowledge the concern. Specifically, the translation of the GFP gene itself could be affected by the tRNA manipulation done. To account for this potential concern, we tested the codon usage of the eGFP gene (which is the GFP version we used in the system) and compared it with tRNA essentiality, as determined by the cell growth CRISPR screen. We report this in the revised manuscript (page 13, lines 390-392, and added Figure S6D). We found that GFP does not tend to significantly use codons that correspond to essential or less essential tRNAs. The same lack of correlation was also found for the tRNA essentiality upon HCMV infection (not shown).

      More generally, we show that GFP intensity does correlate with viral genome copies (Figure S6A). Also, from mRNA-seq data of temporal HCMV infection (10.1016/j.celrep.2022.110653), IE2 (UL122) shows a dynamic expression- high expression pick in early infection, then a decline in expression level followed by a gradual increase.

      Altogether, we believe that the IE2-GFP level provides a good estimation for viral load.

      Regarding SEC61B, which served as a control in our screen – the referee is rightly asking why it behaves oppositely from what's expected, given that this was supposed to be a restriction factor of HCMV infection. We returned to the literature on the essentiality of this gene upon HCMV infection. In Weissman's paper (10.1038/384432a0), which was the reference for choosing control genes in our system, this gene was targeted through two different CRISPR technologies, once with CRISPR knockout and once with CRISPRi. Interestingly, only upon CRISPRi did this gene prove to be a restriction factor (i.e., improved infection upon reduction of the gene). We comment on this peculiar fact in the revised manuscript (page 13, lines 370-374). However, we note that the rest of our positive and negative controls deliver the expected results – increasing or reducing infection as expected from their role, thus lending considerable support to our experimental system. It is possible, especially in light of our screen, and since other positive and negative controls behave as expected, that the status of the SEC61B gene as a "restriction factor" of viral infection needs to be reconsidered, as we now suggest.

      I would appreciate more information regarding why restriction factors of cell growth have a high GFP2/GFP4. Intuitively, a KO of restriction factors of cell growth should result in better growth and higher GFP, thus leading to enrichment in GFP4, not GFP2.

      The reviewer raises an interesting question (although not at the heart of this work, as sgRNAs for the cell growth restriction factor mainly aim to serve as controls for the CRISPR screen). HCMV has a complex interaction with the cellular cell cycle. Specifically, it establishes a unique G1/S arrest that is both stimulatory and inhibitory since, on the one hand, it serves the virus to arrest the cell cycle, a critical step for viral genome replication. On the other hand, the virus needs many of the resources that serve cell growth. Both p53 and CDKN1A are important regulators at this stage; therefore, their interaction with the virus may indeed be complex. For example, p53 is upregulated by a viral infection. However, it is sequestered in the viral replication compartments, and its transcriptional are down-regulated, but its absence harms viral propagation (doi: 10.1128/mBio.02934-21, doi: 10.1128/jvi.72.3.2033-2039.1998, doi: 10.1128/jvi.00505-06). Therefore, it is not surprising that genes related to cell growth and cell cycle have complex effects on HCMV infection. We mention the essentiality of p53 for HCMV infection in the results (page 14, line 404).

      Line 404 "nonetheless"

      We appreciate the reviewer for noticing the typo. We corrected it.

      Reviewer #1 (Significance (Required)):

      The relation between human tRNA supply and viral translation is a topic of profound biological and biomedical importance. In this study, the authors used HCMV infection as the primary model to investigate this question. Results fall into two major parts: (i) changes in the tRNA pool during viral infection, and (ii) the impact of tRNA-related gene KO on viral infection.

      We appreciate the detailed report. We addressed the major points raised in the revised manuscript.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      In this study by Aharon-Hefetz et al., the researchers examined changes in tRNA pools during virus infections. The translation machinery plays a crucial role in virus replication. Consequently, host cells have developed sensors and effectors within this compartment to counteract viral mechanisms. The translation apparatus serves as a pivotal point in the virus-host conflict. Therefore, investigating alterations in the translation machinery during infections is vital for gaining a comprehensive understanding of the infection process. This study offers a thorough and high-quality analysis of data in a relevant cell culture system involving two different viruses. By conducting tRNA sequencing, the researchers studied the human tRNA pool following infections with human Cytomegalovirus (HCMV) and SARS-CoV-2. Changes in tRNA expression induced by HCMV were mainly driven by the virus infection itself, with minimal impact from the cellular immune response. Interestingly, specific tRNA post-transcriptional modifications seemed to influence stability and were subject to manipulation by HCMV. Conversely, SARS-CoV-2 did not lead to significant alterations in tRNA expression or post-transcriptional modifications. Moreover, a systematic CRISPR screen targeting human tRNA genes and modification enzymes allowed the identification of specific tRNAs and enzymes that either enhanced or reduced HCMV infectivity and cellular growth. This information enabled them to control the development of HCMV-specific tRNA modifications, highlighting the importance of these tRNA epitranscriptome modifications in virus replication. The authors concluded that the observed differences between the viruses are consistent with HCMV genes aligning with differentiation codon usage and SARS-CoV-2 genes reflecting proliferation codon usage. This observation's connection to the biology of HCMV and SARS-CoV-2 lies in the codon usage of structural and gene expression-related viral genes, showing a significant adaptation to host cell tRNA pools. Notably, these genes from both viruses demonstrated the highest adaptation to the tRNA pool of infected cells. The reason behind this phenomenon remains unclear. One hypothesis suggests that a high level of structural gene expression is necessary during activation. Testing this hypothesis could involve examining if hindering tRNA modifications affects virus morphogenesis. In summary, this study presents an interesting and innovative perspective on how viruses modify the translation machinery. The meticulous analysis sheds light on a central interaction point between viruses and their host cells.

      Reviewer #2 (Significance (Required)):

      In summary, this study presents an interesting and innovative perspective on how viruses modify the translation machinery. The meticulous analysis sheds light on a central interaction point between viruses and their host cells.

      We thank the reviewer for finding our work interesting, innovative, and well analyzed

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary

      Aharon-Hefetz et al. present the expression dynamics and modification signatures of tRNAs using DM-tRNA-seq in human foreskin fibroblasts or Calu3 cells during infections with two diverse viruses, HCMV and SARS-CoV2, respectively. They also use a newly designed tRNA-centric CRISPR library to screen the essentiality of tRNA and tRNA factors during HCMV-GFP infection. They find several tRNAs that are differentially expressed during HCMV infection, and most closely resemble the set of tRNAs shown to be used during cellular differentiation. Additionally, tRNA differential expression does not resemble that following interferon treatment, implying that virus modulation of tRNAs is unique to the general interferon response. They compare codon usage signatures during infection to their prior-defined sets of proliferation/differentiation tRNA genes. In their CRISPR screen, they find that different tRNAs can promote or restrict HCMV infection levels, as measured by the intensity of GFP fluorescence marker in their virus. Surprisingly, there were few tRNA modification factor hits that contributed to growth or infection.

      Reviewer #3- major comments

      1. The topic of this work is important, and the analysis performed here is assumed to be top quality, based on the previous work by the last author. The weakness with this body of work is a lack of rigor, specifically regarding validation and follow-up studies. Without these experiments, the reader lacks confidence in stated conclusions. For example: There is no validation or clue to how penetrant CRISPR is against tRNA genes. Given how duplicated some tRNA families are, it is possible that CRISPR is more effective against certain families compared to others. While this is likely an inherent caveat in all CRISPR screens, it would lend confidence in this approach to see some validation of tRNA KO by northern blot or RT-qPCR or sequencing.

      We thank the reviewer for raising this important issue. Indeed, many tRNA genes appear in multiple copies in the human genome. Yet, based on our previous work, we expect parallel editing of multiple copies using the same sgRNA. In our previous work (doi.org/10.7554/eLife.58461), we validated, based on several tRNA families, the ability of our tRNA CRISPR system to successfully target and affect tRNA expression levels. This included sequencing of the edited tRNA genes (i.e., DNA sequencing), in which we observed diverse INDEL mutations that predicted full disruption of the tRNA structure. Furthermore, we sequenced the tRNA pool of CRISPR-edited cells and found the downregulation of the targeted tRNAs to be up to 2-4-fold. This previous work provides foundations and confidence in this tRNA-CRISPR approach.

      Nevertheless, to further mitigate the reviewer's concern, we also plan to perform additional experiments in the current settings. We will choose individual tRNAs from our CRISPR screen as representatives to validate CRISPR editing. We will target each tRNA independently and test expression reduction by sequencing. We shall share the results in the full revision if granted.

      1. There is no validation that tRNA modification factor knockouts alter tRNA modification levels. Without this knowledge, the lack of essentiality cannot be confidently and fully interpreted. If the group does not validate whether individual tRNA modification factor knockouts alter modification profiles, then all possible explanations should be posited. For example, it is possible that 1) there could be major redundancy among tRNA modification enzymes, as the authors posit in the Discussion 2) tRNA modification enzymes are not essential for growth bc their activity/the modification they place is non-essential for growth, OR 3) the knockouts are not fully penetrant. I think this Discussion should be expanded to make caveats clearer. Perhaps referencing whether tRNA modification factors have been shown to be essential in other CRISPR screens would be helpful.

      Regarding the possible explanations for the lack of essentiality of tRNA modification enzymes, we agree with all three possibilities the reviewer raised. Reviewer #1 raised an additional option, in which tRNA modification enzymes are essential for HCMV infection and cell growth; thus, we cannot detect them in the screens because they drop out early in the process (before collecting the ancestor samples). We checked this possibility and found comparable read counts of sgRNAs targeting tRNA modification enzymes to that of other sub-libraries. This result suggests the drop-outs of sgRNA targeting are unlikely to happen on our screens.

      Furthermore, as the reviewer asked, we analyzed additional CRISPR screens and compared the effect of tRNA modification enzyme knockouts relative to the restriction and dependency factors we used in the library. The tested screens included 34 knockout CRISPR screens we downloaded from the BioGRID ORCS database that have similar parameters to our screen. Namely, they all test cell proliferation in a time-course manner, using a pooled sgRNA library and using the MAGeCK tool for data analysis. Overall, the screens use different human cell lines and diverse sgRNA libraries. Although potentially surprising, we found that the lack of essentiality of tRNA modification enzymes was also observed in the analyzed CRISPR screens (Figure S5B and on page 11, lines 322-330, and on page 18, lines 539-541).

      1. There is no validation that factors modulating GFP intensity in the HCMV screen actually impact virus replication. This is the point most important to this body of work. While GFP intensity does correlate to genome copies as shown by the authors, GFP read-out on a case-by-case basis could be simply due to factors required for expression/translation of GFP. Are any of the tRNA hits enriched or not represented in GFP reporter sequence? Either way, this information is informative.

      We acknowledge the concern. Specifically, the translation of the GFP gene itself could be affected by the tRNA manipulation done. To account for this potential concern, we tested the codon usage of the eGFP gene (which is the GFP version we used in the system) and compared it with tRNA essentiality, as determined by the cell growth CRISPR screen. We report this in the revised manuscript (page 13, lines 390-392, and added Figure S6D). We found that GFP does not tend to significantly use codons that correspond to essential or less essential tRNAs. The same lack of correlation was also found for the tRNA essentiality upon HCMV infection (not shown).

      Additionally, given that the hits are cross-compared ONLY to other infected (low intensitiy "GFP+") cells, and not to an uninfected population, there is no guarantee that these primarily drive HCMV infection. The top hits should be validated in HFFs, infected with HCMV, with resulting titers/viral gene expression/genome copies measured. Additionally, the reasons for not using a GFP- population as a control should be clarified.

      We agree that additional experiments on some hits may be warranted. We plan to examine for such an effect on infection using an individual gene version of the assay. In particular, we will target individually candidate tRNA genes following validation (as described previously in point 1). We will then infect the tRNA-targeted cells with HCMV and measure the effectiveness of HCMV infection using a standard titer assay.

      The reviewer also suggest comparing GFP1/2/3 to an ancestor in addition to comparing them to GFP4. Towards that we now show a GFP2 vs ancestor comparison (shown below). The results look very similar and are now added to the supplemental material of the revised manuscript (page 13, lines 385-387, Figure S6B).

      Though careful codon usage analysis for HCMV versus the human host was analyzed, it seems pertinent to analyze whether the differentially expressed tRNAs during infection correlate to either codon usage profiles. Figure 3C and S3C intend to address this point for viral gene groups; however, I would encourage the authors to expand the description of these results to make them easier to interpret, especially for those not in the tRNA field. For example, "tRNA adaptation index (tAI)" is not defined in the text, but simply referenced. For clarity, you should include a brief explanation of what this measure describes. Following, when reporting results from Figure 3, the results can then be delivered with more specific and interpretable language. These steps will ensure maximal scientific communication to the audience.

      We appreciate the reviewer's comment regarding the importance of scientific communication and making this manuscript easier to interpret, especially for readers unfamiliar with the world of tRNAs and translation efficiency. We added a description of our motivation to use tAI and the meaning of the measurement (page 9, lines 241-243). We also elaborated on the results part and made the results more interpretable (page 9, lines 245 and 249-250).

      Finally, given that changes are most visible at 72 hpi, the analysis should include expression based on this time point for comparison.

      Regarding the time point used for tAI calculation (Figure 3), we tested the tAI measured by the tRNA pool at 72hpi and got very similar results to that obtained using the tRNA pool measured at 24hpi. As 24hpi represents the pick of HCMV infection, we decided to present this analysis. In the current revised version, we also added the analysis done using the tRNA pool measured 72hpi as suggested by the reviewer (Figure S3D).

      Reviewer #3- minor comments

      1. I would recommend more care in terminology used for the CRISPR screen (Figures 5 and 6) to make the manuscript easier to digest. Labeling sgRNAs-containing cells as " Reduced Growth/Infection" or "Increased Growth/Infection" is not immediately easy to understand. For example, saying this sgRNA "increased growth" could refer to the knockdown increasing growth OR could mean that this sgRNA was enriched in cells with increased growth, which are opposing. It might be more clear to state to use depleted/enriched terminology in these figure labels. This also applies to the text, be sure to plainly describe the terminology and what it means each time you refer to the CRISPR results.

      This is a good point. Indeed, focusing on the significant enrichment of the sgRNAs, rather than their effect on growth or infection, is more straightforward. We changed the terminology in Figures 5C and 6C and the text in the current version.

      Is there actual evidence that the new tRNA sgRNA library is more effective than that used previously? State if so.

      We assume the referee refers to our previous paper on the smaller-scale library (doi.org/10.7554/eLife.58461). The addition here is that the library is much more comprehensive (the previous one targeted only 20 tRNAs). We point it out in the revised manuscript (page 17, lines 499-501).

      Fig 1A-C: The cutoff for "red" symbol distinction is not stringent enough. 1.05 would be red, but that is not convincingly upregulated. The cutoff should be at least FC>1.2.

      We thank the reviewer for bringing our intention to this point. In the current version, we changed the cutoff of absolute fold change higher than 1.2 in Figures 1A-C and S1A (also in legend).

      Need thorough description of tRNA bioinformatics and modification analysis (citing past work is not appropriate here-need to make accessible to your audience).

      Further thorough descriptions of tRNA bioinformatics and modification analysis are added in the revised version (page 6, lines 149-151, page 7, lines 178-183).

      Line 182- Result headings could be more informative, even with small adjustments. For example "Specific tRNA modifications are modulated in response to HCMV infection" is more clear and accurate, as there are only a few measurable changes in tRNA modification. Limitations of using sequencing techniques to analyze modifications (versus MS) should also be discussed.

      We changed that heading accordingly.

      We also mentioned the advantages and disadvantages of using sequencing to assess tRNA modification levels (page 7, lines 184-187).

      It is not immediately clear why the viral plot looks different in Fig S3B compared to Fig 3B.

      We thank the referee for spotting this. We employed different length cutoffs on the genes in each panel and have now fixed that in the revised manuscript.

      Line 254-255. This point is not immediately clear-please include more specific language detailing the logic leading to this conclusion.

      Indeed, the logic here was missing. The idea was that longer genes are associated with gene conservation, hence functionality. Thus, non-canonical HCMV genes that are both long and codon-optimized might have a function during HCMV infection. We added this explanation to the text (pages 8-9, lines 235-238).

      Line 408- "may be essential"-I would modify the language here. Especially given there is no true comparison with uninfected cells.

      We improved the language throughout the revised manuscript.

      There are a number of recent publications profiling tRNA expression in herpesviruses. These should be mentioned and discussed in the context of this work. I know some were included in the reference list, but the body of work as a whole, and how this work fits in and pushes the horizon, could be further emphasized. It is quite impressive that this is a conserved feature of herpesvirus infection. a. PMID: 36752632 b. PMID: 35110532 c. PMID: 34535641 d. PMID: 33986151 e. PMID: 33323507 f. PMID: 35458509

      We thank the reviewer for highlighting these works. We added a discussion item regarding tRNA expression in HCMV and other herpesviruses with the references (pages 15-16, lines 447-458)

      CoV2 Discussion point-The lack of tRNA expression regulation might have more to do with the length of the infection (6 hpi cov2- also didn't see much a change at 5hpi with hcmv). This should be proposed as a possibility.

      It is a possibility that due to the high stability of tRNAs, expression regulation of tRNAs will not affect the tRNA pool in short infection such as of SARS-CoV-2. We added this explanation in the discussion part, page 15, lines 441-442.

      Line 582. Misspelled schlafen in Discussion. (SLFN, not SFLN)

      The point is fixed in the revised manuscript.

      Reviewer #3 (Significance (Required)):

      General assessment: I found this paper exciting to read, given the dearth of knowledge regarding viral modulation of tRNA expression.

      We appreciate the reviewer's comment

      However, the work is highly descriptive, with a complete absence of follow-up or validation studies. At the very least, I would have hoped that the authors validated that viral titer (and not just GFP intensity) was impacted by some of the hits. The lack of confirmation and quality control overall diminishes confidence in the stated conclusions.

      However, I think the topic is timely, important, and that this manuscript offers tools to the community at large to learn more about viral manipulation or other drivers of tRNA regulation. Once follow-up/validation experiments are added to the work, as detailed below, this manuscript will be of broad importance and highly impactful.

      As mentioned above, we plan to add such validations to the fully revised manuscript.

      Advance: While there have been many studies suggesting tRNA regulation occurs during viral infection (these pubs should be referenced as mentioned above), this is an advance due to the fact that it begins to address whether tRNA expression changes functionally impact viral replication. This will be much more solid with follow-up experiments confirming that hits alter HCMV replication (rather than GFP intensity).

      Audience: This will be of broad interest to those with interest in virology and gene expression. The new sub-libraries of tRNA-related factors might be useful to be tested in other cell types and settings. Again, as the work stands, it is descriptive and hypothesis-stimulating, but the conclusions need validation and further support.

      We thank the referee for the encouraging words and the suggested analyses. We already implemented most of the suggestions in the current revised version and hope to add further experiments in a fully revised manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations for the Authors):

      Major 

      (a) In the study the authors focus on the RALF1 peptide. But according to expression data and the study from Abarca et al., 2021, RALF1 is not the only peptide expressed in the root and also having an impact in root growth effect. Similarly, looking at the primary sequence from RALF1 it does not differ much chemically from other RALFs such as RALF33, RALF23, RALF22, etc. So, does the cell wall pectin methylation status also have an impact on the effect of other RALFs on root growth or is that specific of RALF1? 

      (b) In addition, is the internalization of FER depending only on RALF1 upon the methylation status of cell wall pectins? Or can other RALFs cause a similar effect potentially?

      (c) The authors propose that RALF1 associates with deesterifed pectin, through electrostatic interactions. To do that they perform Biolayer interferometry assays using a buffer with pH 7.4. Is that a relevant pH at the cell wall? Is possible that the authors thought that this may not change the charges of R and K residues, however, it will affect the overall charge of the peptide given the fact that it contains quite some N and Q in the exposed surface. The authors may want to consider that.

      (d) Moreover, the authors do not use their peptide RALF1KR, suggested as a peptide not binding OGs, as a control in their OG binding assays. That biochemical experiment should also be included to validate their results and conclusions.

      We thank reviewer #1 for these comments. In this work, we focused on RALF1 but the majority of AtRALF peptides, when applied exogenously as synthetic peptides, induce RALF1like effects in Arabidopsis (Abarca et al., 2021; PMID: 34608971). Moreover, all RALF peptides display clusters of R and K residues and are negatively charged (Abarca et al., 2021; PMID: 34608971). In comparison to RALF1, we now also use RALF34 because it was suggested to interact also via the Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) THESEUS1 (THE1). Notably, RALF34 also induced the internalization of FER-GFP. Moreover, the interference with PME also disrupted this activity of RALF34. Therefore, we assume that other RALF peptides display the same or similar signalling modalities. Nevertheless, it remains to be addressed if all RALF family members require PME activity. 

      We appreciated these comments and incorporated this aspect in the revised version of the manuscript. The pH was chosen for technical reasons associated with the used BLI buffer. As requested, we also included the RALF1-KR peptide in our OG binding assays. Under these conditions, the mutated peptides were not able to interact with the OGs anymore. Accordingly, we conclude that the K and R residues in RALF1 are crucial for its binding to demethylesterified OGs.  

      (e) Another important aspect is regarding their design RALF1KR mutant and its effect in planta. The authors report the following: "RALF1-KR peptides are not bioactive, because they did neither affect root growth, nor cell wall integrity, nor did they induce the ligand-induced endocytosis of FER in epidermal root cells (Figure 5D-I). These findings suggest that the positively charged residues in RALF1 are essential for its activity in roots." According to the structure published by Xiao at el. 2019, the R in the alpha helix from RALF peptides (YISYQSLKR... in RALF1 seq) is directly involved in the interaction with LLGs. So, a mutation in that R may impair the interaction of RALF1 with LLG and therefore the complex formation with FER. So, it is well possible that the effect that the authors are seeing on FER signaling and endocytosis, using this peptide variant, may not be due to the impaired capacity of the peptide to bind deesterified pectin but to not be able to be sensed by the membrane complex directly. To verify that the authors should test, either biochemically or by CoIP in planta, that their RALF1KR variant can still be perceived by the LLG-FER complex. 

      We agree with reviewer #1 and do not doubt that the positive charges in RALF1 likely interact with several entities. The respective sites were also covered in Liu et al., 2024 (Cell). It would be interesting to understand how the charge-dependent interaction with pectin modulates the RALF binding to the LLG-FER complex, but these experiments are beyond the scope of this manuscript. We confirmed that the negative charges in RALF1 are essential for OG binding as well as for its bioactivity. We however do not rule out that they bear additional structural functions beyond pectin binding. We clarified this aspect in the revised version. It is conceivable that the pectin and receptor complex binding of RALF1 is molecularly and mechanistically related. 

      (f) The authors propose in this study that this effect of RALF1-pectin mode of action on FER is independent from LRXs. That is a very interesting observation which also aligns with similar observations from other independent studies (Moussu et al., 2020; Schoenaers et al. Nat Plants, 2024; Franck et al., 2018). However, that seems to be in conflict with the previous mode of action that the authors had described in Dunser et al., 2019. In that last study the authors had described that FER constitutively interacts with LRX proteins in a direct way to sense cell wall changes. In my view the authors do not critically elaborate to explain these two contradicting results, which are key to understand the mode of action they are describing. This relevant aspect should be addressed more in depth by the authors in their discussion.

      Thank you for the comment. We do not see that our findings contradict our previous work (from Dünser et al., 2019). There we concluded that LRX and FER directly interact to sense cell wall characteristics. However, the loss of LRX function abolished the cell wall sensing mechanism, but the respective loss-of-function and dominant negative lines were still able to detect RALF peptides. We hence proposed that the LRX/FER function is at least partially independent of the FER function in RALF perception. This is in agreement with our current study where we conclude again that FER shows LRX-dependent but also -independent modes of action. 

      Minor

      (g) In the introduction (first page), the authors write the following sentence: "RALF peptides are involved in multiple physiological and developmental processes, ranging from organ growth and pollen tube guidance to modulation of immune responses (Stegmann et al., 2017; Abarca et al., 2021)". RALFs are not involved in pollen tube guidance but pollen tube growth.

      So, that should be changed in the Introduction sentence. Also, in addition, the authors could cite additional references here to support the sentence such as Mecchia et al., 2017 or Ge et al. , 2017, in addition. 

      Thank you for pointing this out and we apologize for our flaw. We corrected the statement in the revised version of the manuscript and added the citations as requested.

      (h) The new study of Schoenaers et al. Nat Plants, 2024 should now be included in the revised version.

      Thank you. We implemented this reference in the revised manuscript.

      Reviewer #2 (Public Review):

      The genetic material used by the authors to strengthen the connection of RALF signalling and

      PME activity might not be as suitable as an acute inhibition of PME activity.  The PMEI3ox line generated by Peaucelle et al., 2008 is alcohol-inducible. Was expression of the PMEI induced during the experiments? As ethanol inducible systems can be rather leaky, it would not be surprising if PME activity would be reduced even without induction, but maybe this would warrant testing whether PMEI3 is actually overexpressed and/or whether PME activity is decreased. On a similar note, the PMEI5ox plants do not appear to show the typical phenotype described for this line. I personally don't think these lines are necessary to support the study. Short-term interference with PME activity (such as with EGCG) might be more meaningful than life-long PMEI overexpression, in light of the numerous feedback pathways and their associated potential secondary effects. This might also explain why EGCG leads to an increase in pH, as one would expect from decreased PME activity, while PMEI expression (caveats from above apply) apparently does not (Fig 3A-D).

      We agree with reviewer #2. The PMEI3ox line from Peaucelle et al., 2008 is ethanolinducible, but we observed a strong phenotype (at seedling and adult stage) without ethanol induction. We performed all experiments (root growth assays and confocal observations) with as well as without induction using ethanol, leading to similar results. We concluded from that, that the line is either leaky or that overexpression of PMEI3 is already induced upon seed sterilisation with ethanol. Accordingly, we did not intend to use the lines as acute inhibition of PME but rather used the lines to genetically confirm our data derived from acute pharmacological inhibition. We do show in Figure 1G that the levels of de-methylesterified pectin is decreased in the PMEI3ox mutant compared to WT seedlings. It is exactly this alteration that we are exploiting to assess the necessity of charged pectin for RALF1 signalling. Since the apoplastic pH in the PMEI3ox line is not altered compared to WT, we can conclude that the observed effect on RALF1 signalling is entirely due to the altered pectin charge.

      We would like to note that the PMEI5ox line indeed shows the reported root-bending phenotype when grown on plates. We started to perform RALF application assays in liquid medium, because EGCG does not show activity on MS plates. Moreover, it allows us to perform the assays with low amounts of synthetic peptides. The seedling images in our root growth assay might be hence misleading since the assay was done in liquid MS medium and the seedlings were carefully straightened on MS plates before imaging. This transfer makes it difficult to observe the root-bending or -curling phenotype, which is typical for PMEI5ox. 

      At least at first sight, the observation that OGs are able to titrate RALF from pectin binding seems at odds with the idea of cooperative binding with low affinity, leading to high avidity oligomers. Perhaps the can provide a speculative conceptual model of these interactions?

      We added a high concentration of OGs in the media and observed a strong repression of RALF1 activity at the root surface. We assume the OGs form oligomers with RALF peptides in the media, preventing them from penetrating the roots.

      I could not find a description of the OG treatment/titration experiments, but I think it would be important to understand how these were performed with respect to OG concentration, timing of the application, etc.

      Thank you for pointing this out. The description of the OG RALF titration is added in the methods section.

      Reviewer #2 (Recommendations for the Authors):

      Page 3: „and can bind to extracellular pectin" Liu et al, 2024 should maybe also be cited here. 

      Amended.

      I am not so sure about the use of "conceptualizing" in the last sentence of the abstract and elsewhere in the manuscript.

      I would suggest adding a few sentences that describe and differentiate what this study and other recently published works (e.g. Dünser, Liu, Mossou, Lin) have revealed about the pectin association of RALFs, LRXs, and FER to help the non-expert reader to navigate this increasingly complex area. May also be worth mentioning that the previously described pectin sensing function of FER is physically separated from the RALF binding domain (Gronnier et al., 2022)

      Thank you for your constructive comments. We followed your suggestions and further improved the discussion in the revised version of our manuscript.

      Reviewer #3 (Recommendations for the Authors): 

      (1) The authors claim that pectin is something like an extracellular signaling scaffold. In other fields, signalling scaffold refers to proteins that tether the signalling components and regulate/are involved in the signal transduction. Here, pectin is a cell wall structural component whose molecular status is sensed and perceived rather than a functional signaling component. To me, it is FERONIA to be called a signalling scaffold in this case. However, this is my view, and the authors may present their concept. 

      RALF peptides as well as FERONIA bind to de-methylesterified pectin, which is essential for its signalling output. Albeit not being a protein, we propose that pectin functions like a scaffold tethering both signalling components and thereby enabling signalling. FERONIA has been indeed also proposed to function as a scaffold when tethering other signalling components.

      (2) I have no problem with authors using the more general term pectin instead of homogalacturonan throughout the text. Still, authors should, at some point in the text, specify that by pectin, they mean homogalacturonan; the authors did not analyze other pectic types on binding. 

      We followed your suggestion.

      (3) The authors show that RALF1 binds to OGs with a high avidity. Given the fact that OGs released from homogalacturonan upon pathogen infection are Damage-Associated Molecular Patterns (DAMPs), this opens the possibility that this particular activity of RALF1 might actually function in modulation of immune response. I suggest that authors should not exclude this possibility. 

      We fully agree to this possibility for FER-dependent signalling.

      (4) Are there any indications that a similar mechanism can be extrapolated to other FERONIA homologs, such as THESEUS or HERCULES? Although it is not essential to comment, I think this could enrich the discussion.

      This is a highly interesting research question, which we may follow up in our upcoming studies. RALF34, which is considered a ligand for THESEUS, also induced FER internalization, which was also sensitive to PME inhibition. While this requires further investigation, this finding hints at a common mechanism for FER- and THE-dependent RALF peptides.

      (5) I suggest using the model scheme currently in the supplement as a main figure to provide an immediate accessible summary of the findings.

      Thank you for the suggestion to add the summary scheme in the main figures. We followed your suggestion.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      In this manuscript by Wu et al., the authors present the high resolution cryoEM structures of the WT Kv1.2 voltagegated potassium channel. Along with this structure the authors have solved several structures of mutants or experimental conditions relevant to the slow inactivation process that these channels undergo and which is not yet completely understood. 

      One of the main findings is the determination of the structure of a mutant (W366F) that is thought to correspond to the slow inactivated state. These experiments confirm results in similar mutants in different channels from Kv1.2 that indicate that inactivation is associated with an enlarged selectivity filter. 

      Another interesting structure is the complex of Kv1.2 with the pore blocking toxin Dendrotoxin 1. The results shown in the revised version indicate that the mechanism of block is similar to that of related blocking-toxins, in which a lysine residue penetrates in the pore. Surprisingly, in these new structures, the bound toxin results in a pore with empty external potassium binding sites. 

      The quality of the structural data presented in this revised manuscript is very high and allows for unambiguous assignment of side chains. The conclusions are supported by the data. This is an important contribution that should further our understanding of voltage-dependent potassium channel gating. In the revised version, the authors have addressed my previous specific comments, which are appended below. 

      (1) In the main text's reference to Figure 2d residues W18' and S22' are mentioned but are not labeled in the insets. 

      This has been fixed: line 229, p. 9.

      (2) On page 8 there is a discussion of how the two remaining K+ ions in binding sites S3 and S4 prevent permeation K+ in molecular dynamics. However, in Shaker, inactivated W434F channels can sporadically allow K+ permeation with normal single-channel conductance but very reduced open times and open probability at not very high voltages. 

      This is noted in the discussion Lines 497-500, p. 18

      (3) The structures of WT in the absence of K+ shows a narrower selectivity filter, however Figure 4 does not convey this finding. In fact, the structure in Figure 4B is constructed in such an angle that it looks as if the carbonyl distances are increased, perhaps this should be fixed. Also, it is not clear how the distances between carbonyls given in the text on page 12 are measured. Is it between adjacent or kitty-corner subunits? 

      We have changed Fig. 4B to show the same view as in Fig. 4A. In the legend we explain that opposing subunits are shown. We no longer give distances, in view of the lack of detectable carbonyl densities.

      (4) It would be really interesting to know the authors opinion on the driving forces behind slow inactivation. For example, potassium flux seems to be necessary for channels to inactivate, which might indicate a local conformational change is the trigger for the main twisting events proposed here. 

      We address this in the Discussion, line 506-523, pp. 18-19.

      Reviewer #2 (Public Review)

      Cryo_EM structures of the Kv1.2 channel in the open, inactivated, toxin complex and in Na+ are reported. The structures of the open and inactivated channels are merely confirmatory of previous reports. The structures of the dendrotoxin bound Kv1.2 and the channel in Na+ are new findings that will of interest to the general channel community. 

      Review of the resubmission: 

      I thank the authors for making the changes in their manuscript as suggested in the previous review. The changes in the figures and the additions to the text do improve the manuscript. The new findings from a further analysis of the toxin channel complex are welcome information on the mode of the binding of dendrotoxin. 

      A few minor concerns: 

      (1) Line 93-96, 352: I am not sure as to what is it the authors are referring to when they say NaK2P. It is either NaK or NaK2K. I don't think that it has been shown in the reference suggested that either of these channels change conformation based on the K+ concentration. Please check if there is a mistake and that the Nichols et. al. reference is what is being referred to. 

      Thank you for noticing the error. We meant NaK2K and we have changed this throughout.

      (2) Line 365: In the study by Cabral et. al., Rb+ ions were observed by crystallography in the S1, S3 and S4 site, not the S2 site. Please correct. 

      Thank you. We have re-written this section, lines 364-381, pp. 13-14.

      Reviewer #3 (Public Review): 

      Wu et al. present cryo-EM structures of the potassium channel Kv1.2 in open, C-type inactivated, toxin-blocked and presumably sodium-bound states at 3.2 Å, 2.5 Å, 2.8 Å, and 2.9 Å. The work builds on a large body of structural work on Kv1.2 and related voltage-gated potassium channels. The manuscript presents a plethora of structural work, and the authors are commended on the breadth of the studies. The structural studies are well-executed. Although the findings are mostly confirmatory, they do add to the body of work on this and related channels. Notably, the authors present structures of DTx-bound Kv1.2 and of Kv1.2 in a low concentration of potassium (which may contain sodium ions bound within the selectivity filter). These two structures add considerable new information. The DTx structure has been markedly improved in the revised version and the authors arrive at well-founded conclusions regarding its mechanism of block. Regarding the Na+ structure, the authors claim that the structure with sodium has "zero" potassium - I caution them to make this claim. It is likely that some K+ persists in their sample and that some of the density in the "zero potassium" structure may be due to K+ rather than Na+. This can be clarified by revisions to the text and discussion. I do not think that any additional experiments are needed. Overall, the manuscript is well-written, a nice addition to the field, and a crowning achievement for the Sigworth lab. 

      Most of this reviewer's initial comments have been addressed in the revised manuscript. Some comments remain that could be addressed by revisions of the text. 

      Specific comments on the revised version: 

      Quotations indicate text in the manuscript. 

      (1) "While the VSD helices in Kv1.2s and the inactivated Kv1.2s-W17'F superimpose very well at the top (including the S4-S5 interface described above), there is a general twist of the helix bundle that yields an overall rotation of about 3o at the bottom of the VSD." 

      Comment: This seemed a bit confusing. I assume the authors aligned the complete structures - the differences they indicate seem to be slight VSD repositioning relative to the pore rather than differences between the VSD conformations themselves. The authors may wish to clarify. As they point out in the subsequent paragraph, the VSDs are known to be loosely associated with the pore. 

      We aligned the VSDs alone, and it is a twist of the VSD helix bundle.

      This is now clarified in lines 269-273, p. 10.

      (2) Comment: The modeling of DTx into the density is a major improvement in the revision. Figure 3 displays some interactions between the toxin and Kv1.2 - additional side views of the toxin and the channel might allow the reader to appreciate the interactions more fully. The overall fit of the toxin structure into the density is somewhat difficult to assess from the figure. (The authors might consider using ChimeraX to display density and model in this figure.) 

      We have added new panels, and stereo pairs, to Figure 3.

      (3) "We obtained the structure of Kv1.2s in a zero K+ solution, with all potassium replaced with sodium, and were surprised to find that it is little changed from the K+ bound structure, with an essentially identical selectivity filter conformation (Figure 4B and Figure 4-figure supplement 1)." 

      Comment: It should be noted in the manuscript that K+ and Na+ ions cannot be distinguished by the cryo-EM studies - the densities are indistinguishable. The authors are inferring that the observed density corresponds to Na+ because the protein was exchanged from K+ into Na+ on a gel filtration (SEC) column. It is likely that a small amount of K+ remains in the protein sample following SEC. I caution the authors to claim that there is zero K+ in solution without measuring the K+ content of the protein sample. Additionally, it should be considered that K+ may be present in the blotting paper used for cryo-EM grid preparation (our laboratory has noted, for example, a substantial amount of Ca2+ in blotting paper). The affinity of Kv1.2 for K+ has not been determined, to my knowledge - the authors note in the Discussion that the Shaker channel has "tight" binding for K+. It seems possible that some portion of the density in the selectivity filter could be due to residual K+. This caveat should be clearly stated in the main text and discussion. More extensive exchange into Na+, such as performing the entire protein purification in NaCl, or by dialysis (as performed for obtaining the structure of KcsA in low K+ by Y. Zhou et al. & Mackinnon 2001), would provide more convincing removal of K+, but I suspect that the Kv1.2 protein would not have sufficient biochemical stability without K+ to endure this treatment. One might argue that reduced biochemical stability in NaCl could be an indication that there was a meaningful amount of K+ in the final sample used for cryo-EM (or in the particles that were selected to yield the final high-resolution structure).

      We now explain in the Methods section, in more detail the steps taken to avoid any residual Na+ contamination during purification, lines 683-687, pp. 24-25. We have changed the text to point out that the ion species cannot be distinguished in the maps, and note results in NaK2K and KcsA (lines 368-381, pp. 13-14).

      We note that the same procedures to remove K+ were used for the Kv1.2sW17’F structure (line 385, p. 14). We qualify the ion replacement to say that Na+ replaces “essentially” all K+ (line 607, p. 21).

      (4) Referring to the structure obtained in NaCl: "The ion occupancy is also similar, and we presume that Kv1.2 is a conducting channel in sodium solution." 

      Comment: Stating that "Kv1.2 is a conducting channel in sodium solution" and implying that conduction of Na+ is achieved by an analogous distribution of ion binding sites as observed for K+ are strong statements to make - and not justified by the experiments provided. Electrophysiology would be required to demonstrate that the channel conducts sodium in the absence of K+. More complete ionic exchange, better control of the ionic conditions (Na+ vs K+), and affinity measurements for K+ would be needed to determine the distribution of Na+ in the filter (as mentioned above). At minimum, the authors should revise and clarify what the intended meaning of the statement "we presume that Kv1.2 is a conducting channel in sodium solution". As mentioned above, it seems possible/likely that a portion of the density in the filter may be due to K+. 

      We now present a more detailed argument (lines 376 to 381, pp. 13-14.)

      Recommendations for the authors: 

      Reviewing Editor: 

      After consultation, the reviewers agree that, although the authors have answered most of the comments raised in the previous review, there remains a concern about the structure obtained in the presence if Na. Given that Kv1.2 is more reluctant to slow inactivation, the conducting structure in Na+ could be due to this fact or that it really has higher affinity for K+ than Na+. In the presence of even a small contamination by K+, this ion could thus occupy the selectivity filter, resulting in an open conformation. The authors should clearly state the steps taken to ensure no contamination by K+. It is also possible that indeed the open structure occurs even in the presence of Na+ in the selectivity filter. This should be also discussed, given that this has been observed in other potassium channel structures. 

      Reviewer #1 (Recommendations For The Authors): 

      In this revised version of the manuscript, the authors have adequately addressed my previous points and improved the clarity and readability of the manuscript. This is a compelling work that shows inactivated structures if the Kv1.2 potassium channel, especially interesting is a structure in the absence of extracellular potassium ions, that can help understand how a reduction in the availability of these ions speed up entrance into the inactivated state in these ion channels. 

      I would just recommend that in the absence of functional data (current recordings) when potassium is removed, the authors just use caution in ascribing this structure to an inactivated state. Also, it should be mentioned that the observed ion densities observed in the pore cannot unambiguously be identified as sodium ions. 

      Reviewer #3 (Recommendations For The Authors): 

      (1)  "The nearby Leu9 is also important as its substitution by alanine also decreases affinity 1000-fold, but we observe no contacts between this residue and residues of the Kv1.2s channel." 

      Comment: It seems early in the text to mention the potential interaction of Leu9 to the channel structure. The authors may wish to discuss Leu9 later in the manuscript - a figure showing the location of Leu9 would strengthen the statement. Any hypothesis on why mutation of it has such a profound effect? 

      Add a figure panel showing Leu9 position.

      We have rewritten the text as suggested, and have identified Leu9 in several panels of Fig. 3.

      (2)  "The X-ray structure of a-DTX (Figure 3A)" 

      Comment: The authors may wish to cite a reference to this X-ray structure. 

      We now cite Skarzynski (1992) on line 321, p. 12.

    1. Weland the blade-winder     suffered woe. That steadfast man     knew misery. Sorrow and longing     walked beside him, wintered in him,     kept wearing him down after Nithad     hampered and restrained him, lithe sinew-bonds     on the better man. That passed over,     this can too. For Beadohilde     her brother’s death weighed less heavily     than her own heartsoreness once it was clearly     understood she was bearing a child.     Her ability to think and decide     deserted her then. That passed over,     this can too. We have heard tell     of Mathilde’s laments, the grief that afflicted     Geat’s wife. Her love was her bane,     it banished sleep. That passed over,     this can too. For thirty winters–     it was common knowledge– Theodric held     the Maerings’ fort. That passed over,     this can too. Earmonric     had the mind of a wolf, by all accounts     a cruel king, lord of the far flung     Gothic outlands. Everywhere men sat     shackled in sorrow, expecting the worst,     wishing often he and his kingdom     would be conquered. That passed over,     this can too. A man sits mournful,     his mind in darkness, so daunted in spirit     he deems himself ever after     fated to endure. He may think then     how throughout this world the Lord in his wisdom     often works change– meting out honor,     ongoing fame to many, to others     only their distress. Of myself, this much     I have to say: for a time I was poet     of the Heoden people, dear to my lord.     Deor was my name. For years I enjoyed     my duties as minstrel and that lord’s favor,     but now the freehold and land titles     he bestowed upon me once he has vested in Heorrenda,     master of verse-craft. That passed over,     this can too. Welund him be wurman      wræces cunnade, anhydig eorl     earfoþa dreag, hæfde him to gesiþþe     sorge and longaþ, wintercealde wræce,     wean oft onfond siþþan hine Niðhad on     nede legde, swoncre seonobende     on syllan monn. Þæs ofereode,     þisses swa mæg. Beadohilde ne wæs     hyre broþra deaþ on sefan swa sar     swa hyre sylfre þing, þæt heo gearolice     ongietan hæfde þæt heo eacen wæs;     æfre ne meahte þriste geþencan     hu ymb þæt sceolde. Þæs ofereode,     þisses swa mæg. We þæt Mæðhilde      mone gefrugnon wurdon grundlease     Geates frige, þæt hi seo sorglufu     slæp ealle binom. Þæs ofereode,     þisses swa mæg. Ðeodric ahte      þritig wintra Mæringa burg;     þæt wæs monegum cuþ. Þæs ofereode,     þisses swa mæg. We geascodan     Eormanrices wylfenne geþoht;     ahte wide folc Gotena rices;     þæt wæs grim cyning. Sæt secg monig     sorgum gebunden, wean on wenan,     wyscte geneahhe þæt þæs cynerices     ofercumen wære. Þæs ofereode,     þisses swa mæg. Siteð sorgcearig,     sælum bidæled, on sefan sweorceð,     sylfum þinceð þæt sy endeleas     earfoða dæl, mæg þonne geþencan     þæt geond þas woruld witig Dryhten     wendeþ geneahhe, eorle monegum     are gesceawað, wislicne blæd,     sumum weana dæl. Þæt ic bi me sylfum     secgan wille, þæt ic hwile wæs     Heodeninga scop, dryhtne dyre;     me wæs Deor noma. Ahte ic fela wintra     folgað tilne, holdne hlaford,     oþ þæt Heorrenda nu, leoðcræftig monn,     londryht geþah þæt me eorla hleo     ær gesealde. Þæs ofereode,     þisses swa mæg.

      Loved how it sounded, they did say the same things over and over again, and it was so cool that they had an old English part.

    1. When the reading brain skims like this, it reduces time allocated to deep reading processes. In other words, we don’t have time to grasp complexity, to understand another’s feelings, to perceive beauty, and to create thoughts of the reader’s own.

      When reading so quick, the brain has little time to process all of the information that was there. By doing this it will affect the way you may think on a specific topic as you may not be able to cover everything in that text.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      My main point of concern is the precision of dissection. The authors distinguish cells isolated from the tailbud and different areas in the PSM. They suggest that the cell-autonomous timer is initiated, as cells exit the tailbud.

      This is also relevant for the comparison of single cells isolated from the embryo and cells within the embryo. The dissection will always be less precise and cells within the PSM4 region could contain tailbud cells (as also indicated in Figure 1A), while in the analysis of live imaging data cells can be selected more precisely based on their location. This could therefore contribute to the difference in noise between isolated single cells and cells in the embryo. This could also explain why there are "on average more peaks" in isolated cells (p. 6, l. 7).

      This aspect should be considered in the interpretation of the data and mentioned at least in the discussion. (It does not contradict their finding that more anterior cells oscillate less often and differentiate earlier than more posterior ones.)

      Reviewer #1 rightly points out that selecting cells in a timelapse is more precise than manual dissection. Manual dissection is inherently variable but we believe in general it is not a major source of noise in our experiments. To control for this, we compared the results of 11 manual dissections of the posterior quarter of the PSM (PSM4) with those of the pooled PSM4 data. In general, we did not see large differences in the distributions of peak number or arrest timing that would markedly increase the variability of the pooled data above that of the individual dissections (Figure 1 – supplement figure 7). We have edited the text in the Results to highlight this control experiment (page 6, lines 13-17).

      It is of course possible that we picked up adjacent TB cells when dissecting PSM4, however the reviewer’s assertion that inclusion of TB cells “could also explain why there are "on average more peaks" in isolated cells” is incorrect. Later in the paper we show that cells from the TB have almost identical distributions to PSM4 (mean ± SD, PSM4 4.36 ± 1.44; TB 4.26 ± 1.35; Figure 4 _ supplement 1). Thus, inadvertent inclusion of TB cells while dissecting would in fact not increase the number of peaks.

      Here, the authors focus on the question of how cells differentiate. The reverse question is not addressed at all. How do cells maintain their oscillatory state in the tailbud? One possibility is that cells need external signals to maintain that as indicated in Hubaud et al. 2014. In this regard, the definition of tailbud is also very vague. What is the role of neuromesodermal progenitors? The proposal that the timer is started when cells exit the tailbud is at this point a correlation and there is no functional proof, as long as we do not understand how cells maintain the tailbud state. These are points that should be considered in the discussion.

      The reviewer asks “How do cells maintain their oscillatory state in the tailbud?”. This is a very interesting question, but as recognized by the reviewer, beyond the scope of our current paper.

      We now further emphasize the point “One possibility is that cells need external signals to maintain … as indicated in Hubaud et al. 2014” in the Discussion and added a reference to the review Hubaud and Pourquié 2014 (Signalling dynamics in vertebrate segmentation. Nat Rev Mol Cell Biol 15, 709–721 (2014). https://doi.org/10.1038/nrm3891) (page 18, lines 19-22).

      To clarify the definition of the TB, we have stated more clearly in the results (page 15, lines 8-12) that we defined TB cells as all cells posterior to the notochord (minus skin) and analyzed those that survived

      >5 hours post-dissociation, did not divide, and showed transient Her1-YFP dynamics.

      The reviewer asks: What is the role of neuromesodermal progenitors? In responding to this, we refer to Attardi et al., 2018 (Neuromesodermal progenitors are a conserved source of spinal cord with divergent growth dynamics. Development. 2018 Nov 9;145(21):dev166728. doi: 10.1242/dev.166728).

      Around the stage of dissection in zebrafish in our work, there is a small remaining group of cells characterized as NMPs (Sox2 +, Tbxta+ expression) in the dorsal-posterior wall of the TB. These NMPs rarely divide and are not thought to act as a bipotential pool of progenitors for the elongating axis, as is the case in amniotes, rather contributing to the developing spinal cord. How this particular group of cells behaves in culture is unclear as we did not subdivide the TB tissue before culturing. It would be possible to specifically investigate these NMPs regarding a role in TB oscillations, but given the results of Attardi et al., 2018 (small number of cells, low bipotentiality), we argue that it would not be significant for the conclusions of the current work. To indicate this, we included a sentence and a citation of this paper in the results towards the beginning of the section on the tail bud (page 15, lines 8-12).

      The authors observe that the number of oscillations in single cells ex vivo is more variable than in the embryo. This is presumably due to synchronization between neighbouring cells via Notch signalling in the embryo. Would it be possible to add low doses of Notch inhibitor to interfere with efficient synchronization, while at the same time keeping single cell oscillations high enough to be able to quantify them?

      It is a formal possibility that Delta-Notch signaling may have some impact on the variability in the number of oscillations. However, we argue that the significant amount of cell tracking work required to carry out the suggested experiments would not be justified, considering what has been previously shown in the literature. If Delta-Notch signaling was a major factor controlling the variability of the intrinsic program that we describe, then we would expect that in Delta-Notch mutants the anterior- posterior limits of cyclic gene expression in the PSM would extend beyond those seen in wildtype embryos. Specifically, we might expect to see her1 expression extending more anteriorly in mutants to account for the dramatic increase in the number of cells that have 5, 6, 7 and 8 cycles in culture (Fig. 1E versus Fig. 1I). However, as shown in Holley et al., 2002 (Fig. 5A, B; her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis. Development. 2002 Mar;129(5):1175-83. doi: 10.1242/dev.129.5.1175), the anterior limit of her1 expression in the PSM in DeltaD mutants (aei) is not different to WT. Thus, Delta-Notch signaling may exert a limited control over the number of oscillations, but likely not in excess of one cycle difference.

      In the same direction, it would be interesting to test if variation is decreased, when the number of isolated cells is increased, i.e. if cells are cultured in groups of 2, 3 or 4 cells, for instance.

      This is a great proposal – however the culture setup used here is a wide-field system that doesn’t allow us to accurately follow more than one cell at a time. Cells that adhere to each other tend to crawl over each other, blurring their identity in Z. This is also why we excluded dividing cells in culture from the analysis. Experiments carried out with a customized optical setup will be needed to investigate this in the future.

      It seems that the initiation of Mesp2 expression is rather reproducible and less noisy (+/- 2 oscillation cycles), while the number of oscillations varies considerably (and the number of cells continuing to oscillate after Mesp2 expression is too low to account for that). How can the authors explain this apparent discrepancy?

      The observed tight linkage of the Mesp onset and Her1 arrest argue for a single timing mechanism that is upstream of both gene expression events; indeed, this is one of the key implications of the paper. However, the infrequent dissociation of these events observed in FGF-treated cells suggests that more than one timing pathway could be involved, although there are other interpretations. We’ve added more discussion in the text on one vs multi-timers (page 17, lines 19-23 – page 18, line 1 - 8)., see next point.

      The observation that some cells continue oscillating despite the upregulation of Mesp2 should be discussed further and potential mechanism described, such as incomplete differentiation.

      This is an infrequent (5 out of 54 cells) and interesting feature of PSM4 cells in the presence of FGF. We imagine that this disassociation of clock arrest from mesp on-set timing could be the result of alterations in the thresholds in the sensing mechanisms controlling these two processes. Alternatively - as reviewer 2 argues - it might reflect multiple timing mechanisms at work. We have added a discussion of these alternative interpretations (page 17, lines 19-23 – page 18, line 1 - 8).

      Fig. 3 supplement 3 B missing

      It’s there in the BioRxiv downloadable PDF and full text – but seems to not be included when previewing the PDF. Thanks for the heads up.

      Reviewer #2 (Public Review):

      The authors demonstrate convincingly the potential of single mesodermal cells, removed from zebrafish embryos, to show cell-autonomous oscillatory signaling dynamics and differentiation. Their main conclusion is that a cell-autonomous timer operates in these cells and that additional external signals are integrated to tune cellular dynamics. Combined, this is underlying the precision required for proper embryonic segmentation, in vivo. I think this work stands out for its very thorough, quantitative, single-cell real-time imaging approach, both in vitro and also in vivo. A very significant progress and investment in method development, at the level of the imaging setup and also image analysis, was required to achieve this highly demanding task. This work provides new insight into the biology underlying embryo axis segmentation.

      The work is very well presented and accessible. I think most of the conclusions are well supported. Here a my comments and suggestions:

      The authors state that "We compare their cell-autonomous oscillatory and arrest dynamics to those we observe in the embryo at cellular resolution, finding remarkable agreement."

      I think this statement needs to be better placed in context. In absolute terms, the period of oscillations and the timing of differentiation are actually very different in vitro, compared to in vitro. While oscillations have a period of ~30 minutes in vivo, oscillations take twice as long in vitro. Likewise, while the last oscillation is seen after 143 minutes in vivo, the timing of differentiation is very significantly prolonged, i.e.more than doubled, to 373min in vitro (Supplementary Figure 1-9). I understand what the authors mean with 'remarkable agreement', but this statement is at the risk of being misleading. I think the in vitro to in vivo differences (in absolute time scales) needs to be stated more explicitly. In fact, the drastic change in absolute timescales, while preserving the relative ones, i.e. the number of oscillations a cell is showing before onset of differentiation remains relatively invariant, is a remarkable finding that I think merits more consideration (see below).

      We have changed the text in the abstract (page 1, line 28) to clarify that the agreement is in the relative slowing, intensity increases and peak numbers.

      One timer vs. many timers

      The authors show that the oscillation clock slowing down and the timing of differentiation, i.e. the time it takes to activate the gene mesp, are in principle dissociable processes. In physiological conditions, these are however linked. We are hence dealing with several processes, each controlled in time (and thereby space). Rather than suggesting the presence of ‘a timer’, I think the presence of multiple timing mechanisms would reflect the phenomenology better. I would hence suggest separating the questions more consistently, for instance into the following three:

      a.  what underlies the slowing down of oscillations?

      b.  what controls the timing of onset of differentiation?

      c.  and finally, how are these processes linked?

      Currently, these are discussed somewhat interchangeably, for instance here: “Other models posit that the slowing of Her oscillations arise due to an increase of time-delays in the negative feedback loop of the core clock circuit (Yabe, Uriu, and Takada 2023; Ay et al. 2014), suggesting that factors influencing the duration of pre-mRNA splicing, translation, or nuclear transport may be relevant. Whatever the identity, our results indicate the timer ought to exert control over differentiation independent of the clock.”(page 14). In the first part, the slowing down of oscillations is discussed and then the authors conclude on 'the timer', which however is the one timing differentiation, not the slowing down. I think this could be somewhat misleading.

      To help distinguish the clock’s slowing & arrest from differentiation, we have clarified the text in how we describe our experiments using her1-/-; her7-/- cells (page 10, lines 9-20).

      From this and previous studies, we learn/know that without clock oscillations, the onset of differentiation still occurs. For instance in clock mutant embryos (mouse, zebrafish), mesp onset is still occurring, albeit slightly delayed and not in a periodic but smooth progression. This timing of differentiation can occur without a clock and it is this timer the authors refer to "Whatever the identity, our results indicate the timer ought to exert control over differentiation independent of the clock." (page 14). This 'timer' is related to what has been previously termed 'the wavefront' in the classic Clock and Wavefront model from 1976, i.e. a "timing gradient' and smooth progression of cellular change. The experimental evidence showing it is cell-autonomous by the time it has been laid down,, using single cell measurements, is an important finding, and I would suggest to connect it more clearly to the concept of a wavefront, as per model from 1976.

      We have been explicit about the connection to the clock & wavefront in the discussion (page 17, line 12-17).

      Regarding question a., clearly, the timer for the slowing down of oscillations is operating in single cells, an important finding of this study. It is remarkable to note in this context that while the overall, absolute timescale of slowing down is entirely changed by going from in vivo to in vitro, the relative slowing down of oscillations, per cycle, is very much comparable, both in vivo and in vivo.

      We have now pointed out the relative nature of this phenomenon in the abstract, page 1, line 28.

      To me, while this study does not address the nature of this timer directly, the findings imply that the cell-autonomous timer that controls slowing down is, in fact, linked to the oscillations themselves. We have previously discussed such a timer, i.e. a 'self-referential oscillator' mechanism (in mouse embryos, see Lauschke et al., 2013) and it seems the new exciting findings shown here in zebrafish provide important additional evidence in this direction. I would suggest commenting on this potential conceptual link, especially for those readers interested to see general patterns.

      While we posit that the timer provides positional info to the clock to slow oscillations and instruct its arrest – we do not believe that “the findings imply that the cell-autonomous timer that controls slowing down is, in fact, linked to [i.e., governed by] the oscillations themselves.”. As we show, in her1-/-; her7-/- embryos lacking oscillations, the timing / positional information across the PSM still exists as read-out by Mesp expression. Is this different positional information than that used by the clock? – possibly – but given the tight linkage between Mesp onset and the timing/positioning of clock arrest, both cell-autonomously and in the embryo, we argue that the simplest explanation is that the timing/positional information used by the clock and differentiation are the same. Please see page 10, lines 9-20, as well as the discussion (page 17, lines 19-23; page 18. Lines 1-8 ).

      We agree that the timer must communicate to the clock– but this does not mean it is dependent on the clock for positional information.

      Regarding question c., i.e. how the two timing mechanisms are functionally linked, I think concluding that "Whatever the identity, our results indicate the timer ought to exert control over differentiation independent of the clock." (page 14), might be a bit of an oversimplification. It is correct that the timer of differentiation is operating without a clock, however, physiologically, the link to the clock (and hence the dependence of the timescale of clock slowing down), is also evident. As the author states, without clock input, the precision of when and where differentiation occurs is impacted. I would hence emphasize the need to answer question c., more clearly, not to give the impression that the timing of differentiation does not integrate the clock, which above statement could be interpreted to say.

      As far as we can tell, we do not state that “without clock input, the precision of when and where differentiation occurs is impacted”, and we certainly do not want to give this impression. In contrast, as mentioned above, the her1-/-; her7-/- mutant embryo studies indicate that the lack of a clock signal does not change the differentiation timing, i.e. it does not integrate the clock. Of course, in the formation of a real somite in the embryo, the clock’s input might be expected to cause a given cell to differentiate a little earlier or later so as to be coordinated with its neighbors, for example, along a boundary. But this magnitude of timing difference is within one clock cycle at most, and does not match the large variation seen in the cultured cells that spans over many clock cycles.

      A very interesting finding presented here is that in some rare examples, the arrest of oscillations and onset of differentiation (i.e. mesp) can become dissociated. Again, this shows we deal here with interacting, but independent modules. Just as a comment, there is an interesting medaka mutant, called doppelkorn (Elmasri et al. 2004), which shows a reminiscent phenotype "the Medaka dpk mutant shows an expansion of the her7 expression domain, with apparently normal mesp expression levels in the anterior PSM.". The authors might want to refer to this potential in vivo analogue to their single cell phenotype.

      Thank you, we had forgotten this result. Although we do not agree that this result necessarily means there are two interacting modules, we have included a citation to the paper, along with a discussion of alternative explanations for the dissociation (page 18, lines 2-14).

      One strength of the presented in vitro system is that it enables precise control and experimental perturbations. A very informative set of experiments would be to test the dependence of the cell-autonomous timing mechanisms (plural) seen in isolated cells on ongoing signalling cues, for instance via Fgf and Wnt signaling. The inhibition of these pathways with well-characterised inhibitors, in single cells, would provide important additional insight into the nature of the timing mechanisms, their dependence on signaling and potentially even into how these timers are functionally interdependent.

      We agree and in future experiments we are taking advantage of this in vitro system to directly investigate the effect of signaling cues on the intrinsic timing mechanism.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      O'Leary and colleagues present data identifying several procedures that alter discrimination between novel and familiar objects, including time, environmental enrichment, Rac-1, context reexposure, and brief reminders of the familiar object. This is complimented with an engram approach to quantify cells that are active during learning to examine how their activation is impacted following each of the above procedures at test. With this behavioral data, authors apply a modeling approach to understand the factors that contribute to good and poor object memory recall.

      We thank the Reviewer for summarizing the scope and depth of our manuscript, and indeed for recognizing our efforts. We engage below with the Reviewer’s specific criticisms.

      Strengths:

      Authors systematically test several factors that contribute to poor discrimination between novel and familiar objects. These results are extremely interesting and outline essential boundaries of incidental, nonaversive memory.<br /> These results are further supported by engram-focused approaches to examine engram cells that are reactivated in states with poor and good object recognition recall.

      We thank the Reviewer for these positive comments.

      Weaknesses:

      For the environmental enrichment, authors seem to suggest objects in the homecage are similar to (or reminiscent of) the familiar object. Thus, the effect of improved memory may not be related to enrichment per se as much as it may be related to the preservation of an object's memory through multiple retrievals, not the enriching experiences of the environment itself. This would be consistent with the brief retrieval figure. Authors should include a more thorough discussion of this.

      This is one of the main issues highlighted by the Editor and the Reviewers. We agree that these results dove-tail with the reminder experiments. We have included additional discussion, see line 510-546.

      Authors should justify the marginally increased number of engram cells in the non-enrichment group that did not show object discrimination at test, especially relative to other figures. More specific cell counting criteria may be helpful for this. For example, was the DG region counted for engram and cfos cells or only a subsection?

      There was a marginal, but non-significant increase in the number of labelled cells within the standard housed mice in Figure 3f. The cell counting criteria was the same across experimental groups and conditions, where the entire dorsal and ventral blade of the dorsal DG was counted for each animal. This non-statistically significant variance may be due to surgical and viral spread difference between mice. We have clarified this in the manuscript, see line 229-232.

      It is unclear why the authors chose a reactivation time point of 1hr prior to testing. While this may be outside of the effective time window for pharmacological interference with reconsolidation for most compounds, it is not necessarily outside of the structural and functional neuronal changes accompanied by reconsolidation-related manipulations.

      A control experiment was performed to demonstrated that a brief reminder exposure of 5 mins on its own was insufficient to induce new learning that formed a lasting memory (Supplementary Figure S4a). Mice given only a brief acquisition period of 5 mins, exhibited no preference for the novel object when tested 1 hour after training, suggesting the absence of a lasting object memory (Supplementary Figure S4b & c). We therefore used the 1-hour time point for the brief reminder experiment in Figure 4a. We have clarified this within the manuscript and supplementary data see line 258-264.

      Figure 5: Levels of exploration at test are inconsistent between manipulations. This is problematic, as context-only reexposures seem to increase exploration for objects overall in a manner that I'm unsure resembles 'forgetting'. Instead, cross-group comparisons would likely reveal increased exploration time for familiar and novel objects. While I understand 'forgetting' may be accompanied by greater exploration towards objects, this is inconsistent across and within the same figure. Further, this effect is within the period of time that rodents should show intact recognition. Instead, context-only exposures may form a competing (empty context) memory for the familiar object in that particular context.

      The Reviewer raises an important question, and we agree with the Reviewer that there should be caution and qualification around interpreting these results as “forgetting”. Indeed, for the context-only rexposures, cross-group comparisons show increased exploration time for familiar and novel objects. As the mice exhibit relatively high exploration of both the novel and familiar objects. An alternative explanation would be that the mice have not truly forgotten the familiar object, but rather as the mouse has not seen the familiar object in the last 6 context only sessions, its reappearance makes it somewhat novel again. Therefore, this change in the object’s reappearance triggers the animal’s curiosity, and in turn drives exploration by the animal. In addition, the context-only exposures may form a competing memory for the familiar object in that particular context. We have highlighted this in the results and also included greater discussion. See lines 306-315.

      I am concerned at the interpretation that a memory is 'forgotten' across figures, especially considering the brief reminder experiments. Typically, if a reminder session can trigger the original memory or there is rapid reacquisition, then this implies there is some savings for the original content of the memory. For instance, multiple context retrievals in the absence of an object reminder may be more consistent with procedures that create a distinct memory and subsequently recruit a distinct engram.

      These findings raise an important question regarding the interpretation of ‘forgetting’. If a reminder trial or experience can trigger the original memory, or there is rapid reacquisition, then this would suggest there is a degree of savings for the original memory content (85, 86). Previous work has emphasized retrieval deficits as a key characteristic of memory impairment, supporting the idea that memory recall or accessibility may be driven by learning feedback from the environment (7, 8, 14–18). Within our behavioral paradigm, a lack of memory expression would still constitute forgetting due to the loss of learned behavioral response in the presence of natural retrieval cues. The changes in memory expression may therefore underlie the adaptive nature of forgetting. This is consistent with the idea that the engram is intact and available, but not accessible. Here we studied natural forgetting, and our data showing memory retrieval following optogenetic reactivation demonstrates that the original engram persists at a cellular level, otherwise activation of those cells would no longer trigger memory recall. We also agree with the reviewer that multiple context retrievals may indeed lead to the formation of a second distinct engram that competes with the original. Recent work suggests that retroactive interference emerges from the interplay of multiple engrams competing for accessibility (18). We have added clarification and included extra discission of this interpretation. See lines 589-598.

      Authors state that spine density decreases over time. While that may be generally true, there is no evidence that mature mushroom spines are altered or that this is consistent across figures. Additionally, it's unclear if spine volume is consistently reduced in reactivated and non-reactivated engram cells across groups. This would provide evidence that there is a functionally distinct aspect of engram cells that is altered consistently in procedures resulting in poor recognition memory (e.g. increased spine density relative to spine density of non-reactivated engram cells and non-engram cells)

      We thank the Reviewer for their helpful comments on explaining our engram dendritic spine data. We agree with the Reviewer that an analysis of the changes in spine type, as well as the difference between engram and non-engram spines as well and reactivation and non-reactivated engram spines would be interesting and may help to further illuminate the morphological changes of forgetting and memory retrieval. Indeed, future analysis could determine if spine density is reduced in reactivated and non-reactivated engram cells or indeed across engram non-engram cells within different learning conditions. This avenue of investigation could determine if there is a functionally distinct aspect of engram cells that are altered following forgetting (67). However, such analysis is beyond the scope of this study. We have highlighted this limitation and included its discussion. See lines 493-499.

      Authors should discuss how the enrichment-neurogenesis results here are compatible with other neurogenesis work that supports forgetting.

      We validated the effectiveness of the enrichment paradigm to enhance neural plasticity by measuring adult hippocampal neurogenesis. The hippocampus has been identified as one of the only regions where postnatal neurogenesis continues throughout life (75). Levels of adult hippocampal neurogenesis do not remain constant throughout life and can be altered by experience (41–43, 57).  In addition, adult born neurons have been shown to contribute to the process of forgetting (74, 78, 79). Although the contribution of adult born neurons to cognition and the memory engram is not fully understood (80, 81). Mishra et al, showed that immature neurons were actively recruited into the engram following a hippocampal-dependent task (67). Moreover, increasing the level of neurogenesis rescued memory deficits by restoring engram activity (67). Augmenting neurogenesis further rescued the deficits in spine density in both immature and mature engram neurons in a mouse model of Alzheimer’s disease (67). Whether neurogenesis alters spine density on differentially for reactivated or non-reactivation engrams cells remains to be investigated (67, 68). This avenue of research would help to illuminate the morphological changes following forgetting and provide evidence if there is a functionally distinct aspect of engram cells that is altered in forgetting (67, 68). Our engram labelling strategy which utilized c-fos-tTA transgenic mice combined with an AAV9-TRE-ChR2-eYFP virus does not necessarily label sufficient immature neurons. Future work could utilize a different engram preparation, such as a genetic labelling strategy (TRAP2) or using a different immediate early gene promoter such as Arc to investigate the contribution of new-born neurons to the engram ensemble. We have added additional discussion of how our work fits with previous literature investigating neurogenesis and forgetting. See lines 547-565.

      Reviewer #2 (Public Review):

      Summary:

      The manuscript examines an important question about how an inaccessible, natural forgotten memory can be retrieved through engram ensemble reactivation. It uses a variety of strategies including optogenetics, behavioral and pharmacological interventions to modulate engram accessibility. The data characterize the time course of natural forgetting using an object recognition task, in which animals can retrieve 1 day and 1 week after learning, but not 2 weeks later. Forgetting is correlated with lower levels of cell reactivation (c-fos expression during learning compared to retrieval) and reduction in spine density and volume in the engram cells. Artificial activation of the original engram was sufficient to induce recall of the forgotten object memory while artificial inhibition of the engram cells precluded memory retrieval. Mice housed in an enriched environment had a slower rate of forgetting, and a brief reminder before the retrieval session promoted retrieval of a forgotten memory. Repeated reintroduction to the training context in the absence of objects accelerated forgetting. Additionally, activation of Rac1-mediated plasticity mechanisms enhanced forgetting, while its inhibition prolonged memory retrieval. The authors also reproduce the behavioral findings using a computational model inspired by Rescorla-Wagner model. In essence, the model proposes that forgetting is a form of adaptive learning that can be updated based on prediction error rules in which engram relevancy is altered in response to environmental feedback.

      We thank the Reviewer for summarizing the scope and depth of our manuscript, and for recognizing our efforts. We engage below the Reviewer’s specific criticisms of our interpretations.

      Strengths:

      (1) The data presented in the current paper are consistent with the authors claim that seemingly forgotten engrams sometimes remain accessible. This suggests that retrieval deficits can lead to memory impairments rather than a loss of the original engram (at least in some cases).

      We thank the Reviewer for their positive summary.

      (2) The experimental procedures and statistics are appropriate, and the behavioral effects appear to be very robust. Several key effects are replicated multiple times in the manuscript.

      We thank the Reviewer for their positive comments.

      Weaknesses:

      (1) My major issue with the paper is the forgetting model proposed in Figure 7. Prior work has shown that neutral stimuli become associated in a manner similar to conditioned and unconditioned stimuli. As a result, the Rescorla-Wagner model can be used to describe this learning (Todd & Homes, 2022). In the current experiments, the neutral context will become associated with the unpredicted objects during training (due to a positive prediction error). Consequently, the context will activate a memory for the objects during the test, which should facilitate performance. Conversely, any manipulation that degrades the association between the context and object should disrupt performance. An example of this can be found in Figure 5A. Exposing the mice to the context in the absence of the objects should violate their expectations and create a negative prediction error. According to the Rescorla-Wagner model, this error will create an inhibitory association between the context and the objects, which should make it harder for the former to activate a memory of the latter (Rescorla & Wagner, 1972). As a result, performance should be impaired, and this is what the authors find. However, if the cells encoding the context and objects were inhibited during the context-alone sessions (Figure 5D) then no prediction error should occur, and inhibitory associations would not be formed. As a result, performance should be intact, which is what the authors observe.

      What about forgetting of the objects that occurs over time? Bouton and others have demonstrated that retrieval failure is often due to contextual changes that occur with the passage of time (Bouton, 1993; Rosas & Bouton, 1997, Bouton, Nelson & Rosas, 1999). That is, both internal (e.g. state of the animal) and external (e.g. testing room, chambers, experimenter) contextual cues change over time. This shift makes it difficult for the context to activate memories with which it was once associated (in the current paper, objects). To overcome this deficit, one can simply re-expose animals to the original context, which facilitates memory retrieval (Bouton, 1993). In Figure 2D, the authors do something similar. They activate the engram cells encoding the original context and objects, which enhances retrieval.

      Therefore, the forgetting effects presented in the current paper can be explained by changes in the context and the associations it has formed with the objects (excitatory or inhibitory). The results are perfectly predicted by the Rescorla-Wagner model and the context-change findings of Bouton and others. As a result, the authors do not need to propose the existence of a new "forgetting" variable that is driven by negative prediction errors. This does not add anything novel to the paper as it is not necessary to explain the data (Figures 7 and 8).

      We thank the reviewer for clearly explaining their concern about our model. We are very sorry that we did not sufficiently explain that our model is, in fact, based on the classic Rescorla-Wagner model. The key equation of the model that updates “engram strength”  is equivalent to the canonical Rescorla-Wagner model that is commonly used in research on reinforcement learning and decision-making (105). One potential minor difference is that we crucially assume different learning rates for positive and negative prediction errors. However, this variant of the Rescorla-Wagner model is common in the computational literature and is generally not regarded as a qualitatively different kind of model. In fact, it allows us to capture that establishing an object-context association (after a positive prediction error) is faster than the forgetting process (through negative errors).

      The other equations that are explained in detail in the Methods are necessary to simulate exploration behavior and render the model suitable for model fitting. Concerning exploration behavior, we use the softmax function, which is commonly used in combination with the Rescorla-Wager model, in order to translate the learned quantity (in our case, engram strength) into behavior (here exploration). The other equations are necessary to fit the model to the data (learning rate α and behavioral variability in exploration behavior).

      Therefore, we fully agree with the reviewer that the Rescorla-Wagner can explain our empirical results, in particular by assuming that the different manipulations affect the strength of object-context associations, which, in turn, governs forgetting as behaviorally observed. 

      In our previous version of the manuscript, we only referred to the Rescorla-Wagner model directly in the Methods. But to make this important point clearer, we now refer to the origin of the model multiple times in the Results section as well. See lines 81, 386-393.

      We also agree with the reviewer that the learning/forgetting process can be described in terms of changes in object-context associations (e.g., inhibitory associations after a negative prediction error). Therefore, we now explicitly refer to the relationship between updated object-context associations and forgetting and highlight that we believe that stronger associations signal higher engram “relevancy”. See lines 386-393.

      We have extended Figure 7 (new panels a and b), where we illustrate the idea that (a) object-context associations govern forgetting and (b) show the key Rescorla-Wagner equation, including a simple explanation of the main terms (engram strength, prediction error, and learning rate). Finally, we have also extended our discussion of the model, where we now directly state that the Rescorla-Wagner model captures the key results of our experiments. See lines 573-580.

      In order to further support a link between our empirical data and computational modeling, we also added extra experiments that showed the modulation of engram cells within the dentate gyrus can regulate these object-context associations. See Supplementary Figure 12a-f and lines 401-404.

      To summarize our reply, we agree with the reviewer’s comment and hope that we have clarified the direct relationship to the Rescorla-Wagner model.

      (2) I also have an issue with the conclusions drawn from the enriched environment experiment (Figure 3). The authors hypothesize that this manipulation alleviates forgetting because "Experiencing extra toys and objects during environmental enrichment that are reminiscent of the previously learned familiar object might help maintain or nudge mice to infer a higher engram relevancy that is more robust against forgetting.". This statement is completely speculative. A much simpler explanation (based on the existing literature) is that enrichment enhances synaptic plasticity, spine growth, etc., which in turn reduces forgetting. If the authors want to make their claim, then they need to test it experimentally. For example, the enriched environment could be filled with objects that are similar or dissimilar to those used in the memory experiments. If their hypothesis is correct, only the similar condition should prevent forgetting.

      We thank the Reviewer for this alternative perspective on our findings. First of all, we agree that this statement is speculative. The effects of enrichment on neural plasticity are well established and it likely contributes to the enhanced memory recall. It is important to emphasize that this process of updating is not necessarily separate from enrichment-induced plasticity at an implementational level, but part of the learning experience within an environment containing multiple objects. The enrichment or, more generally, experience, may therefore enhance memory through the modification of activity of specific engram ensembles. The idea of enrichment facilitating memory updating is consistent with the results obtained by the reminder experiments and further supported by our analysis with the Rescorla-Wagner computational model, where experience updates the accessibility of existing memories, possibly through reactivation of the original engram ensemble.

      We would like to further clarify that our explanation concerns the algorithmic level, in contrast to the neural level. Based on the computational analyses using the Rescorla-Wagner model and in line with the reviewer’s previous comment on the model, we believe that forgetting is governed by the strength of object-context associations (or engram relevancy). Our interpretation is that stronger associations signal that the memory or engram representation is important ("relevant") and should not be forgotten. Accordingly, due to a vast majority of experiences with extra cage objects in the enriched environment, mice might generally learn that such objects are common in their environment and potentially relevant in the future (i.e., the object-context association is strong, preventing forgetting). Our speculation of these results is to help unify our empirical data with the computational model.

      We believe that the Reviewer's alternative explanation in terms of synaptic plasticity, spine growth is not mutually exclusive with the modelling work. It is possible that the computational mechanisms that we explore based on the Rescorla-Wagner model are neuronally related to the biological mechanisms that the reviewer suggests at the implementational level. Therefore, ultimately, the two perspectives might even complement each other. We have included additional discussion to clarify this point. See lines 510-546.

      (3) It is well-known that updating can both weaken or strengthen memory. The authors suggest that memory is updated when animals are exposed to the context in the absence of the objects. If the engram is artificially inhibited (opto) during context-only re-exposures, memory cannot be updated. To further support this updating idea, it would be good to run experiments that investigate whether multiple short re-exposures to the training context (in the presence of the objects or during optogenetic activation of the engram) could prevent forgetting. It would also be good to know the levels of neuronal reactivation during multiple re-exposures to the context in the absence versus context in the presence of the objects.

      We thank the Reviewer for their comments. We agree that additional experiments would be helpful to further support the idea of updating. We have performed additional experiments to test the idea that multiple short re-exposures to the training context, in the presence of objects prevents forgetting. In this paradigm, mice were repeatedly exposed to the original object pair (Supplementary Figure S5a). The results indicate that repeated reminder trials facilitate object memory recall (Supplementary Figure 5b&c). These data indicated that subsequent object reminders over time facilitates the transition of a forgotten memory to an accessible memory. See Supplementary Figure S5 and Lines 279-287.

      (4) There are a number of studies that show boundary conditions for memory destabilization/reconsolidation. Is there any evidence that similar boundary conditions exist to make an inaccessible engram accessible?

      The Reviewer asks an interesting question about boundary conditions and engram accessibility. Boundary conditions could indeed affect the degree of destabilization and reconsolidation, the salience or strength of the memory, as well as the timing of retrieval cues. Future models could focus on understanding the specific boundary conditions in which a memory becomes retrievable and the degree to which it is sufficiently destabilized and liable for updating and forgetting. We have included additional discussion on the potential role of boundary conditions for engram accessibility. See lines 661-666.

      (5) More details about how the quantification of immunohistochemistry (c-fos, BrdU, DAPI) was performed should be provided (which software and parameters were used to consider a fos positive neurons, for example).

      We have added additional information for the parameters of quantification of immunohistochemistry. See lines 796-809.

      (6) Duration of the enrichment environment was not detailed.

      We have highlighted the details for the environmental enrichment duration. See lines 756.

      Reviewer #3 (Public Review):

      Summary:

      The manuscript by Ryan and colleagues uses a well-established object recognition task to examine memory retrieval and forgetting. They show that memory retrieval requires activation of the acquisition engram in the dentate gyrus and failure to do so leads to forgetting. Using a variety of clever behavioural methods, the authors show that memories can be maintained and retrieval slowed when animals are reared in environmental enrichment and that normally retrieved memories can be forgotten if exposed to the environment in which the expected objects are no longer presented. Using a series of neural methods, the authors also show that activation or inhibition of the acquisition engram is key to memory expression and that forgetting is due to Rac1.

      We thank the Reviewer for summarizing the scope and depth of our manuscript, and indeed for recognizing our efforts. We engage below the Reviewer’s specific criticisms of our interpretations.

      Strengths:

      This is an exemplary examination of different conditions that affect successful retrieval vs forgetting of object memory. Furthermore, the computational modelling that captures in a formal way how certain parameters may influence memory provides an important and testable approach to understanding forgetting.

      The use of the Rescorla-Wagner model in the context of object recognition and the idea of relevance being captured in negative prediction error are novel (but see below).

      The use of gain and loss of function approaches are a considerable strength and the dissociable effects on behaviour eliminate the possibility of extraneous variables such as light artifacts as potential explanations for the effects.

      We thank the Reviewer for their positive comments.

      Weaknesses:

      Knowing what process (object retrieval vs familiarity) governed the behavioural effect in the present investigation would have been of even greater significance.

      The Reviewer touches on an important issue of the object recognition task. Understanding how experience alters object familiarity versus object retrieval and its impact on learning would help to develop better models of object memory and forgetting. We have added additional discussion. See lines 666-669.

      The impact of the paper is somewhat limited by the use of only one sex.

      We agree that using only male mice limits the impact of the paper. Indeed, the field of behavioural neuroscience is moving to include sex as a variable. Future experiments should include both male and female mice.

      While relevance is an interesting concept that has been operationalized in the paper, it is unclear how distinct it is from extinction. Specifically, in the case where the animals are exposed to the context in the absence of the object, the paper currently expresses this as a process of relevance - the objects are no longer relevant in that context. Another way to think about this is in terms of extinction - the association between the context and the objects is reduced results in a disrupted ability of the context to activate the object engram.

      We thank the reviewer for their insightful comment on the connection between engram relevance and memory extinction. Lacagnina et al., demonstrated that extinction training suppressed the reactivation of a fear engram, while activating a second putative extinction ensemble (59). In another study, these extinction engram cells and reward cells were shown to be functionally interchangeable (92). Moreover, in a study conducted by Lay et al., the balance between extinction and acquisition was disrupted by inhibiting the extinction recruited neurons in the BLA and CN (93). These results suggested that decision making after extinction can be governed by a balance between acquisition and extinction specific ensembles (93). Together, this may suggest that in the present study, when mice are repeatedly exposed to the training context, the association between the context and the objects is reduced, resulting in a disrupted ability of the context to activate the object engram. Therefore, memory relevance and extinction may operate similarly to effect engram accessibility, and in essence ‘forgetting’ of object memories may be due to neurobiological mechanisms similar to that of extinction learning (4). We have included additional discussion on the link between our results and the extinction literature. See lines 642-654.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Additional measures that may help interpretation of and clarify data are:

      A minute-by-minute analysis for training and testing may provide insight about the learning rate and testing temporal dynamics that may shed light substantially on differential levels of exploration. This should be applied across figures and would support conclusions from models in Figures 7-8 as well.

      Locomotion/distance travelled measures.

      We have included additional analysis for a minute-by-minute analysis of training and testing of the object memory test at 24 hr, 2 weeks as well as under the standard housing and enrichment conditions. The results further support the initial finding that novel object recognition is increased in mice that recall the object at 24 hr. Similarly, mice housed in the enriched housing initially explore the novel object more compared to the familiar object. See Supplementary Figure 1 and 2, as well as lines 103-105 and 211-213.

      The appropriate control for the context exposure figure would be to expose to a novel context in one group and the acquisition/testing context for the other.

      We agree with the reviewer that an additional control of a novel context would further support our findings. Indeed, this line of investigate may dove-tail with the other reviewer comments on the role of competing engrams and interference. Future work could investigate the degree to which novel contexts and multiple memories can affect the rate of forgetting through engram updating. We have included additional discussion. See lines 643 and 655. However, in our experience it is necessary to pre-expose mice to different contexts before object exposure (e.g. Autore et al ’23), in order to form discriminate object/context associations. Establishing such a paradigm for this study would be at odds with the established paradigms and schedules in this current study. Moreover, the possibility that the effect of object displacement on forgetting requires the familiar context, or not, does not impact the main conclusions of this study. However, we agree that it is a point for expansion in the future.

      A control virus+light group vs simply a no-light condition.

      For optogenetic experiments. Control mice underwent the same surgery procedure with virus and optic fibre implantation. However, no light was delivered to excite or inhibit the respective opsin. Previous papers have shown laser light delivered to tissue expressing an AAV-TRE-EYFP lacking an light-opsin does cause cellular excitation. We have clarified this in the text. See lines 726-729.

      Reviewer #2 (Recommendations For The Authors):

      Minor details:

      (1) In the pharmacological modification of Rac 1, please specify what percentage of DMSO was used to dissolve Rac1 inhibitor and correct the typo 'DSMO'

      Rac1 inhibitor (Ehop016) was reconstituted and prepared in PBS with 1% Tween-80, 1% DMSO and 30% PEG. We have clarified this in the text and corrected the typo, thank you. See lines 767.

      (2) In the penultimate paragraph there is a typo 'predication error'

      This is now corrected. Thankyou.

      Reviewer #3 (Recommendations For The Authors):

      I was unable to find information on what the No Light group consisted of. Was there a control virus infused, were the animals implanted with optical fibres (in the presence or absence of a virus), were they surgical controls, etc?

      For optogenetic experiments. No Light Control mice underwent the same surgery procedure with virus and optic fibre implantation. However, no light was delivered to excite or inhibit the respective opsin. We have clarified this in the text. See lines 726-729.

      The discussion lacked specificity in places. For example, the idea of eluding to 'other variables' is somewhat vague (p. 21, middle paragraph). Some examples of what other variables could be relevant would be helpful in capturing what direction or relevance the model may have going forward.

      We have expanded the discussion of other variables which might impact engram relevance and how the model might be developed moving forward. These may include, boundary conditions of destabilization and reconsolidation, the salience or strength of the memory as well as the timing of retrieval cues or updating experience. Future models could focus on understanding the specific boundary conditions in which a memory becomes retrievable and the degree to which it is sufficiently destabilized and liable for updating and forgetting. The role of perceptual learning on memory retrieval and forgetting may also be an avenue of future investigation. Understanding how experience alters object familiarity versus object retrieval and its impact on learning would also help to develop better models of object memory and forgetting. In the current study, only male mice were utilized. Therefore, future work could also include sex as a variable to fully elucidate the impact of experience on the processes of forgetting. See lines 642-669.

      In the same paragraph (p. 21, middle paragraph) there is mention of multiple engrams and how they can compete. The authors reference Autore et al (2023), but I thought Lacagina did this really beautifully also in an experimental setting. This idea is also expressed in Lay et al. (2022). So additional references would further strengthen the authors argument here.

      We thank the reviewer for the additional references for discussing engram competition. We have included these papers in the discission. See lines 642-654.

      Relatedly, environmental enrichment was considered in terms of object relevance. I wonder if the authors may want to consider thinking about their results in terms of effects on perceptual learning.

      Indeed, perceptual learning maybe playing a role in environmental enrichment. We have included additional discussion. See lines 666-669.

    1. "We have: One, a robot may not injure a human being, or, through inaction, allow a human being to come to harm." "Right!" "Two," continued Powell, "a robot must obey the orders given it by human beings except where such orders would conflict with the First Law." "Right!" "And three, a robot must protect its own existence as long as such protection does Dot conflict with the First or Second Laws."

      In the story, the robots are essentially slaves to the humans. They are built in made purely to make human's lives easier. I'm beginning to think this could possibly be a cautionary tale about the way we treat "technology" and "robots" and the possible consequences of expecting them to behave like a human but not treating them like one.

    1. I referred (indirectly) to this in an annotation on https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/ as "the PDF". As the first page indicates this is rather a PDF—specifically someone's PDF of the ACM's reprint from 1996 (which can be found hanging off this DOI: https://dl.acm.org/doi/10.1145/227181.227186).

      The Atlantic's PDF can be found here https://cdn.theatlantic.com/media/archives/1945/07/176-1/132407932.pdf (at least for now).

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public Review):

      Summary:

      The study of human intelligence has been the focus of cognitive neuroscience research, and finding some objective behavioral or neural indicators of intelligence has been an ongoing problem for scientists for many years. Melnick et al, 2013 found for the first time that the phenomenon of spatial suppression in motion perception predicts an individual's IQ score. This is because IQ is likely associated with the ability to suppress irrelevant information. In this study, a high-resolution MRS approach was used to test this theory. In this paper, the phenomenon of spatial suppression in motion perception was found to be correlated with the visuo-spatial subtest of gF, while both variables were also correlated with the GABA concentration of MT+ in the human brain. In addition, there was no significant relationship with the excitatory transmitter Glu. At the same time, SI was also associated with MT+ and several frontal cortex FCs.

      Strengths:

      (1) 7T high-resolution MRS is used.

      (2) This study combines the behavioral tests, MRS, and fMRI.

      Weaknesses:

      Major:

      In Melnick (2013) IQ scores were measured by the full set of WAIS-III, including all subtests. However, this study only used visual spatial domain of gF. I wonder why only the visuo-spatial subtest was used not the full WAIS-III? I am wondering whether other subtests were conducted and, if so, please include the results as well to have comprehensive comparisons with Melnick (2013).

      We thank the reviewer for pointing this out. The decision was informed by Melnick’s findings which indicated high correlations between Surround suppression (SI) and the Verbal Comprehension, Perceptual Reasoning, Working Memory, and Processing Speed Indexes, with correlation coefficients of 0.69, 0.47, 0.49, and 0.50, respectively. It is well-established that the hMT+ region of the brain is a sensory cortex involved in visual perception processing (3D perception). Furthermore, motion surround suppression (SI), a specific function of hMT+, aligns closely with this region's activities. Given this context, the Perception Reasoning sub-ability was deemed to have the clearest mechanism for further exploration. Consequently, we selected the most representative subtest of Perception Reasoning—the Block Design Test—which primarily assesses 3D visual intelligence.” For further clarification, due to these reasons, we conducted only the visuo-spatial subtest.

      Minor:

      Comments:

      In the first revised version, we addressed the following recommendations in the 'Author response' file titled 'Recommendation for the authors.' It seems our response may not have reached you successfully. We would like to share and expand upon our response here:

      (1) Table 1 and Table supplementary 1-3 contain many correlation results. But what are the main points of these values? Which values do the authors want to highlight? Why are only p-values shown with significance symbols in Table supplementary 2??

      (1.1) What are the main points of these values?

      Thank reviewer for pointing this out. These correlations represent the relationship between behavior task (SI/BDT) and resting-state functional connectivity. It indicates that left hMT+ is involved in the efficient information integration network when it comes to BDT task. In addition, left hMT+’s surround suppression is involved in several hMT+ - frontal connectivity. Furthermore, the overlap regions between two task indicates the underlying mechanism.

      (1.2) Which values do the authors want to highlight?

      Table 1 and Table Supplementary 1-3 present the preliminary analysis results for Table 2 and Table Supplementary 4-6. So, we generally report all value. Conversely, in the Table 2 and Table Supplementary 4-6, we highlight the value which support our main conclusion.

      (1.3) Why are only p-values shown with significance symbols in Table Supplementary 2?

      Thank you for pointing this out, it is a mistake. We have revised it and delete the significance symbols.

      (2) Line 27, it is unclear to me what is "the canonical theory".

      We thank reviewer for pointing this out. We have revised “the canonical theory" to “the prevailing opinion” (line 27)

      (3) Throughout the paper, the authors use "MT+", I would suggest using "hMT+" to indicate the human MT complex, and to be consistent with the human fMRI literature.

      We thank reviewer for pointing this out. We have revised them.

      (4) At the beginning of the results section, I suggest including the total number of subjects. It is confusing what "31/36 in MT+, and 28/36 in V1" means.

      We thank reviewer for pointing this out. We have included the total number of subjects in the beginning of result section. (line 110, line 128)

      (5) Line 138, "This finding supports the hypothesis that motion perception is associated with neural activity in MT+ area". This sentence is strange because it is a well-established finding in numerous human fMRI papers. I think the authors should be more specific about what this finding implies.

      We thank reviewer for pointing this out. We have revised it to:” This finding is in line with prior results, which indicates that motion perception is associated with neural activity in hMT+ area, but not in EVC (primarily in V1)” (lines 156-158)

      (6) There are no unit labels for all x- and y-axies in Figure 1. I only see the unit for Conc is mmol per kg wet weight.

      We thank reviewer for pointing this out. Figure 1 is a schematic and workflow chart, so labels for x- and y-axes are not needed. I believe this confusion might pertain to Figure 3. In Figures 3a and 3b, the MRS spectrum does not have a standard y-axis unit as it varies based on the individual physical conditions of the scanner; it is widely accepted that no y-axis unit is used. While the x-axis unit is ppm, which indicate the chemical shift of different metabolites. In Figure 3c, the BDT represents IQ scores, which do not have a standard unit. Similarly, in Figures 3d and 3e, the Suppression Index does not have a standard unit.

      (7) Although the correlations are not significant in Figure Supplement 2&3, please also include the correlation line, 95% confidence interval, and report the r values and p values (i.e., similar format as in Figure 1C).

      We thank reviewer for pointing this out. We have revised them and include the correlation line, 95% confidence interval, r values and p values.

      (8) There is no need to separate different correlation figures into Figure Supplementary 1-4. They can be combined into the same figure.

      We thank reviewer for the suggestion. However, each correlation figure in the supplementary figures has its own specific topic and conclusion. Please notes that in the revised version, we have added a figure showing the EVC (primarily in V1) MRS scanning ROI as Supplementary Figure 1. Therefore, the figures the reviewer is concerned about are Supplementary Figure 2-5. The correlation figures in Supplementary Figure 2 indicate that GABA in EVC (primarily in V1) does not show any correlation with BDT and SI, illustrating that inhibition in EVC (primarily in V1) is unrelated to both 3D visuo-spatial intelligence and motion suppression processing. The correlations in Supplementary Figure 3 indicate that the excitation mechanism, represented by Glutamate concentration, does not contribute to 3D visuo-spatial intelligence in either hMT+ or EVC (primarily in V1). Supplementary Figure 4 validates our MRS measurements. Supplementary Figure 5 addresses potential concerns regarding the impact of outliers on correlation significance. Even after excluding two “outliers” from Figures 3d and 3e, the correlation results remain stable.

      (9) Line 213, as far as I know, the study (Melnick et al., 2013) is a psychophysical study and did not provide evidence that the spatial suppression effect is associated with MT+.

      We thank reviewer for pointing this out. It was a mistake to use this reference, and we have revised it accordingly. (line 242)

      (10) At the beginning of the results, I suggest providing more details about the motion discrimination tasks and the measurement of the BDT.

      We thank reviewer for pointing this out. We have included some brief description of task in the beginning of result section. (lines 116-120)

      (11) Please include the absolute duration thresholds of the small and large sizes of all subjects in Figure 1.

      We thank reviewer for the suggestion. We have included these results in Figure 3.

      (12) Figure 5 is too small. The items in plot a and b can be barely visible.

      We thank reviewer for pointing this out. We increase the size and resolution of the Figure.

      Reviewer #3 (Public Review):

      (1) Throughout the manuscript, hMT+ connectivity with the frontal cortex has been treated as an a priori hypothesis/space. However, there is no such motivation or background literature mentioned in the Introduction. Can the authors clarify the necessity of functional connectivity? In other words, can BOLD activity of hMT+ in the localizer task substitute for functional connectivity between hMT+ and the frontal cortex?

      (1.1) Throughout the manuscript, hMT+ connectivity with the frontal cortex has been treated as an a priori hypothesis/space. However, there is no such motivation or background literature mentioned in the Introduction. Can the authors clarify the necessity of functional connectivity?

      We thank reviewer for pointing this out. We offered additional motivation and background literature in the introduction: “Frontal cortex is usually recognized as the cognitive core region (Duncan et al., 2000; Gray et al., 2003). Strong connectivity between the cognitive regions suggests a mechanism for large-scale information exchange and integration in the brain (Barbey, 2018; Cole et al., 2012).  Therefore, the potential conjunctive coding may overlap with the inhibition and/or excitation mechanism of hMT+. Taken together, we hypothesized that 3D visuo-spatial intelligence (as measured by BDT) might be predicted by the inhibitory and/or excitation mechanisms in hMT+ and the integrative functions connecting hMT+ with frontal cortex (Figure 1a).” (lines 67-74). Additionally, we have included a whole-brain analysis for validation. Functional connectivity reveals the information exchange relationships across regions, enhancing our understanding of how hMT+ and the frontal cortex collaborate when solving visual-spatial intelligence tasks.

      (1.2) In other words, can BOLD activity of hMT+ in the localizer task substitute for functional connectivity between hMT+ and the frontal cortex?

      We thank the reviewer for this question. The localizer task was used solely for defining the hMT+ MRS scanning area. Functional connectivity was measured using resting-state fMRI. Research has shown that resting-state functional connectivity between the frontal cortex and other ROIs can further reveal the neural mechanisms underlying intelligence tasks (Song et al., 2008).

      (2) There is an obvious mismatch between the in-text description and the content of the figure:<br /> "In contrast, there was no correlation between BDT and GABA levels in V1 voxels (figure supplement 1a). Further, we show that SI significantly correlates with GABA levels in hMT+ voxels (r = 0.44, P = 0.01, n = 31, Figure 3d). In contrast, no significant correlation between SI and GABA concentrations in V1 voxels was observed (figure supplement 1b)."

      We thank reviewer for pointing this out. We have revised it. The revised version is :” In contrast, there was no correlation between BDT and GABA levels in V1 voxels (figure supplement 2a). Further, we show that SI significantly correlates with GABA levels in hMT+ voxels (r = 0.44, P = 0.01, n = 31, Figure 3d). In contrast, no significant correlation between SI and GABA concentrations in V1 voxels was observed (figure supplement 2b).” (lines 151-156)

      (3) The authors' response to my previous round of review indicated that the "V1 ROIs" covered a substantial amount of V3 (32%). Therefore, it would no longer be appropriate to call these "V1 ROIs". I'd suggest renaming them as "Early Visual Cortex (EVC) ROIs" to be more accurate. Can the authors justify why choosing the left hemisphere for visual intelligence task, which is typically believed to be right lateralized?

      (3.1) The authors' response to my previous round of review indicated that the "V1 ROIs" covered a substantial amount of V3 (32%). Therefore, it would no longer be appropriate to call these "V1 ROIs". I'd suggest renaming them as "Early Visual Cortex (EVC) ROIs" to be more accurate.

      We thank the reviewer for pointing this out. We have revised our description of the MRS scanning ROIs to Early Visual Cortex (EVC). Since the majority of our EVC ROIs are in V1 (around 70%) and almost no V2 was included, we decided to mark the EVC ROIs with the explanation "primarily in V1" for better clarification. This terminology has been widely used to better emphasize the V1-based experimental design.

      (3.2) Can the authors justify why choosing the left hemisphere for visual intelligence task, which is typically believed to be right lateralized?

      We thank the reviewer for pointing this out. The use of the left MT/V5 as a target was motivated by studies demonstrating that left MT+/V5 TMS is more effective at causing perceptual effects (Tadin et al., 2011). Therefore, we chose to use the left hMT+ as our MRS ROI and maintain consistency across different models' ROIs. Additionally, our results support the notion that the visual intelligence task is right lateralized in the frontal cortex. At the resting-fMRI level, we found that significant ROIs, where functional connectivity is highly correlated with BDT scores, are in the right frontal cortex (Figure 5a, b).

      (4) "Small threshold" and "large threshold" are neither standard descriptions, and it is unclear what "small threshold" refers to in the following figure caption. Additionally, the unit (ms) is confusing. Does it refer to timing?<br /> "(f) Peason's correlation showing significant negative correlations between BDT and small threshold."

      Thank you for pointing this out; we agree with your suggestion. We have revised the terms “small threshold” and “large threshold” to “duration threshold of small grating” and “duration threshold of large grating”, respectively. The unit (ms) refers to timing. The details are described in the methods section: “The duration was adaptively adjusted in each trial, and duration thresholds were estimated using a staircase procedure. Thresholds for large and small gratings were obtained from a 160-trial block that contained four interleaved 3-down/1-up staircases. For each participant, we computed the correct rate for different stimulus durations separately for each stimulus size. These values were then fitted to a cumulative Gaussian function, and the duration threshold corresponding to the 75% correct point on the psychometric function was estimated for each stimulus size”.

      (5) In the response letter, the authors mentioned incorporating the neural efficiency hypothesis in the Introduction, but the revised Introduction does not contain such information.

      We thank the reviewer for pointing this out. In our revised version, the second paragraph of the introduction addresses the neural efficiency hypothesis: “The “neuro-efficiency” hypothesis is one explanation for individual differences in gF (Haier et al., 1988). This hypothesis puts forward that the human brain’s ability to suppress irrelevant information leads to more efficient cognitive processing. Correspondingly, using a well-known visual motion paradigm (center-surround antagonism) (Liu et al., 2016; Tadin et al., 2003), Melnick et al found a strong link between suppression index (SI) of motion perception and the scores of the block design test (BDT, a subtest of the Wechsler Adult Intelligence Scale (WAIS), which measures the visuo-spatial component (3D domain) of gF (Melnick et al., 2013). Motion surround suppression (SI), a specific function of human extrastriate cortical region, middle temporal complex (hMT+), aligns closely with this region's activities (Gautama & Van Hulle, 2001). Furthermore, hMT+ is a sensory cortex involved in visual perception processing (3D domain) (Cumming & DeAngelis, 2001). These findings suggest that hMT+ potentially plays a significant role in 3D visuo-spatial intelligence by facilitating the efficient processing of 3D visual information and suppressing irrelevant information. However, more evidence is needed to uncover how the hMT+ functions as a core region for 3D visuo-spatial intelligence.” (lines 51-66)

      Recommendations for the authors:

      Reviewer #1 (Recommendations for The Authors):

      In the Code availability, it states that "this paper does not report original code". It seems weird because at least the code to reproduce the figures from the data should be provided.

      Thank you for pointing this out. Almost all figures were created using software such as DPABI, BrainNet, and GraphPad Prism 9.5, which are manually operated and do not require code adjustments. However, for the MRS fitting curve, we can provide our MATLAB code for redrawing the MRS fitting. The code has been uploaded to GitHub.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this work, Qiu and colleagues examined the effects of preovulatory (i.e., proestrous or late follicular phase) levels of circulating estradiol on multiple calcium and potassium channel conductances in arcuate nucleus kisspeptin neurons. Although these cells are strongly linked to a role as the "GnRH pulse generator," the goal here was to examine the physiological properties of these cells in a hormonal milieu mimicking late proestrus, the time of the preovulatory GnRH-LH surge. Computational modeling is used to manipulate multiple conductances simultaneously and support a role for certain calcium channels in facilitating a switch in firing mode from tonic to bursting. CRISPR knockdown of the TRPC5 channel reduced overall excitability, but this was only examined in cells from ovariectomized mice without estradiol treatment. The patch clamp experiments are comprehensive and overall solid but a direct demonstration of the role of these conductances in being necessary for surge generation (or at least having a direct physiological consequence on surge properties) is lacking, substantially reducing the impact of the findings.

      Strengths:

      (1) Examination of multiple types of calcium and potassium currents, both through electrophysiology and molecular biology.

      (2) Focus on arcuate kisspeptin neurons during the surge is relatively conceptually novel as the anteroventral periventricular nucleus (AVPV) kisspeptin neurons have received much more attention as the "surge generator" population.

      (3) The modeling studies allow for direct examination of manipulation of single and multiple conductances, whereas the electrophysiology studies necessarily require examination of each current in isolation. The construction of an arcuate kisspeptin neuron model promises to be of value to the reproductive neuroendocrinology field.

      We thank the reviewer for recognizing our comprehensive examination of Kiss-ARH neurons through electrophysiological, molecular and computational modeling of their activity during the preovulatory surge, which as the reviewer pointed out is “conceptually novel.”  We  have bolstered our argument that Kiss1-ARH neurons transition from synchronized firing to burst firing with the E2-mediated regulation of channel expression with the addition of new experiments. We have addressed the recommendations as follows:

      Weaknesses:

      (1) The novelty of some of the experiments needs to be clarified. This reviewer's understanding is that prior experiments largely used a different OVX+E2 treatment paradigm mimicking periods of low estradiol levels, whereas the present work used a "high E2" treatment model. However, Figures 10C and D are repeated from a previous publication by the same group, according to the figure legend. Findings from "high" vs. "low" E2 treatment regimens should be labeled and clearly separated in the text. It would also help to have direct comparisons between results from low E2 and high E2 treatment conditions.

      We have revised Figures 10C and 10D to include new findings (only) on Tac2 and Vglut2 expression in OVX and E2-treated Kiss1ARH.  Most importantly, our E2 treatment regime is clearly stated in the Methods and is exactly the same that was used previously (Qiu, eLife 2016 and Qiu, eLife 2018) for the induction of the LH surge in OVX mice (Bosch, Molecular and Cellular Endocrinology 2013) .

      (2) In multiple places, links are made between the changes in conductances and the transition from peptidergic to glutamatergic neurotransmission. However, this relationship is never directly assessed. The data that come closest are the qPCR results showing reduced Tac2 and increased Vglut2 mRNA, but in the figure legend, it appears that these results are from a prior publication using a different E2 treatment regimen.

      In the revised Figure 1, we have now included a clear depiction of the transition from synchronized firing driven by NKB signaling in OVX females to burst firing driven by glutamate in E2-treated females. All of the qPCR results in the revised manuscript are new.  We have used the same E2 treatment paradigm as previously published (Qiu, eLife 2018).

      (3) Similarly, no recordings of arcuate-AVPV glutamatergic transmission are made so the statements that Kiss1ARH neurons facilitate the GnRH surge via this connection are still only conjecture and not supported by the present experiments.

      Using a horizontal hypothalamic slice preparation, we have shown that Kiss1-ARH neurons excite GnRH neurons via Kiss1ARH glutaminergic input to Kiss1AvPV/Pen neurons (summarized in Fig. 12, Qiu, eLife 2016). We did not think that it was necessary to repeat these experiments for the current manuscript.

      (4) Figure 1 is not described in the Results section and is only tenuously connected to the statement in the introduction in which it is cited. The relevance of panels C and D is not clear. In this regard, much is made of the burst firing pattern that arises after E2 treatment in the model, but this burst firing pattern is not demonstrated directly in the slice electrophysiology examples.

      We have extensively revised Figure 1 to include new whole-cell, current clamp recordings that document burst firing  in  E2-treated, OVX females, which is now cited in the Results.

      (5) In Figure 3, it would be preferable to see the raw values for R1 and R2 in each cell, to confirm that all cells were starting from a similar baseline. In addition, it is unclear why the data for TTA-P2 is not shown, or how many cells were recorded to provide this finding.

      Before initiating photo-stimulation for each Kiss1-ARH neuron, we adjust the resting membrane potential to -70 mV, as noted  in each panel in Figure 3, through current injections. We have now included new findings on the effects of the T-channel blocker TTA-P2 on slow EPSP in the revised Figure 3. The number of cells tested with each calcium channel blocker is depicted in each of the bar graphs summarizing the effects of the blockers (Figure 3E).

      (6) In Figure 5, panel C lists 11 cells in the E2 condition but panel E lists data from 37 cells. The reason for this discrepancy is not clear.

      In Figure 5D, we measured the L-, N-, P/Q and R channel currents after pretreatment with TTA-P2 to block the T-type current, whereas in Figure 5C, we measured the total current without TTA-P2.

      (7) In all histogram figures, it would be preferable to have the data for individual cells superimposed on the mean and SEM.

      In the revised Figures we have included the individual data points for the individual neurons and animals (qPCR). 

      (8) The CRISPR experiments were only performed in OVX mice, substantially limiting interpretation with respect to potential roles for TRPC5 in shaping arcuate kisspeptin neuron function during the preovulatory surge.

      The TRPC5 channels are most  important for generating slow EPSPs when expression of NKB is high in the OVX state. Conversely, the glutamatergic response becomes more significant when the expression of NKB and TRPC5 channel are muted in the E2-treated state. Therefore, the CRISPR experiments were specifically conducted in OVX mice to maximize the effects.

      (9) Furthermore, there are no demonstrations that the CRISPR manipulations impair or alter the LH surge.

      In this manuscript, our focus is on the cellular electrophysiological activity of the Kiss1ARH neurons in OVX and E2-treated OVX females. Exploration of CRISPR manipulations related to the LH surge is certainly slated for future  experiments, but these in vivo experiments are  beyond the scope of these comprehensive cellular electrophysiological and molecular studies.

      (10) The time of day of slice preparation and recording needs to be specified in the Methods.

      We have provided the times of slice preparation and recordings in the revised Methods and Materials.

      Reviewer #2 (Public Review):

      Summary:

      Kisspeptin neurons of the arcuate nucleus (ARC) are thought to be responsible for the pulsatile GnRH secretory pattern and to mediate feedback regulation of GnRH secretion by estradiol (E2). Evidence in the literature, including the work of the authors, indicates that ARC kisspeptin coordinate their activity through reciprocal synaptic interactions and the release of glutamate and of neuropeptide neurokinin B (NKB), which they co-express. The authors show here that E2 regulates the expression of genes encoding different voltage-dependent calcium channels, calcium-dependent potassium channels, and canonical transient receptor potential (TRPC5) channels and of the corresponding ionic currents in ARC kisspeptin neurons. Using computer simulations of the electrical activity of ARC kisspeptin neurons, the authors also provide evidence of what these changes translate into in terms of these cells' firing patterns. The experiments reveal that E2 upregulates various voltage-gated calcium currents as well as 2 subtypes of calcium-dependent potassium currents while decreasing TRPC5 expression (an ion channel downstream of NKB receptor activation), the slow excitatory synaptic potentials (slow EPSP) elicited in ARC kisspeptin neurons by NKB release and expression of the G protein-associated inward-rectifying potassium channel (GIRK). Based on these results, and on those of computer simulations, the authors propose that E2 promotes a functional transition of ARC kisspeptin neurons from neuropeptide-mediated sustained firing that supports coordinated activity for pulsatile GnRH secretion to a less intense firing in glutamatergic burst-like firing pattern that could favor glutamate release from ARC kisspeptin. The authors suggest that the latter might be important for the generation of the preovulatory surge in females.

      Strengths:

      The authors combined multiple approaches in vitro and in silico to gain insights into the impact of E2 on the electrical activity of ARC kisspeptin neurons. These include patch-clamp electrophysiology combined with selective optogenetic stimulation of ARC kisspeptin neurons, reverse transcriptase quantitative PCR, pharmacology, and CRIPR-Cas9-mediated knockdown of the Trpc5 gene. The addition of computer simulations for understanding the impact of E2 on the electrical activity of ARC kisspeptin cells is also a strength.

      The authors add interesting information on the complement of ionic currents in ARC kisspeptin neurons and on their regulation by E2 to what was already known in the literature. Pharmacological and electrophysiological experiments appear of the highest standards. Robust statistical analyses are provided throughout, although some experiments (illustrated in Figures 7 and 8) do have rather low sample numbers.

      The impact of E2 on calcium and potassium currents is compelling. Likewise, the results of Trpc5 gene knockdown do provide good evidence that the TRPC5 channel plays a key role in mediating the NKB-mediated slow EPSP. Surprisingly, this also revealed an unsuspected role for this channel in regulating the membrane potential and excitability of ARC kisspeptin neurons.

      We thank the reviewer for recognizing that the “pharmacological and electrophysiological experiments appear of the highest standards” and “the addition of the computer modeling for understanding the impact of E2 on the electrical activity of ARC kisspeptin cells is also a strength.  However, we agree with the reviewer that we needed to provide a direct demonstration of “burst-like” firing of Kiss1-ARH neurons, which we have provided in Figure 1. We have addressed the other recommendations as follows:

      Weaknesses:

      The manuscript also has weaknesses that obscure some of the conclusions drawn by the authors.

      One has to do with the fact that "burst-like" firing that the authors postulate ARC kisspeptin neurons transition to after E2 replacement is only seen in computer simulations, and not in slice patch-clamp recordings. A more direct demonstration of the existence of this firing pattern, and of its prominence over neuropeptide-dependent sustained firing under conditions of high E2 would make a more convincing case for the authors' hypothesis.

      We have provided  a more direct demonstration of the existence of this firing pattern in the whole-cell current clamp experiments in the revised Figure 1.

      In addition, and quite importantly, the authors compare here two conditions, OVX versus OVX replaced with high E2, that may not reflect the physiological conditions (the diestrous [low E2] and proestrous [high E2] stages of the estrous cycle) under which the proposed transition between neuropeptide-dependent sustained firing and less intense burst firing might take place. This is an important caveat to keep in mind when interpreting the authors' findings. Indeed, that E2 alters certain ionic currents when added back to OVX females, does not mean that the magnitude of these ionic currents will vary during the estrous cycle.

      We have published that the magnitude of the slow EPSP, which is TRPC5 channel mediated, varies throughout the estrous cycle with the slow EPSP reaching a maximal amplitude during diestrus, which was significantly reduced during proestrus,  similar to that found in OVX compared to E2-treated, OVX females (Figure 2, Qiu, eLife 2016).  Moreover, TRPC5 channel mRNA expression,  similar to the peptides, is downregulated by an E2 treatment (Figure 10 this manuscript) that mimics proestrus levels of the steroid (Bosch et al., Mol Cell Endocrinology 2013). Furthermore, the magnitude of ionic currents is directly proportional to the number of ion channels expressed in the plasma membrane, which we have found correlates with mRNA expression. Therefore, it is likely that the magnitude of these ionic currents will vary during the estrous cycle.

      Lastly, the results of some of the pharmacological and genetic experiments may be difficult to interpret as presented. For example, in Figure 3, although it is possible that blockade of individual calcium channel subtypes suppresses the slow EPSP through decreased calcium entry at the somato-dendritic compartment to sustain TRPC5 activation and the slow depolarization (as the authors imply), a reasonable alternative interpretation would be that at least some of the effects on the amplitude of the slow EPSP result from suppression of presynaptic calcium influx and, thus, decreased neurotransmitter and neuropeptide secretion. Along the same lines, in Figure 12, one possible interpretation of the observed smaller slow EPSPs seen in mice with mutant TRPC5 could be that at least some of the effect is due to decreased neurotransmitter and neuropeptide release due to the decreased excitability associated with TRPC5 knockdown.

      The reviewer raises a good point, but our previous findings clearly demonstrated that chelating intracellular calcium with BAPTA in whole-cell current clamp recordings abolishes the slow EPSP and persistent firing (Qiu et al., J. Neurosci 2021), which we have noted is the  rationale for dissecting out the contribution of T, R, N, L and P/Q calcium channels to the slow EPSP in our current studies.  The revised Figure 3 also includes the effects of T-channel blocker.

      However, to further bolster the argument for the post-synaptic contribution of the calcium channels to the slow EPSP  and eliminate the potential presynaptic effects of the calcium channel blockers on the postsynaptic slow EPSP amplitude, which may result from reduced presynaptic calcium influx and subsequently decreased neurotransmitter release, we have utilized an additional strategy. Specifically, we have measured the response to the externally administered TACR3 agonist senktide under conditions in which the extracellular calcium influx, as well as neurotransmitter and neuropeptide release, are blocked (revised Figure 3).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The use of optogenetics in Figure 3 to trigger the slow EPSP could be better clarified in the text.

      We have clarified in the Methods the optogenetic protocol for generating the slow EPSP, which we have published previously (Qiu et al., eLife 2016; eLife 2018, J. Neurosci 2021).

      (2) The citation for Figure 4C in the text does not match what is shown in the figure.

      Figure 4C has been removed in the revised manuscript.

      (3) Figure 5 - it would be clearer to have panel D labeled as "model results" or similar to distinguish it from the slice recording data.

      Panel D has been labeled as "Model results”.

      (4) The text in lines 191-197 in the Results may be better suited to the Discussion.

      We have modified the text in order to present the new findings without the discussion points.

      (5) It is somewhat confusing to have figure panels cited out of order in the main text (e.g., 7H before 7G and 8H before 8G).

      We have edited the text to report the findings in the proper order of the panels in Figures 7 and 8.

      Reviewer #2 (Recommendations For The Authors):

      - The observations that E2 treatment of OVX mice has an effect on the magnitude of a number of ionic currents does not necessarily mean that these changes will be seen during the estrous cycle, in response to fluctuations in circulating E2 concentrations. Experiments comparing either different estrous cycle stages or OVX mice treated with low or high E2 would be required to gain insight into this question. As such, the relevance of the authors' findings (however interesting these are as they stand) to any potential physiological endocrine/reproductive state transition is questionable, in the reviewer's opinion. The authors should acknowledge this important caveat and moderate the interpretations of their findings and the conclusions of their manuscript accordingly.

      We have published that the magnitude of the slow EPSP, which is TRPC5 channel mediated, varies throughout the estrous cycle with the slow EPSP being large during diestrus and significantly reduced during proestrus,  similar to that found in OVX compared to E2-treated, OVX females (Figure 2, Qiu, eLife 2016).  Moreover, TRPC5 channel mRNA expression,  similar to the peptides, is downregulated by an E2 treatment (Figure 10 this manuscript) that mimics proestrus levels of the steroid (Bosch et al., Mol Cell Endocrinology 2013). Furthermore, the magnitude of ionic currents is directly proportional to the number of ion channels expressed in the plasma membrane, which we have found correlates with mRNA expression. Therefore, it is likely that the magnitude of these ionic currents will vary during the estrous cycle.

      - The bursting firing pattern that the authors refer to and postulate will favor glutamate release under high E2 conditions is only seen in the computer simulations, not in patch-clamp recordings in brain slices (see also comment below). This substantially weakens some of the conclusions of the manuscript. Unless the authors can convincingly demonstrate a change in ARC kisspeptin firing pattern in response to increasing E2 using electrophysiology, these conclusions should be moderated.

      We now include examples of burst firing activity under E2-treatment conditions in Figure 1 and have included summary figure (pie chart) documenting that a significant percentage of cells exhibit this activity with E2 treatment.  

      Other comments:

      - Title: "E2 elicits distinct firing patterns" is not shown in this work. As such, the title needs to be revised.

      We now show these distinct firing patterns in Figure 1, so we think the wording in the title is an accurate reflection of our findings. 

      - Abstract: some of the interpretations are overstated, in the reviewer's opinion.

      Line 23, "... elevating the whole-cell calcium current and contributing to high-frequency firing" should be moderated, as what is shown by the authors is that blockade of calcium channel subtypes suppresses the slow EPSP and associated firing, the frequency of which is not reported (see also a later comment).

      We now include examples of burst firing activity under E2-treatment conditions in Figure 1 and have modified the abstract to state “high frequency burst firing.”

      Lines 26-28, that "mathematical modeling confirmed the importance of TRPC5 channels for initiating and sustaining synchronous firing, while GIRK channels, activated by Dyn binding to kappa opioid receptors, were responsible for repolarization" is simply not what the simulations show, in the reviewer's opinion. Indeed, there is no consideration of synchronous activity in the model, which simulates the firing of a single ARC kisspeptin neuron. Further, the model shows that TRPC5 can contribute to overall excitability (firing in response to current injection, Figure 12G) and that increasing TRPC5 conductance increases firing in response to NKB while this is decreased by adding GIRK conductance to the model (Figure 13A). Therefore, considerations of the importance of TRPC5 channels in initiating synchronous firing and the role of Dyn A-induced GIRK activity should not be included in the interpretations of the mathematical simulations.

      The significance of synchronization lies in the fact that when neuronal networks synchronize, the behavior of each neuron within the network becomes identical. In such scenarios, the firing of a single neuron mirrors the activity of the entire neuronal network. Consequently, our model simulations, based on a single-cell neuronal model, can be utilized to make reliable inferences about synchronized neuronal activity.

      Lines 31-33 (also lines 92-95), that "the transition to burst firing with high, preovulatory levels of E2 facilitates the GnRH surge through its glutamatergic synaptic connection to preoptic Kiss1 neurons" is not supported by the experiments (physiologic or computational) described in the manuscript, and is, therefore, only speculative. These statements should be removed throughout the manuscript.

      Previously, we (Qiu et al., (eLife 2016) documented a direct glutamatergic projection from Kiss1-ARH neurons to Kiss1-AVPV/PeN neurons.  Moreover, Lin et al. (Frontiers Endocrinology 2021) demonstrated that low frequency stimulation of Kiss1-ARH:ChR2 neurons, that is known to only release glutamate, boosts the LH surge, and in a follow-up paper the O’Byrne lab blocked this stimulation with ionotropic glutamate antagonists (Shen et al., Frontiers in Endocrinology 2022).  We have included these references in the Introduction and Discussion, but we did not think that it was necessary to cite these papers in the Abstract.  However, we have re-worded this final statement in the Abstract to: “the transition to burst firing with high, preovulatory levels of E2 would facilitate the GnRH surge….” 

      - Introduction: the usefulness of Figure 1 is questionable. From reading the figure legend, it is the reviewer's understanding that panels A and B are published elsewhere (there is no description of methods or results in the manuscript). Further, panels C and D are meant to illustrate that ARC kisspeptin neurons display different types of firing in OVX vs E2-treated OVX mice. The legend to C indicates that the trace illustrates "synchronous firing" but shows one cell (how can this be claimed as synchronous?) - the legend to D indicates that the trace "demonstrates" burst firing in ARC kisspeptin neurons. This part of the figure is, in the reviewer's opinion, misleading because these are only two examples (no quantifications or replicates are provided) obtained by stimulating firing in two different endocrine conditions by two different agonists. The "demonstration" of differential firing patterns would require a thorough examination of firing patterns in response to current injections (as in Figure 12 E-F) or in response to the two agonists, under the different hormonal conditions.

      Figure 1 has now been completely revised to include new data documenting the different firing patterns.  The methods detailing these experiments can be found in the Material and Methods section.

      The introduction presents a rather incomplete picture of what is known regarding how ARC kisspeptin neurons might coordinate their activity to drive episodic GnRH secretion, and it omits published work showing that blockade of glutamate receptors (in particular AMPA receptors) decreases ARC kisspeptin neuron coordinated activity in the brain slices and in vivo and suppresses pulsatile GnRH/LH secretion in mice.

      If we are not mistaken, the reviewer is referring to fiber photometry recordings of GCaMP activity, which we cite in the Discussion.  However, for the Introduction we tried to “set the stage” for our studies on measuring the individual channels underlying the different firing patterns and how they are regulated by E2.

      The introduction is also quite long with extensive descriptions of previous work by the authors and in other brain areas that would be better suited for the discussion.

      Again, we are trying to rationalize why we focused on particular ion channels based on the literature.

      - Results: lines 129-132 should be moderated, as whether calcium channels increase excitability or facilitate TRPC5 channel opening has not been directly assessed here.

      High frequency optogenetic stimulation of Kiss1-ARH neurons and NKB through its cognate receptor (TACR3) activates TRPC 5 channels (Qiu et al., eLife 2016; J. Neurosci 2021). BAPTA prevents the opening of TRPC5 channels and abrogates the slow EPSP following high frequency stimulation.  Figure 3 documents that inhibition of voltage-activated calcium channels attenuates the slow EPSP, which results in a decrease in excitability.

      Lines 145-146, one limitation of this experiment is that blockade of calcium channel subtypes will not only affect calcium entry and subsequent actions of calcium on TRPC5 channels but also impair the release of neurotransmitters and neuropeptides from kisspeptin neurons. The interpretation that "calcium channels contribute to maintaining the sustained depolarization underlying the slow EPSP" needs, therefore, to be moderated as it is not possible to extract the direct contribution of calcium channels to the activation of TRPC5 channels from these experiments.

      We cited our previous findings documenting that chelating intracellular calcium with BAPTA abolishes the slow EPSP and persistent firing (Qiu et al., J Neurosci 2021).  However, to eliminate the potential effects of calcium channel blockers on the slow EPSP amplitude, which may result from reduced presynaptic calcium influx and subsequently decreased neurotransmitter and neuropeptide secretion, we adopted a different strategy by comparing responses between Senktide and Cd2+ plus Senktide. Our findings revealed that the non-selective Ca2+ channel blocker Cd2+ significantly inhibited Senk-induced inward current (Figures 3F-H).

      Panel C should be removed from Figure 4, as it is published elsewhere.

      Figure 4C has been removed.

      Lines 168-169, "...E2 treatment led to a significant increase in the peak calcium current density in Kiss1ARH neurons, which was recapitulated as predicted by our computational modeling..." How did the model "predict" this increase in calcium current density? As no information is provided in the methods or supplementary information as to how the effect of E2 was integrated into the model, the authors will need to provide additional narration in the text to explain this statement. The "T-channel inflection" referred to in the figure legend will also need to be explained. Lastly, in Figure 5C, the current density unit should be pA/pF. 

      We have added text in the supplementary information to explain how we used the qPCR and electrophysiological data to inform the model regarding the effect that E2 has on the various ionic currents and noted in the Figure 13 legend that the increase/decrease in the conductances is physiologically mediated by E2. We have eliminated the T-channel inflection point (Figure 5D) and corrected the current density label (Figure 5C).

      Lines 198-199, please clarify "E2 does not modulate calcium channel kinetics directly but rather alters the mRNA expression to increase the conductance".

      We have clarified that “that long-term E2 treatment does not modulate calcium channel kinetics but rather alters the mRNA expression to increase the calcium channel conductance” by referring to the specific figures (i.e., Figures 4, 6) in a previous sentence.

      Figures 7 and 8 titles do not accurately reflect the contents: there is nothing about repolarization in the experiments illustrated in Figure 7 or Figure 8. The sample sizes (3 to 4 cells) are also quite small for these experiments.

      We have modified the Figure titles per the reviewer’s comments and increased the cell numbers.

      The title of Figure 9 also does not fully reflect the figure's contents. Although panel G does suggest that the M current contributes to regulating the membrane potential, the reviewer's reading of this figure panel is that the fractional contribution of the M current does not vary during a short burst of action potentials. The suggestion that "KCNQ channels play a key role in repolarizing Kiss1ARH neurons following burst firing" (line 272) and the statement that "our modeling predicted that M-current contributed to the repolarization following burst firing" (line 273) should be revised accordingly.

      The point is that the M-current contributes, albeit a small fraction, to the repolarization during burst firing.

      Line 288, please indicate what figure informs this statement.

      We have revised the statement since the modeling (Figure 13) comes later in the Results.

      Line 311-313, this sentence only superficially describes the simulation, in the reviewer's opinion. Does the model inform on how TRPC5 channels/currents do that? The supplementary information indicates that there is a tone of extracellular neurokinin B embedded in the model. This is important information that should be clearly stated in the manuscript. The authors should also consider discussing the influence of this neurokinin B tone on the contribution of TRPC5 to cell excitability. As a neurokinin B tone in the extracellular space will likely alter the firing of kisspeptin neurons in the model, readers will likely need more information about all this.

      In our current ramp simulations of the model (Fig 12 G&H) there is no involvement of neurokinin B (i.e., the NKB parameter  is set to zero), and the effect on the rheobase is solely due to the decrease of the TRPC5 conductance.  In the model, TRPC5 channels are activated by intracellular calcium levels and are therefore contributing to cell excitability even in the absence of extracellular NKB. The NKB tone is used for the simulations presented in Figure 13 where we vary the TRPC5 conductance under saturating levels of extracellular NKB.

      Lines 316-318 also read as quite superficial. More explanations of what is illustrated in Figure 13 are needed. In particular, it is unclear from the methods and supplementary information what the different ratios of conductances in OVX+E2 vs in OVX are and how they were varied in the model. Furthermore, it is unclear to the reviewer how the outcome of these simulations matches the authors' postulate that E2 enables a transition to a burst firing pattern that favors glutamate release. Looking at simulated firing in Figure 13B, E2 (by increasing calcium conductances) would tend to enable high-frequency firing within bursts (nearing 50 Hz by eye) and high burst rates (approximately 4 bursts per second), which the reviewer would argue might be expected to cause significant neuropeptide release in addition to that of glutamate.

      We have added to the text: “Furthermore, the burst firing of the OVX+E2 parameterized model was supported by elevated h- and Ca 2+-currents (Figure 13B) as well as by the high conductance of Ca2+ channels relative to the conductance of TRPC5 channels (Figure 13C).” We have also provided in the Supplemental Information (Table of Model Parameters) the specific conductances in the OVX and OVX+E2 state and how they are varied to produce the model simulations.

      Granted the high frequency firing during a burst could release peptide, but in the E2-treated, OVX females the expression of the peptides are at “rock bottom.”  Therefore, the sustained high frequency firing during the slow EPSP in the OVX state would generate maximum peptide release.

      In Figure 13C, the reviewer is unclear on the ranges of TRPC5 conductances shown. The in vitro experiments suggest that E2 suppresses Trpc5 gene expression and might suppress TRPC5 currents. The ratio of gTRPC5(OVX+E2)/gTRPC5(OVX) should, thus, be <1.0. This is not represented in the parameter space provided, making the interpretation of this simulation difficult. Please clarify what the effect of decreasing gTRPC5 will be on firing patterns in the model.

      Thank you for pointing this typographical error.  The ratio should be gTRPC5 (OVX)/TRPC5(OVX + E2) for the X-axis.

      - Discussion: many statements and conclusions are overreaching and need to be revised; for example lines 320-322, 329-330, 335-338, 369, 371-373, 391-394, 463-464, and 489-494;

      We have tempered these statements, so they are not “overreaching.”

      Lines 489-494: the authors should integrate published observations that i) ablation of ARC kisspeptin neurons results in increased LH surges in mice and rats and that ii) optogenetic stimulation of ARC kisspeptin fibers in the POA is only effective at increasing LH secretion in a surge-like manner when done at high frequencies (20 Hz), in their discussion of the role of ARC kisspeptin neurons and their firing patterns in the preovulatory surge.

      We have included the paper from the O’Byrne lab (Shen et al. Frontiers in Endocrinology 2022) in the Discussion. However, the Mittleman-Smith paper (Endocrinology, 2016) ablating KNDy neurons using NK3-saporin not only targeted KNDy neurons but other arcuate neurons that express NK3 receptors.  Therefore, we have not cited it in the Discussion.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Major comments: 

      My main concern about the manuscript is the extent of both clinical and statistical heterogeneity, which complicates the interpretation of the results. I don't understand some of the antibiotic comparisons that are included in the systematic review. For instance the study by Paul et al (50), where vancomycin (as monotherapy) is compared to co-trimoxazole (as combination therapy). Emergence (or selection) of co-trimoxazole in S. aureus is in itself much more common than vancomycin resistance. It is logical and expected to have more resistance in the co-trimoxazole group compared to the vancomycin group, however, this difference is due to the drug itself and not due to co-trimoxazole being a combination therapy. It is therefore unfair to attribute the difference in resistance to combination therapy. Another example is the study by Walsh (71) where rifampin + novobiocin is compared to rifampin + co-trimoxazole. There is more emergence of resistance in the rifampin + co-trimoxazole group but this could be attributed to novobiocin being a different type of antibiotic than co-trimoxazole instead of the difference being attributed to combination therapy. To improve interpretation and reduce heterogeneity my suggestion would be to limit the primary analyses to regimens where the antibiotics compared are the same but in one group one or more antibiotic(s) are added (i.e. A versus A+B). The other analyses are problematic in their interpretation and should be clearly labeled as secondary and their interpretation discussed. 

      Thank you for raising these important points and highlighting the need for clarification. We understand that the reviewer has concerns regarding the following points:

      (1) The structure of presenting our analyses, i.e. main analyses and sub-group analyses and their corresponding discussion and interpretation

      Our primary interest was whether combining antibiotics has an overarching effect on resistance and to identify factors that explain potential differences of the effect of combining antibiotic across pathogens/drugs. Therefore, pooling all studies, and thereby all combinations of antibiotics, is one of our main analyses. The decision to pool all studies that compare a lower number of antibiotics to a higher number of antibiotics was hence predefined in our previously published study protocol (PROSPERO CRD42020187257).

      We indeed, find that heterogeneity is high in our statistical analyses. As planned in our study protocol, we did perform several prespecified sub-group analyses and added additional ones. We now emphasize that several sub-group analyses were performed to investigate heterogeneity (L 119ff): “The overall pooled estimates are based on studies that focus on various clinical conditions/pathogens and compare different antibiotics treatments. To explore the impact of these and other potential sources of heterogeneity on the resistance estimates we performed various sub-group analyses and metaregression.” 

      The performed sub-group analyses specifically focused on specific pathogens/clinical conditions (figure 3) or explored heterogeneity due to different antibiotics in comparator arms – as suggested by the reviewer (figure 3B, SI section 6). We find that the heterogeneity remains high even if only resistances to antibiotics common to both arms are considered (SI section 6.1.8). With this analysis we excluded comparisons of different antibiotics (e.g., A vs B+C), such as those between vancomycin and cotrimoxazole named by the reviewer. While we aimed to explore heterogeneity and investigate potential factors affecting the effect of combining antibiotic on resistance, limitations arose due to limited evidence and the nature of data provided by the identified studies. Therefore, interpretability remains also limited for the subgroup analyses, which we highlight in the discussion. (L 186 ff: We accounted for many sources of heterogeneity using stratification and meta-regression, but analyses were limited by missing information and sparse data.) Further, specific subgroup analyses are discussed in more detail in the SI.

      (2) Difference in resistance development due to the type of the antibiotics or due to combination therapy?

      The reviewer raises an important point, which we also try to make: future studies should be systematically designed to compare antibiotic combination therapy, i.e. identical antibiotics in treatment arms should be used, except for additional antibiotics used in both treatment arms. We already mentioned this point in our discussion but highlight this now by emphasizing how many studies did not have identical antibiotics in their treatment arms. We write in L194ff: “19 (45%) of our included studies compared treatment arms with no antibiotics in common, and 22 studies (52%) had more than one antibiotic not identical in the treatment arms (table 1). To better evaluate the effect of combination therapy, especially more RCTs would be needed where the basic antibiotic treatment is consistent across both treatment arms, i.e. the antibiotics used in both treatment arms should be identical, except for the additional antibiotic added in the comparator arm (table 1).”

      Furthermore, we investigated the importance of the type of antibiotics with several subgroup analyses (e.g. SI sections 6.1.8 and 6.1.10). We now further highlight the concern of the type of antibiotics in the result section of the main manuscript, where we discuss the sub-group analysis with no common antibiotics in the treatment arms 131 ff: “Furthermore, a lower number of antibiotics performed better than a higher number if the compared treatment arms had no antibiotics in common (pooled OR 4.73, 95% CI 2.14 – 10.42; I2\=37%, SI table S3), which could be due to different potencies or resistance prevalences of antibiotics as discussed in SI (SI section 6.1.10).” As mentioned above we also perform sub-group analyses, where only resistances of antibiotics common to both arms are considered (SI section 6.1.8). However, as discussed in the corresponding sections, the systematic assessment of antibiotic combination therapy remains challenging as not all resistances against antibiotics used in the arms were systematically measured and reported. Furthermore, the power of these sub-group analyses is naturally a concern, as they include fewer studies. 

      Another concern is about the definition of acquisition of resistance, which is unclear to me. If for example meropenem is administered and the follow-up cultures show Enterococcus species (which is intrinsically resistant to meropenem), does this constitute acquisition of resistance? If so, it would be misleading to determine this as an acquisition of resistance, as many people are colonized with Enterococci and selection of Enterococci under therapy is very common. If this is not considered as the acquisition of resistance please include how the acquisition of resistance is defined per included study. Table S1 is not sufficiently clear because it often only contains how susceptibility testing was done but not which antibiotics were tested and how a strain was classified as resistant or susceptible. 

      Thank you for pointing out this potential ambiguity. The definition of acquisition of resistance reads now (L 275 ff): “A patient was considered to have acquired resistance if, at the follow-up culture, a resistant bacterium (as defined by the study authors) was detected that was not present in the baseline culture.” We also changed the definition accordingly in the abstract (L 36 ff). We hope that the definition of acquisition is now clearer. Our definition of “acquisition of resistance” is agnostic to bacterial species and hence intrinsically resistant species, as the example raised by the reviewer, can be included if they were only detected during the follow-up culture by the studies. Generally, it was not always clear from the studies, which pathogens were screened for and whether the selection of intrinsically resistant bacteria was reported or not. Therefore, we rely on the studies' specifications of resistant and non-resistant without further distinction from our side, i.e. classifying data into intrinsic and non-intrinsic resistance. Overall, the outcome “acquisition of resistance” can be interpreted as a risk assessment for having any resistant bacterium during or after treatment. In contrast, the outcome “emergence of resistance” is more rigorous, demanding the same species to be detected as more resistant during or after treatment.

      The information, which antibiotic susceptibility tests were performed in each individual study can be found in the main text in table 1. However, we agree that this information should be better linked and highlighted again in table S1. We therefore now refer to table 1 in the table description of table S1. L134 ff.: “See table 1 in the main text for which antibiotics the antibiotics tested and reported extractable resistance data”. Furthermore, we added the breakpoints for resistant and susceptible classification if specifically stated in the main text of the study. However, we did not do further research into old guidelines, manufactures manuals or study protocols in case the breakpoints are not specifically stated in the main text as the main goal of this table, in our opinion, is to show a justification, why the studies could be considered for a resistance outcome. We therefore decided against further breakpoint investigations for studies, where the breakpoint is not specifically stated in the main text. 

      Line 85: "Even though within-patient antibiotic resistance development is rare, it may contribute to the emergence and spread of resistance." 

      Depending on the bug-drug combination, there is great variation in the propensity to develop within-patient antibiotic resistance. For example: within-patient development of ciprofloxacin resistance in Pseudomonas is fairly common while within-patient development of methicillin resistance in S. aureus is rare. Based on these differences, large clinical heterogeneity is expected and it is questionable where these studies should be pooled. 

      We agree that our formulation neglects differences in prevalence of within-host resistance emergence depending on bug-drug combinations. We changed our statement in L 86 to: “Within-patient antibiotic resistance development, even if rare, may contribute to the emergence and spread of resistance.”

      Line 114: "The overall pooled OR for acquisition of resistance comparing a lower number of antibiotics versus a higher one was 1.23 (95% CI 0.68 - 2.25), with substantial heterogeneity between studies (I2=77.4%)" 

      What consequential measures did the authors take after determining this high heterogeneity? Did they explore the source of this large heterogeneity? Considering this large heterogeneity, do the authors consider it appropriate to pool these studies?

      Thank you for highlighting this lack of clarity. As mentioned above, we now highlight that we performed several subgroup analyses to investigate heterogeneity. (L 116ff): “The overall pooled estimates are based on studies that focus on various clinical conditions/pathogens and compare different antibiotics treatments. To explore the impact of these and other potential sources of heterogeneity on the resistance estimates we performed various subgroup analyses and meta-regression.” Nevertheless, these analyses faced limitations due to the scarcity of evidence and often still showed a high amount of heterogeneity. Given the lack of appropriate evidence, it is hard to identify the source of heterogeneity. The decision to pool all studies was pre-specified in our previously published study protocol (PROSPERO CRD42020187257) and was motivated by the question whether there is a general effect of combination therapy on resistance development or identify factors that explain potential differences of the effect of combination therapy across bug-drug combinations. Therefore, we think that the presentation of the overall pooled estimate is appropriate, as it was predefined, and potential heterogeneity is furthermore explored in the subgroup analyses. 

      Reviewer #1 (Recommendations For The Authors): 

      I want to congratulate the investigators for the rigorous approach followed and the - in my opinion - correct interpretation of the data and analysis. The disappointing outcome is independent of the quality of the approach used. Yet, the consequences of that outcome are rather limited, and will not be surprising for - at least - some in the field of antibiotic resistance. 

      Thank you for your positive and differentiated feedback.

      Reviewer #2 (Recommendations For The Authors): 

      Line 93: "The screening of the citations of the 41 studies identified one additional eligible study, for a total of 42 studies". 

      Why was this study missed in the search strategy? 

      What is the definition of "quasi-RCTs"? Why were these included in the analysis? 

      Thank you for pointing out this lack of clarity. The additional study, which was found through screening the references of included studies, was not identified with our search strategy as neither the abstract nor database specific identifiers provided any indications that resistance was measured in this study. We added an explanation in the supplementary materials L 792 ff. and refer to this explanation in the main manuscript (L 95). 

      Quasi-randomized trials are trials that use allocation methods, which are not considered truly random. We added this specification in L 95. It now reads: “….two quasi-RCTs, where the allocation method used is not truly random” and in L 252 ff: “Studies were classified as quasi-RCTs if the allocation of participants to study arms was not truly random.” For instance, the study Macnab et al. (1994) assigned patients alternately to the treatment arms. Quasi-randomized controlled trials can lead to biases and especially old studies are more likely to have used quasi-random allocation methods. This can also be seen in our study, where the two quasi-randomized controlled trials were published in 1994 and 1997. The bias is considered in the risk of bias assessment and in our conducted sensitivity analysis regarding the impact of risk of bias on our estimates (supplementary information sections 3.0 and 4.2). Furthermore, one of the two previous conducted meta-analyses comparing beta-lactam monotherapy to beta-lactam and aminoglycoside, which assessed resistance development also included quasi-randomized controlled trials Paul et al 2014. Overall, while designing the study, we decided to include quasi-randomized controlled trials to increase statistical power as we expected that limited statistical power might be a concern and decided to assess potential biases in the risk of bias assessment.  

      Line 100: "Consequently, most studies did not have the statistical power to detect a large effect on within-patient resistance development (figure 2 B, SI p 14).". 

      Small studies actually have more power to detect large effects while smaller power to detect small effects. Please rephrase. 

      Thank you for pointing out this lack of clarity. We rephrased the sentence in order to emphasize our point that the studies are underpowered even if we assume in our power analysis a large effect on resistance development between treatment arms. In this context “the small” studies include too few patients to detect a large difference in resistance development. As resistance development is a rare event, generally studies have to include a larger number of patients to estimate the effect of intervention. We rephrased the sentence in L 101ff to: “Consequently, most studies did not have the statistical power to detect differences in within-patient resistance development even if we assume that the effect on resistance development is large between treatment arms.”

      Line 108: "... and prophylaxis for blood cancer patients with four studies (10%) respectively.". 

      I would suggest using the medical term hematological malignancy patients. 

      Thank you for the suggestion, we changed it as suggested to hematological malignancy patients, also accordingly in the figures, and table 1.

      Line 117: "Since the results for the two resistance outcomes are comparable, our focus in the following is on the acquisition of resistance". 

      The first OR is 1.23 and the second is 0.74, why do you consider these outcomes as comparable? 

      Thank you for pointing out our unprecise formulation. Due to the lack of power the exact estimates need to be interpreted with care. Here, we wanted to make the point that qualitatively the results of both outcomes do not differ in the sense that our analysis shows no substantial difference between a higher and a lower number of antibiotics. We rephrased the sentence to be more precise (L 123ff): “The results for the two resistance outcomes are qualitatively comparable in the sense that individual estimates may differ, but show similar absence of evidence to support either the benefit, harm or equivalence of treating with a higher number of antibiotics. Therefore, our …”. More detailed discussion about differences in estimates can be found in the SI, when the estimates of emergence of resistance are presented (e.g. SI section 2.1).

      Line 123: "Furthermore, a lower number of antibiotics performed better than a higher number if the compared treatment arms had no antibiotics in common (pooled OR 4.73, 95% CI 2.14 - 10.42; I 2 =37%, SI p 7).". 

      How do you explain this? What does this mean? 

      We now added a more detailed explanation in the supplement (L 376ff.): “The result that if the treatment arms had no antibiotics in common a lower number of antibiotics performed better than a higher number of antibiotics could be due to different potencies of antibiotics or resistance prevalences. Further, there could be a bias to combine less potent antibiotics or antibiotics with higher resistance prevalence to ensure treatment efficacy, which couldlead to higher chances to detect resistances in the treatment arm with higher number of antibiotics, e.g. by selecting pre-existing resistance due to antibiotic treatment (see also section 6.1.9).” We furthermore already specifically mention this point in the main manuscript and refer then to the detailed explanation in the SI (L134 ff, “which could be due to different potencies or resistance prevalences of antibiotics as discussed in SI (SI section 6.1.10)”)

      Overall, we want to point out that these results need to be interpreted with caution as overall the statistical power is limited to confidently estimate the difference in effect of a higher and lower number of antibiotics.

      Line 125: ". In contrast, when restricting the analysis to studies with at least one common antibiotic in the treatment arms are pooled there was little evidence of a difference (pooled OR 0.55, 95% CI 0.28 - 1.07". 

      The difference was not statistically significant but there does seem to be an indication of a difference, please rephrase. 

      We rephrased the sentence to (L135 ff.): “In contrast, when restricting the analysis to studies with at least one common antibiotic in the treatment arms we found no evidence of a difference, only a weak indication that a higher number of antibiotics performs better (pooled OR 0.55, 95% CI 0.28 – 1.07; I2 \=74%, figure 3B).” 

      Line 190: "Similarly, today, relevant cohort studies could be analysed collaboratively using various modern statistical methods to address confounding by indication and other biases (66, 67)". 

      However, residual confounding by indication is likely. Please also mention the disadvantages of observational studies compared to RCTs. 

      We now highlight that causal inference with observational data comes with its own challenges and stress that randomized controlled trials are still considered the gold standard. L 204ff now reads: “However, even with appropriate causal inference methods, residual confounding cannot be excluded when using observational data (67). Therefore, will remain the gold standard to estimate causal relationships.”

      Line 230: "Gram-negative bacteria have an outer membrane, which is absent in grampositive bacteria for instance, therefore intrinsic resistance against antibiotics can be observed in gram-negative bacteria (11)". 

      Intrinsic resistance is not unique for Gram-negative bacteria but also exists for Grampositive bacteria. 

      We agree with the reviewer that intrinsic resistance is not unique to gram-negative bacteria and refined our writing. We additionally added that differences between gram-negative and gram-positive bacteria are not only to be expected due to differing intrinsic resistances but also due to potential differences in the mechanistic interactions of antibiotics, i.e., synergy or antagonism. The paragraph reads now (SI L289): “The gram status of a bacterium may potentially determine how effective an antibiotic, or an antibiotic combination is. Differences between gram-negative and gram-positive bacteria such as distinct bacterial surface organisation can lead to specific intrinsic resistances of gram-negative and grampositive bacteria against antibiotics (55). These structural differences can lead to varying effects of antibiotic combinations between gram-negative and gram-positive bacteria (56).”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Line 127. Provide a few more words describing the voltage protocol. To the uninitiated, panels A and B will be difficult to understand. "The large negative step is used to first close all channels, then probe the activation function with a series of depolarizing steps to re-open them and obtain the max conductance from the peak tail current at -36 mV. "

      We have revised the text as suggested (revision lines 127 to Line 131): “From a holding potential within the gK,L activation range (here –74 mV), the cell is hyperpolarized to –124 mV, negative to EK and the activation range, producing a large inward current through open gK,L channels that rapidly decays as the channels deactivate. We use the large transient inward current as a hallmark of gK,L. The hyperpolarization closes all channels, and then the activation function is probed with a series of depolarizing steps, obtaining the max conductance from the peak tail current at –44 mV (Fig. 1A).”

      Incidentally, why does the peak tail current decay? 

      We added this text to the figure legend to explain this: “For steps positive to the midpoint voltage, tail currents are very large. As a result, K+ accumulation in the calyceal cleft reduces driving force on K+, causing currents to decay rapidly, as seen in A (Lim et al., 2011).”

      The decay of the peak tail current is a feature of gK,L (large K+ conductance) and the large enclosed synaptic cleft (which concentrates K+ that effluxes from the HC). See Govindaraju et al. (2023) and Lim et al. (2011) for modeling and experiments around this phenomenon.

      Line 217-218. For some reason, I stumbled over this wording. Perhaps rearrange as "In type II HCs absence of Kv1.8 significantly increased Rin and tauRC. There was no effect on Vrest because the conductances to which Kv1.8 contributes, gA and gDR activate positive to the resting potential. (so which K conductances establish Vrest???). 

      We kept our original wording because we wanted to discuss the baseline (Vrest) before describing responses to current injection.

      Vrest is presumably maintained by ATP-dependent Na/K exchangers (ATP1a1), HCN, Kir, and mechanotransduction currents. Repolarization is achieved by delayed rectifier and A-type K+ conductances in type II HCs.

      Figure 4, panel C - provides absolute membrane potential for voltage responses. Presumably, these were the most 'ringy' responses. Were they obtained at similar Vm in all cells (i.e., comparisons of Q values in lines 229-230). 

      We added the absolute membrane potential scale. Type II HC protocols all started with 0 pA current injection at baseline, so they were at their natural Vrest, which did not differ by genotype or zone. Consistent with Q depending on expression of conductances that activate positive to Vrest, Q did not co-vary with Vrest (Pearson’s correlation coefficient = 0.08, p = 0.47, n= 85).

      Lines 254. Staining is non-specific? Rather than non-selective? 

      Yes, thanks - Corrected (Line 264).

      Figure 6. Do you have a negative control image for Kv1.4 immuno? Is it surprising that this label is all over the cell, but Kv1.8 is restricted to the synaptic pole? 

      We don’t have a null-animal control because this immunoreactivity was done in rat. While the cuticular plate staining was most likely nonspecific because we see that with many different antibodies, it’s harder to judge the background staining in the hair cell body layer. After feedback from the reviewers, we decided to pull the KV1.4 immunostaining from the paper because of the lack of null control, high background, and inability to reproduce these results in mouse tissue. In our hands, in mouse tissue, both mouse and rabbit anti-KV1.4 antibodies failed to localize to the hair cell membrane. Further optimization or another method could improve that, but for now the single-cell expression data (McInturff et al., 2018) remain the strongest evidence for KV1.4 expression in murine type II hair cells.

      Lines 400-404. Whew, this is pretty cryptic. Expand a bit? 

      We simplified this paragraph (revision lines 411-413): “We speculate that gA and gDR(KV1.8) have different subunit composition: gA may include heteromers of KV1.8 with other subunits that confer rapid inactivation, while gDR(KV1.8) may comprise homomeric KV1.8 channels, given that they do not have N-type inactivation .”

      Line 428. 'importantly different ion channels'. I think I understand what is meant but perhaps say a bit more. 

      Revised (Line 438): “biophysically distinct and functionally different ion channels”.

      Random thought. In addition to impacting Rin and TauRC, do you think the more negative Vrest might also provide a selective advantage by increasing the driving force on K entry from endolymph? 

      When the calyx is perfectly intact, gK,L is predicted to make Vrest less negative than the values we report in our paper, where we have disturbed the calyx to access the hair cell (–80, Govindaraju et al., 2023, vs. –87 mV, here). By enhancing K+ accumulation in the calyceal cleft, the intact calyx shifts EK—and Vrest—positively (Lim et al., 2011), so the effect on driving force may not be as drastic as what you are thinking.

      Reviewer #2 (Recommendations For The Authors):

      (1) Introduction: wouldn't the small initial paragraph stating the main conclusion of the study fit better at the end of the background section, instead of at the beginning? 

      Thank you for this idea, we have tried that and settled on this direct approach to let people know in advance what the goals of the paper are.

      (2) Pg.4: The following sentence is rather confusing "Between P5 and P10, we detected no evidence of a non-gK,L KV1.8-dependent.....". Also, Suppl. Fig 1A seems to show that between P5 and P10 hair cells can display a potassium current having either a hyperpolarised or depolarised Vhalf. Thus, I am not sure I understand the above statement. 

      Thank you for pointing out unclear wording. We used the more common “delayed rectifier” term in our revision (Lines 144-147): “Between P5 and P10, some type I HCs have not yet acquired the physiologically defined conductance, gK,L.. N effects of KV1.8 deletion were seen in the delayed rectifier currents of immature type I HCs (Suppl. Fig. 1B), showing that they are not immature forms of the Kv1.8-dependent gK,L channels. ”

      (3) For the reduced Cm of hair cells from Kv1.8 knockout mice, could another reason be simply the immature state of the hair cells (i.e. lack of normal growth), rather than less channels in the membrane? 

      There were no other signs to suggest immaturity or abnormal growth in KV1.8–/– hair cells or mice. Importantly, type II HCs did not show the same Cm effect.

      We further discussed the capacitance effect in lines 160-167: “Cm scales with surface area, but soma sizes were unchanged by deletion of KV1.8 (Suppl. Table 2). Instead, Cm may be higher in KV1.8+/+ cells because of gK,L for two reasons. First, highly expressed trans-membrane proteins (see discussion of gK,L channel density in Chen and Eatock, 2000) can affect membrane thickness (Mitra et al., 2004), which is inversely proportional to specific Cm. Second, gK,L could contaminate estimations of capacitive current, which is calculated from the decay time constant of transient current evoked by small voltage steps outside the operating range of any ion channels. gK,L has such a negative operating range that, even for Vm negative to –90 mV, some gK,L channels are voltage-sensitive and could add to capacitive current.”

      (4) Methods: The electrophysiological part states that "For most recordings, we used .....". However, it is not clear what has been used for the other recordings.

      Thanks for catching this error, a holdover from an earlier ms. version.  We have deleted “For most recordings” (revision line 466).

      Also, please provide the sign for the calculated 4 mV liquid junction potential. 

      Done (revision line 476).

      Reviewer #3 (Recommendations For The Authors): 

      (1) Some of the data in panels in Fig. 1 are hard to match up. The voltage protocols shown in A and B show steps from hyperpolarized values to -71mV (A) and -32 mV (B). However, the value from A doesn't seem to correspond with the activation curve in C.

      Thank you for catching this.  We accidentally showed the control I-X curve from a different cell than that in A. We now show the G-V relation for the cell in A.

      Also the Vhalf in D for -/- animals is ~-38 mV, which is similar to the most positive step shown in the protocol.

      The most positive step in Figure 1B is actually –25 mV. The uneven tick labels might have been confusing, so we re-labeled them to be more conventional.

      Were type I cells stepped to more positive potentials to test for the presence of voltage-activated currents at greater depolarizations? This is needed to support the statement on lines 147-148. 

      We added “no additional K+ conductance activated up to +40 mV” (revision line 149-150).  Our standard voltage-clamp protocol iterates up to ~+40 mV in KV1.8–/– hair cells, but in Figure 1 we only showed steps up to –25 mV because K+ accumulation in the synaptic cleft with the calyx distorts the current waveform even for the small residual conductances of the knockouts. KV1.8–/– hair cells have a main KV conductance with a Vhalf of ~–38 mV, as shown in Figure 1, and we did not see an additional KV conductance that activated with a more positive Vhalf up to +40 mV.

      (2) Line 151 states "While the cells of Kv1.8-/- appeared healthy..." how were epithelia assessed for health? Hair cells arise from support cells and it would be interesting to know if Kv1.8 absence influences supporting cells or neurons. 

      We added our criteria for cell health to lines 477-479: “KV1.8–/– hair cells appeared healthy in that cells had resting potentials negative to –50 mV, cells lasted a long time (20-30 minutes) in ruptured patch recordings, membranes were not fragile, and extensive blebbing was not seen.”

      Supporting cells were not routinely investigated. We characterized calyx electrical activity (passive membrane properties, voltage-gated currents, firing pattern) and didn’t detect differences between +/+, +/–, and –/– recordings (data not shown). KV1.8 was not detected in neural tissue (Lee et al., 2013). 

      (3) Several different K+ channel subtypes were found to contribute to inner hair cell K+ conductances (Dierich et al. 2020) but few additional K+ channel subtypes are considered here in vestibular hair cells. Further comments on calcium-activated conductances (lines 310-317) would be helpful since apamin-sensitive SK conductances are reported in type II hair cells (Poppi et al. 2018) and large iberiotoxin-sensitive BK conductances in type I hair cells (Contini et al. 2020). Were iberiotoxin effects studied at a range of voltages and might calcium-dependent conductances contribute to the enhanced resonance responses shown in Fig. 4? 

      We refer you to lines 310-317 in the original ms (lines 322-329 in the revised ms), where we explain possible reasons for not observing IK(Ca) in this study.

      (4) Similar to GK,L erg (Kv11) channels show significant Cs+-permeability. Were experiments using Cs+ and/or Kv11 antagonists performed to test for Kv11? 

      No. Hurley et al. (2006) used Kv11 antagonists to reveal Kv11 currents in rat utricular type I hair cells with perforated patch, which were also detected in rats with single-cell RT-PCR (Hurley et al. 2006) and in mice with single-cell RNAseq (McInturff et al., 2018).  They likely contribute to hair cell currents, alongside Kv7, Kv1.8, HCN1, and Kir. 

      (5) Mechanosensitive ("MET") channels in hair cells are mentioned on lines 234 and 472 (towards the end of the Discussion), but a sentence or two describing the sensory function of hair cells in terms of MET channels and K+ fluxes would help in the Introduction too. 

      Following this suggestion we have expanded the introduction with the following lines  (78-87): “Hair cells are known for their large outwardly rectifying K+ conductances, which repolarize membrane voltage following a mechanically evoked perturbation and in some cases contribute to sharp electrical tuning of the hair cell membrane.  Because gK,L is unusually large and unusually negatively activated, it strongly attenuates and speeds up the receptor potentials of type I HCs (Correia et al., 1996; Rüsch and Eatock, 1996b). In addition, gK,L augments a novel non-quantal transmission from type I hair cell to afferent calyx by providing open channels for K+ flow into the synaptic cleft (Contini et al., 2012, 2017, 2020; Govindaraju et al., 2023), increasing the speed and linearity of the transmitted signal (Songer and Eatock, 2013).”

      (6) Lines 258-260 state that GKL does not inactivate, but previous literature has documented a slow type of inactivation in mouse crista and utricle type I hair cells (Lim et al. 2011, Rusch and Eatock 1996) which should be considered. 

      Lim et al. (2011) concluded that K+ accumulation in the synaptic cleft can explain much of the apparent inactivation of gK,L. In our paper, we were referring to fast, N-type inactivation. We changed that line to be more specific; new revision lines 269-271: “KV1.8, like most KV1 subunits, does not show fast inactivation as a heterologously expressed homomer (Lang et al., 2000; Ranjan et al., 2019; Dierich et al., 2020), nor do the KV1.8-dependent channels in type I HCs, as we show, and in cochlear inner hair cells (Dierich et al., 2020).”

      (7) Lines 320-321 Zonal differences in inward rectifier conductances were reported previously in bird hair cells (Masetto and Correia 1997) and should be referenced here.

      Zonal differences were reported by Masetto and Correia for type II but not type I avian hair cells, which is why we emphasize that we found a zonal difference in I-H in type I hair cells. We added two citations to direct readers to type II hair cell results (lines 333-334): “The gK,L knockout allowed identification of zonal differences in IH and IKir in type I HCs, previously examined in type II HCs (Masetto and Correia, 1997; Levin and Holt, 2012).”

      Also, Horwitz et al. (2011) showed HCN channels in utricles are needed for normal balance function, so please include this reference (see line 171). 

      Done (line 184).

      (8) Fig 6A. Shows Kv1.4 staining in rat utricle but procedures for rat experiments are not described. These should be added. Also, indicate striola or extrastriola regions (if known). 

      We removed KV1.4 immunostaining from the paper, see above.

      (9) Table 6, ZD7288 is listed -was this reagent used in experiments to block Gh? If not please omit. 

      ZD7288 was used to block gH to produce a clean h-infinity curve in Figure 6, which is described in the legend.

      (10) In supplementary Fig. 5A make clear if the currents are from XE991 subtraction. Also, is the G-V data for single cell or multiple cells in B? It appears to be from 1 cell but ages P11-505 are given in legend. 

      The G-V curve in B is from XE991 subtraction, and average parameters in the figure caption are for all the KV1.8–/–  striolar type I hair cells where we observed this double Boltzmann tail G-V curve. I added detail to the figure caption to explain this better.

      (11) Supplementary Fig. 6A claims a fast activation of inward rectifier K+ channels in type II but not type I cells-not clear what exactly is measured here.

      We use “fast inward rectifier” to indicate the inward current that increases within the first 20 ms after hyperpolarization from rest (IKir, characterized in Levin & Holt, 2012) in contrast to HCN channels, which open over ~100 ms. We added panel C to show that the activation of IKir is visible in type II hair cells but not in the knockout type I hair cells that lack gK,L. IKir was a reliable cue to distinguish type I and type II hair cells in the knockout.

      For our actual measurements in Fig 6B, we quantified the current flowing after 250 ms at –124 mV because we did not pharmacologically separate IKir and IH.

      Could the XE991-sensitive current be activated and contributing?

      The XE991-sensitive current could decay (rapidly) at the onset of the hyperpolarizing step, but was not contributing to our measurement of IKir­ and IH, made after 250 ms at –124 mV, at which point any low-voltage-activated (LVA) outward rectifiers have deactivated. Additionally, the LVA XE991-sensitive currents were rare (only detected in some striolar type I hair cells) and when present did not compete with fast IKir, which is only found in type II hair cells.

      Also, did the inward rectifier conductances sustain any outward conductance at more depolarized voltage steps? 

      For the KV1.8-null mice specifically, we cannot answer the question because we did not use specific blocking agents for inward rectifiers.  However, we expect that there would only be sustained outward IR currents at voltages between EK and ~-60 mV: the foot of IKir’s I-V relation according to published data from mouse utricular hair cells – e.g., Holt and Eatock 1995, Rusch and Eatock 1996, Rusch et al. 1998, Horwitz et al., 2011, etc.  Thus, any such current would be unlikely to contaminate the residual outward rectifiers in Kv1.8-null animals, which activate positive to ~-60 mV. 

      (I-HCN is also not a problem, because it could only be outward positive to its reversal potential at ~-40 mV, which is significantly positive to its voltage activation range.)

    1. Author response:

      Reviewer #1 (Public Review):

      Greter et al. provide an interesting and creative use of lactulose as a "microbial metabolism" inducer, combined with tracking of H2 and other fermentation end products. The topic is timely and will likely be of broad interest to researchers studying nutrition, circadian rhythm, and gut microbiota. However, a couple of moderate to major concerns were noted that may impact the interpretation of the current data:

      (1)  Much of the data relies on housing gnotobiotic mice in metabolic cages, but I couldn't find any details of methods to assess contamination during multiple days of housing outside of gnotobiotic isolators/cages. Given the complexity of the metabolic cage system used, sterility would likely be incredibly challenging to achieve. More details needed to be included about how potential contamination of the mice was assessed, ideally with 16S rRNA gene sequencing data of the endpoint samples and/or qPCR for total colonization levels relative to the more targeted data shown.

      We thank the reviewer for pointing out that we have not made the experimental setup clear in the text. One of the unique features of our metabolic cage setup is that the mice do not need to be housed outside gnotobiotic isolators, but that the whole system is placed inside an isolator. We have developed and published this system recently (Hoces et al, PLOS Biol 2022), including extensive testing for sterility/gnotobiosis. We will improve clarity in a revised version.

      Given that 16S sequencing of germ-free mice will typically produce false positive reads, we used Blautia pseudococcoides as an indicator strain for contaminations. This strain is present in our SPF mouse colony, forms spores that are highly resilient to decontamination measures, and has been the most likely contaminant in our gnotobiotic system. We have checked for presence of this strain in the cecum content of all our animals at the end of each experiment, and only included experiments which had a B. pseudococcoides signal below threshold level.

      (2)  The language could be softened to provide a more nuanced discussion of the results. While lactulose does seem to induce microbial metabolism it also could have direct effects on the host due to its osmotic activity or other off-target effects. Thus, it seems more precise to just refer to lactulose specifically in the figure titles and relevant text. Additionally, the degree to which lactulose "disrupts the diurnal rhythm" isn't clear from the data shown, especially given that the markers of circadian rhythm rapidly recover from the perturbation. It is probably more precise to instead state that lactulose transiently induces fermentation during the light phase or something to that effect. The discussion could also be expanded to address what methods are available or could be developed to build upon the concepts here; for example, the use of genetic inducers of metabolism which may avoid the more complex responses to lactulose.

      The point about language is well taken. We tried to make the argument that what we call disruption of the diurnal rhythm is acute, meaning that it is not disrupting the rhythm "chronically" (i.e., for longer), but that it recovers rapidly from this transient disruption. Given the confusion this wording is causing we are rephrasing this in a new version of the manuscript.

      We also appreciate the mention of concepts from our study that can be built on in future studies, and we will add a paragraph on potential further research.

      Despite these concerns, this was still an intriguing and valuable addition to the growing literature on the interface of the microbiome and circadian fields.

      We thank the reviewer for all their encouraging and constructive remarks!

      Reviewer #2 (Public Review):

      Summary:

      The authors aimed to investigate how microbial metabolites, such as hydrogen and short-chain fatty acids (SCFAs), influence feeding behavior and circadian gene expression in mice.

      Specifically, they sought to understand these effects in different microbial environments, including a reduced community model (EAM), germ-free mice, and SPF mice. The study was designed to explore the broader relationship between the gut microbiome and host circadian rhythms, an area that is not well understood. Through their experiments, the authors hoped to elucidate how microbial metabolism could impact circadian clock genes and feeding patterns, potentially revealing new mechanisms of gut microbiome-host interactions.

      Strengths:

      The manuscript presents a well-executed investigation into the complex relationship between microbial metabolites and circadian rhythms, with a particular focus on feeding behavior and gene expression in different mouse models. One of the major strengths of the work lies in its innovative use of a reduced community model (EAM) to isolate and examine the effects of specific microbial metabolites, which provides valuable insights into how these metabolites might influence host behavior and circadian regulation. The study also contributes to the broader understanding of the gut microbiome's role in circadian biology, an area that remains poorly understood. The experiments are thoughtfully designed, with a clear rationale that ties together the gut microbiome, metabolic products, and host physiological responses. The authors successfully highlight an intriguing paradox: the significant influence of microbial metabolites in the EAM model versus the lack of effect in germ-free and SPF mice, which adds depth to the ongoing exploration of microbial-host interactions. Despite some methodological concerns, the manuscript offers compelling data and opens up new avenues for research in the field of microbiome and circadian biology.

      We thank the reviewer for their encouraging remarks, specifically on the surprising findings that microbial metabolism seems to affect circadian clock gene expression and behavior differently in EAM and SPF mice.

      Weaknesses:

      The manuscript, while providing valuable insights, has several methodological weaknesses that impact the overall strength of the findings. First, the process for stool collection lacks clarity, raising concerns about potential biases, such as the risk of coprophagia, which could affect the dry-to-wet weight ratio analysis and compromise the validity of these measurements.

      We thank the reviewer for pointing out that our description of the specific methods used for collecting feces were presented in a somewhat confusing manner. In short, dry and wet fecal weights were determined based on fecal pellets that were freshly produced and directly collected from restrained mice. To determine total fecal output over time, we collected all fecal pellets produced in a 5 hour window in a cage, determined their dry weight, and then used the water content determined for fresh feces to calculate wet weight. Using this method, we cannot account for potential differences in coprophagia between the groups. However, this is not likely to affect the dry-to-wet ratio of fecal output in our results.

      Additionally, the use of the term "circadian" in some contexts appears inaccurate, as "diurnal" might be more appropriate, especially given the uncertainty regarding whether the observed microbiome fluctuations are truly circadian.

      Similarly to our answer to reviewer 1 above, we appreciate this remark about imprecise language and have addressed this issue in the text. Indeed, we do not think the microbiota fluctuations are truly circadian, but likely a result of the entrainment through the host's food intake.

      Another significant issue is the unexpected absence of an osmotic effect of lactulose in EAM mice, which contradicts the known properties of lactulose as an osmotic laxative. This finding requires further verification, including the use of a positive control, to ensure it is not artifactual.

      This is a good point. We have used this lactulose dosage specifically to induce microbial metabolism without causing osmotic diarrhea, and went to some lengths do demonstrate this. In response to this comment (and one by reviewer 3 below about transit time), we are planning an experiment that will use a higher lactulose dose as a positive control.

      The presentation of qRT-PCR data as log2-fold changes, with a mean denominator, could introduce bias by artificially reducing variability, potentially leading to spurious findings or increased risk of Type I error. This approach may explain the unexpected activation of both the positive and negative limbs of the circadian clock.

      While we agree that our description of the qpcr method used for measuring circadian clock gene expression was lacking detail, we do not see how log2-fold changes (as opposed to, e.g., fold change) would lead to an increased risk of Type 1 error. We did not use a mean denominator for analyzing the data but used the house-keeping data for the same sample as denominator for the respective circadian clock genes. This will be described more clearly in a revised methods section.

      Moreover, the lack of detailed information on the primers and housekeeping genes used in the experiments is concerning, particularly given the importance of using non-circadian housekeeping genes for accurate normalization.

      We apologize for this omission, it seems like the resource table got lost in the submission, leading to missing information. It will be included in the revised manuscript.

      The methods for measuring metabolic hormones, such as GLP-1 and GIP, are also not adequately described. If DPP-IV/protease inhibitor tubes were not used, the data could be unreliable due to the rapid degradation of these hormones by circulating proteases.

      We thank the reviewer for spotting this mistake. We will add details of how GLP-1 and GIP were measured to the methods section. While we did not use DPP-IV/protease inhibitor tubes, we added the inhibitors to the syringes when sampling blood, leading to the same effect.

      Finally, the manuscript does not address the collection of hormone levels during both fasting and fed phases, a critical aspect for interpreting the metabolic impact of microbial metabolites.

      We agree that it will be interesting to measure hormone levels also in the fed phase, and we will include this data in a revised version of the manuscript. Even with that data, a more thorough examination of hormone levels over the diurnal cycle, as suggested by reviewer 3, might be relevant for a full-scale follow-up. Given our data, we of course cannot exclude that there may be time-point-specific differences and therefore have softened the language around this conclusion to state that hormone levels are not acutely changed after a lactulose intervention “at the time-points examined”.

      These methodological concerns collectively weaken the robustness of the study's results and warrant careful reconsideration and clarification by the authors.

      Because of these weaknesses, the authors have partially achieved their aims by providing novel insights into the relationship between microbial metabolites and host circadian rhythms. The data do suggest that microbial metabolites can significantly influence feeding behavior and circadian gene expression in specific contexts. However, the unexpected absence of an osmotic effect of lactulose, the potential biases introduced by the log2-fold change normalization in qRT- PCR data, and the lack of clarity in critical methodological details weaken the overall conclusions. While the study provides valuable contributions to understanding the gut microbiome's role in circadian biology, the methodological weaknesses prevent a full endorsement of the authors' conclusions. Addressing these issues would be necessary to strengthen the support for their findings and fully achieve the study's aims.

      We thank the reviewer again for their careful and critical reading of our work, and for their constructive input. We hope that many of the concerns will be addressed by providing more methodological detail and additional experimental data in the revised version of our manuscript.

      Despite the methodological concerns raised, this work has the potential to make a significant impact on the field of circadian biology and microbiome research. The study's exploration of the interaction between microbial metabolites and host circadian rhythms in different microbial environments opens new avenues for understanding the complex interplay between the gut microbiome and host physiology. This research contributes to the growing body of evidence that microbial metabolites play a crucial role in regulating host behaviors and physiological processes, including feeding and circadian gene expression.

      We thank the reviewer for their encouraging remarks!

      Reviewer #3 (Public Review):

      Summary:

      In the manuscript by Greter, et al., entitled "Acute targeted induction of gut-microbial metabolism affects host clock genes and nocturnal feeding" the authors are attempting to demonstrate that an acute exposure to a non-nutritive disaccharide (lactulose) promotes microbial metabolism that feeds back onto the host to impact circadian networks. The premise of the study is interesting and the authors have performed several thoughtful experiments to dissect these relationships, providing valuable insights for the field. However, the work presented does not necessarily support some of the conclusions that are drawn. For instance, lactulose is administered during the fasting period to mimic the impact of a feeding bout on the gut microbiota, but it would be important to perform this treatment during the fed state as well to show that the effects on food intake, etc. do not occur.

      This is a good point, and we will include an experiment addressing this in a revised version of the manuscript.

      To truly draw the conclusion that the current outcomes are directly connected to and mediated via an impact on the host circadian clock, it would be ideal to perform these studies in a circadian gene knock-out animal (i.e., Cry1 or Cry2 KO mice, or perhaps Bmal-VilCre tissue- specific KO mice). If the effects are lost in these animals, this would more concretely connect the current findings to the circadian clock gene network.

      We agree that these would be interesting experiments to follow up on the question how the observed effects are actuated by host functions. However, they would require a large amount of preparatory work (including rederiving the KO mice to get them germ-free in our gnotobiotic facility), we argue that they are beyond the scope of this study.

      Despite these reservations, the work is promising.

      We thank the reviewer for their encouraging assessment.

      Strengths:

      Attempting to disentangle nutrient acquisition from microbial fermentation and its impact on diurnal dynamics of gut microbes on host circadian rhythms is an important step for providing insights into these host-microbe interactions.

      The authors utilize a novel approach in leveraging lactulose coupled with germ-free animals and metabolic cages fitted with detectors that can measure microbial byproducts of fermentation, particularly hydrogen, in real-time.

      The authors consider several interesting aspects of lactulose delivery, including how it shifts osmotic balance as well as provides calculations that attempt to explain the caloric contribution of fermentation to the animal in the context of reduced food intake. This provides interesting fundamental insights into the role of microbial outputs on host metabolism.

      Thank you!

      Weaknesses:

      While the authors have done a large amount of work to examine the osmotic vs. metabolic influence of lactulose delivery, the authors have not accounted for the enlarged cecum and increased cecal surface area in germ-free mice. The authors could consider an additional control of cecectomy in germ-free mice.

      We thank the reviewer for pointing out the potential effect of the anatomical differences of germ- free and conventionally colonized mice. We agree that when comparing germ-free mice to SPF mice, the enlarged cecum area in germ-free animals could lead to differences in water release or uptake. However, this is not the case in the gnotobiotic mice colonized with our minimal microbiota, which have comparable cecum sizes to germ-free mice, and thus comparing water transport over the cecum wall between those groups can be done without correcting for cecal surface areas. We will add information on cecum sizes in the different experimental groups to a revised version of the manuscript.

      The authors have examined GI hormones as one possible mechanism for how food intake is altered by microbial fermentation of lactulose. However, the authors measure PYY and GLP-1 only at a single time point, stating that there are no differences between groups. Given the goal of the studies is to tie these findings back into circadian rhythms, it would be important to show if the diurnal patterns of these GI hormones are altered.

      We fully agree that a deeper investigation of the diurnal fluctuations of hormone levels would be an interesting next step in studying whether perturbations in food intake can disturb these rhythms. Doing this for the whole rhythm would really require a full second study. For a revised version of this manuscript, we will add a second time-point of hormone measurements (during the fed phase) to this study. In addition, we will soften the statements made around these data to point out just that hormone level fluctuations could not be detected during specific time points after lactulose treatment, and therefore do not seem to explain the imminent behavioral changes.

      Considerations of other factors, such as conjugated vs. deconjugated bile acids, microbial bile salt hydrolase activity, and bile acid resorption, might be an important consideration for how lactulose elicits more influence on ileal circadian clock genes relative to cecum and colon.

      We absolutely agree that investigation of microbial bile acid modification and their metabolism by the host would be an interesting topic for a follow-up study.

      Measurements of GI transit time (both whole gut and regional) would be an important for consideration for how lactulose might be impacting the ileum vs. cecum vs. colon.

      This is also an interesting point, and we will add an assessment of transit time to a revised version of the manuscript.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank all reviewers for their constructive criticism and suggestions. We have addressed all the points as detailed below. We also added an experiment that strengthens the connection between replication stress and GSF2 and suggests a role of GSF2 in recovery from the DNA replication checkpoint arrest (Fig. 4g).

      Reviewer #1 (Evidence, reproducibility and clarity)

      Summary

      The manuscript by the Khmelinskii group reports that they have successfully constructed two conditional degron libraries of budding yeast for almost all proteins. For this purpose, the authors employed an improved auxin-inducible degron (AID2). Initially, they constructed yeast libraries by fusing HaloTag to the N- or C-terminus of proteins and found that C-terminal tagging is less likely to affect the location and function of proteins (Fig. 1). Based on this finding, the authors fused mNG-AID*-3Myc or AID*-3Myc (AID-v1 or AID-v2 library, respectively) to more than 5600 proteins and found that 4079 proteins were significantly depleted when cells were treated with 5-Ph-IAA (Fig. 2). A fitness defect was observed for over 60% of essential proteins, indicating the target depletion showed the expected phenotype in many cases (Fig. 3). Finally, the authors screened proteins required for maintaining viability in the presence of MMS, CPT and HU, and identified common proteins involved in DNA repair (such as RAD52 epistasis proteins) and other proteins specific for MMS, CPT or HU resistance (Fig. 4). Furthermore, the authors revealed that an ER membrane protein, Gsf2, is required for HU resistance, which was not found in previous studies with the YKO library because gsf2∆ cells in the YKP library had acquired a suppressor mutation (Fig. 4e).

      Major comments

      1 - In Figure S2a, the authors initially checked the growth of yeast cells expressing OsTIR1(F74G) under the GAL1 promoter, saying that "expression of OsTir1(F74G) from the strong galactose-inducible GAL1 promoter had a negligible impact on yeast fitness (page 3)". To me, the OsTIR1(G74G) expressing cells showed slightly slower growth compared to the control cells. Moreover, the cells expressing it under the very strong GPD promoter showed apparent slow growth, suggesting that OsTIR1(F74G) overexpression caused a side effect. The authors should carefully evaluate the cells with GAL1-OsTIR1(F74G).

      Indeed high levels of OsTir1(F74G) impaired growth, at least in the strain background used in our experiments. Expression from the strongest promoter we tested (GPD) resulted in an obvious fitness defect, whereas conditional expression from the strong GAL1 promoter had a small impact on fitness and expression from the weaker CYC1 and ADH1 promoters did not affect fitness (Fig. S2a). Despite the small fitness impairment, we decided to use the GAL1-OsTIR1(F74G) construct for the AID libraries for two reasons: the conditional nature of this promoter is likely to limit adaptation to expression of OsTir1(F74G) and the high expression levels of OsTir1(F74G) are less likely to limit degradation of AID-tagged proteins. We added this explanation to the Results section.

      As suggested by the reviewer, we quantitatively evaluated the fitness impact of the GAL1-OsTIR1(F74G) construct. Using the colony size data of the AID-v1 library (grown on galactose medium with 1 µM 5-Ph-IAA, Fig. 2c), we compared colony sizes of OsTIR1– and OsTIR1+ strains for non-essential ORFs. As degradation of non-essential proteins is not expected to affect fitness, the difference in colony size between OsTIR1– and OsTIR1+ strains can be attributed to OsTir1 expression. On average, the presence of the OsTIR1 construct reduced colony size by 7% (median fitness of OsTIR1+ strains relative to OsTIR1– strains of 0.93 ± 0.06, n = 4698 non-essential ORFs). We performed the same comparison for strains that did not exhibited OsTIR1-dependent protein degradation. In this set of strains, the presence of the OsTIR1 construct also reduced colony size by 7% (median fitness of OsTIR1+ strains relative to OsTIR1– strains of 0.93 ± 0.05, n = 624 ORFs in the “not affected” group in Fig. 2d). We added this information to Fig. S3a.

      2 - Given the possibility that OsTIR1(F74G) overexpression might cause a growth problem, it is not appropriate to compare OsTIR1+ and OsTIR1- conditions for evaluating growth fitness (Fig. 2). As shown in Fig. S4b, it is more appropriate to compare the +/- 5-Ph-IAA conditions. Additionally, the 5-Ph-IAA concentration used in this study was not clearly mentioned in the method section and figure legends.

      The two approaches, comparison of OsTIR1– and OsTIR1+ strains grown on galactose with 5-Ph-IAA (as was done for the AID-v1 library) and comparison of galactose ± 5-Ph-IAA conditions (as was done for the AID-v2 library), have advantages and disadvantages but should yield similar results. The technical noise (due to spatial effects on the screen plates) is lower for the comparison of OsTIR1– and OsTIR1+ strains, as the two strains for each ORF can be grown next to each other on the same plate (Fig. 2c). Furthermore, corrections of spatial effects are more precise with this layout as the frequency of fitness defects per plate is lower. On the other hand, comparison of galactose ± 5-Ph-IAA conditions implicitly corrects for the fitness impact of the GAL1-OsTIR1(F74G) construct, as the fitness distribution of each condition is normalized to the median of that condition, but this fitness impact of OsTir1 cannot be determine from the screen results.

      We now explicitly corrected the colony size data of the AID-v1 library for the fitness impact of OsTir1 expression (quantified in the previous point) and updated all the analyses and results shown in Fig. 3, Fig. S3b-e and Fig. S4a. The correction was performed using the multiplicative model, whereby the fitness impacts of OsTir1 expression and degradation of the AID-tagged protein are independent. Overall, our observations and conclusions stand unchanged with the corrected data.

      Finally, the 5-Ph-IAA concentration (1 µM) used in all experiments is now indicated in the figure legends and the Methods section.

      3 - The authors found that fitness defects were observed for over 60% of essential proteins (Fig. 3). In other words, depletion of the remaining 40% was not enough to induce growth defects. The authors should discuss how the current AID library can be improved to achieve better target depletion. Previous literature reported various possibilities, such as using a tandem degron tag and combining AID with the Tet promoter system (PMID 25181302, 26081484). Although optional, it would be wonderful if the authors would generate an improved library.

      Following the reviewer’s suggestion, we added the following statement to the discussion:

      “In the future, the libraries could be potentially improved with N-terminal tagging of ORFs that currently exhibit incomplete or no degradation of AID-tagged proteins or using multiple copies of the AID* tag to enhance protein degradation (Kubota et al, 2013; Nishimura & Kanemaki, 2014).”

      Minor comments

      4 - 5-Ph-IAA is not auxin because it does not induce the auxin responses in plants (PMID 29355850). Therefore, the authors should be careful when they refer to 5-Ph-IAA and should not call it auxin.

      We corrected this and now refer to 5-Ph-IAA explicitly throughout the manuscript.

      5 - The availability of the HaloTag and AID libraries should be indicated.

      We added the following statement to the Methods section: “All strains, plasmids and libraries are available upon request.”

      6 - Page 3: "Finally, the extent of AID-dependent degradation varied with protein abundance, in that highly expressed proteins were more likely to be only partially degraded compared to lowly expressed ones (Fig. 2e, Fig. S2e)". Fig. S2e should be Fig. S2d, shouldn't it?

      We corrected this mistake.

      Reviewer #1 (Significance):

      This paper is technically robust and well-conducted. It presents a comprehensive study showcasing the effectiveness of the conditional degron library. The HaloTag libraries will also be useful. The yeast libraries presented in this study will be invaluable for future screenings and studies across all aspects of yeast biology.

      Reviewer #2 (Evidence, reproducibility and clarity):

      In this study, the authors reported the development and characterization of two AID-tagged strain libraries for the model organism S. cerevisiae. The libraries are based on the latest AID technology, AID2. One library contains a fluorescent protein fused to the AID, whereas the other library does not have the fluorescent protein, thus offering better compatibility with imaging-based screens. The authors show that AID-dependent protein degradation can be achieved for most of the library strains, and a growth phenotype was induced for a high fraction of essential genes. Genetic screens for DNA damage-sensitive mutants showcased the applicability of the libraries.

      I only have the following minor comments and suggestions for the authors to consider.

      Point 1, Page 3

      "Optimized tagging of proteins with these N-terminal localization signals likely also contributes to the lack of correlation between differential fitness defects and occurrence of terminal localization signals (Fig. S1f, Table S2)."

      Is this because the genes that cannot tolerate C-terminal addition are already depleted in the C-SWAT library? In the C-SWAT library, a 15-amino-acid linker L3 is added to the C-terminus.

      That is certainly a possibility. During construction of SWAT library, tagging with N-SWAT and C-SWAT acceptor modules failed for 251 and 353 ORFs, respectively (Weill et al. 2018, Meurer et al. 2018). However, these ORFs are not enriched in N- or C-terminal localization signals, respectively (4.6% ORFs with C-terminal signals in C-SWAT library vs 3.3% among failed C-SWAT strains; 12.3% ORFs with N-terminal signals in N-SWAT library vs 2.0% among failed N-SWAT strains).

      The most significant trend in the data is enrichment of ribosomal subunits in both sets of failed strains: 3.9% and 16.3% of the genes mapped to the GO term “ribosome” in the N-SWAT library and the set of failed N-SWAT strains, respectively; 3.6% and 15.9% of the genes in the C-SWAT library and the set of failed C-SWAT strains, respectively. This is consistent with what was reported by Weill et al. for failed N-SWAT strains.

      Point 2, Page 3

      "Expression of OsTir1(F74G) from the strong galactose-inducible GAL1 promoter had a negligible impact on yeast fitness (Fig. S2a)."

      I wonder why the authors chose to use an inducible promoter to express OsTir1(F74G). In other studies, for example Snyder et al. 2019, OsTir1 has been expressed from a constitutive promoter.

      Despite the small fitness impairment, we decided to use the GAL1-OsTIR1(F74G) construct for the AID libraries for two reasons: the conditional nature of this promoter is likely to limit adaptation to expression of OsTir1(F74G) and the high expression levels of OsTir1(F74G) are less likely to limit degradation of AID-tagged proteins. We added this explanation to the Results section.

      Please see our response to reviewer 1, points 1 and 2.

      Point 3, Page 3

      "A similar frequency was previously observed with a set of AID alleles constructed for 758 essential ORFs using the original AID system (Snyder et al, 2019). However, over a third of these alleles exhibited fitness defects even in the absence of auxin, which were further compounded by off-target effects of auxin, highlighting the advantages of the AID2 system."

      Snyder et al. 2019 used a TAP-AID-6FLAG tag. The fitness defect in the absence of auxin may not necessarily be due to the AID part of the tag, as TAP tagging is known to compromise the functions of some genes.

      We corrected our statement as follows:

      “A similar frequency was previously observed with a set of AID alleles constructed for 758 essential ORFs using the original AID system (Snyder et al, 2019). However, over a third of these alleles exhibited fitness defects even in the absence of auxin, which were further compounded by off-target effects of auxin.”

      Point 4, Page 3

      "Interestingly, complete degradation of 33% of essential proteins did not result in a fitness defect. It is possible that in some cases partial degradation results in low protein levels that are below the detection limit of our assay but are sufficient for viability."

      Are these "33% of essential proteins" enriched with genes with low expression levels? I guess genes with low expression levels are more likely to fall below the detection limit even when partially depleted. Are there extreme examples where a highly expressed essential gene does not exhibit a fitness defect when the protein product is no longer detectable?

      We performed the analysis suggest by the reviewer, and observed no difference in pre-degradation protein levels between essential & degraded proteins with and without a fitness defect (now shown in Fig. S3b). This also showed that there are indeed several essential proteins with high pre-degradation proteins levels and without a fitness defects upon degradation to below our detection limit: Pgi1, Nhp2, Smt3, Gus1, Dys1, Sis1, Fas2 and Rpo26 (in the abundance bin 4 in Fig. S2f).

      In addition, we considered the nature of the essential genes in these two groups. Namely, we compared the frequency of core essential genes, which are always required for viability, and conditional essential genes, which vary in essentiality depending on the genetic background or environment (Bosch-Guiteras & van Leeuwen, 2022). Interestingly, the set of essential and degraded proteins without an accompanying fitness defect was enriched in conditional essential genes defined by two independent measures: essentiality across S. cerevisiae natural isolates (Peter et al, 2018) or with bypass suppression interactions in a laboratory strain (van Leeuwen et al, 2020) (Fig. S3c, odds ratio = 1.6, p-value = 0.04 in a Fisher’s exact test and odds ratio = 1.7, p-value = 0.02, respectively). This suggests that conditional essentiality could explain the observed lack of fitness defects upon degradation of some essential proteins.

      We added this analysis to the Results section.

      Reviewer #2 (Significance):

      This study generated highly valuable resources for functional genomic studies.

      Reviewer #3 (Evidence, reproducibility and clarity):

      Summary: In this manuscript, the authors construct and analyze a genome-wide collection of AID-tagged S. cerevisiae strains. The manuscript is clearly written and the analysis appears to be thorough. This collection will be quite useful to the yeast community. There are some issues to address, listed below.

      1. page 1, abstract - "...with protein abundance and tag accessibility as limiting factors." It's not clear what the authors mean by protein abundance as a limiting factor. Are they referring to the protein level pre-depletion? Please clarify.

      That is correct. We clarified this statement as follows:

      “Almost 90% of AID-tagged proteins were degraded in the presence of the auxin analog 5-Ph-IAA, with initial protein abundance and tag accessibility as limiting factors.”

      1. page 1, second paragraph of the Intro, end of the paragraph - There are publications prior to Van Leeuwen et al. 2016 that describe suppressors lurking in the deletion set. Here are two that should be cited: Hughes et al. 2000, DOI: 10.1038/77116 and Teng et al. 2013, DOI: 10.1016/j.molcel.2013.09.026.

      We added the references pointed out by the review.

      1. The goal of this work, stated in the first sentence of results, is to construct genome-wide AID libraries. Yet, to test whether N-terminal or C-terminal tagging is better, the authors used a Halo tag. Those results showed that, for the Halo tag, C-terminal tagging was less likely to impair function. Why weren't these tests done with the same AID tag used to build the libraries in the next section? What is the evidence that the results for a Halo tag will be the same as for an AID tag? While hard to find it documented in publications, there is a lot of anecdotal evidence that the type of tag can make a big difference, as well as its location. While this section will be of interest to those using Halo tags, it's not clear how it relates to the rest of the paper, especially given the careful characterization of the AID library in the next section.

      We chose the Halo tag due its size (33 kDa), similar to many commonly used fluorescent protein tags and to the mNG-AID*-3myc tag in the AID-v1 library, and lack of evidence for a dominant negative effect on the tagged proteins. This is now stated in the Results section.

      We agree that further work is needed to understand how the type of tag, its size and biophysical properties, and the linker between the tag and the protein of interest affect protein localization and function across the proteome. This is now stated in the Results section.

      1. Throughout this manuscript, including the Tables, in cases where the protein is no longer detected, please do not describe this as "complete degradation." Instead, please use "not detectable." This is clearly the case for essential proteins that are no longer detected but that still grow, so it is very likely the case for many or all of the others. If the authors have any understanding of the sensitivity of their fluorescence assay, then that would be helpful to know. For example, they could add a control, taking a known amount of a fluorescent protein and analyzing known dilutions to assay the level of detection.

      We appreciate the reviewer’s suggestion. We decided against “not detectable” instead of “complete degradation” to avoid confusion with proteins that are not detectable pre-degradation. Nevertheless, we replaced “complete degradation” with “degradation” and added the following explanation to the Results section:

      “Out of 5079 proteins detected in OsTIR1– strains, 4455 (~88%) were significantly depleted in OsTIR1+ strains (Fig. 2d, Table S3). 3981 proteins could not be detected specifically in the OsTIR1+ background. Hereafter, we will refer to these proteins as degraded, although it is likely that at least in some cases degradation is not complete but the remainder is below the detection limit of our plate reader assay. Nevertheless, 474 proteins were unequivocally degraded only partially, as they were detectable in the OsTIR1+ background but at reduced levels compared to the OsTIR1– background (Fig. 2d).”

      To estimate the detection limit of the colony fluorescence assay, we correlated the background-corrected mNG intensities in OsTIR1– strains with absolute levels (in molecules per cell) of 1167 proteins determined by Lawless et al. (PMID 26750110). Based on a linear fit, the threshold above which proteins are considered “detected” in our analysis, mNG/bkg(OsTIR1–) > 1.2, corresponds to 200 molecules per cell (95% confidence interval 18 to 2187 molecules per cell). We added this information to the Results section and Fig. S2c.

      This detection limit is in line with our results, where low abundance proteins such as the centromeric histone Cse4/CENP-A (with two Cse4 molecules per centromere adding to 64 molecules per cell, Aravamudhan et al. PMID: 23623551 and several times that amount elsewhere in the cell, Collins et al. PMID: 15530401) can be detected in the colony assay (Table S3).

      1. Fig. S2a and page 3, first full paragraph - The authors wrote that expression of OsTir1(F74G) from the strong GAL1 promoter had a negligible impact on growth. However, the figure shows that there is an obvious effect on growth after 48 hours of incubation, with much smaller colonies. This defect is much less obvious after 72 hours. This difference suggests that the growth effect would have been even more obvious at 24 hours. I think that the text should be modified to indicate this effect.

      We now quantified the fitness impact of the GAL1-OsTIR1(F74G) construct and rephrased this part of the manuscript. In addition, we corrected the AID-v1 library screen results for the fitness impact of the GAL1-OsTIR1(F74G) construct and updated all figures and tables. Please see our response to reviewer 1, points 1 and 2.

      1. One of the main justifications for the construction of the AID library is to allow assays for essential genes. Yet that was not a feature of the screen for DNA damage response factors. Were any essential genes identified in those screens? It would be of great interest to identify lower levels of 5-Ph-IAA that only mildly affect growth of essential genes and then to repeat the screens.

      58 out of the combined 165 potential resistance factors identified in the three screens are essential genes. We added this information to the Results section and essential genes are now indicated in Fig. S5c.

      We now show that chemical-genetic interactions for both essential and non-essential genes can be reproduced in spot tests using the MMS screen as an example (Fig. S5d). We also show that additional essential hits can be identified at lower concentrations of 5-Ph-IAA, which allow determining chemical-genetic interactions for strains that otherwise exhibit no growth in 1 μM 5-Ph-IAA (Fig. S5e). As the screens serve as a demonstration of possible uses of the AID libraries, we consider additional exhaustive screening for DNA damage response factors beyond the scope of this manuscript.

      1. A big advantage of AID depletion over deletions is the ability to look at strains very shortly after loss of the protein of interest. In many cases in the literature, experiments are done after one or two hours after depletion. Yet in this work, there are no data presented on how effective depletion is in the short term versus after a long period of growth (24 hours). It would be a strong addition to the manuscript to include a time course for at least a subset of the proteins to look at the loss of signal over time, either by fluorescence or by Western blots.

      We performed time courses of protein depletion with immunoblotting for 12 strains (4 proteins from the “degraded”, “partially degraded” and “not affected” groups each). The results in Fig. S2e show that “degraded” proteins are depleted to below the detection limit within 60min of 5-Ph-IAA addition, “partially degraded” proteins are depleted less or exhibit a degradation-resistant pool, and the levels of “not affected” proteins remain stable over time, consistent with their classification based on mNG fluorescence in the colony assay. We added this information to the Results section.

      Reviewer #3 (Significance):

      The library will be of use to the yeast community.

    1. What is a global history of architecture? There is, of course, no single answer, just as there is no single way to define words like global, history, and architecture. Nonetheless, these words are not completely open-ended, and they serve here as the vectors that have helped us construct the narratives of this volume. With this book, we hope to provoke discussion about these terms and at the same time furnish a framework students can use to begin discussion in the classroom.This book transcends the necessary restrictions of the classroom, where in a semester or even two, the teacher has to limit what is taught based on any number of factors. The reader should understand that there is always something over the horizon. Whereas any such book must inevitably be selective about what it can include, we have attempted to represent a wide swath of the globe, in all its diversity. At the same time,however, the book does not aspire to be an encyclopedia of everything that has been built; nor does it assume a universal principle that governs everything architectural. The buildings included are for us more than just monuments of achievement; we see them as set pieces allowing us to better appreciate the complex intertwining of social, political, religious, and economic contexts in which they are positioned. As much as possible, we emphasize urban contexts as well as materials and surfaces. We have also tried to emphasize quality as much as quantity. From that point of view, the word global in the title is not so much a geographic construct as an eruditional horizon. In that sense, this book is not about the sum of all local histories. Its mission is bound to the discipline of architecture, which requires us to see connections, tensions, and associations that transcend so-called local perspectives. In that respect, ours is only one of many possible narratives.Synchrony has served as a powerful frame for our discussion. For instance, as much as Seoul’s Gyeongbok Palace is today heralded in Korea as an example of traditional Korean architecture, we note that it also belongs to a Eurasian building campaign that stretched from Japan (the Katsura Imperial Villa), through China (Beijing and the Ming Tombs), to Persia (Isfahan), India (the Taj Mahal), Turkey (the Suleymaniye Complex), Italy (St. Peter’s Basilica and the Villa Rotonda), France (Chambord), and Russia (Cathedral of the Assumption). In some cases, one can assume that information flowed from place to place, but such movement is not itself a requirement for the architecture to qualify as “global.” It is enough for us to know, first, that these structures are contemporaneous and that each has a specific history. If there are additional connections that come as a result of trade, war, or other forms of contact, these are for us subsidiary to contemporaneity.This is not to say that our story is exclusively the story of individual buildings and sites, only that there is a give and take between explaining how a building works and how it is positioned in the world of its influences and connections. We have, therefore, tried to be faithful to the specificities of each individual building while acknowledging that every architectural project is always embedded in a larger world—and even a worldview—that affects it directly and indirectly.Our post-19th-century penchant for seeing history through the lens of the nation-state often makes it difficult to apprehend such global pictures. Furthermore, in the face of today’s increasingly hegemonic global economy, the tendency by historians, and often architects, to nationalize, localize, regionalize, and even micro-regionalize history—perhaps as meaningful acts of resistance—can blind us to the historical synchronicity and interconnectivity of global realities that existed long before our present moment of globalization. What would the Turks be today if they had stayed in East Asia? The movement of people, ideas, food, and wealth has bound us to each other since the beginning of history. And so without denying the reality of nation-states and their claims to unique histories and identities, we have resisted the temptation to streamline our narratives to fit nationalistic parameters. Indian architecture, for instance, may have some consistent traits from its beginnings to the present day, but there is less certainty about what those traits might be than one may think. The flow of Indian Buddhism to China, the opening of trade to Southeast Asia, the settling of Mongolians in the north, the arrival of Islam from the east, and the colonization by the English are just some of the more obvious links that bind India, for better or worse, to global events. It is these links, and the resultant architecture, more than the presumed “Indianness” of Indian architecture, that interests us. Furthermore, India has historically been divided into numerous kingdoms that, like Europe, could easily have evolved (and in some cases did evolve) into their own nations. The 10th-century Chola dynasty of peninsular India, for example, was not only an empire but possessed a unique worldview of its own. In writing its history, we have attempted to preserve its distinct identity while marking the ways in which it maps its own global imagination.Broadly speaking, our goal is to help students of architecture develop an understanding of the manner in which architectural production is always triangulated by the exigencies of time and location. More specifically, we have narrated these interdependencies to underscore what we consider to be the inevitable modernity of each period. We often think of the distant past as moving slowly from age to age, dynasty to Ching, F. D. K., Jarzombek, M. M., & Prakash, V. (2017). A global history of architecture. John Wiley & Sons, Incorporated.Created from udmercy on 2024-08-30 18:52:30.Copyright © 2017. John Wiley & Sons, Incorporated. All rights reserved.

      Buildings are more than just structures—they tell stories about the cultures and times they were built in

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Weakness 1. Enhancing Reproducibility and Robustness: To enhance the reproducibility and robustness of the findings, it would be valuable for the authors to provide specific numbers of animals used in each experiment. Explicitly stating the penetrance of the rod-like neurocranial shape in dact1/2-/- animals would provide a clearer understanding of the consistency of this phenotype. 

      In Fig. 3 and Fig. 4 animal numbers were added to the figure and figure legend (line 1111). In Fig. 5 animal numbers were added to the figure. We now state that dact1/2-/- animals exhibit the rod-like neurocranial shape that is completely penetrant (Line 260). 

      Weakness 2. Strengthening Single-Cell Data Interpretation: To further validate the single-cell data and strengthen the interpretation of the gene expression patterns, I recommend the following: 

      -Provide a more thorough explanation of the rationale for comparing dact1/2 double mutants with gpc4 mutants.

      -Employ genotyping techniques after embryo collection to ensure the accuracy of animal selection based on phenotype and address the potential for contamination of wild-type "delayed" animals.

      -Supplement the single-cell data with secondary validation using RNA in situ or immunohistochemistry techniques. 

      An explanation of our rationale was added to the results section (Lines 391403) and a summary schematic was added to Figure 6 (panel A).

      Genotyping of the embryos was not possible but quality control analysis by considering the top 2000 most variable genes across the dataset showed good clustering by genotype, indicating the reproducibility of individuals in each group (See Supplemental Fig. 4).

      The gene expression profiles obtained in our single-cell data analysis for gpc4, dact1, and dact2 correlate closely with our in situ hybridization analyses. Further, our data is consistent with published zebrafish single-cell data. We validated our finding of increased capn8 expression in dact1/2 mutants by in situ hybridization. Therefore we are confident in the robustness of our single-cell data.  

      Weakness 3. Directly Investigating Non-Cell-Autonomous Effects: To directly assess the proposed non-cell-autonomous role of dact1/2, I suggest conducting transplantation experiments to examine the ability of ectodermal/neural crest cells from dact1/2 double mutants to form wild-type-like neurocranium.  

      The reviewer’s suggestion is an excellent experiment and something to consider for future work. Cell transplant experiments between animals of specific genotypes are challenging and require large numbers. It is not possible to determine the genotype of the donor and recipient embryos at the early timepoint of 1,000 cell stage where the transplants would have to be done in the zebrafish. So that each transplant will have to be carried out blind to genotype from a dact1+/-; dact2+/- or dact1-/-; dact2+/- intercross and then both animals have to be genotyped at a subsequent time point, and the phenotype of the transplant recipient be analyzed. While possible, this is a monumental undertaking and beyond the scope of the current study.

      Weakness 4. Further Elucidating Calpain 8's Role: To strengthen the evidence supporting the critical role of Calpain 8, I recommend conducting overexpression experiments using a sensitized background to enhance the statistical significance of the findings. 

      We thank the reviewer for their suggestion and have now performed capn8 overexpression experiments in embryos generated from dact1/2 double heterozygous breeding. We found a statistically significant effect of capn8 overexpression in the dact1+/-,dact2+/- fish (Lines 462-464 and Fig. 8C,D). 

      Minor Comments:  

      Comment: Creating the manuscript without numbered pages, lines, or figures makes orientation and referencing harder.  

      Revised

      Comment: Authors are inconsistent in the use of font and adverbs, which requires extra effort from the reader. ("wntIIf2 vs wnt11f2 vs wnt11f2l"; "dact1/2-/- vs dact1/dact2 -/-"; "whole-mount vs wholemount vs whole mount").  

      Revised throughout.

      Comment: Multiple sentences in the "Results" belong to the "Materials and Methods" or the "Discussion" section. 

      We have worked to ensure that sentences are within the appropriate sections of the manuscript.

      Comment: Abstract:

      "wnt11f2l" should be "wnt11f2"  

      Revised (Line 24).

      Comment: Main text:

      Page 5 - citation Waxman, Hocking et al. 2004 is used 3x without interruption any other citation. 

      Revised (Line 112).

      Page 9 - "dsh" mutant is mentioned once in the whole manuscript - is this a mistake?

      Revised, Rewritten (Line 196).

      Page 10 - Fig 2B does not show ISH.

      Revised (Line 229).

      Page 11 - "kyn" mutant is mentioned here for the first time but defined on page 15.

      Revised (Line 245). Now first described on page 4.

      Page 14 - "cranial CNN" should be CNCC.

      Revised. (Line 334)

      Page 16 - dact1/dact2/gpc4: Fig. 5C is used but it should be Fig 5E.

      Revised. (Line 381)

      Page 18 - dact1/2-/- or dact1-/-, dact2-/-. 

      Revised. (Line 428)

      Comment: Methods:

      Page 24 - ZIRC () "dot" is missing. ChopChop ")" is missing. "located near the 5' end of the gene" - In the Supplementary Figure 1 looks like in the middle of the gene.

      Revised. (Lines 600, 609, 611, respectively).

      Page 25 - WISH -not used in the main text.

      Revised. (Line 346).

      Page 26 - 4% (v/v) formaldehyde; at 4C - 4{degree sign}C; 50% (v/v) ethanol; 3% (w/v) methylcellulose.

      Revised. (Lines 659, 660, 662).

      Page 27 - 0.1% (w/v) BSA. 

      Revised. (Line 668).

      Comment: Discussion:

      The overall discussion requires more references and additional hypotheses. On page 20, when mentioning 'as single mutants develop normally,' does this refer to the entire animals or solely the craniofacial domain? Are these mutants viable? If they are, it's crucial to discuss this phenomenon in relation to prior morpholino studies and genetic compensation.

      Observing how the authors interpret previously documented changes in nodal and shh signaling would be beneficial. While Smad1 is discussed, what about other downstream genes? Is shh signaling altered in the dact1/2 double mutants? 

      We have revised the Discussion to include more references (Lines 473, 476, 483, 488, 491, 499, 501, 502, 510, 515, 529, 557, 558) and additional hypotheses (Lines 503-505, 511-519, 522-525). We have added more specific information regarding the single mutants (Lines 270-275, 480-493, Fig. S3). We have added discussion of other downstream genes, including smad1 (Lines 561-572) and shh (Lines 572-580).

      Comment: Figures:

      Appreciating differences between specimens when eyes were or were not removed is quite hard.

      Yes this was an unfortunate oversight, however, the key phenotype is the EP shown in the dissections.

      Fig 1. - wntIIf2 vs wnt11f2? C - Thisse 2001 - correct is Thisse et al. 2001.

      Revised typo in Fig 1. (And Line 1083).

      Fig 1E: These plots are hard to understand without previous and detailed knowledge. Authors should include at least some demarcations for the cephalic mesoderm, neural ectoderm, mesenchyme, and muscle. Missing color code.

      We have moved this data to supplementary figure S1 and have added labels of the relevant cell types and have added the color code.

      Comment:- Fig 2 - In the legend for C - "wildtype and dact2-/- mutant" and "dact1/2 mutant"; in the picture is dact1-/-, dact2-/-.

      Revised (Line 1105).

      Fig 2 - B - it is a mistake in 6th condition dact1: 2x +/+, heterozygote (+/-) is missing.

      Revised Figure 2B.

      Fig 4. - Typo in the legend: dact1/"t"2-/- .

      Revised. (Line 1127).

      Fig 8C - In my view, when the condition gfp mRNA says "0/197, " none of the animals show this phenotype. I assume the authors wanted to say that all the animals show this phenotype; therefore, "197/197" should be used.

      We have removed this data from the figure as there were concerns by the reviewers regarding reproducibility. 

      Fig S1 - Missing legend for the 28 + 250, 380 + 387 peaks? RT-qPCR - is not mentioned in the Materials and Methods. In D - ratio of 25% (legend), but 35% (graph).

      Revised.(Line 1203, Line 625, Line 1213, respectively).

      Fig S2 - The word "identified" - 2x in one sentence. 

      Revised. (Line 1230).

      Reviewer #2 (Public Review):

      Weakness(1) While the qualitative data show altered morphologies in each mutant, quantifications of these phenotypes are lacking in several instances, making it difficult to gauge reproducibility and penetrance, as well as to assess the novel ANC forms described in certain mutants.  

      In Fig. 3 and Fig. 4 animal numbers were added to the figure legend. In Fig. 5 animal numbers were added to the figure to demonstrate reproducibility. We now state that dact1/2-/- animals exhibit the rod-like neurocranial shape that is completely penetrant (Line 260). As the altered morphologies that we report are qualitatively significant from wildtype we did not find it necessary to make quantitative measurements. For experiments in which it was necessary to in-cross triple heterozygotes (Fig 3, Fig. 5), we dissected and visually analyzed the ANC of at least 3 compound mutant individuals. At least one individual was dissected for the previously published or described genotypes/phenotypes (i.e. wt, wntllf2-/-, dact1/2-/-, gpc4-/-, wls/-). We realize quantitative measurements may identify subtle differences between genotypes. However, the sheer number of embryos needed to generate these relatively rare combinatorial genotypes and the amount of genotyping required prevented quantitative analyses. 

      Weakness 2) Germline mutations limit the authors' ability to study a gene's spatiotemporal functional requirement. They therefore cannot concretely attribute nor separate early-stage phenotypes (during gastrulation) to/from late-stage phenotypes (ANC morphological changes). 

      We agree that we cannot concretely attribute nor separate early and latestage phenotypes. Conditional mutants to provide temporal or cell-specific analysis are beyond the scope of this work. Here we speculate based on evidence obtained by comparing and contrasting embryos with grossly similar early phenotypes and divergent late-stage phenotypes. We believe our findings contribute to the existing body of literature on zebrafish mutants with both early convergent extension defects and craniofacial abnormalities.   

      Weakness (3) Given that dact1/2 can regulate both canonical and non-canonical wnt signaling, this study did not specifically test which of these pathways is altered in the dact1/2 mutants, and it is currently unclear whether disrupted canonical wnt signaling contributes to the craniofacial phenotypes, even though these phenotypes are typical non-canonical wnt phenotypes. 

      Previous literature has attributed canonical wnt, non-canonical wnt, and nonwnt functions to dact, and each of these likely contributes to the dact mutant phenotype (Lines 87-89). We performed cursory analyses of tcf/lef:gfp expression in the dact mutants and did not find evidence to support further analysis of canonical wnt signaling in these fish. Single-cell RNAseq did not identify differential expression of any canonical or non-canonical wnt genes in the dact1/2 mutants.

      Further research is needed to parse out the intracellular roles of dact1 and dact2 in response to wnt and tgf-beta signaling. Here we find that dact may also have a role in calcium signaling, and further experiments are needed to elaborate this role.      

      Weakness (4) The use of single-cell RNA sequencing unveiled genes and processes that are uniquely altered in the dact1/2 mutants, but not in the gpc4 mutants during gastrulation. However, how these changes lead to the manifested ANC phenotype later during craniofacial development remains unclear. The authors showed that calpain 8 is significantly upregulated in the mutant, but the fact that only 1 out of 142 calpainoverexpressing animals phenocopied dact1/2 mutants indicates the complexity of the system. 

      To further test whether capn8 overexpression may contribute to the ANC phenotype we performed overexpression experiments in the resultant embryos of dact1/dact2 double het incross. We found the addition of capn8 caused a small but statistically significant occurrence of the mutant phenotype in dact1/2 double heterozygotes (Fig.8D). We agree with the reviewer that our results indicate a complex system of dysregulation that leads to the mutant phenotype. We hypothesize that a combination of gene dysregulation may be required to recapitulate the mutant ANC phenotype. Further, as capn8 activity is regulated by calcium levels, overexpression of the mRNA alone likely has a small effect on the manifestation of the phenotype. 

      Weakness (5) Craniofacial phenotypes observed in this study are attributed to convergent extension defects but convergent extension cell movement itself was not directly examined, leaving open if changes in other cellular processes, such as cell differentiation, proliferation, or oriented division, could cause distinct phenotypes between different mutants. 

      Although convergent extension cell movements were not directly examined, our phenotypic analyses of the dact1/2 mutant are consistent with previous literature where axis extension anomalies were attributed to defects in convergent extension (Waxman 2004, Xing 2018, Topczewski 2001). We do not attribute the axis defect to differentiation differences as in situ analyses of established cell type markers show the existence of these cells, only displaced relative to wildtype (Figure 1). We agree that we cannot rule out a role for differences in apoptosis or proliferation however, we did not detect transcriptional differences in dact1/2 mutants that would indicate this in the single-cell RNAseq dataset. Defects in directed division are possible, but alone would not explain that dact1/2 mutant phenotype, particularly the widened dorsal axis (Figure 1).

      Major comments:  

      Comment (1) The author examined and showed convergent extension phenotype (CE) during body axis elongation in dact1/dact2-/- homozygous mutants. Given that dact2-/- single mutants also displayed shortened axis, the authors should either explain why they didn't analyze CE in dact2-/- (perhaps because that has been looked at in previously published dact2 morphants?) or additionally show whether CE phenotypes are present in dact1 and dact2 single mutants.  

      The authors should quantify the CE phenotype in both dact2-/- single mutants and dact1/dact2-/- double mutants, and examine whether the CE phenotypes are exacerbated in the double mutants, which may lend support to the authors' idea that dact1 can contribute to CE. The authors stated in the discussion that they "posit that dact1 expression in the mesoderm is required for dorsal CE during gastrulation through its role in noncanonical Wnt/PCP signaling". However, no evidence was presented in the paper to show that dact1 influences CE during body axis elongation.  

      Because any axis shortening in shortening in dact2-/- single mutants was overcome during the course of development and at 5 dpf there was no noticeable phenotype, we did not analyze the single mutants further.  

      We have added data to demonstrate the resulting phenotype of each combinatorial genotype to provide a more clear and detailed description of the single and compound mutants (Fig. S3). 

      Our hypothesis that dact1 may contribute to convergent extension is based on its apparent ability to compensate (either directly or indirectly) for dact2 loss in the dact2-/- single mutant. 

      Comment (2) Except in Fig. 2, I could not find n numbers given in other experiments. It is therefore unclear if these mutant phenotypes were fully or partially penetrant. In general, there is also a lack of quantifications to help support the qualitative results. For example, in Fig. 4, n numbers should be given and cell movements and/or contributions to the ANC should be quantified to statistically demonstrate that the second stream of CNCC failed to contribute to the ANC.  

      Similarly, while the fan-shaped and the rod-shaped ANCs are very distinct, the various rod-shaped ANCs need to be quantified (e.g. morphometry or measurements of morphological features) in order for the authors to claim that these are "novel ANC forms", such as in the dact1/2-/-, gpc4/dact1/2-/-, and wls/dact1/2-/- mutants (Fig. 5).  

      We have added n numbers for each experiment and stated that the rod-like phenotype of the dact1/2-/- mutant was fully penetrant. 

      Regarding CNCC experiments, we repeated the analysis on 3 individual controls and mutants and did not find evidence that CNCC migration was directly affected in the dact1/2 mutant. Rather, differences in ANC development are likely secondary to defects in floor plate and eye field morphometry. Therefore we did not do any further analyses of the CNCCs.

      Regarding figure 5, we have added n numbers. We dissected and analyzed a minimum of three triple mutants (dact1/2-/-,gpc4-/- and dact1/2-/-,wls-/-) and numerous dact1/s double mutants and found that the triple mutant ANC phenotype was consistent and recognizably different enough from the dact1/2-/-, or gpc4 or wls single mutant that morphometry measurements were not needed. Further, the triple mutant phenotype (narrow and shortened) appears to be a simple combination of dact1/2 (narrow) and gpc4/wls (shortened) phenotypes. As we did not find evidence of genetic epistasis, we did not analyze the novel ANC forms further.

      Comment (3): The authors have attributed the ANC phenotypes in dact1/2-/- to CE defects and altered noncanonical wnt signaling. However, no evidence was presented to support either. The authors can perhaps utilize diI labelling, photoconversionmediated lineage tracing, or live imaging to study cell movement in the ANC and compare that with the cell movement change in the gpc4-/- , and gpc4/dact1/2-/- mutants in order to first establish that dact1/2 affect CE and then examine how dact1/2 mutations can modulate the CE phenotypes in gpc4-/- mutants.  

      Concurrently, given that dact1 and dact2 can affect (perhaps differentially) both canonical and non-canonical wnt signaling, the authors are encouraged to also test whether canonical wnt signaling is affected in the ANC or surrounding tissues, or at minimum, discuss the potential role/contribution of canonical wnt signaling in this context.  

      Given the substantial body of research on the role of noncanonical wnt signaling and planar cell polarity pathway on convergent extension during axis formation (reviewed by Yang and Mlodzik 2015, Roszko et al., 2009) and the resulting phenotypes of various zebrafish mutants (i.e. Xing 2018, Topczewski 2001), including previous research on dact1 and 2 morphants (Waxman 2004), we did not find it necessary to analyze CE cell movements directly.  

      Our finding that CNCC migration was not defective in the dact1/2 mutants and the knowledge that various zebrafish mutants with anterior patterning defects (slb, smo, cyc) have a similar craniofacial abnormality led us to conclude that the rod-like ANC in the dact1/2 mutant was secondary to an early patterning defect (abnormal eye field morphology). Therefore, testing dact1/2 and convergent extension or wnt signaling in the ANC itself was not an aim of this paper.  

      Comment (4) The authors also have not ruled out other possibilities that could cause the dact1/2-/- ANC phenotype. For example, increased cell death or reduced proliferation in the ANC may result in the phenotype, and changes in cell fate specification or differentiation in the second CNCC stream may also result in their inability to contribute to the ANC. 

      We agree that we cannot rule out whether cell death or proliferation is different in the dact1/2 mutant ANC. However, because we do not find the second CNCC stream within the ANC, this is the most likely explanation for the abnormal ANC shape. Because the first stream of CNCC are able to populate the ANC and differentiate normally, it is most likely that the inability of the second stream to populate the ANC is due to steric hindrance imposed by the abnormal cranial/eye field morphology. These hypotheses would need to be tested, ideally with an inducible dact1/2 mutant, however, this is beyond the scope of this paper.     

      Comment (5) The last paragraph of the section "Genetic interaction of dact1/2 with Wnt regulators..." misuses terms and conflates phenotypes observed. For instance, the authors wrote "dact2 haploinsuffciency in the context of dact1-/-; gpc4-/- double mutant produced ANC in the opposite phenotypic spectrum of ANC morphology, appearing similar to the gpc4-/- mutant phenotype". However, if heterozygous dact2 is not modulating phenotypes in this genetic background, its function is not "haploinsuffcient". The authors then said, "These results show that dact1 and dact2 do not have redundant function during craniofacial morphogenesis, and that dact2 function is more indispensable than dact1". However this statement should be confined to the context of modulating gpc4 phenotypes, which is not clearly stated. 

      Revised (Lines 380, 382).   

      Comment (6) For the scRNA-seq analysis, the authors should show the population distribution in the UMAP for the 3 genotypes, even if there are no obvious changes. The authors are encouraged, although not required, to perform pseudotime or RNA velocity analysis to determine if differentiation trajectories are changed in the NC populations, in light of what they found in Fig. 4. The authors can also check the expression of reporter genes downstream of certain pathways, e.g. axin2 in canonical wnt signaling, to query if these signaling activities are changed (also related to point #3 above). 

      We have added population distribution data for the 3 genotypes to Supplemental Figure 4. Although RNA velocity analysis would be an interesting additional analysis, we would hypothesize that the NC population is not driving the differences in phenotype. Rather these are likely changes in the anterior neural plate and mesoderm. 

      Comment (7) While the phenotypic difference between gpc4-/- and dact1/2-/- are in the ANC at a later stage, ssRNA-seq was performed using younger embryos. The authors should better explain the rationale and discuss how transcriptomic differences in these younger embryos can explain later phenotypes. Importantly, dact1, dact2, and capn8 expression were not shown in and around the ANC during its development and this information is crucial for interpreting some of the results shown in this paper. For example, if dact1 and dact2 are expressed during ANC development, they may have specific functions during that stage. Alternatively, if dact1 and dact2 are not expressed when the second stream CNCCs are found to be outside the ANC, then the ANC phenotype may be due to dact1/2's functions at an earlier time point. The author's statement in the discussion that "embryonic fields determined during gastrulation effect the CNCC ability to contribute to the craniofacial skeleton" is currently speculative. 

      We have reworded our rationale and hypothesis to increase clarity (Lines 391-405). We believe that the ANC phenotype of the dact1/2 mutants is secondary to defective CE and anterior axis lengthening, as has been reported for the slb mutant (Heisenberg 1997, 2000). We utilized the gpc4 mutant as a foil to the dact1/2 mutant, as the gpc4 mutant has defective CE and axis extension without the same craniofacial phenotype.

      We have added dact1 and dact2 WISH of 24 and 48 hpf (Fig1. D,E) to show expression during ANC development. 

      Comment (8) The functional testing of capn8 did not yield a result that would suggest a strong effect, as only 1 in 142 animals phenocopied dact1/2. Therefore, while the result is interesting, the authors should tone down its importance. Alternatively, the authors can try knocking down capn8 in the dact1/2 mutants to test how that affects the CE phenotype during axis elongation, as well as ANC morphogenesis. 

      As overexpression of capn8 in wildtype animals did not result in a significant phenotype, we tested capn8 overexpression in compound dact1/2 mutants as these have a sensitized background. We found a small but statistically significant effect of exogenous capn8 in dact1+/-,dact2+/- animals. While the effect is not what one would expect comparing to Mendelian genetic ratios, the rod-like ANC phenotype is an extreme craniofacial dysmorphology not observed in wildtype or mRNA injected embryos hence significant. The experiment is limited by the available technology of over-expressing mRNA broadly without temporal or cell specificity control. It is possible that if capn8 over-expression was restricted to specific cells (floor plate, notochord or mesoderm) and at the optimal time period during gastrulation/segmentation that the aberrant ANC phenotype would be more robust. We agree with the reviewer that although the finding of a new role for capn8 during development is interesting, its importance in the context of dact should be toned down and we have altered the manuscript accordingly (Lines 455-467).  

      Comment (9) A difference between the two images in Fig. 8B is hard to distinguish.

      Consider showing flat-mount images. 

      We have added flat-mount images to Fig. 8B

      Minor comments:

      Comment (1) wnt11f2 is spelled incorrectly in a couple of places, e.g. "wnt11f2l" in the abstract and "wntllf2" in the discussion. 

      Revised throughout.

      Comment (2) For Fig. 1D, the white dact1 and yellow dact2 are hard to distinguish in the merged image. Consider changing one of their colors to a different one and only merge dact1 and dact2 without irf6 to better show their complementarity.  

      We agree with the reviewer that the expression patterns of dact1 and dact2 are difficult to distinguish in the merged image. We have added outlines of the cartilage elements to the images to facilitate comparisons of dact1 and dact2 expression (Fig 1F). 

      Comment (3) For Fig. 1E, please label the clusters mentioned in the text so readers can better compare expressions in these cell populations.  

      We have moved this data to supplementary figure S1 and have added labels.

      Comment (4) The citing and labelling of certain figures can be more specific. For example, Fig. S1A, B, and Fig. S1C should be used instead of just Fig. S1 (under the section titled dact1 and dact2 contribute to axis extension...". Similarly, Fig. 4 can be better labeled with alphabets and cited at the relevant places in the text.  

      We have modified the labeling of the figures according to the reviewer’s suggestion (Fig S2 (previously S1), Fig4) and have added reference to these labels in the text (Lines 202, 204, 212, 328, 334, 336). 

      Comment (5) For Fig. 2B, the (+/+,-/-) on x-axis should be (+/-,-/-).  

      Revised in Figure 2B.

      Comment (6) Several figures are incorrectly cited. Fig. 2C is not cited, and the "Fig. 2C" and "Fig. 2D" cited in the text should be "Fig. 2D" and "Fig. 2E" respectively. Similarly, Fig. 5C and D are not cited in the text and the cited Fig. 5C should be 5E. The VC images in Fig. 5 are not talked about in the text. Finally, Fig. 7C was also not mentioned in the text.  

      We have corrected the labeling and have added descriptions of each panel in the Results (Fig.2 Line 231, 237, 242, Fig 5 Line 373, 381, Fig 7 line 431). 

      Comment (7) In the main text, it is indicated that zebrafish at 3ss were used for ssRNAseq, but in the figure legend, it says 4ss. 

      Revised (Line 682)

      Comment (8) No error bars in Fig. S1B and the difference between the black and grey shades in Fig. S1D is not explained.  

      Error bars are not included in the graphs of qPCR results (now Fig S2C) as these are results of a pool of 8 embryos performed one time. We have added a legend to explain the gray vs. black bars (now Fig S2E). 

      Reviewer #3 (Public Review):  

      Weaknesses: The hypotheses are very poorly defined and misinterpret key previous findings surrounding the roles of wnt11 and gpc4, which results in a very confusing manuscript. Many of the results are not novel and focus on secondary defects. The most novel result of overexpressing calpain8 in dact1/2 mutants is preliminary and not convincing.  

      We apologize for not presenting the question more clearly. The Introduction was revised with particular attention to distinguish this work using genetic germline mutants from prior morpholino studies. Please refer to pages 4-5, lines 106-121.

      Weakness 1) One major problem throughout the paper is that the authors misrepresent the fact that wnt11f2 and gpc4 act in different cell populations at different times. Gastrulation defects in these mutants are not similar: wnt11 is required for anterior mesoderm CE during gastrulation but not during subsequent craniofacial development while gpc4 is required for posterior mesoderm CE and later craniofacial cartilage morphogenesis (LeClair et al., 2009). Overall, the non-overlapping functions of wnt11 and gpc4, both temporally and spatially, suggest that they are not part of the same pathway.  

      We have reworded the text to add clarity. While the loss of wnt11 versus the loss of gpc4 may affect different cell populations, the overall effect is a shortened body axis. We stressed that it is this similar impaired axis elongation phenotype but discrepant ANC morphology phenotypes in the opposite ends of the ANC morphologic spectrum that is very interesting and leads us to investigate dact1/2 in the genetic contexts of wnt11f2 and gpc4.  Pls refer to page 4, lines 73-84. Further, the reviewer’s comment that wnt11 and gpc4 are spatially and temporally distinct is untested. We think the reviewer’s claim of gpc4 acting in the posterior mesoderm refers to its requirement in the tailbud (Marlow 2004). However this does not exclude gpc4 from acting elsewhere as well. Further experiments would be necessary. Both wnt11f2 and gpc4 regulate non-canonical wnt signaling and are coexpressed during some points of gastrulation and CF development (Gupta et al., 2013; Sisson 2015). This data supports the possibility of overlapping roles. 

      Weakness 2) There are also serious problems surrounding attempts to relate single-cell data with the other data in the manuscript and many claims that lack validation. For example, in Fig 1 it is entirely unclear how the Daniocell scRNA-seq data have been used to compare dact1/2 with wnt11f2 or gpc4. With no labeling in panel 1E of this figure these comparisons are impossible to follow. Similarly, the comparisons between dact1/2 and gpc4 in scRNA-seq data in Fig. 6 as well as the choices of DEGs in dact1/2 or gpc4 mutants in Fig. 7 seem arbitrary and do not make a convincing case for any specific developmental hypothesis. Are dact1 and gpc4 or dact2 and wnt11 coexpressed in individual cells? Eyeballing similarity is not acceptable.  

      We have moved the previously published Daniocell data to Figure S1 and have added labeling. These data are meant to complement and support the WISH results and demonstrate the utility of using available public Daniocell data. Please recommend how we can do this better or recommend how we can remediate this work with specific comment. 

      Regarding our own scRNA-seq data, we have added rationale (line 391-403) and details of the results to increase clarity (Lines 419-436). We have added a panel to Figure 6 (panel A) to help illustrate or rationale for comparing dact1/2 to gpc4 mutants to wt. The DEGs displayed in Fig.7A are the top 50 most differentially expressed genes between dact1/2 mutants and WT (Figure 7 legend, line 422-424).   

      We have looked at our scRNA-seq gene expression results for our clusters of interest (lateral plate mesoderm, paraxial mesoderm, and ectoderm). We find dact1, dact2, and gpc4 co-expression within these clusters. Knowing whether these genes are coexpressed within the same individual cell would require going back and analyzing the raw expression data. We do not find this to be necessary to support our conclusions. The expression pattern of wnt11f2 is irrelevant here.   

      Weakness 3) Many of the results in the paper are not novel and either confirm previous findings, particularly Waxman et al (2004), or even contradict them without good evidence. The authors should make sure that dact2 loss-of-function is not compensated for by an increase in dact1 transcription or vice versa. Testing genetic interactions, including investigating the expression of wnt11f2 in dact1/2 mutants, dact1/2 expression in wnt11f2 mutants, or the ability of dact1/2 to rescue wnt11f2 loss of function would give this work a more novel, mechanistic angle.

      We clarified here that the prior work carried out by Waxman using morppholinos, while acceptable at the time in 2004, does not meet the rigor of developmental studies today which is to generate germline mutants. The reviewer’s acceptance of the prior work at face value fails to take the limitation of prior work into account. Further, the prior paper from Waxman et al did not analyze craniofacial morphology other than eyeballing the shape of the head and eyes. Please compare the Waxman paper and this work figure for figure and the additional detail of this study should be clear. Again, this is by no means any criticism of prior work as the prior study suffered from the technological limitations of 2004, just as this study also is the best we can do using the tools we have today. Any discrepancies in results are likely due to differences in morpholino versus genetic disruption and most reviewers would favor the phenotype analysis from the germline genetic context. We have addressed these concerns as objectively as we can in the text (Lines 482-493). The fact that dact1/2 double mutants display a craniofacial phenotype while the single mutants do not, suggests compensation (Lines 503-505), but not necessarily at the mRNA expression level (Fig. S2C). 

      This paper tests genetic interaction through phenotyping the wntll/dact1/dact2 mutant.

      Our results support the previous literature that dact1/2 act downstream of wnt11 signaling. There is no evidence of cross-regulation of gene expression. We do not expect that changes in wnt11 or dact would result in expression changes in the others.

      RNA-seq of the dact1/2 mutants did not show changes in wnt11 gene expression. Unless dact1 and/or dact2 mRNA are under expressed in the wnt11 mutant, we would not expect a rescue experiment to be informative. And as wnt11 is not a focus of this paper, we have not performed the experiment.  

      Weakness 4) The identification of calpain 8 overexpression in Dact1/2 mutants is interesting, but getting 1/142 phenotypes from mRNA injections does not meet reproducibility standards.

      As the occurrence of the mutant phenotype in wildtype animals with exogenous capn8 expression was below what would meet reproducibility standards, we performed an additional experiment where capn8 was overexpressed in embryos resulting from dact1/dact2 double heterozygotes incross (Fig. 8). We reasoned that an effect of capn8 overexpression may be more robust on a sensitized background. We found a statistically significant effect of capn8 in dact1/2 double heterozygotes, though the occurrence was still relatively rare (6/80). These data suggest dysregulation of capn8 contributes to the mutant ANC phenotype, though there are likely other factors involved. 

      Comment: The manuscript title is not representative of the findings of this study.  

      We revised the title to strictly describe that we generated and carried out genetic analysis in loss of function compound mutants (Genetic requirement) and that we found capn8 was important which modified this requirement.

      Introduction: p.4:

      Comment: Anterior neurocranium (ANC) - it has to be stated that this refers to the combined ethmoid plate and trabecular cartilages. 

      Thank you, we agree that the ANC and ethmoid plate terminology has been confusing in the literature and we should endeavor to more clearly describe that the phenotypes in question are all in the ethmoid plate and the trabeculae are not affected. ANC has been replaced with ethmoid plate (EP) throughout the manuscript and figures. We also describe that all the observed phenotypes affect the ethmoid plate and not the trabeculae, (pages 13, Lines 265-267).

      Comment: Transverse dimension is incorrect terminology - replace with medio-lateral.

      Revised (Lines 69, 74).

      Comment: Improper way of explaining the relationship between mutant and gene..."Another mutant knypek, later identified as gpc4..." a better  way to explain this would be that the knypek mutation was found to be a non-sense mutation in the gpc4 gene.  

      Revised (Line 71)

      Comment: "...the gpc4 mutant formed an ANC that is wider in the transverse dimension than the wildtype, in the opposite end of the ANC phenotypic spectrum compared to wnt11f2...These observations beg the question how defects in early patterning and convergent extension of the embryo may be associated with later craniofacial morphogenesis."

      This statement is broadly representative of the general failure to distinguish primary from secondary defects in this manuscript. Focusing on secondary defects may be useful to understand the etiology of a human disease, but it is misleading to focus on secondary defects when studying gene function. The rod-like ethmoid of slb mutant results from a CE defect of anterior mesoderm during gastrulation(Heisenberg et al. 1997, 2000), while the wide ethmoid plate of kny mutants results from CE defects of cartilage precursors (Rochard et al., 2016). Based on this evidence, wnt11f2 and gpc4 act in different cell populations at different times.  

      It is true that the slb mutant craniofacial phenotype has been stated as secondary to the CE defect during gastrulation and the kny phenotype as primary to chondrocyte CE defects in the ethmoid, however the direct experimental evidence to conclude only primary or only secondary effects does not yet exist. There is no experiment to our knowledge where wnt11f2 was found to not affect ethmoid chondrocytes directly. Likewise, there is no experiment having demonstrated that dysregulated CE in gpc4 mutants does not contribute to a secondary abnormality in the ethmoid. 

      Here, we are analyzing the CE and craniofacial phenotypes of the dact1/2 mutants without any assumptions about primary or secondary effects and without drawing any conclusions about wnt11f2 or gpc4 cellular mechanisms.     

      Comment: "The observation that wnt11f2 and gpc4 mutants share similar gastrulation and axis extension phenotypes but contrasting ANC morphologies supports a hypothesis that convergent extension mechanisms regulated by these Wnt pathway genes are specific to the temporal and spatial context during embryogenesis."

      This sentence is quite vague and potentially misleading. The gastrulation defects of these 2 mutants are not similar - wnt11 is required for anterior mesoderm CE during gastrulation and has not been shown to be active during subsequent craniofacial development while gpc4 is required for posterior mesoderm CE and craniofacial cartilage morphogenesis (LeClair et al., 2009). Here again, the non-spatially overlapping functions of wnt11 and gpc4 suggest that are not part of the same pathway.  

      Though the cells displaying defective CE in wnt11f2 and gpc4 mutants are different, the effects on the body axis are similar. The dact1/2 showed a similar axis extension defect (grossly) to these mutants. Our aim with the scRNA-seq experiment was to determine which cells and gene programs are disrupted in dact1/2 mutants. We found that some cell types and programs were disrupted similarly in dact1/2 mutants and gpc4 mutants, while other cells and programs were specific to dact1/2 versus gpc4 mutants. We can speculate that these that were specific to dact1/2 versus gpc4 may be attributed to CE in the anterior mesoderm, as is the case for wnt11. 

      p.5

      Comment: "We examined the connection between convergent extension governing gastrulation, body axis segmentation, and craniofacial morphogenesis." A statement focused on the mechanistic findings of this paper would be welcome here, instead of a claim for a "connection" that is vague and hard to find in the manuscript.  

      We have rewritten this statement (Line 125).

      p.7 Results:

      Comment: It is unclear why Farrel et al., 2018 and Lange et al., 2023 are appropriate references for WISH. Please justify or edit.  

      This was a mistake and has been edited (Page 9).

      Comment: " Further, dact gene expression was distinct from wnt11f2." This statement is inaccurate in light of the data shown in Fig1A and the following statements - please edit to reflect the partially overlapping expression patterns.  

      We have edited to clarify (Lines 142-143).

      p.8

      Comment: "...we examined dact1 and 2 expression in the developing orofacial tissues. We found that at 72hpf..." - expression at 72hpf is not relevant to craniofacial morphogenesis, which takes place between 48h-60hpf (Kimmel et al., 1998; Rochard et al., 2016; Le Pabic et al., 2014).  

      We have included images and discussion of dact1 and dact2 expression at earlier time points that are important to craniofacial development (Lines 160-171)(Fig 1D,E). 

      Comment: "This is in line with our prior finding of decreased dact2 expression in irf6 null embryos". - This statement is too vague. How are th.e two observations "in line".  

      We have removed this statement from the manuscript.

      Comment: Incomplete sentence (no verb) - "The differences in expression pattern between dact1 and dact2...".  

      Revised (Line 172).

      Comment: "During embryogenesis..." - Please label the named structures in Fig.1E.

      Please be more precise with the described expression time. Also, it would be useful to integrate the scRNAseq data with the WISH data to create an overall picture instead of treating each dataset separately.  

      We have moved the previously published Daniocell data to supplementary figure S1 and have labeled the key cell types. 

      p.9

      Comment: "The specificity of the gene disruption was demonstrated by phenotypic rescue with the injection of dact1 or dact2 mRNA (Fig. S1)." - please describe what is considered a phenotypic rescue.

      -The body axis reduction of dact mutants needs to be documented in a figure. Head pictures are not sufficient. Is the head alone affected, or both the head and trunk/tail? Fig.2E suggests that both head and trunk/tail are affected - please include a live embryos picture at a later stage.  

      We have added a description of how phenotypic rescue was determined (Line 208). We have added a figure with representative images of the whole body of dact1/2 mutants. Measurements of body length found a shortening in dact1/2 double mutants versus wildtype, however differences were not found to be significantly different by ANOVA (Fig. 3C, Fig. S3, Line 270-275).

      p. 11

      Comment: "These dact1-/-;dact2-/- CE phenotypes were similar to findings in other Wnt mutants, such as slb and kny (Heisenberg, Tada et al., 2000; Topczewski, Sepich et al., 2001)." The similarity between slb and kny phenotypes should be mentioned with caution as CE defects affect different regions in these 2 mutants. It is misleading to combine them into one phenotype category as wnt11 and gpc4 are most likely not acting in the same pathway based on these spatially distinct phenotypes.  

      Here we are referring to the grossly similar axis extension defects in slb and kny mutants. We refer to these mutants to illustrate that dact1 and or 2 deficiency could affect axis extension through diverse mechanisms. We have added text for clarity (Lines 249-252).  

      Comment: "No craniofacial phenotype was observed in dact1 or dact2 single mutants. However, in-crossing to generate [...] compound homozygotes resulted in dramatic craniofacial deformity."

      This result is intriguing in light of (1) the similar craniofacial phenotype previously reported by Waxman et al (2004) using morpholino- based knock-down of dact2, and the phenomenon of genetic compensation demonstrated by Jakutis and Stainier 2001 (https://doi.org/10.1146/annurev-genet-071719-020342). The authors should make sure that dact2 loss-of-function is not compensated for by an increase in dact1 transcription, as such compensation could lead to inaccurate conclusions if ignored.  

      We agree with the reviewer that genetic compensation of dact2 by dact1 likely explains the different result found in the dact2 morphant versus CRISPR mutant. We found increased dact1 mRNA expression in the dact2-/- mutant (Fig S2X) however a more thorough examination is required to draw a conclusion. Interestingly, we found that in wildtype embryos dact1 and dact2 expression patterns are distinct though with some overlap. It would be informative to investigate whether the dact1 expression pattern changes in dact2-/- mutants to account for dact2 loss.   

      Comment: "Lineage tracing of NCC movements in dact1/2 mutants reveals ANC composition" - the title is misleading - ANC composition was previously investigated by lineage tracing (Eberhardt et al., 2006; Wada et al., 2005).  

      This has been reworded (Line 292)

      p.13

      Comment: There is no frontonasal prominence in zebrafish.  

      This is true, texts have been changed to frontal prominence.  (Lines 293,

      299, 320)

      Comment: The rationale for investigating NC migration in mutants where there is a gastrula-stage failure of head mesoderm convergent extension is unclear. The whole head is deformed even before neural crest cells migrate as the eye field does not get split in two (Heisenberg et al., 1997; 2000), suggesting that the rod-like ethmoid plate is a secondary defect of this gastrula-stage defect. In addition, neural crest migration and cartilage morphogenesis are different processes, with clear temporal and spatial distinctions.  

      We carried out the lineage tracing experiment to determine which NC streams contributed to the aberrantly shaped EP, whether the anteromost NC stream frontal prominence, the second NC stream of maxillary prominence, or both.  We found that the anteromost NCC did contribute to the rod-like EP, which is different from when hedgehod signaling is disrupted,  So while it is possible that the gastrula-effect head mesoderm CE caused a secondary effect on NC migration, how the anterior NC stream and second NC stream are affected differently between dact1/2 and shh pathway is interesting.  We added discussion of this observation to the manuscript (page 23, Lines 514-520). 

      p. 14-16

      Comment: Based on the heavy suspicion that the rod-like ethmoid plate of the dact1/2 mutant results from a gastrulation defect, not a primary defect in later craniofacial morphogenesis, the prospect of crossing dact1/2 mutants with other wnt-pathway mutants for which craniofacial defects result from craniofacial morphogenetic defects is at the very least unlikely to generate any useful mechanistic information, and at most very likely to generate lots of confusion. Both predictions seem to take form here.  

      However, the ethmoid plate phenotype observed in the gpc4-/-; dact1+/-; dact2-/- mutants (Fig. 5E) does suggest that gpc4 may interact with dact1/2 during gastrulation, but that is the case only if dact1+/-; dact2-/- mutants do not have an ethmoid cartilage defect, which I could not find in the manuscript. Please clarify.  

      The perspective that the rod-like EP of the dact1/2 is due to gastrulation defect is being examined here. Why would other mutants such as wnt11f2 and gpc4 that have gastrulation CE defects have very different EP morphology, whether primary or secondary NCC effect?  Further dact1 and dact2 were reported as modifiers of Wnt signaling, so it is logical to genetically test the relationship between dact1, dact2, wnt11f2, gpc4 and wls. The experiment had to be done to investigate how these genetic combinations impact EP morphology. This study found that combined loss of dact1, dact2 and wls or gpc4 yielded new EP morphology different than those previously observed in either dact1/2, wls, gpc4, or any other mutant is important, suggesting that there are distinct roles for each of these genes contributing to facial morphology, that is not explained by CE defect alone.   

      Comment: I encourage the authors to explore ways to test whether the rod-like ethmoid of dact1/2 mutants is more than a secondary effect of the CE failure of the head mesoderm during gastrulation. Without this evidence, the phenotypes of dact1/2 -gpc4 or - wls are not going to convince us that these factors actually interact.  

      Actually, we find our results to support the hypothesis that the ethmoid of the dact1/2 mutants is a secondary effect of defective gastrulation and anterior extension of the body axis. However, our findings suggest (by contrasting to another mutant with impaired CE during gastrulation) that this CE defect alone cannot explain the dysmorphic ethmoid plate. Our single-cell RNA seq results and the discovery of dysregulated capn8 expression and proteolytic processes presents new wnt-regulated mechanisms for axis extension.    

      p. 20 Discussion

      Comment: "Here we show that dact1 and dact2 are required for axis extension during gastrulation and show a new example of CE defects during gastrulation associated with craniofacial defects."

      Waxman et al. (2004) previously showed that dact2 is involved in CE during gastrulation.

      Heisenberg et al. (1997, 2000), previously showed with the slb mutant how a CE defect during gastrulation causes a craniofacial defect.  

      The Waxman paper using morpholino to disrupt dact2 is produced limited analysis of CE and no analysis of craniofacial morphogenesis. We generated genetic mutants here to validate the earlier morpholino results and to analyze the craniofacial phenotype in detail. We have removed the word “new” to make the statement more clear (Line 475).

      Comment: "Our data supports the hypothesis that CE gastrulation defects are not causal to the craniofacial defect of medially displaced eyes and midfacial hypoplasia and that an additional morphological process is disrupted."

      It is unclear to me how the authors reached this conclusion. I find the view that medially displaced eyes and midfacial hypoplasia are secondary to the CE gastrulation defects unchallenged by the data presented. 

      This statement was removed and the discussion was reworded.

      Comment: The discussion should include a detailed comparison of this study's findings with those of zebrafish morpholino studies.  

      We have added more discussion to compare ours to the previous morpholino findings (Lines 476-484).

      Comment: The discussion should try to reconcile the different expression patterns of dact1 and dact2, and the functional redundancy suggested by the absence of phenotype of single mutants. Genetic compensation should be considered (and perhaps tested).  

      The different expression patterns of dact1 and dact2 along with our finding that dact1 and dact2 genetic deficiency differently affect the gpc4 mutant phenotype suggest that dact1 and dact2 are not functionally redundant during normal development. This is in line with the previously published data showing different phenotypes of dact1 or dact2 knockdown. However, our results that genetic ablation of both dact1 and dact2 are required for a mutant phenotype suggests that these genes can compensate upon loss of the other. This would suggest then that the expression pattern of dact1 would be changed in the dact2 mutant and visa versa. We find that this line of investigation would be interesting in future studies. We have addressed this in the Discussion (Lines 485498).

      Comment: "Based on the data...Conversely, we propose...ascribed to wnt11f2 "

      Functional data always prevail overexpression data for inferring functional requirements.  

      This is true.

      p.21

      Comment: "Our results underscore the crucial roles of dact1 and dact2 in embryonic development, specifically in the connection between CE during gastrulation and ultimate craniofacial development."

      How is this novel in light of previous studies, especially by Waxman et al. (2004) and Heisenberg et al. (1997, 2000). In this study, the authors fail to present compelling evidence that craniofacial defects are not secondary to the early gastrulation defects resulting from dact1/2 mutations.  p. 22

      We have not claimed that the craniofacial defects are not secondary to the gastrulation defects. In fact, we state that there is a “connection”. Further, we do not claim that this is the first or only such finding. We believe our findings have validated the previous dact morpholino experiments and have contributed to the body of literature concerning wnt signaling during embryogenesis. 

      Comment: The section on Smad1 discusses a result not reported in the results section. Any data discussed in the discussion section needs to be reported first in the results section.  

      We have added a comment on the differential expression of smad1 to the results section (Lines 446-448).

    1. Reliability refers to the consistency of the measurement

      I think that this is a very important point. When conducting assessments, we are acting as scientists conducting an experiment. Like any experiment, there are many different variables at play. Variables include the number of distractions in the room during instruction and during the assessment, the number of distractions in students individual lives, any learning disabilities the student may have, diagnosed or not, and any number of other factors.How can teachers go about assessing the reliability of an assessment and at what point do instructors throw out results all-together?

    2. Rather than being used for grading, formative assessment is used to inform instructional planning and to provide students with valuable feedback on their progress

      I love the idea behind this. Rather than assignments being for a grade, I feel as though the majority of the wprk for a class should count for a completion-type score as in the end, the student should not be punished for lack of understanding. Usually when a student does not understand something, it is not necessarily their fault. Sometimes there are underlying conditions the student is dealing with such as ADHD, depression, or autism, which can make learning hard for some students. Why should students be punished for something that is not their fault? Many may argue that it is the students fault as they simply refused to do the work or refused to put effort into the assignment, but I argue that humans, especially children, are naturally curious about the world. If they do not wish to take an opportunity to learn, then usually there is more to it than them simply not wanting to do it. On the other hand, though, many older students have other priorities than completing assignments they may feel are optional, such as a simple completion grade. Instead of trying their best on it, they may deem it worthy to turn in sub-par work instead of actually trying their best on the assignment. So how can we have an assignment that assesses students understanding of a topic without punishing students who do not understand the material? The only possible solution I can think of would be to have the assignment be for a grade that reflects the correctness of the assignment, but allow the students to revise the work until it meets their expectations. This would allow students to prioritize other work over said assignment, if necessary, but also still provide students with urgency to do their best on the assignment.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Response to Reviewer #1

      Major comments:

      1. * The connection between vB12 and MMA is weak, and the attempt to connect these pieces to PPI seems somehow forced. For instance, the authors do not convincingly demonstrate that MMA causes the PPI deficit. Furthermore, vB12 may rescue PPI independently of MMA. The authors should be more transparent about the lack of connection or causality between changes in metabolism and behavior.* We appreciate the reviewer's comment and acknowledge that we have not demonstrated causal relationships between increased MMA, PPI deficits in Tbx1+/- mice and their rescue by vB12. They are associations.

      In the revised manuscript, we have clarified this in the Discussion, para.4, by adding the following phrase. “The results of our study do not prove a causal relationship between elevated brain MMA and PPI impairment, nor do they tell us whether rescue of the PPI impairment by vB12 occurs by reducing MMA”.

      Regarding the comment of a weak connection between vitamin B12 and MMA, we respectfully disagree.

      The biochemistry underlying the connection is outlined clearly in the Introduction, page 4, para. 2.

      Patients with vitamin B12 deficiency typically exhibit elevated levels of MMA and administration of vitamin B12 (cobalamin) helps to normalize MMA values (Robert & Brown, 2003). Furthermore, several animal models with genetic alterations in the vitamin B12 pathway exhibit high levels of MMA. For instance, mice lacking the cobalamin transporter have increased MMA (Bernard et al., 2018). Additionally, mice lacking the mutase (Mut), which requires vitamin B12 as a cofactor for the conversion of methylmalonyl CoA to succinyl-CoA for entry into the Krebs cycle, demonstrate elevated levels of MMA and are unresponsive to vitamin B12 treatment (Peters et al. 2006). In the revised manuscript, we have cited these references (Introduction, page 4, para. 2).

      Throughout the manuscript, an important control is missing: WT+ vB12 group. Data from this group should be added to Figures 1, 3, 4, 6, and Supplemental Figures 3 and 4 to show the effect of vB12 on WT mice.

      All of the experiments reported in the original manuscript included this control group although it was not always included in the data analysis and therefore in the figures, as observed by the reviewer, In the revised manuscript all of the relevant figures and tables now include these data.

      In Figures 1C and 3, data from the respective WT controls in the Df1 and Tbx1 cohorts should be shown.

      • *

      The wild type (WT) animals serve as the control group for both Tbx1+/- and Df/+ mice because they were littermates, obtained from matings between Df1/+ and Tbx1+/- mice. This has been clarified in the Materials and Methods, and in a new cartoon which has been added to Supplementary Figure 1 (1C) showing all of the animal groups used for the various studies (NMR, transcriptomics, behavior).

      The Supplemental Table S1 includes 17 WT controls for Tbx1+/- and 6 WT controls for Df1/+, but Figure 1C includes only one group of 11 WT controls. For which group were those 11 WT controls?

      Here are several examples of inconsistency in the data: "For this, we first performed a preliminary metabolome analysis using isolated whole brains of male and female Tbx1+/- (n= 18) and WT (n= 10) mice between one and two months of age. A set of metabolites was quantified in brain extracts by liquid chromatography tandem mass spectrometry (LC-MS/MS) (Supplementary Table 1)." Again, the number of mice the authors note in the manuscript does not match that shown in Supplementary Table 1 (Tbx1+/- (n=14) and WT (N=17). "We analyzed whole brain tissue isolated from Df1/+ and WT (control) mice (n = 5 per genotype)." Again, the numbers of mice do not match those in Supplementary Table 1, which notes 6 Df1/+ mice and 6 WT mice.

      We apologize for these errors and inconsistencies in the text and tables, all of which have been corrected in the revised manuscript. In addition, we have added the aforementioned cartoon (Supplementary Figure 1C) and we have improved the presentation of the data (genotypes and treatments) in Supplementary Tables 1 and 2. We hope that these changes provide the expected clarity to the data.

      MMA is the only metabolite that is similarly changed between Tbx1+/- and Df1/+ brains. This is an interesting observation. However, there is no other overlap in metabolic changes between these two mutants. This is a concern that requires clarification

      We appreciate the reviewer's comment. The observation is not altogether surprising considering that the Df1 deletion includes at least 9 genes involved in metabolic pathways (cited refs (Maynard, 2008;Meechan, 2011; Devaraju and Zakharenko, 2017)) any of which might counteract or compensate for changes caused by Tbx1 mutation alone. In addition, heterozygosity for other genes in the deleted region (Df1 encompasses over 20 genes) might affect metabolic processes indirectly. In the revised manuscript we have added the following phrase to the Discussion, para.1 “Thus, even though the two mutants are genetically and metabolically very different, in Df1/+ mice, the MMA phenotype is not affected by heterozygosity of other genes in the deletion.

      The authors mention that MMA is not changed in pre-term Tbx1+/- embryos, but no data are provided. What about MMA levels in Df1/+ embryos?

      In pre-term Tbx1+/- and WT embryos MMA was undetectable. This is now stated in the final paragraph of the first section of the Results.

      We did not measure MMA in Df1/+ embryos. It was not a goal of the study to compare the metabolome of these two genetically very different mutants. The MMA data on Df1/+ mice are presented because they show the potential relevance of this phenotype for the human disease, and they justify the use of the single gene (Tbx1+/-) mutants for studies into metabolism-related disease mechanisms. See also response to point 12

      * * In some cases, the differences in metabolites (e.g., glutamine, glutamate, phosphoethanolamine, taurine, leucine, myo-inositol, and niacinamide) between the WT and Tbx1+/- mice is very minimal (Supplemental Figure 2). The y-axis scale should start at 0.

      We have changed the y-axis settings where necessary

      The vB12 is administered via two different regimens: 1) every 3 days for 28 days, at 4-8 weeks of age for metabolic measurements, and 2) twice a week for 2 months for PPI behavioral testing. Is there any reason the authors chose different protocols?

      We apologize for the confusion, which was due to an oversight in the Materials and Methods section that has been corrected. The weekly injection regimen was the same for mice used in the behavioral and metabolic studies, but the treatment time was shorter for the metabolic studies, for practical reasons beyond our control; mice received vB12 injections twice a week, beginning at 4 wks of age and continuing until 8 wks or 12 wks of age for metabolic and behavioral studies respectively.

      * * The authors should add the following references to the study: Long et al., Neurogenetics (2006), which shows no change in PPI in Tbx1+/- mice. This discrepancy compared with the current study results and those of Paylor et al., Proc Natl Acad Sci U S A (2006) should be discussed.

      We have not cited the study by Long et al. because there are no obvious reasons for the discrepancy (age, mouse strain, sex) that could be discussed. Beyond this of course we cannot comment on data generated by another research group. Nevertheless, the presence of the PPI deficit in Tbx1+/- mice has been confirmed in two different Tbx1 alleles Tbx1 lacZ/+ and Tbx1ΔE5/+, by two different investigators, Dr. Richard Paylor using Tbx1 lacZ/+ mice (Paylor et al. 2001) and Dr. Elvira De Leonibus (co-author of this manuscript) using Tbx1ΔE5/+ mice, in two different countries (USA and Italy) in a rederived colony of mice.

      • Figure 6B is a concern. The PPI decrease in the Tbx1+/- group appears to be driven by results from 3-4 mice. First, are those data statistical outliers? *

      With all due respect, this is not the case. Eight Tbx1+/- mice, i.e., >50% of those tested had PPI values below the minimum observed in WT mice. The behavioural data were checked for the presence of outliers in each group using the Grubbs test, which yielded negative results. Our finding of PPI deficits in Tbx1+/- mice are in line with previously published data in Tbx1+/- and other animal models of 22q11.2 microdeletion (Paylor et al., 2006; Paylor and Lindsay, 2006; Stark et al., 2008), as well as in humans (Sobin et al., 2005).

      Second, experiments in the same mice would be more informative. Do PBS-treated mutants recover PPI if they are treated with vB12 and vice versa? If the authors are concerned about the age difference, they also should include age-dependent effects on PPI.

      We decline to perform the proposed experiment for the reasons described in section 4 of the Revision Plan

      • *

      Because vB12 treatment completely rescued the MMA level in Df1/+ mice (Figure 3), the authors should include a figure showing PPI test results in Df1/+ mice.

      Vitamin B12 treatment fully rescued the MMA phenotype in both mutants (Figure 3). Whether it rescues the PPI defect in Df1/+ mice is not important for this study. We used Df1/+ mice as an entry point, in order to give validity to the pursuit of the MMA phenotype in the single gene mutant (Tbx1+/-), in which we expect that it will be easier to find disease mechanisms. For this reason, we focused our attention on identifying metabolic alterations in adult Tbx1+/- mice.

      See also response to point 7.

      *Figure 1A and B table: Did the authors mean Log2FC instead of FC? The authors also should present the *

      *source data by adding supplemental tables that include raw data and normalized conversion, etc., as described in the multivariate statistical data analysis of the LC-MS/MS data. *

      • *

      The new Figures 1A, Figure 3 and the accompanying tables now state Log2FC. New Supplementary Table 1 presents the raw data that were normalized on the basis of the amount of protein in the samples, described and referenced in the Materials and Methods

      "...we identified a new metabolic phenotype that was associated with reduced sensorimotor gating deficits in Tbx1+/- mice". Although the authors showed the PPI rescue by treating Tbx1+/- mice with vB12, that result alone does not prove the association of metabolic phenotype with sensorimotor-gating deficit; other supporting data are needed.

      • *

      This is perhaps a question of semantics; by associated we mean that the two phenotypes, metabolic alterations and reduced PPI were observed together

      The authors stated, "Results showed that there were very few differentially expressed genes in Tbx1+/- vs WT brains, (n=22 out of 14535 expressed genes (Fig. 5 and Supplementary Tab. 2)". However, they described how 3 differentially expressed genes are involved in mitochondrial activity in the Discussion. The authors should describe those 3 genes and their relation to the metabolic change.

      The results that the reviewer refers to have changed in the revised manuscript due to the inclusion of the control group WT +vB12 in the data analysis. The transcriptome analysis revealed that vB12 had a stronger impact than genotype, and as a consequence, the statistical analysis of all groups did not highlight minor differences between the two genotypes.

      Figure 5B: The authors claimed that they detected similar transcription profiles between WT+vB12 vs. Tbx1+/-+vB12, comparing Tbx1+/-+PBS vs. Tbx1+/-+vB12. This is based on 947 genes being downregulated and 834 being upregulated, which is not appropriate. The authors should normalize those data to the numbers of genes upregulated and downregulated in WT+PBS vs. WT+vB12 respective groups.

      We said that we detected similar transcription profiles in PBS-treated WT and Tbx1+/- brains; a WT+vB12 group was not present. The latter group is included in revised manuscript and the data reanalyzed comparing all groups.

      See also response to points 2 and 15.

      Minor comments

      1. Supplementary Table S1 shows the identical MMA concentration "0.2" for 6 controls. Is this correct? This was an error that has been corrected; the value is 0.00 (not detectable).

      * Remove the callout for Figure 1C at the end of the second paragraph in Results*.

      This figure is no longer present

      *There are multiple typos throughout the manuscript. *

      Here are several examples:

      1. * Fig1B graph- Df/+ => Df1/+* Figure changed in revised manuscript

      2. "Together, the hydrophilic and lipophilic results revealed a group of 6 compounds that characterized the brain metabolic differences between Tbx1+/- and WT mice (Figure 2B, 2C)". Figure 2A should be included also. Corrected

      3. "In support of this notion, is the finding that...(remove) Removed

      4. Remove double periods: "The pathways found are depicted in Figure 2C' which reports the impact of each pathway versus p values.." Corrected

      5. Panel labels in all figures are misplaced. Panel labels are aligned correctly

      We have performed a spelling and grammar check on the text

      "In support of this notion... at least nine orthologs are involved in mitochondrial metabolism". What are those 9 mitochondrial genes? Kolar et al., Schizophr Bull (2023) indicates that there are 8 mitochondrial genes within the 22q11.2 locus. The authors need to list these genes.

      This reference, which is a review, has been cited in the Introduction, para.3 along with the genes.

      The review presents nine mitochondrial genes which the authors divide into two groups, 1) Genes expressed in mitochondria (SLC25A1, TXNRD2, MRPL40, PRODH, and COMT) and 2) Genes that have been shown to have an impact on mitochondrial function (TANGO2, ZDHHC8, UFD1L, and DGCR8). In the abstract they mention only eight genes, the ninth gene COMT is mentioned in the text.

      Reviewer #2 (Significance (Required)):

      *The manuscript titled "Tbx1 haploinsufficiency causes brain metabolic and behavioral anomalies in adult mice which are corrected by vitamin B12 treatment" by Caterini et al. presents a comparative metabolomics study in the brains of mouse models carrying a heterozygous mutation in the transcription factor Tbx1. This mutation is contrasted with a chromosomal deficiency encompassing Tbx1, among other gene loci, known as Df1/+, which serves as a mouse model for 22q11 microdeletion syndrome. The primary and most significant finding of the study is that Tbx1 heterozygosity alone induces broad metabolomic alterations in the entire brain parenchyma, despite Tbx1 expression being confined to vascular endothelial cells. The authors leverage this observation to investigate the effects of dietary supplementation with vitamin B12, which alters the metabolome in a manner interpreted by the authors as rescuing or reversing the Tbx1 heterozygosity phenotype. This study holds promise for understanding the individual gene contributions to the penetrant behavioral phenotypes observed in Df1/+ and 22q11 affected subjects. This potential arises from the clear and consequential metabolic phenotypes described, notably the accumulation of methylmalonic acid.

      However, despite the intriguing metabolic phenotypes, there are significant issues hindering incontrovertible conclusions. *

      Response to Reviewer #2

      Major comments

      1. Despite the intriguing metabolic phenotypes, there are significant issues hindering incontrovertible conclusions. Chief among these problems is the experimental design's nature, where the effects of genotype and a pharmacological intervention, vitamin B12, are assessed. The current design overlooks the effects of vitamin B12 on wild-type animals in metabolic and behavioral measures, thus precluding the attribution of the effects of vitamin B12 to a rescue. See response to Reviewer 1 (point 2) who made the same criticism. This group is now included in the data analysis of the relevant experiments.

      *An alternative explanation, consistent with the measurements, is that vitamin B12 modifies metabolites and transcripts irrespective of genotype. A suggestion of this possibility is the observed effect of B12 lowering glutamate levels in Tbx1 mutant tissue below those in wild-type brain tissue (Fig. 4C). *

      This might be true for some metabolites. Indeed, we found 5 metabolites that responded similarly to vB12 in both WT and Tbx1 +/- mice. In contrast, three metabolites responded to vB12 in both WT and Tbx1+/- mice, but the response was more pronounced in Tbx1+/- mice. Finally, a group of eight metabolites was altered exclusively in Tbx1+/- mice after vB12 treatment, including inosine, glutamate and short-chain fatty acids (SCFAs), Figure 4 and Supplementary Figure 6. Thus, overall, our data suggest that with only a few exceptions, the metabolic response to vB12 treatment is genotype-dependent.

      • *

      This experimental design issue is exacerbated by the multitude of analytes measured by metabolomics, all collectively assumed to change as part of a common genotype-B12 interaction mechanism. This interpretation is feasible only if none of the analytes were to respond to B12 in wild-type animals.

      • *

      As specified above, the response to vB12 was genotype-dependent. The inclusion of the vB12-treated WT dataset should address this point.

      A second major issue arises from the assertion that Tbx1 is exclusively expressed in mouse brain endothelial cells and not in brain parenchyma. A significant unresolved question is how a gene expressed solely in endothelial cells can alter the brain parenchyma metabolome and transcriptome. This issue remains unaddressed and is not sufficiently discussed. If this assertion holds true, then the observations bear great importance in understanding how Df1/+ causes brain phenotypes and, by extension, in human 22q11.

      There are quite a lot of published data from the mouse demonstrating the brain endothelial-specific expression of Tbx1 and the lack of expression in other brain cell types. These include studies using reporter genes (Paylor, 2006; Cioffi, 2014), Tbx1Cre based cell fate mapping (Cioffi, 2014, Cioffi, 2022) and single cell whole genome transcriptions (Ximerakis et al., 2019); (https://portals.broadinstitute.org/single_cell/study/aging-mouse-brain). All are cited in the manuscript.

      HOW the mutation of Tbx1 alters the brain metabolome and transcriptome will be the object of future studies, Currently, we do not have any data. At the reviewer’s request, we have extended the discussion of this point in the revised manuscript (Discussion, para. 4).

      In this vein, the authors should consider that Tbx1 is not expressed in brain endothelial cells in humans and is minimally expressed in fetal astrocytes (see https://brainrnaseq.org/).

      https://brainrnaseq.org provides a tool to evaluate the gene expression in the fetal brain. The sequencing was performed on fetal human brain tissue after elective pregnancy termination (4wks-9wks, it is not clear). Our analysis focuses on adult mice, which may contribute to observed differences.

      Moreover, Yi et al. (2010) generated a gene expression atlas of human embryogenesis spanning from 4 to 9 weeks of gestational age, revealing downregulation of TBX1 during this timeframe. Conversely, in the normal adult human brain, TBX1 expression is identified in endothelial cells, as indicated in "The Human Brain Cell Atlas v1.0" presented for visualization and data mining through the Chan Zuckerberg Initiative’s CellxGene application, referring to the atlas ontology in Ding et al. (2016). * 3. A third major concern pertains to the general poor quality of the figures. Many figures appear to be directly exported from the software used for data analysis without proper curation. They are inadequately labeled, lack color codes to clarify differences (e.g., volcano plots), feature lettering fonts that are difficult to discern, and have lettering panels placed in awkward positions. Fig. 1 would benefit by the addition of a pathway diagram showing which metabolites are changing. Figure tables/spreadsheets either have sheets labeled in Italian or are empty. Collectively, the manuscript needs more careful data curation and presentation*.

      Many of the figures and tables have been modified with respect to the original manuscript and issues of clarity and quality have been improved where necessary.

      Other points for consideration are listed below. • The abstract results section does not mention the Df1 mutants at all, and overall the description of the results should be improved

      Corrected • The abstract would benefit from defining vB12 before using the abbreviation

      Corrected • The section of the Results describing MMA accumulation in the brain would benefit from

      • *explaining the choice of 1 month of age for terminal experiments and the choice to use whole brains (are there particularly brain regions suspected to be affected?), * The majority of animals were 2 months of age at sacrifice (age and sex of individual animals are indicated in Supplementary Table 1). Young adult mice were the object of the study for the reason described in the first paragraph of the Results section, namely “Human studies of brain metabolism have mainly been conducted on children and adolescent patients. Therefore, in order to determine whether similar anomalies were present in the mouse models, we performed our studies on young mice between 1 and 2 months of age (Dutta et al., 2016)”.

      This is also the age at which the behavioural phenotype has been demonstrated (Paylor et al., 2006), and therefore could, potentially be rescued by vB12 treatment. We do not have regional information pertaining to the adult brain.

      2) describing any sex effects for Tbx1 mutants (and clarifying what data points for Tbx1 animals correspond to which sex), and 3) including what sex was used for Df1 experiments.

      In preliminary experiment we analyzed males and females’ mice, before electing to use only males. To obtained reliable information about the impact of gender on metabolism and transcription we would have to use much larger numbers of animals. In Supplementary Table 1 pertaining to males and females are now indicated.

      • The authors demonstrate that vB12 rescues PPI but use no other behavioral paradigms. It is possible that these mutations and/or vB12 could be impacting anxiety-like behaviors or other behavioral phenotypes. By only including PPI, the authors limit the interpretation of the "rescue" of this phenotype by vB12. * Reduced PPI was the only behavioral anomaly identified in Tbx1+/- mice that were subjected to a standard battery of behavioral tests (Paylor et al., 2006). *

      * *Reduced PPI was the only behavioral anomaly identified in Tbx1+/- mice that were subjected to a standard battery of behavioral tests (Paylor et al., 2006).

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      This is a terrific paper looking at influences of Tbx1 heterozygosity on metabolic phenotypes in mice. A weakness is that the locus on effects of B12 is totally unclear--could be neurovascular or even peripheral, but correcting this weakness might include study of Tbx1 conditional mutants, beyond the scope of this study.

      • *

      Reviewer #3 (Significance (Required)):* good significance

      Only two minor suggestions. 'We selected to study primarily Tbx1 single gene mutants because it is the primary candidate disease gene". What is the basis for this statement? Mouse +/- mutants in Mrpl40, Txnrd2, ProhD, and probably others have shown brain phenotypes.*

      • *

      The basis for TBX1 being considered as the primary candidate disease gene is the finding of TBX1 point mutations in patients who have the full spectrum of clinical phenotypes associated with 22q11.2 deletion syndrome without the chromosomal deletion, namely, congenital heart defects, immune defects, facial dysmorphism, learning defects and developmental delay. Similarly, in the mouse, Tbx1 mutation recapitulates the phenotype observed in multigene deletion mutants, such as Df1/+ mice.

      We do not say (or think) that heterozygosity of other genes from del22q11.2 does not contribute to the disease, but mutations of other genes have not been found in individuals with a 22q11.2DS phenotype but without the chromosomal deletion.

      In the discussion, the authors could close the loop on low glutamine could result in lower gaba in inhibitory interneurons, and its correction with B12 could restore gaba levels.

      Discussion, para. 3. We thank the reviewer for comment. However, the GABA concentration is not altered in Tbx1 haploinsufficient brains; it is only upregulated by Vitamin B12. Therefore, this assumption may be very speculative. Due to differences in the release and reabsorption rates of the three compounds (glutamine, glutamate, and GABA), correctly evaluating the glutamine-glutamate cycle requires separating astrocytes from neurons. We have only discussed the upregulation of glutamate and the GABA response to Vitamin B12, which may counteract the excess of glutamate.

      1. __4__Description of analyses that authors prefer not to carry out Please include a point-by-point response explaining why some of the requested data or additional analyses might not be necessary or cannot be provided within the scope of a revision. This can be due to time or resource limitations or in case of disagreement about the necessity of such additional data given the scope of the study. Please leave empty if not applicable.

      Reviewer 1, point 11. The PPI decrease in the Tbx1+/- group appears to be driven by results from 3-4 mice. First, are those data statistical outliers?

      Second, experiments in the same mice would be more informative. Do PBS-treated mutants recover PPI if they are treated with vB12 and vice versa? If the authors are concerned about the age difference, they also should include age-dependent effects on PPI.

      We are unable to perform this experiment because, as stated in the manuscript, the mice were sacrificed at the end of the experiment and the brains preserved for histological analysis (not part of this study). The generation of mice for new experiments would take about one year. With all due respect, we do not believe that the data that would be obtained are sufficiently important to justify, ethically and economically, this work.

    1. Author response:

      We want to thank the reviewers for their constructive feedback.

      General

      The recall values of our method range between 78.6% for all urine cases to 83.3% for feces (and not between 70-80%, as stated by reviewer #2), with a mean precision of 85.6%. This is rather similar to other machine learning-based methods commonly used for the analysis of complicated behavioral readouts. For example, in the paper presenting DeepSqueak for analysis of mouse ultrasonic vocalizations (Coffey et al. DeepSqueak: a deep learning-based system for detection and analysis of ultrasonic vocalizations. Neuropsychopharmacol. 44, 859–868 (2019). https://doi.org/10.1038/s41386-018-0303-6), the recall values reported for both DeepSqueak, Mupet and Ultravox (Fig. 2c, f) are very similar to our method.

      We have analyzed and reported all the types of errors made by our methods, which are mostly technical. For example, depositions that overlap the mouse blob for too long till getting cold will be associated with the mouse and therefore will not be detected (“miss” events). These technical errors are not supposed to create a bias for a specific biological condition and, hence, shouldn’t interfere with the use of our method. A video showing all of the mistakes made by our algorithm on the test set was submitted (Figure 2-video 1).

      Below we will to relate to specific points and describe our plan to revise the manuscript accordingly.

      Detection accuracy

      a. It should be noted that when large urine spots are considered, our algorithm got 100% correct classification (Figure 2, supplement 1, panel b). However, small urine deposits are very similar to feces in their appearance in the thermal picture. In fact,  if the feces are not shifted, discrimination can be quite challenging even for human annotators. To demonstrate the accuracy of the proposed method relative to human annotators, we plan to compare its results with the accuracy of a second human annotator.

      b. As part of the revision, we plan to test general machine learning-based object detectors such as faster-RCNN or YOLO (as suggested by Reviewer 2) and compare them with our method.

      c. To check if our method may introduce bias to the results, we plan to check if the errors are distributed evenly across time, space, and genders.

      Design choices

      (A) The preliminary detection algorithm has several significant parameters. These are:

      a. Minimal temperature rise for detection: 1.1°C rise during 5 sec.

      b. Size limits of the detection: 2 - 900 pixels.

      c. Minimal cooldown during 40 sec: 1.1°C and at least half the rise.

      d. Minimal time between detections in the same location: 30 sec.

      We chose to use low thresholds for the preliminary detection to allow detection of very small urinations and to minimize the number of “miss” events, relying on the classifier to robustly reject false alarms. Indeed, we achieved a low rate of miss events: 5 miss events for the entire test set (1 miss event per ~90 minutes of video). We attribute these 5 “miss” events to partial occlusion of the detection by the mouse.

      To adjust the preliminary detection parameters to a new environment, one will need to calibrate these parameters in their own setup. Mainly, the size of the detection depends on the resolution of the video, and the cooldown rate might be affected by the material of the floor, as well as the room temperature.

      We plan to explore the robustness of these parameters in our setup and report the influence on the accuracy of the preliminary algorithm.

      (B) We chose to feed the classifier with 71 seconds of videos (11 seconds before the event and 60 seconds after it) as we wanted the classifier to be able to capture the moment of the deposition, the cooldown process, as well as urine smearing or feces shifting which might give an additional clue for the classification. In the revised paper we plan to report accuracy when using a shorter video for classification.

      Generability

      a. In the revised version, we plan to report the accuracy of the method used on a different strain of mice (C57), with a different arena color (white arena instead of black).

      Statistics

      a. In the revised paper, we will explain why we chose each time window for analysis. Also, we will report statistics for different time windows, as suggested by Reviewer 3.

      b. Unlike reviewer #2, we don’t think that the small difference in recall rate between urine and feces (78.6% vs. 83.3%, respectively) creates a bias between them. Moreover, we don’t compare the urine rate to the feces rate.

      c. In the revised manuscript we will explicitly report the precision scores, although they also appear in our manuscript in Fig. 2- Supplement 1b.

    1. 6.1.3 What Does “Big Data” Mean? One possible distinction between data science and statistics is the amount of data we’re working with. Technology coverage in the 2010s (and continuing to the present) made it hard to resist the idea that big data represents some kind of revolution that has turned the whole world of information and technology topsy-turvy. But is this really true? Does big data change everything? Business analyst Doug Laney suggested that three characteristics make big data different from what came before: volume, velocity, and variety. Volume refers to the sheer amount of data. Velocity focuses on how quickly data arrives as well as how quickly those data become “stale.” Finally, variety reflects the fact that there may be many different kinds of data. Together, these three characteristics are often referred to as the “three Vs” model of big data. Note, however, that even before the dawn of the computer age we’ve had a variety of data, some of which arrives quite quickly, and that can add up to quite a lot of total storage over time. Think, for example, of the large variety and volume of data that has arrived annually at Library of Congress since the 1800s! So, it is difficult to tell that big data is fundamentally a brand new thing. Furthermore, there are some concerns that we should exercise when it comes to big data. For example, when a data set gets to a certain size (into the range of thousands of rows), conventional tests of statistical significance are meaningless, because even the most tiny and trivial results are statistically significant. We’ll talk more about statistical significance later in the semester; for the time being, though, it suffices to say that statistical significance is how researchers have traditionally determined whether their results are important or not. If big data makes statistical significance more likely, then researchers who have access to more data will get more important results, whether or not that’s actually true in practical terms! Besides that, the quality and suitability of the data matters a lot: More data does not always mean better data.

      I find this part of this section. Will better help me understand about big data Business analyst Doug Laney suggested that three characteristics make big data different from what came before: volume, velocity, and variety. Volume refers to the sheer amount of data. Velocity focuses on how quickly data arrives as well as how quickly those data become “stale.” Finally, variety reflects the fact that there may be many different kinds of data. Together, these three characteristics are often referred to as the “three Vs” model of big data. Note, however, that even before the dawn of the computer age we’ve had a variety of data, some of which arrives quite quickly, and that can add up to quite a lot of total storage over time.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer 1:

      • Although ROC AUC is a widely used metric. Other metrics such as precision, recall, sensitivity, and specificity are not reported in this work. The last two metrics would help readers understand the model’s potential implications in the context of clinical research.

      In response to this comment and related ones by Reviewer 2, we have overhauled how we evaluate our models. In the revised version, we have removed Micro ROC-AUC, as this evaluation metric is hard to interpret in the recommender system setting. Instead, the updated version fully focuses on two metrics: ROC-AUC and Precision at 1 of the negative class, both computed per spectrum and then averaged (equivalent to the instance-wise metrics in the previous version of the manuscript). We believe these metrics best reflect the use-case of AMR recommenders. In addition, we have kept (drug-)macro ROC-AUC as a complementary evaluation metric. As the ROC-AUC can be decomposed into sensitivity and specificity (at different prediction probability thresholds), we have added a ROC curve where sensitivity and specificity are indicated in Figure 8 (Appendices).

      • The authors did not hypothesize or describe in any way what an acceptable performance of their recommender system should be in order to be adopted by clinicians.

      In Section 4.3, we have extended our experiments to include a baseline that represents a “simulated expert”. In short, given a species, an expert can already make some best guesses as to what drugs will be effective or not. To simulate this, we count resistance frequencies per species and per drug in the training set, and use this as predictions of a “simulated expert”.

      We now mention in our manuscript that any performance above this level results in a real-world information gain for clinical diagnostic labs.

      • Related to the previous comment, this work would strongly benefit from the inclusion of 1-2 real-life applications of their method that could showcase the benefits of their strategy for designing antibiotic treatment in a clinical setting.

      While we think this would be valuable to try out, we are an in silico research lab, and the study we propose is an initial proof-of-concept focusing on the methodology. Because of this, we feel a real-life application of the model is out-of-scope for the present study.

      • The authors do not offer information about the model features associated with resistance. This information may offer insights about mechanisms of antimicrobial resistance and how conserved they are across species.

      In general, MALDI-TOF mass spectra are somewhat hard to interpret. Because of a limited body of work analyzing resistance mechanisms with MALDI-TOF MS, it is hard to link peaks back to specific pathways. For this reason, we have chosen to forego such an analysis. After all, as far as we know, typical MALDI-TOF MS manufacturers’ software for bacterial identification also does not provide interpretability results or insights into peaks, but merely gives an identification and confidence score.

      However, we do feel that the whole topic revolving around “the degree of biological insight a data modality might give versus actual performance and usability” merits further discussion. We have ultimately decided not to include a segment in our discussion section as it is hard to discuss this matter concisely.

      • Comparison of AUC values across models lacks information regarding statistical significance. Without this information it is hard for a reader to figure out which differences are marginal and which ones are meaningful (for example, it is unclear if a difference in average AUC of 0.02 is significant). This applied to Figure 2, Figure 3, and Table 2 (and the associated supplementary figures).

      To make trends a bit more clear and easier to discern, in our revised manuscript, all models are run for 5 replicates (as opposed to 3 in the previous version).

      There is an ongoing debate in the ML community whether statistical tests are useful for comparing machine learning models. A simple argument against them is that model runs are typically not independent from each other, as they are all trained on the same data. The assumptions of traditional statistical tests are therefore violated (t-test, Wilcoxon test, etc.). With such tests statistical significance of the smallest differences can simply be achieved by increasing the number of replicates (i.e. training the same models more times).

      More complicated but more appropriate statistical tests also exist, such as the 5x2 cross-validated t-test of Dietterich: “Approximate statistical tests for comparing supervised classification learning algorithms”, Neural computation 1998. However, these tests are typically not considered in deep learning, because only 10% of the data can be used for training, which is practically not desirable. The Friedman test of Demšar "On the appropriateness of statistical tests in machine learning." Workshop on Evaluation Methods for Machine Learning in conjunction with ICML. 2008., in combination with posthoc pairwise tests, is still frequently used in machine learning, but that test is only applicable in studies where many datasets are tested.

      For those reasons, most deep learning papers that only analyse a few datasets typically do not consider any statistical tests. For the same reasons, we are also not convinced of the added value of statistical tests in our study.

      • One key claim of this work was that their single recommender system outperformed specialist (single species-antibiotic) models. However, in its current status, it is not possible to determine that in fact that is the case (see comment above). Moreover, comparisons to species-level models (that combine all data and antibiotic susceptibility profiles for a given species) would help to illustrate the putative advantages of the dual branch neural network model over species-based models. This analysis will also inform the species (and perhaps datasets) for which specialist models would be useful to consider.

      We thank the reviewer for this excellent suggestion. In our new manuscript, we have dedicated an entire section of experiments to testing such species-specific recommender models (Section 4.2). We find that species-specific recommender systems generally outperform the models trained globally across all species. As a result, our manuscript has been majorly reworked.

      • Taking into account that the clustering of spectra embeddings seemed to be species-driven (Figure 4), one may hypothesize that there is limited transfer of information between species, and therefore the neural network model may be working as an ensemble of species models. Thus, this work would deeply benefit from a comparison between the authors' general model and an ensemble model in which the species is first identified and then the relevant species recommender is applied. If authors had identified cases to illustrate how data from one species positively influence the results for another species, they should include some of those examples.

      See the answer to the remark above.

      • The authors should check that all abbreviations are properly introduced in the text so readers understand exactly what they mean. For example, the Prec@1 metric is a little confusing.

      See the answer to a remark above for how we have overhauled our evaluation metrics in the revised version. In addition, in the revised version, we have bundled our explanations on evaluation metrics together in Section 3.2. We feel that having these explanations in a separate section will improve overall comprehensibility of the manuscript.

      • The authors should include information about statistical significance in figures and tables that compare performance across models.

      See answer above.

      • An extra panel showing species labels would help readers understand Figure 11.

      We have tried to play around with including species labels in these plots, but could not make it work without overcrowding the figure. Instead, we have added a reminder in the caption that readers should refer back to an earlier figure for species labels.

      • The authors initially stated that molecular structure information is not informative. However, in a second analysis, the authors stated that molecular structures are useful for less common drugs. Please explain in more detail with specific examples what you mean.

      In the previous version of our manuscript, we found that one-hot embedding-based models were superior to structure-based drug embedders for general performance. The latter however, delivered better transfer learning performance.

      In our new experiments however, we perform early stopping on “spectrum-macro” ROC-AUC (as opposed to micro ROC-AUC in the previous version). As a consequence, our results are different. In the new version of our manuscript, Morgan Fingerprints-based drug embedders generally outperform others both “in general” and for transfer learning. Hence, our previously conflicting statements are not applicable to our new results.

      • The authors may want to consider adding a few sentences that summarize the 'Related work' section into the introduction, and converting the 'Related work' section into an appendix.

      While we acknowledge that such a section is uncommon in biology, in machine learning research, a “related work” section is very common. As this research lies on the intersection of the two, we have decided to keep the section as such.

      Reviewer 2:

      • Are the specialist models re-trained on the whole set of spectra? It was shown by Weis et al. that pooling spectra from different species hinders performance. It would then be better to compare directly to the models developed by Weis et al, using their splitting logic since it could be that the decay in performance from specialists comes from the pooling. See the section "Species-stratified learning yields superior predictions" in https://doi.org/10.1038/s41591-021-01619-9.

      We train our “specialist” (or now-called “species-drug classifiers”) just as described in Weis et al.: All labels for a drug are taken, and then subsetted for a single species. We have clarified this a bit better in our new manuscript. The text now reads:

      “Previous studies have studied AMR prediction in specific species-drug combinations. For this reason, it is useful to compare how the dual-branch setup weighs up against training separate models for separate species and drugs. In Weis et al. (2020b), for example, binary AMR classifiers are trained for the following three combinations: (1) E. coli with Ceftriaxone, (2) K. pneumoniae with Ceftriaxone, and (3) S. aureus with Oxacillin. Here, such "species-drug-specific classifiers" are trained for the 200 most-common combinations of species and drugs in the training dataset.

      • Going back to Weis et al. a high variance in performance between species/drug pairs was observed. The metrics in Table 2 do not offer any measurement of variance or statistical testing. Indeed, some values are quite close e.g. Macro AUROC of Specialist MLP-XL vs One-hot M.

      See our answer to a remark of Reviewer 1 for our viewpoint on statistical significance testing in machine learning.

      • Since this is a recommendation task, why were no recommendation system metrics used, e.g. mAP@K, mRR, and so (apart from precision@1 for the negative class)? Additionally, since there is a high label imbalance in this task (~80% negatives) a simple model would achieve a very high precision@1.

      See the answer to a remark above for how we have overhauled our evaluation metrics in the revised version. In addition, in choosing our metrics, we wanted metrics that are both (1) appropriate (i.e. recommender system metrics), but also (2) easy to interpret for clinicians. For this reason, we have not included metrics such as mAP@K or mRR. We feel that “spectrum-macro” ROC-AUC and precision@1 cover a sufficiently broad evaluation set of metrics but are easy enough to interpret.

      • A highly similar approach was recently published (https://doi.org/10.1093/bioinformatics/btad717). Since it is quite close to the publication date of this paper, it could be discussed as concurrent work.

      We thank the reviewer for bringing our attention to this study. We have added a paragraph in our revised version discussing this paper as concurrent work.

      • It is difficult to observe a general trend from Figure 2. A statistical test would be advised here.

      See our answer to a remark of Reviewer 1 for our viewpoint on statistical significance testing in machine learning.

      • Figure 5. UMAPs generally don't lead to robust quantitative conclusions. However, the analysis of the embedding space is indeed interesting. Here I would recommend some quantitative measures directly using embedding distances to accompany the UMAP visualizations. E.g. clustering coefficients, distribution of pairwise distances, etc.

      In accordance with this recommendation, we have computed many statistics on the MALDI-TOF spectra embedding spaces. However, we could not come up with any statistic that illuminated us more than the visualization itself. For this reason, we have kept this section as is, and let the figure speak for itself.

      • Weis et al. also perform a transfer learning analysis. How does the transfer learning capacity of the proposed models differ from those in Weis et al?

      Weis et al. perform experiments towards “transferability”, not actual transfer learning. In essence, they use a model trained on data from one diagnostic lab towards prediction on data from another. However, they do not conduct experiments to learn how much data such a pre-trained classifier needs to fine-tune it for adequate performance on the new diagnostic lab, as we do. The end of Section 4.4 discusses how our proposed models specifically shine in transfer learning. The paragraph reads:

      “Lowering the amount of data required is paramount to expedite the uptake of AMR models in clinical diagnostics. The transfer learning qualities of dual-branch models may be ascribed to multiple properties. First of all, since different hospitals use much of the same drugs, transferred drug embedders allow for expressively representing drugs out of the box. Secondly, owing to multi-task learning, even with a limited number of spectra, a considerable fine-tuning dataset may be obtained, as all available data is "thrown on one pile".”

    1. Our IEP team is careful to say to our student's parents that it is our recommendation that their student is in the correct placement for the upcoming year. Our unit classes include students that have severe intellectual disabilities. When we have our general ed teachers talk about what standards the general ed students are currently working on, the parent's are sometimes shocked.

      At our school, we haven't had any issues with failing to assemble an appropriate IEP team. Our administrators do a great job of ensuring that all IEP team members know what is expected of them. We have sped meetings weekly to ensure that we stay on top of IEP due dates and re-evaluations.

      I believe that there is less oversight on the substantive side of IEP implementation accountability. In two years I've never had my progress monitoring checked by anybody. I've also never had parents inquire as to how their child is progressing towards their IEP goals.

      Regarding implementation errors, I don't think I've ever seen an administrator verify the services provided by different related service providers such as speech or OT/PT. It may be assumed that these related services are professionals and that they will do their duty to maintain fidelity to the IEP.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer1

      I recommend combining Figures 1 and 3 either before or after the results shown in Figure 2, so the reader's expectation for quantification is immediately satisfied.

      Response:

      Thank you for your suggestion. In the revised manuscript, images of GFP::POP-1 in compound mutants are moved to Figure 3. The schematic diagram of the gonad (previously Fig. 1A) and GFP::POP-1 images in wild type are kept in Figure 1, as they are described in Introduction.

      Major comments:

      Delving into the figure legend of Fig. 3 and the normalization procedure described in the Methods "Quantification of POP-1 asymmetry in the Z1 and Z4 division" raised concerns. The method therein described is overly complicated but also neglects background subtraction. My first question about this method: what range of distances between daughters is measured in Z? These distances are not discussed in absolute terms, and this is important for our understanding of how much correction for tissue depth might be necessary, as L1s are very thin.

      To check my understanding, the authors use as a control a nuclear-localized GFP driven in the somatic gonad precursors in otherwise wild-type worms by the sys-1 promoter. They observe that the regression on a log scale of anterior:posterior (and vice versa) Z1 and Z4 daughter fluorescence over the distance between the daughters in the Z plane is fit by y = −0.034x + 0.0148, which is practically a slope of 0 and an intercept of 0. This means that they observed an ~1:1 ratio (as log(1)=0) of fluorescence in the anterior and posterior daughters of otherwise wild-type worms, at least across the range of very small X values of relevant distances between daughters (again, the relevant range of distances really matters and should be presented), making the normalization seem unnecessary.

      Response:

      Normalization is essential to compare POP-1 signals between daughter cells since the signal intensities depend on the depth of cells. Depth differences between SGP daughter cells range from 0 to 7.5 micrometers. For example, when we input the maximum difference (7.5) into our correction equation y = −0.034x + 0.0148 (the logarithmically transformed linear regression equation), we get:

      y = −0.034 * 7.5 + 0.0148 = -0.2402

      To interpret this on the original scale, we apply the inverse logarithmic transformation:

      10^(-0.2402) ≈0.575

      This result indicates that even if GFP::POP-1 expression is the same in both cells, the depth difference alone can cause approximately a 1.74-fold (1/0. 575) difference in fluorescence intensity.

      Similarly, if we use a median value of 3.5 micrometers as the depth difference, we get: y = -0.1042. After the inverse logarithmic transformation, this corresponds to a 0.787 or 1.27 (1/0.787) fold difference in fluorescence intensity.

      Without normalization, we risk misinterpreting such differences in expression levels when in reality the expression is the same. Conversely, actual differences in GFP::POP-1 signal could be masked or overestimated due to the depth effect.

      In the revised manuscript, examples of depth differences between SGP daughters are shown in Fig. 2S which is added in response to the comment of reviewer 2, asking images of lin-17 mom-5 animals.

      In the revised manuscript, we explained the depth effects in the legend of Fig. 3 as follows.

      "Since SGP daughter cells are often present at distinct focal planes, we normalized the depth effects on fluorescence intensities (see Materials and Methods for details) for the quantification shown in (B). The images in (A) and (C) are from animals with SGP daughters at similar depths."

      Then based on this regression and 95% CI, the authors predict values that reflect true equivalence of fluorescence of POP-1::GFP in the two SGP daughters, compare the observed values to these predictions, and ultimately display in violin plots these differences of observed and expected. Correct?

      Response:

      Yes, your understanding is correct.

      Is this complicated treatment the only way to detect differences in polarity of anterior and posterior daughters of Z1 and Z4? What happens if the authors measure GFP::POP-1 and calculate the following?

      Z1p(MGV - background control from same focal plane)


      Z1a(MGV - background control from same focal plane)

      If this straightforward analysis shows asymmetric signal in the control that is made symmetrical or reversed in the mutants, the hypothesis would seem to be supported with a much more straightforward method. Samples could be analyzed separately in two bins by worm body position, which affects which cell is superficial in the sample. As it is, the Figure 3 Y axis label is hard to interpret without reading the methods at length, diminishing its impact.

      Response:

      Thank you for the suggestion. Your suggested calculation would be simple if we could assume that control signals (sys-1p::GFP::NLS or sys-1p::GFP::POP-1 in the same wild-type cell) on the same focal plane are the same among animals. However, since there are apparent variations in expression levels among individuals, your suggested method is not appropriate for evaluating differences in sys-1p::GFP::POP-1 intensities between the SGP daughter cells of the same animal.

      Missing control: The sys-1 promoter-driven NLS-tagged fluorescent protein as a control to compare to the GFP::POP-1 is analyzed only in the wild-type, and apparently not in the mutants under consideration. Phillips et al. (2007) show that sys-1p transcriptional activity is equivalent between the SGP daughters in wild-type worms, but neither those results nor the method of normalizing to a sys-1p::GFP::NLS signal in this paper address the question of whether sys-1 promoter activity is equivalent in these cells in mutants upstream in the Wnt pathway. If the current method of normalization is to be used, it seems important to normalize to the sys-1p::GFP::NLS regression in each mutant background.

      Response:

      Thank you for your suggestion. We used sys-1p::GFP::NLS as a control to normalize depth effects, which should be the same across all genotypes because the GFP molecules in SGPs should be equally distributed between SGP daughter cells, not because sys-1 promoter activities are similar among them. Since SGP daughters divide within a short time (about 2 hours), it is likely that the fluorescence of newly synthesized GFP (maturation time of about 1 hour) in SGP daughters is neglectable compared to GFP inherited from the SGP cells. Similarly, sys-1p::GFP::POP-1 signals in SGP daughters reflect the distribution of GFP::POP-1 from SGPs rather than the transcriptional activities of the sys-1 promoter in the daughter cells. sys-1p::GFP::POP-1 or sys-1p::GFP::SYS-1 has been widely used to evaluate polarity of asymmetric divisions in a number of studies, none of which consider transcriptional differences of the sys-1 promoter in the daughter cells.

      1. How was lin-17(mn589) generated? if this is the first report of this allele, full information on what the lesion is and how it was derived should to be reported.

      Response:

      Thank you for your question regarding the lin-17(mn589) allele. We would like to point out that the information about this allele is provided in the Methods section of the original manuscript as follows.

      "lin-17(mn589) (gifted by Mike Herman) carries a mutation in the seventh cysteine residue of the CRD domain (C104Y). mn589 exhibits 47% Psa phenotype (indicating T cell polarity defects)."

      The methods section lacks a description of how the mes-1 experiments were done, in terms of timing, duration, and temperature; mes-1(bn7) is a temperature sensitive allele.

      Response:

      Thank you for pointing out the lack of detailed methodology for the mes-1 experiments. The germless phenotype of mes-1 mutants is partial even at high temperatures. We have not performed temperature shifts to observe the phenotype. As per your suggestion, we added the following text to the Strains section:

      "mes-1(bn7) is a temperature-sensitive allele with higher penetrance of the germless phenotype at 25{degree sign}C than at 15{degree sign}C, and was grown at 22.5{degree sign}C. The germless phenotype of mes-1(bn7) was observed by the absence of the mex-5::GFP::PH signal through direct observation of epifluorescence."

      Minor comments

      1. The paper lacks a discussion of precedent in the literature for Wnt-independent Frizzled activity; this is a major finding that is being undersold in the current version of the manuscript.

      Response:

      Thank you very much for appreciating out finding. We have added the following paragraph to the Discussion section:

      "Wnt-independent functions of Frizzled receptors

      We have shown that lin-17/Fzd functions in a Wnt-independent manner to control SGP polarity, since the missing DTC phenotype of lin-17; cwn-2 and lin-17 mom-5 was completely rescued by ΔCRD-LIN-17. In addition, SGP polarity is normal in the quintuple Wnt mutant that has mutations in all the Wnt genes (Yamamoto et al., 2011). In seam cells, Wnt receptors including LIN-17/Fzd and MOM-5/Fzd appear to have Wnt-independent functions for cell polarization, as seam cells are still mostly polarized in the quintuple Wnt mutants, while they are strongly unpolarized in the triple receptor mutants (lin-17 mom-5 cam-1/Ror) (Yamamoto et al., 2011). In Drosophila, Fz/Fzd has been primarily considered to function Wnt-independently to coordinate planar cell polarity (PCP) between neighboring cells (Lawrence et al., 2007), though Fz function can still be regulated by Wnt, as PCP orientation can be directed by ectopically expressed Wnt proteins (Wu et al., 2013).

                In Drosophila, Fz regulates PCP by interacting with other PCP components including Van Gogh (Vang). In C. elegans, we found that vang-1/Vang does not appear to function with LIN-17/Fz, since most vang-1 single mutants and cwn-1 cwn-2 vang-1 triple mutants have two gonadal arms (215/216 and 58/58, respectively). As Fz interacts with Disheveled (DSH) in Drosophila PCP regulation, in C. elegans, the Disheveled homologs DSH-2 and MIG-5 regulate SGP polarity (Phillips et al., 2007). Therefore, LIN-17 might regulate the DSH homologs in a Wnt-independent manner. "
      

      Added Reference:

      1. Lawrence PA, Struhl G, Casal J. (2007). Planar cell polarity: one or two pathways? Nat Rev Genet. 8, 555-563.
      2. Wu, J., Roman, A.C., Carvajal-Gonzalez, J.M., & Mlodzik, M. (2013). Wg and Wnt4 provide long-range directional input to planar cell polarity orientation in Drosophila. Nature Cell Biology, 15(9), 1045-1055.

      Important: I think "Fig. 6 Germ cell independent migration of germ cells" title is a typo; should be "Germ cell independent migration of DTCs"

      Response:

      Thank you for pointing out the typo. We corrected it in the revised manuscript.

      This is a very important experiment! I think a greater description of the mes-1 phenotype would be helpful, since loss of germline was not 100% penetrant in mes-1(bn7) hermaphrodites in Strome et al., 1995. The legend says "Germless mes-1 phenotype was confirmed by the absence of the mex-5::GFP::PH signal in the gonad." Consider adding a few sentences to the results (or methods, from which the mes-1 experiments are currently missing) describing that only mes-1 animals that lacked germline fluorescence were analyzed for DTC migration.

      Response:

      Thank you for providing the context. To address the concerns, we made the following changes to our manuscript:

      1. In the Results section, we revised the sentence "We found that 84% of DTCs (n = 90) in germless mes-1 animals..." to "Among mes-1 animals that lack germ cells, we found 84% of DTCs (n = 90)...".
      2. We also modified the sentence "We noticed that some germless mes-1 animals..." to "We noticed that some mes-1 animals that lack germ cells...".

      Please correct "secreting the Notch ligand LAG-2" this is a membrane-bound, not secreted ligand

      Response:

      Thank you for your comment. In the revised manuscript, we modified the relevant sentence in the Introduction section as follows:

      "Firstly, DTCs function as niche cells for germline stem cells, inhibiting their entry into meiosis by expressing the Notch ligand LAG-2 (Henderson et al., 1994)."

      Fig 1. The qualitative loss of polarity would be better depicted with

      a grayscale image instead of green-on-black.

      Response:

      Thank you for your suggestion. The GFP::POP-1 images are raw images of the green channel of the confocal microscopy. We believe that SGP polarity is clearly depicted by them.

      Fig. 3 the presentation of these violin plots is confusing. The central text that reads "normal polarity, loss of polarity, reversed polarity" with arrows looks like a second Y axis label attached to the Z4 plot. I recommend rearranging. Consider shading the top, bottom, and central regions and explaining the meaning of the shading in the legend.

      Response:

      Thank you for your suggestions regarding the presentation of Figure 3. In response to your feedback, we have made the following modifications:

      First, we moved the text and arrows from the center to the right side of the figure, creating a clearer layout. As you recommended, we applied shading to the top, bottom, and central regions of the violin plots. Additionally, to explain the meaning of the shading, we added a new explanation to the figure legend. Specifically, we included the following text:

      "Values within the 95% CI (between the red lines; light green regions) indicate symmetric localization. Values below the lower red line (light blue regions) indicate reversed localization, while values above the upper red line (light red regions) indicate normal localization."

      We applied the same modification to Supplemental Fig. 1.

      Reviewer 2

      Major comments

      1- Are the effects of combining the different Wnts with the lin-17 allele specific to the n3091 allele? It would be important to test another allele, for example the sy277 allele has a similar phenotype and is available at CGC. A null would be even better if it is viable. Alternatively, lin-17(RNAi) could instead be used if efficient enough. This is important since the n3091 allele could differentially alter the binding to the various Wnts, resulting in their distinct phenotypes in that background. However, these distinct phenotypes may not be relevant in a wild-type context.

      Response:

      Thank you for your insightful comment. The lin-17(n3091) allele contains a nonsense mutation at the 35th codon, located between the second and third cysteine residues in the CRD domain (Wnt binding domain) (Sawa et al 1996). Therefore, it is highly unlikely that the N-terminal protein of 34 amino acids produced in lin-17(n3091) can bind to Wnts. In the revised manuscript, we added the missing-DTC phenotype of lin-17(n671) cwn-2 animals, which show a similar phenotype to lin-17(n3091) cwn-2. n671 is a reference allele in WormBase and has a nonsense mutation. Although sy277 has a deletion in the N-terminal region, its phenotype is weaker than that of n3091 and n671 (Sawa et al 1996).

      In the revised manuscript, we described lin-17(n671) cwn-2, in the Table 1, Table S1 and added the following sentence.

      "We observed a similar phenotype in lin-17(n671); cwn-2 double mutants, confirming that this genetic interaction is not allele-specific."

      2- In the lin-17; mom-5 double mutant which lacks DTCs, are Z1 and Z4 there but they do not express DTC markers, or are they never born? A lineage analysis should be presented. Also, are Z2 and Z3 still there on their own? Please show images.

      Response:

      Thank you for your comments. We quantified sys-1p::GFP::POP-1 signals in Z1 and Z4 daughter cells of lin-17 mom-5 and have not observed any animals lacking Z1, Z4 or germ cells. In the revised manuscript, as Fig. S2, we added images of sys-1p::GFP::POP-1 localizations in SGP daughters, along with germ cells in lin-17 mom-5 as well as in lin-17 cwn-1 egl-20 cwn-2, both of which were not shown in the original manuscript. In response to Reviewer 1's comment, we also included examples of depth effects on fluorescence intensities in Fig. S2 with images of different focal planes.

      Fig. S2 is quoted it at the end of the following sentence.

      "Then, we quantified the ratios (on a logarithmic scale) of sys-1p::GFP::POP-1 signal intensities proximal to distal daughter cells in various genotypes (Fig. 3A and Fig. S2)."

      The loss of polarity phenotype of lin-17 mom-5 has been described in Phillips et al. We missed to cite this in the original manuscript. We added the citation in the revised manuscript.

      "These asymmetries were strongly disrupted and weakly affected in lin-17 mom-5 double and lin-17 single mutants, respectively, as described previously (Phillips et al., 2007; Siegfried et al., 2004)."

      Minor comments

      1- The term "mirror-symmetry" is redundant. Consider using "symmetry"

      or "symmetrical polarity".

      Response:

      As noted in the cross-comment by Reviewer 1, we believe that "mirror-symmetry" is the appropriate term.

      We think that "symmetry" implies the same lineage, whereas the relationship between the Z1 and Z4 lineages is not. "Mirror symmetry" was also used in Herman & Horvitz (1994) to describe the defect in the F lineage in lin-44/Wnt mutants as follows.

      "we observed division patterns that were mirror symmetric to those of the wild type (Fig. 2). One plausible explanation is that the polarity of the first asymmetric cell division was reversed, causing the polarities of all subsequent asymmetric cell divisions also to be reversed."

      2- "... they are permissively pushed distally by germ cells while proliferating" is confusing as it is unclear what proliferating cell you are referring to - germ cells or the DTC? proliferating? sense. Replace by: "they are pushed distally by proliferating germ cells"

      Response:

      Thank you for your helpful comment. We agree with your suggestion and modify the sentence as follows:

      Original: "... they are permissively pushed distally by germ cells while proliferating" Revised: "... they are pushed distally by proliferating germ cells"

      3- Fig. 2 is cited in the text before Fig. 1.

      Response:

      Thank you for pointing this out. Figure1 is mentioned in the Introduction before Figure 2 is referenced in the Result section in the original manuscript. We think the reviewer might be confused, as the POP-1 localization defect was shown in Figure 1. In response to the reviewer 1's comment, we moved the POP-1 localization images of the compound mutants to Figure 3. In addition, we noticed that in the original manuscript, Figure 1B was mentioned before Figure 1A in the Introduction. Therefore, we have modified the sentences in the Introduction.

      The original sentence was:

      "In the gonad, at the L1 stage, somatic gonadal precursor cells (SGPs), Z1 and Z4 have LH and HL polarity, respectively (Siegfried et al., 2004) (Fig. 1B). This mirror-symmetric polarity creates their mirror-symmetric lineages producing distal tip cells (DTCs) from the distal daughters (Z1.a and Z4.p) (Fig. 1B)."

      The revised sentence now reads:

      "In the gonad, at the L1 stage, somatic gonadal precursor cells (SGPs), Z1 and Z4 have LH and HL polarity, respectively, creating their mirror-symmetric lineages producing distal tip cells (DTCs) from the distal daughters (Z1.a and Z4.p) (Siegfried et al., 2004) (Fig. 1A and 1B)."

      4- The results also suggest that MOM-5/Frizzled might be the receptor for Wnts regulating DTC production, as lin-17 mom-5 double mutants completely lack DTCs." Table 1 results rather suggest that lin-17 and mom-5 are the two frizzled receptor involved in DTC specification and that they are largely redundant.

      Response:

      As the reviewer noted, lin-17 and mom-5 function redundantly in DTC specification (SGP polarization). However, their functions are clearly different in terms of genetic interactions with Wnt genes (e.g. lin-17 cwn-2 but not mom-5 cwn-2 show the DTC-missing phenotype). We propose that MOM-5 but not LIN-17 functions as a receptor for Wnts.

  2. Aug 2024
    1. Second, one must perceive that an injustice has occurred. Many women find this difficult because they compare today to the past and can see that progress has been made (e.g., women can vote, women have more education than men, women frequently work outside the home).

      I've seen this a few times with people who do not want to identify as feminists. A lot of times their reasoning is that it is no longer necessary. They might say they believe men and women should be equal, but that they already are (at least in the United States), so they do not want to identify as a feminist. I think one reason this might occur is that people might not want to admit to themselves that any injustice is still occurring as this may be distressing. Also, like the text says, I've heard people use progress as proof that feminism should be "done" and men and women are now equal, ignoring the ways that we still aren't. Some of achievements of feminism in the past might be more obvious as they are directly and clearly written into the law (like earning the right to vote), but there are still so many ways that gender inequality persists today.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this study, the authors used a stopped-flow method to investigate the kinetics of substrate translocation through the channel in hexameric ClpB, an ATP-dependent bacterial protein disaggregase. They engineered a series of polypeptides with the N-terminal RepA ClpB-targeting sequence followed by a variable number of folded titin domains. The authors detected translocation of the substrate polypeptides by observing the enhancement of fluorescence from a probe located at the substrate's C-terminus. The total time of the substrates' translocation correlated with their lengths, which allowed the authors to determine the number of residues translocated by ClpB per unit time.

      Strengths:

      This study confirms a previously proposed model of processive translocation of polypeptides through the channel in ClpB. The novelty of this work is in the clever design of a series of kinetic experiments with an engineered substrate that includes stably folded domains. This approach produced a quantitative description of the reaction rates and kinetic step sizes. Another valuable aspect is that the method can be used for other translocases from the AAA+ family to characterize their mechanism of substrate processing.

      Weaknesses:

      The main limitation of the study is in using a single non-physiological substrate of ClpB, which does not replicate the physical properties of the aggregated cellular proteins and includes a non-physiological ClpB-targeting sequence. Another limitation is in the use of ATPgammaS to stimulate the substrate processing. It is not clear how relevant the results are to the ClpB function in living cells with ATP as the source of energy, a multitude of various aggregated substrates without targeting sequences that need ClpB's assistance, and in the presence of the co-chaperones.

      Indeed, we agree that our RepA-Titinx substrates are not aggregates but are model, soluble, substrates used to reveal information about enzyme catalyzed protein unfolding and translocation.  Our substrates are similar to RepA-GFP and GFP-SsrA used by multiple labs including Wickner, Horwich, Sauer, Baker, Shorter, Bukua, to name only a few.  The fact that “this is what everyone does” does not make the substrates physiological or the most ideal. However, this is the technology we currently have until we and others develop something better. In the meantime, we contend that  the results presented here do advance our knowledge on enzyme catalyzed protein unfolding

      Part of what this manuscript seeks to accomplish is presenting the development of a single-turnover experiment that reports on processive protein unfolding by AAA+ molecular motors, in this case, ClpB.  Importantly, we are treating translocation on an unfolded polypeptide chain and protein unfolding of stably folded proteins as two distinct reactions catalyzed by ClpB. If these functions are used to disrupt protein aggregates, in vivo, then this remains to be seen.

      We contend that processive ClpB catalyzed protein unfolding has not been rigorously demonstrated prior to our results presented here.  Avellaneda et al mechanically unfolded their substrate before loading ClpB (Avellaneda, Franke, Sunderlikova et al. 2020).  Thus, their experiment represents valuable observations reflecting polypeptide translocation on a pre-unfolded protein.  Our previous work using single-turnover stopped-flow experiments employed unstructured synthetic polypeptides and therefore reflects polypeptide translocation and not protein unfolding (Li, Weaver, Lin et al. 2015).  Weibezahn et al used unstructured substrates in their study with ClpB (BAP/ClpP), and thus their results represent translocation of a pre-unfolded polypeptide and not enzyme catalyzed protein unfolding (Weibezahn, Tessarz, Schlieker et al. 2004). 

      Many studies have reported the use of  GFP with tags or RepA-GFP and used the loss of GFP fluorescence to conclude protein unfolding.  However, such results do not reveal if ClpB processively and fully translocates the substrate through its axial channel.  One cannot rule out, even when trapping with “GroEL trap”, the possibility that ClpB only needs to disrupt some of the fold in GFP before cooperative unfolding occurs leading to loss of fluorescence.  Once the cooperative collapse of the structure occurs and fluorescence is lost it has not been shown that ClpB will continue to translocate on the newly unfolded chain or dissociate. In fact, the Bukau group showed that folded YFP remained intact after luciferase was unfolded (Haslberger, Zdanowicz, Brand et al. 2008).  Our approach, reported here, yields signal upon arrival of the motor at the c-terminus or within the PIFE distance thus we can be certain that the motor does arrive at the c-terminus after unfolding up to three tandem repeats of the Titin I27 domain.

      ATPgS is a non-physiological nucleotide analog.  However, ClpB has been shown to exhibit curious behavior in its presence that we and others, as the reviewer acknowledges, do not fully understand (Doyle, Shorter, Zolkiewski et al. 2007).  Some of the experiments reported here are seeking to better understand that fact.  Here we have shown that ATPgS alone will support processive protein unfolding. With this assay in hand, we are now seeking to go forward and address many of the points raised by this reviewer. 

      The authors do not attempt to correlate the kinetic step sizes detected during substrate translocation and unfolding with the substrate's structure, which should be possible, given how extensively the stability and unfolding of the titin I27 domain were studied before. Also, since the substrate contains up to three I27 domains separated with unstructured linkers, it is not clear why all the translocation steps are assumed to occur with the same rate constant.

      We assume that all protein unfolding steps occur with the same rate constant, ku.  We conclude that we are not detecting the translocation rate constant, kt, as our results support a model where kt is much faster than ku.  We do think it makes sense that the same slow step occurs between each cycle of protein unfolding.

      We have added a discussion relating our observations to mechanical unfolding of tandem repeats of Titin I27 from AFM experiments  (Oberhauser, Hansma, Carrion-Vazquez and Fernandez 2001). Most interestingly, they report unfolding of Titin I27 in 22 nm steps.  Using 0.34 nm per amino acids this yields ~65 amino acids per unfolding step, which is comparable to our kinetic step-size of 57 – 58 amino acids per step.

      Some conclusions presented in the manuscript are speculative:

      The notion that the emission from Alexa Fluor 555 is enhanced when ClpB approaches the substrate's C-terminus needs to be supported experimentally. Also, evidence that ATPgammaS without ATP can provide sufficient energy for substrate translocation and unfolding is missing in the paper.

      In our previous work we have used fluorescently labeled 50 amino acid peptides as substrates to examine ClpB binding (Li, Lin and Lucius 2015, Li, Weaver, Lin et al. 2015).  In that work we have used fluorescein, which exhibits quenching upon ClpB binding.  We have added a control experiment where we have attached alexa fluor 555 to the 50 amino acid substrate so we can be assured the ClpB binds close to the fluorophore.  As seen in supplemental Fig. 1 A  upon titration with ClpB, in the presence of ATPγS, we observe an increase in fluorescence from AF555, consistent with PIFE.  Supplemental Fig. 1 B shows the relative fluorescence enhancement at the peak max increases up to ~ 0.2 or a 20 % increase in fluorescence, due to PIFE, upon ClpB binding.   

      Further, peak time is our hypothesized measure of ClpB’s arrival at the dye. Our results indicate that the peak time linearly increases as a function of an increase in the number of folded TitinI27 repeats in the substrates which also supports the PIFE hypothesis. Finally, others have shown that AF555 exhibits PIFE and we have added those references.

      The evidence that ATPγS alone can support translocation is shown in Fig. 2 and supplemental Figure 1.  Fig. 2 and supplemental Figure 1 are two different mixing strategies where we use only ATPgS and no ATP at all.  In both cases the time courses are consistent with processive protein unfolding by ClpB with only ATPγS.

      Reviewer #2 (Public Review):

      Summary:

      The current work by Banwait et al. reports a fluorescence-based single turnover method based on protein-induced fluorescence enhancement (PIFE) to show that ClpB is a processive motor. The paper is a crucial finding as there has been ambiguity on whether ClpB is a processive or non-processive motor. Optical tweezers-based single-molecule studies have shown that ClpB is a processive motor, whereas previous studies from the same group hypothesized it to be a non-processive motor. As co-chaperones are needed for the motor activity of the ClpB, to isolate the activity of ClpB, they have used a 1:1 ratio ATP and ATPgS, where the enzyme is active even in the absence of its co-chaperones, as previously observed. A sequential mixing stop-flow protocol was developed, and the unfolding and translocation of RepA-TitinX, X = 1,2,3 repeats was monitored by measuring the fluorescence intensity with the time of Alexa F555 which was labelled at the C-terminal Cysteine. The observations were a lag time, followed by a gradual increase in fluorescence due to PIFE, and then a decrease in fluorescence plausibly due to the dissociation from the substrate allowing it to refold. The authors observed that the peak time depends on the substrate length, indicating the processive nature of ClpB. In addition, the lag and peak times depend on the pre-incubation time with ATPgS, indicating that the enzyme translocates on the substrates even with just ATPgS without the addition of ATP, which is plausible due to the slow hydrolysis of ATPgS. From the plot of substrate length vs peak time, the authors calculated the rate of unfolding and translocation to be ~0.1 aas-1 in the presence of ~1 mM ATPgS and increases to 1 aas-1 in the presence of 1:1 ATP and ATPgS. The authors have further performed experiments at 3:1 ATP and ATPgS concentrations and observed ~5 times increase in the translocation rates as expected due to faster hydrolysis of ATP by ClpB and reconfirming that processivity is majorly ATP driven. Further, the authors model their results to multiple sequential unfolding steps, determining the rate of unfolding and the number of amino acids unfolded during each step. Overall, the study uses a novel method to reconfirm the processive nature of ClpB.

      Strengths:

      (1) Previous studies on understanding the processivity of ClpB have primarily focused on unfolded or disordered proteins; this study paves new insights into our understanding of the processing of folded proteins by ClpB. They have cleverly used RepA as a recognition sequence to understand the unfolding of titin-I27 folded domains.

      (2) The method developed can be applied to many disaggregating enzymes and has broader significance.

      (3) The data from various experiments are consistent with each other, indicating the reproducibility of the data. For example, the rate of translocation in the presence of ATPgS, ~0.1 aas-1 from the single mixing experiment and double mixing experiment are very similar.

      (4) The study convincingly shows that ClpB is a processive motor, which has long been debated, describing its activity in the presence of only ATPgS and a mixture of ATP and ATPgS.

      (5) The discussion part has been written in a way that describes many previous experiments from various groups supporting the processive nature of the enzyme and supports their current study.

      Weaknesses:

      (1) The authors model that the enzyme unfolds the protein sequentially around 60 aa each time through multiple steps and translocates rapidly. This contradicts our knowledge of protein unfolding, which is generally cooperative, particularly for titinI27, which is reported to unfold cooperatively or utmost through one intermediate during enzymatic unfolding by ClpX and ClpA.

      We do not think this represents a contradiction.  In fact, our observations are in good agreement with mechanical unfolding of tandem repeats of Titin I27 using AFM experiments (Oberhauser, Hansma, Carrion-Vazquez and Fernandez 2001).  They showed that tandem repeats of TitinI27 unfolded in steps of ~22 nm.  Dividing 22 nm by 0.34 nm/Amino Acid gives ~65 amino acids per unfolding event.  This implies that, under force, ~65 amino acids of folded structure unfolds in a single step.  This number is in excellent agreement with our kinetic step-size of 65 AA/step. 

      Importantly, the experiments cited by the reviewer on ClpA and ClpX are actually with ClpAP and ClpXP.  We assert that this is an important distinction as we have shown that ClpA employs a different mechanism than ClpAP (Rajendar and Lucius 2010, Miller, Lin, Li and Lucius 2013, Miller and Lucius 2014).  Thus, ClpA and ClpAP should be treated as different enzymes but, without question, ClpB and ClpA are different enzymes.

      (2) It is also important to note that the unfolding of titinI27 from the N-terminus (as done in this study) has been reported to be very fast and cannot be the rate-limiting step as reported earlier(Olivares et al, PNAS, 2017). This contradicts the current model where unfolding is the rate-limiting step, and the translocation is assumed to be many orders faster than unfolding.

      Most importantly, the Olivares paper is examining ClpXP and ClpAP catalyzed protein unfolding and translocation and not ClpB.  These are different enzymes.  Additionally, we have shown that ClpAP and ClpA translocate unfolded polypeptides with different rates, rate constants, and kinetic step-sizes indicating that ClpP allosterically impacts the mechanism employed by ClpA to the extent that even ClpA and ClpAP should be considered different enzymes (Rajendar and Lucius 2010, Miller, Lin, Li and Lucius 2013).  We would further assert that there is no reason to assume ClpAP and ClpXP would catalyze protein unfolding using the same mechanism as ClpB as we do not think it should be assumed ClpA and ClpX use the same mechanism as ClpAP and ClpXP, respectively. 

      The Olivares et al paper reports a dwell time preceding protein unfolding of ~0.9 and ~0.8 s for ClpXP and ClpAP, respectively.   The inverse of this can be taken as the rate constant for protein unfolding and would yield a rate constant of ~1.2 s-1, which is in good agreement with our observed rate constant of 0.9 – 4.3 s-1 depending on the ATP:ATPγS mixing ratio.  For ClpB, we propose that the slow unfolding is then followed by rapid translocation on the unfolded chain where translocation by ClpB must be much faster than for ClpAP and ClpXP.  We think this is a reasonable interpretation of our results and not a contradiction of the results in Olivares et al. Moreover, this is completely consistent with the mechanistic differences that we have reported, using the same single-turnover stopped flow approach on the same unfolded polypeptide chains with ClpB, ClpA, and ClpAP (Rajendar and Lucius 2010, Miller, Lin, Li and Lucius 2013, Miller and Lucius 2014, Li, Weaver, Lin et al. 2015).

      (3) The model assumes the same time constant for all the unfolding steps irrespective of the secondary structural interactions.

      Yes, we contend that this is a good assumption because it represents repetition of protein unfolding catalyzed by ClpB upon encountering the same repeating structural elements, i.e. Beta sheets. 

      (4) Unlike other single-molecule optical tweezer-based assays, the study cannot distinguish the unfolding and translocation events and assumes that unfolding is the rate-limiting step.

      Although we cannot, directly, distinguish between protein unfolding and translocation we have logically concluded that protein unfolding is likely rate limiting. This is because the large kinetic step-size represents the collapse of ~60 amino acids of structure between two rate-limiting steps, which we interpret to represent cooperative protein unfolding induced by ClpB.  It is not an assumption it is our current best interpretation of the observations that we are now seeking to further test. 

      Reviewer #3 (Public Review):

      Summary:

      The authors have devised an elegant stopped-flow fluorescence approach to probe the mechanism of action of the Hsp100 protein unfoldase ClpB on an unfolded substrate (RepA) coupled to 1-3 repeats of a folded titin domain. They provide useful new insight into the kinetics of ClpB action. The results support their conclusions for the model setup used.

      Strengths:

      The stopped-flow fluorescence method with a variable delay after mixing the reactants is informative, as is the use of variable numbers of folded domains to probe the unfolding steps.

      Weaknesses:

      The setup does not reflect the physiological setting for ClpB action. A mixture of ATP and ATPgammaS is used to activate ClpB without the need for its co-chaperones, Hsp70. Hsp40 and an Hsp70 nucleotide exchange factor. This nucleotide strategy was discovered by Doyle et al (2007) but the mechanism of action is not fully understood. Other authors have used different approaches. As mentioned by the authors, Weibezahn et al used a construct coupled to the ClpA protease to demonstrate translocation. Avellaneda et al used a mutant (Y503D) in the coiled-coil regulatory domain to bypass the Hsp70 system. These differences complicate comparisons of rates and step sizes with previous work. It is unclear which results, if any, reflect the in vivo action of ClpB on the disassembly of aggregates.

      We agree with the reviewer, there are several strategies that have been employed to bypass the need for Hsp70/40 or KJE to simplify in vitro experiments.  Here we have developed a first of its kind transient state kinetics approach that can be used to examine processive protein unfolding.  We now seek to go forward with examining the mechanisms of hyperactive mutants, like Y503D, and add the co-chaperones so that we can address the limitations articulated by the reviewer.   In fact we already began adding DnaK to the reaction and found that DnaK induced ClpB to release the polypeptide chain (Durie, Duran and Lucius 2018).  However, the sequential mixing strategy developed here was needed to go forward with examining the impact of co-chaperones. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Line 1: I recommend changing the title of the paper to remove the terms that are not clearly defined in the text: "robust" and "processive". What are the Authors' criteria for describing a molecular machine as "robust" vs. "not robust"? A definition of processivity is given in equation 2, but its value for ClpB is not reported in the text, and the criteria for classifying a machine as "processive" vs. "non-processive" are not included. Besides, the Authors have previously reported that ClpB is non-processive (Biochem. J., 2015), so it is now clear that a more nuanced terminology should be applied to this protein. Also, Escherichia coli should be fully spelled out in the title.

      The title has been changed.  We have removed “robust” as we agree with the reviewer, there is no way to quantify “robust”.  However, we have kept “processive” and have added to the discussion a calculation of processivity since we can quantify processivity.  Importantly, the unstructured substrates used in our previous studies represent translocation and not protein unfolding.  here, on folded substrates, we detect rate-limiting protein unfolding followed by rapid translocation.  Thus, we report a lower bound on protein unfolding processivity of 362 amino acids. 

      Line 20: The comment about mitochondrial SKD3 should be removed. SKD3, like ClpB, belongs to the AAA+ family, and it is simply a coincidence that the original study that discovered SKD3 termed it an Hsp100 homolog. The similarity between SKD3 and ClpB is limited to the AAA+ module, so there are many other metazoan ATPases, besides SKD3, that could be called homologs of ClpB, including mitochondrial ClpX, ER-localized torsins, p97, etc.

      Removed.

      Lines 133-139. Contrary to what the authors state, it is not clear that the "lag-phase" becomes significantly shorter for subsequent mixing experiments (Figure 1E) perhaps except for the last one (2070 s). It is clear, however, that the emission enhancement becomes stronger for later mixes. This effect should be discussed and explained, as it suggests that the pre-equilibrations shorter than ~2000 sec do not produce saturation of ClpB binding to the substrate.

      We have added supplemental figure 2, which represents a zoom into the lag region.  This better illustrates what we were seeing but did not clearly show to the reader.  In addition, we address all three changes in the time courses, i.e. extend of lag, change in peak position, and the change in peak height. 

      Line 175. The hydrolysis rate of ATPgammaS in the presence of ClpB should be measured and compared to the hydrolysis rate with ATP/ATPgammaS to check if the ratio of those rates agrees with the ratio of the translocation rates. These experiments should be performed with and without the RepA-titin substrate, which could reveal an important linkage between the ATPase engine and substrate translocation. These experiments are essential to support the claim of substrate translocation and unfolding with ATPgammaS as the sole energy source.

      The time courses shown in figure 2 and supplemental Figure 1 are collected with only ATPgS and no ATP.  The time courses show a clear increase in lag and appearance of a peak with increasing number of tandem repeats of titin domains.  We do not see an alternate explanation for this observation other than ATPγS supports ClpB catalyzed protein unfolding and translocation.  What is the reviewers alternate explanation for these observations?

      We agree with the reviewer that the linkage of ATP hydrolysis to protein unfolding and translocation is essential and we are seeking to acquire this knowledge.  However, a simple comparison of the ratio of rates is not adequate. We contend that a complete mechanistic study of ATP turnover by ClpB is required to properly address this linkage and such a study is too substantial to be included here but is currently underway. 

      All that said, the statement on line 175 was removed since we do not report any ATPase measurements in this paper.

      Line 199: It is an over-simplification to state that "1:1 mix of ATP to ATPgammaS replaces the need for co-chaperones". This sentence should be corrected or removed. The ClpB co-chaperones (DnaK, DnaJ, GrpE) play a major role in targeting ClpB to its aggregated substrates in cells and in regulating the ClpB activity through interactions with its middle domain. ATPgammaS does not replace the co-chaperones; it is a chemical probe that modifies the mechanism of ClpB in a way that is not entirely understood.

      We agree with the reviewer.  The sentence has been modified to point out that the mix of ATP and ATPγS activates ClpB.

      Figure 3B, Supplementary Figure 5A. The solid lines from the model fit cannot be distinguished from the data points. Please modify the figures' format to clearly show the fits and the data points.

      Done.

      Lines 326, 329. It is not clear why the authors mention a lack of covalent modification of substrates by ClpB. AAA+ ATPases do not produce covalent modifications of their substrates.

      The issue of covalent modification was presented in the introduction lines 55 – 60 pointing out that much of what we have learned about protein unfolding and translocation catalyzed by ClpA and ClpX is from the observations of proteolytic degradation catalyzed by the associated protease ClpP.  However, this approach is not possible for ClpB/Hsp104 as these motors do not associate with a protease unless they have been artificially engineered to do so. 

      Lines 396-399. I am puzzled why the authors try to correlate the size of the detected kinetic step with the length of the ClpB channel instead of the size characteristics of the substrate.

      We are attempting to discuss/rationalize the observed large kinetic step-size which, in part, is defined by the structural properties of the enzyme as well as the size characteristics of the substrate.  We have attempted to clarify this and better discuss the properties of the substrate as well as ClpB.

      As I mentioned in the Public Review, it is essential to demonstrate that the emission increase used as the only readout of the ClpB position along the substrate is indeed caused by the proximity of ClpB to the fluorophore. One way to accomplish that would be to place the fluorophore upstream from the first I27 domain and determine if the "lag phase" in the emission enhancement disappears.

      Alexa Fluor 555 is well established to exhibit PIFE.  However, as in the response to the public review, we have included an appropriate control showing this in supplemental Fig. 1.

      Finally, the authors repetitively place their results in opposition to the study of Weibezahn et al. published in 2004 which first demonstrated substrate translocation by engineering a peptidase-associated variant of ClpB. It should be noted that the field of protein disaggregases has moved since the time of that publication from the initial "from-start-to-end" translocation model to a more nuanced picture of partial translocation of polypeptide loops with possible substrate slipping through the ClpB channel and a dynamic assembly of ClpB hexamers with possible subunit exchange, all of which may affect the kinetics in a complex way. However, the present study confirmed the "start-to-end" translocation model, albeit for a non-physiological ClpB substrate, and that is the take-home message, which should be included in the text.

      It is not clear to us that the field has “moved on” since Weibezahn et al 2004.  Their engineered construct that they term “BAP” with ClpP is still used in the field despite us reporting that proteolytic degradation is observed in the absence of ATP with that system  (Li, Weaver, Lin et al. 2015) and should, therefore, not be used to conclude processive energy driven translocation. The “partial translocation” by ClpB is also grounded in observations of partial degradation catalyzed by ClpP with BAP from the same group (Haslberger, Zdanowicz, Brand et al. 2008). It is not clear to us that the idea of subunit exchange leading to the possibility of assembly around internal sequences is being considered.  We do agree that this is an important mechanistic possibility that needs further interrogation. We agree with the reviewer, all these factors are confounding and lead to a more nuanced view of the mechanism.

      All that said, we have removed some of the opposition in the discussion.

      Reviewer #2 (Recommendations For The Authors):

      (1) It is assumed that the lag phase will be much longer than the phase in which we see a gradual increase in fluorescence, as the effect of PIFE is significant only when the enzyme is very close to the fluorophore. Particularly for RepA-titin3, the enzyme has to translocate many tens of nm before it is closer to the C-terminus fluorophore. However, in all cases, the lag time is lower or similar to the gradual increase phase (for example, Figure 3B). Could the authors explain this?

      The extent of the lag, or time zero until the signal starts to increase, is interpreted to indicate the time the motor moves from it’s initial binding site until it gets close enough to the fluorophore that PIFE starts to occur.  In our analysis we apply signal change to the last intermediate and dissociation or release of unfolded RepA-TitinX.  The increase in PIFE is not “all or nothing”.  Rather, it is starting to increase gradually.  Further, because these are ensemble measurements, and each molecule will exhibit variability in rate there is increased breadth of the peak due to ensemble averaging. 

      (2) Although the reason for differences in the peak position (for example, Figure 1E, 2B) is apparent, the reason for variations in the relative intensities has to be given or speculated.

      We have addressed the reason for the different peak heights in the revised manuscript.  It is the consequence of the fact that each substrate has slightly different fluorescent labeling efficiencies.  Thus, for each sample there is a mix of labeled and unlabeled substrates both of which will bind to ClpB but the unlabeled ClpB bound substrates do not contribute to the fluorescence signal, but will represent a binding competitor.  Thus, for low labeling efficiency there is a lower concentration of ClpB bound to fluorescent RepA-Titinx and for higher labeling efficiency there is higher concentration of ClpB bound to RepA-Titinx leading to an increased peak height.  RepA-Titin2 has the highest labeling efficiency and thus the largest peak height.

      Reviewer #3 (Recommendations For The Authors):

      The authors should make it clear that they and previous authors have used different constructs or conditions to bypass the physiological regulation of ClpB action by Hsp70 and its co-factors as mentioned above. In particular, the construct used by Avellaneda et al should be explained when they challenge the findings of those authors.

      Minor points:

      The lines fitting the experimental points are difficult or impossible to see in Figures 2B, 3B, and s5B.

      Fixed

      Typo bottom of p6 - "averge"

      Fixed

      Avellaneda, M. J., K. B. Franke, V. Sunderlikova, B. Bukau, A. Mogk and S. J. Tans (2020). "Processive extrusion of polypeptide loops by a Hsp100 disaggregase." Nature.

      Doyle, S. M., J. Shorter, M. Zolkiewski, J. R. Hoskins, S. Lindquist and S. Wickner (2007). "Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity." Nature structural & molecular biology 14(2): 114-122.

      Durie, C. L., E. C. Duran and A. L. Lucius (2018). "Escherichia coli DnaK Allosterically Modulates ClpB between High- and Low-Peptide Affinity States." Biochemistry 57(26): 3665-3675.

      Haslberger, T., A. Zdanowicz, I. Brand, J. Kirstein, K. Turgay, A. Mogk and B. Bukau (2008). "Protein disaggregation by the AAA+ chaperone ClpB involves partial threading of looped polypeptide segments." Nat Struct Mol Biol 15(6): 641-650.

      Li, T., J. Lin and A. L. Lucius (2015). "Examination of polypeptide substrate specificity for Escherichia coli ClpB." Proteins 83(1): 117-134.

      Li, T., C. L. Weaver, J. Lin, E. C. Duran, J. M. Miller and A. L. Lucius (2015). "Escherichia coli ClpB is a non-processive polypeptide translocase." Biochem J 470(1): 39-52.

      Miller, J. M., J. Lin, T. Li and A. L. Lucius (2013). "E. coli ClpA Catalyzed Polypeptide Translocation is Allosterically Controlled by the Protease ClpP." Journal of Molecular Biology 425(15): 2795-2812.

      Miller, J. M. and A. L. Lucius (2014). "ATP-gamma-S Competes with ATP for Binding at Domain 1 but not Domain 2 during ClpA Catalyzed Polypeptide Translocation." Biophys Chem 185: 58-69.

      Oberhauser, A. F., P. K. Hansma, M. Carrion-Vazquez and J. M. Fernandez (2001). "Stepwise unfolding of titin under force-clamp atomic force microscopy." Proc Natl Acad Sci U S A 98(2): 468-472.

      Rajendar, B. and A. L. Lucius (2010). "Molecular mechanism of polypeptide translocation catalyzed by the Escherichia coli ClpA protein translocase." J Mol Biol 399(5): 665-679.

      Weibezahn, J., P. Tessarz, C. Schlieker, R. Zahn, Z. Maglica, S. Lee, H. Zentgraf, E. U. Weber-Ban, D. A. Dougan, F. T. Tsai, A. Mogk and B. Bukau (2004). "Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB." Cell 119(5): 653-665.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study provides a useful strategy for treating mouse cutaneous squamous cell carcinoma (mCSCC) with serum derived from mCSCC-exposed mice. The exploration of serum-derived antibodies as a potential therapy for curing cancer is particularly promising but the study provides inadequate evidence for specific effects of mCSCC-binding serum antibodies. This study will be of interest to scientists seeking a novel immunotherapic strategy in cancer therapy.

      Joint Public Review:

      Summary:

      This study presents an immunotherapeutic strategy for treating mouse cutaneous squamous cell carcinoma (mCSCC) using serum from mice inoculated with mCSCC. The author hypothesizes that antibodies in the generated serum could aid the immune system in tumor volume reduction. The study results showed a reduction in tumor volume and altered expression of several cancer markers (p53, Bcl-xL, NF-κB, Bax) suggesting the potential effectiveness of this approach.

      Strengths:

      The approach shows potential effect on preventing tumor progression, from both the tumor size and the cancer biomarker expression levels bringing attention to the potential role of antibodies and B cell responses in cancer therapy.

      We greatly appreciate your positive feedback on our study.

      Weaknesses:

      These are some of the specific things that the author could consider to strengthen the evidence supporting the claims in their study.

      (1) The study fails to provide evidence of the specific effect of mCSCC-antibodies on mCSCC. The study utilized serum which also contains many immune response factors like cytokines that could contribute to tumor reduction. There is no information on serum centrifugation conditions, which makes it unclear whether immune components like antigen-specific T cells, activated NK cells, or other immune cells were removed from the serum. The study does not provide evidence of neutralizing antibodies through isolation, analysis of B cell responses, or efficacy testing against specific cancer epitopes. To affirm the specific antibodies' role in the observed immune response, isolating antibodies rather than employing whole serum could provide more conclusive evidence. Purifying the serum to isolate mCSCC-binding antibodies, such as through protein A purification, and ELISA would have been more useful to quantify the immune response. It would be interesting to investigate the types of epitopes targeted following direct tumor cell injection. A more thorough characterization of the antibodies, including B cell isolation and/or hybridoma techniques, would strengthen the claim.

      I am deeply appreciative of the reviewer's highly professional comments. Tumor development involves the coexistence of cancer cells at different developmental stages, each harboring a variety of known and unknown mutated proteins. These mutated proteins expose multiple known and unknown epitopes, each capable of stimulating the production of corresponding antibodies in healthy mice. Identifying all these antibodies presents a significant challenge. Current research methodologies, such as ELISA, WB, and ChIP, can only identify known antibodies based on existing antigens. A prerequisite for using these techniques is that both antigens and antibodies are identified. At present, there is no technology available to identify antibodies produced by an unknown mutated protein and epitope. However, I find the reviewer's comments insightful. Perhaps we can initially identify some known mCSCC-antibodies on mCSCC. However, studying the specific effect of these known mCSCC-antibodies on mCSCC is uncertain because we believe that tumor shrinkage results from the combined action of both known and unknown antibodies.

      We concur with the reviewer's observations regarding the use of serum, which is rich in immune response factors such as cytokines that could potentially contribute to tumor reduction. In our future research, we plan to systematically analyze the individual roles of these antibodies and cytokines in tumor reduction. In 1973, Nature published a report indicating that serum demonstrated promising results in tumor treatment (Immunotherapy of Cancer with Antibody in Rats. Nature 243, 492 (1973). https://doi.org/10.1038/243492b0). Since then, there have been scarcely any reports on serum therapy for tumors. The primary focus of our study is to evaluate the efficacy of serum therapy in treating tumors. We hypothesize that antibodies and cytokines form a complex interactive network, working in synergy to reduce tumors. Consequently, we believe that studying these antibodies and cytokines in isolation may not yield effective results.

      In this study, the methodology section outlines the process of serum preparation. It is important to note that serum is devoid of blood cells. I hypothesized that whole blood might have superior therapeutic effects compared to serum. This is because antibodies could potentially synergize with immune cells (including T cells, B cells, and NK cells), thereby enhancing the effectiveness of the treatment. As previously discussed, these antibodies, cytokines, and immune cells form a complex interactive network aimed at tumor reduction. Consequently, there are numerous factors that could influence the experimental outcomes, which presents a challenge for analyzing the results. Furthermore, the implementation of whole blood transfusion therapy introduces additional considerations, such as potential side effects and reactions associated with blood transfusions.

      We thank the reviewers for their suggestion to purify the serum in order to isolate mCSCC-binding antibodies. As we previously mentioned, separating a large number of both known and unknown serum antibodies presents a significant technical challenge. We are eager to discuss and consider suggestions from the reviewers regarding methods to identify a large variety and number of unknown antibodies on cells. Perhaps, as the reviewer suggested, we could begin with known antibodies and employ Protein A purification technology to purify these antibodies and subsequently detect immune responses. We could also categorize the types of epitopes targeted, direct tumor cell injection, to study the epitopes of these types in further studies. The suggestion to study the response of B cells is valuable, and we plan to conduct comprehensive research on the response and status of B cells in our future studies.  

      The purification of antibodies to enhance the specificity of their effectiveness against tumors is a critical aspect of our study. However, we would like to address some concerns raised. (1) The separation of all antibodies and cytokines presents a significant technical challenge. Particularly, there is a risk of overlooking antibodies that are present in low concentrations but play crucial roles. (2) What concerns us is that studying the composition separately would lose the overall effectiveness of the study. Our primary concern is that studying these components in isolation could compromise the holistic understanding of the study. This is akin to current research on traditional medicine, where the separation and individual study of compounds often result in a loss of overall therapeutic efficacy. For instance, consider a scenario where 100 antibodies collectively work to shrink a tumor. These antibodies interact with 20 cytokines, forming a complex network that enhances the cytokines' activity against tumor cells. Furthermore, many important antibodies and cytokines are currently unknown. Studying these antibodies in isolation could potentially result in the loss of this therapeutic effect. Therefore, in the discussion section, we have emphasized that our study considers a tumor mass, including tumor cells at various stages of development, as a single entity. As a practicing clinician, my primary focus is on the therapeutic outcomes in tumor treatments, despite the mechanisms of serum therapy remaining largely elusive, liking a black box.

      (2) In the study design, the control group does not account for the potential immunostimulatory effects of serum injection itself. A better control would be tumor-bearing mice receiving serum from healthy non-mCSCC-exposed mice. Additionally, employing a completely random process for allocating the treatment groups would be preferable. Also, the study does not explain why intravenous injection of tumor cells would produce superior antibodies compared to those naturally generated in mCSCC-bearing mice.

      I concur with the reviewer's perspective that using serum from healthy, non-mCSCC exposed mice as a control could potentially improve our study. Initially, our primary concern was to minimize harm to the mice and avoid excessive blood reactions, which led us to exclude the use of serum from healthy, non-mCSCC exposed mice in our control group. The main objective of our study was to investigate tumor shrinkage through serum treatment, specifically serum-derived antibodies. We anticipated that tumor-bearing mice receiving serum from healthy, non-mCSCC exposed mice would exhibit a response to the injected serum, which would manifest as a blood reaction. However, we did not expect this to result in a tumor treatment effect. If it turns out that normal serum (from healthy, non-mCSCC-exposed mice) possesses tumor-reducing properties, it would indeed be a novel discovery. We appreciate the reviewer's insightful suggestion and will consider incorporating it into our future research.

      We concur with the reviewer's observations that the use of a completely random process for assigning treatment groups would be more desirable. Indeed, the complete randomization of the entire process further underscores the efficacy and universality of serum therapy. In this study, we utilized paired mice to mitigate the risk of cross-infection and adverse reactions associated with blood transfusions. We deeply value the reviewer's expert feedback.  

      Lastly, the reason why tumor cells, when intravenously injected, produce antibodies superior to those naturally generated in mCSCC-bearing mice, is due to the following reasons. As tumor cells grow, they produce a variety of mutated proteins to adapt to the immune microenvironment and evade the immune system of mCSCC-bearing mice. However, these tumor cells with mutated proteins are exceptionally sensitive and recognizable to healthy mice. This recognition triggers an immune response in healthy mice, leading to the production of specific therapeutic antibodies. This simultaneous production of diverse and abundant antibodies is only achievable by living organisms.

      (3) In Figure 2B, it would be more helpful if the author could provide raw data/figures of the tumor than just the bar graph. Similarly in Figure 3, the author should show individual data points in addition to the error bar to visualize the actual distribution.

      Raw data (numerical values) have been incorporated into Figures 2B and 3, but the data is placed in the table below the graph. If placed above the error bar, it requires a small font and may not be clear.

      (4) The author mentioned that different stages of tumor cells have different surface biomarkers. Therefore, experimenting with injecting tumor cells at various stages could reveal the most immunogenic stage. Such an approach would allow for a comparative analysis of immune responses elicited by tumor cells at different stages of development.

      Yes, throughout the course of tumor development, tumor cells at various stages will exhibit distinct markers or possess different mutated proteins. The concept of segregating tumor cells from different stages and independently comparing their immune responses is indeed commendable. Future research could involve isolating cells that express identical biomarkers at each stage for a comparative analysis of the immune responses triggered by the tumor cells. However, this approach diverges from the original intent of this study.

      Most tumor cells exist within the same developmental stage. However, this does not imply that all tumor cells within the tumor mass are at the same stage. For instance, a stage III liver cancer tumor may contain both stage I and stage IV tumor cells. Moreover, due to the complexity of tumor development, not all tumor cell surface markers are identical, even for tumors at the same stage. For instance, 20 major proteins and 100 minor proteins are implicated in tumor formation. In fact, random mutations in just 5 of these major proteins and 10 minor proteins can instigate the development of tumors. This implies that the protein pattern (tumor cell surface markers) associated with each individual's tumor is unique. While studying tumor cells at different stages separately allows for the observation of the immune response of tumor cells at each stage, it lacks a comprehensive research and treatment effect. For this reason, the design of this study treats a tumor mass as a whole, encompassing both the primary stage tumor cells and those not in that stage. These tumor cells are then injected to produce corresponding therapeutic antibodies. Furthermore, if tumor cells from only one stage are isolated and specific antibodies are produced against these cells, it could lead to immune escape of tumor cells at other stages, preventing the tumor from shrinking. Therefore, our approach aims to address this issue by considering the tumor mass as a whole.

      (5) In the abstract the author mentioned that using mCSCC is a proof-of-concept for this potential cancer treatment strategy. The discussion session should extend to how this strategy might apply to other cancer types beyond carcinoma.

      We have incorporated an additional paragraph in the discussion section where we delve into the concepts and experimental principles underpinning this study. This, we believe, addresses the reviewer's query regarding the applicability of our study's methodology to other types of tumors. The process for other tumors also involves isolating cells from the tumor, stimulating therapeutic antibody production in healthy mice using these cells, and ultimately reintroducing these antibodies into mice with tumors to facilitate tumor elimination

      Recommendations For The Authors:

      The author is encouraged to refine the study's design in future studies considering the weaknesses highlighted above, summarize the results more effectively, and seek opportunities to expand on this promising idea and enhance the research's impact and applicability.

      We greatly appreciate the valuable suggestions provided by the editor and reviewers. These insights will certainly be addressed in our future research endeavors.

      Suggestions for title modification:

      Following the scope of the study, the term 'specific homologous neutralizing-antibodies' may be misleading as neutralizing antibodies typically refer to antibodies preventing viral cell entry. In cancer therapy, 'neutralization' is not a relevant concept, as cancer cells do not infect host cells. Using whole tumor cells as immunogens diverges from the specificity of traditional vaccination approaches that utilize well-defined proteins or antigens. Furthermore, the term "homologous" suggests a precision in targeting that is not demonstrated by reintroducing serum without isolating its specific components. Therapeutic effects should not be attributed to "neutralizing antibodies" without isolating or characterizing the antibody response or verifying their efficacy against specific cancer epitopes. Additionally, it is suggested that you indicate the biological system that your study utilised in the title. More so, this approach is not entirely novel, as seen with the use of adjuvants in some flu vaccines, or in Moderna's cancer vaccine mRNA-4157, which encodes up to 34 patient-specific tumor neoantigens. You can consider the title below or a variant of the same.

      Suggested title: Generating serum-based antibodies from tumor-exposed mice: a potential strategy in cutaneous squamous cell carcinoma treatment

      I concur with your suggestion and have modified the title to " Generating serum-based antibodies from tumor-exposed mice: a new potential strategy for cutaneous squamous cell carcinoma treatment ". I believe this research remains some new, hence the addition of the word "new". Furthermore, the term "novel" in the paper has been either removed or substituted.

      Moreover, I propose that this study shares similarities with Moderna's cancer vaccine mRNA-415, albeit with certain differences. Moderna's cancer vaccine mRNA-415 encodes 34 recognized neoantigens to stimulate an immune response by eliciting specific T cell responses. This is similar to the strategy of some companies developing a protein set for diagnosing lung cancer, liver cancer, among others. Without a doubt, these methods have improved the effectiveness of tumor diagnosis and treatment. However, I think that these methods currently face challenges in completely eradicating tumors because they perceive tumors as a static process and cells that express certain mutated proteins in a fixed manner. I believe that small molecule antibodies, cytokines, and immune cells present in serum that are difficult to detect, have low concentrations, or are unknown are essential for maintaining the expression of important mutant proteins and the escape of tumor cells. This is also the primary reason why tumors are difficult to treat and prone to recurrence at present.

      From my perspective, different tumors, as well as different stages of the same tumor, express varying mutated proteins or surface markers. Targeting some may result in others escaping or even creating a more conducive growth environment for those that do escape. Our study adopts a comprehensive view of a tumor block, encompassing tumor cells at different stages and tumor cells at the same stage but expressing different biomarkers. This approach generates a multitude of known and unknown antibodies that work in concert with cytokines and immune cells. While our method may not be capable of generating all mutated proteins and epitope antibodies due to the weakness of some antigens (epitopes of mutated proteins), it can still be effective. As long as the number of tumor cells is reduced below a certain threshold following multiple rounds of treatment with various antibodies produced at different stages, these cancer cells can be eradicated by the body's immune system. This is a process that is real-time and dynamic. Undoubtedly, if it becomes evident that alterations in a set of proteins can bolster the immune system and eradicate tumor cells, then the implications are significant. The immunotherapy proteins, which have demonstrated positive therapeutic effects, developed by certain companies are also predicated on this very principle.

      Finally, I greatly appreciate your suggestions, which will be considered and gradually addressed in future research.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public Review): 

      By mapping H3K4me2 in mouse oocytes and pre-implantation embryos, the authors aim to elucidate how this histone modification is erased and re-established during the parental-to-zygotic transition, as well as how the reprogramming of H3K4me2 regulates gene expression and facilitates zygotic genome activation.

      Employing an improved CUT&RUN approach, the authors successfully generated H3K4me2 profiling data from a limited number of embryos. While the profiling experiments are very well executed, several weaknesses, particularly in data analysis, are apparent:

      (1) The study emphasizes H3K4me2, which often serves as a precursor to H3K4me3, a well-studied modification during early development. Analyzing the new H3K4me2 dataset alongside published H3K4me3 data is crucial for comprehensively understanding epigenetic reprogramming post-fertilization and the interplay between histone modifications. However, the current analysis is preliminary and lacks depth.

      Thank you very much for your valuable suggestions. The data of histone H3K4me3 in humans and mice has been published,and our previous data revealed the unique pattern of H3K4me3 during early human embryos and oocytes (Xia et al., 2019). So, this study mainly focuses on the localization of H3K4me2 in mouse oocytes and preimplantation embryos, how it is erased and re-established during mammalian parental-to-zygote transition, and its function. The combined analysis of H3K4me2 and H3K4me3 is not our main work, but it is not ruled out that there may be new discoveries between these two histones. Previously, our data tended to show that the H3K4me2 not only acts as a precursor of H3K4me3, but also plays its role independently.

      (2) Tranylcypromine (TCP) is known as an irreversible inhibitor of monoamine oxidase and LSD1. While the authors suggest TCP inhibits the expression of LSD2, this assertion is questionable. Given TCP's potential non-specific effects in cells, conclusions related to the experiments using TCP should be made with caution.

      Thank you for pointing this out, and we thank the reviewer again for the important suggestion. We found that the previous study indicated that TCP was a non-reversible inhibitor of LSD1 and LSD2, but according to our data, the content of LSD1 was very low in the early stages of mouse embryos, which mainly inhibited the function of LSD2. (Binda et al., 2010; Fang et al., 2010 )

      (3) Some batches of H3K4me2 antibody are known to cross-react with H3K4me3. Has the H3K4me2 antibody used in CUT&RUN been tested for such cross-reactivity? Heatmaps in the figures indeed show similar distribution for H3K4me2 and H3K4me3, further raising concerns about antibody specificity.

      We thank the reviewer for the insightful comments. The H3K4me2 antibody was purchased from Millipore (cat. 07030). Figure 2A shows the specific enrichment area of H3K4me2 in promoter and distal region. Some batches of H3K4me2 antibody are known to cross-react with H3K4me3, but the H3K4me2 antibody we used in our CUT&RUN seems to have Low cross-reactivity.

      (4) Certain statements lack supporting references or figures (examples on page 9 can be found on line 245, line 254, and line 258).

      Thank you for pointing this out, and we will add references to support the statement in the paper as suggested.

      (5) Extensive language editing is recommended to clarify ambiguous sentences. Additionally, caution should be taken to avoid overstatement - most analyses in this study only suggest correlation rather than causality.

      Thank you for your kind comments. We will revise the expression in the manuscript later.

      Reviewer #2 (Public Review):

      Chong Wang et al. investigated the role of H3K4me2 during the reprogramming processes in mouse preimplantation embryos. The authors show that H3K4me2 is erased from GV to MII oocytes and re-established in the late 2-cell stage by performing Cut & Run H3K4me2 and immunofluorescence staining. Erasure and re-establishment of H3K4me2 have not been studied well, and profiling of H3K4me2 in germ cells and preimplantation embryos is valuable to understanding the reprogramming process and epigenetic inheritance.

      (1) The authors claim that the Cut & Run worked for MII oocytes, zygotes, and the 2-cell embryos. However, it is unclear if H3K4me2 is erased during the stage or if the Cut & Run did not work for these samples. To support the hypothesis of the erasure of H3K4me2, the authors conducted immunofluorescence staining, and H3k4me2 was undetected in the MII oocyte, PN5, and 2-cell stage. However, the published papers showed strong staining of H3K4me2 at the zygote stage and 2-cell stage ((Ancelin et al., 2016; Shao et al., 2014)). The authors need to cite these papers and discuss the contradictory findings.

      The authors used 165 MII oocytes and 190 GV oocytes for the Cut & Run. The amount of DNA in MII oocytes is halved because of the emission of the first polar body. Would it be a reason that H3K4me2 has fewer H3K4me2 peaks in MII oocytes than GV oocytes?

      First of all, thank you for your valuable advice. The published papers showed strong staining of H3K4me2 at the zygote stage and 2-cell stage, which is interesting. I think we may have used different parameters in the confocal laser shooting process(Ancelin et al., 2016). We used the same parameter to continuously shoot the blastocyst stage from the GV stage. If we only shot the fertilized egg and the 2-cell stage, I think we may also see weak fluorescence at the 2-cell stage under different parameters. We will refer to this reference and discuss it in the resubmitted version.

      Moreover, you mentioned the H3K4me2 has fewer H3K4me2 peaks in MII oocytes than GV oocytes, because the MII expelled the polar body. There is no problem with this logic. However, the first polar body expelled from the MII stage is still in the zona pellucida, and we also collected the polar body in the CUT&RUN experiment; Therefore, compared to GV, the DNA content of MII samples is not halved. After further discussion, we believe that the reduction of H3K4me2 peaks in MII stage compared with GV stage may be closely related to oocyte maturation. It is the specific modification of histones in different forms at different times that affects the chromatin structure change appropriately with the different stages of meiosis. At present, it has been confirmed that H3K4me3 gradually decreases from GV to MII stage during the maturation of human oocytes. H3K27me3 did not change from GV to MII stage.

      In Figure 3C, 98% (13,183/13,428) of H3K4me2 marked genes in GV oocytes overlap with those in the 4-cell stage. Furthermore, 92% (14,049/15,112) of H3K4me2 marked genes in sperm overlap with those in the 4-cell stage. Therefore, most regions maintain germ line-derived H3K4me2 in the 4-cell stage. The authors need to clarify which regions of germ line-derived H3K4me2 are maintained or erased in preimplantation embryos. Additionally, it would be interesting to investigate which regions show the parental allele-specific H3K4me2 in preimplantation embryos since the authors used hybrid preimplantation embryos (B6 x DBA).

      Thank you very much for your suggestion. Further analysis of which regions show the parental allele-specific H3K4me2 in preimplantation embryos will make the study more interesting. We will discuss this in depth in resubmitted vision.

      (2) The authors claim that Kdm1a is rarely expressed during mouse embryonic development (Figure 4A). However, the published paper showed that KDM1a is present in the zygote and 2-cell stage using immunostaining and western blotting ((Ancelin et al., 2016)). Additionally, this paper showed that depletion of maternal KDM1A protein results in developmental arrest at the two-cell stage, and therefore, KDM1a is functionally important in early development. The authors should have cited the paper and described the role of KDM1a in early embryos.

      In the analysis of this experiment, we believe that in the early embryonic development of mice, the expression of KDM1A is lower than that of KDM1B, which is relative. Similarly, the transcriptome data we cite also show that KDM1A is expressed at elevated levels during oocyte maturation and fertilization compared to immature oocytes. In addition, the effects of loss of maternal KDM1a on embryonic development were not discussed. We believe that the absence of maternal KDM1b blocks embryonic development, and we will cite and discus the references later.

      (3) The authors used the published RNA data set and interpreted that KDM1B (LSD2) was highly expressed at the MII stage (Figure S3A). However, the heat map shows that KDM1B expression is high in growing oocytes but not at 8w_oocytes and MII oocytes. The authors need to interpret the data accurately.

      After re-checking the data, we found that there was a problem with the normalization method of our heat map, and we will re-make the heatmap and submit it in the modified version. With reference to Figure 4A, the content of Kdm1b is indeed higher than that of Kdm1a.

      (4) All embryos in the TCP group were arrested at the four-cell stage. Embryos generated from KDM1b KO females can survive until E10.5 (Ciccone et al., 2009); therefore, TCP-treated embryos show a more severe phenotype than oocyte-derived KDM1b deleted embryos. Depletion of maternal KDM1A protein results in developmental arrest at the two-cell stage ((Ancelin et al., 2016)). The authors need to examine whether TCP treatment affects KDM1a expression. Western blotting would be recommended to quantify the expression of KDM1A and KDM1B in the TCP-treated embryos.

      We will further dig the transcriptome data to confirm the specificity of TCP to KDM1b. In addition, the intervention of TCP on the whole fertilized egg in this study increased the H3K4me2 content, and the embryo development retarding effect was more significant than that obtained by crossing with normal paternal lines after knocking down KDM1B from the mother.

      (5) H3K4me2 is increased dramatically in the TCP-treated embryos in Figure 4 (the intensity is 1,000 times more than the control). However, the Cut & Run H3K4me2 shows that the H3K4me2 signal is increased in 251 genes and decreased in 194 genes in the TCP-treated embryos (Fold changes > 2, P < 0.01). The authors need to explain why the gain of H3K4me2 is less evident in the Cut & Run data set than in the immunofluorescence result.

      Thanks a lot for your question. In the experimental group, the fluorescence value of H3K4me2 in IF was increased by 1000 times (Figure 4E), and the expression of H3K4Me2-related genes in CR was up-regulated and down-regulated for a total of 445 changes (Figure 6A). In our opinion, as a semi-quantitative analysis, immunofluorescence cannot be compared with the quantitative analysis method of CR because of the different analysis models and threshold Settings.

      References

      Ancelin, K., ne Syx, L., Borensztein, M., mie Ranisavljevic, N., Vassilev, I., Briseñ o-Roa, L., Liu, T., Metzger, E., Servant, N., Barillot, E., Chen, C.-J., Schü le, R., & Heard, E. (2016). Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation. https://doi.org/10.7554/eLife.08851.001

      Ciccone, D. N., Su, H., Hevi, S., Gay, F., Lei, H., Bajko, J., Xu, G., Li, E., & Chen, T. (2009). KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature, 461(7262), 415-418. https://doi.org/10.1038/nature08315

      Shao, G. B., Chen, J. C., Zhang, L. P., Huang, P., Lu, H. Y., Jin, J., Gong, A. H., & Sang, J. R. (2014). Dynamic patterns of histone H3 lysine 4 methyltransferases and demethylases during mouse preimplantation development. In Vitro Cellular and Developmental Biology - Animal, 50(7), 603-613. https://doi.org/10.1007/s11626-014-9741-6

      References

      Xia W, Xu J, Yu G, Yao G, Xu K, Ma X, Zhang N, Liu B, Li T, Lin Z, Chen X, Li L, Wang Q, Shi D, Shi S, Zhang Y, Song W, Jin H, Hu L, Bu Z, Wang Y, Na J, Xie W, Sun YP. Resetting histone modifications during human parental-to-zygotic transition. Science. 2019 Jul 26;365(6451):353-360. doi: 10.1126/science.aaw5118. Epub 2019 Jul 4. PMID: 31273069.

      Binda C, Valente S, Romanenghi M, Pilotto S, Cirilli R, Karytinos A, Ciossani G, Botrugno OA, Forneris F, Tardugno M, Edmondson DE, Minucci S, Mattevi A, Mai A. Biochemical, structural, and biological evaluation of tranylcypromine derivatives as inhibitors of histone demethylases LSD1 and LSD2. J Am Chem Soc. 2010 May 19;132(19):6827-33.

      Fang R, Barbera AJ, Xu Y, Rutenberg M, Leonor T, Bi Q, Lan F, Mei P, Yuan GC, Lian C, Peng J, Cheng D, Sui G, Kaiser UB, Shi Y, Shi YG. Human LSD2/KDM1b/AOF1 regulates gene transcription by modulating intragenic H3K4me2 methylation. Mol Cell. 2010 Jul 30;39(2):222-33. doi: 10.1016/j.molcel.2010.07.008. PMID: 20670891; PMCID: PMC3518444.

      Ancelin K, Syx L, Borensztein M, Ranisavljevic N, Vassilev I, Briseño-Roa L, Liu T, Metzger E, Servant N, Barillot E, Chen CJ, Schüle R, Heard E. Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation. Elife. 2016 Feb 2;5:e08851. doi: 10.7554/eLife.08851. PMID: 26836306; PMCID: PMC4829419.

      Reviewer #3 (Public Review):

      Summary:

      This study explores the dynamic reprogramming of histone modification H3K4me2 during the early stages of mammalian embryogenesis. Utilizing the advanced CUT&RUN technique coupled with high-throughput sequencing, the authors investigate the erasure and re-establishment of H3K4me2 in mouse germinal vesicle (GV) oocytes, metaphase II (MII) oocytes, and early embryos.

      Strengths:

      The findings provide valuable insights into the temporal and spatial dynamics of H3K4me2 and its potential role in zygotic genome activation (ZGA).

      Weaknesses:

      The study primarily remains descriptive at this point. It would be advantageous to conduct further comprehensive functional validation and mechanistic exploration.

      Key areas for improvement include enhancing the innovation and novelty of the study, providing robust functional validation, establishing a clear model for H3K4me2's role, and addressing technical and presentation issues. The text would benefit from the introduction of a novel conceptual framework or model that provides a clear explanation of the functional consequences and molecular mechanisms underlying H3K4me2 reprogramming in the transition from parental to early embryonic development.

      While the findings are significant, the current manuscript falls short in several critical areas. Addressing major and minor issues will significantly strengthen the study's contribution to the field of epigenetic reprogramming and embryonic development.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Summary of the changes

      Changes in the manuscript were made to clarify some ambiguities raised by the reviewers and to improve the report following their recommendations. A summary of the main changes is listed below:

      - The title was changed to better reflect the results of this study - Re-training the model on log transformed FACS scores.

      - Testing the specificity of the FEPS to facial expression of pain within this experimental setup by comparing it to the activation maps obtained from the Warm stimulation condition.

      - Testing for sensitization/habituation of the behavioral measures (FACS scores and pain ratings).

      - Adding a section in the discussion to better address the limitations of this study and provide potential directions for future studies.

      Other changes target areas where the original manuscript may have been ambiguous or lacked precision. To address these concerns, additional details have been incorporated, and certain terms have been revised to ensure a more precise and transparent presentation of the information.

      Public Reviews:

      Reviewer #1 (Public Review):

      Picard et al. report a novel neural signature of facial expressions of pain. In other words, they provide evidence that a specific set of brain activations, as measured by means of functional magnetic resonance imaging (fMRI), can tell us when someone is expressing pain via a concerted activation of distinctive facial muscles. They demonstrate that this signature provides a better characterization of this pain behaviour when compared with other signatures of pain reported by past research. The Facial Expression of Pain Signature (FEPS) thus enriches this collection and, if further validated, may allow scientists to identify the neural structures subserving important non-verbal pain behaviour. I have, however, some reservations about the strength of the evidence, relating to insufficient characterization of the underlying processes involved.

      We are thankful for the summary of our work. We are hopeful that the modifications made in the latest version effectively address these concerns. The changes are outlined in the summary above, and detailed in the following point-by-point response.

      Strengths:

      The study relies on a robust machine-learning approach, able to capitalise on the multivariate nature of the fMRI data, an approach pioneered in the field of pain by one of the authors (Dr. Tor Wager). This paper extends Wager's and other colleagues' work attempting to identify specific combinations of brain structures subserving different aspects of the pain experience while examining the extent of similarity/dissimilarity with the other signatures. In doing so, the study provides further methodological insight into fine-grained network characterization that may inspire future work beyond this specific field.

      We are thankful for the positive comments.

      Weaknesses:

      The main weakness concerns the lack of a targeted experimental design aimed to dissect the shared variance explained by activations both specific to facial expressions and to pain reports. In particular, I believe that two elements would have significantly increased the robustness of the findings:

      (1) Control conditions for both the facial expressions and the sensory input. An efficient signature should not be predictive of neutral and emotional facial expressions (e.g., disgust) other than pain expressions, as well as it should not be predictive of sensations originating from innocuous warm stimulation or other unpleasant but non-painful stimulation.

      We do recognize the lack of specificity testing for the FEPS, especially towards negative emotional facial expressions. This would be relevant to test given the behavioural overlap between the facial expressions of pain and disgust, fear, anger, and sadness (Kunz et al., 2013; Williams, 2003). The experimental design used in this study did not include other negative states. However, we fully support the necessity of collecting data throughout those conditions, and we believe that the present study highlights the importance of such a demonstration. Future research should involve recording facial expressions while exposing participants to stimuli that elicit a range of negative emotions but, to our knowledge, such combination of fMRI and behavioural data is currently unavailable. As raised by the reviewer, this approach would allow us to assess the specificity of the FEPS to the facial expression evoked by pain compared to different affective states. We would like to emphasise that specificity and generalizability testing is a massive amount of work, requiring multiple studies to address comprehensively. A Limitations paragraph addressing this research direction has been added to the Discussion. A conclusion was added to the abstract as follows: “Future studies should explore other pain-relevant manifestations and assess the specificity of the FEPS against other types of aversive or emotional states.”

      (2) Graded intensity of the sensory stimulation: different intensities of the thermal stimulation would have caused a graded facial expression (from neutral to pain) and graded verbal reports (from no pain to strong pain), thus offering a sensitive characterisation of the signal associated with this condition (and the warm control condition).

      However, these conditions are missing from the current design, and therefore we cannot make a strong conclusion about the generalisability of the signature (regardless of whether it can predict better than other signatures - which may/may not suffer from similar or other methodological issues - another potential interesting scientific question!). The authors seem to work on the assumption that the trials where warm stimulation was delivered are of no use. I beg to disagree. As per my previous comment, warm trials (and associated neutral expressions) could be incorporated into the statistical model to increase the classification sensitivity and precision of the FEPS decoding.

      The experience of pain can fluctuate for a fixed intensity or after controlling statistically for the intensity of the stimulation (Woo et al., 2017). Consistent with this, the current study focused on spontaneous facial expression in response to noxious thermal stimuli delivered at a constant intensity that produced moderate to strong pain in every participant. As the reviewer points out, this does not allow us to characterise and compare the stimulus-response function of facial expression and pain ratings. The advantage of the approach adopted is to maximise the number of trials where facial expression is more likely to occur, while ensuring that changes in facial expression and pain ratings are not confounded with changes in stimulus intensity. The manuscript has been revised to clarify that point. However, we do agree that it would be interesting to conduct more studies focusing on facial expression in response to a range of stimulus intensities. This discussion has been added to the Limitations paragraph.

      Furthermore, following the reviewer’s suggestion, we performed complementary analyses on the warm trials in the proposed revisions. The dot product (FEPS scores) between the FEPS and the activation maps associated with the warm condition was computed. A linear mixed model was conducted to investigate the association between FEPS scores and the experimental condition (warm vs pain). The trials in the pain condition were divided into two conditions: null FACS scores (painful trials with no facial response; FACS scores = 0) and non-null FACS scores (painful trials with a facial response; FACS > 0). The details of this analysis have been added to the manuscript (see Response of the FEPS to pain and warm section in the Methods; lines 427 to 439) as well as the corresponding results (see Results and Discussion; lines 138 to 158). The FEPS scores were larger in the pain condition where a facial response was expressed, compared to both the pain condition without facial expression and the warm condition. These results confirmed the sensitivity of the FEPS to facial expression of pain.

      Reviewer #2 (Public Review):

      Summary:

      The objective of this study was to further our understanding of the brain mechanisms associated with facial expressions of pain. To achieve this, participants' facial expressions and brain activity were recorded while they received noxious heat stimulation. The authors then used a decoding approach to predict facial expressions from functional magnetic resonance imaging (fMRI) data. They found a distinctive brain signature for pain facial expressions. This signature had minimal overlap with brain signatures reflecting other components of pain phenomenology, such as signatures reflecting subjective pain intensity or negative effects.

      We appreciate this concise and accurate summary of our study.

      Strength:

      The manuscript is clearly written. The authors used a rigorous approach involving multivariate brain decoding to predict the occurrence and intensity of pain facial expressions during noxious heat stimulation. The analyses seem solid and well-conducted. I think that this is an important study of fundamental and clinical relevance.

      Weaknesses:

      Despite those major strengths, I felt that the authors did not suffciently explain their own interpretation of the significance of the findings. What does it mean, according to them, that the brain signature associated with facial expressions of pain shows a minimal overlap with other pain-related brain signatures?

      We express our sincere gratitude for the valuable insights and constructive comments on the strengths and weaknesses of the current study. We thank reviewer 2 for the encouragement to reinforce our interpretation of the significance of the findings, while acknowledging the limitations raised by the three reviewers.

      A few questions also arose during my reading.

      Question 1: Is the FEPS really specific to pain expressions? Is it possible that the signature includes a facial expression signal that would be shared with facial expressions of other emotions, especially since it involves socio-affective regulation processes? Perhaps this question should be discussed as a limit of the study?

      We acknowledge this limitation as outlined in response to Reviewer #1. We have incorporated a Limitations paragraph to provide a more in-depth discussion of this limitation and to explore potential future avenues (lines 225 to 268). Again, please note that the demonstration of specificity is an incremental process that requires a systematic comparison with other conditions where facial expressions are produced without pain. A concluding sentence was added to the abstract to encourage specificity testing in future studies. as indicated above.

      Question 2: All AUs are combined together in a composite score for the regression. Given that the authors have other work showing that different AUs may be associated with different components of pain (affective vs. sensory), is it possible that combining all AUs together has decreased the correlation with other pain signatures? Or that the FEPS actually reflects multiple independent signatures?

      The question raised is consistent with the work of Kunz, Lautenbacher, LeBlanc and Rainville (2012), and Kunz, Chen and Rainville (2020). In the current study, the pain-relevant action units were combined in order to increase the number of trials where a facial response to pain was expressed, thus enhancing the robustness of our analyses. Given the limited sample size, our current dataset is unfortunately insufficient to perform such analysis as there would not be enough trials to look at the action units separately or in subgroups. While the approach of combining the different AUs has proven to be valid and useful, we recognize the value of investigating potential independent signatures associated with the different AUs within the FEPS, and examining whether those signatures can lead to more similar patterns compared to previously developed pain signatures. This discussion has been included in the Limitations paragraph in the Discussion (lines 225 to 268).

      Question 3: Is facial expressivity constant throughout the experiment? Is it possible that the expressivity changes between the beginning and the end of the experiment? For instance, if there is a habituation, or if the participant is less surprised by the pain, or in contrast if they get tired by the end of the experiment and do not inhibit their expression as much as they did at the beginning. If facial expressivity changes, this could perhaps affect the correlation with the pain ratings and/or with the brain signatures; perhaps time (trial number) could be added as one of the variables in the model to address this question.

      The concern raised by the reviewer is legitimate. We conducted a mixed-effects model to assess the impact of successive trials and runs on facial expressivity. Results indicate that the FACS scores did not change significantly throughout the experiment, suggesting no notable effect of habituation or sensitization on the facial expressivity in our study. Details about the analysis and the results have been added to the Facial Expression section in the Methods (lines 335 to 346).

      Reviewer #3 (Public Review):

      In this manuscript, Picard et al. propose a Facial Expression Pain Signature (FEPS) as a distinctive marker of pain processing in the brain. Specifically, they attempt to use functional magnetic resonance imaging (fMRI) data to predict facial expressions associated with painful heat stimulation. The main strengths of the manuscript are that it is built on an extensive foundation of work from the research group, and that experience can be observed in the analysis of fMRI data and the development of the machine learning model. Additionally, it provides a comparative account of the similarities of the FEPS with other proposed pain signatures. The main weaknesses of the manuscript are the absence of a proper control condition to assess the specificity of the facial pain expressions, a few relevant omissions in the methodology regarding the original analysis of the data and its purpose, and a biased interpretation of the results.

      I believe that the authors partially succeed in their aims, as described in the introduction, which are to assess the association between pain facial expression and existing pain-relevant brain signatures, and to develop a predictive brain activation model of the facial responses to painful thermal stimulation. However, I believe that there is a clear difference between those aims and the claim of the title, and that the interpretation of the results needs to be more rigorous.

      We wish to express our appreciation for the insightful and constructive critique provided. The limitation pertaining to the absence of specificity testing had been addressed in response to Reviewer #1, and it has been incorporated into the manuscript (lines 251 to 258).

      The commentary made by Reviewer #3 has drawn our attention to a critical concern, namely the potential misalignment between the study findings and our original title. Consequently, we have changed the title to “A distributed brain response predicting the facial expression of acute nociceptive pain”. We also revised the interpretation of the results in the discussion section and we have added a section on limitations.

      Recommendations for the Authors:

      Reviewer #1 (Recommendations For The Authors):

      I hope the following comments will be useful to improve the manuscript.

      Abstract

      I felt the abstract could be more clear in terms of experimental or scientific questions, hypotheses/expectations, and findings. I also feel the abstract should briefly support the conclusive claim ("is better than...": how better? Or according to what criterion? This may be more relevant than the final conclusive general sentence that does not specifically address the significance of the findings).

      The abstract was revised to reinforce the functional perspective adopted to interpret brain activity produced by noxious stimuli and predicting various pain-relevant manifestations. We also mention explicitly the other pain-relevant signatures against which the FEPS is compared in this report, and we added a concluding sentence highlighting the importance of assessing the specificity of the FEPS in future studies.

      Introduction - background and rationale

      I would postpone the discussion around pain signature and anticipate the one about the brain mechanisms of facial expressions of pain. This will allow you to reinforce the logical flow of rationale, literature gap/question, why the problem is important, and study aims. Only then go for a review of relevant literature on signatures before providing a more specific final paragraph about the study-specific questions, expectations, and implementation. At the moment this is limited to a single very descriptive short paragraph at the end of the intro.

      The introduction was structured to guide the readers through a comprehensive understanding of different pain neurosignatures. The introduction aimed to establish a robust rationale for the subsequent analyses detailed in the results section. Indeed, the presentation of that literature ensured that the discussion around pain signatures is contextualised within a broader continuous framework. We acknowledge the reviewer’s comment on the limited description of the brain mechanisms of facial expression of pain. However, this was addressed in several previous reports of our laboratory (Kunz et al. 2011; Vachon-Presseau et al. 2016; Kunz, Chen, and Rainville 2020). We have added some more details about the brain mechanisms of facial expression, and highlighted those references in the first paragraph of the introduction.

      Methods and Results

      (1) Was there any indication of power based on the previous work or the other signature papers? If yes, how that would inform the present analysis?

      The NPS was trained on 20 participants that experienced 12 trials at each of four different intensities. The assessment of the effect sizes was performed on the Neurological Pain Signature in Han et al. (2022). That study revealed a moderate effect size for predicting between-subject pain reports, and a large one for predicting within-subject pain reports. We trained our model on 34 participants that underwent 16 trials. We expected our results to show a smaller effect size as the current experimental design only allowed us to examine spontaneous changes in the facial expression, as noted in the comments made by Reviewer #1. However, the best way to calculate the unbiased effect size of the results presented in the current study would be to test the unchanged model on new independent datasets (see Reddan, Lindquist, and Wager, 2017). Unfortunately, such datasets do not currently exist.

      (2) I would clarify to the reader what is meant by normal range of thermal pain and why is this relevant. Also, I did not find data about this assessment nor about the assessment of facial expressiveness (or reference to where it can be found).

      We changed this formulation to “All participants included in this study had normal thermal pain sensitivity” and we added a few references. By targeting a healthy population with normal thermal pain sensitivity, our study sought to identify a predictive brain pattern related to facial expression evoked by typical responses to pain that could eventually be generalised to other individuals from the same population. Details about the assessment of facial expressiveness have been added in the appropriate section in the Methods.

      (3) That pain ratings are only weakly associated with facial responses is, in its own right, an interesting finding, as a naïve reader would expect the two to be highly positively correlated. I'd suggest discussing this aspect (in reference to previous research) as it is interesting on both theoretical and empirical grounds.

      The likelihood and the strength of pain facial expression generally increase with pain ratings in response to acute noxious stimuli of increasing physical intensities, thereby leading to a positive association between the two responses that is driven by the stimulus. However, the poor correlation or the dissociation between facial pain expression and pain rating is a very well known phenomenon that can be demonstrated easily using experimental methods where the stimulus intensity is held constant and spontaneous fluctuations are observed in both facial expression and pain ratings. This result was not discussed in the current manuscript as it was already addressed in the work of Kunz et al. (2011) and Kunz, Karos and Vervoot (2018). We added the references to these studies in the revised manuscript (lines 330 to 334).

      (4) It may be worth having CIs throughout the whole set of analyses.

      Thanks for the suggestions, this was an oversight. The confidence intervals have been added in the manuscript where applicable.

      (5) I would clarify if there are two measures of the brain signature: dot-product and activation map. Relatedly, I cannot find where the authors explained what "FEPS pattern expression scores". Can the authors please clarify?

      The clarification has been added in the manuscript (lines 413 to 414).

      (6) There seems to be the assumption that the relationship between pain-relevant brain signatures and facial expressions of pain would be parametric and linear. However, this might not hold true. Did the authors test these assumptions?

      We indeed decided to use a linear regression technique (i.e. LASSO regression) to model the association between the brain activity and the facial expression of pain. The algorithm choice was mainly based on the simplicity and the interpretability of that approach, and our limited number of observations. The choice was also coherent with previous studies in the domain (e.g. Wager et al., 2011; Wager et al., 2013; Krishnan et al. 2016; Woo et al., 2017). Using a linear model, we were able to predict above chance level the facial expression evoked by pain using the fMRI activation. However, it is legitimate to think that more complex non linear models can better capture the brain patterns predictive of that behavioural manifestation of pain.

      (7) Did the authors assess whether the FACS were better to be transformed/normalised? More generally, I would report any data assessment/transformation that has not been reported.

      Thank you for this highly relevant suggestion. FACS scores were indeed not normally distributed and the analyses were conducted again to predict the log transformed FACS scores. This transformation was effective to normalize the distribution (skewness = 0.75, kurtosis = -0.84). The predictive model was confirmed on transformed data.

      (8) Page 12: I am not clear on whether all the signatures are included in the same model (like a multiple regression) or if separate regressions are calculated per signature. The authors seem to imply that several regressions have been computed (possibly one per comparison with each signature?).

      The correlation between the FACS scores and the pain-related signatures was computed separately for each signature. This information has been clarified.

      (9) MVPA: See my main comment about warm trials and experimental/statistical design. For example, the LASSO regression model for the pain trials could be compared with a model using warm trials besides (or instead of) the unfitted model. Otherwise, add the warm trials as another predictor or within the subject level in a dummy fixed factor comprising pain and warm trials.

      The inclusion of warm trials in the model training would be inconsistent with the goal of the main analysis to predict the facial expression of pain when a noxious pain stimulus is presented. Secondary analyses were conducted to compare the response of the FEPS to the warm trials compared to noxious pain trials. The dot product between the FEPS and the activation maps (FEPS scores) associated with the warm condition was computed. A linear mixed model was conducted to investigate the association between FEPS scores and the experimental condition (warm vs pain). Additional contrasts compared the warm trials with the pain trials with and without pain facial expression. The details of this analysis have been added to the manuscript (see Response of the FEPS to pain and warm in the Methods) as well as the corresponding results (see Results and Discussion).

      (10) I would clarify for the reader why the separate M1 analysis has been run. Although obvious, I feel the reader would benefit from the specific hypothesis about this control analysis being spelled out together with the other statistical hypotheses within the statistical design in a more streamlined manner.

      We extended the discussion on the rationale of that analysis and its interpretation taking into account the most recent results using the log transformed FACS scores (lines 125 to 133).

      (11) The mixed model aimed to assess the relationship between pain ratings FEPS scores and facial scores is a crucial finding. I believe it speaks to the importance of a more complete design, which I already highlighted. I have a couple of technical questions: did the authors assess random slopes too? And, what was the strategy used to determine the random effects structure?

      The linear mixed model considered the participants as a random effect, with random intercepts, considering the grouping structure in our data (i.e., each participant completed multiple trials). The reported results in the original manuscript were considering fixed slopes. However, following the reviewer’s comment, we re-computed the mixed linear models allowing the slopes to vary according to the intensity ratings. The results were changed in the manuscript to represent the output of those models.

      (12) The text from lines 63 to 67 could go in the methods.

      We decided to include those lines within the Result and Discussion section to give the reader more specification about the FACS scores, as this term is subsequently referenced in the following part of the Results and Discussion section. We are concerned that putting this information only in the Methods section would disrupt the reading.

      Reviewer #2 (Recommendations For The Authors):

      p. 4-5. When you report the positive weight clusters, you follow up with a sentence specifying which cognitive processes those brain regions are typically associated with. However, when you report the negative weight clusters, you do not specify the cognitive processes typically associated with those brain areas. I think that providing that information would be helpful to the readers.

      Thanks for noticing this omission. The information has been added in the most recent version of the manuscript (lines 119 to 121).

      p. 9. You specify that the degree of expressiveness of participants was evaluated. How did you evaluate expressiveness? Did you use this variable in your analyses? Were participants excluded based on their degree of expressiveness?

      Details about the assessment of facial expressiveness have been added in the appropriate section in the Methods (lines 285 to 289).

      p. 10. You explain that two certified FACS-coders evaluated the video recordings to rate the frequency of AUs. Could you please provide more details about the frequency measure? I think that there are different ways in which this could have been done. For instance, were the videos decomposed into frames, and then the frequency measured by summing the number of frames in which the AU occurred? Or was it "expression-based", so one occurrence of an AU (frequency of 1) would correspond to the whole period between its activation onset and offset? Both ways have pros and cons. For example, if the frequency represents the number of frames, then it controls for the total duration of the AU activation within a trial (pro); but if there were multiple activations/deactivations of the AU within one trial, this will not be controlled for (con). And vice-versa with the second way of calculating frequency.

      Details about the frequency scores have been added to the manuscript (lines 315 to 319).

      p. 11. When you explained how you calculated the association between the facial expression of pain and pain-related brain signatures, I felt that there was some information missing. Did you use the thresholded maps (available in the published articles), or did you somehow have access to the complete, voxel-by-voxel, raw regression coefficient maps?

      The unthresholded maps were used. The information has been clarified in the latest version of the manuscript, as well as the details about the availability of the maps (see Data Availability section at the end of the manuscript).

      Reviewer #3 (Recommendations For The Authors):

      Format

      The authors will notice that many observations about the manuscript are related to missing information and a lack of graphical representations. I believe the topic and the content of the manuscript are too complex to condense into a short report.

      Title

      The claim of the title is simply not substantiated by the content of the manuscript. Demonstrating that the FEPS is a distinctive (i.e., specific) marker of pain processing requires a substantially different experimental design, with more rigorous controls and a broader set of painful stimulations. The manuscript would benefit from a more accurate title.

      We agree that the title could better align with our findings. We modified the title accordingly : “A distributed brain response predicting the facial expression of acute nociceptive pain”.

      Abstract

      I find it puzzling that the authors claim that there is limited knowledge of the neural correlates of facial expression of pain given what they describe in the first paragraph of the introduction. Besides, they propose to reanalyze a dataset that has been extensively described in Kunz et al. (2011), which is unlikely to provide any new significant information.

      We respectfully disagree with that comment. We considered that three articles (i.e., Kunz et al., 2011; Vachon-presseau et al., 2016; Kunz, Chen and Rainville, 2020) on the topic do constitute limited knowledge, especially if we compare it to the very large body of literature on the neural correlates associated with pain ratings. Except for these three studies, all the other citations pertain to behavioral studies on facial expression of pain, and do not examine the brain activity related to it. Furthermore, we believe that the complementary nature of the analyses performed in Kunz et al. (2011) and in this manuscript offers new insights into our understanding of facial expression in the context of pain. Indeed, the multivariate approach used in this study addresses some limitations present in Kunz et al. (2011) univariate analyses, mainly that it provides a quantifiable way to compare the similarity between different predictive patterns (Reddan and Wager, 2017). We submit that the assessment of the FEPS against several other pain-relevant signatures provides new and important information.

      Furthermore, the abstract does not clearly state the aim, and the first line of the results does not match what the authors claim in the preceding line. The take-home message (last sentence) introduces the concept of a biomarker, which, as stated before, cannot be validated with the current data/experimental design. To put it in plain words, a given facial expression (or a composite score derived from a combination of expressions) cannot be a specific biomarker for pain, because a person can always mimic the same expression without feeling pain. Whether a given facial expression can be predicted from brain activity is a different issue, and whether that prediction can differentiate between painful and non-painful origins of the facial expression is another different issue. Unfortunately, neither of those issues can be tested with the current data/experimental design. The abstract would improve if the authors would circumscribe to what they actually tested, which is accurately described in the last sentence of the Introduction.

      The abstract was revised accordingly. The term ‘biomarker’ was used in accordance with preceding studies in the field (see Reddan and Wager, 2017; Lee et al., 2021). Please note that we applied the same reasoning to fluctuations in pain expression as previous studies have applied to pain ratings. Of course, we can not dismiss the possibility of someone mimicking facial expressions. Similar reasoning applies to subjective reports, as individuals can intentionally overestimate their pain experience conveyed through verbal reports. This is another case of specificity testing that cannot be addressed in the present study (see new conclusion of the abstract and discussion of limitations). The challenge of pain assessment is a classical problem within both the scientific and the clinical literature. Here, we suggest that the consideration of multiple manifestations of pain is necessary to address this challenge and will provide a more comprehensive portrait of pain-related brain function.

      Introduction

      I believe that the Introduction would benefit from a strict definition of what is a marker/biomarker/neuromarkers (all those terms are used in the manuscript) and what are its desirable features (validity, reliability, specificity, etc.). I also believe that the Introduction (and the rest of the text) would benefit from a critical assessment of the term "signature". The Introduction describes four existing "signatures", all of them differing in the experimental condition in which acute nociceptive pain is studied, and proposes a fifth one. Keeping with the analogy, I'm wondering whether they should be called (pain) "signatures" if there is a different one for each experimental acute pain condition, and they are so dissimilar between them when they are tested on the same condition (this dataset).

      The last part of that comment raises fundamental methodological potential limitations that should be addressed in more depth in another article. That point goes beyond the scope of a research article. Regarding the stability aspect of the signatures, most of the signatures have not been studied extensively. It is thus difficult to currently assess their reliability. However, Han et al. (2022) showed high within-individual test-retest reliability for the NPS across eight different studies. Given that pain is a multidimensional experience, it is not surprising to find different patterns of activation predictive of different aspects or dimensions of the pain experience (see Čeko et al., 2022 for a similar discussion applied to negative affect).

      The authors state that "As an automatic behavioral manifestation, pain facial expression might be an indicator of activity in nociceptive systems, perceptual and evaluative processes, or general negative affect." Doesn't it reflect all three of them? (and instead of or?) Why "might"?

      The original sentence has been modified as follows: “As an automatic behavioral manifestation, pain facial expression is considered to be an indicator of activity in nociceptive systems, and to reflect perceptual and affective-evaluative processes” (lines 65 to 67).

      Methods

      The pain scale should be described. Kunz et al. used a 0-100 scale, where 50 was the pain threshold. This is crucial to interpret the 75-80/100 score for the painful thermal intensity.

      The description of the pain scale has been added to the manuscript (lines 299 to 300).

      Ratings for warm and painful temperatures should be reported (ideally plotted with individual-trial/subject data). In the same line of reasoning, FACS scores should be reported as well (ideally plotted with individual-trial/subject data). It would be interesting to explore the across-trial variability of pain ratings and FACS scores. That is, do people keep giving the same ratings and making the same facial expression after 16 trials? How much variability is between trials and between subjects?

      The point raised in that comment was already addressed in response to a comment made by Reviewer #1 (also see the new Figures S2 and S4; see also lines 335 to 346).

      How come only painful trials are analyzed? What if the FEPS signature was the same for warm and painful stimulation, thus reflecting the settings (fMRI experiment, stimulation, etc.) rather than the brain response to the stimuli?

      The point raised in that comment was already addressed in response to a comment made by Reviewer #1. There was no pain expression in the warm trials and the FEPS shows no response to warm trials. This is now illustrated in the new Figure S4B (see also lines 138 to 158).

      The authors propose to predict the trial-by-trial FACS composite score from the pain ratings using a LMM. However, it is interesting that they aim for an almost constant within- and between-subject pain score (75-80/100) as stated in the Methods. This should theoretically render the linear model invalid since its first (and main) assumption would be that FACS should vary linearly with the pain score. Even if patients were not aware that the temperatures were constant across trials, the variation in pain scores should be explained by random noise for a constant stimulation intensity.

      Reviewer #3 raises an important point that we need to clarify. Contrary to the expectation that FACS responses should be strongly correlated to pain ratings, we posited that these response channels depend at least in part on separate brain networks that may be differentially sensitive to a variety of modulatory mechanisms (attention, emotion, expectancy, motor priming, social context, etc.). This implies that part of the variance in FACS is independent from pain ratings. We, therefore, consider what Reviewer #3 refers to as random noise to be relevant and meaningful fluctuations reflecting endogenous processes influencing one’s experience of pain and differentially affecting various output responses.

      I noticed that fMRI data was analyzed with SPM5 in the original paper (Kunz et al., 2011) and with SPM8 in this manuscript. Was fMRI data re-processed for this manuscript? Were there any differences between the original analysis and this one that might induce changes in the interpretation of results?

      The data were indeed re-processed using SPM8, which was the most recent version available when we started the analyses reported here. We used trial-by-trial activation maps for MVPA, which differs from what was used in the previous study (contrast maps at the level of the conditions, not the trials). We have no reason to believe that the different versions will change the message of this manuscript since those versions do not differ significantly in terms of the fMRI preprocessing pipeline (see SPM8 release notes; https://www.fil.ion.ucl.ac.uk/spm/software/spm8/). Furthermore, the aim of this present study is not to compare the different analysis parameters implemented in SPM5 vs SPM8.

      What is the rationale for including PVP in the comparison among signatures? The experimental settings in which it was devised are distant from those described here.

      The inclusion of the PVP was aimed at enhancing our comparative analysis with the FEPS, as we sought to investigate the potential functional meaning of the FEPS. The PVP was developed to capture the aversive value of pain, a dimension that is conceptually proximal to the interpretation of the facial expression as a manifestation of the affective response to nociceptive pain.

      The LASSO-PCR approach is, in my opinion, not a procedure for (brain) decoding in this context. It is accurately described in the section title as a method for multivariate pattern analysis, or as a variable selection and regularization method for a prediction model. Here, brain activity in specific areas related to pain processing can hardly be described as "encoded", and the method just helps select those activations relevant for explaining a certain outcome (in this case, facial expressions).

      We understand the point made by reviewer #3. The term brain decoding was changed for multivariate pattern analysis in the latest version of the manuscript.

      Details are missing with regards to the dataset split into training, validation, and testing.

      Details about the training and testing procedure were added in the manuscript (lines 383 to 385).

      This might just be ignorance from me, so I apologize in advance, but what are "contrast" fMRI images? They are mentioned three times in the text but not really described. Are they the "Pain > Warm" contrasts from the original paper?

      We apologize for any confusion caused by the use of the term “contrast images” which suggests a direct comparison between two experimental conditions. We have replaced “contrast images” with “activation maps” to provide a more accurate description of the nature of the data used in the multivariate pattern analysis (lines 388 to 389).

      In the "Facial expression" section, the authors run an LMM to test the association between pain ratings (response variable) and facial responses (explanatory variable). If I understand correctly, in the "Multivariate pattern analysis" section they test the association between facial composite scores (response variable) and pain ratings (explanatory variable), but they obtain different results.

      The analyses were recomputed on the log transformed data, as mentioned previously in the response to reviewers 1-2. The first model (in the “Facial expression” section) used the log transformed FACS scores as a dependent variable, the pain ratings as the fixed effect, and the participants as the random effect. The results of that analysis suggested that the transformed facial expression scores were not significantly associated with the pain ratings (p = .07). The second model uses both the FEPS pattern expression scores and pain ratings as fixed effects to predict facial responses. This analysis showed the significant contribution of the FEPS to the prediction of FACS scores (p < .001) and no significant effect of the pain ratings. However, a significant interaction was found (p = .03) suggesting that the prediction of the pain facial expression by the FEPS may vary with pain ratings (i.e. moderator effect). Those results have been clarified in the “Multivariate pattern analysis” section in the Methods (lines 416 to 426).

      In this same section, what are "FEPS pattern expression scores"? They are used three times in the text, but I could not find their description.

      The FEPS pattern expression scores correspond to the dot product between the trial-by-trial activation maps and the unthresholded FEPS signature. This information has been added to the manuscript (lines 413 to 414).

      It would not be far-fetched to hypothesize that FACS scores could be predicted using solely activity from the motor cortex. The authors attempted to do this, but only with information from M1. Why did they not use the entire motor cortex, or better, regions of the motor cortex directly linked with the AUs described in the manuscript?

      The selection of the primary motor area (M1) was based on the results found in Kunz et al. (2011). In this study, M1 showed the strongest correlation with facial expression of pain. There are numerous possibilities of combinations of multiple brain regions considering a variety of criteria based on distributed networks involved in motor, affective, or pain-related processes. We limited our exploration to the region with the strongest hypothesis due to practical feasibility concerns.

      Results and Discussion

      As a general recommendation, results should present individual data whenever possible. For example, the association between signatures and facial expression should be plotted using scatterplots.

      We have added figures showing individual data when it was applicable (Figure S2; Figure S4).

      The authors state that the LASSO-PCR model accounts for the facial responses to pain. I believe this is an overstatement, considering:

      - A Pearson's r of 0.49 is usually considered low/weak correlation (moderate at best). In the same line, an R2 of 0.17 means that only 17% of the variance is explained by the model.

      More nuanced interpretation of the results has been added to the discussion. A section has been added to highlight the limitations of the study.

      - Figure 1 needs to display individual subject data and the ideal regression line.

      The model was trained using a k-fold cross-validation procedure. The regression lines thus represent the model’s prediction for each one of the 10 folds (i.e. each fold is trained and tested on a different subset of the data). A scatter plot including the ideal regression line computed across all trials and subjects was added in supplementary material to illustrate the relation between the FACS scores and the FEPS pattern expression scores (Figure S4).

      - Looking at Figure 1, it is clear that the model has an intercept different from zero. This means that when the FACS score was zero (i.e., volunteers did not make any distinguishable facial expression), the model predicted a score larger than zero. This is not discussed in the manuscript, and in simple terms, it means that there are brain activation patterns when no discernible facial expression is being made by the volunteers. In the original paper by Kunz et al., two groups of subjects were categorized, and one of them was a facially low- or non-expressive group (n=13). This fact is not even mentioned in the manuscript.

      The categorization in the previous report (Kunz et al., 2012) was based on a pre-experimental session. All subjects were included in the current analysis. This is now indicated in the Methods (lines 287 to 289).

      - On the other end of the range in Figure 1, differences between the FACS scores near the maximum range (40) are underestimated by 23 to 33 points! I guess that the RMSE is smaller (6-7 points), because many FACS scores are concentrated on the low end of the scale.

      This is a very interesting comment. A section discussing the limits of the model to predict the lower and higher FACS scores has been added in the manuscript (lines 232 to 250).

      It is of course acceptable to interpret the low similarity between signatures as a sign that each signature describes a different mechanism related to pain processing. However, I believe that a complete discussion should contemplate other competing hypotheses. Considering that all signatures were developed using a similar painful thermal stimulation protocol, it is reasonable to expect larger similarities between signatures. The fact that they are so dissimilar could be a reflection of model overfit, i.e., all these signatures are just fitted to these particular experimental protocols and data, and do not generalize to brain mechanisms of pain processing.

      We appreciate the pertinent observation. We have included a limitations section in which we discussed, among other considerations, the possible overfitting of models and the necessity of pursuing generalizability studies (lines 225 to 268).

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This is an important study on the regulation of chlorophyll biosynthesis in rice embryos. It provides insights into the genetic and molecular interactions that underlie chlorophyll accumulation, highlighting the inhibition of OsGLK1 by OsNF-YB7 and the broader implications for understanding chloroplast development and seed maturation in angiosperms. The results presented, including mutation analysis, gene expression profiles, and protein interaction studies, provide convincing evidence for the function of OsNF-YB7 as a repressor in the chlorophyll biosynthesis pathway.

      Thank you very much for your positive assessment of our manuscript. We have carefully revised the manuscript according to the reviewers’ valuable suggestions and comments. For more details, please see the point-to-point response to the reviewers below.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This manuscript investigates the regulation of chlorophyll biosynthesis in rice embryos, focusing on the role of OsNF-YB7. The rigorous experimental approach, combining genetic, biochemical, and molecular analyses, provides a robust foundation for these findings. The research achieves its objectives, offering new insights into chlorophyll biosynthesis regulation, with the results convincingly supporting the authors' conclusions.

      Strengths:

      The major strengths include the detailed experimental design and the findings regarding OsNF-YB7's inhibitory role.

      Weaknesses:

      However, the manuscript's discussion on the practical implications for agriculture and the evolutionary analysis of regulatory mechanisms could be expanded.

      Thank you for your insightful comments and suggestions. In the revised manuscript, we discussed the potential application of the chlorophyllous embryo (please see line 270-274). The presence of chlorophyll in the embryo facilitates photosynthesis at early developmental stages, potentially leading to improved seedling growth and vigor (Smolikova and Medvedev, 2016). In crops such as soybean and canola, green embryo is considered as a valuable trait due to its association with enhanced photosynthetic capacity, which consequently promotes fatty acid biosynthesis (Ruuska et al., 2004). However, chlorophyll degradation must be carefully managed during seed maturation to avoid negative effects on seed viability and meal quality (Chung et al., 2006). Interestingly, the green embryo of lotus (Nelumbo nucifera) is widely used as a food ingredient in Asian, Australia, and North America. It is employed in herbal medicine to treat nervous disorders, insomnia, and other conditions (Zhu et al., 2017; Ha et al., 2022), highlighting the significant potential value of the green embryo.

      In many chloroembryophytes, such as Arabidopsis, the embryo occupies a large proportion of the seed. From an evolutionary perspective, the presence of chlorophyll in the embryo may promote adaptation in such chloroembryophytes because more reserves can be accumulated in the seed through active photosynthesis, better supporting the embryo development and subsequent seedling growth (Sela et al., 2020). On the other hand, some leucoembryophytes, such as rice, have persistent endosperm rich in storage reserves to nourish embryo development (Liu et al., 2022). Gaining the ability to accumulate chlorophyll in the embryo is unnecessary for such species. In agreement with this hypothesis, cholorophyllous embryos are more prevalent in non-endospermous seeds (Dahlgren, 1980). However, we would like to emphasize that the evolutionary force driving the divergence of chloroembryophytes and leucoembryophytes is currently almost completely unknown and deserves in-depth investigation in the future. We discussed the possible evolution of the ability to accumulate chlorophyll in the embryo, please find the details in Line 276-295.

      Reviewer #2 (Public Review):

      Summary:

      The authors set out to establish the role of the rice LEC1 homolog OsNF-YB7 in embryo development, especially as it pertains to the development of photosynthetic capacity, with chlorophyll production as a primary focus.

      Strengths:

      The results are well-supported and each approach used complements each other. There are no major questions left unanswered and the central hypothesis is addressed in every figure.

      Weaknesses:

      There are a handful of sections that could use clarifying for readers, but overall this is a solidly composed manuscript.

      The authors clearly achieved their aims; the results compellingly establish a disparity between how this system operates in rice and Arabidopsis. Conclusions are thoroughly supported by the provided data and interpretations. This work will force a reconsideration of the value of Arabidopsis as a model organism for embryo chlorophyll biosynthesis and possibly photosynthesis during embryo maturation more broadly, as rice is a major crop organism and it very clearly does not follow the Arabidopsis model. It will thus be useful to carry out similar tests in other organisms rather than relying on Arabidopsis and attempting to more fully establish the regulatory mechanism in rice.

      Thank you very much for your positive comments. We have carefully revised the manuscript according to your and the other reviewers’ comments and suggestions. Particularly, we emphasized the necessary to carry out similar tests in other organisms rather than relying on Arabidopsis to better understand the regulatory mechanism in rice.

      Reviewer #3 (Public Review):

      Summary:

      In this study, the authors set out to understand the mechanisms behind chlorophyll biosynthesis in rice, focusing in particular on the role of OsNF-YB7, an ortholog of Arabidopsis LEC1, which is a positive regulator of chlorophyll (Chl) biosynthesis in Arabidopsis. They showed that OsNF-YB7 loss-of-function mutants in rice have chlorophyll-rich embryos, in contrast to Arabidopsis LEC1 loss-of-function mutants. This contrasting phenotype led the authors to carry out extensive molecular studies on OsNF-YB7, including in vitro and in vivo protein interaction studies, gene expression profiling, and protein-DNA interaction assays. The evidence provided well supported the core arguments of the authors, emphasising that OsNF-YB7 is a negative regulator of Chl biosynthesis in rice embryos by mediating the expression of OsGLK1, a transcription factor that regulates downstream Chl biosynthesis genes. In addition, they showed that OsNF-YB7 interacts with OsGLK1 to negatively regulate the expression of OsGLK1, demonstrating the broad involvement of OsNF-YB7 in rice Chl biosynthetic pathways.

      Strengths:

      This study clearly demonstrated how OsNF-YB7 regulates its downstream pathways using several in vitro and in vivo approaches. For example, gene expression analysis of OsNF-YB7 loss-of-function and gain-of-function mutants revealed the expression of selected downstream chl biosynthetic genes. This was further validated by EMSA on the gel. The authors also confirmed this using luciferase assays in rice protoplasts. These approaches were used again to show how the interaction of OsNF-YB7 and OsGLK1 regulates downstream genes. The main idea of this study is very well supported by the results and data.

      Weaknesses:

      From an evolutionary perspective, it is interesting to see how two similar genes have come to play opposite roles in Arabidopsis and rice. It would have been more interesting if the authors had carried out a cross-species analysis of AtLEC1 and OsNF-YB7. For example, overexpressing AtLEC1 in an osnf-yb7 mutant to see if the phenotype is restored or enhanced. Such an approach would help us understand how two similar proteins can play opposite roles in the same mechanism within their respective plant species.

      We appreciate your insightful comments and suggestions. It is a very interesting question whether AtLEC1 can fully restore osnf-yb7, given the possible functional divergence between the genes in terms of regulation of chlorophyll biosynthesis in the embryo. We have previously expressed OsNF-YB7 in the lec1-1 background in Arabidopsis, driven by the native promoter of LEC1 (Niu et al., 2021). We found that OsNF-YB7 could almost completely rescue the embryo defects in Arabidopsis, indicating that OsNF-YB7 plays a resemble role in rice as the LEC1 does in Arabidopsis (Niu et al., 2021). We sought to determine whether AtLEC1 can complement the chlorophyll defect in osnf-yb7. However, given the fact that osnf-yb7 shows severe callus induction defect, which is not surprising, because many studies have shown that LEC1 is indispensable for somatic embryo development in various plant species, we are struggling to obtain the genetic materials for analysis. We have to transform OsNF-YB7pro::AtLEC1 into the WT background first, and then cross the transformant with the osnf-yb7 mutant. This is a time-consuming process in rice, but hopefully we will able to isolate a line expressing OsNF-YB7pro::AtLEC1 in the osnf-yb7 background from the resulting segregating population.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      A minor comment regarding the chlorophyll contents quantification in the study. Line 87: "The results showed that WT had an achlorophyllous embryo throughout embryonic development,...." In the TEM result, chloroplast was not observed in the WT embryo sections, indicating a lack of chlorophyll-containing structures, contrary to what was found in the osnf-yb7 embryos where chloroplasts were observed.

      The authors stated that the embryo morphologies and Chl autofluorescence data showed that WT had an achlorophyllous embryo throughout embryonic development. However, the quantification of Chl levels in Figure 1D and Figure 4C showed that WT does produce some chlorophylls, albeit at lower levels than osnf-yb7 or OSGLK-OX embryos (WT values in the two figures are slightly different). This discrepancy warrants clarification to ensure consistency and accuracy in the manuscript's findings.

      We re-evaluated the Chl content in the embryos of WT and OsGLK1-OX mature seeds. The result confirmed our previous finding that WT embryos produce a small amount of chlorophyll (please see the updated Fig. 4C). Notably, we observed that the dark-grown etiolated plants still have measurable chlorophyll content as reported in many studies (for example, Wang et al., 2017; Yoo et al., 2019), suggesting that there is potential bias in measuring chlorophyll content using an absorbance-based approach. We assume this possibly explains the concern you have raised.

      Reviewer #2 (Recommendations For The Authors):

      Mild editing for grammar is needed throughout, e.g. line 73, "It is still a mysterious why plant species".

      We have carefully edited the grammar.

      As a minor point, the placement of figure panels, such as in Figure 1, is not always intuitive.

      Thank you for your suggestion. This figure has been revised as suggested. Please see the updated Fig. 1.

      What is the significance of the two GFP mutants in Figures 2C and 2D? Is one of those the mislabeled Flag mutant?

      The lines showed in Fig. 2C and D were not mislabeled. They were two independent transgenic events, both of which showed that OsNF-YB7 inhibited the expression of OsPORA and OsLHCB4 in rice. The transgenic lines overexpressing OsNF-YB7 tagging with the 3× Flag (NF-YB7-Flag) were also used for this experiment. In agreement, OsPORA and OsLHCB4 were significantly downregulated in the three independent NF-YB7-Flag lines (Fig. S4C), confirming the results showed in Fig. 2C and D.

      In Figures 2G and 2H, what is that enormous band at the bottom of the gel?

      The bands at the bottom of the gel were free probes. We indicated this in the revised figure.

      Not until the Materials and Methods section did I realize that any of this study was being done in tobacco; the Introduction implies it's rice vs. Arabidopsis and it might be a good idea to mention the organism of study somewhere before Figure 6.

      We apologize for any confusion caused by our previous writing. While the majority of this study was performed with rice plants or protoplasts, the split complementary LUC assays and BiFC assays were performed with tobacco. We have specified these in the revised manuscript as suggested.

      Reviewer #3 (Recommendations For The Authors):

      It would be nice if the author could show what the phenotype is in AtLEC1 OX in osnf-yb7 and also OsNF-YB7 OX in atlec1 mutants.

      Thank you for your suggestion. We have previously expressed OsNF-YB7 in the lec1-1 background of Arabidopsis, driven by the native promoter of Arabidopsis LEC1 (Niu et al., 2021). Since OsNF-YB7 could rescue the embryo morphogenesis defects in Arabidopsis (Niu et al., 2021), we assumed that OsNF-YB7 plays a similar role in rice as the LEC1 does in Arabidopsis. However, it remains unknown whether expression of LEC1 in osnf-yb7 may restore the chlorophyllous embryo phenotype in rice. As the generation of genetic material is time-consuming, and especially given the fact that osnf-yb7 has a severe callus induction defect, we are struggling to obtain the complementary line for analysis. We have to transform OsNF-YB7pro::AtLEC1 in a WT background first, and then cross the transformant with the osnf-yb7 mutant. Hopefully, we will be able to isolate a line expressing OsNF-YB7pro::AtLEC1 in osnf-yb7 background, from the derived segregating population. We discussed the reviewer’s concern in the revised manuscript, please see Line 369-376.

      Line 46, I think it is vague to mention that 'Like most plant species'. Some species might have different copy numbers, for example, a single GLK in liverwort M. polymorpha.

      The statement has been revised. Please see Line 46.

      Figures 2F and 5B, why was only one promoter region used for OsLHCB4? It would be better to have more regions like OsPORA.

      Thank you for your comments. Here, we have examined more promoter regions (P1, P2 and P3) in the revised manuscript as suggested, among which, the previously selected promoter region (P3) contains both the G-box and CCAATC motifs that can be potentially recognized by GLK1. Consistent to our previous report, the results showed that OsNF-YB7 (left) and OsGLK1 (right) were associated with the P3 region, but showed no significant differences in the other probes. Please see the results in Fig. 2F and Fig. 5B of the revised manuscript.

      Legend of Figures 2G, H, OsPORA (I), and OsLHCB (J) should be (G) and (H) respectively.

      Corrected.

      References

      Chung, D.W., Pruzinska, A., Hortensteiner, S., and Ort, D.R. (2006). The role of pheophorbide a oxygenase expression and activity in the canola green seed problem. Plant Physiol 142, 88-97.

      Ha, T., Kim, M.S., Kang, B., Kim, K., Hong, S.S., Kang, T., Woo, J., Han, K., Oh, U., Choi, C.W., and Hong, G.S. (2022). Lotus Seed Green Embryo Extract and a Purified Glycosyloxyflavone Constituent, Narcissoside, Activate TRPV1 Channels in Dorsal Root Ganglion Sensory Neurons. J Agric Food Chem 70, 3969-3978.

      Liu, J., Wu, M.W., and Liu, C.M. (2022). Cereal Endosperms: Development and Storage Product Accumulation. Annu Rev Plant Biol 73, 255-291.

      Niu, B., Zhang, Z., Zhang, J., Zhou, Y., and Chen, C. (2021). The rice LEC1-like transcription factor OsNF-YB9 interacts with SPK, an endosperm-specific sucrose synthase protein kinase, and functions in seed development. Plant J 106, 1233-1246.

      Ruuska, S.A., Schwender, J., and Ohlrogge, J.B. (2004). The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol 136, 2700-2709.

      Sela, A., Piskurewicz, U., Megies, C., Mene-Saffrane, L., Finazzi, G., and Lopez-Molina, L. (2020). Embryonic Photosynthesis Affects Post-Germination Plant Growth. Plant Physiol 182, 2166-2181.

      Smolikova, G.N., and Medvedev, S.S. (2016). Photosynthesis in the seeds of chloroembryophytes. Russ J Plant Physl+ 63, 1-12.

      Wang, Z., Hong, X., Hu, K., Wang, Y., Wang, X., Du, S., Li, Y., Hu, D., Cheng, K., An, B., and Li, Y. (2017). Impaired Magnesium Protoporphyrin IX Methyltransferase (ChlM) Impedes Chlorophyll Synthesis and Plant Growth in Rice. Front Plant Sci 8, 1694.

      Yoo, C.Y., Pasoreck, E.K., Wang, H., Cao, J., Blaha, G.M., Weigel, D., and Chen, M. (2019). Phytochrome activates the plastid-encoded RNA polymerase for chloroplast biogenesis via nucleus-to-plastid signaling. Nat Commun 10, 2629.

      Zhu, M., Liu, T., Zhang, C., and Guo, M. (2017). Flavonoids of Lotus (Nelumbo nucifera) Seed Embryos and Their Antioxidant Potential. J Food Sci 82, 1834-1841.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Reviews):

      Summary: 

      The authors use a combination of biochemistry and cryo-EM studies to explore a complex between the cap-binding complex and an RNA binding protein, ALYREF, that coordinates mRNA processing and export.

      Strengths: 

      The biochemistry and structural biology are supported by mutagenesis which tests the model in vitro. The structure provides new insight into how key events in RNA processing and export are likely to be coordinated.

      Weaknesses: 

      The authors provide biochemical studies to confirm the interactions that they identify; however, they do not perform any studies to test these models in cells or explore the consequences of mRNA export from the nucleus. In fact, several of the amino acids that they identified in ALYREF that are critical for the interaction, as determined by their own biochemical studies, are conserved in budding yeast Yra1 (residues E124/E128 are E/Q in budding yeast and residues Y135/V138/P139 are F/S/P), where the impact on poly(A) RNA export from the nucleus could be readily evaluated. The authors could at least mention this point as part of the implications and the need for future studies. No one seems to have yet targeted any of these conserved residues, so this would be a logical extension of the current work.

      We thank the reviewer for the feedback on our work. ALYREF coordinates pre-mRNA processing and export through interactions with a plethora of mRNA biogenesis factors including the DDX39B subunit of the TREX complex, CBC, EJC, and 3’ processing factors. ALYREF mediates the recruitment of the TREX complex on nascent transcripts which depends on its interactions with both CBC and EJC. Our work and studies by others indicate that ALYREF uses overlapping interfaces including both the N-terminal WxHD motif and the RRM domain to bind CBC and EJC. Thus, ALYREF mutants deficient in CBC interaction will also disrupt the ALYREF-EJC interaction and are not ideal for functional studies. In addition, the CBC plays important roles in multiple steps of mRNA metabolism through interactions with a plethora of factors, which often interact competitively with CBC. Identification of separation-of-function mutations on CBC or ALYREF that specifically disrupt their interaction but not other cellular complexes containing CBC or ALYREF would be an important future area to test the model in cells. 

      We appreciate the reviewer’s insightful comments regarding yeast Yra1. Thus far, the physical and functional connection between Yra1 and CBC in yeast has not been demonstrated. There are major differences between yeast Yra1 and human ALYREF. Given the lack of an EJC in S. cerevisiae, it is unclear whether Yra1 acts in a similar manner as human ALYREF. In addition, Yra1 does not contain a WxHD motif in its N-terminal unstructured region, which is involved in CBC and EJC interactions in ALYREF. Characterization of the Yra1-CBC interaction will be an interesting future direction. We now include a discussion about yeast Yra1 in the newly added “Conclusion and perspectives” section. 

      Specific suggestions:

      The authors could put their work in context by speculating how some of the amino acids that they identify as being critical for the interactions they identify could contribute to cancer. For example, they mention mutations of interacting residues in NCBP2 are associated with human cancers, pointing out that NCBP2 R105C amino acid substitution has been reported in colorectal cancer and the NCBP2 I110M mutation has been found in head and neck cancer. Do the authors speculate that these changes would decrease the interaction between NCBP2 and ALYREF and, if so, how would this contribute to cancer? They also mention that a K330N mutation in NCBP1 in human uterine corpus endometrial carcinoma, where Y135 on the α2 helix of mALYREF2 makes a hydrogen bond with K330 of NCBP1. How do they speculate loss of this interaction would contribute to cancer?

      In the revised manuscript, we include a discussion about these CBC mutants found in human cancers in the “Conclusion and perspectives” section. We think some of these CBC mutants, such as NCBP-1 K330N, could reduce interaction with ALYREF. Compromised CBC-ALYREF interaction will affect the recruitment of the TREX complex on nascent transcripts and cause dysregulation of mRNA export. In addition, that could also change the partition of CBC and ALYREF in different cellular complexes and cause perturbation of various steps in mRNA biogenesis that are regulated by CBC and ALYREF. Thus far, it is unclear whether and how loss of the CBC-ALYREF interaction directly contributes to cancer. Our work and that of others provide molecular insights to test in future studies. 

      Reviewer #2 (Public Reviews):

      Summary: 

      In this manuscript, Bradley and his colleagues represented the cryo-EM structure of the nuclear cap-binding complex (CBC) in complex with an mRNA export factor, ALYREF, providing a structural basis for understanding CBC regulating gene expression.

      Strengths: 

      The authors successfully modeled the N-terminal region and the RRM domain of ALYREF (residues 1-183) within the CBC-ALYREF structure, which revealed that both the NCBP1 and NCBP2 subunits of the CBC interact with the RBM domain of ALYREF. Further mutagenesis and pull-down studies provided additional evidence to the observed CBC-ALYREF interface. Additionally, the authors engaged in a comprehensive discussion regarding other cellular complexes containing CBC and/or ALYREF components. They proposed potential models that elucidated coordinated events during mRNA maturation. This study provided good evidence to show how CBC effectively recruits mRNA export factor machinery, enhancing our understanding of CBC regulating gene expression during mRNA transcription, splicing, and export. 

      Weaknesses: 

      No in vivo or in vitro functional data to validate and support the structural observations and the proposed models in this study. Cryo-EM data processing and structural representation need to be strengthened. 

      We appreciate the reviewer’s comments and suggestions. The fact that ALYREF uses highly overlapped binding interfaces for CBC and EJC interactions prevents us from a clear functional dissection of the ALYREF-CBC interaction using in vitro assays or in cells at the current stage. Please also see our response to Reviewer 1. 

      In this revised manuscript, we have reprocessed the cryo-EM data using a different strategy which yields significantly improved maps. We have made improvements to the presentation of the structural work based on the reviewer’s specific comments. 

      Reviewer #3 (Public Reviews):

      Summary: 

      The authors carried out structural and biochemical studies to investigate the multiple functions of CBC and ALYREF in RNA metabolism.

      Strengths: 

      For the structural study part, the authors successfully revealed how NCBP1 and NCBP2 subunits interact with mALYREF (residues 1-155). Their binding interface was then confirmed by biochemical assays (mutagenesis and pull-down assays) presented in this study. 

      Weaknesses: 

      The authors did not provide functional data to support their proposed models. The authors should include more details regarding the workflow of their cryo-EM data processing in the figure. 

      We thank the reviewer for the comments. We completely agree that testing the proposed models in cells would be ideal. However, as we also respond to the other reviewers, functional studies are premature at the current stage because both ALYREF and CBC are components of many cellular complexes that regulate mRNA metabolism. Separation-of-function mutations on CBC or ALYREF first need to be identified in future studies for further investigation. Please also see our response to Reviewer 1. 

      As suggested by the reviewer, we have included more details of the cryo-EM workflow in this revised manuscript. We have also included various validation measures including 3DFSC analyses, map vs model FSC curves, and representative density maps at various protein-protein binding interfaces. 

      Recommendations for the Authors:

      Reviewer #1 (Recommendations for the Authors):

      Major points:

      The authors should take advantage of Figure 1, which shows the domain structures of NCBP1, NCBP2, and ALYREF to indicate for the reader specifically which protein domains are included in the biochemical and structural analyses. In the current version of the manuscript, there is plenty of space to indicate below each domain structure precisely what regions are included.

      In this revised manuscript, we have revised Figure 1A to indicate the protein constructs used in this work. 

      Although it is fine to combine the Results and Discussion, the authors should really offer a concluding paragraph to highlight the novel results from this study and put the results in context.

      We thank the reviewer for the recommendation. We now include a “Conclusion and perspectives” section in this revised manuscript.  

      Minor comments:

      Page 5, last sentence (and others) starts a sentence with the word "Since" when likely "As" which does not imply a time element to the phrase, is the correct word.

      "Since the ALYREF/mALYREF2 interaction with the CBC is conserved and mALYREF2 exhibits better solubility, we focused on mALYREF2 in the cryo-EM investigations."

      Would be more correct as: "As the ALYREF/mALYREF2 interaction with the CBC is conserved and mALYREF2 exhibits better solubility, we focused on mALYREF2 in the cryo-EM investigations."

      We thank the reviewer for the comments. We have made the corrections. 

      The word 'data' is plural so the sentence at the bottom of p.9 that includes the phrase "...in vivo data shows.." should read "..in vivo data show.." 

      Corrected in the revised manuscript.

      Reviewer #2 (Recommendations for the Authors):

      Major points:

      (1) The authors claimed the improved solubility of mouse ALYREF2 (mALYREF2, residues 1-155) compared to the previously employed ALYREF construct. However, human ALYREF has already been purified successfully for pull down assay, indicating soluble human ALYREF obtained, why not use human ALYREF directly? Please clarify. 

      Pull-down studies were performed with GST-tagged ALYREF. For cryo-EM studies, untagged ALYREF is preferred to avoid potential issues that may arise from the expression tag. However, untagged ALYREF is less soluble than GST-tagged ALYREF and is not amenable for structural studies. We have revised the text to clarify this point. 

      (2) The authors confirmed CBC-ALYREF interfaces through mutagenesis and pull-down assays in vitro. However, it would be more informative and interesting to include functional assays in vitro or/and in vivo with mutagenesis. 

      We completely concur with the reviewer that testing the proposed models in vitro and in vivo would be important. However, as we pointed out in our response to public reviews, the highly overlapped binding interfaces on ALYREF for CBC and EJC interactions pose a great challenge for functional studies. Furthermore, both ALYREF and CBC are multifunctional factors and interact with a number of partners. Ideally, separation-of-function mutants that specifically disrupt the CBC-ALYREF interaction but not others need to be identified in future studies in order to perform functional studies. 

      (3) About cryo-EM data processing and structural representation:

      (1) In the description of the cryo-EM data processing, the authors claimed they did heterogeneous refinement, homogenous refinement, and then local refinement. This reviewer is puzzled by this process because the normal procedure should be non-uniform refinement following homogenous refinement. If the authors did not perform non-uniform refinement, they should do it because it would significantly improve the quality and resolution of cryo-EM maps. In addition, the right local refinement should include mask files and only show the density/map of the local region. 

      We thank the reviewer for the suggestions. In response to the reviewer’s comment on the preferred orientation issue (point 5 below), we reprocessed the cryo-EM data and obtained significantly improved cryo-EM maps. In this revised manuscript, the CBC-mALYREF map was refined using homogeneous refinement; the CBC map was refined using homogenous refinement followed by non-uniform refinement. Refinement masks are included in Figure 2-figure supplement1. 

      (2) Further local refinements with signal subtraction should be performed to improve the density and resolution of mALYREF2. 

      We tested local refinement with or without signal subtraction using masks covering mALYREF2 and various regions of CBC. Unfortunately, this approach did not improve the density of mALYREF2. We suspect that the small size of mALYREF2 (77 residues for the RRM domain) and the intrinsic flexibility of CBC are the limiting factors in these attempts. 

      (3) Figures with cryoEM map showing the side chains of the residues on the CBC-mALYREF2 interface should be included to strengthen the claims. Authors could add the map to Figure 3b/c or present it as a supplementary figure.

      We include new supplementary figures (Figure 3-figure supplement 1) to show the electron densities corresponding to the views in Figure 3B and 3C. Residues labeled in Figure 3B and 3C are shown in sticks in these supplementary figures.

      (4) For cryo-EM date processing, the authors have omitted lots of important details. Could the authors elaborate on the data processing with more details in the corresponding Figure and Methods Sections? Only one abi-initial model from the picked good particles was displayed in the figure. Are there any other different conformations of 3D classes for the dataset? In addition, too few classes have been considered in 3D classification, more classes may give a class with better density and resolution.

      We thank the reviewer for the comments. We have reprocessed the cryo-EM data. A major change is to use Topaz for particle picking. We now include more details for data processing in Figure 2-figure supplement 1 and the method section. The cryo-EM sample is relatively uniform. Ab-initio reconstruction and heterogenous refinement yielded only one good class and the other classes are “junk” classes (omitted in the workflow figure). No major conformational changes were observed throughout the multiple rounds of heterogenous refinement for both CBC and CBCmALYREF2. In this revised manuscript, we have been able to obtain significantly improved maps through the new data processing strategy employing Topaz as illustrated in Figure 2-figure supplement 1 to 5.

      (5) Angular distribution plots should be included to show if there is a preferred orientation issue. Based on the presented maps in validation reports, there may exist a preferred orientation issue for the reported two cryo-EM maps. Detailed 3D-Histogram and directional FSC plots for all the cryo-EM maps using 3DFSC web server should be presented to show the overall qualities (https://www.nature.com/articles/nmeth.4347 and https://3dfsc.salk.edu/).

      We thank the reviewer for the recommendations. In response to the reviewer’s comment on the preferred orientation issue, we reprocessed the cryo-EM data. Topaz was used for particle picking instead of template picking. 3DFSC analyses indicate that the new CBC-mALREF2 map has a sphericity of 0.946, which is a significant improvement from the previous map which has a sphericity of 0.815. Consistently, the maps presented in this revised manuscript show significantly improved densities. We now include angular distribution and 3DFSC analyses of the EM maps (Figure 2-figure supplement 2 and 4). 

      (6) Figures of model-to-map FSCs need to be present to demonstrate the quality of the models and the corresponding ones (model resolution when FSC=0.5) should also be included in Table 1. The accuracy of the model is important for structural explanations and description.

      The model-to-map FSCs are now included in Figure 2-figure supplement 3A and 5A. The model resolutions of CBC-mALYREF2 and CBC are estimated to be 3.5 Å and 3.6 Å at an FSC of 0.5. These numbers are now included in Table 1. 

      (7) In addition, figures of local density maps with different regions of the models, showing side chains, are necessary and important to justify the claimed resolutions. 

      We now include density maps overlayed with residue side chains at various regions. For the CBCmALYREF2 map, density maps are shown at the mALYREF2-NCBP1 interfaces (Figure 3-figure supplement 1A and 1B), mALYREF2-NCBP2 interface (Figure 3-figure supplement 1C), NCBP1NCPB2 interface (Figure 2-figure supplement 5B), and the region near m7G (Figure 2-figure supplement 5C). For the CBC map, density maps are shown at the NCBP1-NCPB2 interface (Figure 2-figure supplement 3B) and the region near m7G (Figure 2-figure supplement 3C). 

      Minor points:

      (1) A figure superimposing the models from the CBC-mALYREF2 amp and mALYREF2 alone map is necessary to present that there are no other CBC binding-induced conformational changes in CBC except the claimed by the authors. In addition, a figure showing the density of m7GpppG should be included as well.  

      Overlay of CBC and CBC-mALYREF2 models is now presented in Figure 2-figure supplement 3D. Comparing CBC and CBC-mALYREF2, NCBP1 and NCBP2 have a RMSD of 0.32 Å and 0.30 Å, respectively. The density maps near the M7G cap analog are shown in Figure 2-figure supplement 3C for CBC and Figure 2-figure supplement 5C for CBC-mALYREF2. 

      (2) Authors obtained the two maps from one dataset, so "we first determined" and "we next determined" (page 6) should be replaced with something like "One class of 3D cryo-EM map revealed' and "Another class of 3D cryo-EM map defined". 

      We have revised the text as suggested by the reviewer.  

      (3) In 'Abstract', 'a mRNA export factor' should be 'an mRNA export factor'. 

      Corrected in the revised manuscript.

      (4) In 'Abstract', the final sentence 'Comparison of CBC- ALYREF to other CBC and ALYREF containing cellular complexes provides insights into the coordinated events during mRNA transcription, splicing, and export' doesn't read smoothly, I would suggest revising it to 'Comparing CBC-ALYREF with other cellular complexes containing CBC and/or ALYREF components provides insight into the coordinated events during mRNA transcription, splicing, and export.' 

      We thank the reviewer for the recommendation and have revised accordingly. 

      (5) In paragraph 'CBC-ALYREF and viral hijacking of host mRNA export pathway', line 6, the sentences preceding and following the term 'However' indicate a progressive or parallel relationship, rather than a transitional one. To enhance the coherence, I would suggest replacing 'However' with 'Furthermore' or 'In addition'. 

      Corrected in the revised manuscript.

      (6) In both Figure 5 and Figure 6, the depicted models are proposed and constructed exclusively through the comparison of the CBC-partial ALYREF with other cellular complexes containing components of CBC and/or ALYREF, which need to be confirmed by more studies. To prevent potential confusion and misunderstandings, it is recommended to replace the term 'model' with 'proposed model'. 

      Corrected in the revised manuscript.

      Reviewer #3 (Recommendations for the Authors):

      Major points:

      (1) In the Results and Discussion section, the authors mentioned "Recombinant human ALYREF protein was shown to interact with the CBC in RNase-treated nuclear extracts." However, they used mouse ALYREF for cryo-EM investigations. Can the authors include an explanation for this choice during the revision?  

      In our work, we used a mixture of glutamic acid and arginine to increase the solubility of GSTALYREF. For cryo-EM studies, we use untagged ALYREF to avoid potential issues that may arise from the expression tag. However, untagged ALYREF is less soluble than GST-tagged ALYREF and is not suitable for structural studies in standard buffers. We have made further clarification on this point in this revised manuscript. 

      (2) In the paragraph on "CBC-ALYREF interfaces", the authors stated "For example, E97 forms salt bridges with K330 and K381 of NCBP1. Y135 on the α2 helix of mALYREF2 makes a hydrogen bond with K330 of NCBP1. The importance of this interface between ALYREF and NCBP1 is highlighted by a K330N mutation found in human uterine corpus endometrial carcinoma." I fail to see a strong connection between their structural observations and previous findings regarding the role of a K330N mutation found in human uterine corpus endometrial carcinoma. The authors should add more words to thread these two parts.  

      In response to the reviewer’s comment, we now move the discussion of these CBC mutants to the newly added “Conclusion and perspectives” section. 

      (3) The authors should include side chains of the residues in their figure of Local resolution estimation and FSC curves, especially when they are presenting the binding interface between two components. 

      We have now included density maps that are overlayed with structural models showing side chains of critical residues. These maps include the NCBP1-mALYREF2 interfaces (Figure 3-figure supplement 1A and 1B), NCBP2-mALYREF2 interface (Figure 3-figure supplement 1C), NCBP1NCBP2 interface (Figure 2-figure supplement 3B and 5B), and the m7G cap region (Figure 2figure supplement 3C and 5C). 

      Minor points: 

      (1) Some grammatical mistakes need to be corrected. For example, it is "an mRNA" instead of "a mRNA".  

      Corrected in the revised manuscript.

      (2) The authors can provide more information for the audience to know better about ALYREF when it first appears in the 5th line in the Abstract section. For example, "It promotes mRNA export through direct interaction with ALYREF, a key mRNA export factor, ...". 

      We have revised the sentence based on the reviewer’s comment.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      Some of the data is problematic and does not always support the authors' conclusions:

      (1) Fig. 1K and H are identical.

      Thank you for pointing out this problem in manuscript. We apologize for this unintentional mistake and have replaced Fig. 1K.

      (2) The graph in Figure 2B contradicts the text. It is not obvious how the image was quantified to produce the histological score graph..

      We thank the reviewer for pointing out this problem in manuscript, as the reviewer suggested, we have replaced the Figure 2B.

      (3) In Figures 2C and D, there is no clear pattern of changes in pro-inflammatory or anti-inflammatory cytokines, despite the authors' claims in the text.

      We appreciate the comment, we think the reason is that the level of cytokines in the tissue is low, so the pattern of changes is not obvious.

      (4) It is unclear why the anti-dsDNA antibody does not stain the nucleus in Figure 4B. The staining with anti-dsDNA and DAPI does not match well. Figure 5H shows there is still lots of cytosolic DNA in OGT-/- HCF-1-C, measured by DAPI. These data do not support the authors' conclusion that HCFC600 eliminates cytosolic DNA accumulation (line 229). There is no support for the authors' claim that HCF-1 restrains the cGAS-STING pathway (line 330).

      We thank these insightful comments, the most critical step in staining cytosolic DNA is to proceed to a low-permeabilization as to allow the antibody to cross the cellular membrane but not the nuclear membrane, that’s why the anti-dsDNA antibody does not stain the nucleus. In Figure 5H, we think we used a high concentrated DAPI to do the staining and nucleus DNA get stained, looks like it’s the cytosolic DNA. 

      (5) In Figure 5B, there is no increase in HCF-1 cleavage after OGT over-expression.

      We appreciate the reviewer for his/her comment, we think the reason is that we used the cell line to stably overexpress OGT-GFP and we may have missed the time point when the increase in HCF-1 cleavage occurred, so there is no big increase of it. However, there is a significant increase in Figure 5C.

      (6) In Figure 7, the TNF-a staining does not inspire confidence.

      We thank the reviewer for his/her comment, from both Figure 7K (MC38 tumor model) and Figure 7N (LLC tumor model), we observed a significant increase in TNF-α+ CD8+ T cells in the group treated with the combination of OSMI-1 and anti-PD-L1 compared to the control group, as evidenced by the clear clustering.

      The writing needs significant improvement:

      (1) There are multiple English grammar mistakes throughout the paper. It is recommended that the authors run the manuscript through an editing service.

      We thank the reviewer for his/her suggestion. We apologize for the poor language of our manuscript. We worked on the manuscript for a long time and the repeated addition and removal of sentences and sections obviously led to poor readability. We have now worked on both language and readability and have also involved native English speakers for language corrections. We really hope that the flow and language level have been substantially improved.

      (2) Some passages are misleading -- lines 161-162, line 217, lines 241-242, 263-264, 299-300. They need to be changed substantially.

      We apologize for these mistakes, we have changed them.

      (3) Figure legends should be rewritten. Currently, they are too abbreviated to be understood.

      We apologize for that, we have rewritten them.

      (4) Discussion should also be thoroughly reworked. Currently, it is merely restating the authors' findings. The authors should put their findings in the broader context of the field.

      We apologize for that. For a better understanding of our study, we have reworked the discussion.

      Reviewer #2 (Recommendations For The Authors):

      (1) Previous studies (DOI: 10.1093/nar/gkw663, 10.1016/j.jgg.2015.07.002, 10.1016/j.dnarep.2022.103394) have suggested that OGT deficiency triggers DNA damage, connecting it to DNA repair and maintenance through various mechanisms. This should be acknowledged in the manuscript. Conversely, the role of HCF1 and its cleaved products in maintaining genomic integrity hasn't been previously shown. The authors investigate HCF1's role solely in the context of OGT inhibition. It is unclear whether this is also true under other stimuli that trigger DNA damage, whether fragments of HCF1 specifically reduce DNA damage, or if HSF1 is involved in the basal machinery that would be defective only in the absence of OGT.

      We have acknowledged the manuscript mentioned above. In this paper we focused on the OGT function, which is related to HCF1. The role of HCF1 and its cleaved products in maintaining genomic integrity is an interesting topic, we may focus on it in next project.

      (2) In villin-CRE-deficient mice, the authors observe generic inflammation in the intestine unrelated to tumor development. It's unclear if this also occurs in the presence of OGT inhibitors in mice, whether these inhibitors induce a systemic inflammatory (Type I interferon) response, or if certain tissues like the intestine or proliferating tumor cells are more susceptible to such a response.

      We thank the comment, yes, investigating whether OGT inhibitors induce an inflammatory response, either systemically or tissue-specifically, is a very interesting project to focus on. However, in our current paper, we use a genetic method to identify the role of OGT deficiency in intestine inflammation-induced tumor development. This approach provides convincing evidence for our hypothesis. We may test the effect of OGT inhibitors on inflammation and tumor development in our next project.

      (3) Another critical observation is the magnitude of the interferon response triggered by DNA damage in the OGT-deficient models. While it's known that DNA damage can activate cGAS-STING, the response's extent in the absence of OGT prompts the question of whether additional OGT-specific features could explain this phenomenon. For example, Lamin A, essential for nuclear envelope integrity and shown to be O-glycosylated (DOI: 10.3390/cells7050044), and other components of the nuclear envelope or its repair might be affected by OGT. The impact of OGT inhibition on nuclear envelope integrity compared to other DNA-damaging agents could be explored.

      We appreciate the comment, in this project, we find an OGT binding protein, HCF1, though LC–MS/MS assay, it’s a top one candidate in binding profiles, so we focus on it. Like Lamin A and other components of the nuclear envelope still are good targets to check, we may explore these in our next project.

      (4) The authors also demonstrate a correlation between OGT expression in tumors compared to healthy tissues. However, the reason is unclear, raising questions about whether this is a consequence of proliferation or metabolic deregulation in the cancer. The authors should address this aspect.

      We appreciate the reviewer’s insightful point. It is very good questions and very interesting research. However, in this paper we focused on how OGT influence its downstream molecules to promote tumor, we didn’t check why OGT is increased in tumors, it is not the scope of this current work, we would love to investigate it in the future.

      Minor points

      Please add the legend to Figures S2, S3 and S5.

      We thank the comment, we have added the legend to Figures S2, S3 and S5.

      The sentence line 137 should be clarified as OGT deficiency seems more related to increased inflammation in this model.

      We thank the comment, we have corrected the sentence line 137.

      Line 732 has a ( typo before the number 34.

      We thank the comment, we have corrected the sentence line 732.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      In this important study, the authors manually assessed randomly selected images published in eLife between 2012 and 2020 to determine whether they were accessible for readers with deuteranopia, the most common form of color vision deficiency. They then developed an automated tool designed to classify figures and images as either "friendly" or "unfriendly" for people with deuteranopia. While such a tool could be used by publishers, editors or researchers to monitor accessibility in the research literature, the evidence supporting the tools' utility was incomplete. The tool would benefit from training on an expanded dataset that includes different image and figure types from many journals, and using more rigorous approaches when training the tool and assessing performance. The authors also provide code that readers can download and run to test their own images. This may be of most use for testing the tool, as there are already several free, user-friendly recoloring programs that allow users to see how images would look to a person with different forms of color vision deficiency. Automated classifications are of most use for assessing many images, when the user does not have the time or resources to assess each image individually.

      Thank you for this assessment. We have responded to the comments and suggestions in detail below. One minor correction to the above statement: the randomly selected images published in eLife were from articles published between 2012 and 2022 (not 2020).

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors of this study developed a software application, which aims to identify images as either "friendly" or "unfriendly" for readers with deuteranopia, the most common color-vision deficiency. Using previously published algorithms that recolor images to approximate how they would appear to a deuteranope (someone with deuteranopia), authors first manually assessed a set of images from biology-oriented research articles published in eLife between 2012 and 2022. The researchers identified 636 out of 4964 images as difficult to interpret ("unfriendly") for deuteranopes. They claim that there was a decrease in "unfriendly" images over time and that articles from cell-oriented research fields were most likely to contain "unfriendly" images. The researchers used the manually classified images to develop, train, and validate an automated screening tool. They also created a user-friendly web application of the tool, where users can upload images and be informed about the status of each image as "friendly" or "unfriendly" for deuteranopes.

      Strengths:

      The authors have identified an important accessibility issue in the scientific literature: the use of color combinations that make figures difficult to interpret for people with color-vision deficiency. The metrics proposed and evaluated in the study are a valuable theoretical contribution. The automated screening tool they provide is well-documented, open source, and relatively easy to install and use. It has the potential to provide a useful service to the scientists who want to make their figures more accessible. The data are open and freely accessible, well documented, and a valuable resource for further research. The manuscript is well written, logically structured, and easy to follow.

      We thank the reviewer for these comments.

      Weaknesses:

      (1) The authors themselves acknowledge the limitations that arise from the way they defined what constitutes an "unfriendly" image. There is a missed chance here to have engaged deuteranopes as stakeholders earlier in the experimental design. This would have allowed [them] to determine to what extent spatial separation and labelling of problematic color combinations responds to their needs and whether setting the bar at a simulated severity of 80% is inclusive enough. A slightly lowered barrier is still a barrier to accessibility.

      We agree with this point in principle. However, different people experience deuteranopia in different ways, so it would require a large effort to characterize these differences and provide empirical evidence about many individuals' interpretations of problematic images in the "real world." In this study, we aimed to establish a starting point that would emphasize the need for greater accessibility, and we have provided tools to begin accomplishing that. We erred on the side of simulating relatively high severity (but not complete deuteranopia). Thus, our findings and tools should be relevant to some (but not all) people with deuteranopia. Furthermore, as noted in the paper, an advantage of our approach is that "by using simulations, the reviewers were capable of seeing two versions of each image: the original and a simulated version." We believe this step is important in assessing the extent to which deuteranopia could confound image interpretations. Conceivably, this could be done with deuteranopes after recoloration, but it is difficult to know whether deuteranopes would see the recolored images in the same way that non-deuteranopes see the original images. It is also true that images simulating deuteranopia may not perfectly reflect how deuteranopes see those images. It is a tradeoff either way. We have added comments along these lines to the paper.

      (2) The use of images from a single journal strongly limits the generalizability of the empirical findings as well as of the automated screening tool itself. Machine-learning algorithms are highly configurable but also notorious for their lack of transparency and for being easily biased by the training data set. A quick and unsystematic test of the web application shows that the classifier works well for electron microscopy images but fails at recognizing red-green scatter plots and even the classical diagnostic images for color-vision deficiency (Ishihara test images) as "unfriendly". A future iteration of the tool should be trained on a wider variety of images from different journals.

      Thank you for these comments. We have reviewed an additional 2,000 images, which were randomly selected from PubMed Central. We used our original model to make predictions for those images. The corresponding results are now included in the paper.

      We agree that many of the images identified as being "unfriendly" are microscope images, which often use red and green dyes. However, many other image types were identified as unfriendly, including heat maps, line charts, maps, three-dimensional structural representations of proteins, photographs, network diagrams, etc. We have uploaded these figures to our Open Science Framework repository so it's easier for readers to review these examples. We have added a comment along these lines to the paper.

      The reviewer mentioned uploading red/green scatter plots and Ishihara test images to our Web application and that it reported they were friendly. Firstly, it depends on the scatter plot. Even though some such plots include green and red, the image's scientific meaning may be clear. Secondly, although the Ishihara images were created as informal tests for humans, these images (and ones similar to them) are not in eLife journal articles (to our knowledge) and thus are not included in our training set. Thus, it is unsurprising that our machine-learning models would not classify such images correctly as unfriendly.

      (3) Focusing the statistical analyses on individual images rather than articles (e.g. in figures 1 and 2) leads to pseudoreplication. Multiple images from the same article should not be treated as statistically independent measures, because they are produced by the same authors. A simple alternative is to instead use articles as the unit of analysis and score an article as "unfriendly" when it contains at least one "unfriendly" image. In addition, collapsing the counts of "unfriendly" images to proportions loses important information about the sample size. For example, the current analysis presented in Fig. 1 gives undue weight to the three images from 2012, two of which came from the same article. If we perform a logistic regression on articles coded as "friendly" and "unfriendly" (rather than the reported linear regression on the proportion of "unfriendly" images), there is still evidence for a decrease in the frequency of "unfriendly" eLife articles over time.

      Thank you for taking the time to provide these careful insights. We have adjusted these statistical analyses to focus on articles rather than individual images. For Figure 1, we treat an article as "Definitely problematic" if any image in the article was categorized as "Definitely problematic." Additionally, we no longer collapse the counts to proportions, and we use logistic regression to summarize the trend over time. The overall conclusions remain the same.

      Another issue concerns the large number of articles (>40%) that are classified as belonging to two subdisciplines, which further compounds the image pseudoreplication. Two alternatives are to either group articles with two subdisciplines into a "multidisciplinary" group or recode them to include both disciplines in the category name.

      Thank you for this insight. We have modified Figure 2 so that it puts all articles that have been assigned two subdisciplines into a "Multidisciplinary" category. The overall conclusions remain the same.

      (4) The low frequency of "unfriendly" images in the data (under 15%) calls for a different performance measure than the AUROC used by the authors. In such imbalanced classification cases the recommended performance measure is precision-recall area under the curve (PR AUC: https://doi.org/10.1371%2Fjournal.pone.0118432) that gives more weight to the classification of the rare class ("unfriendly" images).

      We now calculate the area under the precision-recall curve and provide these numbers (and figures) alongside the AUROC values (and figures). We agree that these numbers are informative; both metrics lead to the same overall conclusions.

      Reviewer #2 (Public Review):

      Summary:

      An analysis of images in the biology literature that are problematic for people with a color-vision deficiency (CVD) is presented, along with a machine learning-based model to identify such images and a web application that uses the model to flag problematic images. Their analysis reveals that about 13% of the images could be problematic for people with CVD and that the frequency of such images decreased over time. Their model yields 0.89 AUC score. It is proposed that their approach could help making biology literature accessible to diverse audiences.

      Strengths:

      The manuscript focuses on an important yet mostly overlooked problem, and makes contributions both in expanding our understanding of the extent of the problem and in developing solutions to mitigate the problem. The paper is generally well-written and clearly organized. Their CVD simulation combines five different metrics. The dataset has been assessed by two researchers and is likely to be of high-quality. Machine learning algorithm used (convolutional neural network, CNN) is an appropriate choice for the problem. The evaluation of various hyperparameters for the CNN model is extensive.

      We thank the reviewer for these comments.

      Weaknesses:

      The focus seems to be on one type of CVD (deuteranopia) and it is unclear whether this would generalize to other types.

      We agree that it would be interesting to perform similar analyses for protanopia and other color-vision deficiencies. But we leave that work for future studies.

      The dataset consists of images from eLife articles. While this is a reasonable starting point, whether this can generalize to other biology/biomedical articles is not assessed.

      This is an important point. We have reviewed an additional 2,000 images, which were randomly selected from PubMed Central, and used our original model to make predictions for those images. The corresponding results are now included in the paper.

      "Probably problematic" and "probably okay" classes are excluded from the analysis and classification, and the effect of this exclusion is not discussed.

      We now address this in the Discussion section.

      Machine learning aspects can be explained better, in a more standard way.

      Thank you. We address this comment in our responses to your comments below.

      The evaluation metrics used for validating the machine learning models seem lacking (e.g., precision, recall, F1 are not reported).

      We now provide these metrics (in a supplementary file).

      The web application is not discussed in any depth.

      The paper includes a paragraph about how the Web application works and which technologies we used to create it. We are unsure which additional aspects should be addressed.

      Reviewer #3 (Public Review):

      Summary:

      This work focuses on accessibility of scientific images for individuals with color vision deficiencies, particularly deuteranopia. The research involved an analysis of images from eLife published in 2012-2022. The authors manually reviewed nearly 5,000 images, comparing them with simulated versions representing the perspective of individuals with deuteranopia, and also evaluated several methods to automatically detect such images including training a machine-learning algorithm to do so, which performed the best. The authors found that nearly 13% of the images could be challenging for people with deuteranopia to interpret. There was a trend toward a decrease in problematic images over time, which is encouraging.

      Strengths:

      The manuscript is well organized and written. It addresses inclusivity and accessibility in scientific communication, and reinforces that there is a problem and that in part technological solutions have potential to assist with this problem.

      The number of manually assessed images for evaluation and training an algorithm is, to my knowledge, much larger than any existing survey. This is a valuable open source dataset beyond the work herein.

      The sequential steps used to classify articles follow best practices for evaluation and training sets.

      We thank the reviewer for these comments.

      Weaknesses:

      I do not see any major issues with the methods. The authors were transparent with the limitations (the need to rely on simulations instead of what deuteranopes see), only capturing a subset of issues related to color vision deficiency, and the focus on one journal that may not be representative of images in other journals and disciplines.

      We thank the reviewer for these comments. Regarding the last point, we have reviewed an additional 2,000 images, which were randomly selected from PubMed Central, and used our original model to make predictions for those images. The corresponding results are now included in the paper.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      N/A

      Thank you.

      Reviewer #2 (Recommendations For The Authors):

      - The web application link can be provided in the Abstract for more visibility.

      We have added the URL to the Abstract.

      - They focus on deuteranopia in this paper. It seems that protanopia is not considered. Why? What are the challenges in considered this type of CVD?

      We agree that it would be interesting to perform similar analyses for protanopia and other color-vision deficiencies. But we leave that work for future studies. Deuteranopia is the most common color-vision deficiency, so we focused on the needs of these individuals as a starting point.

      - The dataset is limited to eLife articles. More discussion of this limitation is needed. Couldn't one also include some papers from PMC open access dataset for comparison?

      We have reviewed an additional 2,000 images, which we randomly selected from PubMed Central, and used our original model to make predictions for those images. The corresponding results are now included in the paper.

      - An analysis of the effect of selecting a severity value of 0.8 can be included.

      We agree that this would be interesting, but we leave it for future work.

      - "Probably problematic" and "probably okay" classes are excluded from analysis, which may oversimplify the findings and bias the models. It would have been interesting to study these classes as well.

      We agree that this would be interesting, but we leave it for future work. However, we have added a comment to the Discussion on this point.

      - Some machine learning aspects are discussed in a non-standard way. Class weighting or transfer learning would not typically be considered hyperparameters."corpus" is not a model. Description of how fine-tuning was performed could be clearer.

      We have updated this wording to use more appropriate terminology to describe these different "configurations." Additionally, we expanded and clarified our description of fine tuning.

      - Reporting performance on the training set is not very meaningful. Although I understand this is cross-validated, it is unclear what is gained by reporting two results. Maybe there should be more discussion of the difference.

      We used cross validation to compare different machine-learning models and configurations. Providing performance metrics helps to illustrate how we arrived at the final configurations that we used. We have updated the manuscript to clarify this point.

      - True positives, false positives, etc. are described as evaluation metrics. Typically, one would think of these as numbers that are used to calculate evaluation metrics, like precision (PPV), recall (sensitivity), etc. Furthermore, they say they measure precision, recall, precision-recall curves, but I don't see these reported in the manuscript. They should be (especially precision, recall, F1).

      We have clarified this wording in the manuscript.

      - There are many figures in the supplementary material, but not much interpretation/insights provided. What should we learn from these figures?

      We have revised the captions and now provide more explanations about these figures in the manuscript.

      - CVD simulations are mentioned (line 312). It is unclear whether these methods could be used for this work and if so, why they were not used. How do the simulations in this work compare to other simulations?

      This part of the manuscript refers to recolorization techniques, which attempt to make images more friendly to people with color vision deficiencies. For our paper, we used a form of recolorization that simulates how a deuteranope would see a figure in its original form. Therefore, unless we misunderstand the reviewer's question, these two types of simulation have distinct purposes and thus are not comparable.

      - relu -> ReLU

      We have corrected this.

      Reviewer #3 (Recommendations For The Authors):

      The title can be more specific to denote that the survey was done in eLife papers in the years 2012-2022. Similarly, this should be clear in the abstract instead of only "images published in biology-oriented research articles".

      Thank you for this suggestion. Because we have expanded this work to include images from PubMed Central papers, we believe the title is acceptable as it stands. We updated the abstract to say, "images published in biology- and medicine-oriented research articles"

      Two mentions of existing work that I did not see are to Jambor and colleagues' assessment on color accessibility in several fields: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8041175/, and whether this work overlaps with the 'JetFighter' tool

      (https://elifesciences.org/labs/c2292989/jetfighter-towards-figure-accuracy-and-accessibility).

      Thank you for bringing these to our attention. We have added a citation to Jambor, et al.

      We also mention JetFighter and describe its uses.

      Similarly, on Line 301: Significant prior work has been done to address and improve accessibility for individuals with CVD. This work can be generally categorized into three types of studies: simulation methods, recolorization methods, and estimating the frequency of accessible images.

      - One might mention education as prior work as well, which might in part be contributing to a decrease in problematic images (e.g., https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8041175/)

      We now suggest that there are four categories and include education as one of these.

      Line 361, when discussing resources to make figures suitable, the authors may consider citing this paper about an R package for single-cell data: https://elifesciences.org/articles/82128

      Thank you. We now cite this paper.

      The web application is a good demonstration of how this can be applied, and all code is open so others can apply the CNN in their own uses cases. Still, by itself, it is tedious to upload individual image files to screen them. Future work can implement this into a workflow more typical to researchers, but I understand that this will take additional resources beyond the scope of this project. The demonstration that these algorithms can be run with minimal resources in the browser with tensorflow.js is novel.

      Thank you.

      General:

      It is encouraging that 'definitely problematic' images have been decreasing over time in eLife. Might this have to do with eLife policies? I could not quickly find if eLife has checks in place for this, but given that JetFighter was developed in association with eLife, I wonder if there is an enhanced awareness of this issue here vs. other journals.

      This is possible. We are not aware of a way to test this formally.

    1. Reviewer #1 (Public Review):

      Summary:

      A nice study trying to identify the relationship between E. coli O157 from cattle and humans in Alberta, Canada.

      Strengths:

      (1) The combined human and animal sampling is a great foundation for this kind of study.

      (2) Phylogenetic analyses seem to have been carried out in a high-quality fashion.

      Weaknesses:

      I think there may be a problem with the selection of the isolates for the primary analysis. This is what I'm thinking:

      (1) Transmission analyses are strongly influenced by the sampling frame.

      (2) While the authors have randomly selected from their isolate collections, which is fine, the collections themselves are not random.

      (3) The animal isolates are likely to represent a broad swathe of diversity, because of the structured sampling of animal reservoirs undertaken (as I understand it).

      (4) The human isolates are all from clinical cases. Clinical cases of the disease are likely to be closely related to other clinical cases, because of outbreaks (either detected, or undetected), and the high ascertainment rate for serious infections.

      (5) Therefore, taking an equivalent number of animal and clinical isolates, will underestimate the total diversity in the clinical isolates because the sampling of the clinical isolates is less "independent" (in the statistical sense) than sampling from the animal isolates.

      (6) This could lead to over-estimating of transmission from cattle to humans.

      (7) "We hypothesize that the large proportion of disease associated with local transmission systems is a principal cause of Alberta's high E. coli O157:H7 incidence" - this seems a bit tautological. There is a lot of O157 because there's a lot of transmission. What part of the fact it is local means that it is a principal cause of high incidence? It seems that they've observed a high rate of local transmission, but the reasons for this are not apparent, and hence the cause of Alberta's incidence is not apparent. Would a better conclusion not be that "X% of STEC in Alberta is the result of transmission of local variants"? And then, this poses a question for future epi studies of what the transmission pathway is.

    2. Author response:

      Reviewer #1 (Public Review):

      Summary:

      A nice study trying to identify the relationship between E. coli O157 from cattle and humans in Alberta, Canada.

      Strengths:

      (1) The combined human and animal sampling is a great foundation for this kind of study.

      (2) Phylogenetic analyses seem to have been carried out in a high-quality fashion.

      Weaknesses:

      I think there may be a problem with the selection of the isolates for the primary analysis. This is what I'm thinking:

      (1) Transmission analyses are strongly influenced by the sampling frame.

      (2) While the authors have randomly selected from their isolate collections, which is fine, the collections themselves are not random.

      (3) The animal isolates are likely to represent a broad swathe of diversity, because of the structured sampling of animal reservoirs undertaken (as I understand it).

      (4) The human isolates are all from clinical cases. Clinical cases of the disease are likely to be closely related to other clinical cases, because of outbreaks (either detected, or undetected), and the high ascertainment rate for serious infections.

      (5) Therefore, taking an equivalent number of animal and clinical isolates, will underestimate the total diversity in the clinical isolates because the sampling of the clinical isolates is less "independent" (in the statistical sense) than sampling from the animal isolates.

      (6) This could lead to over-estimating of transmission from cattle to humans.

      We appreciate the reviewer’s careful thoughts about our sampling strategy. We agree with points (1) and (2), and we will provide additional details on the animal collections as requested.

      We agree with point (3) in theory but not in fact. As shown in Figure 3a, the cattle isolates were very closely related, despite the temporal and geographic breadth of sampling within Alberta. The median SNP distance between cattle sequences was 45 (IQR 36-56), compared to 54 (IQR 43-229) SNPs between human sequences from cases in Alberta during the same years. Additionally, as shown in Figure 2, only clade A and B isolates – clades that diverge substantially from the rest of the tree – were dominated by human cases in Alberta. We will better highlight this evidence in the revision.

      We agree with the reviewer in point (4) that outbreaks can be an important confounder of phylogenetic inference. This is why we down-sampled outbreaks (based on genetic relatedness, not external designation) in our extended analyses (lines 192-194). We did not do this in the primary analysis, because there were no large clusters of identical isolates. Figure 3b shows a limited number of small clusters; however, clustered cattle isolates outnumbered clustered human isolates, suggesting that any bias would be in the opposite direction the reviewer suggests. Regarding severe cases being oversampled among the clinical isolates, this is absolutely true and a limitation of all studies utilizing public health reporting data. We will make this limitation to generalizability clearer in the discussion. However, as noted above, clinical isolates were more variable than cattle isolates, so it does not appear to have heavily biased the analysis.

      We disagree with the reviewer on point (5). While the bias toward severe cases could make the human isolates less independent, the relative sampling proportions are likely to induce greater distance between clinical isolates than cattle isolates, which is exactly what we observe (see response to point (3) above). Cattle are E. coli O157:H7’s primary reservoir, and humans are incidental hosts not able to sustain infection chains long-term. Not only is the bacteria prevalent among cattle, cattle are also highly prevalent in Alberta. Thus, even with 89 sampling points, we are still capturing a small proportion of the E. coli O157:H7 in the province. Being able to sample only a small proportion of cattle’s E. coli O157:H7 increases the likelihood of only sampling from the center of the distribution, making extreme cases such as that shown at the very bottom of the tree in Figure 3b, rare and important. In comparison, sampling from human cases constitutes a higher proportion of human infections relative to cattle, and is therefore more representative of the underlying distribution, including extremes. We will add this point to the limitations. As with the clustering above, if anything, this outcome would have biased the study away from identifying cattle as the primary reservoir. Additionally, the relatively small proportion of cattle sampled makes our finding that 15.7% of clinical isolates were within 5 SNPs of a cattle isolate, the distance most commonly used to indicate transmission for E. coli O157:H7, all the more remarkable.

      Because of the aforementioned points, we disagree with the reviewer’s conclusion in point (6). We believe transmission from cattle-to-humans is likely underestimated for the reasons given above. Not only do all prior studies indicate ruminants as the primary reservoirs of E. coli O157:H7, and humans as only incidental hosts, our specific data do not support the reviewer’s individual contentions. That said, we will conduct a sensitivity analysis as recommended to determine the impact of sampling and inclusion of the small clusters on our primary findings.

      (7) We hypothesize that the large proportion of disease associated with local transmission systems is a principal cause of Alberta's high E. coli O157:H7 incidence" - this seems a bit tautological. There is a lot of O157 because there's a lot of transmission. What part of the fact it is local means that it is a principal cause of high incidence? It seems that they've observed a high rate of local transmission, but the reasons for this are not apparent, and hence the cause of Alberta's incidence is not apparent. Would a better conclusion not be that "X% of STEC in Alberta is the result of transmission of local variants"? And then, this poses a question for future epi studies of what the transmission pathway is.

      The reviewer is correct, and the suggestion for the direction of future studies was our intent with this statement. We will revise it.

      Reviewer #2 (Public Review):

      This study identified multiple locally evolving lineages transmitted between cattle and humans persistently associated with E. coli O157:H7 illnesses for up to 13 years. Furthermore, this study mentions a dramatic shift in the local persistent lineages toward strains with the more virulent stx2a-only profile. The authors hypothesized that this phenomenon is the large proportion of disease associated with local transmission systems is a principal cause of Alberta's high E. coli O157:H7 incidence. These opinions more effectively explain the role of the cattle reservoir in the dynamics of E. coli O157:H7 human infections.

      (1) The authors acknowledge the possibility of intermediate hosts or environmental reservoirs playing a role in transmission. Further discussion on the potential roles of other animal species commonly found in Alberta (e.g., sheep, goats, swine) could enhance the understanding of the transmission dynamics. Were isolates from these species available for analysis? If not, the authors should clearly state this limitation.

      We will expand the discussion of other species in Alberta, as suggested, including other livestock, wildlife, and the potential role of birds and flies. Unfortunately, we did not have sequences available from other species, and we will add this to the limitations. Sequences from other species may be available from sequences collected by others, which as we note in the limitations do not have sufficient metadata to assign them to Alberta vs. the rest of Canada. While we have requested this data, we have been unsuccessful in obtaining it. We will continue to pursue it.

      (2) The focus on E. coli O157:H7 is understandable given its prominence in Alberta and the availability of historical data. However, a brief discussion on the potential applicability of the findings to non-O157 STEC serogroups, and the limitations therein, would be beneficial. Are there reasons to believe the transmission dynamics would be similar or different for other serogroups?

      We appreciate this comment and will expand our discussion of relevance to non-O157 STEC. Other authors have proposed that transmission dynamics differ, and studies of STEC risk factors, including our own, support this. However, there has been very little direct study of non-O157 transmission dynamics and there is even less cross-species genomic and metadata available for non-O157 isolates of concern.

      (3) The authors briefly mention the need for elucidating local transmission systems to inform management strategies. A more detailed discussion on specific public health interventions that could be targeted at the identified LPLs and their potential reservoirs would strengthen the paper's impact.

      We agree with the reviewer that this would be a good addition to the manuscript. The public health implications for control are several and extend to non-STEC reportable zoonotic enteric infections, such as Campylobacter and Salmonella. We will add a discussion of these.

      (4) Understanding the relationship between specific risk factors and E. coli O157:H7 infections is essential for developing effective prevention strategies. Have case-control or cohort studies been conducted to assess the correlation between identified risk factors and the incidence of E. coli O157:H7 infections? What methodologies were employed to control for potential confounders in these studies?

      Yes, there have been several case-control studies of reported cases. Many of these are referenced in the discussion in terms of the contribution of different sources to infection. However, we will add a more explicit discussion of risk factors.

      (5) The study's findings are noteworthy, particularly in the context of E. coli O157:H7 epidemiology. However, the extent to which these results can be replicated across different temporal and geographical settings remains an open question. It would be constructive for the authors to provide additional data that demonstrate the replication of their sampling and sequencing experiments under varied conditions. This would address concerns regarding the specificity of the observed patterns to the initial study's parameters.

      We appreciate the reviewer’s comment, as we are currently building on this analysis with an American dataset with different types of data available than were used in this study. We will add a discussion of this. We will also be adding a sensitivity analysis to the manuscript simulating a different sampling approach, which should also be informative to this question.

    1. Reviewer #2 (Public Review):

      Summary:

      The goal is to ask if common species when studied across their range tend to have larger ranges in total. To do this the authors examined a very large citizen science database which gives estimates of numbers, and correlated that with the total range size, available from Birdlife. The average correlation is positive but close to zero, and the distribution around zero is also narrow, leading to the conclusion that, even if applicable in some cases, there is no evidence for consistent trends in one or other direction.

      Strengths:

      The study raises a dormant question, with a large dataset.

      Weaknesses:

      This study combines information from across the whole world, with many different habitats, taxa, and observations, which surely leads to a quite heterogeneous collection.

      First, scale. Many of the earlier analyses were within smaller areas, and for example, ranges are not obviously bounded by a physical barrier. I assume this study is only looking at breeding ranges; that should be stated, as 40% of all bird species migrate, and winter limitation of populations is important. Also are abundances only breeding abundances or are they measured through the year? Are alien distributions removed?

      Second, consider various reasons why abundance and range size may be correlated (sometimes positively and sometimes negatively) at large scales. Combining studies across such a large diversity of ecological situations seems to create many possibilities to miss interesting patterns. For example:

      (1) Islands are small and often show density release.

      (2) North temperate regions have large ranges (Rapoport's rule) and higher population sizes than the tropics.

      (3) Body size correlates with global range size (I am unsure if this has recently been tested but is present in older papers) and with density. For example, cosmopolitan species (barn owl, osprey, peregrine) are relatively large and relatively rare.

      (4) In the consideration of alien species, it certainly looks to me as if the law is followed, with pigeon, starling, and sparrow both common and widely distributed. I guess one needs to make some sort of statement about anthropogenic influences, given the dramatic changes in both populations and environments over the past 50 years.

      (5) Wing shape correlates with ecological niche and range size (e.g. White, American Naturalist). Aerial foraging species with pointed wings are likely to be easily detected, and several have large ranges reflecting dispersal (e.g. barn swallow).

      Third, biases. I am not conversant with ebird methodology, but the number appearing on checklists seems a very poor estimate of local abundance. As noted in the paper, common species may be underestimated in their abundance. Flocking species must generate large numbers, skulking species few. The survey is often likely to be in areas favorable to some species and not others. The alternative approach in the paper comes from an earlier study, based on ebird but then creating densities within grids and surely comes with similar issues.<br /> Biases are present in range as well. Notably, tropical mountain-occupying species have range sizes over-estimated because holes in the range are not generally accounted for (Ocampo-Peñuela et al Nature communications). These species are often quite rare too.

      Fourth, random error. Random error in ebird assessments is likely to be large, with differences among observers, seasons, days, and weather (e.g. Callaghan et al. 2021, PNAS). Range sizes also come with many errors, which is why occupancy is usually seen as the more appropriate measure.

      If we consider both range and abundance measurements to be subject to random error in any one species list, then the removal of all these errors will surely increase the correlation for that list (the covariance shouldn't change but the variances will decrease). I think (but am not sure) that this will affect the mean correlation because more of the positive correlations appear 'real' given the overall mean is positive. It will definitely affect the variance of the correlations; the low variance is one of the main points in the paper. A high variance would point to the operation of multiple mechanisms, some perhaps producing negative correlations (Blackburn et al. 2006).

      On P.80 it is stated: "Specifically, we can quantify how AOR will change in relation to increases in species richness and sampling duration, both of which are predicted to reduce the magnitude of AORs" I haven't checked the references that make this statement, but intuitively the opposite is expected? More species and longer durations should both increase the accuracy of the estimate, so removing them introduces more error? Perhaps dividing by an uncertain estimate introduces more error anyway. At any rate, the authors should explain the quoted statement in this paper.

      It would be of considerable interest to look at the extreme negative and extreme positive correlations: do they make any biological sense?

      Discussion:

      I can see how publication bias can affect meta-analyses (addressed in the Gaston et al. 2006 paper) but less easily see how confirmation bias can. It seems to me that some of the points made above must explain the difference between this study and Blackburn et al. 2006's strong result.

      Certainly, AOR really does seem to be present in at least some cases (e.g. British breeding birds) and a discussion of individual cases would be valuable. Previous studies have also noted that there are at least some negative and some non-significant associations, and understanding the underlying causes is of great interest (e.g. Kotiaho et al. Biology Letters).

    1. Textbook authors also never invite students to critique their own work. Again, our Mississippi textbook shows this can be done. For example, we noted that only four of our twenty-five mini-biographies were of women. “Has the book therefore been guilty of discrimination against women?” we then asked. Such a question implies that students can think for themselves, which then helps them learn to do so. When students are not asked to assess, but only to remember, they do not learn how to assess or how to think for themselves.

      It is not easy to crtitque your own work in a way such as these authors did. However, by stating in their book that "only four of our twenty-five mini-biographies were of women," shows that it is okay to admit your faults. Nobody is perfect and it is foolish to illustrate yourself as such. Another benefit of this particular group making these statements is that it draws the student to look closer at these types of things. To ask questions, such as, "Out of these authors, how many are women? How many are of a different race?" While these questions may cause some backlash for "discrimination", they are valid questions for this instance. As long as you are not using gender or race in a hateful way, it is okay to observe these things. It is common sense that people of different genders and races might have different opinions, life styles, experiences, and so much more.

    1. Late work may be accepted with a request for extension which was submitted up to 48 hours before the due date.

      This is good to know that we are able to receive extensions. I know with papers I tend to reach a writers block, or sometimes need extra time to re-read my paper and make sure it is up to my standards. I think that this is very beneficial to the student, and you as a professor. I think with having that policy allows writers to be more comfortable with turning in their work that is completed, it also doesn't waste your time either, by reading/grading a paper that could've used a little more work.

    2. In this course I need you to be brave. You will read things that may make you uncomfortable. You will discuss difficult topics. This will stretch the boundaries of what you may think you are capable of to new levels.

      I am looking forward to writing about topics that are more uncomfortable. I feel like, as students, we focus a lot on writing reports and more analytical projects. I hope that this class allows us to have a more vulnerable perspective on writing.

    1. Author response:

      The following is the authors’ response to the current reviews.

      The concerns raised during the review have been incorporated into the discussion of the results, and the need for further research is acknowledged in the paper. This is not possible in the present study, as the clinical project has been completed and further patients cannot be enrolled without starting a new project. We are confident that the results are scientifically valid and that the methodology was scientifically sound and up to date. They were obtained on a dataset that was obviously large enough to allow 20% of it to be set aside and a machine-learned classifier to be trained on the remaining 80%, which then assigned samples to neuropathy with an accuracy better than guessing.

      Furthermore, our results are at least tentatively replicated in a completely independent data set from another patient cohort. The strengths and limitations of the study design, in particular the latter, are discussed in the necessary depth. In summary, the machine-learned results provided major hits on one side and probably unimportant lipids on the other side of the variable importance scale. Both could be verified in vitro. We are therefore confident that we have contributed to the advancement of knowledge about cancer therapy-associated neuropathy and look forward to further developments in this area.


      The following is the authors’ response to the original reviews.

      Weaknesses Reviewer 1: 

      There are a number of weaknesses in the study. The small sample size is a significant limitation of the study. Out of 31 patients, only 17 patients were reported to develop neuropathy, with significant neuropathy (grade 2/3) in only 5 patients. The authors acknowledge this limitation in the results and discussion sections of the manuscript, but it limits the interpretation of the results. Also acknowledged is the limited method used to assess neuropathy. 

      We agree with the reviewer that the cohort size and assessment of neuropathy are limitations of our study as we already described in the corresponding section of the manuscript. However, occurrence and grade of the neuropathy are in line with results reported from previous studies. From these studies, the expected occurrence of neuropathy with our therapeutic regimen is around 50-70% (54.9% in our cohort), and most patients (80-90%) are expected to experience Grade 1 neuropathy after 12 weeks (13). In these studies, neuropathy is assessed by using questionnaires or by grading via NCTCTCAE as in our study. In summary, assessment and occurrence of neuropathy of our reported cohort are in line with previous reports.

      Potentially due to this small number of patients with neuropathy, the machine learning algorithms could not distinguish between samples with and without neuropathy. Only selected univariate analyses identified differences in lipid profiles potentially related to neuropathy.  

      The data analysis consistently followed a "mixture of experts" approach, as this seems to be the most successful way to deal with omics data. We have elaborated on this in the Methods section, including several supporting references. Regarding the quoted sentence from the results section, after rereading it, we realized that it was somewhat awkwardly worded. What we mean is now better worded in the results section, namely “Although the three algorithms detected neuropathy in new cases, unseen during training, at balanced accuracy of up to 0.75, while only the guess level of 0.5 was achieved when using permuted data for training, the 95% CI of the performance measures was not separated from guess level”. Therefore, multivariate feature selection was not considered a valid approach, since it requires that the algorithms from which the feature importance is read can successfully perform their task of class assignment (4). Therefore, univariate methods (Cohen's d, FPR, FWE) were preferred, as well as a direct hypothesis transfer of the top hits from the abovementioned day1/2 assessments to neuropathy. Classical statistics consisting of direct group comparisons using Kruskal-Wallis tests (5) were performed.” 

      It was our approach to investigate the data set in an unbiased manner by different machine learning algorithms and select those lipids that the majority of the algorithms considered important for distinguishing the patient groups (majority voting). This way, the inconsistencies and limitations of a single evaluation method, such as regression analysis, that occur in some datasets, can be mitigated. 

      Three sphingolipid mediators including SA1P differed between patients with and without neuropathy at the end of treatment. These sphingolipids were elevated at the end of treatment in the cohort with neuropathy, relative to those without neuropathy. However, across all samples from pre to post-paclitaxel treatment, there was a significant reduction in SA1P levels. It is unclear from the data presented what the underlying mechanism for this result would be. 

      We agree with the reviewer that our study does not identify the mechanism by which paclitaxel treatment alters sphingolipid concentrations in the plasma of patients. It has been reported before that paclitaxel may increase expression and activity of serine palmitoyltransferase (SPT) which is the crucial enzyme and rate-limiting step in the denovo synthesis of sphingolipids. This may be associated with a shift towards increased synthesis of 1-deoxysphingolipids and a decrease of “classical” sphingolipids (6) and may explain the general reduction of SA1P and other sphingolipid levels after paclitaxel treatment in our study. 

      It is also conceivable that paclitaxel reduces the release of sphingolipids into the plasma. Paclitaxel is a microtubule stabilizing agent (7) that may interfere with intracellular transport processes and release of paracrine mediators. 

      The mechanistic details of paclitaxel involvement in sphingolipid metabolism or transport are highly interesting but identifying them is beyond the scope of our manuscript.

      If elevated SA1P is associated with neuropathy development, it would be expected to increase in those who develop neuropathy from pre to post-treatment time points. 

      There is a general trend of reduced plasma SA1P concentrations following paclitaxel treatment. Nevertheless, patients experiencing neuropathy exhibit significantly elevated SA1P levels post-treatment. 

      It has been shown before that paclitaxel-induced neuropathic pain requires activation of the S1P1 receptor in a preclinical study (8). Moreover, a meta-analysis of genome-wide association studies (GWAS) from two clinical cohorts identified multiple regulatory elements and increased activity of S1PR1 associated with paclitaxel-induced neuropathy (9). These data imply that enhanced S1P receptor activity and signaling are key drivers of paclitaxel-induced neuropathy. It seems that both, increased levels of the sphingolipid ligands in combination with enhanced expression and activity of S1P receptors can potentiate paclitaxel-induced neuropathy in patients. This explains why also decreased SA1P concentrations after paclitaxel treatment can still enhance neuropathy via the S1PRTRPV1 axis in sensory neurons.

      We added this paragraph to the discussions section of our manuscript.

      Primary sensory neuron cultures were used to examine the effects of SA1P application.

      SA1P application produced calcium transients in a small proportion of sensory neurons. It is not clear how this experimental model assists in validating the role of SA1P in neuropathy development as there is no assessment of sensory neuron damage or other hallmarks of peripheral neuropathy. These results demonstrate that some sensory neurons respond to SA1P and that this activity is linked to TRPV1 receptors. However, further studies will be required to determine if this is mechanistically related to neuropathy.

      As we detected elevated levels of SA1P in the plasma of PIPN patients, we can assume higher concentrations in the vicinity of sensory neurons. These neurons are the main drivers for neuropathy and neuropathic pain and are strongly affected by paclitaxel in their activity (10-15). Also, TRPV1 shows altered activity patterns in response to paclitaxel treatment (16). Because of its relevance for nociception and pathological pain, TRPV1 activity is a suitable and representative readout for pathological pain states in peripheral sensory neurons (17, 18), which is why we investigated them.

      We would like to point out the potency of SA1P to increase capsaicin-induced calciumtransients in sensory neurons at submicromolar concentrations. 

      We also agree with the reviewer that further studies need to investigate the underlying mechanisms in more detail. We added this sentence to the final paragraph in the discussion section of our manuscript.

      Weaknesses Reviewer 2: 

      The article is poorly written, hindering a clear understanding of core results. While the study's goals are apparent, the interpretation of sphingolipids, particularly SA1P, as key mediators of paclitaxel-induced neuropathy lacks robust evidence. 

      We agree that the relevance of SA1P as key mediator of paclitaxel-induced neuropathy might be overstated and changed the wording throughout the manuscript accordingly. However, we would like to point out the potency of this lipid to increase capsaicin-induced calcium-transients in sensory neurons at submicromolar concentrations. 

      Also, the lipid signature in the plasma of PIPN patients shows a unique pattern and sphingolipids are the group that showed the strongest alterations when comparing the patient groups. We also measured eicosanoids, such as prostaglandins, linoleic acid metabolites, endocannabinoids and other lipid groups that have previously been associated with influences on pain perception or nociceptor sensitization. However, none of these lipids showed significant differences in their concentrations in patient plasma. This is why we consider sphingolipids as contributors to or markers of paclitaxel-induced neuropathy in patients.

      We also revised the entire article to improve its clarity.

      The introduction fails to establish the significance of general neuropathy or peripheral neuropathy in anticancer drug-treated patients, and crucial details, such as the percentage of patients developing general neuropathy or peripheral neuropathy, are omitted. This omission is particularly relevant given that only around 50% of patients developed neuropathy in this study, primarily of mild Grade 1 severity with negligible symptoms, contradicting the study's assertion of CIPN as a significant side effect. 

      As we already described in the introduction, CIPN is a serious dose- and therapy-limiting side effect, which affects up to 80% of treated patients. This depends on dose and combination of chemotherapeutic agents. For paclitaxel, therapeutic doses range from 80 – 225 mg/m². As CIPN symptoms are dose-dependent, the number of PIPN patients that receive a high paclitaxel dose is higher than the number of PIPN patient receiving a low dose.

      In our study, we mainly used a low dose paclitaxel, because this therapeutic regimen is the most widely used paclitaxel monotherapy. From previous studies, the expected occurrence of neuropathy with this therapeutic regimen is around 50-70%, and most patients (8090%) are expected to experience Grade 1 neuropathy after 12 weeks (1-3).

      Our results are within the range reported by these studies (54.9% patients with neuropathy). Also, as we highlight in Table S1, the neuropathy symptoms persist in most cases for several years after chemotherapy, affecting quality of life of these patients which makes it far from being a negligible symptom.

      We added some more information concerning PIPN in the introduction section in which we emphasize the clinical problem.

      The lack of clarity in distinguishing results obtained by lipidomics using machine learning methods and conventional methods adds to the confusion. The poorly written results section fails to specify SA1P's downregulation or upregulation, and the process of narrowing down to sphingolipids and SA1P is inadequately explained. 

      We have tried to keep the machine learning part in the main manuscript short and moved major parts of it to a supplement. However, as this has been claimed to have led to a lack of clarity, we have expanded the description of the data analysis and added extensive explanations and supporting references for the mixed expert approach that was used throughout the analysis. We hope this is now clear.

      Integrating a significant portion of the discussion section into the results section could enhance clarity. An explanation of the utility of machine learning in classifying patient groups over conventional methods and the citation of original research articles, rather than relying on review articles, may also add clarity to the usefulness of the study. 

      As suggested by the reviewer, we moved the relevant parts from the discussion to the results section in the revised version of our manuscript.

      Reviewer #1 (Recommendations For The Authors): 

      Figure 2 should be better explained or removed. In its current form, it does not add to the interpretation of the manuscript.  

      As mentioned above, we have expanded the description of the ESOM/U-matrix method in the Methods section and rewritten the figure legend. In addition, we have annotated the U-matrix in the figure. The method has been reported extensively in the computer science and biomedical literature, and a more detailed description in the referenced papers would go beyond the current focus on lipidomics. However, we believe that this discussion is sufficiently detailed for the readers of this report: "… a second unsupervised approach was used to verify the agreement between the lipidomics data structure and the prior classification, implemented as self-organizing maps (SOM) of artificial neurons (19). In the special form of an “emergent” SOM (ESOM (20)), the present map consisted of 4,000 neurons arranged on a two-dimensional toroidal grid with 50 rows and 80 columns (21, 22). ESOM was used because it has been repeatedly shown to correctly detect subgroup structures in biomedical data sets comparable to the present one (20, 22, 23). The core principle of SOM learning is to adjust the weights of neurons based on their proximity to input data points. In this process, the best matching unit (BMU) is identified as the neuron closest to a given data point. The adaptation of the weights is determined by a learning rate (η) and a neighborhood function (h), both of which gradually decrease during the learning process. Finally, the groups are projected onto separate regions of the map. On top of the trained ESOM, the distance structure in the high-dimensional feature space was visualized in the form of a so-called U-matrix (24) which is the canonical tool for displaying the distance structures of input data on ESOM (21). 

      The visual presentation facilitates data group separation by displaying the distances between BMUs in high-dimensional space in a color-coding that uses a geographical map analogy, where large "heights" represent large distances in feature space, while low "valleys" represent data subsets that are similar. "Mountain ranges" with "snow-covered" heights visually separate the clusters in the data. Further details about ESOM can be found in (24)."

      The second patient cohort is only included in the discussion - with cohort details in the supplementary material and figures included in the main text. Perhaps these data should be removed entirely. The findings are described as trends and not statistically significant and multiple issues with this second cohort are mentioned in the discussion. 

      We agree with the reviewer that including the second patient cohort in the discussion is inadequate. Of course, there are differences between the patient cohorts that do not allow direct comparison and that are highlighted in the section on limitations of the study. However, we still think it is interesting and relevant to show these data, because we used our algorithms trained on the first patient cohort to analyze the second cohort. And these data support the main results. 

      We therefore moved the entire paragraph to the results section of to improve coherence of our manuscript. The passage was introduced with the subheading:  “Support of the main results in an independent second patient cohort”.

      The title does not reflect the content of the paper and should be changed to better reflect the content and its significance. 

      We change the title to “Machine learning and biological validation identify sphingolipids as potential mediators of paclitaxel-induced neuropathy in cancer patients” to avoid overstating the results as suggested by the Reviewer.

      Further, the discussion should be modified to avoid overstating the results. 

      As the reviewer suggests, we changed the wording to avoid overstating the results. 

      Reviewer #2 (Recommendations For The Authors): 

      Please address the absence of clear neuropathy in the majority of patients after treatment with paclitaxel in your discussion. 

      As stated above, occurrence and grade of the neuropathy are in line with the results from previous studies. From these studies, the expected occurrence of neuropathy with our therapeutic regimen is around 50-70%, (the variability is due to differences in the assessment methods) and most patients (80-90%) are expected to experience Grade 1 neuropathy after 12 weeks (1-3). 

      We added this information in the discussion section of the revised manuscript.

      Line 65: Kindly replace review articles with original research articles for proper citation. 

      We replaced the review articles with original publications, focusing on clinical observations. We added the following publications: Jensen et al., Front Neurosci 2020; Chen et al., Neurobiol Aging 2018; Igarashi et al., J Alzheimers Dis. 2011; Kim et al., Oncotarget 2017 as references 17-20 in the revised version of our manuscript.

      Line 260: The mention of SA1P is introduced here without prior reference (do not use words like "again", or "see above", if it is not previously mentioned). Adjust the text for coherence.

      We agree with the reviewer that the introduction of SA1P in this passage in incoherent. We replaced the sentence in line 260 with: 

      The small set of lipid mediators emerging from all three methods as informative for neuropathy included the sphingolipid sphinganine-1-phosphate (SA1P), also known as dihydrosphingosine-1-phosphate (DH-S1P)…”

      Lines 301-315: Consider relocating several lines from this section to the results section for improved clarity. 

      We moved the lines 309-312 explaining the algorithm selection and their validation success in the corresponding results section (Lipid mediators informative for assigning postpaclitaxel therapy samples to neuropathy).

      Lines 382-396: Move this content to the results section to enhance the organization and coherence of the manuscript. 

      We moved the entire paragraph to the results section of our manuscript to improve coherence. The passage was introduced with the subheading:  “Support of the main results in an independent second patient cohort”.

      References

      (1) Barginear M, Dueck AC, Allred JB, Bunnell C, Cohen HJ, Freedman RA, et al. Age and the Risk of Paclitaxel-Induced Neuropathy in Women with Early-Stage Breast Cancer (Alliance A151411): Results from 1,881 Patients from Cancer and Leukemia Group B (CALGB) 40101. Oncologist. 2019;24(5):617-23.

      (2) Mauri D, Kamposioras K, Tsali L, Bristianou M, Valachis A, Karathanasi I, et al. Overall survival benefit for weekly vs. three-weekly taxanes regimens in advanced breast cancer: A metaanalysis. Cancer Treat Rev. 2010;36(1):69-74.

      (3) Budd GT, Barlow WE, Moore HC, Hobday TJ, Stewart JA, Isaacs C, et al. SWOG S0221: a phase III trial comparing chemotherapy schedules in high-risk early-stage breast cancer. J Clin Oncol. 2015;33(1):58-64.

      (4) Lötsch J, and Ultsch A. Pitfalls of Using Multinomial Regression Analysis to Identify ClassStructure-Relevant Variables in Biomedical Data Sets: Why a Mixture of Experts (MOE) Approach Is Better. BioMedInformatics. 2023;3(4):869-84.

      (5) Kruskal WH, and Wallis WA. Use of Ranks in One-Criterion Variance Analysis. J Am Stat Assoc. 1952;47(260):583-621.

      (6) Kramer R, Bielawski J, Kistner-Griffin E, Othman A, Alecu I, Ernst D, et al. Neurotoxic 1deoxysphingolipids and paclitaxel-induced peripheral neuropathy. FASEB J. 2015;29(11):4461-72.

      (7) Field JJ, Diaz JF, and Miller JH. The binding sites of microtubule-stabilizing agents. Chem Biol. 2013;20(3):301-15.

      (8) Janes K, Little JW, Li C, Bryant L, Chen C, Chen Z, et al. The development and maintenance of paclitaxel-induced neuropathic pain require activation of the sphingosine 1-phosphate receptor subtype 1. J Biol Chem. 2014;289(30):21082-97.

      (9) Chua KC, Xiong C, Ho C, Mushiroda T, Jiang C, Mulkey F, et al. Genomewide Meta-Analysis Validates a Role for S1PR1 in Microtubule Targeting Agent-Induced Sensory Peripheral Neuropathy. Clin Pharmacol Ther. 2020;108(3):625-34.

      (10) Kawakami K, Chiba T, Katagiri N, Saduka M, Abe K, Utsunomiya I, et al. Paclitaxel increases high voltage-dependent calcium channel current in dorsal root ganglion neurons of the rat. J Pharmacol Sci. 2012;120(3):187-95.

      (11) Pittman SK, Gracias NG, Vasko MR, and Fehrenbacher JC. Paclitaxel alters the evoked release of calcitonin gene-related peptide from rat sensory neurons in culture. Exp Neurol. 2013.

      (12) Luo H, Liu HZ, Zhang WW, Matsuda M, Lv N, Chen G, et al. Interleukin-17 Regulates NeuronGlial Communications, Synaptic Transmission, and Neuropathic Pain after Chemotherapy.

      Cell reports. 2019;29(8):2384-97 e5.

      (13) Pease-Raissi SE, Pazyra-Murphy MF, Li Y, Wachter F, Fukuda Y, Fenstermacher SJ, et al. Paclitaxel Reduces Axonal Bclw to Initiate IP3R1-Dependent Axon Degeneration. Neuron. 2017;96(2):373-86 e6.

      (14) Duggett NA, Griffiths LA, and Flatters SJL. Paclitaxel-induced painful neuropathy is associated with changes in mitochondrial bioenergetics, glycolysis, and an energy deficit in dorsal root ganglia neurons. Pain. 2017.

      (15) Li Y, Adamek P, Zhang H, Tatsui CE, Rhines LD, Mrozkova P, et al. The Cancer Chemotherapeutic Paclitaxel Increases Human and Rodent Sensory Neuron Responses to TRPV1 by Activation of TLR4. J Neurosci. 2015;35(39):13487-500.

      (16) Hara T, Chiba T, Abe K, Makabe A, Ikeno S, Kawakami K, et al. Effect of paclitaxel on transient receptor potential vanilloid 1 in rat dorsal root ganglion. Pain. 2013;154(6):882-9.

      (17) Jardin I, Lopez JJ, Diez R, Sanchez-Collado J, Cantonero C, Albarran L, et al. TRPs in Pain Sensation. Front Physiol. 2017;8:392.

      (18) Julius D. TRP Channels and Pain. Annual review of cell and developmental biology.

      2013;29:355-84.

      (19) Kohonen T. Self-Organized Formation of Topologically Correct Feature Maps. Biol Cybern. 1982;43(1):59-69.

      (20) Lötsch J, Lerch F, Djaldetti R, Tegder I, and Ultsch A. Identification of disease-distinct complex biomarker patterns by means of unsupervised machine-learning using an interactive R toolbox (Umatrix). Big Data Analytics. 2018;3(1):5.

      (21) Ultsch A. 2003.

      (22) Lotsch J, Geisslinger G, Heinemann S, Lerch F, Oertel BG, and Ultsch A. Quantitative sensory testing response patterns to capsaicin- and ultraviolet-B-induced local skin hypersensitization in healthy subjects: a machine-learned analysis. Pain. 2018;159(1):11-24.

      (23) Lötsch J, Thrun M, Lerch F, Brunkhorst R, Schiffmann S, Thomas D, et al. Machine-Learned Data Structures of Lipid Marker Serum Concentrations in Multiple Sclerosis Patients Differ from Those in Healthy Subjects. Int J Mol Sci. 2017;18(6).

      (24) Lötsch J, and Ultsch A. Cham: Springer International Publishing; 2014:249-57.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Wu et al. introduce a novel approach to reactivate the Muller glia cell cycle in the mouse retina by simultaneously reducing p27Kip1 and increasing cyclin D1 using a single AAV vector. The approach effectively promotes Muller glia proliferation and reprograming without disrupting retinal structure or function. Interestingly, reactivation of the Muller glia cell cycle downregulates IFN pathway, which may contribute to the induced retinal regeneration. The results presented in this manuscript may offer a promising approach for developing Müller glia cell-mediated regenerative therapies for retinal diseases.

      Strengths:

      The data are convincing and supported by appropriate, validated methodology. These results are both technically and scientifically exciting and are likely to appeal to retinal specialists and neuroscientists in general.

      Weaknesses:

      There are some data gaps that need to be addressed.

      (1) Please label the time points of AAV injection, EdU labeling, and harvest in Figure 1B.

      We thank the reviewer for highlighting the lack of clarity in our experimental design. We will label all experiment timelines in the figures where appropriate in the revised version.

      (2) What fraction of Müller cells were transduced by AAV under the experimental conditions?

      We apologize for not clearly conveying the transduction efficiency. The retinal region adjacent to the injection site, typically near the central retina, exhibits a transduction efficiency of nearly 100%. In contrast, the peripheral retina shows a lower transduction efficiency compared to the central region. We will include the quantification of AAV transduction efficiency in the revised manuscript.

      The quantification of Edu+ MG or other markers was conducted in the area with the highest efficiency. 

      (3) It seems unusually rapid for MG proliferation to begin as early as the third day after CCA injection. Can the authors provide evidence for cyclin D1 overexpression and p27 Kip1 knockdown three days after CCA injection?

      In our pilot study, we tested the onset time of GFP expression from AAV-GFAP-GFP following intravitreal injection. We observed GFP expression in MG as early as two days post-infection. These findings will be included in the revised manuscript. Additionally, we plan to perform qPCR or Western blot analysis to confirm cyclin D1 overexpression and p27kip1 knockdown at the onset of Müller glia proliferation, which will also be included in the revised manuscript.

      (4) The authors reported that MG proliferation largely ceased two weeks after CCA treatment. While this is an interesting finding, the explanation that it might be due to the dilution of AAV episomal genome copies in the dividing cells seems far-fetched.

      We believe that the lack of durability in high Cyclin D1 and low p27kip1 levels in MG contributes to the cessation of their proliferation. A potential reason for the loss of high Cyclin D1 overexpression and p27kip1 knockdown during MG proliferation could be the dilution of the AAV episomal genome. However, testing this hypothesis is challenging. Instead, we plan to provide direct evidence in the revised manuscript by examining the levels of Cyclin D1 and p27kip1 in the retina treated with CCA before and after the peak of MG proliferation.

      Reviewer #2 (Public Review):

      This manuscript by Wu, Liao et al. reports that simultaneous knockdown of P27Kip1 with overexpression of Cyclin D can stimulate Muller glia to re-enter the cell cycle in the mouse retina. There is intense interest in reprogramming mammalian muller glia into a source for neurogenic progenitors, in the hopes that these cells could be a source for neuronal replacement in neurodegenerative diseases. Previous work in the field has shown ways in which mouse Muller glia can be neurogenically reprogrammed and these studies have shown cell cycle re-entry prior to neurogenesis. In other works, typically, the extent of glial proliferation is limited, and the authors of this study highlight the importance of stimulating large numbers of Muller glia to re-enter the cell cycle with the hopes they will differentiate into neurons. While the evidence for stimulating proliferation in this study is convincing, the evidence for neurogenesis in this study is not convincing or robust, suggesting that stimulating cell cycle-reentry may not be associated with increasing regeneration without another proneural stimulus.

      Below are concerns and suggestions.

      Intro:

      (1) The authors cite past studies showing "direct conversion" of MG into neurons. However, these studies (PMID: 34686336; 36417510) show EdU+ MG-derived neurons suggesting cell cycle re-entry does occur in these strategies of proneural TF overexpression.

      We thank the reviewer for pointing this out. We will revise the statement to "MG neurogenesis," which encompasses both direct conversion and Müller glia proliferation followed by neuronal differentiation.

      (2) Multiple citations are incorrectly listed, using the authors first name only (i.e. Yumi, et al; Levi, et al;). Studies are also incompletely referenced in the references.

      We apologize for the mistake with the reference. We will fix these mistakes in the revised version.

      Figure 1:

      (3) When are these experiments ending? On Figure 1B it says "analysis" on the end of the paradigm without an actual day associated with this. This is the case for many later figures too. The authors should update the paradigms to accurately reflect experimental end points.

      We thank the reviewer for highlighting the lack of clarity in our experimental design. We will label all experiment timelines in the figures where appropriate in the revised version.

      (4) Are there better representative pictures between P27kd and CyclinD OE, the EdU+ counts say there is a 3 fold increase between Figure 1D&E, however the pictures do not reflect this. In fact, most of the Edu+ cells in Figure 1E don't seem to be Sox9+ MG but rather horizontally oriented nuclei in the OPL that are likely microglia.

      Thanks to the reviewer for pointing this out. We will replace the image of Cyclin D1 which a better representative image.

      (5) Is the infection efficacy of these viruses different between different combinations (i.e. CyclinD OE vs. P27kd vs. control vs. CCA combo)? As the counts are shown in Figure 1G only Sox9+/Edu+ cells are shown not divided by virus efficacy. If these are absolute counts blind to where the virus is and how many cells the virus hits, if the virus efficacy varies in efficiency this could drive absolute differences that aren't actually biological.

      Because the AAV-GFAP-Cyclin D1 and AAV-GFAP-Cyclin D1-p27kip1 shRNA viruses do not carry a fluorescent reporter gene, we cannot easily measure viral efficacy in the same experiment. We believe that variations in viral efficacy cannot account for the significant differences in MG proliferation for two reasons: 1) We injected the same titer for all three viruses, and 2) Viral infection efficacy is very high, approaching 100% in the central retina. Nonetheless, to rule out the possibility that the differences in MG proliferation among the Cyclin D overexpression, p27kip1 knockdown, and CCA groups are due to variations in viral efficacy, we will include the p27kip1 knockdown and Cyclin D1 overexpression efficiencies for all four groups using qPCR and/or Western blot analysis in the revised manuscript.

      (6) According to the Jax laboratories, mice aren't considered aged until they are over 18months old. While it is interesting that CCA treatment does not seem to lose efficacy over maturation I would rephrase the findings as the experiment does not test this virus in aged retinas.

      Thank you to the reviewer for bringing this to our attention. We will void using “aged mice” in our revised manuscript.

      (7) Supplemental Figure 2c-d. These viruses do not hit 100% of MG, however 100% of the P27Kip staining is gone in the P27sh1 treatment, even the P27+ cell in the GCL that is likely an astrocyte has no staining in the shRNA 1 picture. Why is this?

      For Supplementary Figure 2c-d, we focused on the central area where knockdown efficiency was high, approaching 100%. We will replace this image with one that includes both high and low Müller glia transduction efficiency regions, clearly demonstrating the complete loss of p27kip1 staining in the area of high transduction efficiency.

      Figure 2

      (8) Would you expect cells to go through two rounds of cell cycle in such a short time? The treatment of giving Edu then BrdU 24 hours later would have to catch a cell going through two rounds of division in a very short amount of time. Again the end point should be added graphically to this figure.

      We thank the reviewer for raising this important point. While the typical cell cycle time for human cells is approximately 24 hours, we hypothesized that 24 hours would be the most likely timepoint to capture cells continuously progressing through the cell cycle. However, we acknowledge that we cannot exclude the possibility of some cells entering a second cell cycle at much later timepoints.

      In the revised manuscript, we will carefully qualify our conclusion to state that the majority of MG do not immediately undergo another cell division, rather than making a definitive statement. This more cautious phrasing will better reflect the limitations of the 24-hour timepoint and allow for the potential of a small subset of cells proceeding through additional rounds of division at later stages.

      Figure 3

      (9) I am confused by the mixing of ratios of viruses to indicate infection success. I know mixtures of viruses containing CCA or control GFP or a control LacZ was injected. Was the idea to probe for GFP or LacZ in the single cell data to see which cells were infected but not treated? This is not shown anywhere?

      The virus infection was not uniform across the entire retina. To mark the infection hotspots, we added 10% GFP virus to the mixture. Regions of the retina with low infection efficiency were removed by dissection and excluded from the scRNA-seq analysis. We apologize for not clearly explaining this methodological detail in the original text, and will update the Methods section accordingly.

      (10) The majority of glia sorted from TdTomato are probably not infected with virus. Can you subset cells that were infected only for analysis? Otherwise it makes it very hard to make population judgements like Figure 3E-H if a large portion are basically WT glia.

      This question is related to the last one. Since the regions with high virus infection efficiency were selectively dissected and isolated for analysis, the percentage of CCA-infected MG should constitute the majority in the scRNA-seq data.

      (11) Figure 3C you can see Rho is expressed everywhere which is common in studies like this because the ambient RNA is so high. This makes it very hard to talk about "Rod-like" MG as this is probably an artifact from the technique. Most all scRNA-seq studies from MG-reprogramming have shown clusters of "rods" with MG hybrid gene expression and these had in the past just been considered an artifact.

      We agree that the low levels of Rho in other MG clusters (such as quiescent, reactivated, and proliferating MG) are likely due to RNA contamination. However, the level of Rho in the rod-like MG is significantly higher than in the other clusters, indicating that this is unlikely to be solely due to contamination.

      As shown in Supplementary Figure 7A-C, a cluster of MG-rod hybrid cells (cluster C4) was present in all three experimental groups at similar ratios, and this hybrid cluster was excluded from further analysis. In contrast, the rod-like Müller glia (cluster C3) were predominantly found in the CCA and CCANT groups, suggesting a genuine response to CCA treatment.

      Furthermore, we will conduct Rho and Gnat1 RNA in situ hybridization on the dissociated retinal cells to further support the conclusion that rod-specific genes are upregulated in a subset of MG in the revised manuscript.

      (12) It is mentioned the "glial" signature is downregulated in response to CCA treatment. Where is this shown convincingly? Figure H has a feature plot of Glul , which is not clear it is changed between treatments. Otherwise MG genes are shown as a function of cluster not treatment.

      We will add box plots of several MG-specific genes to better illustrate the downregulation of the glial signature in the relevant cell cluster in the revised manuscript.

      Figure 4

      (13) The authors should be commended for being very careful in their interpretations. They employ the proper controls (Er-Cre lineage tracing/EdU-pulse chasing/scRNA-seq omics) and were very careful to attempt to see MG-derived rods. This makes the conclusion from the FISH perplexing. The few puncta dots of Rho and GNAT in MG are not convincing to this reviewer, Rho and GNAT dots are dense everywhere throughout the ONL and if you drew any random circle in the ONL it would be full of dots. The rigor of these counts also comes into question because some dots are picked up in MG in the INL even in the control case. This is confusing because baseline healthy MG do not express RNA-transcripts of these Rod genes so what is this picking up? Taken together, the conclusion that there are Rod-like MG are based off scRNA-seq data (which is likely ambient contamination) and these FISH images. I don't think this data warrants the conclusion that MG upregulate Rod genes in response to CCA.

      We performed RNA in situ hybridization on retinal sections because we aimed to correlate cell localization with rod gene expression. We understand the reviewer’s concern that the punctate signals of Rho and GNAT1 in the ONL MG may actually originate from neighboring rods. In the revised manuscript, we will conduct RNAscope on dissociated retinal cells to avoid this issue.

      Figure 5

      (14) Similar point to above but this Glul probe seems odd, why is it throughout the ONL but completely dark through the IPL, this should also be in astrocytes can you see it in the GCL? These retinas look cropped at the INL where below is completely black. The whole retinal section should be shown. Antibodies exist to GS that work in mouse along with many other MG genes, IHC or western blots could be done to better serve this point.

      Indeed, the GCL was cropped out in Figure 5 A-B. We have other images with all retinal layers, which we will use in the revised manuscript. Additionally, we will perform the GS antibody staining to demonstrate partial MG dedifferentiation following CCA treatment.

      Figure 6

      (15) Figure 6D is not a co-labeled OTX2+/ TdTomato+ cell, Otx2 will fill out the whole nucleus as can be seen with examples from other MG-reprogramming papers in the field (Hoang, et al. 2020; Todd, et al. 2020; Palazzo, et al. 2022). You can clearly see in the example in Figure 6D the nucleus extending way beyond Otx2 expression as it is probably overlapping in space. Other examples should be shown, however, considering less than 1% of cells were putatively Otx2+, the safer interpretation is that these cells are not differentiating into neurons. At least 99.5% are not.

      We have additional examples of Otx2+ Tdt+ Edu+ cells, which suggest that MG neurogenesis to Otx2+ cells does occur, despite the low efficiency. We will include these images in the revised manuscript.

      (16) Same as above Figure 6I is not convincingly co-labeled HuC/D is an RNA-binding protein and unfortunately is not always the clearest stain but this looks like background haze in the INL overlapping. Other amacrine markers could be tested, but again due to the very low numbers, I think no neurogenesis is occurring.

      We have additional examples of HuC/D+ Tdt+ Edu+ cells, which we will show in the revised manuscript.

      (17) In the text the authors are accidently referring to Figure 6 as Figure 7.

      We thank the reviewer for pointing out the mistake. We will correct the mistake in the revised manuscript.

      Figure 7

      (18) I like this figure and the concept that you can have additional MG proliferating without destroying the retina or compromising vision. This is reminiscent of the chick MG reprogramming studies in which MG proliferate in large numbers and often do not differentiate into neurons yet still persist de-laminated for long time points.

      General:

      (19) The title should be changed, as I don't believe there is any convincing evidence of regeneration of neurons. Understanding the barriers to MG cell-cycle re-entry are important and I believe the authors did a good job in that respect, however it is an oversell to report regeneration of neurons from this data.

      We thank the reviewer for the suggestion. We will consider changing the title in the revised manuscript.

      (20) This paper uses multiple mouse lines and it is often confusing when the text and figures switch between models. I think it would be helpful to readers if the mouse strain was added to graphical paradigms in each figure when a different mouse line is employed.

      We will label the mouse lines used in each experiment in the figures where appropriate.

    1. Reviewer #1 (Public Review):

      Summary:

      In this paper the researchers aimed to address whether bees causally understand string-pulling through a series of experiments. I first briefly summarize what they did:

      - In experiment 1, the researchers trained bees without string and then presented them with flowers in the test phase that either had connected or disconnected strings, to determine what their preference was without any training. Bees did not show any preference.

      - In experiment 2, bees were trained to have experience with string and then tested on their choice between connected vs. disconnected string.

      - Experiment 3 was similar except that instead of having one option which was an attached string broken in the middle, the string was completely disconnected from the flower.

      - In experiment 4, bees were trained on green strings and tested on white strings to determine if they generalize across color.

      - In experiment 5, bees were trained on blue strings and tested on white strings.

      - In experiment 6, bees were trained where black tape covered the area between the string and the flower (i.e. so they would not be able to see/ learn whether it was connected or disconnected).

      - In experiments 2-6, bees chose the connected string in the test phase.

      - In experiment 7, bees were trained as in expt 3 and then tested where string was either disconnected or coiled i.e. still being 'functional' but appearing different.

      - In experiment 8, bees were trained as before and then tested on string that was in a different coiled orientation, either connected or disconnected.

      - In experiments 7 and 8 the bees showed no preference.

      Strengths:

      I appreciate the amount of work that has gone into these experiments and think they are a nice, thorough set of experiments. I enjoyed reading the paper and felt that it was overall well-written and clear. I think experiment 1 shows that bees do not have an untrained understanding of the function of the string in this context. The rest of the experiments indicate that with training, bees have a preference for unbroken over broken string and likely use visual cues learned during training to make this choice. They also show that as in other contexts, bees readily generalize across different colors.

      The 'weaknesses' that I previously listed were dealt with by the authors in the revised version of the manuscript. I think the only point that we disagreed on was relating to the ecological relevance of the task to the bees.

      Here is my previous comment:

      I think the paper would be made stronger by considering the natural context in which the bee performs this behavior. Bees manipulate flowers in all kinds of contexts, and scrabble with their legs to achieve nectar rewards. Rather than thinking that it is pulling a string, my guess would be that the bee learns that a particular motor pattern within their usual foraging repertoire (scrabbling with legs), leads to a reward. I don't think this makes the behavior any less interesting - in fact, I think considering the behavior through an ecological lens can help make better sense of it.

      The authors disagreed, writing the following:

      "Here we respectfully disagree. The solving of Rubik s cube by humans could be said to be version of finger movements naturally required to open nuts or remove ticks from fur, but this is somewhat beside the point: it s not the motor<br /> sequences that are of interest, but the cognition involved. A general approach in work on animal intelligence and cognition is to deliberately choose paradigms that are outside the animals daily routines this is what we have done here, in asking whether there is means end comprehension in bee problem solving. Like comparable studies on this question in other animals, the experiments are designed to probe this question, not one of ecological validity."

      I think the difference would be that humans know that they are doing a rubik's cube whereas I do not think that the bee knows that it is pulling string- I think the bee thinks that it is foraging on a flower. Therefore, I stand by my statement that I think it's worth considering what the bee is experiencing in this task and how it relates to what it would be doing while foraging. I think that as animal cognition researchers we can design tasks that are distinct from what the animal would naturally encounter to ask specific questions about what they are thinking- but that we can never remove the ecological context since the animal will always be viewing the task through that lens. However, I think this may be a philosophical difference in opinion and I am happy with the manuscript as it stands.

    2. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this paper, the researchers aimed to address whether bees causally understand string-pulling through a series of experiments. I first briefly summarize what they did:

      - In experiment 1, the researchers trained bees without string and then presented them with flowers in the test phase that either had connected or disconnected strings, to determine what their preference was without any training. Bees did not show any preference.

      - In experiment 2, bees were trained to have experience with string and then tested on their choice between connected vs. disconnected string.

      - experiment 3 was similar except that instead of having one option which was an attached string broken in the middle, the string was completely disconnected from the flower.

      - In experiment 4, bees were trained on green strings and tested on white strings to determine if they generalize across color.

      - In experiment 5, bees were trained on blue strings and tested on white strings.

      - In experiment 6, bees were trained where black tape covered the area between the string and the flower (i.e. so they would not be able to see/ learn whether it was connected or disconnected).

      - In experiments 2-6, bees chose the connected string in the test phase.

      - In experiment 7, bees were trained as in experiment 3 and then tested where the string was either disconnected or coiled i.e. still being 'functional' but appearing different.

      - In experiment 8, bees were trained as before and then tested on a string that was in a different coiled orientation, either connected or disconnected.

      - In experiments 7 and 8 the bees showed no preference.

      Strengths:

      I appreciate the amount of work that has gone into this study and think it contains a nice, thorough set of experiments. I enjoyed reading the paper and felt that overall it was well-written and clear. I think experiment 1 shows that bees do not have an untrained understanding of the function of the string in this context. The rest of the experiments indicate that with training, bees have a preference for unbroken over broken string and likely use visual cues learned during training to make this choice. They also show that as in other contexts, bees readily generalize across different colors.

      Weaknesses:

      (1) I think there are 2 key pieces of information that can be taken from the test phase - the bees' first choice and then their behavior across the whole test. I think the first choice is critical in terms of what the bee has learned from the training phase - then their behavior from this point is informed by the feedback they obtain during the test phase. I think both pieces of information are worth considering, but their behavior across the entire test phase is giving different information than their first choice, and this distinction could be made more explicit. In addition, while the bees' first choice is reported, no statistics are presented for their preferences.

      We agree with the reviewer that the first choice is critical in terms of what the bumblebees have learned from the training phase. We analyzed the bees’ first choice in Table 1, and we added the tested videos. The entire connected and disconnected strings were glued to the floor, the bees were unable to move either the connected or disconnected strings, and avoid learning behavior during the tests. We added the data of bee's each choice in the Supplementary table.

      (2) It seemed to me that the bees might not only be using visual feedback but also motor feedback. This would not explain their behavior in the first test choice, but could explain some of their subsequent behavior. For example, bees might learn during training that there is some friction/weight associated with pulling the string, but in cases where the string is separated from the flower, this would presumably feel different to the bee in terms of the physical feedback it is receiving. I'd be interested to see some of these test videos (perhaps these could be shared as supplementary material, in addition to the training videos already uploaded), to see what the bees' behavior looks like after they attempt to pull a disconnected string.

      We added supplementary videos of testing phase. As noted in General Methods, both connected and disconnected strings were glued to the floor to prevent the air flow generated by flying bumblebees’ wings from changing the position of the string during the testing phase. The bees were unable to move either the connected or disconnected strings during the tests, and only attempted to pull them. Therefore, the difference in the friction/weight of pulling the both strings cannot be a factor in the test.

      (3) I think the statistics section needs to be made clearer (more in private comments).

      We changed the statistical analysis section as suggested by the reviewer.

      (4) I think the paper would be made stronger by considering the natural context in which the bee performs this behavior. Bees manipulate flowers in all kinds of contexts and scrabble with their legs to achieve nectar rewards. Rather than thinking that it is pulling a string, my guess would be that the bee learns that a particular motor pattern within their usual foraging repertoire (scrabbling with legs), leads to a reward. I don't think this makes the behavior any less interesting - in fact, I think considering the behavior through an ecological lens can help make better sense of it.

      Here we respectfully disagree. The solving of Rubik’s cube by humans could be said to be version of finger-movements naturally required to open nuts or remove ticks from fur, but this is somewhat beside the point: it’s not the motor sequences that are of interest, but the cognition involved. A general approach in work on animal intelligence and cognition is to deliberately choose paradigms that are outside the animals’ daily routines-this is what we have done here, in asking whether there is means-end comprehension in bee problem solving. Like comparable studies on this question in other animals, the experiments are designed to probe this question, not one of ecological validity.

      Reviewer #2 (Public Review):

      Summary:

      The authors wanted to see if bumblebees could succeed in the string-pulling paradigm with broken strings. They found that bumblebees can learn to pull strings and that they have a preference to pull on intact strings vs broken ones. The authors conclude that bumblebees use image matching to complete the string-pulling task.

      Strengths:

      The study has an excellent experimental design and contributes to our understanding of what information bumblebees use to solve a string-pulling task.

      Weaknesses:

      Overall, I think the manuscript is good, but it is missing some context. Why do bumblebees rely on image matching rather than causal reasoning? Could it have something to do with their ecology? And how is the task relevant for bumblebees in the wild? Does the test translate to any real-life situations? Is pulling a natural behaviour that bees do? Does image matching have adaptive significance?

      We appreciate the valuable comment from the reviewer. Our explanation, which we have now added to the manuscript, is as follows:

      “Different flower species offer varying profitability in terms of nectar and pollen to bumblebees; they need to make careful choices and learn to use floral cues to predict rewards (Chittka, 2017). Bumblebees can easily learn visual patterns and shapes of flower (Meyer-Rochow, 2019); they can detect stimuli and discriminate between differently coloured stimuli when presented as briefly as 25 ms (Nityananda et al., 2014). In contrast, causal reasoning involves understanding and responding to causal relationships. Bumblebees might favor, or be limited to, a visual approach, likely due to the efficiency and simplicity of processing visual cues to solve the string-pulling task. ”

      As above, it worth noting that our work is not designed as an ecological study, but one about the question of whether causal reasoning can explain how bees solve a string-pulling puzzle. We have a cognitive focus, in line with comparable studies on other animals. We deliberately chose a paradigm that is to some extent outside of the daily challenges of the animal.

      Reviewer #3 (Public Review):

      Summary:

      This paper presents bees with varying levels of experience with a choice task where bees have to choose to pull either a connected or unconnected string, each attached to a yellow flower containing sugar water. Bees without experience of string pulling did not choose the connected string above chance (experiment 1), but with experience of horizontal string pulling (as in the right-hand panel of Figure 4) bees did choose the connected string above chance (experiments 2-3), even when the string colour changed between training and test (experiments 4-5). Bees that were not provided with perceptual-motor feedback (i.e they could not observe that each pull of the string moved the flower) during training still learned to string pull and then chose the connected string option above chance (experiment 6). Bees with normal experience of string pulling then failed to discriminate between connected and unconnected strings when the strings were coiled or looped, rather than presented straight (experiments 7-8).

      Weaknesses:

      The authors have only provided video of some of the conditions where the bees succeeded. In general, I think a video explaining each condition and then showing a clip of a typical performance would make it much easier to follow the study designs for scholars. Videos of the conditions bees failed at would be highly useful in order to compare different hypotheses for how the bees are solving this problem. I also think it is highly important to code the videos for switching behaviours. When solving the connected vs unconnected string tasks, when bees were observed pulling the unconnected string, did they quickly switch to the other string? Or did they continue to pull the wrong string? This would help discriminate the use of perceptual-motor feedback from other hypotheses.

      We added the test videos as suggested by the reviewer, and we added the data for each bee's choice. However, both connected and disconnected strings were glued to the floor, and therefore perceptual-motor feedback was equal and irrelevant between the choices during the test.

      The experiments are also not described well, for my below comments I have assumed that different groups of bees were tested for experiments 1-8, and that experiment 6 was run as described in line 331, where bees were given string-pulling training without perceptual feedback rather than how it is described in Figure 4B, which describes bees as receiving string pulling training with feedback.

      We now added figures of Experiment 6 and 7 in the Figure 1B, and we mentioned that different groups of bees were tested for Experiments 1-9.

      The authors suggest the bees' performance is best explained by what they term 'image matching'. However, experiment 6 does not seem to support this without assuming retroactive image matching after the problem is solved. The logic of experiment 6 is described as "This was to ensure that the bees could not see the familiar "lollipop shape" while pulling strings....If the bees prefer to pull the connected strings, this would indicate that bees memorize the arrangement of strings-connected flowers in this task." I disagree with this second sentence, removing perceptual feedback during training would prevent bees memorising the lollipop shape, because, while solving the task, they don't actually see a string connected to a yellow flower, due to the black barrier. At the end of the task, the string is now behind the bee, so unless the bee is turning around and encoding this object retrospectively as the image to match, it seems hard to imagine how the bee learns the lollipop shape.

      We agree with the reviewer that while solving the task in the last step during training, the bees don't actually see a string connected to a yellow flower, due to the black barrier. Since the full shape is only visible after the pulling is completed and this requires the bee to “check back” on the entire display after feeding, to basically conclude “ this is the shape that I need to be looking for later”.

      Another possibility is that bumblebees might remember the image of the “lollipop shape” while training the bees in the first step, in which the “lollipop shape” was directly presented to the bumblebee in the early step of the training.

      We added the experiment suggested by the reviewer, and the result showed that when a green table was placed behind the string to obscure the “lollipop shape” at any point during the training phase, the bees were unable to identify the connected string. The result further supports that bumblebees learn to choose the connected string through image matching.

      Despite this, the authors go on to describe image matching as one of their main findings. For this claim, I would suggest the authors run another experiment, identical to experiment 6 but with a black panel behind the bee, such that the string the bee pulls behind itself disappears from view. There is now no image to match at any point from the bee's perspective so it should now fail the connectivity task.

      Strengths:

      Despite these issues, this is a fascinating dataset. Experiments 1 and 2 show that the bees are not learning to discriminate between connected and unconnected stimuli rapidly in the first trials of the test. Instead, it is clear that experience in string pulling is needed to discriminate between connected and unconnected strings. What aspect of this experience is important? Experiment 6 suggests it is not image matching (when no image is provided during problem-solving, but only afterward, bees still attend to string connectivity) and casts doubt on perceptual-motor feedback (unless from the bee's perspective, they do actually get feedback that pulling the string moves the flower, video is needed here). Experiments 7 and 8 rule out means-end understanding because if the bees are capable of imagining the effect of their actions on the string and then planning out their actions (as hypotheses such as insight, means-end understanding and string connectivity suggest), they should solve these tasks. If the authors can compare the bees' performance in a more detailed way to other species, and run the experiment suggested, this will be a highly exciting paper

      We appreciate the valuable comment from the reviewer. We compared the bees' performance to other species, and conducted the experiment as suggested by the reviewer.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Smaller comments:

      Line 64: is the word 'simple' needed here? It could also be explained by more complex forms of associative learning, no?

      We deleted “simple”.

      Methods:

      Line 230: was it checked that this was high-contrast for the bees?

      We added the relevant reference in the revised manuscript.

      Line 240: how much sucrose solution was present in the flowers?

      We added 25 microliters sucrose solution in the flowers. We added the information in the revised manuscript.

      Line 266: check grammar.

      We checked the grammar as follows: “During tests, both strings were glued to the floor of the arena to prevent the air flow generated by flying bumblebees’ wings from changing the position of the string.”

      Statistical analysis:

      - What does it mean that "Bees identity and colony were analyzed with likelihood ratio tests"?

      Bees identity and colony was set as a random variable. We changed the analysis methods in the revised manuscript, and results of the all the experiments did not changed.

      - Line 359: do you mean proportion rather than percentage?

      We mean the percentage.

      - "the number of total choices as weights" - this should be explained further. This is the number of choices that each bee made? What was the variation and mean of this number? If bees varied a lot in this metric, it might make more sense to analyze their first choice (as I see you've done) and their first 10 choices or something like that - for consistency.

      This refers to the total number of choices made by each bumblebee. We added the mean and standard error of each bee’s number of choices in Table 1. Some bees pulled the string fewer than 10 times; we chose to include all choices made by each bee.

      - More generally I think the first test is more informative than the subsequent choices, since every choice after their first could be affected by feedback they are getting in that test phase. Or rather, they are telling you different things.

      All the bees were tested only once, however, you might be referring to the first choice. We used Chi-square test to analyze the bumblebees’ first choices in the test. It is worth noting that both connected and disconnected strings were glued to the floor. The bees were unable to move either the connected or disconnected strings during the tests, and only attempted to pull them. Therefore,the feedback from pulling either the connected or disconnected strings is the same.

      - Line 362: I think I know what you mean, but this should be re-phrased because the "number of" sounds more appropriate for a Poisson distribution. I think what you are testing is whether each individual bee chose the connected or the disconnected string - i.e. a 0 or 1 response for each bee?

      We agree with the reviewer that each bee chose the connected or the disconnected string - i.e. a 0 or 1 response for each bee, but not the number. We clarify this as: “The total number of the choices made by each bee was set as weights.” 

      - Line 364-365: here and elsewhere, every time you mention a model, make it clear what the dependent and independent variables are. i.e. for the mixed model, the 'bee' is the random factor? Or also the colony that the bee came from? Were these nested etc?

      We clarify this in the revised manuscript. The bee identity and colony is the random factor in the mixed model.

      - Line 368: "Latency to the first choice of each bee was recorded" - why? What were the hypotheses/ predictions here?

      The latency to the first choice was intended to see if the bumblebees were familiarizing with the testing pattern. A shorter delay time might indicate that the bumblebees were more familiar with the pattern.

      - Line 371: "Multiple comparisons among experiments were.." - do you mean 'within' experiments? It seems that treatments should not be compared between different experiments.

      We mean multiple comparisons among different experiments; we clarify this in the revised manuscript.

      Results

      Experiment 1: From the methods, it sounded like you both analyzed the bees' first choice and their total no. of choices, but in the results section (and Figure 1) I only see the data for all choices combined here.

      In table 1 and in the text you report the number of bees that chose each option on their first choice, but there are no statistical results associated with these results. At the very least, a chi square or binomial test could be run.

      Line 138: "Interestingly, ten out of fifteen bees pulled the connected string in their first choice" - this is presented like it is a significant majority of bees, but a chi-square test of 10 vs 5 has a p-value = 0.1967

      We used the Chi square test to analyzed of the bees’ first choice. We also added the analyzed data in the Table 1.

      Line 143: "It makes sense because the bees could see the "lollipop shape" once they pulled it out from the table." - this feels more like interpretation (i.e. Discussion) rather than results.

      We moved the sentence to the discussion.

      Line 162: again this feels more like interpretation/ conjecture than results.

      We removed the sentence in the results.

      Line 184: check grammar.

      We checked the grammar. We changed “task” to “tasks”.

      Figures

      I really appreciated the overview in Figure 5 - though I think this should be Figure 1? Even if the methods come later in eLife, I think it would be nice to have that cited earlier on (e.g. at the start of the results) to draw the reader's attention to it quickly, since it's so helpful. It also then makes the images at the bottom of what is currently Figure 1 make more sense. I also think that the authors could make it clearer in Figure 5 which strings are connected vs disconnected in the figure (even if it means exaggerating the distance more than it was in real life). I had to zoom in quite a bit to see which were connected vs. not. Alternatively, you could have an arrow to the string with the words "connected" "disconnected" the first time you draw it - and similar labels for the other string conditions.

      We appreciate the valuable comment from the reviewer. We changed Figure 5 to Figure 2, and Figure 4 to Figure 1. We cited the Figures at the start of the results. We also changed the gap distance between the disconnected strings. Additionally, we added arrows to indicate “connected” and “disconnected” strings in the Figure.

      Figure 1 - I think you could make it clearer that the bars refer to experiments (e.g. have an x-axis with this as a label). Also, check the grammar of the y-axis.

      We added the experiments number in the Figures. Additionally, we checked the grammar of the y-axis. We changed “percentages” to “parentage”. 

      I also think it's really helpful to see the supplementary videos but I think it would be nice to see some examples of the test phase, and not just the training examples.

      We added Supplementary videos of the testing phase.

      Reviewer #2 (Recommendations For The Authors):

      Below are also some minor comments:

      L40: "approaches".

      We changed “approach” to “approaches”.

      L42: but likely mainly due to sampling bias of mammals and birds.

      We changed the sentence as follows: String pulling is one of the most extensively used approaches in comparative psychology to evaluate the understanding of causal relationships (Jacobs & Osvath, 2015), with most research focused on mammals and birds, where a food item is visible to the animal but accessible only by pulling on a string attached to the reward (Taylor, 2010; Range et al., 2012; Jacobs & Osvath, 2015; Wakonig et al., 2021).

      L64: remove "in this study"

      We removed “in this study”.

      L64: simple associative learning of what? Isn't your image matching associative too?

      We removed “ simple”.

      L97: remove "a" before "connected".

      We removed “a” before “connected”.

      L136-138: but maybe they could still feel the weight of the flower when pulling?

      Because both strings were glued to the floor in the test phase, the feedback was the same and therefore irrelevant. This information is noted in the General Methods.

      L161: what are these numbers?

      We removed the latency in the revised manuscript.

      L167/ Table 1: I realise that the authors never tried slanted strings to check if bumblebees used proximity as a cue. Why?

      This was simply because we wanted to focus on whether bumblebees could recognize the connectivity of the string.

      Discussion: Why did you only control for colour of the string? What if you had used strings with different textures or smells? Unclear if the authors controlled for "bumblebee smell" on the strings, i.e., after a bee had used the string, was the string replaced by a new one or was the same one used multiple times?

      We used different colors to investigate featural generalization of the visual display of the string connected to the flower in this task. We controlled for color because it is a feature that bumblebees can easily distinguish.

      Both the flowers and the strings were used only once, to prevent the use of chemosensory cues. We clarify this in the revised manuscript.

      L182: since what?

      We deleted “since” in the revised manuscript.

      L182-188: might be worth mentioning that some crows and parrots known for complex cognition perform poorly on broken strings (e.g., https://doi.org/10.1098/rspb.2012.1998 ; https://doi.org/10.1163/1568539X-00003511 ; https://doi.org/10.1038/s41598-021-94879-x ) and Australian magpies use trial and error (https://doi.org/10.1007/s00265-023-03326-6).

      We added the following sentences as suggested by the reviewer: “It is worth noting that some crows and parrots known for complex cognition perform poorly on the broken string task without perceptual feedback or learning. For example, New Caledonian crows use perceptual feedback strategies to solve the broken string-pulling task, and no individual showed a significant preference for the connected string when perceptual feedback was restricted (Taylor et al., 2012). Some Australian magpies and African grey parrots can solve the broken string task, but they required a high number of trials, indicating that learning plays a crucial role in solving this task (Molina et al., 2019; Johnsson et al., 2023).”

      L193: maybe expand on this to put the task into a natural context?

      We added the following sentences as suggested by the reviewer:

      “Different flower species offer varying profitability in terms of nectar and pollen to bumblebees; they need to make careful choices and learn to use floral cues to predict rewards (Chittka, 2017). Bumblebees can easily learn visual patterns and shapes of flower (Meyer-Rochow, 2019); they can detect stimuli and discriminate between differently coloured stimuli when presented as briefly as 25 ms (Nityananda et al., 2014). In contrast, causal reasoning involves understanding and responding to causal relationships. Bumblebees might favor, or be limited to, a visual approach, likely due to the efficiency and simplicity of processing visual cues to solve the string-pulling task. ”

      L204: is causal understanding the same as means-end understanding?

      Means-end understanding is expressed as goal-directed behavior, which involves the deliberate and planned execution of a sequence of steps to achieve a goal. Includes some understanding of the causal relationship (Jacobs & Osvath, 2015; Ortiz et al., 2019). .

      L235: this is a very big span of time. Why not control for motivation? Cognitive performance can vary significantly across the day (at least in humans).

      Bumblebee motivation is understood to be rather consistent, as those that were trained and tested came to the flight arena of their own volition and were foragers looking to fill their crop load each time to return it to the colony.

      L232: what is "(w/w)" ? This occurs throughout the manuscript.

      “w/w” represents the weight-to-weight percentage of sugar.

      L250: this sentence sounds odd. "containing in the central well.." ?? Perhaps rephrase? Unclear what central well refers to? Did the flowers have multiple wells?

      We rephrased the sentence as follows: For each experiment, bumblebees were trained to retrieve a flower with an inverted Eppendorf cap at the center, containing 25 microliters of 50% sucrose solution, from underneath a transparent acrylic table

      L268: why euthanise?

      The reason for euthanizing the bees is that new foragers will typically only become active after the current ones were removed from the hive.

      L270: chemosensory cues answer my concern above. Maybe make it clear earlier.

      We moved this sentence earlier in the result.

      L273: did different individuals use different pulling strategies? Do you have the data to analyse this? This has been done on birds and would offer a nice comparison.

      We analyzed the string-pulling strategies among different individuals, and provided Supplementary Table 1 to display the performances of each individual in different string-pulling experiments.

      L365: unclear why both models. Would be nice to see a GLM output table.

      The duration of pulling different kinds of strings were first tested with the Shapiro-Wilk test to assess data normality. The duration data that conforms to a normal distribution was compared using linear mixed-effects models (LMM), while the data that deviates from normality were examined with a generalized linear-mixed model (GLMM). We added a GLM and GLMM output table in the revised manuscript.

      L377: should be a space between the "." and "This".

      We added a space between the “.” and “This”.

      L383-390: some commas and semicolons are in the wrong places.

      We carefully checked the commas and semicolons in this sentence.

      Reviewer #3 (Recommendations For The Authors):

      Minor comments

      Line 32: seems to be missing a word, suggest "the bumblebees' ability to distinguish".

      we added “the” in the revised manuscript.

      Line 47: it would be good to reference other scholars here, this is the central focus of all work in comparative psychology.

      We added the reference in the revised manuscript.

      Line 50-61: I think the string-pulling literature could be described in more detail here, with mention of perceptual-motor feedback loops as a competing hypothesis to means-end understanding (see Taylor et al 2010, 2012). It seems a stretch to suggest that "String-pulling studies have directly tested means-end comprehension in various species", when perceptual-motor feedback is a competing hypothesis that we have positive evidence for in several species.

      We mentioned the perceptual-motor feedback in the introduction as follow:

      “Multiple mechanisms can be involved in the string-pulling task, including the proximity principle, perceptual feedback and means-end understanding (Taylor et al., 2012; Wasserman et al., 2013; Jacobs & Osvath, 2015; Wang et al., 2020). The principle of proximity refers to animals preferring to pull the reward that is closest to them (Jacobs & Osvath, 2015). Taylor et al. (2012) proposed that the success of New Caledonian crows in string-pulling tasks is based on a perceptual-motor feedback loop, where the reward gradually moves closer to the animal as they pull the strings. If the visual signal of the reward approaching is restricted, crows with no prior string-pulling experience are unable to solve the broken string task (Taylor et al., 2012).

      However, when a green table was placed behind the string to obscure the “lollipop” structure during the training, the bees could not see the “lollipop” during the initial training stage or after pulling the string from under the table. In this situation, the bees were unable to identify the connected string, further proving that bumblebees chose the connected string based on image matching.

      Line 68: suggest remove 'meticulously'.

      We removed “meticulously”.

      Line 99: This is an exciting finding, can the authors please provide a video of a bee solving this task on its first trial?

      We added videos in the supplementary materials.

      Line 133: perceptual-motor feedback loops should be introduced in the introduction.

      We introduced perceptual-motor feedback loops in the revised manuscript.

      Line 136: please clarify the prior experience of these bees, it is not clear from the text.

      We clarified the prior experience of these bees as follow: Bumblebees were initially attracted to feed on yellow artificial flowers, and then trained with transparent tables covered by black tape (S7 video) through a four-step process.

      Line 138: from the video it is not possible to see the bee's perspective of this occlusion. Do the authors have a video or image showing the feedback the bees received? I think this is highly important if they wish to argue that this condition prevents the use of both image matching and a perceptual-motor feedback loop.

      We prevented the use of image matching: the bees were unable to see the flower moving towards them above the table during the training phase in this condition. But the bees may receive visual image both after pulling the string out from the table and in the initial stages of training in this condition.

      Line 147: please clarify what experience these bees had before this test.

      We added the prior experience of bumblebees before training as follow: We therefore designed further experiments based on Taylor et al. (2012) to test this hypothesis. Bumblebees were first trained to feed on yellow artificial, and then trained with the same procedure as Experiment 2, but the connected strings were coiled in the test.

      Line 155: This is a highly similar test to that used in Taylor et al 2012, have the authors seen this study?

      We mentioned the reference in the revised manuscript as follows: We therefore designed further experiments based on Taylor et al. (2012) to test this hypothesis.

      Line 183: This sentence needs rewriting "Since the vast majority of animals, including dogs 183 (Osthaus et al., 2005), cats (Whitt et al., 2009), western scrub-jays (Hofmann et al.,2016) and azure-winged magpies (Wang et al., 2019) are failing in such tasks spontaneously".

      We changed the sentence as suggested by the reviewer as follow:  Some animals, including dogs (Osthaus et al., 2005), cats (Whitt et al., 2009), western scrub-jays (Hofmann et al., 2016) and azure-winged magpies (Wang et al., 2019) fail in such task spontaneously.

      Line 186: "complete comprehension of the functionality of strings is rare" I am not sure the evidence in the current literature supports any animal showing full understanding, can the authors explain how they reach this conclusion?

      We wished to say that few animal species could distinguish between connected and disconnected strings without trial and error learning. We revised the sentence as follows:

      It is worth noting that some crows and parrots known for complex cognition perform poorly on broken string task without perceptual feedback or learning. For example, New Caledonian crows use perceptual feedback strategies to solve broken string-pulling task, and no individual showed a significant preference for the connected string when perceptual feedback is restricted (Taylor et al., 2012). Some Australian magpies and African grey parrots can solve the broken string task, but it required a high number of trials, indicating that learning plays a crucial role in solving this task (Molina et al., 2019; Johnsson et al., 2023).

      Line 190: the authors need to clarify which part of their study provides positive evidence for this conclusion.

      We added the evidence for this conclusion as follows: Our findings suggest that bumblebees with experience of string pulling prefer the connected strings, but they failed to identify the interrupted strings when the string was coiled in the test.

      Line 265: was the far end of the string glued only?

      The entire string was glued to the floor, not just the far ends of the string.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review):

      Summary: 

      In this paper, the authors used target agnostic MBC sorting and activation methods to identify B cells and antibodies against sexual stages of Plasmodium falciparum. While they isolated some Mabs against PFs48/45 and PFs230, two well-known candidates for "transmission blocking" vaccines, these antibodies' efficacies, as measured by TRA, did not perform as well as other known antibodies. They also isolated one cross-reactive mAb to proteins containing glutamic acid-rich repetitive elements, that express at different stages of the parasite life cycle. They then determined the structure of the Fab with the highest protein binder they could determine through protein microarray, RESA, and observed homotypic interactions. 

      Strengths: 

      -  Target agnostic B cell isolation (although not a novel methodology). 

      -  New cross-reactive antibody with some "efficacy" (TRA) and mechanism (homotypic interactions) as demonstrated by structural data and other biophysical data. 

      Weaknesses: 

      The paper lacks clarity at times and could benefit from more transparency (showing all the data) and explanations. 

      We have added the oocyst count data from the SMFA experiments as Supplementary Table 2, and ELISA binding curves underlying Figure 4B as Supplementary Figure 5.

      In particular: 

      - define SIFA 

      - define TRAbs 

      We have carefully gone through the manuscript and have introduced abbreviations at first use, removed unnecessary abbreviations and removed unnecessary jargon to increase readability.

      - it is not possible to read the Figure 6B and C panels. 

      We regret that the labels in Supplementary Figures 6 and 7 were of poor quality and have now included higher resolution images to solve this issue.

      Reviewer #2 (Public Review): 

      This manuscript by Amen, Yoo, Fabra-Garcia et al describes a human monoclonal antibody B1E11K, targeting EENV repeats which are present in parasite antigens such as Pfs230, RESAs, and 11.1. The authors isolated B1E11K using an initial target agnostic approach for antibodies that would bind gamete/gametocyte lysate which they made 14 mAbs. Following a suite of highly appropriate characterization methods from Western blotting of recombinant proteins to native parasite material, use of knockout lines to validate specificity, ITC, peptide mapping, SEC-MALS, negative stain EM, and crystallography, the authors have built a compelling case that B1E11K does indeed bind EENV repeats. In addition, using X-ray crystallography they show that two B1E11K Fabs bind to a 16 aa RESA repeat in a head-to-head conformation using homotypic interactions and provide a separate example from CSP, of affinity-matured homotypic interactions. 

      There are some minor comments and considerations identified by this reviewer, These include that one of the main conclusions in the paper is the binding of B1E11K to RESAs which are blood stage antigens that are exported to the infected parasite surface. It would have been interesting if immunofluorescence assays with B1E11K mAb were performed with blood-stage parasites to understand its cellular localization in those stages. 

      In the current manuscript, we provide multiple lines of evidence that B1E11K binds (with high affinity) to repeats that are present in RESAs, i.e. through micro-array studies, in vitro binding experiments such as Western blot, ELISA and BLI, and through X-ray crystallography studies on B1E11k – repeat peptide complexes. Taken together, we think we provide compelling evidence that B1E11k binds to repeats present in RESA proteins. We do agree that studies on the function of this mAb against other stages of the parasite could be of interest, but as our manuscript focuses on the sexual stage of the parasite, we feel that this is beyond scope of the current work. However, this line of inquiry will be strongly considered in follow up studies.   

      Reviewer #3 (Public Review): 

      The manuscript from Amen et al reports the isolation and characterization of human antibodies that recognize proteins expressed at different sexual stages of Plasmodium falciparum. The isolation approach was antigen agnostic and based on the sorting, activation, and screening of memory B cells from a donor whose serum displays high transmission-reducing activity. From this effort, 14 antibodies were produced and further characterized. The antibodies displayed a range of transmission-reducing activities and recognized different Pf sexual stage proteins. However, none of these antibodies had substantially lower TRA than previously described antibodies. 

      The authors then performed further characterization of antibody B1E11K, which was unique in that it recognized multiple proteins expressed during sexual and asexual stages. Using protein microarrays, B1E11K was shown to recognize glutamate-rich repeats, following an EE-XX-EE pattern. An impressive set of biophysical experiments was performed to extensively characterize the interactions of B1E11K with various repeat motifs and lengths. Ultimately, the authors succeeded in determining a 2.6 A resolution crystal structure of B1E11K bound to a 16AA repeat-containing peptide. Excitingly, the structure revealed that two Fabs bound simultaneously to the peptide and made homotypic antibody-antibody contacts. This had only previously been observed with antibodies directed against CSP repeats. 

      Overall I found the manuscript to be very well written, although there are some sections that are heavy on field-specific jargon and abbreviations that make reading unnecessarily difficult. For instance, 'SIFA' is never defined. 

      We have carefully gone through the manuscript and have introduced abbreviations at first use, removed unnecessary abbreviations and removed unnecessary jargon to increase readability.

      Strengths of the manuscript include the target-agnostic screening approach and the thorough characterization of antibodies. The demonstration that B1E11K is cross-reactive to multiple proteins containing glutamate-rich repeats, and that the antibody recognizes the repeats via homotypic interactions, similar to what has been observed for CSP repeat-directed antibodies, should be of interest to many in the field. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      Figure 1 - why only gametes ELISA and Spz or others?  

      The volumes of the single B cell supernatants were too small to screen against multiple antigens/parasite stages. As we aimed to isolate antibodies against the sexual stages of the parasite, our assay focused on this stage and supernatants were not tested against other stages. Furthermore, we screened for reactivity against gametes as TRA mAbs likely target gametes rather than other forms of sexual stage parasites.

      Figure 2 A 

      (a) Wild type (WT) and Pfs48/45 knock-out (KO) gametes.

      (b) I am a bit confused about what GMT is vs Pfs48/45 

      We have changed the column titles in Figure 2A to “wild-type gametes” and “Pfs48/45 knockout gametes” to improve clarity.  

      (c) Binding is high % why is it red? 

      We chose to present the results in a heatmap format with a graded color scale, from strong binders in red to weak binders in green. It has now been clarified in the legend of the figure. 

      Please state acronyms clearly 

      TRA - transmission reducing activity 

      SMFA - standard membrane feeding assay 

      We have added the full terms to clarify the acronyms.

      1123- VRC01 (not O1)

      We have corrected this.

      Figure 2 C bottom panels, clarify which ones are TRAbs (Assuming the Mabs with over 80% TRA at 500 ug/ml) (right gel) and the ones that are not (left gel)? 

      In the Western blot in Figure 2c, we have marked the antibodies with >80% TRA with an asterisk.

      Furthermore, we have replaced ‘TRAbs’ by ‘mAbs with >80% TRA at 500 µg/mL’ in the figure legend.

      ITC show the same affinity of the Fab to the 2 peptides but not the ELISA, not the BLI/SPR would be more appropriate. Any potential explanation?  

      The way binding affinity is determined across various techniques can result in slight differences in determined values. For instance, ELISAs utilize long incubation times with extensive washing steps and involve a spectroscopic signal, isothermal titration calorimetry (ITC) uses calorimetric signal at different concentration equilibriums to extract a KD, and BLI determines kinetic parameters for KD determination. Discrepancies in binding affinities between orthologous techniques have indeed been observed previously in the context of peptide-antibody binding (e.g. PMID: 34788599).

      Despite this, regardless of technique, the relative relationships in all three sets of data is the same - higher binding affinity is observed to the longer P2 peptide. This is the main takeaway of the section. As the reviewer suggests, BLI is likely the most appropriate readout here and is the only value explicitly mentioned in the main text. We primarily use ITC to support our proposed binding stoichiometry which is important to substantiate the SEC-MALS and nsEM data in Figure 4H-I. We added the following sentences to help reinforce these points: “The determined binding affinity from our ITC experiments (Table 1) differed from our BLI experiments (Fig. 4D and 4E), which can occur when measuring antibody-peptide interactions. Regardless, our data across techniques all trend toward the same finding in which a stronger binding affinity is observed toward the longer RESA P2 (16AA) peptide.”

      Figure 5C - would be helpful to have the peptide sequence above referring to what is E1, E2 etc... 

      We added two panels (Figure 5C-D) showcasing the binding interface that shows the peptide numbering in the context of the overall complex. We hope that this will help better orient the reader. 

      Figure S4 - maybe highlight in different colors the EENVV, EEIEE, Etc, etc 

      Repeats found in the sequence of the various proteins in Figure S4 have now been highlighted with different colors.

      Line 163 - why 14 mabs if 11 wells? Isn't it 1 B cell per well? The authors should explain right away that some wells have more than 1 B cell and some have 1 HC, 1LC, and 1 KC. 

      We agree that this was somewhat confusing and have modified the text which now reads: “We obtained and cloned heavy and light chain sequences for 11 out of 84 wells. For three wells we obtained a kappa light chain sequence and for five wells a lambda light chain sequence. For three wells we obtained both a lambda and kappa light chain sequence suggesting that either both chains were present in a single B cell or that two B cells were present in the well. For all 14 wells we retrieved a single heavy chain sequence. Following amplification and cloning, 14 mAbs, from 11 wells, were expressed as full human IgG1s (Table S1) (Dataset S1).”

      Line 166-167 - were they multiple HC (different ones) as well when Lambda and kappa were present?

      This is not clear at first. 

      We clarified this point in the text, see also comment above.

      Line 177 - expressed Pfs48/45 and Pfs230, is it lacking both or just Pfs48/45 (as stated on line 172)? 

      Pfs48/45 binds to the gamete surface via a GPI anchor, while Pfs230 is retained to the surface through binding to Pfs48/45. Hence, the Pfs48/45 knockout parasite will therefore also lack surfacebound Pfs230. We have added a sentence to the Results clarifying this: “The mAbs were also tested for binding to Pfs48/45 knock-out female gametes, which lack surface-bound Pfs48/45 and Pfs230”.

      Show the ELISA data used to calculate EC50 in Figure 3. 

      ELISA binding curves are now shown as Figure S5.

      Line 313-315 - what if you reverse, capture the Fab (peptide too small even if biotinylated?) 

      As anticipated by the Reviewer, immobilizing the Fab and dipping into peptide did not yield appreciable signal for kinetic analysis and thus the experiment from this setup is not reported. 

      Line 341 - add crystal structure 

      This has now been added.

      There is a bit too much speculation in the discussion. For e.g. "The B1C5L and B1C5K mAbs were shown to recognize Domain 2 of Pfs48/45 and exhibited moderate potency, as previously described for Abs with such specificity (27). These 2 mAbs were isolated from the same well and shared the same heavy chain; their three similar characteristics thus suggest that their binding is primarily mediated by the heavy chain". Actual data will reinforce this statement. 

      As B1C5L and B1C5K recognized domain 2 of Pfs48/45 with similar affinity, this strongly suggests that binding is mediated though the heavy chain. Structural analysis could confirm this statement, but this is out of the scope of this study.  

      Reviewer #2 (Recommendations For The Authors): 

      Figure 1: This figure provides a description of the workflow. To make it more relevant for the paper, the authors could add relevant numbers as the workflow proceeds. 

      (a) For example, how many memory B cells were sorted, how many supernatants were positive, and then how many mAbs were produced? These numbers can be attached to the relevant images in the workflow. 

      We modified the figure to include the numbers. 

      (b) For the "Supernatant screening via gamete extract ELISA", please change to "Supernatant screening via gamete/gametocyte extract ELISA". 

      We modified the statement as suggested. 

      Line 155: The manuscript states that 84 wells reacted with gamete/gametocyte lysate. The following sentence states that "Out of the 21 supernatants that were positive...". Can the authors provide the summary of data for all 84 wells or why focus on only 21 supernatants? 

      We screened all supernatants against gamete lysate, and only a subset against gametocyte lysate. In total, we found 84 positive supernatants that were reactive to at least one of the two lysates. 21 of those 84 positive were screened against both lysates. We have modified the text to clarify the numbers:

      “After activation, single cell culture supernatants potentially containing secreted IgGs were screened in a high-throughput 384-well ELISA for their reactivity against a crude Pf gamete lysate (Fig. S1B). A subset of supernatants was also screened against gametocyte lysate (S1C). In total, supernatants from 84 wells reacted with gamete and/or gametocyte lysate proteins, representing 5.6% of the total memory B cells. Of the 21 supernatants that were screened against both gamete and gametocyte lysates, six recognized both, while nine appeared to recognize exclusively gamete proteins, and six exclusively gametocyte proteins.”

      Please note that all 84 positive wells were taken forward for B cell sequencing and cloning. 

      Line 171: SIFA is introduced for the first time and should be completely spelled out.

      We have corrected this. 

      Figure 2: 

      (a) In Figure 2A, can you change the column title from "% pos KO GMT" to "% pos Pfs48/45 KO GMT"?

      We have changed the column titles.  

      (b) In Figure 2B, the SMFA results have been converted to %TRA. Can the authors please provide the raw data for the oocyst counts and number of mosquitoes infected in Supplementary Materials? 

      We have added oocyst count data in Table S2, to which we refer in the figure legend. 

      (c) For Figure 2F, the authors do have other domains to Pfs230 as described in Inklaar et al, NPJ Vaccines 2023. An ELISA/Western to the other domains could identify the binding site for B2C10L, though we appreciate this is not the central result of this manuscript. 

      We thank the reviewer for this suggestion. We are indeed planning to identify the target domain of B2C10L using the previously described fragments, but agree with the reviewer that this not the focus of the current manuscript and decided to therefore not include it in the current report.

      Line 116: The word sporozoites appears in subscript and should be corrected to be normal text. 

      We have corrected this.

      Line 216: Typo "B1E11K" 

      We have corrected this.

      Materials and Methods: 

      (a) PBMC sampling: Please add the ethics approval codes in this section. 

      Donor A visited the hospital with a clinical malaria infection and provided informed consent for collection of PBMCs. We have modified the method section to clarify this. 

      “Donor A had lived in Central Africa for approximately 30 years and reported multiple malaria infections during that period. At the time of sampling PBMCs, Donor A had recently returned to the Netherlands and visited the hospital with a clinical malaria infection. After providing informed consent, PBMCs were collected, but gametocyte prevalence and density were not recorded.”

      (b) Gamete/Gametocyte extract ELISA: Can the authors please provide the concentration of antibodies used for the positive and negative controls (TB31F, 2544, and 399) 

      We have added the concentrations for these mAbs in the methods section.

      Recombinant Pfs48/45 and Pfs230 ELISA: Please state the concentration or molarity used for the coating of recombinant Pfs48/45 and Pfs230CMB. 

      We have added the concentrations, i.e. 0.5 µg/mL, to the methods section.

      Western Blotting: The protocol states that DTT was added to gametocyte extracts (Line 594), but Western Blots in Figures 2 and 3 were performed in non-reducing conditions. Please confirm whether DTT was added or not. 

      Thank you for noting this. We did not use DTT for the western blots and have removed this line from the methods section.

      Reviewer #3 (Recommendations For The Authors): 

      Below are a few minor comments to help improve the manuscript. 

      (1) In Figure 4E, are the BLI data fit to a 1:1 binding model? The fits seem a bit off, and from ITC and X-ray studies it is known that 2 Fabs bind 1 peptide. The second Fab should presumably have higher affinity than the first Fab since the second Fab will make interactions with both the peptide and the first Fab. It may be better to fit the BLI data to a 2:1 binding model. 

      The 2:1 (heterogeneous ligand) model assumes that there are two different independent binding sites. However, the second binding event described is dependent on the first binding event and thus this model also does not accurately reflect the system. Given that there is not an ideal model to fit, we instead are careful about the language used in the main text to describe these results. Additionally, we also include a sentence to the results section to ensure that the proper findings/interpretations are highlighted: “…our data all trend toward the same finding in which a stronger binding affinity is observed toward the longer RESA P2 (16AA) peptide.”

      (2) The sidechain interactions shown in Figures 5C and D could probably be improved. The individual residues are just 'floating' in space, causing them to lack context and orientation. 

      We added two panels (Fig. 5C-D) showcasing the binding interface that shows the peptide numbering in the context of the overall complex. We hope that this will help orient the reader.  

      (3) The percentage of Ramachandran outliers should be listed in Table 2. Presumably, the value is 0.2%, but this is omitted in the current table. 

      Table 2 has been modified to include the requested information explicitly.

    1. In fact, research shows that the way people learn is as unique as their fingerprints

      I think this illustrates why it could be important to, as Nick says, separate our students into a few boxes because it makes it easier to think about, and then we can think of obstacles and solutions that may come up in each group while lesson planning.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This interesting study explores the mechanism behind an increased susceptibility of daf-18/PTEN mutant nematodes to paralyzing drugs that exacerbate cholinergic transmission. The authors use state-of-theart genetics and neurogenetics coupled with locomotor behavior monitoring and neuroanatomical observations using gene expression reporters to show that the susceptibility occurs due to low levels of DAF-18/PTEN in developing inhibitory GABAergic neurons early during larval development (specifically, during the larval L1 stage). DAF-18/PTEN is convincingly shown to act cell-autonomously in these cells upstream of the PI3K-PDK-1-AKT-DAF-16/FOXO pathway, consistent with its well-known role as an antagonist of this conserved signaling pathway. The authors exclude a role for the TOR pathway in this process and present evidence implicating selectivity towards developing GABAergic neurons. Finally, the authors show that a diet supplemented with a ketogenic body, β-hydroxybutyrate, which also counteracts the PI3K-PDK-1-AKT pathway, promoting DAF-16/FOXO activity, partially rescues the proper development (morphology and function) of GABAergic neurons in daf-18/PTEN mutants, but only if the diet is provided early during larval development. This strongly suggests that the critical function of DAF18/PTEN in developing inhibitory GABAergic neurons is to prevent excessive PI3K-PDK-1-AKT activity during this critical and particularly sensitive period of their development in juvenile L1 stage worms. Whether or not the sensitivity of GABAergic neurons to DAF-18/PTEN function is a defining and widespread characteristic of this class of neurons in C. elegans and other animals, or rather a particularity of the unique early-stage GABAergic neurons investigated remains to be determined.

      Strengths:

      The study reports interesting and important findings, advancing the knowledge of how daf-18/PTEN and the PI3K-PDK-1-AKT pathway can influence neurodevelopment, and providing a valuable paradigm to study the selectivity of gene activities towards certain neurons. It also defines a solid paradigm to study the potential of dietary interventions (such as ketogenic diets) or other drug treatments to counteract (prevent or revert?) neurodevelopment defects and stimulate DAF-16/FOXO activity.

      Weaknesses:

      (1) Insufficiently detailed methods and some inconsistencies between Figure 4 and the text undermine the full understanding of the work and its implications.

      The incomplete methods presented, the imprecise display of Figure 4, and the inconsistency between this figure and the text, make it presently unclear what are the precise timings of observations and treatments around the L1 stage. What exactly do E-L1 and L1-L2 mean in the figure? The timing information is critical for the understanding of the implications of the findings because important changes take place with the whole inhibitory GABAergic neuronal system during the L1 stage into the L2 stage. The precise timing of the events such as neuronal births and remodelling events are welldescribed (e.g., Figure 2 in Hallam and Jin, Nature 1998; Fig 7 in Mulcahy et al., Curr Biol, 2022). Likewise, for proper interpretation of the implication of the findings, it is important to describe the nature of the defects observed in L1 larvae reported in Figure 1E - at present, a representative figure is shown of a branched commissure. What other types of defects, if any, are observed in early L1 larvae? The nature of the defects will be informative. Are they similar or not to the defects observed in older larvae?

      We thank the reviewer for highlighting these areas for improvement. We have updated and clarified the timing of observation in the text, figures, and methodology section accordingly.

      All experiments were conducted using age-synchronized animals. Gravid worms were placed on NGM plates and removed after two hours. The assays were then carried out on animals that hatched from the eggs laid during this specific timeframe.

      Regarding the detailed timings outlined in the original Figure 4 (now Figure 5 in the revised version), we provided the following information in the revised version: For experiments involving continuous exposure to βHB throughout development, the gravid worms were placed on NGM plates containing the ketone body and removed after two hours. Therefore, this exposure covered the ex-utero embryonic development period up to the L4-Young adult stage when the experiments were conducted.

      In experiments involving exposure at different developmental stages as those depicted in Figure 4 of the original version, (now Figure 5, revised version), animals were transferred between plates with and without βHB as required. We exposed daf-18/PTEN mutant animals to βHB-supplemented diets for 18-hour periods at different developmental stages (Figure 5A, revised version). The earliest exposure occurred during the 18 hours following egg laying, covering ex-utero embryonic development and the first 8-9 hours of the L1 stage. The second exposure period encompassed the latter part of the L1 stage, the entire L2 stage, and most of the L3 stage. The third exposure spanned the latter part of the L3 stage (~1-2 hours), the entire L4 stage, and the first 6-7 hours of the adult stage.

      All this information has been conveniently included in Figure 5, text (Page13, lines 259-276), and in methodology (Page 4, Lines 85-90, Revised Methods and Supplementary information) of the revised manuscript.

      In response to the reviewer's suggestion, we have also included photos of daf-18 worms at the L1 stage (30 min/1h post-hatching). Defects are already present at this early stage, such as handedness and abnormal branching commissures, which are also observed in adult worm neurons (see Supplementary Figure 4, revised version). 

      These defects manifest in DD neurons shortly after larval birth. The prevalence of animals with errors is higher in L4 worms (when both VDs and DDs are formed) compared to early L1s (Figures 3 C-E and Supplementary Figure 4, revised version). This suggests that defects in VD neurons also occur in daf-18 mutants. Indeed, when we analyzed the neuronal morphology of several wild-type and daf-18 mutant animals, we found defects in the commissures corresponding to both DD and VD neurons (Supplementary Figure 3, revised version). 

      These data are now included in the revised version (Results (Page 10, lines 177-196), Discussion (Pages 14-16), Main Figure 3, and Supplementary Figures 3, 4 and 7 revised version)

      (2) The claim of proof of concept for a reversal of neurodevelopment defects is not fully substantiated by data.

      The authors state that the work "constitutes a proof of concept of the ability to revert a neurodevelopmental defect with a dietary intervention" (Abstract, Line 56), however, the authors do not present sufficient evidence to distinguish between a "reversal" or prevention of the neurodevelopment defect by the dietary intervention. This clarification is critical for therapeutic purposes and claims of proof-of-concept. From the best of my understanding, reversal formally means the defect was present at the time of therapy, which is then reverted to a "normal" state with the therapy. On the other hand, prevention would imply an intervention that does not allow the defect to develop to begin with, i.e., the altered or defective state never arises. In the context of this study, the authors do not convincingly show reversal. This would require showing "embryonic" GABAergic neuron defects or showing convincing data in newly hatched L1 (0-1h), which is unclear if they do so or not, as I have failed to find this information in the manuscript. Again, the method description needs to be improved and the implications can be very different if the data presented in Figure 2D-E regard newly born L1 animals (0-1h) or L1 animals at say 5-7h after hatching. This is critical because the development of the embryonically-born GABAergic DD neurons, for instance, is not finalized embryonically. Their neurites still undergo outgrowth (albeit limited) upon L1 birth (see DataS2 in Mulcahy et al., Curr Biol 2022), hence they are susceptible to both committing developmental errors and to responding to nutritional interventions to prevent them. In contrast to embryonic GABAergic neurons, embryonic cholinergic neurons (DA/DB) do not undergo neurite outgrowth post-embryonically (Mulcahy et al., Curr Biol 2022), a fact which could provide some mechanistic insight considering the data presented. However, neurites from other post-embryonically-born neurons also undergo outgrowth postembryonically, but mostly during the second half of the L1 stage following their birth up to mid-L2, with significant growth occurring during the L1-L2 transition. These are the cholinergic (VA/VB and AS neurons) and GABAergic (VD) neurons. The fact that AS neurons undergo a similar amount of outgrowth as VD neurons is informative if VD neurons are or are not susceptible to daf-18/PTEN activity. Independently, DD neurons are still quite unique on other aspects (see below), which could also bring insight into their selective response.

      Finally, even adjusting the claim to "constitutes a proof-of-concept of the ability of preventing a neurodevelpmental defect with a dietary intervention" would not be completely precise, because it is unclear how much this work "constitutes a proof of concept". This is because, unless I misunderstood something, dietary interventions are already applied to prevent neurodevelopment defects, such as when folic acid supplementation is recommended to pregnant women to prevent neural tube defects in newborns.

      Thank you very much for pointing out this issue and highlighting the need to further investigate the ameliorative capacity of βHB on GABAergic defects in daf-18 mutants. In the revised version, we have included experiments to address this point.

      Our microscopy analyses strongly indicate that the development of DD neurons is affected, with errors observed as early as one-hour post-hatching (Main Figure 3, and Supplementary Figures  4 and 7, revised version). Additionally, based on the position of the commissures in L4s, our results strongly suggest that VD neurons are also affected (Supplementary Figure 3, revised version). Both, the frequency of animals with errors and the number of errors per animal are higher in L4s compared to L1 larvae (Main Figures 3,  and Supplementary Figure 4 and 7, revised version). It is very likely that the errors in VD neurons, which are born in the late L1 stage, are responsible for the higher frequency of defects observed in L4 animals. 

      As the reviewer noted, GABAergic DD neurons, which are born embryonically, do not complete their development during the embryonic stages. Some defects in DD neurons may arise during the postembryonic period. Following the reviewer's suggestion, we analyzed L1 larvae at different times before the appearance of VDs (1 hour post-hatching and 6 hours post-hatching). We did not observe an increase in error prevalence, suggesting that DD defects in daf-18 mutants are mostly embryonic (Supplementary Fig 4B, Revised Version). 

      Our findings suggest that βHB's enhancement is not due to preventive effects in DDs, as defects persist in newly hatched larvae regardless of βHB presence (Supplementary Figure 7, revised version), and postembryonic DD growth does not introduce new errors (Supplementary Figure 4, revised version). This lack of preventive effect could be due to βHB's limited penetration into the embryonic environment. Unlike early L1s, significant improvement occurs in L4s upon βHB early exposure (Supplementary Figure 7, revised version). This could be explained by a reversing effect on malformed DD neurons and/or a protective influence on VD neuron development. While we cannot rule out the first option, even if all errors in DDs in L1 were repaired (which is very unlikely), it wouldn't explain the level of improvement in L4 (Supplementary Figure 7, revised version). Therefore, we speculate that VDs may be targeted by βHB. The notion that exposure to βHB during early L1 can ameliorate defects in neurons primarily emerging in late L1s (VDs) is intriguing. We may hypothesize that residual βHB or a metabolite from prior exposure could forestall these defects in VD neurons. Notably, βHB has demonstrated a capacity for long-lasting effects through epigenetic modifications (Reviewed in He et al, 2023, https://doi.org/10.1016%2Fj.heliyon.2023.e21098). More work is needed to elucidate the underlying fundamental mechanisms regarding the ameliorating effects of βHB supplementation. We have now discussed these possibilities under discussion (Page 17, lines 369-383, revised version).

      We agree with the reviewer that the term "reversal" is not accurate, and we have avoided using this terminology throughout the text. Furthermore, in the title, we have decided to change the word "rescue" to "ameliorate," as our experiments support the latter term but not the former. Additionally, the reviewer is correct that folic acid administration to pregnant women is already a metabolic intervention to prevent neural tube defects. In light of this, we have avoided claiming this as proof of concept in the revised manuscript 

      (3) The data presented do not warrant the dismissal of DD remodeling as a contributing factor to the daf-18/PTEN defects.

      Inhibitory GABAergic DD neurons are quite unique cells. They are well-known for their very particular property of remodeling their synaptic polarity (DD neurons switch the nature of their pre- and postsynaptic targets without changing their wiring). This process is called DD remodeling. It starts in the second half of the L1 stage and finishes during the L2 stage. Unfortunately, the fact that the authors find a specific defect in early GABAergic neurons (which are very likely these unique DD neurons) is not explored in sufficient detail and depth. The facts that these neurons are not fully developed at L1, that they still undergo limited neurite growth, and that they are poised for striking synaptic plasticity in a few hours set them apart from the other explored neurons, such as early cholinergic neurons, which show a more stable dynamics and connectivity at L1 (see Mulcahy et al., Curr Biol 2022).

      The authors use their observation that daf-18/PTEN mutants present morphological defects in GABAergic neurons prior to DD remodeling to dismiss the possibility that the DAF-18/PTEN-dependent effects are "not a consequence of deficient rearrangement during the early larval stages". However, DD remodeling is just another cell-fate-determined process and as such, its timing, for instance, can be affected by mutations in genes that affect cell fates and developmental decisions, such as daf-18 and daf-16, which affect developmental fates such as those related with the dauer fate. Specifically, the authors do not exclude the possibility that the defects observed in the absence of either gene could be explained by precocious DD remodeling. Precocious DD remodeling can occur when certain pathways, such as the lin-14 heterochronic pathway, are affected. Interestingly, lin-14 has been linked with daf16/FOXO in at least two ways: during lifespan determination (Boehm and Slack, Science 2005) and in the

      L1/L2 stages via the direct negative regulation of an insulin-like peptide gene ins-33 (Hristova et al., Mol Cell Bio 2005). It is likely that the prevention of DD dysfunction requires keeping insulin signaling in check (downregulated) in DD neurons in early larval stages, which seems to coincide with the critical timing and function of daf-18/PTEN. Hence, it will be interesting to test the involvement of these genes in the daf-18/daf-16 effects observed by the authors.

      This is another interesting point raised by the reviewer. We have demonstrated that defects manifest in early L1 (30 min-1 hour post-hatching) which corresponds to a pre-remodeling time in wild-type worms.

      We acknowledge the possibility of early remodeling in specific mutants as pointed out by the reviewer.

      However, the following points suggest that the effects of these mutations may extend beyond the particularity of DD remodeling: i) Our experiments also show defects in VD neurons in daf-18 mutants (Supplementary Figure 3, revised version), as discussed in our previous response. These neurons do not undergo significant remodeling during their development. ii) DAF-18 and DAF-16 deficiencies produce neurodevelopmental alteration on other Non-Remodeling Neurons: Severe neurite defects in neurons that are nearly fully formed at larval hatching, such as AIY in daf-18 and daf-16 mutants, have been previously reported (Christensen et al., 2011). Additionally, the migration of another neuron, HSN, is severely affected in these mutants (Kennedy et al., 2013). iii) To the best of our knowledge, DD remodeling only alters synaptic polarity without forming new commissures or significant altering the trajectory of the formed ones. Thus, it is unlikely (though not impossible) for remodeling defects to cause the observed commissural branching and handedness abnormalities in DD neurons. Therefore, we think that the impact of daf-18 mutations on GABAergic neurons is not primarily linked to DD remodeling but extends to various neuron types. It is intriguing and requires further exploration in the future, the apparent resilience of cholinergic motor neurons to these mutations. This resilience is not limited to daf18/PTEN animals since mutants in certain genes expressed in both neuron types (such as neuronal integrin ina-1 or eel-1, the C. elegans ortholog of HUWE1) alter the function or morphology of GABAergic neurons but not cholinergic motor neurons (Kowalski, J. R. et al. Mol Cell Neurosci 2014; Oliver, D. et al. J Dev Biol (2019); Opperman, K. J. et al. Cell Rep 2017). These points are discussed in the manuscript (Discussion, page 15, lines 311-322, revised version) and reveal the existence of compensatory or redundant mechanisms in these excitatory neurons, rendering them much more resistant to both morphological and functional abnormalities.

      Discussion on the impact of the work on the field and beyond:

      The authors significantly advance the field by bringing insight into how DAF-18/PTEN affects neurodevelopment, but fall short of understanding the mechanism of selectivity towards GABAergic neurons, and most importantly, of properly contextualizing their findings within the state-of-the-art C. elegans biology.

      For instance, the authors do not pinpoint which type of GABAergic neuron is affected, despite the fact that there are two very well-described populations of ventral nerve cord inhibitory GABAergic neurons with clear temporal and cell fate differences: the embryonically-born DD neurons and the postembryonically-born VD neurons. The time point of the critical period apparently defined by the authors (pending clarifications of methods, presentation of all data, and confirmation of inconsistencies between the text and figures in the submitted manuscript) could suggest that DAF-18/PTEN is required in either or both populations, which would have important and different implications. An effect on DD neurons seems more likely because an image is presented (Figure 2D) of a defect in an L1 daf-18/PTEN mutant larva with 6 neurons (which means the larva was processed at a time when VD neurons were not yet born or expressing pUnc-47, so supposedly it is an image of a larva in the first half of the L1 stage (0-~7h?)). DD neurons are also likely the critical cells here because the neurodevelopment errors are partially suppressed when the ketogenic diet is provided at an "early" L1 stage, but not later (e.g., from L2-L3, according to the text, L2-L4 according to the figure? ).

      Thank you for this insightful input. As previously mentioned, we conducted experiments in this revision to clarify the specificity of GABAergic errors in daf-18/PTEN mutants, in particular, whether they affect DDs, VDs, or both. Our results suggest that commissural defects are not limited to DD neurons but also occur in VD neurons (Supplementary Figure 3). Regarding the effect of βHB, our findings suggest that VD neurons are targets of βHB action. As mentioned in the previous response and the discussion section (Page 17, lines 369-383, revised version), we might speculate that lingering βHB or a metabolite from prior exposure could mitigate these defects in VD neurons that are born in Late L1s-Early L2s. Additionally, βHB has been noted for its capacity to induce long-term epigenetic changes. Therefore, it could act on precursor cells of VD neurons, with the resulting changes manifesting during VD development independently of whether exposure has ceased. All these possibilities are now discussed in the manuscript.

      Acknowledging that our work raises several questions that we aim to address in the future, we believe our manuscript provides valuable information regarding how the PI3K pathway modulates neuronal development and how dietary interventions can influence this process.

      This study brings important contributions to the understanding of GABAergic neuron development in C. elegans, but unfortunately, it is justified and contextualized mostly in distantly-related fields - where the study has a dubious impact at this stage rather than in the central field of the work (post-embryonic development of C. elegans inhibitory circuits) where the study has stronger impact. This study is fundamentally about a cell fate determination event that occurs in a nutritionally-sensitive

      developmental stage (post-embryonic L1 larval stage) yet the introduction and discussion are focused on more distantly related problems such as excitatory/inhibitory (E/I) balance, pathophysiology of human diseases, and treatments for them. Whereas speculation is warranted in the discussion, the reduced indepth consideration of the known biology of these neurons and organisms weakens the impact of the study as redacted. For instance, the critical role of DAF-18/PTEN seems to occur at the early L1 larval stage, a stage that is particularly sensitive to nutritional conditions. The developmental progression of L1 larvae is well-known to be sensitive to nutrition - eg, L1 larvae arrest development in the absence of food, something that is explored in nematode labs to synchronize animals at the L1 stage by allowing embryos to hatch into starvation conditions (water). Development resumes when they are exposed to food. Hence, the extensive postembryonic developmental trajectory that GABAergic neurons need to complete is expected to be highly susceptible to nutrition. Is it? The sensitivity towards the ketogenic diet intervention seems to favor this. In this sense, the attribution of the findings to issues with the nutrition-sensitive insulin-like signaling pathway seems quite plausible, yet this possibility seems insufficiently considered and discussed.

      We greatly appreciate the reviewer's emphasis on the sensitivity of the L1 stage to nutritional status. As the reviewer points out, C. elegans adjusts its development based on food availability, potentially arresting development in L1 in the absence of food. It is therefore reasonable that both the completion of DD neuron trajectories and the initial development steps of VD neurons are particularly sensitive to dietary modulation of the insulin pathway, in which both DAF-18 and DAF-16 play roles. This important point has also been included in the discussion (Page 18, lines 384-407, revised version).

      Finally, the fact that imbalances in excitatory/inhibitory (E/I) inputs are linked to Autism Spectrum Disorders (ASD) is used to justify the relevance of the study and its findings. Maybe at this stage, the speculation would be more appropriate if restricted to the discussion. In order to be relevant to ASD, for instance, the selectivity of PTEN towards inhibitory neurons should occur in humans too. However, at present, the E/I balance alteration caused by the absence of daf-18/PTEN in C. elegans could simply be a coincidence due to the uniqueness of the post-embryonic developmental program of GABAergic neurons in C. elegans. To be relevant, human GABAergic neurons should also pass through a unique developmental stage that is critically susceptible to the PI3K-PDK1-AKT pathway in order for DAF18/PTEN to have any role in determining their function. Is this the case? Hence, even in the discussion, where the authors state that "this study provides universally relevant information on.... the mechanisms underlying the positive effects of ketogenic diets on neuronal disorders characterized by GABA dysfunction and altered E/I ratios", this claim seems unsubstantiated as written particularly without acknowledging/mentioning the criteria that would have to be fulfilled and demonstrated for this claim to be true.

      Our results suggest that defects in GABAergic neurons are not limited to DDs, which, as the reviewer rightly notes, are quite unique in their post-embryonic development primarily due to the synaptic remodeling process they undergo. These defects also extend to VD neurons, which do not exhibit significant developmental peculiarities once they are born. Therefore, we think that the defects are not specific to the developmental program of DD neurons but are more related to all GABAergic motoneurons. Additionally, the observation of defects in non-GABAergic neurons in C. elegans daf-18 mutants supports the hypothesis that the role of daf-18 is not limited to DD neurons (Christensen et al., 2011; Kennedy et al., 2013).

      In mammals, Pten conditional knockout (cKO) animals have been extensively studied for synaptic connectivity and plasticity, revealing an imbalance between synaptic excitation and inhibition (E/I balance) (Reviewed in Rademacher and Eickholt, 2019, Cold Spring Harbor Perspect Med, https://doi.org/10.1101%2Fcshperspect.a036780). This imbalance is now widely accepted as a key pathological mechanism linked to the development of ASD-related behavior (Lee et al, 2017; Biological Psychiatry, https://doi.org/10.1016/j.biopsych.2016.05.011) . The importance of PTEN in the development of GABAergic neurons in mammals is well-documented. For instance, embryonic PTEN deletion from inhibitory neurons impacts the establishment of appropriate numbers of parvalbumin and somatostatin-expressing interneurons, indicating a central role for PTEN in inhibitory cell development (Vogt et al, 2015, Cell Rep, https://doi.org/10.1016%2Fj.celrep.2015.04.019). Additionally, conditional PTEN knockout in GABAergic neurons is sufficient to generate mice with seizures and autism-related behavioral phenotypes (Shin et al, 2021, Molecular Brain, https://doi.org/10.1186%2Fs13041-02100731-8). Moreover, while mice in which PV GABAergic neurons lacked both copies of Pten experienced seizures and died, heterozygous animals (PV-Pten+/−) showed impaired formation of perisomatic inhibition (Baohan et al, 2016, Nature Comm, OI: 10.1038/ncomms12829). Therefore, there is substantial evidence in mammals linking PTEN mutations to neurodevelopmental disorders in general and affecting GABAergic neurons in particular. Hence, we believe that the role of daf-18/PTEN in GABAergic development could be a more widespread phenomenon across the animal kingdom rather than a specific process unique to C. elegans.

      Beyond the points discussed, we have addressed the reviewer's comment regarding the last sentence of the abstract. We have revised it to more cautiously frame the relationship between our findings, ASD, and mammalian neurodevelopmental disorders.

      Reviewer #2 (Public Review):

      Summary:

      Disruption of the excitatory/inhibitory (E/I) balance has been reported in Autism Spectrum Disorders

      (ASD), with which PTEN mutations have been associated. Giunti et al choose to explore the impact of PTEN mutations on the balance between E/I signaling using as a platform the C. elegans neuromuscular system where both cholinergic (E) and GABAergic (I) motor neurons regulate muscle contraction and relaxation. Mutations in daf-18/PTEN specifically affect morphologically and functionally the GABAergic (I) system, while leaving the cholinergic (E) system unaffected. The study further reveals that the observed defects in the GABAergic system in daf-18/PTEN mutants are attributed to reduced activity of DAF-16/FOXO during development.

      Moreover, ketogenic diets (KGDs), known for their effectiveness in disorders associated with E/I imbalances such as epilepsy and ASD, are found to induce DAF-16/FOXO during early development. Supplementation with β-hydroxybutyrate in the nematode at early developmental stages proves to be both necessary and sufficient to correct the effects on GABAergic signaling in daf-18/PTEN mutants.

      Strengths:

      The authors combined pharmacological, behavioral, and optogenetic experiments to show the

      GABAergic signaling impairment at the C. elegans neuromuscular junction in DAF-18/PTEN and DAF-

      16/FOXO mutants. Moreover, by studying the neuron morphology, they point towards

      neurodevelopmental defects in the GABAergic motoneurons involved in locomotion. Using the same set of experiments, they demonstrate that a ketogenic diet can rescue the inhibitory defect in the daf18/PTEN mutant at an early stage.

      Weaknesses:

      The morphological experiments hint towards a pre-synaptic defect to explain the GABAergic signaling impairment, but it would have also been interesting to check the post-synaptic part of the inhibitory neuromuscular junctions such as the GABA receptor clusters to assess if the impairment is only presynaptic or both post and presynaptic.

      Moreover, all observations done at the L4 stage and /or adult stage don't discriminate between the different GABAergic neurons of the ventral nerve cord, ie the DDs which are born embryonically and undergo remodeling at the late L1 stage, and VDs which are born post-embryonically at the end of the L1 stage. Those additional elements would provide information on the mechanism of action of the FOXO pathway and the ketone bodies.

      Thank you for your insightful suggestions. 

      This is an initial study that serves as a cornerstone, demonstrating the sensitivity of GABAergic neuron development to alterations in the PI3K pathway and how these alterations can be mitigated by a dietary intervention with a ketone body. While we have determined that the transcription factor DAF-16/FOXO is essential in the neurodevelopmental process and is the target of ketone bodies to alleviate defects, there are still underlying mechanisms to be elucidated. This is only the first step that opens many avenues for further investigation, including the study of post-synaptic partners.

      While our current study primarily focuses on neuronal alterations without delving into potential postsynaptic effects, we do plan to investigate this aspect in future research. This includes examining GABAergic receptors as well as cholinergic receptors, as exacerbation of cholinergic signaling cannot be ruled out. To conduct a comprehensive study of post-synaptic structure and functionality, we would need strains with fluorescent markers for both pre- and post-synaptic components (such as rab-3, unc-49, unc29, acr-16 fusion to GFP or mCherry). Unfortunately, most of these strains are not currently available in our laboratory. Unlike the US or Europe, acquiring these strains from the C. elegans CGC repository in Argentina is challenging due to common customs delays, which require significant time and resources to navigate. Discussions at the Latin American C. elegans conference with CGC administrators, such as Ann Rougvie, have been initiated to address this issue, but a solution has not been reached yet.  Additionally, to analyze post-synaptic functionality in-depth, studying the response to perfusion with various agonists using electrophysiology would be beneficial. We are in the process of acquiring the capability to conduct electrophysiology experiments in our laboratory, but progress is slow due to limited funding.

      While we believe these experiments are very informative, they will require a considerable amount of time due to our current circumstances. We consider them non-essential to the primary message of the paper, which focuses on neuronal developmental defects leading to functional alterations in daf-18/PTEN mutants and the novel finding that these can be mitigated by supplementing food with hydroxybutyrate. We will study the structure and functionality of the post-synapse in our future projects and also plan to extend this investigation to mutants with deficiencies in genes closely related to neurodevelopmental defects, such as neuroligin, neurexin, or shank-3, which have been implicated in synaptic architecture.

      We also agree that discriminating between DD and VD neurons provides significant insights into the neurodevelopmental phenomena dependent on the FOXO pathway and the action of βHB. In this revised version, we present evidence that not only DD neurons are affected but also VD neurons (see

      Supplementary Figure 3, revised version). This allows us to suggest that daf-18 affects the development of GABAergic neurons regardless of whether they are born embryonically (DDs) or post-embryonically (VDs) (see also our response to the previous reviewer). We hope to distinguish the defects observed in each type of neuron in future studies. For this, we would need to use strains specifically marked in one neuronal type or another, which, for the same reasons mentioned earlier, would take a considerable amount of time under current conditions. 

      Conclusion:

      Giunti et al provide fundamental insights into the connection between PTEN mutations and neurodevelopmental defects through DAF-16/FOXO and shed light on the mechanisms through which ketogenic diets positively impact neuronal disorders characterized by E/I imbalances.  

      Reviewer #3 (Public Review):

      Summary:

      This is a conceptually appealing study by Giunti et al in which the authors identify a role for PTEN/daf-18 and daf-16/FOXO in the development of inhibitory GABA neurons, and then demonstrate that a diet rich in ketone body β-hydroxybutyrate partially suppresses the PTEN mutant phenotypes. The authors use three assays to assess their phenotypes: (1) pharmacological assays (with levamisole and aldicarb); (2) locomotory assays and (3) cell morphological assays. These assays are carefully performed and the article is clearly written. While neurodevelopmental phenotypes had been previously demonstrated for PTEN/daf-18 and daf-16/FOXO (in other neurons), and while KB β-hydroxybutyrate had been previously shown to increase daf-16/FOXO activity (in the context of aging), this study is significant because it demonstrates the importance of KB β-hydroxybutyrate and DAF-16 in the context of neurodevelopment. Conceptually, and to my knowledge, this is the first evidence I have seen of a rescue of a developmental defect with dietary metabolic intervention, linking, in an elegant way, the underpinning genetic mechanisms with novel metabolic pathways that could be used to circumvent the defects.

      Strengths:

      What their data clearly demonstrate, is conceptually appealing, and in my opinion, the biggest contribution of the study is the ability of reverting a neurodevelopmental defect with a dietary intervention that acts upstream or in parallel to DAF-16/FOXO.

      Weaknesses:

      The model shows AKT-1 as an inhibitor of DAF-16, yet their studies show no differences from wildtype in akt-1 and akt-2 mutants. AKT is not a major protein studied in this paper, and it can be removed from the model to avoid confusion, or the result can be discussed in the context of the model to clarify interpretation.

      Thank you very much for the suggestion. We agree with the reviewer's appreciation that the study of AKT's action itself is too limited in this study to draw conclusions that would allow its inclusion in the proposed model. Therefore, following the reviewer's suggestion, we have removed this protein from our model

      When testing additional genes in the DAF-18/FOXO pathway, there were no significant differences from wild-type in most cases. This should be discussed. Could there be an alternate pathway via DAF-18/DAF16, excluding the PI3K pathway or are there variations in activity of PI3K genes during a ketogenic diet that are hard to detect with current assays?

      Thank you for bringing up this point. Our pharmacological experiments indeed demonstrate that all mutants associated with an exacerbation of the PI3K pathway, which typically inhibits nuclear translocation and activity of the transcription factor DAF-16, lead to imbalances in E/I

      (excitation/inhibition) that manifest as hypersensitivity to cholinergic drugs. This includes the gain of function of pdk-1 and the loss of function of daf-18 and daf-16 itself. In our subsequent experiments, we demonstrate that this exacerbation of the PI3K pathway leads to errors in the neurodevelopment of GABAergic neurons, which explains the hypersensitivity to aldicarb and levamisole.

      As the reviewer remarks, it is intriguing why mutants inhibiting this pathway do not show differences in their sensitivity to cholinergic drugs compared to wild-type animals. We can speculate, for instance, that during neurodevelopment, there is a critical period where the PI3K pathway must remain with very low activity (or even deactivated) for proper development of GABAergic neurons. This could explain why there are no differences in sensitivity to cholinergic drugs between mutants that inhibit the PI3K pathway and the wild type. The PI3K pathway depends on insulin-like signals, which are in turn positively modulated by molecules associated with the presence of food. Interestingly, larval stage 1 is particularly sensitive to nutritional status, being able to completely arrest development in the absence of food. Therefore, dietary intervention with BHB may generate a signal of dietary restriction (as seen in mammals) and, as a consequence of this dietary restriction, the PI3K pathway is inhibited, resulting in increased DAF-16 activity. This could restore the proper neurodevelopment of GABAergic neurons. However, this is mere speculation, and further deeper experiments (than the pharmacology ones we performed here) with mutants in different genes within the PI3K pathway may shed light on this point.

      Following the reviewer's suggestion, this point has been discussed in the revised version of the manuscript. (Discussion Page 18, Lines 384-407).

      The consequence of SOD-3 expression in the broader context of GABA neurons was not discussed. SOD3 was also measured in the pharynx but measuring it in neurons would bolster the claims.

      SOD-3 is a known target of DAF-16. Previous studies have shown that βHB induces SOD-3 expression through the induction of DAF-16 (Edwards et al, 2014, Aging,

      https://doi.org/10.18632%2Faging.100683). The highest levels of SOD-3 expression are typically observed in the pharynx or intestine (DeRosa et al, 2019 https://doi.org/10.1038/s41586-019-1524-5;  Zheng et al., 2021, PNAS, https://doi.org/10.1073/pnas.2021063118), and it is often used as a measure of general upregulation of DAF-16. Therefore, we used this parameter as a measure of βHB upregulating systemic DAF-16 activity.  While we agree with the reviewer that observing variations in SOD-3 expression in neurons would further support our conclusions, unfortunately, we did not detect measurable signals of SOD-3 in motor neurons in either the control condition or the daf-18 background even upon stress or BHB-exposure. This may be because SOD-3 is a minor target of DAF-16 in these neurons, or its modulation may not correspond to the timing of fluorescence measurements (L4-adults).

      Despite this, our genetic experiments and neuron-specific rescue experiments lead us to conclude that DAF-16 must act autonomously in GABAergic neurons to ensure proper neurodevelopment.

      If they want to include AKT-1, seeing its effect on SOD-3 expression could be meaningful to the model.

      Thank you for this suggestion. We believe that even measuring SOD-3 levels in akt mutant backgrounds would still provide limited information to give it a predominant value in our work. Additionally, to have a complete understanding of the total role of AKT, it would be necessary to measure it in a double mutant background of akt-1; akt-2, and these double mutants generate 100 % dauers even at 15C (Oh et al., PNAS 2005, https://doi.org/10.1073/pnas.0500749102; Quevedo et al., Current Biology 2007, http://dx.doi.org/10.1016/j.cub.2006.12.038; Gatzi et al., PLOS ONE 2014,

      https://doi.org/10.1371/journal.pone.0107671), greatly complicating the execution of these experiments. Therefore, following the first advice of this reviewer, we have decided to modify our model by excluding AKT.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      ⁃ Please include earlier in the main text the rationale for using unc-25 as a control/reference already when mentioning Figure 1A.

      Thank you for pointing out the need to reference this control earlier. We have included the following paragraph in the description of Figure 1 (Page 5, line 71, revised version):

      “Hypersensitivity to cholinergic drugs is typical of animals with an increased E/I ratio in the neuromuscular system, such as mutants in unc-25 (the C. elegans orthologue for glutamic acid decarboxylase, an essential enzyme for synthesizing GABA). While daf-18/PTEN mutants become paralyzed earlier than wild-type animals, their hypersensitivity to cholinergic drugs is not as severe as that observed in animals completely deficient in GABA synthesis, such unc-25 null mutants (Figures 1B and 1C) indicating a less pronounced imbalance between excitatory and inhibitory signals.”

      ⁃ Please discuss the greater sensitivity of pdk-1(gf) animals to levamisole than to aldicarb.

      Thank you for bringing up this subtle point.  We understand that the reviewer is referring to the paralysis curve in response to aldicarb in pdk-1(gf), which is closer to unc-25 than the curve for levamisole (in both cases, they are more sensitive than the wild type). Therefore, pdk-1(gf) animals seem to be more sensitive to aldicarb than to levamisole. These results are now shown in Figure 1D (revised version).

      The PI3K pathway does not only act in neurons but also in muscles. Gain of function in pdk-1 has been shown to modulate muscle protein degradation (Szewczyk et al, EMBO Journal, 2008. https://doi.org/10.1038/sj.emboj.7601540). In contrast,  no effect on protein degradation has been reported for null mutants in this gene. Several studies have demonstrated that protein degradation levels can differentially affect receptor subunits, particularly acetylcholine receptors (Reviewed in Crespi et al, Br J Pharmacol, 2018). C. elegans is characterized by a wide repertoire of AChR subunits, and there are at least two subtypes of ACh receptors in muscles (one multimeric sensitive to levamisole and one homomeric (ACR-16) insensitive to levamisole) (Richmond et al, 1999 Nature Neuroscience http://dx.doi.org/10.1038/12160; Touroutine D, JBC 2005 https://doi.org/10.1074/jbc.M502818200).

      Interestingly, acr-16 null mutants are hypersensitive to aldicarb (Zeng et al, JCB, 2023, https://doi.org/10.1083/jcb.202301117) while the electrophysiological response to levamisole in this mutant remains similar to that of wild-type (Tourorutine et al, 2005). Therefore, it may be that the gain of function in pdk-1 induces a change in the expression of AChR subtypes in muscle that differentially affect sensitivity to levamisole and ACh. This is purely speculative, and there may be many other explanations. While it would be interesting to explore this difference further, it goes far beyond the scope of this study. The cholinergic drug sensitivity assay is purely exploratory and allowed us to delve into the GABAergic and cholinergic signals in daf-18 mutants. In this sense, the hypersensitivity of pdk-1(gf) to both drugs supports the idea that an increase in PI3K signaling leads to an increased E/I ratio.

      ⁃ Please explain the rationale to perform akt-1 and akt-2 assays separated. Why not test doublemutants? Has their lack of redundancy been determined?.  

      Our pharmacological assays are conducted at the L4 larval stage, making it impossible to analyze the potential redundancy of akt-1 and akt-2 in sensitivity to levamisole and aldicarb. This impossibility arises because the akt-1;akt-2 double mutant exhibits nearly 100% arrest as dauer even at 15°C, as reported in several prior studies (Oh et al., PNAS 2005, https://doi.org/10.1073/pnas.0500749102; Quevedo et al., Current Biology 2007, http://dx.doi.org/10.1016/j.cub.2006.12.038; Gatzi et al., PLOS ONE 2014, https://doi.org/10.1371/journal.pone.0107671). While the increased dauer arrest in the double mutant compared to the single mutants might suggest redundant functions in dauer entry, there are also reports indicating the absence of redundancy in other processes, such as vulval development (Nakdimon et al., PLOS Genetics 2012, https://doi.org/10.1371%2Fjournal.pgen.1002881).

      The complete Dauer arrest likely underlies why other studies focusing on the role of the PI3K pathway in neurodevelopment utilize both mutants separately (Christensen et al, Development 2011,

      https://doi.org/10.1242/dev.069062). While determining the potential redundancy of these genes is not feasible for this assay, we utilized various mutants of the pathway (age-1, pdk-1, daf-18, daf-16 and daf16;daf-18 in addition to the akt-s) that support the conclusion, which is that exacerbating the PI3K pathway activity makes animals hypersensitive to cholinergic drugs.

      In response to the reviewer's concern, we have added a sentence in the text explaining the impossibility of performing the assay in the akt-1;akt-2 double mutant (Page 6, lines90-92) 

      Figure 1C and D (This applies to all similarly presented bar figures). Please show data points and dispersion (preferably data, median+- 25-75% or average+-SD). 

      Thank you. Done

      ⁃ Line 112 -maybe "and resumes"? 

      Thank you. Done (Line 126, revised version)

      ⁃ Figure 1E and F. Please present mean +-SD (not SEM) of fluctuations. Please change slightly the tones so that the dispersion is easier to distinguish on the "blue light on" box.

      Thank you for the suggestion. We have adjusted the tones as recommended to enhance the visualization of the "blue light on" box. For visualization purposes, we present the shading of the standard error of the mean (SEM), as is usual in these types of optogenetic experiments where traces of animal length variations are measured (Liewald et al, Nature Methods, 2008, doi: 10.1038/nmeth.1252; Schulstheis et al, J. Neurophysiology, 2011, doi: 10.1152/jn.00578.2010; Koopman et al, BMC Biology 2021, https://doi.org/10.1186/s12915-021-01085-2; Seidhenthal et al, Micro Publication Biology, 2022, https://doi.org/10.17912%2Fmicropub.biology.000607 ).

      For the revised version, we have also included bar graphs for each optogenetic experiment, representing the mean of the length average of each worm measured from the first second after the blue light was turned on until the second before the light was turned off (in the graph, this corresponds to the period between seconds 6 and 9 of the traces). These graphs include the standard deviation and the corresponding significance levels. All of this has been included in the new legend (Figure 2D, 2E, 4E-J).

      ⁃ Figure 1A&1B & Supplementary Figure 1D x Supplementary Figure 1E&1F. What is the difference between these experiments? Whereas the unc-25 mutants paralyze in the same amount of time, the WT animals paralyze ~1 h later in Supplementary Figure 1E-1F in response to either drug. Please revise experimental conditions to see if anything can be learned eg, maybe this is a nutritional response from experiments done at different timepoints? Maybe different food recipes affected sensitivity to paralysis?

      Thank you for pointing this out. While the experiments with daf-18 (in both alleles) and daf-16 were conducted at the beginning of this project (2019-2020), the assays with the other mutants in the PI3K and mTOR pathways were performed years later. Changes in the reagents used (agar, peptone, cholesterol, etc.) to grow the worms have occurred, potentially altering the animals' response directly or through the nutritional quality of the bacteria they grow on. In addition, the difference may be attributed to the fact that experiments at the project's outset were conducted by one author, while more recent experiments were carried out by another. The goal is to quantify paralysis in non-responsive worms after touch stimulation. The force of this probing or the thickness of the hair used for touching can be slightly operator-dependent and can lead to variable responses. In addition, always the presence of wild-type and unc-25 strain is included as internal control in every experiment. Nevertheless, despite this userdependent variation, the experiments were always conducted blindly (except for unc-25, whose uncoordinated phenotype is easily identifiable), thus we trust in the outcomes.

      ⁃ Supplementary Figure 1G - Length and Width appear to be switched in both left and right panels - please revise and include a description of N and of statistics depicted. 

      Unfortunately, we don't see the switching error that the reviewer mentioned. In the left panel, we demonstrate that optogenetic activation of GABAergic neurons leads to an increase in length without modifying the width of the animal. Therefore, we conclude that the increase in area, as observed in our Fiji macro for optogenetic response analysis, is due to an increase in the animal's length. In the cholinergic activation shown in the right panel, the animal shortens (decreasing length) without modifying the width, resulting in the reduction of the total body area. 

      We have included information about N (sample size) and the statistical test used in the legends as suggested. These graphs are now shown as Figures 2F and G, revised version.

      ⁃ Supplementary Figure 1G legend lines 779-780. Please describe the post-hoc test applied following ANOVA to obtain the denoted p values. This applies to all datasets where ANOVA or Krusal-Wallis tests were applied.

      Following reviewer´s suggestion, all the post-hoc tests applied after ANOVA or Kruskal-Wallis analysis were included in the legend of each figure and Materials and Methods (statistical analysis section).

      ⁃ Line 174 maybe "arises *from* the hyperactivation" instead of *for*?.

      Corrected. Thank you. Line 190, revised version.

      ⁃ Supplementary Figure 4. On line 816 it says n=40-90, but please check the n of the daf-18, daf-16 samples, which seem to have less than 40 animals.

      We understand that the reviewer is referring to Supplementary Figure 3 from the original version (now Supplementary Figure 5 in the revised version). We have now included the number of observations below each data point cloud to clearly indicate the sample size for each condition

      ⁃ Supplementary Figure 4 - please state what are the bars on the graphs. Please state which post-hoc test was performed after Kruskal-Wallis and present at least the p values obtained between treated controls and each genotype. Alternatively, present the whole truth table in supplementary daita.

      We understand that the reviewer is referring to Supplementary Figure 3 from the original version (now Supplementary Figure 5 in the revised version). There was an error in the original legend (thank you for bringing this to our attention) since the statistics were not performed using Kruskall-Wallis in this case, but rather each treated condition was compared to its own untreated control using Mann-Whitney test. We have now added the p-values to the graph. All raw data for this figure, as well as for all other figures, are available in Open Science Framework (https://osf.io/mdpgc/?view_only=3edb6edf2298421e94982268d9802050).

      ⁃ Please cite the figure panels in order: eg, Figure 3E is mentioned in the text after panels Figure 3F-K.

      Done. We have rearranged the figures to adapt them to the text order (Figure 4, revised version)

      ⁃ Figure 4 - line 610 please revise "(n=20-30 (n: 20-25 animals per genotype/trial)."

      Thank you. Corrected.

      ⁃ Figure 4 - there appears to be an inconsistency in the figure with the text (lines 223-225). In figures it says E-L1, but in the text, it says "solely in L1". Does E-L1 include the whole L1 stage? If not- E-L1 can be interpreted only as during the embryonic stage, hence, no exposure to betaHB due to the impermeable chitin eggshell. Then there is L1-L2, which should cover the L1 stage and the L2 or something else. Please revise. The text mentions L2-L3 or L3-L4 and these categories are not in the figures. This clarification is key for the interpretation of the results. The precise developmental time of the exposures is not defined either in the methods or in the figures. Please provide precise times relative to hours and/or molts and revise the text/figure for consistency.

      The reviewer is entirely correct in pointing out the lack of relevant data regarding the exposure time to βHB. We have now clarified the information For the revised version, we have adjusted the nomenclature of each exposure period to precisely reflect the developmental stages involved.

      For the experiments involving continuous exposure to βHB throughout development, the NGM plate contained the ketone body. Therefore, the exposure encompassed, in principle, the ex-utero embryonic development period up to L4-Young adults (E-L4/YA, in Figure 5A) when the experiments were conducted. Since it could be a restriction to drug penetration through the chitin shell of the eggs (see Supplementary Figure 7), we can ensure βHB exposure from hatching.

      In experiments involving exposure at different developmental stages as those depicted in Figure 4 of the original version, (now Figure 5), animals were transferred between plates with and without βHB as required. We exposed daf-18/PTEN mutant animals to βHB-supplemented diets for 18-hour periods at different developmental stages (Figure 5A). The earliest exposure occurred during the 18 hours following egg laying, covering ex-utero embryonic development and the first 8-9 hours of the L1 stage (This period is called E-L1, in figure 5 revised version). The second exposure period encompassed the latter part of the L1 stage, the entire L2 stage, and most of the L3 stage (L1-L3). The third exposure spanned the latter part of the L3 stage (~1-2 hours), the entire L4 stage, and the first 6-7 hours of the adult stage (L3-YA).

      All this information has been conveniently included in Figure 5 (and its legend), text (Page 13, lines 259276), and Material and Methods of the revised manuscript.

      ⁃ Some methods are not sufficiently well described. Specifically, how the animals were exposed to treatments and how stages were obtained for each experiment. Was synchronization involved? If so, in which experiments and how exactly was it performed?

      As mentioned in previous responses all the experiments were performed in age-synchronized animals. We include the following sentence in Materials and Methods (C. elegans culture and maintenance section): “All experiments were conducted on age-synchronized animals. This was achieved by placing gravid worms on NGM plates and removing them after two hours. The assays were performed on the animals hatched from the eggs laid in these two hours”.

      Reviewer #2 (Recommendations For The Authors):

      Major points

      (1) To complete the study on the GABAergic signaling at the NMJs, it would be interesting to assess the status of the post-synaptic part of the synapse such as the GABAR clustering. It would also tell if the impairment is only presynaptic or both post and presynaptic.

      Thank you for your insightful suggestion. We agree that exploring post-synaptic elements can shed light on whether the impairment is solely presynaptic or involves both pre and post-synaptic components.

      While our current study primarily focuses on neuronal alterations without delving into potential postsynaptic effects, we do plan to investigate this aspect in the future. This includes not only examining GABAergic receptors but also exploring cholinergic receptors, as exacerbation of cholinergic signaling cannot be ruled out. To conduct a comprehensive study of post-synaptic structure and functionality, we would need strains with fluorescent markers for both pre and post-synaptic components (rab-3, unc-49, unc-29, acr-16 driving GFP or mCherry). However, most of these strains are not currently available in our laboratory. Unlike the US or Europe, acquiring these strains from the C. elegans CGC repository in Argentina is challenging due to common customs delays, requiring significant time and resources to navigate. Discussions at the Latin American C. elegans conference with CGC administrators, such as Ann Rougvie, have been initiated to address this issue, but a solution has not been reached yet. 

      Additionally, to analyze post-synaptic functionality in-depth, studying the response to perfusion with various agonists using electrophysiology would be beneficial. We are in the process of acquiring the capability to conduct electrophysiology experiments in our laboratory, but progress is slow due to limited funding.

      While we believe these experiments are very informative, they will require a considerable amount of time due to our current circumstances. We consider them non-essential to the primary message of the paper, which focuses on neuronal morphological defects leading to functional alterations in daf-18/PTEN mutants.

      We will include these experiments in our future projects, also planning to extend this investigation to mutants with deficiencies in genes closely related to neurodevelopmental defects, such as neuroligin, neurexin, or shank-3, which have been implicated in synaptic architecture.

      (2) The author always referred to unc-47 promoter or unc-17 promoter, never specifying where those promoters are driving the expression (and in the Materials & Methods, no information on the corresponding sequence). Depending on the promoters they may not only be expressed in the motoneurons involved in locomotion (VA, VB, DA, DB, VD, and DD), but they could also be expressed in other neurons which could be of importance for the conclusions of the optogenetic assays but also the daf-18 expression in GABAergic neurons.

      We appreciate the reviewer's insight regarding the broader expression patterns of the unc-17 and unc-47 promoters in all cholinergic and GABAergic neurons, respectively. The strains expressing constructs with these promoters were obtained from the CGC or other labs and have been widely used in previous papers (Liewald et al, Nature Methods, https://www.nature.com/articles/nmeth.1252 (2008); Byrne, A. B. et al. Neuron 81, 561-573, doi:10.1016/j.neuron.2013.11.019 (2014).

      Regarding the optogenetic assays, the readout utilized (body length elongation or contraction) is primarily associated with the activity of cholinergic and GABAergic motor neurons and has been used in numerous studies to measure motor neuron functionality (Liewald et al, Nature Methods, https://www.nature.com/articles/nmeth.1252 (2008);Hwang, H. et al. Sci Rep 6, 19900, doi:10.1038/srep19900 (2016); Schultheis et al,  . J Neurophysiol 106, 817-827, doi:10.1152/jn.00578.2010 (2011); Koopman, M., Janssen, L. & Nollen, E. A. BMC Biol 19, 170, doi:10.1186/s12915-021-01085-2 (2021);). It has previously been established that the shortening observed after optogenetic activation of the unc-17 promoter, while active in various interneurons, depends on the activity of cholinergic motor neurons (Liewald et al., Nature Methods, https://www.nature.com/articles/nmeth.1252 (2008)). This was demonstrated by examining transgenic worms expressing ChR2-YFP from another cholinergic, motoneuronspecific but weaker promoter, Punc-4. They observed contraction and coiling upon illumination, albeit to a milder degree.

      In terms of GABAergic neurons, only 3 do not directly synapse to body wall muscles (AVL, PDV, and RIS) and are primarily involved in defecation. Of the 23 GABAergic motor neurons, 19 are Dtype motoneurons, while the remaining 4 innervate head muscles (Pereira et al, eLife 2015, https://doi.org/10.7554/eLife.12432). It is therefore expected that while there may be some contribution from these latter neurons to the elongation after optogenetic activation in animals containing punc-47::ChR2, the main contribution should be from the D-type neurons. Additionally, while there may be some influence on D-type neuron development due to daf-18 rescue in neurons like RME, DVB or AVL, the most direct explanation for the rescue is that daf-18 acts autonomously in D-type cells.  Additionally, we have pharmacological and behavioral assays that support the findings of optogenetics and enable us to reach final conclusions.

      (3) DD neurons are born during embryogenesis and newborn L1s have neurites even though less than at a later stage. If possible, it would be interesting to take a look at them to see if βHB has an effect or not. It will corroborate the hypothesis that βHB action is prevented by the impermeable eggshell on a system that can respond at a later stage. Moreover, using a specific DD, DA, and DB promoter, it would be possible to check if there is a difference in the morphological defects between embryonic and post-embryonic neurons.

      This is a very interesting point raised by the reviewer. We conducted experiments to analyze the morphology of GABAergic neurons in animals exposed to βHB only during the ex-utero embryonic development (in their laid egg state). We observed that this incubation was not sufficient to rescue the defects in GABAergic neurons (Supplementary Figure 7, revised version). As reported by other authors and discussed in our paper, the chitinous eggshell might act as an impermeable barrier to most drugs. However, we cannot rule out that incubation during this period is necessary but not sufficient to mitigate the defects. We have included these experiments in Supplementary Figure 7 and in the text (Page 13, lines 272-276)

      Additionally, we analyzed confocal images where, based on their position, we could identify and assess errors in DD (embryonic) and VD (Post-embryonic) neurons (Supplementary Figure 3, revised version). These experiments show that the effects are observed in both types of neurons, and we did not observe any differential alterations in neuronal morphology between the two types of neurons.

      Minor points

      (1)   Expression of daf-18/PTEN in muscle or hypodermis, could it ensure a proper development? It could give insights into the action mechanism of βHB.

      The reviewer's observation is indeed very intriguing. Previous studies from the Grishok lab (Kennedy et al, 2013) have demonstrated that the expression of daf-18 or daf-16 in extraneuronal tissues, specifically in the hypodermis, can rescue migratory defects in the serotoninergic neuron HSN in daf-18 or daf-16 null mutants of C. elegans. Clearly, this could also be an option for rescuing the morphological and functional defects of GABAergic motoneurons.

      However, the fact that the expression of daf-18 in GABAergic neurons rescues these defects strongly suggests an autonomous effect. In this regard, autonomous effects of DAF-18 or DAF-16 on neurodevelopmental defects have also been reported in interneurons in C. elegans (Christensen et al, 2011). This is included in the discussion (Page 15, lines 330-335)

      (2) Re-organise the introduction. The paragraph on ketogenic diets (lines 35-38) is not logically linked.

      Following reviewer´s suggestion we have reorganized the introduction and changed the order of explanation regarding the significance of ketogenic diets, linking it with their proven effectiveness in alleviating symptoms of diseases with E/I imbalance (Lines 23-60, revised version)

      (3) Incorporate titles in the result section to guide the reader.

      Done. Thank you

      (4) Systematically add PTEN or FOXO when daf-18 or daf-16 are mentioned (for example lines 69, 84, 85).

      Done. Thank you  

      (5) Strain lists: lines 646 to 653: some information is missing on the different transgenes used in this study (integrated (Is) or extrachromosomal (Ex) with their numbers).

      Thank you for bringing this to our attention. We have now included all the information regarding the different transgenes used in this study, including whether they are integrated (Is) or extrachromosomal (Ex) and their respective numbers. This information can be found in the revised version of the manuscript (Materials and Methods, C. elegans culture and maintenance section highlighted in yellow).

      Reviewer #3 (Recommendations For The Authors):

      In Figure 1, some experiments were done with the unc-25 control while others, such as the optogenetic experiments, were done without those controls.

      Thank you for pointing this out. In the optogenetic experiments, we waited for the worm to move forward for 5 seconds at a sustained speed before exposing it to blue light to standardize the experiment, as the response can vary if the animal is in reverse, going forward, or stationary. Due to the severity of the uncoordinated movement in unc-25 mutants, achieving this forward movement before exposure is very difficult. Additionally, this lack of coordination prevents these animals from performing the escape response tests, as they barely move. Therefore, we limited the use of this severe GABAergic-deficient control to pharmacological or post-prodding shortening experiments.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      […]

      (1) The authors claim that the negative frequency dependence that maintains polymorphism in their model results from a non-linear relationship between the display trait and sexual success [...] Maybe I missed something, but the authors do not provide support for their claim about the negative frequency-dependence of sexual selection in their simulations. To do so they could (1) extract the relationship between the relative mating success of the two male types from the simulations and (2) demonstrate that polymorphism is not maintained if the relationship between male display trait and mating success is linear.

      We believe that there is a confusion of terminology here. We agree that for the two alleles at a locus impacting male display in our model, the allele conferring inferior display quality will have a fitness that increases as its frequency increases, so this allele displays positive frequency dependent fitness. And, the alternate, display-favoring allele at the locus does display negative frequency dependence. Our use of the terminology ‘negative frequency dependence’ was meant to refer to the negative dependence of the fitness of the display-favoring allele with respect to its own frequency. However, a significant body of literature instead discusses models in which both an allele and its alternate(s) are beneficial when at low frequency and deleterious when at high frequency under the same selective challenge, entailing negative frequency dependence of fitness for all alleles involved. This benefit-when-rare model of a single trait is often described simply as negative frequency dependence, and generates balancing selection at the locus, but is not the model we are presenting here, and does not encompass all models involving negative frequency dependent fitness. This lexical expectation may make the interpretation of our work more difficult, and we have amended the manuscript to make our model clearer (lines 227-231). In this model, we have a negative frequency dependence for the fitness of the display-favoring allele in mate competition, but the net selective disadvantage of this allele at high frequency is due to a cost in another, pleiotropic, fitness challenge: the constant survival effect. So, the alleles are under balancing selection where alternate alleles are favored by selection when rare, but not due solely to selection during mate competition. Instead, our model relies on pleiotropy for an emergent form of frequency-dependent balancing selection (in the sense that each allele is predicted to be beneficial on balance when rare).

      In the reviewer’s model of the success of two alleles at one locus, the ratio of success is vaguely linear with allele frequency for n=3, though it starts quite convex and has an inflection point between convex and concave segments (for the disfavored allele) at p≈0.532. This is visualized easily by plotting the function and its derivatives in Wolfram-Alpha. For n>=4, the fitness function with respect to the display-favoring/disfavoring allele becomes increasingly concave/convex respectively, and this specific nonlinearity is needed to act along with the antagonistic pleiotropy to maintain balancing selection, rather than being maintained by a model that favors any rare allele on the basis of its rarity in some manner. In an attempt to make the importance of the encounter number parameter clearer, we’ve generated new panels for Figure S1 which simulate encounter numbers 2, 3, and 4, and we have updated corresponding text and figure references in lines 335-338.

      For (1-2), it is not clear how to modify the simulation such that the relationship between the trait value and mating success can be perfectly linear - either linear with respect to allele frequency in a one locus model or linear with respect to trait value at a specific population composition, without removing the simulation of mate competition altogether. While it may be of interest to explore a more comprehensive range of biological trade-offs in future studies, we are not able to meaningfully do so within the context of the present manuscript.

      (2) The authors only explore versions of the model where the survival costs are paid by females or by both sexes. We do not know if polymorphism would be maintained or not if the survival cost only affected males, and thus if sexual antagonism is crucial.

      We now present simulations with male costs only as added panels to Figure S1 and mention these results in the main text (lines 334-335). Maintenance of the polymorphism is significantly reduced or completely absent in such simulations.

      (3) The authors assume no cost to aneuploidy, with no justification. Biologically, investment in aneuploid eggs would not be recoverable by Drosophila females and thus would potentially act against inversions when they are rare.

      We did offer some discussion and justification of our decision to model no inherent fitness of the inversion mutation itself, specifically aneuploidy, in lines 36-39 and 78-80 of the original reviewed preprint. Previous research suggests that D. melanogaster females may not actually invest in aneuploid eggs generated from crossover within paracentric inversions. While surprising, and potentially limited to a subset of clades, many ‘r-selected’ taxa or those in which maternal investment is spread out over time may have some degree of reproductive compensation for non-viable offspring, which can reduce the costs of generating aneuploids significantly (for example, t-haplotypes in mice). We have added this example and citation to lines 34ff in the current draft.

      (4) The authors appear to define balanced polymorphism as a situation in which the average allele frequency from multiple simulation runs is intermediate between zero and one (e.g., Figure 3). However, a situation where 50% of simulation runs end up with the fixation of allele A and the rest with the fixation of allele B (average frequency of 0.5) is not a balanced polymorphism. The conditions for balanced polymorphism require that selection favors either variant when it is rare.

      We originally chose mean final frequency for presenting the single locus simulations based on the ease of generating a visual plot that included information on fixation vs loss and equilibrium frequency. Figure 3 and related supplemental images have been changed to now also represent the proportion of simulations retaining polymorphism at the locus in the final generation.

      (5) Possibly the most striking result of the experiment is the fact that for 14 out of 16 combinations of inversion x maternal background, the changes in allele frequencies between embryo and adult appear greater in magnitude in females than in males irrespective of the direction of change, being the same in the remaining two combinations. The authors interpret this as consistent with sexually antagonistic pleiotropy in the case of In(3L)Ok and In(3R)K. The frequencies of adult inversion frequencies were, however, measured at the age of 2 months, at which point 80% of flies had died. For all we know, this may have been 90% of females and 70% of males that died at this point. If so, it might well be that the effects of inversion on longevity do not systematically differ between the ages and the difference in Figure 9B results from the fact that the sample includes 30% longest-lived males and 10% longest-lived females.

      This critique deserves some consideration. The aging adults were separated by sex during aging, but while we recorded the number of survivors, we did not record the numbers of eclosed adults and their sexes initially collected out of an interest in maintaining high throughput collection. We therefore cannot directly calculate the associated survival proportions, but we can estimate them. We collected 1960 females and 3156 males, and we can very roughly estimate survival if we assume that equal numbers of each sex eclosed, and that the survivors represent 20% of the original population. That gives 12790 individuals per sex, or 84.7% female mortality and 75.3% male mortality.

      So, we have added a qualification discussing the possibility of stronger selection on females and its influence on observed sex-specific frequency changes, on lines 602-605.

      (6) Irrespective of the above problem, survival until the age of 2 months is arguably irrelevant from the viewpoint of fitness consequences and thus maintenance of inversion polymorphism in nature. It would seem that trade-offs in egg-to-adult survival (as assumed in the model), female fecundity, and possibly traits such as females resistance to male harm would be much more relevant to the maintenance of inversion polymorphisms.

      Adult Drosophila will continue to reproduce in good conditions until mortality, and the estimated age of a mean reproductive event for a Drosophila melanogaster individual is 24 days (Pool 2015), and likewise for D. simulans (Turelli and Hoffman 1995). Given that reproduction is centered around 24 days, we expect sampling at 2 months of age to still be relevant to fitness. In seasonally varying climates, either temperate or with long dry season, survival through challenging conditions is expected to require several months. In many such cases, females are in reproductive diapause, and so longevity is the main selective pressure. See lines 931-936 in the revised manuscript.

      As we agreed above, it would of interest to investigate a wider range of trade-offs in future studies. We focused here on the balanced between survival and male reproductive success because the latter trait generates negative frequency dependence for display-favoring alleles and a disproportionate skew towards higher quality competitors, whereas many other fitness-relevant traits lack that property.

      (7) The experiment is rather minimalistic in size, with four cages in total; given that each cage contains a different female strain, it essentially means N=1. The lack of replication makes statements like " In(2L)t and In(2R)NS each showed elevated survival with all maternal strains except ZI418N" (l. 493) unsubstantiated because the claimed special effect of ZI418N is based on a single cage subject to genetic drift and sampling error. The same applies to statements on inversion x female background interac7on (e.g., l. 550), as this is inseparable from residual variation. It is fortunate that the most interesting effects appear largely consistent across the cages/female backgrounds. Still, I am wondering why more replicates had not been included.

      Our experimental approach might be described as “diversity replication”. Essentially, the four maternal genetic backgrounds are serving dual purposes – both to assess experimental consistency and to ensure that our conclusions are not solely driven by a single non-representative genotype (which in so many published studies, can not be ruled out). It would indeed be interesting if we could have quadrupled the size of our experiment by having four replicates per maternal background. However, we suspect the reviewer may not recognize the substantial effort involved in our four existing experiments. Each of these involved collecting 500+ virgin females, hand-picking thousands of embryos during the duration of egg-laying, and repeatedly transferring offspring to maintain conditions during aging, such that cages had to be staggered by more than a month. These four cages took a year of benchwork just to collect frozen samples, before any preparation and quality control of the associated amplicon libraries for sequencing. Adding a further multiplier would take it well beyond the scope of a single PhD thesis.  Fortunately, we were able to obtain the key results of interest without that additional effort, even if clearer insights into the role of maternal background would also be of strong interest.

      We do agree that no firm conclusions about maternal background can be reached without further replication, and so we have qualified or removed relevant statements accordingly (lines 568ff, 620-622).

      Reviewer #1 (Recommendations For The Authors):

      The description of the model is confusing and incomplete, e.g., the values of several parameters used to obtain the numerical results are not given. It is first stated (l. 223) that the model is haploid, but text elsewhere talks about homozygotes and heterozygotes. If the model is diploid (this in itself is not clear), what is assumed about dominance?

      We are not presenting results for a mathematical model estimated numerically. We have now clarified our transition from a conceptual depiction of our model, in which we use haploid representations for simplified presentation, to our forward population genetic simulations, which are entirely diploid. More broadly, we have improved our communication of the assumptions and parameters used in our simulations. The scenarios we investigate involve purely additive trait effects within and between loci (except that survival probabilities are multiplicative to avoid negative values). We think that considering other dominance scenarios would be a worthy subject for a follow-up study, whereas the present manuscript is already covering a great deal of ground.   

      Similarly, it is hard to understand the design (l.442ff). I was confused as to whether a population was set up for each inversion or for all of them and what the unit or replication was. I found the description in Methods (l. 763-771) much clearer and only slightly longer; I suggest the authors transfer it to the Results. Also, Figure 8 should contain the entire crossing scheme; the current version is misleading in that it implies males with only two genotypes.

      All four tested inversions were segregating within the same karyotypically diverse population of males, and were assayed from the same experiments. We have attempted to improve the relevant description. For Figure 8, we had trouble conceiving a graphic update that contained a more complete cross scheme without seeming much more confused and cluttered. We have tried to clarify in the relevant text and the figure caption instead.

      There are a number of small issues that should be addressed:

      - No epistasis for viability assumed - what would be the consequence?

      We explored a model in which we intentionally included no terms for epistatic effects on phenotype. All epistasis with regard to fitness is emergent from competition between individuals with phenotypes composed of non-epistatic, non-dominant genetic effects. So, the simplest model of antagonism would have no epistasis for viability whatsoever. One could explore a model that has emergent viability epistasis in a similar way, by implementing stabilizing selection on a quantitative trait with a gaussian or similar non-linear phenotype-to-fitness map, but that might be better served as a topic for a future study. We have, however, tried to make this intent clearer in the text.

      l. 750 implies that aneuploidy generated by the inversion has no cost (aneuploid games are resampled)

      Yes, as addressed in public review item (3). Alternately see lines 34ff, 293, 369, 392 for in-text edits.

      l. 24-25: unclear; is this to mean that there is haplotype x sex interaction for survival?

      l. 25: success in what? (I assume this will be explained in the paper, but the abstract should stand on its own).

      l. 193-4: "producing among most competitive males": something missing or a word too much?? Figure 1B,C: a tiny detail, but the plots would be more intuitive if the blue (average) bars were ager (i.e., to the right) of the male and female ones, given that the average is derived from the two sex-specific values.

      Each of the above have been edited or implemented as suggested

      l. 205. It is convex function, but I do not understand what the authors mean by "convex distribution".

      Hopefully the updated text is clearer: “yielding a distribution of male reproductive output that follows a relatively convex trend”.

      l. 223ff: some references to Fig 1 panels in this paragraph seem off by one letter (i.e., A should be B, etc.).

      l. 231 "fitness...are equally fit": rephrase 

      l. 260: maybe "thrown out" is not the most fortunate term, maybe "eliminated" would be better?

      Each of the above have been edited or implemented as suggested

      Figure 3: I do not understand the meaning of "additive" and "multiplicative" in the case of a single locus haploid model

      All presented simulations are diploid, and these refer to the interactions between the two alleles at the locus. Hopefully the language is overall clearer in this draft.

      l. 274: "Mutation of new nucleotide" meaning what? Or is it mutation _to_ a new nucleotide?

      Hopefully the revised text is clearer.

      Figure 5. The right panel of figure 5A implies that, with the inversion, the population evolves to an extreme display trait that is so costly that it fills 95% of all individuals (or of all females?

      What is assumed about this here?). Apart from the biological realism of this result, what does it say about the accumulation of polymorphism and maintenance of the inversion? The graphs in fig 5B do plot a divergence between haplotypes, but it is not clear how they relate to those in panel A - the parameter values used to generate these plots are again not listed. Furthermore, from the viewpoint of the polymorphism, it would be good to report the frequencies at the steady-state.

      We have now clarified the figure description, including the parameter values used. The distribution of frequencies at the end of the simulation is represented in figure 6. Given that we set up the simulation with assumptions that are otherwise common to population models, what biological process would prevent this extreme? Why isn’t this extreme observed in natural populations? One possible explanation is that they become sex chromosomes, with increasing likelihood as the cost increases. Or other compensatory changes may occur that we don’t simulate, like regulatory evolution giving a complementary phenotype. Maybe genetic constraints in natural populations prevent the mutation of the kind of pleiotropic mutations that drive this dynamic. The populations still survive, though they are parameterized by relative fitness. What would an absolute fitness population function be? Would it go extinct or not? It would be of interest to explore a wider range of models, but it is the purpose of this paper to establish that this is a viable model for the maintenance of sexually antagonistic polymorphism and association with inversions. We have added a paragraph motivated by this comment to the Discussion starting on line 765.

      l. 401-2: Z-like, W-like : please specify you are talking about patterns resembling sex chromosomes. 

      l. 738: "population calculates"?

      l. 743-4 and 746-7: is this the same thing said twice, or are there two components of noise?  l. 357: there is no figure 5C.

      Each of the above have been addressed with text edits.

      L. 473-5: Yes, the offspring did not contain inversion homozygotes, but the sire pool did, didn't it? So homozygous inversions may have affected male reproductive success. Anyway, most of this paragraph (from line 473) seems to belong in Discussion rather than Results.

      We have revised this sentence to focus on offspring survival. 

      We can understand the reviewer’s suggestion about Results vs. Discussion text. While this can often be a challenging balance, we find that papers are often clearer if some initial interpretation is offered within the Results text. However, we moved the portion of this paragraph relating our findings to the published literature to the Discussion.

      l. 516: " In(3L)Ok favored male survival": this is misleading/confusing given the data, " In(3L)Ok reduced female survival more strongly than male survival..."

      Hopefully the phrasing is clearer now.

      l. 663ff: I did not have an impression that this section added anything new and could safely be cut.

      We have done some editing to make this more concise and emphasize what we think is essential, but we believe that the model of an autosomal, sexually antagonistic inversion differentiating before contributing to the origin of a sex chromosome is novel and interesting. And, that this additional emphasis is worthwhile to encourage thought and consideration of this idea in future research and among interested researchers.

      l. 751: "flat probability per locus": do the authors mean a constant probability?

      Edited.

      Reviewer #2 (Public Review):

      The manuscript lacks clarity of writing. It is impossible to fully grasp what the authors did in this study and how they reached their conclusions. Therefore, I will highlight some cases that I found problematic.

      Hopefully the revised manuscript improves writing clarity. 

      Although this is an interesting idea, it clearly cannot explain the apparent influence of seasonal and clinal variation on inversion frequencies.

      We do not believe that our model predicts a non-existence of temporal and spatial dependence of the fitness of inverted haplotypes, nor do we seek to identify the manner in which seasonal and clinal differences affect fitness of inverted haplotypes. Rather, we argued that the influence of seasonal and clinal selection on inversions does not on its own predict the observed maintenance of inversions at low to intermediate frequencies across such a diverse geographic range, along with the higher frequencies of many derived inversions in more ancestral environments. 

      We might imagine that trade-offs between life history traits such as mate competition and survival should be universal across the range of an organism. But in practice, the fitness benefits and costs of a pleiotropic variant (or haplotype) may be heavily dependent on the environment. A harsh environment such as a temperate winter may both reduce the number of females that a male encounters (decreasing the benefit of display-enhancing variants) and also increase the likelihood that survival-costly variants lead to mortality (thus increasing their survival penalty). In light of such dynamics, our model would predict that equilibrium inversion frequencies should be spatially and temporally variable, in agreement with a number of empirical observations regarding D. melanogaster inversions.

      We have edited the introduction to emphasize that inversion frequencies vary temporally as well as seasonally, on lines 144ff. We also note relevant discussion of the potential interplay between the environment and trade-offs such as those we investigate, on lines 153-155.

      The simulations are highly specific and make very strong assumptions, which are not well-justified.

      We respond to all specific concerns expressed in the Recommendations For The Authors section below. We also note that we have made further clarifications throughout the text regarding the assumptions made in our analysis and their justification.  

      Reviewer #2 (Recommendations For The Authors):

      I think that the manuscript would greatly benefit from a major rewrite and probably also a reanalysis of the empirical data.

      In particular, a genome-wide analysis of differences in SNP frequencies between sexes and developmental stages would help the reader to appreciate that inversions are special.

      [moved up within this section for clarity] We are lacking a genomic null model-how often do the authors see similar allele frequency differences when looking at the entire genome? This could be easily done with whole genome Pool-Seq and would tell us whether inversions are really different from the genomic background. I think that this information would be essential given the many uncertainties about the statistical tests performed. 

      We expect that autosome-wide SNP frequencies will be heavily influenced by the frequencies of inversions, which occur on all four major autosomal chromosome arms. These inversions often show moderate disequilibrium with distant variants (e.g. Corbett-Detig & Hartl 2012).

      Furthermore, the limited number of haplotypes present, given that the paternal population was founded from 10 inbred lines, would further enhance associations between inversions and distant variants. Therefore, we do not expect that whole-genome Pool-Seq data would provide an appropriate empirical null distribution for frequency changes. Instead, we have generated appropriate null predictions by accounting for both sampling effects and experimental variance, and we have aimed to make this methodology clearer in the current draft. 

      Some basic questions:

      why start at a frequency of 50% (line 287)?

      Isn't it obvious that in this scenario strong alleles with sexually antagonistic effects can survive?

      The initial goal of the associated Figure 4 was not to show that a strongly antagonistic variant could persist. Instead, we wanted to test the linkage conditions in which a second, relatively weaker antagonistic variant survived – which did not occur in the absence of strong linkage. 

      We have now added simulations with relatively lower initial frequencies, in which the weaker variant and the inversion both start at 0.05 frequency, while the stronger variant is still initialized at 0.5 to reflect the initial presence of one balanced locus with a strongly antagonistic variant. Here, the weaker antagonistic variant is still usually maintained when it is close to the stronger variant, and while the inversion-mediated maintenance of the weaker variant at greater distance from the stronger variant because less frequent than the original investigated case, it still happens often enough to hypothetically allow for such outcomes over evolutionary time-scales.

      Still, we should also emphasize that the goals of this proof-of-concept analysis are to establish and convey some basic elements of our model. Subsequently, analyses such as those presented in Figures 5 and 6 provide clearer evidence that the hypothesized dynamics of inversions facilitating the accumulation of sexual antagonism actually occur in our simulations.

      The experiments seem to be conducted in replicate (which is of course essential), but I could not find a clear statement of how many replicates were done for each maternal line cross.

      How did the authors arrive at 16 binomial trials (line 473)? 4 inversions, 4 maternal genotypes?

      How were replicates dealt with?

      In Figure 9, it would be important to visualize the variation among replicates.

      Unfortunately, we did not have the bandwidth to perform replicates of each maternal line. Instead, we use four maternal backgrounds to simultaneously establish consistency across independent experiments and genetic backgrounds (see our response to Reviewer 1, point 7). We’ve edited the draft to make this clearer and more clearly delineate what is supported and not supported by our data. Replicate variation for the control replicates of the extraction and sequencing process, and the exact read counts of the experiment, are available in Supplemental Tables S5, S6, and S7.

      The statistical analysis of trade-off is not clear: which null model was tested? No frequency change? In my opinion, two significances are needed: a significant difference between parental and embryo and then embryo and adult offspring. The issue with this is, however, that the embryo data are used twice and an error in estimating the frequency of the embryos could be easily mistaken as antagonistic selection.

      Hopefully the description of our null model is clearer in the text, now starting around line 967 in the Methods. We are aware of the positive dependence when performing tests comparing the paternal to embryo and then embryo to offspring frequencies, and this is accounted for by our analysis strategy - see lines 1009-1012.

      It was not clear how the authors adjusted their chi-squared test expectations. Were they reinventing the wheel? There is an improved version of the chi-squared test, which accounts for sampling variation.

      We did not actually perform chi-square tests. Instead, we used the chi statistic from the chi-squared test as a quantitative summary of the differences in read counts between samples. We compared an observed value of chi to values for this statistic obtained from simulated replicates of the experiment. Sampling from this simulation generated our ‘expected’ distribution of read counts, sampled to match sources of variance introduced in the experimental procedure, but without any effect of natural selection, per lines 825ff in the original submission. Hence, we are approximating the likelihood of observing an empirical chi statistic by generating random draws from a model of the experiment and comparing values calculated from each draw to the experimental value: a Monte Carlo method of approximating a p-value for our data. We have attempted to make the structure of these simulations and their use as a null-model clearer in this draft.

      It is not sufficiently motivated why the authors model differences in the extraction procedure with a binomial distribution.

      Adding a source of variance here seemed necessary as running control sequencing replicates revealed that there was residual variance not fully recapitulated by sample-size-dependent resampling. Given that we were still sampling a number of draws from a binomial outcome (the read being from the inverted or standard arrangement), a binomial distribution seemed a reasonable model, and we fit the level of this additional noise source to an experiment-wide constant, read-count or genome-count independent parameter that best fit the variance observed in the controls (lines 830ff in the original draft). Clarification is made in this manuscript draft, lines 979-989.

      How many reads were obtained from each amplicon? It looks like the authors tried to mimic differences between technical replicates by a binomial distribution, which matches the noise for a given sample size, but this depends on the sequence coverage of the technical replicates.

      We provide read counts in Supplemental Tables S6 and S7. The relevant paragraph in the methods has been edited for clarity, lines 972ff. Accounting for sampling differences between replicates used a hypergeometric distribution for paternal samples to account for paternal mortality before collection, and the rest were resampled with a binomial distribution. There were two additional binomial samplings, to account for resampling the read counts and to capture further residual variance in the library prep that did not seem to depend on either allele or read counts.

      It would be good to see an estimate for the strength of selection: 10% difference in a single generation appears rather high to me.

      Estimates of selection strength based on solving for a Wright-Fisher selection coefficient for each tested comparison can now be found in Table S8, mentioned in text on lines 589-590. The mean magnitude of selection coefficients for all paternal to embryo comparisons was 0.322, and for embryo to all adult offspring it was 0.648. For In(3L)Ok the mean selection coefficients were 0.479 and -0.53, and for In(3R)K they were -0.189 and 1.28, respectively. Some are of quite large magnitude, but we emphasize that the coefficients for embryo to adult are based on survival to old age, rather than developmental viability. That factor, in addition to the laboratory environment, makes these estimates distinct from selection coefficients that might be experienced in natural populations.

      Reviewer #3 (Public Review):

      Strengths:

      (1) …the authors developed and used a new simulator (although it was not 100% clear as to why SLiM could not have been used as SLiM has been used to study inversions).

      Before SLiM 3.7 or so (and including when we did the bulk of our simulation work), we do not think it would have been feasible to use SLiM to model the mutation of inversions with random breakpoints and recombination between without altering the SLiM internals. Separately, needing to script custom selection, mutation, and recombination functions in Eidos would have slowed SLiM down significantly. Given our greater familiarity with python and numpy, and the ability to implement a similar efficiency simulator more quickly than through learning C++ and Eidos, we chose to write our own.

      It should be a fair bit easier to implement comparable simulations in SLiM now, but it will still require scripting custom mutation, selection, and recombination functions and would still result in a similarly slow runtime. The current script recipe recommended by SLiM for simulating inversions uses constants to specify the breakpoints of a single inversion, without the ability to draw multiple inversions from a mutational distribution, or model recombination between more complicated karyotypes. Hence, our simulator still seems to be a more versatile and functional option for the purposes of this study.

      Weaknesses:

      [Comments 1 through 4 on Weaknesses included numerous citation suggestions, and some discussion recommendations as well. In our revised manuscript, we have substantially implemented these suggestions. In particular, we have deepened our introduction of mechanisms of balancing selection and prior work on inversion polymorphism, integrating many

      suggested references. While especially helpful, these suggestions are too extensive to completely quote and respond to in this already-copious document. Therefore, we focus our response on two select topics from these comments, and then proceed to comment 5 thereafter.]

      (2) The general reduction principle and inversion polymorphism. In Section 1.2., the authors state that "there has not been a proposed mechanism whereby alleles at multiple linked loci would directly benefit from linkage and thereby maintain an associated inversion polymorphism under indirect selection." Perhaps I am misunderstanding something, but in my reading, this statement is factually incorrect. In fact, the simplest version of Dobzhansky's epistatic coadaptation model

      (see Charlesworth 1974; also see Charlesworth and Charlesworth 1973 and discussion in Charlesworth & Flatt 2021; Berdan et al. 2023) seems to be an example of exactly what the authors seem to have in mind here: two loci experiencing overdominance, with the double heterozygote possessing the highest fitness (i.,e., 2 loci under epistatic selection, inducing some degree of LD between these loci), with subsequent capture by an inversion; in such a situation, a new inversion might capture a haplotype that is present in excess of random expectation (and which is thus filer than average)…

      We agree that the quoted statement could be misleading and have rewritten it. We intended to point out that we are presenting a model in which all loci contribute additively (with respect to display) or multiplicatively (with respect to survival probability), without any dominance relationships or genetic interaction terms. And yet, the model generates epistatic balancing selection in a panmictic population under a constant environment. This represents a novel mechanism by which (the life-history characteristics of) a population would generate epistatic balancing selection as an emergent property, instead of assuming a priori that there is some balancing mechanism and representing frequency dependence, dominance effects, or epistatic interactions directly using model parameters. We have therefore refined the scope of the statement in question (lines 155-158). 

      (4) Hearn et al. 2022 on Littorina saxatilis snails. 

      A good reference. There is considerable work on ecotype-associated inversions in L. saxatalis, but we previously cut some discussion of this and of other populations with high gene flow but identifiable spatial structure for inversion-associated phenotypes (e.g. butterfly mimicry polymorphisms, Mimulus, etc.). Due to the spatially discrete environmental preferences and sampled ranges of the inversions in these populations, we considered these examples to be somewhat distinct from explaining inversion polymorphism in a potentially homogenous and panmictic environment. 

      (4) cont. A very interesting paper that may be worth discussing is Connallon & Chenoweth (2019) about dominance reversals of antagonistically selected alleles (even though C&C do not discuss inversions): AP alleles (with dominance reversals) affecting two or more life-history traits provide one example of such antagonistically selected alleles (also see Rose 1982, 1985; Curtsinger et al. 1994) and sexually antagonistically selected alleles provide another. The two are of course not necessarily mutually exclusive, thus making a conceptual connection to what the authors model here.

      We had removed a previously drafted discussion of dominance reversal for brevity’s sake, but this topic is once again represented in the updated draft of the manuscript with a short reference in the introduction, lines 76-80. We also mention ‘segregation lift’ (Wittmann et al. 2017) involving a similar reversal of dominance for fitness between temporally fluctuating conditions, as opposed to between sexes or life history stages. 

      (5) The model. In general, the description of the model and of the simulation results was somewhat hard to follow and vague. There are several aspects that could be improved:  [5](1) it would help the reader if the terminology and distinction of inverted vs. standard arrangements and of the three karyotypes would be used throughout, wherever appropriate.

      We have attempted to do so, using the suggested heterokaryotypic/homokaryotypic terminology.

      [5](2) The mention of haploid populations/situations and haploid loci (e.g., legend to Figure 1) is somewhat confusing: the mechanism modelled here, of course, requires suppressed recombination in the inversion/standard heterokaryotype; and thus, while it may make sense to speak of haplotypes, we're dealing with an inherently diploid situation. 

      While eukaryotes with haploid-dominant life history may still experience similar dynamics, we do expect that most male display competition is in diploid animals, and we are only simulating diploid fitnesses and experimenting with diploid Drosophila. We have tried to minimize the discussion of haploids in this draft.

      [5](3) The authors have a situation in mind where the 2 karyotypes (INV vs. STD) in the heterokaryotype carry distinct sets of loci in LD with each other, with one karyotype/haplotype carrying antagonistic variants favoring high male display success and with the other karyotype/haplotype carrying non-antagonistic alternative alleles at these loci and which favor survival. Thus, at each of the linked loci, we have antagonistic alleles and non-antagonistic alleles - however, the authors don't mention or discuss the degree of dominance of these alleles. The degree of dominance of the alleles could be an important consideration, and I found it curious that this was not mentioned (or, for that matter, examined). 

      In this study, our goal was to show that the investigated model could produce balanced and increasing antagonism without the need to invoke dominance. We think there would be a strong case for a follow-up study that more investigates how dominance and other variables impact the parameter space of balanced antagonism, but this goal is beyond our capacity to pursue in this initial study. We’ve added several lines clarifying the absence of dominance from our investigated models, and pointing out that dominance could modulate the predictions of these models (lines 211-213, 278-282).  

      [5](4) In many cases, the authors do not provide sufficient detail (in the main text and the main figures) about which parameter values they used for simulations; the same is true for the Materials & Methods section that describes the simulations. Conversely, when the text does mention specific values (e.g., 20N generations, 0.22-0.25M, etc.), little or no clear context or justification is being provided. 

      We have sought to clarify in this draft that 20N was chosen as an ample time frame to establish equilibrium levels and frequencies of genetic variation under neutrality. We present a time sequence in Figure 5, and these results indicate that that antagonism has stabilized in models without inversions or with higher recombination rates, whereas its rate of increase has slowed in a model with inversions and lower levels of crossing over. 

      The inversion breakpoints and the position of the locus with stronger antagonistic effects in Figure 4 were chosen arbitrarily for this simple proof of concept demonstration, with the intent that this locus was close to one breakpoint. Hopefully these and other parameters are clearer in the revised manuscript.

      [5](5) The authors sometimes refer to "inversion mutation(s)" - the meaning of this terminology is rather ambiguous.

      Edited, hopefully the wording is clearer now. The quoted phrase had uniformly referred to the origin of new inversions by a mutagenic process. 

      (6) Throughout the manuscript, especially in the description and the discussion of the model and simulations, a clearer conceptual distinction between initial "capture" and subsequent accumulation / "gain" of variants by an inversion should be made. This distinction is important in terms of understanding the initial establishment of an inversion polymorphism and its subsequent short- as well as long-term fate. For example, it is clear from the model/simulations that an inversion accumulates (sexually) antagonistic variants over time - but barely anything is said about the initial capture of such loci by a new inversion.

      We do not have a good method of assessing a transition between these two phases for the simulations in which both antagonistic alleles and inversions arise stochastically by a mutagenic process. However, we have tried to be clearer on the distinction in this draft: we have included simulations in Figure 4 with variants starting at lower frequencies, and we have tried to better contextualize the temporal trajectories in Figure 5 as (in part) modeling the accumulation of variants after such an origin.

      Reviewer #3 (Recommendations For The Authors):

      - In general: the whole paper is quite long, and I felt that many parts could be written more clearly and succinctly - the whole manuscript would benefit from shortening, polishing, and making the wording maximally precise. Especially the Introduction (> 8 pages) and Discussion (7.5 pages) sections are quite long, and the description of the model and model results was quite hard to follow.

      We have attempted to condense some portions of the manuscript, but inevitably added to others based on important reviewer suggestions. Regarding the length Introduction and Discussion, we are covering a lot of intellectual territory in this study, and we aim to make it accessible to readers with less prior familiarity. At this point, we have well over 100 citations – far more than a typical primary research paper – in part thanks to the relevant sources provided by this reviewer. We are therefore optimistic that our text will provide a valuable reference point for future studies. We have also made significant efforts to clarify the Results and Methods text in this draft without notably expanding these sections.

      - In general: the conceptual parts of the paper (introduction, discussion) could be better connected to previous work - this concerns e.g. the theoretical mechanisms of balancing selection that might be involved in maintaining inversions; the general, theoretical role of antagonistic pleiotropy (AP) and trade-offs in maintaining polymorphisms; previously made empirical connections between inversions and AP/trade-offs; previously made empirical connections between inversions and sexual antagonism.

      In the revised manuscript, we have improved the connection of these topics to prior work.

      - L3: "accumulate". A clearer distinction could be made, throughout, between initial capture of alleles/haplotypes by an inversion vs. subsequent gain.

      Please see point 6 in the response to the Public Review, above.

      - L29: I basically agree about the enigma, however, there are quite many empirical examples in D. melanogaster / D. pseudoobscura and other species where we do know something about the nature of selection involved, e.g., cases of NFDS, spatially and temporally varying selection, fitness trade-offs, etc.

      At least for our focal species, we have emphasized that geographic (and now temporal) associations have been found for some inversions. For the sake of length and focus, we probably should not go down the road of documenting each phenotypic association that has been reported for these inversions, or say too much about specific inversions found in other species. As indicated in our response to reviewer 2, some previously documented inversion-associated trade-offs may be compatible with the model presented here. However, we did locate and add to our Discussion one report of frequency-dependent selection on a D. melanogaster inversion (Nassar et al. 1973).

      - L43: it is actually rather unlikely, though not impossible, that new inversions are ever completely neutral (see the review by Berdan et al. 2023).

      This line was intended to convey that, in line with Said et al. 2018’s results, the structural alterations involved in common segregating inversions are not expected to contribute significantly to the phenotype and fitness (as indicated by lack of strong regulatory effects), and that their phenotypic consequences are instead due to linked variation. We have rewritten this passage to better communicate this point, now lines 44-52. Interpreting Section 2 and Figure 1 of Berdan et al. 2023, the linked variation may be what is in mind when saying that inversions are almost never neutral. We have also added a line referencing the expected linked variation of a new inversion (lines 49-52).

      - L51-73: I felt this overview should be more comprehensive. The model by Kirkpatrick & Barton (2016 ) is in many ways less generic than the one of Charlesworth (1974) which essentially represents one way of modeling Dobzhansky's epistatic coadaptation. Also, the AOD mechanism is perhaps given too much weight here as this mechanism is very unlikely to be able to explain the establishment of a balanced inversion polymorphism (see Charlesworth 2023 preprint on bioRxiv). NFDS, spatially varying selection and temporally varying selection (for all of which there is quite good empirical evidence) should all be mentioned here, including the classical study of Wright and Dobzhansky (1946) which found evidence for NFDS (also see Chevin et al. 2021 in Evol. Lett.)

      On reflection, we agree that we put too much emphasis on AOD and have edited the section to be more representative.

      - L57. Two earlier Dobzhansky references, about epistatic coadaptation, would be: Dobzhansky, T. (1949). Observations and experiments on natural selection in Drosophila. Hereditas, 35(S1), 210-224. hlps://doi.org/10.1111/j.1601-5223.1949.tb033 34.xM; Dobzhansky, T. (1950). Genetics of natural populations. XIX. Origin of heterosis through natural selection in populations of Drosophila pseudoobscura. Genetics, 35, 288-302.hlps://doi.org/10.1093/gene7cs/35.3.288 - In general, in the introduction, the classical chapter by Lemeunier and Aulard (1992) should be cited as the primary reference and most comprehensive review of D. melanogaster inversion polymorphisms.

      - L101: this is of course true, though there are some exceptions, such as In(3R)Mo.

      - L110: the papers by Knibb, the chapter by Lemeunier and Aulard (1992), and the meta-analysis of INV frequencies by Kapun & Flatt (2019) could be cited here as well.

      Citation suggestions integrated.

      - L123 and elsewhere: the common D. melanogaster inversions are old but perhaps not THAT old - if we take the Corbett-Detig & Hartl (2012) es7mates, then most of them do not really exceed an age of Ne generations, or at least not by much. I mean: yes, they are somewhat old but not super-old (cf. discussion in Andolfatto et al. 2001).

      Edited to curb any hyperbole. We agree that there are much more ancient polymorphisms in populations.

      - L133-135. This needs to be rewritten: this claim is incorrect, to my mind (Charlesworth 1974; also see Charlesworth and Charlesworth 1973; discussion in Charlesworth & Flatt 2021).

      Edited. See public review response (2).

      - L154: the example of inversion polymorphism is actually explicitly discussed in Altenberg's and Feldman's (1987) paper on the reduction principle.

      Edited to mention this. Inversions are also mentioned in Feldman et al. 1980, Feldman and Balkau 1973, Feldman 1972, and have been in discussion since the origins of the idea.

      - L162ff: see Connallon & Chenoweth (2019).

      Citation suggestion integrated, along with Cox & Calsbeek 2009 which seems more directly applicable, now line 185ff.

      - L169: why? There is much evidence for other important trade-offs in this system.

      Reworded.

      - L178-179: other studies have found that trade-offs/AP contribute to the maintenance of inversion polymorphisms, e.g. Mérot et al. 2020 and Betrán et al. 1998, etc.

      Added Betrán et al. 1998 - a good reference. Moved up mention of Mérot et al. 2020 from later in the text and directed readers to the Discussion, lines 202-205.

      - L198. "alternate inversion karyotypes" - you mean INV vs. STD? It would be good to adopt a maximally clear, uniform terminology throughout.

      Edited to communicate this better.

      - L215-217: this is a theoretically well-known result due to Hazel (1943); Dickerson (1955); Robertson (1955); e.g., see the discussion in the quantative genetics book by Roff (1997) or in the review of Flatt (2020).

      Citations integrated, now lines 232ff.

      - L223 and L245: "haploid" - somewhat confusing (see public review). 

      - L259-260: This may need some explanation. 

      - L261-262: simply state that there is no recombination in D. melanogaster males.

      Edited for increased clarity.

      - L274 (and elsewhere): the meaning of "mutation...of new..inversion polymorphisms" is ambiguous - do you mean a polymorphic inversion and hence a new inversion polymorphism or do you mean polymorphisms/variants accumulating in an inversion?

      - L275: maybe better heterokaryotypic instead of heterozygous? (note that INV homokaryotypes or STD homokaryotypes can be homo- or heterozygous, so when referring to chromosomal heterozygotes instead of heterozygous chromosomes it may be best to refer to heterokaryotypes).

      Per [5](1) and [5](5) in the public review, we have edited our terminology.

      - L276: referral to M&M - I found the description of the model/simulation details there to be somewhat vague, e.g. in terms of parameter settings, etc.

      Further described.

      - L281-282: would SLiM not have worked?

      See public review response.

      - L286-287: why these parameters?

      Further described.

      - L296ff: it is not immediately clear that the loci under consideration are polymorphic for antagonistic alleles vs. non-antagonistic alternative alleles - maybe this could be made clear very explicitly.

      Edited to be explicit as suggested.

      - L341, 343: "inversion mutation" - meaning ambiguous.

      - L348, 352: "specified rate" - vague.

      - L354-357: initial capture and/or accumulation/gain? 

      - L401, 402, 404: Z-, W- and Y- are brought up here without sufficient context/explanation.

      The above have been addressed by edits in the text.

      - L523, 557, 639, 646, and elsewhere: not the first evidence - see the paper by Mérot et al. (2020) (and e.g. also by Yifan Pei et al. (2023)). 

      Citations integrated in the introduction and discussion. Mérot et al. (2020) was cited (L486 in original) but discussion was curtailed in the previous draft. 

      - L558-559. I agree but it is clear that there are many mechanisms of balancing selection that can achieve this, at least in principle; for some of them (NFDS, etc.) we have pretty good evidence. 

      - L576-577. This is correct but for In(3R)C that study did find a differential hot vs. cold selection response.

      Addressed with text edit. 

      - L584-L586: cf. Betrán et al. (1998), Mérot et al. (2020), Pei et al. (2023), etc.

      - L591. "other forms of balancing selection": yes! This should be stressed throughout. Multiple forms of balancing selection exist and they are not mutually exclusive. 

      - L593: consider adding Dobzhansky (1943), Machado et al. (2021) 

      - L596-597: this is rather unlikely, at least in terms of inversion establishment (see Charlesworth 2023; hlps://www.biorxiv.org/content/10.1101/2023.10.16.562579v1).

      - L608: consider adding Kapun & Flal (2019). 

      - L611-612: see studies by Mukai & Yamaguchi, 1974; and Watanabe et al., 1976. 

      - L639, 646: AP - see general literature on AP as a factor in maintaining polymorphism (Rose

      1982, 1985; Curtsinger et al. 1994; Charlesworth & Hughes 2000 chapter in Lewontin Festschrift; Conallon & Chenoweth 2019 - this latter paper is par7cularly relevant in terms of AP effects in the context of sexual antagonism) 

      Citation suggestions integrated.

      - L657: inversion polymorphism is explicitly discussed in Altenberg's and Feldman's (1987) paper on the reduction principle.

      Hopefully this is better communicated.

      - L724-755: I felt that this section generally lacks sufficient details, especially in terms of parameter choices and settings for the simula7ons. 

      - L732L: why not state these rates?

      Parameter values are now given a fuller description in figure legends and in the methods.  

      - L746: but we know that mutational effect sizes are not uniformly distributed (?).

      We made this choice for simplicity and to avoid invoking seemingly arbitrary distribution, but one could instead simulate trait effects with some gamma distribution. Display values would still have variable fitness effects that fluctuate with population composition, but we agree that distribution shifted toward small effects would be more realistic.

      - L765: In(3R)P is not mentioned elsewhere - is this really correct?

      That was incorrect, fixed.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This paper investigates the effects of the explicit recognition of statistical structure and sleep consolidation on the transfer of learned structure to novel stimuli. The results show a striking dissociation in transfer ability between explicit and implicit learning of structure, finding that only explicit learners transfer structure immediately. Implicit learners, on the other hand, show an intriguing immediate structural interference effect (better learning of novel structure) followed by successful transfer only after a period of sleep.

      Strengths:

      This paper is very well written and motivated, and the data are presented clearly with a logical flow. There are several replications and control experiments and analyses that make the pattern of results very compelling. The results are novel and intriguing, providing important constraints on theories of consolidation. The discussion of relevant literature is thorough. In summary, this work makes an exciting and important contribution to the literature.

      Weaknesses:

      There have been several recent papers that have identified issues with alternative forced choice (AFC) tests as a method of assessing statistical learning (e.g. Isbilen et al. 2020, Cognitive Science). A key argument is that while statistical learning is typically implicit, AFC involves explicit deliberation and therefore does not match the learning process well. The use of AFC in this study thus leaves open the question of whether the AFC measure benefits the explicit learners in particular, given the congruence between knowledge and testing format, and whether, more generally, the results would have been different had the method of assessing generalization been implicit. Prior work has shown that explicit and implicit measures of statistical learning do not always produce the same results (eg. Kiai & Melloni, 2021, bioRxiv; Liu et al. 2023, Cognition).

      We agree that numerous papers in the Statistical Learning literature discuss how different test measures can lead to different results and, in principle, using a different measure could have led to varying results in our study. In addition, we believe there are numerous additional factors relevant to this issue including the dichotomous vs. continuous nature of implicit vs. explicit learning and the complexity of the interactions between the (degree of) explicitness of the participants' knowledge and the applied test method that transcend a simple labeling of tests as implicit or explicit and that strongly constrains the type of variations the results of  different test would produce. Therefore, running the same experiments with different learning measures in future studies could provide additional interesting data with potentially different results.

      However, the most important aspect of our reply concerning the reviewer's comment is that although quantitative differences between the learning rate of explicit and implicit learners are reported in our study, they are not of central importance to our interpretations. What is central are the different qualitative patterns of performance shown by the explicit and the implicit learners, i.e., the opposite directions of learning differences for “novel” and “same” structure pairs, which are seen in comparisons within the explicit group vs. within the implicit group and in the reported interaction. Following the reviewer's concern, any advantage an explicit participant might have in responding to 2AFC trials using “novel” structure pairs should also be present in the replies of 2AFC trials using the “same” structure pairs and this effect, at best, could modulate the overall magnitude of the across groups (Expl/Impl.) effect but not the relative magnitudes within one group. Therefore, we see no parsimonious reason to believe that any additional interaction between the explicitness level of participants and the chosen test type would impede our results and their interpretation. We will make a note of this argument in the revised manuscript.

      Given that the explicit/implicit classification was based on an exit survey, it is unclear when participants who are labeled "explicit" gained that explicit knowledge. This might have occurred during or after either of the sessions, which could impact the interpretation of the effects.

      We agree that this is a shortcoming of the current design, and obtaining the information about participants’ learning immediately after Phase 1 would have been preferred. However, we made this choice deliberately as the disadvantage of assessing the level of learning at the end of the experiment is far less damaging than the alternative of exposing the participants to the exit survey question earlier and thereby letting them achieve explicitness or influence their mindset otherwise through contemplating the survey questions before Phase 2. Our Experiment 5 shows how realistic this danger of unwanted influence is: with a single sentence alluding to pairs in the instructions of Exp 5, we  could completely change participants' quantitative performance and qualitative response pattern. Unfortunately, there is no implicit assessment of explicitness we could use in our experimental setup. We also note that given the cumulative nature of statistical learning, we expect that the effect of using an exit survey for this assessment only shifts absolute magnitudes (i.e. the fraction of people who would fall into the explicit vs. implicit groups) but not aspects of the results that would influence our conclusions.

      Reviewer #2 (Public Review):

      Summary:

      Sleep has not only been shown to support the strengthening of memory traces but also their transformation. A special form of such transformation is the abstraction of general rules from the presentation of individual exemplars. The current work used large online experiments with hundreds of participants to shed further light on this question. In the training phase, participants saw composite items (scenes) that were made up of pairs of spatially coupled (i.e., they were next to each other) abstract shapes. In the initial training, they saw scenes made up of six horizontally structured pairs, and in the second training phase, which took place after a retention phase (2 min awake, 12 h incl. sleep, 12 h only wake, 24 h incl.

      sleep), they saw pairs that were horizontally or vertically coupled. After the second training phase, a two-alternatives-forced-choice (2-AFC) paradigm, where participants had to identify true pairs versus randomly assembled foils, was used to measure the performance of all pairs. Finally, participants were asked five questions to identify, if they had insight into the pair structure, and post-hoc groups were assigned based on this. Mainly the authors find that participants in the 2-minute retention experiment without explicit knowledge of the task structure were at chance level performance for the same structure in the second training phase, but had above chance performance for the vertical structure. The opposite was true for both sleep conditions. In the 12 h wake condition these participants showed no ability to discriminate the pairs from the second training phase at all.

      Strengths:

      All in all, the study was performed to a high standard and the sample size in the implicit condition was large enough to draw robust conclusions. The authors make several important statistical comparisons and also report an interesting resampling approach. There is also a lot of supplemental data regarding robustness.

      Weaknesses:

      My main concern regards the small sample size in the explicit group and the lack of experimental control.  

      The sample sizes of the explicit participants in our experiments are, indeed, much smaller than those of the implicit participants due to the process of how we obtain the members of the two groups. However, these sample sizes of the explicit groups are not small at all compared to typical experiments reported in Visual Statistical Learning studies, rather they tend to be average to large sizes. It is the sizes of the implicit subgroups that are unusually high due to the aforementioned data collecting process. Moreover, the explicit subgroups have significantly larger effect sizes than the implicit subgroup, bolstering the achieved power that is also confirmed by the reported Bayes Factors that support the “effect” or the “no effect” conclusions in the various tests ranging in value from substantial to very strong.  Based on these statistical measures,  we think the sample sizes of the explicit participants in our studies are adequate.

      However, we do agree that the unbalanced nature of the sample and effect sizes can be problematic for the between-group comparisons. We aim to replace the student’s t-tests that directly compares explicit and implicit participants with Welch’s t-tests that are better suited for unequal sample sizes and variances.

      As for the lack of experimental control, indeed, we could not fully randomize consolidation condition assignment. Instead, the assignment was a product of when the study was made available on the online platform Prolific. This method could, in theory, lead to an unobserved covariate, such as morningness, being unbalanced between conditions. We do not have any reasons to believe that such a condition would critically alter the effects reported in our study, but as it follows from the nature of unobserved variables, we obviously cannot state this with certainty. Therefore, we will explicitly discuss these potential pitfalls in the revised version of the manuscript.  

      Reviewer #3 (Public Review):

      In this project, Garber and Fiser examined how the structure of incidentally learned regularities influences subsequent learning of regularities, that either have the same structure or a different one. Over a series of six online experiments, it was found that the structure (spatial arrangement) of the first set of regularities affected the learning of the second set, indicating that it has indeed been abstracted away from the specific items that have been learned. The effect was found to depend on the explicitness of the original learning: Participants who noticed regularities in the stimuli were better at learning subsequent regularities of the same structure than of a different one. On the other hand, participants whose learning was only implicit had an opposite pattern: they were better in learning regularities of a novel structure than of the same one. This opposite effect was reversed and came to match the pattern of the explicit group when an overnight sleep separated the first and second learning phases, suggesting that the abstraction and transfer in the implicit case were aided by memory consolidation.

      These results are interesting and can bridge several open gaps between different areas of study in learning and memory. However, I feel that a few issues in the manuscript need addressing for the results to be completely convincing:

      (1) The reported studies have a wonderful and complex design. The complexity is warranted, as it aims to address several questions at once, and the data is robust enough to support such an endeavor. However, this work would benefit from more statistical rigor. First, the authors base their results on multiple t-tests conducted on different variables in the data. Analysis of a complex design should begin with a large model incorporating all variables of interest. Only then, significant findings would warrant further follow-up investigation into simple effects (e.g., first find an interaction effect between group and novelty, and only then dive into what drives that interaction). Furthermore, regardless of the statistical strategy used, a correction for multiple comparisons is needed here. Otherwise, it is hard to be convinced that none of these effects are spurious. Last, there is considerable variation in sample size between experiments. As the authors have conducted a power analysis, it would be good to report that information per each experiment, so readers know what power to expect in each.

      Answering the questions we were interested in required us to investigate two related but separate types of effects within our data: general above-chance performance in learning, and within- and across-group differences.

      Above-chance performance: As typical in SL studies, we needed to assess whether learning happened at all and which types of items were learned. For this, a comparison to the chance level is crucial and, therefore, one-sample t-test is the statistical test of choice. Note that all our t-tests were subject to experiment-wise correction for multiple comparisons using the Holm-Bonferroni procedure, as reported in the Supplementary Materials.

      Within- and across-group differences: To obtain our results regarding group and partype differences and their interactions, we used mixed ANOVAs and appropriate post-hoc tests as the reviewer suggested. These results are reported in the method section.

      Concerning power analysis, we will add the requested information on achieved power by experiment to the revised version of the manuscript.  

      (2) Some methodological details in this manuscript I found murky, which makes it hard to interpret results. For example, the secondary results section of Exp1 (under Methods) states that phase 2 foils for one structure were made of items of the other structure. This is an important detail, as it may make testing in phase 2 easier, and tie learning of one structure to the other. As a result, the authors infer a "consistency effect", and only 8 test trials are said to be used in all subsequent analyses of all experiments. I found the details, interpretation, and decision in this paragraph to lack sufficient detail, justification, and visibility. I could not find either of these important design and analysis decisions reflected in the main text of the manuscript or in the design figure. I would also expect to see a report of results when using all the data as originally planned.  

      We thank the reviewer for pointing out these critical open questions our manuscript that need further clarification. The inferred “consistency effect” is based on patterns found in the data, which show an increase in negative correlation between test types during the test phase. As this is apparently an effect of the design of the test phase and not an effect of the training phase, which we were interested in, we decided to minimize this effect as far as possible by focusing on the early test trials. For the revised version of the manuscript, we will revamp and expand how this issue was handled and also add a short comment in the main text, mentioning the use of only a subset of test trials and pointing the interested reader to the details.

      Similarly, the matched sample analysis is a great addition, but details are missing. Most importantly, it was not clear to me why the same matching method should be used for all experiments instead of choosing the best matching subgroup (regardless of how it was arrived at), and why the nearest-neighbor method with replacement was chosen, as it is not evident from the numbers in Supplementary Table 1 that it was indeed the best-performing method overall. Such omissions hinder interpreting the work.

      Since our approach provided four different balanced metrics (see Supp. Tables 1-4) for each matching method, it is not completely straightforward to make a principled decision across the methods. In addition, selecting the best method for each experiment separately carries the suspicion of cherry-picking the most suitable results for our purposes. For the revised version, we will expand on our description of the matching and decision process and add additional descriptive plots showing what our data looks like under each matching method for each experiment. These plots highlight that the matching techniques produce qualitatively roughly identical results and picking one of them over the other does not alter the conclusions of the test.  The plots will give the interested reader all the necessary information to assess the extent our design decisions influence our results.

      (3) To me, the most surprising result in this work relates to the performance of implicit participants when phase 2 followed phase 1 almost immediately (Experiment 1 and Supplementary Experiment 1). These participants had a deficit in learning the same structure but a benefit in learning the novel one. The first part is easier to reconcile, as primacy effects have been reported in statistical learning literature, and so new learning in this second phase could be expected to be worse. However, a simultaneous benefit in learning pairs of a new structure ("structural novelty effect") is harder to explain, and I could not find a satisfactory explanation in the manuscript.  

      Although we might not have worded it clearly, we do not claim that our "structural novelty effect" comes from a “benefit” in learning pairs of the novel structure. Rather, we used the term “interference” and lack of this interference. In other words, we believe that one possible explanation is that there is no actual benefit for learning pairs of the novel structure but simply unhindered learning for pairs of the novel structure and simultaneous inference for learning pairs of the same structure. Stronger interference for the same compared to the novel structure items seems as a reasonable interpretation as similarity-based interference is well established in the general (not SL-specific) literature under the label of proactive interference. We will clarify these ideas in the revised manuscript.

      After possible design and statistical confounds (my previous comments) are ruled out, a deeper treatment of this finding would be warranted, both empirically (e.g., do explicit participants collapse across Experiments 1 and Supplementary Experiment 1 show the same effect?) and theoretically (e.g., why would this phenomenon be unique only to implicit learning, and why would it dissipate after a long awake break?).

      Across all experiments, the explicit participants showed the same pattern of results but no significant difference between pair types, probably due to insufficiency of the available  sample sizes. We already included in the main text the collapsed explicit results across Experiments 1-4 and Supplementary Experiment 1 (p. 16).  This analysis confirmed that, indeed, there was a significant generalization for explicit participants across the two learning phases. We could re-run the same analysis for only Experiment 1 and

      Supplementary Experiment 1, but due to the small sample of  N=12 in Suppl. Exp. 1, this test will be likely completely underpowered. Obtaining the sufficient sample size for this one test would require an excessive number (several hundreds) of new participants.  

      In terms of theoretical treatment, we already presented our interpretation of our results in the discussion section, which we can expand on in the revised manuscript.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reply to Reviewers

      We would like to thank all the reviewers for their thorough reading and helpful comments. Below, please find our point-by-point response. The reviewer comments received through ReviewCommons have not been altered except for formatting.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The authors extended the existing recombination-induced tag exchange (RITE) technology to show that they can image a subset of NPCs, improving signal-to-noise ratios for live cell imaging in yeast, and to track the stability or dynamics of specific nuclear pore proteins across multiple cell divisions. Further, the authors use this technology to show that the nuclear basket proteins Mlp1, Mlp2 and Pml39 are stably associated with "old NPCs" through multiple cell cycles. The authors show that the presence of Mlp1 in these "old NPCs" correlates with exclusion of Mlp1-positive NPCs from the nucleolar territory. A surprising result is that basket-less NPCs can be excluded from the non-nucleolar region, an observation that correlates with the presence of Nup2 on the NPC regardless of maturation state of the NPC. In support of the proposal that retention of NPCs via Mlp1 and Nup2 in non-nucleolar regions, simulation data is presented to suggest that basket-less NPCs diffuse faster in the plane of the nuclear envelope.

      However, there are some points that do need addressing:

      Major Points 1. Taking into account that the Nup2 result in Figure 4B forms the basis for one half of the proposed model in Figure 6 regarding the exclusion of NPCs from the nucleolar region of the NE, there is a relatively small amount of data in support of this finding and this proposed model. For example, the only data for Nup2 in the manuscript is a column chart in Figure 4B with no supporting fluorescence microscopy examples for any Nup2 deletion. Further, the Nup60 deletion mutant will have zero basket-containing NPCs, whereas the Nup2 deletion will be a mixture of basket-containing and basket-less NPCs. The only support for the localization of basket-containing NPCs in the Nup2 deletion mutant is through a reference "Since Mlp1-positive NPCs remain excluded from the nucleolar territory in nup2Δ cells (Galy et al., 2004), the homogenous distribution observed in this mutant must be caused predominantly by the redistribution of Mlp-negative NPCs into the nucleolar territory."

      As suggested by the reviewer, we have added fluorescence microscopy examples for the Nup2 deletion to new Figure 4D. In addition, we have added data on Nup1 as suggested by reviewer 3. Since we observed a significant effect on nucleolar NPC density also upon depletion of Nup1 (new Figure 4A), we have overall revised the text and model to now reflect the shared role of Nup1 and Nup2.

      We have also localized Mlp1-GFP in a nup2Δ background as well as in the Nup60ΔC background where Nup2 can no longer bind to the NPC. In both strains, Mlp1-containing NPCs remain excluded from the nucleolus as now shown in the new Figure 4E. Although we also observed partial Mlp1 mislocalization to a nuclear focus in the nup2Δ strain, such mislocalization was only minimal in the strain with the Nup2-binding domain in Nup60 deleted (nup60ΔC), supporting our conclusion that Nup2 contributes to nucleolar exclusion of NPCs independent of Mlp1. Similarly, Mlp1-positive NPCs remained excluded from the nucleolar territory in cells depleted of Nup1 (new Figure 4B).

      1. The authors could consider utilizing this opportunity to discuss their technological innovations in the context of the prior work of Onischenko et al., 2020. This work is referenced for the statement "RITE can be used to distinguish between old and new NPCs" Page 2, Line 43. However, it is not referenced for the statement "We constructed a RITE-cassette that allows the switch from a GFP-labelled protein to a new protein that is not fluorescently labelled (RITE(GFP-to-dark))" despite Onischenko et al., 2020 having already constructed a RITE-cassette for the GFP-to-dark transition. The authors could consider taking this opportunity to instead focus on their innovative approach to apply this technology to decrease the number of fluorescently-tagged NPCs by dilution across multiple cell divisions and to interpret this finding as a measure of the stability of nuclear pore proteins within the broader NPC.

      We apologize for this imprecise citation. We have modified the text to indicate that our RITE cassette was previously used in two publications. It now reads: "We used a RITE-cassette that allows the switch from a GFP-labelled protein to a new protein that is not fluorescently labelled (RITE(GFP-to-dark)) (Onischenko et al., 2020, Kralt et al., 2022)." Together with additional changes to the text throughout, we hope that our new manuscript version more clearly highlights the innovation of our approach relative to previous use cases.

      1. The authors could also consider taking this opportunity to discuss their results in the context of the Saccharomyces cerevisiae nuclear pore complex structures published e.g. in Kim et al., 2018, Akey et al., 2022, Akey et al., 2023 in which the arrangement of proteins in the nuclear basket is presented, and also work from the Kohler lab (Mészáros et al., 2015) on how the basket proteins are anchored to the NPC. There is additional literature that also might help provide some perspective to the findings in the current manuscript, such as the observation that a lesser amount of Mlp2 to Mlp1 observed is consistent with prior work (e.g. Kim et al., 2018) and that intranuclear Mlp1 foci are also formed after Mlp1 overexpression (Strambio-de-Castillia et al., 1999).

      Following the reviewer's suggestion, we extended our discussion of basket Nup stoichiometry and organization in the discussion section including most of the citations mentioned as well as the recent articles on the nuclear basket structure and organization (Stankunas & Köhler 2024 1038/s41556-024-01484-x, Singh et al. 2024 10.1016/j.cell.2024.07.020)

      Minor Points 1. What is the "lag time" of the doRITE switching? Do the authors believe that it is comparable to the approximate 1-hour timeframe following beta-estradiol induction as shown previously in Chen et al. Nucleic Acids Research, Volume 28, Issue 24, 15 December 2000, Page e108, https://doi.org/10.1093/nar/28.24.e108

      We thank the reviewer for suggesting we analyze the kinetics of RITE switching. We carried out quantitative real-time PCR on genomic DNA and found that the half-time of switching is below 20 min. The majority of the population is switched after 1 hour, similar to the results in Chen et al. This data is now included in Supplemental Figure 1A.

      1. The authors could consider a brief explanation of radial position (um) for the benefit of the reader, in Figures 1E (right panel) and 2B (right panel), perhaps using a diagram to make it easier to understand the X-axis (um).

      To address this, we have now included a diagram and refer to it in the figure legend and the text.

      1. In Figure 1G, would the authors consider changing the vertical axis title and the figure legend wording from "mean number of NPCs per cell" to "mean labeled NPC # per cell" to reflect that what is being characterized are the remaining GFP-bearing NPCs over time?

      Thank you for spotting this inaccuracy. We have changed the label to "mean # of labeled NPCs per cell".

      1. In Figure 2C, the magenta-labeled protein in the micrographs is not described in the figure or the legend.

      A description has been added in figure and legend.

      1. In Figure S2A, there is an arrow indicating a Nup159 focus, but this is not described in the figure legend, as is done in Figure 2C.

      A description has been added to the legend.

      1. In Figure S3C, the figure legend does not match the figure. Was this supposed to be designed like Figure 3C and is missing part of the figure? Or is the legend a typographical error?

      We apologize for this error and thank the reviewer for spotting it. The legend has been corrected (now Figure S4B).

      1. In Figure S4B, the spontaneously recombined RITE (GFP-to-dark) Nup133-V5 appears in the western blot as equally abundant to pre-recombined Nup133-V5-GFP. In the figure legend, this is explained as cells grown in synthetic media without selection to eliminate cells that have lost their resistance marker from the population. In Cheng et al. Nucleic Acids Res. 2000 Dec 15; 28(24): e108, Cre-EBD was not active in the absence of B-estradiol, despite galactose-induced Cre-EBD overexpression. Would the authors be able to comment further on the Cre-Lox RITE system in the manuscript?

      We note that also in the cited publication, cells are grown in the presence of selection to select (as stated in this publication) "against pre-excision events that occur because of low but measurable basal expression of the recombinase". Although the authors report that spontaneous recombination is reduced with the b-estradiol inducible system (compared to pGAL expression control of the recombinase only), they show negligible spontaneous recombination only within a two-hour time window. Indeed, we also observe low levels of uninduced recombination on a short timeframe, but occasional events can become significant in longer incubation times (e.g. overnight growth) in the absence of selection. It should be noted that in our system, Cre expression is continuously high (TDH3-promoter) and not controlled by an inducible GAL promoter. We have added the information about the promoter controlling Cre-expression in the methods section.

      1. In Figure 6, the authors may want to consider inverting the flow of the cartoon model to start from the wild type condition and apply the deletion mutations at each step to "arrive" at the mutant conditions, rather than starting with mutant conditions and "adding back" proteins.

      Following the suggestions of this reviewer as well as reviewer 3, we have modified our model to smore clearly represent the contributions of the different basket components.

      Reviewer #1 (Significance (Required)):

      Recent work has drawn attention to the fact that not all NPCs are structurally or functionally the same, even within a single cell. In this light, the work here from Zsok et al. is an important demonstration of the kind of methodologies that can shed light on the stability and functions of different subpopulations of NPCs. Altogether, these data are used to support an interesting and topical model for Nup2 and nuclear-basket driven retention of NPCs in non-nucleolar regions of the nuclear envelope.

      We thank the reviewer for this positive assessment of our work.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      In this study, Zsok et al. develop innovative methods to examine the dynamics of individual nuclear pore complexes (NPCs) at the nuclear envelope of budding yeast. The underlying premise is that with the emergence of biochemically distinct NPCs that co-exist in the same cell, there is a need to develop tools to functionally isolate and study them. For example, there is a pool of NPCs that lack the nuclear basket over the nucleolus. Although the nature of this exclusion has been investigated in the past, the authors take advantage of a modification of recombination induced tag exchange (RITE), the slow turnover of scaffold nups, the closed mitosis of budding yeast, and extensive high quality time lapse microscopy to ultimately monitor the dynamics of individual NPCs over the nucleolus. By leveraging genetic knockout approaches and auxin-induced degradation with sophisticated quantitative and rigorous analyses, the authors conclude that there may be two mechanisms dependent on nuclear basket proteins that impact nucleolar exclusion. They also incorporate some computational simulations to help support their conclusions. Overall, the data are of the highest quality and are rigorously quantified, the manuscript is well written, accessible, and scholarly - the conclusions are thus on solid footing.

      We thank the reviewer for this assessment.

      Reviewer #2 (Significance (Required)):

      I have no concerns about the data or the conclusions in this manuscript. However, the significance is not overly clear as there is no major conceptual advance put forward, nor is there any new function suggested for the NPCs over nucleoli. As NPCs are immobile in metazoans, the significance may also be limited to a specialized audience.

      We respectfully disagree with this assessment. First, our work demonstrates the use of a novel approach in the application of RITE that can be useful for other researchers in the field of NPC biology and beyond. For example, doRITE could be applied to study the properties of aged NPCs, an area of considerable interest due to links between the NPC and age-related neurodegenerative diseases.

      Second, we characterize the interaction between conserved nuclear components, the NPC, the nucleolus and chromatin. While the specific architecture of the nucleus varies between species, many of these interactions are conserved. For example, Nup2's homologue Nup50 also interacts with chromatin in other systems, including mammalian cells, and thus may contribute to regulating the interplay between the nuclear basket and adjoining chromatin. This adds to our understanding of the multiple pathways and interactions that contribute to nuclear organization. Therefore, although the depletion of NPCs from the nucleolar territory in budding yeast may not be of direct importance, understanding the relationships between NPCs and their environment provide insight about nuclear organization throughout different eukaryotic lineages.

      In the revised manuscript, we attempt to better highlight and discuss these aspects.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The manuscript of Zsok et al. describes the role of nuclear basket proteins in the distribution and mobility of nuclear pore complexes in budding yeast. In particular, the authors showed that the doRITE approach can be used for the analysis of stable and dynamically associated NUPs. Moreover, it can distinguish individual NUPs and follow the inheritance of individual NPCs from mother to daughter cells. The author's findings highlight that Mlp1, Mlp2, and Pml39 are stably associated with the nuclear pore; deletion of Mlp1-Mlp2 and Nup60 leads to the higher NPC density in the nucleolar territory; and NPCs exhibit increased mobility in the absence of the nuclear basket components.

      The manuscript contains most figures supporting the data, and data supports the conclusions. However, authors need to include better explanations for figures in the text and figure legends. Lack of detailed explanation can pose challenges for non-experts. In addition, the authors jump over figures and shuffle them through the manuscript, which disrupts the flow and coherence of the manuscript.

      We thank the reviewer for pointing this out. In response to the detailed comments given below, we have moved some figures and added more explicit explanations to the text to improve the flow and make it easier to follow. In addition, we have modified the figure legends throughout the manuscript to make them more accessible to the reader.

      Major comments: - The nuclear basket contains Nup1, Nup2, Nup60, Mlp1, and Mlp2 in yeast. Nup60 works as a seed for Mlp1/Mlp2 and Nup2 recruitment and plays a key role in the assembly of nuclear pore basket scaffold (PMID: 35148185). Logically, the authors focused primarily on Nup60 in the current manuscript. However, NUP153 has another ortholog of yeast - Nup1, which has not been studied in this work. I recommend adjusting the title of the manuscript to: Nup60 and Mlp1/Mlp2 regulate the distribution and mobility of nuclear pore complexes in budding yeast. I also suggest discussing why work on Nup1 was not included/performed in the manuscript.

      We thank the reviewer for suggesting we should test the role of Nup1. Although we had originally not considered it, since we were focusing on the interactors of Mlp1/2, we found that indeed Nup1 also contributes to nucleolar exclusion. We have therefore changed the title to "Nuclear basket proteins regulate the distribution and mobility of nuclear pore complexes in budding yeast".

      • Figure 2B: I suggest choosing a more representative image for Pml39. It looks not like a stable component but rather dynamic as NUP60 or Gle1 based on figure showed in Figure 2B.

      We thank the reviewer for pointing out this poor choice of panel. We selected a panel for the 14h timepoint that more clearly shows that individual foci can still be seen for Pml39 after this time. Due to its lower copy number, the foci are dimmer for Pml39 than the other stable Nups. Nevertheless, at both the 11 and 14 h timepoint, clear dots can be detected for Pml39, while e.g. Nup116 in the same figure exhibits a more distributed signal and the signal for Nup60 and Gle1 is no longer visible.

      • Depletion of AID-tagged proteins needs to be supported by Western blot analysis with protein-specific antibodies, and PCR results should be included in supplementary data to demonstrate the homozygosity of the strains.

      The correct genomic tagging of the depleted proteins by AID was confirmed by PCR. We include this PCR analysis for the reviewer below. Since we are working with haploid yeast cells, all strains only carry a single copy of the genes. Unfortunately, we do not have protein-specific antibodies against the depleted proteins. However, other phenotypes support the successful depletion of the protein: Mlp1-mislocalization upon Nup60 depletion, reduced transcript production in Pol II depletion (characterized previously: PMID: 31753862, PMID: 36220102), growth defect upon Nup1 depletion.

      • Figure 5B: Snapshots of images from the movie are required. There are no images, only quantifications.

      We have replaced the supplemental movie with a movie showing the detection by Trackmate as well as overlaid tracks. As requested, a snapshot of this movie was inserted in figure 5B. We have also moved the example tracks from the supplement to the main figure. Furthermore, we will deposit the tracking dataset in the ETH Research Collection to make it available to the community.

      Description of figure legends is more technical than supporting/explaining the figure. For example, below my suggestions for Figure 1D. Please, consider more detailed explanation for other figures. (D) Left: Schematic of the RITE cassette. NUP of interest is tagged with V5 tag and eGFP fluorescent protein where LoxP sites flank eGFP. Before the beta-estradiol-induced recombination, the old NPCs are marked with eGFP signal, whereas new NPCs lack an eGFP signal after the recombination. ORF: open reading frame; V5: V5-tag; loxP: loxP recombination site; eGFP: enhanced green fluorescent protein. Right: doRITE assay schematic of stable or dynamic Nup behavior over cell divisions in yeast after the recombination.

      We have modified the figure legends throughout the manuscript to make them more explanatory and helpful for the reader.

      In addition, I recommend highlighting the result in the title of the figures. Please, re-consider titles for Figure S3.

      We have split this figure to better group related results. The new figures S4 and S5 are entitled: " A RITE(dark-to-GFP) cassette to visualize newly assembled NPC. " and "Mlp1 truncations localize predominantly to non-nucleolar NPCs."

      Minor: P.1 Line 31. Extra period symbol before the "(Figure 1A)".

      Fixed

      P.2 Line 10. Inconsistent writing of PML39 and MLP1. Both genes are capitalized. The same for P.4 Line 16. In some cases all letters are capitalized in other only the first one.

      We are following the official yeast gene nomenclature by spelling gene names in italicized capitals and protein names with only the first letter capitalized. We are sorry that this can be confusing for readers more familiar with other model systems.

      P.2 Line 18-22. The sentence is too long and hard to read. I recommend splitting it into two sentences.

      We agree and have fixed this.

      P.2-3 Line 46-47. The sentence is unclear. Suggestion: We expected that successive cell divisions would dilute the signal of labelled and stably associated with the NPC nucleoporins. By contrast, ...

      We have modified the sentence to read: "When tagging a Nup that stably associates with the NPC, we expected that successive cell divisions would dilute labelled NPCs by inheritance to both mother and daughter cells leading to a low density of labelled NPCs. By contrast,..."

      P.4 Line 17-21. Please, consider adding extra information and clarifying lines 19-21. For example, in Line 19 Figure 2B you can add that the reader needs to compare row 1 and row 4.

      Thank you, we have fixed this as suggested.

      P. 5 Line 15. When a number begins a sentence, that number should always be spelled out. You can pe-phrase the sentence to avoid it. Also, I recommend adding an explanation/hypothesis of why new NPCs are less frequently detected in nucleolar territory.

      We have formatted the text. Interestingly, new NPCs are more frequently detected in the nucleolar territory than old NPCs. We have reformulated this section to make it clearer, also in response to the next comment.

      P.5 Line 17-22. I recommend re-phrasing these two sentences. Logically, it is clear that Mlp1/Mlp2 loss mimics "old NPCs" to look more like "new NPCs", and for that reason, they are more frequently included in the nucleolar territory, but it is not clear when you read these two sentences from the first time.

      We have reformulated this section to make it clearer.

      P6. Line 16. No figure supporting data on graph (Figure 3B).

      We have added fluorescent images of the nup2Δ strain to the figure (new Figure 4D).

      P.7 Line 10-13. The sentence is unclear.

      We have shortened the sentence and moved part of the content to the discussion in the next paragraph.

      P.13,14 etc. If 0h timepoint has been used for normalization, why is it present on the graph?

      The 0h timepoint is shown for comparison and to illustrate the standard deviation in the data.

      P.15. Line 32-33. There is no image here. Potentially wrong description of the figure.

      Thank you for spotting this. This was fixed (new Figure S4B).

      Figures: - Inconsistent labeling of figures. For example, Fig.1, Fig.1S, Figure 2 etc.

      Thank you, this has been corrected.

      • Inconsistent labeling of figures. For example, Fig.1 G "mean number of NPCs per cell" - no capitalization of the first letter. Fig.1S "Fraction in population" is capitalized. In general, titles of axis should be capitalized.

      Thank you for spotting this. This was fixed.

      Suggestions for Figure 1D and Figure 6 are attached as a separate file.

      We thank the reviewer for their suggestions to improve these figures. We have taken their recommendation and revised the figures accordingly (see also response to reviewer 1, minor point 8).

      Reviewer #3 (Significance (Required)):

      Zsok et al. used the recombination-induced tag exchange (RITE) approach, which is an interesting and powerful method to follow individual NUPs over time with respect to their localization and abundance. This approach has been used before in PMID: 36515990 to distinguish pre-existing and newly synthesized Nup2 populations and has been extended to other basket NUPs in this work. Using this method, the authors support the earlier data on basket nucleoporins and highlight new insights on how basket nucleoporins regulate NPCs distribution and mobility. Overall, the manuscript provides new details on the stability of nucleoporins in yeast and how these data align with the mass spectrometry and FRAP data performed earlier in other studies. The limitation of this study is the absence of data on Nup1. It was unclear why these data were not present. Additional data can be included on the dynamics of Pml39, for example, using the FRAP method. The dynamic of Pml39 at the pore was shown only using the doRITE method.

      As suggested, we have tested the role of Nup1 (see above).

      Unfortunately, we are not able to provide orthologous data for the dynamics of Pml39. As we discuss in the manuscript, FRAP is not suitable for the analysis of the dynamics of most nucleoporins in yeast due to the high lateral mobility of NPCs in the nuclear envelope and has previously generated misleading results for Mlp1. Furthermore, the low expression levels of Pml39 will make it difficult to obtain reliable FRAP curves for this protein. We therefore do not think that adding FRAP experiments with Pml39 will provide valuable insight.

      However, in addition to the Pml39 doRITE result itself, our observation that the Pml39-dependent pool of Mlp1 exhibits stable association with the NPC supports the interpretation of Pml39 as a stable protein as well.

      In general, this study represents a unique research study of basic research on nuclear pore proteins that will be of general interest to the nuclear transport field.

      Field of expertise: nuclear-cytoplasmic transport, nuclear pore, inducible protein degradation. I do not have sufficient expertise in ExTrack.

    1. Poorly supported claims may be true, but without good reasons to accept those claims, a person’s support of them is irrational. In philosophy, we want to understand and evaluate the reasons for a claim. Just as a house that is built without a solid foundation will rapidly deteriorate and eventually fall, the philosopher who accepts claims without good reasons is likely to hold a system of beliefs that will crumble.

      I think this is vital information as it can be applied to everyday lfie too. Without evidence, claims and reasonings are very poor and therefore lacks external validity. Evidence aids reliability and trusting of the intial source.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1

      Evidence, reproducibility, and clarity

      Singh et al. analyze the expression and putative contribution of TEs in CD4+ T cells in HIV elite controllers. Through re-analysis of existing datasets, the authors describe broad differences in expression of TEs in ECs through analysis of RNA-seq and ATAC-seq data and come up with convincing examples where differentially-expressed innate immune genes correlate with increased accessibility of proximal TEs. Overall, the authors' conclusions are appropriately measured, though the manuscript text should be re-organized for clarity and a few further analyses are needed to support the main message of the paper.

      Major comments

      The manuscript would benefit from a re-organization of the figures to focus on TEs - in particular, Fig 1B, Fig 2, and Fig 3 reproduce known transcriptional differences between ECs and HCs and serve as quality controls for the authors' computational analysis. Conversely, Supplementary Fig 6 contains very interesting data on KZNF expression and should be included in the main figures.

      Authors: Thank you for the suggestion. We agree that Figure S6 should be featured more prominently in the manuscript. Accordingly, we have now incorporated it into the main text as Figure 6. The TE-KZNF correlation plots, previously Figure 5C, have been relocated to this new figure to provide a cohesive presentation of all KZNF-related data within the same figure.

      We’ve chosen to keep Figures 1B, 2, and 3 in their original places. We contend that they provide a foundational view of transcriptional variances in gene expression between patient groups, encompassing both previously identified and novel DEGs, which we believe warrants their placement in the main text. Furthermore, they serve as robust quality control measures for subsequent TE-centric transcriptional analyses. Given that there is no limitation in the number of figures in Genome Biology articles, we think it’s adequate to retain them as main figures.

      It remains unclear whether differences in TE expression described are specific to ECs or to EC-like CD4+ T cell states. As there are plenty of datasets available that compare the transcriptome of naïve, activated, exhausted, and regulatory CD4+ T cells, the authors should compare the TE expression patterns observed in ECs to activated CD4+ T cells, particularly those with a Th1 and cytotoxic phenotype analogous to those observed in ECs, from healthy donors.

      Authors: We thank the reviewer for this constructive suggestion to further study the foundations of HIV-1 elite control. In our initial study, we demonstrate that PBMCs from elite controllers (ECs) exhibit a heightened proportion of activated CD4+ T cells compared to PBMCs of healthy controls (HCs) and a heightened proportion of macrophages, naïve CD4+ T cells, and NK cells compared to PBMCs of treatment-naïve viremic progressors (VPs) (Figure 2D). Additionally, through clustering analysis of deconvoluted CD4+ T cell samples from elite controllers, we ascertain that the clustering pattern is not predicated on the CD4+ T cell subtype (Figure 3B). To further explore the reviewer’s inquiry, we compared the TE expression profile of ECs with that of unstimulated and stimulated CD4+ T cell subsets from HCs (data source: PMID 31570894), integrated into the revised manuscript as Figure S3B.

      “Unsupervised clustering of these samples shows that the TE expression pattern of ECs is most similar to that of Th2 progenitor cells, which are associated with HIV-1-specific adaptive immune responses (61). Still, we observed that, for the majority of families, TE expression was higher on average in all EC CD4+ T cell subsets than in CD4+ T cell subsets from HCs, regardless of stimulation (Figure S3B). While a subset of TE families exhibited an expression pattern in ECs similar to that of activated CD4+ T cells of HCs (e.g., high expression of L1s and THE1B), multiple TE families appear to be upregulated in an EC-specific way (e.g., LTR12C and LTR7). Together, these findings underscore the unique immune cell composition, transcriptome, and retrotranscriptome of ECs.” [pg.13-14, L226-235]

      While these observations are interesting, pursuing this question further falls beyond the scope of our study, as we note in the Discussion of the revised manuscript. We believe the reviewer’s inquiry pertains to a distinct research question, namely whether the potential for elite control of HIV-1 infection manifests as a detectable phenotype pre-infection within healthy CD4 T cell subsets (i.e., EC-like CD4+ T cell states) or is a unique phenotype that emerges solely after HIV-1 infection.

      “Another outstanding question is whether the gene and TE signatures revealed by our analysis of ECs exist in the general population independent of HIV-1 infection or if they are driven by the initial infection. While this inquiry is beyond the scope of this study, we have presented here evidence of common TE signatures between EC CD4+ T cells and Th2 progenitors from HCs (Figure S3B) and established that ECs possess a unique CD4+ T cell retrotranscriptome with potential implications for natural HIV-1 control. Future studies designed to assess elite control prediction should explore whether these TE profiles can serve as predictive variables for whether an individual displays enhanced viral control.” [pg. 38, L663-671]

      Therefore, while we appreciate the reviewer's suggestion and offer the addition of these preliminary findings, we believe that further investigation would be better suited for future studies specifically designed to address that question. Our manuscript aims to provide insight into the retrotranscriptome dynamics in ECs and their potential implications for natural HIV-1 control.

      In Fig 1, the authors demonstrate differential expression of both innate immune genes and TEs, but the link between the two is unclear. Is there any enrichment in differential expression for TEs located proximal to innate immune genes? This type of analysis should be possible using the authors' own software to map TE expression to specific genomic loci.

      __Authors: __Thank you for this excellent question. To answer this inquiry, we used the paired ATAC-seq and RNA-seq datasets for from ECs and HCs (used in Figures 1 and 4) to produce a new list of TE-gene pairs on which we could perform gene set enrichment analysis, the results of which have been integrated into the revised manuscript as Figure 4A.

      “We used paired ATAC-seq – which measures chromatin accessibility – and RNA-seq datasets for ECs (n=4) and HCs (n=4) to create a list of TE-gene pairs where the TE locus and gene show increased accessibility and expression, respectively, in ECs compared to HCs (Table S7, see Methods for details). These loci and genes were paired based on proximity, with a maximum distance of 10kb between the TE locus and the gene’s transcription start site, to increase the likelihood of a direct cis-regulatory influence of the TE over the nearby gene. Subsequent gene set enrichment analysis revealed that these genes were predominantly involved in cellular activation, cytokine production, and immune response regulation (Figure 4A). The enrichment for differential accessibility of TE loci near genes involved in these pathways suggests that the distinct TE landscape observed in ECs may contribute significantly to a unique immune regulome in these individuals.” [pg. 21, L357-368]

      Thus, we conclude that yes, there is an enrichment for immune-related genes with higher expression in ECs, proximal to differentially accessible TEs. We highlight six of these TE-gene pairs in Figure 4B-C. While we have high confidence in our analyses, future experimental validation is needed to confirm these regulatory relationships.

      Optional: In Fig 3, the authors cluster CD4+ T cells based on transcriptomic profiles. It would be interesting to re-cluster these samples based on TE expression alone, given the differences in TE expression described in Fig 5.

      __Authors: __Thank you for the suggestion. We agree that it would be valuable to assess how the EC clustering is altered when considering TE expression alone, as opposed to combining gene and TE family expression. To address this, we used the same graph-based k-nearest neighbors method to re-cluster the EC CD4+ T cell RNA-seq samples based only on locus-level TE expression, integrated into the revised manuscript as Figure S7.

      “To further explore locus-level expression patterns, we re-clustered the same EC samples (n=128) using only locus-level TE expression. This again resolved four EC clusters (Figure S7A), which interestingly appeared even more distinct than those identified by gene and TE family expression (Figure 3A). The TE locus-based clusters (TL-Cs) aligned well with the gene and TE family clusters (GT-Cs), with an average 70% overlap in samples between each GT-C and its corresponding TL-C (Figure S7B), indicating high consistency (Table S8). The remaining 30% of samples that shifted between clusters did so consistently within individuals, not cohorts, maintaining heterogeneous TL-C compositions similar to the GT-Cs (Figures S7C & S5A). An exception to this heterogeneity was TL-C4, comprising 22 samples from GT-C1 that were almost entirely from the CD4+ T cell subsets of only four participants in the Jiang cohort (Figure S7C, Table S8). No other samples from the Jiang cohort shifted to this cluster from other GT-Cs, suggesting that these patterns reflect individual variation rather than cohort bias. Like the GT-Cs, each TL-C included samples from all five CD4+ T cell subsets and was largely heterogeneous (Figure S7C). Notably, TL-C2 mirrored corresponding GT-C3 in its overrepresentation of EM and TM cells, while TL-C1 uniquely showed an overrepresentation of naïve CD4+ T cells. Beyond sample composition, each TL-C was characterized by a unique pattern of expressed TE loci (Figure S7D). These signatures were heterogeneous across families, with subsets of variable loci from one TE family marking separate clusters (Figure S7E), some of which did not reach the threshold of significance in earlier analyses when analyzed at the family-level, like SVA-D. Many families maintained their cluster-specific signatures, like THE1B (a marker of GT-C2), for which the majority of variable loci were found in corresponding TL-C1. However, some TE families, like the L1s that marked GT-C1, showed more heterogeneous signatures with variable loci marking multiple TL-Cs. These findings underscore the need for future locus-level investigations with high-depth sequencing to fully capture the complexity of TE expression.” [pg. 27-28, L462-488]

      We believe these findings not only validate the distinct clustering patterns observed but also highlight the potential of locus-level TE analysis to reveal additional layers of retrotranscriptomic diversity in EC CD4+ T cells.

      Significance

      The manuscript by Singh et al. describes for the first time the role of TEs in HIV elite controllers, suggesting that TEs may be co-opted for cis-regulatory function. This study builds off prior work demonstrating that HIV-infected CD4+ T cells activate LTR elements that may regulate the expression of interferon-inducible genes, demonstrating that ECs show further upregulation of innate immune genes. While these findings will need to be experimentally validated, this study constitutes a useful resource and adds to the growing body of evidence implicating TEs in cis-regulatory control of immune genes. This study will be of interest to basic scientists interested in genetic mechanisms of HIV control, and if further developed may comprise a useful source of biomarkers to predict viral kinetics in HIV-infected individuals. My expertise is in immunology, TE biology, and viral infection.

      Authors: We greatly appreciate this positive evaluation of our manuscript and recognition of its significance in uncovering novel evidence of TE co-option for immune regulatory function in HIV-1 elite control, as well as the suggestion of promising avenues for future research in this field.

      Reviewer #2

      Evidence, reproducibility and clarity

      The authors have re-analyzed published RNA-Seq data from CD4 T cells isolated from HIV elite controllers and reference cohorts, including HIV negative persons, viremic progressors and ART-treated persons. Their main finding is that in some of their comparisons, EC have higher levels of interferon-stimulated genes (ISG), paired with distinct expression patterns of transposable elements. The authors suggest that expression of transposable elements may induce altered expression of ISG, presumably due to immune recognition of TE. They also suggest that reduced expression of KZNF genes, which encode for transcription factors that can suppress TE, may be responsible for enhanced expression of TE. I have the following comments:

      1. All data included in this manuscript derive from previously published data. A new dataset, specifically designed to focus on a high-resolution analysis of TE expression, would be better suited to address the proposed questions.

      Authors: We agree that a new dataset tailored specifically for high-resolution analysis of TE expression would be optimal for addressing the proposed inquiries, and we emphasize this point in the Discussion of the revised manuscript.

      “We found that distinct sets of innate immunity genes and restriction factors are upregulated in different EC clusters even in the absence of active viremia, suggesting that elevated basal expression of these factors plays a previously underappreciated role in the EC phenotype. Further studies will be necessary to cement this idea and would especially benefit from the integration of single-cell omics to dissect TE regulation and clustering in deconvoluted CD4+ T cells of ECs. We also acknowledge that our study is limited by the small number of EC individuals with available omics data, which likely limited our ability to identify significant relationships between transcriptome clustering and available participant metadata (Figure S5). While the rarity of ECs in the seropositive population makes it challenging to study this phenotype, the transcriptomic heterogeneity revealed by our analyses underscores the need for surveying larger and more diverse EC cohorts.” [pg. 37-38, L651-662]

      Regrettably, we do not have access to elite controller samples (which are exceedingly rare), and as such the addition of a novel dataset was not feasible within the scope of this revision. Nevertheless, we assert that the publicly available sequencing data analyzed here is robust and suitable for locus- and family-level TE analysis. All sequencing runs were paired-end and of high depth, ensuring proper alignment to and high coverage of TEs at a locus-specific resolution. Additionally, we use in-house pipelines curated for TE analysis, to optimize the accuracy and quantity of TE-assigned reads (see Methods and our GitHub Repository for more details).

      Authors: We agree that a new dataset tailored specifically for high-resolution analysis of TE expression would be optimal for addressing the proposed inquiries, and we emphasize this point in the Discussion of the revised manuscript.

      “We found that distinct sets of innate immunity genes and restriction factors are upregulated in different EC clusters even in the absence of active viremia, suggesting that elevated basal expression of these factors plays a previously underappreciated role in the EC phenotype. Further studies will be necessary to cement this idea and would especially benefit from the integration of single-cell omics to dissect TE regulation and clustering in deconvoluted CD4+ T cells of ECs. We also acknowledge that our study is limited by the small number of EC individuals with available omics data, which likely limited our ability to identify significant relationships between transcriptome clustering and available participant metadata (Figure S5). While the rarity of ECs in the seropositive population makes it challenging to study this phenotype, the transcriptomic heterogeneity revealed by our analyses underscores the need for surveying larger and more diverse EC cohorts.” [pg. 37-38, L651-662]

      Regrettably, we do not have access to elite controller samples (which are exceedingly rare), and as such the addition of a novel dataset was not feasible within the scope of this revision. Nevertheless, we assert that the publicly available sequencing data analyzed here is robust and suitable for locus- and family-level TE analysis. All sequencing runs were paired-end and of high depth, ensuring proper alignment to and high coverage of TEs at a locus-specific resolution. Additionally, we use in-house pipelines curated for TE analysis, to optimize the accuracy and quantity of TE-assigned reads (see Methods and our GitHub Repository for more details).

      1. As the authors acknowledge, the described investigations are exploratory, and do not allow to draw firm conclusions. Mechanistic experiments are recommended to address the authors' hypotheses.

      Authors: We agree and have duly acknowledged throughout the Discussion the exploratory nature of our investigations and the need for future mechanistic experiments to validate our model. Below are passages from the revised manuscript which we’ve added to emphasize these points.

      “These findings underscore the need for future locus-level investigations with high-depth sequencing to fully capture the complexity of TE expression.” [pg. 28, L486-488]

      “Each step in the model will require experimental work to be validated. First and foremost, it will be important to confirm that the TEs exhibiting increased transcript levels and accessibility in ECs are indeed boosting the innate immune response and control of HIV-1 in these individuals.” [pg. 34, L583-586]

      “CRISPR-Cas9 editing was used in cell lines to demonstrate that a subset of MER41 elements function as enhancers driving the interferon-inducibility of several innate immune genes. However, the specific MER41 loci we identified here as differentially active in ECs have not been tested experimentally for enhancer activity. Thus, further work is warranted to confirm the regulatory function of these loci under the control of STAT1 or other immune TFs, as well as other TE families identified as targets of immune-related TFs (Figure S8).” [pg. 35, L594-600]

      “Overall, our results reinforce the concept that TEs are important players in the human antiviral response (25,93) and uncover specific candidate elements for boosting cellular defenses against HIV-1 in ECs. We acknowledge that these associations are drawn from correlative patterns and manipulative experiments are needed to infer causality between chromatin changes at these TEs and increased expression of nearby immunity genes.” [pg. 36, L618-623]

      “Further work is needed to validate TE-KZNF regulatory interactions in T cells, probe their connection to epigenetic variation at individual TE loci, and explore their repercussions on gene expression variation in CD4+ T cells, with and without HIV-1 infection.” [pg. 40, L715-718]

      Thus, while we appreciate and agree with the suggestion of experimental validation, we contend that these experiments fall beyond the scope of the present study, which is a computational investigation providing insight into the EC retrotranscriptome and its potential implications for natural HIV-1 control.

      1. An important limitation is that virological data of EC are not considered. For example, I believe it is a lot more likely that the upregulation of ISG in EC relates to ongoing low-level viral replication. The authors could analyze cell-associated HIV RNA and DNA levels and determine how they associate with ISG expression.

      Authors: Thank you for bringing up this important consideration. It's worth noting that the public datasets used in our study reported undetectable viremia in the EC volunteers (PMIDs 30964004, 29269040, 32848246, 27453467). Nonetheless, we sought to address this limitation and explore the potential association between ISG expression and viremia as recommended by the reviewer. These analyses were integrated into the revised manuscript as Figure S6.

      “To exclude the possibility that these gene expression signatures in ECs are associated with viremia, we quantified HIV-1 transcript levels in deconvoluted CD4+ T cell RNA-seq samples from ECs and ART-treated PLWH for comparison. In the original studies, all samples were reported to have undetected viremia by blood tests (9,37-39). Consistent with this, we found that the vast majority of the EC and ART samples taken from PBMCs exhibited very low HIV-1 transcript levels, with TPM values generally below 1. However, in samples originating from the lymph nodes of EC individuals (n = 22) (37), we detected HIV-1 expression in some subsets (Figure S6A&B). In agreement with the corresponding study (37), we found elevated HIV-1 transcript levels in germinal center and non-germinal center T follicular helper cells (GC Tfh & nGC Tfh, not included in our clustering analyses) -- and to a lesser extent in T effector memory (EM) cells (Figure S6A, average TPM This added analysis confirms that the increased expression of ISGs in ECs is not correlated with virological transcription and is therefore likely not to be driven by viremia.

      1. KZNF genes seem downregulated in EC. Can the authors propose a reason/mechanism for that?

      Authors: There is the possibility that KZNF regulatory loops are the cause of their transcriptional downregulation, which has been documented in embryogenesis (PMID 31006620) and cancer (PMID 33087347). We’ve incorporated this hypothesis into the Discussion as an additional consideration for the reader.

      “These observations suggest that interindividual variation in KZNF expression in CD4+ T cells could explain why certain TEs are variably expressed and accessible across ECs. But what are the mechanisms underlying variation in ZNF expression? It is possible that TE-KZNF regulatory loops are involved, in which a copy of the TE family targeted by a KZNF is inserted near and regulates the KZNF gene, thereby introducing a negative feedback loop. This phenomenon has been documented in prior studies of KZNF activity in embryogenesis (51) and cancer (115).” [pg. 39-40, L705-711]

      While we believe this is a viable hypothesis, it requires further experimentation to confirm the existence of this phenomenon and its impacts in the context of immune cells.

      Significance

      Overall, I think this is an interesting manuscript that proposes distinct and potentially important mechanisms that may contribute to immune control of HIV. My suggestions to improve the manuscript are complex and cannot be easily addressed through experimental work. I believe a possible option would be to publish the present manuscript without my proposed modifications but highlight the weaknesses of the current paper more clearly; mechanistic studies could then be deferred to a future study.

      Authors: We appreciate the reviewer's positive assessment of our manuscript and their recognition of its significance in elucidating novel TE-derived mechanisms that may contribute to natural HIV-1 control. We agree that mechanistic studies are required to test our predictions. As the reviewer suggests, these would be complex experiments that we feel fall beyond the scope of this study. With the additions detailed above in response to the reviewer’s point #2, we believe that we have clearly highlighted the limitations of our work and emphasized the need for future experimentation to validate our findings.

      Reviewer #3

      Evidence, reproducibility, and clarity

      Summary: This manuscript presents an analysis of published gene expression (RNA-seq and ATAC-seq) data from a couple of cohorts of HIV-infected elite controllers (EC), as compared to uninfected controls, (HC), virological progressors (VP). The authors report that HIV elite controllers may exhibit 4 distinct patterns of TE (and gene) expression and suggest that TE expression may drive some form of antiviral gene expression. Further, they show that heterogeneous TE expression may be determined by differential KZNF gene activity among the different clusters of elite controllers. These results are very interesting, even though the conclusions are very preliminary. It presents intriguing correlations between expression of certain TE groups of LINES and HERVs, and the clustering into 4 gene expression groups in EC and is a novel finding. That said, correlation is not causation, and the authors need to be more cautious in presenting their highly preliminary model in Figure 6.

      Authors: We are grateful for the reviewer's insightful assessment of our manuscript, acknowledging the novelty and interest of our findings regarding TE expression patterns in HIV-1 elite controllers. We also appreciate their constructive feedback regarding the cautious interpretation of preliminary conclusions. In the revised manuscript, we have underscored the exploratory nature of our investigations and the need for future mechanistic experiments to validate our model.

      “These findings underscore the need for future locus-level investigations with high-depth sequencing to fully capture the complexity of TE expression.” [pg. 28, L486-488]

      “Each step in the model will require experimental work to be validated. First and foremost, it will be important to confirm that the TEs exhibiting increased transcript levels and accessibility in ECs are indeed boosting the innate immune response and control of HIV-1 in these individuals.” [pg. 34, L583-586]

      “CRISPR-Cas9 editing was used in cell lines to demonstrate that a subset of MER41 elements function as enhancers driving the interferon-inducibility of several innate immune genes. However, the specific MER41 loci we identified here as differentially active in ECs have not been tested experimentally for enhancer activity. Thus, further work is warranted to confirm the regulatory function of these loci under the control of STAT1 or other immune TFs, as well as other TE families identified as targets of immune-related TFs (Figure S8).” [pg. 35, L594-600]

      “Overall, our results reinforce the concept that TEs are important players in the human antiviral response (25,93) and uncover specific candidate elements for boosting cellular defenses against HIV-1 in ECs. We acknowledge that these associations are drawn from correlative patterns and manipulative experiments are needed to infer causality between chromatin changes at these TEs and increased expression of nearby immunity genes.” [pg. 36, L618-623]

      “Further work is needed to validate TE-KZNF regulatory interactions in T cells, probe their connection to epigenetic variation at individual TE loci, and explore their repercussions on gene expression variation in CD4+ T cells, with and without HIV-1 infection.” [pg. 40, L715-718]

      We hope these passages provide sufficient caution and clarity in the presentation of our scientific inquiry.

      Major comments:

      Overall, although preliminary, as the authors note, the results are interesting and worthy of follow-up. At this point, however, a number of issues arise that need further clarification and analysis before I would consider this study complete.

      First, the analyses shown in Figures 3-5 based on data from studies on EC of CD4 cells are apparently motivated by the differential TE expression in total PBMCs shown in Fig 1 and 2. Yet, the TE groups (please don't use taxonomic terms like "subfamily") identified in Fig 2 and Fig 4 are completely different, with no overlap. This discrepancy underscores the possibility that the differential expression observed is, at least in part, due to the differences among the groups or clusters in cell type composition, as seen in Fig 2D and 3B which, themselves, could be a consequence of HIV infection and elite control (which has been shown to involve ongoing, albeit low-level, virus replication). This issue must be addressed.

      Authors: Thank you for the suggestion. First, we’d like to clarify that the data used in Figures 1 and 2 were not both derived from PBMCs. Figures 1 and S1 examine the differential expression of TEs in EC CD4+ T cells compared to HCs and ART-treated PLWH, respectively. Figure 2 examines differential expression of TEs in EC PBMCs compared to treatment-naïve VPs. Second, regarding Figure 4B-C, the TE loci that we chose to highlight were not based on our results from the PBMC analysis in Figure 2, which is why there is no overlap in the TE families presented. Instead, we selected those TE-gene pairs based on 1) known function of the genes in immunity and/or HIV-1 restriction, 2) known contribution of the TE families to immunity, and 3) differential accessibility and expression of the TEs and genes respectively in ECs compared to HCs. Thus, Figure 4B-C represents select examples that we deemed particularly relevant to the EC phenotype. We have revised the manuscript to better explain the process of TE-gene pair identification and the rationale behind our selection for Figure 4B-C.

      “We used paired ATAC-seq – which measures chromatin accessibility – and RNA-seq datasets from the CD4+ T cells of ECs (n=4) and HCs (n=4) (39) to create a list of TE-gene pairs where the TE locus and gene show increased accessibility and expression, respectively, in ECs compared to HCs (Table S7, see Methods for details). These loci and genes were paired based on proximity, with a maximum distance of 10kb between the TE locus and the gene’s transcription start site, to increase the likelihood of a direct cis-regulatory influence of the TE over the nearby gene.” [pg. 21, L357-363)

      “In Figure 4B & 4C, we have highlighted six of the TE-gene pairs from Table S7 based on the gene’s function in HIV-1 restriction and the TE family’s known contribution to immune gene regulation.” [pg. 21, L369-371]

      Regarding cell type composition, we acknowledge that the differences observed in the proportion of immune cell subtypes may contribute to the differential expression between ECs, VPs, and HCs (Figures 2D and S3A). However, we provide evidence that cell type composition cannot be the sole driver for the clustering of deconvoluted CD4+ T cell RNA-seq samples (Figure 3B and S5D). Cell subtype alone could not explain the observed clustering of EC samples by gene and TE family expression. Clusters 1 and 2, for example, had nearly identical subtype compositions, but were clearly separated on the UMAP (Figures 3A, 3B, and S5D). We remark on this in the Results of the revised manuscript.

      “[W]e visualized the samples by cellular subtype, as identified in the original studies, to assess whether the clustering could be explained by CD4+ T cell subtype composition (Figure S5D). Clusters 1 and 2 were essentially indistinguishable in cell type composition, whereas Clusters 3 and 4 showed an overrepresentation of TM/EM and naïve/CM cell types, respectively (Figure 3B). Thus, cell subtype composition could only partially explain the clustering.” [pg. 16, L271-276]

      The EC CD4+ T cell clusters also had unique gene ontology, gene & TE expression, and TE accessibility profiles (Figures 3C, 3D, 5). Moreover, while we do not have parallel RNA- and ATAC-seq data from similarly deconvoluted CD4+ T cells of ECs like those used in the clustering analysis (PMIDs 32848246 & 27453467), the original article from which we sourced the parallel RNA- and ATAC-seq data used in Figures 1 and 4 reported that these samples are predominantly effector memory CD4+ T cells (PMID 30964004). If new deconvoluted, multi-omic datasets from ECs become available, we would be interested in further exploring the contribution of cell type composition. However, the current data indicate that it is not a major contributor to the differential TE expression identified in our analyses.

      Regarding the impact of ongoing HIV-1 replication upon the unique expression patterns in the EC participants, it's worth noting that the public datasets used in our study reported undetectable viremia in the EC volunteers (PMIDs 30964004, 29269040, 32848246, 27453467). Nonetheless, we sought to address this by quantifying HIV-1 transcription and exploring its potential association with interferon-stimulated gene (ISG) expression, a group of genes that we know would be reactive to active viremia. These analyses were integrated into the revised manuscript as Figure S6.

      “To exclude the possibility that these gene expression signatures in ECs are associated with viremia, we quantified HIV-1 transcript levels in deconvoluted CD4+ T cell RNA-seq samples from ECs and ART-treated PLWH for comparison. In the original studies, all samples were reported to have undetected viremia by blood tests (9,37-39). Consistent with this, we found that the vast majority of the EC and ART samples taken from PBMCs exhibited very low HIV-1 transcript levels, with TPM values generally below 1. However, in samples originating from the lymph nodes of EC individuals (n = 22) (37), we detected HIV-1 expression in some subsets (Figure S6A&B). In agreement with the corresponding study (37), we found elevated HIV-1 transcript levels in germinal center and non-germinal center T follicular helper cells (GC Tfh & nGC Tfh, not included in our clustering analyses) -- and to a lesser extent in T effector memory (EM) cells (Figure S6A, average TPM Based on these results, we have concluded that the differential expression of genes and TEs in the EC clusters are not a consequence of low-level viral transcription in ECs.

      Finally, a remark on TE nomenclature: The reviewer suggests that we use the term “TE groups” as opposed to taxonomic terms such as TE subfamily or TE family. We respectfully disagree. This nomenclature of TEs has been well defined (PMIDs 26612867, 26612867, 17984973) and is widely used in TE literature. Throughout the manuscript, we have conformed to the nomenclature used to annotate the human genome. One can debate the way TE families and subfamilies have been classified in Dfam (the database through which repetitive elements in the human genome have been annotated), but it is outside the scope of this study to revisit that nomenclature.

      Similarly, of the 12 DE TE groups in EC in Fig 5A, only 3 overlap with the 16 in EC Fig S1.

      Authors: This is correct, but we don’t believe it’s concerning. In Figure 5A, we are comparing the expression of TE families between separate EC clusters. In Figure S1, we are comparing the expression of TE families in ECs compared to ART-treated PLWH. These are fundamentally different comparisons and thus the differences in the identified DE-TEs between the two figures reflect the distinct biological contexts being investigated in each analysis.

      Second, the introduction points out the strongly supported association between elite control and immunogenetic determinants, most notably specific HLA-B types, but also innate immunity factors. This cries out for inclusion of these factors in the analyses of this manuscript, in the format of Figure S4, for example, but none is to be found. The relevant genotypes are likely available in the metadata in the references cited, but, if not, could be inferred from the RNA-seq data.

      Authors: Thank you for the recommendation. While our project’s primary focus is on the transcriptomic and epigenomic signatures, we agree that studying the HLA-B genotypes of all EC participants could provide valuable context for understanding the clustering of elite controllers. To explore this, we inferred the HLA-B alleles in each EC participant whose RNA-seq data was included in the clustering analysis, utilizing the arcasHLA tool (PMID: 31173059) on the total CD4+ T cell samples. We then validated these inferred HLA-B alleles against the available metadata from one of the source studies (PMID 27453467) and found that they matched for all participants. This strengthened our confidence in the accuracy of the HLA-B genotype inferences for the other samples where comprehensive HLA-B data was not provided.

      In order to assess how these protective HLA-B alleles segregated between the four EC clusters derived from gene and TE family expression, we chose to visualize three of the most common alleles associated with HIV-1 elite control: HLA-B*27:03, *57:01, and *57:03 (PMIDs 30964004, 25119688, 21051598) (Figure R1, available in the Response to Reviewers PDF).

      Our analysis revealed that these major protective alleles were not significantly overrepresented in any particular cluster. Consequently, we believe that HLA-B genotype does not have a major impact on the clustering observed in Figure 3.

      It would also be very useful to present the KZNF data in Figure 5 the same way, since, looking at Fig 5C, the correlation of high and low KZNF expression, while clearly correlated with a that of few groups of elements, with clustering into specific groups does not appear to be well supported.

      Authors: Thank you for the insightful suggestion. While the KZNF genes are included in the gene set used for the clustering analysis in Figure 3, we agree that clustering based solely on KZNF expression and displaying it as we have in Figures 3A and S5 could provide valuable insights. However, when we attempted to cluster the EC RNA-seq samples using only KZNF expression data, we were limited by the relatively low number of KZNF genes that showed sufficient variability across samples (n = 120). For robust statistical power, we require at least 200 features to reliably cluster the 128 EC CD4+ T cell samples. We believe this limitation does not diminish the relevance of KZNFs in the observed clustering patterns but rather highlights the nuanced role each KZNF plays in the regulation of the transcriptome. Each individual KZNF is responsible for the regulation of hundreds to thousands of TE loci (PMID 37730438). Thus, while a clustering approach based solely on KZNF expression may not be feasible, the integral role of KZNFs in modulating the transcriptome through TE regulation remains evident and supports their inclusion in Figure 6 of the revised manuscript.

      In general, other than the cell type composition differences, there is no presentation of evidence for any biologically important feature associated with the clusters found.

      Authors: We agree that the root cause of the transcriptomic differences between the EC clusters is hard to pin down but we do identify several distinctive features of the clusters that we believe are biologically significant. First, having extracted the lists of genes whose differential expression defined the four EC clusters, gene set enrichment analysis revealed that the clusters were functionally distinct, each characterized by a unique list of top GO terms (Figure 3C). Second, we provide evidence that KZNFs expressed in CD4+ T cells significantly bind to the candidate TE families whose expression defines each of these clusters (Figure 6D) and have significantly decreased expression in ECs compared to VPs (Figure 6C). This is corroborated by pairwise correlation analysis that revealed cluster-specific anticorrelation patterns between these KZNFs and their target TEs (Figure 6A). We present this data in support of our hypothesized KZNF-based mechanism for TE co-option in viral immunity. We do not yet have data indicative of the mechanism by which KZNF expression is in turn regulated. However, we speculate that negative feedback loops may be contributing to changes in KZNF expression.

      “These observations suggest that interindividual variation in KZNF expression in CD4+ T cells could explain why certain TEs are variably expressed and accessible across ECs. But what are the mechanisms underlying variation in ZNF expression? It is possible that TE-KZNF regulatory loops are involved, in which a copy of the TE family targeted by a KZNF is inserted near and regulates the KZNF gene, thereby introducing a negative feedback loop. This phenomenon has been documented in prior studies of KZNF activity in embryogenesis (51) and cancer (115).” [pg. 39-40, L705-711]

      Overall, our study presents preliminary evidence that the four EC clusters derived from gene & TE family expression may be distinguished by complex interplay of activators (Figure S8) and repressors (Figure 6) altering the activity of infection-responsive TE families to co-opt specific elements for immune regulatory function. While not yet validated in an experimental setting, we believe these results are of biological significance.

      Third, the figures present values that have been very heavily analyzed, and it is difficult to impossible to infer what the underlying data look like. For example, with the exception of a few selected examples in Figs 4 and 5, individual provirus data are lacking. Nor can we tell how consistent the distribution of expression values within a TE group is, whether the TEs included solo LTRs (which constitute the majority of all ERVs), the possible contribution of other TFs to expression (with the exception of a brief mention of STAT1).

      Authors: We respectfully disagree that the values presented in our figures are heavily analyzed. As this manuscript represents the first investigation of TEs’ role in HIV-1 elite control, we believe the most reasonable initial approach was to compile and visualize the data at the family level, rather than at the level of individual loci, which is harder to interpret due to mapping issues, commonly low transcription, and often idiosyncratic behavior of individual loci. Nonetheless, we did not limit our analysis to full-length HERVs (proviruses) and thus retain all solo LTR data in our analyses. This was added to the Methods of the revised manuscript.

      “To facilitate comprehensive expression quantification, we curated a reference transcriptome by combining gene, TE, and HIV-1 genomic sequences. This was achieved by integrating the locus-level TE classification from RepeatMasker, the hg19 GenCode gene annotation,

      and the HXB2 reference HIV-1 annotation. For the TEs, we removed simple repeats, SINE elements, and DNA transposons, retaining LINE and HERV loci, including all solo LTRs. We also removed any loci within gene exons/UTRs. The remaining sequences were appended in fasta format, and all sequences were annotated with their respective gene, TE locus, or HIV subunit and modeled in GTF format.” [pg. 55, L869-878]

      For the sake of transparency, all relevant details on sequencing data analysis and the corresponding scripts are available in the Methods and our GitHub Repository.

      Additionally, while most of our figures make comparisons at the family level, we do visualize multiple TE loci (Figure 4C) and provide a list of putative locus-level TE-gene pairs from which those shown in Figure 4C were selected (Table S7). In our revisions, we also re-clustered the 128 EC CD4+ T cell RNA-seq samples based only on locus-level TE expression, using the same graph-based k-nearest neighbors method as in Figure 3. The results of this new analysis have been integrated into the revised manuscript as Figure S7.

      “To further explore locus-level expression patterns, we re-clustered the same EC samples (n=128) using only locus-level TE expression. This again resolved four EC clusters (Figure S7A), which interestingly appeared even more distinct than those identified by gene and TE family expression (Figure 3A). The TE locus-based clusters (TL-Cs) aligned well with the gene and TE family clusters (GT-Cs), with an average 70% overlap in samples between each GT-C and its corresponding TL-C (Figure S7B), indicating high consistency (Table S8). The remaining 30% of samples that shifted between clusters did so consistently within individuals, not cohorts, maintaining heterogeneous TL-C compositions similar to the GT-Cs (Figures S7C & S5A). An exception to this heterogeneity was TL-C4, comprising 22 samples from GT-C1 that were almost entirely from the CD4+ T cell subsets of only four participants in the Jiang cohort (Figure S7C, Table S8). No other samples from the Jiang cohort shifted to this cluster from other GT-Cs, suggesting that these patterns reflect individual variation rather than cohort bias. Like the GT-Cs, each TL-C included samples from all five CD4+ T cell subsets and was largely heterogeneous (Figure S7C). Notably, TL-C2 mirrored corresponding GT-C3 in its overrepresentation of EM and TM cells, while TL-C1 uniquely showed an overrepresentation of naïve CD4+ T cells. Beyond sample composition, each TL-C was characterized by a unique pattern of expressed TE loci (Figure S7D). These signatures were heterogeneous across families, with subsets of variable loci from one TE family marking separate clusters (Figure S7E), some of which did not reach the threshold of significance in earlier analyses when analyzed at the family-level, like SVA-D. Many families maintained their cluster-specific signatures, like THE1B (a marker of GT-C2), for which the majority of variable loci were found in corresponding TL-C1. However, some TE families, like the L1s that marked GT-C1, showed more heterogeneous signatures with variable loci marking multiple TL-Cs. These findings underscore the need for future locus-level investigations with high-depth sequencing to fully capture the complexity of TE expression.” [pg. 27-28, L462-488]

      With this addition, we include significantly more data analyzed at the locus level, which we believe not only validate the distinct clustering observed in Figure 3, but also underscore the potential for locus resolution analysis to reveal additional layers of retrotranscriptomic diversity in EC CD4+ T cells.

      Finally, we agree with the reviewer that TFs other than STAT1 may contribute to the observed changes in TE expression. To investigate this, we analyzed several TFs expressed in CD4+ T cells and, for TFs enriched over TEs of interest, subsequently examined the correlation between TF and target TE expression in the deconvoluted EC CD4+ T cell samples used for the clustering. The results of this analysis have been integrated into the revised manuscript at Figure S8.

      “In addition to KZNF repressors, transcriptional activators may also drive the differential expression of specific TE families across ECs (83). To investigate this, we focused on transcription factors (TFs) expressed in CD4+ T cells and mined ChIP-seq data from the ENCODE Consortium (84) to identify TFs with binding enrichment to TE families of interest, selected for their elevated, cluster-specific expression in ECs (highlighted in Figures 4, 5, and S4). We then examined the correlation between TF and target TE expression in the deconvoluted CD4+ T cell samples from ECs used for our clustering analysis (Figure 3) (9,37). We observed several significant positive correlations between TF and TE expression across ECs (Figure S8). Thus, differential expression of immune-related TFs may also contribute to the variation in TE expression and cis-regulatory activity across ECs, in tandem with the repressive activities of KZNFs.” [pg. 30, L517-527]

      This evidence supports the reviewer’s suggestion that other TFs may be contributing to the unique EC retrotranscriptome we profile in this study. These added analyses, mimicking those conducted for KZNFs in Figure 6B & 6D, demonstrate that transcriptional activators may indeed play a crucial role in shaping the TE landscape in ECs.

      Other issues

      Figure 1:

      A) Log2 fold change of what? TPM values? Needs to be specified.

      Authors: Thank you for pointing out this ambiguity. The log2-transformed fold change values plotted in Figure 1A refer to DESeq2-normalized expression. They were extracted from the results of the DESeq2 pipeline, which we applied to the raw count expression matrix (see our Methods for more details). Following your suggestion, we have clarified this point in the figure legend in the revised manuscript.

      “Total detected genes and TE loci are plotted by log2-transformed fold change of DESeq2-normalized counts (EC vs. HC).” [pg. 10, L163-164]

      We have similarly made these changes to any figure legend which was ambiguous in its description of the expression data.

      Why Bonferroni correction? Usually BH q values or other less stringent adjustments are used nowadays.

      Authors: In our analysis, we opted for the Bonferroni correction due to its well-established reliability and stringent control of the family-wise error rate when conducting multiple tests. Given the exploratory nature of our investigation and the desire to minimize the risk of false positive findings, we chose to employ this traditional correction method within our analytical pipelines.

      B,C): Z-score of what? Scaled, normalized counts? Scaled TPM values?

      Authors: Thank you again for highlighting this point of uncertainty. We now clarify this in the figure legend in the revised manuscript.

      “Heatmap displaying the expression of the top differentially expressed genes in CD4+ T cells of ECs (n=4; red bar) vs. HCs (n=5; blue bar). Relative expression levels are representative of row-wise scaled, log2-transformed expression in transcripts per million (TPM). Heatmap coloration is based on the z-score distribution from low (gold) to high (purple) expression.” [pg. 11, L167-171]

      Figure 2:

      B) The blue font color is very difficult to see.

      Authors: We have changed the blue font color to make it more easily distinguishable from the black.

      C) This heatmap should demarcate or separate genes versus TE clades. If that's not possible, then the two should be shown separately.

      Authors: We appreciate your suggestion regarding the heatmap presentation. While we understand the rationale for demarcating genes versus TE clades, we have chosen to retain the original figure layout. In this analysis, TEs were analyzed simultaneously with genes. The order in which they are shown was obtained by default clustering of the expression matrix using the hclust function. We chose to present them together and in this order to provide a comprehensive visualization of the differential expression patterns between the two groups and highlight the homogenous nature of gene and TE expression across VPs.

      L191: How many groups (NOT families) and how many total elements were examined?

      Authors: We begin with the RepeatMasker annotation of the hg19 assembly and filter out the SINE elements, DNA transposons, simple repeats, and all loci within gene exons/UTRs. These details are provided in the Methods of the revised manuscript, as was quoted above. In total, our analyses examine 1,104,828 loci from 603 TE groups (which we refer to as families). We apologize if this figure is not accurate to a separate classification of TEs into groups, rather than families. Any such method of grouping TEs is unfamiliar to us and outside of the Dfam annotation.

      L198: 2B, not C

      Authors: Thank you for catching this. The figures labelled were swapped in error and have been changed to reflect in Figure 2 to match the in-text references.

      L205: Did the expressed proviruses have STAT1 sites?

      Authors: Thank you for your question. The identification of LTR13’s increased expression in ECs compared to VPs was the result of a family level analysis which considered expression additively across the LTR13 loci in our annotation. To answer your question, we analyzed STAT1 ChIP-seq data from the ENCODE Consortium to characterize which LTR13 loci were bound by STAT1 (corroborated by motif prediction calls). We then integrated the EC RNA-seq data and found that the expressed LTR13 proviruses significantly overrepresented those with bound STAT1 sites (Figure R2, available in the Response to Reviewers PDF).

      These data suggest that STAT1 binding may play a critical role in the transcriptional regulation of LTR13 in ECs, contributing to their differential expression profile. Further exploration into the contribution of activating, immune-related TFs is explored in Figure S8 in the revised manuscript.

      L333: 10 kb is very close. Why was it chosen?

      Authors: We chose 10 kb as our cutoff for selection because it allowed for very high confidence in the TE loci’s cis-regulatory capacity over the nearby genes. For transparency, we have made this clearer in the Results text of the revised manuscript.

      “These loci and genes were paired based on proximity, with a maximum distance of 10kb between the TE locus and the gene’s transcription start site, to increase the likelihood of a direct cis-regulatory influence of the TE over the nearby gene.” [pg. 21, L360-363]

      However, if desired, a less stringent cutoff could also be used with relative confidence (e.g., 50 kb).

      L351-352: Again, correlation is not causation. How do the authors know it's not the other way around?

      Authors: The candidates that we chose to display in Figure 4 (the figure to which these lines refers) are from MER41, ERV3-16, and LTR12C. Our lab and others have shown that these specific loci or other loci in these TE families are capable of regulating neighboring genes’ expression, with specific evidence in the context of immunity (PMID Smitha, Ed, APOBEC, etc.). Based on this knowledge, we believe that it’s most likely that TE-derived regulatory sequences are the cause of the increased restriction factor expression, rather than TE accessibility being a consequence of the transcriptional activation of the neighboring genes. However, we recognize that these results are correlative, as the reviewer notes, and we emphasize this in the revised manuscript. Most notably:

      “We acknowledge that these associations are drawn from correlative patterns and manipulative experiments are needed to infer causality between chromatin changes at these TEs and increased expression of nearby immunity genes.” [pg. 36, L620-623]

      Figure 4

      B) Need to show a scale of the genome region, the orientation of both the gene and the TE, whether it is a solo LTR

      Authors: Thank you for the suggestion. Genomic scale and orientation have been added to Figure 4C. All loci visualized were solo LTRs, save for HCP5, which is a lncRNA derived from a full-length ERV3 element.

      Figure 5

      A) Would benefit from also showing HCs

      Authors: Thank you for the recommendation. The RNA-seq datasets used in this analysis do not include HC samples. Additionally, this analysis is meant to highlight differences in TE expression between the four EC clusters. Thus, we have chosen to keep Figure 5A as it appears in the original manuscript.

      C) Would be helped by showing adjusted p-values, and also should show examples of non-correlating relationships between these KZNF genes and other TEs.

      Authors: Thank you for the suggestion. All correlation analyses had adjusted p-values below 0.01, derived from corr.test in R. We’ve added this to the figure legends of Figure 6B [pg. 32, L539] and S8B [pg. 53, L835]. However, we have chosen not to integrate non-correlating examples into the revised manuscript for the sake of space.

      Figure 6

      Title: should start with "proposed model for.." or some such.

      Authors: Thank you for the suggestion. The title has been changed to “Proposed model for the interplay of KZNFs and TEs regulating proximal antiviral gene expression in elite controllers of HIV-1” in the revised manuscript [pg. 34, L580-581].

      L 537: Again, how do the alleles segregate in the clusters?

      Authors: This question has been addressed in response to an earlier comment from Reviewer #3.

      Generally, in the correlation analyses, I'd like to see adjusted p-values and examples of non-correlated results.

      Authors: Thank you for the suggestion. As mentioned above, all correlation analyses have been annotated with the adjusted p-value threshold. Additionally, below we’ve included examples of non-correlated results from two analyses. First, we show a TE-gene pair whose increased TE accessibility in HCs compared to ECs does not correlate with increased expression of the proximal gene (Figure R3, available in the Response to Reviewers PDF). Notably, this gene does not play a role in HIV-1 infection response. Here, we show that genes with proximal (Second, we show the pairwise correlation and linear regression results of L1PA6 and ZNF2 (Figure R4, available in the Response to Reviewers PDF). ZNF2 is one of the KZNFs highlighted in Figure 6 for its low expression in ECs, anticorrelated to its repressive target LTR12C. On the other hand, L1PA6 is active in ECs, with variably high expression across samples. ZNF2 ChIP-exo revealed that ZNF2 has no capacity to bind to L1PA6 loci (adj. p-value = 1; PMID 37730438). Thus, even though both genes are variable across samples, we observe no significant (anti)correlation between the two variables (rho = 0.051 & p-value = 0.866).

      While we have not integrated these results into the revised manuscript for the sake of space, we hope that the provided examples satisfactorily demonstrate the presence of non-correlated results in our analyses, further reinforcing the specificity and robustness of our significant findings.

      Significance:

      This study presents an in-depth analysis of the reverse transcriptome in Elite controllers. It will be of interest to both HIV researchers and those interested in the regulation of the human retrotranscriptome and its consequences.

      Provides an avenue for future explanation into elite controllers and TE involvement in the phenotype.

      Does a good job of placing the work in the context of existing lit, synthesizing other papers regarding TEs and immune control.

      Potential immune regulatory involvement of specific HERV clades.

      Authors: We’d like to thank the reviewer for their encouraging feedback. We’re pleased that they found our analysis of the EC retrotranscriptome to be of broad interest and appreciate their recognition of our efforts to synthesize existing literature, contextualizing our findings within the broader field. We agree that our study opens new avenues for exploring the role of TEs, particularly specific HERV clades, in not only the EC phenotype but immune regulation as a whole.

    1. Automatic thinking causes us to simplify problems and see them through narrow frames. We fi ll in miss- ing information based on our assumptions about the world and evaluate situations based on associations that automatically come to mind and belief systems that we take for granted. In so doing, we may form a mistaken picture of a situation, just as looking through a small window overlooking an urban park could mis- lead someone into thinking he or she was in a more bucolic place. page 12

      I think that the results from the research conducted on culting stigmatized identity affecting students' performances made me realize how much of a mental toll stereotypes can play on people. It's disheartening and ironic simultaneously to see how the high and low sides of the caste-system groups collectively performed worse when they were told their respective roles. It influences the way that I think as a student going to an international school because it is interesting to see how these ideas can parallel to students around me. Regardless, this passage relates to today's inquiry question because it can be used and argued to reflect how poor people shape individual economic actions due to neglect and stereotypes affecting their life subconsciously.

    2. Automatic thikning causes us to simplify problems and see them through narrow frames. We fill in missing information based on our assumptions about the world and evaluate situations based on associations that automatically come to mind and belief systems that we take for granted. In so doing, we may form a mistaken picture of a situation, just as looking through a small window overlooking an urban park could mislead someone into thinking he or she was in a more bucolic place. page 6

      (Question)

      Throughout this passage I noticed that automatic thinking or "thinking fast" is commonly portrayed as being bad due to its associations with irrational decisions, prejudice, and intuitive. Given this context, what are the positive benefits of automatic thinking and why did the author fail to shed light on this in the book?

      I would say that this section of the book relates to today's inquiry because it teaches us more about the first system of thinking and how it can be malicious to mainly use this for our everyday thinking. For example, statistically poor people fail to make it out of the bottom income threshold for most of their life. I hypothesize that this is due to their lack of choices, power, and education in order to think deliberately.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Thank you very much for your editorial handling of our manuscript entitled 'A conserved fungal Knr4/Smi1 protein is vital for maintaining cell wall integrity and host plant pathogenesis'. We have taken on board the reviewers' comments and thank them for their diligence and time in improving our manuscript.

      Please find our responses to each of the comments below.

      Reviewer(s)' comments

      Reviewer #1


      Major comments:


      __1.1. As a more critical comment, I find the presentation of the figures somewhat confusing, especially with the mixing of main figures, supplements to the main figures, and actual supplemental data. On top of that, the figures are not called up in the right order (e.g. Figure 4 follows 2D, while 3 comes after 4; Figure 6 comes before 5...), and some are never called up (I think) (e.g. Figure 1B, Figure 2B). __


      __Response: __The figure order has been revised according to the reviewer's suggestion, while still following eLife's formatting guidelines for naming supplementals. Thank you.

      1.2. I agree that there should be more CWI-related genes in the wheat module linked to the FgKnr4 fungal module, or, vice-versa, CW-manipulating genes in the fungal module. It would at least be good if the authors could comment further on if they find such genes, and if not, how this fits their model.


      Response: Thank you for your insightful suggestion regarding the inclusion of more CWI-related genes in the wheat module linked to the FgKnr4 fungal module F16, or vice versa. We did observe a co-regulated response between the wheat module W05 which is correlated to the FgKnr4 module F16. Namely, we observed an enrichment of oxidative stress genes including respiratory burst oxidases and two catalases (lines 304 - 313) in the correlated wheat module (W05). Early expression of these oxidative stress inducing genes likely induces the CWI pathway in the fungus, which is regulated by FgKnr4. Knr4 functions as both a regulatory protein in the CWI pathway and as a scaffolding protein across multiple pathways in S. cerevisiae (Martin-Yken et al., 2016, https://onlinelibrary.wiley.com/doi/10.1111/cmi.12618 ). Scaffolding protein-encoding genes are typically expressed earlier than the genes they regulate to enable pre-assembly with their interacting partners, ensuring that signaling pathways are ready to activate when needed. In this context, the CWI integrity MAPKs Bck1 and Mkk1 are part of module F05, which includes two chitin synthases and a glucan synthase. This module is highly expressed during the late symptomless phase. The MAPK Mgv1, found in module F13, is expressed consistently throughout the infection process, which aligns with the expectation that MAPKs are mainly post-transcriptionally regulated. Thank you for bringing our attention to this, this is now included in the discussion (lines 427 - 443) along with eigengene expression plots of all modules added to the supplementary (Figure 3 - figure supplement 1).

      To explore potential shared functions of FgKnr4 with other genes in its module, we re-analyzed the high module membership genes within module F16, which includes FgKnr4, using Knetminer (Hassani-Pak et al., 2021; https://onlinelibrary.wiley.com/doi/10.1111/pbi.13583 ). This analysis revealed that 8 out of 15 of these genes are associated with cell division and ATP binding. Four of the candidate genes are also part of a predicted protein-protein interaction subnetwork of genes within module F16, which relate to cell cycle and ATP binding. In S. cerevisiae, the absence of Knr4 results in cell division dysfunction (Martin-Yken et al., 2016, https://onlinelibrary.wiley.com/doi/10.1111/cmi.12618 ). Accordingly, we tested sensitivity of ΔFgknr4 to microtubule inhibitor benomyl (a compound commonly used to identify mutants with cell division defects; Hoyt et al., 1991 https://www.cell.com/cell/pdf/0092-8674(81)90014-3.pdf). We found that the ΔFgknr4 mutant was more susceptible to benomyl, both when grown on solid agar and in liquid culture. This data has now been added Figure 7, and referred to in lines 338-348.

      __Specific issues: __


      1.3. In the case of figure 5, I generally find it hard to follow. In the text (line 262/263), the authors state that 5C shows "eye-shaped lesions" caused by ΔFgknr4 and ΔFgtri5, but I can't see neither (5C appears to be a ΔFgknr4 complementation experiment). The figure legend also states nothing in this regard.

      __Response: __Thank you for your suggestion. We have amended the manuscript to include an additional panel that shows the dissected spikelet without its outer glumes, making the eye shaped diseased regions more visible in Figure 5.

      __1.4. Figure 5D supposedly shows 'visibly reduced fungal burden' in ΔFgknr4-infected plants, but I can't really see the fungal burden in this picture, but the infected section looks a lot thinner and more damaged than the control stem, so in a way more diseased. __


      Response: __Thank you for your insight. We have revised our conclusions based on this image to state that while ΔFgknr4 can colonise host tissue, it does so less effectively compared to the wild-type strain as we are unable to quantitatively evaluate fungal burden using image-colour thresholding due to the overlapping colours of the fungal cells and wheat tissues. Decreased host colonisation is evidenced by (i) reduced fungal hyphae proliferation, particularly in the thicker adaxial cell layer, (ii) collapsed air spaces in wheat cells, and (iii) increased polymer deposition at the wheat cell walls, indicating an enhanced defence response. __Figure 5 has been amended to include these observations in the corresponding figure legend and the resin images now include insets with detailed annotation.

      __1.5. The authors then go on to state (lines 272-273) that they analyzed the amounts of DON mycotoxin in infected tissues, but don't seem to show any data for this experiment. __

      Response: __We have amended this to now include the data in __Figure 5 - figure supplement 2B, thank you.

      Reviewer #2


      __Major issues: __


      2.1 If Knf4 is involved in the CWI pathway, what other genes involved in the CWI pathway are in this fungal module? one of the reasons for developing modules or sub-networks is to assign common function and identify new genes contributing to the function. since FgKnr4 is noted to play a role in the CWI pathways, then genes in that module should have similar functions. If WGCN does not do that, what is the purpose of this exercise?


      Response: __Thank you for raising this point regarding the role of FgKnr4 in the CWI pathway and the expectations for genes of shared function within the FgKnr4 module F16. We did observe that the module containing FgKnr4 (F16) was also correlated to a wheat module (W05) which was significantly enriched for oxidative stress genes. This pathogen-host correlated pattern led us to study module F16, which otherwise lacks significant gene ontology term enrichment, unique gene set enrichments, and contains few characterised genes. This is now highlighted in __lines 233-246. This underscores the strength of the WGCNA. By using high-resolution RNA-seq data to map modules to specific infection stages, we identified an important gene that would have otherwise been overlooked. This approach contrasts with other network analyses that often rely on the guilt-by-association principle to identify novel virulence-related genes within modules containing known virulence factors, potentially overlooking significant pathways outside the scope of prior studies. Therefore, our analysis has already benefited from several advantages of WGCNA, including the identification of key genes with high module membership that may be critical for biological processes, as well as generating a high-resolution, stage-specific co-expression map of the F. graminearum infection process in wheat. This point is now emphasised in lines 233-252. As discussed in response to reviewer 1, Knr4 functions as both a regulatory protein in the CWI pathway and as a scaffolding protein across multiple pathways in S. cerevisiae (Martin-Yken et al., 2016, https://onlinelibrary.wiley.com/doi/10.1111/cmi.12618 ) which would explain its clustering separate from the CWI pathway genes. The high module membership genes within module F16 containing FgKnr4 were re-analysed using Knetminer (Hassani-Pak et al., 2021; https://onlinelibrary.wiley.com/doi/10.1111/pbi.13583 ), which found that 8/15 of these genes were related to cell division and ATP binding. Four of the candidate genes are also part of a predicted protein-protein interaction subnetwork of genes within module F16, which relate to cell cycle and ATP binding. In S. cerevisiae, the absence Knr4 leads to dysfunction in cell division. Accordingly, we tested sensitivity of ΔFgknr4 to the microtubule inhibitor benomyl (a compound commonly used to identify mutants with cell division defects; Hoyt et al., 1991 https://www.cell.com/cell/pdf/0092-8674(81)90014-3.pdf). We found that the ΔFgknr4 mutant was more susceptible to benomyl, both when grown on solid agar and in liquid culture. This data has now been added as Figure 7 and referred to in lines 338-348.


      2.2. Due to development defects in the Fgknr1 mutant, I would not equate to as virulence factor or an effector gene.


      __Response: __We are in complete agreement with the reviewer and are not suggesting that FgKnr4 is an effector or virulence factor, we have been careful with our wording to indicate that FgKnr4 is simply necessary for full virulence and its disruption results in reduced virulence and have outlined how we believe FgKnr4 participates in a fungal signaling pathway required for infection of wheat.


      2.3. What new information is provided with WGCN modules compared with other GCN network in Fusarium (examples of GCN in Fusarium is below) ____https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069591/ https://doi.org/10.1186/s12864-020-6596-y____ DOI: 10.1371/journal.pone.0013021. The GCN networks from Fusarium have already identified modules necessary/involved in pathogenesis.

      Response: __The 2016 New Phytologist gene regulatory network (GRN) by Guo et al. is large and comprehensive. However, only three of the eleven datasets are in planta, with just one dataset focusing on F. graminearum infection on wheat spikes. The other two in planta datasets involve barley infection and Fusarium crown rot. By combining numerous in planta and in vitro datasets, the previous GRNs lack the fine resolution needed to identify genetic relationships under specific conditions, such as the various stages of symptomatic and symptomless F. graminearum infection of mature flowering wheat plants. This limitation is highlighted in the 2016 paper itself. This network is expanded in the Guo et al., 2020 BMC genomics paper where it includes one additional in planta and nine in vitro datasets. However, the in planta dataset involves juvenile wheat coleoptile infection, which serves as an artificial model for wheat infection but is not on mature flowering wheat plants reminiscent of Fusarium Head Blight of cereals in the field. This model differs significantly in the mode of action of F. graminearum, notably DON mycotoxin is not essential for virulence in this context (Armer et al. 2024, https://pubmed.ncbi.nlm.nih.gov/38877764/ ). The Guo et al., 2020 paper still faces the same issues in terms of resolution and the inability to draw conclusions specific to the different stages of F. graminearum infection. Additionally, these GRNs use Affymetrix data, which miss over 400 genes (~ 3 % of the genome) from newer gene models. In contrast, our study addresses these limitations by analysing a meticulously sampled, stage- and tissue-specific in planta RNA-seq dataset using the latest reference annotation. Our approach provides higher resolution and insights into host transcriptomic responses during the infection process. The importance of our study in the context of these GRNs is now addressed in the introduction (__lines 85-92).


      2.4. Ideally, the WGCN should have been used identify plant targets of Fusarium pathogenicity genes. This would have provided credibility and usefulness of the WGCN. Many bioinformatic tools are available to identify virulence factors and the utility of WGCN in this regard is not viable. However, if the authors had overlapped the known virulence factors in a fungal module to a particular wheat module, the impact of the WGCN would be great. The module W12 has genes from numerous traits represented and WGCN could have been used to show novel links between Fg and wheat. For example, does tri5 mutant affect genes in other traits?

      __Response: __Thank you for your suggestions. In this study we have shown the association between the main fungal virulence factor of F. graminearum, DON mycotoxin, with wheat detoxification responses. Through this we have identified a set of tri5 responsive genes and validated this correlation in two genes belonging to the phenylalanine pathway and one transmembrane detoxification gene. Although we could validate more genes in this tri5 responsive wheat module, our paper aimed to investigate previously unstudied aspects of the F. graminearum infection process and how the fungus responded to changing conditions within the host environment. We accomplished this by characterising a gene within a fungal module that had limited annotation enrichment and few characterised genes. Tri5 on the other hand is the most extensively studied gene in F. graminearum and while the network we generated may offer new insights into tri5 responsive genes, this is beyond the scope of our current study. In addition to the tri5 co-regulated response, we have also demonstrated the coordinated response between the fungal module F16, which contains FgKnr4 that is necessary for tolerance to oxidative stress, and the wheat module W05, which is enriched for oxidative stress genes.


      While our co-expression network approach can be used to explore and validate other early downstream signaling and defense components in wheat cells, several challenges must be considered: (a) the poor quality of wheat gene calls, (b) genetic redundancy due to both homoeologous genes and large gene families, and (c) the presence of DON, which can inhibit translation and prevent many transcriptional changes from being realised within the host responses. Additionally, most plant host receptors are not transcriptionally upregulated in response to pathogen infection (most R gene studies for the NBS-LRR and exLRR-kinase classes), making their discovery through a transcriptomics approach unlikely. These points will be included in our discussion (lines 408-413), thank you.

      Specific issues

      • *

      2.5. Since tri5 mutant was used a proof of concept to link wheat/Fg modules, it would have been useful to show that TRI14, which is not involved DON biosynthesis, but involved in virulence ( https://doi.org/10.3390/applmicrobiol4020058____) impact the wheat module genes.


      Response: __Our goal was to show that wheat genes respond to the whole TRI cluster, not just individual TRI genes. Therefore, the tri5 mutant serves as a solid proof-of-concept, because TRI5 is essential for DON biosynthesis, the primary function of the TRI gene cluster, thereby representing the function of the cluster as a whole. This is now clarified in __lines 217-219. Additionally, the uncertainties surrounding other TRI mutants would complicate the question we were addressing-namely, whether a wheat module enriched in detoxification genes is responding to DON mycotoxin, as implied by shared co-expression patterns with the TRI cluster. For instance, the referenced TRI14 paper indicates that DON is produced in the same amount in vitro in a single media. Although the difference is not significant, the average DON produced is lower for the two Δtri14 transformants tested. Therefore, we cannot definitively rule out that TRI14 is involved in DON biosynthesis and extrapolate this to DON production in planta. Despite this, the suggestion is interesting, and would make a nice experiment but we believe it does not contribute to the overall aim of this study.

      2.6. Moreover, prior RNAseq studies with tri5 mutant strain on wheat would have revealed the expression of PAL and other phenylpropanoid pathway genes?

      __Response: __We agree that this would be an interesting comparison to make but unfortunately no dataset comparing in planta expression of the tri5 mutant within wheat spikes exists.

      2.7. Table S1 lists 15 candidate genes of the F16 module; however, supplementary File 1 indicates 74 genes in the same module. The basis of exclusion should be explained. The author has indicated genes with high MM was used as representative of the module. The 59 remaining genes of this module did not meet this criteria? Give examples.


      Response: __The 15 genes with the highest module membership were selected as initial candidates for further shortlisting from the 74 genes within module F16. In WGCNA, genes with high module membership (MM) (i.e. intramodular connectivity) are predicted to be central to the biological functions of the module (Langfelder and Horvath, 2008; https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-559 ) and continues to be a metric to identify biologically significant genes within WGCN analyses (https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-024-05366-0 Tominello-Ramirez et al., 2024; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9151341/ ;Zheng et al., 2022; https://www.nature.com/articles/s41598-020-80945-3 Panahi and Hejazi et al 2021). Following methods by Mateus et al. (2019) (https://academic.oup.com/ismej/article/13/5/1226/7475138 ) key genes were defined as those exhibiting elevated MM within the module, which were also strongly correlated (R > |0.70|) with modules of the partner organism (wheat). We have clarified this point in the manuscript. Thank you for the suggestion. (__Lines 253-263).

      2.____8. A list from every module that pass this criteria will be useful resource for functional characterization studies.


      __Response: __A supplementary spreadsheet has been generated which includes full lists of the top 15 genes with the highest module membership within the five fungal modules correlated to wheat modules and a summary of shared attributes among them. Thank you for this suggestion.

      2.9. Figure 3 indicates TRI genes in the module F12; your PHI base in Supp File S2 lists only TRI14. Why other TRI genes such as TRI5 not present in this File?


      Response: For clarity, the TRI genes in module F12 are TRI3, TRI4, TRI11, TRI12, and TRI14 which was stated in Table 1. TRI5 clusters with its neighboring regulatory gene TRI6 in module F11, which exhibits a similar but reduced expression pattern compared to module F12. To improve clarity on this the TRI genes in module F12 are also listed in-text in line 168 and added to Figure 4. The enrichment and correlated relationship of W12 to a cluster's expression still imply a correlated response of the wheat gene to the TRI cluster's biosynthetic product (DON), which is absent in the Δtri5 mutant.

      TRI14 and TRI12 are listed in PHI-base. TRI12 was mistakenly excluded due to an unmapped Uniprot ID, which were added separately in the spreadsheet. We will recheck all unmapped ID lists to ensure all PHI-base entries are included in the final output. Thank you for pointing out this error.


      2.10. What is purpose of listing the same gene multiple times? Example, osp24 (a single gene in Fg) is listed 13 times in F01 module.


      __Response: __This is a consequence of each entry having a separate PHI ID, which represents different interactions including inoculations on different cultivar. Cultivar and various experimental details were omitted from the spreadsheet to reduce information density, however the multiple PHI base ID's will be kept separate to make the data more user friendly when working with the PHI-base database. An explanation for this is now provided in the file's explanatory worksheet, thank you.

      Reviewer #3:


      3.1. Why only use of high confidence transcripts maize to map the reads and not the full genome like Fusarium graminearum? I have never analyzed plant transcriptome.


      __Response: __ In the wheat genome, only high-confidence gene calls are used by the global community (Choulet et al., 2023; https://link.springer.com/chapter/10.1007/978-3-031-38294-9_4 ) until a suitable and stable wheat pan-genome becomes available.

      3.2. The regular output of DESeq are TPMs, how did the authors obtain the FPKM used in the analysis?


      Response: FPKM was calculated using the GenomicFeatures package and included on GitHub to enhance accessibility for other users. However, the input for WGCNA and this study as a whole was normalised counts rather than FPKM. The FPKM analysis was done to improve interoperability of the data for future users and made available on Github. To complement this, the information regarding FPKM calculation is now included in the methods section of the revised manuscript (line 491).

      3.3. Do the authors have a Southern blot to prove the location of the insertion and number of insertions in Zymoseptoria tritici mutant and complemented strains?


      __Response: __No, but the phenotype is attributed to the presence or absence of ZtKnr4, as the mutant was successfully complemented in multiple phenotypic aspects. This satisfies Koch's postulates which is the gold standard for reverse genetics experimentation (Falkow 1988; https://www.jstor.org/stable/4454582 ).

      __3.4. Boxplots and bar graphs should have the same format. In Figures 5 B and F and supplementary figure 6.3 the authors showed the distribution of samples but it is lacking in figure 3 B and all bar graphs. __


      __Response: __Graphs have been modified to display the distribution of all samples, thank you.

      3.5. Line 247 FGRAMPH1_0T23707 should be FGRAMPH1_01T23707


      __Response: __Thank you this has now been amended.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      The authors develop a self-returning self-avoiding polymer model of chromosome organization and show that their framework can recapitulate at the same time local density and large-scale contact structural properties observed experimentally by various technologies. The presented theoretical framework and the results are valuable for the community of modelers working on 3D genomics. The work provides solid evidence that such a framework can be used, is reliable in describing chromatin organization at multiple scales, and could represent an interesting alternative to standard molecular dynamics simulations of chromatin polymer models.

      We appreciate the editor for an accurate description of the scope of the paper.

      Public Reviews:

      Reviewer #1 (Public Review):

      Carignano et al propose an extension of the self-returning random walk (SRRW) model for chromatin to include excluded volume aspects and use it to investigate generic local and global properties of the chromosome 3D organization inside eukaryotic nuclei. In particular, they focus on chromatin volumic density, contact probability, and domain size and suggest that their framework can recapitulate several experimental observations and predict the effect of some perturbations.

      We thanks the reviewer for the attention paid to the manuscript and all the relevant comments.

      Strengths:

      - The developed methodology is convincing and may offer an alternative - less computationally demanding - framework to investigate the single-cell and population structural properties of 3D genome organization at multiple scales.

      - Compared to the previous SRRW model, it allows for investigation of the role of excluded volume locally.

      Excluded volume is accounted for everywhere, not locally. We emphasized this on page 3, line 182:

      “The method that we employ to remove overlaps is a low-temperature-controlled molecular dynamics simulation using a soft repulsive interaction potential between initially overlapping beads, that is terminated as soon as all overlaps have been resolved, as described in the Appendix 3.”


      - They perform some experiments to compare with model predictions and show consistency between the two.

      Weaknesses:

      - The model is a homopolymer model and currently cannot fully account for specific mechanisms that may shape the heterogeneous, complex organization of chromosomes (TAD at specific positions, A/B compartmentalization, promoter-enhancer loops, etc.).

      The SR-EV model is definitely not a homo-polymer, as it is not a regular concatenation of a single monomeric unit.

      The model includes loops, which may happen in two ways: 1) As in the SRRW, branching structures emerging from the configuration backbone can be interpreted as nested loops and 2) A relatively long forward step followed by a return is a single loop. The model induces the formation of packing domains, which are not TADs, and are quantitatively in agreement with ChromSTEM experiments.

      We consider convenient to add a new figure that will further clarify the structures obtained with the SR-EV model. The following paragraph and figure has been added in page 5:

      “The density heterogeneity displayed by the SR-EV configurations can be analyzed in terms of the accessibility. One way to reveal this accessibility is by calculating the coordinations number (CN) for each nucleosome, using a coordination radius of 11.5 nm, along the SR-EV configuration. CN values range from 0 for an isolated nucleosome to 12 for a nucleosome immersed in a packing domain. In Figure 3 we show the SR-EV configuration showed in Figure 2, but colored according to CN. CN can be also considered as a measure to discriminate heterochromatin (red) and euchromatin (blue). Figure 3-A shows how the density inhomogeneity is coupled to different CN, with high CN represented in red and low CN represented in blue. Figure 3-B show a 50 nm thick slab obtained from the same configuration that clearly show the nucleosomes at the center of each packing domains are almost completely inaccesible, while those outside are open and accessible. It is also clear that the surface of the packing domains are characterized by nearly white nucleosomes, i.e. coordinated towards the center of the domain and open in the opposite direction.”

      - By construction of their framework, the effect of excluded volume is only local and larger-scale properties for which excluded volume could be a main actor (formation of chromosome territories [Rosa & Everaers, PLoS CB 2009], bottle-brush effects due to loop extrusion [Polovnikov et al, PRX 2023], etc.) cannot be captured.

      Excluded volume is considered for all nucleosomes, including overlapping beads distant along the polymer chain. Chromosome territories can be treated, but it is not in this case because we look at a single model chromosome.

      - Apart from being a computationally interesting approach to generating realistic 3D chromosome organization, the method offers fewer possibilities than standard polymer models (eg, MD simulations) of chromatin (no dynamics, no specific mechanisms, etc.) with likely the same predictive power under the same hypotheses. In particular, authors often claim the superiority of their approach to describing the local chromatin compaction compared to previous polymer models without showing it or citing any relevant references that would show it.

      We apologize if the text transmit an idea of superiority over other methods that was not intended. SR-EV is an alternative tool that may give a different, even complementary point of view, to standard polymer models.

      - Comparisons with experiments are solid but are not quantified.

      The comparisons that we have presented are quantitative. We do not have so far a way to characterize alpha or phi, a priori, for a particular system.

      Impact:

      Building on the presented framework in the future to incorporate TAD and compartments may offer an interesting model to study the single-cell heterogeneity of chromatin organization. But currently, in this reviewer's opinion, standard polymer modeling frameworks may offer more possibilities.

      We thank the reviewer for the positive opinion on the potential of the presented method. The incorporation of TADs and compartments is left for a future evolution of the model as its complexity will make this work extremely long.

      Reviewer #2 (Public Review):

      Summary:

      The authors introduce a simple Self Returning Excluded Volume (SR-EV) model to investigate the 3D organization of chromatin. This is a random walk with a probability to self-return accounting for the excluded volume effects. The authors use this method to study the statistical properties of chromatin organization in 3D. They compute contact probabilities, 3D distances, and packing properties of chromatin and compare them with a set of experimental data.

      We thank the reviewer for the attention paid to our manuscript.

      Strengths:

      (1) Typically, to generate a polymer with excluded volume interactions, one needs to run long simulations with computationally expensive repulsive potentials like the WeeksChanlder-Anderson potential. However, here, instead of performing long simulations, the authors have devised a method where they can grow polymer, enabling quick generation of configurations.

      (2) Authors show that the chromatin configurations generated from their models do satisfy many of the experimentally known statistical properties of chromatin. Contact probability scalings and packing properties are comparable with Chromatin Scanning Transmission Electron Microscopy (ChromSTEM)  experimental data from some of the cell types.

      Weaknesses:

      This can only generate broad statistical distributions. This method cannot generate sequence-dependent effects, specific TAD structures, or compartments without a prior model for the folding parameter alpha. It cannot generate a 3D distance between specific sets of genes. This is an interesting soft-matter physics study. However, the output is only as good as the alpha value one provides as input.

      We proposed a model to create realistic chromatin configuration that we have contrasted with specific single cell experiments, and also reproducing ensemble average properties. 3D distances between genes can be calculated after mapping the genome to the SR-EV configuration. The future incorporation of the genome sequence will also allow us to describe TADs and A/B compartments. See added paragraph in the Discussion section:

      “The incorporation of genomic character to the SR-EV model will allow us to study all individual single chromosomes properties, and also topological associated domains and A/B compartmentalization from ensemble of configurations as in HiC experiments. “

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Major:

      - In the introduction and along the text, the authors are often making strong criticisms of previous works (mostly polymer simulation-based) to emphasize the need for an alternative approach or to emphasize the outcomes of their model. Most of these statements (see below) are incomplete if not wrong. I would suggest tuning down or completely removing them unless they are explicitly demonstrated (eg, by explicit quantitative comparisons). There is no need to claim any - fake - superiority over other approaches to demonstrate the usefulness of an approach. Complementarity or redundance in the approaches could also be beneficial.

      We regret if we unintentionally transmitted a claim of superiority. We have made several small edits to change that.

      - Line 42-43: at least there exist many works towards that direction (including polymer modeling, but also statistical modeling). For eg, see the recent review of Franck Alber.

      Line removed. Citation to Franck Alber included below in the text.

      - Line 54-57: Point 1 is correct but is it a fair limitation? These models can predict TADs & compartments while SR-EV no. Point 2 is wrong, it depends on the resolution of the model and computer capacity but it is not an intrinsic limitation. Point 3 is wrong, such models can predict very well single-cell properties, and again it is not an intrinsic limitation of the model. Point 4 is incorrect. The space-filling/fractal organization was an (unfortunate) picture to emphasize the typical organization of chromosomes in the early times (2009), but crumpled polymers which are a more realistic description are not space-filling (see Halverson et al, 2013).

      Text involving points 1 to 4 removed. It was unnecessary and does not change the line of the paper.

      - L400-402 + 409-411: in such a model, the biphasic structure may emerge from loop extrusion but also naturally from the crumpled polymer organization. Simple crumpled polymer without loop extrusion and phase separation would also produce biphasic structures.

      Yes, we agree. Also SR-EV leads to biphasic structures.

      - L 448-449: any data to show that existing polymer modeling would predict a strong dependency of C_p(n) on the volumic fraction (in the range studied here)?

      No, I don’t know a work predicting that.

      - Fig. 4:

      - Large-scale structural properties (R^2(n) and C_p(n)) are not dependent on phi. Is it surprising that by construction, SR-EV only relaxes the system locally after SRRW application?

      Excluded volume is considered at all length scales. However, as the decreasing C_p curves observed in theories and experiments imply, the fraction of overlap (or contacts) is more important at small separations (local) than at large separations. Yet, it was a surprise for us to observed negligible effect on phi.

      - Why not make a quantitative comparison between predicted and measured C_p(n)? Or at least plotting them on the same panel.

      Panels B and C are in the same scale and show a good agreement between SR-EV and experiments. However, it is not perfectly quantitative agreement. SR-EV represents the generic structure of chromatin and perfect agreement should not be expected.

      - Comparison with an average C_p(n) over all the chromosomes would be better.

      Possibly, but we don’t think it adds anything to the paper.

      - In Figure 5,6,7 (and related text): authors often describe some parameter values that are 'closest to experiment findings'. Can the authors quantify/justify this? The various 'closest' parameters are different. Can the authors comment?

      The folding parameter and average volume fraction are chose so that the agreement is best with the displayed experimental system, different cell for each case.

      - Figure 5: why not show the experimental distribution from Ou et al?

      - Figure 6 & 7: experimental results. Can the authors show images from their own experiments? Can they show that cohesion/RAD21 is really depleted after auxin treatment?

      It is currently under review in a different journal.

      - In the Discussion, a fair discussion on the limitations of the methods (dynamics, etc) is missing.

      Minor

      - Line 34-36: the logical relationship between this sentence and the ones before and after is very unclear.

      - Along the text, authors use the term 'connectivity' to describe 3D (Hi-C) contacts between different regions of the same chromosome/polymer. This is misleading as connectivity in polymer physics describes the connection along the polymer and not in the 3D space.

      No. I don’t think we used connectivity in that sense. We agree with your statement on the use of connectivity in polymer physics, and is what we always had in mind for this model.

      - Line 92: typo.

      - On the SR-EV method: does the relaxation process create local knots in the structure?

      We have not checked for knots.

      - Table 1: the good correspondence with linker length is remarkable but likely 'fortunate', other chosen resolutions would have led to other results. Moreover, the model cannot account for the fine structure of chromatin fiber. Can the authors comment on that?

      Fortunate to the extent that we sample the model parameter to overall catch the structure of chromatin.

      - Line 211: 'without the need of imposing any parameter': alpha is a parameter, no?

      Correct. Phrase deleted.

      - L267-269 & 450-451: actually in Liu & Dekker, they do observe an effect on Hi-C map (C_p(n)), weak but significant and not negligible.

      Our statements read ‘minimal’ and ‘relatively insensitive’. It is observed, but very small.

      - L283-286: This is a perspective statement that should be in the discussion.

      Moved to the Discussion, as suggested.

      - L239-241: The authors seem to emphasize some contradictions with recent results on phase separation. This is unclear and should be relocated to discussion.

      We just pointed out recent experiments, as stated. No intention to generate a discussion with any of them.

      - L311-313: Unclear statement.

      - L316-325: This is not results but discussion/speculation.

      Moved to Discussion

      - Along the text: 'promotor'-> 'promoter'. 

      - Corrected.

      - L364: explain more in detail PWS microscopy.

      Reviewer #2 (Recommendations For The Authors):

      Even though there are claims about nucleosome-resolution chromatin polymer, it is not clear that this work can generate structures with known nucleosome-resolution features. Nucleosome-level structure is much beyond a random walk with excluded volume and is driven by specific interactions. The authors should clarify this.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews

      Reviewer #1 (Public Review):

      Summary:

      Federer et al. tested AAVs designed to target GABAergic cells and parvalbumin-expressing cells in marmoset V1. Several new results were obtained. First, AAV-h56D targeted GABAergic cells with >90% specificity, and this varied with serotype and layer. Second, AAV-PHP.eB.S5E2 targeted parvalbumin-expressing neurons with up to 98% specificity. Third, the immunohistochemical detection of GABA and PV was attenuated near viral injection sites.

      Strengths:

      Vormstein-Schneider et al. (2020) tested their AAV-S5E2 vector in marmosets by intravenous injection. The data presented in this manuscript are valuable in part because they show the transduction pattern produced by intraparenchymal injections, which are more conventional and efficient.

      Our manuscript additionally provides detailed information on the laminar specificity and coverage of these viral vectors, which was not investigated in the original studies.

      Weaknesses:

      The conclusions regarding the effects of serotype are based on data from single injection tracks in a single animal. I understand that ethical and financial constraints preclude high throughput testing, but these limitations do not change what can be inferred from the measurements. The text asserts that "...serotype 9 is a better choice when high specificity and coverage across all layers are required". The data presented are consistent with this idea but do not make a strong case for it.

      We are aware of the limitations of our results on the AAV-h56D. We agree with the Reviewer that a single injection per serotype does not allow us to make strong statements about differences between the 3 serotypes. Therefore, in the revised version of the manuscript we have tempered our claims about such differences and use more caution in the interpretation of these data (Results p. 6 and Discussion p.10). Despite this weakness, we feel that these data still demonstrate high efficiency and specificity across cortical layers of transgene expression in GABA cells using the h56D promoter, at least with two of the 3 AAV serotypes we tested. We feel that in itself this is sufficiently useful information for the primate community, worthy of being reported. Due to cost, time and ethical considerations related to the use of primates, we chose not to perform additional experiments to determine precise differences among serotypes. Thus, for example, while it is possible that had we replicated these experiments, serotype 7 could have proven equally efficient and specific as the other two serotypes, we felt answering this question did not warrant additional experiments in this precious species.

      A related criticism extends to the analysis of Injection volume on viral specificity. Some replication was performed here, but reliability across injections was not reported. My understanding is that individual ROIs were treated as independent observations. These are not biological replicates (arguably, neither are multiple injection tracks in a single animal, but they are certainly closer). Idiosyncrasies between animals or injections (e.g., if one injection happened to hit one layer more than another) could have substantial impacts on the measurements. It remains unclear which results regarding injection volume or serotype would hold up had a large number of injections been made into a large number of marmosets.

      For the AAV-S5E2, we made a total of 7 injections (at least 2 at each volume), all of which, irrespective of volume, resulted in high specificity and efficiency for PV interneurons. Our conclusion is that larger volumes are slightly less specific, but the differences are minimal and do not warrant additional injections. Additionally, we kept all the other parameters across animals constant (see new Supplementary Table 1), all of our injections involved all cortical layers, and the ROIs we selected for counts encompassed reporter protein expression across all layers. To provide a better sense of the reliability of the results across injections, in the revised version of the manuscript we now provide results for each of the AAV-S5E2 injection case separately in a new Supplementary Table 2. The results in this table indicate the results are indeed rather consistent across cases with slightly greater specificity for injection volumes in the range of 105-180 nl.

      Reviewer #2 (Public Review):

      This is a straightforward manuscript assessing the specificity and efficiency of transgene expression in marmoset primary visual cortex (V1), for 4 different AAV vectors known to target transgene expression to either inhibitory cortical neurons (3 serotypes of AAV-h56D-tdTomato) or parvalbumin (PV)+ inhibitory cortical neurons in mice. Vectors are injected into the marmoset cortex and then postmortem tissue is analyzed following antibody labeling against GABA and PV. It is reported that: "in marmoset V1 AAV-h56D induces transgene expression in GABAergic cells with up to 91-94% specificity and 80% efficiency, depending on viral serotype and cortical layer. AAV-PHP.eB-S5E2 induces transgene expression in PV cells across all cortical layers with up to 98% specificity and 86-90% efficiency."

      These claims are largely supported but slightly exaggerated relative to the actual values in the results presented. In particular, the overall efficiency for the best h56D vectors described in the results is: "Overall, across all layers, AAV9 and AAV1 showed significantly higher coverage (66.1{plus minus}3.9 and 64.9%{plus minus}3.7)". The highest coverage observed is just in middle layers and is also less than 80%: "(AAV9: 78.5%{plus minus}9.1; AAV1: 76.9%{plus minus}7.4)".

      In the abstract, we indeed summarize the overall data and round up the decimals, and state that these percentages are upper bound but that they vary by serotype and layer while in the Results we report the detailed counts with decimals. To clarify this, in the revised version of the Abstract we have changed 80% to 79% and emphasize even more clearly the dependence on serotype and layer. We have amended this sentence of the Abstract as follows: “We show that in marmoset V1 AAV-h56D induces transgene expression in GABAergic cells with up to 91-94% specificity and 79% efficiency, but this depends on viral serotype and cortical layer.”

      For the AAV-PHP.eB-S5E2 the efficiency reported in the abstract (“86-90%) is also slightly exaggerated relative to the results: “Overall, across all layers coverage ranged from 78%{plus minus}1.9 for injection volumes >300nl to 81.6%{plus minus}1.8 for injection volumes of 100nl.”

      Indeed, the numbers in the Abstract are upper bounds, for example efficiency in L4A/B with S5E2 reaches 90%. To further clarify this important point, in the revised abstract we now state ”AAV-PHP.eB-S5E2 induces transgene expression in PV cells across all cortical layers with up to 98% specificity and 86-90% efficiency, depending on layer”.

      These data will be useful to others who might be interested in targeting transgene expression in these cell types in monkeys. Suggestions for improvement are to include more details about the vectors injected and to delete some comments about results that are not documented based on vectors that are not described (see below).

      Major comments:

      Details provided about the AAV vectors used with the h56D enhancer are not sufficient to allow assessment of their potential utility relative to the results presented. All that is provided is: "The fourth animal received 3 injections, each of a different AAV serotype (1, 7, and 9) of the AAV-h56D-tdTomato (Mehta et al., 2019), obtained from the Zemelman laboratory (UT Austin)." At a minimum, it is necessary to provide the titers of each of the vectors. It would also be helpful to provide more information about viral preparation for both these vectors and the AAVPHP.eB-S5E2.tdTomato. Notably, what purification methods were used, and what specific methods were used to measure the titers?

      We thank the Reviewer for this comment. In the revised version of the manuscript, we now provide a new Supplementary Table 1 with titers and other information for each viral vector injection. We also provide information regarding viral preparation in a new sections in the Methods entitled “ Viral Preparation”  (p12).

      The first paragraph of the results includes brief anecdotal claims without any data to support them and without any details about the relevant vectors that would allow any data that might have been collected to be critically assessed. These statements should be deleted. Specifically, delete: “as well as 3 different kinds of PV-specific AAVs, specifically a mixture of AAV1-PaqR4-Flp and AAV1-h56D-mCherry-FRT (Mehta et al., 2019), an AAV1-PV1-ChR2-eYFP (donated by G. Horwitz, University of Washington),” and delete “Here we report results only from those vectors that were deemed to be most promising for use in primate cortex, based on infectivity and specificity. These were the 3 serotypes of the GABA-specific pAAV-h56D-tdTomato, and the PV-specific AAVPHP.eB-S5E2.tdTomato.” These tools might in fact be just as useful or even better than what is actually tested and reported here, but maybe the viral titer was too low to expect any expression.

      These data are indeed anecdotal, but we felt this could be useful information, potentially preventing other primate labs from wasting resources, animals and time, particularly, as some of these vectors have been reported to be selective and efficient in primate cortex, which we have not been able to confirm. We made several injections in several animals of those vectors that failed either to infect a sufficient number of cells or turned out to be poorly specific. Therefore, the negative results have been consistent in our hands. But we agree with the Reviewer that our negative results could have depended on factors such as titer. In the revised version of the manuscript, following the reviewer’s suggestion, we have deleted this information.

      Based on the description in the Methods it seems that no antibody labeling against TdTomato was used to amplify the detection of the transgenes expressed from the AAV vectors. It should be verified that this is the case - a statement could be added to the Methods.

      That is indeed the case. We used no immunohistochemistry to enhance the reporter proteins as this was unnecessary. The native/ non-amplified tdT signal was strong. This is now stated in the methods (p.12).

      Reviewer #3 (Public Review):

      Summary:

      Federer et al. describe the laminar profiles of GABA+ and of PV+ neurons in marmoset V1. They also report on the selectivity and efficiency of expression of a PV-selective enhancer (S5E2). Three further viruses were tested, with a view to characterizing the expression profiles of a GABA-selective enhancer (h56d), but these results are preliminary.

      Strengths:

      The derivation of cell-type specific enhancers is key for translating the types of circuit analyses that can be performed in mice - which rely on germline modifications for access to cell-type specific manipulation - in higher-order mammals. Federer et al. further validate the utility of S5E2 as a PV-selective enhancer in NHPs.

      Additionally, the authors characterize the laminar distribution pattern of GABA+ and PV+ cells in V1. This survey may prove valuable to researchers seeking to understand and manipulate the microcircuitry mediating the excitation-inhibition balance in this region of the marmoset brain.

      Weaknesses:

      Enhancer/promoter specificity and efficiency cannot be directly compared, because they were packaged in different serotypes of AAV.

      The three different serotypes of AAV expressing reporter under the h56D promoter were only tested once each, and all in the same animal. There are many variables that can contribute to the success (or failure) of a viral injection, so observations with an n=1 cannot be considered reliable.

      This is an important point that was also brough up by Reviewer 1, which we have addressed in our reply-to-Reviewer 1. For clarity and convenience, below we copy our response to Reviewer 1.

      “We are aware of the limitations of our results on the AAV-h56D. We agree with the Reviewer that a single injection per serotype does not allow us to make strong statements about differences between the 3 serotypes. Therefore, in the revised version of the manuscript we will temper our claims about such differences and use more caution in the interpretation of these data. Despite this weakness, we feel that these data still demonstrate high efficiency and specificity across cortical layers of transgene expression in GABA cells using the h56D promoter, at least with two of the 3 AAV serotypes we tested. We feel that in itself this is sufficiently useful information for the primate community, worthy of being reported. Due to cost, time and ethical considerations related to the use of primates, we chose not to perform additional experiments to determine precise differences among serotypes. Thus, for example, while it is possible that had we replicated these experiments, serotype 7 would have proven equally efficient and specific as the other two serotypes, we felt answering this question did not warrant additional experiments in this precious species.”

      The language used throughout conflates the cell-type specificity conferred by the regulatory elements with that conferred by the serotype of the virus.

      Authors’ reply. In the revised version of the manuscript, we have corrected ambiguous language throughout.

      Recommendations for the authors

      Reviewer #1 (Recommendations For The Authors):

      My Public Review comments can be addressed by dialing down the interpretation of the data or providing appropriate caveats in the presentation of the relevant results and their discussion.

      We have done so. See text additions on p. 6 of the Results and p.10 of the Discussion.

      Minor comments:

      92% of PV+ neurons in the marmoset cortex were GABAergic. Can the authors speculate on the identity of the 8% PV+/GABA- neurons (e.g., on the basis of morphology)? Are they likely excitatory? Are they more likely to represent failures of GABA staining?

      We do not know what the other 8% of PV+/GABA- neurons are because we did not perform any other kind of IHC staining. Our best guess is that at least to some extent these represent failures of GABA staining, which is always challenging to perform in primate cortex. However, in mouse PV expression has been demonstrated in a minority of excitatory neurons.

      "Coverage of the PV-AAV was high, did not depend on injection volume.." The fact that the coverage did not depend on injection volume presumably depends, at least in part, on how ROIs were selected. Surely different volumes of injection transduce different numbers of neurons at different distances from the injection track. This should be clarified.

      The ROIs were selected at the center of the injected site/expression core from sections in which the expression region encompassed all cortical layers. Of course, larger volumes of injection resulted in larger transduced regions and therefore overall larger number of transduced neurons, but we counted cells only withing 100 µm wide ROIs at the center of the injection and the percent of transduced PV cells in this core region did not vary significantly across volumes. We have clarified the methods of ROI selection (see Methods pp. 13).

      Figure 2. What is meant by “absolute” in the legend for Figure 2? (How does “mean absolute density” differ from “mean density?”)

      We meant not relative, but this is obvious from the units, so we have removed the word “absolute” in the legend.

      Some non-significant p-values are indicated by "p>0.05" whereas others are given precisely (e.g., p = 1). Please provide precise p-values throughout. Also, the p-value from a surprisingly large number of comparisons in the first section of the results is "1". Is this due to rounding? Is it possible to get significance in a Bonferroni-corrected Kruskal-Wallis test with only 6 observations per condition?

      We now report exact p values throughout the manuscript (with a couple of exceptions where, in order to avoid reporting a large number of p values which interrupts the flow of the manuscript) we provide the upper bound value and state all those comparisons were below that value). The minimum sample size for Kruskall Wallis is 5, for each group being compared, and we our sample is 6 per group.

      Figure 3: The density of tdTomato-expressing cells appears to be greater at the AAV9 injection site than at the AAV1 injection site in the example sections shown. Might some of the differences between serotypes be due to this difference? I would imagine that resolving individual cells with certainty becomes more difficult as the amount of tdTomato expression increases.

      There was an error in the scale bar of Fig. 3C, so that the AAV1 injection site was shown at higher magnification than indicated by the wrong scale bar. Hence the density of tdTomato appeared lower than it is. Moreover, the tdT expression region shown in Fig. 3A is a merge of two sections, while it is only from a single section in panels B and C, leading to the impression of higher density of infected cells in panel A. The pipette used for the injection in panel A was not inserted perfectly vertical to the cortical surface, resulting in an injection site that did not span all layers in a single section; thus, to demonstrate that the injection indeed encompassed all layers (and that the virus infected cells in all layers), we collapsed label from two sections. We have now corrected the magnification of panel C so that it matches the scale bar in panel A, and specify in the figure legend that panel A label is from two sections.

      Text regarding Figure 3: The term “injection sizes” is confusing. I think it is intended to mean “the area over which tdTomato-expressing cells were found” but this should be clarified.

      Throughout the manuscript, we have changed the term injection site to “viral-expression region”.

      Figure 3: What were the titers of the three AAV-h56D vectors?

      Titers are now reported in the new Supplementary Table 1.

      Figure 3: The yellow box in Figure 3C is slightly larger than the yellow boxes in 3A and 3B. Is this an error or should the inset of Figure 3 have a scale bar that differs from the 50 µm scale bar in 3A?

      There were indeed errors in scale bars in this figure, which we have now corrected. Now all boxes have the same scale bar.

      Was MM423 one of the animals that received the AAV-h56D injections or one of the three that received AAV-S5E2 injection?

      This is an animal that received a 315nl injection of AAV-PHP.eB-S5E2.tdTomato. This is now specified in the Methods (see p. 12) and in the new Supplementary Table 1.

      Please provide raw cell counts and post-injection survival times for each animal.

      We now provide this information in Supplementary Tables 1 and 2.

      How were the different injection volumes of the AAV-S5E2 virus arranged by animal? Which volume of the AAV-S5E2 virus was injected into the two animals who received single injections?

      We now provide this information in Supplementary Table 1.

      Figure 6A: the point is made in the text that "[the distribution of tdT+ and PV+ neurons] did not differ significantly... peaking in L2/3 and 4C " Is the fact that the number of tdT+ and PV+ peak in layers 2/3 and 4C a consequence of these layers being thicker than the others? If so, this statement seems trivial.

      No, and this is the reason why we measured density in addition to percent of cells across layers in Figure 2. Figure 2B shows that even when measuring density, therefore normalizing by area, GABA+ and PV+ cell density still peaks in L2/3 and 4. Thus, these peaks do not simply reflect the greater thickness of these layers.

      Do the authors have permission to use data from Xu et al. 2010?

      Yes, we do.

      Reviewer #2 (Recommendations For The Authors):

      Minor comments:

      "Viral strategies to restrict gene expression to PV neurons have also been recently developed (Mehta et al., 2019; Vormstein-Schneider et al., 2020)." Mich et al. should also be cited here. Cell Rep. 2021;34(13):108754.

      We thank the reviewer for pointing out this missing references. This is now cited.

      “GABA density in L4C did not differ from any other layers, but the percent of GABA+ cells in L4C was significantly higher than in L1 (p=0.009) and 4A/B (p=<0.0001).” This and other similar observations depend on calculating the percentage of cells relative to the total number of DAPI-labeled cells in each layer. Since it is apparent that there must be considerable variability between layers, it would be helpful to add a histogram showing the densities of all DAPI-labeled cells for each layer.

      This is not how we calculated density. Density, as now clarified in the Results on p. 4, was defined as the number of cells per unit area. Counts in each layer were divided by each layers’ counting area. This corrects for differences in number of total labeled cells per layer. Therefore, reporting DAPI density is not necessary (we did not count DAPI cell density per layer).

      "Identical injection volumes of each serotype, delivered at 3 different cortical depths (see Methods), resulted in different injection sizes, suggesting the different serotypes have different capacity of infecting cortical neurons. AAV7 produced the smallest injection site, which additionally was biased to the superficial and deep layers, with only few cells expressing tdT in the middle layers (Fig. 3B). AAV9 (Fig. 3A) and AAV1 (Fig. 3C) resulted in larger injection sites and infected all cortical layers." Differences noted here might reflect either differences related to the AAV serotype or to differences in titers. Please add details about titers for each vector and add comments as appropriate. Another interpretation would be that there are differences in viral spread within the tissue.

      We have now added Supplementary Table 1 which reports titers in addition to other information about injections. The titers and volumes used for AAV9 and AAV7 were identical, while the titer for AAV1 was higher. Therefore, the differences in infectivity, particularly the much smaller expression region obtained with AAV7 cannot be attributed to titer. Likely this is due to differences in tropism and/or viral spread among serotypes. This is now discussed (see Results p. 5bottom and 6 top).

      “Recently, several viral vectors have been identified that selectively and efficiently restrict gene expression to GABAergic neurons and their subtypes across several species, but a thorough validation and characterization of these vectors in primate cortex has lacked.” Is this really a fair statement, or is the characterization presented here also lacking? Methods used by others for quantifying specificity and efficiency are essentially the same as used here. See for example Mich et al. (which is not cited).

      The original validation in primates of the vectors examined in our study was based on small tissue samples and did not examine the laminar expression profile of transgene expression induced by these enhancer-AAVs. For example, the validation of the h56D-AAV in marmoset cortex in the original paper by Mehta et al (2019) was performed on a tissue biopsy with no knowledge of which cortical layers were included in the tissue sample. The only study that shows laminar expression in primate cortex (Mich et al., which is now cited), only shows qualitative images of viral expression across layers, reporting total specificity and coverage pooled across samples; moreover, the study by Mich et al.  deals with different PV-specific enhancers than the ones characterized in our study. Unlike any of the previous studies, here we have quantified specificity and coverage across layers.

      "Specifically, we have shown that the GABA-specific AAV9-h56D (Mehta et al., 2019) induces transgene expression in GABAergic cells with up to 91-94% specificity and 80% coverage, and the PV-specific AAV-PHP.eB-S5E2 (Vormstein-Schneider et al., 2020) induces transgene expression in PV cells with up to 98% specificity and 86-90% coverage." These statements in the discussion repeat the somewhat exaggerated coverage numbers noted above for the Abstract.

      The averages across all layers are reported in the Results. The Discussion, abstract and discussion report upper limits, and this is made clear by stating “up to”, and now we have also added “depending on layer”.

      Reviewer #3 (Recommendations For The Authors):

      Abstract:

      • Ln 2: Can you be more specific about what you mean by the 'various functions of inhibition'? e.g. do you mean 'the various inhibitory influences on the local microcircuit' or similar?

      These are listed in the introduction to the paper but there is no space in the abstract to do so. Now the sentence reads: “various computational functions of…”.

      • Ln 5: 'has' to 'is'/'has been'.

      The grammar here is correct “has derived”.

      • Ln 6: humans are primates! Maybe change this to 'nonhuman primates'?

      We have added “non-human”

      • Ln n-1: 'viral vectors represent' -> 'viral vectors are'.

      We have changed it to “are”

      Intro:

      • Many readers may expect 'VIP' to be listed as the third major sub-class of interneurons. Could you note that the 5HT3a receptor-expressing group includes VIP cells?

      Done (p.3).

      • "Understanding cortical inhibitory neuron function in the primate is critical for understanding cortical function and dysfunction in the model system closest to humans" - this seems close to being circular logic (not quite, but close). Could you modify this sentence to reflect why understanding cortical function and dysfunction in NHP may be of interest?

      This sentence now reads (p.3):” Understanding cortical inhibitory neuron function in the primate is critical for understanding cortical function and dysfunction in the model system closest to humans, where cortical inhibitory neuron dysfunction has been implicated in many neurological and psychiatric disorders, such as epilepsy, schizophrenia and Alzheimer’s disease (Cheah et al., 2012; Verret et al., 2012; Mukherjee et al., 2019)”. We also note that this was already stated in the previous version of the paper but in the Discussion section which read (and still reads on p. 9 2nd paragraph): “It is important to study inhibitory neuron function in the primate, because it is unclear whether findings in mice apply to higher species, and inhibitory neuron dysfunction in humans has been implicated in several neurological and psychiatric disorders (Marin, 2012; Goldberg and Coulter, 2013; Lewis, 2014).”.

      • "In particular, two recent studies have developed recombinant adeno-associated viral vectors (AAV) that restrict gene expression to GABAergic neurons". This sentence places the emphasis on the wrong component of the technology. The fact that AAV was used is irrelevant; these constructs could equally have been packaged in a lenti, CAV, HSV, rabies, etc. The emphasis should be on the recently developed regulatory elements (the enhancers/promoters).

      Same problem with the following excerpts; this text implies that the serotype/vector confers cell-type selectivity, but the results presented do not support this assertion (the promoter/enhancer is what confers the selectivity).

      • "specifically, three serotypes of an AAV that restricts gene expression to GABAergic neurons".

      • "one serotype of an AAV that restricts gene expression to PV cells".

      • "GABA- and PV-specific AAVs".

      • "GABA-specific AAV" (in results).

      • "PV-specific AAVs".

      • "In this study, we have characterized several AAV vectors designed to restrict expression to GABAergic cells" (in discussion).

      • "GABA-virus". GABA is a NT, not a virus.

      We have modified the language in all these sections and throughout the manuscript.

      Results:

      • Enhancer specificity and efficiency cannot be directly compared, because they were packaged in different serotypes of AAV.

      We agree, and in fact we are not making comparisons between different enhancers (i.e., S5E2 and h56D).

      The three different serotypes of AAV expressing reporter under the h56D promoter were only tested once each, and all in the same animal. There are many variables that can contribute to the success (or failure) of a viral injection, so observations with an n=1 cannot be considered reliable.

      The authors need to either: (1) replicate the h56D virus injections in (at least) a second animal, or (2) rewrite the paper to focus on the AAV.PhP mDlx virus alone - for which they have adequate data - and mention the h56D data as an anecdotal result, with clear warnings about the preliminary nature of the observations due to lack of replication.

      We agree about the lack of sufficient data to make strong statements about the differences between serotypes for the h56D-AAV. In the revised version of the manuscript, following the Reviewers’ suggestion, we have chosen to temper our claims about differences between serotypes for the h56D enhancer and use more caution in the interpretation of these data. We feel that these data still demonstrate sufficiently high efficiency and specificity across cortical layers of transgene expression in GABA cells using the h56D promoter, at least with two of the 3 AAV serotypes we tested, to warrant their use in primates. Due to cost, time and ethical considerations related to the use of primates, we chose not to perform additional experiments to determine precise differences among serotypes. Thus, for example, while it is possible that had we replicated these experiments, serotype 7 could have proven equally efficient and specific as the other two serotypes, we felt answering this question did not warrant additional experiments in this precious species. Our edits in regard to this point can be found in the Results on p. 6 and Discussion on p. 10.

      • Did the authors compare h56D vs mDlx? This would be a useful and interesting comparison.

      We did not.

      • 3 tissue sections were used for analysis. How were these selected? Did the authors use a stereological approach?

      For the analysis in Fig. 2, the 3 sections were randomly selected and for the positioning of the ROIs we selected a region in dorsal V1 anterior to the posterior pole  (to avoid laminar distortions due to the curvature of the brain). This is now specified (see p. 4).

      • "both GABA+ and PV+ cells peak in layers" revise for clarity (e.g., the counts peak).

      In now reads “GABA+ and PV+ cell percent and density” (see p.4).

      • "we refer to this virus as GABA-AAV" these are 3 different viruses!

      The idea here was to use an abbreviation instead of using the full viral name every single time. Clearly the reviewer does not like this, so we have removed this convention throughout the paper and now specify the entire viral name each time.

      • "Identical injection volumes of each serotype, delivered at 3 different cortical depths (see Methods), resulted in different injection sizes". Do you mean 'resulted in different volumes of expression'?

      Yes. We have now rephrased this as follows: “…resulted in viral expression regions that differed in both size as well as laminar distribution” (p.5).

      • “suggesting the different serotypes have different capacity of infecting cortical neurons”. You can’t draw any firm conclusions from a single injection. The rest of this section of the results, along with the whole of Figure 4, and Figure 7a-d, is in danger of being misleading. Please remove. The best you can do here is to say ‘we injected 3 different viruses that express reporter under the h56D promoter. The results are shown in Figure 3, but these are anecdotal, as only a single injection of each virus was performed’. You could then note in the discussion to what extent these results are consistent with the existing literature (e.g., AAV9 often produces good coverage in NHP – anterograde and retrograde, AAV1 also works well in the CNS, although generally doesn’t infect as aggressively as AAV9. I’m not familiar with any attempts to use AAV7).

      With respect to Fig. 4, our approach in the revised version is detailed above. For convenience we copy it below here. With respect to Fig 7A-D, we feel the results are more robust as the data from the 3 serotypes here were pooled together, as the 3 serotype similarly downregulated GABA and PV expression at the injection site, and we do not make any statement about differences among serotypes for the data shown in Fig. 7A-D.

      “In the revised version of the manuscript, following the Reviewer ’s suggestion, we have chosen to temper our claims about differences between serotypes for the h56D enhancer and use more caution in the interpretation of these data (see revised text in the Results on p. 6 and in the Discussion on p. 10). We feel that these data still demonstrate sufficiently high efficiency and specificity across cortical layers of transgene expression in GABA cells using the h56D promoter, at least with two of the 3 AAV serotypes we tested, to warrant their use in primates. Due to cost, time and ethical considerations related to the use of primates, we chose not to perform additional experiments to determine precise differences among serotypes. Thus, for example, while it is possible that had we replicated these experiments, serotype 7 could have proven equally efficient and specific as the other two serotypes, we felt answering this question did not warrant additional experiments in this precious species.”

      • Figure 3: why the large variation in tissue quality? Are the 3 upper images taken at the same magnification? If not, they need different scale bars. The cells in A (upper row) look much smaller than those in B and C, and the size of the 'inset' box varies.

      We thank the reviewer for noticing this. We discovered an error in the scale bar of Fig. 3C, so that the AAV1 injection site was shown at higher magnification than indicated by the wrong scale bar. We have now corrected the error in scale bars. We have also fixed the different box sizes.

      • "Overall, across all layers coverage ranged from 78%{plus minus}1.9 for injection volumes >300nl to 81.6%{plus minus}1.8 for injection volumes of 100nl." Coverage didn't differ between layers, so revise this to: "Overall, across all layers coverage ranged from 78% to 81.6%." or give an overall mean (~80%).

      We have corrected the sentence as suggested by the Reviewer (see p. 8 first paragraph).

      • "extending farther from the borders" -> "extending beyond the borders".

      We have corrected the sentence as suggested by the Reviewer (see p. 8).

      • "The reduced GABA and PV immunoreactivity caused by the viruses implies that the specificity of the viruses we have validated in this study is likely higher than estimated". Yes, but for balance you should also note that they may harm the physiology of the cell.

      We have added a sentence acknowledging this to the Discussion. Specifically, on p. 10, we now state: “However, this reduced immunoreactivity raises concerns about the virus or high levels of reporter protein possibly harming the cell physiology.”

      Discussion:

      • "but a thorough validation and characterization of these vectors in primate cortex has lacked" better to say "has been limited", because Dimidschstein 2016 (marmoset V1) and Vormstein-schneider 2020 (macaque S1 and PFC) both reported expression in NHP.

      We have added the following sentence to this paragraph of the Discussion. “In particular, previous studies have not characterized the specificity and coverage of these vectors across cortical layers.”(see p. 8).

      • "whether finding in mice" -> 'whether findings in mice'.

      Corrected, thanks.

      • The discussion re: species differences is missing reference to Kreinen 2020 (10.1038/s41586-020-2781-z).

      This reference has been added. Thanks.

      • “Injections of about 200nl volume resulted in higher specificity (95% across layers) and coverage” – this is misleading. The coverage was not statistically different among injection volumes.

      We have added the following sentence: ”although coverage did not differ significantly across volumes.” (see p. 10).

      • "it is possible that subtle alteration of the cortical circuit upon parenchymal injection of viruses (including AAVs) leads to alteration of activity-dependent expression of PV and GABA." Or (and I would argue, more likely) the expression of large quantities of your big reporter protein compromised the function of the cell, leading to reduced expression of native proteins. You don't mention any IHC to amplify the RFP signal, so I'm assuming that your images are of direct expression. If so, you are expressing A LOT of reporter protein.

      We have added a sentence acknowledging this to the Discussion. Specifically, on p. 10, we now state: “However, this reduced immunoreactivity raises concerns about the virus or high levels of reporter protein possibly harming the cell physiology.”

      Methods:

      • It's difficult to piece together which viruses were injected in which monkeys, at what volumes, and at what titer. Please compile this info into a table for ease of reference (including any other relevant parameters).

      We now provide a Supplementary Table 1.

    1. The Gilgamesh Epic is the most notable literary product of Babylonia as yet discovered in the mounds of Mesopotamia. It recounts the exploits and adventures of a favorite hero, and in its final form covers twelve tablets, each tablet consisting of six columns (three on the obverse and three on the reverse) of about 50 lines for each column, or a total of about 3600 lines. Of this total, however, barely more than one-half has been found among the remains of the great collection of cuneiform tablets gathered by King Ashurbanapal (668–626 B.C.) in his palace at Nineveh, and discovered by Layard in 18541 in the course of his excavations of the mound Kouyunjik (opposite Mosul). The fragments of the epic painfully gathered—chiefly by George Smith—from the circa 30,000 tablets and bits of tablets brought to the British Museum were published in model form by Professor Paul Haupt;2 and that edition still remains the primary source for our study of the Epic. [10] For the sake of convenience we may call the form of the Epic in the fragments from the library of Ashurbanapal the Assyrian version, though like most of the literary productions in the library it not only reverts to a Babylonian original, but represents a late copy of a much older original. The absence of any reference to Assyria in the fragments recovered justifies us in assuming that the Assyrian version received its present form in Babylonia, perhaps in Erech; though it is of course possible that some of the late features, particularly the elaboration of the teachings of the theologians or schoolmen in the eleventh and twelfth tablets, may have been produced at least in part under Assyrian influence. A definite indication that the Gilgamesh Epic reverts to a period earlier than Hammurabi (or Hammurawi)3 i.e., beyond 2000 B. C., was furnished by the publication of a text clearly belonging to the first Babylonian dynasty (of which Hammurabi was the sixth member) in CT. VI, 5; which text Zimmern4 recognized as a part of the tale of Atra-ḫasis, one of the names given to the survivor of the deluge, recounted on the eleventh tablet of the Gilgamesh Epic.5 This was confirmed by the discovery6 of a [11]fragment of the deluge story dated in the eleventh year of Ammisaduka, i.e., c. 1967 B.C. In this text, likewise, the name of the deluge hero appears as Atra-ḫasis (col. VIII, 4).7 But while these two tablets do not belong to the Gilgamesh Epic and merely introduce an episode which has also been incorporated into the Epic, Dr. Bruno Meissner in 1902 published a tablet, dating, as the writing and the internal evidence showed, from the Hammurabi period, which undoubtedly is a portion of what by way of distinction we may call an old Babylonian version.8 It was picked up by Dr. Meissner at a dealer’s shop in Bagdad and acquired for the Berlin Museum. The tablet consists of four columns (two on the obverse and two on the reverse) and deals with the hero’s wanderings in search of a cure from disease with which he has been smitten after the death of his companion Enkidu. The hero fears that the disease will be fatal and longs to escape death. It corresponds to a portion of Tablet X of the Assyrian version. Unfortunately, only the lower portion of the obverse and the upper of the reverse have been preserved (57 lines in all); and in default of a colophon we do not know the numeration of the tablet in this old Babylonian edition. Its chief value, apart from its furnishing a proof for the existence of the Epic as early as 2000 B. C., lies (a) in the writing Gish instead of Gish-gi(n)-mash in the Assyrian version, for the name of the hero, (b) in the writing En-ki-dũ—abbreviated from dũg—() “Enki is good” for En-ki-dú () in the Assyrian version,9 and (c) in the remarkable address of the maiden Sabitum, dwelling at the seaside, to whom Gilgamesh comes in the course of his wanderings. From the Assyrian version we know that the hero tells the maiden of his grief for his lost companion, and of his longing to escape the dire fate of Enkidu. In the old Babylonian fragment the answer of Sabitum is given in full, and the sad note that it strikes, showing how hopeless it is for man to try to escape death which is in store for all mankind, is as remarkable as is the philosophy of “eat, drink and be merry” which Sabitum imparts. The address indicates how early the tendency arose to attach to ancient tales the current religious teachings. [12] “Why, O Gish, does thou run about? The life that thou seekest, thou wilt not find. When the gods created mankind, Death they imposed on mankind; Life they kept in their power. Thou, O Gish, fill thy belly, Day and night do thou rejoice, Daily make a rejoicing! Day and night a renewal of jollification! Let thy clothes be clean, Wash thy head and pour water over thee! Care for the little one who takes hold of thy hand! Let the wife rejoice in thy bosom!” Such teachings, reminding us of the leading thought in the Biblical Book of Ecclesiastes,10 indicate the didactic character given to ancient tales that were of popular origin, but which were modified and elaborated under the influence of the schools which arose in connection with the Babylonian temples. The story itself belongs, therefore, to a still earlier period than the form it received in this old Babylonian version. The existence of this tendency at so early a date comes to us as a genuine surprise, and justifies the assumption that the attachment of a lesson to the deluge story in the Assyrian version, to wit, the limitation in attainment of immortality to those singled out by the gods as exceptions, dates likewise from the old Babylonian period. The same would apply to the twelfth tablet, which is almost entirely didactic, intended to illustrate the impossibility of learning anything of the fate of those who have passed out of this world. It also emphasizes the necessity of contenting oneself with the comfort that the care of the dead, by providing burial and food and drink offerings for them affords, as the only means of ensuring for them rest and freedom from the pangs of hunger and distress. However, it is of course possible that the twelfth tablet, which impresses one as a supplement to the adventures of Gilgamesh, ending with his return to Uruk (i.e., Erech) at the close of the eleventh tablet, may represent a later elaboration of the tendency to connect religious teachings with the exploits of a favorite hero. [13] We now have further evidence both of the extreme antiquity of the literary form of the Gilgamesh Epic and also of the disposition to make the Epic the medium of illustrating aspects of life and the destiny of mankind. The discovery by Dr. Arno Poebel of a Sumerian form of the tale of the descent of Ishtar to the lower world and her release11—apparently a nature myth to illustrate the change of season from summer to winter and back again to spring—enables us to pass beyond the Akkadian (or Semitic) form of tales current in the Euphrates Valley to the Sumerian form. Furthermore, we are indebted to Dr. Langdon for the identification of two Sumerian fragments in the Nippur Collection which deal with the adventures of Gilgamesh, one in Constantinople,12 the other in the collection of the University of Pennsylvania Museum.13 The former, of which only 25 lines are preserved (19 on the obverse and 6 on the reverse), appears to be a description of the weapons of Gilgamesh with which he arms himself for an encounter—presumably the encounter with Ḫumbaba or Ḫuwawa, the ruler of the cedar forest in the mountain.14 The latter deals with the building operations of Gilgamesh in the city of Erech. A text in Zimmern’s Sumerische Kultlieder aus altbabylonischer Zeit (Leipzig, 1913), No. 196, appears likewise to be a fragment of the Sumerian version of the Gilgamesh Epic, bearing on the episode of Gilgamesh’s and Enkidu’s relations to the goddess Ishtar, covered in the sixth and seventh tablets of the Assyrian version.15 Until, however, further fragments shall have turned up, it would be hazardous to institute a comparison between the Sumerian and the Akkadian versions. All that can be said for the present is that there is every reason to believe in the existence of a literary form of the Epic in Sumerian which presumably antedated the Akkadian recension, [14]just as we have a Sumerian form of Ishtar’s descent into the nether world, and Sumerian versions of creation myths, as also of the Deluge tale.16 It does not follow, however, that the Akkadian versions of the Gilgamesh Epic are translations of the Sumerian, any more than that the Akkadian creation myths are translations of a Sumerian original. Indeed, in the case of the creation myths, the striking difference between the Sumerian and Akkadian views of creation17 points to the independent production of creation stories on the part of the Semitic settlers of the Euphrates Valley, though no doubt these were worked out in part under Sumerian literary influences. The same is probably true of Deluge tales, which would be given a distinctly Akkadian coloring in being reproduced and steadily elaborated by the Babylonian literati attached to the temples. The presumption is, therefore, in favor of an independent literary origin for the Semitic versions of the Gilgamesh Epic, though naturally with a duplication of the episodes, or at least of some of them, in the Sumerian narrative. Nor does the existence of a Sumerian form of the Epic necessarily prove that it originated with the Sumerians in their earliest home before they came to the Euphrates Valley. They may have adopted it after their conquest of southern Babylonia from the Semites who, there are now substantial grounds for believing, were the earlier settlers in the Euphrates Valley.18 We must distinguish, therefore, between the earliest literary form, which was undoubtedly Sumerian, and the origin of the episodes embodied in the Epic, including the chief actors, Gilgamesh and his companion Enkidu. It will be shown that one of the chief episodes, the encounter of the two heroes with a powerful guardian or ruler of a cedar forest, points to a western region, more specifically to Amurru, as the scene. The names of the two chief actors, moreover, appear to have been “Sumerianized” by an artificial process,19 and if this view turns out to be [15]correct, we would have a further ground for assuming the tale to have originated among the Akkadian settlers and to have been taken over from them by the Sumerians. New light on the earliest Babylonian version of the Epic, as well as on the Assyrian version, has been shed by the recovery of two substantial fragments of the form which the Epic had assumed in Babylonia in the Hammurabi period. The study of this important new material also enables us to advance the interpretation of the Epic and to perfect the analysis into its component parts. In the spring of 1914, the Museum of the University of Pennsylvania acquired by purchase a large tablet, the writing of which as well as the style and the manner of spelling verbal forms and substantives pointed distinctly to the time of the first Babylonian dynasty. The tablet was identified by Dr. Arno Poebel as part of the Gilgamesh Epic; and, as the colophon showed, it formed the second tablet of the series. He copied it with a view to publication, but the outbreak of the war which found him in Germany—his native country—prevented him from carrying out this intention.20 He, however, utilized some of its contents in his discussion of the historical or semi-historical traditions about Gilgamesh, as revealed by the important list of partly mythical and partly historical dynasties, found among the tablets of the Nippur collection, in which Gilgamesh occurs21 as a King of an Erech dynasty, whose father was Â, a priest of Kulab.22 The publication of the tablet was then undertaken by Dr. Stephen Langdon in monograph form under the title, “The Epic of Gilgamish.”23 In a preliminary article on the tablet in the Museum Journal, Vol. VIII, pages 29–38, Dr. Langdon took the tablet to be of the late [16]Persian period (i.e., between the sixth and third century B. C.), but his attention having been called to this error of some 1500 years, he corrected it in his introduction to his edition of the text, though he neglected to change some of his notes in which he still refers to the text as “late.”24 In addition to a copy of the text, accompanied by a good photograph, Dr. Langdon furnished a transliteration and translation with some notes and a brief introduction. The text is unfortunately badly copied, being full of errors; and the translation is likewise very defective. A careful collation with the original tablet was made with the assistance of Dr. Edward Chiera, and as a consequence we are in a position to offer to scholars a correct text. We beg to acknowledge our obligations to Dr. Gordon, the Director of the Museum of the University of Pennsylvania, for kindly placing the tablet at our disposal. Instead of republishing the text, I content myself with giving a full list of corrections in the appendix to this volume which will enable scholars to control our readings, and which will, I believe, justify the translation in the numerous passages in which it deviates from Dr. Langdon’s rendering. While credit should be given to Dr. Langdon for having made this important tablet accessible, the interests of science demand that attention be called to his failure to grasp the many important data furnished by the tablet, which escaped him because of his erroneous readings and faulty translations. The tablet, consisting of six columns (three on the obverse and three on the reverse), comprised, according to the colophon, 240 lines25 and formed the second tablet of the series. Of the total, 204 lines are preserved in full or in part, and of the missing thirty-six quite a number can be restored, so that we have a fairly complete tablet. The most serious break occurs at the top of the reverse, where about eight lines are missing. In consequence of this the connection between the end of the obverse (where about five lines are missing) and the beginning of the reverse is obscured, though not to the extent of our entirely losing the thread of the narrative. [17] About the same time that the University of Pennsylvania Museum purchased this second tablet of the Gilgamesh Series, Yale University obtained a tablet from the same dealer, which turned out to be a continuation of the University of Pennsylvania tablet. That the two belong to the same edition of the Epic is shown by their agreement in the dark brown color of the clay, in the writing as well as in the size of the tablet, though the characters on the Yale tablet are somewhat cramped and in consequence more difficult to read. Both tablets consist of six columns, three on the obverse and three on the reverse. The measurements of both are about the same, the Pennsylvania tablet being estimated at about 7 inches high, as against 72/16 inches for the Yale tablet, while the width of both is 6½ inches. The Yale tablet is, however, more closely written and therefore has a larger number of lines than the Pennsylvania tablet. The colophon to the Yale tablet is unfortunately missing, but from internal evidence it is quite certain that the Yale tablet follows immediately upon the Pennsylvania tablet and, therefore, may be set down as the third of the series. The obverse is very badly preserved, so that only a general view of its contents can be secured. The reverse contains serious gaps in the first and second columns. The scribe evidently had a copy before him which he tried to follow exactly, but finding that he could not get all of the copy before him in the six columns, he continued the last column on the edge. In this way we obtain for the sixth column 64 lines as against 45 for column IV, and 47 for column V, and a total of 292 lines for the six columns. Subtracting the 16 lines written on the edge leaves us 276 lines for our tablet as against 240 for its companion. The width of each column being the same on both tablets, the difference of 36 lines is made up by the closer writing. Both tablets have peculiar knobs at the sides, the purpose of which is evidently not to facilitate holding the tablet in one’s hand while writing or reading it, as Langdon assumed26 (it would be quite impracticable for this purpose), but simply to protect the tablet in its position on a shelf, where it would naturally be placed on the edge, just as we arrange books on a shelf. Finally be it noted that these two tablets of the old Babylonian version do not belong to the same edition as the Meissner tablet above described, for the latter consists [18]of two columns each on obverse and reverse, as against three columns each in the case of our two tablets. We thus have the interesting proof that as early as 2000 B.C. there were already several editions of the Epic. As to the provenance of our two tablets, there are no definite data, but it is likely that they were found by natives in the mounds at Warka, from which about the year 1913, many tablets came into the hands of dealers. It is likely that where two tablets of a series were found, others of the series were also dug up, and we may expect to find some further portions of this old Babylonian version turning up in the hands of other dealers or in museums. Coming to the contents of the two tablets, the Pennsylvania tablet deals with the meeting of the two heroes, Gilgamesh and Enkidu, their conflict, followed by their reconciliation, while the Yale tablet in continuation takes up the preparations for the encounter of the two heroes with the guardian of the cedar forest, Ḫumbaba—but probably pronounced Ḫubaba27—or, as the name appears in the old Babylonian version, Ḫuwawa. The two tablets correspond, therefore, to portions of Tablets I to V of the Assyrian version;28 but, as will be shown in detail further on, the number of completely parallel passages is not large, and the Assyrian version shows an independence of the old Babylonian version that is larger than we had reason to expect. In general, it may be said that the Assyrian version is more elaborate, which points to its having received its present form at a considerably later period than the old Babylonian version.29 On the other hand, we already find in the Babylonian version the tendency towards repetition, which is characteristic of Babylonian-Assyrian tales in general. Through the two Babylonian tablets we are enabled to fill out certain details [19]of the two episodes with which they deal: (1) the meeting of Gilgamesh and Enkidu, and (2) the encounter with Ḫuwawa; while their greatest value consists in the light that they throw on the gradual growth of the Epic until it reached its definite form in the text represented by the fragments in Ashurbanapal’s Library. Let us now take up the detailed analysis, first of the Pennsylvania tablet and then of the Yale tablet. The Pennsylvania tablet begins with two dreams recounted by Gilgamesh to his mother, which the latter interprets as presaging the coming of Enkidu to Erech. In the one, something like a heavy meteor falls from heaven upon Gilgamesh and almost crushes him. With the help of the heroes of Erech, Gilgamesh carries the heavy burden to his mother Ninsun. The burden, his mother explains, symbolizes some one who, like Gilgamesh, is born in the mountains, to whom all will pay homage and of whom Gilgamesh will become enamoured with a love as strong as that for a woman. In a second dream, Gilgamesh sees some one who is like him, who brandishes an axe, and with whom he falls in love. This personage, the mother explains, is again Enkidu. Langdon is of the opinion that these dreams are recounted to Enkidu by a woman with whom Enkidu cohabits for six days and seven nights and who weans Enkidu from association with animals. This, however, cannot be correct. The scene between Enkidu and the woman must have been recounted in detail in the first tablet, as in the Assyrian version,30 whereas here in the second tablet we have the continuation of the tale with Gilgamesh recounting his dreams directly to his mother. The story then continues with the description of the coming of Enkidu, conducted by the woman to the outskirts of Erech, where food is given him. The main feature of the incident is the conversion of Enkidu to civilized life. Enkidu, who hitherto had gone about naked, is clothed by the woman. Instead of sucking milk and drinking from a trough like an animal, food and strong drink are placed before him, and he is taught how to eat and drink in human fashion. In human fashion he also becomes drunk, and his “spree” is naïvely described: “His heart became glad and his face shone.”31 [20]Like an animal, Enkidu’s body had hitherto been covered with hair, which is now shaved off. He is anointed with oil, and clothed “like a man.” Enkidu becomes a shepherd, protecting the fold against wild beasts, and his exploit in dispatching lions is briefly told. At this point—the end of column 3 (on the obverse), i.e., line 117, and the beginning of column 4 (on the reverse), i.e., line 131—a gap of 13 lines—the tablet is obscure, but apparently the story of Enkidu’s gradual transformation from savagery to civilized life is continued, with stress upon his introduction to domestic ways with the wife chosen or decreed for him, and with work as part of his fate. All this has no connection with Gilgamesh, and it is evident that the tale of Enkidu was originally an independent tale to illustrate the evolution of man’s career and destiny, how through intercourse with a woman he awakens to the sense of human dignity, how he becomes accustomed to the ways of civilization, how he passes through the pastoral stage to higher walks of life, how the family is instituted, and how men come to be engaged in the labors associated with human activities. In order to connect this tale with the Gilgamesh story, the two heroes are brought together; the woman taking on herself, in addition to the rôle of civilizer, that of the medium through which Enkidu is brought to Gilgamesh. The woman leads Enkidu from the outskirts of Erech into the city itself, where the people on seeing him remark upon his likeness to Gilgamesh. He is the very counterpart of the latter, though somewhat smaller in stature. There follows the encounter between the two heroes in the streets of Erech, where they engage in a fierce combat. Gilgamesh is overcome by Enkidu and is enraged at being thrown to the ground. The tablet closes with the endeavor of Enkidu to pacify Gilgamesh. Enkidu declares that the mother of Gilgamesh has exalted her son above the ordinary mortal, and that Enlil himself has singled him out for royal prerogatives. After this, we may assume, the two heroes become friends and together proceed to carry out certain exploits, the first of which is an attack upon the mighty guardian of the cedar forest. This is the main episode in the Yale tablet, which, therefore, forms the third tablet of the old Babylonian version. In the first column of the obverse of the Yale tablet, which is badly preserved, it would appear that the elders of Erech (or perhaps the people) are endeavoring to dissuade Gilgamesh from making the [21]attempt to penetrate to the abode of Ḫuwawa. If this is correct, then the close of the first column may represent a conversation between these elders and the woman who accompanies Enkidu. It would be the elders who are represented as “reporting the speech to the woman,” which is presumably the determination of Gilgamesh to fight Ḫuwawa. The elders apparently desire Enkidu to accompany Gilgamesh in this perilous adventure, and with this in view appeal to the woman. In the second column after an obscure reference to the mother of Gilgamesh—perhaps appealing to the sun-god—we find Gilgamesh and Enkidu again face to face. From the reference to Enkidu’s eyes “filled with tears,” we may conclude that he is moved to pity at the thought of what will happen to Gilgamesh if he insists upon carrying out his purpose. Enkidu, also, tries to dissuade Gilgamesh. This appears to be the main purport of the dialogue between the two, which begins about the middle of the second column and extends to the end of the third column. Enkidu pleads that even his strength is insufficient, “My arms are lame, My strength has become weak.” (lines 88–89) Gilgamesh apparently asks for a description of the terrible tyrant who thus arouses the fear of Enkidu, and in reply Enkidu tells him how at one time, when he was roaming about with the cattle, he penetrated into the forest and heard the roar of Ḫuwawa which was like that of a deluge. The mouth of the tyrant emitted fire, and his breath was death. It is clear, as Professor Haupt has suggested,32 that Enkidu furnishes the description of a volcano in eruption, with its mighty roar, spitting forth fire and belching out a suffocating smoke. Gilgamesh is, however, undaunted and urges Enkidu to accompany him in the adventure. “I will go down to the forest,” says Gilgamesh, if the conjectural restoration of the line in question (l. 126) is correct. Enkidu replies by again drawing a lurid picture of what will happen “When we go (together) to the forest…….” This speech of Enkidu is continued on the reverse. In reply Gilgamesh emphasizes his reliance upon the good will of Shamash and reproaches Enkidu with cowardice. He declares himself superior to Enkidu’s warning, and in bold terms [22]says that he prefers to perish in the attempt to overcome Ḫuwawa rather than abandon it. “Wherever terror is to be faced, Thou, forsooth, art in fear of death. Thy prowess lacks strength. I will go before thee, Though thy mouth shouts to me: ‘thou art afraid to approach,’ If I fall, I will establish my name.” (lines 143–148) There follows an interesting description of the forging of the weapons for the two heroes in preparation for the encounter.33 The elders of Erech when they see these preparations are stricken with fear. They learn of Ḫuwawa’s threat to annihilate Gilgamesh if he dares to enter the cedar forest, and once more try to dissuade Gilgamesh from the undertaking. “Thou art young, O Gish, and thy heart carries thee away, Thou dost not know what thou proposest to do.” (lines 190–191) They try to frighten Gilgamesh by repeating the description of the terrible Ḫuwawa. Gilgamesh is still undaunted and prays to his patron deity Shamash, who apparently accords him a favorable “oracle” (têrtu). The two heroes arm themselves for the fray, and the elders of Erech, now reconciled to the perilous undertaking, counsel Gilgamesh to take provision along for the undertaking. They urge Gilgamesh to allow Enkidu to take the lead, for “He is acquainted with the way, he has trodden the road [to] the entrance of the forest.” (lines 252–253) The elders dismiss Gilgamesh with fervent wishes that Enkidu may track out the “closed path” for Gilgamesh, and commit him to the care of Lugalbanda—here perhaps an epithet of Shamash. They advise Gilgamesh to perform certain rites, to wash his feet in the stream of Ḫuwawa and to pour out a libation of water to Shamash. Enkidu follows in a speech likewise intended to encourage the hero; and with the actual beginning of the expedition against Ḫuwawa the tablet ends. The encounter itself, with the triumph of the two heroes, must have been described in the fourth tablet. [23] Now before taking up the significance of the additions to our knowledge of the Epic gained through these two tablets, it will be well to discuss the forms in which the names of the two heroes and of the ruler of the cedar forest occur in our tablets. As in the Meissner fragment, the chief hero is invariably designated as dGish in both the Pennsylvania and Yale tablets; and we may therefore conclude that this was the common form in the Hammurabi period, as against the writing dGish-gì(n)-mash34 in the Assyrian version. Similarly, as in the Meissner fragment, the second hero’s name is always written En-ki-dũ35 (abbreviated from dúg) as against En-ki-dú in the Assyrian version. Finally, we encounter in the Yale tablet for the first time the writing Ḫu-wa-wa as the name of the guardian of the cedar forest, as against Ḫum-ba-ba in the Assyrian version, though in the latter case, as we may now conclude from the Yale tablet, the name should rather be read Ḫu-ba-ba.36 The variation in the writing of the latter name is interesting as pointing to the aspirate pronunciation of the labial in both instances. The name would thus present a complete parallel to the Hebrew name Ḫowawa (or Ḫobab) who appears as the brother-in-law of Moses in the P document, Numbers 10, 29.37 Since the name also occurs, written precisely as in the Yale tablet, among the “Amoritic” names in the important lists published by Dr. Chiera,38 there can be no doubt that [24]Ḫuwawa or Ḫubaba is a West Semitic name. This important fact adds to the probability that the “cedar forest” in which Ḫuwawa dwells is none other than the Lebanon district, famed since early antiquity for its cedars. This explanation of the name Ḫuwawa disposes of suppositions hitherto brought forward for an Elamitic origin. Gressmann39 still favors such an origin, though realizing that the description of the cedar forest points to the Amanus or Lebanon range. In further confirmation of the West Semitic origin of the name, we have in Lucian, De Dea Syria, § 19, the name Kombabos40 (the guardian of Stratonika), which forms a perfect parallel to Ḫu(m)baba. Of the important bearings of this western character of the name Ḫuwawa on the interpretation and origin of the Gilgamesh Epic, suggesting that the episode of the encounter between the tyrant and the two heroes rests upon a tradition of an expedition against the West or Amurru land, we shall have more to say further on. The variation in the writing of the name Enkidu is likewise interesting. It is evident that the form in the old Babylonian version with the sign dũ (i.e., dúg) is the original, for it furnishes us with a suitable etymology “Enki is good.” The writing with dúg, pronounced dū, also shows that the sign dú as the third element in the form which the name has in the Assyrian version is to be read dú, and that former readings like Ea-bani must be definitely abandoned.41 The form with dú is clearly a phonetic writing of the Sumerian name, the sign dú being chosen to indicate the pronunciation (not the ideograph) of the third element dúg. This is confirmed by the writing En-gi-dú in the syllabary CT XVIII, 30, 10. The phonetic writing is, therefore, a warning against any endeavor to read the name by an Akkadian transliteration of the signs. This would not of itself prove that Enkidu is of Sumerian origin, for it might well be that the writing En-ki-dú is an endeavor to give a Sumerian aspect to a name that may have been foreign. The element dúg corresponds to the Semitic ṭâbu, “good,” and En-ki being originally a designation of a deity as the “lord of the land,” which would be the Sumerian [25]manner of indicating a Semitic Baal, it is not at all impossible that En-ki-dúg may be the “Sumerianized” form of a Semitic בַּעל טזֹב “Baal is good.” It will be recalled that in the third column of the Yale tablet, Enkidu speaks of himself in his earlier period while still living with cattle, as wandering into the cedar forest of Ḫuwawa, while in another passage (ll. 252–253) he is described as “acquainted with the way … to the entrance of the forest.” This would clearly point to the West as the original home of Enkidu. We are thus led once more to Amurru—taken as a general designation of the West—as playing an important role in the Gilgamesh Epic.42 If Gilgamesh’s expedition against Ḫuwawa of the Lebanon district recalls a Babylonian campaign against Amurru, Enkidu’s coming from his home, where, as we read repeatedly in the Assyrian version, “He ate herbs with the gazelles, Drank out of a trough with cattle,”43 may rest on a tradition of an Amorite invasion of Babylonia. The fight between Gilgamesh and Enkidu would fit in with this tradition, while the subsequent reconciliation would be the form in which the tradition would represent the enforced union between the invaders and the older settlers. Leaving this aside for the present, let us proceed to a consideration of the relationship of the form dGish, for the chief personage in the Epic in the old Babylonian version, to dGish-gi(n)-mash in the Assyrian version. Of the meaning of Gish there is fortunately no doubt. It is clearly the equivalent to the Akkadian zikaru, “man” (Brünnow No. 5707), or possibly rabû, “great” (Brünnow No. 5704). Among various equivalents, the preference is to be given to itlu, “hero.” The determinative for deity stamps the person so designated as deified, or as in part divine, and this is in accord with the express statement in the Assyrian version of the Gilgamesh Epic which describes the hero as “Two-thirds god and one-third human.”44 [26]Gish is, therefore, the hero-god par excellence; and this shows that we are not dealing with a genuine proper name, but rather with a descriptive attribute. Proper names are not formed in this way, either in Sumerian or Akkadian. Now what relation does this form Gish bear to as the name of the hero is invariably written in the Assyrian version, the form which was at first read dIz-tu-bar or dGish-du-bar by scholars, until Pinches found in a neo-Babylonian syllabary45 the equation of it with Gi-il-ga-mesh? Pinches’ discovery pointed conclusively to the popular pronunciation of the hero’s name as Gilgamesh; and since Aelian (De natura Animalium XII, 2) mentions a Babylonian personage Gilgamos (though what he tells us of Gilgamos does not appear in our Epic, but seems to apply to Etana, another figure of Babylonian mythology), there seemed to be no further reason to question that the problem had been solved. Besides, in a later Syriac list of Babylonian kings found in the Scholia of Theodor bar Koni, the name גלמגום with a variant גמיגמוס occurs,46 and it is evident that we have here again the Gi-il-ga-mesh, discovered by Pinches. The existence of an old Babylonian hero Gilgamesh who was likewise a king is thus established, as well as his identification with It is evident that we cannot read this name as Iz-tu-bar or Gish-du-bar, but that we must read the first sign as Gish and the third as Mash, while for the second we must assume a reading Gìn or Gi. This would give us Gish-gì(n)-mash which is clearly again (like En-ki-dú) not an etymological writing but a phonetic one, intended to convey an approach to the popular pronunciation. Gi-il-ga-mesh might well be merely a variant for Gish-ga-mesh, or vice versa, and this would come close to Gish-gi-mash. Now, when we have a name the pronunciation of which is not definite but approximate, and which is written in various ways, the probabilities are that the name is foreign. A foreign name might naturally be spelled in various ways. The [27]Epic in the Assyrian version clearly depicts dGish-gì(n)-mash as a conqueror of Erech, who forces the people into subjection, and whose autocratic rule leads the people of Erech to implore the goddess Aruru to create a rival to him who may withstand him. In response to this appeal dEnkidu is formed out of dust by Aruru and eventually brought to Erech.47 Gish-gì(n)-mash or Gilgamesh is therefore in all probability a foreigner; and the simplest solution suggested by the existence of the two forms (1) Gish in the old Babylonian version and (2) Gish-gì(n)-mash in the Assyrian version, is to regard the former as an abbreviation, which seemed appropriate, because the short name conveyed the idea of the “hero” par excellence. If Gish-gì(n)-mash is a foreign name, one would think in the first instance of Sumerian; but here we encounter a difficulty in the circumstance that outside of the Epic this conqueror and ruler of Erech appears in quite a different form, namely, as dGish-bil-ga-mesh, with dGish-gibil(or bìl)-ga-mesh and dGish-bil-ge-mesh as variants.48 In the remarkable list of partly mythological and partly historical dynasties, published by Poebel,49 the fifth member of the first dynasty of Erech appears as dGish-bil-ga-mesh; and similarly in an inscription of the days of Sin-gamil, dGish-bil-ga-mesh is mentioned as the builder of the wall of Erech.50 Moreover, in the several fragments of the Sumerian version of the Epic we have invariably the form dGish-bil-ga-mesh. It is evident, therefore, that this is the genuine form of the name in Sumerian and presumably, therefore, the oldest form. By way of further confirmation we have in the syllabary above referred to, CT, XVIII, 30, 6–8, three designations of our hero, viz: dGish-gibil(or bíl)-ga-mesh muḳ-tab-lu (“warrior”) a-lik pa-na (“leader”) All three designations are set down as the equivalent of the Sumerian Esigga imin i.e., “the seven-fold hero.” [28] Of the same general character is the equation in another syllabary:51 Esigga-tuk and its equivalent Gish-tuk = “the one who is a hero.” Furthermore, the name occurs frequently in “Temple” documents of the Ur dynasty in the form dGish-bil-ga-mesh52 with dGish-bil-gi(n)-mesh as a variant.53 In a list of deities (CT XXV, 28, K 7659) we likewise encounter dGish-gibil(or bíl)-ga-mesh, and lastly in a syllabary we have the equation54 dGish-gi-mas-[si?] = dGish-bil-[ga-mesh]. The variant Gish-gibil for Gish-bil may be disposed of readily, in view of the frequent confusion or interchange of the two signs Bil (Brünnow No. 4566) and Gibil or Bíl (Brünnow No. 4642) which has also the value Gi (Brünnow 4641), so that we might also read Gish-gi-ga-mesh. Both signs convey the idea of “fire,” “renew,” etc.; both revert to the picture of flames of fire, in the one case with a bowl (or some such obiect) above it, in the other the flames issuing apparently from a torch.55 The meaning of the name is not affected whether we read dGish-bil-ga-mesh or dGish-gibil(or bíl)-ga-mesh, for the middle element in the latter case being identical with the fire-god, written dBil-gi and to be pronounced in the inverted form as Gibil with -ga (or ge) as the phonetic complement; it is equivalent, therefore, to the writing bil-ga in the former case. Now Gish-gibil or Gish-bíl conveys the idea of abu, “father” (Brünnow No. 5713), just as Bil (Brünnow No. 4579) has this meaning, while Pa-gibil-(ga) or Pa-bíl-ga is abu abi, “grandfather.”56 This meaning may be derived from Gibil, as also from Bíl = išatu, “fire,” then eššu, “new,” then abu, “father,” as the renewer or creator. Gish with Bíl or Gibil would, therefore, be “the father-man” or “the father-hero,” [29]i.e., again the hero par excellence, the original hero, just as in Hebrew and Arabic ab is used in this way.57 The syllable ga being a phonetic complement, the element mesh is to be taken by itself and to be explained, as Poebel suggested, as “hero” (itlu. Brünnow No. 5967). We would thus obtain an entirely artificial combination, “man (or hero), father, hero,” which would simply convey in an emphatic manner the idea of the Ur-held, the original hero, the father of heroes as it were—practically the same idea, therefore, as the one conveyed by Gish alone, as the hero par excellence. Our investigation thus leads us to a substantial identity between Gish and the longer form Gish-bil(or bíl)-ga-mesh, and the former might, therefore, well be used as an abbreviation of the latter. Both the shorter and the longer forms are descriptive epithets based on naive folk etymology, rather than personal names, just as in the designation of our hero as muḳtablu, the “fighter,” or as âlik pâna, “the leader,” or as Esigga imin, “the seven-fold hero,” or Esigga tuk, “the one who is a hero,” are descriptive epithets, and as Atra-ḫasis, “the very wise one,” is such an epithet for the hero of the deluge story. The case is different with Gi-il-ga-mesh, or Gish-gì(n)-mash, which represent the popular and actual pronunciation of the name, or at least the approach to such pronunciation. Such forms, stripped as they are of all artificiality, impress one as genuine names. The conclusion to which we are thus led is that Gish-bil(or bíl)-ga-mesh is a play upon the genuine name, to convey to those to whom the real name, as that of a foreigner, would suggest no meaning an interpretation fitting in with his character. In other words, Gish-bil-ga-mesh is a “Sumerianized” form of the name, introduced into the Sumerian version of the tale which became a folk-possession in the Euphrates Valley. Such plays upon names to suggest the character of an individual or some incident are familiar to us from the narratives in Genesis.58 They do not constitute genuine etymologies and are rarely of use in leading to a correct etymology. Reuben, e.g., certainly does not mean “Yahweh has seen my affliction,” which the mother is supposed to have exclaimed at [30]the birth (Genesis 29, 32), with a play upon ben and be’onyi, any more than Judah means “I praise Yahweh” (v. 35), though it does contain the divine name (Yehô) as an element. The play on the name may be close or remote, as long as it fulfills its function of suggesting an etymology that is complimentary or appropriate. In this way, an artificial division and at the same time a distortion of a foreign name like Gilgamesh into several elements, Gish-bil-ga-mesh, is no more violent than, for example, the explanation of Issachar or rather Issaschar as “God has given my hire” (Genesis 30, 18) with a play upon the element sechar, and as though the name were to be divided into Yah (“God”) and sechar (“hire”); or the popular name of Alexander among the Arabs as Zu’l Karnaini, “the possessor of the two horns.” with a suggestion of his conquest of two hemispheres, or what not.59 The element Gil in Gilgamesh would be regarded as a contraction of Gish-bil or gi-bil, in order to furnish the meaning “father-hero,” or Gil might be looked upon as a variant for Gish, which would give us the “phonetic” form in the Assyrian version dGish-gi-mash,60 as well as such a variant writing dGish-gi-mas-(si). Now a name like Gilgamesh, upon which we may definitely settle as coming closest to the genuine form, certainly impresses one as foreign, i.e., it is neither Sumerian nor Akkadian; and we have already suggested that the circumstance that the hero of the Epic is portrayed as a conqueror of Erech, and a rather ruthless one at that, points to a tradition of an invasion of the Euphrates Valley as the background for the episode in the first tablet of the series. Now it is significant that many of the names in the “mythical” dynasties, as they appear in Poebel’s list,61 are likewise foreign, such as Mes-ki-in-ga-še-ir, son of the god Shamash (and the founder of the “mythical” dynasty of Erech of which dGish-bil-ga-mesh is the fifth member),62 and En-me-ir-kár his son. In a still earlier “mythical” dynasty, we encounter names like Ga-lu-mu-um, Zu-ga-gi-ib, Ar-pi, [31]E-ta-na,63 which are distinctly foreign, while such names as En-me(n)-nun-na and Bar-sal-nun-na strike one again as “Sumerianized” names rather than as genuine Sumerian formations.64 Some of these names, as Galumum, Arpi and Etana, are so Amoritic in appearance, that one may hazard the conjecture of their western origin. May Gilgamesh likewise belong to the Amurru65 region, or does he represent a foreigner from the East in contrast to Enkidu, whose name, we have seen, may have been Baal-Ṭôb in the West, with which region he is according to the Epic so familiar? It must be confessed that the second element ga-mesh would fit in well with a Semitic origin for the name, for the element impresses one as the participial form of a Semitic stem g-m-š, just as in the second element of Meskin-gašer we have such a form. Gil might then be the name of a West-Semitic deity. Such conjectures, however, can for the present not be substantiated, and we must content ourselves with the conclusion that Gilgamesh as the real name of the hero, or at least the form which comes closest to the real name, points to a foreign origin for the hero, and that such forms as dGish-bil-ga-mesh and dGish-bíl-gi-mesh and other variants are “Sumerianized” forms for which an artificial etymology was brought forward to convey the [32]idea of the “original hero” or the hero par excellence. By means of this “play” on the name, which reverts to the compilers of the Sumerian version of the Epic, Gilgamesh was converted into a Sumerian figure, just as the name Enkidu may have been introduced as a Sumerian translation of his Amoritic name. dGish at all events is an abbreviated form of the “Sumerianized” name, introduced by the compilers of the earliest Akkadian version, which was produced naturally under the influence of the Sumerian version. Later, as the Epic continued to grow, a phonetic writing was introduced, dGish-gi-mash, which is in a measure a compromise between the genuine name and the “Sumerianized” form, but at the same time an approach to the real pronunciation. Next to the new light thrown upon the names and original character of the two main figures of the Epic, one of the chief points of interest in the Pennsylvania fragment is the proof that it furnishes for a striking resemblance of the two heroes, Gish and Enkidu, to one another. In interpreting the dream of Gish, his mother. Ninsun, lays stress upon the fact that the dream portends the coming of someone who is like Gish, “born in the field and reared in the mountain” (lines 18–19). Both, therefore, are shown by this description to have come to Babylonia from a mountainous region, i.e., they are foreigners; and in the case of Enkidu we have seen that the mountain in all probability refers to a region in the West, while the same may also be the case with Gish. The resemblance of the two heroes to one another extends to their personal appearance. When Enkidu appears on the streets of Erech, the people are struck by this resemblance. They remark that he is “like Gish,” though “shorter in stature” (lines 179–180). Enkidu is described as a rival or counterpart.66 This relationship between the two is suggested also by the Assyrian version. In the creation of Enkidu by Aruru, the people urge the goddess to create the “counterpart” (zikru) of Gilgamesh, someone who will be like him (ma-ši-il) (Tablet I, 2, 31). Enkidu not only comes from the mountain,67 but the mountain is specifically designated [33]as his birth-place (I, 4, 2), precisely as in the Pennsylvania tablet, while in another passage he is also described, as in our tablet, as “born in the field.”68 Still more significant is the designation of Gilgamesh as the talimu, “younger brother,” of Enkidu.69 In accord with this, we find Gilgamesh in his lament over Enkidu describing him as a “younger brother” (ku-ta-ni);70 and again in the last tablet of the Epic, Gilgamesh is referred to as the “brother” of Enkidu.71 This close relationship reverts to the Sumerian version, for the Constantinople fragment (Langdon, above, p. 13) begins with the designation of Gish-bil-ga-mesh as “his brother.” By “his” no doubt Enkidu is meant. Likewise in the Sumerian text published by Zimmern (above, p. 13) Gilgamesh appears as the brother of Enkidu (rev. 1, 17). Turning to the numerous representations of Gilgamesh and Enkidu on Seal Cylinders,72 we find this resemblance of the two heroes to each other strikingly confirmed. Both are represented as bearded, with the strands arranged in the same fashion. The face in both cases is broad, with curls protruding at the side of the head, though at times these curls are lacking in the case of Enkidu. What is particularly striking is to find Gilgamesh generally a little taller than Enkidu, thus bearing out the statement in the Pennsylvania tablet that Enkidu is “shorter in stature.” There are, to be sure, also some distinguishing marks between the two. Thus Enkidu is generally represented with animal hoofs, but not always.73 Enkidu is commonly portrayed with the horns of a bison, but again this sign is wanting in quite a number of instances.74 The hoofs and the horns mark the period when Enkidu lived with animals and much like an [34]animal. Most remarkable, however, of all are cylinders on which we find the two heroes almost exactly alike as, for example, Ward No. 199 where two figures, the one a duplicate of the other (except that one is just a shade taller), are in conflict with each other. Dr. Ward was puzzled by this representation and sets it down as a “fantastic” scene in which “each Gilgamesh is stabbing the other.” In the light of the Pennsylvania tablet, this scene is clearly the conflict between the two heroes described in column 6, preliminary to their forming a friendship. Even in the realm of myth the human experience holds good that there is nothing like a good fight as a basis for a subsequent alliance. The fragment describes this conflict as a furious one in which Gilgamesh is worsted, and his wounded pride assuaged by the generous victor, who comforts his vanquished enemy by the assurance that he was destined for something higher than to be a mere “Hercules.” He was singled out for the exercise of royal authority. True to the description of the two heroes in the Pennsylvania tablet as alike, one the counterpart of the other, the seal cylinder portrays them almost exactly alike, as alike as two brothers could possibly be; with just enough distinction to make it clear on close inspection that two figures are intended and not one repeated for the sake of symmetry. There are slight variations in the manner in which the hair is worn, and slightly varying expressions of the face, just enough to make it evident that the one is intended for Gilgamesh and the other for Enkidu. When, therefore, in another specimen, No. 173, we find a Gilgamesh holding his counterpart by the legs, it is merely another aspect of the fight between the two heroes, one of whom is intended to represent Enkidu, and not, as Dr. Ward supposed, a grotesque repetition of Gilgamesh.75 The description of Enkidu in the Pennsylvania tablet as a parallel figure to Gilgamesh leads us to a consideration of the relationship of the two figures to one another. Many years ago it was pointed out that the Gilgamesh Epic was a composite tale in which various stories of an independent origin had been combined and brought into more or less artificial connection with the heros eponymos of southern Babylonia.76 We may now go a step further and point out that not [35]only is Enkidu originally an entirely independent figure, having no connection with Gish or Gilgamesh, but that the latter is really depicted in the Epic as the counterpart of Enkidu, a reflection who has been given the traits of extraordinary physical power that belong to Enkidu. This is shown in the first place by the fact that in the encounter it is Enkidu who triumphs over Gilgamesh. The entire analysis of the episode of the meeting between the two heroes as given by Gressmann77 must be revised. It is not Enkidu who is terrified and who is warned against the encounter. It is Gilgamesh who, during the night on his way from the house in which the goddess Ishḫara lies, encounters Enkidu on the highway. Enkidu “blocks the path”78 of Gilgamesh. He prevents Gilgamesh from re-entering the house,79 and the two attack each other “like oxen.”80 They grapple with each other, and Enkidu forces Gilgamesh to the ground. Enkidu is, therefore, the real hero whose traits of physical prowess are afterwards transferred to Gilgamesh. Similarly in the next episode, the struggle against Ḫuwawa, the Yale tablet makes it clear that in the original form of the tale Enkidu is the real hero. All warn Gish against the undertaking—the elders of Erech, Enkidu, and also the workmen. “Why dost thou desire to do this?”81 they say to him. “Thou art young, and thy heart carries thee away. Thou knowest not what thou proposest to do.”82 This part of the incident is now better known to us through the latest fragment of the Assyrian version discovered and published by King.83 The elders say to Gilgamesh: “Do not trust, O Gilgamesh, in thy strength! Be warned(?) against trusting to thy attack! The one who goes before will save his companion,84 He who has foresight will save his friend.85 [36] Let Enkidu go before thee. He knows the roads to the cedar forest; He is skilled in battle and has seen fight.” Gilgamesh is sufficiently impressed by this warning to invite Enkidu to accompany him on a visit to his mother, Ninsun, for the purpose of receiving her counsel.86 It is only after Enkidu, who himself hesitates and tries to dissuade Gish, decides to accompany the latter that the elders of Erech are reconciled and encourage Gish for the fray. The two in concert proceed against Ḫuwawa. Gilgamesh alone cannot carry out the plan. Now when a tale thus associates two figures in one deed, one of the two has been added to the original tale. In the present case there can be little doubt that Enkidu, without whom Gish cannot proceed, who is specifically described as “acquainted with the way … to the entrance of the forest”87 in which Ḫuwawa dwells is the original vanquisher. Naturally, the Epic aims to conceal this fact as much as possible ad majorem gloriam of Gilgamesh. It tries to put the one who became the favorite hero into the foreground. Therefore, in both the Babylonian and the Assyrian version Enkidu is represented as hesitating, and Gilgamesh as determined to go ahead. Gilgamesh, in fact, accuses Enkidu of cowardice and boldly declares that he will proceed even though failure stare him in the face.88 Traces of the older view, however, in which Gilgamesh is the one for whom one fears the outcome, crop out; as, for example, in the complaint of Gilgamesh’s mother to Shamash that the latter has stirred the heart of her son to take the distant way to Ḫu(m)baba, “To a fight unknown to him, he advances, An expedition unknown to him he undertakes.”89 Ninsun evidently fears the consequences when her son informs her of his intention and asks her counsel. The answer of Shamash is not preserved, but no doubt it was of a reassuring character, as was the answer of the Sun-god to Gish’s appeal and prayer as set forth in the Yale tablet.90 [37] Again, as a further indication that Enkidu is the real conqueror of Ḫuwawa, we find the coming contest revealed to Enkidu no less than three times in dreams, which Gilgamesh interprets.91 Since the person who dreams is always the one to whom the dream applies, we may see in these dreams a further trace of the primary rôle originally assigned to Enkidu. Another exploit which, according to the Assyrian version, the two heroes perform in concert is the killing of a bull, sent by Anu at the instance of Ishtar to avenge an insult offered to the goddess by Gilgamesh, who rejects her offer of marriage. In the fragmentary description of the contest with the bull, we find Enkidu “seizing” the monster by “its tail.”92 That Enkidu originally played the part of the slayer is also shown by the statement that it is he who insults Ishtar by throwing a piece of the carcass into the goddess’ face,93 adding also an insulting speech; and this despite the fact that Ishtar in her rage accuses Gilgamesh of killing the bull.94 It is thus evident that the Epic alters the original character of the episodes in order to find a place for Gilgamesh, with the further desire to assign to the latter the chief rôle. Be it noted also that Enkidu, not Gilgamesh, is punished for the insult to Ishtar. Enkidu must therefore in the original form of the episode have been the guilty party, who is stricken with mortal disease as a punishment to which after twelve days he succumbs.95 In view of this, we may supply the name of Enkidu in the little song introduced at the close of the encounter with the bull, and not Gilgamesh as has hitherto been done. “Who is distinguished among the heroes? Who is glorious among men? [Enkidu] is distinguished among heroes, [Enkidu] is glorious among men.”96 [38]Finally, the killing of lions is directly ascribed to Enkidu in the Pennsylvania tablet: “Lions he attacked *     *     *     *     * Lions he overcame”97 whereas Gilgamesh appears to be afraid of lions. On his long search for Utnapishtim he says: “On reaching the entrance of the mountain at night I saw lions and was afraid.”98 He prays to Sin and Ishtar to protect and save him. When, therefore, in another passage some one celebrates Gilgamesh as the one who overcame the “guardian,” who dispatched Ḫu(m)baba in the cedar forest, who killed lions and overthrew the bull,99 we have the completion of the process which transferred to Gilgamesh exploits and powers which originally belonged to Enkidu, though ordinarily the process stops short at making Gilgamesh a sharer in the exploits; with the natural tendency, to be sure, to enlarge the share of the favorite. We can now understand why the two heroes are described in the Pennsylvania tablet as alike, as born in the same place, aye, as brothers. Gilgamesh in the Epic is merely a reflex of Enkidu. The latter is the real hero and presumably, therefore, the older figure.100 Gilgamesh resembles Enkidu, because he is originally Enkidu. The “resemblance” motif is merely the manner in which in the course of the partly popular, partly literary transfer, the recollection is preserved that Enkidu is the original, and Gilgamesh the copy. The artificiality of the process which brings the two heroes together is apparent in the dreams of Gilgamesh which are interpreted by his mother as portending the coming of Enkidu. Not the conflict is foreseen, but the subsequent close association, naïvely described as due to the personal charm which Enkidu exercises, which will lead Gilgamesh to fall in love with the one whom he is to meet. The two will become one, like man and wife. [39] On the basis of our investigations, we are now in a position to reconstruct in part the cycle of episodes that once formed part of an Enkidu Epic. The fight between Enkidu and Gilgamesh, in which the former is the victor, is typical of the kind of tales told of Enkidu. He is the real prototype of the Greek Hercules. He slays lions, he overcomes a powerful opponent dwelling in the forests of Lebanon, he kills the bull, and he finally succumbs to disease sent as a punishment by an angry goddess. The death of Enkidu naturally formed the close of the Enkidu Epic, which in its original form may, of course, have included other exploits besides those taken over into the Gilgamesh Epic. There is another aspect of the figure of Enkidu which is brought forward in the Pennsylvania tablet more clearly than had hitherto been the case. Many years ago attention was called to certain striking resemblances between Enkidu and the figure of the first man as described in the early chapters of Genesis.101 At that time we had merely the Assyrian version of the Gilgamesh Epic at our disposal, and the main point of contact was the description of Enkidu living with the animals, drinking and feeding like an animal, until a woman is brought to him with whom he engages in sexual intercourse. This suggested that Enkidu was a picture of primeval man, while the woman reminded one of Eve, who when she is brought to Adam becomes his helpmate and inseparable companion. The Biblical tale stands, of course, on a much higher level, and is introduced, as are other traditions and tales of primitive times, in the style of a parable to convey certain religious teachings. For all that, suggestions of earlier conceptions crop out in the picture of Adam surrounded by animals to which he assigns names. Such a phrase as “there was no helpmate corresponding to him” becomes intelligible on the supposition of an existing tradition or belief, that man once lived and, indeed, cohabited with animals. The tales in the early chapters of Genesis must rest on very early popular traditions, which have been cleared of mythological and other objectionable features in order to adapt them to the purpose of the Hebrew compilers, to serve as a medium for illustrating [40]certain religious teachings regarding man’s place in nature and his higher destiny. From the resemblance between Enkidu and Adam it does not, of course, follow that the latter is modelled upon the former, but only that both rest on similar traditions of the condition under which men lived in primeval days prior to the beginnings of human culture. We may now pass beyond these general indications and recognize in the story of Enkidu as revealed by the Pennsylvania tablet an attempt to trace the evolution of primitive man from low beginnings to the regular and orderly family life associated with advanced culture. The new tablet furnishes a further illustration for the surprisingly early tendency among the Babylonian literati to connect with popular tales teachings of a religious or ethical character. Just as the episode between Gilgamesh and the maiden Sabitum is made the occasion for introducing reflections on the inevitable fate of man to encounter death, so the meeting of Enkidu with the woman becomes the medium of impressing the lesson of human progress through the substitution of bread and wine for milk and water, through the institution of the family, and through work and the laying up of resources. This is the significance of the address to Enkidu in column 4 of the Pennsylvania tablet, even though certain expressions in it are somewhat obscure. The connection of the entire episode of Enkidu and the woman with Gilgamesh is very artificial; and it becomes much more intelligible if we disassociate it from its present entanglement in the Epic. In Gilgamesh’s dream, portending the meeting with Enkidu, nothing is said of the woman who is the companion of the latter. The passage in which Enkidu is created by Aruru to oppose Gilgamesh102 betrays evidence of having been worked over in order to bring Enkidu into association with the longing of the people of Erech to get rid of a tyrannical character. The people in their distress appeal to Aruru to create a rival to Gilgamesh. In response, “Aruru upon hearing this created a man of Anu in her heart.” Now this “man of Anu” cannot possibly be Enkidu, for the sufficient reason that a few lines further on Enkidu is described as an [41]offspring of Ninib. Moreover, the being created is not a “counterpart” of Gilgamesh, but an animal-man, as the description that follows shows. We must separate lines 30–33 in which the creation of the “Anu man” is described from lines 34–41 in which the creation of Enkidu is narrated. Indeed, these lines strike one as the proper beginning of the original Enkidu story, which would naturally start out with his birth and end with his death. The description is clearly an account of the creation of the first man, in which capacity Enkidu is brought forward. “Aruru washed her hands, broke off clay, threw it on the field103 … created Enkidu, the hero, a lofty offspring of the host of Ninib.”104 The description of Enkidu follows, with his body covered with hair like an animal, and eating and drinking with the animals. There follows an episode105 which has no connection whatsoever with the Gilgamesh Epic, but which is clearly intended to illustrate how Enkidu came to abandon the life with the animals. A hunter sees Enkidu and is amazed at the strange sight—an animal and yet a man. Enkidu, as though resenting his condition, becomes enraged at the sight of the hunter, and the latter goes to his father and tells him of the strange creature whom he is unable to catch. In reply, the father advises his son to take a woman with him when next he goes out on his pursuit, and to have the woman remove her dress in the presence of Enkidu, who will then approach her, and after intercourse with her will abandon the animals among whom he lives. By this device he will catch the strange creature. Lines 14–18 of column 3 in the first tablet in which the father of the hunter refers to Gilgamesh must be regarded as a later insertion, a part of the reconstruction of the tale to connect the episode with Gilgamesh. The advice of the father to his son, the hunter, begins, line 19, “Go my hunter, take with thee a woman.” [42]In the reconstructed tale, the father tells his son to go to Gilgamesh to relate to him the strange appearance of the animal-man; but there is clearly no purpose in this, as is shown by the fact that when the hunter does so, Gilgamesh makes precisely the same speech as does the father of the hunter. Lines 40–44 of column 3, in which Gilgamesh is represented as speaking to the hunter form a complete doublet to lines 19–24, beginning “Go, my hunter, take with thee a woman, etc.” and similarly the description of Enkidu appears twice, lines 2–12 in an address of the hunter to his father, and lines 29–39 in the address of the hunter to Gilgamesh. The artificiality of the process of introducing Gilgamesh into the episode is revealed by this awkward and entirely meaningless repetition. We may therefore reconstruct the first two scenes in the Enkidu Epic as follows:106 Tablet I, col. 2, 34–35: Creation of Enkidu by Aruru. 36–41: Description of Enkidu’s hairy body and of his life with the animals. 42–50: The hunter sees Enkidu, who shows his anger, as also his woe, at his condition. 3, 1–12: The hunter tells his father of the strange being who pulls up the traps which the hunter digs, and who tears the nets so that the hunter is unable to catch him or the animals. 19–24: The father of the hunter advises his son on his next expedition to take a woman with him in order to lure the strange being from his life with the animals. Line 25, beginning “On the advice of his father,” must have set forth, in the original form of the episode, how the hunter procured the woman and took her with him to meet Enkidu. Column 4 gives in detail the meeting between the two, and naïvely describes how the woman exposes her charms to Enkidu, who is captivated by her and stays with her six days and seven nights. The animals see the change in Enkidu and run away from him. [43]He has been transformed through the woman. So far the episode. In the Assyrian version there follows an address of the woman to Enkidu beginning (col. 4, 34): “Beautiful art thou, Enkidu, like a god art thou.” We find her urging him to go with her to Erech, there to meet Gilgamesh and to enjoy the pleasures of city life with plenty of beautiful maidens. Gilgamesh, she adds, will expect Enkidu, for the coming of the latter to Erech has been foretold in a dream. It is evident that here we have again the later transformation of the Enkidu Epic in order to bring the two heroes together. Will it be considered too bold if we assume that in the original form the address of the woman and the construction of the episode were such as we find preserved in part in columns 2 to 4 of the Pennsylvania tablet, which forms part of the new material that can now be added to the Epic? The address of the woman begins in line 51 of the Pennsylvania tablet: “I gaze upon thee, Enkidu, like a god art thou.” This corresponds to the line in the Assyrian version (I, 4, 34) as given above, just as lines 52–53: “Why with the cattle Dost thou roam across the field?” correspond to I, 4, 35, of the Assyrian version. There follows in both the old Babylonian and the Assyrian version the appeal of the woman to Enkidu, to allow her to lead him to Erech where Gilgamesh dwells (Pennsylvania tablet lines 54–61 = Assyrian version I, 4, 36–39); but in the Pennsylvania tablet we now have a second speech (lines 62–63) beginning like the first one with al-ka, “come:” “Come, arise from the accursed ground.” Enkidu consents, and now the woman takes off her garments and clothes the naked Enkidu, while putting another garment on herself. She takes hold of his hand and leads him to the sheepfolds (not to Erech!!), where bread and wine are placed before him. Accustomed hitherto to sucking milk with cattle, Enkidu does not know what to do with the strange food until encouraged and instructed by the woman. The entire third column is taken up with this introduction [44]of Enkidu to civilized life in a pastoral community, and the scene ends with Enkidu becoming a guardian of flocks. Now all this has nothing to do with Gilgamesh, and clearly sets forth an entirely different idea from the one embodied in the meeting of the two heroes. In the original Enkidu tale, the animal-man is looked upon as the type of a primitive savage, and the point of the tale is to illustrate in the naïve manner characteristic of folklore the evolution to the higher form of pastoral life. This aspect of the incident is, therefore, to be separated from the other phase which has as its chief motif the bringing of the two heroes together. We now obtain, thanks to the new section revealed by the Pennsylvania tablet, a further analogy107 with the story of Adam and Eve, but with this striking difference, that whereas in the Babylonian tale the woman is the medium leading man to the higher life, in the Biblical story the woman is the tempter who brings misfortune to man. This contrast is, however, not inherent in the Biblical story, but due to the point of view of the Biblical writer, who is somewhat pessimistically inclined and looks upon primitive life, when man went naked and lived in a garden, eating of fruits that grew of themselves, as the blessed life in contrast to advanced culture which leads to agriculture and necessitates hard work as the means of securing one’s substance. Hence the woman through whom Adam eats of the tree of knowledge and becomes conscious of being naked is looked upon as an evil tempter, entailing the loss of the primeval life of bliss in a gorgeous Paradise. The Babylonian point of view is optimistic. The change to civilized life—involving the wearing of clothes and the eating of food that is cultivated (bread and wine) is looked upon as an advance. Hence the woman is viewed as the medium of raising man to a higher level. The feature common to the Biblical and Babylonian tales is the attachment of a lesson to early folk-tales. The story of Adam and Eve,108 as the story of Enkidu and the woman, is told with a purpose. Starting with early traditions of men’s primitive life on earth, that may have arisen independently, Hebrew and [45]Babylonian writers diverged, each group going its own way, each reflecting the particular point of view from which the evolution of human society was viewed. Leaving the analogy between the Biblical and Babylonian tales aside, the main point of value for us in the Babylonian story of Enkidu and the woman is the proof furnished by the analysis, made possible through the Pennsylvania tablet, that the tale can be separated from its subsequent connection with Gilgamesh. We can continue this process of separation in the fourth column, where the woman instructs Enkidu in the further duty of living his life with the woman decreed for him, to raise a family, to engage in work, to build cities and to gather resources. All this is looked upon in the same optimistic spirit as marking progress, whereas the Biblical writer, consistent with his point of view, looks upon work as a curse, and makes Cain, the murderer, also the founder of cities. The step to the higher forms of life is not an advance according to the J document. It is interesting to note that even the phrase the “cursed ground” occurs in both the Babylonian and Biblical tales; but whereas in the latter (Gen. 3, 17) it is because of the hard work entailed in raising the products of the earth that the ground is cursed, in the former (lines 62–63) it is the place in which Enkidu lives before he advances to the dignity of human life that is “cursed,” and which he is asked to leave. Adam is expelled from Paradise as a punishment, whereas Enkidu is implored to leave it as a necessary step towards progress to a higher form of existence. The contrast between the Babylonian and the Biblical writer extends to the view taken of viniculture. The Biblical writer (again the J document) looks upon Noah’s drunkenness as a disgrace. Noah loses his sense of shame and uncovers himself (Genesis 9, 21), whereas in the Babylonian description Enkidu’s jolly spirit after he has drunk seven jars of wine meets with approval. The Biblical point of view is that he who drinks wine becomes drunk;109 the Babylonian says, if you drink wine you become happy.110 If the thesis here set forth of the original character and import of the episode of Enkidu with the woman is correct, we may again regard lines 149–153 of the Pennsylvania tablet, in which Gilgamesh is introduced, as a later addition to bring the two heroes into association. [46]The episode in its original form ended with the introduction of Enkidu first to pastoral life, and then to the still higher city life with regulated forms of social existence. Now, to be sure, this Enkidu has little in common with the Enkidu who is described as a powerful warrior, a Hercules, who kills lions, overcomes the giant Ḫuwawa, and dispatches a great bull, but it is the nature of folklore everywhere to attach to traditions about a favorite hero all kinds of tales with which originally he had nothing to do. Enkidu, as such a favorite, is viewed also as the type of primitive man,111 and so there arose gradually an Epic which began with his birth, pictured him as half-animal half-man, told how he emerged from this state, how he became civilized, was clothed, learned to eat food and drink wine, how he shaved off the hair with which his body was covered,112 anointed himself—in short, “He became manlike.”113 Thereupon he is taught his duties as a husband, is introduced to the work of building, and to laying aside supplies, and the like. The fully-developed and full-fledged hero then engages in various exploits, of which some are now embodied in the Gilgamesh Epic. Who this Enkidu was, we are not in a position to determine, but the suggestion has been thrown out above that he is a personage foreign to Babylonia, that his home appears to be in the undefined Amurru district, and that he conquers that district. The original tale of Enkidu, if this view be correct, must therefore have been carried to the Euphrates Valley, at a very remote period, with one of the migratory waves that brought a western people as invaders into Babylonia. Here the tale was combined with stories current of another hero, Gilgamesh—perhaps also of Western origin—whose conquest of Erech likewise represents an invasion of Babylonia. The center of the Gilgamesh tale was Erech, and in the process of combining the stories of Enkidu and Gilgamesh, Enkidu is brought to Erech and the two perform exploits [47]in common. In such a combination, the aim would be to utilize all the incidents of both tales. The woman who accompanies Enkidu, therefore, becomes the medium of bringing the two heroes together. The story of the evolution of primitive man to civilized life is transformed into the tale of Enkidu’s removal to Erech, and elaborated with all kinds of details, among which we have, as perhaps embodying a genuine historical tradition, the encounter of the two heroes. Before passing on, we have merely to note the very large part taken in both the old Babylonian and the Assyrian version by the struggle against Ḫuwawa. The entire Yale tablet—forming, as we have seen, the third of the series—is taken up with the preparation for the struggle, and with the repeated warnings given to Gilgamesh against the dangerous undertaking. The fourth tablet must have recounted the struggle itself, and it is not improbable that this episode extended into the fifth tablet, since in the Assyrian version this is the case. The elaboration of the story is in itself an argument in favor of assuming some historical background for it—the recollection of the conquest of Amurru by some powerful warrior; and we have seen that this conquest must be ascribed to Enkidu and not to Gilgamesh. If, now, Enkidu is not only the older figure but the one who is the real hero of the most notable episode in the Gilgamesh Epic; if, furthermore, Enkidu is the Hercules who kills lions and dispatches the bull sent by an enraged goddess, what becomes of Gilgamesh? What is left for him? In the first place, he is definitely the conqueror of Erech. He builds the wall of Erech,114 and we may assume that the designation of the city as Uruk supûri, “the walled Erech,”115 rests upon this tradition. He is also associated with the great temple Eanna, “the heavenly house,” in Erech. To Gilgamesh belongs also the unenviable tradition of having exercised his rule in Erech so harshly that the people are impelled to implore Aruru to create a rival who may rid [48]the district of the cruel tyrant, who is described as snatching sons and daughters from their families, and in other ways terrifying the population—an early example of “Schrecklichkeit.” Tablets II to V inclusive of the Assyrian version being taken up with the Ḫuwawa episode, modified with a view of bringing the two heroes together, we come at once to the sixth tablet, which tells the story of how the goddess Ishtar wooed Gilgamesh, and of the latter’s rejection of her advances. This tale is distinctly a nature myth. The attempt of Gressmann116 to find some historical background to the episode is a failure. The goddess Ishtar symbolizes the earth which woos the sun in the spring, but whose love is fatal, for after a few months the sun’s power begins to wane. Gilgamesh, who in incantation hymns is invoked in terms which show that he was conceived as a sun-god,117 recalls to the goddess how she changed her lovers into animals, like Circe of Greek mythology, and brought them to grief. Enraged at Gilgamesh’s insult to her vanity, she flies to her father Anu and cries for revenge. At this point the episode of the creation of the bull is introduced, but if the analysis above given is correct it is Enkidu who is the hero in dispatching the bull, and we must assume that the sickness with which Gilgamesh is smitten is the punishment sent by Anu to avenge the insult to his daughter. This sickness symbolizes the waning strength of the sun after midsummer is past. The sun recedes from the earth, and this was pictured in the myth as the sun-god’s rejection of Ishtar; Gilgamesh’s fear of death marks the approach of the winter season, when the sun appears to have lost its vigor completely and is near to death. The entire episode is, therefore, a nature myth, symbolical of the passing of spring to midsummer and then to the bare season. The myth has been attached to Gilgamesh as a favorite figure, and then woven into a pattern with the episode of Enkidu and the bull. The bull episode can be detached from the nature myth without any loss to the symbolism of the tale of Ishtar and Gilgamesh. As already suggested, with Enkidu’s death after this conquest of the bull the original Enkidu Epic came to an end. In order to connect Gilgamesh with Enkidu, the former is represented as sharing [49]in the struggle against the bull. Enkidu is punished with death, while Gilgamesh is smitten with disease. Since both shared equally in the guilt, the punishment should have been the same for both. The differentiation may be taken as an indication that Gilgamesh’s disease has nothing to do with the bull episode, but is merely part of the nature myth. Gilgamesh now begins a series of wanderings in search of the restoration of his vigor, and this motif is evidently a continuation of the nature myth to symbolize the sun’s wanderings during the dark winter in the hope of renewed vigor with the coming of the spring. Professor Haupt’s view is that the disease from which Gilgamesh is supposed to be suffering is of a venereal character, affecting the organs of reproduction. This would confirm the position here taken that the myth symbolizes the loss of the sun’s vigor. The sun’s rays are no longer strong enough to fertilize the earth. In accord with this, Gilgamesh’s search for healing leads him to the dark regions118 in which the scorpion-men dwell. The terrors of the region symbolize the gloom of the winter season. At last Gilgamesh reaches a region of light again, described as a landscape situated at the sea. The maiden in control of this region bolts the gate against Gilgamesh’s approach, but the latter forces his entrance. It is the picture of the sun-god bursting through the darkness, to emerge as the youthful reinvigorated sun-god of the spring. Now with the tendency to attach to popular tales and nature myths lessons illustrative of current beliefs and aspirations, Gilgamesh’s search for renewal of life is viewed as man’s longing for eternal life. The sun-god’s waning power after midsummer is past suggests man’s growing weakness after the meridian of life has been left behind. Winter is death, and man longs to escape it. Gilgamesh’s wanderings are used as illustration of this longing, and accordingly the search for life becomes also the quest for immortality. Can the precious boon of eternal life be achieved? Popular fancy created the figure of a favorite of the gods who had escaped a destructive deluge in which all mankind had perished.119 Gilgamesh hears [50]of this favorite and determines to seek him out and learn from him the secret of eternal life. The deluge story, again a pure nature myth, symbolical of the rainy season which destroys all life in nature, is thus attached to the Epic. Gilgamesh after many adventures finds himself in the presence of the survivor of the Deluge who, although human, enjoys immortal life among the gods. He asks the survivor how he came to escape the common fate of mankind, and in reply Utnapishtim tells the story of the catastrophe that brought about universal destruction. The moral of the tale is obvious. Only those singled out by the special favor of the gods can hope to be removed to the distant “source of the streams” and live forever. The rest of mankind must face death as the end of life. That the story of the Deluge is told in the eleventh tablet of the series, corresponding to the eleventh month, known as the month of “rain curse”120 and marking the height of the rainy season, may be intentional, just as it may not be accidental that Gilgamesh’s rejection of Ishtar is recounted in the sixth tablet, corresponding to the sixth month,121 which marks the end of the summer season. The two tales may have formed part of a cycle of myths, distributed among the months of the year. The Gilgamesh Epic, however, does not form such a cycle. Both myths have been artificially attached to the adventures of the hero. For the deluge story we now have the definite proof for its independent existence, through Dr. Poebel’s publication of a Sumerian text which embodies the tale,122 and without any reference [51]to Gilgamesh. Similarly, Scheil and Hilprecht have published fragments of deluge stories written in Akkadian and likewise without any connection with the Gilgamesh Epic.123 In the Epic the story leads to another episode attached to Gilgamesh, namely, the search for a magic plant growing in deep water, which has the power of restoring old age to youth. Utnapishtim, the survivor of the deluge, is moved through pity for Gilgamesh, worn out by his long wanderings. At the request of his wife, Utnapishtim decides to tell Gilgamesh of this plant, and he succeeds in finding it. He plucks it and decides to take it back to Erech so that all may enjoy the benefit, but on his way stops to bathe in a cool cistern. A serpent comes along and snatches the plant from him, and he is forced to return to Erech with his purpose unachieved. Man cannot hope, when old age comes on, to escape death as the end of everything. Lastly, the twelfth tablet of the Assyrian version of the Gilgamesh Epic is of a purely didactic character, bearing evidence of having been added as a further illustration of the current belief that there is no escape from the nether world to which all must go after life has come to an end. Proper burial and suitable care of the dead represent all that can be done in order to secure a fairly comfortable rest for those who have passed out of this world. Enkidu is once more introduced into this episode. His shade is invoked by Gilgamesh and rises up out of the lower world to give a discouraging reply to Gilgamesh’s request, “Tell me, my friend, tell me, my friend, The law of the earth which thou hast experienced, tell me,” The mournful message comes back: “I cannot tell thee, my friend, I cannot tell.” Death is a mystery and must always remain such. The historical Gilgamesh has clearly no connection with the figure introduced into [52]this twelfth tablet. Indeed, as already suggested, the Gilgamesh Epic must have ended with the return to Erech, as related at the close of the eleventh tablet. The twelfth tablet was added by some school-men of Babylonia (or perhaps of Assyria), purely for the purpose of conveying a summary of the teachings in regard to the fate of the dead. Whether these six episodes covering the sixth to the twelfth tablets, (1) the nature myth, (2) the killing of the divine bull, (3) the punishment of Gilgamesh and the death of Enkidu, (4) Gilgamesh’s wanderings, (5) the Deluge, (6) the search for immortality, were all included at the time that the old Babylonian version was compiled cannot, of course, be determined until we have that version in a more complete form. Since the two tablets thus far recovered show that as early as 2000 B.C. the Enkidu tale had already been amalgamated with the current stories about Gilgamesh, and the endeavor made to transfer the traits of the former to the latter, it is eminently likely that the story of Ishtar’s unhappy love adventure with Gilgamesh was included, as well as Gilgamesh’s punishment and the death of Enkidu. With the evidence furnished by Meissner’s fragment of a version of the old Babylonian revision and by our two tablets, of the early disposition to make popular tales the medium of illustrating current beliefs and the teachings of the temple schools, it may furthermore be concluded that the death of Enkidu and the punishment of Gilgamesh were utilized for didactic purposes in the old Babylonian version. On the other hand, the proof for the existence of the deluge story in the Hammurabi period and some centuries later, independent of any connection with the Gilgamesh Epic, raises the question whether in the old Babylonian version, of which our two tablets form a part, the deluge tale was already woven into the pattern of the Epic. At all events, till proof to the contrary is forthcoming, we may assume that the twelfth tablet of the Assyrian version, though also reverting to a Babylonian original, dates as the latest addition to the Epic from a period subsequent to 2000 B.C.; and that the same is probably the case with the eleventh tablet. To sum up, there are four main currents that flow together in the Gilgamesh Epic even in its old Babylonian form: (1) the adventures of a mighty warrior Enkidu, resting perhaps on a faint tradition [53]of the conquest of Amurru by the hero; (2) the more definite recollection of the exploits of a foreign invader of Babylonia by the name of Gilgamesh, whose home appears likewise to have been in the West;124 (3) nature myths and didactic tales transferred to Enkidu and Gilgamesh as popular figures; and (4) the process of weaving the traditions, exploits, myths and didactic tales together, in the course of which process Gilgamesh becomes the main hero, and Enkidu his companion. Furthermore, our investigation has shown that to Enkidu belongs the episode with the woman, used to illustrate the evolution of primitive man to the ways and conditions of civilized life, the conquest of Ḫuwawa in the land of Amurru, the killing of lions and also of the bull, while Gilgamesh is the hero who conquers Erech. Identified with the sun-god, the nature myth of the union of the sun with the earth and the subsequent separation of the two is also transferred to him. The wanderings of the hero, smitten with disease, are a continuation of the nature myth, symbolizing the waning vigor of the sun with the approach of the wintry season. The details of the process which led to making Gilgamesh the favorite figure, to whom the traits and exploits of Enkidu and of the sun-god are transferred, escape us, but of the fact that Enkidu is the older figure, of whom certain adventures were set forth in a tale that once had an independent existence, there can now be little doubt in the face of the evidence furnished by the two tablets of the old Babylonian version; just as the study of these tablets shows that in the combination of the tales of Enkidu and Gilgamesh, the former is the prototype of which Gilgamesh is the copy. If the two are regarded as brothers, as born in the same place, even resembling one another in appearance and carrying out their adventures in common, it is because in the process of combination Gilgamesh becomes the reflex of Enkidu. That Enkidu is not the figure created by Aruru to relieve Erech of its tyrannical ruler is also shown by the fact that Gilgamesh remains in control of Erech. It is to Erech that he returns when he fails of his purpose to learn the secret of escape from old age and death. Erech is, therefore, not relieved of the presence of the ruthless ruler through Enkidu. The “Man of Anu” formed by Aruru as a deliverer is confused in the course of the growth of the [54]Epic with Enkidu, the offspring of Ninib, and in this way we obtain the strange contradiction of Enkidu and Gilgamesh appearing first as bitter rivals and then as close and inseparable friends. It is of the nature of Epic compositions everywhere to eliminate unnecessary figures by concentrating on one favorite the traits belonging to another or to several others. The close association of Enkidu and Gilgamesh which becomes one of the striking features in the combination of the tales of these two heroes naturally recalls the “Heavenly Twins” motif, which has been so fully and so suggestively treated by Professor J. Rendell Harris in his Cult of the Heavenly Twins, (London, 1906). Professor Harris has conclusively shown how widespread the tendency is to associate two divine or semi-divine beings in myths and legends as inseparable companions125 or twins, like Castor and Pollux, Romulus and Remus,126 the Acvins in the Rig-Veda,127 Cain and Abel, Jacob and Esau in the Old Testament, the Kabiri of the Phoenicians,128 Herakles and Iphikles in Greek mythology, Ambrica and Fidelio in Teutonic mythology, Patollo and Potrimpo in old Prussian mythology, Cautes and Cautopates in Mithraism, Jesus and Thomas (according to the Syriac Acts of Thomas), and the various illustrations of “Dioscuri in Christian Legends,” set forth by Dr. Harris in his work under this title, which carries the motif far down into the period of legends about Christian Saints who appear in pairs, including the reference to such a pair in Shakespeare’s Henry V: “And Crispin Crispian shall ne’er go by From that day to the ending of the world.”—(Act, IV, 3, 57–58.) There are indeed certain parallels which suggest that Enkidu-Gilgamesh may represent a Babylonian counterpart to the “Heavenly [55]Twins.” In the Indo-Iranian, Greek and Roman mythology, the twins almost invariably act together. In unison they proceed on expeditions to punish enemies.129 But after all, the parallels are of too general a character to be of much moment; and moreover the parallels stop short at the critical point, for Gilgamesh though worsted is not killed by Enkidu, whereas one of the “Heavenly Twins” is always killed by the brother, as Abel is by Cain, and Iphikles by his twin brother Herakles. Even the trait which is frequent in the earliest forms of the “Heavenly Twins,” according to which one is immortal and the other is mortal, though applying in a measure to Enkidu who is killed by Ishtar, while Gilgamesh the offspring of a divine pair is only smitten with disease, is too unsubstantial to warrant more than a general comparison between the Enkidu-Gilgamesh pair and the various forms of the “twin” motif found throughout the ancient world. For all that, the point is of some interest that in the Gilgamesh Epic we should encounter two figures who are portrayed as possessing the same traits and accomplishing feats in common, which suggest a partial parallel to the various forms in which the twin-motif appears in the mythologies, folk-lore and legends of many nations; and it may be that in some of these instances the duplication is due, as in the case of Enkidu and Gilgamesh, to an actual transfer of the traits of one figure to another who usurped his place. In concluding this study of the two recently discovered tablets of the old Babylonian version of the Gilgamesh Epic which has brought us several steps further in the interpretation and in our understanding of the method of composition of the most notable literary production of ancient Babylonia, it will be proper to consider the literary relationship of the old Babylonian to the Assyrian version. We have already referred to the different form in which the names of the chief figures appear in the old Babylonian version, dGish as against dGish-gì(n)-mash, dEn-ki-dũ as against dEn-ki-dú, Ḫu-wa-wa as against Ḫu(m)-ba-ba. Erech appears as Uruk ribîtim, “Erech of [56]the Plazas,” as against Uruk supûri, “walled Erech” (or “Erech within the walls”), in the Assyrian version.130 These variations point to an independent recension for the Assyrian revision; and this conclusion is confirmed by a comparison of parallel passages in our two tablets with the Assyrian version, for such parallels rarely extend to verbal agreements in details, and, moreover, show that the Assyrian version has been elaborated. Beginning with the Pennsylvania tablet, column I is covered in the Assyrian version by tablet I, 5, 25, to 6, 33, though, as pointed out above, in the Assyrian version we have the anticipation of the dreams of Gilgamesh and their interpretation through their recital to Enkidu by his female companion, whereas in the old Babylonian version we have the dreams directly given in a conversation between Gilgamesh and his mother. In the anticipation, there would naturally be some omissions. So lines 4–5 and 12–13 of the Pennsylvania tablet do not appear in the Assyrian version, but in their place is a line (I, 5, 35), to be restored to ”[I saw him and like] a woman I fell in love with him.” which occurs in the old Babylonian version only in connection with the second dream. The point is of importance as showing that in the Babylonian version the first dream lays stress upon the omen of the falling meteor, as symbolizing the coming of Enkidu, whereas the second dream more specifically reveals Enkidu as a man,131 of whom Gilgamesh is instantly enamored. Strikingly variant lines, though conveying the same idea, are frequent. Thus line 14 of the Babylonian version reads “I bore it and carried it to thee” and appears in the Assyrian version (I, 5, 35b supplied from 6, 26) “I threw it (or him) at thy feet”132 [57]with an additional line in elaboration “Thou didst bring him into contact with me”133 which anticipates the speech of the mother (Line 41 = Assyrian version I, 6, 33). Line 10 of the Pennsylvania tablet has pa-ḫi-ir as against iz-za-az I, 5, 31. Line 8 has ik-ta-bi-it as against da-an in the Assyrian version I, 5, 29. More significant is the variant to line 9 “I became weak and its weight I could not bear” as against I, 5, 30. “Its strength was overpowering,134 and I could not endure its weight.” The important lines 31–36 are not found in the Assyrian version, with the exception of I, 6, 27, which corresponds to lines 33–34, but this lack of correspondence is probably due to the fact that the Assyrian version represents the anticipation of the dreams which, as already suggested, might well omit some details. As against this we have in the Assyrian version I, 6, 23–25, an elaboration of line 30 in the Pennsylvania tablet and taken over from the recital of the first dream. Through the Assyrian version I, 6, 31–32, we can restore the closing lines of column I of the Pennsylvania tablet, while with line 33 = line 45 of the Pennsylvania tablet, the parallel between the two versions comes to an end. Lines 34–43 of the Assyrian version (bringing tablet I to a close)135 represent an elaboration of the speech of Ninsun, followed by a further address of Gilgamesh to his mother, and by the determination of Gilgamesh to seek out Enkidu.136 Nothing of this sort appears to have been included in the old Babylonian version.[58]Our text proceeds with the scene between Enkidu and the woman, in which the latter by her charms and her appeal endeavors to lead Enkidu away from his life with the animals. From the abrupt manner in which the scene is introduced in line 43 of the Pennsylvania tablet, it is evident that this cannot be the first mention of the woman. The meeting must have been recounted in the first tablet, as is the case in the Assyrian version.137 The second tablet takes up the direct recital of the dreams of Gilgamesh and then continues the narrative. Whether in the old Babylonian version the scene between Enkidu and the woman was described with the same naïve details, as in the Assyrian version, of the sexual intercourse between the two for six days and seven nights cannot of course be determined, though presumably the Assyrian version, with the tendency of epics to become more elaborate as they pass from age to age, added some realistic touches. Assuming that lines 44–63 of the Pennsylvania tablet—the cohabitation of Enkidu and the address of the woman—is a repetition of what was already described in the first tablet, the comparison with the Assyrian version I, 4, 16–41, not only points to the elaboration of the later version, but likewise to an independent recension, even where parallel lines can be picked out. Only lines 46–48 of the Pennsylvania tablet form a complete parallel to line 21 of column 4 of the Assyrian version. The description in lines 22–32 of column 4 is missing, though it may, of course, have been included in part in the recital in the first tablet of the old Babylonian version. Lines 49–59 of the Pennsylvania tablet are covered by 33–39, the only slight difference being the specific mention in line 58 of the Pennsylvania tablet of Eanna, the temple in Erech, described as “the dwelling of Anu,” whereas in the Assyrian version Eanna is merely referred to as the “holy house” and described as “the dwelling of Anu and Ishtar,” where Ishtar is clearly a later addition. Leaving aside lines 60–61, which may be merely a variant (though independent) of line 39 of column 4 of the Assyrian version, we now have in the Pennsylvania tablet a second speech of the woman to Enkidu (not represented in the Assyrian version) beginning like the first one with alka, “Come” (lines 62–63), in which she asks Enkidu to leave the “accursed ground” in which he dwells. This speech, as the description which follows, extending into columns 3–4, [59]and telling how the woman clothed Enkidu, how she brought him to the sheep folds, how she taught him to eat bread and to drink wine, and how she instructed him in the ways of civilization, must have been included in the second tablet of the Assyrian version which has come down to us in a very imperfect form. Nor is the scene in which Enkidu and Gilgamesh have their encounter found in the preserved portions of the second (or possibly the third) tablet of the Assyrian version, but only a brief reference to it in the fourth tablet,138 in which in Epic style the story is repeated, leading up to the second exploit—the joint campaign of Enkidu and Gilgamesh against Ḫuwawa. This reference, covering only seven lines, corresponds to lines 192–231 of the Pennsylvania tablet; but the former being the repetition and the latter the original recital, the comparison to be instituted merely reveals again the independence of the Assyrian version, as shown in the use of kibsu, “tread” (IV, 2, 46), for šêpu, “foot” (l. 216), i-na-uš, “quake” (line 5C), as against ir-tu-tu (ll. 221 and 226). Such variants as dGish êribam ûl iddin (l. 217) against dGilgamesh ana šurûbi ûl namdin, (IV, 2, 47). and again iṣṣabtûma kima lîm “they grappled at the gate of the family house” (IV, 2, 48), against iṣṣabtûma ina bâb bît emuti, “they grappled at the gate of the family house” (IV, 2, 48), all point once more to the literary independence of the Assyrian version. The end of the conflict and the reconciliation of the two heroes is likewise missing in the Assyrian version. It may have been referred to at the beginning of column 3139 of Tablet IV. Coming to the Yale tablet, the few passages in which a comparison [60]may be instituted with the fourth tablet of the Assyrian version, to which in a general way it must correspond, are not sufficient to warrant any conclusions, beyond the confirmation of the literary independence of the Assyrian version. The section comprised within lines 72–89, where Enkidu’s grief at his friend’s decision to fight Ḫuwawa is described140, and he makes confession of his own physical exhaustion, may correspond to Tablet IV, column 4, of the Assyrian version. This would fit in with the beginning of the reverse, the first two lines of which (136–137) correspond to column 5 of the fourth tablet of the Assyrian version, with a variation “seven-fold fear”141 as against “fear of men” in the Assyrian version. If lines 138–139 (in column 4) of the Yale tablet correspond to line 7 of column 5 of Tablet IV of the Assyrian version, we would again have an illustration of the elaboration of the later version by the addition of lines 3–6. But beyond this we have merely the comparison of the description of Ḫuwawa “Whose roar is a flood, whose mouth is fire, and whose breath is death” which occurs twice in the Yale tablet (lines 110–111 and 196–197), with the same phrase in the Assyrian version Tablet IV, 5, 3—but here, as just pointed out, with an elaboration. Practically, therefore, the entire Yale tablet represents an addition to our knowledge of the Ḫuwawa episode, and until we are fortunate enough to discover more fragments of the fourth tablet of the Assyrian version, we must content ourselves with the conclusions reached from a comparison of the Pennsylvania tablet with the parallels in the Assyrian version. It may be noted as a general point of resemblance in the exterior form of the old Babylonian and Assyrian versions that both were inscribed on tablets containing six columns, three on the obverse and three on the reverse; and that the length of the tablets—an average of 40 to 50 lines—was about the same, thus revealing in the external form a conventiona1 size for the tablets in the older period, which was carried over into later times. [61] 1 See for further details of this royal library, Jastrow, Civilization of Babylonia and Assyria, p. 21 seq. 2 Das Babylonische Nimrodepos (Leipzig, 1884–1891), supplemented by Haupt’s article Die Zwölfte Tafel des Babylonischen Nimrodepos in BA I, pp. 48–79, containing the fragments of the twelfth tablet. The fragments of the Epic in Ashurbanapal’s library—some sixty—represent portions of several copies. Sin-liḳî-unnini—perhaps from Erech, since this name appears as that of a family in tablets from Erech (see Clay, Legal Documents from Erech, Index, p. 73)—is named in a list of texts (K 9717—Haupt’s edition No. 51, line 18) as the editor of the Epic, though probably he was not the only compiler. Since the publication of Haupt’s edition, a few fragments were added by him as an appendix to Alfred Jeremias Izdubar-Nimrod (Leipzig, 1891) Plates II–IV, and two more are embodied in Jensen’s transliteration of all the fragments in the Keilinschriftliche Bibliothek VI; pp. 116–265, with elaborate notes, pp. 421–531. Furthermore a fragment, obtained from supplementary excavations at Kouyunjik, has been published by L. W. King in his Supplement to the Catalogue of the Cuneiform Tablets in the Kouyunjik Collection of the British Cuneiform Tablets in the Kouyunjik Collection of the British Museum No. 56 and PSBA Vol. 36, pp. 64–68. Recently a fragment of the 6th tablet from the excavations at Assur has been published by Ebeling, Keilschrifttexte aus Assur Religiösen Inhalts No. 115, and one may expect further portions to turn up. The designation “Nimrod Epic” on the supposition that the hero of the Babylonian Epic is identical with Nimrod, the “mighty hunter” of Genesis 10, has now been generally abandoned, in the absence of any evidence that the Babylonian hero bore a name like [10n]Nimrod. For all that, the description of Nimrod as the “mighty hunter” and the occurrence of a “hunter” in the Babylonian Epic (Assyrian version Tablet I)—though he is not the hero—points to a confusion in the Hebrew form of the borrowed tradition between Gilgamesh and Nimrod. The latest French translation of the Epic is by Dhorme, Choix de Textes Religieux Assyro-Babyloniens (Paris, 1907), pp. 182–325; the latest German translation by Ungnad-Gressmann, Das Gilgamesch-Epos (Göttingen, 1911), with a valuable analysis and discussion. These two translations now supersede Jensen’s translation in the Keilinschriftliche Bibliothek, which, however, is still valuable because of the detailed notes, containing a wealth of lexicographical material. Ungnad also gave a partial translation in Gressmann-Ranke, Altorientalische Texte and Bilder I, pp. 39–61. In English, we have translations of substantial portions by Muss-Arnolt in Harper’s Assyrian and Babylonian Literature (New York, 1901), pp. 324–368; by Jastrow, Religion of Babylonia and Assyria (Boston, 1898), Chap. XXIII; by Clay in Light on the Old Testament from Babel, pp. 78–84; by Rogers in Cuneiform Parallels to the Old Testament, pp. 80–103; and most recently by Jastrow in Sacred Books and Early Literature of the East (ed. C. F. Horne, New York, 1917), Vol. I, pp. 187–220. 3 See Luckenbill in JAOS, Vol. 37, p. 452 seq. Prof. Clay, it should be added, clings to the older reading, Hammurabi, which is retained in this volume. 4 ZA, Vol. 14, pp. 277–292. 5 The survivor of the Deluge is usually designated as Ut-napishtim in the Epic, but in one passage (Assyrian version, Tablet XI, 196), he is designated as Atra-ḫasis “the very wise one.” Similarly, in a second version of the Deluge story, also found in Ashurbanapal’s library (IV R² additions, p. 9, line 11). The two names clearly point to two versions, which in accordance with the manner of ancient compositions were merged into one. See an article by Jastrow in ZA, Vol. 13, pp. 288–301. 6 Published by Scheil in Recueil des Travaux, etc. Vol. 20, pp. 55–58. 7 The text does not form part of the Gilgamesh Epic, as the colophon, differing from the one attached to the Epic, shows. 8 Ein altbabylonisches Fragment des Gilgamosepos (MVAG 1902, No. 1). 9 On these variant forms of the two names see the discussion below, p. 24. 10 The passage is paralleled by Ecc. 9, 7–9. See Jastrow, A Gentle Cynic, p. 172 seq. 11 Among the Nippur tablets in the collection of the University of Pennsylvania Museum. The fragment was published by Dr. Poebel in his Historical and Grammatical Texts No. 23. See also Poebel in the Museum Journal, Vol. IV, p. 47, and an article by Dr. Langdon in the same Journal, Vol. VII, pp. 178–181, though Langdon fails to credit Dr. Poebel with the discovery and publication of the important tablet. 12 No. 55 in Langdon’s Historical and Religious Texts from the Temple Library of Nippur (Munich, 1914). 13 No. 5 in his Sumerian Liturgical Texts. (Philadelphia, 1917) 14 See on this name below, p. 23. 15 See further below, p. 37 seq. 16 See Poebel, Historical and Grammatical Texts, No. 1, and Jastrow in JAOS, Vol. 36, pp. 122–131 and 274–299. 17 See an article by Jastrow, Sumerian and Akkadian Views of Beginnings (JAOS Vol. 36, pp. 274–299). 18 See on this point Eduard Meyer, Sumerier und Semiten in Babylonien (Berlin, 1906), p. 107 seq., whose view is followed in Jastrow, Civilization of Babylonia and Assyria, p. 121. See also Clay, Empire of the Amorites (Yale University Press, 1919), p. 23 et seq. 19 See the discussion below, p. 24 seq. 20 Dr. Poebel published an article on the tablet in OLZ, 1914, pp. 4–6, in which he called attention to the correct name for the mother of Gilgamesh, which was settled by the tablet as Ninsun. 21 Historical Texts No. 2, Column 2, 26. See the discussion in Historical and Grammatical Texts, p. 123, seq. 22 See Fostat in OLZ, 1915, p. 367. 23 Publications of the University of Pennsylvania Museum, Babylonian Section, Vol. X, No. 3 (Philadelphia, 1917). It is to be regretted that Dr. Langdon should not have given full credit to Dr. Poebel for his discovery of the tablet. He merely refers in an obscure footnote to Dr. Poebel’s having made a copy. 24 E.g., in the very first note on page 211, and again in a note on page 213. 25 Dr. Langdon neglected to copy the signs 4 šú-si = 240 which appear on the edge of the tablet. He also misunderstood the word šú-tu-ur in the colophon which he translated “written,” taking the word from a stem šaṭâru, “write.” The form šú-tu-ur is III, 1, from atâru, “to be in excess of,” and indicates, presumably, that the text is a copy “enlarged” from an older original. See the Commentary to the colophon, p. 86. 26 Museum Journal, Vol. VIII, p. 29. 27 See below, p. 23. 28 I follow the enumeration of tablets, columns and lines in Jensen’s edition, though some fragments appear to have been placed by him in a wrong position. 29 According to Bezold’s investigation, Verbalsuffixformen als Alterskriterien babylonisch-assyrischer Inschriften (Heidelberg Akad. d. Wiss., Philos.-Histor. Klasse, 1910, 9te Abhandlung), the bulk of the tablets in Ashurbanapal’s library are copies of originals dating from about 1500 B.C. It does not follow, however, that all the copies date from originals of the same period. Bezold reaches the conclusion on the basis of various forms for verbal suffixes, that the fragments from the Ashurbanapal Library actually date from three distinct periods ranging from before c. 1450 to c. 700 B.C. 30 “Before thou comest from the mountain, Gilgamesh in Erech will see thy dreams,” after which the dreams are recounted by the woman to Enkidu. The expression “thy dreams” means here “dreams about thee.” (Tablet I, 5, 23–24). 31 Lines 100–101. 32 In a paper read before the American Oriental Society at New Haven, April 4, 1918. 33 See the commentary to col. 4 of the Yale tablet for further details. 34 This is no doubt the correct reading of the three signs which used to be read Iz-tu-bar or Gish-du-bar. The first sign has commonly the value Gish, the second can be read Gin or Gi (Brünnow No. 11900) and the third Mash as well as Bar. See Ungnad in Ungnad-Gressmann, Das Gilgamesch-Epos, p. 76, and Poebel, Historical and Grammatical Texts, p. 123. 35 So also in Sumerian (Zimmern, Sumerische Kultlieder aus altbabylonischer Zeit, No. 196, rev. 14 and 16.) 36 The sign used, LUM (Brünnow No. 11183), could have the value ḫu as well as ḫum. 37 The addition “father-in-law of Moses” to the name Ḫobab b. Re’uel in this passage must refer to Re’uel, and not to Ḫobab. In Judges 4, 11, the gloss “of the Bene Ḫobab, the father-in-law of Moses” must be separated into two: (1) “Bene Ḫobab,” and (2) “father-in-law of Moses.” The latter addition rests on an erroneous tradition, or is intended as a brief reminder that Ḫobab is identical with the son of Re’uel. 38 See his List of Personal Names from the Temple School of Nippur, p. 122. Ḫu-um-ba-bi-tu and ši-kin ḫu-wa-wa also occur in Omen Texts (CT XXVII, 4, 8–9 = Pl. 3, 17 = Pl. 6, 3–4 = CT XXVIII, 14, 12). The contrast to ḫuwawa is ligru, “dwarf” (CT XXVII, 4, 12 and 14 = Pl. 6, 7.9 = Pl. 3, 19). See Jastrow, Religion Babyloniens und Assyriens, II, p. 913, Note 7. Ḫuwawa, therefore, has the force of “monster.” 39 Ungnad-Gressmann, Das Gilgamesch-Epos, p. 111 seq. 40 Ungnad, 1. c. p. 77, called attention to this name, but failed to draw the conclusion that Ḫu(m)baba therefore belongs to the West and not to the East. 41 First pointed out by Ungnad in OLZ 1910, p. 306, on the basis of CT XVIII, 30, 10, where En-gi-dú appears in the column furnishing phonetic readings. 42 See Clay Amurru, pp. 74, 129, etc. 43 Tablet I, 2, 39–40; 3, 6–7 and 33–34; 4, 3–4. 44 Tablet I, 2, 1 and IX, 2, 16. Note also the statement about Gilgamesh that “his body is flesh of the gods” (Tablet IX, 2, 14; X, 1, 7). 45 BOR IV, p. 264. 46 Lewin, Die Scholien des Theodor bar Koni zur Patriarchengeschichte (Berlin, 1905), p. 2. See Gressmann in Ungnad-Gressmann, Das Gilgamesch-Epos, p. 83, who points out that the first element of גלמגוס compared with the second of גמיגמוס gives the exact form that we require, namely, Gilgamos. 47 Tablet I, col. 2, is taken up with this episode. 48 See Poebel, Historical and Grammatical Texts, p. 123. 49 See Poebel, Historical Texts No. 2, col. 2, 26. 50 Hilprecht, Old Babylonian Inscriptions I, 1 No. 26. 51 Delitzsch, Assyrische Lesestücke, p. 88, VI, 2–3. Cf. also CT XXV, 28(K 7659) 3, where we must evidently supply [Esigga]-tuk, for which in the following line we have again Gish-bil-ga-mesh as an equivalent. See Meissner, OLZ 1910, 99. 52 See, e.g., Barton, Haverford Collection II No. 27, Col. I, 14, etc. 53 Deimel, Pantheon Babylonicum, p. 95. 54 CT XII, 50 (K 4359) obv. 17. 55 See Barton, Origin and Development of Babylonian Writing, II, p. 99 seq., for various explanations, though all centering around the same idea of the picture of fire in some form. 56 See the passages quoted by Poebel, Historical and Grammatical Texts, p. 126. 57 E.g., Genesis 4, 20, Jabal, “the father of tent-dwelling and cattle holding;” Jubal (4, 21), “the father of harp and pipe striking.” 58 See particularly the plays (in the J. Document) upon the names of the twelve sons of Jacob, which are brought forward either as tribal characteristics, or as suggested by some incident or utterance by the mother at the birth of each son. 59 The designation is variously explained by Arabic writers. See Beidhawi’s Commentary (ed. Fleischer), to Súra 18, 82. 60 The writing Gish-gi-mash as an approach to the pronunciation Gilgamesh would thus represent the beginning of the artificial process which seeks to interpret the first syllable as “hero.” 61 See above, p. 27. 62 Poebel, Historical Texts, p. 115 seq. 63 Many years ago (BA III, p. 376) I equated Etana with Ethan in the Old Testament—therefore a West Semitic name. 64 See Clay, The Empire of the Amorites, p. 80. 65 Professor Clay strongly favors an Amoritic origin also for Gilgamesh. His explanation of the name is set forth in his recent work on The Empire of the Amorites, page 89, and is also referred to in his work on Amurru, page 79, and in his volume of Miscellaneous Inscriptions in the Yale Babylonian Collection, page 3, note. According to Professor Clay the original form of the hero’s name was West Semitic, and was something like Bilga-Mash, the meaning of which was perhaps “the offspring of Mash.” For the first element in this division of the name cf. Piliḳam, the name of a ruler of an early dynasty, and Balaḳ of the Old Testament. In view of the fact that the axe figures so prominently in the Epic as an instrument wielded by Gilgamesh, Professor Clay furthermore thinks it reasonable to assume that the name was interpreted by the Babylonian scribe as “the axe of Mash.” In this way he would account for the use of the determinative for weapons, which is also the sign Gish, in the name. It is certainly noteworthy that the ideogram Gish-Tún in the later form of Gish-Tún-mash = pašu, “axe,” CT XVI, 38:14b, etc. Tun also = pilaḳu “axe,” CT xii, 10:34b. Names with similar element (besides Piliḳam) are Belaḳu of the Hammurabi period, Bilaḳḳu of the Cassite period, etc. It is only proper to add that Professor Jastrow assumes the responsibility for the explanation of the form and etymology of the name Gilgamesh proposed in this volume. The question is one in regard to which legitimate differences of opinion will prevail among scholars until through some chance a definite decision, one way or the other, can be reached. 66 me-iḫ-rù (line 191). 67 Tablet I, 5, 23. Cf. I, 3, 2 and 29. 68 Tablet IV, 4, 7 and I, 5, 3. 69 Assyrian version, Tablet II, 3b 34, in an address of Shamash to Enkidu. 70 So Assyrian version, Tablet VIII, 3, 11. Also supplied VIII, 5, 20 and 21; and X, 1, 46–47 and 5, 6–7. 71 Tablet XII, 3, 25. 72 Ward, Seal Cylinders of Western Asia, Chap. X, and the same author’s Cylinders and other Ancient Oriental Seals—Morgan collection Nos. 19–50. 73 E.g., Ward No. 192, Enkidu has human legs like Gilgamesh; also No. 189, where it is difficult to say which is Gilgamesh, and which is Enkidu. The clothed one is probably Gilgamesh, though not infrequently Gilgamesh is also represented as nude, or merely with a girdle around his waist. 74 E.g., Ward, Nos. 173, 174, 190, 191, 195 as well as 189 and 192. 75 On the other hand, in Ward Nos. 459 and 461, the conflict between the two heroes is depicted with the heroes distinguished in more conventional fashion, Enkidu having the hoofs of an animal, and also with a varying arrangement of beard and hair. 76 See Jastrow, Religion of Babylonia and Assyria (Boston, 1898), p. 468 seq. 77 Ungnad-Gressmann, Das Gilgamesch-Epos, p. 90 seq. 78 Pennsylvania tablet, l. 198 = Assyrian version, Tablet IV, 2, 37. 79 “Enkidu blocked the gate” (Pennsylvania tablet, line 215) = Assyrian version Tablet IV, 2, 46: “Enkidu interposed his foot at the gate of the family house.” 80 Pennsylvania tablet, lines 218 and 224. 81 Yale tablet, line 198; also to be supplied lines 13–14. 82 Yale tablet, lines 190 and 191. 83 PSBA 1914, 65 seq. = Jensen III, 1a, 4–11, which can now be completed and supplemented by the new fragment. 84 I.e., Enkidu will save Gilgamesh. 85 These two lines impress one as popular sayings—here applied to Enkidu. 86 King’s fragment, col. I, 13–27, which now enables us to complete Jensen III, 1a, 12–21. 87 Yale tablet, lines 252–253. 88 Yale tablet, lines 143–148 = Assyrian version, Tablet IV, 6, 26 seq. 89 Assyrian version, Tablet III, 2a, 13–14. 90 Lines 215–222. 91 Assyrian version, Tablet V, Columns 3–4. We have to assume that in line 13 of column 4 (Jensen, p. 164), Enkidu takes up the thread of conversation, as is shown by line 22: “Enkidu brought his dream to him and spoke to Gilgamesh.” 92 Assyrian version, Tablet VI, lines 146–147. 93 Lines 178–183. 94 Lines 176–177. 95 Tablet VII, Column 6. 96 Assyrian version, Tablet VI, 200–203. These words are put into the mouth of Gilgamesh (lines 198–199). It is, therefore, unlikely that he would sing his own praise. Both Jensen and Ungnad admit that Enkidu is to be supplied in at least one of the lines. 97 Lines 109 and 112. 98 Assyrian version, Tablet IX, 1, 8–9. 99 Tablet VIII, 5, 2–6. 100 So also Gressmann in Ungnad-Gressmann, Das Gilgamesch-Epos, p. 97, regards Enkidu as the older figure. 101 See Jastrow, Adam and Eve in Babylonian Literature, AJSL, Vol. 15, pp. 193–214. 102 Assyrian version, Tablet I, 2, 31–36. 103 It will be recalled that Enkidu is always spoken of as “born in the field.” 104 Note the repetition ibtani “created” in line 33 of the “man of Anu” and in line 35 of the offspring of Ninib. The creation of the former is by the “heart,” i.e., by the will of Aruru, the creation of the latter is an act of moulding out of clay. 105 Tablet I, Column 3. 106 Following as usual the enumeration of lines in Jensen’s edition. 107 An analogy does not involve a dependence of one tale upon the other, but merely that both rest on similar traditions, which may have arisen independently. 108 Note that the name of Eve is not mentioned till after the fall (Genesis 3, 20). Before that she is merely ishsha, i.e., “woman,” just as in the Babylonian tale the woman who guides Enkidu is ḫarimtu, “woman.” 109 “And he drank and became drunk” (Genesis 9, 21). 110 “His heart became glad and his face shone” (Pennsylvania Tablet, lines 100–101). 111 That in the combination of this Enkidu with tales of primitive man, inconsistent features should have been introduced, such as the union of Enkidu with the woman as the beginning of a higher life, whereas the presence of a hunter and his father shows that human society was already in existence, is characteristic of folk-tales, which are indifferent to details that may be contradictory to the general setting of the story. 112 Pennsylvania tablet, lines 102–104. 113 Line 105. 114 Tablet I, 1, 9. See also the reference to the wall of Erech as an “old construction” of Gilgamesh, in the inscription of An-Am in the days of Sin-gamil (Hilprecht, Old Babylonian Inscriptions, I, No. 26.) Cf IV R² 52, 3, 53. 115 The invariable designation in the Assyrian version as against Uruk ribîtim, “Erech of the plazas,” in the old Babylonian version. 116 In Ungnad-Gressmann, Das Gilgamesch-Epos, p. 123 seq. 117 See Jensen, p. 266. Gilgamesh is addressed as “judge,” as the one who inspects the divisions of the earth, precisely as Shamash is celebrated. In line 8 of the hymn in question, Gilgamesh is in fact addressed as Shamash. 118 The darkness is emphasized with each advance in the hero’s wanderings (Tablet IX, col. 5). 119 This tale is again a nature myth, marking the change from the dry to the rainy season. The Deluge is an annual occurrence in the Euphrates Valley through the overflow [50n]of the two rivers. Only the canal system, directing the overflow into the fields, changed the curse into a blessing. In contrast to the Deluge, we have in the Assyrian creation story the drying up of the primeval waters so that the earth makes its appearance with the change from the rainy to the dry season. The world is created in the spring, according to the Akkadian view which is reflected in the Biblical creation story, as related in the P. document. See Jastrow, Sumerian and Akkadian Views of Beginnings (JAOS, Vol 36, p. 295 seq.). 120 Aš-am in Sumerian corresponding to the Akkadian Šabaṭu, which conveys the idea of destruction. 121 The month is known as the “Mission of Ishtar” in Sumerian, in allusion to another nature myth which describes Ishtar’s disappearance from earth and her mission to the lower world. 122 Historical Texts No. 1. The Sumerian name of the survivor is Zi-ū-gíd-du or perhaps Zi-ū-sū-du (cf. King, Legends of Babylon and Egypt, p. 65, note 4), signifying “He who lengthened the day of life,” i.e., the one of long life, of which Ut-napishtim (“Day of Life”) in the Assyrian version seems to be an abbreviated Akkadian rendering, [n]with the omission of the verb. So King’s view, which is here followed. See also CT XVIII, 30, 9, and Langdon, Sumerian Epic of Paradise, p. 90, who, however, enters upon further speculations that are fanciful. 123 See the translation in Ungnad-Gressmann, Das Gilgamesch-Epos, pp. 69, seq. and 73. 124 According to Professor Clay, quite certainly Amurru, just as in the case of Enkidu. 125 Gressmann in Ungnad-Gressmann, Das Gilgamesch-Epos, p. 100 seq. touches upon this motif, but fails to see the main point that the companions are also twins or at least brothers. Hence such examples as Abraham and Lot, David and Jonathan, Achilles and Patroclus, Eteokles and Polyneikes, are not parallels to Gilgamesh-Enkidu, but belong to the enlargement of the motif so as to include companions who are not regarded as brothers. 126 Or Romus. See Rendell Harris, l. c., p. 59, note 2. 127 One might also include the primeval pair Yama-Yami with their equivalents in Iranian mythology (Carnoy, Iranian Mythology, p. 294 seq.). 128 Becoming, however, a triad and later increased to seven. Cf. Rendell Harris, l. c., p. 32. 129 I am indebted to my friend, Professor A. J. Carnoy, of the University of Louvain, for having kindly gathered and placed at my disposal material on the “twin-brother” motif from Indo-European sources, supplemental to Rendell Harris’ work. 130 On the other hand, Uruk mâtum for the district of Erech, i.e., the territory over which the city holds sway, appears in both versions (Pennsylvania tablet, 1. 10 = Assyrian version I, 5, 36). 131 “My likeness” (line 27). It should be noted, however, that lines 32–44 of I, 5, in Jensen’s edition are part of a fragment K 9245 (not published, but merely copied by Bezold and Johns, and placed at Jensen’s disposal), which may represent a duplicate to I, 6, 23–34, with which it agrees entirely except for one line, viz., line 34 of K 9245 which is not found in column 6, 23–34. If this be correct, then there is lacking after line 31 of column 5, the interpretation of the dream given in the Pennsylvania tablet in lines 17–23. 132 ina šap-li-ki, literally, “below thee,” whereas in the old Babylonian version we have ana ṣi-ri-ka, “towards thee.” 133 Repeated I, 6, 28. 134 ul-tap-rid ki-is-su-šú-ma. The verb is from parâdu, “violent.” For kissu, “strong,” see CT XVI, 25, 48–49. Langdon (Gilgamesh Epic, p. 211, note 5) renders the phrase: “he shook his murderous weapon!!”—another illustration of his haphazard way of translating texts. 135 Shown by the colophon (Jeremias, Izdubar-Nimrod, Plate IV.) 136 Lines 42–43 must be taken as part of the narrative of the compiler, who tells us that after the woman had informed Enkidu that Gilgamesh already knew of Enkidu’s coming through dreams interpreted by Ninsun, Gilgamesh actually set out and encountered Enkidu. 137 Tablet I, col. 4. See also above, p. 19. 138 IV, 2, 44–50. The word ullanum, (l.43) “once” or “since,” points to the following being a reference to a former recital, and not an original recital. 139 Only the lower half (Haupt’s edition, p. 82) is preserved. 140 “The eyes of Enkidu were filled with tears,” corresponding to IV, 4, 10. 141 Unless indeed the number “seven” is a slip for the sign ša. See the commentary to the line. Pennsylvania Tablet The 240 lines of the six columns of the text are enumerated in succession, with an indication on the margin where a new column begins. This method, followed also in the case of the Yale tablet, seems preferable to Langdon’s breaking up of the text into Obverse and Reverse, with a separate enumeration for each of the six columns. In order, however, to facilitate a comparison with Langdon’s edition, a table is added: Obverse Col. I, 1 = Line 1 of our text. ,, I, 5 = ,, 5 ,, ,, ,, ,, I, 10 = ,, 10 ,, ,, ,, ,, I, 15 = ,, 15 ,, ,, ,, ,, I, 20 = ,, 20 ,, ,, ,, ,, I, 25 = ,, 25 ,, ,, ,, ,, I, 30 = ,, 30 ,, ,, ,, ,, I, 35 = ,, 35 ,, ,, ,, Col. II, 1 = Line 41 ,, ,, ,, ,, II, 5 = ,, 45 ,, ,, ,, ,, II, 10 = ,, 50 ,, ,, ,, ,, II, 15 = ,, 55 ,, ,, ,, ,, II, 20 = ,, 60 ,, ,, ,, ,, II, 25 = ,, 65 ,, ,, ,, ,, II, 30 = ,, 70 ,, ,, ,, ,, II, 35 = ,, 75 ,, ,, ,, Col. III, 1 = Line 81 ,, ,, ,, ,, III, 5 = ,, 85 ,, ,, ,, ,, III, 10 = ,, 90 ,, ,, ,, ,, III, 15 = ,, 95 ,, ,, ,, ,, III, 26 = ,, 100 ,, ,, ,, ,, III, 25 = ,, 105 ,, ,, ,, ,, III, 30 = ,, 110 ,, ,, ,, ,, III, 35 = ,, 115 ,, ,, ,, Reverse Col. I, 1 (= Col. IV) = Line 131 of our text. ,, I, 5 = ,, 135 ,, ,, ,, ,, I, 10 = ,, 140 ,, ,, ,, ,, I, 15 = ,, 145 ,, ,, ,, ,, I, 20 = ,, 150 ,, ,, ,, ,, I, 25 = ,, 155 ,, ,, ,, ,, I, 30 = ,, 160 ,, ,, ,, ,, II, 1 (= Col. V) = Line 171 ,, ,, ,, ,, II, 5 = ,, 175 ,, ,, ,, ,, II, 10 = ,, 180 ,, ,, ,, ,, II, 15 = ,, 185 ,, ,, ,, ,, II, 20 = ,, 190 ,, ,, ,, ,, II, 25 = ,, 195 ,, ,, ,, ,, II, 30 = ,, 200 ,, ,, ,, ,, III, 1 (= Col. VI) = Line 208 ,, ,, ,, ,, III, 5 = ,, 212 ,, ,, ,, ,, III, 10 = ,, 217 ,, ,, ,, ,, III, 15 = ,, 222 ,, ,, ,, ,, III, 20 = ,, 227 ,, ,, ,, ,, III, 25 = ,, 232 ,, ,, ,, ,, III, 30 = ,, 237 ,, ,, ,, ,, III, 33 = ,, 240 ,, ,, ,, [62] Pennsylvania Tablet. Transliteration. Col. I. 1it-bi-e-ma dGiš šú-na-tam i-pa-áš-šar 2iz-za-kàr-am a-na um-mi-šú 3um-mi i-na šá-at mu-ši-ti-ia 4šá-am-ḫa-ku-ma at-ta-na-al-la-ak 5i-na bi-ri-it it-lu-tim 6ib-ba-šú-nim-ma ka-ka-bu šá-ma-i 7[ki]-iṣ-rù šá A-nim im-ḳu-ut a-na ṣi-ri-ia 8áš-ši-šú-ma ik-ta-bi-it e-li-ia 9ú-ni-iš-šú-ma nu-uš-šá-šú ú-ul il-ti-’i 10Urukki ma-tum pa-ḫi-ir e-li-šú 11it-lu-tum ú-na-šá-ku ši-pi-šú 12ú-um-mi-id-ma pu-ti 13i-mi-du ia-ti 14áš-ši-a-šú-ma ab-ba-la-áš-šú a-na ṣi-ri-ki 15um-mi dGiš mu-di-a-at ka-la-ma 16iz-za-kàr-am a-na dGiš 17mi-in-di dGiš šá ki-ma ka-ti 18i-na ṣi-ri i-wa-li-id-ma 19ú-ra-ab-bi-šú šá-du-ú 20ta-mar-šú-ma [kima Sal(?)] ta-ḫa-du at-ta 21it-lu-tum ú-na-šá-ku ši-pi-šú 22tí-iṭ-ṭi-ra-áš-[šú tu-ut]-tu-ú-ma 23ta-tar-ra-[as-su] a-na ṣi-[ri]-ia 24[uš]-ti-nim-ma i-ta-mar šá-ni-tam[63] 25[šú-na]-ta i-ta-wa-a-am a-na um-mi-šú 26[um-mi] a-ta-mar šá-ni-tam 27[šú-na-tu a-ta]-mar e-mi-a i-na su-ḳi-im 28[šá Uruk]ki ri-bi-tim 29ḫa-aṣ-ṣi-nu na-di-i-ma 30e-li-šú pa-aḫ-ru 31ḫa-aṣ-ṣi-nu-um-ma šá-ni bu-nu-šú 32a-mur-šú-ma aḫ-ta-du a-na-ku 33a-ra-am-šú-ma ki-ma áš-šá-tim 34a-ḫa-ab-bu-ub el-šú 35el-ki-šú-ma áš-ta-ka-an-šú 36a-na a-ḫi-ia 37um-mi dGiš mu-da-at [ka]-la-ma 38[iz-za-kàr-am a-na dGiš] 39[dGiš šá ta-mu-ru amêlu] 40[ta-ḫa-ab-bu-ub ki-ma áš-šá-tim el-šú] Col. II. 41áš-šum uš-[ta]-ma-ḫa-ru it-ti-ka 42dGiš šú-na-tam i-pa-šar 43dEn-ki-[dũ wa]-ši-ib ma-ḫar ḫa-ri-im-tim 44ur-[šá ir]-ḫa-mu di-da-šá(?) ip-tí-[e] 45[dEn-ki]-dũ im-ta-ši a-šar i-wa-al-du 46ûm, 6 ù 7 mu-ši-a-tim 47dEn-[ki-dũ] ti-bi-i-ma 48šá-[am-ka-ta] ir-ḫi 49ḫa-[ri-im-tum pa-a]-šá i-pu-šá-am-ma 50iz-za-[kàr-am] a-na dEn-ki-dũ 51a-na-tal-ka dEn-ki-dũ ki-ma ili ta-ba-áš-ši 52am-mi-nim it-ti na-ma-áš-te-e 53ta-at-ta-[na-al]-ak ṣi-ra-am[64] 54al-kam lu-úr-di-ka 55a-na libbi [Urukki] ri-bi-tim 56a-na bît [el]-lim mu-šá-bi šá A-nim 57dEn-ki-dũ ti-bi lu-ru-ka 58a-na Ê-[an]-na mu-šá-bi šá A-nim 59a-šar [dGiš gi]-it-ma-[lu] ne-pi-ši-tim 60ù at-[ta] ki-[ma Sal ta-ḫa]-bu-[ub]-šú 61ta-[ra-am-šú ki-ma] ra-ma-an-ka 62al-ka ti-ba i-[na] ga-ag-ga-ri 63ma-a-ag-ri-i-im 64iš-me a-wa-as-sa im-ta-ḫar ga-ba-šá 65mi-il-[kum] šá aššatim 66im-ta-ḳu-ut a-na libbi-šú 67iš-ḫu-ut li-ib-šá-am 68iš-ti-nam ú-la-ab-bi-iš-sú 69li-ib-[šá-am] šá-ni-a-am 70ši-i it-ta-al-ba-áš 71ṣa-ab-tat ga-as-su 72ki-ma [ili] i-ri-id-di-šú 73a-na gu-up-ri šá-ri-i-im 74a-šar tar-ba-ṣi-im 75i-na [áš]-ri-šú [im]-ḫu-ruri-ia-ú 76[ù šú-u dEn-ki-dũ i-lit-ta-šú šá-du-um-ma] 77[it-ti ṣabâti-ma ik-ka-la šam-ma] 78[it-ti bu-lim maš-ḳa-a i-šat-ti] 79[it-ti na-ma-áš-te-e mê i-ṭab lib-ba-šú] (Perhaps one additional line missing.) Col. III. 81ši-iz-ba šá na-ma-áš-te-e 82i-te-en-ni-ik 83a-ka-lam iš-ku-nu ma-ḫar-šú 84ib-tí-ik-ma i-na-at-tal 85ù ip-pa-al-la-as[65] 86ú-ul i-di dEn-ki-dũ 87aklam a-na a-ka-lim 88šikaram a-na šá-te-e-im 89la-a lum-mu-ud 90ḫa-ri-im-tum pi-šá i-pu-šá-am-ma 91iz-za-kàr-am a-na dEn-ki-dũ 92a-ku-ul ak-lam dEn-ki-dũ 93zi-ma-at ba-la-ṭi-im 94šikaram ši-ti ši-im-ti ma-ti 95i-ku-ul a-ak-lam dEn-ki-dũ 96a-di ši-bi-e-šú 97šikaram iš-ti-a-am 987 aṣ-ṣa-am-mi-im 99it-tap-šar kab-ta-tum i-na-an-gu 100i-li-iṣ libba-šú-ma 101pa-nu-šú [it]-tam-ru 102ul-tap-pi-it [lùŠÚ]-I 103šú-ḫu-ra-am pa-ga-ar-šú 104šá-am-nam ip-ta-šá-áš-ma 105a-we-li-iš i-we 106il-ba-áš li-ib-šá-am 107ki-ma mu-ti i-ba-áš-ši 108il-ki ka-ak-ka-šú 109la-bi ú-gi-ir-ri 110uš-sa-ak-pu re’ûti mu-ši-a-tim 111ut-tap-pi-iš šib-ba-ri 112la-bi uk-ta-ši-id 113it-ti-[lu] na-ki-[di-e] ra-bu-tum 114dEn-ki-dũ ma-aṣ-ṣa-ar-šú-nu 115a-we-lum giš-ru-um 116iš-te-en it-lum 117a-na [na-ki-di-e(?) i]-za-ak-ki-ir (About five lines missing.) Col. IV. (About eight lines missing.) 131i-ip-pu-uš ul-ṣa-am 132iš-ši-ma i-ni-i-šú 133i-ta-mar a-we-lam[66] 134iz-za-kàr-am a-na ḫarimtim 135šá-am-ka-at uk-ki-ši a-we-lam 136a-na mi-nim il-li-kam 137zi-ki-ir-šú lu-uš-šú 138ḫa-ri-im-tum iš-ta-si a-we-lam 139i-ba-uš-su-um-ma i-ta-mar-šú 140e-di-il e-eš ta-ḫi-[il-la]-am 141lim-nu a-la-ku ma-na-aḫ-[ti]-ka 142e-pi-šú i-pu-šá-am-ma 143iz-za-kàr-am a-na dEn-[ki-dũ] 144bi-ti-iš e-mu-tim ik …… 145ši-ma-a-at ni-ši-i-ma 146tu-a-(?)-ar e-lu-tim 147a-na âli(?) dup-šak-ki-i e-ṣi-en 148uk-la-at âli(?) e-mi-sa a-a-ḫa-tim 149a-na šarri šá Urukki ri-bi-tim 150pi-ti pu-uk epiši(-ši) a-na ḫa-a-a-ri 151a-na dGiš šarri šá Urukki ri-bi-tim 152pi-ti pu-uk epiši(-ši) 153a-na ḫa-a-a-ri 154áš-ša-at ši-ma-tim i-ra-aḫ-ḫi 155šú-ú pa-na-nu-um-ma 156mu-uk wa-ar-ka-nu 157i-na mi-il-ki šá ili ga-bi-ma 158i-na bi-ti-iḳ a-bu-un-na-ti-šú 159ši-ma-as-su 160a-na zi-ik-ri it-li-im 161i-ri-ku pa-nu-šú (About three lines missing.) [67] Col. V. (About six lines missing.) 171i-il-la-ak [dEn-ki-dũ i-na pa-ni] 172u-šá-am-ka-at [wa]-ar-ki-šú 173i-ru-ub-ma a-na libbi Urukki ri-bi-tim 174ip-ḫur um-ma-nu-um i-na ṣi-ri-šú 175iz-zi-za-am-ma i-na su-ḳi-im 176šá Urukki ri-bi-tim 177pa-aḫ-ra-a-ma ni-šú 178i-ta-wa-a i-na ṣi-ri-šú 179a-na ṣalam dGiš ma-ši-il pi-it-tam 180la-nam šá-pi-il 181si-ma …. [šá-ki-i pu]-uk-ku-ul 182............. i-pa-ka-du 183i-[na mâti da-an e-mu]-ki i-wa 184ši-iz-ba šá na-ma-aš-te-e 185i-te-en-ni-ik 186ka-a-a-na i-na [libbi] Urukki kak-ki-a-tum 187it-lu-tum ú-te-el-li-lu 188šá-ki-in ur-šá-nu 189a-na itli šá i-šá-ru zi-mu-šú 190a-na dGiš ki-ma i-li-im 191šá-ki-iš-šum me-iḫ-rù 192a-na dIš-ḫa-ra ma-a-a-lum 193na-di-i-ma 194dGiš it-[ti-il-ma wa-ar-ka-tim] 195i-na mu-ši in-ni-[ib-bi]-it 196i-na-ag-šá-am-ma 197it-ta-[zi-iz dEn-ki-dũ] i-na sûḳim 198ip-ta-ra-[aṣ a-la]-ak-tam 199šá dGiš 200[a-na e-pi-iš] da-na-ni-iš-šú (About three lines missing.) [68] Col. VI. (About four lines missing.) 208šar(?)-ḫa 209dGiš … 210i-na ṣi-ri-[šú il-li-ka-am dEn-ki-dũ] 211i-ḫa-an-ni-ib [pi-ir-ta-šú] 212it-bi-ma [il-li-ik] 213a-na pa-ni-šú 214it-tam-ḫa-ru i-na ri-bi-tum ma-ti 215dEn-ki-dũ ba-ba-am ip-ta-ri-ik 216i-na ši-pi-šú 217dGiš e-ri-ba-am ú-ul id-di-in 218iṣ-ṣa-ab-tu-ma ki-ma li-i-im 219i-lu-du 220zi-ip-pa-am ’i-bu-tu 221i-ga-rum ir-tu-tu 222dGiš ù dEn-ki-dũ 223iṣ-ṣa-ab-tu-ú-ma 224ki-ma li-i-im i-lu-du 225zi-ip-pa-am ’i-bu-tu 226i-ga-rum ir-tu-tú 227ik-mi-is-ma dGiš 228i-na ga-ag-ga-ri ši-ip-šú 229ip-ši-iḫ uz-za-šú-ma 230i-ni-iḫ i-ra-as-su 231iš-tu i-ra-su i-ni-ḫu 232dEn-ki-dũ a-na šá-ši-im 233iz-za-kàr-am a-na dGiš 234ki-ma iš-te-en-ma um-ma-ka 235ú-li-id-ka 236ri-im-tum šá su-pu-ri 237dNin-sun-na 238ul-lu e-li mu-ti ri-eš-ka 239šar-ru-tú šá ni-ši 240i-ši-im-kum dEn-lil 241 duppu 2 kam-ma 242šú-tu-ur e-li ………………… 243 4 šú-ši [62] Translation. Col. I. 1Gish sought to interpret the dream; 2Spoke to his mother: 3“My mother, during my night 4I became strong and moved about 5among the heroes; 6And from the starry heaven 7A meteor(?) of Anu fell upon me: 8I bore it and it grew heavy upon me, 9I became weak and its weight I could not endure. 10The land of Erech gathered about it. 11The heroes kissed its feet.1 12It was raised up before me. 13They stood me up.2 14I bore it and carried it to thee.” 15The mother of Gish, who knows all things, 16Spoke to Gish: 17“Some one, O Gish, who like thee 18In the field was born and 19Whom the mountain has reared, 20Thou wilt see (him) and [like a woman(?)] thou wilt rejoice. 21Heroes will kiss his feet. 22Thou wilt spare [him and wilt endeavor] 23To lead him to me.” 24He slept and saw another[63] 25Dream, which he reported to his mother: 26[“My mother,] I have seen another 27[Dream.] My likeness I have seen in the streets 28[Of Erech] of the plazas. 29An axe was brandished, and 30They gathered about him; 31And the axe made him angry. 32I saw him and I rejoiced, 33I loved him as a woman, 34I embraced him. 35I took him and regarded him 36As my brother.” 37The mother of Gish, who knows all things, 38[Spoke to Gish]: 39[“O Gish, the man whom thou sawest,] 40[Whom thou didst embrace like a woman]. Col II. 41(means) that he is to be associated with thee.” 42Gish understood the dream. 43[As] Enki[du] was sitting before the woman, 44[Her] loins(?) he embraced, her vagina(?) he opened. 45[Enkidu] forgot the place where he was born. 46Six days and seven nights 47Enkidu continued 48To cohabit with [the courtesan]. 49[The woman] opened her [mouth] and 50Spoke to Enkidu: 51“I gaze upon thee, O Enkidu, like a god art thou! 52Why with the cattle 53Dost thou [roam] across the field?[64] 54Come, let me lead thee 55into [Erech] of the plazas, 56to the holy house, the dwelling of Anu, 57O, Enkidu arise, let me conduct thee 58To Eanna, the dwelling of Anu, 59The place [where Gish is, perfect] in vitality. 60And thou [like a wife wilt embrace] him. 61Thou [wilt love him like] thyself. 62Come, arise from the ground 63(that is) cursed.” 64He heard her word and accepted her speech. 65The counsel of the woman 66Entered his heart. 67She stripped off a garment, 68Clothed him with one. 69Another garment 70She kept on herself. 71She took hold of his hand. 72Like [a god(?)] she brought him 73To the fertile meadow, 74The place of the sheepfolds. 75In that place they received food; 76[For he, Enkidu, whose birthplace was the mountain,] 77[With the gazelles he was accustomed to eat herbs,] 78[With the cattle to drink water,] 79[With the water beings he was happy.] (Perhaps one additional line missing.) Col. III. 81Milk of the cattle 82He was accustomed to suck. 83Food they placed before him, 84He broke (it) off and looked 85And gazed.[65] 86Enkidu had not known 87To eat food. 88To drink wine 89He had not been taught. 90The woman opened her mouth and 91Spoke to Enkidu: 92“Eat food, O Enkidu, 93The provender of life! 94Drink wine, the custom of the land!” 95Enkidu ate food 96Till he was satiated. 97Wine he drank, 98Seven goblets. 99His spirit was loosened, he became hilarious. 100His heart became glad and 101His face shone. 102[The barber(?)] removed 103The hair on his body. 104He was anointed with oil. 105He became manlike. 106He put on a garment, 107He was like a man. 108He took his weapon; 109Lions he attacked, 110(so that) the night shepherds could rest. 111He plunged the dagger; 112Lions he overcame. 113The great [shepherds] lay down; 114Enkidu was their protector. 115The strong man, 116The unique hero, 117To [the shepherds(?)] he speaks: (About five lines missing.) Col. IV. (About eight lines missing.) 131Making merry. 132He lifted up his eyes, 133He sees the man.[66] 134He spoke to the woman: 135“O, courtesan, lure on the man. 136Why has he come to me? 137His name I will destroy.” 138The woman called to the man 139Who approaches to him3 and he beholds him. 140“Away! why dost thou [quake(?)] 141Evil is the course of thy activity.”4 142Then he5 opened his mouth and 143Spoke to Enkidu: 144”[To have (?)] a family home 145Is the destiny of men, and 146The prerogative(?) of the nobles. 147For the city(?) load the workbaskets! 148Food supply for the city lay to one side! 149For the King of Erech of the plazas, 150Open the hymen(?), perform the marriage act! 151For Gish, the King of Erech of the plazas, 152Open the hymen(?), 153Perform the marriage act! 154With the legitimate wife one should cohabit. 155So before, 156As well as in the future.6 157By the decree pronounced by a god, 158From the cutting of his umbilical cord 159(Such) is his fate.” 160At the speech of the hero 161His face grew pale. (About three lines missing.) [67] Col. V. (About six lines missing.) 171[Enkidu] went [in front], 172And the courtesan behind him. 173He entered into Erech of the plazas. 174The people gathered about him. 175As he stood in the streets 176Of Erech of the plazas, 177The men gathered, 178Saying in regard to him: 179“Like the form of Gish he has suddenly become; 180shorter in stature. 181[In his structure high(?)], powerful, 182.......... overseeing(?) 183In the land strong of power has he become. 184Milk of cattle 185He was accustomed to suck.” 186Steadily(?) in Erech ..... 187The heroes rejoiced. 188He became a leader. 189To the hero of fine appearance, 190To Gish, like a god, 191He became a rival to him.7 192For Ishḫara a couch 193Was stretched, and 194Gish [lay down, and afterwards(?)] 195In the night he fled. 196He approaches and 197[Enkidu stood] in the streets. 198He blocked the path 199of Gish. 200At the exhibit of his power, (About three lines missing.) [68] Col. VI. (About four lines missing.) 208Strong(?) … 209Gish 210Against him [Enkidu proceeded], 211[His hair] luxuriant. 212He started [to go] 213Towards him. 214They met in the plaza of the district. 215Enkidu blocked the gate 216With his foot, 217Not permitting Gish to enter. 218They seized (each other), like oxen, 219They fought. 220The threshold they demolished; 221The wall they impaired. 222Gish and Enkidu 223Seized (each other). 224Like oxen they fought. 225The threshold they demolished; 226The wall they impaired. 227Gish bent 228His foot to the ground,8 229His wrath was appeased, 230His breast was quieted. 231When his breast was quieted, 232Enkidu to him 233Spoke, to Gish: 234“As a unique one, thy mother 235bore thee. 236The wild cow of the stall,9 237Ninsun, 238Has exalted thy head above men. 239Kingship over men 240Enlil has decreed for thee. 241Second tablet, 242enlarged beyond [the original(?)]. 243240 lines. [69] 1 I.e., paid homage to the meteor. 2 I.e., the heroes of Erech raised me to my feet, or perhaps in the sense of “supported me.” 3 I.e., Enkidu. 4 I.e., “thy way of life.” 5 I.e., the man. 6 I.e., an idiomatic phrase meaning “for all times.” 7 I.e., Enkidu became like Gish, godlike. Cf. col. 2, 11. 8 He was thrown and therefore vanquished. 9 Epithet given to Ninsun. See the commentary to the line. Commentary on the Pennsylvania Tablet. Line 1. The verb tibû with pašâru expresses the aim of Gish to secure an interpretation for his dream. This disposes of Langdon’s note 1 on page 211 of his edition, in which he also erroneously speaks of our text as “late.” Pašâru is not a variant of zakâru. Both verbs occur just as here in the Assyrian version I, 5, 25. Line 3. ina šât mušitia, “in this my night,” i.e., in the course of this night of mine. A curious way of putting it, but the expression occurs also in the Assyrian version, e.g., I, 5, 26 (parallel passage to ours) and II, 4a, 14. In the Yale tablet we find, similarly, mu-ši-it-ka (l. 262), “thy night,” i.e., “at night to thee.” Line 5. Before Langdon put down the strange statement of Gish “wandering about in the midst of omens” (misreading id-da-tim for it-lu-tim), he might have asked himself the question, what it could possibly mean. How can one walk among omens? Line 6. ka-ka-bu šá-ma-i must be taken as a compound term for “starry heaven.” The parallel passage in the Assyrian version (Tablet I, 5, 27) has the ideograph for star, with the plural sign as a variant. Literally, therefore, “The starry heaven (or “the stars in heaven”) was there,” etc. Langdon’s note 2 on page 211 rests on an erroneous reading. Line 7. kiṣru šá Anim, “mass of Anu,” appears to be the designation of a meteor, which might well be described as a “mass” coming from Anu, i.e., from the god of heaven who becomes the personification of the heavens in general. In the Assyrian version (I, 5, 28) we have kima ki-iṣ-rù, i.e., “something like a mass of heaven.” Note also I, 3, 16, where in a description of Gilgamesh, his strength is said to be “strong like a mass (i.e., a meteor) of heaven.” Line 9. For nuššašu ûl iltê we have a parallel in the Hebrew phrase נלְַפָסֵתִי נשַׂפָס (Isaiah 1, 14). Line 10. Uruk mâtum, as the designation for the district of Erech, occurs in the Assyrian version, e.g., I, 5, 31, and IV, 2, 38; also to be supplied, I, 6, 23. For paḫir the parallel in the Assyrian version has iz-za-az (I, 5, 31), but VI, 197, we find paḫ-ru and paḫ-ra. Line 17. mi-in-di does not mean “truly” as Langdon translates, but “some one.” It occurs also in the Assyrian version X, 1, 13, mi-in-di-e ma-an-nu-ṵ, “this is some one who,” etc. [70] Line 18. Cf. Assyrian version I, 5, 3, and IV, 4, 7, ina ṣiri âlid—both passages referring to Enkidu. Line 21. Cf. Assyrian version II, 3b, 38, with malkê, “kings,” as a synonym of itlutum. Line 23. ta-tar-ra-as-sú from tarâṣu, “direct,” “guide,” etc. Line 24. I take uš-ti-nim-ma as III, 2, from išênu (יָשֵׁן), the verb underlying šittu, “sleep,” and šuttu, “dream.” Line 26. Cf. Assyrian version I, 6, 21—a complete parallel. Line 28. Uruk ri-bi-tim, the standing phrase in both tablets of the old Babylonian version, for which in the Assyrian version we have Uruk su-pu-ri. The former term suggests the “broad space” outside of the city or the “common” in a village community, while supûri, “enclosed,” would refer to the city within the walls. Dr. W. F. Albright (in a private communication) suggests “Erech of the plazas” as a suitable translation for Uruk ribîtim. A third term, Uruk mâtum (see above, note to line 10), though designating rather the district of which Erech was the capital, appears to be used as a synonym to Uruk ribîtim, as may be concluded from the phrase i-na ri-bi-tum ma-ti (l. 214 of the Pennsylvania tablet), which clearly means the “plaza” of the city. One naturally thinks of רְחֹבֹת עִיר in Genesis 10, 11—the equivalent of Babylonian ri-bi-tu âli—which can hardly be the name of a city. It appears to be a gloss, as is הִיַפָס הָעִיּר הַגְּדֹלָה at the end of v. 12. The latter gloss is misplaced, since it clearly describes “Nineveh,” mentioned in v. 11. Inasmuch as רְחֹבֹת עִיר immediately follows the mention of Nineveh, it seems simplest to take the phrase as designating the “outside” or “suburbs” of the city, a complete parallel, therefore, to ri-bi-tu mâti in our text. Nineveh, together with the “suburbs,” forms the “great city.” Uruk ribîtim is, therefore, a designation for “greater Erech,” proper to a capital city, which by its gradual growth would take in more than its original confines. “Erech of the plazas” must have come to be used as a honorific designation of this important center as early as 2000 B. C., whereas later, perhaps because of its decline, the epithet no longer seemed appropriate and was replaced by the more modest designation of “walled Erech,” with an allusion to the tradition which ascribed the building of the wall of the city to Gilgamesh. At all [71]events, all three expressions, “Erech of the plazas,” “Erech walled” and “Erech land,” are to be regarded as synonymous. The position once held by Erech follows also from its ideographic designation (Brünnow No. 4796) by the sign “house” with a “gunufied” extension, which conveys the idea of Unu = šubtu, or “dwelling” par excellence. The pronunciation Unug or Unuk (see the gloss u-nu-uk, VR 23, 8a), composed of unu, “dwelling,” and ki, “place,” is hardly to be regarded as older than Uruk, which is to be resolved into uru, “city,” and ki, “place,” but rather as a play upon the name, both Unu + ki and Uru + ki conveying the same idea of the city or the dwelling place par excellence. As the seat of the second oldest dynasty according to Babylonian traditions (see Poebel’s list in Historical and Grammatical Texts No. 2), Erech no doubt was regarded as having been at one time “the city,” i.e., the capital of the entire Euphrates Valley. Line 31. A difficult line for which Langdon proposes the translation: “Another axe seemed his visage”!!—which may be picturesque, but hardly a description befitting a hero. How can a man’s face seem to be an axe? Langdon attaches šá-ni in the sense of “second” to the preceding word “axe,” whereas šanî bunušu, “change of his countenance” or “his countenance being changed,” is to be taken as a phrase to convey the idea of “being disturbed,” “displeased” or “angry.” The phrase is of the same kind as the well-known šunnu ṭêmu, “changing of reason,” to denote “insanity.” See the passages in Muss-Arnolt, Assyrian Dictionary, pp. 355 and 1068. In Hebrew, too, we have the same two phrases, e.g., וַיְשַׁנֹּו ַפָסֶת־טַעְמֹו (I Sam. 21, 14 = Ps. 34, 1), “and he changed his reason,” i.e., feigned insanity and מְשַׁנֶּה פָּנָיו (Job 14, 20), “changing his face,” to indicate a radical alteration in the frame of mind. There is a still closer parallel in Biblical Aramaic: Dan. 3, 19, “The form of his visage was changed,” meaning “he was enraged.” Fortunately, the same phrase occurs also in the Yale tablet (l. 192), šá-nu-ú bu-nu-šú, in a connection which leaves no doubt that the aroused fury of the tyrant Ḫuwawa is described by it: ”Ḫuwawa heard and his face was changed” precisely, therefore, as we should say—following Biblical usage—“his countenance fell.” Cf. also the phrase pânušu arpu, “his countenance [72]was darkened” (Assyrian version I, 2, 48), to express “anger.” The line, therefore, in the Pennsylvania tablet must describe Enkidu’s anger. With the brandishing of the axe the hero’s anger was also stirred up. The touch was added to prepare us for the continuation in which Gish describes how, despite this (or perhaps just because of it), Enkidu seemed so attractive that Gish instantly fell in love with him. May perhaps the emphatic form ḫaṣinumma (line 31) against ḫaṣinu (line 29) have been used to indicate “The axe it was,” or “because of the axe?” It would be worth while to examine other texts of the Hammurabi period with a view of determining the scope in the use and meaning of the emphatic ma when added to a substantive. Line 32. The combination amur ù aḫtadu occurs also in the El-Amarna Letters, No. 18, 12. Line 34. In view of the common Hebrew, Syriac and Arabic חָבַב “to love,” it seems preferable to read here, as in the other passages in the Assyrian versions (I, 4, 15; 4, 35; 6, 27, etc.), a-ḫa-ab-bu-ub, aḫ-bu-ub, iḫ-bu-bu, etc. (instead of with p), and to render “embrace.” Lines 38–40, completing the column, may be supplied from the Assyrian version I, 6, 30–32, in conjunction with lines 33–34 of our text. The beginning of line 32 in Jensen’s version is therefore to be filled out [ta-ra-am-šú ki]-i. Line 43. The restoration at the beginning of this line En-ki-[dũ wa]-ši-ib ma-ḫar ḫa-ri-im-tim enables us to restore also the beginning of the second tablet of the Assyrian version (cf. the colophon of the fragment 81, 7–27, 93, in Jeremias, Izdubar-Nimrod, plate IV = Jensen, p. 134), [dEn-ki-dũ wa-ši-ib] ma-ḫar-šá. Line 44. The restoration of this line is largely conjectural, based on the supposition that its contents correspond in a general way to I, 4, 16, of the Assyrian version. The reading di-da is quite certain, as is also ip-ti-[e]; and since both words occur in the line of the Assyrian version in question, it is tempting to supply at the beginning ur-[šá] = “her loins” (cf. Holma, Namen der Körperteile, etc., p. 101), which is likewise found in the same line of the Assyrian version. At all events the line describes the fascination exercised [73]upon Enkidu by the woman’s bodily charms, which make him forget everything else. Lines 46–47 form a parallel to I, 4, 21, of the Assyrian version. The form šamkatu, “courtesan,” is constant in the old Babylonian version (ll. 135 and 172), as against šamḫatu in the Assyrian version (I, 3, 19, 40, 45; 4, 16), which also uses the plural šam-ḫa-a-ti (II, 3b, 40). The interchange between ḫ and k is not without precedent (cf. Meissner, Altbabylonisches Privatrecht, page 107, note 2, and more particularly Chiera, List of Personal Names, page 37). In view of the evidence, set forth in the Introduction, for the assumption that the Enkidu story has been combined with a tale of the evolution of primitive man to civilized life, it is reasonable to suggest that in the original Enkidu story the female companion was called šamkatu, “courtesan,” whereas in the tale of the primitive man, which was transferred to Enkidu, the associate was ḫarimtu, a “woman,” just as in the Genesis tale, the companion of Adam is simply called ishshâ, “woman.” Note that in the Assyrian parallel (Tablet I, 4, 26) we have two readings, ir-ḫi (imperf.) and a variant i-ri-ḫi (present). The former is the better reading, as our tablet shows. Lines 49–59 run parallel to the Assyrian version I, 4, 33–38, with slight variations which have been discussed above, p. 58, and from which we may conclude that the Assyrian version represents an independent redaction. Since in our tablet we have presumably the repetition of what may have been in part at least set forth in the first tablet of the old Babylonian version, we must not press the parallelism with the first tablet of the Assyrian version too far; but it is noticeable nevertheless (1) that our tablet contains lines 57–58 which are not represented in the Assyrian version, and (2) that the second speech of the “woman” beginning, line 62, with al-ka, “come” (just as the first speech, line 54), is likewise not found in the first tablet of the Assyrian version; which on the other hand contains a line (39) not in the Babylonian version, besides the detailed answer of Enkidu (I 4, 42–5, 5). Line 6, which reads “Enkidu and the woman went (il-li-ku) to walled Erech,” is also not found in the second tablet of the old Babylonian version. Line 63. For magrû, “accursed,” see the frequent use in Astrological texts (Jastrow, Religion Babyloniens und Assyriens II, page [74]450, note 2). Langdon, by his strange error in separating ma-a-ag-ri-im into two words ma-a-ak and ri-i-im, with a still stranger rendering: “unto the place yonder of the shepherds!!”, naturally misses the point of this important speech. Line 64 corresponds to I, 4, 40, of the Assyrian version, which has an additional line, leading to the answer of Enkidu. From here on, our tablet furnishes material not represented in the Assyrian version, but which was no doubt included in the second tablet of that version of which we have only a few fragments. Line 70 must be interpreted as indicating that the woman kept one garment for herself. Ittalbaš would accordingly mean, “she kept on.” The female dress appears to have consisted of an upper and a lower garment. Line 72. The restoration “like a god” is favored by line 51, where Enkidu is likened to a god, and is further confirmed by l. 190. Line 73. gupru is identical with gu-up-ri (Thompson, Reports of the Magicians and Astrologers, etc., 223 rev. 2 and 223a rev. 8), and must be correlated to gipâru (Muss-Arnolt, Assyrian Dictionary, p. 229a), “planted field,” “meadow,” and the like. Thompson’s translation “men” (as though a synonym of gabru) is to be corrected accordingly. Line 74. There is nothing missing between a-šar and tar-ba-ṣi-im. Line 75. ri-ia-ú, which Langdon renders “shepherd,” is the equivalent of the Arabic riʿy and Hebrew רְעִי “pasturage,” “fodder.” We have usually the feminine form ri-i-tu (Muss-Arnolt, Assyrian Dictionary, p. 990b). The break at the end of the second column is not serious. Evidently Enkidu, still accustomed to live like an animal, is first led to the sheepfolds, and this suggests a repetition of the description of his former life. Of the four or five lines missing, we may conjecturally restore four, on the basis of the Assyrian version, Tablet I, 4, 2–5, or I, 2, 39–41. This would then join on well to the beginning of column 3. Line 81. Both here and in l. 52 our text has na-ma-áš-te-e, as against nam-maš-ši-i in the Assyrian version, e.g., Tablet I, 2, 41; 4, 5, etc.,—the feminine form, therefore, as against the masculine. Langdon’s note 3 on page 213 is misleading. In astrological texts we also find nam-maš-te; e.g., Thompson, Reports of the Magicians and Astrologers, etc., No. 200, Obv. 2. [75] Line 93. zi-ma-at (for simat) ba-la-ṭi-im is not “conformity of life” as Langdon renders, but that which “belongs to life” like si-mat pag-ri-šá, “belonging to her body,” in the Assyrian version III, 2a, 3 (Jensen, page 146). “Food,” says the woman, “is the staff of life.” Line 94. Langdon’s strange rendering “of the conditions and fate of the land” rests upon an erroneous reading (see the corrections, Appendix I), which is the more inexcusable because in line 97 the same ideogram, Kàš = šikaru, “wine,” occurs, and is correctly rendered by him. Šimti mâti is not the “fate of the land,” but the “fixed custom of the land.” Line 98. aṣ-ṣa-mi-im (plural of aṣṣamu), which Langdon takes as an adverb in the sense of “times,” is a well-known word for a large “goblet,” which occurs in Incantation texts, e.g., CT XVI, 24, obv. 1, 19, mê a-ṣa-am-mi-e šú-puk, “pour out goblets of water.” Line 18 of the passage shoves that aṣammu is a Sumerian loan word. Line 99. it-tap-šar, I, 2, from pašâru, “loosen.” In combination with kabtatum (from kabitatum, yielding two forms: kabtatum, by elision of i, and kabittu, by elision of a), “liver,” pašâru has the force of becoming cheerful. Cf. ka-bit-ta-ki lip-pa-šir (ZA V., p. 67, line 14). Line 100, note the customary combination of “liver” (kabtatum) and “heart” (libbu) for “disposition” and “mind,” just as in the standing phrase in penitential prayers: “May thy liver be appeased, thy heart be quieted.” Line 102. The restoration [lùŠÚ]-I = gallabu “barber” (Delitzsch, Sumer. Glossar, p. 267) was suggested to me by Dr. H. F. Lutz. The ideographic writing “raising the hand” is interesting as recalling the gesture of shaving or cutting. Cf. a reference to a barber in Lutz, Early Babylonian Letters from Larsa, No. 109, 6. Line 103. Langdon has correctly rendered šuḫuru as “hair,” and has seen that we have here a loan-word from the Sumerian Suḫur = kimmatu, “hair,” according to the Syllabary Sb 357 (cf. Delitzsch, Sumer. Glossar., p. 253). For kimmatu, “hair,” more specifically hair of the head and face, see Holma, Namen der Körperteile, page 3. The same sign Suḫur or Suḫ (Brünnow No. 8615), with Lal, i.e., “hanging hair,” designates the “beard” (ziḳnu, cf. Brünnow, No. 8620, and Holma, l. c., p. 36), and it is interesting to [76]note that we have šuḫuru (introduced as a loan-word) for the barbershop, according to II R, 21, 27c (= CT XII, 41). Ê suḫur(ra) (i.e., house of the hair) = šú-ḫu-ru. In view of all this, we may regard as assured Holma’s conjecture to read šú-[ḫur-ma-šú] in the list 93074 obv. (MVAG 1904, p. 203; and Holma, Beiträge z. Assyr. Lexikon, p. 36), as the Akkadian equivalent to Suḫur-Maš-Ḫa and the name of a fish, so called because it appeared to have a double “beard” (cf. Holma, Namen der Körperteile). One is tempted, furthermore, to see in the difficult word שכירה (Isaiah 7, 20) a loan-word from our šuḫuru, and to take the words ַפָסֶת־הָרַֹפָסשׁ וְשַׂעַר הָרַגְלַיִם “the head and hair of the feet” (euphemistic for the hair around the privates), as an explanatory gloss to the rare word שכירה for “hair” of the body in general—just as in the passage in the Pennsylvania tablet. The verse in Isaiah would then read, “The Lord on that day will shave with the razor the hair (השכירה), and even the beard will be removed.” The rest of the verse would represent a series of explanatory glosses: (a) “Beyond the river” (i.e., Assyria), a gloss to יְגַלַּח (b) “with the king of Assyria,” a gloss to בְּתַעַר “with a razor;” and (c) “the hair of the head and hair of the feet,” a gloss to השכירה. For “hair of the feet” we have an interesting equivalent in Babylonian šu-ḫur (and šú-ḫu-ur) šêpi (CT XII, 41, 23–24 c-d). Cf. also Boissier, Documents Assyriens relatifs aux Présages, p. 258, 4–5. The Babylonian phrase is like the Hebrew one to be interpreted as a euphemism for the hair around the male or female organ. To be sure, the change from ה to כ in השכירה constitutes an objection, but not a serious one in the case of a loan-word, which would aim to give the pronunciation of the original word, rather than the correct etymological equivalent. The writing with aspirated כ fulfills this condition. (Cf. šamkatum and šamḫatum, above p. 73). The passage in Isaiah being a reference to Assyria, the prophet might be tempted to use a foreign word to make his point more emphatic. To take השכירה as “hired,” as has hitherto been done, and to translate “with a hired razor,” is not only to suppose a very wooden metaphor, but is grammatically difficult, since השכירח would be a feminine adjective attached to a masculine substantive. Coming back to our passage in the Pennsylvania tablet, it is to [77]be noted that Enkidu is described as covered “all over his body with hair” (Assyrian version, Tablet I, 2, 36) like an animal. To convert him into a civilized man, the hair is removed. Line 107. mutu does not mean “husband” here, as Langdon supposes, but must be taken as in l. 238 in the more general sense of “man,” for which there is good evidence. Line 109. la-bi (plural form) are “lions”—not “panthers” as Langdon has it. The verb ú-gi-ir-ri is from gâru, “to attack.” Langdon by separating ú from gi-ir-ri gets a totally wrong and indeed absurd meaning. See the corrections in the Appendix. He takes the sign ú for the copula (!!) which of course is impossible. Line 110. Read uš-sa-ak-pu, III, 1, of sakâpu, which is frequently used for “lying down” and is in fact a synonym of ṣalâlu. See Muss-Arnolt, Assyrian Dictionary, page 758a. The original has very clearly Síb (= rê’u, “shepherd”) with the plural sign. The “shepherds of the night,” who could now rest since Enkidu had killed the lions, are of course the shepherds who were accustomed to watch the flocks during the night. Line 111. ut-tap-pi-iš is II, 2, napâšu, “to make a hole,” hence “to plunge” in connection with a weapon. Šib-ba-ri is, of course, not “mountain goats,” as Langdon renders, but a by-form to šibbiru, “stick,” and designates some special weapon. Since on seal cylinders depicting Enkidu killing lions and other animals the hero is armed with a dagger, this is presumably the weapon šibbaru. Line 113. Langdon’s translation is again out of the question and purely fanciful. The traces favor the restoration na-ki-[di-e], “shepherds,” and since the line appears to be a parallel to line 110, I venture to suggest at the beginning [it-ti]-lu from na’âlu, “lie down”—a synonym, therefore, to sakâpu in line 110. The shepherds can sleep quietly after Enkidu has become the “guardian” of the flocks. In the Assyrian version (tablet II, 3a, 4) Enkidu is called a na-kid, “shepherd,” and in the preceding line we likewise have lùNa-Kid with the plural sign, i.e., “shepherds.” This would point to nakidu being a Sumerian loan-word, unless it is vice versa, a word that has gone over into the Sumerian from Akkadian. Is perhaps the fragment in question (K 8574) in the Assyrian version (Haupt’s ed. No. 25) the parallel to our passage? If in line 4 of this fragment we could read šú for sa, i.e., na-kid-šú-nu, “their shepherd, we would have a [78]parallel to line 114 of the Pennsylvania tablet, with na-kid as a synonym to maṣṣaru, “protector.” The preceding line would then be completed as follows: [it-ti-lu]-nim-ma na-kidmeš [ra-bu-tum] (or perhaps only it-ti-lu-ma, since the nim is not certain) and would correspond to line 113 of the Pennsylvania tablet. Inasmuch as the writing on the tiny fragment is very much blurred, it is quite possible that in line 2 we must read šib-ba-ri (instead of bar-ba-ri), which would furnish a parallel to line 111 of the Pennsylvania tablet. The difference between Bar and Šib is slight, and the one sign might easily be mistaken for the other in the case of close writing. The continuation of line 2 of the fragment would then correspond to line 112 of the Pennsylvania tablet, while line 1 of the fragment might be completed [re-e]-u-ti(?) šá [mu-ši-a-tim], though this is by no means certain. The break at the close of column 3 (about 5 lines) and the top of column 4 (about 8 lines) is a most serious interruption in the narrative, and makes it difficult to pick up the thread where the tablet again becomes readable. We cannot be certain whether the “strong man, the unique hero” who addresses some one (lines 115–117) is Enkidu or Gish or some other personage, but presumably Gish is meant. In the Assyrian version, Tablet I, 3, 2 and 29, we find Gilgamesh described as the “unique hero” and in l. 234 of the Pennsylvania tablet Gish is called “unique,” while again, in the Assyrian version, Tablet I, 2, 15 and 26, he is designated as gašru as in our text. Assuming this, whom does he address? Perhaps the shepherds? In either case he receives an answer that rejoices him. If the fragment of the Assyrian version (K 8574) above discussed is the equivalent to the close of column 3 of the Pennsylvania tablet, we may go one step further, and with some measure of assurance assume that Gish is told of Enkidu’s exploits and that the latter is approaching Erech. This pleases Gish, but Enkidu when he sees Gish(?) is stirred to anger and wants to annihilate him. At this point, the “man” (who is probably Gish, though the possibility of a third personage must be admitted) intervenes and in a long speech sets forth the destiny and higher aims of mankind. The contrast between Enkidu and Gish (or the third party) is that between the primitive [79]savage and the civilized being. The contrast is put in the form of an opposition between the two. The primitive man is the stronger and wishes to destroy the one whom he regards as a natural foe and rival. On the other hand, the one who stands on a higher plane wants to lift his fellow up. The whole of column 4, therefore, forms part of the lesson attached to the story of Enkidu, who, identified with man in a primitive stage, is made the medium of illustrating how the higher plane is reached through the guiding influences of the woman’s hold on man, an influence exercised, to be sure, with the help of her bodily charms. Line 135. uk-ki-ši (imperative form) does not mean “take away,” as Langdon (who entirely misses the point of the whole passage) renders, but on the contrary, “lure him on,” “entrap him,” and the like. The verb occurs also in the Yale tablet, ll. 183 and 186. Line 137. Langdon’s note to lu-uš-šú had better be passed over in silence. The form is II. 1, from ešû, “destroy.” Line 139. Since the man whom the woman calls approaches Enkidu, the subject of both verbs is the man, and the object is Enkidu; i.e., therefore, “The man approaches Enkidu and beholds him.” Line 140. Langdon’s interpretation of this line again is purely fanciful. E-di-il cannot, of course, be a “phonetic variant” of edir; and certainly the line does not describe the state of mind of the woman. Lines 140–141 are to be taken as an expression of amazement at Enkidu’s appearance. The first word appears to be an imperative in the sense of “Be off,” “Away,” from dâlu, “move, roam.” The second word e-eš, “why,” occurs with the same verb dâlu in the Meissner fragment: e-eš ta-da-al (column 3, 1), “why dost thou roam about?” The verb at the end of the line may perhaps be completed to ta-ḫi-il-la-am. The last sign appears to be am, but may be ma, in which case we should have to complete simply ta-ḫi-il-ma. Taḫîl would be the second person present of ḫîlu. Cf. i-ḫi-il, frequently in astrological texts, e.g., Virolleaud, Adad No. 3, lines 21 and 33. Line 141. The reading lim-nu at the beginning, instead of Langdon’s mi-nu, is quite certain, as is also ma-na-aḫ-ti-ka instead of what Langdon proposes, which gives no sense whatever. Manaḫtu in the sense of the “toil” and “activity of life” (like עָמָל throughout the Book of Ecclesiastes) occurs in the introductory lines to [80]the Assyrian version of the Epic I, 1, 8, ka-lu ma-na-aḫ-ti-[šu], “all of his toil,” i.e., all of his career. Line 142. The subject of the verb cannot be the woman, as Langdon supposes, for the text in that case, e.g., line 49, would have said pi-šá (“her mouth”) not pi-šú (“his mouth”). The long speech, detailing the function and destiny of civilized man, is placed in the mouth of the man who meets Enkidu. In the Introduction it has been pointed out that lines 149 and 151 of the speech appear to be due to later modifications of the speech designed to connect the episode with Gish. Assuming this to be the case, the speech sets forth the following five distinct aims of human life: (1) establishing a home (line 144), (2) work (line 147), (3) storing up resources (line 148), (4) marriage (line 150), (5) monogamy (line 154); all of which is put down as established for all time by divine decree (lines 155–157), and as man’s fate from his birth (lines 158–159). Line 144. bi-ti-iš e-mu-ti is for bîti šá e-mu-ti, just as ḳab-lu-uš Ti-a-ma-ti (Assyrian Creation Myth, IV, 65) stands for ḳablu šá Tiamti. Cf. bît e-mu-ti (Assyrian version, IV, 2, 46 and 48). The end of the line is lost beyond recovery, but the general sense is clear. Line 146. tu-a-ar is a possible reading. It may be the construct of tu-a-ru, of frequent occurrence in legal texts and having some such meaning as “right,” “claim” or “prerogative.” See the passages given by Muss-Arnolt, Assyrian Dictionary, p. 1139b. Line 148. The reading uk-la-at, “food,” and then in the wider sense “food supply,” “provisions,” is quite certain. The fourth sign looks like the one for “city.” E-mi-sa may stand for e-mid-sa, “place it.” The general sense of the line, at all events, is clear, as giving the advice to gather resources. It fits in with the Babylonian outlook on life to regard work and wealth as the fruits of work and as a proper purpose in life. Line 150 (repeated lines 152–153) is a puzzling line. To render piti pûk epši (or epiši), as Langdon proposes, “open, addressing thy speech,” is philologically and in every other respect inadmissible. The word pu-uk (which Langdon takes for “thy mouth”!!) can, of course, be nothing but the construct form of pukku, which occurs in the Assyrian version in the sense of “net” (pu-uk-ku I, 2, 9 and 21, and also in the colophon to the eleventh tablet furnishing the [81]beginning of the twelfth tablet (Haupt’s edition No. 56), as well as in column 2, 29, and column 3, 6, of this twelfth tablet). In the two last named passages pukku is a synonym of mekû, which from the general meaning of “enclosure” comes to be a euphemistic expression for the female organ. So, for example, in the Assyrian Creation Myth, Tablet IV, 66 (synonym of ḳablu, “waist,” etc.). See Holma, Namen der Körperteile, page 158. Our word pukku must be taken in this same sense as a designation of the female organ—perhaps more specifically the “hymen” as the “net,” though the womb in general might also be designated as a “net” or “enclosure.” Kak-(ši) is no doubt to be read epši, as Langdon correctly saw; or perhaps better, epiši. An expression like ip-ši-šú lul-la-a (Assyrian version, I, 4, 13; also line 19, i-pu-us-su-ma lul-la-a), with the explanation šipir zinništi, “the work of woman” (i.e., after the fashion of woman), shows that epêšu is used in connection with the sexual act. The phrase pitî pûk epiši a-na ḫa-a-a-ri, literally “open the net, perform the act for marriage,” therefore designates the fulfillment of the marriage act, and the line is intended to point to marriage with the accompanying sexual intercourse as one of the duties of man. While the general meaning is thus clear, the introduction of Gish is puzzling, except on the supposition that lines 149 and 151 represent later additions to connect the speech, detailing the advance to civilized life, with the hero. See above, p. 45 seq. Line 154. aššat šimâtim is the “legitimate wife,” and the line inculcates monogamy as against promiscuous sexual intercourse. We know that monogamy was the rule in Babylonia, though a man could in addition to the wife recognized as the legalized spouse take a concubine, or his wife could give her husband a slave as a concubine. Even in that case, according to the Hammurabi Code, §§145–146, the wife retained her status. The Code throughout assumes that a man has only one wife—the aššat šimâtim of our text. The phrase “so” (or “that”) before “as afterwards” is to be taken as an idiomatic expression—“so it was and so it should be for all times”—somewhat like the phrase maḫriam ù arkiam, “for all times,” in legal documents (CT VIII, 38c, 22–23). For the use of mûk see Behrens, Assyrisch-Babylonische Briefe, p. 3. Line 158. i-na bi-ti-iḳ a-bu-un-na-ti-šú. Another puzzling line, for which Langdon proposes “in the work of his presence,” which [82]is as obscure as the original. In a note he says that apunnâti means “nostrils,” which is certainly wrong. There has been considerable discussion about this term (see Holma, Namen der Körperteile, pages 150 and 157), the meaning of which has been advanced by Christian’s discussion in OLZ 1914, p. 397. From this it appears that it must designate a part of the body which could acquire a wider significance so as to be used as a synonym for “totality,” since it appears in a list of equivalent for Dur = nap-ḫa-ru, “totality,” ka-lu-ma, “all,” a-bu-un-na-tum e-ṣi-im-tum, “bony structure,” and kul-la-tum, “totality” (CT XII, 10, 7–10). Christian shows that it may be the “navel,” which could well acquire a wider significance for the body in general; but we may go a step further and specify the “umbilical cord” (tentatively suggested also by Christian) as the primary meaning, then the “navel,” and from this the “body” in general. The structure of the umbilical cord as a series of strands would account for designating it by a plural form abunnâti, as also for the fact that one could speak of a right and left side of the appunnâti. To distinguish between the “umbilical cord” and the “navel,” the ideograph Dur (the common meaning of which is riksu, “bond” [Delitzsch, Sumer. Glossar., p. 150]), was used for the former, while for the latter Li Dur was employed, though the reading in Akkadian in both cases was the same. The expression “with (or at) the cutting of his umbilical cord” would mean, therefore, “from his birth”—since the cutting of the cord which united the child with the mother marks the beginning of the separate life. Lines 158–159, therefore, in concluding the address to Enkidu, emphasize in a picturesque way that what has been set forth is man’s fate for which he has been destined from birth. [See now Albright’s remarks on abunnatu in the Revue d’Assyriologie 16, pp. 173–175, with whose conclusion, however, that it means primarily “backbone” and then “stature,” I cannot agree.] In the break of about three lines at the bottom of column 4, and of about six at the beginning of column 5, there must have been set forth the effect of the address on Enkidu and the indication of his readiness to accept the advice; as in a former passage (line 64), Enkidu showed himself willing to follow the woman. At all events the two now proceed to the heart of the city. Enkidu is in front [83]and the woman behind him. The scene up to this point must have taken place outside of Erech—in the suburbs or approaches to the city, where the meadows and the sheepfolds were situated. Line 174. um-ma-nu-um are not the “artisans,” as Langdon supposes, but the “people” of Erech, just as in the Assyrian version, Tablet IV, 1, 40, where the word occurs in connection with i-dip-pi-ir, which is perhaps to be taken as a synonym of paḫâru, “gather;” so also i-dip-pir (Tablet I, 2, 40) “gathers with the flock.” Lines 180–182 must have contained the description of Enkidu’s resemblance to Gish, but the lines are too mutilated to permit of any certain restoration. See the corrections (Appendix) for a suggested reading for the end of line 181. Line 183 can be restored with considerable probability on the basis of the Assyrian version, Tablet I, 3, 3 and 30, where Enkidu is described as one “whose power is strong in the land.” Lines 186–187. The puzzling word, to be read apparently kak-ki-a-tum, can hardly mean “weapons,” as Langdon proposes. In that case we should expect kakkê; and, moreover, to so render gives no sense, especially since the verb ú-te-el-li-lu is without much question to be rendered “rejoiced,” and not “purified.” Kakkiatum—if this be the correct reading—may be a designation of Erech like ribîtim. Lines 188–189 are again entirely misunderstood by Langdon, owing to erroneous readings. See the corrections in the Appendix. Line 190. i-li-im in this line is used like Hebrew Elohîm, “God.” Line 191. šakiššum = šakin-šum, as correctly explained by Langdon. Line 192. With this line a new episode begins which, owing to the gap at the beginning of column 6, is somewhat obscure. The episode leads to the hostile encounter between Gish and Enkidu. It is referred to in column 2 of the fourth tablet of the Assyrian version. Lines 35–50—all that is preserved of this column—form in part a parallel to columns 5–6 of the Pennsylvania tablet, but in much briefer form, since what on the Pennsylvania tablet is the incident itself is on the fourth tablet of the Assyrian version merely a repeated summary of the relationship between the two heroes, leading up to the expedition against Ḫu(m)baba. Lines 38–40 of [84]column 2 of the Assyrian version correspond to lines 174–177 of the Pennsylvania tablet, and lines 44–50 to lines 192–221. It would seem that Gish proceeds stealthily at night to go to the goddess Ishḫara, who lies on a couch in the bît êmuti , the “family house” Assyrian version, Tablet IV, 2. 46–48). He encounters Enkidu in the street, and the latter blocks Gish’s path, puts his foot in the gate leading to the house where the goddess is, and thus prevents Gish from entering. Thereupon the two have a fierce encounter in which Gish is worsted. The meaning of the episode itself is not clear. Does Enkidu propose to deprive Gish, here viewed as a god (cf. line 190 of the Pennsylvania tablet = Assyrian version, Tablet I, 4, 45, “like a god”), of his spouse, the goddess Ishḫara—another form of Ishtar? Or are the two heroes, the one a counterpart of the other, contesting for the possession of a goddess? Is it in this scene that Enkidu becomes the “rival” (me-iḫ-rù, line 191 of the Pennsylvania tablet) of the divine Gish? We must content ourself with having obtained through the Pennsylvania tablet a clearer indication of the occasion of the fight between the two heroes, and leave the further explanation of the episode till a fortunate chance may throw additional light upon it. There is perhaps a reference to the episode in the Assyrian version, Tablet II, 3b, 35–36. Line 196. For i-na-ag-šá-am (from nagâšu), Langdon proposes the purely fanciful “embracing her in sleep,” whereas it clearly means “he approaches.” Cf. Muss-Arnolt, Assyrian Dictionary, page 645a. Lines 197–200 appear to correspond to Tablet IV, 2, 35–37, of the Assyrian version, though not forming a complete parallel. We may therefore supply at the beginning of line 35 of the Assyrian version [ittaziz] Enkidu, corresponding to line 197 of the Pennsylvania tablet. Line 36 of IV, 2, certainly appears to correspond to line 200 (dan-nu-ti = da-na-ni-iš-šú). Line 208. The first sign looks more like šar, though ur is possible. Line 211 is clearly a description of Enkidu, as is shown by a comparison with the Assyrian version I, 2, 37: [pi]-ti-ik pi-ir-ti-šú uḫ-tan-na-ba kima dNidaba, “The form of his hair sprouted like wheat.” We must therefore supply Enkidu in the preceding line. Tablet IV, 4, 6, of the Assyrian version also contains a reference to the flowing hair of Enkidu. [85] Line 212. For the completion of the line cf. Harper, Assyrian and Babylonian Letters, No. 214. Line 214. For ribîtu mâti see the note above to line 28 of column 1. Lines 215–217 correspond almost entirely to the Assyrian version IV, 2, 46–48. The variations ki-ib-su in place of šêpu, and kima lîm, “like oxen,” instead of ina bâb êmuti (repeated from line 46), ana šurûbi for êribam, are slight though interesting. The Assyrian version shows that the “gate” in line 215 is “the gate of the family house” in which the goddess Ishḫara lies. Lines 218–228. The detailed description of the fight between the two heroes is only partially preserved in the Assyrian version. Line 218. li-i-im is evidently to be taken as plural here as in line 224, just as su-ḳi-im (lines 27 and 175), ri-bi-tim (lines 4, 28, etc.), tarbaṣim (line 74), aṣṣamim (line 98) are plural forms. Our text furnishes, as does also the Yale tablet, an interesting illustration of the vacillation in the Hammurabi period in the twofold use of im: (a) as an indication of the plural (as in Hebrew), and (b) as a mere emphatic ending (lines 63, 73, and 232), which becomes predominant in the post-Hammurabi age. Line 227. Gilgamesh is often represented on seal cylinders as kneeling, e.g., Ward Seal Cylinders Nos. 159, 160, 165. Cf. also Assyrian version V, 3, 6, where Gilgamesh is described as kneeling, though here in prayer. See further the commentary to the Yale tablet, line 215. Line 229. We must of course read uz-za-šú, “his anger,” and not uṣ-ṣa-šú, “his javelin,” as Langdon does, which gives no sense. Line 231. Langdon’s note is erroneous. He again misses the point. The stem of the verb here as in line 230 (i-ni-iḫ) is the common nâḫu, used so constantly in connection with pašâḫu, to designate the cessation of anger. Line 234. ištên applied to Gish designates him of course as “unique,” not as “an ordinary man,” as Langdon supposes. Line 236. On this title “wild cow of the stall” for Ninsun, see Poebel in OLZ 1914, page 6, to whom we owe the correct view regarding the name of Gilgamesh’s mother. Line 238. mu-ti here cannot mean “husband,” but “man” in [86]general. See above note to line 107. Langdon’s strange misreading ri-eš-su for ri-eš-ka (“thy head”) leads him again to miss the point, namely that Enkidu comforts his rival by telling him that he is destined for a career above that of the ordinary man. He is to be more than a mere prize fighter; he is to be a king, and no doubt in the ancient sense, as the representative of the deity. This is indicated by the statement that the kingship is decreed for him by Enlil. Similarly, Ḫu(m)baba or Ḫuwawa is designated by Enlil to inspire terror among men (Assyrian version, Tablet IV, 5, 2 and 5), i-šim-šú dEnlil = Yale tablet, l. 137, where this is to be supplied. This position accorded to Enlil is an important index for the origin of the Epic, which is thus shown to date from a period when the patron deity of Nippur was acknowledged as the general head of the pantheon. This justifies us in going back several centuries at least before Hammurabi for the beginning of the Gilgamesh story. If it had originated in the Hammurabi period, we should have had Marduk introduced instead of Enlil. Line 242. As has been pointed out in the corrections to the text (Appendix), šú-tu-ur can only be III, 1, from atâru, “to be in excess of.” It is a pity that the balance of the line is broken off, since this is the first instance of a colophon beginning with the term in question. In some way šutûr must indicate that the copy of the text has been “enlarged.” It is tempting to fill out the line šú-tu-ur e-li [duppi labiri], and to render “enlarged from an original,” as an indication of an independent recension of the Epic in the Hammurabi period. All this, however, is purely conjectural, and we must patiently hope for more tablets of the Old Babylonian version to turn up. The chances are that some portions of the same edition as the Yale and Pennsylvania tablets are in the hands of dealers at present or have been sold to European museums. The war has seriously interfered with the possibility of tracing the whereabouts of groups of tablets that ought never to have been separated. [87] Yale Tablet. Transliteration. (About ten lines missing.) Col. I. 11.................. [ib]-ri(?) 12[mi-im-ma(?) šá(?)]-kú-tu wa(?)-ak-rum 13[am-mi-nim] ta-aḫ-ši-iḫ 14[an-ni]-a-am [e-pi]-šá-am 15...... mi-im[-ma šá-kú-tu(?)]ma- 16di-iš 17[am-mi]-nim [taḫ]-ši-iḫ 18[ur(?)]-ta-du-ú [a-na ki-i]š-tim 19ši-ip-ra-am it-[ta-šú]-ú i-na [nišê] 20it-ta-áš-šú-ú-ma 21i-pu-šú ru-ḫu-tam 22.................. uš-ta-di-nu 23............................. bu 24............................... (About 17 lines missing.) 40.............. nam-........ 41.................... u ib-[ri] ..... 42.............. ú-na-i-du ...... 43[zi-ik]-ra-am ú-[tí-ir]-ru 44[a-na] ḫa-ri-[im]-tim 45[i]-pu(?)-šú a-na sa-[ka]-pu-ti Col. II. (About eleven lines missing.) 57... šú(?)-mu(?) ............... 58ma-ḫi-ra-am [šá i-ši-šú] 59šú-uk-ni-šum-[ma] ............... 60la-al-la-ru-[tu] .................. 61um-mi d-[Giš mu-di-a-at ka-la-ma] 62i-na ma-[ḫar dŠamaš i-di-šá iš-ši][88] 63šá ú 64i-na- an(?)-[na am-mi-nim] 65ta-[aš-kun(?) a-na ma-ri-ia li-ib-bi la] 66ṣa-[li-la te-mid-su] 67............................. (About four lines missing.) 72i-na [šá dEn-ki-dũ im-la-a] di-[im-tam] 73il-[pu-ut li]-ib-ba-šú-[ma] 74[zar-biš(?)] uš-ta-ni-[iḫ] 75[i-na šá dEn]-ki-dũ im-la-a di-im-tam 76[il-pu-ut] li-ib-ba-šú-ma 77[zar-biš(?)] uš-ta-ni-[iḫ] 78[dGiš ú-ta]-ab-bil pa-ni-šú 79[iz-za-kar-am] a-na dEn-ki-dũ 80[ib-ri am-mi-nim] i-na-ka 81[im-la-a di-im]-tam 82[il-pu-ut li-ib-bi]-ka 83[zar-biš tu-uš-ta]-ni-iḫ 84[dEn-ki-dũ pi-šú i-pu-šá]-am-ma 85iz-za-[kàr-am] a-na dGiš 86ta-ab-bi-a-tum ib-ri 87uš-ta-li-pa da-1da-ni-ia 88a-ḫa-a-a ir-ma-a-ma 89e-mu-ki i-ni-iš 90dGiš pi-šú i-pu-šá-am-ma 91iz-za-kàr-am a-na dEn-ki-dũ (About four lines missing.) Col. III. 96..... [a-di dḪu]-wa-wa da-pi-nu 97.................. ra-[am(?)-ma] 98................ [ú-ḫal]- li-ik 99[lu-ur-ra-du a-na ki-iš-ti šá] iserini[89] 100............ lam(?) ḫal-bu 101............ [li]-li-is-su 102.............. lu(?)-up-ti-šú 103dEn-ki-dũ pi-šú i-pu-šá-am-ma 104iz-za-kàr-am a-na dGiš 105i-di-ma ib-ri i-na šadî(-i) 106i-nu-ma at-ta-la-ku it-ti bu-lim 107a-na ištên(-en) kas-gíd-ta-a-an nu-ma-at ki-iš-tum 108[e-di-iš(?)] ur-ra-du a-na libbi-šá 109d[Ḫu-wa]-wa ri-ig-ma-šú a-bu-bu 110pi-[šú] dBil-gi-ma 111na-pi-iš-šú mu-tum 112am-mi-nim ta-aḫ-ši-iḫ 113an-ni-a-am e-pi-šá-am 114ga-[ba]-al-la ma-ḫa-ar 115[šú]-pa-at dḪu-wa-wa 116(d)Giš pi-šú i-pu-šá-am-ma 117[iz-za-k]àr-am a-na dEn-ki-dũ 118....... su(?)-lu-li a-šá-ki2-šá 119............. [i-na ki-iš]-tim 120............................... 121ik(?) ......................... 122a-na .......................... 123mu-šá-ab [dḪu-wa-wa] ....... 124ḫa-aṣ-si-nu ................. 125at-ta lu(?) ................. 126a-na-ku lu-[ur-ra-du a-na ki-iš-tim] 127dEn-ki-dũ pi-šú i-pu-[šá-am-ma] 128iz-za-kàr-am a-na [dGiš] 129ki-i ni[il]-la-ak [iš-te-niš(?)] 130a-na ki-iš-ti [šá iṣerini] 131na-ṣi-ir-šá dGiš muḳ-[tab-lu] 132da-a-an la ṣa[-li-lu(?)] 133dḪu-wa-wa dpi-ir-[ḫu ša (?)][90] 134dAdad iš .......... 135šú-ú .................. Col. IV. 136áš-šúm šú-ul-lu-m[u ki-iš-ti šáiṣerini] 137pu-ul-ḫi-a-tim 7 [šú(?) i-šim-šú dEnlil] 138dGiš pi-šú i-pu [šá-am-ma] 139iz-za-kàr-am a-na [dEn-ki-dũ] 140ma-an-nu ib-ri e-lu-ú šá-[ru-ba(?)] 141i-ṭib-ma it-ti dŠamaš da-ri-iš ú-[me-šú] 142a-we-lu-tum ba-ba-nu ú-tam-mu-šá-[ma] 143mi-im-ma šá i-te-ni-pu-šú šá-ru-ba 144at-ta an-na-nu-um-ma ta-dar mu-tam 145ul iš-šú da-na-nu ḳar-ra-du-ti-ka 146lu-ul-li-ik-ma i-na pa-ni-ka 147pi-ka li-iš-si-a-am ṭi-ḫi-e ta-du-ur 148šum-ma am-ta-ḳu-ut šú-mi lu-uš-zi-iz 149dGiš mi3-it-ti dḪu-wa-wa da-pi-nim 150il(?)-ḳu-ut iš-tu 151i-wa-al-dam-ma tar-bi-a i-na šam-mu(?) Il(?) 152iš-ḫi-it-ka-ma la-bu ka-la-ma ti-di 153it- ku(?) ..... [il(?)]-pu-tu-(?) ma ..... 154.............. ka-ma 155.............. ši pi-ti 156............ ki-ma re’i(?) na-gi-la sa-rak-ti 157.... [ta-šá-s]i-a-am tu-lim-mi-in li-ib-bi 158[ga-ti lu]-uš-ku-un-ma 159[lu-u-ri]-ba-am iṣerini[91] 160[šú-ma sá]-ṭa-ru-ú a-na-ku lu-uš-ta-ak-na 161[pu-tu-ku(?)] ib-ri a-na ki-iš-ka-tim lu-mu-ḫa 162[be-le-e li-iš-]-pu-ku i-na maḫ-ri-ni 163[pu-tu]-ku a-na ki-iš-ka-ti-i i-mu-ḫu 164wa-áš-bu uš-ta-da-nu um-mi-a-nu 165pa-ši iš-pu-ku ra-bu-tim 166ḫa-aṣ-si-ni 3 biltu-ta-a-an iš-tap-ku 167pa-aṭ-ri iš-pu-ku ra-bu-tim 168me-še-li-tum 2 biltu-ta-a-an 169ṣi-ip-ru 30 ma-na-ta-a-an šá a-ḫi-ši-na 170išid(?) pa-aṭ-ri 30 ma-na-ta-a-an ḫuraṣi 171[d]Giš ù [dEn-ki-]dũ 10 biltu-ta-a-an šá-ak-nu] 172.... ul-la . .[Uruk]ki 7 i-di-il-šú 173...... iš-me-ma um-ma-nu ib-bi-ra 174[uš-te-(?)]-mi-a i-na sûḳi šá Urukki ri-bi-tim 175...... [u-še(?)]-ṣa-šú dGis 176[ina sûḳi šá(?) Urukki] ri-bi-tim 177[dEn-ki-dũ(?) ú]-šá-ab i-na maḫ-ri-šú 178..... [ki-a-am(?) i-ga]-ab-bi 179[........ Urukki ri]-bi-tim 180 [ma-ḫa-ar-šú] Col. V. 181dGiš šá i-ga-ab-bu-ú lu-mu-ur 182šá šú-um-šú it-ta-nam-ma-la ma-ta-tum 183lu-uk-šú-su-ma i-na ki-iš-ti iṣerini 184ki-ma da-an-nu pi-ir-ḫu-um šá Urukki[92] 185lu-ši-eš-mi ma-tam 186ga-ti lu-uš-ku-un-ma lu-uk-[šú]4-su-ma iṣerini 187šú-ma šá-ṭa-ru-ú a-na-ku lu-uš-tak-nam 188ši-bu-tum šá Urukki ri-bi-tim 189zi-ik-ra ú-ti-ir-ru a-na dGiš 190ṣi-iḫ-ri-ti-ma dGiš libbi-ka na-ši-ka 191mi-im-ma šá te-te-ni-pu-šú la ti-di 192ni-ši-im-me-ma dḪu-wa-wa šá-nu-ú bu-nu-šú 193ma-an-nu-um [uš-tam]-ḫa-ru ka-ak-ki-šú 194a-na ištên(-en) [kas-gíd-ta-a]-an nu-ma-at kišti 195ma-an-nu šá [ur-ra]-du a-na libbi-šá 196dḪu-wa-wa ri-ig-ma-šú a-bu-bu 197pi-šú dBil-gi-ma na-pi-su mu-tum 198am-mi-nim taḫ-ši-iḫ an-ni-a-am e-pi-šá 199ga-ba-al-la ma-ḫa-ar šú-pa-at dḪu-wa-wa 200iš-me-e-ma dGiš zi-ki-ir ma-li-[ki]-šú 201ip-pa-al-sa-am-ma i-ṣi-iḫ a-na ib-[ri-šú] 202i-na-an-na ib-[ri] ki-a-am [a-ga-ab-bi] 203a-pa-al-aḫ-šú-ma a-[al-la-ak a-na kišti] 204[lu]ul-[lik it-ti-ka a-na ki-iš-ti iṣerini(?)] (About five lines missing.) 210........................ -ma 211li ............... -ka[93] 212ilu-ka li(?) ..............-ka 213ḫarrana li-šá-[tir-ka a-na šú-ul-mi] 214a-na kar šá [Urukki ri-bi-tim] 215ka-mi-is-ma dGiš [ma-ḫa-ar dŠamaš(?)] 216a-wa-at i-ga-ab- [bu-šú-ma] 217a-al-la-ak dŠamaš katâ-[ka a-ṣa-bat] 218ul-la-nu lu-uš-li-ma na-pi-[iš-ti] 219te-ir-ra-an-ni a-na kar i-[na Urukki] 220ṣi-il-[la]m šú-ku-un [a-na ia-a-ši(?)] 221iš-si-ma dGiš ib-[ri.....] 222te-ir-ta-šú .......... 223is(?) .............. 224tam ................ 225........................ 226i-nu(?)-[ma] .................. (About two lines missing.) Col. VI. 229[a-na-ku] dGiš [i-ik]-ka-di ma-tum 230........... ḫarrana šá la al-[kam] ma-ti-ma 231.... a-ka-lu ..... la(?) i-di 232[ul-la-nu] lu-uš-li-[mu] a-na-ku 233[lu-ud-lul]-ka i-na [ḫ]u-ud li-ib-bi 234...... [šú]-ḳu-ut-[ti] la-li-ka 235[lu-še-šib(?)] - ka i-na kussêmeš 236....................... ú-nu-su 237[bêlêmeš(?)ú-ti-ir]-ru ra-bu-tum 238[ka-aš-tum] ù iš-pa-tum 239[i-na] ga-ti iš-ku-nu 240[il-]te-ki pa-ši 241....... -ri iš-pa-as-su[94] 242..... [a-na] ili šá-ni-tam 243[it-ti pa(?)] - tar-[šú] i-na ši-ip-pi-šú 244........ i-ip-pu-šú a-la-kam 245[ša]-niš ú-ga-ra-bu dGiš 246[a-di ma]-ti tu-ut-te-ir a-na libbi Urukki 247[ši-bu]-tum i-ka-ra-bu-šú 248[a-na] ḫarrani i-ma-li-ku dGiš 249[la t]a-at-kal dGiš a-na e-[mu]-ḳi-ka 250[a-]ka-lu šú-wa-ra-ma ú-ṣur ra-ma-an-ka 251[li]-il-lik dEn-ki-dũ i-na pa-ni-ka 252[ur-ḫa]-am a-we-ir a-lik ḫarrana(-na) 253[a-di] šá kišti ni-ri-bi-tim 254[šá(?)] [d]Ḫu-wa-wa ka-li-šú-nu ši-ip-pi-iḫ(?)-šú 255[ša(?)a-lik] maḫ-ra tap-pa-a ú-šá-lim 256[ḫarrana](-na)-šú šú-wa-ra-[ma ú-ṣur ra-ma-na-ka] 257[li-šak-šid]-ka ir-[ni-ta]-ka dŠamaš 258[ta]-ak-bi-a-at pi-ka li-kal-li-ma i-na-ka 259li-ip-ti-ḳu pa-da-nam pi-ḫi-tam 260ḫarrana li-iš-ta-zi-ik a-na ki-ib-si-ka 261šá-di-a li-iš-ta-zi-ik a-na šêpi-ka 262mu-ši-it-ka aw-a-at ta-ḫa-du-ú 263li-ib-la-ma dLugal-ban-da li-iz-zi-iz-ka[95] 264i-na ir-ni-ti-ka 265ki-ma ṣi-iḫ-ri ir-ni-ta-ka-ma luš-mida(-da) 266i-na na-ri šá dḪu-wa-wa šá tu-ṣa-ma-ru 267mi-zi ši-pi-ka 268i-na bat-ba-ti-ka ḫi-ri bu-ur-tam 269lu-ka-a-a-nu mê ellu i-na na-di-ka 270[ka-]su-tim me-e a-na dŠamaš ta-na-di 271[li-iš]ta-ḫa-sa-as dLugal-ban-da 272[dEn-ki-]dũ pi-su i-pu-šá-am-ma, iz-za-kàr a-na dGiš 273[is(?)]-tu(?) ta-áš-dan-nu e-pu-uš a-la-kam 274[la pa]la-aḫ libbi-ka ia-ti tu-uk-la-ni 275[šú-ku-]un i-di-a-am šú-pa-as-su 276[ḫarrana(?)]šá dḪu-wa-wa it-ta-la-ku 277.......... ki-bi-ma te-[ir]-šú-nu-ti (Three lines missing.) L.E. 281.............. nam-ma-la 282............... il-li-ku it-ti-ia 283............... ba-ku-nu-ši-im 284......... [ul]-la(?)-nu i-na ḫu-ud li-ib-bi 285[i-na še-me-e] an-ni-a ga-ba-šú 286e-diš ḫarrana(?) uš-te-[zi-ik] 287a-lik dGiš lu-[ul-lik a-na pa-ni-ka] 288li-lik il-ka .......... 289li-šá-ak-lim-[ka ḫarrana] ...... 290dGiš ù[dEn-ki-dũ] ....... 291mu-di-eš .......... 292bi-ri-[su-nu] ........ [87] Translation. (About ten lines missing.) Col. I. 11.................. (my friend?) 12[Something] that is exceedingly difficult, 13[Why] dost thou desire 14[to do this?] 15.... something (?) that is very [difficult (?)], 16[Why dost thou] desire 17[to go down to the forest]? 18A message [they carried] among [men] 19They carried about. 20They made a .... 21.............. they brought 22.............................. 23.............................. (About 17 lines missing.) 40............................. 41................... my friend 42................ they raised ..... 43answer [they returned.] 44[To] the woman 45They proceeded to the overthrowing Col. II. (About eleven lines missing.) 57.......... name(?) ............. 58[The one who is] a rival [to him] 59subdue and ................ 60Wailing ................ 61The mother [of Gišh, who knows everything] 62Before [Shamash raised her hand][88] 63Who 64Now(?) [why] 65hast thou stirred up the heart for my son, 66[Restlessness imposed upon him (?)] 67............................ (About four lines missing.) 72The eyes [of Enkidu filled with tears]. 73[He clutched] his heart; 74[Sadly(?)] he sighed. 75[The eyes of En]kidu filled with tears. 76[He clutched] his heart; 77[Sadly(?)] he sighed. 78The face [of Gišh was grieved]. 79[He spoke] to Enkidu: 80[“My friend, why are] thy eyes 81[Filled with tears]? 82Thy [heart clutched] 83Dost thou sigh [sadly(?)]?” 84[Enkidu opened his mouth] and 85spoke to Gišh: 86“Attacks, my friend, 87have exhausted my strength(?). 88My arms are lame, 89my strength has become weak.” 90Gišh opened his mouth and 91spoke to Enkidu: (About four lines missing.) Col. III. 96..... [until] Ḫuwawa, [the terrible], 97........................ 98............ [I destroyed]. 99[I will go down to the] cedar forest,[89] 100................... the jungle 101............... tambourine (?) 102................ I will open it. 103Enkidu opened his mouth and 104spoke to Gišh: 105“Know, my friend, in the mountain, 106when I moved about with the cattle 107to a distance of one double hour into the heart of the forest, 108[Alone?] I penetrated within it, 109[To] Ḫuwawa, whose roar is a flood, 110whose mouth is fire, 111whose breath is death. 112Why dost thou desire 113To do this? 114To advance towards 115the dwelling(?) of Ḫuwawa?” 116Gišh opened his mouth and 117[spoke to Enkidu: 118”... [the covering(?)] I will destroy. 119....[in the forest] 120.................... 121.................... 122To ................. 123The dwelling [of Ḫuwawa] 124The axe .......... 125Thou .......... 126I will [go down to the forest].” 127Enkidu opened his mouth and 128spoke to [Gish:] 129“When [together(?)] we go down 130To the [cedar] forest, 131whose guardian, O warrior Gish, 132a power(?) without [rest(?)], 133Ḫuwawa, an offspring(?) of ....[90] 134Adad ...................... 135He ........................ Col. IV. 136To keep safe [the cedar forest], 137[Enlil has decreed for it] seven-fold terror.” 138Gish [opened] his mouth and 139spoke to [Enkidu]: 140“Whoever, my friend, overcomes (?) [terror(?)], 141it is well (for him) with Shamash for the length of [his days]. 142Mankind will speak of it at the gates. 143Wherever terror is to be faced, 144Thou, forsooth, art in fear of death. 145Thy prowess lacks strength. 146I will go before thee. 147Though thy mouth calls to me; “thou art afraid to approach.” 148If I fall, I will establish my name. 149Gish, the corpse(?) of Ḫuwawa, the terrible one, 150has snatched (?) from the time that 151My offspring was born in ...... 152The lion restrained (?) thee, all of which thou knowest. 153........................ 154.............. thee and 155................ open (?) 156........ like a shepherd(?) ..... 157[When thou callest to me], thou afflictest my heart. 158I am determined 159[to enter] the cedar forest.[91] 160I will, indeed, establish my name. 161[The work(?)], my friend, to the artisans I will entrust. 162[Weapons(?)] let them mould before us.” 163[The work(?)] to the artisans they entrusted. 164A dwelling(?) they assigned to the workmen. 165Hatchets the masters moulded: 166Axes of 3 talents each they moulded. 167Lances the masters moulded; 168Blades(?) of 2 talents each, 169A spear of 30 mina each attached to them. 170The hilt of the lances of 30 mina in gold 171Gish and [Enki]du were equipped with 10 talents each 172.......... in Erech seven its .... 173....... the people heard and .... 174[proclaimed(?)] in the street of Erech of the plazas. 175..... Gis [brought him out(?)] 176[In the street (?)] of Erech of the plazas 177[Enkidu(?)] sat before him 178..... [thus] he spoke: 179”........ [of Erech] of the plazas 180............ [before him] Col. V. 181Gish of whom they speak, let me see! 182whose name fills the lands. 183I will lure him to the cedar forest, 184Like a strong offspring of Erech.[92] 185I will let the land hear (that) 186I am determined to lure (him) in the cedar (forest)5. 187A name I will establish.” 188The elders of Erech of the plazas 189brought word to Gish: 190“Thou art young, O Gish, and thy heart carries thee away. 191Thou dost not know what thou proposest to do. 192We hear that Huwawa is enraged. 193Who has ever opposed his weapon? 194To one [double hour] in the heart of the forest, 195Who has ever penetrated into it? 196Ḫuwawa, whose roar is a deluge, 197whose mouth is fire, whose breath is death. 198Why dost thou desire to do this? 199To advance towards the dwelling (?) of Ḫuwawa?” 200Gish heard the report of his counsellors. 201He saw and cried out to [his] friend: 202“Now, my friend, thus [I speak]. 203I fear him, but [I will go to the cedar forest(?)]; 204I will go [with thee to the cedar forest]. (About five lines missing.) 210.............................. 211May ................... thee[93] 212Thy god may (?) ........ thee; 213On the road may he guide [thee in safety(?)]. 214At the rampart of [Erech of the plazas], 215Gish kneeled down [before Shamash(?)], 216A word then he spoke [to him]: 217“I will go, O Shamash, [thy] hands [I seize hold of]. 218When I shall have saved [my life], 219Bring me back to the rampart [in Erech]. 220Grant protection [to me ?]!” 221Gish cried, ”[my friend] ...... 222His oracle .................. 223........................ 224........................ 225........................ 226When (?) (About two lines missing.) Col. VI. 229”[I(?)] Gish, the strong one (?) of the land. 230...... A road which I have never [trodden]; 231........ food ...... do not (?) know. 232[When] I shall have succeeded, 233[I will praise] thee in the joy of my heart, 234[I will extol (?)] the superiority of thy power, 235[I will seat thee] on thrones.” 236.................. his vessel(?) 237The masters [brought the weapons (?)]; 238[bow] and quiver 239They placed in hand. 240[He took] the hatchet. 241................. his quiver.[94] 242..... [to] the god(?) a second time 243[With his lance(?)] in his girdle, 244......... they took the road. 245[Again] they approached Gish! 246”[How long] till thou returnest to Erech?” 247[Again the elders] approached him. 248[For] the road they counselled Gis: 249“Do [not] rely, O Gish, on thy strength! 250Provide food and save thyself! 251Let Enkidu go before thee. 252He is acquainted with the way, he has trodden the road 253[to] the entrance of the forest. 254of Ḫuwawa all of them his ...... 255[He who goes] in advance will save the companion. 256Provide for his [road] and [save thyself]! 257(May) Shamash [carry out] thy endeavor! 258May he make thy eyes see the prophecy of thy mouth. 259May he track out (for thee) the closed path! 260May he level the road for thy treading! 261May he level the mountain for thy foot! 262During thy night6 the word that wilt rejoice 263may Lugal-banda convey, and stand by thee[95] 264in thy endeavor! 265Like a youth may he establish thy endeavor! 266In the river of Ḫuwawa as thou plannest, 267wash thy feet! 268Round about thee dig a well! 269May there be pure water constantly for thy libation 270Goblets of water pour out to Shamash! 271[May] Lugal-banda take note of it!” 272[Enkidu] opened his mouth and spoke to Gish: 273”[Since thou art resolved] to take the road. 274Thy heart [be not afraid,] trust to me! 275[Confide] to my hand his dwelling(?)!” 276[on the road to] Ḫuwawa they proceeded. 277....... command their return (Three lines missing.) L.E. 281............... were filled. 282.......... they will go with me. 283............................... 284.................. joyfully. 285[Upon hearing] this word of his, 286Alone, the road(?) [he levelled]. 287“Go, O Gish [I will go before thee(?)]. 288May thy god(?) go ......... 289May he show [thee the road !] ..... 290Gish and [Enkidu] 291Knowingly .................... 292Between [them] ................ [96]Lines 13–14 (also line 16). See for the restoration, lines 112–13. Line 62. For the restoration, see Jensen, p. 146 (Tablet III, 2a,9.) Lines 64–66. Restored on the basis of the Assyrian version, ib. line 10. Line 72. Cf. Assyrian version, Tablet IV, 4, 10, and restore at the end of this line di-im-tam as in our text, instead of Jensen’s conjecture. Lines 74, 77 and 83. The restoration zar-biš, suggested by the Assyrian version, Tablet IV, 4, 4. Lines 76 and 82. Cf. Assyrian version, Tablet VIII, 3, 18. Line 78. (ú-ta-ab-bil from abâlu, “grieve” or “darkened.” Cf. uš-ta-kal (Assyrian version, ib. line 9), where, perhaps, we are to restore it-ta-[bil pa-ni-šú]. Line 87. uš-ta-li-pa from elêpu, “exhaust.” See Muss-Arnolt, Assyrian Dictionary, p. 49a. Line 89. Cf. Assyrian version, ib. line 11, and restore the end of the line there to i-ni-iš, as in our text. Line 96. For dapinu as an epithet of Ḫuwawa, see Assyrian version, Tablet III, 2a, 17, and 3a, 12. Dapinu occurs also as a description of an ox (Rm 618, Bezold, Catalogue of the Kouyunjik Tablets, etc., p. 1627). Line 98. The restoration on the basis of ib. III, 2a, 18. Lines 96–98 may possibly form a parallel to ib. lines 17–18, which would then read about as follows: “Until I overcome Ḫuwawa, the terrible, and all the evil in the land I shall have destroyed.” At the same time, it is possible that we are to restore [lu-ul]-li-ik at the end of line 98. Line 101. lilissu occurs in the Assyrian version, Tablet IV, 6, 36. Line 100. For ḫalbu, “jungle,” see Assyrian version, Tablet V, 3, 39 (p. 160). Lines 109–111. These lines enable us properly to restore Assyrian version, Tablet IV, 5, 3 = Haupt’s edition, p. 83 (col. 5, 3). No doubt the text read as ours mu-tum (or mu-u-tum) na-pis-su. Line 115. šupatu, which occurs again in line 199 and also line 275.šú-pa-as-su (= šupat-su) must have some such meaning as [97]“dwelling,” demanded by the context. [Dhorme refers me to OLZ 1916, p. 145]. Line 129. Restored on the basis of the Assyrian version, Tablet IV, 6, 38. Line 131. The restoration muḳtablu, tentatively suggested on the basis of CT XVIII, 30, 7b, where muḳtablu, “warrior,” appears as one of the designations of Gilgamesh, followed by a-lik pa-na, “the one who goes in advance,” or “leader”—the phrase so constantly used in the Ḫuwawa episode. Line 132. Cf. Assyrian version, Tablet I, 5, 18–19. Lines 136–137. These two lines restored on the basis of Jensen IV, 5, 2 and 5. The variant in the Assyrian version, šá niše (written Ukumeš in one case and Lumeš in the other), for the numeral 7 in our text to designate a terror of the largest and most widespread character, is interesting. The number 7 is similarly used as a designation of Gilgamesh, who is called Esigga imin, “seven-fold strong,” i.e., supremely strong (CT XVIII, 30, 6–8). Similarly, Enkidu, ib. line 10, is designated a-rá imina, “seven-fold.” Line 149. A difficult line because of the uncertainty of the reading at the beginning of the following line. The most obvious meaning of mi-it-tu is “corpse,” though in the Assyrian version šalamtu is used (Assyrian version, Tablet V, 2, 42). On the other hand, it is possible—as Dr. Lutz suggested to me—that mittu, despite the manner of writing, is identical with miṭṭú, the name of a divine weapon, well-known from the Assyrian creation myth (Tablet IV, 130), and other passages. The combination miṭ-ṭu šá-ḳu-ú-, “lofty weapon,” in the Bilingual text IV, R², 18 No. 3, 31–32, would favor the meaning “weapon” in our passage, since [šá]-ḳu-tu is a possible restoration at the beginning of line 150. However, the writing mi-it-ti points too distinctly to a derivative of the stem mâtu, and until a satisfactory explanation of lines 150–152 is forthcoming, we must stick to the meaning “corpse” and read the verb il-ḳu-ut. Line 152. The context suggests “lion” for the puzzling la-bu. Line 156. Another puzzling line. Dr. Clay’s copy is an accurate reproduction of what is distinguishable. At the close of the line there appears to be a sign written over an erasure. Line 158. [ga-ti lu-]uš-kun as in line 186, literally, “I will place my hand,” i.e., I purpose, I am determined. [98] Line 160. The restoration on the basis of the parallel line 187. Note the interesting phrase, “writing a name” in the sense of acquiring “fame.” Line 161. The kiškattê, “artisans,” are introduced also in the Assyrian version, Tablet VI, 187, to look at the enormous size and weight of the horns of the slain divine bull. See for other passages Muss-Arnolt Assyrian Dictionary, p. 450b. At the beginning of this line, we must seek for the same word as in line 163. Line 162. While the restoration belê, “weapon,” is purely conjectural, the context clearly demands some such word. I choose belê in preference to kakkê, in view of the Assyrian version, Tablet VI, 1. Line 163. Putuku (or putukku) from patâku would be an appropriate word for the fabrication of weapons. Line 165. The rabûtim here, as in line 167, I take as the “master mechanics” as contrasted with the ummianu, “common workmen,” or journeymen. A parallel to this forging of the weapons for the two heroes is to be found in the Sumerian fragment of the Gilgamesh Epic published by Langdon, Historical and Religious Texts from the Temple Library of Nippur (Munich, 1914), No. 55, 1–15. Lines 168–170 describe the forging of the various parts of the lances for the two heroes. The ṣipru is the spear point Muss-Arnolt, Assyrian Dictionary, p. 886b; the išid paṭri is clearly the “hilt,” and the mešelitum I therefore take as the “blade” proper. The word occurs here for the first time, so far as I can see. For 30 minas, see Assyrian version, Tablet VI, 189, as the weight of the two horns of the divine bull. Each axe weighing 3 biltu, and the lance with point and hilt 3 biltu we would have to assume 4 biltu for each pašu, so as to get a total of 10 biltu as the weight of the weapons for each hero. The lance is depicted on seal cylinders representing Gilgamesh and Enkidu, for example, Ward, Seal Cylinders, No. 199, and also in Nos. 184 and 191 in the field, with the broad hilt; and in an enlarged form in No. 648. Note the clear indication of the hilt. The two figures are Gilgamesh and Enkidu—not two Gilgameshes, as Ward assumed. See above, page 34. A different weapon is the club or mace, as seen in Ward, Nos. 170 and 173. This appears also to be the weapon which Gilgamesh holds in his hand on the colossal figure from the palace of Sargon (Jastrow, Civilization of [99]Babylonia and Assyria, Pl. LVII), though it has been given a somewhat grotesque character by a perhaps intentional approach to the scimitar, associated with Marduk (see Ward, Seal Cylinders, Chap. XXVII). The exact determination of the various weapons depicted on seal-cylinders merits a special study. Line 181. Begins a speech of Ḫuwawa, extending to line 187, reported to Gish by the elders (line 188–189), who add a further warning to the youthful and impetuous hero. Line 183. lu-uk-šú-su (also l. 186), from akâšu, “drive on” or “lure on,” occurs on the Pennsylvania tablet, line 135, uk-ki-ši, “lure on” or “entrap,” which Langdon erroneously renders “take away” and thereby misses the point completely. See the comment to the line of the Pennsylvania tablet in question. Line 192. On the phrase šanû bunu, “change of countenance,” in the sense of “enraged,” see the note to the Pennsylvania tablet, l.31. Line 194. nu-ma-at occurs in a tablet published by Meissner, Altbabyl. Privatrecht, No. 100, with bît abi, which shows that the total confine of a property is meant; here, therefore, the “interior” of the forest or heart. It is hardly a “by-form” of nuptum as Muss-Arnolt, Assyrian Dictionary, p. 690b, and others have supposed, though nu-um-tum in one passage quoted by Muss-Arnolt, ib. p. 705a, may have arisen from an aspirate pronunciation of the p in nubtum. Line 215. The kneeling attitude of prayer is an interesting touch. It symbolizes submission, as is shown by the description of Gilgamesh’s defeat in the encounter with Enkidu (Pennsylvania tablet, l. 227), where Gilgamesh is represented as forced to “kneel” to the ground. Again in the Assyrian version, Tablet V, 4, 6, Gilgamesh kneels down (though the reading ka-mis is not certain) and has a vision. Line 229. It is much to be regretted that this line is so badly preserved, for it would have enabled us definitely to restore the opening line of the Assyrian version of the Gilgamesh Epic. The fragment published by Jeremias in his appendix to his Izdubar-Nimrod, Plate IV, gives us the end of the colophon line to the Epic, reading ……… di ma-a-ti (cf. ib., Pl. I, 1. … a-ti). Our text evidently reproduces the same phrase and enables us to supply ka, as well as [100]the name of the hero Gišh of which there are distinct traces. The missing word, therefore, describes the hero as the ruler, or controller of the land. But what are the two signs before ka? A participial form from pakâdu, which one naturally thinks of, is impossible because of the ka, and for the same reason one cannot supply the word for shepherd (nakidu). One might think of ka-ak-ka-du, except that kakkadu is not used for “head” in the sense of “chief” of the land. I venture to restore [i-ik-]ka-di, “strong one.” Our text at all events disposes of Haupt’s conjecture iš-di ma-a-ti (JAOS 22, p. 11), “Bottom of the earth,” as also of Ungnad’s proposed [a-di pa]-a-ti, “to the ends” (Ungnad-Gressmann, Gilgamesch-Epos, p. 6, note), or a reading di-ma-a-ti, “pillars.” The first line of the Assyrian version would now read šá nak-ba i-mu-ru [dGis-gi(n)-maš i-ik-ka]-di ma-a-ti, i.e., “The one who saw everything, Gilgamesh the strong one (?) of the land.” We may at all events be quite certain that the name of the hero occurred in the first line and that he was described by some epithet indicating his superior position. Lines 229–235 are again an address of Gilgamesh to the sun-god, after having received a favorable “oracle” from the god (line 222). The hero promises to honor and to celebrate the god, by erecting thrones for him. Lines 237–244 describe the arming of the hero by the “master” craftsman. In addition to the pašu and paṭru, the bow (?) and quiver are given to him. Line 249 is paralleled in the new fragment of the Assyrian version published by King in PSBA 1914, page 66 (col. 1, 2), except that this fragment adds gi-mir to e-mu-ḳi-ka. Lines 251–252 correspond to column 1, 6–8, of King’s fragment, with interesting variations “battle” and “fight” instead of “way” and “road,” which show that in the interval between the old Babylonian and the Assyrian version, the real reason why Enkidu should lead the way, namely, because he knows the country in which Ḫuwawa dwells (lines 252–253), was supplemented by describing Enkidu also as being more experienced in battle than Gilgamesh. Line 254. I am unable to furnish a satisfactory rendering for this line, owing to the uncertainty of the word at the end. Can it [101]be “his household,” from the stem which in Hebrew gives us מִשְׁפָּחָה “family?” Line 255. Is paralleled by col. 1, 4, of King’s new fragment. The episode of Gišh and Enkidu proceeding to Ninsun, the mother of Gish, to obtain her counsel, which follows in King’s fragment, appears to have been omitted in the old Babylonian version. Such an elaboration of the tale is exactly what we should expect as it passed down the ages. Line 257. Our text shows that irnittu (lines 257, 264, 265) means primarily “endeavor,” and then success in one’s endeavor, or “triumph.” Lines 266–270. Do not appear to refer to rites performed after a victory, as might at a first glance appear, but merely voice the hope that Gišh will completely take possession of Ḫuwawa’s territory, so as to wash up after the fight in Ḫuwawa’s own stream; and the hope is also expressed that he may find pure water in Ḫuwawa’s land in abundance, to offer a libation to Šhamašh. Line 275. On šú-pa-as-su = šupat-su, see above, to l. 115. [Note on Sabitum (above, p. 11) In a communication before the Oriental Club of Philadelphia (Feb. 10, 1920), Prof. Haupt made the suggestion that sa-bi-tum (or tu), hitherto regarded as a proper name, is an epithet describing the woman who dwells at the seashore which Gilgamesh in the course of his wanderings reaches, as an “innkeeper”. It is noticeable that the term always appears without the determinative placed before proper names; and since in the old Babylonian version (so far as preserved) and in the Assyrian version, the determinative is invariably used, its consistent absence in the case of sabitum (Assyrian Version, Tablet X, 1, 1, 10, 15, 20; 2, 15–16 [sa-bit]; Meissner fragment col. 2, 11–12) speaks in favor of Professor Haupt’s suggestion. The meaning “innkeeper”, while not as yet found in Babylonian-Assyrian literature is most plausible, since we have sabū as a general name for ’drink’, though originally designating perhaps more specifically sesame wine (Muss-Arnolt, Assyrian Dictionary, p. 745b) or distilled brandy, according to Prof. Haupt. Similarly, in the Aramaic dialects, sebha is used for “to drink” and in the Pael to “furnish drink”. Muss-Arnolt in [102]his Assyrian Dictionary, 746b, has also recognized that sabitum was originally an epithet and compares the Aramaic sebhoyâthâ(p1) “barmaids”. In view of the bad reputation of inns in ancient Babylonia as brothels, it would be natural for an epithet like sabitum to become the equivalent to “public” women, just as the inn was a “public” house. Sabitum would, therefore, have the same force as šamḫatu (the “harlot”), used in the Gilgamesh Epic by the side of ḫarimtu “woman” (see the note to line 46 of Pennsylvania Tablet). The Sumerian term for the female innkeeper is Sal Geštinna “the woman of the wine,” known to us from the Hammurabi Code §§108–111. The bad reputation of inns is confirmed by these statutes, for the house of the Sal Geštinna is a gathering place for outlaws. The punishment of a female devotee who enters the “house of a wine woman” (bît Sal Geštinna §110) is death. It was not “prohibition” that prompted so severe a punishment, but the recognition of the purpose for which a devotee would enter such a house of ill repute. The speech of the sabitum or innkeeper to Gilgamesh (above, p. 12) was, therefore, an invitation to stay with her, instead of seeking for life elsewhere. Viewed as coming from a “public woman” the address becomes significant. The invitation would be parallel to the temptation offered by the ḫarimtu in the first tablet of the Enkidu, and to which Enkidu succumbs. The incident in the tablet would, therefore, form a parallel in the adventures of Gilgamesh to the one that originally belonged to the Enkidu cycle. Finally, it is quite possible that sabitum is actually the Akkadian equivalent of the Sumerian Sal Geštinna, though naturally until this equation is confirmed by a syllabary or by other direct evidence, it remains a conjecture. See now also Albright’s remarks on Sabitum in the A. J. S. L. 36, pp. 269 seq.] [103] 1 Scribal error for an. 2 Text apparently di. 3 Hardly ul. 4 Omitted by scribe. 5 Kišti omitted by scribe. 6 I.e., at night to thee, may Lugal-banda, etc. Corrections to the Text of Langdon’s Edition of the Pennsylvania Tablet.1 Column 1. 5. Read it-lu-tim (“heroes”) instead of id-da-tim (“omens”). 6. Read ka-ka-bu instead of ka-ka-’a. This disposes of Langdon’s note 2 on p. 211. 9 Read ú-ni-iš-šú-ma, “I became weak” (from enêšu, “weak”) instead of ilam iš-šú-ma, “He bore a net”(!). This disposes of Langdon’s note 5 on page 211. 10. Read Urukki instead of ad-ki. Langdon’s note 7 is wrong. 12. Langdon’s note 8 is wrong. ú-um-mid-ma pu-ti does not mean “he attained my front.” 14. Read ab-ba-la-áš-šú instead of at-ba-la-áš-šú. 15. Read mu-di-a-at instead of mu-u-da-a-at. 20. Read ta-ḫa-du instead of an impossible [sa]-ah-ḫa-ta—two mistakes in one word. Supply kima Sal before taḫadu. 22. Read áš-šú instead of šú; and at the end of the line read [tu-ut]-tu-ú-ma instead of šú-ú-zu. 23. Read ta-tar-ra-[as-su]. 24. Read [uš]-ti-nim-ma instead of [iš]-ti-lam-ma. 28. Read at the beginning šá instead of ina. 29. Langdon’s text and transliteration of the first word do not tally. Read ḫa-aṣ-ṣi-nu, just as in line 31. 32. Read aḫ-ta-du (“I rejoiced”) instead of aḫ-ta-ta. Column 2. 4. Read at the end of the line di-da-šá(?) ip-tí-[e] instead of Di-?-al-lu-un (!). 5. Supply dEn-ki-dū at the beginning. Traces point to this reading. 19. Read [gi]-it-ma-[lu] after dGiš, as suggested by the Assyrian version, Tablet I, 4, 38, where emûḳu (“strength”) replaces nepištu of our text. 20. Read at-[ta kima Sal ta-ḫa]-bu-[ub]-šú. 21. Read ta-[ra-am-šú ki-ma]. [104] 23. Read as one word ma-a-ag-ri-i-im (“accursed”), spelled in characteristic Hammurabi fashion, instead of dividing into two words ma-a-ak and ri-i-im, as Langdon does, who suggests as a translation “unto the place yonder(?) of the shepherd”(!). 24. Read im-ta-ḫar instead of im-ta-gar. 32. Supply ili(?) after ki-ma. 33. Read šá-ri-i-im as one word. 35. Read i-na [áš]-ri-šú [im]-ḫu-ru. 36. Traces at beginning point to either ù or ki (= itti). Restoration of lines 36–39 (perhaps to be distributed into five lines) on the basis of the Assyrian version, Tablet I, 4, 2–5. Column 3. 14. Read Kàš (= šikaram, “wine”) ši-ti, “drink,” as in line 17, instead of bi-iš-ti, which leads Langdon to render this perfectly simple line “of the conditions and the fate of the land”(!). 21. Read it-tam-ru instead of it-ta-bir-ru. 22. Supply [lùŠú]-I. 29. Read ú-gi-ir-ri from garû (“attack), instead of separating into ú and gi-ir-ri, as Langdon does, who translates “and the lion.” The sign used can never stand for the copula! Nor is girru, “lion!” 30. Read Síbmeš, “shepherds,” instead of šab-[ši]-eš! 31. šib-ba-ri is not “mountain goat,” nor can ut-tap-pi-iš mean “capture.” The first word means “dagger,” and the second “he drew out.” 33. Read it-ti-[lu] na-ki-[di-e], instead of itti immer nakie which yields no sense. Langdon’s rendering, even on the basis of his reading of the line, is a grammatical monstrosity. 35. Read giš instead of wa. 37. Read perhaps a-na [na-ki-di-e i]- za-ak-ki-ir. Column 4. 4. The first sign is clearly iz, not ta, as Langdon has it in note 1 on page 216. 9. The fourth sign is su, not šú. 10. Separate e-eš (“why”) from the following. Read ta-ḫi-[il], followed, perhaps, by la. The last sign is not certain; it may be ma. [105] 11. Read lim-nu instead of mi-nu. In the same line read a-la-ku ma-na-aḫ-[ti]-ka instead of a-la-ku-zu(!) na-aḫ … ma, which, naturally, Langdon cannot translate. 16. Read e-lu-tim instead of pa-a-ta-tim. The first sign of the line, tu, is not certain, because apparently written over an erasure. The second sign may be a. Some one has scratched the tablet at this point. 18. Read uk-la-at âli (?) instead of ug-ad-ad-lil, which gives no possible sense! Column 5. 2. Read [wa]-ar-ki-šú. 8. Read i-ta-wa-a instead of i-ta-me-a. The word pi-it-tam belongs to line 9! The sign pi is unmistakable. This disposes of note 1 on p. 218. 9. Read Mi = ṣalmu, “image.” This disposes of Langdon’s note 2 on page 218. Of six notes on this page, four are wrong. 11. The first sign appears to be si and the second ma. At the end we are perhaps to supply [šá-ki-i pu]-uk-ku-ul, on the basis of the Assyrian version, Tablet IV, 2, 45, šá-ki-i pu-[uk-ku-ul]. 12. Traces at end of line suggest i-pa(?)-ka-du. 13. Read i-[na mâti da-an e-mu]-ki i-wa. 18. Read ur-šá-nu instead of ip-šá-nu. 19. Read i-šá-ru instead of i-tu-ru. 24. The reading it-ti after dGiš is suggested by the traces. 25. Read in-ni-[ib-bi-it] at the end of the line. 28. Read ip-ta-ra-[aṣ a-la]-ak-tam at the end of the line, as in the Assyrian version, Tablet IV, 2, 37. 30. The conjectural restoration is based on the Assyrian version, Tablet IV, 2, 36. Column 6. 3. Read i-na ṣi-ri-[šú]. 5. Supply [il-li-ik]. 21. Langdon’s text has a superfluous ga. 22. Read uz-za-šú, “his anger,” instead of uṣ-ṣa-šú, “his javelin” (!). 23. Read i-ni-iḫ i-ra-as-su, i.e., “his breast was quieted,” in the sense of “his anger was appeased.” 31. Read ri-eš-ka instead of ri-eš-su. [106] In general, it should be noted that the indications of the number of lines missing at the bottom of columns 1–3 and at the top of columns 4–6 as given by Langdon are misleading. Nor should he have drawn any lines at the bottom of columns 1–3 as though the tablet were complete. Besides in very many cases the space indications of what is missing within a line are inaccurate. Dr. Langdon also omitted to copy the statement on the edge: 4 šú-ši, i.e., “240 lines;” and in the colophon he mistranslates šú-tu-ur, “written,” as though from šaṭâru, “write,” whereas the form is the permansive III, 1, of atâru, “to be in excess of.” The sign tu never has the value ṭu! In all, Langdon has misread the text or mistransliterated it in over forty places, and of the 204 preserved lines he has mistranslated about one-half. 1 The enumeration here is according to Langdon’s edition. Plates Plate I. The Yale Tablet. Plate II. The Yale Tablet. Plate III. The Yale Tablet. Plate IV. The Yale Tablet. Plate V. The Yale Tablet. Plate VI. The Yale Tablet. Plate VII. The Yale Tablet.

      Compared to the other versions focusing on the epic of Gilgamesh, this version looks more into Gilgamesh's cure for immortality after Enkidu's death. The "us" in this instance would be Gilgamesh and his search for a cure while the "them" would be the enemies which are trying stop him which include the forces he come along. The text is able to create this distinction by describing Gilgamesh as the main character as the one who is need of a cure because struggles to come to terms that he will die one day. Not to mention, Enkidu as a being was able to turn Gilgamesh into a noble figure who used his power for good turning him into a more likeable figure which is why the reader also roots for him to find a cure. Gilgamesh as a figure shows that in his time period, males were the ones who were seen as leaders who have strength because the other females in all versions of the text do not carry dynamic roles that showcase their personality or even their endearing qualities. There are more political and nationalistic themes compared to the Sumerian versions which illustrate how linguistics and language can play a role in how a culture might be perceived. By using the strong characteristics of Gilgamesh, the text is ultimately able to show the civilization of Uruk and create a sense of identity as a result. CC BY Ajey Sasimugunthan (contact)

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:<br /> I really enjoyed this manuscript from Torsekar et al on "Contrasting responses to aridity by

      different-sized decomposers cause similar decomposition rates across a precipitation gradient". The authors aimed to examine how climate interacts with decomposers of different size categories to influence litter decomposition. They proposed a new hypothesis: "The opposing climatic dependencies of macrofauna and that of microorganisms and mesofauna should lead to similar overall decomposition rates across precipitation gradients".

      This study emphasizes the importance as well as the contribution of different groups of organisms (micro, meso, macro, and whole community) across different seasons (summer with the following characteristics: hot with no precipitation, and winter with the following characteristics: cooler and wetter winter) along a precipitation gradient. The authors made use of 1050 litter baskets with different mesh sizes to capture decomposers contribution. They proposed a new hypothesis that was aiming to understand the "dryland decomposition conundrum". They combined their decomposition experiment with the sampling of decomposers by using pittfall traps across both experiment seasons. This study was carried out in Israel and based on a single litter species that is native to all seven sites. The authors found that microorganism contribution dominated in winter while macrofauna decomposition dominated the overall decomposition in summer. These seasonality differences combined with the differences in different decomposers groups fluctuation along precipitation resulted in similar overall decomposition rates across sites.<br /> I believe this manuscript has a potential to advance our knowledge on litter decomposition.

      Strengths:

      Well design study with combination of different approaches (methods) and consideration of seasonality to generalize pattern.

      The study expands to current understanding of litter decomposition and interaction between factors affecting the process (here climate and decomposers).

      Weaknesses:

      The study was only based on a single litter species.

      We now discuss the advantages and limitations of this approach in the methods and devote a completely new paragraph to this important point in the discussion (lines 394-401).

      Reviewer #2 (Public Review):

      Summary: Torsekar et al. use a leaf litter decomposition experiment across seasons, and in an aridity gradient, to provide a careful test of the role of different-sized soil invertebrates in shaping the rates of leaf litter decomposition. The authors found that large-sized invertebrates are more active in the summer and small-sized invertebrates in the winter. The summed effects of all invets then translated into similar levels of decomposition across seasons. The system breaks down in hyper-arid sites.

      Strengths: This is a well-written manuscript that provides a complete statistical analysis of a nice dataset. The authors provide a complete discussion of their results in the current literature.

      Weaknesses:

      I have only three minor comments. Please standardize the color across ALL figures (use the same color always for the same thing, and be friendly to color-blind people).

      Thank you for this important suggestion. We have now changed all figures to standardize all colors and chose a more color-blind friendly pallete.

      Fig 1 may benefit from separating the orange line (micro and meso) into two lines that reflect your experimental setup and results. I would mention the dryland decomposition conundrum earlier in the Introduction.

      We based our novel hypotheses on a thorough literature search. Accordingly, decomposition is expected to be positively associated with moisture, regardless of the decomposer body size. Our contribution to theory was to suggest that macro-detritivores may respond very differently to climatic conditions and dominate litter decomposition in warm arid-lands (we listed the reasons in the text). Consequently, we did not distinguish between microorganisms and mesofauna. We assumed that both groups inhabit the litter substrate and have limited adaptation to dry conditions. Our results provide strong evidence that this presumption is likely wrong and that mesofauna respond to climate very differently from micro-decomposers. Yet, we cannot use hindsight understanding to improve our original hypothesis. We now emphasize this important point at the discussion as important future direction. 

      Although we are very appreciative and pleased with the reviewer enthusiasm to highlight the importance of our work as a possible solution to the longstanding dryland decomposition conundrum, we decided not to move it to the introduction. This is because we think that our work is not centred on resolving the DDC but provides more general principles that may lead to a paradigm shift in the way ecologists study nutrient cycling across ecosystems.

      And the manuscript is full of minor grammatical errors. Some careful reading and fixing of all these minor mistakes here and there would be needed.

      We apologize and did our best to find and fix those mistakes

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      I really enjoyed this manuscript from Torsekar et al on "Contrasting responses to aridity by different-sized decomposers cause similar decomposition rates across a precipitation gradient". The authors aimed to examine how climate interacts with decomposers of different size categories to influence litter decomposition. They proposed a new hypothesis: "The opposing climatic dependencies of macrofauna and that of microorganisms and mesofauna should lead to similar overall decomposition rates across precipitation gradients".

      This study emphasizes the importance as well as the contribution of different groups of organisms (micro, meso, macro, and whole community) across different seasons (summer with the following characteristics: hot with no precipitation, and winter with the following characteristics: cooler and wetter winter) along a precipitation gradient. The authors made use of 1050 litter baskets with different mesh sizes to capture decomposers contribution. They proposed a new hypothesis that was aiming to understand the "dryland decomposition conundrum". They combined their decomposition experiment with the sampling of decomposers by using pitfall traps across both experiment seasons. This study was carried out in Israel and based on a single litter species that is native to all seven sites. The authors found that microorganism contribution dominated in winter while macrofauna decomposition dominated the overall decomposition in summer. These seasonality differences combined with the differences in different decomposers groups fluctuation along precipitation resulted in similar overall decomposition rates across sites.

      I believe this manuscript has the potential to advance our knowledge on litter decomposition. Below i provide my general and specific comments.

      General comments:

      (1) Study in general is well designed and well thought beforehand,

      (2) Study aims to expand the current understanding of the dryland decomposition conundrum

      (3) The should put a caveat to the fact they only use one litter species and call for examining litter mixture in the same gradient.

      (4) Please check the way you reduce the random effects from your initial model, I have provided a better way to do so in my specific comments

      (5) For Figure 1, authors can check my comment on this and see if they could revise the figure.

      Thank you for the positive feedback and your valuable comments. We have tried to best address all comments and suggestions for improvement and clarification

      Specific comments

      Line # 57 Please write "Theory suggests" instead of "Theory suggest"

      We changed the text as suggested

      Line # 70, please write "Indeed, handful evidence shows" instead of "Indeed, handful evidence show"

      We changed the text as suggested

      Figure 1: I like this conceptual framework. I have a silly question, why is it that the slopes of the whole community at the beginning (between Hyperarid and Arid) is the same as the Macro fauna, I would think the slope should be higher as this is adding up right? and also the same goes for the decomposition of whole community later on. For me this should reflect the adding or summing up (if i am right) then the authors should think about how this could be reflected in the figure.

      We agree with your interpretation that the whole community decomposition reflects the addition by constituent decomposers. The slope of the whole community decomposition between hyper-arid and arid is slightly higher than the one of macro decomposition to reflect the additive effect of macro with meso+micro decomposition. We have now changed the figure slightly to make this point more visible (Line 106).

      Line # 111 Please make "Methods" bold as well to be consistent with others headings.

      We changed the formatting as suggested

      Line #125 and in other lines as well please replace "X" by "x" to denote multiplication.

      We changed the formatting as suggested

      Table 1 Please add "*" to climate like this "Climate*" so that the end note of the table could make sense

      Thank you for this suggestion. We have now added the asterisk referring to the note below the Table.

      Figure 2, please consider putting at line #133, mean annual precipitation (MAP), as such for line # 135 You can directly says The precipitation map ....

      We made both changes as suggested.

      Line # 138 I would not use the different units for the same values. I do understand that you want to emphasize the accuracy but i would write instead 3 +- 0.001 g

      We changed the units as suggested.

      Line # 145, how is the litter basket customized to rest at 1 cm above ground level?

      We have now clarified –that we cut-open windows one centimeter above the cage floor. The cages were positioned on the soil (line 144).

      Lines # 181-183, I like the approach of checking the necessity of having the random effects. However, it has been reported that likelihood ratio test (LRT) are not really reliable to test for random effects. I will suggest you rather use permutations instead. I think the function is confint(MODEL) you need to specify the number of permutation the higher the better but you should start with 99 first and see how the results look like if promising then you can even go to 9999. But it will need computation power and and time.

      Thank you for the suggestion. We now used a simulation-based exact test, instead of a LRT, to examine the random effect, as recommended by the authors from the “lme4” package. As recommended, we used 9999 simulations. The simulation test yielded a similar result to those originally reported (see lines 181-183).

      Line # 187, 188, 188, please do not use capital letter to start mesofauna, macrofauna and whole-community

      We changed the formatting as suggested

      Line # 205 Please add the version number of R in the text.

      We now included the version number as suggested.

      Line # 209-211, could you please check whether "then" is the word you want to use or "than"

      Our bad- we indeed meant “than” and have made the appropriate changes.

      Line # 227 and in other places as well please provide the second degree of freedom of the F test.

      Thank you for this important comment. We have now added the second degree of freedom to the relevant results (lines 229, 232).

      Figure 3 and Figure 4 show some results that are negative, can you please explain what might be the reasons behind this?

      We now explain this important point in the figures’ captions.

      Figure 5 Please add label to the x-axis.

      Thank you-we have now included a label.

      Line # 357, the sentence "... meso-decomposition, like microbial decomposition,...", I don't understand which criteria authors used to classify microbial decomposition as "meso-decomposition"?

      We now remove this potential cause of confusion by using the term ‘meso-decomposition’ to distinguish from microbial decomposition (Line 366).

      Line # 380 Kindly put "per se" in italic.

      We changed the formatting as suggested

      References

      The references format are not consistent. For example for the same journal (say Trends in Ecology and Evolution) the authors sometimes wrote the full name like at line # 36 (and also realize that "vol" should not be written as such) but wrote the abbreviations at line #42

      Our bad- we apologize and carefully checked all references to make sure the style is consistent.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study provides solid evidence that both psychiatric dimensions (e.g. anhedonia, apathy, or depression) and chronotype (i.e., being a morning or evening person) influence effort-based decision-making. Notably, the current study does not elucidate whether there may be interactive effects of chronotype and psychiatric dimensions on decision-making. This work is of importance to researchers and clinicians alike, who may make inferences about behaviour and cognition without taking into account whether the individual may be tested or observed out-of-sync with their phenotype.

      We thank the three reviewers for their comments, and the Editors at eLife. We have taken the opportunity to revise our manuscript considerably from its original form, not least because we feel a number of the reviewers’ suggested analyses strengthen our manuscript considerably (in one instance even clarifying our conclusions, leading us to change our title)—for which we are very appreciative indeed. 

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This study uses an online cognitive task to assess how reward and effort are integrated in a motivated decision-making task. In particular the authors were looking to explore how neuropsychiatric symptoms, in particular apathy and anhedonia, and circadian rhythms affect behavior in this task. Amongst many results, they found that choice bias (the degree to which integrated reward and effort affects decisions) is reduced in individuals with greater neuropsychiatric symptoms, and late chronotypes (being an 'evening person').

      Strengths:

      The authors recruited participants to perform the cognitive task both in and out of sync with their chronotypes, allowing for the important insight that individuals with late chronotypes show a more reduced choice bias when tested in the morning.<br /> Overall, this is a well-designed and controlled online experimental study. The modelling approach is robust, with care being taken to both perform and explain to the readers the various tests used to ensure the models allow the authors to sufficiently test their hypotheses.

      Weaknesses:

      This study was not designed to test the interactions of neuropsychiatric symptoms and chronotypes on decision making, and thus can only make preliminary suggestions regarding how symptoms, chronotypes and time-of-assessment interact.

      We appreciate the Reviewer’s positive view of our research and agree with their assessment of its weaknesses; the study was not designed to assess chronotype-mental health interactions. We hope that our new title and contextualisation makes this clearer. We respond in more detail point-by-point below.

      Reviewer #2 (Public Review):

      Summary:

      The study combines computational modeling of choice behavior with an economic, effort-based decision-making task to assess how willingness to exert physical effort for a reward varies as a function of individual differences in apathy and anhedonia, or depression, as well as chronotype. They find an overall reduction in effort selection that scales with apathy and anhedonia and depression. They also find that later chronotypes are less likely to choose effort than earlier chronotypes and, interestingly, an interaction whereby later chronotypes are especially unwilling to exert effort in the morning versus the evening.

      Strengths:

      This study uses state-of-the-art tools for model fitting and validation and regression methods which rule out multicollinearity among symptom measures and Bayesian methods which estimate effects and uncertainty about those estimates. The replication of results across two different kinds of samples is another strength. Finally, the study provides new information about the effects not only of chronotype but also chronotype by timepoint interactions which are previously unknown in the subfield of effort-based decision-making.

      Weaknesses:

      The study has few weaknesses. One potential concern is that the range of models which were tested was narrow, and other models might have been considered. For example, the Authors might have also tried to fit models with an overall inverse temperature parameter to capture decision noise. One reason for doing so is that some variance in the bias parameter might be attributed to noise, which was not modeled here. Another concern is that the manuscripts discuss effort-based choice as a transdiagnostic feature - and there is evidence in other studies that effort deficits are a transdiagnostic feature of multiple disorders. However, because the present study does not investigate multiple diagnostic categories, it doesn't provide evidence for transdiagnosticity, per se.

      We appreciate Reviewer 2’s assessment of our research and agree generally with its weaknesses. We have now addressed the Reviewer’s comments regarding transdiagnosticity in the discussion of our revised version and have addressed their detailed recommendations below (see point-by-point responses).

      In addition to the below specific changes, in our Discussion section, we now have also added the following (lines 538 – 540):

      “Finally, we would like to note that as our study is based on a general population sample, rather than a clinical one. Hence, we cannot speak to transdiagnosticity on the level of multiple diagnostic categories.”

      Reviewer #3 (Public Review):

      Summary:

      In this manuscript, Mehrhof and Nord study a large dataset of participants collected online (n=958 after exclusions) who performed a simple effort-based choice task. They report that the level of effort and reward influence choices in a way that is expected from prior work. They then relate choice preferences to neuropsychiatric syndromes and, in a smaller sample (n<200), to people's circadian preferences, i.e., whether they are a morning-preferring or evening-preferring chronotype. They find relationships between the choice bias (a model parameter capturing the likelihood to accept effort-reward challenges, like an intercept) and anhedonia and apathy, as well as chronotype. People with higher anhedonia and apathy and an evening chronotype are less likely to accept challenges (more negative choice bias). People with an evening chronotype are also more reward sensitive and more likely to accept challenges in the evening, compared to the morning.

      Strengths:

      This is an interesting and well-written manuscript which replicates some known results and introduces a new consideration related to potential chronotype relationships which have not been explored before. It uses a large sample size and includes analyses related to transdiagnostic as well as diagnostic criteria. I have some suggestions for improvements.

      Weaknesses:

      (1) The novel findings in this manuscript are those pertaining to transdiagnostic and circadian phenotypes. The authors report two separate but "overlapping" effects: individuals high on anhedonia/apathy are less willing to accept offers in the task, and similarly, individuals tested off their chronotype are less willing to accept offers in the task. The authors claim that the latter has implications for studying the former. In other words, because individuals high on anhedonia/apathy predominantly have a late chronotype (but might be tested early in the day), they might accept less offers, which could spuriously look like a link between anhedonia/apathy and choices but might in fact be an effect of the interaction between chronotype and time-of-testing. The authors therefore argue that chronotype needs to be accounted for when studying links between depression and effort tasks.

      The authors argue that, if X is associated with Y and Z is associated with Y, X and Z might confound each other. That is possible, but not necessarily true. It would need to be tested explicitly by having X (anhedonia/apathy) and Z (chronotype) in the same regression model. Does the effect of anhedonia/apathy on choices disappear when accounting for chronotype (and time-of-testing)? Similarly, when adding the interaction between anhedonia/apathy, chronotype, and time-of-testing, within the subsample of people tested off their chronotype, is there a residual effect of anhedonia/apathy on choices or not?

      If the effect of anhedonia/apathy disappeared (or got weaker) while accounting for chronotype, this result would suggest that chronotype mediates the effect of anhedonia/apathy on effort choices. However, I am not sure it renders the direct effect of anhedonia/apathy on choices entirely spurious. Late chronotype might be a feature (induced by other symptoms) of depression (such as fatigue and insomnia), and the association between anhedonia/apathy and effort choices might be a true and meaningful one. For example, if the effect of anhedonia/apathy on effort choices was mediated by altered connectivity of the dorsal ACC, we would not say that ACC connectivity renders the link between depression and effort choices "spurious", but we would speak of a mechanism that explains this effect. The authors should discuss in a more nuanced way what a significant mediation by the chronotype/time-of-testing congruency means for interpreting effects of depression in computational psychiatry.

      We thank the Reviewer for pointing out this crucial weakness in the original version of our manuscript. We have now thought deeply about this and agree with the Reviewer that our original results did not warrant our interpretation that reported effects of anhedonia and apathy on measures of effort-based decision-making could potentially be spurious. At the Reviewer’s suggestion, we decided to test this explicitly in our revised version—a decision that has now deepened our understanding of our results, and changed our interpretation thereof.  

      To investigate how the effects of neuropsychiatric symptoms and the effects of circadian measures relate to each other, we have followed the Reviewer’s advice and conducted an additional series of analyses (see below). Surprisingly (to us, but perhaps not the Reviewer) we discovered that all three symptom measures (two of anhedonia, one of apathy) have separable effects from circadian measures on the decision to expend effort (note we have also re-named our key parameter ‘motivational tendency’ to address this Reviewer’s next comment that the term ‘choice bias’ was unclear). In model comparisons (based on leave-one-out information criterion which penalises for model complexity) the models including both circadian and psychiatric measures always win against the models including either circadian or psychiatric measures. In essence, this strengthens our claims about the importance of measuring circadian rhythm in effort-based tasks generally, as circadian rhythm clearly plays an important role even when considering neuropsychiatric symptoms, but crucially does not support the idea of spurious effects: statistically, circadian measures contributes separably from neuropsychiatric symptoms to the variance in effort-based decision-making. We think this is very interesting indeed, and certainly clarifies (and corrects the inaccuracy in) our original interpretation—and can only express our thanks to the Reviewer for helping us understand our effect more fully.

      In response to these new insights, we have made numerous edits to our manuscript. First, we changed the title from “Overlapping effects of neuropsychiatric symptoms and circadian rhythm on effort-based decision-making” to “Both neuropsychiatric symptoms and circadian rhythm alter effort-based decision-making”. In the remaining manuscript we now refrain from using the word ‘overlapping’ (which could be interpreted as overlapping in explained variance), and instead opted to describe the effects as parallel. We hope our new analyses, title, and clarified/improved interpretations together address the Reviewer’s valid concern about our manuscript’s main weakness.

      We detail these new analyses in the Methods section as follows (lines 800 – 814):

      “4.5.2. Differentiating between the effects of neuropsychiatric symptoms and circadian measures on motivational tendency

      To investigate how the effects of neuropsychiatric symptoms on motivational tendency (2.3.1) relate to effects of chronotype and time-of-day on motivational tendency we conducted exploratory analyses. In the subsamples of participants with an early or late chronotype (including additionally collected data), we first ran Bayesian GLMs with neuropsychiatric questionnaire scores (SHAPS, DARS, AES respectively) predicting motivational tendency, controlling for age and gender. We next added an interaction term of chronotype and time-of-day into the GLMs, testing how this changes previously observed neuropsychiatric and circadian effects on motivational tendency. Finally, we conducted a model comparison using LOO, comparing between motivational tendency predicted by a neuropsychiatric questionnaire, motivational tendency predicted by chronotype and time-of-day, and motivational tendency predicted by a neuropsychiatric questionnaire and time-of-day (for each neuropsychiatric questionnaire, and controlling for age and gender).”

      Results of the outlined analyses are reported in the results section as follows (lines 356 – 383):

      “2.5.2.1 Neuropsychiatric symptoms and circadian measures have separable effects on motivational tendency

      Exploratory analyses testing for the effects of neuropsychiatric questionnaires on motivational tendency in the subsamples of early and late chronotypes confirmed the predictive value of the SHAPS (M=-0.24, 95% HDI=[-0.42,-0.06]), the DARS (M=-0.16, 95% HDI=[-0.31,-0.01]), and the AES (M=-0.18, 95% HDI=[-0.32,-0.02]) on motivational tendency.

      For the SHAPS, we find that when adding the measures of chronotype and time-of-day back into the GLMs, the main effect of the SHAPS (M=-0.26, 95% HDI=[-0.43,-0.07]), the main effect of chronotype (M=-0.11, 95% HDI=[-0.22,-0.01]), and the interaction effect of chronotype and time-of-day (M=0.20, 95% HDI=[0.07,0.34]) on motivational tendency remain. Model comparison by LOOIC reveals motivational tendency is best predicted by the model including the SHAPS, chronotype and time-of-day as predictors, followed by the model including only the SHAPS. Note that this approach to model comparison penalizes models for increasing complexity.

      Repeating these steps with the DARS, the main effect of the DARS is found numerically, but the 95% HDI just includes 0 (M=-0.15, 95% HDI=[-0.30,0.002]). The main effect of chronotype (M=-0.11, 95% HDI=[-0.21,-0.01]), and the interaction effect of chronotype and time-of-day (M=0.18, 95% HDI=[0.05,0.33]) on motivational tendency remain. Model comparison identifies the model including the DARS and circadian measures as the best model, followed by the model including only the DARS.

      For the AES, the main effect of the AES is found (M=-0.19, 95% HDI=[-0.35,-0.04]). For the main effect of chronotype, the 95% narrowly includes 0 (M=-0.10, 95% HDI=[-0.21,0.002]), while the interaction effect of chronotype and time-of-day (M=0.20, 95% HDI=[0.07,0.34]) on motivational tendency remains. Model comparison identifies the model including the AES and circadian measures as the best model, followed by the model including only the AES.”

      We have now edited parts of our Discussion to discuss and reflect these new insights, including the following.

      Lines 399 – 402:

      “Various neuropsychiatric disorders are marked by disruptions in circadian rhythm, such as a late chronotype. However, research has rarely investigated how transdiagnostic mechanisms underlying neuropsychiatric conditions may relate to inter-individual differences in circadian rhythm.”

      Lines 475 – 480:

      “It is striking that the effects of neuropsychiatric symptoms on effort-based decision-making largely are paralleled by circadian effects on the same neurocomputational parameter. Exploratory analyses predicting motivational tendency by neuropsychiatric symptoms and circadian measures simultaneously indicate the effects go beyond recapitulating each other, but rather explain separable parts of the variance in motivational tendency.”

      Lines 528 – 532:

      “Our reported analyses investigating neuropsychiatric and circadian effects on effort-based decision-making simultaneously are exploratory, as our study design was not ideally set out to examine this. Further work is needed to disentangle separable effects of neuropsychiatric and circadian measures on effort-based decision-making.”

      Lines 543 – 550:

      “We demonstrate that neuropsychiatric effects on effort-based decision-making are paralleled by effects of circadian rhythm and time-of-day. Exploratory analyses suggest these effects account for separable parts of the variance in effort-based decision-making. It unlikely that effects of neuropsychiatric effects on effort-based decision-making reported here and in previous literature are a spurious result due to multicollinearity with chronotype. Yet, not accounting for chronotype and time of testing, which is the predominant practice in the field, could affect results.”

      (2) It seems that all key results relate to the choice bias in the model (as opposed to reward or effort sensitivity). It would therefore be helpful to understand what fundamental process the choice bias is really capturing in this task. This is not discussed, and the direction of effects is not discussed either, but potentially quite important. It seems that the choice bias captures how many effortful reward challenges are accepted overall which maybe captures general motivation or task engagement. Maybe it is then quite expected that this could be linked with questionnaires measuring general motivation/pleasure/task engagement. Formally, the choice bias is the constant term or intercept in the model for p(accept), but the authors never comment on what its sign means. If I'm not mistaken, people with higher anhedonia but also higher apathy are less likely to accept challenges and thus engage in the task (more negative choice bias). I could not find any discussion or even mention of what these results mean. This similarly pertains to the results on chronotype. In general, "choice bias" may not be the most intuitive term and the authors may want to consider renaming it. Also, given the sign of what the choice bias means could be flipped with a simple sign flip in the model equation (i.e., equating to accepting more vs accepting less offers), it would be helpful to show some basic plots to illustrate the identified differences (e.g., plotting the % accepted for people in the upper and lower tertile for the SHAPS score etc).

      We apologise that this was not made clear previously: the meaning and directionality of “choice bias” is indeed central to our results. We also thank the Reviewer for pointing out the previousely-used term “choice bias” itself might not be intuitive. We have now changed this to ‘motivational tendency’ (see below) as well as added substantial details on this parameter to the manuscript, including additional explanations and visualisations of the model as suggested by the Reviewer (new Figure 3) and model-agnostic results to aid interpretation (new Figure S3). Note the latter is complex due to our staircasing procedure (see new figure panel D further detailing our staircasing procedure in Figure 2). This shows that participants with more pronounced anhedonia are less likely to accept offers than those with low anhedonia (Fig. S3A), a model-agnostic version of our central result.

      Our changes are detailed below:

      After careful evaluation we have decided to term the parameter “motivational tendency”, hoping that this will present a more intuitive description of the parameter.

      To aid with the understanding and interpretation of the model parameters, and motivational tendency in particular, we have added the following explanation to the main text:

      Lines 149 – 155:

      “The models posit efforts and rewards are joined into a subjective value (SV), weighed by individual effort (and reward sensitivity (parameters. The subjective value is then integrated with an individual motivational tendency (a) parameter to guide decision-making. Specifically, the motivational tendency parameter determines the range at which subjective values are translated to acceptance probabilities: the same subjective value will translate to a higher acceptance probability the higher the motivational tendency.”

      Further, we have included a new figure, visualizing the model. This demonstrates how the different model parameters contribute to the model (A), and how different values on each parameter affects the model (B-D).

      We agree that plotting model agnostic effects in our data may help the reader gain intuition of what our task results mean. We hope to address this with our added section on “Model agnostic task measures relating to questionnaires”. We first followed the reviewer’s suggestion of extracting subsamples with higher and low anhedonia (as measured with the SHAPS, highest and lowest quantile) and plotted the acceptance proportion across effort and reward levels (panel A in figure below). However, due to our implemented task design, this only shows part of the picture: the staircasing procedure individualises which effort-reward combination a participant is presented with. Therefore, group differences in choice behaviour will lead to differences in the development of the staircases implemented in our task. Thus, we plotted the count of offered effort-reward combinations for the subsamples of participants with high vs. low SHAPS scores by the end of the task, averaged across staircases and participants.

      As the aspect of task development due to the implemented staircasing may not have been explained sufficiently in the main text, we have included panel (D) in figure 2.

      Further, we have added the following figure reference to the main text (lines 189 – 193):

      “The development of offered effort and reward levels across trials is shown in figure 2D; this shows that as participants generally tend to accept challenges rather than reject them, the implemented staircasing procedure develops toward higher effort and lover reward challenges.”

      To statistically test effects of model-agnostic task measures on the neuropsychiatric questionnaires, we performed Bayesian GLMs with the proportion of accepted trials predicted by SHAPS and AES. This is reported in the text as follows.

      Supplement, lines 172 – 189:

      “To explore the relationship between model agnostic task measures to questionnaire measures of neuropsychiatric symptoms, we conducted Bayesian GLMs, with the proportion of accepted trials predicted by SHAPS scores, controlling for age and gender. The proportion of accepted trials averaged across effort and reward levels was predicted by the Snaith-Hamilton Pleasure Scale (SHAPS) sum scores (M=-0.07; 95%HDI=[-0.12,-0.03]) and the Apathy Evaluation Scale (AES) sum scores (M=-0.05; 95%HDI=[-0.10,-0.002]). Note that this was not driven only by higher effort levels; even confining data to the lowest two effort levels, SHAPS has a predictive value for the proportion of accepted trials: M=-0.05; 95%HDI=[-0.07,-0.02].<br /> A visualisation of model agnostic task measures relating to symptoms is given in Fig. S4, comparing subgroups of participants scoring in the highest and lowest quartile on the SHAPS. This shows that participants with a high SHAPS score (i.e., more pronounced anhedonia) are less likely to accept offers than those with a low SHAPS score (Fig. S4A). Due to the implemented staircasing procedure, group differences can also be seen in the effort-reward combinations offered per trial. While for both groups, the staircasing procedure seems to devolve towards high effort – low reward offers, this is more pronounced in the subgroup of participants with a lower SHAPS score (Fig S4B).”

      (3) None of the key effects relate to effort or reward sensitivity which is somewhat surprising given the previous literature and also means that it is hard to know if choice bias results would be equally found in tasks without any effort component. (The only analysis related to effort sensitivity is exploratory and in a subsample of N=56 per group looking at people meeting criteria for MDD vs matched controls.) Were stimuli constructed such that effort and reward sensitivity could be separated (i.e., are uncorrelated/orthogonal)? Maybe it would be worth looking at the % accepted in the largest or two largest effort value bins in an exploratory analysis. It seems the lowest and 2nd lowest effort level generally lead to accepting the challenge pretty much all the time, so including those effort levels might not be sensitive to individual difference analyses?

      We too were initially surprised by the lack of effect of neuropsychiatric symptoms on reward and effort sensitivity. To address the Reviewer’s first comment, the nature of the ‘choice bias’ parameter (now motivational tendency) is its critical importance in the context of effort-based decision-making: it is not modelled or measured explicitly in tasks without effort (such as typical reward tasks), so it would be impossible to test this in tasks without an effort component. 

      For the Reviewer’s second comment, the exploratory MDD analysis is not our only one related to effort sensitivity: the effort sensitivity parameter is included in all of our central analyses, and (like reward sensitivity), does not relate to our measured neuropsychiatric symptoms (e.g., see page 15). Note most previous effort tasks do not include a ‘choice bias’/motivational tendency parameter, potentially explaining this discrepancy. However, our model was quantitatively superior to models without this parameter, for example with only effort- and reward-sensitivity (page 11, Fig. 3).

      Our three model parameters (reward sensitivity, effort sensitivity, and choice bias/motivational tendency) were indeed uncorrelated/orthogonal to one another (see parameter orthogonality analyses below), making it unlikely that the variance and effect captured by our motivational tendency parameter (previously termed “choice bias”) should really be attributed to reward sensitivity. As per the Reviewer’s suggestion, we also examined whether the lowest two effort levels might not be sensitive to individual differences; in fact, we found out proportion of accepted trials on the lowest effort levels alone was nevertheless predicted by anhedonia (see ceiling effect analyses below).

      Specifically, in terms of parameter orthogonality:

      When developing our task design and computational modelling approach we were careful to ensure that meaningful neurocomputational parameters could be estimated and that no spurious correlations between parameters would be introduced by modelling. By conducting parameter recoveries for all models, we showed that our modelling approach could reliably estimate parameters, and that estimated parameters are orthogonal to the other underlying parameters (as can be seen in Figure S1 in the supplement). It is thus unlikely that the variance and effect captured by our motivational tendency parameter (previously termed “choice bias”) should really be attributed to reward sensitivity.

      And finally, regarding the possibility of a ceiling effect for low effort levels:

      We agree that visual inspection of the proportion of accepted results across effort and reward values can lead to the belief that a ceiling effect prevents the two lowest effort levels from capturing any inter-individual differences. To test whether this is the case, we ran a Bayesian GLM with the SHAPS sum score predicting the proportion of accepted trials (controlling for age and gender), in a subset of the data including only trials with an effort level of 1 or 2. We found the SHAPS has a predictive value for the proportion of accepted trials in the lowest two effort levels: M=-0.05; 95%HDI=[-0.07,-0.02]). This is noted in the text as follows.

      Supplement, lines 175 – 180:

      “The proportion of accepted trials averaged across effort and reward levels was predicted by the Snaith-Hamilton Pleasure Scale (SHAPS) sum scores (M=-0.07; 95%HDI=[-0.12,-0.03]) and the Apathy Evaluation Scale (AES) sum scores (M=-0.05; 95%HDI=[-0.10,-0.002]). Note that this was not driven only by higher effort levels; even confining data to the lowest two effort levels, SHAPS has a predictive value for the proportion of accepted trials: M=-0.05; 95%HDI=[-0.07,-0.02].”

      (4) The abstract and discussion seem overstated (implications for the school system and statements on circadian rhythms which were not measured here). They should be toned down to reflect conclusions supported by the data.

      We thank the Reviewer for pointing this out, and have now removed these claims from the abstract and Discussion; we hope they now better reflect conclusions supported by these data directly.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Suggestions for improved or additional experiments, data or analyses.

      - For a non-computational audience, it would be useful to unpack the influence of the choice bias on behavior, as it is less clear how this would affect decision-making than sensitivity to effort or reward. Perhaps a figure showing accept/reject decisions when sensitivities are held and choice bias is high would be beneficial.

      We thank the Reviewer for suggesting additional explanations of the choice bias parameter to aid interpretation for non-computational readers; as per the Reviewer’s suggestion, we have now included additional explanations and visualisations (Figure 3) to make this as clear as possible. Please note also that, in response to one of the other Reviewers and after careful considerations, we have decided to rename the “choice bias” parameter to “motivational tendency”, hoping this will prove more intuitive.

      To aid with the understanding and interpretation of this and the other model parameters, we have added the following explanation to the main text.

      Lines 149 – 155:

      “The models posit efforts and rewards are joined into a subjective value (SV), weighed by individual effort (and reward sensitivity (parameters. The subjective value is then integrated with an individual motivational tendency (a) parameter to guide decision-making. Specifically, the motivational tendency parameter determines the range at which subjective values are translated to acceptance probabilities: the same subjective value will translate to a higher acceptance probability the higher the motivational tendency.”

      Additionally, we add the following explanation to the Methods section.

      Lines 698 – 709:

      First, a cost function transforms costs and rewards associated with an action into a subjective value (SV):

      with and for reward and effort sensitivity, and ℛ and 𝐸 for reward and effort. Higher effort and reward sensitivity mean the SV is more strongly influenced by changes in effort and reward, respectively (Fig. 3B-C). Hence, low effort and reward sensitivity mean the SV, and with that decision-making, is less guided by effort and reward offers, as would be in random decision-making.

      This SV is then transformed to an acceptance probability by a softmax function:

      with for the predicted acceptance probability and 𝛼 for the intercept representing motivational tendency. A high motivational tendency means a subjects has a tendency, or bias, to accept rather than reject offers (Fig. 3D).

      Our new figure (panels A-D in figure 3) visualizes the model. This demonstrates how the different model parameters come at play in the model (A), and how different values on each parameter affects the model (B-D).

      - The early and late chronotype groups have significant differences in ages and gender. Additional supplementary analysis here may mitigate any concerns from readers.

      The Reviewer is right to notice that our subsamples of early and late chronotypes differ significantly in age and gender, but it important to note that all our analyses comparing these two groups take this into account, statistically controlling for age and gender. We regret that this was previously only mentioned in the Methods section, so this information was not accessible where most relevant. To remedy this, we have amended the Results section as follows.

      Lines 317 – 323:

      “Bayesian GLMs, controlling for age and gender, predicting task parameters by time-of-day and chronotype showed effects of chronotype on reward sensitivity (i.e. those with a late chronotype had a higher reward sensitivity; M= 0.325, 95% HDI=[0.19,0.46]) and motivational tendency (higher in early chronotypes; M=-0.248, 95% HDI=[-0.37,-0.11]), as well as an interaction between chronotype and time-of-day on motivational tendency (M=0.309, 95% HDI=[0.15,0.48]).”

      (2) Recommendations for improving the writing and presentation.

      - I found the term 'overlapping' a little jarring. I think the authors use it to mean both neuropsychiatric symptoms and chronotypes affect task parameters, but they are are not tested to be 'separable', nor is an interaction tested. Perhaps being upfront about how interactions are not being tested here (in the introduction, and not waiting until the discussion) would give an opportunity to operationalize this term.

      We agree with the Reviewer that our previously-used term “overlapping” was not ideal: it may have been misleading, and was not necessarily reflective of the nature of our findings. We now state explicitly that we are not testing an interaction between neuropsychiatric symptoms and chronotypes in our primary analyses. Additionally, following suggestions made by Reviewer 3, we ran new exploratory analyses to investigate how the effects of neuropsychiatric symptoms and circadian measures on motivational tendency relate to one another. These results in fact show that all three symptom measures have separable effects from circadian measures on motivational tendency. This supports the Reviewer’s view that ‘overlapping’ was entirely the wrong word—although it nevertheless shows the important contribution of circadian rhythm as well as neuropsychiatric symptoms in effort-based decision-making. We have changed the manuscript throughout to better describe this important, more accurate interpretation of our findings, including replacing the term “overlapping”. We changed the title from “Overlapping effects of neuropsychiatric symptoms and circadian rhythm on effort-based decision-making” to “Both neuropsychiatric symptoms and circadian rhythm alter effort-based decision-making”.

      To clarify the intention of our primary analyses, we have added the following to the last paragraph of the introduction.

      Lines 107 – 112:

      “Next, we pre-registered a follow-up experiment to directly investigate how circadian preference interacts with time-of-day on motivational decision-making, using the same task and computational modelling approach. While this allows us to test how circadian effects on motivational decision-making compare to neuropsychiatric effects, we do not test for possible interactions between neuropsychiatric symptoms and chronobiology.”

      We detail our new analyses in the Methods section as follows.

      Lines 800 – 814:

      “4.5.2 Differentiating between the effects of neuropsychiatric symptoms and circadian measures on motivational tendency

      To investigate how the effects of neuropsychiatric symptoms on motivational tendency (2.3.1) relate to effects of chronotype and time-of-day on motivational tendency we conducted exploratory analyses. In the subsamples of participants with an early or late chronotype (including additionally collected data), we first ran Bayesian GLMs with neuropsychiatric questionnaire scores (SHAPS, DARS, AES respectively) predicting motivational tendency, controlling for age and gender. We next added an interaction term of chronotype and time-of-day into the GLMs, testing how this changes previously observed neuropsychiatric and circadian effects on motivational tendency. Finally, we conducted a model comparison using LOO, comparing between motivational tendency predicted by a neuropsychiatric questionnaire, motivational tendency predicted by chronotype and time-of-day, and motivational tendency predicted by a neuropsychiatric questionnaire and time-of-day (for each neuropsychiatric questionnaire, and controlling for age and gender).”

      Results of the outlined analyses are reported in the Results section as follows.

      Lines 356 – 383:

      “2.5.2.1 Neuropsychiatric symptoms and circadian measures have separable effects on motivational tendency

      Exploratory analyses testing for the effects of neuropsychiatric questionnaires on motivational tendency in the subsamples of early and late chronotypes confirmed the predictive value of the SHAPS (M=-0.24, 95% HDI=[-0.42,-0.06]), the DARS (M=-0.16, 95% HDI=[-0.31,-0.01]), and the AES (M=-0.18, 95% HDI=[-0.32,-0.02]) on motivational tendency.

      For the SHAPS, we find that when adding the measures of chronotype and time-of-day back into the GLMs, the main effect of the SHAPS (M=-0.26, 95% HDI=[-0.43,-0.07]), the main effect of chronotype (M=-0.11, 95% HDI=[-0.22,-0.01]), and the interaction effect of chronotype and time-of-day (M=0.20, 95% HDI=[0.07,0.34]) on motivational tendency remain. Model comparison by LOOIC reveals motivational tendency is best predicted by the model including the SHAPS, chronotype and time-of-day as predictors, followed by the model including only the SHAPS. Note that this approach to model comparison penalizes models for increasing complexity.

      Repeating these steps with the DARS, the main effect of the DARS is found numerically, but the 95% HDI just includes 0 (M=-0.15, 95% HDI=[-0.30,0.002]). The main effect of chronotype (M=-0.11, 95% HDI=[-0.21,-0.01]), and the interaction effect of chronotype and time-of-day (M=0.18, 95% HDI=[0.05,0.33]) on motivational tendency remain. Model comparison identifies the model including the DARS and circadian measures as the best model, followed by the model including only the DARS.

      For the AES, the main effect of the AES is found (M=-0.19, 95% HDI=[-0.35,-0.04]). For the main effect of chronotype, the 95% narrowly includes 0 (M=-0.10, 95% HDI=[-0.21,0.002]), while the interaction effect of chronotype and time-of-day (M=0.20, 95% HDI=[0.07,0.34]) on motivational tendency remains. Model comparison identifies the model including the AES and circadian measures as the best model, followed by the model including only the AES.”

      In addition to the title change, we edited our Discussion to discuss and reflect these new insights, including the following.

      Lines 399 – 402:

      “Various neuropsychiatric disorders are marked by disruptions in circadian rhythm, such as a late chronotype. However, research has rarely investigated how transdiagnostic mechanisms underlying neuropsychiatric conditions may relate to inter-individual differences in circadian rhythm.”

      Lines 475 – 480:

      “It is striking that the effects of neuropsychiatric symptoms on effort-based decision-making largely are paralleled by circadian effects on the same neurocomputational parameter. Exploratory analyses predicting motivational tendency by neuropsychiatric symptoms and circadian measures simultaneously indicate the effects go beyond recapitulating each other, but rather explain separable parts of the variance in motivational tendency.”

      Lines 528 – 532:

      “Our reported analyses investigating neuropsychiatric and circadian effects on effort-based decision-making simultaneously are exploratory, as our study design was not ideally set out to examine this. Further work is needed to disentangle separable effects of neuropsychiatric and circadian measures on effort-based decision-making.”

      Lines 543 – 550:

      “We demonstrate that neuropsychiatric effects on effort-based decision-making are paralleled by effects of circadian rhythm and time-of-day. Exploratory analyses suggest these effects account for separable parts of the variance in effort-based decision-making. It unlikely that effects of neuropsychiatric effects on effort-based decision-making reported here and in previous literature are a spurious result due to multicollinearity with chronotype. Yet, not accounting for chronotype and time of testing, which is the predominant practice in the field, could affect results.”

      - A minor point, but it could be made clearer that many neurotransmitters have circadian rhythms (and not just dopamine).

      We agree this should have been made clearer, and have added the following to the Introduction.

      Lines 83 – 84:

      “Bi-directional links between chronobiology and several neurotransmitter systems have been reported, including dopamine47.

      (47) Kiehn, J.-T., Faltraco, F., Palm, D., Thome, J. & Oster, H. Circadian Clocks in the Regulation of Neurotransmitter Systems. Pharmacopsychiatry 56, 108–117 (2023).”

      - Making reference to other studies which have explored circadian rhythms in cognitive tasks would allow interested readers to explore the broader field. One such paper is: Bedder, R. L., Vaghi, M. M., Dolan, R. J., & Rutledge, R. B. (2023). Risk taking for potential losses but not gains increases with time of day. Scientific reports, 13(1), 5534, which also includes references to other similar studies in the discussion.

      We thank the Reviewer for pointing out that we failed to cite this relevant work. We have now included it in the Introduction as follows.

      Lines 97 – 98:

      “A circadian effect on decision-making under risk is reported, with the sensitivity to losses decreasing with time-of-day66.

      (66) Bedder, R. L., Vaghi, M. M., Dolan, R. J. & Rutledge, R. B. Risk taking for potential losses but not gains increases with time of day. Sci Rep 13, 5534 (2023).”

      (3) Minor corrections to the text and figures.

      None, clearly written and structured. Figures are high quality and significantly aid understanding.

      Reviewer #2 (Recommendations For The Authors):

      I did have a few more minor comments:

      - The manuscript doesn't clarify whether trials had time limits - so that participants might fail to earn points - or instead they did not and participants had to continue exerting effort until they were done. This is important to know since it impacts on decision-strategies and behavioral outcomes that might be analyzed. For example, if there is no time limit, it might be useful to examine the amount of time it took participants to complete their effort - and whether that had any relationship to choice patterns or symptomatology. Or, if they did, it might be interesting to test whether the relationship between choices and exerted effort depended on symptoms. For example, someone with depression might be less willing to choose effort, but just as, if not more likely to successfully complete a trial once it is selected.

      We thank the Reviewer for pointing out this important detail in the task design, which we should have made clearer. The trials did indeed have a time limit which was dependent on the effort level. To clarify this in the manuscript, we have made changes to Figure 2 and the Methods section. We agree it would be interesting to explore whether the exerted effort in the task related to symptoms. We explored this in our data by predicting the participant average proportion of accepted but failed trials by SHAPS score (controlling for age and gender). We found no relationship: M=0.01, 95% HDI=[-0.001,0.02]. However, it should be noted that the measure of proportion of failed trials may not be suitable here, as there are only few accepted but failed trials (M = 1.3% trials failed, SD = 3.50). This results from several task design characteristics aimed at preventing subjects from failing accepted trials, to avoid confounding of effort discounting with risk discounting. As an alternative measure, we explored the extent to which participants went “above and beyond” the target in accepted trials. Specifically, considering only accepted and succeeded trials, we computed the factor by which the required number of clicks was exceeded (i.e., if a subject clicked 15 times when 10 clicks were required the factor would be 1.3), averaging across effort and reward level. We then conducted a Bayesian GLM to test whether this subject wise click-exceedance measure can be predicted by apathy or anhedonia, controlling for age and gender. We found neither the SHAPS (M=-0.14, 95% HDI=[-0.43,0.17]) nor the AES (M=0.07, 95% HDI=[-0.26,0.41]) had a predictive value for the amount to which subjects exert “extra effort”. We have now added this to the manuscript.

      In Figure 2, which explains the task design in the results section, we have added the following to the figure description.

      Lines 161 – 165:

      “Each trial consists of an offer with a reward (2,3,4, or 5 points) and an effort level (1,2,3, or 4, scaled to the required clicking speed and time the clicking must be sustained for) that subjects accept or reject. If accepted, a challenge at the respective effort level must be fulfilled for the required time to win the points.”

      In the Methods section, we have added the following.

      Lines 617 – 622:

      “We used four effort-levels, corresponding to a clicking speed at 30% of a participant’s maximal capacity for 8 seconds (level 1), 50% for 11 seconds (level 2), 70% for 14 seconds (level 3), and 90% for 17 seconds (level 4). Therefore, in each trial, participants had to fulfil a certain number of mouse clicks (dependent on their capacity and the effort level) in a specific time (dependent on the effort level).”

      In the Supplement, we have added the additional analyses suggested by the Reviewer.

      Lines 195 – 213:

      “3.2 Proportion of accepted but failed trials

      For each participant, we computed the proportion of trial in which an offer was accepted, but the required effort then not fulfilled (i.e., failed trials). There was no relationship between average proportion of accepted but failed trials and SHAPS score (controlling for age and gender): M=0.01, 95% HDI=[-0.001,0.02]. However, there are intentionally few accepted but failed trials (M = 1.3% trials failed, SD = 3.50). This results from several task design characteristics aimed at preventing subjects from failing accepted trials, to avoid confounding of effort discounting with risk discounting.”

      “3.3 Exertion of “extra effort”

      We also explored the extent to which participants went “above and beyond” the target in accepted trials. Specifically, considering only accepted and succeeded trials, we computed the factor by which the required number of clicks was exceeded (i.e., if a subject clicked 15 times when 10 clicks were required the factor would be 1.3), averaging across effort and reward level. We then conducted a Bayesian GLM to test whether this subject wise click-exceedance measure can be predicted by apathy or anhedonia, controlling for age and gender. We found neither the SHAPS (M=-0.14, 95% HDI=[-0.43,0.17]) nor the AES (M=0.07, 95% HDI=[-0.26,0.41]) had a predictive value for the amount to which subjects exert “extra effort”.”

      - Perhaps relatedly, there is evidence that people with depression show less of an optimism bias in their predictions about future outcomes. As such, they show more "rational" choices in probabilistic decision tasks. I'm curious whether the Authors think that a weaker choice bias among those with stronger depression/anhedonia/apathy might be related. Also, are choices better matched with actual effort production among those with depression?

      We think this is a very interesting comment, but unfortunately feel our manuscript cannot properly speak to it: as in our response to the previous comment, our exploratory analysis linking the proportion of accepted but failed trials to anhedonia symptoms (i.e. less anhedonic people making more optimistic judgments of their likelihood of success) did not show a relationship between the two. However, this null finding may be the result of our task design which is not laid out to capture such an effect (in fact to minimize trials of this nature). We have added to the Discussion section.

      Lines 442 – 445:

      “It is possible that a higher motivational tendency reflects a more optimistic assessment of future task success, in line with work on the optimism bias95; however our task intentionally minimized unsuccessful trials by titrating effort and reward; future studies should explore this more directly.

      (95) Korn, C. W., Sharot, T., Walter, H., Heekeren, H. R. & Dolan, R. J. Depression is related to an absence of optimistically biased belief updating about future life events. Psychological Medicine 44, 579–592 (2014).”

      - The manuscript does not clarify: How did the Authors ensure that each subject received each effort-reward combination at least once if a given subject always accepted or always rejected offers?

      We have made the following edit to the Methods section to better explain this aspect of our task design.

      Lines 642 – 655:

      “For each subject, trial-by-trial presentation of effort-reward combinations were made semi-adaptively by 16 randomly interleaved staircases. Each of the 16 possible offers (4 effort-levels x 4 reward-levels) served as the starting point of one of the 16 staircase. Within each staircase, after a subject accepted a challenge, the next trial’s offer on that staircase was adjusted (by increasing effort or decreasing reward). After a subject rejected a challenge, the next offer on that staircase was adjusted by decreasing effort or increasing reward. This ensured subjects received each effort-reward combination at least once (as each participant completed all 16 staircases), while individualizing trial presentation to maximize the trials’ informative value. Therefore, in practice, even in the case of a subject rejecing all offers (and hence the staircasing procedures always adapting by decreasing effort or increasing reward), the full range of effort-reward combinations will be represented in the task across the startingpoints of all staircases (and therefore before adaption takeplace).”

      - The word "metabolic" is misspelled in Table 1

      - Figure 2 is missing panel label "C"

      - The word "effort" is repeated on line 448.

      We thank the Reviewer for their attentive reading of our manuscript and have corrected the mistakes mentioned.

      Reviewer #3 (Recommendations For The Authors):

      It is a bit difficult to get a sense of people's discounting from the plots provided. Could the authors show a few example individuals and their fits (i.e., how steep was effort discounting on average and how much variance was there across individuals; maybe they could show the mean discount function or some examples etc)

      We appreciate very much the Reviewer's suggestion to visualise our parameter estimates within and across individuals. We have implemented this in Figure .S2

      It would be helpful if correlations between the various markers used as dependent variables (SHAPS, DARS, AES, chronotype etc) could plotted as part of each related figure (e.g., next to the relevant effects shown).

      We agree with the Reviewer that a visual representation of the various correlations between dependent variables would be a better and more assessable communication than our current paragraph listing the correlations. We have implemented this by adding a new figure plotting all correlations in a heat map, with asterisks indicating significance.

      The authors use the term "meaningful relationship" - how is this defined? If undefined, maybe consider changing (do they mean significant?)

      We understand how our use of the term “(no) meaningful relationship” was confusing here. As we conducted most analyses in a Bayesian fashion, this is a formal definition of ‘meaningful’: the 95% highest density interval does not span across 0. However, we do not want this to be misunderstood as frequentist “significance” and agree clarity can be improved here, To avoid confusion, we have amended the manuscript where relevant (i.e., we now state “we found a (/no) relationship / effect” rather than “we found a meaningful relationship”.

      The authors do not include an inverse temperature parameter in their discounting models-can they motivate why? If a participant chose nearly randomly, which set of parameter values would they get assigned?

      Our decision to not include an inverse temperature parameter was made after an extensive simulation-based investigation of different models and task designs. A series of parameter recovery studies including models with an inverse temperature parameter revealed the inverse temperature parameter could not be distinguished from the reward sensitivity parameter. Specifically, inverse temperature seemed to capture the variance of the true underlying reward sensitivity parameter, leading to confounding between the two. Hence, including both reward sensitivity and inverse temperature would not have allowed us to reliably estimate either parameter. As our pre-registered hypotheses related to the reward sensitivity parameter, we opted to include models with the reward sensitivity parameter rather than the inverse temperature parameter in our model space. We have now added these simulations to our supplement.

      Nevertheless, we believe our models can capture random decision-making. The parameters of effort and reward sensitivity capture how sensitive one is to changes in effort/reward level. Hence, random decision-making can be interpreted as low effort and reward sensitivity, such that one’s decision-making is not guided by changes in effort and reward magnitude. With low effort/reward sensitivity, the motivational tendency parameter (previously “choice bias”) would capture to what extend this random decision-making is biased toward accepting or rejecting offers.

      The simulation results are now detailed in the Supplement.

      Lines 25 – 46:

      “1.2.1 Parameter recoveries including inverse temperature

      In the process of task and model space development, we also considered models incorportating an inverse temperature paramater. To this end, we conducted parameter recoveries for four models, defined in Table S3.

      Parameter recoveries indicated that, parameters can be recovered reliably in model 1, which includes only effort sensitivity ( ) and inverse temperature as free parameters (on-diagonal correlations: .98 > r > .89, off-diagonal correlations: .04 > |r| > .004). However, as a reward sensitivity parameter is added to the model (model 2), parameter recovery seems to be compromised, as parameters are estimated less accurately (on-diagonal correlations: .80 > r > .68), and spurious correlations between parameters emerge (off-diagonal correlations: .40 > |r| > .17). This issue remains when motivational tendency is added to the model (model 4; on-diagonal correlations: .90 > r > .65; off-diagonal correlations: .28 > |r| > .03), but not when inverse temperature is modelled with effort sensitivity and motivational tendency, but not reward sensitivity (model 3; on-diagonal correlations: .96 > r > .73; off-diagonal correlations: .05 > |r| > .003).

      As our pre-registered hypotheses related to the reward sensitivity parameter, we opted to include models with the reward sensitivity parameter rather than the inverse temperature parameter in our model space.”

      And we now discuss random decision-making specifically in the Methods section.

      Lines 698 – 709:

      “First, a cost function transforms costs and rewards associated with an action into a subjective value (SV):

      with and for reward and effort sensitivity, and  and  for reward and effort. Higher effort and reward sensitivity mean the SV is more strongly influenced by changes in effort and reward, respectively (Fig. 3B-C). Hence, low effort and reward sensitivity mean the SV, and with that decision-making, is less guided by effort and reward offers, as would be in random decision-making.

      This SV is then transformed to an acceptance probability by a softmax function:

      with for the predicted acceptance probability and  for the intercept representing motivational tendency. A high motivational tendency means a subjects has a tendency, or bias, to accept rather than reject offers (Fig. 3D).”

      The pre-registration mentions effects of BMI and risk of metabolic disease-those are briefly reported the in factor loadings, but not discussed afterwards-although the authors stated hypotheses regarding these measures in their preregistration. Were those hypotheses supported?

      We reported these results (albeit only briefly) in the factor loadings resulting from our PLS regression and results from follow-up GLMs (see below). We have now amended the Discussion to enable further elaboration on whether they confirmed our hypotheses (this evidence was unclear, but we have subsequently followed up in a sample with type-2 diabetes, who also show reduced motivational tendency).

      Lines 258 – 261:

      “For the MEQ (95%HDI=[-0.09,0.06]), MCTQ (95%HDI=[-0.17,0.05]), BMI (95%HDI=[-0.19,0.01]), and FINDRISC (95%HDI=[-0.09,0.03]) no relationship with motivational tendency was found, consistent with the smaller magnitude of reported component loadings from the PLS regression.”

      We have added the following paragraph to our discussion.

      Lines 491 – 502:

      “To our surprise, we did not find statistical evidence for a relationship between effort-based decision-making and measures of metabolic health (BMI and risk for type-2 diabetes). Our analyses linking BMI to motivational tendency reveal a numeric effect in line with our hypothesis: a higher BMI relating to a lower motivational tendency. However, the 95% HDI for this effect narrowly included zero (95%HDI=[-0.19,0.01]). Possibly, our sample did not have sufficient variance in metabolic health to detect dimensional metabolic effects in a current general population sample. A recent study by our group investigates the same neurocomputational parameters of effort-based decision-making in participants with type-2 diabetes and non-diabetic controls matched by age, gender, and physical activity105. We report a group effect on the motivational tendency parameter, with type-2 diabetic patients showing a lower tendency to exert effort for reward.”

      “(105) Mehrhof, S. Z., Fleming, H. A. & Nord, C. A cognitive signature of metabolic health in effort-based decision-making. Preprint at https://doi.org/10.31234/osf.io/4bkm9 (2024).”

      R-values are indicated as a range (e.g., from 0.07-0.72 for the last one in 2.1 which is a large range). As mentioned above, the full correlation matrix should be reported in figures as heatmaps.

      We agree with the Reviewer that a heatmap is a better way of conveying this information – see Figure 1 in response to their previous comment.  

      The answer on whether data was already collected is missing on the second preregistration link. Maybe this is worth commenting on somewhere in the manuscript.

      This question appears missing because, as detailed in the manuscript, we felt that technically some data *was* already collected by the time our second pre-registration was posted. This is because the second pre-registration detailed an additional data collection, with the goal of extending data from the original dataset to include extreme chronotypes and increase precision of analyses. To avoid any confusion regarding the lack of reply to this question in the pre-registration, we have added the following disclaimer to the description of the second pre-registration:

      “Please note the lack of response to the question regarding already collected data. This is because the data collection in the current pre-registration extends data from the original dataset to increase the precision of analyses. While this original data is already collected, none of the data collection described here has taken place.”

      Some referencing is not reflective of the current state of the field (e.g., for effort discounting: Sugiwaka et al., 2004 is cited). There are multiple labs that have published on this since then including Philippe Tobler's and Sven Bestmann's groups (e.g., Hartmann et al., 2013; Klein-Flügge et al., Plos CB, 2015).

      We agree absolutely, and have added additional, more recent references on effort discounting.

      Lines 67 – 68:

      “Higher costs devalue associated rewards, an effect referred to as effort-discounting33–37.”

      (33) Sugiwaka, H. & Okouchi, H. Reformative self-control and discounting of reward value by delay or effort1. Japanese Psychological Research 46, 1–9 (2004).

      (34) Hartmann, M. N., Hager, O. M., Tobler, P. N. & Kaiser, S. Parabolic discounting of monetary rewards by physical effort. Behavioural Processes 100, 192–196 (2013).

      (35) Klein-Flügge, M. C., Kennerley, S. W., Saraiva, A. C., Penny, W. D. & Bestmann, S. Behavioral Modeling of Human Choices Reveals Dissociable Effects of Physical Effort and Temporal Delay on Reward Devaluation. PLOS Computational Biology 11, e1004116 (2015).

      (36) Białaszek, W., Marcowski, P. & Ostaszewski, P. Physical and cognitive effort discounting across different reward magnitudes: Tests of discounting models. PLOS ONE 12, e0182353 (2017).

      (37) Ostaszewski, P., Bąbel, P. & Swebodziński, B. Physical and cognitive effort discounting of hypothetical monetary rewards. Japanese Psychological Research 55, 329–337 (2013).

      There are lots of typos throughout (e.g., Supplementary martial, Mornignness etc)

      We thank the Reviewer for their attentive reading of our manuscript and have corrected our mistakes.

      In Table 1, it is not clear what the numbers given in parentheses are. The figure note mentions SD, IQR, and those are explicitly specified for some rows, but not all.

      After reviewing Table 1 we understand the comment regarding the clarity of the number in parentheses. In our original manuscript, for some variables, numbers were given per category (e.g. for gender and ethnicity), rather than per row, in which case the parenthetical statistic was indicated in the header row only. However, we now see that the clarity of the table would have been improved by adding the reported statistic for each row—we have corrected this.

      In Figure 1C, it would be much more helpful if the different panels were combined into one single panel (using differently coloured dots/lines instead of bars).

      We agree visualizing the proportion of accepted trials across effort and reward levels in one single panel aids interpretability. We have implemented it in the following plot (now Figure 2C).

      In Sections 2.2.1 and 4.2.1, the authors mention "mixed-effects analysis of variance (ANOVA) of repeated measures" (same in the preregistration). It is not clear if this is a standard RM-ANOVA (aggregating data per participant per condition) or a mixed-effects model (analysing data on a trial-by-trial level). This model seems to only include within-subjects variable, so it isn't a "mixed ANOVA" mixing within and between subjects effects.

      We apologise that our use of the term "mixed-effects analysis of variance (ANOVA) of repeated measures" is indeed incorrectly applied here. We aggregate data per participant and effort-by-reward combination, meaning there are no between-subject effects tested. We have corrected this to “repeated measures ANOVA”.

      In Section 2.2.2, the authors write "R-hats>1.002" but probably mean "R-hats < 1.002". ESS is hard to evaluate unless the total number of samples is given.

      We thank the Reviewer for noticing this mistake and have corrected it in the manuscript.

      In Section 2.3, the inference criterion is unclear. The authors first report "factor loadings" and then perform a permutation test that is not further explained. Which of these factors are actually needed for predicting choice bias out of chance? The permutation test suggests that the null hypothesis is just "none of these measures contributes anything to predicting choice bias", which is already falsified if only one of them shows an association with choice bias. It would be relevant to know for which measures this is the case. Specifically, it would be relevant to know whether adding circadian measures into a model that already contains apathy/anhedonia improves predictive performance.

      We understand the Reviewer’s concerns regarding the detail of explanation we have provided for this part of our analysis, but we believe there may have been a misunderstanding regarding the partial least squares (PLS) regression. Rather than identifying a number of factors to predict the outcome variable, a PLS regression identifies a model with one or multiple components, with various factor loadings of differing magnitude. In our case, the PLS regression identified a model with one component to best predict our outcome variable (motivational tendency, which in our previous various we called choice bias). This one component had factor loadings of our questionnaire-based measures, with measures of apathy and anhedonia having highest weights, followed by lesser weighted factor loadings by measures of circadian rhythm and metabolic health. The permutation test tests whether this component (consisting of the combination of factor loadings) can predict the outcome variable out of sample.

      We hope we have improved clarity on this in the manuscript by making the following edits to the Results section.

      Lines 248 – 251:

      “Permutation testing indicated the predictive value of the resulting component (with factor loadings described above) was significant out-of-sample (root-mean-squared error [RMSE]=0.203, p=.001).”

      Further, we hope to provide a more in-depth explanation of these results in the Methods section.

      Lines 755 – 759:

      “Statistical significance of obtained effects (i.e., the predictive accuracy of the identified component and factor loadings) was assessed by permutation tests, probing the proportion of root-mean-squared errors (RMSEs) indicating stronger or equally strong predictive accuracy under the null hypothesis.”

      In Section 2.5, the authors simply report "that chronotype showed effects of chronotype on reward sensitivity", but the direction of the effect (higher reward sensitivity in early vs. late chronotype) remains unclear.

      We thank the Reviewer for pointing this out. While we did report the direction of effect, this was only presented in the subsequent parentheticals and could have been made much clearer. To assist with this, we have made the following addition to the text.

      Lines 317 – 320:

      “Bayesian GLMs, controlling for age and gender, predicting task parameters by time-of-day and chronotype showed effects of chronotype on reward sensitivity (i.e. those with a late chronotype had a higher reward sensitivity; M= 0.325, 95% HDI=[0.19,0.46])”

      In Section 4.2, the authors write that they "implemented a previously-described procedure using Prolific pre-screeners", but no reference to this previous description is given.

      We thank the Reviewer for bringing our attention to this missing reference, which has now been added to the manuscript.

      In Supplementary Table S2, only the "on-diagonal correlations" are given, but off-diagonal correlations (indicative of trade-offs between parameters) would also be informative.

      We agree with the Reviewer that off-diagonal correlations between underlying and recovered parameters are crucial to assess confounding between parameters during model estimation. We reported this in figure S1D, where we present the full correlation matric between underlying and recovered parameters in a heatmap. We have now noticed that this plot was missing axis labels, which have been added now.

      I found it somewhat difficult to follow the results section without having read the methods section beforehand. At the beginning of the Results section, could the authors briefly sketch the outline of their study? Also, given they have a pre-registration, could the authors introduce each section with a statement of what they expected to find, and close with whether the data confirmed their expectations? In the current version of the manuscript, many results are presented without much context of what they mean.

      We agree a brief outline of the study procedure before reporting the results would be beneficial to following the subsequently text and have added the following to the end of our Introduction.

      Lines 101 – 106:

      “Here, we tested the relationship between motivational decision-making and three key neuropsychiatric syndromes: anhedonia, apathy, and depression, taking both a transdiagnostic and categorical (diagnostic) approach. To do this, we validate a newly developed effort-expenditure task, designed for online testing, and gamified to increase engagement. Participants completed the effort-expenditure task online, followed by a series of self-report questionnaires.”

      We have added references to our pre-registered hypotheses at multiple points in our manuscript.

      Lines 185 – 187:

      “In line with our pre-registered hypotheses, we found significant main effects for effort (F(1,14367)=4961.07, p<.0001) and reward (F(1,14367)=3037.91, p<.001), and a significant interaction between the two (F(1,14367)=1703.24, p<.001).”

      Lines 215 – 221:

      “Model comparison by out-of-sample predictive accuracy identified the model implementing three parameters (motivational tendency a, reward sensitivity , and effort sensitivity ), with a parabolic cost function (subsequently referred to as the full parabolic model) as the winning model (leave-one-out information criterion [LOOIC; lower is better] = 29734.8; expected log posterior density [ELPD; higher is better] = -14867.4; Fig. 31ED). This was in line with our pre-registered hypotheses.”

      Lines 252 – 258:

      “Bayesian GLMs confirmed evidence for psychiatric questionnaire measures predicting motivational tendency (SHAPS: M=-0.109; 95% highest density interval (HDI)=[-0.17,-0.04]; AES: M=-0.096; 95%HDI=[-0.15,-0.03]; DARS: M=-0.061; 95%HDI=[-0.13,-0.01]; Fig. 4A). Post-hoc GLMs on DARS sub-scales showed an effect for the sensory subscale (M=-0.050; 95%HDI=[-0.10,-0.01]). This result of neuropsychiatric symptoms predicting a lower motivational tendency is in line with our pre-registered hypothesis.”

      Lines 258 – 263:

      “For the MEQ (95%HDI=[-0.09,0.06]), MCTQ (95%HDI=[-0.17,0.05]), BMI (95%HDI=[-0.19,0.01]), and FINDRISC (95%HDI=[-0.09,0.03]) no meaningful relationship with choice biasmotivational tendency was found, consistent with the smaller magnitude of reported component loadings from the PLS regression. This null finding for dimensional measures of circadian rhythm and metabolic health was not in line with our pre-registered hypotheses.”

      Lines 268 – 270:

      “For reward sensitivity, the intercept-only model outperformed models incorporating questionnaire predictors based on RMSE. This result was not in line with our pre-registered expectations.”

      Lines 295 – 298:

      “As in our transdiagnostic analyses of continuous neuropsychiatric measures (Results 2.3), we found evidence for a lower motivational tendency parameter in the MDD group compared to HCs (M=-0.111, 95% HDI=[ -0.20,-0.03]) (Fig. 4B). This result confirmed our pre-registered hypothesis.”

      Lines 344 – 355:

      “Late chronotypes showed a lower motivational tendency than early chronotypes (M=-0.11, 95% HDI=[-0.22,-0.02])—comparable to effects of transdiagnostic measures of apathy and anhedonia, as well as diagnostic criteria for depression. Crucially, we found motivational tendency was modulated by an interaction between chronotype and time-of-day (M=0.19, 95% HDI=[0.05,0.33]): post-hoc GLMs in each chronotype group showed this was driven by a time-of-day effect within late, rather than early, chronotype participants (M=0.12, 95% HDI=[0.02,0.22], such that late chronotype participants showed a lower motivational tendency in the morning testing sessions, and a higher motivational tendency in the evening testing sessions; early chronotype: 95% HDI=[-0.16,0.04]) (Fig. 5A). These results of a main effect and an interaction effect of chronotype on motivational tendency confirmed our pre-registered hypothesis.”

      Lines 390 – 393:

      “Participants with an early chronotype had a lower reward sensitivity parameter than those with a late chronotype (M=0.27, 95% HDI=[0.16,0.38]). We found no effect of time-of-day on reward sensitivity (95%HDI=[-0.09,0.11]) (Fig. 5B). These results were in line with our pre-registered hypotheses.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Strengths: 

      Overall the work is novel and moves the field of Alzheimer's disease forward in a significant way. The manuscript reports a novel concept of aberrant activity in VIP interneurons during the early stages of AD thus contributing to dysfunctions of the CA1 microcircuit. This results in the enhancement of the inhibitory tone on the primary cells of CA1. Thus, the disinhibition by VIP interneurons of Principal Cells is dampened. The manuscript was skillfully composed, and the study was of strong scientific rigor featuring well-designed experiments. Necessary controls were present. Both sexes were included.

      We express our gratitude to the reviewer for their keen appreciation of our efforts and their enthusiasm for the outcomes of this research.

      Limitations:

      (1) The authors attributed aberrant circuit activity to the accumulation of "Abeta intracellularly" inside IS-3 cells. That is problematic. 6E10 antibody recognizes amyloid plaques in addition to Amyloid Precursor Protein (APP) as well as the C99 fragment. There are no plaques at the ages 3xTg mice were examined. Thus, the staining shown in Figure 1a is of APP/C99 inside neurons, not abeta accumulations in neurons. At the ages of 3-6 months, 3xTg starts producing abeta oligomers and potentially tau oligomers as well (Takeda et al., 2013 PMID: 23640054; Takeda et al., 2015 PMID: 26458742 and others). Emerging literature suggests that abeta and tau oligomers disrupt circuit function. Thus, a more likely explanation of abeta and tau oligomers disrupting the activity of VIP neurons is plausible.

      The Reviewer correctly points out that 3xTg-AD mice typically do not exhibit plaques before 6 months of age, with limited amounts even up to 12 months, particularly in the hippocampus. To the best of our knowledge, the 6E10 antibody binds to an epitope in APP (682-687) that is also present in the Abeta (3-8) peptide. Consequently, 6E10 detects full-length APP, α-APP (soluble alpha-secretase-cleaved APP), and Abeta (LaFerla et al., 2007). Nonetheless, we concur with the Reviewer's observation that the detected signal includes Abeta oligomers and the C99 fragment, which is currently considered an early marker of AD pathology (Takasugi et al., 2023; Tanuma et al., 2023). Studies have demonstrated intracellular accumulation of C99 in 3-month-old 3xTg mice (Lauritzen et al., 2012), and its binding to the Kv7 potassium channel family, which results in inhibiting their activity (Manville and Abbott, 2021). If a similar mechanism operates in IS-3 cells, it could explain the changes in their firing properties observed in our study. Consequently, we have revised the manuscript to include this crucial information in both the Results and Discussion sections.

      (2) Authors suggest that their animals do not exhibit loss of synaptic connections and show Figure 3d in support of that suggestion. However, imaging with confocal microscopy of 70micron thick sections would not allow the resolution of pre- and post-synaptic terminals. More sensitive measures such as electron microscopy or array tomography are the appropriate techniques to pursue. It is important for the authors to either remove that data from the manuscript or address the limitations of their technique in the discussion section. There is a possibility of loss of synaptic connections in their mouse model at the ages examined.

      We appreciate the Reviewer’s perspective on the techniques used for imaging synaptic connections. While we acknowledge the limitations of confocal microscopy for resolving pre- and post-synaptic structures in thick sections, we respectfully disagree regarding the exclusive suitability of electron microscopy (EM). Our approach involved confocal 3D image acquisition using a 63x objective at 0.2 um lateral resolution and 0.25 Z-step, providing valuable quantitative insights into synaptic bouton density. Despite the challenges posed by thick sections, this method together with automatic analysis allows for careful quantification. Although EM offers unparalleled resolution, it presents challenges in quantification. We have included the important details regarding image acquisition and analysis in the revised manuscript.

      Reviewer #2 (Public Review):

      Summary:

      The submitted manuscript by Michaud and Francavilla et al., is a very interesting study describing early disruptions in the disinhibitory modulation exerted by VIP+ interneurons in CA1, in a triple transgenic model of Alzheimer's disease. They provide a comprehensive analysis at the cellular, synaptic, network, and behavioral level on how these changes correlate and might be related to behavioral impairments during these early stages of the disease.

      Main findings:

      - 3xTg mice show early Aß accumulation in VIP-positive interneurons.

      - 3xTg mice show deficits in a spatially modified version of the novel object recognition test. - 3xTg mice VIP cells present slower action potentials and diminished firing frequency upon current injection.

      - 3xTg mice show diminished spontaneous IPSC frequency with slower kinetics in Oriens / Alveus interneurons.

      - 3xTg mice show increased O/A interneuron activity during specific behavioral conditions. - 3xTg mice show decreased pyramidal cell activity during specific behavioral conditions.

      Strengths:

      This study is very important for understanding the pathophysiology of Alzheimer´s disease and the crucial role of interneurons in the hippocampus in healthy and pathological conditions.

      We are thankful to the reviewer for their insightful recognition of our efforts and their enthusiasm for the results of this research.

      Weaknesses:

      Although results nicely suggest that deficits in VIP physiological properties are related to the differences in network activity, there is no demonstration of causality.

      We completely agree with the reviewer's observation regarding the lack of demonstration of causality in our results. Investigating causality in the relationship between deficits in VIP physiological properties and differences in network activity is indeed a crucial aspect of this project. However, achieving this goal will require a significant amount of time and dedicated manipulations in a new mouse model (VIP-Cre-3xTg). We appreciate the importance of this line of investigation and consider it as a priority for our future research endeavors.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Limitations:

      (1) The authors should describe their model and state the age at which these mice start depositing amyloid plaques and neurofibrillary tangles. Readers might not be familiar with this model. It is also important to mention that circuit disruptions are assessed prior to plaque and tangle formation.

      We have included a detailed description of the 3xTg-AD mouse model in the Introduction section, including information on the age at which amyloid plaques and neurofibrillary tangles begin to appear. Additionally, we have clarified that circuit disruptions were assessed before the formation of plaques and tangles. These details have been added to both the Introduction and the Results sections to ensure clarity for readers unfamiliar with the model.

      (2) Ns are presented in Supplemental Table 1. Units are presented in a note to Supplementary Table 1. It would be advisable to specify Ns and units as the data is being presented in the results section or figure legends for easy access.

      We have now included the Ns (sample sizes), specifying the number of cells or sections and the number of experimental animals, directly within the Results section and in the figure legends. This ensures that readers have immediate access to this information without needing to refer to the supplementary materials.

      (3) Several typos require correction:

      a. "mamory" - Line 22, page 5.

      b. The term "Interneurons" is abbreviated as both "INs" and "IN" throughout the manuscript. The author should consistently choose one abbreviation.

      We have corrected the typo "mamory" to "memory" on line 22, page 5. Additionally, we have standardized the abbreviation for "Interneurons" to "INs" throughout the manuscript for consistency.

      (4) Note 2 in Supplementary Table 1 states that animals of both sexes with equal distribution were used throughout the study. It would be best for the reader to assess the data distribution based on sex. Thus, it is advisable for the authors to depict male and female data points as distinct symbols throughout the figures.

      Unfortunately, we do not have detailed sex-disaggregated data for all datasets, which limits our ability to depict male and female data points separately across all figures. Therefore, we have opted to pool data from both sexes for a more comprehensive analysis. We believe this approach maintains the robustness of our findings.

      Reviewer #2 (Recommendations for the authors):

      Major Points:

      - To keep the logical line of reasoning and to be able to interpret the results, it would be important to use the same metrics when comparing the population activity of O/A interneurons and principal cells in the different behavioral conditions.

      We have revised Figures 4 and 5 to enhance the coherence in data presentation. This includes using consistent metrics for comparing the population activity of both O/A interneurons and principal cells across different behavioral conditions. These changes ensure a clearer and more logical interpretation of the results.

      - Although results nicely suggest that deficits in VIP physiological properties are related to the differences in network activity, there is no demonstration of causality. Would it be possible to test if manipulating VIP neurons one could obtain such specific results? Alternatively, it could be discussed more in detail how the decrease in disinhibition could lead to the changes in network activity demonstrated here.

      We agree with the reviewer that establishing causality between VIP neuron deficits and changes in network activity would be very important. However, demonstrating causality would require a new line of investigation, involving the use of specific mouse models to selectively manipulate VIP neurons. This is an exciting direction that we plan to prioritize in our future research. For this study, we have included a discussion on the potential mechanisms by which decreased disinhibition might lead to the observed changes in network activity. Specifically, we propose that in young adult 3xTg-AD mice, the altered firing of I-S3 cells may lead to enhanced inhibition of principal cells. This could shift the excitation/inhibition balance, input integration and firing output of principal cells thereby impacting overall network activity. These points are discussed in detail in the revised Discussion section.

      - On the same lines the correlations showed in the manuscript, would be more robust if there was an in vivo demonstration that 3xTg mice indeed show decreased activity in vivo. The same experiments could also clarify if VIP cells in control animals are more active at the time of decision-making and during object exploration as suggested in the manuscript.

      Thank you for your comment. In response to the point raised, we would like to highlight that we have recently documented the increased activity of VIP-INs in the D-zone of the T-maze and during object exploration in a study published in Cell Reports (Tamboli et al., 2024). This publication is now referenced in our manuscript to support our findings. Regarding the in vivo activity of 3xTg mice, our observations indicated no significant differences in major behavioral patterns such as locomotion, rearing, and exploration of the T-maze when comparing Tg and non-Tg mice. These findings are presented in detail in Figure 4c and Supplementary Fig. 5. We believe these data support the robustness of our correlations by demonstrating that the overall behavioral activity of 3xTg mice is comparable to that of non-transgenic controls, thus focusing attention on the specific roles of VIP-INs in early prodromal state of AD pathology.

      Minor Points:

      - Figure 1c: Heading of VIP-Tg should have capital letters.

      Thank you for pointing that out. We have corrected the heading to "VIP-Tg" with capital letters in Figure 1c.

      - Figure 1d: The finding that no change was observed in the percentage of VIP+/CR+ is based on three animals and 3-4 slices per mouse. However, the result of VIP+CR+ in tg-mice has an outlier that might bias the results. I would suggest increasing the number of animals to confirm these results.

      Thank you for your insightful suggestion. We addressed the potential impact of the outlier in the VIP+/CR+ cell density analysis by recalculating the results after removing the outlier using the interquartile range method. This reanalysis revealed a statistically significant difference in the VIP+/CR+ cell density between non-Tg and Tg mice, which we have now detailed in the Results section. Despite this, we have chosen to retain the outlier in our final presentation to accurately represent the biological variability observed in our sample. We agree that increasing the number of animals would further validate these findings and will consider this in future studies.

      - Figure 3d: Would it be possible to identify the recorded interneurons? Is it expected that most of those are OLM cells?

      Thank you for your question. We were unable to fully recover all recorded cells using biocytin staining. However, for those cells with preserved axonal structures, we identified both OLM and bistratified cells, which are the primary targets of I-S3 cells. We have now included this information in the Results section to clarify the types of interneurons identified.

      - Figure 3: Why quantify VGat terminals instead of quantification of VIP-GFP terminals? Combined with the Calretinine labeling it would be more useful to indicate that no changes were observed at the morphological bouton level specifically in disinhibitory interneurons. Please also describe which imageJ plugin was used for the quantification.

      Thank you for your question. Our primary objective was to quantify the synaptic terminals of CR+ INs in the CA1 O/A region, which are predominantly formed by I-S3 cells. Therefore, VGaT and CR co-localization was used to guide this analysis. GFP expression in axonal boutons can sometimes be inconsistent and less reliable for precise quantification. For this analysis, we utilized the “Analyze Particles” function in ImageJ, combined with watershed segmentation, which is now specified in the Methods section.

      -  Figure 4g: How was the statistical test performed? If data was averaged across mice, please add error bars and data points in the figure.

      Thank you for your question. To compare the alternation percentage between non-Tg and Tg mice, we used Fisher’s Exact test as detailed in Supplementary Table 1. In this analysis, we considered each animal's choice individually, comparing the preference for correct versus incorrect choices between the two groups. Since Fisher’s Exact test is designed for analyzing qualitative data rather than quantitative data, averaging across mice was not applicable, and therefore, we did not include error bars or data points in the figure.

      - Figure 4h: To conclude that the increase in activity is larger in the 3xTg mice, there should be a statistical comparison for the magnitude of change between the decision and the stem zone for control and 3xTg mice. To show that there is no significant difference in this measurement in the control mice is insufficient.

      Thank you for your suggestion. We performed a statistical comparison of the magnitude of change in activity between the stem zone and the D-zone for non-Tg and 3xTg mice, as recommended. Our analysis showed no significant difference in this magnitude of change between the two genotypes. These results have now been included in the Results section. However, we would like to highlight an important finding regarding the nature of these changes. In the 3xTg mice, there was a consistent increase in the activity of O/A INs when entering the Dzone. In contrast, non-Tg mice displayed a range of responses, including both increases and decreases in activity. This indicates a higher reliability in the firing of O/A INs in the D-zone of 3xTg mice. Our recent study suggests that VIP-INs are particularly active in the D-zone (Tamboli et al., 2024). Therefore, the absence or reduced input from VIP-INs in 3xTg mice may lead to the observed higher engagement of O/A INs in this zone. We believe this observation is crucial for understanding the differential yet nuanced changes in neural dynamics in these mice.

      - In the methods, it is stated that there was a pre-selection of animals depending on learning performance. Would it be possible to also show the data from animals that did not properly learn? Alternatively, it would be useful to plot the correlation between performance in this test and the difference between activity in the stem and the decision-making zone. The reason to ask for this is that there is a trend for control animals to show reduced alternations (50 vs 80%, although not significant, it is a big difference). Considering that there is also a trend in control animals to show increased activity in the decision-making zone, it would be important to confirm that this is not only due to differences in performance. The current statistical procedure does not allow discarding this.

      In this study, we excluded from the analysis the animals that refused to explore the T-maze and spent all their time in the stem corner, or refused to explore the objects and stayed in the open field maze (OFM) corner. These exclusions applied to both non-Tg (n = 6) and Tg (n = 5) groups, indicating that low exploratory activity is not necessarily linked to AD-related mutations. During the T-maze test, we also observed several animals that made incorrect choices (4 out of 9 non-Tg and 1 out of 6 Tg mice). However, due to the low number of animals making incorrect choices, we were unable to form a separate group for analysis based on incorrect choices. These details are now provided in the Methods section.

      - Figure 4i. It is not clear when exactly cell activity was measured. If it was during the entire recording time, I think it would be interesting to see if the activity of O/A interneurons is different specifically during interaction with the object in 3xTg mice.

      Cell activity was indeed measured throughout the entire recording session and analyzed in relation to animal behavior (immobility to walking; Fig. 4d,e), and periods specifically related to interaction with objects were extracted for analysis (Figure 4i).

      - Why was the object modulation measured during a different task in which both objects were the same? The figure is misleading in that sense, as it suggests the experiment was the same as for the other panels with two different objects. It would be important to correct this if the authors want to correlate the deficits in NOR in 3xTg mice and changes in IN activity.

      The study specifically investigated object-modulated neural activity during the Sampling phase. Therefore, two identical objects were placed in the arena for animal exploration. As mentioned above, due to several animals failing to explore the OFM and objects on the second day, they were excluded from the analysis, preventing the conduct of the novel-object exploration Test Trial. Both non-Tg and Tg mice showed a lack of exploration in the OFM and Tmaze, for reasons that remain unclear. Consequently, we opted to present robust data on neural activity during the initial sampling of two identical objects. However, further investigation is needed to understand how this activity relates to deficits observed in the classical NOR test.

      - Figure. 5c-f. I would strongly suggest performing the same quantification and displaying similar figures for the fiber photometry experiments in interneurons and principal cells. It would help to interpret the data.

      We have taken the reviewer's suggestion into account and standardized the data analysis and presentation. Figures 4d, e and 5c, d now depict the walk-induced activity in INs and PCs, respectively. Figures 4h and 5f compare activity between the stem and D-zone in the T-maze. Additionally, Figures 4j and 5h illustrate the object modulation of INs and PCs, respectively.

      - Although velocity and mobility were quantified, it would be important to show also that they are not different during those times when activity was dissimilar, as in the decision zone.

      We have analyzed these data and found no significant differences between the two genotypes in terms of velocity and mobility during these periods. This analysis is now presented in Supplementary Figure 5e, f and detailed in the Results section.

      - Figure 5g-h. Similarly, I would suggest using the same metrics in order to correlate the results from interneuron and principal cell activity photometry.

      We have updated this figure to align with the presentation of interneurons (Figure 4j) and included RMS analysis to emphasize lower variance in object modulation of PCs as an indicator of increased network inhibition.

      - Was object modulation variance also different for INs depending on the mouse phenotype?

      We conducted this additional analysis but did not find any significant difference.

      - Figure S4: would it be possible to identify the postsynaptic partners?

      As mentioned above, for those cells with preserved axonal structures, we identified both OLM and bistratified cells. We have now included this information in the Results section to clarify the types of interneurons identified.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment 

      The authors present 16 new well-preserved specimens from the early Cambrian Chengjiang biota. These specimens potentially represent a new taxon which could be useful in sorting out the problematic topology of artiopodan arthropods - a topic of interest to specialists in Cambrian arthropods. Because the anatomic features in the new specimens were neither properly revealed nor correctly interpreted, the evidence for several conclusions is inadequate. 

      We thank the Senior Editor, Reviewing Editor and three reviewers for their work, and for their comments aimed at improving this project and manuscript. We have engaged with all the comments in detail, in order to strengthen our work. This includes adding additional data to support that all Acanthomeridion specimens belong to a single species, running further phylogenetic analyses including more trilobite terminals to test the specific hypothesis and interpretation raised by Reviewer 2, and visualising our results in treespace in order to determine support for the different interpretations of the ventral structures and their implications for the evolution of Artiopoda. We have also greatly expanded the introduction, which we feel adds clarity to areas misunderstood by some reviewers in the previous version of the manuscript.

      Our point-by-point response to the public reviews of the reviewers are outlined below. We have also made changes resulting from the additional suggestions which are not public, which we have not reproduced below. We submit a new version of the main text, and can provide a tracked changes version if required. The new main text includes 9 figures and is 8624 words including captions and reference list.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      Du et al. report 16 new well-preserved specimens of atiopodan arthropods from the Chengjiang biota, which demonstrate both dorsal and ventral anatomies of a potential new taxon of artipodeans that are closely related to trilobites. Authors assigned their specimens to Acanthomeridion serratum and proposed A. anacanthus as a junior subjective synonym of Acanthomeridion serratum. Critically, the presence of ventral plates (interpreted as cephalic liberigenae), together with phylogenic results, lead authors to conclude that the cephalic sutures originated multiple times within the Artiopoda. 

      We thank Reviewer 1 for their comments on the strengths and weaknesses of the previous version of the manuscript. We hope that the revised version strengthens our conclusions that Acanthomeridion anacanthus is a junior synonym of A. serratum.

      Strengths: 

      New specimens are highly qualified and informative. The morphology of the dorsal exoskeleton, except for the supposed free cheek, was well illustrated and described in detail, which provides a wealth of information for taxonomic and phylogenic analyses. 

      Weaknesses: 

      The weaknesses of this work are obvious in a number of aspects. Technically, ventral morphology is less well revealed and is poorly illustrated. Additional diagrams are necessary to show the trunk appendages and suture lines. Taxonomically, I am not convinced by the authors' placement. The specimens are markedly different from either Acanthomeridion serratum Hou et al. 1989 or A. anacanthus Hou et al. 2017. The ontogenetic description is extremely weak and the morpholical continuity is not established. Geometric and morphometric analyses might be helpful to resolve the taxonomic and ontogenic uncertainties. 

      We appreciate that the reviewer was not convinced by our synonimisation in the first version of the manuscript. The recommendation of the reviewer to provide linear morphometric support for our synonymisation was much appreciated. We have provided measurements of the length and width of the thorax (Figure 6 in the new version), visualising the position of specimens previously assigned to A. anacanthus, to show this morphological continuity. These act as a complement to Figure 5, which shows the fossils in an ontogenetic trend.

      I am confused by the author's description of the free cheek (libragena) and ventral plate. Are they the same object? How do they connect with other parts of the cephalic shield, e.g. hypostome, and fixgena? Critically, the homology of cephalic slits (eye slits, eye notch, dorsal suture, facial suture) is not extensively discussed either morphologically or functionally.

      We appreciate that the brevity of the introduction in the previous version led to some misunderstandings and some confusion. We have provided a greatly expanded introduction, including a new Figure 1, which outlines the possible homologies of the ventral plates and the three hypotheses considered in this study. The function of the cephalic and dorsal suture are now discussed in more detail both in introduction and discussion.

      Finally, the authors claimed that phylogenic results support two separate origins rather than a deep origin. However, the results in Figure 4 can explain a deep homology of the cephalic suture at molecular level and multiple co-options within the Atiopoda. 

      A deep molecular origin is difficult to demonstrate using solely fossil material from an extinct group such as Artiopoda. Thus our study focuses on morphological origins. The number of losses required for a deep morphological origin means that we favour multiple independent morphological origins.

      Reviewer #2 (Public Review): 

      Overall: This paper describes new material of Acanthomeridion serratum that the authors claim supports its synonymy with Acanthomeridion anacanthus. The material is important and the description is acceptable after some modification. In addition, the paper offers thoughts and some exploration of the possibility of multiple origins of the dorsal facial suture among artiopods, at least once within Trilobita and also among other non-trilobite artiopods. Although this possibility is real and apparently correct, the suggestions presented in this paper are both surprising and, in my opinion, unlikely to be true because the potential homologies proposed with regard to Acanthomeridion and trilobite-free cheeks are unconventional and poorly supported. 

      What to do? I can see two possibilities. One, which I recommend, is to concentrate on improving the descriptive part of the paper and omit discussion and phylogenetic analysis of dorsal facial suture distribution, leaving that for more comprehensive consideration elsewhere. The other is to seek to improve both simultaneously. That may be possible but will require extensive effort. 

      We thank the reviewer for their detailed comments and suggestions for multiple ways in which we might revise the manuscript. We have taken the option that is more effort, but we hope more reward, in interrogating the larger question alongside improving the descriptive part of the paper. This has taken a long time and incorporation of new techniques, but has in our opinion greatly strengthened the work.

      Major concerns 

      Concern 1 - Ventral sclerites as free cheek homolog, marginal sutures, and the trilobite doublure 

      Firstly, a couple of observations that bear on the arguments presented - the eyes of A. serratum are almost marginal and it is not clear whether a) there is a circumocular suture in this animal and b) if there was, whether it merged with the marginal suture. These observations are important because this animal is not one in which an impressive dorsal facial suture has been demonstrated - with eyes that near marginal it simply cannot do so. Accordingly, the key argument of this paper is not quite what one would expect. That expectation would be that a non-trilobite artiopod, such as A. serratum, shows a clear dorsal facial suture. But that is not the case, at least with A. serratum, because of its marginal eyes. Rather, the argument made is that the ventral doublure of A. serratum is the homolog of the dorsal free cheeks of trilobites. This opens up a series of issues. 

      We appreciate that the reviewer disagrees with both interpretations we offered for the ventral plates, and has offered a third interpretation for the homology of this feature with the doublure of trilobites. Support for our original interpretation comes from the position of the eye stalks in Acanthomeridion, which fall very close to the suture between ventral plate rest of the cephalon. However, we appreciate that the reviewer has a valid interpretation, that the ventral plates might be homologues of the doublure alone.

      To clarify the (two, now three) hypotheses of homology for the ventral plates considered in this study, we provide a new summary figure (Figure 1). In addition, the introduction has been greatly lengthened with further discussion of the different suture types in trilobites, their importance for trilobite classification schemes, and extensive references to older literature are now included. Further, we add background to the hypotheses around the origins of dorsal ecdysial sutures. 

      We add that the interpretation of A. serratum as having features homologous to the dorsal sutures of trilobites is already present in the literature, and so while the reviewer may disagree with it, it is certainly a hypothesis that requires testing.

      The paper's chief claim in this regard is that the "teardrop" shaped ventral, lateral cephalic plates in Acanthomeridion serratum are potential homologs of the "free cheeks" of those trilobites with a dorsal facial suture. There is no mention of the possibility that these ventral plates in A. serratum could be homologs of the lateral cephalic doublure of olenelloid trilobites, which is bound by an operative marginal suture or, in those trilobites with a dorsal facial suture, that it is a homolog of only the doublure portions of the free cheeks and not with their dorsal components. 

      We include this third possibility in our revised analyses and manuscript. To test this properly required adding in an olenelloid trilobite to our matrix, as we needed a terminal that had both a marginal and circumoral suture, but not fused. We chose Olenellus getzi for this purpose, as it is the only Olenellus with some appendages known (the antennae). We also added further characters to the morphological matrix, and additional trilobites from which soft tissues are known, in order to better resolve this part of the tree. Trilobites in the final analyses were: Anacheirurus adserai, Cryptolithus tesselatus, Eoredlichia intermedia, Olenoides serratus, Olenellus getzi, Triarthrus eatoni.

      However, addition of these trilobites added a further complication. Under unconstrained analysis, Olenellus getzi was resolved with Eoredlichia intermediata as a clade sister to all other trilobites.

      Thus the topology of Paterson et al. 2019 (PNAS) was not recovered, and so the hypothesis of Reviewer 2 could not be robustly tested. In order to achieve a topology comparable to Paterson et al., we ran a further three analyses, where we constrained a clade of all trilobites except for O. getzi. This recovered a topology where the earliest diverging trilobites had unfused sutures, and thus one suitable for considering the role of Acanthomeridion serratum ventral plates as homologues of the doublure of trilobites.

      Unfortunately, for these analyses (both constrained and unconstrained), Acanthomeridion was not resolved as sister to trilobites, but instead elsewhere in the tree (see Table 1 in main text, Fig. 9, and  SFig 9). Thus our analyses do not find support for the reviewer’s hypothesis as multiple origins of this feature are still required.

      It was still an excellent point that we should consider this hypothesis, and we have retained it, and discussion surrounding it, in our manuscript.

      The introduction to the paper does not inform the reader that all olenelloids had a marginal suture - a circumcephalic suture that was operative in their molting and that this is quite different from the situation in, say, "Cedaria" woosteri in which the only operative cephalic exoskeletal suture was circumocular. The conservative position would be that the olenelloid marginal suture is the homolog of the marginal suture in A. serratum: the ventral plates thus being homolog of the trilobite cephalic doublure, not only potential homolog to the entire or dorsal only part of the free cheeks of trilobites with a dorsal facial suture. As the authors of this paper decline to discuss the doublure of trilobites (there is a sole mention of the word in the MS, in a figure caption) and do not mention the olenelloid marginal suture, they give the reader no opportunity to assess support for this alternative. 

      At times the paper reads as if the authors are suggesting that olenelloids, which had a marginal cephalic suture broadly akin to that in Limulus, actually lacked a suture that permitted anterior egression during molting. The authors are right to stress the origin of the dorsal cephalic suture in more derived trilobites as a character seemingly of taxonomic significance but lines such as 56 and 67 may be taken by the non-specialist to imply that olenelloids lacked a forward egressionpermiting suture. There is a notable difference between not knowing whether sutures existed (a condition apparently quite common among soft-bodied artiopods) and the well-known marginal suture of olenelloids, but as the MS currently reads most readers will not understand this because it remains unexplained in the MS. 

      As noted in response to a previous point (above) we now have a greatly expanded introduction which should give the reader an opportunity to assess support for this alternative hypothesis. We now include Olenellus getzi in our analyses, and have added characters to the morphological matrix to make this clear.

      A reference to the case of ‘Cedaria’ woosteri is made in the introduction to highlight further the variability of trilobites, as is a reference to Foote’s analysis of cranidial shapes and support this provides for a  single origin of the dorsal suture.

      With that in mind, it is also worth further stressing that the primary function of the dorsal sutures in those which have them is essentially similar to the olenelloid/limulid marginal suture mentioned above. It is notable that the course of this suture migrated dorsally up from the margin onto the dorsal shield and merged with the circumocular suture, but this innovation does not seem to have had an impact on its primary function - to permit molting by forward egression. Other trilobites completely surrendered the ability to molt by forward egression, and there are even examples of this occurring ontogenetically within species, suggesting a significant intraspecific shift in suture functionality and molting pattern. The authors mention some of this when questioning the unique origin of the dorsal facial suture of trilobites, although I don't understand their argument: why should the history of subsequent evolutionary modification of a character bear on whether its origin was unique in the group? 

      We include reference to evolutionary modification and loss of this character as it is important to stress that if a character is known to have been lost multiple times it is possible that it had a deeper root (in an earlier diverging member of Artiopoda than Trilobita) and was lost in olenelloids. This is the question that we seek to address in our manuscript.

      The bottom line here is that for the ventral plates of A. serratum to be strict homologs of only the dorsal portion of the dorsal free cheeks, there would be no homolog of the trilobite doublure in A. serratum. The conventional view, in contrast, would be that the ventral plates are a homolog of the ventral doublure in all trilobites and ventral plates in artiopods. I do not think that this paper provides a convincing basis for preferring their interpretation, nor do I feel that it does an adequate job of explaining issues that are central to the subject. 

      We stress that our interpretations – that the ventral plates are not homologous to any artiopodan feature or that they are homologous to the free cheeks of trilobites – have both been raised in the literature before. Whereas we could not find mention of the reviewer’s ‘conventional view’ relating to Acanthomeridion. We appreciate that this view is still valid and worth investigating, which we have done in the further analyses conducted. However, we did not find support for it. Instead we find some support for both ventral plates as homologues of free cheeks, and as unique structures within Artiopoda.

      Concern 2. Varieties of dorsal sutures and the coexistence of dorsal and marginal sutures 

      The authors do not clarify or discuss connections between the circumocular sutures (a form of dorsal suture that separates the visual surface from the rest of the dorsal shield) and the marginal suture that facilitates forward egression upon molting. Both structures can exist independently in the same animal - in olenelloids for example. Olenelloids had both a suture that facilitated forward egression in molting (their marginal suture) and a dorsal suture (their circumocular suture). The condition in trilobites with a dorsal facial suture is that these two independent sutures merged - the formerly marginal suture migrating up the dorsal pleural surface to become confluent with the circumocular suture. (There are also interesting examples of the expansion of the circumocular suture across the pleural fixigena.) The form of the dorsal facial suture has long figured in attempts at higher-level trilobite taxonomy, with a number of character states that commonly relate to the proximity of the eye to the margin of the cephalic shield. The form of the dorsal facial suture that they illustrate in Xanderella, which is barely a strip crossing the dorsal pleural surface linking marginal and circumocular suture, is comparable to that in the trilobites Loganopeltoides and Entomapsis but that is a rare condition in that clade as a whole. The paper would benefit from a clear discussion of these issues at the beginning - the dorsal facial suture that they are referring to is a merged circumcephalic suture and circumocular suture - it is not simply the presence of a molt-related suture on the dorsal side of the cephalon. 

      We have added in an expanded introduction where these points are covered in detail. We appreciate that this was not clear in the earlier version, and this suggestion has greatly improved our work.

      Concern 3. Phylogenetics 

      While I appreciate that the phylogenetic database is a little modified from those of other recent authors, still I was surprised not to find a character matrix in the supplementary information (unless it was included in some way I overlooked), which I would consider a basic requirement of any paper presenting phylogenetic trees - after all, there's no a space limit. It is not possible for a reviewer to understand the details of their arguments without seeing the character states and the matrix of state assignments. 

      A link to a morphobank project was included in the first submission. This project has been updated for the current submission, including an additional matrix to treat the reviewer’s hypothesis for the ventral plates. Morphobank Project #P4290. Email address: P4290, reviewer password:

      Acanthomeridion2023, accessible at morphobank.org. We have added in additional details for the reviewer and others to help them access the project:

      The project can be accessed at morphobank.org, using the below credentials to log in:  Email address: P4290, Password: Acanthomeridion 2023.

      The section "phylogenetic analyses" provides a description of how tree topology changes depending on whether sutures are considered homologous or not using the now standard application of both parsimony and maximum likelihood approaches but, considering that the broader implications of this paper rest of the phylogenetic interpretation, I also found the absence of detailed discussion of the meaning and implications of these trees to be surprising, because I anticipated that this was the main reason for conducting these analysis. The trees are presented and briefly described but not considered in detail. I am troubled by "Circles indicate presence of cephalic ecdysial sutures" because it seems that in "independent origin of sutures" trilobites are considered to have two origins (brown color dot) of cephalic ecdysial sutures - this may be further evidence that the team does not appreciate that olenelloids have cephalic ecdysial sutures, as the basal condition in all trilobites. Perhaps I'm misunderstanding their views, but from what's presented it's not possible to know that. Similarly, in the "sutures homologous" analyses why would there be two independent green dots for both Acanthomeridion and Trilobita, rather than at the base of the clade containing them both, as cephalic ecdysial sutures are basal to both of them? Here again, we appear to see evidence that the team considers dorsal facial sutures and cephalic ecdysial sutures to be synonymous - which is incorrect.  

      We appreciate that the reviewer misunderstood the meaning of the dots, leading to confusion. The dots indicated how features were coded in the phylogenetic analysis. In our revised version of this figure (Figure 8 in the new version), these dots are now clearly labelled as indicating ‘coding in phylogenetic matrix’. Further, with the revised character list, we now can provide additional detail for the types of sutures (relevant as we now include more trilobite terminals).

      This point aside, and at a minimum, that team needs to do a more thorough job of characterizing and considering the variety of conditions of dorsal sutures among artiopods, their relationships to the marginal suture and to the circumocular suture, the number, and form of their branches, etc. 

      We thank the reviewer for this summary, and appreciate their concerns and thorough review. Our revised version takes into account all these points raised, and they have greatly improved the clarity, scope and thoroughness of the work.

      Reviewer #3 (Public Review): 

      Summary:

      Well-illustrated new material is documented for Acanthomeridion, a formerly incompletely known Cambrian arthropod. The formerly known facial sutures are shown to be associated with ventral plates that the authors very reasonably homologise with the free cheeks of trilobites. A slight update of a phylogenetic dataset developed by Du et al, then refined slightly by Chen et al, then by Schmidt et al, and again here, permits another attempt to optimise the number of origins of dorsal ecdysial sutures in trilobites and their relatives. 

      Strengths:

      Documentation of an ontogenetic series makes a sound case that the proposed diagnostic characters of a second species of Acanthomeridion are variations within a single species. New microtomographic data shed some light on appendage morphology that was not formerly known. The new data on ventral plates and their association with the ecdysial sutures are valuable in underpinning homologies with trilobites. 

      We thank the Reviewer 3 for their positive comments about the manuscript. We appreciate the constructive comments for improvements, and detailed corrections, which we have incorporated into our revised work.

      Weaknesses:

      The main conclusion remains clouded in ambiguity because of a poorly resolved Bayesian consensus and is consistent with work led by the lead author in 2019 (thus compromising the novelty of the findings). The Bayesian trees being majority rules consensus trees, optimising characters onto them (Figure 7b, d) is problematic. Optimising on a consensus tree can produce spurious optimisations that inflate tree length or distort other metrics of fit. Line 264 refers to at least three independent origins of cephalic sutures in artiopodans but the fully resolved Figure 7c requires only two origins. 

      We thank the reviewer for pointing this out. However now the analyses have been re-run we have new results to consider. The results still support multiple origins of sutures. We also note that the dots were indicating how terminals were coded. This is now clearer in the revised version of this figure (Figure 8 in the new version).

      We have extended our interrogation of the trees by incorporating treespace analyses. These add support for the nodes of interest (around the base of trilobites), showing that the coding of Acanthomeridion ventral plate homologies impacts its position in the tree, and thus has implications for our understanding of the evolution of sutures in trilobites.

      The question of how many times dorsal ecdysial sutures evolved in Artiopoda was addressed by Hou et al (2017), who first documented the facial sutures of Acanthomeridion and optimised them onto a phylogeny to infer multiple origins, as well as in a paper led by the lead author in Cladistics in 2019. Du et al. (2019) presented a phylogeny based on an earlier version of the current dataset wherein they discussed how many times sutures evolved or were lost based on their presence in

      Zhiwenia/Protosutura, Acanthomeridion, and Trilobita. To their credit, the authors acknowledge this (lines 62-65). The answer here is slightly different (because some topologies unite Acanthomeridion and trilobites). 

      The following points are not meant to be "Weaknesses" but rather are refinements: 

      I recommend changing the title of the paper from "cephalic sutures" to "dorsal ecdysial sutures" to be more precise about the character that is being tracked evolutionarily. Lots of arthropods have cephalic sutures (e.g., the ventral marginal suture of xiphosurans; the Y-shaped dorsomedian ecdysial line in insects). The text might also be updated to change other instances of "cephalic sutures" to a more precise wording. 

      We appreciate this point and have changed the title as suggested. 

      The authors have provided (but not explicitly identified) support values for nodes in their Bayesian trees but not in their parsimony ones. Please do the jackknife or bootstrap for the parsimony analyses and make it clear that the Bayesian values are posterior probabilities. 

      With the addition of further trilobite terminals to our parsimony analyses, the results became poor.

      Specifically the internal relationships of trilobites did not conform to any previous study, and Olenellus getzi was not resolved as an early diverging member of the group. This meant that these analyses could not be used for addressing the hypothesis of reviewer two. We decided to exclude reporting parsimony analysis results from this version to avoid confusion.

      We have added a note that the values reported at the nodes are posterior probabilities to figures S8, S9 and S10 where we show the full Bayesian results.

      In line 65 or somewhere else, it might be noted that a single origin of the dorsal facial sutures in trilobites has itself been called into question. Jell (2003) proposed that separate lineages of Eutrilobita evolved their facial sutures independently from separate sister groups within Olenellina. 

      We have added this to the introduction (Line 98). Thank you for raising this point.

      I have provided minor typographic or terminological corrections to the authors in a list of recommendations that may not be publicly available. 

      We appreciate the points made by the reviewer and their detailed corrections, which we have corrected in the revised version.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this paper the authors provide a characterisation of auditory responses (tones, noise, and amplitude modulated sounds) and bimodal (somatosensory-auditory) responses and interactions in the higher order lateral cortex (LC) of the inferior colliculus (IC) and compare these characteristic with the higher order dorsal cortex (DC) of the IC - in awake and anaesthetised mice. Dan Llano's group have previously identified gaba'ergic patches (modules) in the LC distinctly receiving inputs from somatosensory structures, surrounded by matrix regions receiving inputs from auditory cortex. They here use 2P calcium imaging combined with an implanted prism to - for the first time - get functional optical access to these subregions (modules and matrix) in the lateral cortex of IC in vivo, in order to also characterise the functional difference in these subparts of LC. They find that both DC and LC of both awake and anaesthetised appears to be more responsive to more complex sounds (amplitude modulated noise) compared to pure tones and that under anesthesia the matrix of LC is more modulated by specific frequency and temporal content compared to the gaba'ergic modules in LC. However, while both LC and DC appears to have low frequency preferences, this preference for low frequencies is more pronounced in DC. Furthermore, in both awake and anesthetized mice somatosensory inputs are capable of driving responses on its own in the modules of LC, but very little in the matrix. The authors now compare bimodal interactions under anaesthesia and awake states and find that effects are different in some cases under awake and anesthesia - particularly related to bimodal suppression and enhancement in the modules.

      The paper provides new information about how subregions with different inputs and neurochemical profiles in the higher order auditory midbrain process auditory and multisensory information, and is useful for the auditory and multisensory circuits neuroscience community.

      The manuscript is improved by the response to reviewers. The authors have addressed my comments by adding new figures and panels, streamlining the analysis between awake and anaesthetised data (which has led to a more nuanced, and better supported conclusion), and adding more examples to better understand the underlying data. In streamlining the analyses between anaesthetised and awake data I would probably have opted for bringing these results into merged figures to avoid repetitiveness and aid comparison, but I acknowledge that that may be a matter of style. The added discussions of differences between awake and anaesthesia in the findings and the discussion of possible reasons why these differences are present help broaden the understanding of what the data looks like and how anaesthesia can affect these circuits.

      As mentioned in my previous review, the strength of this study is in its demonstration of using prism 2p imaging to image the lateral shell of IC to gain access to its neurochemically defined subdivisions, and they use this method to provide a basic description of the auditory and multisensory properties of lateral cortex IC subdivisions (and compare it to dorsal cortex of IC). The added analysis, information and figures provide a more convincing foundation for the descriptions and conclusions stated in the paper. The description of the basic functionality of the lateral cortex of the IC are useful for researchers interested in basic multisensory interactions and auditory processing and circuits. The paper provides a technical foundation for future studies (as the authors also mention), exploring how these neurochemically defined subdivisions receiving distinct descending projections from cortex contribute to auditory and multisensory based behaviour.

      Minor comment:

      - The authors have now added statistics and figures to support their claims about tonotopy in DC and LC. I asked for and I think allows readers to better understand the tonotopical organisation in these areas. One of the conclusions by the authors is that the quadratic fit is a better fit that a linear fit in DCIC. Given the new plots shown and previous studies this is likely true, though it is worth highlighting that adding parameters to a fitting procedure (as in the case when moving from linear to quadratic fit) will likely lead to a better fit due to the increased flexibility of the fitting procedure.

      Thank you for the suggestion. We have highlighted that the quadratic function allowed the regression model to include the cells tuned to higher frequencies at the rostromedial part of the DC and result in a better fit, which is consistent with the tonotopic organization that was previously described as shown in text at (lines 208-211).

      Reviewer #2 (Public Review):

      Summary:

      The study describes differences in responses to sounds and whisker deflections as well as combinations of these stimuli in different neurochemically defined subsections of the lateral and dorsal cortex of the inferior colliculus in anesthetised and awake mice.

      Strengths:

      A major achievement of the work lies in obtaining the data in the first place as this required establishing and refining a challenging surgical procedure to insert a prism that enabled the authors to visualise the lateral surface of the inferior colliculus. Using this approach, the authors were then able to provide the first functional comparison of neural responses inside and outside of the GABA-rich modules of the lateral cortex. The strongest and most interesting aspects of the results, in my opinion, concern the interactions of auditory and somatosensory stimulation. For instance, the authors find that a) somatosensory-responses are strongest inside the modules and b) somatosensory-auditory suppression is stronger in the matrix than in the modules. This suggests that, while somatosensory inputs preferentially target the GABA-rich modules, they do not exclusively target GABAergic neurons within the modules (given that the authors record exclusively from excitatory neurons we wouldn't expect to see somatosensory responses if they targeted exclusively GABAergic neurons) and that the GABAergic neurons of the modules (consistent with previous work) preferentially impact neurons outside the modules, i.e. via long-range connections.

      Weaknesses:

      While the findings are of interest to the subfield they have only rather limited implications beyond it and the writing is not quite as precise as it could be.

      Reviewer #3 (Public Review):

      The lateral cortex of the inferior colliculus (LC) is a region of the auditory midbrain noted for receiving both auditory and somatosensory input. Anatomical studies have established that somatosensory input primarily impinges on "modular" regions of the LC, which are characterized by high densities of GABAergic neurons, while auditory input is more prominent in the "matrix" regions that surround the modules. However, how auditory and somatosensory stimuli shape activity, both individually and when combined, in the modular and matrix regions of the LC has remained unknown.

      The major obstacle to progress has been the location of the LC on the lateral edge of the inferior colliculus where it cannot be accessed in vivo using conventional imaging approaches. The authors overcame this obstacle by developing methods to implant a microprism adjacent to the LC. By redirecting light from the lateral surface of the LC to the dorsal surface of the microprism, the microprism enabled two-photon imaging of the LC via a dorsal approach in anesthetized and awake mice. Then, by crossing GAD-67-GFP mice with Thy1-jRGECO1a mice, the authors showed that they could identify LC modules in vivo using GFP fluorescence while assessing neural responses to auditory, somatosensory, and multimodal stimuli using Ca2+ imaging. Critically, the authors also validated the accuracy of the microprism technique by directly comparing results obtained with a microprism to data collected using conventional imaging of the dorsal-most LC modules, which are directly visible on the dorsal IC surface, finding good correlations between the approaches.

      Through this innovative combination of techniques, the authors found that matrix neurons were more sensitive to auditory stimuli than modular neurons, modular neurons were more sensitive to somatosensory stimuli than matrix neurons, and bimodal, auditory-somatosensory stimuli were more likely to suppress activity in matrix neurons and enhance activity in modular neurons. Interestingly, despite their higher sensitivity to somatosensory stimuli than matrix neurons, modular neurons in the anesthetized prep were overall more responsive to auditory stimuli than somatosensory stimuli (albeit with a tendency to have offset responses to sounds). This suggests that modular neurons should not be thought of as primarily representing somatosensory input, but rather as being more prone to having their auditory responses modified by somatosensory input. However, this trend was different in the awake prep, where modular neurons became more responsive to somatosensory stimuli. Thus, to this reviewer, one of the most intriguing results of the present study is the extent to which neural responses in the LC changed in the awake preparation. While this is not entirely unexpected, the magnitude and stimulus specificity of the changes caused by anesthesia highlight the extent to which higher-level sensory processing is affected by anesthesia and strongly suggests that future studies of LC function should be conducted in awake animals.

      Together, the results of this study expand our understanding of the functional roles of matrix and module neurons by showing that responses in LC subregions are more complicated than might have been expected based on anatomy alone. The development of the microprism technique for imaging the LC will be a boon to the field, finally enabling much-needed studies of LC function in vivo. The experiments were well-designed and well-controlled, the limitations of two-photon imaging for tracking neural activity are acknowledged, and appropriate statistical tests were used.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      - Increase font size of scale bars on figure 6.

      Thank you for the suggestion. We have increased the font size of the scale bar.

      Reviewer #2 (Recommendations For The Authors):

      Line 505: typo: 'didtinction'

      Thank you for the suggestion and we do apologize for the typo. We have fixed the word as shown in the text (line 506).

      No further comments.

      Reviewer #3 (Recommendations For The Authors):

      Line 543: Change "contripute" to "contribute"

      Thank you for the suggestion and we do apologize for the typo. We have fixed the word as shown in the text (line 544).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      (1) In the first paragraph of the result section it is not clear why the authors introduce the function of p53ΔAS/ΔAS in thymocyte and then they mention fibroblasts. The authors should clarify this point. The authors should also explain based on what rationale they use doxorubicin and nutlin to analyze p53 activity (Figure 1 and figure S1). 

      We thank the reviewer for this comment. In the revised manuscript, we corrected this by mentioning, at the beginning of the Results section: “We analyzed cellular stress responses in thymocytes, known to undergo a p53-dependent apoptosis upon irradiation (Lowe et al., 1993), and in primary fibroblasts, known to undergo a p53-dependent cell cycle arrest in response to various stresses - e.g. DNA damage caused by irradiation or doxorubicin (Kastan et al., 1992), and the Nutlin-mediated inhibition of Mdm2, a negative regulator of p53 (Vassilev et al., 2004).”

      (2) The authors should provide quantification for the western blot in figure 2D because the reduction of p53 protein level in mutant vs wt tumors is not striking. 

      In the previous version of the manuscript, the quantification of p53 bands had been included, but quantification results were mentioned below the actin bands, rather than the p53 bands, and this was probably confusing. We have corrected this in the revised version of the manuscript. The quantification results are now provided just below the p53 bands in Figs. 1B and 2D, which should clarify this point. For Figure 2D, the quantifications show a strong decrease in p53 levels for 3 out of 4 analyzed mutant tumors. For consistency purposes, in the revised manuscript the quantification results also appear below Myc bands in Fig. 2C.

      (3) In the discussion section, the authors propose that a difference in Ackr4 expression may have prognostic value and that measuring ACKR4 gene expression in male patients with Burkitt lymphoma could be useful to identify the patients at higher risk. However the authors perform a lot of correlative analysis, both in mice and in patients, but the manuscript lacks of functional experiments that could help to functionally characterize Ackr4 and Mt2 in the etiology of B-cell lymphomas in males (both in mouse and in human models).

      In the previous version of the manuscript, we proposed that Ackr4 might act as a suppressor of B-cell lymphomagenesis by attenuating Myc signaling. This hypothesis relied on studies showing that Ackr4 impairs the Ccr7 signaling cascade, which may lead to decreased Myc activity (Ulvmar et al., 2014; Shi et al., 2015; Bastow et al., 2021) and that the loss of Ccr7 may delay Myc-driven lymphomagenesis (Rehm et al., 2011). Furthermore, we proposed that the increased expression of Mt2 in p53ΔAS/ΔAS Em-Myc male splenic cells reflected an increase in Myc activity, because Mt2 is known to be regulated by Myc (Qin et al., 2021) and because the Mt2 promoter is bound by Myc in B cells according to experiments reported in the ChIP-Atlas database. However, in the first version of the manuscript this hypothesis might have appeared only partially supported by our data because an increase in Myc activity could be expected to have a more general impact, i.e. an impact not only on the expression of Mt2, but also on the expression of many canonical Myc target genes. In the revised manuscript, we show that this is indeed the case. We performed a gene set enrichment analysis (GSEA) comparing the RNAseq data from p53ΔAS/ΔAS Eμ-Myc and p53+/+ Eμ-Myc male splenic cells and found an enrichment of hallmark Myc targets in p53ΔAS/ΔAS Eμ-Myc cells. These new data, which strengthen our hypothesis of differences in Myc signaling intensity, are presented in Fig. 3K and Table S2.

      Importantly, we now go beyond correlative analyses by providing direct experimental evidence that ACKR4 impacts on the behavior of Burkitt lymphoma cells. We used a CRISPR-Cas9 approach to knock-out ACKR4 in Raji Burkitt lymphoma cells and found that ACKR4 KO cells exhibited a 4-fold increase in chemokine-guided cell migration. These new data are presented in Figure 4F and the supplemental Figures S5-S7.  

      Finally, following a suggestion of Reviewer#2, we now also point out that “Ackr4 regulates B cell differentiation (Kara et al., 2018), which raises the possibility that an altered p53-Ackr4 pathway in p53ΔAS/ΔAS Eμ-Myc male splenic cells might contribute to increase the pools of pre-B and immature B cells that may be prone to lymphomagenesis.”

      In sum, we now mention in the Discussion that a decrease in Ackr4 expression might promote B-cell lymphomagenesis through three non-exclusive mechanisms.

      Reviewer #2 (Recommendations For The Authors): 

      (1) A great addition would be to demonstrate how p53AS specifically contributes to the regulation of Ackr4. In particular, is there evidence that p53AS might be preferentially recruited on p53 RE within that gene as compared to WT? The availability of specific antibodies that distinguish between AS and WT p53 might help to address this (experimentally complex) question. As a note, usage of such antibodies would also strengthen Fig 1B, in which the AS isoform appears as a mere faint shadow under p53, thus making its "disappearance" in trp53ΔAS/ΔAS difficult to evaluate. 

      We agree with the referee that efficient antibodies against p53-AS isoforms would have been useful. In fact, we tried a non-commercial antibody developed for that purpose, but it led to many unspecific bands in western blots and appeared not reliable. Importantly however, our luciferase assays clearly show that both p53-a and p53-AS can transactivate Ackr4, a result that might be expected because these isoforms share the same DNA binding domain. Furthermore, because p53-a isoforms appear more abundant than p53-AS isoforms at the protein and RNA levels (Figs. 1B and S1A), and because the loss of p53-AS isoforms leads to a significant decrease in p53-a protein levels (Figs. 1B and 2D), we think that in p53ΔAS/ΔAS cells the reduction in p53-a levels might be the main reason for a decreased transactivation of Ackr4. This is now more clearly discussed in the revised manuscript.

      (2) A most interesting observation is in Fig3 A and Fig S3, showing that spleen cells of p53ΔAS Eμ-Myc males (but not females) were enriched in pre-B and immature B cells as compared to WT counterparts. This observation points to a possible defect in B cell maturation process. It would be most interesting to determine whether this particular defect is directly mediated by a p53AS-Ackr4 axis. The hypothesis raised by the authors in the Discussion section is that increased Ackr4 expression may delay lymphomatogenesis, but data in Fig 3A and 3S actually suggest that ΔAS increases the pool of immature B-cell that may be prone to lymphomagenesis. 

      We thank the reviewer for this useful comment, which we integrated in the Discussion of the revised manuscript. Ackr4 was shown to regulate B cell differentiation (Kara at al. (2018) J Exp Med 215, 801–813), so this is indeed one of the possible mechanisms by which a deregulation of the p53-Ackr4 axis might promote lymphomagenesis. We now mention: “Ackr4 regulates B cell differentiation (Kara et al., 2018), which raises the possibility that an altered p53-Ackr4 pathway in p53ΔAS/ΔAS Eμ-Myc male splenic cells might contribute to increase the pools of pre-B and immature B cells that may be prone to lymphomagenesis.” This is presented as one of three possible mechanisms by which decreased Ackr4 levels may promote tumorigenesis, the two others being the impact of Ackr4 on the chemokine-guided migration of lymphoma cells and its apparent effect on Myc signalling.

      (3) The concordance with a male-specific prognostic effect of Ackr4 is most interesting in itself but is only of correlative evidence with respect to the study. Is there any information on whether p53AS expression is also a prognostic factor in BL? And is there evidence that Ackr4 may also be a male-specific prognostic factor in other B-cell malignancies, e.g. Multiple Myeloma?

      We have now performed the CRISPR-mediated knock-out of ACKR4 in Burkitt lymphoma cells and found that it leads to a dramatic increase in chemokine-guided cell migration, which goes beyond correlation. This significant new result is mentioned in the revised abstract and presented in detail in Figures 4F and S5-S7.

      Regarding p53-AS isoforms, they are murine-specific isoforms (Marcel et al. (2011) Cell Death Diff 18, 1815-1824), so there is no information on p53-AS expression in Burkitt lymphoma. Human p53 isoforms with alternative C-terminal domains are p53b and p53g isoforms, but the datasets we analyzed did not provide any information on the relative levels of p53a (the canonical isoform), p53b or p53g isoforms. We agree with the referee that this is an interesting question, but that cannot be answered with currently available datasets.

      Regarding the different types of B-cell malignancies, we had already shown that Ackr4 is a male-specific prognostic factor in Burkitt lymphomas but not in Diffuse Large B cell lymphomas, which indicated that it is not a prognostic factor in all types of B cell lymphomas. For this revision, we also searched for its potential prognostic value in multiple myeloma, and found that, as for DLBCL, it is not a prognostic factor in this cancer type. This new analysis is presented in Figure S4C.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      Summary: This article explores the role of Ecdysone in regulating female sexual receptivity in Drosophila. The researchers found that PTTH, throughout its role as a positive regulator of ecdysone production, negatively affects the receptivity of adult virgin females. Indeed, loss of larval PTTH before metamorphosis significantly increases female receptivity right after adult eclosion and also later. However, during metamorphic neurodevelopment, Ecdysone, primarily through its receptor EcR-A, is required to properly develop the P1 neurons since its silencing led to morphological changes associated with a reduction in adult female receptivity. Nonetheless, the result shown in this manuscript sheds light on how Ecdysone plays a dual role in female adult receptivity, inhibiting it during larval development and enhancing it during metamorphic development. Unfortunately, this dual and opposite effect in two temporally different developmental stages has not been highlighted or explained. 

      Strengths: This paper exhibits multiple strengths in its approach, employing a well-structured experimental methodology that combines genetic manipulations, behavioral assays, and molecular analysis to explore the impact of Ecdysone on regulating virgin female receptivity in Drosophila. The study provides clear and substantial findings, highlighting that removing PTTH, a positive Ecdysone regulator, increases virgin female receptivity. Additionally, the research expands into the temporal necessity of PTTH and Ecdysone function during development. 

      Weaknesses: 

      There are two important caveats with the data that are reflecting a weakness: 

      (1) Contradictory Effects of Ecdysone and PTTH: One notable weakness in the data is the contrasting effects observed between Ecdysone and its positive regulator PTTH. PTTH loss of function increases female receptivity, while ecdysone loss of function reduces it. Given that PTTH positively regulates Ecdysone, one would expect that the loss of function of both would result in a similar phenotype or at least a consistent directional change. 

      A1. As newly formed prepupae, the ptth-Gal4>UAS-Grim flies display similar changes in gene expression to the genetic control flies to response to a high-titer ecdysone pulse. These include the repression of EcR (McBrayer et al.,2007). We tested whether there is a similar feedforward relationship between PTTH and EcR-A. We quantified the EcR-A mRNA level of PTTH -/- and PTTH -/+ in the whole body of newly formed prepupae. Indeed, PTTH -/- induced increased EcR-A expression in the whole body of newly formed prepupae compared with PTTH -/+ flies. Because of the function of EcR-A in gene expression, this suggests that PTTH -/- disturbs the regulation of a serious of gene expressions during metamorphosis. However, it is not sure that the EcR-A expression in pC1 neurons is increased compared with genetic controls when PTTH is deleted. Furthermore, PTTH -/- must affect development of other neurons rather than only pC1 neurons. So, the feedforward relationship between PTTH and EcRA at the start of prepupal stage is one possible cause for the contradictory effects of PTTH -/- and EcR-A RNAi in pC1 neurons.  

      (2) Discordant Temporal Requirements for Ecdysone and PTTH: Another weakness lies in the different temporal requirements for Ecdysone and PTTH. The data from the manuscript suggest that PTTH is necessary during the larval stage, as shown in Figure 2 E-G, while Ecdysone is required during the pupal stage, as indicated in Figure 5 I-K. Ecdysone is a crucial developmental hormone with precisely regulated expression throughout development, exhibiting several peaks during both larval and pupal stages. PTTH is known to regulate Ecdysone during the larval stage, specifically by stimulating the kinetics of Ecdysone peaking at the wandering stage. However, it remains unclear whether pupal PTTH, expressed at higher levels during metamorphosis, can stimulate Ecdysone production during the pupal stage. Additionally, given the transient nature of the Ecdysone peak produced at wandering time, which disappears shortly before the end of the prepupal stage, it is challenging to infer that larval PTTH will regulate Ecdysone production during the pupal stage based on the current state of knowledge in the neuroendocrine field.  

      Considering these two caveats, the results suggest that the authors are witnessing distinct temporal and directional effects of Ecdysone on virgin female receptivity.  

      A2. First of all, it is necessary to clarify the detailed time for the manipulation of Ptth gene and PTTH neurons. In Figure 3, activation of PTTH neurons during the stage 2 inhibited the female receptivity. The “stage 2” is from six hours before the 3rd-instar larvae to the end of the wandering larvae (the start of prepupae). In Figure 5, The “pupal stage” is from the prepupal stage to the end of pupal stage. This “pupal stage” includes the forming of prepupae when the ecdysone peak is not disappeared. The time of manipulating Ptth and EcR-A in pC1 neurons are continuous. In addition, the pC1-Gal4 expressing neurons appear also at the start of prepupal stage. So, it is possible that PTTH regulates female receptivity through the function of EcR-A in pC1 neurons. 

      Reviewer #1 (Recommendations For The Authors): 

      In light of the significant caveat previously discussed, I will just make a few general suggestions: 

      (1) The paper primarily focuses on robust phenotypes, particularly in PTTH mutants, with a well-detailed execution of several experiments, resulting in thorough and robust outcomes. However, due to the caveat previously presented (opposite effect in larva and pupa), consider splitting the paper into two parts: Figures 1 to 4 deal with the negative effect of PTTH-Ecdysone on early virgin female receptivity, while Figures 5 to 7 focus on the positive metamorphic effect of Ecdysone in P1 metamorphic neurodevelopment. However, in this scenario, the mechanism by which PTTH loss of function increases female receptivity should be addressed.

      A3. It is a good suggestion that splitting the paper into two parts associated with the PTTH function and EcR function in pC1 neurons separately, if it is impossible that PTTH functions in female receptivity through the function of EcR-A in pC1 neurons. However, because of the feedforward relationship between PTTH and EcR-A in the newly formed prepupae, and the time of manipulating Ptth and EcR-A in pC1 neurons is continuous, it is possible that these two functions are not independent of each other. So, we still keep the initial edition.

      (2) Validate the PTTH mutants by examining homozygous mutant phenotypes and the dose-dependent heterozygous mutant phenotype using existing PTTH mutants. This could also be achieved using RNAi techniques.

      A4. We did not get other existing PTTH mutants. We instead decreased the PTTH expression in PTTH neurons and dsx+ neurons, but did not detect the similar phenotype to that of PTTH -/-. Similarly, the overexpression through PTTH-Gal4>UAS-PTTH is also not sufficient to change female receptivity. It is possible that both decreasing and increasing PTTH expression are not sufficient to change female receptivity.

      (3) Clarify if elav-Gal4 is not expressed in PTTH neurons and discuss how the rescue mechanisms work (hormonal, paracrine, etc.) in the text.

      A5. We tested the overlap of elav-Gal4>GFP signal and the stained PTTH with PTTH antibody. We did not detect the overlap. It suggests that elav-Gal4 is not expressed in PTTH neurons. However, we detected the expression of PTTH (PTTH antibody) in CNS when overexpressed PTTH using elav-Gal4>UASPTTH based on PTTH -/-. Furthermore, this rescued the phenotype of PTTH -/- in female receptivity. Insect PTTH isoforms have similar probable signal peptide for secreting. Indeed, except for the projection of axons to PG gland, PTTH also carries endocrine function acting on its receptor Torso in light sensors to regulate light avoidance of larvae. The overexpressed PTTH in other neurons through elav-Gal4>UASPTTH may act on the PG gland through endocrine function and then induce the ecdysone synthesis and release. So that, although elav-Gal4 is not expressed in PTTH neurons, the ecdysone synthesis triggered by PTTH from the hemolymph may result in the rescued PTTH -/- phenotype in female receptivity.

      (4) Consider renaming the new PTTH mutant to avoid confusion with the existing PTTHDelta allele. 

      A6. We have renamed our new PTTH mutant as PtthDelete.

      (5) Include the age of virgin females in each figure legend, especially for Figures 2 to 7, to aid in interpretation. This is essential information since wild-type early virgins -day 1- show no receptivity. In contrast, they reach a typical 80% receptivity later, and the mechanism regulating the first face might differ from the one occurring later.

      A7. We have included the age of virgin females in each figure legend. 

      (6) Explain the relevance of observing that PTTH adult neurons are dsx-positive, as it's unclear why this observation is significant, considering that these neurons are not responsible for the observed receptivity effect in virgin females. Alternatively, address this in the context of the third instar larva or clarify its relevance.  

      A8. We decreased the DsxF expression in PTTH neurons and did not detect significantly changed female receptivity. Almost all neurons regulating female receptivity, including pC1 neurons, express DsxF. We suppose that PTTH neurons have some relationship with other DsxF-positive neurons which regulate female receptivity. Indeed, we detected the overlap of dsx-LexA>LexAop-RFP and torso-Gal4>UAS-GFP during larval stage. Furthermore, decreasing Torso expression in pC1 neurons significantly inhibit female receptivity. 

      These results suggest that, PTTH regulates female receptivity not only through ecdysone, but also may through regulating other neurons especially DsxF-positive neurons associated with female receptivity directly. 

      Reviewer #2 (Public Review): 

      Summary: The authors tried to identify novel adult functions of the classical Drosophila juvenile-adult transition axis (i.e. ptth-ecdysone). Surprisingly, larval ptth-expressing neurons expressed the sex-specific doublesex gene, thus belonging to the sexual dimorphic circuit. Lack of ptth during late larval development caused enhanced female sexual receptivity, an effect rescued by supplying ecdysone in the food. Among many other cellular players, pC1 neurons control receptivity by encoding the mating status of females. Interestingly, during metamorphosis, a subtype of pC1 neurons required Ecdysone Receptor A in order to regulate such female receptivity. A transcriptomic analysis using pC1-specific Ecdyone signaling down-regulation gives some hints of possible downstream mechanisms. 

      Strengths: the manuscript showed solid genetic evidence that lack of ptth during development caused enhanced copulation rate in female flies, which includes ptth mutant rescue experiments by overexpressing ptth as well as by adding ecdysone-supplemented food. They also present elegant data dissecting the temporal requirements of ptth-expressing neurons by shifting animals from non-permissive to permissive temperatures, in order to inactivate neuronal function (although not exclusively ptth function). By combining different drivers together with a EcR-A RNAi line authors also identified the Ecdysone receptor requirements of a particular subtype of pC1 neurons during metamorphosis. Convincing live calcium imaging showed no apparent effect of EcR-A in neural activity, although some effect on morphology is uncovered. Finally, bulk RNAseq shows differential gene expression after EcR-A down-regulation. 

      Weaknesses: the paper has three main weaknesses. The first one refers to temporal requirements of ptth and ecdysone signaling. Whereas ptth is necessary during larval development, the ecdysone effect appears during pupal development. ptth induces ecdysone synthesis during larval development but there is no published evidence about a similar role for ptth during pupal stages. Furthermore, larval and pupal ecdysone functions are different (triggering metamorphosis vs tissue remodeling). The second caveat is the fact that ptth and ecdysone loss-of-function experiments render opposite effects (enhancing and decreasing copulation rates, respectively). The most plausible explanation is that both functions are independent of each other, also suggested by differential temporal requirements. Finally, in order to identify the effect in the transcriptional response of down-regulating EcR-A in a very small population of neurons, a scRNAseq study should have been performed instead of bulk RNAseq. 

      In summary, despite the authors providing convincing evidence that ptth and ecdysone signaling pathways are involved in female receptivity, the main claim that ptth regulates this process through ecdysone is not supported by results. More likely, they'd rather be independent processes. 

      B1. Clarification: in Figure 3, activation of PTTH neurons during the stage 2 inhibited the female receptivity. The “stage 2” is from six hours before the 3rd-instar larvae to the end of the wandering larvae (the start of prepupae). In Figure 5, The “pupal stage” is from the start of prepupal stage to the end of pupal stage. This “pupal stage” includes the forming of prepupae when the ecdysone peak is not disappeared. The time of manipulating Ptth and EcR-A in pC1 neurons are continuous. In addition, the pC1-Gal4 expressing neurons appear also at the start of prepupal stage. So, it is possible that PTTH regulates female receptivity through the function of EcR-A in pC1 neurons. 

      B2. During the forming of prepupae, the ptth-Gal4>UAS-Grim flies display similar changes in gene expression to the genetic control flies to response to a high-titer ecdysone pulse. These include the repression of EcR (McBrayer et al.,2007). We tested whether there is a similar feedforward relationship between PTTH and EcR-A. We quantified the EcR-A mRNA level of PTTH -/- and PTTH -/+ in the whole body of newly formed prepupae. Indeed, PTTH -/- induced increased EcR-A compared with PTTH -/+ flies. Because of the function of EcR-A in gene expression, this suggests that PTTH -/- disturbs the regulation of a serious of gene expressions during metamorphosis. However, it is not sure that the EcR-A expression in pC1 neurons is increased compared with genetic controls when PTTH is deleted. Furthermore, PTTH -/- must affect the development of other neurons rather than only pC1 neurons. So, the feedforward relationship between PTTH and EcR-A at the start of prepupal stage is one possible cause for the contradictory effects of PTTH -/- and EcR-A RNAi in pC1 neurons.

      B3. We will do single cell sequencing in pC1 neurons for the exploration of detailed molecular mechanism of female receptivity in the future.

      Reviewer #2 (Recommendations For The Authors): 

      Additional experiments and suggestions: 

      - torso LOF in the PG to determine whether or not the ecdysone peak regulated by ptth (there is a 1-day delay in pupation) is responsible for the ptth effect in L3. In the same line, what happens if torso is downregulated in the pC1 neurons? Is there any effect on copulation rates? 

      B4. Because the loss of phm-Gal4, we could not test female receptivity when decreasing the expression of Torso in PG gland. However, decreasing Torso expression in pC1 neurons significantly inhibit female receptivity. This suggests that PTTH regulates female receptivity not only through ecdysone but also through regulating dsx+ pC1 neurons in female receptivity directly.

      - What is the effect of down-regulating ptth in the dsx+ neurons? No ptth RNAi experiments are shown in the paper. 

      B5. We decreased PTTH expression in dsx+ neurons but did not detect the change in female receptivity.  We also decreased PTTH expression in PTTH neurons using PTTH-Gal4, also did not detect the change in female receptivity. Similarly, the overexpression through PTTH-Gal4>UAS-PTTH is also not sufficient to change female receptivity. It is possible that both decreasing and increasing PTTH expression are not sufficient to change female receptivity.

      - Why are most copulation rate experiments performed between 4-6 days after eclosion? ptth LOF effect only lasts until day 3 after eclosion (but very weak-fig 1). Again, this supports the idea that ptth and ecdysone effects are unrelated.

      B6. Most behavioral experiments were performed between 4-6 days after eclosion as most other studies in flies, because the female receptivity reaches the peak at that time. Ptth LOF made female receptivity enhanced from the first day after eclosion. This seems like the precocious puberty. Wild type females reach high receptivity at 2 days after eclosion (about 75% within 10 min). We suppose that Ptth LOF effect only lasts until day 3 after eclosion because too high level of receptivity of control flies to exceed.

      It is not sure whether the effect of PTTH-/- in female receptivity disappears after the 3rd day of adult flies. So that it is not sure whether PTTH and EcR-A effects in pC1 neurons are unrelated.

      - The fact that pC1d neuronal morphology changes (and not pC1b) does not explain the effect of EcR-A LOF. Despite it is highlighted in the discussion, data do not support the hypothesis. How do these pC1 neurons look like in a ptth mutant animal regarding Calcium imaging and/or morphology? 

      B7. We detected the pattern of pC1 neurons when PTTH is deleted. Consistent with the feedforward relationship between PTTH and expression of EcR-A in newly formed prepupae, PTTH deletion induced less established pC1-d neurons contrary to that induced by EcR-A reduction in pC1 neurons. However, it is not sure that the expression of EcR-A in pC1 neurons is increased when PTTH is deleted. Furthermore, on the one hand, manipulation of PTTH has general effect on the neurodevelopment not only regulating pC1 neurons. On the other hand, the detailed pattern of pC1-b neurons which is the key subtype regulating female receptivity when EcR-A is decreased in pC1 neurons or PTTH is deleted could not be seen clearly. So, the abnormal development of pC1-b neurons, if this is true, is just one of the possible reasons for the effect of PTTH deletion on female receptivity.

      - The discussion is incomplete, especially the link between ptth and ecdysone; discuss why the phenotype is the opposite (ptth as a negative regulator of ecdysone in the pupa, for instance); the difference in size due to ptth LOF might be related to differential copulation rates.  

      B8. We have revised the discussion. We could not exclude the effect of size of body on female receptivity when PTTH was deleted or PTTH neurons were manipulated, although there was not enough evidence for the effect of body size on female receptivity.

      - scheme of pC neurons may help. 

      B9. We have tried to label pC1 neurons with GFP and sort pC1 neurons through flow cytometry sorting, but could not success. This may because the number of pC1 neurons is too low in one brain. We will try single-cell sequencing in the future. 

      - Immunofluorescence images are too small.

      B10. We have resized the small images.

      Reviewer #3 (Public Review): 

      Summary: 

      This manuscript shows that mutations that disable the gene encoding the PTTH gene cause an increase in female receptivity (they mate more quickly), a phenotype that can be reversed by feeding these mutants the molting hormone, 20-hydoxyecdysone (20E). The use of an inducible system reveals that inhibition or activation of PTTH neurons during the larval stages increases and decreases female receptivity, respectively, suggesting that PTTH is required during the larval stages to affect the receptivity of the (adult) female fly. Showing that these neurons express the sex-determining gene dsx leads the authors to show that interfering with 20E actions in pC1 neurons, which are dsx-positive neurons known to regulate female receptivity, reduces female receptivity and increases the arborization pattern of pC1 neurons. The work concludes by showing that targeted knockdown of EcRA in pC1 neurons causes 527 genes to be differentially expressed in the brains of female flies, of which 123 passed a false discovery rate cutoff of 0.01; interestingly, the gene showing the greatest down-regulation was the gene encoding dopamine beta-monooxygenase. 

      Strengths 

      This is an interesting piece of work, which may shed light on the basis for the observation noted previously that flies lacking PTTH neurons show reproductive defects ("... females show reduced fecundity"; McBrayer, 2007; DOI 10.1016/j.devcel.2007.11.003). 

      Weaknesses: 

      There are some results whose interpretation seem ambiguous and findings whose causal relationship is implied but not demonstrated. 

      (1) At some level, the findings reported here are not at all surprising. Since 20E regulates the profound changes that occur in the central nervous system (CNS) during metamorphosis, it is not surprising that PTTH would play a role in this process. Although animals lacking PTTH (rather paradoxically) live to adulthood, they do show greatly extended larval instars and a corresponding great delay in the 20E rise that signals the start of metamorphosis. For this reason, concluding that PTTH plays a SPECIFIC role in regulating female receptivity seems a little misleading, since the metamorphic remodeling of the entire CNS is likely altered in PTTH mutants. Since these mutants produce overall normal (albeit larger--due to their prolonged larval stages) adults, these alterations are likely to be subtle. Courtship has been reported as one defect expressed by animals lacking PTTH neurons, but this behavior may stand out because reduced fertility and increased male-male courtship (McBrayer, 2007) would be noticeable defects to researchers handling these flies. By contrast, detecting defects in other behaviors (e.g., optomotor responses, learning and memory, sleep, etc) would require closer examination. For this reason, I would ask the authors to temper their statement that PTTH is SPECIFICALLY involved in regulating female receptivity.  

      C1. We agree with that, it is not surprising that PTTH regulates the profound changes that occur in the CNS during metamorphosis through ecdysone. Also, the behavioral changes induced by PTTH mutants include not only female receptivity. We will temper the statement about the function of PTTH on female receptivity.

      We think there are two new points in our text although more evidences are needed in the future. On the one hand, PTTH deletion and the reduction of EcR-A in pC1 neurons during metamorphosis have opposite effects on female receptivity. On the other hand, development of pC1-b neurons regulated by EcR-A during metamorphosis is important for female receptivity.

      (2) The link between PTTH and the role of pC1 neurons in regulating female receptivity is not clear. Again, since 20E controls the metamorphic changes that occur in the CNS, it is not surprising that 20E would regulate the arborization of pC1 neurons. And since these neurons have been implicated in female receptivity, it would therefore be expected that altering 20E signaling in pC1 neurons would affect this phenotype. However, this does not mean that the defects in female receptivity expressed by PTTH mutants are due to defects in pC1 arborization. For this, the authors would at least have to show that PTTH mutants show the changes in pC1 arborization shown in Fig. 6. And even then the most that could be said is that the changes observed in these neurons "may contribute" to the observed behavioral changes. Indeed, the changes observed in female receptivity may be caused by PTTH/20E actions on different neurons.

      C2. As newly formed prepupae, the ptth-Gal4>UAS-Grim flies display similar changes in gene expression to the genetic control flies to response to a high-titer ecdysone pulse. These include the repression of EcR (McBrayer et al., 2007). We tested whether there is a similar feedforward relationship between PTTH and EcR-A. We quantified the EcR-A mRNA level of PTTH -/- and PTTH -/+ in the whole body of newly formed prepupae. Indeed, PTTH -/- induced upregulated EcR-A in the whole body of newly formed prepupae compared with PTTH -/+ flies. We also detected the pattern of pC1 neurons when PTTH is deleted. Consistent with the feedforward relationship between PTTH and expression of EcR-A in newly formed prepupae, PTTH deletion induced less established pC1-d neurons contrary to that induced by EcR-A reduction in pC1 neurons. 

      However, it is not sure that the expression of EcR-A in pC1 neurons increases compared with genetic controls when PTTH is deleted. Furthermore, on the one hand, manipulation of PTTH has general effect on the neurodevelopment. On the other hand, the detailed pattern of pC1-b neurons which is the key subtype regulating female receptivity through EcR-A function in pC1 neurons could not be seen clearly. So, the abnormal development of pC1b neurons, if this is true, is just one of the possible reasons for the effect of PTTH deletion on female receptivity.

      (3) Some of the results need commenting on, or refining, or revising:  a- For some assays PTTH behaves sometimes like a recessive gene and at other times like a semidominant, and yet at others like a dominant gene. For instance, in Fig. 1D-G, PTTH[-]/+ flies behave like wildtype (D), express an intermediate phenotype (E-F), or behave like the mutant (G). This may all be correct but merits some comment.

      C3. Female receptivity increases with the increase of age after eclosion, not only for wild type flies but also PTTH mutants. At the first day after eclosion (Figure 1D), maybe the loss of PTTH in PTTH[-]/+ flies is not enough for sexual precocity as in PTTH -/-. At the second day after eclosion and after (Figure 1E-G), the loss of PTTH in PTTH[-]/+ flies is sufficient to enhance female receptivity compared with wild type flies. However, After the 2nd day of adult, female receptivity of all genotype flies increases sharply. At the 3rd day of adult and after, female receptivity of PTTH -/- reaches the peak and the receptivity of PTTH[-]/+ reaches more nearly to PTTH -/- when flies get older.  

      b - Some of the conclusions are overstated. i) Although Fig. 2E-G does show that silencing the PTTH neurons during the larval stages affects copulation rate (E) the strength of the conclusion is tempered by the behavior of one of the controls (tub-Gal80[ts]/+, UAS-Kir2.1/+) in panels F and G, where it behaves essentially the same as the experimental group (and quite differently from the PTTH-Gal4/+ control; blue line).(Incidentally, the corresponding copulation latency should also be shown for these data.). ii) For Fig. 5I-K, the conclusion stated is that "Knock-down of EcR-A during pupal stage significantly decreased the copulation rate." Although strictly correct, the problem is that panel J is the only one for which the behavior of the control lacking the RNAi is not the same as that of the experimental group. Thus, it could just be that when the experiment was done at the pupal stage is the only situation when the controls were both different from the experimental. Again, the results shown in J are strictly speaking correct but the statement is too definitive given the behavior of one of the controls in panels I and K. Note also that panel F shows that the UAS-RNAi control causes a massive decrease in female fertility, yet no mention is made of this fact.

      C4. i) For all figures in the text, only when all the control groups were significant different from assay group, we say the assay group is significantly different. In Figure 2E-G, the control groups were both different from the assay group only at the larval stage. The difference between two control groups may due to the genetic background. We have described more detailed statistical analysis in the legend. In addition, the corresponding copulation latency has been shown. ii) For Figure 5, we have revised the conclusion in text as “when the experiment was done at the pupal stage is the only situation when the controls were both different from the experimental.” Besides, the UAS-RNAi control causes a massive decrease in female fertility in panel F has been mentioned.

      Reviewer #3 (Recommendations For The Authors): 

      (1) I am not sure that PTTH neurons should be referred to as "PG neurons". I am aware that this name has been used before but the PG is a gland that does not have neurons; it is not even innervated in all insects. 

      C5. Agree. “PG neurons” has been changed into “PTTH neurons”.

      (2) Fig. 1A warrants some explanation. One can easily imagine what it shows but a description is warranted. 

      C6. Explanation has been added.

      (3) When more than one genotype is compared it would be more useful to use letters to mark the genotypes that are not statistically different from each other rather than simply using asterisks. For instance, in the case of copulation latencies shown in Fig. 1E-G, which result does the comparison refer to? For example, since the comparisons are the result of ANOVAs, which comparison receives "*" in Fig. 1F? Is it PTTH[-]/+ vs PTTH[-]/PTTH[-] or vs. +/+? 

      C7. Referred genotypes and conditions were marked in all figure legends.

      (4) Fig. 1H: Why is copulation latency of PTTH[-]/PTTH[-]+elav-GAL4 significantly different from that of PTTH[-]/PTTH[-]? This merits a comment. Also, why was elav-GAL4 used to effect the rescue and not the PTTH-GAL4 driver? 

      C8. We could not explain this phenomenon. This may due to the different genetic backgrounds between controls. We have mentioned this in figure legend.

      (5) Fig. 2C, the genotype is written in a confusing order, GAL4+UAS should go together as should LexA+LexAop. 

      C9. We have revised for avoiding confusion.

      (6) In Fig. 2, is "larval stage" the same period that is shown in Fig. 3A? Please clarify.

      C10. We have clarified this in text and legends.

      (7) Fig. 6. The fact that pC1 neurons can be labeled using the pC1-ss2-Gal4 at the start of the pupal stage does not mean that this is when these neurons appear (are born), only when they start expressing this GAL4. Other types of evidence would be needed to make a statement about the birthdate of these neurons. 

      C11. We have revised the description for the appearance of pC1-ss2-Gal4>GFP. The detailed birth time of pC1 neurons will be tested in future.

      (8) The results shown in Fig. 7 are not pursued further and thus appear like a prelude to the next manuscript. Unless the authors have more to add regarding the role of one of the differentially expressed genes (e.g., dopamine beta-monooxygenase, which they single out) I would suggest leaving this result out. 

      C12. We have leave this out.

      (9) Female flies lacking PTTH neurons were reported to show lower fecundity by McBrayer et al. (2007) and should be cited. 

      C13. This important study has been cited in the first manuscript. In this revision, we have cited it again when mentioning the lower fecundity of female flies lacking PTTH neurons.

      (10) Line 230: when were PTTH neurons activated? Since they are dead by 10h post-eclosion it isn't clear if this experiment even makes sense. 

      C14. Yes, we did this for making sure that PTTH neurons do not affect female receptivity at adult stage again.

      (11) Line 338: the statements in the figures say that PTTH function is required during the larval stages, not during metamorphosis 

      C15. This has been revised as “The result suggested that EcR-A in pC1 neurons plays a role in virgin female receptivity during metamorphosis. This is consistent with that PTTH regulates virgin female receptivity before the start of metamorphosis.”

      (12) Did the authors notice any abnormal behavior in males? McBrayer et al. (2007) mention that males lacking PTTH neurons show male-male courtship. This may remit to the impact of 20E on other dsx[+] neurons. 

      C16. Yes, we have noticed that males lacking PTTH show male-male courtship. It is possible that PTTH deletion induces male-male courtship through the impact of 20E on other dsx+ or fru+ neurons. We have added the corresponding discussion.

      (13) Line 145: please define CCT at first use 

      C17. CCT has been defined.

      (14) Overall the manuscript is well written; however, it would still benefit from editing by a native English speaker. I have marked a few corrections that are needed, but I probably missed some. 

      + Line 77: "If female is not willing..." should say "If THE female is not willing..." 

      + Line 78 "...she may kick the legs, flick the wings," should say "...she may kick HER legs, flick HER wings," 

      + Lines 93-94 this sentence is unclear: "...while the neurons in that fru P1 promoter or dsx is expressed regulate some aspects..." 

      + Line 108 "...similar as the function of hypothalamic-pituitary-gonadal (HPG).." should say "...similar

      TO the function of hypothalamic-pituitary-gonadal (HPG).." 

      + Line 152 "Due to that 20E functions through its receptor EcR.." should say ""BECAUSE 20E ACTS through its receptor EcR.." 

      + Lines 155, 354 "unnormal" is not commonly used (although it is an English word); "abnormal" is usually used instead. 

      + Line 273: "....we then asked that whether ecdysone regulates" delete "that"  + Sentences lines 306-309 need to be revised.

      C18. Thank you for your suggestions. We have revised as you advise.

    1. Explain how the procedure benefits the students to build buy-in Model good and bad execution Practice, practice, practice

      I totally agree with these three things because I think that the better you can get students to buy-in to what we are doing the better student outcomes will be. Modelling and explaining not just good but also bad execution is helpful because some students may not even realize what they are doing wrong. As for "practice, practice, practice" I believe that practice makes perfect.

    1. Author Response:

      We would like to thank the editors and reviewers for the careful consideration of our manuscript and their many helpful comments. We would like to provide provisional author responses to address the public reviews.

      Response to Reviewer 1:

      Weaknesses:

      While this study convincingly describes the phenotype seen upon Drp1 loss, my major concern is that the mechanism underlying these defects in zygotes remains unclear. The authors refer to mitochondrial fragmentation as the mechanism ensuring organelle positioning and partitioning into functional daughters during the first embryonic cleavage. However, could Drp1 have a role beyond mitochondrial fission in zygotes? I raise these concerns because, as opposed to other Drp1 KO models (including those in oocytes) which lead to hyperfused/tubular mitochondria, Drp1 loss in zygotes appears to generate enlarged yet not tubular mitochondria. Lastly, while the authors discard the role of mitochondrial transport in the clustering observed, more refined experiments should be performed to reach that conclusion.

      It would be difficult to answer from this study whether Drp1 has a role beyond mitochondrial fission in zygotes. However, there are several possible reasons why the Drp1 KO zygotes differs from the somatic cell Drp1 KO models.  

      First, the reviewer mentions that the loss of Drp1 in oocytes leads to hyperfused/tubular mitochondria, but in fact, unlike in somatic cells, the EM images in Drp1 KO oocytes show enlarged mitochondria rather than tubular structures  (Udagawa et al. Current Biology 2014, Fig. 2C and Fig. S1B-D), as in the case of zygotes in this study. 

      These mitochondrial morphologies in Drp1-deficient oocytes/zygotes may be attributed to the unique mitochondrial architecture in these cells. Mitochondria in oocytes have the shape of a small sphere with an irregular cristae located peripherally or transversely. These structural features might be the cause of insensitivity or resistance to inner membrane fusion. In addition, in our previous study (Wakai et al., Molecular Human Reproduction 2014, Fig. 2), overexpression of mitochondrial fusion factors in oocytes resulted in mitochondrial aggregation when outer membrane fusion factor Mfn1/Mfn2 was overexpressed, while overexpression of Opa1 did not cause any morphological changes. Thus, while mitochondria in oocytes/zygotes divide actively, complete fusion, including the inner membrane, as seen in somatic cells, is unlikely to occur.

      As for mitochondrial transport, we do not entirely discard its role. Althogh mitochondrial intrinsic dynamics such as fission are of primary importance for the mitochondrial distribution and partitioning in embryos, the regulation of dynamics by the cytoskeletons may be important and thus needs further study, as the reviewer pointed out.

      Response to Reviewer 2:

      Weaknesses:

      The authors first describe the redistribution of mitochondria during normal development, followed by alterations induced by Drp1 depletion. It would be useful to indicate the time post-hCG for imaging of fertilised zygotes (first paragraph of the results/Figure 1) to compare with subsequent Drp1 depletion experiments.

      We will indicate the time after hCG as the reviewer pointed out. The only problem is that in this experiment, there may be a slight deviation from the actual mitochondrial distribution change (Fig. S1A) due to the manipulation time for Trim-Away (since it was performed outside of the incubator). Also, no significant delay in pronuclear formation or embryonic development was observed with Drp1 depleted zygotes.

      It is noted that Drp1 protein levels were undetectable 5h post-injection, suggesting earlier times were not examined, yet in Figure 3A it would seem that aggregation has occurred within 2 hours (relative to Figure 1).

      As the reviewer pointed out, the depletion of Drp1 is likely to have occurred at an earlier stage. In this study, due to the injection of various RNAs to visualize organelles such as mitochondria and chromosomes, observations were started after about 5 hours of incubation for their fluorescent proteins to be sufficiently expressed. Therefore, for the western blotting analysis, samples were taken into account their condition at the start of the observation.

      Mitochondria appear to be slightly more aggregated in Drp1 fl/fl embryos than in control, though comparison with untreated controls does not appear to have been undertaken. There also appears to be some variability in mitochondrial aggregation patterns following Drp1 depletion (Figure 2-suppl 1 B) which are not discussed.

      We would like to add quantitative data on mitochondrial aggregation in Drp1-depleted embryos.

      The authors use western blotting to validate the depletion of Drp1, however do not quantify band intensity. It is also unclear whether pooled embryo samples were used for western blot analysis.

      We would like to add the quantitative results of the intensity of the bands for the Western blot analysis. The number of embryos analyzed is described in Fig legends, from 20 (Fig. 4) to 30 (Fig. 2) pooled samples were used.

      Likewise, intracellular ROS levels are examined however quantification is not provided. It is therefore unclear whether 'highly accumulated levels' are of significance or related to Drp1 depletion.

      We will present to indicate quantitative results on the accumulation of ROS.

      In previous work, Drp1 was found to have a role as a spindle assembly checkpoint (SAC) protein. It is therefore unclear from the experiments performed whether aggregation of mitochondria separating the pronuclei physically (or other aspects of mitochondrial function) prevents appropriate chromosome segregation or whether Drp1 is acting directly on the SAC.

      It has been reported that Drp1 regulates meiotic spindle through spindle assembly checkpoint (SAC) (Zhou et al., Nature Communications 2022). We would like to mention the possibility pointed out in the discussion part.

      Response to Reviewer 3:

      Seemingly, there are few apparent shortcomings. Following are the specific comments to activate the further open discussion.

      - Line 246: Comments on cristae morphology of mitochondria in Drp1-depleted embryos would better be added.

      We would like to add a comment regarding cristae morphology.

      - Regarding Figure 2H: If possible, a representative picture of Ateam would better be included in the figure. As the authors discussed in line 458, Ateam may be able to detect whether any alterations of local energy demand occurred in the Drp1-depleted embryos.

      ATeam fluorescence is analyzed using a regular fluorescence microscope, not a confocal laser microscope, in order to analyze the intensity in the whole embryo (or the whole blastomere). Therefore, we are currently unable to obtain images of localized areas within the cell (e.g., around the spindle) as expected by the reviewer; as shown in the images in Figure 3-figure supplement 1C, there is a tendency to see high ATP levels at the cell periphery, but further analysis is needed for clear and definitive results.

      - Line 282: In Figure 3-Video 1, mitochondria were seemingly more aggregated around female pronucleus. Is it OK to understand that there is no gender preference of pronuclei being encircled by more aggregated mitochondria?

      Aggregated mitochondria are localized toward the cell center, but do not behave in such a way that they are preferentially concentrated near the female pronucleus.

      - Line 317: A little more explanation of the "variability" would be fine. Does that basically mean that the Ca2+ response in both Drp1-depleted blastomeres were lower than control and blastomere with more highly aggregated mitochondria show severer phenotype compared to the other blastomere with fewer mito?

      We assume that what the reviewer have pointed out is right. However, although we were able to show the bias in Ca2+ store levels between blastomeres of Drp1 depleted embryos, we did not stain mitochondria simultaneously, so we were unable to say details such as more Ca2+ stores in blastomere that inherited more mitochondria or less Ca2+ stores in blastomere with more aggregated mitochondria

      - Regarding Figure 5B (& Figure 1-figure supplement 1B): Do authors think that there would be less abnormalities in the embryos if Drp1 is trim-awayed after 2-cell or 4-cell, in which mitochondria are less involved in the spindle?

      The marked accumulation of mitochondria around the spindle is unique to the first cleavage and seems to be coincident with the migration of the pronuclei toward the center. Since the process of assembly of the male and female pronuclei is also an event unique to the first cleavage, abnormalities such as binucleation due to mitochondrial misplacement are thought to be a phenomenon seen only in the first cleavage. Therefore, if Drp1 is depleted at the 2-cell or 4-cell stage, chromosome segregation errors may be less frequent. However, since unequal partitioning of mitochondria is thought to occur, some abnormalities in embryonic development is likely to be observed.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer 1:

      Strengths

      We thank the reviewer for recognizing the strengths of our in vivo Ca2+ measurements, super resolution microscopy and assessment of the secretory dysfunction in the Sjogrens syndrome mouse model.

      Weaknesses

      Point 1: The less restricted Ca2+ signal to the apical region of the acinar cell is not really relevant to the reduced activation of TMEM16a by a local signal at the apical plasma membrane.

      We agree that the spatially averaged Ca2+ signal is not indicative of the local Ca2+ signal that activates TMEM16a. The description of the disordered Ca2+ signal in the disease model was intended to simply convey that the Ca2+ signal is altered in the model. Whether or indeed how the altered spatial characteristics of the signal are deleterious is not known but we speculate in the discussion that this contributes to the ultrastructural damage observed.

      Point 2. Secretion is decreased but the amplitude of the globally averaged Ca2+ signals are increased. No proof is offered that the greater distance between IP3R and TMEM16a is the reason for decreased secretion in the face of this increased peak signal.

      We have now added new data that indicates that the local Ca2+ signal is indeed disrupted in the disease model. We show that in control animals, activation of TMEM16a by application of agonist occurs when the pipette is buffered with the slower buffer EGTA but not with the fast buffer BAPTA In contrast, in cells isolated from DMXAA -treated animals both EGTA and BAPTA abolish the agonist-induced currents (new Figure 6). These data are consistent with our super resolution data showing the distance between IP3R and TMEM16a being greaterand thus presumably is enough to allow buffering of Ca2+ release from IP3R such that it does not effectively activate TMEM16a. These data also would suggest that the increased amplitude of the spatially averaged Ca2+ signal is not sufficient to overcome this structural change.

      Point 3. Lack of evidence that the mitochondrial changes are associated with the defect in fluid secretion.

      We agree that a causal link between the decreased secretion and altered mitochondrial morphology and function is not established. Nevertheless, we feel it is reasonable to contend that profound changes in mitochondrial morphology observed at the light and EM level, together with changes in mitochondrial membrane potential and oxygen consumption are consistent with contributing to altered fluid secretion given that this is an energetically costly process. We have altered the discussion to reflect these caveats and ideas.

      Reviewer 2:

      We thank the reviewer for their assessment of our work and constructive comments.

      Reviewer 3:

      We thank the reviewer for their careful appraisal of our manuscript and insightful comments. 

      Point 1: Are all the effects of DMXAA mediated through the STING pathway?

      This is an important point because as noted DMXAA has been reported to inhibit NAD(P)H quinone oxireductase that could contribute to the phenotype reported here. In future studies we intend to test other STING pathway agonists such as MSA-2 and perhaps antagonists of the STING pathway. We have added text to the discussion indicating that all the effects observed may not be a result of activation of the STING pathway.

      Point 2: As noted, and clarified in the text, the driving force for ATP production is the electrochemical H+ gradient which establishes the mitochondrial membrane potential.

      Point 3:  The reviewer suggested there was a decrease mitochondrial membrane potential in the absence of a change in TMRE steady state.

      We apologize for the confusion generated from the presentation of the figure. We normalized TMRE fluorescence against Mitotraker green fluorescence but as shown, the figure does not reflect that the absolute TMRE fluorescence was indeed decreased. Supplemental figure 4 now shows the basal TMRE fluorescence.

      Point 4: Indications that the disruption to ER structure seen in Electron Micrographs contributes to the changes in Ca2+ signal and fluid secretion.

      We did not focus on the relative distance between ER and apical PM in the EMs primarily because the ER that projects towards the apical PM is a relatively minor component of the specialized ER expressing IP3R and is difficult to identify. We note that the disruption of the bulk ER as quantitated by altered ER-mitochondrial interfaces and fragmentation is consistent with our super resolution data and thus likely plays a role in the mechanism that results in dysregulated Ca2+ signals and reduced secretion.

      Recommendations to Authors:

      Reviewing Editor:

      (1) The Editor suggests that we should use the activity of TMEM16a to directly measure the [Ca2+] experienced by the channel.

      We now present new additional data.  First, we show an extended range of pipette [Ca2+] demonstrating identical Ca2+ sensitivity in DMXAA vs vehicle treated cells (Figure 5). Second, importantly, we now present data evaluating the ability of muscarinic stimulation to activate TMEM16a in the presence of either EGTA (slow Ca2+ buffer) or BAPTA (fast Ca2+ buffer). Notably, currents can be stimulated in control cells when the pipette is buffered with EGTA, but not in DMXAA treated cells. BAPTA inhibits activation in both situations (new Figure 6). These data are consistent with TMEM16a being activated by Ca2+ in a microdomain and that this is disrupted in the disease model.   

      (2) The Editor asks whether a decrease in IP3R3 in a subset of the samples could account for the decreased fluid secretion.

      We think this is unlikely given, as noted by the Editor, that a reduction only occurred in a subset of the samples and statistically there was no significant difference to vehicle-treated animals. Moreover, we would note that there is also no difference in the expression of IP3R2 between experimental groups and in studies of transgenic mice where either IP3R2 or IP3R3 were knocked out individually, there was no effect on salivary fluid secretion, indicating that expression of a single subtype can support stimulus-secretion coupling.

      (3) Absolute values for changes in fluorescence (over time) should be included together with SD images.

      These have been added in Figure 3.

      (4) DMXAA has additional effects to STING activation and thus other STING pathway modulators should be used.

      We agree that additional STING agonists should be explored in the future but believe that this is beyond the scope of the present studies. Additional text has been added to the discussion acknowledging the additional targets of DMXAA and that they could contribute to the phenotype.

      (5) No causal link between the observed Ca2+ changes and mitochondrial dysfunction.

      We agree that no experimental evidence is offered to directly support this contention. Nevertheless, dysregulated Ca2+ signals are well-documented to lead to altered mitochondrial structure and function and thus we feel it not unreasonable to speculate that this is a possibility.

      (6) The paper would be improved by directly assessing mechanistic connections between altered Ca2+ signaling and TMEM16a activation.

      We agree, please refer to point 1 and new figure 6.

      Reviewer 1:

      (1) Standard Deviation images should be explained and the location of ROI identified.

      We contend that Standard Deviation images provide an effective visualization (in a single image) of both the magnitude of the Ca2+ increase and the degree of recruitment of cells in the field of view during the entire period of stimulation.  We have added text to describe the utility of this technique. Nevertheless, we now show kinetic traces of the changes in fluorescence over time in both apical and basal regions in Figure 3. We also clarify that the traces shown in Figure 2 are averaged over the entire cell. 

      (2) The Authors should consider that reduced secretion is because cells are dying.

      We believe this is unlikely given the lack of morphological changes in glandular structure and the minor lymphocyte infiltration observed in this model. Nevertheless, we now add data showing that the mass of SMG is not altered in the DMXAA-treated animals compared with vehicle-treated (Figure 1E).

      (3) The role of mitochondria in the DMXAA phenotype is unclear. What is the effect of acutely de-energizing mitochondria on fluid secretion.

      Since fluid secretion is an energetically expensive undertaking, it is not unreasonable to suggest that compromised mitochondrial function may impact secretion. That being said this could occur at multiple levels- production of ATP to fuel the Na/K pump to establish membrane gradients or to provide energy to sequester Ca2+ among a multitude of targets. This will be a subject of ongoing experiments. We contend that experiments to acutely disrupt salivary mitochondria in vivo while assessing fluid secretion would be difficult experiments to perform and interpret given that local administration of agents to SMG would not effect the other major salivary glands and systemic administration would be predicted to have wide-ranging off target effects. 

      (4) Could a subset of cells with low IP3R numbers contribute to reduced fluid secretion?

      Please see the response to Reviewing Editors point 2. 

      (5) An attempt to estimate the effect of the spatial distruption of IP3R and TMEM16a localization should be made.

      Please see the response to Reviewing Editors point 1.

      Minor Points

      We have amended the statement form “Highly expressed” to increased.

      Regions of the cell have been labelled for orientation in the line scans.

      The molecular weight markers have been added in Figure 4.

      Reviewer 2:

      (1) Whether mitochondrial dysfunction is the initiator of the phenotype or a result of the dysregulated Ca2+ signal is unclear.

      We agree that our data does not clarify a classic “Chicken vs Egg” conundrum. We plan further experiments to address this issue. Future plans include repeating the mitochondrial and Ca2+ signaling experiments at earlier time points where we know fluid secretion is not yet impacted. This may potentially reveal the temporal sequence of events. Similarly, we plan experiments to mechanistically address why the global Ca2+ signal is augmented- reduced Ca2+ clearance or enhanced Ca2+ release/influx are possibilities. We speculate that reduced Ca2+ clearance, either because mitochondrial Ca2+ uptake is reduced or as a secondary consequence of reduced ATP levels on SERCA and PMCA is a likely possibility.

      (2) Measurement of ECAR and direct measurements of ATP and Seahorse methods.

      In a separate series of experiments, we monitored ECAR. These data were unfortunately very variable and difficult to interpret, although no obvious compensatory increase was observed. We plan in the future to directly monitor ATP levels in acinar cells using Mg-Green. To normalize for cell numbers in the Seahorse experiments, following centrifugation, cell pellets of equal volume were resuspended in equal volumes of buffer. Acinar cells were seeded onto Cell Tak coated dishes. This information is added to the Methods section.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)): Summary: To explore the relationship between histone post-translational modifications (H3K4me3 and H3K27me3) and enhancer activation with gene expression during early embryonic development, the authors used a monolayer differentiation approach to convert mouse embryonic stem cells (ESCs) into Anterior Definitive Endoderm (ADE). They monitored differentiation stages using a dual reporter mESC line (B6), which has fluorescent reporters inserted at the Gsc (GFP) and Hhex (Redstar) loci. Their analyses indicate that the differentiating cells advanced through stages similar to those in the embryo, successfully converting into endoderm and ADE with high efficiency. This is elegant and well performed stem cell biology.

      Their subsequent genome-wide and nascent transcription analyses confirmed that the in vitro gene expression changes correlated with developmental stages and confirmed that transcriptional activation precedes mRNA accumulation. They then focussed on linking active enhancers and histone modifications (H3K4me3 and H3K27me3) were with gene expression dynamics. Finally, the performed PRC2 inhibition and showed that, while it enhanced differentiation efficiency, it also induced ectopic expression of non-lineage specific genes.

      Major comments: In terms of mechanistic advances, they propose that transcriptional up-regulation does not require prior loss of H3K27me3, which they show appears to lag behind gene activation, but critically, on a likely mixed population level. I am sceptical of their interpretation of their data because they are looking at heterogenous populations of cells. To explain, one could imagine a particular H3K27me3 coated gene that gets activated during differentiation. In a population of differentiating cells, while the major sub-population of cells could retain H3K27me3 on this particular gene when it is repressed, a minority sub-population of cells could have no H3K27me3 on the gene when it is actively transcribed. The ChIP and RNA-seq results in this mixed cell scenario would give the wrong impression that the gene is active while retaining H3K27me3, when in reality, it's much more likely that the gene is never expressed when its locus in enriched with the repressive H3K27me3 modification. Therefore, to support their claim, they would have to show that a particular gene is active when its locus is coated with H3K27me3. Personally, I don't feel this approach would be worth pursuing.

      They also report that inhibition of PRC2 using EZH2 inhibitor (EPZ6438) enhanced endoderm differentiation efficiency but led to ectopic expression of pluripotency and non-lineage genes. However, this is not surprising considering the established role of Polycomb proteins as repressors of lineage genes.

      Reviewer #1 (Significance (Required)): I feel that this is a solid and well conducted study in which the authors model early development in vitro. It should be of interest to researchers with an interest in more sophisticated in vitro differentiation systems, perhaps to knockout their gene of interest and study the consequences. However, I don't see any major mechanistic advances in this work.

      *>Author Response *

      *We agree with the point regarding the delayed loss of H3K27me3 relative to gene activation, and indeed this same point has been raised by reviewer 3 (see below). Our cell-population based data does not allow us to directly test if gene up-regulation in a small population of cells from TSSs lacking H3K27me3, accounts for the observed result. Furthermore, there are currently no robust methods to determine cell- or allele-specific expression simultaneously with ChIP/Cut and Run for chromatin marks. However, we provide the following additional evidence that strongly supports our conclusions. *

      • *

      Our FACs isolation strategy used to prepare cell populations for ChIP, microarray expression and 4sU-seq analysis is based on expression (or lack thereof) of a fluorescent GSC-GFP reporter. This means that every cell in the G+ populations express the Gsc fluorescent reporter, at least at the protein level, at the point of isolation. This is despite the presence of appreciable and invariant levels of H3K27me3 at the TSS of the Gsc gene in both G+ and G- populations at day 3 of differentiation. Comparable to our meta-analysis of all upregulated genes shown in the original manuscript (Figure 5 and S5), H3K27me3 levels are then subsequently reduced in the G+ relative to the G- populations at day 4. The transcriptional changes which correspond to the GSG-GFP reporter expression and associated ChIP-seq data are shown in the reviewer figure (Fig R1 A shown in revision plan). To further support our observations, we sought to rule out the possibility that the shift in H3K27me3 and transcription were from mutually exclusive gene sets, from nominal transcription levels or from sites with low level H3K27me3. To do this with a gene set of sufficient size to yield a robust result, we selected upregulated TSSs that had a greater than median value for both transcription (4sU-seq) and H3K27me3 (n=49 of 159 genes; Fig R1 B shown in revision plan). Meta-analysis of these genes showed that, as for all upregulated gene TSS (n=159), transcriptional activation occurred in the presence of substantial and invariant levels of H3K27me3 at day 3 followed by a subsequent reduction by day 4 of differentiation (Fig R1 C shown in revision plan). Importantly, many of these genes yielded high absolute 4sU-seq signal, comparable to that of Gsc, arguing against transcriptional activation being limited to a small subpopulation of cells.

      • *

      Reviewer #2 (Evidence, reproducibility and clarity (Required)): In this paper the authors profile gene expression, including active transcription, and histone modifications (k4 and k27me3) during a complex differentiation protocol from ES cells, which takes advantage of FACS sorting of appropriate fluorescent reporters. The data is of good quality and the experiments are well performed. The main conclusion, that the analyzed histone marks channel differentiation more than they directly allow/block it, is well supported by the data. The paper is interesting and will represent a good addition to an already extensive literature. I have however a few major concerns, described below:

      1/ K4me3 may show more changes than they interpret, at least over the +1 nucl. An alternative quantification to aggregate profiles should be used to more directly address the questions regarding the correlations between histone mods and gene expression.

      *>Author Response *

      *Whilst we state that H3K4me3 levels are somewhat invariant at differentially expressed genes relative to H3K27me3, quantification of individual TSS (+/- 500 bp) did show a direct correlation with gene expression (Figure 5 and S5). To further explore this in response to the reviewer’s comment we will quantify K4me3 signal at the +1 nucleosome to determine if this yields more substantial differences than that observed more broadly across TSSs. *

      2/ Related to the previous point, it appears clear in Fig.4 that the promoters of each gene expression cluster do not belong to a single chromatin configuration. I think it would be important to: 1/ cluster the genes based on promoter histone mods and interrogate gene expression and cluster allocation (basically the reverse to what is presented) 2/ order the genes in the heatmaps identically for K4me3 and K27me3 to more easily understand the respective chromatin composition per cluster

      >Author Response

      We thank the reviewer for these suggestions and will include these analyses in a revised manuscript.

      3/ Also, as it is apparent that not all promoters in every cluster are enriched for the studied marks, could the authors separately analyze these genes? What are they? Do they use alternative promoters?

      >Author Response

      *Indeed, this is the case. Whilst there is significant enrichment of H3K27me3 at the TSS of developmentally regulated genes, not all genes whose expression changes during the differentiation will be polycomb targets. We will further stratify these clusters as suggested and determine what distinguishes the subsets. If informative, this data will be included in a revised manuscript. *

      4/ The use of 4SU-seq to identify active enhancers is welcome; however, I have doubts it is working very efficiently: for instance, in the snapshots shown in Fig.2A, the very active Oct4 enhancers in ES cells are not apparent at all... More validation of the efficiency of the approach seems required.

      >Author Response

      The 4sU-seq data shown in Figure 2A was generated in samples isolated from day 3 and 4 of the ADE differentiation. It is therefore likely that the enhancers have been partly or wholly decommissioned at this point. Indeed, in a separate study we generated 4sU-seq data using the same protocol and conditions as presented here but in ES cells and differentiated NPCs (day 3 to 7) and indeed see transcription at Oct 4 enhancers in ESCs (arrowed in the screenshot shown in revision plan) which are extinguished upon differentiation to neural progenitor cells (NPCs); data from PMID: 31494034).

      5/ The effects of the EZH2 inhibitor are quite minor regarding the efficiency of the differentiation as analyzed by FACS, despite significant gene expression changes. To the knowledge of this referee, this is at odds with results obtained with Ezh2 ko ES cells that display defects in mesoderm and endoderm differentiation. I have issues reconciling these results (uncited PMID: 19026780). Either the authors perform more robust assays (inducible KOs) or they more directly explain the limitations of the study and the controversies with published work.

      >Author Response

      We agree that this result appears to be at odds with the findings in (PMID: 19026780*). This is likely due to the fact that we are acutely reducing H3K27me3 levels for a short period either during or immediately preceding the differentiation rather than removing PRC2 function genetically. This, likely provides a less pronounced defect on the ability to generate endodermal cells. However, we cannot address this without further experimentation which is beyond the scope of this study. We will more fully discuss the results in the context of this and other studies and discuss the limitations of the study in this regard. *

      Minor 1/ please add variance captured to PCA plots 2/ Fig1E add color scales to all heatmaps 3/ Fig4C,D are almost impossible to follow, please find a way to identify better the clusters/samples and make easier to correlate all the variables

      • *

      >Author Response

      *We will address all of these points in a revised manuscript. *

      Reviewer #2 (Significance (Required)):

      The paper is incremental in knowledge, and not by a big margin, as it is known already that histone mods rather channel than drive differentiation. Though, the authors do not clearly address inconsistencies with published work, especially regarding Ezh2 thought to be important to make endoderm. It is however a good addition to current knowledge, provided a better discussion of differences with published work is provided.

      >Author Response

      *As outlined above, we will address this with a more complete discussion about the distinction between the studies and what can and can’t be concluded from our approach. *

      * *

      • *

      Reviewer #3 (Evidence, reproducibility and clarity (Required)): This study investigates the role of chromatin-based regulation during cell fate specification. The authors use an ESC model of differentiation into anterior primitive streak and subsequently definitive endoderm, which they traced via a dual-reporter system that combines GSC-GFP and HHEX-RedStar. The authors mapped changes in (nascent) gene expression and histone modifications (H3K4me3/H3K27me3) at key timepoints and within different populations over six days of differentiation. Finally, the authors test the functional implications of H3K27me3 landscapes via PRC2 inhibition.

      The majority of data chart the descriptive changes in (epi)genomic and transcriptional dynamics coincident with cell differentiation. The use of nascent transcriptomics improves the temporal resolution of expression dynamics, and is an important strategy. By and large the data reinforce established paradigms. For example, that transcription is the dominant mechanism regulating mRNA levels, or that dynamic chromatin states changes occur and largely corelate of gene activity. They also identify putative enhancers with profiling data, albeit these are not validated, and confirm that PRC2 inhibition impacts cell fate processes - in this case promoting endodermal differentiation efficiency. Overall, the study is relatively well-performed and clearly written, with the omics profiling adding more datasets from in vitro cell types that can be difficult to characterise in vivo. Whilst the majority of the study may be considered incremental, the key finding is the authors conclusion that H3K27me3 is subordinate to gene activity rather than an instructive repressor. If borne out, this would mark an important observation with broad implications. However, in my view this conclusion is subject to many confounders and alternative interpretations, and the authors have not ruled out other explanations. Given the centrality of this to the novelty of the study, I would encourage further analysis/stratification of existing data, and potentially further experiments to provide more confidence in this key conclusion.

      Primary issue 1.) The authors show that at the earliest timepoint (d3), nascent gene activation of a handful of genes between G+ and G- populations is not associated with a FC loss of H3K27me3. From this the authors extrapolate their key conclusion that H3K27me3 is subordinate. Causality of chromatin modifications in gene regulation is critical to decipher, and therefore this is an important observation to confirm. Below I go through the possible confounders and issues with the conclusion at this point.

      (i) Single-cell penetrance. A possible (likely?) possibility is that gene activation initially occurs in a relatively small subset of cells at d3. Because these genes are expressed lowly prior to this, they will register as a significant upregulation in bulk analysis. However, in this scenario H3K27me3 would only be lost from a small fraction of cells, which would not be detectable against a backdrop of most cells retaining the mark. In short, the authors have not ruled out heterogeneity driving the effect. Given the different dynamic range of mRNA and chromatin marks, and that a small gain from nothing (RNA) is easier to detect than a small loss from a pre-marked state (chromatin), investigating this further is critical to draw the conclusions the authors have.

      (ii) Initial H3K27me3 levels. The plots in Fig 5 show the intersect FC of H3K27me3 and gene expression. Genes that activate at d3 show no loss of H3K27me3. However, it is important to characterise (and quantitate) whether these genes are significantly marked by H3K27me3 in the first place, which I could not find in the manuscript. Many/several of the genes may not be polycomb marked or may have low levels to begin with. This would obviously confound the analysis, since an absence/low K27 cannot be significantly lost and is unlikely to be functional. Thus, the DEG geneset should be further stratified into H3K27me3+ and K27me3- promoter groups/bins, with significance and conclusions based on the former only (e.g. boxplot in 5F).

      (iii) Sample size. The conclusions are based on a relatively small number of genes that upregulate between G+ and G- (n=55 in figure by my count, text mentions n=52). Irrespective of the other confounders above, this is quite a small subset to make the sweeping general conclusion that "loss of the repressive polycomb mark H3K27me3 is delayed relative to transcriptional activation" in the abstract. Indeed, the small number of DEG suggests the cell types being compared are similar and perhaps therefore have specific genomic features (this could be looked at) that drive .

      >Author Response

      *These are very good points and are also raised by reviewer 1 (see above). We have one example where we can definitively interrogate single cell protein expression, in our current data. Gsc (as monitored by GSC-GFP FACS and the bulk RNA analysis) meets the criteria of being robustly upregulated in all FACs sorted cells in the presence of high levels of H3K27me3 in the D3G+ population. We believe that the additional analysis (Figure R1A shown in revision plan) and the discussion above addresses the reviewer’s concerns about both the levels of expression and magnitude of H3K27me3. With respect to the third point, the numbers are low (although here I present data from the 4SU analysis with approximately three times more data points) however, the point here is not too say this happens in every instance of gene activation but more that it can happen and not just at a small subset of outlier genes. This is important, as the reviewer notes, in our understanding of how polycomb repression is relieved during development. We will also look to see if there are sequence characteristics/ motifs of these genes. In a revised manuscript we would include this data and further analysis as outlined above. The reviewer points out that the numbers vary a little between analyses. This arises due to the annotation of multiple TSSs per genes in some cases. This will be rectified throughout and made clearer in the legends. *

      Other comments: 2.) The authors show that promoter H3K4me3 corelates well with gene expression dynamics in their model. They conclude that "transcription itself is required for H3K4me3 deposition", or in other words is subordinate. This may well be the case but from their correlative data this cannot be inferred. Indeed, several recent and past papers have shown that H3K4me3 itself can directly modulate transcription, for example by triggering RNA II pause-release, by preventing epigenetic silencing and/or by recruiting the PIC. The authors could point out or discuss these alternative possibilities to provide a more balanced discourse.

      >Author Response

      We agree and this will be discussed more thoroughly and both possibilities put forward in the revised manuscript.

      3.) The labelling of some figures is unclear. In Fig 4C and 4D (right) it is impossible to tell what sample each of the lines represents. It is also not clear what the blue zone corresponds to in genome view plots (the whole gene?). Moreover, the replicate numbers are not shown in figure legends.


      >Author Response

      *We agree that the data presented in 4C and D is unclear. We will, as a minimum, collapse profiles into like populations (ESC / G- / G+ / G+H- / G+H+) which makes sense given the similarity of these populations across all analyses (see e.g. PCA analysis in Figure 1). We will also explore alternative ways of presenting the data to better highlight the dynamics and incorporate this with the changes suggested by reviewer 2. The blue shaded area represents the full extent of the key gene being discussed in the screen shot, this is mentioned in the legend but will be made clearer in a revised manuscript. Replication will also be added to the legend throughout (n=2 for ChIP-seq and n=3 for 4sU-seq). *

      4.) It would be nice to provide more discussion to reconcile the conclusions that H3K27me3 in endoderm differentiation is subordinate and the final figure showing inhibiting H3K27me3 has a significant effect on differentiation, since the latter is the functional assessment.

      >Author Response

      *We will build on the points already made that suggests that whilst K27me3 is a passive repressor that serves to act against sub-threshold activating cues, it is nonetheless a critical regulator of developmental fidelity. *

      Reviewer #3 (Significance (Required)): Overall, the study's strengths are in that it characterises epigenomic dynamics within a specific and relevant cell fate model. The nascent transcriptomics adds important resolution, and underpins the core conclusions. The weakness is that data is over-interpreted at this point, and other possibilities are not adequately tested. The conclusions should therefore either be scaled back (which reduces novelty) or further analysis and/or experiments should be performed to support the conclusion. If it proves correct, this would be a significant observation for the community,

      >Author Response

      In a revised manuscript, we will address the reviewer’s concerns with additional data and discussion as indicated above.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      My main concern is still in place. It is unclear whether the proposed method can find actual goal states, and as a result it is unclear what states it finds. Table S1 mentions the model BIOMD0000000454, which is a small metabolic pathway with known equations given in "Example One" in "Metabolic Control Analysis: Rereading Reder". In this model the goal states can be calculated analytically.

      Regarding your statements below: I am not concerned that your method will be less efficient than random search (or any other search..) on small models, but I think it is important for the readers to have evidence that your method is able to discover true goal states at least in small networks, used in your study. You do show that your method scales to complex models. So, in my opinion, the missing part is to show that it is able to find true goal states.

      "...For simple models whose true steady-state distribution can be derived numerically and/or analytically, it is very likely that their exploration will be much simpler and this is not where a lot of improvement over random search may be found, which explains our focus on more complex models..."

      We thank you for your response and for your concerns on the lack of evidence that our method is able to re-discover the true goal states of simple models when these are known a priori. We acknowledge that adding these simple cases is useful for completeness. We did not include these simple models in our main study because in most cases a basic random search over the initial conditions will lead to the re-discovery of these goal states. For instance for the mentioned model BIOMD0000000454 described in the "Example One" from the "Metabolic Control Analysis: Rereading Reder" paper, several simplifying assumptions are made such that the system only has one steady state (x1=0.056, x2=0.769, x3=4.231) which can be found analytically as shown in the paper. In that simple case, this goal state is also straightforward to find with numerical simulation as any valid initial condition will converge to it.

      To address the concerns of the reviewer, we propose to add an additional "sanity check" figure in the supplementary of the revised paper (Figure S4), as well as a “sanity check” subsection in the “Methods”, to present additional experiments made on  simple models such as this one. The novel figure and subsection can be visualized on the paper’s interactive version available online https://developmentalsystems.org/curious-exploration-of-grn-competencies, and we plan to include them as such in the further revision.  We have also included the full code to reproduce this sanity check as a ‘sanity_check.ipynb’  jupyter notebook in the github repository (https://github.com/flowersteam/curious-exploration-of-grn-competencies/blob/main/notebooks/sanity_check.ipynb).

      In the novel figure S4-b, we show the results of our exploration pipeline on the suggested model BIOMD0000000454 as described in the "Example One" of the paper. These results provide evidence that the curiosity search is able to find back the correct unique goal state (x1=0.056, x2=0.769, x3=4.231), as expected.

      We also include a second sanity check on BIOMD0000000341 which models the dynamics of beta-cell mass, insulin and glucose dynamics. This model has two stable fixed points representing physiological (B=300, I=10, G=100) and pathological (B=0, I=0, G=600) steady states, which are the known ground truth steady states as described in Figure 3 of the "A Model of b-Cell Mass, Insulin, and Glucose Kinetics: Pathways to Diabetes" paper. Again, as expected, curiosity search is able to find back those two steady states (Figure S4-a).

      As stated in our previous answer, our main study focuses on more complex models that are not limited to one or few attractors that can easily be discovered with random initial conditions. Regarding the mentioned BIOMD0000000454, maybe something that has been confusing for the reviewer is that we indeed included it in our main study but, as specified in the caption of table S4, at the difference of what is done in the "example one" of the original paper, we let the metabolite concentrations y1,...,y5 evolve in time (instead of enforcing them as constants). When doing so, the resulting dynamics of the system are more complex and exhibit a spectrum of possible steady states (unknown a priori), which differ from the previous case with a single steady state. In that case, the new attractors are not analytically easy to find and the proposed curiosity search becomes interesting as it is able to uncover the distribution of possible steady states much more efficiently than a random search baseline, as shown in the new figures S4-c and S4-d.

      We hope that these new results will address the reviewer’s concerns and provide evidence to the readers on the validity of the approach on simple networks.

      eLife assessment

      This important study develops a machine learning method to reveal hidden unknown functions and behavior in gene regulatory networks by searching parameter space in an efficient way. The evidence for some parts of the paper is still incomplete and needs systematic comparison to other methods and to the ground truth, but the work will be of broad interest to anyone working in biology of all stripes since the ideas reach beyond gene regulatory networks to revealing hidden functions in any complex system with many interacting parts.

      We thank the editors and reviewers for their positive assessment and constructive suggestions. In our response, we acknowledge the importance of systematic comparison to other methods and to the ground truth, when available. However we also emphasize the challenges associated with evaluating such methods in the context of uncovering hidden behaviors in complex biological networks as the ground truth is often unknown. We hope that our explanations will clarify the potential of our approach in advancing the exploration of these systems.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary: This paper suggests to apply intrinsically-motivated exploration for the discovery of robust goal states in gene regulatory networks.

      Strengths:

      The paper is well written. The biological motivation and the need for such methods are formulated extraordinarily well. The battery of experimental models is impressive.

      We thank the reviewer for sharing interest in the research problem and for recognizing the strengths of our work.

      Weaknesses:

      (1) The proposed method is compared to the random search. That says little about the performance with regard to the true steady-state goal sets. The latter could be calculated at least for a few simple ODE (e.g., BIOMD0000000454, `Metabolic Control Analysis: Rereading Reder'). The experiment with 'oscillator circuits' may not be directly interpolated to the other models.

      The lack of comparison to the ground truth goal set (attractors of ODE) from arbitrary initial conditions makes it hard to evaluate the true performance/contribution of the method. A part of the used models can be analyzed numerically using JAX, while there are models that can be analyzed analytically.

      "...The true versatility of the GRN is unknown and can only be inferred through empirical exploration and proxy metrics....": one could perform a sensitivity analysis of the ODEs, identifying stable equilibria. That could provide a proxy for the ground truth 'versatility'.

      We agree with the reviewer that one primary concern is to properly evaluate the effectiveness of the proposed method. However, as we move toward complex pathways, knowledge of the “true” steady-state goal sets is often unknown which is where the use of machine learning methods as the one we propose are particularly interesting (but challenging to evaluate).

      For simple models whose true steady-state distribution can be derived numerically and/or analytically, it is very likely that their exploration will be much simpler and this is not where a lot of improvement over random search may be found, which explains our focus on more complex models. While we agree that it is still interesting to evaluate exploration methods on these simple models for checking their behavior, it is not clear how to scale this analysis to the targeted more complex systems.

      For systems whose true steady state distribution cannot be derived analytically or numerically, we believe that random search is a pertinent baseline as it is commonly used in the literature to discover the attractors/trajectories of a biological network. For instance, Venkatachalapathy et al. [1] initialize stochastic simulations at multiple randomly sampled starting conditions (which is called a kinetic Monte Carlo-based method) to capture the steady states of a biological system. Similarly, Donzé et al. [29] use a Monte Carlo approach to compute the reachable set of a biological network «when the number of parameters  is large and their uncertain range  is not negligible». For the considered models, the true steady-state goal set is unknown, which is why we chose comparison with random search. We added a “Statistics” subsection in the Methods section providing additional details about the statistical analyses we perform between our method and the random search baseline.

      (2) The proposed method is based on `Intrinsically Motivated Goal Exploration Processes with Automatic Curriculum Learning', which assumes state action trajectories [s_{t_0:t}, a_{t_0:t}], (2.1 Notations and Assumptions' in the IMGEP paper). However, the models used in the current work do not include external control actions, but rather only the initial conditions can be set. It is not clear from the methods whether IMGEP was adapted to this setting, and how the exploration policy was designed w/o actual time-dependent actions. What does "...generates candidate intervention parameters to achieve the current goal....", mean considering that interventions 'Sets the initial state...' as explained in Table 2?

      We thank the reviewer for asking for clarification, as indeed the IMGEP methodology originates from developmental robotics scenarios which generally focus on the problem of robotic sequential decision-making, therefore assuming state action trajectories as presented in Forestier et al. [65]. However, in both cases, note that the IMGEP is responsible for sampling parameters which then govern the exploration of the dynamical system. In Forestier et al. [65], the IMGEP also only sets one vector at the start (denoted ) which was specifying parameters of a movement (like the initial state of the GRN), which was then actually produced with dynamic motion primitives which are dynamical system equations similar to GRN ODEs, so the two systems are mathematically equivalent. More generally, while in our case the “intervention” of the IMGEP (denoted ) only controls the initial state of the GRN, future work could consider more advanced sequential interventions simply by setting parameters of an action policy  at the start which could be called during the GRN’s trajectory to sample control actions  where  would be the state of the GRN. In practice this would also require setting only one vector at the start, so it would remain the same exploration algorithm and only the space of parameters would change, which illustrates the generality of the approach.

      (3) Fig 2 shows the phase space for (ERK, RKIPP_RP) without mentioning the typical full scale of ERK, RKIPP_RP. It is unclear whether the path from (0, 0) to (~0.575, ~3.75) at t=1000 is significant on the typical scale of this phase space. is it significant on the typical scale of this phase space?

      The purpose of Figure 2 is to illustrate an example of GRN trajectory in transcriptional space, and to illustrate what “interventions” and “perturbations” can be in that context. To that end we have used the fixed initial conditions provided in the BIOMD0000000647, replicating Figure 5 of Cho et al. [56].

      While we are not sure of what the reviewer means with “typical” scale of this phase space, we would like to point reviewer toward Figure 8 which shows examples of certain paths that indeed reach further point in the same phase space (up to ~10 in RKIPP_RP levels and ~300 in ERK levels). However, while the paths displayed in Figure 8 are possible (and were discovered with the IMGEP), note that they may be “rarer” to occur naturally  in the sense that a large portion of the tested initial conditions with random search tend to converge toward smaller (ERK, RKIPP_RP) steady-state values similar to the ones displayed in Figure 2.

      (4) Table 2:

      a. Where is 'effective intervention' used in the method?

      b. in my opinion 'controllability', 'trainability', and 'versatility' are different terms. If their correspondence is important I would suggest to extend/enhance the column "Proposed Isomorphism". otherwise, it may be confusing.

      a) We thank the reviewer for pointing out that “effective intervention” is not explicitly used in the method. The idea here is that as we are exploring a complex dynamical system (here the GRN), some of the sampled interventions will be particularly effective at revealing novel unseen outcomes whereas others will fail to produce a qualitative change to the distribution of discovered outcomes. What we show in this paper, for instance in Figure 3a and Figure 4, is that the IMGEP method is particularly sample-efficient in finding those “effective interventions”, at least more than a random exploration. However we agree that the term “effective intervention” is ambiguous (does not say effective in what) and we have replaced it with “salient intervention” in the revised version.

      b) We thank the reviewer for highlighting some confusing terms in our chosen vocabulary, and we have clarified those terms in the revised version. We agree that controllability/trainability and versatility are not exactly equivalent concepts, as controllability/trainability typically refers to the amount to which a system is externally controllable/trainable whereas versatility typically refers to the inherent adaptability or diversity of behaviors that a system can exhibit in response to inputs or conditions. However, they are both measuring the extent of states that can be reached by the system under a distribution of stimuli/conditions, whether natural conditions or engineered ones, which is why we believe that their correspondence is relevant.

      I don't see how this table generalizes "concepts from dynamical complex systems and behavioral sciences under a common navigation task perspective".

      We have replaced the verb “generalize” with “investigate” in the revised version.

      Reviewer #2 (Public Review):

      Summary:

      Etcheverry et al. present two computational frameworks for exploring the functional capabilities of gene regulatory networks (GRNs). The first is a framework based on intrinsically-motivated exploration, here used to reveal the set of steady states achievable by a given gene regulatory network as a function of initial conditions. The second is a behaviorist framework, here used to assess the robustness of steady states to dynamical perturbations experienced along typical trajectories to those steady states. In Figs. 1-5, the authors convincingly show how these frameworks can explore and quantify the diversity of behaviors that can be displayed by GRNs. In Figs. 6-9, the authors present applications of their framework to the analysis and control of GRNs, but the support presented for their case studies is often incomplete.

      Strengths:

      Overall, the paper presents an important development for exploring and understanding GRNs/dynamical systems broadly, with solid evidence supporting the first half of their paper in a narratively clear way.

      The behaviorist point of view for robustness is potentially of interest to a broad community, and to my knowledge introduces novel considerations for defining robustness in the GRN context.

      We thank the reviewer for recognizing the strengths and novelty of the proposed experimental framework for exploring and understanding GRNs, and complex dynamical systems more generally. We agree that the results presented in the section “Possible Reuses of the Behavioral Catalog and Framework” (Fig 6-9) can be seen as incomplete along certain aspects, which we tried to make as explicit as possible throughout the paper, and why we explicitly state that these are “preliminary experiments”. Despite the discussed limitations, we believe that these experiments are still very useful to illustrate the variety of potential use-cases in which the community could benefit from such computational methods and experimental framework, and build on for future work.

      Some specific weaknesses, mostly concerning incomplete analyses in the second half of the paper:

      (1) The analysis presented in Fig. 6 is exciting but preliminary. Are there other appropriate methods for constructing energy landscapes from dynamical trajectories in gene regulatory networks? How do the results in this particular case study compare to other GRNs studied in the paper?

      We are not aware of other methods than the one proposed by Venkatachalapathy et al. [1] for constructing an energy landscape given an input set of recorded dynamical trajectories, although it might indeed be the case. We want to emphasize that any of such methods would anyway depend on the input set of trajectories, and should therefore benefit from a set that is more representative of the diversity of behaviors that can be achieved by the GRN, which is why we believe the results presented in Figure 6 are interesting. As the IMGEP was able to find a higher diversity of reachable goal states (and corresponding trajectories) for many of the studied GRNs, we believe that similar effects should be observable when constructing the energy landscapes for these GRN models, with the discovery of additional or wider “valleys” of reachable steady states.

      Additionally, it is unclear whether the analysis presented in Fig. 6C is appropriate. In particular, if the pseudopotential landscapes are constructed from statistics of visited states along trajectories to the steady state, then the trajectories derived from dynamical perturbations do not only reflect the underlying pseudo-landscape of the GRN. Instead, they also include contributions from the perturbations themselves.

      We agree that the landscape displayed Fig. 6C integrates contributions from the perturbations on the GRN’s behavior, and that it can shape the landscape in various ways, for instance affecting the paths that are accessible, the shape/depth of certain valleys, etc. But we believe that qualitatively or quantitatively analyzing the effect of these perturbations  on the landscape is precisely what is interesting here: it might help 1) understand how a system respond to a range of perturbations and to visualize which behaviors are robust to those perturbations, 2) design better strategies for manipulating those systems to produce certain behaviors

      (2) In Fig. 7, I'm not sure how much is possible to take away from the results as given here, as they depend sensitively on the cohort of 432 (GRN, Z) pairs used. The comparison against random networks is well-motivated. However, as the authors note, comparison between organismal categories is more difficult due to low sample size; for instance, the "plant" and "slime mold" categories each only have 1 associated GRN. Additionally, the "n/a" category is difficult to interpret.

      We acknowledge that this part is speculative as stated in the paper: “the surveyed database is relatively small with respect to the wealth of available models and biological pathways, so we can hardly claim that these results represent the true distribution of competencies across these organism categories”. However, when further data is available, the same methodology can be reused and we believe that the resulting statistical analyses could be very informative to compare organismal (or other) categories.

      (3) In Fig. 8, it is unclear whether the behavioral catalog generated is important to the intervention design problem of moving a system from one attractor basin to another. The authors note that evolutionary searches or SGD could also be used to solve the problem. Is the analysis somehow enabled by the behavioral catalog in a way that is complementary to those methods? If not, comparison against those methods (or others e.g. optimal control) would strengthen the paper.

      We thank the reviewer for asking to clarify this point, which might not be clearly explained in the paper. Here the behavioral catalog is indeed used in a complementary way to the optimization method, by identifying a representative set of reachable attractors which are then used to define the optimization problem. For instance here, thanks to the catalog, we 1) were able to identify a “disease” region and several possible reachable states in that region and 2) use several of these states as starting points of our optimization problem, where we want to find a single intervention that can successfully and robustly reset all those points, as illustrated in Figure 8. Please note that given this problem formulation, a simple random search was used as an optimization strategy. When we mention more advanced techniques such as EA or SGD, it is to say that they might be more efficient optimizers than random search. However, we agree that in many cases optimizing directly will not work if starting from random or bad initial guess, and this even with EA or SGD. In that case the discovered behavioral catalog can be useful to better initialize  this local search and make it more efficient/useful, akin to what is done in Figure 9.

      (4) The analysis presented in Fig. 9 also is preliminary. The authors note that there exist many algorithms for choosing/identifying the parameter values of a dynamical system that give rise to a desired time-series. It would be a stronger result to compare their approach to more sophisticated methods, as opposed to random search and SGD. Other options from the recent literature include Bayesian techniques, sparse nonlinear regression techniques (e.g. SINDy), and evolutionary searches. The authors note that some methods require fine-tuning in order to be successful, but even so, it would be good to know the degree of fine-tuning which is necessary compared to their method.

      We agree that the analysis presented in Figure 9 is preliminary, and thank the reviewer for the suggestion. We would first like to refer to other papers from the ML literature that have more thoroughly analyzed this issue, such as Colas et al. [74] and Pugh et al. [34], and shown the interest of diversity-driven strategies as promising alternatives.  Additionally, as suggested by the reviewer, we added an additional comparison to the CMA-ES algorithm in the revised version in order to complete our analysis. CMA-ES is an evolutionary algorithm which is self-adaptive in the optimization steps and that is known to be better suited than SGD to escape local minimas when the number of parameters is not too high (here we only have 15 parameters). However, our results showed that while CMA-ES explores more the solution space at the beginning of optimization than SGD does, it also ultimately converges into a local minima similarly to SGD. The best solution converges toward a constant signal (of the target b) but fails to maintain the target oscillations, similar to the solutions discovered by gradient descent. We tried this for a few hyperparameters (init mean and std) but always found similar results.  We have updated the figure 9 image and caption, as well as descriptive text, to include these novel results in the revised version. We also added a reference to the CMA-ES paper in the citations.

      Reviewer #1 (Recommendations For The Authors):

      I would suggest to conduct a more rigor analysis of the performance by estimating/approximating the ground truth robust goal sets in important GRNs.

      Also, the use of terminology from different disciplines can be improved. Please see my comments above. Specifically, the connection between controllability in dynamical control systems and versatility used in this paper is unclear.

      We hope to have addressed the reviewer's concerns in our previous answers.

      Reviewer #2 (Recommendations For The Authors):

      Fig 4b: I'm not sure if DBSCAN is the appropriate method to use here, as the visual focus on the core elements of the clusters downplays the full convex hull of the points that random sampling achieves in Z space. An analysis based on convex hulls or the ball-coverage from Fig. 3b would presumably generate plots that were more similar between random sampling and curiosity search. If the goal is to highlight redundancy/non-linearity in the mapping between Z and I, another approach might be to simply bin Z-space in a grid, or to use a clustering algorithm that is less stringent about core/noise distinctions.

      We thank the reviewer for the suggestion. This plot is intended to convey the reader an understanding of why a method that uniformly samples goals in Z (what the  IMGEP is doing), is more efficient than a method that uniformly samples parameters in I (what the random search is doing), in systems for which there is high redundancy/non-linearity in the mapping between I and Z. We agree that binning the Z-space in a grid and counting the number of achieved bins is a way to quantitatively measure this, which is by the way very close to what we do in Figure 3 for measuring the achieved diversity. We believe however that the clustering and coloring provides additional intuitions on why this is the case: it illustrates that large regions of the intervention space map to small regions in the outcome space and vice versa.

      Additional changes in the revised version:

      We added a sentence in the Methods section as well as in the caption of Table S1 providing additional details about the way we simulate the biological models from the BioModels website

      We fixed a wrong reference to Figure 4 in the Methods “Sensitivity measure” subsection with reference to Figure 5.

    1. Author response:

      Reviewer #1 (Public Review):

      In this paper, Tompary & Davachi present work looking at how memories become integrated over time in the brain, and relating those mechanisms to responses on a priming task as a behavioral measure of memory linkage. They find that remotely but not recently formed memories are behaviorally linked and that this is associated with a change in the neural representation in mPFC. They also find that the same behavioral outcomes are associated with the increased coupling of the posterior hippocampus with category-sensitive parts of the neocortex (LOC) during a post-learning rest period-again only for remotely learned information. There was also correspondence in rest connectivity (posterior hippocampus-LOC) and representational change (mPFC) such that for remote memories specifically, the initial post-learning connectivity enhancement during rest related to longer-term mPFC representational change.

      This work has many strengths. The topic of this paper is very interesting, and the data provide a really nice package in terms of providing a mechanistic account of how memories become integrated over a delay. The paper is also exceptionally well-written and a pleasure to read. There are two studies, including one large behavioral study, and the findings replicate in the smaller fMRI sample. I do however have two fairly substantive concerns about the analytic approach, where more data will be required before we can know whether the interpretations are an appropriate reflection of the findings. These and other concerns are described below.

      Thank you for the positive comments! We are proud of this work, and we feel that the paper is greatly strengthened by the revisions we made in response to your feedback. Please see below for specific changes that we’ve made.

      1) One major concern relates to the lack of a pre-encoding baseline scan prior to recent learning.

      a) First, I think it would be helpful if the authors could clarify why there was no pre-learning rest scan dedicated to the recent condition. Was this simply a feasibility consideration, or were there theoretical reasons why this would be less "clean"? Including this information in the paper would be helpful for context. Apologies if I missed this detail in the paper.

      This is a great point and something that we struggled with when developing this experiment. We considered several factors when deciding whether to include a pre-learning baseline on day two. First, the day 2 scan session was longer than that of day 1 because it included the recognition priming and explicit memory tasks, and the addition of a baseline scan would have made the length of the session longer than a typical scan session – about 2 hours in the scanner in total – and we were concerned that participant engagement would be difficult to sustain across a longer session. Second, we anticipated that the pre-learning scan would not have been a ‘clean’ measure of baseline processing, but rather would include signal related to post-learning processing of the day 1 sequences, as multi-variate reactivation of learned stimuli have been observed in rest scans collected 24-hours after learning (Schlichting & Preston, 2014). We have added these considerations to the Discussion (page 39, lines 1047-1070).

      b) Second, I was hoping the authors could speak to what they think is reflected in the post-encoding "recent" scan. Is it possible that these data could also reflect the processing of the remote memories? I think, though am not positive, that the authors may be alluding to this in the penultimate paragraph of the discussion (p. 33) when noting the LOC-mPFC connectivity findings. Could there be the reinstatement of the old memories due to being back in the same experimental context and so forth? I wonder the extent to which the authors think the data from this scan can be reflected as strictly reflecting recent memories, particularly given it is relative to the pre-encoding baseline from before the remote memories, as well (and therefore in theory could reflect both the remote + recent). (I should also acknowledge that, if it is the case that the authors think there might be some remote memory processing during the recent learning session in general, a pre-learning rest scan might not have been "clean" either, in that it could have reflected some processing of the remote memories-i.e., perhaps a clean pre-learning scan for the recent learning session related to point 1a is simply not possible.)

      We propose that theoretically, the post-learning recent scan could indeed reflect mixture of remote and recent sequences. This is one of the drawbacks of splitting encoding into two sessions rather than combining encoding into one session and splitting retrieval into an immediate and delayed session; any rest scans that are collected on Day 2 may have signal that relates to processing of the Day 1 remote sequences, which is why we decided against the pre-learning baseline for Day 2, as you had noted.

      You are correct that we alluded to in our original submission when discussing the LOC-mPFC coupling result, and we have taken steps to discuss this more explicitly. In Brief, we find greater LOC-mPFC connectivity only after recent learning relative to the pre-learning baseline, and cortical-cortical connectivity could be indicative of processing memories that already have undergone some consolidation (Takashima et al., 2009; Smith et al., 2010). From another vantage point, the mPFC representation of Day 1 learning may have led to increased connectivity with LOC on Day 2 due to Day 1 learning beginning to resemble consolidated prior knowledge (van Kesteren et al., 2010). While this effect is consistent with prior literature and theory, it's unclear why we would find evidence of processing of the remote memories and not the recent memories. Furthermore, the change in LOC-mPFC connectivity in this scan did not correlate with memory behaviors from either learning session, which could be because signal from this scan reflects a mix of processing of the two different learning sessions. With these ideas in mind, we have fleshed out the discussion of the post-encoding ‘recent’ scan in the Discussion (page 38-39, lines 1039-1044).

      c) Third, I am thinking about how both of the above issues might relate to the authors' findings, and would love to see more added to the paper to address this point. Specifically, I assume there are fluctuations in baseline connectivity profile across days within a person, such that the pre-learning connectivity on day 1 might be different from on day 2. Given that, and the lack of a pre-learning connectivity measure on day 2, it would logically follow that the measure of connectivity change from pre- to post-learning is going to be cleaner for the remote memories. In other words, could the lack of connectivity change observed for the recent scan simply be due to the lack of a within-day baseline? Given that otherwise, the post-learning rest should be the same in that it is an immediate reflection of how connectivity changes as a function of learning (depending on whether the authors think that the "recent" scan is actually reflecting "recent + remote"), it seems odd that they both don't show the same corresponding increase in connectivity-which makes me think it may be a baseline difference. I am not sure if this is what the authors are implying when they talk about how day 1 is most similar to prior investigation on p. 20, but if so it might be helpful to state that directly.

      We agree that it is puzzling that we don’t see that hippocampal-LOC connectivity does not also increase after recent learning, equivalently to what we see after remote learning. However, the fact that there is an increase from baseline rest to post-recent rest in mPFC – LOC connectivity suggests that it’s not an issue with baseline, but rather that the post-recent learning scan is reflecting processing of the remote memories (although as a caveat, there is no relationship with priming).

      On what is now page 23, we were referring to the notion that the Day 1 procedure (baseline rest, learning, post-learning rest) is the most straightforward replication of past work that finds a relationship between hippocampal-cortical coupling and later memory. In contrast, the Day 2 learning and rest scan are less ‘clean’ of a replication in that they are taking place in the shadow of Day 1 learning. We have clarified this in the Results (page 23, lines 597-598).

      d) Fourth and very related to my point 1c, I wonder if the lack of correlations for the recent scan with behavior is interpretable, or if it might just be that this is a noisy measure due to imperfect baseline correction. Do the authors have any data or logic they might be able to provide that could speak to these points? One thing that comes to mind is seeing whether the raw post-learning connectivity values (separately for both recent and remote) show the same pattern as the different scores. However, the authors may come up with other clever ways to address this point. If not, it might be worth acknowledging this interpretive challenge in the Discussion.

      We thought of three different approaches that could help us to understand whether the lack of correlations in between coupling and behavior in the recent scan was due to noise. First, we correlated recognition priming with raw hippocampal-LOC coupling separately for pre- and post-learning scans, as in Author response image 1:

      Author response image 1.

      Note that the post-learning chart depicts the relationship between post-remote coupling and remote priming and between post-recent coupling and recent priming (middle). Essentially, post-recent learning coupling did not relate to priming of recently learned sequences (middle; green) while there remains a trend for a relationship between post-remote coupling and priming for remotely learned sequences (middle; blue). However, the significant relationship between coupling and priming that we reported in the paper (right, blue) is driven both by the initial negative relationship that is observed in the pre-learning scan and the positive relationship in the post-remote learning scan. This highlights the importance of using a change score, as there may be spurious initial relationships between connectivity profiles and to-be-learned information that would then mask any learning- and consolidation-related changes.

      We also reasoned that if comparisons between the post-recent learning scan and the baseline scan are noisier than between the post-remote learning and baseline scan, there may be differences in the variance of the change scores across participants, such that changes in coupling from baseline to post-recent rest may be more variable than coupling from baseline to post-remote rest. We conducted F-tests to compare the variance of the change in these two hippocampal-LO correlations and found no reliable difference (ratio of difference: F(22, 22) = 0.811, p = .63).

      Finally, we explored whether hippocampal-LOC coupling is more stable across participants if compared across two rest scans within the same imaging session (baseline and post-remote) versus across two scans across two separate sessions (baseline and post-recent). Interestingly, coupling was not reliably correlated across scans in either case (baseline/post-remote: r = 0.03, p = 0.89 Baseline/post-recent: r = 0.07, p = .74).

      Finally, we evaluated whether hippocampal-LOC coupling was correlated across different rest scans (see Author response image 2). We reasoned that if such coupling was more correlated across baseline and post-remote scans relative to baseline and post-recent scans, that would indicate a within-session stability of participants’ connectivity profiles. At the same time, less correlation of coupling across baseline and post-recent scans would be an indication of a noisier change measure as the measure would additionally include a change in individuals’ connectivity profile over time. We found that there was no difference in the correlation of hipp-LO coupling is across sessions, and the correlation was not reliably significant for either session (baseline/post-remote: r = 0.03, p = 0.89; baseline/post-recent: r = 0.07, p = .74; difference: Steiger’s t = 0.12, p = 0.9).

      Author response image 2.

      We have included the raw correlations with priming (page 25, lines 654-661, Supplemental Figure 6) as well as text describing the comparison of variances (page 25, lines 642-653). We did not add the comparison of hippocampal-LOC coupling across scans to the current manuscript, as an evaluation of stability of such coupling in the context of learning and reactivation seems out of scope of the current focus of the experiment, but we find this result to be worthy of follow-up in future work.

      In summary, further analysis of our data did not reveal any indication that a comparison of rest connectivity across scan sessions inserted noise into the change score between baseline and post-recent learning scans. However, these analyses cannot fully rule that possibility out, and the current analyses do not provide concrete evidence that the post-recent learning scan comprises signals that are a mixture of processing of recent and remote sequences. We discuss these drawbacks in the Discussion (page 39, lines 1047-1070).

      2) My second major concern is how the authors have operationalized integration and differentiation. The pattern similarity analysis uses an overall correspondence between the neural similarity and a predicted model as the main metric. In the predicted model, C items that are indirectly associated are more similar to one another than they are C items that are entirely unrelated. The authors are then looking at a change in correspondence (correlation) between the neural data and that prediction model from pre- to post-learning. However, a change in the degree of correspondence with the predicted matrix could be driven by either the unrelated items becoming less similar or the related ones becoming more similar (or both!). Since the interpretation in the paper focuses on change to indirectly related C items, it would be important to report those values directly. For instance, as evidence of differentiation, it would be important to show that there is a greater decrease in similarity for indirectly associated C items than it is for unrelated C items (or even a smaller increase) from pre to post, or that C items that are indirectly related are less similar than are unrelated C items post but not pre-learning. Performing this analysis would confirm that the pattern of results matches the authors' interpretation. This would also impact the interpretation of the subsequent analyses that involve the neural integration measures (e.g., correlation analyses like those on p. 16, which may or may not be driven by increased similarity among overlapping C pairs). I should add that given the specificity to the remote learning in mPFC versus recent in LOC and anterior hippocampus, it is clearly the case that something interesting is going on. However, I think we need more data to understand fully what that "something" is.

      We recognize the importance of understanding whether model fits (and changes to them) are driven by similarity of overlapping pairs or non-overlapping pairs. We have modified all figures that visualize model fits to the neural integration model to separately show fits for pre- and post-learning (Figure 3 for mPFC, Supp. Figure 5 for LOC, Supp. Figure 9 for AB similarity in anterior hippocampus & LOC). We have additionally added supplemental figures to show the complete breakdown of similarity each region in a 2 (pre/post) x 2 (overlapping/non-overlapping sequence) x 2 (recent/remote) chart. We decided against including only these latter charts rather than the model fits since the model fits strike a good balance between information and readability. We have also modified text in various sections to focus on these new results.

      In brief, the decrease in model fit for mPFC for the remote sequences was driven primarily by a decrease in similarity for the overlapping C items and not the non-overlapping ones (Supplementary Figure 3, page 18, lines 468-472).

      Interestingly, in LOC, all C items grew more similar after learning, regardless of their overlap or learning session, but the increase in model fit for C items in the recent condition was driven by a larger increase in similarity for overlapping pairs relative to non-overlapping ones (Supp. Figure 5, page 21, lines 533-536).

      We also visualized AB similarity in the anterior hippocampus and LOC in a similar fashion (Supplementary Figure 9).

      We have also edited the Methods sections with updated details of these analyses (page 52, lines 1392-1397). We think that including these results considerably strengthen our claims and we are pleased to have them included.

      3) The priming task occurred before the post-learning exposure phase and could have impacted the representations. More consideration of this in the paper would be useful. Most critically, since the priming task involves seeing the related C items back-to-back, it would be important to consider whether this experience could have conceivably impacted the neural integration indices. I believe it never would have been the case that unrelated C items were presented sequentially during the priming task, i.e., that related C items always appeared together in this task. I think again the specificity of the remote condition is key and perhaps the authors can leverage this to support their interpretation. Can the authors consider this possibility in the Discussion?

      It's true that only C items from the same sequence were presented back-to-back during the priming task, and that this presentation may interfere with observations from the post-learning exposure scan that followed it. We agree that it is worth considering this caveat and have added language in the Discussion (page 40, lines 1071-1086). When designing the study, we reasoned that it was more important for the behavioral priming task to come before the exposure scans, as all items were shown only once in that task, whereas they were shown 4-5 times in a random order in the post-learning exposure phase. Because of this difference in presentation times, and because behavioral priming findings tend to be very sensitive, we concluded that it was more important to protect the priming task from the exposure scan instead of the reverse.

      We reasoned, however, that the additional presentation of the C items in the recognition priming task would not substantially override the sequence learning, as C items were each presented 16 times in their sequence (ABC1 and ABC2 16 times each). Furthermore, as this reviewer suggests, the order of C items during recognition was the same for recent and remote conditions, so the fact that we find a selective change in neural representation for the remote condition and don’t also see that change for the recent condition is additional assurance that the recognition priming order did not substantially impact the representations.

      4) For the priming task, based on the Figure 2A caption it seems as though every sequence contributes to both the control and primed conditions, but (I believe) this means that the control transition always happens first (and they are always back-to-back). Is this a concern? If RTs are changing over time (getting faster), it would be helpful to know whether the priming effects hold after controlling for trial numbers. I do not think this is a big issue because if it were, you would not expect to see the specificity of the remotely learned information. However, it would be helpful to know given the order of these conditions has to be fixed in their design.

      This is a correct understanding of the trial orders in the recognition priming task. We chose to involve the baseline items in the control condition to boost power – this way, priming of each sequence could be tested, while only presenting each item once in this task, as repetition in the recognition phase would have further facilitated response times and potentially masked any priming effects. We agree that accounting for trial order would be useful here, so we ran a mixed-effects linear model to examine responses times both as a function of trial number and of priming condition (primed/control). While there is indeed a large effect of trial number such that participants got faster over time, the priming effect originally observed in the remote condition still holds at the same time. We now report this analysis in the Results section (page 14, lines 337-349 for Expt 1 and pages 14-15, lines 360-362 for Expt 2).

      5) The authors should be cautious about the general conclusion that memories with overlapping temporal regularities become neurally integrated - given their findings in MPFC are more consistent with overall differentiation (though as noted above, I think we need more data on this to know for sure what is going on).

      We realize this conclusion was overly simplistic and, in several places, have revised the general conclusions to be more specific about the nuanced similarity findings.

      6) It would be worth stating a few more details and perhaps providing additional logic or justification in the main text about the pre- and post-exposure phases were set up and why. How many times each object was presented pre and post, and how the sequencing was determined (were any constraints put in place e.g., such that C1 and C2 did not appear close in time?). What was the cover task (I think this is important to the interpretation & so belongs in the main paper)? Were there considerations involving the fact that this is a different sequence of the same objects the participants would later be learning - e.g., interference, etc.?

      These details can be found in the Methods section (pages 50-51, lines 1337-1353) and we’ve added a new summary of that section in the Results (page 17, lines 424- 425 and 432-435). In brief, a visual hash tag appeared on a small subset of images and participants pressed a button when this occurred, and C1 and C2 objects were presented in separate scans (as were A and B objects) to minimize inflated neural similarity due to temporal proximity.

      Reviewer #2 (Public Review):

      The manuscript by Tompary & Davachi presents results from two experiments, one behavior only and one fMRI plus behavior. They examine the important question of how to separate object memories (C1 and C2) that are never experienced together in time and become linked by shared predictive cues in a sequence (A followed by B followed by one of the C items). The authors developed an implicit priming task that provides a novel behavioral metric for such integration. They find significant C1-C2 priming for sequences that were learned 24h prior to the test, but not for recently learned sequences, suggesting that associative links between the two originally separate memories emerge over an extended period of consolidation. The fMRI study relates this behavioral integration effect to two neural metrics: pattern similarity changes in the medial prefrontal cortex (mPFC) as a measure of neural integration, and changes in hippocampal-LOC connectivity as a measure of post-learning consolidation. While fMRI patterns in mPFC overall show differentiation rather than integration (i.e., C1-C2 representational distances become larger), the authors find a robust correlation such that increasing pattern similarity in mPFC relates to stronger integration in the priming test, and this relationship is again specific to remote memories. Moreover, connectivity between the posterior hippocampus and LOC during post-learning rest is positively related to the behavioral integration effect as well as the mPFC neural similarity index, again specifically for remote memories. Overall, this is a coherent set of findings with interesting theoretical implications for consolidation theories, which will be of broad interest to the memory, learning, and predictive coding communities.

      Strengths:

      1) The implicit associative priming task designed for this study provides a promising new tool for assessing the formation of mnemonic links that influence behavior without explicit retrieval demands. The authors find an interesting dissociation between this implicit measure of memory integration and more commonly used explicit inference measures: a priming effect on the implicit task only evolved after a 24h consolidation period, while the ability to explicitly link the two critical object memories is present immediately after learning. While speculative at this point, these two measures thus appear to tap into neocortical and hippocampal learning processes, respectively, and this potential dissociation will be of interest to future studies investigating time-dependent integration processes in memory.

      2) The experimental task is well designed for isolating pre- vs post-learning changes in neural similarity and connectivity, including important controls of baseline neural similarity and connectivity.

      3) The main claim of a consolidation-dependent effect is supported by a coherent set of findings that relate behavioral integration to neural changes. The specificity of the effects on remote memories makes the results particularly interesting and compelling.

      4) The authors are transparent about unexpected results, for example, the finding that overall similarity in mPFC is consistent with a differentiation rather than an integration model.

      Thank you for the positive comments!

      Weaknesses:

      1) The sequence learning and recognition priming tasks are cleverly designed to isolate the effects of interest while controlling for potential order effects. However, due to the complex nature of the task, it is difficult for the reader to infer all the transition probabilities between item types and how they may influence the behavioral priming results. For example, baseline items (BL) are interspersed between repeated sequences during learning, and thus presumably can only occur before an A item or after a C item. This seems to create non-random predictive relationships such that C is often followed by BL, and BL by A items. If this relationship is reversed during the recognition priming task, where the sequence is always BL-C1-C2, this violation of expectations might slow down reaction times and deflate the baseline measure. It would be helpful if the manuscript explicitly reported transition probabilities for each relevant item type in the priming task relative to the sequence learning task and discussed how a match vs mismatch may influence the observed priming effects.

      We have added a table of transition probabilities across the learning, recognition priming, and exposure scans (now Table 1, page 48). We have also included some additional description of the change in transition probabilities across different tasks in the Methods section. Specifically, if participants are indeed learning item types and rules about their order, then both the control and the primed conditions would violate that order. Since C1 and C2 items never appeared together, viewing C1 would give rise to an expectation of seeing a BL item, which would also be violated. This suggests that our priming effects are driven by sequence-specific relationships rather than learning of the probabilities of different item types. We’ve added this consideration to the Methods section (page 45, lines 1212-1221).

      Another critical point to consider (and that the transition probabilities do not reflect) is that during learning, while C is followed either by A or BL, they are followed by different A or BL items. In contrast, a given A is always followed by the same B object, which is always followed by one of two C objects. While the order of item types is semi-predictable, the order of objects (specific items) themselves are not. This can be seen in the response times during learning, such that response times for A and BL items are always slower than for B and C items. We have explained this nuance in the figure text for Table 1.

      2) The choice of what regions of interest to include in the different sets of analyses could be better motivated. For example, even though briefly discussed in the intro, it remains unclear why the posterior but not the anterior hippocampus is of interest for the connectivity analyses, and why the main target is LOC, not mPFC, given past results including from this group (Tompary & Davachi, 2017). Moreover, for readers not familiar with this literature, it would help if references were provided to suggest that a predictable > unpredictable contrast is well suited for functionally defining mPFC, as done in the present study.

      We have clarified our reasoning for each of these choices throughout the manuscript and believe that our logic is now much more transparent. For an expanded reasoning of why we were motivated to look at posterior and not anterior hippocampus, see pages 6-7, lines 135-159, and our response to R2. In brief, past research focusing on post-encoding connectivity with the hippocampus suggests that posterior aspect is more likely to couple with category-selective cortex after learning neutral, non-rewarded objects much like the stimuli used in the present study.

      We also clarify our reasoning for LOC over mPFC. While theoretically, mPFC is thought to be a candidate region for coupling with the hippocampus during consolidation, the bulk of empirical work to date has revealed post-encoding connectivity between the hippocampus and category-selective cortex in the ventral and occipital lobes (page 6, lines 123-134).

      As for the use of the predictable > unpredictable contrast for functionally defining cortical regions, we reasoned that cortical regions that were sensitive to the temporal regularities generated by the sequences may be further involved in their offline consolidation and long-term storage (Danker & Anderson, 2010; Davachi & Danker, 2013; McClelland et al., 1995). We have added this justification to the Methods section (page 18, lines 454-460).

      3) Relatedly, multiple comparison corrections should be applied in the fMRI integration and connectivity analyses whenever the same contrast is performed on multiple regions in an exploratory manner.

      We now correct for multiple comparisons using Bonferroni correction, and this correction depends on the number of regions in which each analysis is conducted. Please see page 55, lines 1483-1490, in the Methods section for details of each analysis.

      Reviewer #3 (Public Review):

      The authors of this manuscript sought to illuminate a link between a behavioral measure of integration and neural markers of cortical integration associated with systems consolidation (post-encoding connectivity, change in representational neural overlap). To that aim, participants incidentally encoded sequences of objects in the fMRI scanner. Unbeknownst to participants, the first two objects of the presented ABC triplet sequences overlapped for a given pair of sequences. This allowed the authors to probe the integration of unique C objects that were never directly presented in the same sequence, but which shared the same preceding A and B objects. They encoded one set of objects on Day 1 (remote condition), another set of objects 24 hours later (recent condition) and tested implicit and explicit memory for the learned sequences on Day 2. They additionally collected baseline and post-encoding resting-state scans. As their measure of behavioral integration, the authors examined reaction time during an Old/New judgement task for C objects depending on if they were preceded by a C object from an overlapping sequence (primed condition) versus a baseline object. They found faster reaction times for the primed objects compared to the control condition for remote but not recently learned objects, suggesting that the C objects from overlapping sequences became integrated over time. They then examined pattern similarity in a priori ROIs as a measure of neural integration and found that participants showing evidence of integration of C objects from overlapping sequences in the medial prefrontal cortex for remotely learned objects also showed a stronger implicit priming effect between those C objects over time. When they examined the change in connectivity between their ROIs after encoding, they also found that connectivity between the posterior hippocampus and lateral occipital cortex correlated with larger priming effects for remotely learned objects, and that lateral occipital connectivity with the medial prefrontal cortex was related to neural integration of remote objects from overlapping sequences.

      The authors aim to provide evidence of a relationship between behavioral and neural measures of integration with consolidation is interesting, important, and difficult to achieve given the longitudinal nature of studies required to answer this question. Strengths of this study include a creative behavioral task, and solid modelling approaches for fMRI data with careful control for several known confounds such as bold activation on pattern analysis results, motion, and physiological noise. The authors replicate their behavioral observations across two separate experiments, one of which included a large sample size, and found similar results that speak to the reliability of the observed behavioral phenomenon. In addition, they document several correlations between neural measures and task performance, lending functional significance to their neural findings.

      Thank you for this positive assessment of our study!

      However, this study is not without notable weaknesses that limit the strength of the manuscript. The authors report a behavioral priming effect suggestive of integration of remote but not recent memories, leading to the interpretation that the priming effect emerges with consolidation. However, they did not observe a reliable interaction between the priming condition and learning session (recent/remote) on reaction times, meaning that the priming effect for remote memories was not reliably greater than that observed for recent. In addition, the emergence of a priming effect for remote memories does not appear to be due to faster reaction times for primed targets over time (the condition of interest), but rather, slower reaction times for control items in the remote condition compared to recent. These issues limit the strength of the claim that the priming effect observed is due to C items of interest being integrated in a consolidation-dependent manner.

      We acknowledge that the lack of a day by condition interaction in the behavioral priming effect should discussed and now discuss this data in a more nuanced manner. While it’s true that the priming effect emerges due to a slowing of the control items over time, this slowing is consistent with classic time-dependent effects demonstrating slower response times for more delayed memories. The fact that the response times in the primed condition does not show this slowing can be interpreted as a protection against this slowing that would otherwise occur. Please see page 29, lines 758-766, for this added discussion.

      Similarly, the interactions between neural variables of interest and learning session needed to strongly show a significant consolidation-related effect in the brain were sometimes tenuous. There was no reliable difference in neural representational pattern analysis fit to a model of neural integration between the short and long delays in the medial prefrontal cortex or lateral occipital cortex, nor was the posterior hippocampus-lateral occipital cortex post-encoding connectivity correlation with subsequent priming significantly different for recent and remote memories. While the relationship between integration model fit in the medial prefrontal cortex and subsequent priming (which was significantly different from that occurring for recent memories) was one of the stronger findings of the paper in favor of a consolidation-related effect on behavior, is it possible that lack of a behavioral priming effect for recent memories due to possible issues with the control condition could mask a correlation between neural and behavioral integration in the recent memory condition?

      While we acknowledge that lack of a statistically reliable interaction between neural measures and behavioral priming in many cases, we are heartened by the reliable difference in the relationship between mPFC similarity and priming over time, which was our main planned prediction. In addition to adding caveats in the discussion about the neural measures and behavioral findings in the recent condition (see our response to R1.1 and R1.4 for more details), we have added language throughout the manuscript noting the need to interpret these data with caution.

      These limitations are especially notable when one considers that priming does not classically require a period of prolonged consolidation to occur, and prominent models of systems consolidation rather pertain to explicit memory. While the authors have provided evidence that neural integration in the medial prefrontal cortex, as well as post-encoding coupling between the lateral occipital cortex and posterior hippocampus, are related to faster reaction times for primed objects of overlapping sequences compared to their control condition, more work is needed to verify that the observed findings indeed reflect consolidation dependent integration as proposed.

      We agree that more work is needed to provide converging evidence for these novel findings. However, we wish to counter the notion that systems consolidation models are relevant only for explicit memories. Although models of systems consolidation often mention transformations from episodic to semantic memory, the critical mechanisms that define the models involve changes in the neural ensembles of a memory that is initially laid down in the hippocampus and is taught to cortex over time. This transformation of neural traces is not specific to explicit/declarative forms of memory. For example, implicit statistical learning initially depends on intact hippocampal function (Schapiro et al., 2014) and improves over consolidation (Durrant et al., 2011, 2013; Kóbor et al., 2017).

      Second, while there are many classical findings of priming during or immediately after learning, there are several instances of priming used to measure consolidation-related changes to newly learned information. For instance, priming has been used as a measure of lexical integration, demonstrating that new word learning benefits from a night of sleep (Wang et al., 2017; Gaskell et al., 2019) or a 1-week delay (Tamminen & Gaskell, 2013). The issue is not whether priming can occur immediately, it is whether priming increases with a delay.

      Finally, it is helpful to think about models of memory systems that divide memory representations not by their explicit/implicit nature, but along other important dimensions such as their neural bases, their flexibility vs rigidity, and their capacity for rapid vs slow learning (Henke, 2010). Considering this evidence, we suggest that systems consolidation models are most useful when considering how transformations in the underlying neural memory representation affects its behavioral expression, rather than focusing on the extent that the memory representation is explicit or implicit.

      With all this said, we have added text to the discussion reminding the reader that there was no statistically significant difference in priming as a function of the delay (page 29, lines 764 - 766). However, we are encouraged by the fact that the relationship between priming and mPFC neural similarity was significantly stronger for remotely learned objects relative to recently learned ones, as this is directly in line with systems consolidation theories.

      References

      Abolghasem, Z., Teng, T. H.-T., Nexha, E., Zhu, C., Jean, C. S., Castrillon, M., Che, E., Di Nallo, E. V., & Schlichting, M. L. (2023). Learning strategy differentially impacts memory connections in children and adults. Developmental Science, 26(4), e13371. https://doi.org/10.1111/desc.13371

      Dobbins, I. G., Schnyer, D. M., Verfaellie, M., & Schacter, D. L. (2004). Cortical activity reductions during repetition priming can result from rapid response learning. Nature, 428(6980), 316–319. https://doi.org/10.1038/nature02400

      Durrant, S. J., Cairney, S. A., & Lewis, P. A. (2013). Overnight consolidation aids the transfer of statistical knowledge from the medial temporal lobe to the striatum. Cerebral Cortex, 23(10), 2467–2478. https://doi.org/10.1093/cercor/bhs244

      Durrant, S. J., Taylor, C., Cairney, S., & Lewis, P. A. (2011). Sleep-dependent consolidation of statistical learning. Neuropsychologia, 49(5), 1322–1331. https://doi.org/10.1016/j.neuropsychologia.2011.02.015

      Gaskell, M. G., Cairney, S. A., & Rodd, J. M. (2019). Contextual priming of word meanings is stabilized over sleep. Cognition, 182, 109–126. https://doi.org/10.1016/j.cognition.2018.09.007

      Henke, K. (2010). A model for memory systems based on processing modes rather than consciousness. Nature Reviews Neuroscience, 11(7), 523–532. https://doi.org/10.1038/nrn2850

      Kóbor, A., Janacsek, K., Takács, Á., & Nemeth, D. (2017). Statistical learning leads to persistent memory: Evidence for one-year consolidation. Scientific Reports, 7(1), 760. https://doi.org/10.1038/s41598-017-00807-3

      Kuhl, B. A., & Chun, M. M. (2014). Successful remembering elicits event-specific activity patterns in lateral parietal cortex. The Journal of Neuroscience, 34(23), 8051–8060. https://doi.org/10.1523/JNEUROSCI.4328-13.2014

      Richter, F. R., Chanales, A. J. H., & Kuhl, B. A. (2016). Predicting the integration of overlapping memories by decoding mnemonic processing states during learning. NeuroImage, 124, Part A, 323–335. https://doi.org/10.1016/j.neuroimage.2015.08.051

      Schapiro, A. C., Gregory, E., Landau, B., McCloskey, M., & Turk-Browne, N. B. (2014). The necessity of the medial-temporal lobe for statistical learning. Journal of Cognitive Neuroscience, 1–12. https://doi.org/10.1162/jocn_a_00578

      Schlichting, M. L., & Preston, A. R. (2014). Memory reactivation during rest supports upcoming learning of related content. Proceedings of the National Academy of Sciences, 111(44), 15845–15850. https://doi.org/10.1073/pnas.1404396111

      Smith, J. F., Alexander, G. E., Chen, K., Husain, F. T., Kim, J., Pajor, N., & Horwitz, B. (2010). Imaging systems level consolidation of novel associate memories: A longitudinal neuroimaging study. NeuroImage, 50(2), 826–836. https://doi.org/10.1016/j.neuroimage.2009.11.053

      Takashima, A., Nieuwenhuis, I. L. C., Jensen, O., Talamini, L. M., Rijpkema, M., & Fernández, G. (2009). Shift from hippocampal to neocortical centered retrieval network with consolidation. The Journal of Neuroscience, 29(32), 10087–10093. https://doi.org/10.1523/JNEUROSCI.0799-09.2009

      Tamminen, J., & Gaskell, M. G. (2013). Novel word integration in the mental lexicon: Evidence from unmasked and masked semantic priming. The Quarterly Journal of Experimental Psychology, 66(5), 1001–1025. https://doi.org/10.1080/17470218.2012.724694

      van Kesteren, M. T. R. van, Fernández, G., Norris, D. G., & Hermans, E. J. (2010). Persistent schema-dependent hippocampal-neocortical connectivity during memory encoding and postencoding rest in humans. Proceedings of the National Academy of Sciences, 107(16), 7550–7555. https://doi.org/10.1073/pnas.0914892107

      Wang, H.-C., Savage, G., Gaskell, M. G., Paulin, T., Robidoux, S., & Castles, A. (2017). Bedding down new words: Sleep promotes the emergence of lexical competition in visual word recognition. Psychonomic Bulletin & Review, 24(4), 1186–1193. https://doi.org/10.3758/s13423-016-1182-7

    2. Reviewer #1 (Public Review):

      In this paper, Tompary & Davachi present work looking at how memories become integrated over time in the brain, and relating those mechanisms to responses on a priming task as a behavioral measure of memory linkage. They find that remotely but not recently formed memories are behaviorally linked and that this is associated with a change in the neural representation in mPFC. They also find that the same behavioral outcomes are associated with the increased coupling of the posterior hippocampus with category-sensitive parts of the neocortex (LOC) during a post-learning rest period-again only for remotely learned information. There was also correspondence in rest connectivity (posterior hippocampus-LOC) and representational change (mPFC) such that for remote memories specifically, the initial post-learning connectivity enhancement during rest related to longer-term mPFC representational change.

      This work has many strengths. The topic of this paper is very interesting, and the data provide a really nice package in terms of providing a mechanistic account of how memories become integrated over a delay. The paper is also exceptionally well-written and a pleasure to read. There are two studies, including one large behavioral study, and the findings replicate in the smaller fMRI sample. I do however have two fairly substantive concerns about the analytic approach, where more data will be required before we can know whether the interpretations are an appropriate reflection of the findings. These and other concerns are described below.

      (1) One major concern relates to the lack of a pre-encoding baseline scan prior to recent learning.

      a) First, I think it would be helpful if the authors could clarify why there was no pre-learning rest scan dedicated to the recent condition. Was this simply a feasibility consideration, or were there theoretical reasons why this would be less "clean"? Including this information in the paper would be helpful for context. Apologies if I missed this detail in the paper.

      b) Second, I was hoping the authors could speak to what they think is reflected in the post-encoding "recent" scan. Is it possible that these data could also reflect the processing of the remote memories? I think, though am not positive, that the authors may be alluding to this in the penultimate paragraph of the discussion (p. 33) when noting the LOC-mPFC connectivity findings. Could there be the reinstatement of the old memories due to being back in the same experimental context and so forth? I wonder the extent to which the authors think the data from this scan can be reflected as strictly reflecting recent memories, particularly given it is relative to the pre-encoding baseline from before the remote memories, as well (and therefore in theory could reflect both the remote + recent). (I should also acknowledge that, if it is the case that the authors think there might be some remote memory processing during the recent learning session in general, a pre-learning rest scan might not have been "clean" either, in that it could have reflected some processing of the remote memories-i.e., perhaps a clean pre-learning scan for the recent learning session related to point 1a is simply not possible.)

      c) Third, I am thinking about how both of the above issues might relate to the authors' findings, and would love to see more added to the paper to address this point. Specifically, I assume there are fluctuations in baseline connectivity profile across days within a person, such that the pre-learning connectivity on day 1 might be different from on day 2. Given that, and the lack of a pre-learning connectivity measure on day 2, it would logically follow that the measure of connectivity change from pre- to post-learning is going to be cleaner for the remote memories. In other words, could the lack of connectivity change observed for the recent scan simply be due to the lack of a within-day baseline? Given that otherwise, the post-learning rest should be the same in that it is an immediate reflection of how connectivity changes as a function of learning (depending on whether the authors think that the "recent" scan is actually reflecting "recent + remote"), it seems odd that they both don't show the same corresponding increase in connectivity-which makes me think it may be a baseline difference. I am not sure if this is what the authors are implying when they talk about how day 1 is most similar to prior investigation on p. 20, but if so it might be helpful to state that directly.

      d) Fourth and very related to my point 1c, I wonder if the lack of correlations for the recent scan with behavior is interpretable, or if it might just be that this is a noisy measure due to imperfect baseline correction. Do the authors have any data or logic they might be able to provide that could speak to these points? One thing that comes to mind is seeing whether the raw post-learning connectivity values (separately for both recent and remote) show the same pattern as the different scores. However, the authors may come up with other clever ways to address this point. If not, it might be worth acknowledging this interpretive challenge in the Discussion.

      (2) My second major concern is how the authors have operationalized integration and differentiation. The pattern similarity analysis uses an overall correspondence between the neural similarity and a predicted model as the main metric. In the predicted model, C items that are indirectly associated are more similar to one another than they are C items that are entirely unrelated. The authors are then looking at a change in correspondence (correlation) between the neural data and that prediction model from pre- to post-learning. However, a change in the degree of correspondence with the predicted matrix could be driven by either the unrelated items becoming less similar or the related ones becoming more similar (or both!). Since the interpretation in the paper focuses on change to indirectly related C items, it would be important to report those values directly. For instance, as evidence of differentiation, it would be important to show that there is a greater decrease in similarity for indirectly associated C items than it is for unrelated C items (or even a smaller increase) from pre to post, or that C items that are indirectly related are less similar than are unrelated C items post but not pre-learning. Performing this analysis would confirm that the pattern of results matches the authors' interpretation. This would also impact the interpretation of the subsequent analyses that involve the neural integration measures (e.g., correlation analyses like those on p. 16, which may or may not be driven by increased similarity among overlapping C pairs). I should add that given the specificity to the remote learning in mPFC versus recent in LOC and anterior hippocampus, it is clearly the case that something interesting is going on. However, I think we need more data to understand fully what that "something" is.

      (3) The priming task occurred before the post-learning exposure phase and could have impacted the representations. More consideration of this in the paper would be useful. Most critically, since the priming task involves seeing the related C items back-to-back, it would be important to consider whether this experience could have conceivably impacted the neural integration indices. I believe it never would have been the case that unrelated C items were presented sequentially during the priming task, i.e., that related C items always appeared together in this task. I think again the specificity of the remote condition is key and perhaps the authors can leverage this to support their interpretation. Can the authors consider this possibility in the Discussion?

      (4) For the priming task, based on the Figure 2A caption it seems as though every sequence contributes to both the control and primed conditions, but (I believe) this means that the control transition always happens first (and they are always back-to-back). Is this a concern? If RTs are changing over time (getting faster), it would be helpful to know whether the priming effects hold after controlling for trial numbers. I do not think this is a big issue because if it were, you would not expect to see the specificity of the remotely learned information. However, it would be helpful to know given the order of these conditions has to be fixed in their design.

      (5) The authors should be cautious about the general conclusion that memories with overlapping temporal regularities become neurally integrated - given their findings in MPFC are more consistent with overall differentiation (though as noted above, I think we need more data on this to know for sure what is going on).

      (6) It would be worth stating a few more details and perhaps providing additional logic or justification in the main text about the pre and post-exposure phases were set up and why. How many times each object was presented pre and post, and how the sequencing was determined (were any constraints put in place e.g., such that C1 and C2 did not appear close in time?). What was the cover task (I think this is important to the interpretation & so belongs in the main paper)? Were there considerations involving the fact that this is a different sequence of the same objects the participants would later be learning - e.g., interference, etc.?

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment:

      This important study details an enrichment of the IL-6 signaling pathway in human tendinopathy and applies transcriptional profiling to an advanced in vitro model to test IL-6 specific phenotypes in tendinopathy. Overall, the strength of evidence is solid yet incomplete, as transcriptomic measurements provide clarity, though functional studies including analysis of proliferation are needed to confirm these findings. This work will be of interest to stem cell biologists and immunologists.

      To functionally assess the effect of IL-6 on Scx+ fibroblast proliferation in an acute injury, we repeated the in vivo studies with an EdU staining and a newly established IL-6 KO x ScxGFP+ mouse line. We found no evidence for this effect in acute injuries and acknowledge this in the revised manuscript.

      We further added data collected by combining fluorescence microscopy with human patient-derived tissue to strengthen the link between IL-6, IL-6R, and proliferation of CD90+ cells in chronic injuries.

      See comment 1.1.

      See comment 2.4.

      Changes:

      - Title

      - Abstract

      - Figure 2 and 3 (new data)

      - Figure 7 (new data)

      - Results

      - Discussion

      Reviewer 1

      (1.1) First, the experimental approach does not directly assess proliferation, as such the conclusions regarding proliferation are not well supported. In the ex-vivo model, the use of cell counting approaches is somewhat acceptable since the system is constrained by the absence of potential influx of new cells. However, given the nearly unlimited supply of extrinsically derived cells in vivo (vs. the explant model), assessment of actual proliferation (e.g. Edu, BrdU, Ki67) is critical to support this conclusion.

      To assess the effect of IL-6 on Scx+ fibroblast proliferation in an acute injury, we repeated the in vivo studies with an EdU staining and a newly established IL-6 KO x ScxGFP+ mouse line to combat the considerable background noise of currently available Scx antibodies.

      Under the improved design of these experiments, we could detect no effect of IL-6 on ScxGFP+ cells in an acute injury in vivo. We have therefore replaced figure 5 with the new results in figure 7 and moved figure 5F to the supplementary materials (Supplementary figure 9).

      We acknowledge and discuss this in the discussion section.

      See comment 2.4.

      See comment 2.11.

      Changes:

      - Title

      - Abstract

      - Figure 7 (new data)

      - Supplementary Figure 9

      - Results

      - Discussion

      (1.2) Second, the justification for the use of Scx-GFP+ cells as a progenitor population is not well supported. Indeed, in the discussion, Scx+ cells are treated as though they are uniformly a progenitor population, when the diversity of this population has been established by the cited studies, which do not suggest that these are progenitor populations. Additional definition/ delineation of these cells to identify the subset of these cells that may actually display other putative progenitor markers would support the conclusions. As it stands, the study currently provides important information on the impact of IL6 on Scx+ cells, but not tendon progenitors.

      We further delineated the extrinsic cell populations isolated from mouse Achilles tendons of ScxGFP+ mice using flow cytometric analysis and RT-qPCR. We used tendon population markers suggested by sc-RNA-seq of mouse Achilles tendons.

      (De Micheli et al., Am. J. Physiol. - Cell Physiol., 2020, 319(5), DOI: 10.1152/ajpcell.00372.2020)

      While a small subpopulation of these cells expressed typical progenitor markers (i.e. CD45 and CD146), we could detect no overlap with Scx+ cells. As suggested by the reviewer, we therefore replaced occurrences of “progenitor” in the manuscript with “fibroblast” and performed additional experiments with human patient-derived tissue sections and the fibroblast marker CD90.

      See comment 2.1.

      Changes:

      - Title

      - Abstract

      - Figure 2 (new data)

      - Figure 3 (new data)

      - Supplementary Figure 6 (new data)

      - Results

      - Discussion

      (1.3) Clarity regarding the relevance of the 'sheath-like' component of the assembloid would provide helpful context regarding which types of tendons are likely to have this type of communication vs. those that do not, and if there are differences in tendinopathy prevalence. Understanding why/how this communication between structures is relevant is important.

      Our assembloid concept is inspired by the structure of unsheathed tendons (i.e. biceps, semitendinosus, gracilis) and not sheathed tendons like the flexor tendons.

      We agree that clarity regarding the tendon type having this type of communication is important, so we sharpened previously blurry text passages in the revised manuscript.

      Text changes:

      - Introduction, page 3

      - Results, page 4

      - Results, page 8

      - Results, page 9

      - Results, page 11

      - Discussion, page 25

      - Discussion, page 26

      - Experimental section, page 28

      - Figure 1

      - Figure 2

      - Figure 3

      - Supplementary Table 1

      - Supplementary Figure 3

      - Supplementary Figure 4

      (1.4) Minor: in the text for Figure 6 (2nd paragraph), the comma in 19,694 is superscripted.

      Corrections were made throughout the manuscript.

      Text changes:

      - Results, page 4

      - Results, page 12

      - Results, page 19

      - Results, page 21

      (1.5) Minor: The inclusion of the Scx-GFP mouse should be included in the schematic Figure 5.

      The results presented in the previous draft did not feature tissues from ScxGFP mice but used a Scx-antibody to visually detect Scx+ cells. In anticipation of the revision process, we bred a new IL-6 KO x ScxGFP+ mouse line and repeated the experiment. As suggested by the reviewer, the new schematic figure 7 as well as the former figure 5 moved to the supplementary material now includes this mouse.

      Figure changes:

      - Supplementary Figure 9 (former figure 5)

      - Figure 7

      Reviewer 2

      (2.1) One question that comes to mind is whether the fibroblast progenitors in the extrinsic sheath of Achilles tendon is similar to those surrounding the tail tendon. The similarity of progenitors between different tendons is assumed with this model. I would consider this to be a minor issue.

      Tail tendon fascicles are thought to have a low number of reparative fibroblasts / progenitor cells because they lack a developed extrinsic compartment. Achilles tendons are supposed to have a higher number of reparative fibroblasts / progenitor cells, as their fascicles are surrounded by an extrinsic compartment.

      To verify this here, we added a better characterization and comparison of the cell populations isolated from the tail tendon fascicles and the Achilles tendons.

      First, we added representative light microscopy images of these cells at different timepoints after being cultured on tissue-culture plastic.

      Second, we performed flow cytometric analysis not only on the freshly digested tail tendon fascicles and Achilles tendons, but also on the cultured cells at the timepoint when they would have been embedded into the assembloids.

      Third, we compared the expression of population-specific markers in cells derived from tail tendon fascicle and Achilles tendons.

      As expected, tail tendon fascicle-derived cell populations appeared to be more elongated than Achilles tendon-derived populations shortly after isolation. Similarly, the “maintenance” fibroblasts in healthy tendons are more elongated than the reparative fibroblasts in diseased ones. After culture and priming in tendinopathic niche conditions, both populations assumed a more roundish, reparative phenotype.

      This was consistent with the flow cytometric analysis, which revealed a large difference between freshly isolated populations, that disappeared after extended culture and priming in tendinopathic niche conditions. Gene expression in tail tendon fascicle-derived and Achilles tendon-derived cells was similar after extended culture and priming in tendinopathic niche conditions.

      See comment 1.2.

      See comment 2.10.

      Changes:

      - Supplementary Figure 6 (new data)

      - Results, page 11

      (2.2) The authors use core tendons from IL-6 knockout mice and progenitors from wild-type mice. The reasoning behind this approach was a little confusing... is IL-6 expressed solely in the tendon core compared to the extrinsic sheath?

      Insights gained from human patient-derived tissues (Figure 2) suggest that in a healthy tendon, most of the IL-6 is located in the extrinsic compartment but distributed over compartments in the tendinopathic ones.

      Our assembloid design mimicks this by embedding wildtype fibroblasts into the extrinsic compartment. Our hypothesis was that a wildtype core in tendinopathic niche conditions attracts reparative fibroblasts through IL-6, while an IL-6 knock-out core does not. Therefore, it was important to establish IL-6 gradients close to what they seem to be in vivo.

      Nevertheless, we have to acknowledge that the amount of IL-6 secreted by extrinsic fibroblasts in isolation is quite small compared to what is secreted by a wildtype core (Supplementary Figure 7). Attributing IL-6 in the supernatant of a WT core // WT fibroblast assembloid to the correct cell population is challenging but could be part of future research.  

      Changes:

      - Figure 2 (new data)

      - Supplementary Figure 7 (new data)

      - Results, page 12

      (2.3) Is a co-culture system for 7 days appropriate to model tendinopathy without the supplementation of exogenous inflammatory compounds? The transcriptomic differences in Figure 3 seem to be subtle, and may perhaps suggest that it could be a model that more closely resembles steady state compared to tendinopathy. If so, is IL-6 still relevant during steady state?

      The collective experience in our lab is that core explants exposed to tendinopathic niche conditions (i.e. serum, 37°C, high oxygen, and high glucose levels) assume a disease-like phenotype. (i.e. Wunderli et al., Matrix Biology, 2020, Volume 89 https://doi.org/10.1016/j.matbio.2019.12.003 and Blache et al., Sci. Rep., 2021, 11(1), DOI 10.1038/s41598-021-85331-1).

      Specifically for our core // fibroblast co-culture system, we have reported the emergence of exaggerated tendinopathic hallmarks in a previous publication (Stauber et al., Adv. Healthc. Mater., 2021, 10(20), https://doi.org/10.1002/adhm.202100741).

      We clarified the use of previously validated tendinopathic niche conditions in this manuscript.

      Changes:<br /> - Introduction, page 3<br /> - Results, page 12

      (2.4) The results presented in Figures 4 and 5 are impressive, demonstrating a link between IL-6 and fibroblast progenitor numbers and migration. Their experimental design in these figures show strong evidence, using Tocilizumab and recombinant IL-6 to rescue shown phenotypes. I would reduce the claims on proliferation, however, unless a proliferation-specific marker (e.g., Ki67, BrdU, EdU) is included in confocal analyses of Scx+ progenitors.

      As reviewer 1 pointed out as well, it is important to use a proliferation-specific marker “given the nearly unlimited supply of extrinsically derived cells in vivo (vs. the explant model)”.

      To assess the effect of IL-6 on Scx+ fibroblast proliferation in vivo, we repeated those experiments with a proliferation-specific EdU staining and a newly established IL-6 KO x ScxGFP+ mouse line.

      Under this improved design, we could not detect an effect of IL-6 on proliferation in an acute injury in vivo.

      We have therefore replaced figure 5 with the new results in figure 7 and moved figure 5F to the supplementary materials (Supplementary figure 9).

      We acknowledge and discuss this in the discussion section and softened our statements in the title and the abstract.

      See comment 1.1.

      See comment 2.11.

      Changes:

      - Title

      - Abstract

      - Figure 7 (new data)

      - Supplementary Figure 9

      - Results

      - Discussion

      (2.5) I think it would significantly strengthen the study if they could measure tendon healing in IL-6 knockouts or in wild-type mice treated with IL-6 inhibitors, since conventional ablation of IL-6 may lead to the elevation of compensatory IL-6 superfamily ligands that could activate STAT signaling. The authors claim that reducing IL-6 signaling decreases transcriptomic signatures of tendinopathy, but IL-6 may be necessary to promote normal healing of the tendon following injury. It is supposed that a lack of Scx+ progenitor migration would delay tendon healing.

      Indeed, another study using the same IL-6 knock-out strain showed that a lack of IL-6 signaling resulted in slightly inferior mechanical properties in healing patellar tendons (Lin et al., J. Biomech., 39(1), 2006 https://doi.org/10.1016/j.jbiomech.2004.11.009)

      Also, it might be due to the elevation of compensatory IL-6 superfamily ligands that we found no effect of IL-6 on the proliferation of Scx+ cells in an acute injury in vivo.

      Therefore, assessing the effects of IL-6 inhibitors on tendon healing following an acute injury would have been of great interest to us. Unfortunately, getting the necessary permission from the animal experimentation office for a new invasive treatment protocol was outside of our scope due to the severity degree and time limitations.

      We incorporated and acknowledged these important points in the discussion.

      Text changes:

      - Introduction, page 3

      - Discussion, page 26

      (2.6) Do IL-6 knockout mice and/or mice treated with IL-6 inhibitors have delayed healing following Achilles tendon resection? Please provide experimental evidence.

      See comment 2.5.

      (2.7) I would suggest reducing claims on proliferation, or include a proliferation specific marker (e.g., Ki67, BrdU, EdU) in confocal analyses of Scx+ progenitors.

      See comment 1.1.

      See comment 2.4.

      (2.8) Supplementary Figures 1 and 2: the authors removed outliers. Please specify exactly which outliers were removed in the figures, and provide additional information on the criteria used to identify these outliers.

      To address this comment, we sharpened our criteria for identifying outliers and re-did the analysis depicted in figure 1.

      Briefly, we excluded 5 normal and 5 tendinopathic samples from sheathed tendons which have a different compartmental structure than unsheathed tendons.

      A complete separate analysis of the sheathed tendons would have been beyond the scope of this manuscript, but early screening suggested that IL-6 transcripts are not increased in sheathed tendinopathic tendons.

      We made text changes throughout the manuscript and to the supplementary table 1 and supplementary figure 2 to clearly state our criteria for excluding samples / outliers.

      Changes:

      - Introduction, page 3

      - Results, page 4

      - Results, page 8

      - Results, page 9

      - Results, page 11

      - Discussion, page 25

      - Discussion, page 26

      - Experimental section, page 28

      - Figure 1,

      - Figure 2,

      - Figure 3,

      - Supplementary table 1,

      - Supplementary figure 2,

      - Supplementary figure 3,

      - Supplementary figure 4,

      (2.9) Whenever "positive enrichment" is mentioned in the text, please specify in what group. It is presumed that the enrichment, for example, in the first figure is associated with tendinopathy samples compared to controls, though it is a bit unclear.

      The direction of the enrichment was added to the text.

      Text changes:

      - Abstract, page 1

      - Introduction, page 3

      - Results, page 4

      - Results, page 6

      - Results, page 12

      - Results, page 14

      - Results, page 19

      - Results, page 21

      - Discussion, page 25

      - Discussion, page 26

      - Discussion, page 27

      - Figure 1

      - Figure 5

      - Figure 8

      - Figure 9

      - Supplementary figure 3

      - Supplementary figure 4

      - Supplementary figure 6

      - Supplementary figure 8

      - Supplementary figure 11

      - Supplementary figure 12

      - Supplementary figure 14

      (2.10) Are tail tendon progenitors similar to Achilles tendon progenitors? Please provide a statement that shows similarity (in function, transcriptome, etc.) to support the in vitro tendon model.

      See comment 1.2.

      See comment 2.1.

      (2.11) Are the results in Figure 5F significant? It seems that your pictures show a dramatic change in migration, but the quantification does not?

      We repeated the in vivo studies with a newly established IL-6 KO x ScxGFP+ mouse line to combat the considerable background noise of currently available Scx antibodies.

      Under the improved design of these experiments, we could not detect an effect of IL-6 on ScxGFP+ cells migration in an acute injury in vivo.

      We have therefore replaced figure 5 with the new results in figure 7 and moved figure 5F to the supplementary materials (Supplementary figure 9)

      We acknowledge and discuss this in the discussion section.

      See comment 1.1.

      See comment 2.4.

      Changes:

      - Title

      - Abstract

      - Figure 7 (new data)

      - Supplementary Figure 9

      - Results

      - Discussion

      (2.12) Please provide additional discussion points on cis- versus trans-IL6 signaling in your results found in mouse. Do you think researchers/clinicians would want to target trans-IL6 signaling based on your results? Please support these statements with the expression of IL6R on cells found in the tendon core and external sheath progenitors.

      To address this comment, we performed flow cytometric analysis on Achilles tendon-derived fibroblasts expanded in 2D and digested sub-compartments of the assembloids (Supplementary Figure 7).

      These data suggest that IL6R is neither expressed by core nor extrinsic fibroblasts, but mainly comes from core-resident CD45+ tenophages.

      Human samples co-stained for IL6R and CD68 (an established human macrophage marker) confirmed macrophages as a source of IL-6R in vivo. However, human samples co-stained for IL6R and CD90 (an established marker of reparative fibroblasts in humans) also detected IL6R on CD90+ cells, which have not yet been reported to express IL6R themselves.

      Overall, it is likely that trans-IL-6 signaling is more important for the activation of reparative fibroblasts than cis-IL-6 signaling. We added these statements to the manuscript.

      Changes:

      - Results, page 9

      - Results, page 12

      - Discussion, page 25

      - Discussion, page 26

      - Figure 3 (new data)

      - Supplementary figure 7 (new data)

      (2.13) Please provide more detail on collagen isolation from rat tail in the methods section.

      We provided more details on collagen isolation from rat tail in the experimental section (page 29)

      Changes:

      - Experimental section, page 29

      (2.14) Please comment on whether your in vitro system resembles tendinopathy or a steady state tendon. If it models more of a steady state system, would IL-6 still be relevant?

      See comment 2.3.

      Detailed feedback:

      Reviewer 1:

      This work by Stauber et al. is focused on understanding the signaling mechanisms that are associated with tendinopathy development, and by screening a panel of human tendinopathy samples, identified IL-6/JAK/STAT as a potential mediator of this pathology. Using an innovative explant model they delineated the requirement for IL-6 in the main body of the tendon to alter the dynamics of cells in the peritendinous synovial sheath space.

      The use of a publicly available existing dataset is considered a strength since this dataset includes expression data from several different human tendons experiencing tendinopathy. This facilitates the identification of potentially conserved regulators of the tendinopathy phenotype.

      The clear transcriptional shifts between WT and IL6-/- cores demonstrates the utility of the assembloid model, and supports the importance of IL6 in potentiating the cell response to this stimuli.

      Reviewer 2:

      The authors of this study describe a goal of elucidating the signaling pathways that are upregulated in tendinopathy in order to target these pathways for effective treatments. Their goal is honorable, as tendinopathy is a common debilitating condition with limited treatments. The authors find that IL-6 signaling is upregulated in human tendinopathy samples with transcriptomic and GSEA analyses. The evidence of their initial findings are strong, providing a clinically-relevant phenotype that can be further studied using animal models.

      Along these lines, the authors continue with an advanced in vitro system using the mouse tail tendon as the core with progenitors isolated from the Achilles tendon as the external sheath embedded in a hydrogel matrix. One question that comes to mind is whether the fibroblast progenitors in the extrinsic sheath of Achilles tendon is similar to those surrounding the tail tendon. The similarity of progenitors between different tendons is assumed with this model. I would consider this to be a minor issue, and would consider the in vitro system to be an additional strength of this study.

      In order to address the IL-6 signaling pathway, the authors use core tendons from IL-6 knockout mice and progenitors from wild-type mice. The reasoning behind this approach was a little confusing... is IL-6 expressed solely in the tendon core compared to the extrinsic sheath? Furthermore, is a co-culture system for 7 days appropriate to model tendinopathy without the supplementation of exogenous inflammatory compounds? The transcriptomic differences in Figure 3 seem to be subtle, and may perhaps suggest that it could be a model that more closely resembles steady state compared to tendinopathy. If so, is IL-6 still relevant during steady state?

      Nevertheless, the results presented in Figures 4 and 5 are impressive, demonstrating a link between IL-6 and fibroblast progenitor numbers and migration. Their experimental design in these figures show strong evidence, using Tocilizumab and recombinant IL-6 to rescue shown phenotypes. I would reduce the claims on proliferation, however, unless a proliferation-specific marker (e.g., Ki67, BrdU, EdU) is included in confocal analyses of Scx+ progenitors. The Achilles tendon injury model provides a nice in vivo confirmation of Scx-progenitor migration to the neotendon.

      Given their goal to elucidate signaling pathways that could be targeted in the clinic, I think it would significantly strengthen the study if they could measure tendon healing in IL-6 knockouts or in wild-type mice treated with IL-6 inhibitors, since conventional ablation of IL-6 may lead to the elevation of compensatory IL-6 superfamily ligands that could activate STAT signaling. The authors claim that reducing IL-6 signaling decreases transcriptomic signatures of tendinopathy, but IL-6 may be necessary to promote normal healing of the tendon following injury. It is supposed that a lack of Scx+ progenitor migration would delay tendon healing.

      Overall, the authors of this study elucidated IL-6 signaling in tendinopathy and provided a strong level of evidence to support their conclusions at the transcriptomic level. However, functional studies are needed to confirm these phenotypes and fully support their aims and conclusions. With these additional studies, this work has the potential to significantly influence treatments for those suffering from tendinopathy.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this manuscript, Lee et al. compared encoding of odor identity and value by calcium signaling from neurons in the ventral pallidum (VP) in comparison to D1 and D2 neurons in the olfactory tubercle (OT).

      Strengths:

      They utilize a strong comparative approach, which allows the comparison of signals in two directly connected regions. First, they demonstrate that both D1 and D2 OT neurons project strongly to the VP, but not the VTA or other examined regions, in contrast to accumbal D1 neurons which project strongly to the VTA as well as the VP. They examine single unit calcium activity in a robust olfactory cue conditioning paradigm that allows them to differentiate encoding of olfactory identity versus value, by incorporating two different sucrose, neutral and air puff cues with different chemical characteristics. They then use multiple analytical approaches to demonstrate strong, low-dimensional encoding of cue value in the VP, and more robust, high-dimensional encoding of odor identity by both D1 and D2 OT neurons, though D1 OT neurons are still somewhat modulated by reward contingency/value. Finally, they utilize a modified conditioning paradigm that dissociates reward probability and lick vigor to demonstrate that VP encoding of cue value is not dependent on encoding of lick vigor during sucrose cues, and that separable populations of VP neuros encode cue value/sucrose probability and lick vigor. Direct comparisons of single unit responses between the two regions now utilize linear mixed effects models with random effects for subject,

      Weaknesses:

      The manuscript still includes mention of differences in effect size or differing "levels" of significance between VP and OT D1 neurons without reports of a direct comparisons between the two populations. This is somewhat mitigated by the comprehensive statistical reporting in the supplemental information, but interpretation of some of these results is clouded by the inclusion of OT D2 neurons in these analyses, and the limited description or contextualization in the main text.

      We think the reviewer is mistaken and have clarified the text.  Each pairwise comparison between VP, OTD1 and OTD2, for each odor across days is shown as a heatmap in supplementary figure 8B, with further details in table 37. Absolute diff 3H no statistics

      Reviewer #2 (Public Review):

      We appreciate the authors revision of this manuscript and toning down some of the statements regarding "contradictory" results. We still have some concerns about the major claims of this paper which lead us to suggest this paper undergo more revision as follows since, in its present form, we fear this paper is misleading for the field in two areas. here is a brief outline:

      (1) Despite acknowledging that the injections only occurred in the anteromedial aspect of the tubercle, the authors still assert broad conclusions regarding where the tubercle projects and what the tubercle does. for instance, even the abstract states "both D1 and D2 neurons of the OT project primarily to the VP and minimally elsewhere" without mention that this is the "anteromedial OT". Every conclusion needs to specify this is stemming from evidence in just the anteromedial tubercle, as the authors do in some parts of the the discussion.

      We have clarified in multiple locations that we are recorded from the anteromedial OT, including the abstract, and further clarified this in the conclusions throughout the results and discussion. We refrain stating “anteromedial OT” at every mention of the OT, but think we have now made it abundantly clear that our observations are from the anteromedial OT. It is worth noting that retrograde tracing from the VTA did not label any neuron in any part of the OT, suggesting that the conclusion may well extend beyond the anteromedial portion. Though, we acknowledge further work is needed to comprehensively characterize the OT outputs.

      (2) The authors now frame the 2P imaging data that D1 neuron activity reflects "increased contrast of identity or an intermediate and multiplexed encoding of valence and identity". I struggle to understand what the authors are actually concluding here. Later in discussion, the authors state that they saw that OT D1 and D2 neurons "encode odor valence" (line 510). 

      The point we aim to make is that valence encoding is different between the OT and VP. We do not think the reward modulated activity in OT is valence encoding, at least not as it is in the VP.  We do observe some valence encoding at the population level, which is different from individual valence encoding neurons. The ability of classifiers to segregate population activity based on reward might be considered valence encoding, but we contrast it with that in VP where individual neurons signal reward prediction. This is more robust than that in the OT data where few neurons robustly encode valence. The increased response of the OTD1 neurons after reward association, is more consistent with contrast enhancement than valence encoding.  We believe this distinction is important and reflects a transformation between two reward-related brain areas. For clarification of the sentence in question we have changed it to reflects “increased contrast of iden-ty or an intermediate encoding of valence that also encodes iden-ty.” (line 488)

      We appreciate the authors note that there is "poor standardization" when it comes to defining valence (line 521). We are ok with the authors speculating and think this revision is more forthcoming regarding the results and better caveats the conclusions. I suggest in abstract the authors adjust line 14/15 to conclude that, "While D1 OT neurons showed larger responses to rewarded odors, in line with prior work, we propose this might be interpreted as identity encoding with enhanced contrast." [eliminating "rather than valence encoding" since that is a speculation best reserved for discussion as the authors nicely do.

      We accept this suggestion and have modified the abstract sentence to say, “Though D1 OT neurons showed larger responses to rewarded odors than other odors, consistent with prior findings, we interpret this as iden-ty encoding with enhanced contrast.”  We believe this is appropriately qualified as an interpreta-on, and should not be confusing.

      The above items stated, one issue comes to mind, and that is, why of all reasons would the authors find that the anteromedial aspect of the tubercle is not greatly reflecting valence. the anteromedial aspect of the tubercle, over all other aspects of the tubercle, is thought my many to more greatly partake in valence and other hedonic-driven behaviors given its dense reception of VTA DAergic fibers (as shown by Ikemoto, Kelsch, Zhang, and others). So this finding is paradoxical in contrast to if the authors would had studied the anterolateral tubercle or posterior lateral tubercle which gets less DA input.

      We agree that this seems surprising.  This is why we focused on the anteromedial expecting to find valence encoding.  It remains possible that other parts of the OT, or more dorsal aspects of the anteromedial OT encode valence, as has been reported by Murthy and colleagues.  However, it remains unclear if their recordings are in the OT or VP.  Nonetheless our findings indicate that more work is required to understand the contribution of the OT to valence encoding.  It is also important to note that our conclusions are drawn in comparison to the VP, which has more robust valence encoding than the OT. Thus, in comparison the OT sample in our recordings lack robust valence signaling.  We think this comparison is important, due to the lack of clear framework for defining valence that may create misleading statements in past OT work.  

      Reviewer #3 (Public Review):

      Summary:

      This manuscript describes a study of the olfactory tubercle in the context of reward representation in the brain. The authors do so by studying the responses of OT neurons to odors with various reward contingencies and compare systematically to the ventral pallidum. Through careful tracing, they present convincing anatomical evidence that the projection from the olfactory tubercle is restricted to the lateral portion of the ventral pallidum.

      Using a clever behavioral paradigm, the authors then investigate how D1 receptor- vs. D2 receptor-expressing neurons of the OT respond to odors as mice learn different contingencies. The authors find that, while the D1-expressing OT neurons are modulated marginally more by the rewarded odor than the D2-expressing OT neurons as mice learn the contingencies, this modulation is significantly less than is observed for the ventral pallidum. In addition, neither of the OT neuron classes shows conspicuous amount of modulation by the reward itself. In contrast, the OT neurons contained information that could distinguish odor identities. These observations have led the authors to conclude that the primary feature represented in the OT may not be reward.

      Strengths:

      The highly localized projection pattern from olfactory tubercle to ventral pallidum is a valuable finding and suggests that studying this connection may give unique insights into the transformation of odor by reward association.

      Comparison of olfactory tubervle vs. ventral pallidum is a good strategy to further clarify the olfactory tubercle's position in value representation in the brain.

      Weaknesses:

      The study comes to a different conclusion about the olfactory tubercle regarding reward representations from several other prior works. Whether this stems from a difference in the experimental configurations such as behavioral paradigms used or indeed points to a conceptually different role for the olfactory tubercle remains to be seen.

      We acknowledge that our results lead us to conclusions that are different from that of prior work.  But we note that our results are not directly at odds, as we see similar reward modulation of D1 OT neurons as has been reported previously. Our conclusion is different because we contrast our OT responses with that in the VP where valence is more robustly encoded at the single neuron level. We also note, that many of the past studies do not define valence as stringently as we do.  Thus, increased activity with reward, as observed in our data and past studies, seems more like reward modulation than valence.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This work explored intra and interspecific niche partitioning along spatial, temporal, and dietary niche partitioning between apex carnivores and mesocarnivores in the Qilian Mountain National Park of China, using camera trapping data and DNA metabarcoding sequencing data. They conclude that spatial niche partitioning plays a key role in facilitating the coexistence of apex carnivore species, spatial and temporal niche partitioning facilitate the coexistence of mesocarnivore species, and spatial and dietary niche partitioning facilitate the coexistence between apex and mesocarnivore species. The information presented in this study is important for wildlife conservation and will contribute substantially to the current understanding of carnivore guilds and effective conservation management in fragile alpine ecosystems.

      Strengths:

      Extensive fieldwork is evident in the study. Aiming to cover a large percentage of the Qilian Mountain National Park, the study area was subdivided into squares, as a geographical reference to distribute the sampling points where the camera traps were placed and the excreta samples were collected.

      They were able to obtain many records in their camera traps and collected many samples of excreta. This diversity of data allowed them to conduct robust analyses. The data analyses carried out were adequate to obtain clear and meaningful results that enabled them to answer the research questions posed. The conclusions of this paper are mostly well supported by data.

      The study has demonstrated the coexistence of carnivore species in the landscapes of the Qilian Mountains National Park, complementing the findings of previous studies. The information presented in this study is important for wildlife conservation and will contribute substantially to the current understanding of carnivore guilds and effective conservation management in fragile alpine ecosystems.

      Weaknesses:

      It is necessary to better explain the methodology because it is not clear what is the total sampling effort. In methodology, they only claim to have used 280 camera traps, and in the results, they mention that there are 319 sampling sites. However, the total sampling effort (e.g. total time of active camera traps) carried out in the study and at each site is not specified.

      Thanks a lot for this detailed review! We apologize for not offering a distinct description of the overall sampling effort. In this study, we deployed 280 camera trappings, and these cameras were active for approximately 4 to 6 months. We visited each camera 2 to 3 times annually to download photos and check the batteries. In case some cameras failed to capture the targeted carnivore, we would relocate the positions of those cameras. Eventually, we collected 322 camera trapping sites, among which 3 cameras malfunctioned due to loss. As a result, we analyzed data from 319 camera sites and obtained 14,316 independent detections over 37,192 trap-days.

      We have added this information as follows in lines 132 to lines 143: “Taking into account the fact that mammalian communities are sensitive to seasonality, we used camera traps to monitor animals with an extensive survey effort from December 2016 to February 2022, covering the activity of animal species in different seasons, which can reflect the overall distribution of carnivores. We placed a total of 280 infrared cameras at the study site, set them to be active for 4 to 6 months, and considered possible relocation to another position based on animal detection in an effort to improve estimates of the occupancy and detection rates for both common and rare species (Figure 1) (Kays et al., 2020). The camera trap was set to record the time and date on a 24 hr clock when triggered, and to record a 15s video and 1 photo with an interval of 2 minutes between any two consecutive triggers. The sum of camera trap effective days was defined by the total amount of trapping effort during the sampling period, which was calculated from the time the camera was placed in operation to the time the last video or photograph was taken. We visited each camera 2 to 3 times a year to download photos and check batteries.” and lines 228 to lines 232: “A total of 322 camera trap sites were surveyed after relocating infrared cameras that did not capture any target carnivore species. A total of 3 cameras were considered to have failed due to loss. We analyzed data from 319 camera sites and obtained 14,316 independent detections during a total effort of 37,192 effective camera trap days. We recorded wolf in 26 sites, snow leopard in 109 sites, Eurasian lynx in 36 sites, red fox in 92 sites, and Tibetan fox in 34 sites.”

      Reviewer #2 (Public Review):

      Summary:

      The study entitled "Different coexistence patterns between apex carnivores and mesocarnivores based on temporal, spatial, and dietary niche partitioning analysis in Qilian Mountain National Park, China" by Cong et al. addresses the compelling topic of carnivores' coexistence in a biodiversity hotspot in China. The study is interesting given it considers all three components affecting sympatric carnivores' distribution and co-occurrence, namely the temporal, the spatial, and the dietary partition within the carnivore guild. The authors have found that spatial co-occurrence is generally low, which represents the major strategy for coexistence, while there is temporal and dietary overlap. I also appreciated the huge sampling effort carried out for this study by the authors: they were able to deploy 280 camera trapping sites (which became 322 in the result section?) and collect a total of 480 scat samples. However, I have some concerns about the study on the non-consideration of the human dimension and potential anthropogenic disturbance that could affect the spatial and temporal distribution of carnivores, the choice of the statistical model to test co-occurrence, and the lack of clearly stated ecological hypotheses.

      Strengths:

      The strengths of the study are the investigation of all three major strategies that can mitigate carnivores' coexistence, therefore, the use of multiple monitoring techniques (both camera trapping and DNA metabarcoding) and the big dataset produced that consists of a very large sampled area with a noteworthy number of camera trap stations and many scat samples for each species.

      Weaknesses:

      I think that some parts of the manuscript should be written better and more clearly. A clear statement of the ecological hypotheses that could affect the partitioning among the carnivore guild is lacking. I think that the human component (thus anthropogenic disturbance) should have been considered more in the spatial analyses given it can influence the use of the environment by some carnivores. Additionally, a multi-species co-occurrence model would have been a more robust approach to test for spatial co-occurrence given it also considers imperfect detection.

      Thank you very much for your valuable comments and suggestions. We checked and edited the manuscript, and we thought the English level was improved.

      (1) According to your suggestion, we added the competitive exclusion and niche differentiation hypothesis with space, time and diets axis to explain co-occurrence relationship among species in the introduction as follow: “The competitive exclusion principle dictates that species with similar ecological requirements are unable to successfully coexist (Hardin, 1960; Gause, 1934). Thus, carnivores within a guild occupy different ecological niches based on a combination of three niche dimensions, i.e. spatial, temporal, and trophic (Schoener, 1974). Spatially, carnivore species within the same geographic area exhibit distinct distributions that minimize overlap in resource use and competition. For example, carnivores can partition habitats based on habitat feature preferences and availability of prey (De Satgé et al., 2017; Garrote and Pérez De Ayala, 2019; Gołdyn et al., 2003; Strampelli et al., 2023). Temporally, differences in seasonal or daily activity patterns among sympatric carnivores can reduce competitive interactions and facilitate coexistence. For example, carnivores can exhibit temporal segregation in their foraging behaviors, such as diurnal versus nocturnal activity, to avoid direct competition (Finnegan et al., 2021; Nasanbat et al., 2021; Searle et al., 2021). Trophically, carnivore species can diversify their diets to exploit different prey species or sizes, thereby reducing competition for food resources. For example, carnivores can exhibit dietary specialization to optimize their foraging efficiency and minimize competitive pressures (Steinmetz et al., 2021).”

      (2) In addition to distance from roads, we included human dimension as covariates influencing occupancy rates based on the number of independent photos or videos of herders and livestock detected by infrared cameras (named human disturbance and is represented by hdis). According to the results of occupancy models, we found red fox occupancy probability displayed a significant positive relationship with hdis. Moreover, the detection probability of snow leopard and Eurasian lynx decreased with increasing hdis.

      We have incorporated these results into the Results as follow: “According to the findings derived from single-season, single-species occupancy models, the snow leopard demonstrated a notably higher probability of occupancy compared to other carnivore species, estimated at 0.437 (Table 1). Conversely, the Eurasian lynx exhibited a lower occupancy probability, estimated at 0.161. Further analysis revealed that the occupancy probabilities of the wolf and Eurasian lynx declined with increasing Normalized Difference Vegetation Index (NDVI) (Table 2, Figure 2). Additionally, wolf occupancy probability displayed a negative relationship with roughness index and a positive relationship with prey availability. Snow leopard occupancy probabilities exhibited a negative relationship with distance to roads and NDVI. In contrast, both red fox and Tibetan fox demonstrated a positive relationship with distance to roads. Moreover, red fox occupancy probability increased with higher human disturbance and greater prey availability. The detection probabilities of wolf, snow leopard, red fox, and Tibetan fox exhibited an increase with elevation (Table 2). Moreover, there was a positive relationship between the detection probability of Tibetan fox and prey availability. The detection probabilities of snow leopard and Eurasian lynx declined as human disturbance increased.”

      (3) We appreciate the suggestion to use a multi-species co-occurrence model to test spatial co-occurrence. We attempted a multispecies occupancy modeling to analysis the five species in our study followed the method of Rota et al. (2016). Initially, we simplified the candidate models by adopting a single-season, single-species occupancy model. We selected occupancy covariates from the best model as the best covariates for each species and used them to establish multispecies occupancy models. Unfortunately, the final model results did not converge. We are investigating potential solutions to resolve this problem.

      Rota CT, Ferreira MAR, Kays RW, Forrester TD, Kalies EL, McShea WJ, Parsons AW, Millspaugh JJ. 2016. A multispecies occupancy model for two or more interacting species. Methods Ecol Evol 7:1164–1173. doi:10.1111/2041-210X.12587

      Temporal and dietary results are solid and this latter in particular highlights a big predation pressure on some prey species such as the pika. This implies important conservation and management implications for this species, and therefore for the trophic chain, given that i) the pika population should be conserved and ii) a potential poisoning campaign against small mammals could be incredibly dangerous also for mesocarnivores feeding on them due to secondary poisoning.

      Thank you for your thoughtful comments. We appreciate your recognition of the temporal and dietary findings, particularly the highlighted predation pressure on prey species like the pika. These observations indeed underscore critical implications for conservation and management. The necessity to conserve the pika population is paramount for its role in maintaining the stability of the trophic chain within its ecosystem. As you rightly pointed out, any disruption to this delicate balance, including through predation or indirect threats like poisoning campaigns, could have far-reaching consequences. Regarding the potential risks associated with poisoning campaigns targeting small mammals, we acknowledge the significant concerns raised about secondary poisoning affecting mesocarnivores. This underscores the need for careful consideration in pest control strategies and the adoption of measures that minimize unintended ecological impacts. Our findings suggest several practical implications for conservation and management. Conservation efforts should focus on vulnerable prey populations such as the pika, while management strategies could include regulatory frameworks and community education to mitigate risks associated with pest control methods. We believe our study contributes valuable insights into the complexities of predator-prey dynamics and the broader implications for ecosystem health. By integrating these findings into conservation practices, we can work towards ensuring the sustainability of natural systems and the species that depend on them.

      Reviewer #1 (Recommendations For The Authors):

      To better explain the methodology and the sampling effort I recommend reviewing e.g. Kays et al. 2020. An empirical evaluation of camera trap study design: How many, how long, and when?. Methods in Ecology and Evolution, 11(6), 700-713. https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/2041-210X.13370.

      Thank you for this valuable suggestion! According to this reference, we have added this information to explain the methodology and the sampling effort as follow: “Taking into account the fact that mammalian communities are sensitive to seasonality, we used camera traps to monitor animals with an extensive survey effort from December 2016 to February 2022, covering the activity of animal species in different seasons, which can reflect the overall distribution of carnivores. We placed a total of 280 infrared cameras at the study site, set them to be active for 4 to 6 months, and considered possible relocation to another position based on animal detection in an effort to improve estimates of the occupancy and detection rates for both common and rare species (Figure 1) (Kays et al., 2020). The camera trap was set to record the time and date on a 24 hr clock when triggered, and to record a 15s video and 1 photo with an interval of 2 minutes between any two consecutive triggers. The sum of camera trap effective days was defined by the total amount of trapping effort during the sampling period, which was calculated from the time the camera was placed in operation to the time the last video or photograph was taken. We visited each camera 2 to 3 times a year to download photos and check batteries.”

      Reviewer #2 (Recommendations For The Authors):

      I have some concerns about the manuscript.

      I find that the manuscript should be written more clearly: some sentences are not straightforward to understand given the presence of structural errors that make the text hard to read; the paragraphs should be written in a more harmonic way (without logical leaps) with a smoother change of topic between paragraphs, especially in the introduction.

      We appreciate your constructive comments, which have helped us improve the clarity and coherence of the manuscript. We have revised the introduction to provide a clearer outline of the paper's structure and objectives. Specifically, we have rephrased complex sentences and removed ambiguities to ensure that each idea is communicated more straightforwardly. We providing clearer links between ideas and avoiding abrupt shifts in topics to ensure that a smoother transition between paragraphs.

      I feel like the strength of merging the two techniques (camera trapping and DNA metabarcoding) is not brought up enough, while the disadvantage of this approach is not even mentioned (e.g., the increasing costs).

      Thanks a lot for this valuable comment! We have added this information to the Discussion (L356-L363) as follow: “Our study highlights the effectiveness of combining camera trapping with DNA metabarcoding for detecting and identifying both cryptic and rare species within a sympatric carnivore guild. This integrated approach allowed us to capture a more comprehensive view of species presence and interactions compared to traditional visual surveys. whereas, it is important to acknowledge the challenges associated with this technique, including the high costs of equipment and the need for specialized training and computational resources to manage and analyze the large volumes of sequence data. Despite these challenges, the benefits of this combined method in improving biodiversity assessments and understanding species coexistence outweigh the drawbacks.”

      The structure of the manuscript does not follow the structure of the journal (Intro, Material and Method, Results, Discussion instead it reports the methods at the end of the main manuscript), and, most critically, I found that a clear explanation of the research hypothesis is missing: authors should clearly state they ecological hypotheses. What are your hypotheses on the co-occurrence relationship among species? What would specifically affect and change the sympatric relationships among carnivores?

      Thank you for this valuable suggestion! We have revised the manuscript, that is integrated the methods section appropriately within the main body of the manuscript to ensure that it aligns with the standard sections (Introduction, Materials and Methods, Results, Discussion.

      We state our main ecological hypotheses concerning the co-occurrence relationships among carnivore species is based on niche differentiation hypothesis. We hypothesize that differentiation along one or more niche axes is beneficial for the coexistence of carnivorous guild in the Qilian Mountains. We expected that spatial niche differentiation promotes the coexistence of large carnivores in the Qilian Mountain region, as they are more likely than small carnivores to spatially avoid interspecific competition (Davis et al., 2018). Mesocarnivores may coexist either spatially or temporally due to increased interspecific competition for similar prey (Di Bitetti et al., 2010; Donadio and Buskirk, 2006). Nutritional niche differentiation may be a significant factor for promoting coexistence between large and mesocarnivore species due to differences in body size (Gómez-Ortiz et al., 2015; Lanszki et al., 2019). We have added ecological hypotheses in lines 101 to 110.

      Another concern is that all pictures with people have been removed from the dataset, but I think that this could be a bit biased as human presence (or also the presence of livestock) could affect the spatial or temporal presence of carnivores, changing their co-occurrence dynamics. On one side, humans can be perceived as a source of disturbance by carnivores and, therefore, can cause a shift in distribution towards locations with lower human presence (or lower anthropogenic disturbance) that could further concentrate the presence of carnivores increasing the competitive interaction. Conversely, mesocarnivores could take advantage of an increasing human presence - following the human shield hypotheses - finding a refugium from larger body carnivores. From this perspective, important information on the potential anthropogenic pressure is lacking in the description of the study area: how effective is the protection effort of the park? How intense is the potential human disturbance in and around the park? Is there poaching? Intensive livestock grazing? Resources extractions? These are all factors that could affect the interactions among carnivores. Do not forget the possibility and risk of being retaliatory killed by humans due to the presence of livestock in the area. I think that incorporating the human dimension is important because it could strongly affect how carnivores perceive and use the environment. Here only the distance to the closest road has been considered. However, for example, recent research (Gorczynski et al 2022, Global Change Biology) has indeed found that co-occurrece of ecologically similar species differed in relation to increasing human density. Therefore, I think that anthropogenic disturbance is an aspect to be reckoned with and more variables as proxy of human disturbance should be considered.

      Thanks a lot for this valuable comment! We acknowledge that humans can act as both a disturbance factor, potentially driving carnivores away from highly populated areas, and as a source of indirect refuge for mesocarnivores, thereby affecting competitive interactions among carnivores. We understand that poaching and resource extraction are prohibited and livestock grazing is a significant human activity within the study area. Therefore, we added human dimension as covariates influencing occupancy rates based on the number of independent photos or videos of herders and livestock detected by infrared cameras (named human disturbance and is represented by hdis). According to the results of occupancy models, we found red fox occupancy probability displayed a significant positive relationship with hdis. Moreover, the detection probability of snow leopard and Eurasian lynx decreased with increasing hdis.

      In the statistical analyses section, I don't find that the statistical procedure is well described: it is not clear which occupancy model has been used (probably a single-species single-season occupancy model for each target species?), which covariates have been tested for each species and following which hypotheses. Additionally, I think that when modelling the spatial distribution of subordinate species, it should be important to include information on the spatial distribution of apex species given this could affect their occurrence on the territory. This could have been done by using the Relative Abundance Index of the apex predators as a covariate when modelling the distribution of subordinate species. Additionally, why haven't the authors used prey as a covariate for occupancy? I think that prey distribution should affect the occupancy probability more than the detection rate. Also, the authors used the Sørensen similarity index to measure associations between species. However, this association metric has been criticized (see the recent paper of Mainali et al 2022, Science Advances). I am therefore wondering: given the authors are using the occupancy framework, why don't they use a multi-species co-occurrence model that allows them to directly estimate both single-species occupancy and the co-occurrence parameter as a function of covariates (examples are Rota et al. 2016, Methods Ecol. Evol. Or Tobler et al. 2019, Ecology)? For the temporal overlap, I think that adding Figure S2 (pairwise temporal overlap) in the main text would help deliver the results of the temporal analyses more straightforwardly.

      Thanks a lot for this valuable comment!

      (1) The current manuscript utilizes a single-species single-season occupancy model for each target species. Additionally, we have added prey and human disturbance as occupancy covariables. We have revised the statistical analyses section to explicitly state this model choice and clarify the covariates tested for each species from lines 153 to lines170. The details are as follows: “To investigate the spatial distribution of carnivores, as well as the influence of environmental factors on the site occupancy of species in the study area, we performed single-season, single-species occupancy models to estimate carnivores’ occupancy (ψ) and detection (Pr) probability (Li et al., 2022b; MacKenzie, 2018; Moreno-Sosa et al., 2022). To ensure capture independence, only photo or video records at intervals of 30 min were was included in the data analysis (Li et al., 2020). We created a matrix recording whether each carnivore species was detected (1) or not (0) across several 30-day intervals (that is 0-30, 31-60, 61-90, 91-120, 121-150, >150 days) for each camera location. Based on the previous studies of habitat use of carnivores (Greenspan and Giordano, 2021; Alexander et al., 2016; Gorczynski et al., 2022), we selected terrain, vegetation, biological factors and disturbance to construct the model. Terrain is a fundamental element of wildlife habitat and closely linked to other environmental factors (Chen et al., 2024). Terrain variables include elevation (ele) and roughness index (rix). Vegetation variables include normalized difference vegetation index (ndvi), and provide information on the level of habitat concealment. Biological variables include prey abundance (the number of independent photos of their preferred prey based on dietary analysis in this study, wolf and snow leopard: artiodactyla including livestock; Eurasian lynx and Pallas’s cat: lagomorpha; red fox and Tibetan fox: lagomorpha and rodentia) and reflect habitat preference and distribution patterns of carnivores. Disturbance variables include distance to roads (disrd) and human disturbances (hdis, the number of independent photos of herdsman and livestock) and can provide insight into the habitat selection and behavior patterns of carnivores.”

      (2) Thank you for your valuable suggestions. We acknowledge the importance of considering apex species in models of subordinate species' spatial distributions.

      Nonetheless, considering the consistency of covariates for each species and the lack of interspecies interactions in single-species occupancy models, we did not include the Relative Abundance Index of the apex predators as a covariate affecting the occupancy of mesopredators. As you recommended, multi-species occupancy models that account for interspecies interactions are a robust approach. However, we attempted to use the multi-species occupancy method of Rota et al. (Rota et al., 2016), the final model results did not converge. Specifically, we selected occupancy covariates from the best model by single-species model as the best covariates for each species and used them to establish multispecies occupancy models. We are investigating potential solutions to resolve this problem.

      (3) We used the Sørensen similarity index to measure associations between species based on support from previous literature. As counted by Mainali et al., the Sørensen index has been used in more than 700 papers across journals such as Science, Nature, and PNAS. We believe this index holds broad applicability in describing relationships between species.

      (4) We agree that presenting pairwise temporal overlap in the main text would enhance clarity. We revised the manuscript to include Figure S2 in the main text and ensure that the temporal analyses are more straightforwardly presented.

      Regarding the sampling collection of the scats, I'm just curious to know why you decided to use silica desiccant instead of keeping the samples frozen. I'm not familiar with this method and I guess it works fine because the environment is generally freezing cold. Yet, I would like to know more. How fresh do scat samples need to be in order to be suitable for DNA metabarcoding analyses? Additionally, what do you mean by "scats were collected within camera trapping area", could you be more specific? Have you specified a buffer around camera stations?

      Thanks a lot for this specific inquiry! We refer to the scat collection method mentioned in the study of Janecka et al (2008; 2011). Silica is used to dry the scats to minimize DNA degradation. Due to the limitation of field environmental conditions, there is no suitable equipment to freeze samples during sampling, the collected scat samples should be kept dry and cool in shade, and transferred to the laboratory as soon as possible after sampling. We selected relatively fresh samples based on the color of the scat as well as broken off bits and pieces from the outside part of the scat including pieces not directly in the sun. Collect scat material about the size of a pinkie nail in the tube. If over fill the tube it will likely not dry and lead to DNA degradation.

      The study area was subdivided into sample squares of 25 km2 (5×5 km) as a geographical reference for placing camera survey sites and collecting scat samples. Camera traps were set in areas believed to be important to and heavily used by wildlife, such as the bottoms of cliffs, sides of boulders, valleys and ridges along movement corridors. Also, we focused on sites with known or suspected carnivore activity to maximize probability of detection for scat samples. Therefore, transects were set around the infrared camera to collect scat samples. Length of each transect was determined by terrain, amount of scat, and available time. Each transect should have collected about 18 samples or covered 5 km of terrain to avoid uneven representation among transects and ensure that the team has sufficient time to return to base camp (Janečka et al., 2011).

      Janecka J, Jackson R, Yuquang Z, Li D, Munkhtsog B, Buckley-Beason V, Murphy W. 2008. Population monitoring of snow leopards using noninvasive collection of scat samples: A pilot study. Animal Conservation 11:401–411. doi:10.1111/j.1469-1795.2008.00195.x

      Janečka JE, Munkhtsog B, Jackson RM, Naranbaatar G, Mallon DP, Murphy WJ. 2011. Comparison of noninvasive genetic and camera-trapping techniques for surveying snow leopards. J Mammal 92:771–783. doi:10.1644/10-MAMM-A-036.1

      Kays R, Arbogast BS, Baker‐Whatton M, Beirne C, Boone HM, Bowler M, Burneo SF, Cove MV, Ding P, Espinosa S, Gonçalves ALS, Hansen CP, Jansen PA, Kolowski JM, Knowles TW, Lima MGM, Millspaugh J, McShea WJ, Pacifici K, Parsons AW, Pease BS, Rovero F, Santos F, Schuttler SG, Sheil D, Si X, Snider M, Spironello WR. 2020. An empirical evaluation of camera trap study design: How many, how long and when? Methods Ecol Evol 11:700–713. doi:10.1111/2041-210X.13370

      Regarding the discussion, the authors have information for 1) spatial distribution, 2) temporal overlap, 3) dietary requirement, they should use this information to support the discussion. Instead, sometimes it feels that authors go by exclusion or make a suggestion. For example: the authors have found dietary and temporal overlap between two apex predators (i.e., wolf and snow leopard), and they said that this suggests that spatial partitioning is responsible for their successful coexistence in this area (lines 195-196). But why "suggesting", what the co-occurrence metric says? Another example: "Apex carnivores and mesocarnivores showed substantial overlap in time overall, indicating that spatial and dietary partitioning may play a large role in facilitating their coexistence" (lines 241 - 242). However, this should not be a suggestion: your Sørensen similarity index is low proving spatial divergence. So, when data supports the hypotheses, the authors should be firmer in their discussion. Generally, when reading the discussion, it felt that a figure summarizing the partitioning would be much needed to digest which type of partitioning strategy the species are using.

      Thank you for your thoughtful comments and suggestions.

      (1) We appreciate your insights on the discussion section, particularly concerning the interpretation of our findings on spatial distribution, temporal and dietary overlap. We acknowledge the need for clearer interpretation of our findings. We have revised the discussion section to provide more direct support. For example, in line 294-295, we modify it as “We found dietary and temporal overlap among apex carnivores, showing that spatial partitioning is responsible for their successful coexistence in this area.” In line 341-342, we modify it as “Apex carnivores and mesocarnivores exhibited considerable overlap in time overall, showing that spatial and dietary partitioning may play a large role in facilitating their coexistence.”

      (2) We appreciate your suggestion regarding the inclusion of a figure summarizing partitioning strategies among species discussed. In our study, we organized the overlap index of space, time, and diet among carnivores in Table 3, which directly reflects the overlap of carnivore species in these three dimensions by summarizing them in a single table. Additionally, Figure 3 illustrates the activity patterns and overlap among species, while Figure 4 displays the primary prey of carnivores and the frequency of food utilization.

      About lines 228 - 229, just as a side note, the Pallas's cat, as the red fox, selects the environment according to a greater distribution of prey species, while also selecting primarily meadows and natural environment (Greco et al. 2022, Journal of wildlife management) additionally it is not strictly diurnal (Anile et al. 2020, Wildlife Research; Greco et al. 2022, Journal of wildlife management). Regarding the Pallas's cat and its exclusion from the temporal and spatial analyses, can you specify how many independent detection events you had?

      Thanks a lot for this valuable comment!

      (1) We appreciate the references to recent studies highlighting its habitat preferences and activity patterns. We have revised the manuscript to acknowledge these points and provide context regarding its habitat selection strategies. Specifically, we modify it as follow: “Pallas’s cat hunts during crepuscular and diurnal periods, inhabits meadow with greater prey abundance (Anile et al., 2021; Greco et al., 2022; Ross et al., 2019).”

      (2) The low detection rate of Pallas's cat (0.072) identified by single-species occupancy model raised concerns regarding the reliability of the results. The estimated high standard errors for each environmental variable and the wide confidence intervals around the detection rate further indicated potential bias or randomness. Consequently, we made the decision to exclude the Pallas's cat data from further analysis. Upon closer examination of the Pallas's cat data, it became evident that out of 319 camera sites surveyed, only 27 sites detected the presence of Pallas's cat. Notably, only 3 out of 193 sites in Gansu Province recorded detections, while Qinghai Province had 24 detections out of 126 sites. This skewed distribution of data likely contributed to the unsatisfactory outcomes observed in our models.

      About the diet and results of scat analyses, have you found any sign of intra-guild predation (i.e., apex predators that kill and sometimes consume subordinate carnivores to reduce competition), this could actually represent proof of competition and spatial overlap.

      Thanks a lot for your thoughtful comments!

      We observed intraguild predation in the diet of wolves and snow leopards. Specifically, we found the presence of Pallas’s cat, red fox, and Tibetan fox in the diet of wolfs, and Pallas’s cat, Eurasian Badger and Tibetan fox in the diet of snow leopard. However, these intraguild predation events accounted for only 1.89% of the diet composition of apex carnivores. We suggest that the rarity of these observations may be influenced by various factors and does not necessarily provide sufficient evidence of competition and spatial overlap. Therefore, further data collection and in-depth research are needed to better understand this phenomenon.

      Some minor comments: Figure 2 is really nice, while some abbreviations are missing in the caption of Table 2.

      Thank you for your feedback and positive comments on Figure 2. Unfortunately, we have removed Figure 2 from the manuscript. Due to the inclusion of prey abundance and human disturbance as occupancy covariates, these variables were derived solely from infrared camera trap data and did not encompass a comprehensive dataset across the entire national park. Therefore, we were unable to accurately spatially project for carnivore species occupancy probability in nature park.

      We apologize for the oversight that the abbreviations missing in the caption of Table 2. We have added the missing abbreviations to the caption of Table 2 as follow: “Abbreviations: Disrd-distance to roads, Ele-elevation, NDVI-normalized difference vegetation index, Rix- roughness index, hdis-human disturbance.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Satoshi Yamashita et al., investigate the physical mechanisms driving tissue bending using the cellular Potts Model, starting from a planar cellular monolayer. They argue that apical length-independent tension control alone cannot explain bending phenomena in the cellular Potts Model, contrasting with the vertex model. However, the evidence supporting this claim is incomplete. They conclude that an apical elastic term, with zero rest value (due to endocytosis/exocytosis), is necessary in constricting cells and that tissue bending can be enhanced by adding a supracellular myosin cable. Notably, a very high apical elastic constant promotes planar tissue configurations, opposing bending.

      Strengths:

      - The finding of the required mechanisms for tissue bending in the cellular Potts Model provides a more natural alternative for studying bending processes in situations with highly curved cells.

      - Despite viewing cellular delamination as an undesired outcome in this particular manuscript, the model's capability to naturally allow T1 events might prove useful for studying cell mechanics during out-of-plane extrusion.

      We thank the reviewer for the careful comments and insightful suggestions.

      Weaknesses:

      - The authors claim that the cellular Potts Model is unable to obtain the vertex model simulation results, but the lack of a substantial comparison undermines this assertion. No references are provided with vertex model simulations, employing similar setups and rules, and explaining tissue bending solely through an increase in a length-independent apical tension.

      Studies cited in a previous paragraph included the simulations employing the increased length-independent apical tension. For the sake of clarity, we added the citation to them as below.

      P4L174: “In contrast to the simulations in the preceding studies (Sherrard et al., 2010; Conte et al., 2012; Perez-Mockus et al., 2017; Pérez-González et al., 2021), our simulations could not reproduce the apical constriction”.

      We did not copy the parameters of the vertex models in the preceding studies because we also found that the apical, lateral, and basal surface tensions must be balanced otherwise the epithelial cell could not maintain the integrity (Figure 1—figure supplement 1), while the ratio was outside of the suitable range in the preceding studies.

      - The apparent disparity between the two models is attributed to straight versus curved cellular junctions, with cells with a curved lateral junction achieving lower minimum energies at steady-state. However, a critical discussion on the impact of T1 events, allowing cellular delamination, is absent. Note that some of the cited vertex model works do not allow T1 events while allowing curvature.

      We appreciate the comment and added it to the discussion as suggested.

      P12L301: “Even when the vertex model allowed the curved lateral surface, the model did not assume the cells to be rearranged and change neighbors, limiting the cell delamination (Pérez-González et al., 2021).”

      P12L311: “Note that the vertex model could also be extended to incorporate the curved edges and rearrangement of the cells by specifically programming them, and would reproduce the cell delamination. That is, we could find the importance of the balanced pressure because the cellular Potts model intrinscally included a high degree of freedom for the cell shape, the cell rearrangement, and the fluctuation.”

      - The suggested mechanism for inducing tissue bending in the cellular Potts Model, involving an apical elastic term, has been utilized in earlier studies, including a cited vertex model paper (Polyakov 2014). Consequently, the physical concept behind this implementation is not novel and warrants discussion.

      The reviewer is correct but Polyakov et al. assumed “that the cytoskeletal components lining the inside membrane surfaces of the cells provide these surfaces with springlike elastic properties” without justification. We assumed that the myosin activity generated not the elasticity but the contractility based on Labouesse et al. (2015), and expected that the surface elasticity corresponded with the membrane elasticity. Also, in the physical concept, we clarified how the contractility and the elasticity differently deformed the cells and tissue, and demonstrated why the elasticity was important for the apical constriction. We added it to the discussion as below.

      P12L316: “In the preceding studies, the apically localized myosin was assumed to generate either the contractile force (Sherrard et al., 2010; Conte et al., 2012; Perez-Mockus et al., 2017; Pérez-Vonzález et al., 2021) or the elastic force (Polyakov et al., 2014; Inoue et al., 2016; Nematbakhsh et al., 2020). However, the limited cell shape in the vertex model made them similar in terms of the energy change during the apical constriction, i.e., the effective force to decrease the apical surface. In this study, we showed that the contractile force and the elastic force differently deformed the cells and tissue, and demonstrated why and how the elasticity was important for the apical constriction.”

      - The absence of information on parameter values, initial condition creation, and boundary conditions in the manuscript hinders reproducibility. Additionally, the explanation for the chosen values and their unit conversion is lacking.

      We agree with the comment.

      For the initial configuration, we added an explanation to Tissue deformation by increased apical contractility with cellular Potts model section in the Results as below.

      P4L170: “A simulation started from a flat monolayer of cells beneath the apical ECM, and was continued until resulting deformation of cells and tissue could be evaluated for success of failure of reproducing the apical constriction.”

      For the parameter values we added a section “Parameters for the simulations” in the Methods.

      For the parameters unit conversion, we did not measure the surface tension and cell pressure in an actual tissue and thus could not compare the parameters to the actual forces. Instead, we varied the parameters and demonstrated that the apical constriction was reproduced with the wide range of the parameter values. We added it to the discussion as below.

      P12L310: “It succeeded with a wide range of parameter values, indicating a robustness of the model.”

      Reviewer #2 (Public Review):

      Summary:

      In their work, the authors study local mechanics in an invaginating epithelial tissue. The mostly computational work relies on the Cellular Potts model. The main result shows that an increased apical "contractility" is not sufficient to properly drive apical constriction and subsequent tissue invagination. The authors propose an alternative model, where they consider an alternative driver, namely the "apical surface elasticity".

      Strengths:

      It is surprising that despite the fact that apical constriction and tissue invagination are probably most studied processes in tissue morphogenesis, the underlying physical mechanisms are still not entirely understood. This work supports this notion by showing that simply increasing apical tension is perhaps not sufficient to locally constrict and invaginate a tissue.

      We thank the reviewer for recognizing the importance and novelty of our work.

      Weaknesses:

      The findings and claims in the manuscript are only partially supported. With the computational methodology for studying tissue mechanics being so well developed in the field, the authors could probably have done a more thorough job of supporting the main findings of their work.

      We thank the reviewer for the careful assessment and suggestions. However our simulation was computationally expensive, modeling the epithelium in an analytically calculable expression requires a lot of work, and it is beyond the scope of the present study.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Reference line 648: Correct the author's name (Pérez-González).

      We thank the reviewer and corrected the reference.

      (2) "Pale" colors are challenging to discern.

      We updated the figures.

      (3) Figure 1j: What does the yellow color in the cellular junction represent?

      We used the apical lateral site colored yellow in Fig. 1e-f’ to simulate the effect of the adherens junction. We updated the figure legend.

      (4) Figure 2c - left: Why is there a red apical junction?

      Our simulation model marked the apical junction in the initial configuration and updated the marking based on connectedness to surrounding other site marked as apical in the same cell. But when a cell was once delaminated and lost its apical junction, any surface site not adjacent to other epithelial cells were marked as basal junction because they were not adjacent to the apical junction.

      We added it to Cellular Potts model with partial surface elasticity section in the Methods as below.

      P17L430: “To simulate the differential phyisical properties of the apical, lateral, and basal surfaces, the subcellular locations are marked automatically, and the marking is updated during the simulation. In each cell, sites adjacent to different cells but not to the medium are marked as lateral.

      At the initial configuration, sites adjacent to the apical ECM are marked as apical, and during the simulation, sites adjacent to medium and other apical sites in the same cell are marked as apical.

      Rest of sites which are adjacent to medium but not marked as apical are marked as basal.

      Therefore, once a cell is delaminated and loses its apical surface, afterwards all sites in the cell adjacent to the medium are marked as basal even if it is adjacent to the apical ECM or the outer body fluid.”

      (5) Figure 4a: The snapshots are not in a steady state but in the middle of deformation. Is the time the same for all snapshots? The motivation to change P_0a is related to endocytosis. However, this could be achieved by decreasing P_0a to a non-zero value. Here, in the more drastic limit, the depth (a measure of bending) is very slight, approximately half of a cell size. What physically limits further invagination? Is it the number of cells or the range of parameters under study?

      The time length was the same for simulations in each figure, and we add it to Parameters for the simulations section in Method as below.

      P18L466: “In each figure, snapshots of the simulations show deformation by the same time length unless specified.”

      For P_0a, the reviewer is correct and the iterated ratcheting may decrease P_0a step by step instead of making it 0 immediately. Still, with P_a0 >0, the energy function and its derivative are both increasing with respect to the apical width as long as P_a > P_a0, and thus the apical shrinkage would be synchronized, even though the deformation would be smaller. We also run simulations by decreasing P_0a to 0.6 times the initial P_a, and observed smaller deformation as expected. On the other hand, the non-zero P_0a made the invagination deeper when it was combined with the effect of surrounding supracellular myosin cable, maybe due to a resistance of the apical surface against compression. One of the novel and important finding in this study is the synergetic effect of the elasticity-based apical constriction and the surrounding supracellular myosin cable. To demonstrate that the deep invagination was not due to the apical surface resistance against the compression, we showed the simulations with P_a0 = 0.

      For the conditions for further invagination, it may include the number of cells, a ratio between the cell height and width (Figure 5—figure supplement 1), interaction with ECM (Figure 5—figure supplement 2), etc. For the parameter, there might be an upper limit (Figure 4). We did not test the number of cells because of its computational cost. Among the conditions we tested, we found the planar compression by surrounding supracellular myosin the most influential rather than the mechanical property of apically constricting cells themselves.

      How each condition and parameter contributes to the invagination shall be studied in future. We added it to the conclusion as below.

      P15L395: “The depth, curvature, and speed of the invagination might be influenced by the cell shape, configuration, and parameters, and how each condition contributes to the invagination shall be studied in future.”

      (6) Figure 6b: What does the cell-surface color represent? If the idea was to represent junction tension, it would be clearer to color the junctions only.

      The junction tension may vary differently in different situations. For example, T1 transition is accompanied by enriched myosin along a shrinking cell-cell junction, and the junction bears higher tension, but other junctions of the same cell do not and thus the cell does not decrease its apical surface. In chick embryo neural tube closure, the junction tension is also polarized, and the cells shrink the apical surface along medial-lateral axis, driving the apical constriction (Nishimura et al., 2012, doi:10.1016/j.cell.2012.04.021). In the case of Drosophila embryo tracheal invagination, the cells shrank their apical surface isotropically (Figure 6a). If the junction tension was responsible for the shrinkage, all junctions of the cell must bear higher tension. Based on this assumption, the junction tension was averaged in each cell to check if the tracheal cells bore the higher average tension than surrounding cells.

      We also plotted stress tensor and calculated nematic order to check if there was radial or encircling tension alignment in the tracheal pit, but there was not.

      (7) Figure 6c: What does the junction color represent here?

      The junction color represent the relative junctional tension. We updated the figure legend.

      (8) Figure 6d-e: It is challenging to understand which error bar corresponds to each dataset.

      We updated the figure.

      (9) What is the definition of relative pressure?

      The geometrical tension inference method assumes that the tissue is in mechanical equilibrium and a sum of the junctional tensions and cell pressures pulling/pushing a vertex (tricellular junction) is 0. Therefore the calculated tensions and pressures are proportional to each other but not absolute values. We added it to the 3D Bayesian tension inference section of Methods as below.

      P24L567: “Since Equation 13 and Equation 14 only evaluate the balance among the forces, it cannot estimate an absolute value but a relative value of the tension and pressure.”

      (10) In the main text, it is mentioned that a large Es (apical elastic constant) leads to flat surfaces, avoiding bending, but the abstract says "strong apical surface tension," which, according to the rest of the text, would seem to be J_apical. Clarification is needed.

      The surface tension includes both of the surface contractility and the surface elasticity.

      We added it to Extended cellular Potts model to simulate epithelial deformations section in the Results as below.

      P3L122: “Note that in some studies the tension and the contractility are considered as equivalent, but they are distinguished in this study.”

      and

      P4L151: “The energy H included only the terms of the contact energy (Equation 1) and the area constraint (Equation 5), but the surface elasticity (Equation 2) nor (Equation 3) was not included, and thus the surface tension was determined by the contact energy.”

      Reviewer #2 (Recommendations For The Authors):

      (1) The model used is rather specific and it is rather confusing whether the issue is in the methodology or fundamental biophysics of apical constriction. For instance, one of the main narratives of the manuscript is that the Cellular Potts model better predicts apical constriction and tissue invagination than the vertex model. As I understand it, and as the authors state in p7 (line 210), "the difference between the vertex model and the cellular Potts model results was due to the straight lateral surface...". I assume that if apical constriction and tissue invagination were modelled with a vertex model with curved edges, while also allowing for cell rearrangements out of the tissue plane (some sort of epithelium-to-mesenchyme transition), the vertex model would yield exactly the same results as in the authors' cellular Potts model. If my understanding is correct, the authors should change the narrative of their manuscript and focus more on the comparison of a model with flat vs. curved edges, with "contractility" vs. "surface elasticity", with patterned apical contractility vs. non-patterned contractility (see my comment in point 2 below)... and not on comparison between CPM and VM.

      We appreciate the comments. The reviewers is correct that the vertex model can include the curved edges and the cell rearrangement, and it would reproduce the result of our cellular Potts model simulations. For the cellular Potts model, there was no need to specifically design how much the cell surface could be curved in a large arc, zigzag, or other shape, and that enabled us to find the conditions of delamination and bending.

      We added it to the discussion as below.

      P12L311: “Note that the vertex model could also be extended to incorporate the curved edges and rearrangement of the cells by specifically programming them, and would reproduce the cell delamination. That is, we could find the importance of the balanced pressure because the cellular Pott’s model intrinscally included a high degree of freedom for the cell shape, the cell rearrangement, and the fluctuation.”

      (2) About physics... and I think this is a really important point: one of the observations in the model was that in the "contractilty" model, only "edge cells" shrank its apical surface, while inner cells remained quadrilateral. Related to this, the authors say that one of the requirements for proper apical constriction is a mechanism that "simulataneously shrinks the apical surface among cells in a cluster". What would happen if the authors assumed patterned contractility, meaning that cells in the center of the cluster would be most apically-contractile, while those further away from the center, would not be contractile? Features like this were investigated in studies of ventral-furrow invagination [see, for instance, Spahn and Reuater PLOS ONE (2013) and Rauzi et al. Nat Commun (2015)-Fig. S13d].

      We thank the reviewer for the critical comment, and ran simulations with the patterned apical contractility. The apical contractility following a gradient of parabola shape succeeded in the simultaneous apical shrinkage. However, it was weak against fluctuations and the cells were delaminated by chance.

      We added it to Apical constriction by modified apical elasticity section in the result as below.

      P9L252: “We also tested another model for the simultaneous apical shrinkage, a gradient contractility model (Spahn and Reuter, 2013; Rauzi et al., 2015). If the inner cells bear higher apical surface contractility than the edge cells, that inner cells may shrink their apical surface. To synchronize the apical shrinkage, the apical contractility must follow a parabola shape gradient. Even though the gradient contractility enabled the cells to shrink the apical surface simultaneously, often some of the cells shrank faster than neighbors and were delaminated by chance (Figure 4—figure Supplement 1).”

      (3) The quality of the figures should be improved. Especially, Figure 3 and the related explanation in lines 183-192. This explanation is way too complicated and it is not clear what Figure 3c shows. For instance: if the arrows are indeed showing contractile forces (as written in the caption) then they are not illustrated correctly, but should be tangential to the cell membrane.

      We updated the figure.

      (4) The figures mostly show steady-state cross-sections from simulations. I miss a more dedicated study with model parameters being varied through wider ranges and some phase diagrams being shown etc. Also, some results could probably be supported by analytic calculations. For instance, the condition for stability (discussed in p4 lines 145-151), cells' preferred aspect ratio, cells' preferred "wedgeness" i.e., local curvature etc... I am sure some of these, if not all, could be calculated analytically and then these analytic results could help to interpret the phase diagrams.

      For the simulation results shown in the figures, we were not sure if the simulations results were in a steady state or not. We added it to Tissue deformation by increased apical contractility simulated with cellular Potts model section in the Results as below.

      P4L170: “A simulation started from a flat monolayer of cells beneath the apical ECM, and was continued until resulting deformation of cells and tissue could be evaluated for success of failure of reproducing the apical constriction.”

      For the ranges of parameters, we ran the simulation in wider range and showed results from sub-range. We added it to Parameters for the simulations section in Methods as below.

      P18L464: “The parameters were varied in a range, and the figures showed simulations with parameter values within a sub-range so that the results showed both success and failure in a development of interest.”

      For the analytical calculations, the Figure 3f shows a kind of phase diagram for shapes of a single cell. To clarify this, we rephrased “map of cell shapes” to “Phase diagram of cell shapes” in the figure legend, and added an explanation to the Results section as below.

      P6L207: “For the analysis of the cell shape in motion, we plotted a phase diagram for shapes of a single cell (Figure 3f).”

      For the analytical evaluation of the cellular Potts model simulations, there was a study doing similar but it concerned a cell of isotropic shape in a steady state (Magno et al., 2015, doi:10.1186/s13628-015-0022-x). Also, our simulation framework is computationally expensive and we could not vary the parameters in fine resolution. Therefore we could not include it in this study.

      (5) I am not sure about the terminology "contractility" vs. "elasticity". In Farhadifar et al. (2007) "contractility" is described by a squared apical-perimeter energy term, while in this work, the authors describe it by a surface-energy-like term.

      In general, elasticity is the ability of a material to resist against deformation and to return to its original shape/size. In Farhadifar et al. (2007), the cell apical area was assigned the area elasticity in this meaning. For the contractility, it is the ability to decrease the size/length, and thus it could be either expressed in linear or quadratic dependent on the modeling. In this study, we assumed cell-cell/cell-ECM adhesion and myosin activity to generate the surface contractility, and thus employed the linear expression. In Farhadifar et al. (2007) it was described as a line tension.

      We used the terms surface ‘elasticity’ and ‘contractility’ as distinctive elements composing the surface ‘tension’. We added it Extended cellular Potts model to simulate epithelial deformations section in the Results as below.

      P3L122: “Note that in some studies the tension and the contractility are considered as equivalent, but they are distinguished in this study.”

      (6) It is not entirely clear what are apical, basal, lateral, and cell "perimeters". This is a 2D model, so I assume all P-s are in fact interface lengths. In either case, this needs to be explained more clearly.

      We updated the explanation in Extended cellular Potts model to simulate epithelial deformations section in the Results as below.

      P3L111: “The cell's perimeter was partitioned automatically based on adjacency with other cells, and it was marked as apical, lateral, basal. Also, apico-lateral sites were marked as a location for the adherens junction. This cell representation also cast the vertical section of the cell. Therefore an area of the cell corresponded with a body of the cell, and a perimeter of the cell corresponded with the cell surface. Likewise the apical, lateral, and basal parts of the perimeter corresponded with the apical surface, cell-cell interface, and the basal surface of the cell respectively.”

      (7) The term H_{mc} is not clear at all. Why is this term called potential energy? What is U(i)? What is the exact biophysical interpretation of this term in 2D vs 3D?

      In 3D, the supracellular myosin cable is formed encircling the cells deformed by the apical constriction. Shrinking of the supracellular myosin cable makes the circle small, and it moves the cable toward the center of the circle. To simulate this motion of the supracellular myosin cable in the 2D cross section, we assigned the force exerted on the adherens junction of the boundary cells pulling toward the center, and because the force is relative to the position of the adherens junction and the center, it was expressed by the potential energy in the simulation.

      We updated Extended cellular Potts model to simulate epithelial deformation section in Results and Cellular Potts model with potential energy section in Methods as below.

      P4L140: “The potential energy was defined by a scalar field which made a horizontal gradient decreasing toward the center,”

      and

      P17L449: “In 3D, tension on a circular actomyosin cable would shrink the circle, and the shrinkage would pull the cable toward the center of the circle. In 2D cross section, the cable is pulled horizontally toward the middle line.”

      (8) Highten->increased

      We updated the text.

      (9) "It seems natural to consider that the myosin generates a force proportional to its density but not to the surface width nor the strain". This sentence should be supported by a reference. Also, if the force is proportional to myosin density, then it must depend on surface width, since density, I assume, is the number of motors per area.

      For the myosin density and generated force, in all preceding studies cited in this manuscript and others in the extent of our knowledge, the myosin and actin filaments density visualized by staining or labeling had been assumed relevant to the generated contractility without references. Therefore it might be well established and shared assumption.

      For the independence from the surface width and strain, the review comment is correct, but the results would be the same. If we presumed that the number of motors on the apical surface was constant in a cell during the apical constriction, then the density would increase when the apical surface was contracted, and thus it would make the apical contractility more unbalanced and promote the delamination. We added it to the results and discussion as below.

      P4L166: “For the sake of simplicity, we ignored an effect of the constriction on the apical myosin density, and discussed it later.”

      P14L328: “In our model, for the sake of simplicity, we ignored an effect of the constriction on the apical myosin density. If we presumed that the apical myosin would be condensed by the shrinkage of the apical surface, it would increase the apical tension in the shrinking cell and is expected to promote the cell delamination further. Therefore it would not change the results.”

      Reviewing Editor (Recommendations For The Authors):

      Please note also the following excerpts from discussions amongst the reviewers and the Reviewing Editor:

      Regarding Reviewer #2's Point 2:

      I believe the authors have assumed patterned contractility in their simulations, and this is shown by the "pale blue" cell color (see also lines 162-163). However, as Reviewer #2 points out in their point 2), the pale colors are very hard to see and therefore easy to miss.

      We updated figure coloring and also add the gradient pattern of contractility.

      Regarding Reviewer #2's point 5:

      It is indeed unconventional to call the "J" terms contractility, they are usually called contact energy or adhesive energy.

      In this study, we included both of the contact energy of cell-cell/cell-ECM adhesion and actomyosin activity in the surface contractility, and used the “J” term as it was conventional in the cellular Potts model.

      On the other hand, due to the parameters chosen for J_apical and J_basal in the pale blue cells, the apical membrane area will tend to shrink and the basal membrane will tend to enlarge. Because the lateral membrane energy J_lateral is constant among all cells (I think?), this will effectively drive cells to apically contract in the center.

      That expectation was an initial motivation of our study, but we found that the differential J alone could not drive the cells to apically contract in the center.

      I agree that extra clarification by the authors would be very helpful here.

      Reviewer #2:

      Regarding the patterned contractility: indeed, I missed this point (the pale blue region is really poorly visible).

      Nevertheless, it seems that contractility in the authors' model changes in a step-like fashion.

      [...] There may be important differences between furrowing under step-like patterning profile versus smooth "bell-like" patterning (see Supplementary Figure 13 in Rauzi et al. Nat Commun 2015). In particular, in the case of a step-like patterning, [there are] constrictions of side cells (similar to what the authors in this manuscript report), whereas in the bell-like patterning, [...] such side constrictions [do not occur].

      As replied to the reviewer #2 comment (2), we added the simulations with gradient-pattern contractility.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Main points:

      (1) We have added data for fructose in Fig. 1

      (2) We have added sta1s1cs (red stars and NS) comparing Tp between fed and refed flies. 

      (3) We have modified the figure for each point to the opened small circles.

      (4) We have moved the data from Fig. S3 to Fig. 2 and 3.

      (5) We have added the schema1c diagrams depic1ng behavioral assay in Fig. S1.

      (6) We have added heatmaps for WT and Gr64f-Gal4>UAS-CsChrimson flies in Fig. S2.

      (7) We have added Orco1 mutant data in Fig. S4.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This paper presents valuable findings that gustation and feeding state influence the preferred environmental temperature preference in flies. Interestingly, the authors showed that by refeeding starved animals with the non-nutritive sugar sucralose, they are able to tune their preference towards a higher temperature in addition to nutrient-dependent warm preference. The authors show that temperature-sensing and sweet-sensing gustatory neurons (SGNs) are involved in the former but not the latter. In addition, their data indicate that pep3dergic signals involved in internal state and clock genes are required for taste-dependent warm preference behavior.

      The authors made an analogy of their results to the cephalic phase response (CPR) in mammals where the thought, sight, and taste of food prepare the animal for the consumption of food and nutrients. They further linked this behavior to core regulatory genes and peptides controlling hunger and sleep in flies having homologues in mammals. These valuable behavioral results can be further inves3gated in flies with the advantage of being able to dissect the neural circuitry underlying CPR and nutrient homeostasis.

      Strengths: 

      (1) The authors convincingly showed that tasting is sufficient to drive warm temperature preference behavior in starved flies and that it is independent of nutrient-driven warm preference. 

      (2) By using the genetic manipulation of key internal sensors and genes controlling internal feeding and sleep states such as DH44 neurons and the per genes for example, the authors linked gustation and temperature preference behavior control to the internal state of the animal. 

      Weaknesses: 

      (1) The title is somewhat misleading, as the term homeostatic temperature control linked to gustation only applies to starved flies. 

      We agree with the reviewer's suggestion and have changed the title to "Taste triggers a homeostatic temperature control in hungry flies".

      (2) The authors used a temperature preference assay and refeeding for 5 minutes, 10 minutes, and 1 hour.

      Experimentally, it makes a difference if the flies are tested immediately after 10 minutes or at the same 3me point as flies allowed to feed for 1 hour. Is 10 minutes enough to change the internal state in a nutrition-dependent manner? Some of the authors' data hint at it (e.g. refeeding with fly food for 10 minutes), but it might be relevant to feed for 5/10 minutes and wait for 55/50min to do the assays at comparable time points. 

      Thank you for your suggestions. The temperature preference behavioral test itself takes 30 minutes from the time the flies are placed in the apparatus until the final choice is made. This means that after the hungry flies have been refed for 5 minutes, they will determine their preferred temperature within 35 minutes. It has been shown that insulin levels peak at 10 minutes and gradually decline (Tsao, et al., PLoS Genetics 2023). However, it is unclear how subtle insulin levels affect behavior and how quickly the flies are able to consume food. These factors may contribute to temperature preference in flies. Therefore, to minimize "extraneous" effects, we decided to test the behavioral assay immediately after they had eaten the food. We have noted in the material and method section that why we chose the condition based on behavior duration and insulin effect. 

      (3) A figure depicting the temperature preference assay in Figure 1 would help illustrate the experimental approach. It is also not clear why Figure 1E is shown instead of full statistics on the individual panels shown above (the data is the same). 

      We have revised Figure 1A and added statistics in Figure 1BCD. We also added a figure depicting the temperature preference assay (Fig. S1).

      (4) The authors state that feeding rate and amount were not changed with sucralose and glucose. However, the FLIC assay they employed does not measure consumption, so this statement is not correct, and it is unclear if the intake of sucralose and glucose is indeed comparable. This limits some of the conclusions. 

      We agree and removed “amount” and have revised the MS. 

      (5) The authors make a distinction between taste-induced and nutrient-induced warm preference. Yet the statistics in most figures only show the significance between the starved and refed flies, not the fed controls. As the recovery is in many cases incomplete and used as a distinction of nutritive vs nonnutritive signals (see Figure 1E) it will be important to also show these additional statistics to allow conclusions about how complete the recovery is. 

      We agree with the comments and have revised the MS and figures. 

      (6) The starvation period used is ranging from 1 to 3 days, as in some cases no effect was seen upon 1 day of starvation (e.g. with clock genes or temperature sensing neurons). While the authors do provide a comparison between 18-21 and 26-29 hours old flies in Figure S1, a comparison for 42-49 and 66-69 hours of starvation is missing. This also limits the conclusion as the "state" of the animal is likely quite different after 1 day vs. 3 days of starvation and, as stated by the authors, many flies die under these conditions.  

      We mainly used 2 overnights of starvation.  Some flies (e.g. Ilp6 mutants) were completely healthy even after 2 overnights of starvation, we had to starve them for 3 overnights. For example, Ilp6 mutants needed 3 overnights of starvation to show a significant difference Tp between fed and starved flies. On the other hand, some flies (e.g. w1118 control flies) were very sick after 2 overnights of starvation, we had to starve them for one overnight. Therefore, the starvation conditions which we used for this manuscript are from 1- 3-overnights.

      First, we confirmed the starvation time by focusing on Tp which resulted in a sta1s1cally significant Tp difference between fed and starved flies; as men1oned above, flies prefer lower temperatures when starvation is prolonged (Umezaki et al., Current Biology 2018). Therefore, if Tp was not statistically different between fed and starved flies, we extended the starva1on 1me from 1 to 3 overnights. Importantly, we show in Fig. S3 that the dura1on of starvation did not affect the recovery effect. Furthermore, since control flies do not survive 42-49 or 66-69 hours of starvation, we can not test the reviewer's suggestion. We have carefully documented the conditions in the Material and method and figure legends.

      (7) In Figure 2, glucose-induced refeeding was not tested in Gr mutants or silenced animals, which would hint at post-ingestive recovery mechanisms related to nutritional intake. This is only shown later (in Figure S3) but I think it would be more fitting to address this point here. The data presented in Figure S3 regarding the taste-evoked vs nutrient-dependent warm preference is quite important while in some parts preliminary. It would nonetheless be justified to put this data in the main figures. However, some of the conclusions here are not fully supported, in part due to different and low n numbers, which due to the inherent variability of the behavior do not allow statistically sound conclusions. The authors claim that sweet GRNs are only involved in taste-induced warm preference, however, glucose is also nutritive but, in several cases, does not rescue warm preference at all upon removal of GRN function (see Figures S3A-C). This indicates that the Gal4 lines and also the involved GRs are potentially expressed in tissues/neurons required for internal nutrient sensing. 

      Thank you for your suggestion. We have added Figure S3ABC (glucose refeeding using Gr mutants and silenced animals) to Figure 2. There is no low N number since we tested > 5 times, i.e. >100 flies were tested. Tp may have a variation probably due to the effect of starvation on their temperature preference. 

      We did not mention that "The authors claim that sweet GRNs are only involved in taste-induced warm preference...". However, our wri1ng may not be clear enough. We agree that "...GRs may be expressed in tissues/neurons required for internal nutrient sensing. ..."  We have rewritten and revised the section.  

      (8) In Figure 4, fly food and glucose refeeding do not fully recover temperature preference after refeeding. With the statistical comparison to the fed control missing, this result is not consistent with the statement made in line 252. I feel this is an important point to distinguish between state-dependent and taste/nutrition-dependent changes.  

      We inserted the statistics and compared between Fed and other conditions. 

      (9) The conclusion that clock genes are required for taste-evoked warm preference is limited by the observation that they ingest less sucralose. In addition, the FLIC assay does not allow conclusions about the feeding amount, only the number of food interactions. Therefore, I think these results do not allow clear-cut conclusions about the impact of clock genes in this assay.  

      We agree and remove “amount” and have revised the MS. The per01 mutants ate (touched) sucralose more often than glucose. On the other hand, 1m01 mutants ate glucose more often than sucralose (Figure S6BC). However, these mutants s1ll showed a similar TP pattern for sucralose and glucose refeeding (Fig. 5CD). The results suggest that the 1m01 flies eat enough amount of sucralose over glucose that their food intake does not affect the TP behavioral phenotype. We have rewritten and revised the section.

      (10) CPR is known to be influenced by taste, thought, smell, and sight of food. As the discussion focused extensively on the CPR link to flies it would be interesting to find out whether the smell and sight of food also influence temperature preference behavior in animals with different feeding states.  

      We have added the data using Olfactory receptor co-receptor (Orco1) mutant, which lack olfaction, in Fig. S4. They failed to show the taste-evoked warm preference, but exhibited the nutrient-induced warm preference. Therefore, the data suggest that olfactory detection is also involved in taste-evoked warm preference. On the other hand, "seeing food" is probably more complicated, since light dramatically affects temperature preference behavior and the circadian clock that regulates temperature preference rhythms. Therefore, it will not be unlikely to draw a solid conclusion from the short set of experiments. We will address this issue in the next study.

      (11) In the discussion in line 410ff the authors claim that "internal state is more likely to be associated with taste-evoked warm preference than nutrient-induced warm preference." This statement is not clear to me, as neuropeptides are involved in mediating internal state signals, both in the brain itself as well as from gut to brain. Thus, neuropeptidergic signals are also involved in nutrient-dependent state changes, the authors might just not have identified the peptides involved here. The global and developmental removal of these signals also limits the conclusions that can be drawn from the experiments, as many of these signals affect different states, circuits, and developmental progression.  

      We agree with the comments. We have removed the sentences and revised the MS.  

      Reviewer #2 (Public Review): 

      Animals constantly adjust their behavior and physiology based on internal states. Hungry animals, desperate for food, exhibit physiological changes immediately upon sensing, smelling, or chewing food, known as the cephalic phase response (CPR), involving processes like increased saliva and gastrointestinal secretions. While starvation lowers body temperature, the mechanisms underlying how the sensation of food without nutrients induces behavioral responses remain unclear. Hunger stress induces changes in both behavior and physiological responses, which in flies (or at least in Drosophila melanogaster) leads to a preference for lower temperatures, analogous to the hunger-driven lower body temperature observed in mammals. In this manuscript, the authors have used Drosophila melanogaster to investigate the issue of whether taste cues can robustly trigger behavioral recovery of temperature preference in starving animals. The authors find that food detection triggers a warm preference in flies. Starved flies recover their temperature preference after food intake, with a distinction between partial and full recovery based on the duration of refeeding. Sucralose, an artificial sweetener, induces a warm preference, suggesting the importance of food-sensing cues. The paper compares the effects of sucralose and glucose refeeding, indicating that both taste cues and nutrients contribute to temperature preference recovery. The authors show that sweet gustatory receptors (Grs) and sweet GRNs (Gustatory Receptor Neurons) play a crucial role in taste-evoked warm preference. Optogenetic experiments with CsChrimson support the idea that the excitation of sweet GRNs leads to a warm preference. The authors then examine the internal state's influence on taste-evoked warm preference, focusing on neuropeptide F (NPF) and small neuropeptide F (sNPF), analogous to mammalian neuropeptide Y. Mutations in NPF and sNPF result in a failure to exhibit taste-evoked warm preference, emphasizing their role in this process. However, these neuropeptides appear not to be critical for nutrient-induced warm preference, as indicated by increased temperature preference during glucose and fly food refeeding in mutant flies. The authors also explore the role of hunger-related factors in regula3ng taste-evoked warm preference. Hunger signals, including diuretic hormone (DH44) and adipokinetic hormone (AKH) neurons, are found to be essential for taste-evoked warm preference but not for nutrient-induced warm preference. Additionally, insulin-like peptides 6 (Ilp6) and Unpaired3 (Upd3), related to nutritional stress, are identified as crucial for taste-evoked warm preference. The investigation then extends into circadian rhythms, revealing that taste-evoked warm preference does not align with the feeding rhythm. While flies exhibit a rhythmic feeding pattern, taste-evoked warm preference occurs consistently, suggesting a lack of parallel coordination. Clock genes, crucial for circadian rhythms, are found to be necessary for taste-evoked warm preference but not for nutrient-induced warm preference. 

      Strengths: 

      A well-written and interesting study, investigating an intriguing issue. The claims, none of which to the best of my knowledge controversial, are backed by a substantial number of experiments. 

      Weakness: 

      The experimental setup used and the procedures for assessing the temperature preferences of flies are rather sparingly described. Additional details and data presentation would enhance the clarity and replicability of the study. I kindly request the authors to consider the following points: 

      i) A schematic drawing or diagram illustrating the experimental setup for the temperature preference assay would greatly aid readers in understanding the spatial arrangement of the apparatus, temperature points, and the positioning of flies during the assay. The drawing should also be accompanied by specific details about the setup (dimensions, material, etc). 

      Thank you for your suggestions. We have added the schematic drawing in Fig. S1.

      ii) It would be beneficial to include a visual representation of the distribution of flies within the temperature gradient on the apparatus. A graphical representation, such as a heatmaps or histograms, showing the percentage of flies within each one-degree temperature bin, would offer insights into the preferences and behaviors of the flies during the assay. In addition to the detailed description of the assay and data analysis, the inclusion of actual data plots, especially for key findings or representative trials, would provide readers with a more direct visualization of the experimental outcomes. These additions will not only enhance the clarity of the presented information but also provide the reader with a more comprehensive understanding of the experimental setup and results. I appreciate the authors' attention to these points and look forward to the potential inclusion of these elements in the revised manuscript. 

      Thank you for the advice. We have added the heat map for WT and Gr64fGal4>CsChrimson data in Fig. S2. 

      Reviewer #3 (Public Review): 

      Summary: 

      The manuscript by Yujiro Umezaki and colleagues aims to describe how taste stimuli influence temperature preference in Drosophila. Under starvation flies display a strong preference for cooler temperatures than under fed conditions that can be reversed by refeeding, demonstrating the strong impact of metabolism on temperature preference. In their present study, Umezaki and colleagues observed that such changes in temperature preference are not solely triggered by the metabolic state of the animal but that gustatory circuits and peptidergic signalling play a pivotal role in gustation-evoked alteration in temperature preference. 

      The study of Umezaki is definitively interesting and the findings in this manuscript will be of interest to a broad readership. 

      Strengths: 

      The authors demonstrate interesting new data on how taste input can influence temperature preference during starvation. They propose how gustatory pathways may work together with thermosensitive neurons, peptidergic neurons and finally try to bridge the gap between these neurons and clock genes. The study is very interesting and the data for each experiment alone are very convincing. 

      Weaknesses: 

      In my opinion, the authors have opened many new questions but did not fully answer the initial question - how do taste-sensing neurons influence temperature preferences? What are the mechanisms underlying this observation? Instead of jumping from gustatory neurons to thermosensitive neurons to peptidergic neurons to clock genes, the authors should have stayed within the one question they were asking at the beginning. How does sugar sensing influence the physiology of thermos-sensation in order to change temperature preference? Before addressing all the following question of the manuscript the authors should first directly decipher the neuronal interplay between these two types of neurons. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      Figure S3D is cited before S2, so please rearrange the numbering.

      Thank you. We have changed the numbering.

      I would also suggest a different color to visualize the data points in Figure S3, as some are barely visible on the dark bars (e.g. on a dark green background). 

      We have revised the figures. The data points were changed to smaller opened circles. 

      Reviewer #2 (Recommendations For The Authors): 

      *Please, expand on the experimental procedure, and describe the assay in detail. 

      We have added a scheme for the assay in Fig. S1 and also have revised the manuscript and figures.

      *Show the distribution of the gradient data that the preference values are based upon. Not necessarily for all, but for select key experiments. Heatmaps for each replicate (stacked on top of each other) would be a nice way of showing this. Simple histograms would of course work as well. 

      We have added heatmaps of selected key experiments that were added in Fig. S2. We have revised the manuscript and figures, correspondingly.

      Reviewer #3 (Recommendations For The Authors  

      The manuscript by Yujiro Umezaki and colleagues aims at describing how taste stimuli influence temperature preference in Drosophila. Under starvation, flies display a strong preference for cooler temperatures than under-fed conditions that can be reversed by refeeding, demonstrating the strong impact of metabolism on temperature preference. In their present study, Umezaki and colleagues observed that such changes in temperature preference are not solely triggered by the metabolic state of the animal but that gustatory circuits play a pivotal role in temperature preference. The study of Umezaki is definitively interesting and the findings in this manuscript will be of interest to a broad readership. However, I would like to draw the authors' attention to some points of concern: 

      The title to me sounds somehow inadequate. The definition of homeostasis (Cambridge Dictionary) is as follows: "the ability or tendency of a living organism, cell, or group to keep the conditions INSIDE it the same despite any changes in the conditions around it, or this state of internal balance". What do the authors mean by homeostatic temperature control? Reading the title not knowing much about poikilotherm insects I would understand that the authors claim that Drosophila can indeed keep a temperature homeostasis as mammals do. As Drosophila is not a homoiotherm animal and thus cannot keep its body temperature stable the title should be amended.  

      Homeostasis means a state of balance between all the body systems necessary for the body to survive and function properly. Drosophila are ectotherms, so the source of temperature comes from the environment, and their body temperature is very similar to that of their environment. However, the flies' temperature regulation is not simply a passive response to temperature. Instead, they actively seek a temperature based on their internal state. We have shown that the preferred temperature increases during the day and decreases during the night, showing a circadian rhythm of temperature preference (TPR). Because their environmental temperature is very close to their body temperature, TPR gives rise to body temperature rhythms (BTR). We have shown that TPR is similar to BTR in mammals. (Kaneko et al., Current Biology 2012 and Goda et al., JBR 2023). Similarly, we showed that the hungry flies choose a lower temperature so that the body temperature is also lower. Therefore, our data suggest that the fly maintains its homeostasis by using the environmental temperature to adjust its body temperature to an appropriate temperature depending on its internal state. Therefore, I would like to keep the title as "Taste triggers a homeostatic temperature control in hungry flies" We have added more explana1on in the Introduc1on and Discussion.

      Accordingly, the authors compare the preference of flies to cooler temperatures to the reduced body temperature of mammals (Lines 64 - 65). However, according to the cited literature the reduced body temperature in starved rats is discussed to reduce metabolic heat production (Sakurada et al., 2000). The authors should more rigorously give a short summary of the findings in the cited papers and the original interpretation to help the reader not get confused.

      In flies, it has been shown that a lower temperature means a lower metabolic rate, and a higher temperature means a higher metabolic rate. Therefore, hungry flies choose a lower temperature where their metabolic rate is lower and they do not need as much heat.

      Similarly, in mammals, starvation causes a lower body temperature, hypothermia. Body temperature is controlled by the balance between heat loss and heat production. The starved mammals showed lower heat production. We have added this information to the introduction. 

      The authors show that 5 min fly food refeeding causes a par3al recovery of the naïve temperature preference of the flies (Figure 1B) and that feeding of sucralose par3ally rescues the preference whereas glucose rescues the preference similar to refeeding with fly food would do. As glucose is both sweet and metabolically valuable it would be clearer for the reader if the authors start with the fly food experiment and then show the glucose experiment to show that the altered temperature preference depends on the food component glucose. From there they can further argue that glucose is both sweet (hedonic value) and metabolically valuable. And to disentangle sweetness from metabolism one needs a sugar that is sweet but cannot be metabolized - sucralose. 

      Thank you for your advice. Since the data with sucralose is the one we want to highlight the most, we decided to present it in the order of sucralose, glucose, and fly food.

      In the sucralose experiment the authors omit the 5 min data point and only show the 10 min time point. As Figure 1F indicates that both Glucose and Sucralose elicit the same attractiveness in the flies and that sweetness influences the temperature preference, it is important that the authors show the 5 min temperature preference too to underline the effect of the sweet taste stimulus on the fly behavior independent from the caloric value. Further, the authors should demonstrate not only the cumulative touches but how much sucralose or glucose may already be consumed by the fly in the depicted time frames. 

      It is interesting to see how much sucralose or glucose the flies consume over the time frames shown. Although the cumula1ve exposure to sugar is ideally equivalent to the amount of sugar, we need a different way to actually measure the amount of sugar. We will now emphasize "cumulative touches" rather than "amount of sugar" in the text. In the next study, we will look at how much sucralose or glucose the fly has already consumed.

      Sucralose and Glucose have a similar molecular structure - it would be interesting to see how the sweet taste of a sugar with a different molecular structure like fructose and its receptor Gr43b (Myamato & Amrein 2014) may contribute to temperature preferences.  

      Sucralose and Glucose are not structurally similar. That said, we tested fructose refeeding anyway. The hungry flies showed a taste-evoked warm preference after fructose refeeding. We have added data in Figure 1E and F. The data suggest that sweet taste is more important than sugar structure. We also tested Gr43b>CsChrimson. However, the flies do not show the taste-evoked warm preference (data not shown). The data suggest that Gr43b is not the major receptor controlling taste-evoked warm preference. We have revised the manuscript.

      Both sugars appear similarly attractive to the flies (Figure 1F) - are water, sucralose, and glucose presented in a choice assay or are these individually in separate experiments? 

      Water, sucralose, and glucose were individually presented in separate experiments. We clarified it in the figure legend.

      Subsequently, the authors address the question of how sweet taste may influence temperature preferences in flies. To this end, the authors first employ gustatory receptor mutants for Gr5a, Gr64a, and Gr61a and demonstrate that sucralose feeding does not rescue temperature preference in the absence of sweet taste receptors. In an alternative approach, the authors do not use mutants but an expression of UAS:Kir in Gr64F neurons. Taking a closer look at the graph it appears that the Kir expressing flies have an increased (nearly 1{degree sign}C) temperature preference than the starved mutant flies. Is this preference change related to the mutation directly and what would be the result if Kir would be conditionally only expressed after development is completed, or is the observed temperature preference related to the Gr64f-Gal4 line? If the latter would be the case perhaps the authors may want to bring the flies to the same genetic background to allow for a more direct comparison of the temperature preferences. 

      The Gr64fGal4>Kir flies show a ~one degree higher preferred temperature under starvation compared to the mutants. However, the phenotype is similar to the controls, Gr64fGal4/+ flies, under starvation. Therefore, this phenotype is not due to either the mutation or the Kir effect. Most importantly, the Gr64fGal4>Kir flies failed to show a taste-evoked warm preference. Together with other mutant data, we concluded that sweet GRNs are required for taste-evoked warm preference.

      Overall, the figure legend for Figure 2 is very cryptic and should be more detailed.

      We have revised the figure legend for Figure 2. 

      To shed light on the mechanisms underlying the changes in temperature preferences through gustatory stimuli the authors next blocked heat and cold sensing neurons in fed and starved flies and found out that TrpA1 expressing anterior cells and R11F02-Gal4 expressing neurons both participate in sweetness-induced alteration of temperature preference in starved animals. At this point, it should be explicitly indicated in the figure that the flies need more than one overnight starva3on to display the behavior (Figure 3A). 

      We have revised the manuscript.

      The data provided by the authors indicate a kind of push-and-pull mechanism between heat and cold-sensing neurons under starvation that is somehow influenced by sweet taste sensing. Further, the authors demonstrate that TrpA1-as well as R11F02-Gal4 driven Chrimson activation is sufficient to partially rescue temperature preference under starvation. At this point is unclear why the authors use a tubGal80ts expression system but not for the TrpA1SH-Gal4 driven Chrimson. As the development itself and the conditions under which the animals were raised may have influence on the temperature preference it is important that both groups are equally raised if the authors want to directly compare with each other. 

      As we wrote in the Material and Method, the R11F02-Gal4>uas-CsChrimson flies died during the development. Therefore, we had to use tubGal80ts. On the other hand, the TrpA1-Gal4>CsChrimson flies can survive to adults. As we mentioned in MS, all flies were treated with ATR after they had fully developed into adults. This means that both TrpA1-Gal4 and R11F02-Gal4 expressing cells are ac1vated by red light via CsChrimson only in adult stages. We carefully revised the MS.

      It is a pity that the authors at this point have decided to not deepen the understanding of the circuitry between thermo-sensation and metabolic homeostasis but subsequently change the focus of their study to investigate how internal state influences taste-evoked warm preference in hungry flies. Using mutants for NPF and sNPF the authors demonstrate that both peptides play a pivotal role in taste-evoked warm preference after sucrose feeding but not for nutrient-induced warm preference. Similarly, they found that DH44, AKH and dILP6, Upd2 and Upd3 neurons are also required for taste-evoked warm preference but not for nutrient-induced warm preference. Here again, the authors do not keep the systems stable and change between inhibition of neurons through Kir and mutants for peptides. For a better comparison, it would be preferable to use always exactly the same technique to inhibit neuron signalling.

      It would be interesting to find the neural circuity of thermo-sensation and metabolic homeostasis, but we do not have any luck so far. We will continue to look into the neural circuits which control taste-evoked warm preference and nutrient-induced warm preference. Since UAS-Kir is such a strong reporter, it may kill the flies sometime. So we couldn't use UAS-Kir for all Gal4 flies. 

      DH44 is expressed in the brain and in the abdominal ganglion where they share the expression pattern with 4 Lk neurons per hemisphere. Seeing the impact of Lk signalling in metabolism (AlAnzi et al., 2010) the authors should provide evidence that the observed effect is indeed because of DH44 and not Lk.

      It would be interesting to see if Lk may play a role in taste-evoked warm preference and/or nutrient-induced warm preference. We would like to systematically screen which neuropeptides and receptors are involved in the behavior in the next study. 

      Seeing the results on dILP6 it is interesting that Li and Gong (2015) could show in larvae that cold-sensing neurons directly interact with dILP neurons in the brain. It would be interesting to see whether similar circuitry may exist in adult flies to regulate temperature preferences and these peptidergic neurons. Further, it appears interesting that again these animals need much longer time to display the observed shift in temperature (which again should be clearly indicated in the figure legend too). These observations should be more carefully considered in the discussion part too.

      We have revised the manuscript.

      In the last part of the study, the authors investigate how sensory input from temperature-sensitive cells may transmit information to central clock neurons and how these in turn may influence temperature preference under starvation. The experiments assume that DH44-expressing neurons play a role in the output pathway of the central clock. Using the clock gene null mutants per and tim the authors show that even though the animals display a significant starvation response neither per nor tim mutants exhibited taste-evoked warm preference, indicating a taste but not nutrient-evoked temperature preference regulation. 

      The authors demonstrate interesting new data on how taste input can influence temperature preference during starvation. They propose how gustatory pathways may work together with thermosensitive neurons, peptidergic neurons and finally try to bridge the gap between these neurons and clock genes. The study is very interesting and the data for each experiment alone are very convincing. However, in my opinion, the authors have opened many new questions but did not fully answer the initial question - how do taste-sensing neurons influence temperature preferences? What are the mechanisms underlying this observation? Instead of jumping from gustatory neurons to thermosensitive neurons to peptidergic neurons to clock genes, the authors should have stayed within the one question they were asking at the beginning. How does sugar sensing influence the physiology of thermos-sensation? Before addressing all the following questions of the manuscript the authors should first directly decipher the neuronal interplay between these two types of neurons. 

      Thank you for your suggestion. It would be interesting to find the neural circuity of thermo-sensation and metabolic homeostasis. We have tried but there is no luck so far. 

      The authors could e.g., employ Ca or cAMP-imaging in anterior or cold-sensitive cells and see how the responsiveness of these cells may be altered after sugar feeding. Or at least follow the idea of Li and Gong about the thermos-regulation of dILP-expressing neurons. 

      Thank you for your suggestion. Since we do not know how dlLP-expression neurons are involved in temperature response in the adult flies. We will focus on the cells using Calcium imaging for the next study.

      Anatomical analysis using the GRASP technique may further help to understand the interplay of these neurons and give new insights into the circuitry underlying food preference alteration under starvation. 

      Thank you for your suggestion. It would be interesting to find the neural circuity of thermo-sensation and metabolic homeostasis. We have tried but there is no luck so far.  

      Minor comments: 

      Line 51: Hungry animals are desperate for food - I think the authors should not anthropomorphize at this point too\ much but rather strictly describe how the animals change their behavior without any interpretation of the mental state of the animal. 

      We have modified the manuscript.

      Line 80: Hunger and satiety dramatically affect animal behavior and physiology and control feeding - please not only cite the papers but also give a short overview of the cited papers on which behaviors are altered and how. 

      We have revised the manuscript. 

      Overall statistic: The authors do comparative statistics always against starved animals throughout but often state in the text a comparison against fed (Line 111: "but did not reach that of the fed flies") I think the authors should describe the date according to their statistics and keep this constant throughout the paper. 

      Sorry for the confusion. We originally had it, but we removed it. We have added the additional statistical analyses.  

      Figure legends: Overall the figure legends could be more developed and more detailed.

      We have revised the manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      As adult-born granule neurons have been shown to play diverse roles, both positive and negative, to modulate hippocampal circuitry and function in epilepsy, understanding the mechanisms by which altered neurogenesis contributes to seizures is important for future therapeutic strategies. The work by Jain et al. demonstrates that increasing adult neurogenesis before status epilepticus (SE) leads to a suppression of chronic seizures in the pilocarpine model of temporal lobe epilepsy. This work is potentially interesting because previous studies showed suppressing neurogenesis led to reduced chronic seizures.

      To increase neurogenesis, the authors conditionally delete the pro-apoptotic gene Bax using a tamoxifen-inducible Nestin-CreERT2 which has been previously published to increase proliferation and survival of adult-born neurons by Sahay et al. After 6 weeks of tamoxifen injection, the authors subjected male and female mice to pilocarpine-induced SE. In the first study, at 2 hours after pilocarpine, the authors examine latency to the first seizure, severity and total number of acute seizures, and power during SE. In the second study in a separate group of mice, at 3 weeks after pilocarpine, the authors examine chronic seizure number and frequency, seizure duration, postictal depression, and seizure distribution/cluster seizures. Overall, the study concludes that increasing adult neurogenesis in the normal adult brain can reduce epilepsy in females specifically. However, important BrdU birthdating experiments in both male and female mice need to be included to support the conclusions made by the authors. Furthermore, speculative mechanisms lacking direct evidence reduce enthusiasm for the findings.

      There are two suggestions. First, BrdU birthdating of newborn neurons is important to add to the paper so that there is support for the conclusions. Second, speculative text reduced enthusiasm. In response, we clarified the conclusions. We do not think that the clarified conclusions require BrdU birthdating (discussed further below). We also removed two schematics (and associated text) that we think the reviewer was referring to when speculation was mentioned.

      We also want to point out something minor -that the times of injections listed above are not correct.

      a. Seizures were not measured 2 hrs after pilocarpine; that is when the anticonvulsant diazepam was administered to males. 

      b. Seizures were not measured 3 weeks after pilocarpine; the duration of recording was 3 weeks.  

      (1) BrdU birthdating is required for conclusions.

      We think that the Reviewer was suggesting birthdating because we were not clear about our conclusions, and we apologize for the confusion. The Reviewer stated that we concluded: “conditionally deleting Bax in Nestin-Cre+ cells leads to increased neurogenesis and hilar ectopic granule cells, thereby reducing chronic seizures.”  (Note this is a quote from the review).

      However, we did not intend to conclude that. We intended to conclude that conditionally deleting Bax in Nestin-Cre+ mice reduced chronic seizures in the mouse model of epilepsy that we used. Also, that conclusion only pertained to females. Please note we did not conclude that hilar ectopic granule cells led to reduced seizures. We also concluded that Bax deletion increased neurogenesis in female mice. We have revised the text to make the conclusions clear.

      Abstract, starting on line 67:

      The results suggest that selective Bax deletion to increase adult neurogenesis can reduce experimental epilepsy, and the effect shows a striking sex difference.

      Results, starting on line 448:

      Because Cre+ epileptic females had increased numbers of immature neurons relative to Cre- females at the time of SE, and prior studies show that Cre+ females had less neuronal damage after SE (Jain et al., 2019), female Cre+ mice might have had reduced chronic seizures because of high numbers of immature neurons. However, the data do not prove a causal role.

      Starting on line 477:

      ...we hypothesized that female Cre+ mice would have fewer hilar ectopic GCs than female Cre- mice. However, that female Cre+ mice did not have fewer hilar ectopic GCs.

      Discussion, starting on line 563:

      The chronic seizures, measured 4-7 weeks after pilocarpine, were reduced in frequency by about 50% in females. Therefore, increasing young adult-born neurons before the epileptogenic insult can protect against epilepsy. However, we do not know if the protective effect was due to the greater number of new neurons before SE or other effects. Past data would suggest that increased numbers of newborn neurons before SE leads to a reduced SE duration and less neuronal damage in the days after SE. That would be likely to lessen the epilepsy after SE. However, there may have been additional effects of larger numbers of newborn neurons prior to SE.

      Conclusions, starting on line 745:

      In the past, suppressing adult neurogenesis before SE was followed by fewer hilar ectopic GCs and reduced chronic seizures. Here, we show that the opposite - enhancing adult neurogenesis before SE and increased hilar ectopic GCs - do not necessarily reduce seizures. We suggest instead that protection of the hilar neurons from SE-induced excitotoxicity was critical to reducing seizures. The reason for the suggestion is that the survival of hilar neurons would lead to persistence of the normal inhibitory functions of hilar neurons, protecting against seizures. However, this is only a suggestion at the present time because we do not have data to prove it. Additionally, because protection was in females, sex differences are likely to have played an important role. Regardless, the results show that enhancing neurogenesis of young adult-born neurons in Nestin-Cre+ mice had a striking effect in the pilocarpine model, reducing chronic seizures in female mice.

      The Reviewer is correct that it would be interesting to know when the increase in adult neurogenesis occurred that was critical to the effect. For example, was it the initial increase following Bax deletion but before pilocarpine-induced SE, or the increase in neurogenesis following SE, or increased adult neurogenesis in the chronic stage of epilepsy. It also might be that related aspects of neurogenesis played a role such as the degree that maturation was normal in adult-born neurons. We have not pursued the experiments to identify these aspects of neurogenesis because of how much work it would entail. Also, approaches to conclude cause-effect relationships are going to be difficult. 

      (2) Speculation.

      We removed the text and supplemental figures with schematics that we think were the overly speculative parts of the paper the Reviewer mentioned.

      Strengths:

      (1) The study is sex-matched and reveals differences in response to increasing adult neurogenesis in chronic seizures between males and females.

      (2) The EEG recording parameters are stringent, and the analysis of chronic seizures is comprehensive. In two separate experiments, the electrodes were implanted to record EEG from the cortex as well as the hippocampus. The recording was done for 10 hours post pilocarpine to analyze acute seizures, and for 3 weeks continuous video EEG recording was done to analyze chronic seizures.

      Weaknesses:

      (1) Cells generated during acute seizures have different properties to cells generated in chronic seizures. In this study, the authors employ two bouts of neurogenesis stimuli (Bax deletion dependent and SE dependent), with two phases of epilepsy (acute and chronic). There are multiple confounding variables to effectively conclude that conditionally deleting Bax in Nestin-Cre+ cells leads to increased neurogenesis and hilar ectopic granule cells, thereby reducing chronic seizures.

      As mentioned above, with a clarification of our conclusions we think we have addressed the concern. We believe that we conditionally deleted Bax in Nestin-expressing cells. We believe we found that female mice had reduced loss of hilar mossy cells and somatostatin-expressing neurons after SE, and fewer chronic seizures after SE. While it makes sense that increased neurogenesis caused the reduced seizures, we acknowledge it was not proved.

      We do not make conclusions about the role of hilar ectopic granule cells. However, we note that they appear to have been similar in number across groups, which suggests they played no role in the results. This is very surprising and therefore adds novelty.

      (2) Related to this is the degree of neurogenesis between Cre+ and Cre- mice and the nature of the sex differences. It is crucial to know the rate/fold change of increased neurogenesis before pilocarpine treatment and whether it is different between male and female mice.

      We agree that if sex differences in adult neurogenesis could be shown by a sex difference in rate, fold change, maturation, and other characteristics.  However, sex differences can also be shown by a change in doublecortin (DCX), which is what we did. We respectfully submit that we do not see an exhaustive study is critical.

      As a result, we have clarified DCX was studied either before SE or in the period of chronic seizures:

      Results, starting on line 406:

      III. Before and after epileptogenesis, Cre+ female mice exhibited more immature neurons than Cre- female mice but that was not true for male mice.

      Starting on line 446:

      Therefore, elevated DCX occurred after chronic seizures had developed in Cre+ mice but the effect was limited to females.

      Discussion, starting on line 592:

      This study showed that conditional deletion of Bax from Nestin-expressing progenitors increased young adult-born neurons in the DG when studied 6 weeks after deletion and using DCX as a marker of immature neurons.

      (3) The authors observe more hilar Prox1 cells in Cre+ mice compared to Cre- mice. The authors should confirm the source of the hilar Prox1+ cells.

      This is an excellent question but it is unclear that it is critical to the seizures since both sexes showed more hilar Prox1 cells in Cre+ mice but only the females had fewer seizures than Cre- mice. This is the additional text to describe the results (starting on Line 493):

      In past studies, hilar ectopic GCs have been suggested to promote seizures (Scharfman et al., 2000; Jung et al., 2006; Cho et al., 2015). Therefore, we asked if the numbers of hilar ectopic GCs correlated with the numbers of chronic seizures. When Cre- and Cre+ mice were compared (both sexes pooled), there was a correlation with numbers of chronic seizures (Fig. 6D1) but it suggested that more hilar ectopic GCs improved rather than worsened seizures. However, the correlation was only in Cre- mice, and when sexes were separated there was no correlation (Fig. 6D3).

      When seizure-free interval was examined with sexes pooled, there was a correlation for Cre+ mice (Fig. 6D2) but not Cre- mice. Strangely, the correlations of Cre+ mice with seizure-free interval (Fig. 6D2, D4) suggest ectopic GCs shorten the seizure-free interval and therefore worsen epilepsy, opposite of the correlative data for numbers of chronic seizures. In light of these inconsistent results it seems that hilar ectopic granule cells had no consistent effect on chronic seizures.

      (4) The biggest weakness is the lack of mechanism. The authors postulate a hypothetical mechanism to reconcile how increasing and decreasing adult-born neurons in GCL and hilus and loss of hilar mossy and SOM cells would lead to opposite effects - more or fewer seizures. The authors suggest the reason could be due to rewiring or no rewiring of hilar ectopic GCs, respectively, but do not provide clear-cut evidence.

      As we mention above, we removed the supplemental figures with schematics because they probably were what seemed overly speculative.

      We acknowledge that mechanism is not proven by our study. However, we would like to mention that in our view, showing preservation of hilar mossy cells and SOM cells, but not PV cells, does add mechanistic data to the paper. We understand more experiments are necessary.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Jain et al explore whether increasing adult neurogenesis is protective against status epilepticus (SE) and the development of spontaneous recurrent seizures (chronic epilepsy) in a mouse pilocarpine model of TLE. The authors increase adult neurogenesis via conditional deletion of Bax, a pro-apoptotic gene, in Nestin-CreERT2Baxfl/fl mice. Cre- littermates are used as controls for comparisons. In addition to characterizing seizure phenotypes, the authors also compare the abundance of hilar ectopic granule cells, mossy cells, hilar SOM interneurons, and the degree of neuronal damage between mice with increased neurogenesis (Cre+) vs Cre- controls. The authors find less severe SE and a reduction in chronic seizures in female mice with pre-insult increased adult-born neurons. Immunolabeling experiments show these females also have preservation of hilar mossy cells and somatostatin interneurons, suggesting the pre-insult increase in adult neurogenesis is protective.

      Strengths:

      (1) The finding that female mice with increased neurogenesis at the time of pilocarpine exposure have fewer seizures despite having increased hilar ectopic granule cells is very interesting.

      (2) The work builds nicely on the group's prior studies.

      (3) Apparent sex differences are a potentially important finding.

      (4) The immunohistochemistry data are compelling.

      (5) Good controls for EEG electrode implantation effects.

      (6) Nice analysis of most of the SE EEG data.

      Weaknesses:

      (1) In addition to the Cre- littermate controls, a no Tamoxifen treatment group is necessary to control for both insertional effects and leaky expression of the Nestin-CreERT2 transgene.

      About “leaky” expression, we have not found expression to be leaky. We checked by injecting a Cre-dependent virus so that mCherry would be expressed in those cells that had Cre.  The results were published as Supplemental Figure 9 in Jain et al. (2019).

      In the revised manuscript we also mention a study that examined three Nestin-CreERT2 mouse lines (Sun et al., 2014). One of the mouse lines was ours. The leaky expression was not in the mouse line we use. We have added these points to the revised manuscript:

      Methods, section II starting on line 791:

      Although Nestin-Cre-ERT2 mouse lines have been criticized because  they can have leaky expression, the mouse line used in the present study did not (Sun et al., 2014), which we confirmed (Jain et al., 2019).

      (2) The authors suggest sex differences; however, experimental procedures differed between male and female mice (as the authors note). Female mice received diazepam 40 minutes after the first pilocarpine-induced seizure onset, whereas male mice did not receive diazepam until 2 hours post-onset. The former would likely lessen the effects of SE on the female mice. Therefore, sex differences cannot be accurately assessed by comparing these two groups, and instead, should be compared between mice with matching diazepam time courses.

      We agree that a shorter delay between pilocarpine and diazepam would be likely to lead to less damage. However, the latency from pilocarpine to SE varied, making the time from the onset of SE to diazepam variable. Most of the variability was in females. By timing the diazepam injection differently in males and females, we could make the time from the onset of SE to diazepam similar between females and males. We had added a supplemental figure to show that our approach led to no significant differences between females and males in the latency to SE, time between SE and diazepam injection, and time between pilocarpine and diazepam injection. We also show that Cre+ females and Cre- females were not different in these times, so it could not be related to the neuroprotection of Cre+ females.

      Additionally, the authors state that female mice that received diazepam 2 hours post-onset had severe brain damage. This is concerning as it would suggest that SE is more severe in the female than in the male mice.

      We regret that our language was misleading. We intended to say females had more morbidity and mortality than males (lack of appetite and grooming, death in the days after SE) when we gave DZP 2 hrs after Pilo. We actually don’t know why because there were no differences in severity of SE. We think the females had worse outcome when they had a short latency to SE.  These females had a longer period of SE before DZP than males, probably leading to worse outcome. To correct this we gave DZP to females sooner. Then morbidity and mortality was improved in females. 

      Interestingly, after we did this we saw females did not always have a short latency to SE. We maintained the same regimen however, to be consistent. As the new supplemental figure (above) shows, there were significant sex differences in the latency to SE, time between SE and DZP, and time between pilocarpine and DZP.

      (3) Some sample sizes are low, particularly when sex and genotypes are split (n=3-5), which could cause a type II statistical error.

      We agree and have noted this limitation in the Discussion:

      Additional considerations, starting on line 739:

      This study is limited by the possibilities of type II statistical errors in those instances where we divided groups by genotype and sex, leading to comparisons of 3-5 mice/group.

      (4) Several figures show a datapoint in the sex and genotype-separated graphs that is missing from the corresponding male and female pooled graphs (Figs. 2C, 2D, 4B).

      We are very grateful to the Reviewer for pointing out the errors. They are corrected.

      (5) In Suppl Figs. 1B & 1C, subsections 1c and 2c, the EEG trace recording is described as the end of SE; however, SE appears to still be ongoing in these traces in the form of periodic discharges in the EEG.

      The Reviewer is correct.  It is a misconception that SE actually ends completely. The most intense seizure activity may, but what remains is abnormal activity that can last for days. Other investigators observe the same and have suggested that it argues against the concept of a silent period between SE and chronic epilepsy. We had discussed this in our prior papers and had referenced how we define SE.  In the revised manuscript we add the information to the Methods section instead of referencing a prior study:

      Methods, starting on line 899:

      SE duration was defined in light of the fact that the EEG did not return to normal after the initial period of intense activity. Instead, intermittent spiking occurred for at least 24 hrs, as we previously described (Jain et al., 2019) and has been described by others (Mazzuferi et al., 2012; Bumanglag and Sloviter, 2018; Smith et al., 2018). We therefore chose a definition that captured the initial, intense activity. We defined the end of this time as the point when the amplitude of the EEG deflections were reduced to 50% or less of the peak deflections during the initial hour of SE. Specifically, we selected the time after the onset of SE when the EEG amplitude in at least 3 channels had dropped to approximately 2 times the amplitude of the EEG during the first hour of SE, and remained depressed for at least 10 min (Fig. S2 in (Jain et al., 2019). Thus, the duration of SE was defined as the time between the onset and this definition of the "end" of SE.

      (6) In Results section II.D and associated Fig.3, what the authors refer to as "postictal EEG depression" is more appropriately termed "postictal EEG suppression". Also, postictal EEG suppression has established criteria to define it that should be used.

      We find suppression is typical in studies of ECT or humans (Esmaeili et al., 2023; Gascoigne et al., 2023; Hahn et al., 2023; Kavakbasi et al., 2023; Langroudi et al., 2023; Karl et al., 2024; Vilan et al., 2024; Zhao et al., 2024) and animal research uses the term postictal depression(Kanner et al., 2010; Krishnan and Bazhenov, 2011; Riljak et al., 2012; Singh et al., 2012; Carballosa-Gonzalez et al., 2013; Kommajosyula et al., 2016; Smith et al., 2018; Uva and de Curtis, 2020; Medvedeva et al., 2023). Therefore we think depression is a more suitable term.

      The example traces in Fig. 3A and B should also be expanded to better show this potential phenomenon.

      We expanded traces in Fig. 3 as suggested. They are in Fig 3A.

      (7) In Fig.5D, the area fraction of DCX in Cre+ female mice is comparable to that of Cre- and Cre+ male mice. Is it possible that there is a ceiling effect in DCX expression that may explain why male Cre+ mice do not have a significant increase compared to male Cre- mice?

      We thank the Reviewer for the intriguing possibility. We now mention it in the manuscript:

      Results, starting on line 456:

      It is notable that the Cre+ male mice did not show increased numbers of immature neurons at the time of chronic seizures but Cre+ females did. It is possible that there was a “ceiling” effect in DCX expression that would explain why male Cre+ mice did not have a significant increase in immature neurons relative to male Cre- mice.

      (8) In Suppl. Fig 6, the authors should include DCX immunolabeling quantification from conditional Cre+ male mice used in this study, rather than showing data from a previous publication.

      We have made this revision.

      (9) In Fig 8, please also include Fluorojade-C staining and quantification for male mice.

      The additional data for males have been added to part D.

      (10) Page 13: Please specify in the first paragraph of the discussion that findings were specific to female mice with pre-insult increases in adult-born neurogenesis.

      This has been done.

      Minor:

      (11) In Fig. 1 and suppl. figure 1, please clarify whether traces are from male or female mice.

      We have clarified.

      (12) Please be consistent with indicating whether immunolabeling images are from female or male mice.

      a. Fig 5B images labeled as from "Cre- Females" and "Cre+ Females".

      b. Suppl. Fig 8: Images labeled as "Cre- F" and "Cre+ F".

      c. Fig 6: sex not specified.

      d. Fig. 7: sex only specified in the figure legend.

      e. Fig 8: only female mice were included in these experiments, but this is not clear from the figure title or legend.

      We revised all figures according to the comments.

      (13) Page 4: the last paragraph of the introduction belongs within the discussion section.

      We recognize there is a classic view that any discussion of Results should not be in the Introduction. However, we find that view has faded and more authors make a brief summary statement about the Results at the end of the Introduction. We would like to do so because it allow Readers to understand the direction of the study at the outset, which we find is helpful.

      (14) Page 6: The sentence "The data are consistent with prior studies..." is unnecessary.

      We have removed the text.

      (15) Suppl. Fig 6A: Please include representative images of normal condition DCX immunolabeling.

      We have added these data. There is an image of a Cre- female, Cre+ female, Cre- male and Cre+ male in the new figure, Supplemental Figure 6. All mice had tamoxifen at 6 weeks of age and were perfused 6 weeks later. None of the mice had pilocarpine.

      (16) In Suppl. Fig 7C, I believe the authors mean "no loss of hilar mossy and SOM cells" instead of "loss of hilar mossy and SOM cells".

      This Figure was removed because of the input from Reviewer 1 suggesting it was too speculative.

      Reviewer #1 (Recommendations For The Authors):

      (1) The main claim of the study is that increasing adult neurogenesis decreases chronic seizures. However, to quantify adult-born neurons, DCX immunoreactivity is used as the sole metric to determine neurogenesis. This is insufficient as changes in DCX-expressing cells could also be an indicator of altered maturation, survival, and/or migration, not proliferation per se. To claim that increasing adult neurogenesis is associated with a reduction of chronic seizures, the authors should perform a pulse/chase (birth dating) experiment with BrdU and co-labeling with DCX.

      We think that increased DCX does reflect increased adult neurogenesis. However, we agree that one does not know if it was due to increased proliferation, survival, etc. We also note that this mouse line has been studied thoroughly to show there was increased neurogenesis with BrdU, Ki67 and DCX. We mention that paper in the revised text:

      Methods, starting on line 786:

      It was shown that after tamoxifen injection in adult mice there is an increase in dentate gyrus neurogenesis based on studies of bromo-deoxyuridine, Ki67, and doublecortin (Sahay et al., 2011).

      (2) As mentioned above, analysis of DCX staining alone months after TAM injections is limited. Instead, the cells could be labelled by BrdU prior to TAM injection, following which quantification of BrdU+/Prox1+ cells at 6 weeks post TAM injection should be performed in Cre+ and Cre- mice (males and females) to yield the rate of neurogenesis increase.

      We respectfully disagree that birthdating cells is critical. Using DCX staining just before SE, we know the size of the population of cells that are immature at the time of SE. This is what we think is most important because these immature neurons are those that appear to affect SE, as we have already shown.

      (3) To confirm the source of the hilar Prox1+ cells, a dual BrdU/EdU labeling approach would be beneficial. BrdU injection could be given before TAM injection and EdU injection before pilocarpine to label different cohorts of neural stem cells. Co-staining with Prox1 at different time points will help in identifying the origin of hilar ectopic cells.

      We are grateful for the ideas of the Reviewer. We hesitate to do these experiments now because it seems like a new study to find out where hilar granule cells come from.

      REFERENCES

      Bumanglag AV, Sloviter RS (2018) No latency to dentate granule cell epileptogenesis in experimental temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 59:2019-2034.

      Carballosa-Gonzalez MM, Munoz LJ, Lopez-Alburquerque T, Pardal-Fernandez JM, Nava E, de Cabo C, Sancho C, Lopez DE (2013) EEG characterization of audiogenic seizures in the hamster strain gash:Sal. Epilepsy Res 106:318-325.

      Cho KO, Lybrand ZR, Ito N, Brulet R, Tafacory F, Zhang L, Good L, Ure K, Kernie SG, Birnbaum SG, Scharfman HE, Eisch AJ, Hsieh J (2015) Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nat Commun 6:6606.

      Esmaeili B, Weisholtz D, Tobochnik S, Dworetzky B, Friedman D, Kaffashi F, Cash S, Cha B, Laze J, Reich D, Farooque P, Gholipour T, Singleton M, Loparo K, Koubeissi M, Devinsky O, Lee JW (2023) Association between postictal EEG suppression, postictal autonomic dysfunction, and sudden unexpected death in epilepsy: Evidence from intracranial EEG. Clin Neurophysiol 146:109-117.

      Gascoigne SJ, Waldmann L, Schroeder GM, Panagiotopoulou M, Blickwedel J, Chowdhury F, Cronie A, Diehl B, Duncan JS, Falconer J, Faulder R, Guan Y, Leach V, Livingstone S, Papasavvas C, Thomas RH, Wilson K, Taylor PN, Wang Y (2023) A library of quantitative markers of seizure severity. Epilepsia 64:1074-1086.

      Hahn T et al. (2023) Towards a network control theory of electroconvulsive therapy response. PNAS Nexus 2:pgad032.

      Jain S, LaFrancois JJ, Botterill JJ, Alcantara-Gonzalez D, Scharfman HE (2019) Adult neurogenesis in the mouse dentate gyrus protects the hippocampus from neuronal injury following severe seizures. Hippocampus 29:683-709.

      Jung KH, Chu K, Lee ST, Kim J, Sinn DI, Kim JM, Park DK, Lee JJ, Kim SU, Kim M, Lee SK, Roh JK (2006) Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neurobiol Dis 23:237-246.

      Kanner AM, Trimble M, Schmitz B (2010) Postictal affective episodes. Epilepsy Behav 19:156-158.

      Karl S, Sartorius A, Aksay SS (2024) No effect of serum electrolyte levels on electroconvulsive therapy seizure quality parameters. J ECT 40:47-50.

      Kavakbasi E, Stoelck A, Wagner NM, Baune BT (2023) Differences in cognitive adverse effects and seizure parameters between thiopental and propofol anesthesia for electroconvulsive therapy. J ECT 39:97-101.

      Kommajosyula SP, Randall ME, Tupal S, Faingold CL (2016) Alcohol withdrawal in epileptic rats - effects on postictal depression, respiration, and death. Epilepsy Behav 64:9-14.

      Krishnan GP, Bazhenov M (2011) Ionic dynamics mediate spontaneous termination of seizures and postictal depression state. J Neurosci 31:8870-8882.

      Langroudi ME, Shams-Alizadeh N, Maroufi A, Rahmani K, Rahchamani M (2023) Association between postictal suppression and the therapeutic effects of electroconvulsive therapy: A systematic review. Asia Pac Psychiatry 15:e12544.

      Mazzuferi M, Kumar G, Rospo C, Kaminski RM (2012) Rapid epileptogenesis in the mouse pilocarpine model: Video-EEG, pharmacokinetic and histopathological characterization. Exp Neurol 238:156-167.

      Medvedeva TM, Sysoeva MV, Sysoev IV, Vinogradova LV (2023) Intracortical functional connectivity dynamics induced by reflex seizures. Exp Neurol 368:114480.

      Riljak V, Maresova D, Jandova K, Bortelova J, Pokorny J (2012) Impact of chronic ethanol intake of rat mothers on the seizure susceptibility of their immature male offspring. Gen Physiol Biophys 31:173-177.

      Sahay A, Scobie KN, Hill AS, O'Carroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472:466-470.

      Scharfman HE, Goodman JH, Sollas AL (2000) Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: Functional implications of seizure-induced neurogenesis. J Neurosci 20:6144-6158.

      Singh B, Singh D, Goel RK (2012) Dual protective effect of passiflora incarnata in epilepsy and associated post-ictal depression. J Ethnopharmacol 139:273-279.

      Smith ZZ, Benison AM, Bercum FM, Dudek FE, Barth DS (2018) Progression of convulsive and nonconvulsive seizures during epileptogenesis after pilocarpine-induced status epilepticus. J Neurophysiol 119:1818-1835.

      Sun MY, Yetman MJ, Lee TC, Chen Y, Jankowsky JL (2014) Specificity and efficiency of reporter expression in adult neural progenitors vary substantially among nestin-creer(t2) lines. J Comp Neurol 522:1191-1208.

      Uva L, de Curtis M (2020) Activity- and ph-dependent adenosine shifts at the end of a focal seizure in the entorhinal cortex. Epilepsy Res 165:106401.

      Vilan A, Grangeia A, Ribeiro JM, Cilio MR, de Vries LS (2024) Distinctive amplitude-integrated EEG ictal pattern and targeted therapy with carbamazepine in kcnq2 and kcnq3 neonatal epilepsy: A case series. Neuropediatrics 55:32-41.

      Zhao C, Tang Y, Xiao Y, Jiang P, Zhang Z, Gong Q, Zhou D (2024) Asymmetrical cortical surface area decrease in epilepsy patients with postictal generalized electroencephalography suppression. Cereb Cortex 34.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      First, all the experiments are performed in Jurkat T cells that may not recapitulate the regulation of polarization in primary T cells.

      To extend our results in Jurkat cells forming IS to primary cells, we have now performed experiments using synapses established by Raji cells and either primary T cells  (TCRmediated) or primary CAR T cells (CAR-mediated) (new Suppl. Fig. S7). These experiments clearly show the presence of FMNL1 at these two different IS classes (new Suppl. Fig. S7), similar to what was found in Jurkat-Raji synapses. In addition, since most of the experiments were performed in Jurkat cells, we have changed the title of our manuscript, to be faithful to the main body of our results. New sentences dealing with this important issue have been included in the Results and Discussion sections.

      Moreover, all the experiments analyzing the role of PKCdelta are performed in one clone of wt or PKCdelta KO Jurkat cells. This is problematic since clonal variation has been reported in Jurkat T cells.

      Referee is right, this is the reason why we have studied three different control clones (C3, C9, C7) and three PKCdelta-interfered clones (P5, P6 and S4) all derived from JE6.1 clone and the results have been previously published (Herranz et al 2019)(Bello-Gamboa et al 2020). All these clones expressed similar levels of the relevant cell surface molecules and formed synaptic conjugates with similar efficiency (Herranz et al 2019). The P5, P6 and S4 clones exhibited a similar defect in MVB/MTOC polarization when compared with the control clones (Herranz et al 2019)(Bello-Gamboa et al 2020). Experiments developed by other researchers using a different clone of Jurkat (JE6.1) and primary CD4+ and CD8+ lymphocytes interfered in FMNL1 (Gomez et al. 2007), showed a comparable defect in MTOC polarization to that found in our control clones when were transiently interfered in FMNL1 (Bello-Gamboa et al 2020, this manuscript). In this manuscript we have studied, instead of canonical JE6.1 clone, C3 and C9 control clones derived from JE6.1, since the puromycin-resistant control clones (containing a scramble shRNA) were isolated by limiting dilution together with the PKCdelta-interfered clones (Herranz et al. 2019), thus C3 and C9 clones are the best possible controls to compare with P5 and P6 clones. Please realize that microsatellite analyses, available upon request, supports the identity of our C3 clone with JE6.1. Moreover, when GFP-PKCdelta was transiently expressed in the three PKCdelta-interfered clones, MTOC/MVB polarization was recovered to control levels (Herranz et al. 2019). Therefore, the deficient MTOC/MVB polarization in all these clones is exclusively due to the reduction in PKCdelta expression (Herranz et al 2019), and thus clonal variation cannot underlie our results in stable clones. We have now included new sentences to address this important point and to mention the inability of FMNL1betaS1086D to revert the deficient MTOC polarization occurring in P6 PKCdelta-interfered clone, as occurred in P5 clone. Due to the fact we have now included more figures and panels to satisfy editor and referees’s comments, we have not included the dot plot data corresponding to C9 and P6 clones to avoid a too long and repetitive manuscript. Since all the FMNL1 interference and FMNL1 variants reexpression experiments were performed in transient assays (2-4 days after transfection), there was no chance for any clonal variation in these short-time experiments. Moreover, internal controls using untransfected cells or Raji cells unpulsed with SEE were carried out in all these transient experiments.

      Finally, although convincing, the defect in the secretion of vesicles by T cells lacking phosphorylation of FMNL1beta on S1086 is preliminary. It would be interesting to analyze more precisely this defect. The expression of the CD63‑GFP in mutants by WB is not completely convincing. Are other markers of extracellular vesicles affected, e.g. CD3 positive?

      We acknowledge this comment. It is true that the mentioned results do not directly demonstrate the presence of exosomes at the synaptic cleft of the synapses, since the nanovesicles were harvested from the cell culture supernatants from synaptic conjugates and these nanovesicles could be produced by multi‑directional degranulation of MVBs. To address this important issue, we have performed STED super‑resolution imaging of the immune synapses made by control and FMNL1-interfered cells. Nanosized (100-150 nm) CD63+ vesicles can be found in the synaptic cleft between APC and control cells with polarized MVBs, whereas we could not detect these vesicles in the synaptic cleft from FMNL1-interfered cells that maintain unpolarized MVBs (New Fig. 10). New sentences have been included in the Results and Discussion dealing with this important point. Regarding the use of CD3 as a marker of extracellular vesicles, please realize that CD3 is neither an enriched nor a specific marker of exosomes, since it is also present in plasma membrane shedding vesicles, molting vesicles from microvilli, apoptotic bodies and small cell fragments, apart from exosomes, thus we have preferred to use the canonic exosome marker CD63 as a general exosome reporter readout, for WB and immunofluorescence (MVBs, exosomes), time-lapse of MVBs (suppl. Video 8) and super resolution experiments (Fig. 10).   

      Reviewer #2 (Public Review):

      Summary:

      The authors have addressed the role of S1086 in the FMNL1beta DAD domain in 4 F-actin dynamics, MVB polarization, and exosome secretion, and investigated the potential implication of PKCdelta, which they had previously shown to regulate these processes, in FMNL1beta S1086 phosphorylation. This is based on:

      (1) the documented role of FMNL1 proteins in IS formation

      (2) their ability to regulate F-actin dynamics

      (3) the implication of PKCdelta in MVB polarization to the IS and FMNL1beta phosphorylation

      (4) the homology of the C-terminal DAD domain of FMNL1beta with FMNL2, where a phosphorylatable serine residue regulating its auto-inhibitory function had been previously identified. They demonstrate that FMNL1beta is indeed phosphorylated on S1086 in a PKCdelta-dependent manner and that S1086-phosphorylated FMNL1beta acts downstream of PKCdelta to regulate centrosome and MVB polarization to the IS and exosome release. They provide evidence that FMNL1beta accumulates at the IS where it promotes F-actin clearance from the IS center, thus allowing for MVB secretion.  

      Strengths

      The work is based on a solid rationale, which includes previous findings by the authors establishing a link between PKCdelta, FMNL1beta phosphorylation, synaptic F-actin clearance, and MVB polarization to the IS. The authors have thoroughly addressed the working hypotheses using robust tools. Among these, of particular value is an expression vector that allows for simultaneous RNAi-based knockdown of the endogenous protein of interest (here all FMNL1 isoforms) and expression of wild-‐‑type or mutated versions of the protein as YFP‐tagged proteins to facilitate imaging studies. The imaging analyses, which are the core of the manuscript, have been complemented by immunoblot and immunoprecipitation studies, as well as by the measurement of exosome release (using a transfected MVB/exosome reporter to discriminate exosomes secreted by T cells).

      Weaknesses

      The data on F-‐‑actin clearance in Jurkat T cells knocked down for FMNL1 and expressing wild-type FMNL1 or the non‑phosphorylatable or phosphomimetic mutants thereof would need to be further strengthened, as this is a key message of the manuscript. Also, the entire work has been carried out on Jurkat cells. Although this is an excellent model easily amenable to genetic manipulation and biochemical studies, the key finding should be validated on primary T cells

      Referee’s global assessment is right. To extend our results in Jurkat cells forming IS, we have now performed experiments using synapses established by Raji cells and either primary T cells (TCR-mediated) or primary CAR T cells (CAR-mediated) (new Suppl. Fig. S7). These experiments clearly show the presence of FMNL1 at these two different IS classes (new Suppl. Fig. S7), similar to what was found in Jurkat-Raji synapses. In addition, since most of the experiments were performed in Jurkat cells, we have changed the title of our manuscript, to be faithful to the main body of our results. New sentences have been included in Results and Discussion to address these important points.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      This study shows the role of the phosphorylation of FMNL1b on S1086 on the polarity of T lymphocytes in T lymphocytes, which is a new and interesting finding. It would be important to confirm some of the key results in primary T cells and to analyze in-depth the defect in actin remodeling (quantification of the images, analysis of some key actors of actin remodeling). The description of the defect in the secretion of extracellular vesicles would also benefit from a more accurate analysis of the content of vesicles. 

      Referee is right.  We have now performed experiments using synapses containing Raji cells and either primary T cells (TCR-mediated) or primary CAR T cells (CAR-mediated) (new Suppl. Fig. S7). These experiments clearly show the presence of FMNL1 at these two different IS classes, similar to what was found in Jurkat-‐‑Raji synapses. Moreover, since most of the experiments were performed in Jurkat cells, we have changed the title of our manuscript, to be faithful to the main body of our results. Regarding the use of CD63 instead of other markers such as for instance,  CD3 (as stated by the other referee), please realize that CD3 is neither an enriched nor a specific marker of exosomes, since it is also present in plasma membrane shedding vesicles, molting vesicles from microvilli, apoptotic bodies and small cell fragments, apart from exosomes, thus we have preferred to use the accepted consensus, canonic extracellular vesicle marker CD63 (International Society of Extracellular Vesicles positioning, Thery et al 2018, doi: 10.1080/20013078.2018.1535750. eCollection 2018., Alonso et al. 2011) as a general exosome reporter readout, for both WB, immunofluorescence (MVBs, exosomes) and super-resolution experiments. Accordingly, GFP-‐‑CD63 reporter plasmid was used for exosome secretion in transient expression studies and living cell time-lapse experiments (Suppl. Video 8). Any other exosome marker will also be present in Raji cells and will not allow to analyse exclusively the secretion of exosomes by the effector Jurkat cells, since B lymphocytes produce a large quantity of exosomes upon MHC‑II stimulation by Th lymphocytes (Calvo et al, 2020, doi:10.3390/ijms21072631). To reinforce the exosome data in the context of the immune synapse, STED super-resolution imaging of the immune synapses made by control and FMNL1‑interfered cells was performed. Nanosized (100-150 nm) CD63+ vesicles can be found in the synaptic cleft of control cells with polarized MVBs, whereas we could no detect these vesicles in the synaptic cleft from FMNL1-interfered cells that maintain unpolarized MVBs (new Fig. 10).

      Moreover, all the videos are not completely illustrative. For example, in video 2 it would be more appropriate show only the z plane corresponding to the IS to see more precisely the F-actin remodeling relative to CD63 labeling.

      Referee is right. It is true that the upper rows in some videos may distract the reader of the main message contained in the lower row, that includes the 90º turn-generated, zx plane corresponding to the IS interface. Accordingly, we have maintained the still images of the whole synaptic conjugates in the first row from video 2; this will allow the reader to perceive a general view of the fluorochromes on the whole cell conjugates, as a reference, and to compare precisely the F-actin remodeling relative to CD63 labeling only at the zx interface (lower row). We have now processed the videos 1 and 5 following similar criteria

      The quality of videos 3 and 4 are not good enough. For video 7, it seems that the labeling of phospho-‐‑Ser is very broad at the IS, which is expected since it should label all the proteins that are phosphorylated by PKCs. The resolution of microscopy (at the best 200 to 300 nm) does not allow us to conclude on the co-‐localization of FMNL1b with phospho-‐‑Ser and is thus not conclusive. Finally, the study would benefit from a more careful statistical analysis. The dot plots showing polarity are presented for one experiment. Yet, the distribution of the polarity is broad. Results of the 3 independent experiments should be shown and a statistical analysis performed on the independent experiments

      Referee is right, we have amended video settings (brightness/contrast) in videos 3 and 4 to improve this issue. In addition, we would like to remark that the translocation of proteins to cellular substructures in living cells is not a trivial issue, since certain protein localizations are too dynamic to be properly imaged with enough spatial resolution. The equilibrium resulting from the association/dissociation of a certain protein to the membrane, in addition to the protein diffusion naturally occurring in living cells, as well as signal intensity fluctuations inherent to the stochastic nature of fluorescence emission often provide barriers for image quality (Shroff et al, 2024). Thus, additional image blurring is expected when compared with that observed in fixed samples. However, we think it is important to provide the potential readers with a dynamic view of FMNL1 localization, which can only be achieved through real-time videos, in addition to the still frames from the same videos provided in Fig. 6A (the referee did not argue against the inclusion of these frames), together with images from fixed cells in Fig 6B, for comparison. This is the reason why we have preferred to maintain the improved videos to complement the results of some spare frames from the videos, together with images from fixed cells in the same figure (Fig. 6).

      Regarding video 7, we agree that colocalization is limited by the spatial resolution of confocal  microscopy,  and this fact does not allow us to infer that FMNL1beta is phosphorylated at the IS. However, please realize we have never concluded this in our manuscript.  Instead, we claimed that “colocalization of endogenous FMNL1 and YFP‑FMNL1βWT with anti‑phospho‑Ser  …is compatible with the idea that both endogenous FMNL1 and YFP‑FMNL1βWT are specifically phosphorylated at the cIS”. Moreover, we have now performed colocalization in super‑resolved STED microscopy images, that reduces the XY resolution down to 30-­40 nm (Suppl. Fig. S12), and the results also support colocalization of endogenous FMNL1 with anti-phospho‑Ser PKC at the IS within a 30 nm resolution limit. We have now somewhat softened our conclusion: “Although all these data did not allow us to infer that FMNL1β is phosphorylated at the IS due to the resolution limit of confocal and STED microscopes, the results are compatible with the idea that both endogenous FMNL1 and YFP-FMNL1βWT are specifically phosphorylated at the cIS”.   

      Regarding statistical analyses we agree the dot distribution in the polarity experiments is quite broad, but this is consistent with the end point strategy used by a myriad of research groups (including ourselves) to image an intrinsically stochastic, rapid and asynchronous processes such as immune synapse formation and to score MTOC/MVB  polarization (Calvo et al 2018, https://doi.org/10.3389/fimmu.2018.00684). Despite this fact,  ANOVA  analyses have underscored the statistical significance of all the experiments represented by dot plot experiments. We cannot average or perform meta statistical analyses by combining the equivalent cohort results from independent experiments, since we have observed that small variations of certain variables (SEE concentration, cell recovery, time after transfection, etc.) affect synapse formation and PI values among experiments without altering the final outcome in each case. Please, note that our manuscript includes now 10  multi‑panel figures,  12  multi‑panel supplementary figures and 8 videos, and it is already quite large.  Thus,  we feel the inclusion of redundant, triplicate dot plot figures will dilute and distract to any potential reader from the main message of our already comprehensive contribution. We have now included new sentences at the figure legends to remark ANOVA analyses were executed separately in all the 3 independent experiments.

      Reviewer #2 (Recommendations For The Authors):

      (1) The key findings should be validated on primary CD4+ T cells (of which Jurkat is a transformed model).

      Referee is right. However, as commented by the other referee, the data from activating surfaces clearly shows that the synaptic actin architecture of the immune synapse from primary CD8+ T cells is essentially indistinguishable and thus unbiased from that of Jurkat T cells, but different to that of primary CD4+ cells (Murugesan, 2016). Thus, our data in Jurkat T cells are directly applicable to the synaptic architecture of primary CD8+ cells. In addition, to definitely extend our results in Jurkat cells forming IS, we have performed experiments using synapses established by Raji cells and either primary T cells (TCR-mediated) or primary CAR T cells (CAR-mediated) (new Suppl. Fig. S7) challenged by Raji cells. We have preferred to work with mixed CD4+ and CD8+ cells in order to maintain potential interactions in trans between these subpopulations that may affect or influence IS formation. These experiments clearly show the presence of FMNL1 at these two different IS classes (new Suppl. Fig. S7), similar to what was found in JurkatRaji synapses. Moreover, since most of the experiments were performed in Jurkat cells as stated by the referee, we have changed the title of our manuscript, to circumscribe our results to the model we have used and to be faithful to the main body of our results.

      (2) The image of wt YFP-­FMNL1beta in Figure 4A displays a weak CD63 signal and shows an asymmetric polarization of both the centrosome and MVBs. It should be replaced with a more representative one.

      Referee is right. Accordingly, we have modified the CD63 channel settings (brightness/contrast) in this panel to make it comparable to the other panels in the same figure. In addition, thanks to this referee´s comment, we have realized the position of the MTOC (yellow dot) in the diagram in the right side of the YFP-FMNL1betaWT panels row appeared mislocated, producing the mentioned apparent asymmetry with respect to MVBs’s center of mass (green dot) position. This mistake leads to an apparent segregation between the position of the center of mass of these organelles which certainly does not correspond with the real image. We have now amended the scheme and we apologize for this mistake.

      (3) The images showing F-­actin clearance at the IS (Figure 8, S4, S5) are not very convincing, also when looking at the MFI along the T cell-­‐‑APC interface in the en-­‐face  views.  Since  the  F-­actin  signal  also  includes  some  signal  from  the  APC, transfecting T cells with an actin reporter to selectively image T cell actin could better clarify this key point.

      Referee´s point is correct. However, we (83), and other researchers using the proposed actin reporter approach in the same Raji/Jurkat IS model (Fig. 4 in ref 84) have already excluded the possibility that actin cytoskeleton of Raji cells can also contribute to the measurements of synaptic F-actin. In Materials and Methods, page 37, lines 1048-1055 we included this related sentence:  ¨It is important to remark that MHC-II-antigen triggering on the B cell side of the Th synapse does not induce noticeable F-­actin changes along the synapse (i.e. F-­actin clearing at the central IS), in contrast to TCR stimulation on T cell side (84) (85) (3). In addition, we have observed that majority of F‐‑actin changes along the IS belongs to the Jurkat cell (83). Thus, the contribution to the analyses of the residual, invariant F‐actin from the B cell is negligible using our protocol (83).

      Thus, we can exclude this caveat may affect our results.

      (4) A similar consideration applies to the MVB distribution in the en‑face images. For example, in Figure S5 the MVB profile, with some peripheral distribution, does not appear very different in cells expressing wt YFP‑tagged FMNL1beta versus the S1086A‑expressing cells.

      The referee's assessment regarding Supp. Figure S5 is valid. Using only the plot profile, the outcomes obtained with YFP-FMNL1βWT may appear comparable to those derived from YFP-FMNL1βS1086A. Nonetheless, this resemblance is attributed to the plot profile's exclusive consideration of the MVBs signal in the interface from the immune synapse region (white rectangle). The upper images (second row), where the whole cell is displayed, illustrate that in YFP-FMNL1βWT, MVB are specifically accumulated within this specific region, in contrast to the scattered distribution observed in YFP-FMNL1βS1086A, where MVB are dispersed throughout the cell without distinction. While MVBs are evident in both instances within the synapse region, the reason behind this observation is different. The YFP-FMNL1βWT transfected cell (third column) shows a pronounced MVB concentration within the synaptic area (white rectangle), which leads to MVB PI=0.52, whereas the YFP-FMNL1βS1086A transfected cell (fourth column), as it presents a scattered distribution of MVB throughout the cell, also exhibits some MVB (but only a small proportion of the total cellular MVB) in the synaptic area, which yields MVB PI=-0.09. Please realise that the position of the center of mass of the distribution of MVB (MVBC) labelled in this figure (white squares) is an unbiased parameter that mirrors MVB center of mass polarization. A new sentence has been included in the figure legend to clarify this important point.

      (5) The image in the first row in Figure 6B does not show a clear accumulation of FMNL1beta at the IS, possibly because the T cell is in contact with two APCs. This image should be replaced.

      Referee is right Therefore, we have replaced the quoted example with a single cell:cell synapse that shows a clearer and more localized accumulation in the cIS, thereby avoiding the mentioned caveat.

      (6) In Figure 2A the last row shows what appears to be a T:T cell conjugate (with one cell expressing the YFP-­‐‑tagged protein). The image should be replaced with another showing a T cell-­APC (blue) conjugate.

      Referee is right, we have accordingly replaced the mentioned image with a T cell:APC conjugate.

      (7) The Discussion is very long and dispersive. It would benefit from shortening it and making it more focused.

      Referee is right, we have shortened and focused it, by eliminating the whole second and third paragraphs of the discussion. Moreover, a whole paragraph in page 24 has been also deleted.

      We have also focussed the discussion towards the new data in primary T lymphocytes.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      This paper uses a model of binge alcohol consumption in mice to examine how the behaviour and its control by a pathway between the anterior insular cortex (AIC) to the dorsolateral striatum (DLS) may differ between males and females. Photometry is used to measure the activity of AIC terminals in the DLS when animals are drinking and this activity seems to correspond to drink bouts in males but not females. The effects appear to be lateralized with inputs to the left DLS being of particular interest. 

      Strengths: 

      Increasing alcohol intake in females is of concern and the consequences for substance use disorder and brain health are not fully understood, so this is an area that needs further study. The attempt to link fine-grained drinking behaviour with neural activity has the potential to enrich our understanding of the neural basis of behaviour, beyond what can be gleaned from coarser measures of volumes consumed etc. 

      Weaknesses: 

      The introduction to the drinking in the dark (DID) paradigm is rather narrow in scope (starting line 47). This would be improved if the authors framed this in the context of other common intermittent access paradigms and gave due credit to important studies and authors that were responsible for the innovation in this area (particularly studies by Wise, 1973 and returned to popular use by Simms et al 2010 and related papers; e.g., Wise RA (1973). Voluntary ethanol intake in rats following exposure to ethanol on various schedules. Psychopharmacologia 29: 203-210; Simms, J., Bito-Onon, J., Chatterjee, S. et al. Long-Evans Rats Acquire Operant Self-Administration of 20% Ethanol Without Sucrose Fading. Neuropsychopharmacol 35, 1453-1463 (2010).)

      We appreciate the reviewer’s perspective on the history of the alcohol research field. There are hundreds of papers that could be cited regarding all the numerous different permutations of alcohol drinking paradigms. This study is an eLife “Research Advances” manuscript that is a direct follow-up study to a previously published study in eLife (Haggerty et al., 2022) that focused on the Drinking in the Dark model of binge alcohol drinking. This study must be considered in the context of that previous study (they are linked), and thus we feel that a comprehensive review of the literature is not appropriate for this study.

      The original drinking in the dark demonstrations should also be referenced (Rhodes et al., 2005). Line 154 Theile & Navarro 2014 is a review and not the original demonstration. 

      This is a good recommendation. We have added this citation to Line 33 and changed Line 154.

      When sex differences in alcohol intake are described, more care should be taken to be clear about whether this is in terms of volume (e.g. ml) or blood alcohol levels (BAC, or at least g/kg as a proxy measure). This distinction was often lost when lick responses were being considered. If licking is similar (assuming a single lick from a male and female brings in a similar volume?), this might mean males and females consume similar volumes, but females due to their smaller size would become more intoxicated so the implications of these details need far closer consideration. What is described as identical in one measure, is not in another. 

      As shown in Figure 1, all measures of intake are reported as g/kg for both water and alcohol to assess intakes across fluids that are controlled by body weights. We do not reference changes in fluid volume or BACs to compare differences in measured lickometry or photometric signals, except in one instance where we suggest that the total volume of water (ml) is greater than the total amount of alcohol (ml) consumed in DID sessions, but this applies generally to all animals, regardless of sex, across all the experimental procedures.

      In Figure 2 – Figure Supplement 1 we show drinking microstructures across single DID sessions, and that males and females drink similarly, but not identically, when assessing drinking measures at the smallest timescale that we have the power to detect with the hardware we used for these experiments. Admittedly, the variability seen in these measures is certainly non-zero, and while we are tempted to assume that there exist at least some singular drinks that occur identically between males and females in the dataset that support the idea that females are simply just consuming more volume of fluid per singular drink, we don’t have the sampling resolution to support that claim statistically. Further, even if females did consume more volume per singular drink that males, we do not believe that is enough information to make the claim that such behavior leads to more “intoxication” in females compared males, as we know that alcohol behaviors, metabolism, and uptake/clearance all differ significantly by sex and are contributing factors towards defining an intoxication state. We’ve amended the manuscript to remove any language of referencing these drinking behaviors as identical to clear up the language.

      No conclusions regarding the photometry results can be drawn based on the histology provided. Localization and quantification of viral expression are required at a minimum to verify the efficacy of the dual virus approach (the panel in Supplementary Figure 1 is very small and doesn't allow terminals to be seen, and there is no quantification). Whether these might differ by sex is also necessary before we can be confident about any sex differences in neural activity. 

      We provide hit maps of our fiber placements and viral injection centers, as we have, and many other investigators do regularly for publication based on histological verification. Figure 1A clearly shows the viral strategy taken to label AIC to DLS projections with GCaMP7s, and a representative image shows green GCaMP positive terminals below the fiber placement. Considering the experiments, animals without proper viral expression did not display or had very little GCaMP signal, which also serves as an additional expression-based control in addition to typical histology performed to confirm “hits”. These animals with poor expression or obvious misplacement of the fiber probes were removed as described in the methods. Further, we also report our calcium signals as z-scored differences in changes in observed fluorescence, thus we are comparing scaled averages of signals across sexes, and days, which helps minimize any differences between “low” or “high” viral transduction levels at the terminals, directly underneath the tips of the fibers.

      While the authors have some previous data on the AIC to DLS pathway, there are many brain regions and pathways impacted by alcohol and so the focus on this one in particular was not strongly justified. Since photometry is really an observational method, it's important to note that no causal link between activity in the pathway and drinking has been established here. 

      As mentioned above, this article is an eLife Research Advances article that builds on our previous AIC to DLS work published in eLife (Haggerty et al., 2022). Considering that this is a linked article, a justification for why this brain pathway was chosen is superfluous. In addition, an exhaustive review of all the different brain regions and pathways that are affected by binge alcohol consumption to justify this pathway seems more appropriate to a review article than an article such as this.  

      We make no claims that photometric recordings are anything but observational, but we did observe these signals to be different when time-locked to the beginning of drinking behaviors. We describe this link between activity in the pathway and drinking throughout the manuscript. It is indeed correlational, but just because it is not causal does not mean that our findings are invalid or unimportant.

      It would be helpful if the authors could further explain whether their modified lickometers actually measure individual licks. While in some systems contact with the tongue closes a circuit which is recorded, the interruption of a photobeam was used here. It's not clear to me whether the nose close to the spout would be sufficient to interrupt that beam, or whether a tongue protrusion is required. This detail is important for understanding how the photometry data is linked to behaviour. The temporal resolution of the GCaMP signal is likely not good enough to capture individual links but I think more caution or detail in the discussion of the correspondence of these events is required. 

      The lickometers do not capture individual licks, but a robust quantification of the information they capture is described in Godynyuk et al. 2019 and referenced in multiple other papers (Flanigan et al. 2023, Haggerty et al. 2022, Grecco et al. 2022, Holloway et al. 2023) where these lickometers have been used. However, individual lick tracking is not a requirement for tracking drinking behaviors more generally. The lickometers used clearly track when the animals are at the bottles, drinking fluids, and we have used the start of that lickometer signal to time-lock our photometry signals to drinking behaviors. We make no claims or have any data on how photometric signals may be altered on timescales of single licks. In regard to how AIC to DLS signals change on the second time scale when animals initiate drinking behaviors, we believe we explain these signals with caution and in context of the behaviors they aim to describe.

      Even if the pattern of drinking differs between males and females, the use of the word "strategy" implies a cognitive process that was never described or measured. 

      We use the word strategy to describe a plan of action that is executed by some chunking of motor sequences that amounts to a behavioral event, in this case drinking a fluid. We do not mean to imply anything further than this by using this specific word.

      Reviewer #2 (Public Review): 

      Summary: 

      This study looks at sex differences in alcohol drinking behaviour in a well-validated model of binge drinking. They provide a comprehensive analysis of drinking behaviour within and between sessions for males and females, as well as looking at the calcium dynamics in neurons projecting from the anterior insula cortex to the dorsolateral striatum. 

      Strengths: 

      Examining specific sex differences in drinking behaviour is important. This research question is currently a major focus for preclinical researchers looking at substance use. Although we have made a lot of progress over the last few years, there is still a lot that is not understood about sex-differences in alcohol consumption and the clinical implications of this. 

      Identifying the lateralisation of activity is novel, and has fundamental importance for researchers investigating functional anatomy underlying alcohol-driven behaviour (and other reward-driven behaviours). 

      Weaknesses: 

      Very small and unequal sample sizes, especially females (9 males, 5 females). This is probably ok for the calcium imaging, especially with the G-power figures provided, however, I would be cautious with the outcomes of the drinking behaviour, which can be quite variable. 

      For female drinking behaviour, rather than this being labelled "more efficient", could this just be that female mice (being substantially smaller than male mice) just don't need to consume as much liquid to reach the same g/kg. In which case, the interpretation might not be so much that females are more efficient, as that mice are very good at titrating their intake to achieve the desired dose of alcohol. 

      We agree that the “more efficient” drinking language could be bolstered by additional discussion in the text, and thus have added this to the manuscript starting at line 440.

      I may be mistaken, but is ANCOVA, with sex as the covariate, the appropriate way to test for sex differences? My understanding was that with an ANCOVA, the covariate is a continuous variable that you are controlling for, not looking for differences in. In that regard, given that sex is not continuous, can it be used as a covariate? I note that in the results, sex is defined as the "grouping variable" rather than the covariate. The analysis strategy should be clarified. 

      In lines 265-267, we explicitly state that the covariate factor was sex, which is mathematically correct based on the analyses we ran. We made an in-text error where we referred to sex as a grouping variable on Line 352, when it should have been the covariate. Thank you for the catch and we have corrected the manuscript.

      But, to reiterate, we are attempting to determine if the regression fits by sex are significantly different, which would be reported as a significant covariate. Sex is certainly a categorical variable, but the two measures at which we are comparing them against are continuous, so we believe we have the validity to run an ANCOVA here.

      Reviewer #3 (Public Review): 

      Summary: 

      In this manuscript by Haggerty and Atwood, the authors use a repeated binge drinking paradigm to assess how water and ethanol intake changes in male in female mice as well as measure changes in anterior insular cortex to dorsolateral striatum terminal activity using fiber photometry. They find that overall, males and females have similar overall water and ethanol intake, but females appear to be more efficient alcohol drinkers. Using fiber photometry, they show that the anterior insular cortex (AIC) to dorsolateral striatum projections (DLS) projections have sex, fluid, and lateralization differences. The male left circuit was most robust when aligned to ethanol drinking, and water was somewhat less robust. Male right, and female and left and right, had essentially no change in photometry activity. To some degree, the changes in terminal activity appear to be related to fluid exposure over time, as well as within-session differences in trial-by-trial intake. Overall, the authors provide an exhaustive analysis of the behavioral and photometric data, thus providing the scientific community with a rich information set to continue to study this interesting circuit. However, although the analysis is impressive, there are a few inconsistencies regarding specific measures (e.g., AUC, duration of licking) that do not quite fit together across analytic domains. This does not reduce the rigor of the work, but it does somewhat limit the interpretability of the data, at least within the scope of this single manuscript. 

      Strengths: 

      - The authors use high-resolution licking data to characterize ingestive behaviors. 

      - The authors account for a variety of important variables, such as fluid type, brain lateralization, and sex. 

      - The authors provide a nice discussion on how this data fits with other data, both from their laboratory and others'. 

      - The lateralization discovery is particularly novel. 

      Weaknesses: 

      - The volume of data and number of variables provided makes it difficult to find a cohesive link between data sets. This limits interpretability.

      We agree there is a lot of data and variables within the study design, but also believe it is important to display the null and positive findings with each other to describe the changes we measured wholistically across water and alcohol drinking.

      - The authors describe a clear sex difference in the photometry circuit activity. However, I am curious about whether female mice that drink more similarly to males (e.g., less efficiently?) also show increased activity in the left circuit, similar to males. Oppositely, do very efficient males show weaker calcium activity in the circuit? Ultimately, I am curious about how the circuit activity maps to the behaviors described in Figures 1 and 2. 

      In Figure 3C, we show that across the time window of drinking behaviors, that female mice who drink alcohol do have a higher baseline calcium activity compared to water drinking female mice, so we believe there are certainly alcohol induced changes in AIC to DLS within females, but there remains to be a lack of engagement (as measured by changes in amplitude) compared to males. So, when comparing consummatory patterns that are similar by sex, we still see the lack of calcium signaling near the drinking bouts, but small shifts in baseline activity that we aren’t truly powered to resolve (using an AUC or similar measurements for quantification) because the shifts are so small. Ultimately, we presume that the AIC to DLS inputs in females aren’t the primary node for encoding this behavior, and some recent work out of David Werner’s group (Towner et al. 2023) suggests that for males who drink, the AIC becomes a primary node of control, whereas in females, the PFC and ACC, are more engaged. Thus, the mapping of the circuit activity onto the drinking behaviors more generally represented in Figures 1 and 2 may be sexually dimorphic and further studies will be needed to resolve how females engage differential circuitry to encode ongoing binge drinking behaviors.

      - What does the change in water-drinking calcium imaging across time in males mean? Especially considering that alcohol-related signals do not seem to change much over time, I am not sure what it means to have water drinking change. 

      The AIC seems to encode many physiologically relevant, interoceptive signals, and the water drinking in males was also puzzling to us as well. Currently, we think it may be both the animals becoming more efficient at drinking out of the lickometers in early weeks and may also be signaling changes due to thirst states of taste associated with the fluid. While this is speculation, we need to perform more in-depth studies to determine how thirst states or taste may modulate AIC to DLS inputs, but we believe that is beyond the scope of this current study.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      Line 45 - states alcohol use rates are increasing in females across the past half-decade. I thought this trend was apparent over the past half-century? Please consider revising this. 

      According to NIAAA, the rates of alcohol consumption in females compares to males has been closing for about the past 100 years now, but only recently are those trends starting to reverse, where females are drinking similar amounts or more than males.

      Placing more of the null findings into supplemental data would make the long paper more accessible to the reader. 

      In reference to reviewer’s three’s point as well, there is a lot of data we present, and we hope for others to use this data, both null and positive findings in their future work. As formatted on eLife’s website, we think it is important to place these findings in-line as well.

      Reviewer #2 (Recommendations For The Authors): 

      In addition to the points raised about analysis and interpretation in the Public Review, I have a minor concern about the written content. I find the final sentence of the introduction "together these findings represent targets for future pharmacotherapies.." a bit unjustified and meaningless. The findings are important for a basic understanding of alcohol drinking behaviour, but it's unclear how pharmacotherapies could target lateralised aic inputs into dls. 

      There are on-going studies (CANON-Pilot Study, BRAVE Lab, Stanford) for targeted therapies that use technologies like TMS and focused ultrasound to activate the AIC to alleviate alcohol cravings and decrease heavy drinking days. The difficulty with these next-generation therapeutics is often targeting, and thus we think this work may be of use to those in the clinic to further develop these treatments. We agree that this data does not support the development of pharmacotherapies in a traditional sense, and thus have removed the word and added text to reference TMS and ultrasound approaches to bolster this statement in lines 101+.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We would like to thank the reviewers for their overall positive assessment of our manuscript. We have used their constructive feedback to substantially improve our manuscript as described below.

      Reviewer #1

      Evidence, reproducibility and clarity

      This study by Reyes at al is a well conducted analysis of memory B cell dynamics of Plasmodium falciparum (Pf) -specific B cell populations over the course of reducing Pf prevalence in ten Ugandan adults. The data is presented well and the authors provide compelling evidence that 1. There is an overall loss of Ag specific B cells with reduction in exposure and 2. Different antigens (MSP1/AMA-1 vs CIDRa-1) generate different flavors of long lived responses. However, additional clarity to the reader should be provided on certain topics (listed below).

      Major comments: 1. While the premise of the study (reduced Pf transmission due to the use of indoor residual spraying (IRS)) is an important one, I think the authors must take into consideration that 9/10 subjects had at least one Pf positive episode between Time Points 1 and 2 (Figure 1). Also, it looks from Fig 1 that some samples were collected at a time of Pf positive test (green squares), while in Table S1 none of the subjects have a positive parasite status at TP1.

      We recognize that most individuals had detectable parasitemia before and after time point (TP) 1. In our manuscript, we therefore do not report the time between TP1 and TP2, because we agree that the length of this time interval is not relevant in our study methodology. We only mention the time between the last known P. falciparum infection and collection of blood at the second time point. We use the sample collected at TP1 only as a representative sample obtained during a time with high P. falciparum exposure and do not make any claims based on the time between TP1 and TP2. The occurrence of infections after sample collection at TP1 confirms that parasite transmission was still high at this time. We have added a schematic of the relative levels of parasite transmission to Figure 1 to emphasize this.

      With respect to infection status, none of the donors were blood smear positive at TP1. However, as mentioned in Table S1, parasites were detected in three individuals using the more sensitive LAMP assay. These three individuals are therefore marked as parasite positive in Figure 1. Table S1 has been modified to highlight the parasite status of these three individuals.

      1. Figure S1A: What is trBC? Figure S1B: What is Strep? Are the strep positive cells also CIDR-1 positive and were they gated out? Why is APC used for MZ-1 and one of the MSP1-AMA-1 tetramers? Do these stainings come from multiple panels?

      All abbreviations of B cell populations were defined in the figure legend (for example, trBC stands for transitional B cells). To facilitate the interpretation of Figure S1, we have now included the definitions of these abbreviations in the figure.

      Strep stands for streptavidin, which has now also been clarified in the figure. In our gating strategy, we used the term “strep” to denote cells that bound to both CIDRa1 and MSP1/AMA1 tetramers, which we interpreted as non-specific binding to streptavidin or other components of the antigen tetramers. Only the “non-strep” cells were used to gate on antigen-specific cells. We have added this clarification to the figure legend.

      In panel B, we accidentally used the term MZ (for merozoite) to describe tetramers of the merozoite antigens MSP1 / AMA1. These labels are interchangeable, but to avoid confusion, MZ-1 has been changed to MSP1 / AMA1.

      1. Figure 3A: how many cells does the umap plot represent? Were there a total of 3555 Ag specific B cells that were non-naive (Figure 3E)?

      It is correct that there were a total of 3,555 antigen-specific B cells used for the clustering shown in panel A. This information has been added to Figure 3A.

      1. Could the authors comment on why in Figure 3, Ig isotype expression was not considered for clustering? This would allow for characterization of DN sub populations/ clusters in addition to the CD21-CD27- ABCs? It looks like IgD expression was low across the clusters (Figure 3D). Was this the case for the cells considered in this analysis, or was it excluded? If it was truly low expressed, how were the assessments in Figure 2 made?

      From prior experience, we know that Ig isotype information tends to dominate in the clustering, which would result in major clusters based on IgM, IgD, IgG, and IgA expression, not on expression of other markers. This is illustrated in the example below. The UMAP on the left shows clusters in green and red that consist of IgG+ and IgA+ B cells, respectively. The UMAP on the right shows that switched memory (swM) B cells and DN B cells are found in both IgG and IgA clusters. Because we were mainly interested in identifying different subsets of B cells, irrespective of Ig isotype, we did not include Ig isotype in the clustering. We have clarified in the manuscript that Ig isotypes were excluded from the analysis to prevent these from dominating the clustering:

      “Unsupervised clustering was then performed based on expression of all markers, except for Ig isotypes to prevent these from dominating the clustering.”

      IgD expression among cell clusters shown in Figure 3 was low because only non-naïve B cells were included in the analyis. The majority of non-naïve cells are class-switched memory B cells and DN B cells, which by definition do not express IgD (see gating strategy in Figure S1A). Figure 2 shows all B cell populations, including naïve B cells and non-naïve B cell populations (unswitched memory, switched memory, and DN), that were gated based on IgD and CD27 expression.

      5.Are there differences in these designations / phenotypes of DN populations of atBCs vs CD21-CD27- atBCs?

      In the malaria field, atypical B cells are typically defined as CD21-CD27-. The definition of DN2 B cells comes from the autoimmunity field and is stricter: IgD-CD27-CD21-CD11c+ B cells. In our manuscript, we define atypical B cells in a stricter way than typically done in the malaria field, following published guidelines for the identification of B cell subsets (https://doi.org/10.3389/fimmu.2019.02458). Using these guidelines, atypical B cells and DN2 B cells are phenotypically identical. We have added a reference to these published guidelines in the Results section:

      “Following published guidelines for the identification of B cell populations (21), total CD19+ B cells were divided into naïve B cells (IgD+CD27-), unswitched memory B cells (IgD+CD27+), switched memory B cells (IgD-CD27+), and double negative B cells (IgD-CD27-).”

      1. Lines 258-259: In considering only switched MBCs, what clusters from Figure 3a were included? There seem to be 2588 sw MBCs (Table S3, Figure 4). Do the remaining cells (967 cells) come from clusters 2, 5 and 6 (and excludes the atBC clusters)

      This analysis did not use the clusters presented in Figure 3, but instead used switched memory B cells gated as shown in Figure S1A. The reason for this is that the clusters in Figure 3 were generated using antigen-specific B cells and cannot be reproduced using non-antigen-specific B cells. Thus, it is not possible to separate all other B cells into the same six clusters. The only way to compare expression of certain markers between antigen-specific and non-antigen specific switched memory B cells is to gate on these populations manually. We have now tried to clarify this in the manuscript as follows:

      “we determined the percentages of CD95+ cells and CD11c+ cells among antigen-specific switched memory B cells and the total population of switched memory B cells (gated manually as shown in Figure S1A).”

      Minor comments: 1. Line 178- 179: Was there a specific measure of rate of decline made for these cells?

      We did not calculate a rate of decline of antigen-specific B cells for several reasons: 1) the time between TP1 and TP2 is not the same for all people in the study, 2) the time between last exposure and TP2 is not the same for all people, and 3) the rate of decline is most likely not linear and cannot accurately be estimated with only two data points. We have changed the wording of this sentence such that we do not use the word “rate”:

      “we did not observe a difference in the percentage of B cells with specificity for merozoite antigens or variant surface antigens that were lost.”

      In addition, we included the percentage of reduction in size in the paragraph before this section:

      “we observed that both populations decreased in size by about 50%, although these differences were not statistically significant.”

      Significance

      General assessment: Strengths: The authors provide evidence that the dynamics of antigen specific cells in humans can vary with exposure and with the nature of the antigen. They have nicely discussed the potential causes for these differences (Discussion), although they should include the findings of Ambegaonkar et al that ABCs in malaria may be restricted to responding specifically to membrane bound antigens (PMCID: PMC7380957)

      As suggested by the reviewer, we have added a paragraph to the Discussion section to discuss the results reported by Ambegaonkar et al. and how the difference between soluble vs. membrane-bound antigens may have an effect on how these antigens are perceived by B cells:

      The difference between soluble and membrane-bound antigens may also have a direct effect on how these antigens are perceived by B cells. Atypical B cells have been shown to be restricted to recognition of membrane-bound antigens (41). The interaction of a B cell with membrane-associated antigen allows the formation of an immunological synapse. Inhibitory receptors expressed by atypical B cells are excluded from this synapse, resulting in B cell receptor signaling and differentiation towards antibody-secreting cells (41). This could explain why atypical B cell subset 1 that expresses the highest levels of the inhibitory receptor FcRL5 is enriched for recognition of the CIDRα1 domain of membrane-bound protein PfEMP1. It should however be noted that soluble antigen can also be presented effectively in membrane-context by conventional dendritic cells, follicular dendritic cells, and subcapsular macrophages in secondary lymphoid organs, especially when it is part of an immune complex (reviewed in (42)). This would provide a route for atypical B cells to also respond to soluble merozoite antigens, such as MSP1 and AMA1.

      Limitations: 1. Outlined above, and as the authors also mention, a small sample size and homogenous population. 2. The evidence for reduced transmission is not clear, and the negative parasite tests for donors shown in Table S1 do not match with Figure 1 data. 3. Lack of IgD expression across clusters (Figure 3D- the authors will need to clarify this point) would require re-analysis of Figure 2 data

      1. We have provided clarification in response to the points raised by the reviewer.

      2. We believe there is clear evidence for reduced transmission, from a median of almost 2 infections per person per year prior to the implementation of IRS to a median parasite-free period of 1.7 years prior to sample collection at TP2. To further emphasize this, we have summarized the number of P. falciparum infections among the ten individuals included in this study (now included in Table S3):

      year

      Pf infections

      comment

      2012

      20

      2013

      19

      TP1

      2014

      20

      TP1

      2015

      8

      Start IRS

      2016

      0

      TP2

      This reduced parasite exposure is reflected in a decrease in immune activation as presented in Figure 2. We have clarified that the data in Table S1 did indeed match those shown in Figure 1.

      1. We have clarified that IgD expression is low in the clusters presented in Figure 3 because naïve B cells were excluded from this analysis.

      Advances: This study highlights the importance of studying antigen specific B cells in humans in the context of natural infection and the use of high-parameter tools such as spectral flow cytometry in assessing a large quantity of data from limited clinical samples. These data are important to inform better vaccine design. Studies in inbred animals can be quite limited or different from human B cell responses.

      Audience: This study will be of interest to malariologists and B cell immunologists. Atypical B cells are relevant to many infectious diseases and auto immunity, while the dynamics of memory B cells in malaria all be relevant to those interested in vaccine design against blood stage antigens.


      Reviewer #2

      Evidence, reproducibility and clarity

      Summary: In this study, the authors compared long-lived total and antigen (ag)-specific B-cell levels in a cohort of 10 Ugandan malaria patient samples that were collected before and after local reduction of P. falciparum transmission (pre/post-IRS). The focus is on the novel comparison of the two most common malaria antigens: merozoite antigens (MSP1/AMA1) and variant surface antigens (CIDRα1). Using high-parameter spectral flow cytometry, they also characterized the phenotype of the different populations of cells. Their main findings include 1) a decrease in activated but maintenance of resting ag-specific B-cells in the post-IRS sample and 2) CD95 and CD11c, as the only differentially expressed markers between MSP1/AMA1-specific and CIDRα1-specific long-lived memory B cells. Their further phenotypic characterization suggests functional consequences with MSP1/AMA1-specific B-cells being poised for rapid antibody-secreting cell differentiation while CIDRα1-specific B cells were enriched among a subset of atypical B cells that seem poised for antigen presentation (CD86+CD11chi/ AtBC1). Their findings consolidate and further expand our knowledge of long-lived B-cell levels during P. falciparum malaria and report/compare (for the first time to my knowledge) a differential selection of long-lived B-cell levels between these 2 antigen specificities. Overall, the manuscript is straightforward and well-written and the authors did a good job explaining their methodology, findings, and interpretations. I believe the major gap missing in this study is the reconciliation of long-lived antigen-specific B-cell levels with the serum antigen-specific antibody levels of these patients against the same 2 antigens (MSP1/AMA1 and CIDRα1) in the experiments and the discussion. The antibody data would strengthen their main argument and is the main missing piece for characterizing more completely the long-lived antigen-specific humoral responses. Below are my suggestions that would help improve the manuscript:

      Major comments: 1. Serum Anti-Pf antibodies: Do the authors have access to the serum/plasma of these patients? It would be important to correlate the total and ag-specific B-cell populations with levels of serum IgG antibodies against those specific Pf antigens (MSP1/AMA1 and CIDRα1) and total IgG levels to strengthen their point about long-lived humoral responses.

      To our understanding, the rationale for such an analysis would be that if IgG levels correlated with the size of a certain B cell population, it would suggest that this B cell population is implicated in the production of IgG against a particular antigen. While a correlation between the percentage of memory B cells and IgG titers has been observed for antigens from several viruses and bacteria (1-4), other studies have reported the absence of such a correlation (4-7). Similarly, for P. falciparum antigens, a moderate correlation between memory B cell abundance and IgG titers has been observed for some merozoite antigens, but not for others (8, 9). The lack of a correlation between the magnitude of the memory B cell and the antibody response fits with the prevailing model that memory B cells and plasma cells are two independently controlled arms of the humoral immune system (10, 11). Given the lack of strong evidence that the levels of IgG titers and memory B cells are interconnected, we do not think this analysis will be informative.

      An alternative analysis would be to study the contribution of B cell subsets to the production of IgG after re-exposure, similar to a recent study that identified T-bet+ memory B cells as the main contributors to antibody responses following influenza virus vaccination (12). Unfortunately, we are unable to perform this analysis in this study population, because only four of the individuals included in this study (spanning calendar years 2012 – 2016) were recruited into a follow up cohort (calendar years 2017 – 2019), and none of these four people were infected during this later time frame.

      We have however added this future direction to the Discussion section:

      To determine the contribution of different memory B cell subsets to the recall response against P. falciparum, it would be interesting to analyze IgG responses upon re-infection. However, none of the individuals included in this study experienced a recorded P. falciparum infection post-IRS, preventing us from performing such an analysis.

      References

      1. Crotty et al., J Immunol (2003), https://doi.org/10.4049/jimmunol.171.10.4969
      2. Quinn et al., J Infect Dis (2004), https://doi.org/10.1086/423937
      3. Cohen et al., Cell Rep Med (2021), https://doi.org/10.1016/j.xcrm.2021.100354
      4. Amanna et al., New England J Med (2007), https://doi.org/10.1056/nejmoa066092
      5. Leyendeckers et al., Eur J Immunol (1999), https://doi.org/10.1002/(sici)1521-4141(199904)29:04%3C1406::aid-immu1406%3E3.0.co;2-p
      6. Nanan et al., Vaccine (2001), https://doi.org/10.1016/s0264-410x(01)00328-0
      7. Goel et al., Science Immunol (2021), https://doi.org/10.1126/sciimmunol.abi6950
      8. Rivera-Correa et al., eLife (2019), https://doi.org/10.7554/elife.48309
      9. Jahnmatz et al., Front Immunol (2021), https://doi.org/10.3389/fimmu.2020.619398
      10. Weisel et al., Immunity (2016), https://doi.org/10.1016/j.immuni.2015.12.004
      11. Shinnakasu et al., Nat Immunol (2016), https://doi.org/10.1038/ni.3460
      12. Nellore et al., Immunity (2023), https://doi.org/10.1016/j.immuni.2023.03.00
        1. Correlation between populations and initial parasite load: Are the levels between any of the populations at any time point correlated significantly in any way? If the statistical power/N allows it, please perform a correlation array between all populations using all samples both total and ag-specific and initial parasite load.

      We agree that this analysis could be very interesting. However, in most recorded infection cases, parasitemia was submicroscopic and parasite load was not reported. Information about parasite density in the blood prior to TP1 is available for only half of the individuals in this study. In these people, the last known parasite density was recorded between three months to two years prior to TP1. Given the small number of individuals for whom these data are available and the large variation in time between parasitemia and sampling, we do not have sufficient data to perform this analysis.

      1. Figure 2: Why were total and ag-specific plasmablasts/plasma cells not included in this figure? Please include to compare levels in these two time points.

      We did not include the levels of total and antigen-specific plasmablasts (PBs) in Figure 2 because the percentages of PBs are relatively low, and very few antigen-specific PBs were detected. We have now included the levels of total PBs in Figure 2A and the percentages of antigen-specific PBs in Supplementary Figure 2. The percentage of PBs among total B cells decreased by about 50% between TP1 and TP2, in line with a decrease in immune activation.

      1. Healthy baseline: The study is missing "healthy" controls as a reference. I presume this is because each patient is its uninfected control in the post-IRS sample. In methods, they mentioned they used two naïve-USA B-cells as technical controls. It would be important to include and maybe expand (to match age and gender)on that specific data from those controls as supplementary figures to support their findings:
      2. Show negative Tetramer staining for these samples (to understand the background).
      3. Levels of all the USA controls total B cell populations and compared to the pre/post-IRS samples to understand "baseline" or "non-endemic" control levels.
      1. We have included flow cytometry plots of tetramer staining for the non-P. falciparum exposed donors (pooled B cells from two US donors) to show the level of background for these probes. These plots are shown in Figure S1B.

      2. We have used data from P. falciparum-naive US donors (n = 7) that we generated for a prior study to show the average level of total B cell populations in Figure 2, and the percentage of switched memory B cells that express CD95, CD11c, T-bet, and FcRL5 in Figure 4.

      Minor comments: 1. In the gating strategy (S1), please include the percentage of each population of that representative example.

      We have added the percentages for all gated populations to Figure S1.

      1. For Figure 2, since not every panel has the same N, please include the N for each panel in the figure or a supplementary table.

      All panels in Figure 2 show data for all 10 individuals. However, since some data points are overlapping, it may appear that some panels show data from fewer individuals. Specifically, no antigen-specific DN1 cells were detected pre- and post-IRS for four individuals. These data points therefore overlap and are not visible. To avoid confusion, we had mentioned this in the legend to Figure 2 (see text in orange). We have tried to further clarify this by emphasizing in the figure legend that data from all 10 individuals are shown (see text in red):

      Figure 2: Abundance of total and antigen-specific B cell subsets in the circulation during high parasite transmission and in the absence of P. falciparum exposure. The percentage of B cell subsets among circulating B cells is shown for total B cells (A), MSP1/AMA1-specific B cells (B), and CIDRα1-specific B cells (C). For MSP1/AMA1-specific B cells and CIDRα1-specific B cells, the total percentage among all circulating B cells is also shown (right most graphs in each panel). All panels show data for all 10 individuals. In panels B and C, no antigen-specific DN1 cells were detected pre- and post-IRS for four individuals. These data points therefore overlap and are not clearly visible. Differences between groups were evaluated using a Wilcoxon matched-pairs signed-rank test. P values

      1. Please mention the history of past and chronic co-infections of these 10 patients. Particularly if they had any other active or recent infection when the sample was taken.

      Four individuals had active or recent infections in the three months prior to sample collection, with upper respiratory tract infections being the most common. This information has been included in Table S3, with a reference to these data in the Methods section. We have also included a link to ClinEpiDB where additional information about the cohort participants, including medical history, can be found.

      1. Discussion: further discussion with relevant literature on the following points is needed to consolidate cellular and antibody studies: a. Whether the presence of long-lived ag-specific B-cell responses correlates with sustained levels of IgG against Pf antigens. b. The different types of antibodies (protective/pathogenic) that these different B-cell populations have been reported to produce during malaria.

      a. We have added the following paragraph to the Discussion section:

      To determine how these different long-lived B cell subsets contribute to protection against P. falciparum infection, it would be important to analyze the connection between the cellular repertoire and plasma IgG. For P. falciparum antigens, a moderate correlation between memory B cell abundance and IgG titers has been observed for some merozoite antigens, but not for others (28, 44). This is in line with studies for other pathogens, that showed a correlation between the percentage of memory B cells and IgG titers for antigens from several viruses and bacteria (48-51), while other studies have reported the absence of such a correlation (51-54). The lack of a correlation between the magnitude of the memory B cell and the antibody response fits with the prevailing model that memory B cells and plasma cells are two independently controlled arms of the humoral immune system (55, 56). To determine the contribution of different memory B cell subsets to the recall response against P. falciparum, it would be interesting to analyze IgG responses upon re-infection. However, none of the individuals included in this study experienced a recorded P. falciparum infection post-IRS, preventing us from performing such an analysis.

      b. We have added additional discussion about the types of antigens recognized by atypical B cells to the Discussion section:

      Prior studies have shown that while atypical B cells harbor reactivity against P. falciparum antigens (9,18), they are also enriched for autoreactivity (43). Specifically, atypical B cells produce antibodies against the membrane lipid phosphatidylserine, which can induce the destruction of uninfected erythrocytes and contribute to anemia (44).

      Significance

      General assessment:

      Strengths: - Novelty in contrasting two different types of P. falciparum antigen responses at the B-cell level. - The use of tetramers is a cutting-edge technique to assess this question. - Analyses were thorough and found contrasting differences in antigen-specific B-cell populations (atypical vs classical) between these 2 antigens for the first time (to my knowledge). - Well-written manuscript with clear data, methodology, and conclusions

      Limitations: - Missing serum/plasma antibody data to support their claim about long-lived humoral responses and reconciliation of ag-specific B-cell levels and ag-specific antibody levels in experiments and discussion. - Limited N of 10 patients of the same gender (female), some population analyses had even fewer samples. - Missing baseline levels for non-endemic uninfected control for B-cell populations for comparison.

      • We have included a discussion about the correlation between plasma antibody and memory B cell responses in the Discussion section.

      • We have clarified that some data points overlap in Figure 2, giving the impression that data from fewer than 10 individuals were shown.

      • We have included baseline levels of 1) tetramer reactivity (Figure S1), 2) the size of B cell populations (Figure 2), and 3) expression of select markers (Figure 4).

      Advance: The study consolidates antigen-specific responses with the discovery of recently characterized populations (ex. atypical) and finds novel differences between two types of malaria antigen responses at the B-cell level and between specific populations responding differentially to these antigens. The findings are incremental (role of B-cell population in malaria-specific responses), conceptual (contrasting two types of B-cell antigen responses in the same infection), and clinical (finding significant differences in patients).

      Audience: This study will attract basic B-cell immunology scientists, infectious disease clinicians/scientists, vaccinologists, and both basic malaria immunology and clinical audiences.

      Reviewer expertise: Malaria, immunology, antibodies.

      __Reviewer #3 __

      Evidence, reproducibility and clarity: The authors analysed the antigen specificity and phenotypes of B cells during high P falciparum transmission and after a period of successful malaria control with IRS in Uganda. The gap between the two sampling time points is close to two years.

      They use antigen probes for MSP1/AMA1 and CIDRalpha1, two antigens expressed at different stages of P. falciparum life cycle-merozoites and infected red cells, respectively. While MSP1/AMA1 are involved in the parasite's invasion of red blood cells, CIDRalpha1 is a domain of PFEMP1, a large family of antigenically variant proteins that mediates the sequestration of infected red cells in small blood vessels.

      They found that the percentage of activated antigen-specific memory B cells declined with malaria control. However, detectable frequencies of antigen-specific memory B cells were retained after malaria control, which confirms earlier reports.

      However, they also demonstrate that the phenotypic characteristics of memory B cells are associated with antigen specificity. The retained MSP1/AMA1-specific B cells were mostly CD95+CD11c+ memory B cells and FcRL5-Tbet- atypical B cells. In contrast, the retained CIDRalpha1-specific B cells were enriched among a subpopulation of atypical B cells.

      These findings suggest differences exist in how the MSA1/AMA1 and CIDRalpha1 y are recognised and processed by the human immune system and how the immune response responds to them upon re-infection with P falciparum.

      Major issues affecting the conclusion: The findings and conclusions of this study, whilst positively exciting and informative, are based on the analyses of very few cells (at times). Even the authors themselves acknowledge this. I expect the authors to address this issue by toning down their reporting and conclusions (where appropriate). Ultimately, we need to have the confidence that these results are reproducible.

      We appreciate the reviewer’s concern about the numbers of antigen-specific cells included in our analyses, which is an inherent limitation of this approach. However, we would like to point out that most analyses included a substantial number of antigen-specific B cells:

      Figure 3D: 158 to 2,038 cells per group

      Figure 4: an average of 26 to 184 cells per donor

      Figure 5B: 55 to 508 cells per group

      Figure 5C: 10 to 334 cells per group*

      * The group with 10 cells is an outlier here. All other groups contain at least 104 cells. Because this one condition had such a small number of cells, we specifically mentioned this number in the text.

      The numbers of cells for analyses shown in Figures 3D and 5B were already included in the figures. All the other numbers were mentioned in Table S3. To further clarify the number of cells included in each analysis, we have added the number of cells to Figures 4 and 5C.

      To tone down our reporting, we have rephrased some of our conclusions, and now present our section headers in past tense to make these statements reflect our observation instead of a definitive conclusion. For example:

      Conclusion: “The loss of MSP1/AMA1-specific and CIDRα1-specific B cells in the circulation was similar, but the phenotype of long-lived MSP1/AMA1-specific and CIDRα1-specific B cells appeared to differ.”

      Section header: “Long-lived MSP1/AMA1-specific and CIDRα1-specific B cells differed in phenotype”

      Finally, in the Discussion section, we have added a statement to our paragraph describing the limitations of our study to stress the importance of reproducing our findings:

      All in all, it will be important to perform additional studies of the phenotype and functionality of long-lived B cells with specificity for P. falciparum antigens to reproduce and extend our findings.

      Minor comments: Figure 2D-I found this figure, and its presentation is unclear. Notably, using contour plots doesn't allow the reader to appreciate the density of the cells being presented.

      To facilitate the interpretation of this figure, we have changed the plot type to a contour plot with density color gradient, and added the number of cells shown in each plot. (Please note that this panel has been renumbered to C.)

      Figure 4 - label the y-axis.

      The y-axis was labeled with “%”, which we have expanded to “% of B cells expressing marker of interest”.

      __Significance: __The study design-as outlined-allowed for the analyses of the specificity and phenotypic characteristics of residual P falciparum-specific memory B cells after 1.7 years of little to no P falciparum exposure. The cell phenotyping methods presented are also appropriate. However, antigen-specific cells are rare in blood circulation, and as the authors themselves acknowledge in the discussion, some of the results are based on very few cells. This means we cannot be sure all the results presented are reproducible.

      Previous studies demonstrated that P falciparum memory B cells are maintained long after cessation of antigen exposure. However, few (if any) detailed antigen-specific and phenotypic analyses of the characteristics of P falciparum-specific memory B cells following a long period of no exposure exist. Thus, this study presents an incremental advance in our knowledge. In addition, the association of antigen specificity with cell phenotypes is a new concept in malaria immunology. The research presented will greatly interest infectious disease immunologists and vaccinologists.

      I am an infectious disease immunologist with substantial experience in malaria immunology.

    1. Recognize the difference between casual, formal, and urgent registers. Learn how to use each in the classroom and make your shifts between the registers obvious.

      I think that this is a very important point. Being able to understand the difference between formal and informal lessons and tones, as well as posture and facial expressions is a very important skill that teachers need to have, as it is important skill for anyone to have. As teachers and educators, we are role models to our students, and we are meant to exemplify what it is to be a positive contributing member of society. in order for that we need to be able to represent both formal and informal ways of communication and when to be formal or informal communicating. For instance, if we are doing a lesson over business attire and resumes, the instructor may want to be more formal, but if the instructor is teaching about Topic, such as fun or games, the lesson may be less formal. Is important for an educator to represent both forms of communication, as it allows students to understand that there is more to life than just being formal or informal.

    1. We further identified HC-HA/PTX3 as the primary bioactive component responsible for pain inhibition.

      This is such an exciting overall result. I'm wondering if you've tested/identified any other bioactive compounds from the same material in addition to HC-HA/PTX3, and/or whether you think there may be other significant contributors to pain inhibition from human birth tissues.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the Authors):

      Arpin is a negative regulator of Arp2/3 activity. Here the authors investigated the role of arpin in vascular permeability using appropriate cultured human and murine endothelial monolayers and successfully developed an arpin KO mice. The results clearly show arpin is expressed in blood vessels (not clear about lymphatics but given leaky vessels, one wonders). The data show that arpin is important for vessel barrier function yet its genetic loss still leads to viable animals in the C57Blk strain albeit with leaky blood vessels. The data are well presented and controls are included. However, the evidence that arpin loss/knockdown causes increased actin functions independent of Arp2/3 is based on pharmacological data and is indirect. Authors conclude ROCK1 activity is elevated and the cause of lost barrier function by arpin reduction. I do have one suggestion for the authors that involves a new study in these animals, which could strengthen their proposed mechanism that the vascular defects are independent of Arp2/3 activity and rather involve ROCK1 but not ZIPK.

      (1) If arpin is working via ROCK1, as the authors infer, perhaps treatment of arpin-/- mice with ROCK1 inhibitor(s) would attenuate vessel permeability while HS38 treatment would not. This type of study would strengthen the conclusion that ROCK1, but not ZIPK, was involved. Including CK666 if active in mouse cells, could also be tested.

      To analyze vascular permeability in vivo, we performed Miles assays in arpin+/+ and arpin-/- mice using the inhibitors of ROCK1 (Y27632) and ZIPK (HS38). Both Y27632 and HS38 reduced the permeability caused by absence of arpin (new Figure 8E), thus confirming what we observed before in HUVEC (shown in old Figure 7). CK666 did not change the permeability in arpin-/- mice, thus confirming the conclusion that arpin does not regulate vascular permeability via Arp2/3 but rather via ROCK1/ZIPK-mediated stress fiber formation (page 13).

      (2) Fig 5. Data demonstrate that Arpin regulates actin filament formations and permeability in HUVEC, but this does not demonstrate its occurring in an Arp2/3-independent manner. If I understand your data this is indirect evidence. One needs more information to reach this conclusion. Can authors measure Arp2/3 directly and then test whether arpin knockdown and CK666 have the same capacity to reduce Arp2/3 activity in vitro.

      Arp2/3 activity cannot be measured directly. The commonly used approach is therefore Arp2/3 inhibition via CK666. Our new in vivo permeability assays (see answer above) together with our HUVEC data in Figure 5 clearly show that CK666 does not have the same effect as arpin knock-down, and neither does CK666 rescue the effects of arpin deficiency in vitro and in vivo. Together, these findings clearly suggest that arpin does not regulate endothelial permeability via Arp2/3.

      Minor issues:

      Fig 2, 3 or other Figs: In presented western blots, all proteins should include appropriate mw labels.

      Thank you. Molecular weights have been added to all Western blots.

      Fig 2. Suggest that like your arpin analysis, amounts of AP1AP and PICK1 at baseline and TNF-treatment by blotting should be included. A minor point is yellow color for labels does not stand out and should be changed to another color - as the authors used in Fig 2C.

      We have included Western blots and quantifications for PICK1 in Figure S1A and S1C. An antibody against AP1AP was unfortunately not available.

      The yellow color has been changed to purple for better visibility.

      Fig 2C. The arpin loss at junctions and actin filaments (Figure 2C) is very minor even though it reached statistical significance. It really is not an obvious loss from your 3 color overlay.

      Thank you. It is indeed hard to see. We included now magnifications in Figure 2C that better show the loss of arpin at junctions.

      Fig 8, text 303-310 shows in vivo evidence of lung congestion and edema. Also appear to be inflammatory cells present in images. If these are inflammatory cells, it begs the question if these mice have an abnormal complete blood cell count (CBC). Suggest adding CBC data for arpin-/- vs control arpin +/+ mice in Fig 8.

      The pathologist observed the presence of lymphocytes and macrophages, indicating the possibility of a (low level) chronic inflammation in arpin-deficient lungs. However, we now also performed hemograms of the mice (new Table S2) that showed no significant difference in the blood cell count of arpin-/- and arpin+/+ mice. Thus, the presence of lymphocytes and macrophages cannot be explained simply by higher leukocyte counts (page 14).

      Line 289, pg 13, Fig 8: Lung levels of arpin are not shown in Fig 8B. Authors must mean another fig?

      Sorry. Arpin protein levels in lungs are shown in figure 8C. This has been corrected on page 13.

      Reviewer #2 (Recommendations For The Authors):

      This is a solid piece of work that adds a small amount of additional factual information to our understanding of cell-cell junctions. The experimental work is of good quality and is sufficient to support the aims of the paper. I think the value of the work is to add this small amount of new knowledge to the archive. I do not believe that further experimental work would add to the paper - it's done. But this doesn't have the impact or completeness for this journal. It belongs in a for-the-record journal.

      We appreciate your overall positive evaluation and your comments that our study represents a solid piece of work with good quality experimental work. However, we are not sure what you mean by “it belongs in a for-the-record journal”. Anyway, we agree that our study does not reveal a complete mechanism of how arpin regulates actin stress fibers, but we respectfully disagree that our study only adds a “small amount of additional factual information”. We may not have been very clear about it, but we present in this study several new discoveries and although some are descriptive in nature that does not make them trivial or less important. We provide for the first time experimental evidence that: 1) arpin is expressed in endothelial cells in vitro and in vivo, and downregulated during inflammation; 2) presence of arpin is required for proper endothelial permeability regulation and junction architecture; 3) arpin exerts these functions in an Arp2/3-independent manner; 4) arpin controls actomyosin contractility in a ROCK1- and ZIPK-dependent fashion; 5) arpin knock-out mice are viable and breed and develop normally but show histological characteristics of a vascular phenotype and increased vascular permeability that can be rescued by inhibition of ROCK1 and ZIPK. The fact that arpin fulfills its functions in endothelial cells independently of the Arp2/3 complex is of special relevance as previously the only known function of arpin was the inhibition of the Arp2/3 complex. Thus, we believe that our study adds a significant amount of new information to the literature. Thank you very much.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Summary Responses: Besides the WT allele, equivalent to the mouse TMEM173 gene, the human TMEM173 gene has two common alleles: the HAQ and AQ alleles carried by billions of people. The main conclusions and interpretation, summarized in the Title and Abstract, are i) Different from the WT TMEM173 allele, the HAQ or AQ alleles are resistant to STING activation-induced cell death; ii) STING residue 293 is critical for cell death; iii) HAQ, AQ alleles are dominant to the SAVI allele; iv) One copy of the AQ allele rescues the SAVI disease in mice. We propose that STING research and STING-targeting immunotherapy should consider human TMEM173 heterogeneity. These interpretations and conclusions were based on Data and Logic. We welcome alternative, logical interpretations and collaborations to advance the human TMEM173 research.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This manuscript by Aybar-Torres et al investigated the effect of common human STING1 variants on STING-mediated T cell phenotypes in mice. The authors previously made knock-in mice expressing human STING1 alleles HAQ or AQ, and here they established a new knock-in line Q293. The authors stimulated cells isolated from these mice with STING agonists and found that all three human mutant alleles resist cell death, leading to the conclusion that R293 residue is essential for STING-mediated cell death (there are several caveats with this conclusion, more below). The authors also bred HAQ and AQ alleles to the mouse Sting1-N153S SAVI mouse and observed varying levels of rescue of disease phenotypes with the AQ allele showing more complete rescue than the HAQ allele. The Q293 allele was not tested in the SAVI model. They conclude that the human common variants such as HAQ and AQ have a dominant negative effect over the gain-of-function SAVI mutants.

      Strengths:

      The authors and Dr. Jin's group previously made important observations of common human STING1 variants, and these knock-in mouse models are essential for understanding the physiological function of these alleles.

      Weaknesses:

      However, although some of the observations reported here are interesting, the data collectively does not support a unified model. The authors seem to be drawing two sets of conclusions from in vitro and in vivo experiments, and neither mechanism is clear. Several experiments need better controls, and these knock-in mice need more comprehensive functional characterization.

      (1) In Figure 1, the authors are trying to show that STING agonist-induced splenocytes cell death is blocked by HAQ, AQ and Q alleles. The conclusion at line 134 should be splenocytes, not lymphocytes. Most experiments in this figure were done with mixed population that may involve cell-to-cell communication. Although TBK1-dependence is likely, a single inhibitor treatment of a mixed population is not sufficient to reach this conclusion.

      We greatly appreciate Reviewer 1's insights. We changed the “lymphocytes” to “splenocytes” (line 133) as suggested. We respectfully disagree with Reviewer 1’s comments on TBK1. First, we used two different TBK1 inhibitors: BX795 and GSK8612. Second, because BX795 also inhibits PDK1, we used a PDK1 inhibitor GSK2334470; Third, both BX795 and GSK8612 completely inhibited diABZI-induced splenocyte cell death (Figure 1B) (lines 128 – 133). The logical conclusion is “TBK1 activation is required for STING-mediated mouse spleen cell death ex vivo”. (line 117).

      Our discovery that the common human TMEM173 alleles are resistant to STING activation-induced cell death is a substantial finding. It further strengthens the argument that the HAQ and AQ alleles are functionally distinct from the WT allele 1-3. We wish to underscore the crucial message of this study-that 'STING research and STING-targeting immunotherapy should consider TMEM173 heterogeneity in humans' (line 37), which has been largely overlooked in current STING clinical trials 4.

      Regarding STING-Cell death, as we stated in the Introduction (lines 65-77). i) STING-mediated cell death is cell type-dependent 5-7 and type I IFNs-independent 5,7,8. ii) The in vivo biological significance of STING-mediated cell death is not clear 7,8. iii) The mechanisms of STING-Cell death remain controversial. Multiple cell death pathways, i.e., apoptosis, necroptosis, pyroptosis, ferroptosis, and PANoptosis, are proposed 7,9,10. SAVI/HAQ, SAVI/AQ prevented lymphopenia and alleviated SAVI disease in mice. Thus, the manuscript provides some answers to the biological significance of STING-cell death in vivo, which is new. Regarding the molecular mechanism, splenocytes from Q293/Q293 mice are resistant to STING cell death. The logical conclusion is that the amino acid 293 is critical for STING cell death (line 29).

      Extensive studies are needed, beyond the scope of this manuscript, on how aa293 and TBK1 mediates STING-Cell death to resolve the controversies in the STING-cell death fields (e.g. apoptosis, necroptosis, pyroptosis, ferroptosis, and PANoptosis).

      (2) Q293 knock-in mouse needs to be characterized and compared to HAQ and AQ. Is this mutant expressed in tissues? Does this mutant still produce IFN and other STING activities? Does the protein expression level altered on Western blot? Is the mutant protein trafficking affected? In the authors' previous publications and some of the Western blot here, expression levels of each of these human STING1 protein in mice are drastically different. HAQ and AQ also have different effects on metabolism (pmid: 36261171), which could complicate interoperation of the T cell phenotypes.

      These are very important questions that require rigorous investigations that are beyond the scope of this manuscript. This manuscript, titled “The common TMEM173 HAQ, AQ alleles rescue CD4 T cellpenia, restore T-regs, and prevent SAVI (N153S) inflammatory disease in mice” does not focus on Q293 mice. We have been investigating the common human TMEM173 alleles since 2011 from the discovery 11 , mouse model 1,3, human clinical trial 2, and human genetics studies 3. This manuscript is another step towards understanding these common human TMEM173 alleles with the new discovery that HAQ, AQ alleles are resistant to STING cell death.

      (3) HAQ/WT and AQ/WT splenocytes are protected from STING agonist-induced cell death equally well (Figure 1G). HAQ/SAVI shows less rescue compared to AQ/SAVI. These are interesting observations, but mechanism is unclear and not clearly discussed. E.g., how does AQ protect disease pathology better than HAQ (that contains AQ)? Does Q293 allele also fully rescue SAVI?

      In this manuscript, Figure 6 shows AQ/SAVI had more T-regs than HAQ/SAVI (lines 251 – 261). In our previous publication on HAQ, AQ knockin mice, we showed that AQ T-regs have more IL-10 than HAQ T-regs 3. Thus, increased IL-10+ Tregs in AQ mice may contribute to an improved phenotype in AQ/SAVI compared to HAQ/SAVI. However, we are not excluding other contributions (e.g. metabolic difference) (lines 332-335). We are exploring these possibilities.  

      (4) Figure 2 feels out of place. First of all, why are the authors using human explant lung tissues? PBMCs should be a better source for lymphocytes. In untreated conditions, both CD4 and B cells show ~30% dying cells, but CD8 cells show 0% dying cells. This calls for technical concerns on the CD8 T cell property or gating strategy because in the mouse experiment (Figure 1A) all primary lymphocytes show ~30% cell death at steady-state. Second, Figure 2C, these type of partial effect needs multiple human donors to confirm. Three, the reconstitution of THP1 cells seems out of place. STING-mediated cell death mechanism in myeloid and lymphoid cells are likely different. If the authors want to demonstrate cell death in myeloid cells using THP1, then these reconstituted cell lines need to be better validated. Expression, IFN signaling, etc. The parental THP1 cells is HAQ/HAQ, how does that compare to the reconstitutions? There are published studies showing THP1-STING-KO cells reconstituted with human variants do not respond to STING agonists as expected. The authors need to be scientifically rigorous on validation and caution on their interpretations.

      Figure 2 is necessary because it reveals the difference between mouse and human STING cell death, which is critical to understand STING in human health and diseases (lines 160-161). Figure 2A-2B showed that STING activation killed human CD4 T cells, but not human CD8 T cells or B cells. This observation is different from Figure 1A, where STING activation killed mouse CD4, CD8 T cells, and CD19 B cells, revealing the species-specific STING cell death responses. Regarding human CD8 T cells, as we stated in the Discussion (lines 323-325), human CD8 T cells (PBMC) are not as susceptible as the CD4 T cells to STING-induced cell death 8. We used lung lymphocytes that showed similar observations (Figure 2A). For Figure 2C, we used 2 WT/HAQ and 3 WT/WT individuals (lines 738-739). We generate HAQ, AQ THP-1 cells in STING-KO THP-1 cells (Invivogen,, cat no. thpd-kostg) (lines 380-387).

      A recent study found that a new STING agonist SHR1032 induces cell death in STING-KO THP-1 cells expressing WT(R232) human STING 10 (line 182). SHR1032 suppressed THP1-STING-WT(R232) cell growth at GI50: 23 nM while in the parental THP1-STING-HAQ cells, the GI50 of SHR1032 was >103 nM 10. Cytarabine was used as an internal control where SHR1032 killed more robustly than cytarabine in the THP1-STING-WT(R232) cells but much less efficiently than cytarabine in the THP-1-STING-HAQ cells 10. 

      Our manuscript rigorously uses mouse splenocytes, human lung lymphocytes, THP-1 reconstituted with HAQ, AQ, and HAQ/SAVI, AQ/SAVI mice, to demonstrate that the common human HAQ, AQ alleles are resistant to STING cell death in vitro and in vivo.

      We agree with Reviewer 1 that STING-mediated cell death mechanisms in myeloid and lymphoid cells may be different and likely contribute to the different mechanisms proposed in STING cell death research 7,9,10. Our study focuses on the in vivo STING-mediated T cellpenia.

      (5) Figure 2G, H, I are confusing. AQ is more active in producing IFN signaling than HAQ and Q is the least active. How to explain this?

      We stated in the Introduction that “AQ responds to CDNs and produce type I IFNs in vivo and in vitro 3,12,13 ”(line 92-93). We reported that the AQ knock in mice responded to STING activation 3. We previously showed that there was a negative natural selection on the AQ allele in individuals outside of Africa 3. 28% of Africans are WT/AQ but only 0.6% East Asians are WT/AQ 3. In contrast, the HAQ allele was positively selected in non-Africans 3. Investigation to understand the mechanisms and biological significance of these naturally selected human TMEM173 alleles has been ongoing in the lab.

      (6) The overall model is unclear. If HAQ, AQ and Q are loss-of-function alleles and Q is the key residue for STING-mediated cell death, then why AQ is the most active in producing IFN signaling and AQ/SAVI rescues disease most completely? If these human variants act as dominant negatives, which would be consistent with the WT/het data, then how do you explain AQ is more dominant negative than HAQ?

      In this manuscript, Figure 6 shows AQ/SAVI had more T-regs than HAQ/SAVI (lines 251 – 261). In our previous publication on HAQ, AQ knockin mice, we showed that AQ T-regs have more IL-10 and mitochondria activity than HAQ T-regs 3. Nevertheless, we are not excluding other contributions (e.g. metabolic difference) by the AQ allele (lines 332-335). Last, we used modern human evolution to discover the dominance of these common human STING alleles. In modern humans outside Africans, HAQ was positively selected while AQ was negatively selected 3. However, AQ is likely dominant to HAQ because there is no HAQ/AQ individuals outside Africa. The genetic dominance of common human TMEM173 allele is a new concept. More investigation is ongoing.

      (7) As a general note, SAVI disease phenotypes involve multiple cell types. Lymphocyte cell death is only one of them. The authors' characterization of SAVI pathology is limited and did not analyze immunopathology of the lung.

      Both radioresistant parenchymal and/or stromal cells and hematopoietic cells influence SAVI pathology in mice 14,15. Nevertheless, the lack of CD 4 T cells, including the anti-inflammatory T-regs, likely contributes to the inflammation in SAVI mice and patients 16. We characterized lung function, lung inflammation (Figure 4), lung neutrophils, and inflammatory monocyte infiltration (Figure S5) (lines 232-235).

      (8) Line 281, the discussion on HIV T cell death mechanism is not relevant and over-stretching. This study did not evaluate viral infection in T cells at all. The original finding of HAQ/HAQ enrichment in HIV/AIDS was 2/11 in LTNP vs 0/11 in control, arguably not the strongest statistics.

      Several publications have linked STING to HIV pathogenesis 17-22  (line 271). CD4 T cellpenia is a hallmark of AIDS. The manuscript studies STING activation-induced T cellpenia in vivo. It is not stretching to ask, for example, does preventing STING T cell death (e.g HAQ, AQ alleles) can restore CD4 T cell counts and improve care for AIDS patients?

      Reviewer #2 (Public Review):

      Aybar-Torres and colleagues utilize common human STING alleles to dissect the mechanism of SAVI inflammatory disease. The authors demonstrate that these common alleles alleviate SAVI pathology in mice, and perhaps more importantly use the differing functionality of these alleles to provide insight into requirements of SAVI disease induction. Their findings suggest that it is residue A230 and/or Q293 that are required for SAVI induction, while the ability to induce an interferon-dependent inflammatory response is not. This is nicely exemplified by the AQ/SAVI mice that have an intact inflammatory response to STING activation, yet minimal disease progression. As both mutants seem to be resistant STING-dependent cell death, this manuscript also alludes to the importance of STING-dependent cell death, rather than STING-dependent inflammation, in the progression of SAVI pathology. While I have some concerns, I believe this manuscript makes some important connections between STING pathology mouse models and human genetics that would contribute to the field.

      Some points to consider:

      (1) While the CD4+ T cell counts from HAQ/SAVI and AQ/SAVI mice suggest that these T cells are protected from STING-dependent cell death, an assay that explores this more directly would strengthen the manuscript. This is also supported by Fig 2C, but I believe a strength of this manuscript is the comparison between the two alleles. Therefore, if possible, I would recommend the isolation of T cells from these mice and direct stimulation with diABZI or other STING agonist with a cell death readout.

      Please see the new Figure S3 for cell death by diABZI, DMXAA in Splenocytes from WT/WT, WT/HAQ, HAQ/SAVI, AQ/SAVI mice. The HAQ/SAVI and AQ/SAVI splenocytes showed similar partial resistance to STING activation-induced cell death (lines 214-216).

      (2) Related to the above point - further exemplifying that the Q293 locus is essential to disease, even in human cells, would also strengthen the paper. It seems that CD4 T cell loss is a major component of human SAVI. While not co_mpletely necessary, repeating the THP1 cell death experiments from Fig 2 with a human T cell line would round out the study nicely._

      We examined HAQ, AQ mouse splenocytes, HAQ human lung lymphocytes, THP-1 reconstituted with HAQ, AQ, and HAQ/SAVI, AQ/SAVI mice, to demonstrate that the common human HAQ, AQ alleles are resistant to STING cell death in vitro and in vivo. Additional human T cell line work does not add too much. We hope to conduct more human PBMC or lung lymphocytes STING cell death experiments from HAQ, AQ individuals as we continue the human STING alleles investigation.

      (3) While I found the myeloid cell counts and BMDM data interesting, I think some more context is needed to fully loop this data into the story. Is myeloid cell expansion exemplified by SAVI patients? Do we know if myeloid cells are the major contributors to the inflammation these patients experience? Why should the SAVI community care about the Q293 locus in myeloid cells?

      This is likely a misunderstanding. We use BMDM for the purpose of comparing STING signaling (TBK1, IRF3, NFkB, STING activation) by WT/SAVI, HAQ/SAVI, AQ/SAVI. Ideally, we would like to compare STING signaling in CD4 T cells from WT/SAVI to HAQ/SAVI, AQ/SAVI mice. However, WT/SAVI has no CD4 T cells. Doing so, we are making the assumption that the basic STING signaling (TBK1, IRF3, NFkB, STING activation) is conserved between T cells and macrophages.

      (4) The functional assays in Figure 4 are exciting and really connect the alleles to disease progression. To strengthen the manuscript and connect all the data, I would recommend additional readouts from these mice that address the inflammatory phenotype shown in vitro in Figure 5. For example, measuring cytokines from these mice via ELISA or perhaps even Western blots looking for NFkB or STING activation would be supportive of the story. This would also allow for some tissue specificity. I believe looking for evidence of inflammation and STING activation in the lungs of these mice, for example, would further connect the data to human SAVI pathology.

      Reviewer 2 suggests looking for evidence of inflammation and STING activation in the lungs of HAQ/SAVI, AQ/SAVI. We would like to elaborate further. First, anti-inflammatory treatments, e.g. steroids, DMARDs, IVIG, Etanercept (TNF), rituximab, Nifedipine, amlodipine, et al., all failed in SAVI patients 23. JAK inhibitors on SAVI had mixed outcomes (lines 55-58). Second, Figure S5 examined lung neutrophils and inflammatory monocyte infiltration. Interestingly, while AQ/SAVI mice had a better lung function than HAQ/SAVI mice (Figure 4D, 4E vs 4H, 4I), HAQ/SAVI and AQ/SAVI lungs had comparable neutrophils and inflammatory monocyte infiltration (Figure S5). Last, SAVI is classified as type I interferonopathy 23, but the lung diseases of SAVI are mainly independent of type I IFNs 24-27. The AQ allele suppresses SAVI in vivo.  Understanding the mechanisms by which AQ rescues SAVI may lead to curative care for SAVI patients.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      One suggestion is to streamline this study by focusing on STING-mediated cell death only in CD4 T cells. The authors can use in vitro PBMC isolated human T cells, ex vivo T cells from the knock-in mice, and in vivo T cells from the SAVI breeding. The current manuscript includes myeloid cell death, Tregs, complex SAVI disease pathology, which is too confusing and too complex to explain with the varying effect from the three human STING1 variants.

      We sincerely appreciate Reviewer 1’s suggestion. The goal of our human STING alleles research has always been translational, i.e. improving human health. Even as a monogenetic disease, the SAVI pathology is still complex. For example, thought as a type I Interferonopathy, SAVI is largely independent of type I IFNs. Similarly, STING-activation-induced cell death, while contribute to SAVI, is not the whole story, as the Reviewer pointed out in the Comment 3 & 6 &7. HAQ/SAVI mice still died early and had lung dysfunction (Figure 4). In contrast, AQ/SAVI mice restore lifespan and lung function. We had Figure 6 show different T-regs between AQ/SAVI and HAQ/SAVI mice. In addition, AQ mice had more IL-10+ T-regs than HAQ mice 3. Therefore, we are excited about developing AQ-based curative therapy for SAVI patients (preventing cell death and inducing immune tolerance).  Again, we thank the Reviewer for the suggestion. Additional research is ongoing.

      Reviewer #2 (Recommendations For The Authors):

      Minor points

      (1) Generation of THP1 cells with the human STING alleles is missing from methods.

      We added the protocol in the methods (lines 380-387). THP-1 KO line stable expressing WT STING was first described by Weikang Tao’s group 10.

      (2) Some abbreviations are not expanded (CDA).

      CDA is expanded as cyclic di-AMP (e.g. line 375).

      References.

      (1) Patel, S. et al. The Common R71H-G230A-R293Q Human TMEM173 Is a Null Allele. J Immunol 198, 776-787 (2017).

      (2) Sebastian, M. et al. Obesity and STING1 genotype associate with 23-valent pneumococcal vaccination efficacy. JCI Insight 5 (2020).

      (3) Mansouri, S. et al. MPYS Modulates Fatty Acid Metabolism and Immune Tolerance at Homeostasis Independent of Type I IFNs. J Immunol 209, 2114-2132 (2022).

      (4) Sivick, K. E. et al. Comment on "The Common R71H-G230A-R293Q Human TMEM173 Is a Null Allele". J Immunol 198, 4183-4185 (2017).

      (5) Gulen, M. F. et al. Signalling strength determines proapoptotic functions of STING. Nat Commun 8, 427 (2017).

      (6) Kabelitz, D. et al. Signal strength of STING activation determines cytokine plasticity and cell death in human monocytes. Sci Rep 12, 17827 (2022).

      (7) Murthy, A. M. V., Robinson, N. & Kumar, S. Crosstalk between cGAS-STING signaling and cell death. Cell Death Differ 27, 2989-3003 (2020).

      (8) Kuhl, N. et al. STING agonism turns human T cells into interferon-producing cells but impedes their functionality. EMBO Rep 24, e55536 (2023).

      (9) Li, C., Liu, J., Hou, W., Kang, R. & Tang, D. STING1 Promotes Ferroptosis Through MFN1/2-Dependent Mitochondrial Fusion. Front Cell Dev Biol 9, 698679 (2021).

      (10) Song, C. et al. SHR1032, a novel STING agonist, stimulates anti-tumor immunity and directly induces AML apoptosis. Sci Rep 12, 8579 (2022).

      (11) Jin, L. et al. Identification and characterization of a loss-of-function human MPYS variant. Genes Immun 12, 263-269 (2011).

      (12) Yi, G. et al. Single nucleotide polymorphisms of human STING can affect innate immune response to cyclic dinucleotides. PLoS One 8, e77846 (2013).

      (13) Patel, S. et al. Response to Comment on "The Common R71H-G230A-R293Q Human TMEM173 Is a Null Allele". J Immunol 198, 4185-4188 (2017).

      (14) Gao, K. M. et al. Endothelial cell expression of a STING gain-of-function mutation initiates pulmonary lymphocytic infiltration. Cell Rep 43, 114114 (2024).

      (15) Gao, K. M., Motwani, M., Tedder, T., Marshak-Rothstein, A. & Fitzgerald, K. A. Radioresistant cells initiate lymphocyte-dependent lung inflammation and IFNgamma-dependent mortality in STING gain-of-function mice. Proc Natl Acad Sci U S A 119, e2202327119 (2022).

      (16) Hu, W. et al. Regulatory T cells function in established systemic inflammation and reverse fatal autoimmunity. Nat Immunol 22, 1163-1174 (2021).

      (17) Monroe, K. M. et al. IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science 343, 428-432 (2014).

      (18) Doitsh, G. et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505, 509-514 (2014).

      (19) Jakobsen, M. R., Olagnier, D. & Hiscott, J. Innate immune sensing of HIV-1 infection. Curr Opin HIV AIDS 10, 96-102 (2015).

      (20) Silvin, A. & Manel, N. Innate immune sensing of HIV infection. Curr Opin Immunol 32, 54-60 (2015).

      (21) Altfeld, M. & Gale, M., Jr. Innate immunity against HIV-1 infection. Nat Immunol 16, 554-562 (2015).

      (22) Krapp, C., Jonsson, K. & Jakobsen, M. R. STING dependent sensing - Does HIV actually care? Cytokine Growth Factor Rev 40, 68-76 (2018).

      (23) Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N Engl J Med 371, 507-518 (2014).

      (24) Luksch, H. et al. STING-associated lung disease in mice relies on T cells but not type I interferon. J Allergy Clin Immunol 144, 254-266 e258 (2019).

      (25) Stinson, W. A. et al. The IFN-gamma receptor promotes immune dysregulation and disease in STING gain-of-function mice. JCI Insight 7 (2022).

      (26) Warner, J. D. et al. STING-associated vasculopathy develops independently of IRF3 in mice. J Exp Med 214, 3279-3292 (2017).

      (27) Fremond, M. L. et al. Overview of STING-Associated Vasculopathy with Onset in Infancy (SAVI) Among 21 Patients. J Allergy Clin Immunol Pract 9, 803-818 e811 (2021).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this work, the authors provide a comprehensive description of transcriptional regulation in Pseudomonas syringae by investigating the binding characteristics of various transcription factors. They uncover the hierarchical network structure of the transcriptome by identifying top-, middle-, and bottom-level transcription factors that govern the flow of information in the network. Additionally, they assess the functional variability and conservation of transcription factors across different strains of P. syringae by studying DNA-binding characteristics. These findings notably expand our current knowledge of the P. syringae transcriptome.

      The findings associated with crosstalk between transcription factors and pathways, and the diversity of transcription factor functions across strains provide valuable insights into the transcriptional regulatory network of P. syringae. However, these results are at times underwhelming as their significance is unclear. This study would benefit from a discussion of the implications of transcription factor crosstalk on the functioning of the organism as a whole. Additionally, the implications of variability in transcription factor functions on the phenotype of the strains studied would further this analysis.<br /> Overall, this manuscript serves as a key resource for researchers studying the transcriptional regulatory network of P. syringae.

      Thank you for your positive comments.

      Reviewer #2 (Public Review):

      Summary:

      The phytopathogenic bacterium Pseudomonas syringae is comprised of many pathovars with different host plant species and has been used as a model organism to study bacterial pathogenesis in plants. Transcriptional regulation is key to plant infection and adaptation to host environments by this bacterium. However, researchers have focused on a limited number of transcription factors (TFs) that regulate virulence-related pathways. Thus, a comprehensive, systems-level understanding of regulatory interactions between transcription factors in P. syringae has not been achieved.

      This study by Sun et al performed ChIP-seq analysis of 170 out of 301 TFs in P. syringae pv. syringae 1448A and used this unique dataset to infer transcriptional regulatory networks in this bacterium. The network analyses revealed hierarchical interactions between TFs, various network motifs, and co-regulation of target genes by TF pairs, which collectively mediate information flow. As discussed, the structure and properties of the P. syringae transcriptional regulatory networks are somewhat different from those identified in humans, yeast, and E. coli, highlighting the significance of this study. Further, the authors made use of the P. syringae transcriptional regulatory networks to find TFs of unknown functions to be involved in virulence-related pathways. For some of these TFs, their target specificity and biological functions, such as motility and biofilm formation, were experimentally validated. Of particular interest is the finding that despite conservation of TFs between P. syringae pv. syringae 1448A, P. syringae pv. tomato DC3000, P. syringae pv. syringae B728a, and P. syringae pv. actinidiae C48, some of the conserved TFs show different repertoires of target genes in these four P. syringae strains.

      Thank you for your positive comments.

      Strengths:

      This study presents a systems-level analysis of transcriptional regulatory networks in relation to P. syringae virulence and metabolism, and highlights differences in transcriptional regulatory landscapes of conserved TFs between different P. syringae strains, and develops a user-friendly database for mining the ChIP-seq data generated in this study. These findings and resources will be valuable to researchers in the fields of systems biology, bacteriology, and plant-microbe interactions.

      Thank you for your positive comments.

      Weaknesses:

      No major weaknesses were found, but some of the results may need to be interpreted with caution. ChIP-seq was performed with bacterial strains overexpressing TFs. This may cause artificial binding of TFs to promoters which may not occur when TFs are expressed at physiological levels. Another caution is applied to the interpretation of the biological functions of TFs. The biological roles of the tested TFs are based on in vitro experiments. Thus, functional relevance of the tested TFs during plant infection and/or survival under natural environmental conditions remains to be demonstrated.

      Thank you for your comments, and we agree with the reviewer. To eliminate the artificial binding of TFs, we performed EMSA to verify the analyzed targets. Our EMSA results confirmed the analyzed binding peaks.

      For the verification experiments of the biological functions of TFs, we also performed in vivo motility assay and biofilm production assay (Figures 3b-d). To further detect the biological functions of TFs, we performed plant infection assay of TF PSPPH2193 under natural environmental condition (bean leaves). As shown in Figures S6c and g, both the motility and the virulence of P. syringae in ∆PSPPH2193 strain was significantly reduced compared with WT strain. These results showed that TF PSPPH2193 positively regulated the pathogenicity of P. syringae via modulating the bacterial motility.

      Reviewer #3 (Public Review):

      Summary:

      This study aims to understand gene regulation of the plant bacterial pathogen Pseudomonas syringae. Although the function of some TFs has been characterized in this strain, a global picture of the gene regulatory network remains elusive. The authors conducted a large-scale ChIP-seq analysis, covering 170 out of 301 TFs of this strain, and revealed gene regulatory hierarchy with functional validation of some previously uncharacterized TFs.

      Thank you for your positive comments.

      Strengths:

      - This study provides one of the largest ChIP-seq datasets for a single bacterial strain, covering more than half of its TFs. This impressive resource enabled comprehensive systems-level analysis of the TF hierarchy.

      - This study identified novel gene regulation and function with validations through biochemical and genetic experiments.

      - The authors attempted on broad analyses including comparisons between different bacterial strains, providing further insights into the diversity and conservation of gene regulatory mechanisms.

      Thank you for your positive comments.

      Weaknesses:

      (1) Some conclusions are not backed by quantitative or statistical analyses, and they are sometimes overinterpreted.

      Thank you for your comments. We used hypergeometric test in this analysis. Although only one gene was enriched in some pathways, the adjusted p-value was less than 0.05. We added the details in the revised manuscript.

      (2) Some figures and analyses are not well explained, and I was not able to understand them.

      Thank you for your comments, and we are sorry for the confusion. We defined ‘indirect interaction’ as ‘co-association’ and ‘cooperativity’ as ‘if the common target of two TFs is from a TF’. We added the definition of "indirect interaction" and "cooperativity" in the revised legend.

      For Figure S3a, the low co-association scores and large peak numbers of these top-level TFs indicated that top-level TFs preferred to solely regulate target genes, but not to co-regulate with other top-level TFs. PSPPH4700 was an example to show that top-level TFs with low co-association scores and large peak numbers tend to solely regulate target genes, but not to co-regulate with other top-level TFs. We revised the sentence to ‘For example, the top-level TF PSPPH4700 yielded over 1,700 peaks but cooperated with only 24 top-level TFs with low co-association scores about 0.05 (Supplementary Table 2b).’.

      We analyzed high co-association scores of 125 TFs in three levels and further determined the co-association patterns. To identify the tendency of co-association of all these 125 TFs, the co-association patterns were classified into 4 clusters. Bottom-level TFs tend to co-regulate target genes with other TFs. We revised the sentence in the revised manuscript.

      For Figure 2b, in C1, C2 and C4, many bottom-level TFs performed co-association pattern with other TFs, especially bottom TFs (showed in C4). To explore the regulatory pattern in C3, the peak locations in target genes of MexT were analyzed with those of TFs in C3. Seven top-level TFs (PSPPH1435, PSPPH1758, PSPPH2193, PSPPH2454, PSPPH4638, PSPPH4998 and PSPPH3411), three middle-level TFs (PSPPH1100, PSPPH5132 and PSPPH5144) and four bottom-level TFs (PSPPH0700, PSPPH2300, PSPPH2444 and PSPPH2580) were compared with MexT. MexT showed higher co-association scores (more than 60 scores) with more top-level-TFs. Therefore, we demonstrated that MexT performed closer co-association relationships with top-level TFs. We added the statement in the revised manuscript.

      For Figure 1a, the hierarchical network showed different number of TFs in three levels (54 top-level TFs, 62 middle-level TFs and 147 bottom-level TFs), which indicated that more than half of TFs (bottom-level TFs) tend to be regulated by other TFs and then directly bound to target genes. This finding showed a downward regulatory direction of transcription regulation in P. syringae. We revised the statement in the revised manuscript.

      (3) The Method section lacks depth, especially in data analyses. It is strongly recommended that the authors share their analysis codes so that others can reproduce the analyses.

      Thank you for your comments, and we defined the intergenic region before each TF sequence as the promoter region. As pHM1 plasmid carries its own constitutive promoter (lacZ promoter), we amplified the TF-coding sequence and cloned into site following the promoter. The TF protein expression was activated by the promoter of plasmid. Psph 1448A was used for our main ChIP-seq. We added the details in the revised manuscript.

      For Figure S3, we performed GO analysis on genes that were co-bound by TF pairs. We added the details in the revised manuscript.

      We shared our analysis codes on the website (https://github.com/dengxinb2315/PS-PATRnet-code) in the Data Availability.

      Recommendations for the authors

      Reviewer #1 (Recommendations For The Authors):

      (1) The specific strain of Pseudomonas syringae used in the study outside of the evolutionary analysis should be specified in the abstract and main text.

      Thank you for your suggestion. We revised the statements in abstract and main text to specific strains.

      (2) The language used throughout the manuscript should be revised for clarity, conciseness, and readability.

      Thank you for your suggestion. We have revised the language used throughput the manuscript by a scientific editor who is a native speaker of English.

      (2) Line 688: Replace "80C" with "-80C".

      Thank you for your correction. We revised ‘80℃’ to ‘-80℃’. Please see Line 713.

      (3) Line 172 - 173: The abbreviations TT, MM, BB, TM, TB, and MB need to be expanded in the main text before their use.

      Thank you for your suggestion. We added the abbreviations TT, MM, BB, TM, TB, and MB in the manuscript. Please see Lines 172-174.

      Reviewer #2 (Recommendations For The Authors):

      Major points

      (1) The name of the P. syringae strains used in each experiment/analysis should be explicitly stated (most experiments were carried out with P. syringae strain 1448A). This should also be applied to the introduction where many papers on P. syringae are cited without clear indication of strain names. I think this amendment is essential because target genes and thus biological functions of TFs could be different between P. syringae strains, as shown in the present study.

      Thank you for your suggestion. We revised the P. syringae strains in the citations throughout the manuscript.

      (2) How many TFs were analyzed throughout the study? Most sentences including line 22 in the abstract say 170, but I also found some say 270 (for example, line 106 and line 149). The legend of Figure 1 says 262. More detailed information is required regarding the datasets used for each analysis.

      Thank you for your suggestion. The number of TFs analyzed by ChIP-seq in this research is 170, the number of TFs analyzed by HT-SELEX in our previous research is 100. Hierarchical analysis integrated data from ChIP-seq and HT-SELEX which included 270 TFs. As 8 TFs did not show hierarchical characteristic, the legend of Figure 1 said 262 TFs. We added the data source in the revised manuscript. Please see Lines 104, 147, 160 and 1082.

      (3) Figure 1b: Please define "indirect interaction" and "cooperativity" in the legend as well as in the text. I only found the definition of "direct interaction".

      Sorry for the missing information. We defined ‘indirect interaction’ and ‘cooperativity’ as ‘co-association’ and ‘if the common target of two TFs is from a TF’, respectively. We added the definition of "indirect interaction" and "cooperativity" in the revised legend. Please see Lines 174-176, 1084-1086.

      (4) I found it very interesting that conserved TFs show different repertoires of target genes in different P. syringae strains. This suggests the rewiring of transcriptional regulatory networks in P. syringae strains, but the underlying mechanism is not explored in the current manuscript. It can be easily tested whether these conserved TFs bind to similar or different motifs by motif enrichment analysis. If they bind to similar motifs, it is possible that the promoter sequences of their target genes have diversified. Addressing or at least discussing these points would provide molecular insights into the diversification of the transcriptional regulatory networks in P. syringae. Similarly, functional enrichment analysis of target genes can be used to test whether the conserved TFs regulate different biological processes.

      Thank you for your suggestion. We added the motif analysis and functional enrichment analysis of target genes of TFs (PSPPH3122 and PSPPH4127) in different P. syringae strains. We found two different motifs (AGACN4GATCAA and CGGACGN3GATCA) in 1448A and DC3000 strains, respectively. We also performed the GO analysis and found the specific functions of PSPPH3122 in Psph 1448A compared with Pst DC3000 and Pss B728a strains, including recombinase activity and DNA recombination. For PSPPH4127, we found four different motifs in four P. syringae strains. GO analysis showed its relationship with recombinase activity in Psph 1448A strain, and RNA binding, structural constituent of ribosome, translation and ribosome in Pss B728a strain. These results indicated the highly functional diversity of TFs in P. syringae. We added these points in the Results part, and Figure S9-S10 in the revised manuscript. Please see Lines 497-509.

      (5) Related to point 4, it would be quite useful if a list of orthologous genes of 1448A TFs in the other tested P. syringae strains were provided. Such information may also enhance the utility of the database developed in this study.

      Thank you for your suggestion. We added the list of orthologous genes of 301 Psph 1448A TFs in the other tested P. syringae strains in the Supplementary Table 5. Please see Lines 467 and Supplementary Table 5.

      (6) Lines 243-246: It is unclear how these functional enrichment analyses were performed. Did you use target genes regulated by individual TFs or those coregulated by pairs of TFs? Please add more information for the sake of readers.

      Thank you for your suggestion. We performed the functional enrichment analyses by hypergeometric test (BH-adjusted p < 0.05) via using target genes regulated by individual TFs. We added the details in the Results part. Please see Lines 248-252, 270, 1194-1195, 1199-1200 and 1205-1206.

      Minor points

      (1) Lines 167-168: I may not understand correctly, but you might want to say "downward-pointing edges" instead of "upward-pointing edges".

      Thank you for correction. We revised the ‘upward-pointing edges’ to ‘downward-pointing edges’. Please see Line 166.

      (2) Line 174: "physical interactions" should be amended to "direct interactions".

      Thank you for correction. We revised the ‘physical interactions’ to ‘direct interactions’. Please see Line 177.

      (3) Line 224: Could you please explain why bacterial growth in plant tissues is considered an example of "multi-stability"?

      Thank you for your suggestion. We are sorry for the incorrect statement. We showed ‘plant intercellular spaces’ as ‘multi-stability’. We revised the sentence to ‘These auto-regulators are important and always act as repressors in scenarios of multi-stability, such as plant intercellular spaces’. Please see Lines 224-226.

      (4) Line 254-257: Here, the definition of "tether binding" is introduced, but it is not very clear to me. In my understanding, tethered binding is an indirect binding of a TF to a target gene through protein-protein interaction with other TF that directly binds to the promoter of the target gene.

      Thank you for your suggestion, and we agree with you. We referred to the paper published in 2012 (Wang et al., 2012) and revised the statement of ‘tether binding’ to ‘This finding suggested that these TFs indirectly regulated target genes through protein-protein interaction with other TFs that directly binds to the promoters of target genes, a phenomenon defined as tethered binding’. Please see Lines 259-262.

      (5) Lines 341-343: Figure 3b shows qRT-PCR of hopAE1, not hrpR.

      Thank you for your correction. We revised ‘hrpR’ to ‘hopAE1’. Please see Line 349.

      (6) Lines 500 and Figure 6b: It is hard to see edges from module 12 to others. So, it would be better to provide numeric information (number of TFs and target genes) in the text.

      Thank you for your suggestion. Module 12 includes 22 TFs and 318 target genes. We added the statement of numeric information about Module 12 in the revised manuscript. Please see Lines 536-537.

      (7) Line 519: Figure S4b is not the EMSA data for PSPPH3798. Should it be Figure S4e?

      Thank you for your correction. We revised to ‘Figure S4e’. Please see Line 545.

      (8) Line 522: Figure S6b is not relevant to the statement here.

      Thank you for your correction. We deleted the ‘Figure S6b’ here. Please see Line 547.

      (9) Line 593: prokaryotic transcriptional regulatory networks -> eukaryotic transcriptional regulatory networks?

      Thank you for your correction. We revised ‘prokaryotic transcriptional regulatory networks’ to ‘eukaryotic transcriptional regulatory networks’. Please see Line 618.

      (10) Figure S3 requires images of higher resolution. Especially, values for the color codes are not readable or very hard to see.

      Thank you for your suggestion. To make the images clearer, we enlarged the images, change the color codes, and divided it into three figures. Please see the revised Figures S3-S5 and corresponding Figure legends at Lines 1191-1206.

      Reviewer #3 (Recommendations For The Authors):<br /> (1) Some conclusions are not backed by quantitative or statistical analyses, and they are sometimes overinterpreted.

      L221: "Taken together, the simplest and most effective submodule M1 and the coregulatory submodule M13 played crucial roles in the transcriptional regulation of TFs in P. syringae."

      The authors did not provide any evidence supporting the functional importance of any of these submodules. M13 is most enriched within the locked loop, but its size is much smaller than simple loops. What evidence supports the importance of this particular submodule?

      Thank you for your suggestion. In eukaryote (Saccharomyces cerevisiae) and prokaryote (Escherichia coli) which have the best characterized transcriptional regulation networks, the feed-forward loop (called M13 in this article) appear numerous times in the networks and perform different biological functions. M1 appeared most frequently by an order of magnitude than other modules. We revised the sentence to ‘Taken together, the most numerous but simplest submodule M1 played a crucial role in the transcriptional regulation of TFs in P. syringae.’ Please see Lines 222-224.

      L223: "...we found 92 auto-regulators...These auto-regulators are important and always act as repressors in scenarios of multi-stability, such as in plant intercellular spaces where bacteria grow (Figure 1d)(Alon, 2007). These regulators are regarded as bistable switches that further influence the expression of downstream genes."<br /> Are these claims supported by any evidence?

      Thank you for your suggestion. We referred to the following articles:

      (1) Alon. Nature Reviews Genetics. 2007(Alon, 2007).

      That transcription factors repress the transcription of their target genes was considered as negative regulation. These negative autoregulators account for half of the repressors in E. coli and occur in many eukaryotes. The repressors controlled the concentration of the target production through suppressing its expression, which accelerated back to the steady state of cells.

      (2) Becskei. et al. Nature. 2000; Rosenfeld et al. Journal of Molecular Biology. 2002 (Becskei & Serrano, 2000; Rosenfeld, Elowitz, & Alon, 2002).

      Fluorescent assay confirmed that the negative autoregulatory module (negative autoregulator TetR) spent less time to the log phase than unregulated group, which reduced cell-to-cell fluctuations in the steady-state level of the transcription factor. Some negative autoregulators were showed here, such as LexA, CysB and SrlA-D.

      In our research, we also identified many autoregulators including CysB and LexA2 (annotated as LexA repressor). We revised the sentence to ‘In addition, we found 92 auto-regulators in our hierarchy network. These auto-regulators are important and always act as repressors in scenarios of multi-stability, such as plant intercellular spaces (Figure 1d) (Alon, 2007). For example, LexA and CysB as negative autoregulators were indicated to reduce cell-to-cell fluctuations in the steady-state level of the transcription factor (Becskei & Serrano, 2000; Rosenfeld et al. 2002).’. Please see Lines 224-229.

      L265: "This finding indicated that the bottom-level TFs, which were more easily regulated, tended to cooperate with downstream genes and other intra-level TFs."<br /> Could the authors provide more explanation to reach this conclusion from the data? Analyzing the number of highly co-accessing TFs does not sufficiently support this conclusion. The clustering of TFs (C1-C4) is incomplete, and each TF level (Top/Middle/Bottom) contains different numbers of TFs. Since the authors calculated all-by-all co-association scores for these 125 TFs, they can group these scores into 6 possible combinations (TT, TM, TB, MM, MB, BB) and show the distribution of co-association scores.

      Thank you for your suggestion. We indicated that the bottom-level TFs preferred to regulate the target genes through the cooperation with other TFs. To further support the claim, we analyzed the proportion of the bottom TF interaction in all the TF pairs interactions and direct interaction based on results in Figure 1B. The interactions of bottom TFs were 43% and 49%, respectively. However, the interactions of top TFs and middle TFs were only 20% and 28%, respectively. We revised the statement ‘Based on the analysis in Figure 1B, we found that the proportions of bottom-level TF interaction in all the TF pair interactions and direct interaction were 43% and 49%. These results indicated that the bottom-level TFs tended to regulate downstream genes through cooperating with other level TFs.’ in the revised manuscript. Please see Lines 269-272.

      As not every TF performed co-association with other TFs, we only collected 125 TFs with co-association scores. For the numbers of TF in each level, we divided TFs into three levels according to hierarchy height. Hierarchy height from -1 to -0.3 represented bottom level; hierarchy height from -0.3 to 0.3 represented middle level ; hierarchy height from 0.3 to 1 represents top level. Each level was equally divided by height scores. We suggested that different numbers of TFs in three levels indicated the characteristic of transcriptional regulation in P. syringae.

      Thank you for your suggestion. As the co-association patterns were determined by co-association scores of the same TFs, we first grouped the co-association scores into 3 possible TF pairs (TT, MM, and BB, in Figures S3a, S4a and S5a). Our results indicated that higher co-association scores preferred to occur in bottom-level TFs. We revised the statement in the revised manuscript. Please see Lines 244-252.

      (2) Some figures and analyses are not well explained, and I was not able to understand them.

      Figure 1b: The terms "direct," "indirect," and "cooperativity" require further clarification as their definitions in the text (L169-183) are unclear to me. This ambiguity hampers the evaluation of the authors' discussion regarding TF-TF interactions (L561-584), an important theme of this study. The figure includes concepts discussed in later sections (e.g., cooperativity), making it difficult to understand. A diagram explaining these concepts would be highly helpful for readers to understand.

      Sorry for the missing information. We defined ‘indirect interaction’ as ‘co-association’, ‘cooperativity’ as ‘if the common target of two TFs is from a TF’. We added the definition of "indirect interaction" and "cooperativity" in the revised manuscript and legend. Please see Lines 174-176 and 1085-1087.

      L253: "Notably, we found that TFs at the top level, without cooperating TFs, exhibited a large number of binding peaks (Figure S3a)."

      I could not understand this sentence. Did the authors mean that top-level TFs with a large number of peaks showed a low level of co-association? If so, does this data suggest that these TFs do not tend to cooperate with other TFs? I was confused by the discussion in L253-L261.

      Thank you for your comment, and we agree with you. The low co-association scores and large peak numbers of these top-level TFs indicated that top-level TFs preferred to solely regulate target genes, but not to co-regulate with other top-level TFs.

      Thank you for your comment. From L253-256, PSPPH4700 was an example to show that top-level TFs with low co-association scores and large peak numbers tend to solely regulate target genes, but not to co-regulate with other top-level TFs. We revised the sentence to ‘For example, the top-level TF PSPPH4700 yielded over 1,700 peaks, but cooperated with only 24 top-level TFs with low co-association scores about 0.05 (Supplementary Table 2b).’.

      From L257-261, we analyzed high co-association scores of 125 TFs in three levels and further determined the co-association patterns. To identify the tendency of co-association of all these 125 TFs, the co-association patterns were classified into 4 clusters. Bottom-level TFs tend to co-regulate target genes with other TFs. We revised the sentence. Please see Lines 262-264, 265-266 and 269-272.

      L287: "The analysis of the peak locations of MexT demonstrated that MexT showed closer co-association relationships with top-level TFs (Figure 2b)."

      I could reach this conclusion by seeing Figure 2b. Additional explanation and/or data visualization would be appreciated.

      Thank you for your suggestion. In C1, C2 and C4, many bottom-level TFs performed co-association pattern with other TFs, especially bottom TFs (showed in C4). To explore the regulatory pattern in C3, the peak locations in target genes of MexT were analyzed with those of TFs in C3. Seven top-level TFs (PSPPH1435, PSPPH1758, PSPPH2193, PSPPH2454, PSPPH4638, PSPPH4998 and PSPPH3411), three middle-level TFs (PSPPH1100, PSPPH5132 and PSPPH5144) and four bottom-level TFs (PSPPH0700, PSPPH2300, PSPPH2444 and PSPPH2580) were compared with MexT. MexT showed higher co-association scores (more than 60 scores) with more top-level-TFs. Therefore, we demonstrated that MexT performed closer co-association relationships with top-level TFs. We added the statement in the revised manuscript. Please see Lines 291-296.

      Figure 6cd: What kind of enrichment analysis did the authors perform? Was any statistical test used? The figure only shows the number of genes, and sometimes the number is only 1 for a functional category. Can it be considered as significant enrichment?

      Thank you for your comment. We used hypergeometric test in this analysis. Although only one gene was enriched in some pathways, the adjusted p-value was less than 0.05. We added the details in the revised manuscript. Please see Lines 533-534.

      L169: "The hierarchical network revealed a downward information flow, suggesting the prioritization of collaboration between different hierarchy levels."<br /> Can the authors please explain the logic behind this statement more in detail?

      Thank you for your comment. The hierarchical network showed different number of TFs in three levels (54 top-level TFs, 62 middle-level TFs and 147 bottom-level TFs), which indicated that more than half of TFs (bottom-level TFs) tend to be regulated by other TFs and then directly bound to target genes. This finding showed a downward regulatory direction of transcription regulation in P. syringae. We revised the statement in the revised manuscript. Please see Lines 167-170.

      (3) The Method section lacks depth, especially on data analyses.

      How did the authors define promoter regions of each gene? How were operons treated in their analyses? Was P. syringae 1448A used for their main ChIP-seq?

      Thank you for your comment. We defined the intergenic region before each TF sequence as the promoter region.

      As pHM1 plasmid carries its own constitutive promoter (lacZ promoter), we amplified the TF-coding sequence and cloned into the site following the promoter. The TF protein expression was activated by the promoter of plasmid.

      P. syringae 1448A was used for our main ChIP-seq. We added the details in the revised manuscript. Please see Lines 705 and 727-730.

      Figure S3: I am not sure how the GO analyses were done. For example, in the case of the top-level TF PSPPH4700, did the authors perform GO analysis on genes that are co-bound by PSPPH4700 and any other top-level TFs?

      Thank you for your comment and we agree with you. We performed GO analysis on genes that were co-bound by TF pairs in the same level. We added the details in the revised manuscript. Please see Lines 248-252.

      The analysis presented in Figure 6a needs more explanation of the methodology employed by the authors.

      Thank you for your comment. We added more details for the analysis in Figure 6a. Please see Lines 514-522.

      It is strongly recommended that the authors share their analysis codes so that others can reproduce the analyses.

      Thank you for your comment. We shared our analysis codes on the website (https://github.com/dengxinb2315/PS-PATRnet-code) in the Data Availability. Please see Lines 800-801.

      (4) Other:

      Figure 3: I suggest putting additional panel labels to facilitate the interpretation of the figure.

      Thank you for your suggestion. We added detailed labels in the revised Figures 3 and 4. Please see in the revised Figures 3 and 4.

      I spotted several potential errors:

      L106: 170 TFs?

      Thank you for your comment, and we are sorry for the missing details. For the hierarchical network, we integrated the DNA-binding data of 170 TFs in this study and 100 TFs in our previous SELEX research. We added the details in the revised manuscript. Please see Lines 104, 147 and 159-160.

      L592: P. syringae not E. coli?

      Thank you for your comment. Here we discussed the hierarchical characteristics in E. coli. We revised the statement in the revised manuscript. Please see Line 618.

      L593: eukaryotic not prokaryotic?

      Thank you for your correction. Here we discussed the feedforward loops in our study. We revised the statement in the revised manuscript. Please see Line 618.

      References

      Alon, U. (2007). Network motifs: theory and experimental approaches. Nature Reviews Genetics, 8(6), 450-461.

      Becskei, A., & Serrano, L. (2000). Engineering stability in gene networks by autoregulation. Nature, 405(6786), 590-593.

      Rosenfeld, N., Elowitz, M. B., & Alon, U. (2002). Negative autoregulation speeds the response times of transcription networks. Journal of molecular biology, 323(5), 785-793.

      Wang, J., Zhuang, J., Iyer, S., Lin, X., Whitfield, T. W., Greven, M. C., . . . Cheng, Y. (2012). Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome research, 22(9), 1798-1812.

    1. Author response:

      eLife assessment

      The authors present a potentially useful approach of broad interest arguing that anterior cingulate cortex (ACC) tracks option values in decisions involving delayed rewards. The authors introduce the idea of a resource-based cognitive effort signal in ACC ensembles and link ACC theta oscillations to a resistance-based strategy. The evidence supporting these new ideas is incomplete and would benefit from additional detail and more rigorous analyses and computational methods.

      The reviewers have provided several excellent suggestions and pointed out important shortcomings of our manuscript. We are grateful for their efforts. To address these concerns, we are planning a major revision to the manuscript. In the revision, our goal is to address each of the reviewer’s concerns and codify the evidence for resistance- and resource-based control signals in the rat anterior cingulate cortex. We have provided a nonexhaustive list we plan to address in the point by point responses below.   

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Young (2.5 mo [adolescent]) rats were tasked to either press one lever for immediate reward or another for delayed reward.

      Please note that at the time of testing and training that the rats were > 4 months old.

      The task had a complex structure in which (1) the number of pellets provided on the immediate reward lever changed as a function of the decisions made, (2) rats were prevented from pressing the same lever three times in a row. Importantly, this task is very different from most intertemporal choice tasks which adjust delay (to the delayed lever), whereas this task held the delay constant and adjusted the number of 20 mg sucrose pellets provided on the immediate value lever.

      Several studies parametrically vary the immediate lever (PMID: 39119916, 31654652, 28000083, 26779747, 12270518, 19389183). While most versions of the task will yield qualitatively similar estimates of discounting, the adjusting amount is preferred as it provides the most consistent estimates (PMID: 22445576). More specifically this version of the task avoids contrast effects of that result from changing the delay during the session (PMID: 23963529, 24780379, 19730365, 35661751) which complicates value estimates.

      Analyses are based on separating sessions into groups, but group membership includes arbitrary requirements and many sessions have been dropped from the analyses.

      We are in discussions about how to address this valid concern. This includes simply splitting the data by delay. This approach, however, has conceptual problems that we will also lay out in a full revision.  

      Computational modeling is based on an overly simple reinforcement learning model, as evidenced by fit parameters pegging to the extremes.

      We apologize for not doing a better job of explaining the advantages of this type of model for the present purposes. Nevertheless, given the clear lack of enthusiasm, we felt it was better to simply update the model as suggested by the Reviewers. The straightforward modifications have now been implemented and we are currently in discussion about how the new results fit into the larger narrative.

      The neural analysis is overly complex and does not contain the necessary statistics to assess the validity of their claims.

      We plan to streamline the existing analysis and add statistics, where required, to address this concern.

      Strengths:

      The task is interesting.

      Thank you for the positive comment

      Weaknesses:

      Behavior:

      The basic behavioral results from this task are not presented. For example, "each recording session consisted of 40 choice trials or 45 minutes". What was the distribution of choices over sessions? Did that change between rats? Did that change between delays? Were there any sequence effects? (I recommend looking at reaction times.) Were there any effects of pressing a lever twice vs after a forced trial?

      Animals tend to make more immediate choices as the delay is extended, which is reflected in Figure 1. We will add more detail and additional statistics to address these questions. 

      This task has a very complicated sequential structure that I think I would be hard pressed to follow if I were performing this task.

      Human tasks implement a similar task structure (PMID: 26779747). Please note the response above that outlines the benefits of using of this task.   

      Before diving into the complex analyses assuming reinforcement learning paradigms or cognitive control, I would have liked to have understood the basic behaviors the rats were taking. For example, what was the typical rate of lever pressing? If the rats are pressing 40 times in 45 minutes, does waiting 8s make a large difference?

      This is a good suggestion. However, rats do not like waiting for rewards, even small delays. Going from the 4 à 8 sec delay results in more immediate choices, indicating that the rats will forgo waiting for a smaller reinforcer at the 8 sec delay as compared to the 4 sec.  

      For that matter, the reaction time from lever appearance to lever pressing would be very interesting (and important). Are they making a choice as soon as the levers appear? Are they leaning towards the delay side, but then give in and choose the immediate lever? What are the reaction time hazard distributions?

      These are excellent suggestions. We are looking into implementing them.

      It is not clear that the animals on this task were actually using cognitive control strategies on this task. One cannot assume from the task that cognitive control is key. The authors only consider a very limited number of potential behaviors (an overly simple RL model). On this task, there are a lot of potential behavioral strategies: "win-stay/lose-shift", "perseveration", "alternation", even "random choices" should be considered.

      The strategies the Reviewer mentioned are descriptors of the actual choices the rats made. For example, perseveration means the rat is choosing one of the levers at an excessively high rate whereas alternation means it is choosing the two levers more or less equally, independent of payouts. But the question we are interested in is why? We are arguing that the type of cognitive control determines the choice behavior but cognitive control is an internal variable that guides behavior, rather than simply a descriptor of the behavior. For example, the animal opts to perseverate on the delayed lever because the cognitive control required to track ival is too high. We then searched the neural data for signatures of the two types of cognitive control.

      The delay lever was assigned to the "non-preferred side". How did side bias affect the decisions made?

      The side bias clearly does not impact performance as the animals prefer the delay lever at shorter delays, which works against this bias.

      The analyses based on "group" are unjustified. The authors compare the proportion of delayed to immediate lever press choices on the non-forced trials and then did k-means clustering on this distribution. But the distribution itself was not shown, so it is unclear whether the "groups" were actually different. They used k=3, but do not describe how this arbitrary number was chosen. (Is 3 the optimal number of clusters to describe this distribution?) Moreover, they removed three group 1 sessions with an 8s delay and two group 2 sessions with a 4s delay, making all the group 1 sessions 4s delay sessions and all group 2 sessions 8s delay sessions. They then ignore group 3 completely. These analyses seem arbitrary and unnecessarily complex. I think they need to analyze the data by delay. (How do rats handle 4s delay sessions? How do rats handle 6s delay sessions? How do rats handle 8s delay sessions?). If they decide to analyze the data by strategy, then they should identify specific strategies, model those strategies, and do model comparison to identify the best explanatory strategy. Importantly, the groups were session-based, not rat based, suggesting that rats used different strategies based on the delay to the delayed lever.

      These are excellent points and, as stated above, we are in the process revisiting the group assignments in an effort allay these criticisms.

      The reinforcement learning model used was overly simple. In particular, the RL model assumes that the subjects understand the task structure, but we know that even humans have trouble following complex task structures. Moreover, we know that rodent decision-making depends on much more complex strategies (model-based decisions, multi-state decisions, rate-based decisions, etc). There are lots of other ways to encode these decision variables, such as softmax with an inverse temperature rather than epsilon-greedy. The RL model was stated as a given and not justified. As one critical example, the RL model fit to the data assumed a constant exponential discounting function, but it is well-established that all animals, including rodents, use hyperbolic discounting in intertemporal choice tasks. Presumably this changes dramatically the effect of 4s and 8s. As evidence that the RL model is incomplete, the parameters found for the two groups were extreme. (Alpha=1 implies no history and only reacting to the most recent event. Epsilon=0.4 in an epsilon-greedy algorithm is a 40% chance of responding randomly.)

      Please see our response above. We agree that the approach was not justified, but we do not agree that it is invalid. Simply stated, a softmax approach gives the best fit to the choice behavior, whereas our epsilon-greedy approach attempted to reproduce the choice behavior using a naïve agent that progressively learns the values of the two levers on a choice-by-choice basis. The epsilon-greedy approach can therefore tell us whether it is possible to reproduce the choice behavior by an agent that is only tracking ival. Given our discovery of an ival-tracking signal in ACC, we believed that this was a critical point (although admittedly we did a poor job of communicating it). However, we also appreciate that important insights can be gained by fitting a model to the data as suggested. In fact, we had implemented this approach initially and are currently reconsidering what it can tell us in light of the Reviewers comments.

      The authors do add a "dbias" (which is a preference for the delayed lever) term to the RL model, but note that it has to be maximal in the 4s condition to reproduce group 2 behavior, which means they are not doing reinforcement learning anymore, just choosing the delayed lever.

      Exactly. The model results indicated that a naïve agent that relied only on ival tracking would not behave in this manner. Hence it therefore was unlikely that the G1 animals were using an ival-tracking strategy, even though a strong ival-tracking signal was present in ACC.

      Neurophysiology:

      The neurophysiology figures are unclear and mostly uninterpretable; they do not show variability, statistics or conclusive results.

      While the reviewer is justified in criticizing the clarity of the figures, the statement that “they do not show variability, statistics or conclusive results” is demonstrably false. Each of the figures presented in the manuscript, except Figure 3, are accompanied by statistics and measures of variability. This comment is hyperbolic and not justified.  

      Figure 3 was an attempt to show raw neural data to better demonstrate how robust the ivalue tracking signal is.

      As with the behavior, I would have liked to have seen more traditional neurophysiological analyses first. What do the cells respond to? How do the manifolds change aligned to the lever presses? Are those different between lever presses?

      We provide several figures describing how neurons change firing rates in response to varying reward. We are unsure what the reviewer means by “traditional analysis”, especially since this is immediately followed by a request for an assessment of neural manifolds. That said, we are developing ways to make the analysis more intuitive and, hopefully, more “traditional”.

      Are there changes in cellular information (both at the individual and ensemble level) over time in the session?

      We provide several analyses of how firing rate changes over trials in relation to ival over time in the session.

      How do cellular responses differ during that delay while both levers are out, but the rats are not choosing the immediate lever?

      It is not clear to us how this analysis addresses our hypothesis regarding control signals in ACC.

      Figure 3, for example, claims that some of the principal components tracked the number of pellets on the immediate lever ("ival"), but they are just two curves. No statistics, controls, or justification for this is shown. BTW, on Figure 3, what is the event at 200s?

      Figure 3 will be folded into one of the other figures that contains the summary statistics.

      I'm confused. On Figure 4, the number of trials seems to go up to 50, but in the methods, they say that rats received 40 trials or 45 minutes of experience.

      This analysis included force trials. The max of the session is 40 choice trials. We will clarify in the revised manuscript. 

      At the end of page 14, the authors state that the strength of the correlation did not differ by group and that this was "predicted" by the RL modeling, but this statement is nonsensical, given that the RL modeling did not fit the data well, depended on extreme values. Moreover, this claim is dependent on "not statistically detectable", which is, of course, not interpretable as "not different".

      We plan to revisit this analysis and the RL model.

      There is an interesting result on page 16 that the increases in theta power were observed before a delayed lever press but not an immediate lever press, and then that the theta power declined after an immediate lever press.

      Thank you for the positive comment.

      These data are separated by session group (again group 1 is a subset of the 4s sessions, group 2 is a subset of the 8s sessions, and group 3 is ignored). I would much rather see these data analyzed by delay itself or by some sort of strategy fit across delays.

      Provisional analysis indicates that the results hold up over delays, rather than the groupings in the paper. We will address this in a full revision of the manuscript.

      That being said, I don't see how this description shows up in Figure 6. What does Figure 6 look like if you just separate the sessions by delay?

      We are unclear what the reviewer means by “this description”.

      Discussion:

      Finally, it is unclear to what extent this task actually gets at the questions originally laid out in the goals and returned to in the discussion. The idea of cognitive effort is interesting, but there is no data presented that this task is cognitive at all. The idea of a resourced cognitive effort and a resistance cognitive effort is interesting, but presumably the way one overcomes resistance is through resource-limited components, so it is unclear that these two cognitive effort strategies are different.

      We view the strong evidence for ival tracking presented herein as a potentially critical component of resource based cognitive effort. We hope to clarify how this task engaged cognitive effort more clearly.  

      The authors state that "ival-tracking" (neurons and ensembles that presumably track the number of pellets being delivered on the immediate lever - a fancy name for "expectations") "taps into a resourced-based form of cognitive effort", but no evidence is actually provided that keeping track of the expectation of reward on the immediate lever depends on attention or mnemonic resources. They also state that a "dLP-biased strategy" (waiting out the delay) is a "resistance-based form of cognitive effort" but no evidence is made that going to the delayed side takes effort.

      There is a well-developed literature that rats and mice do not like waiting for delayed reinforcers. We contend that enduring something you don’t like takes effort.

      The authors talk about theta synchrony, but never actually measure theta synchrony, particularly across structures such as amygdala or ventral hippocampus. The authors try to connect this to "the unpleasantness of the delay", but provide no measures of pleasantness or unpleasantness. They have no evidence that waiting out an 8s delay is unpleasant.

      We will better clarify how our measure of Theta power relates to synchrony. There is a well-developed literature that rats and mice do not like waiting for delayed reinforcers.

      The authors hypothesize that the "ival-tracking signal" (the expectation of number of pellets on the immediate lever) "could simply reflect the emotional or autonomic response". Aside from the fact that no evidence for this is provided, if this were to be true, then, in what sense would any of these signals be related to cognitive control?

      This is proposed as an alternative explanation to the ivalue signal. We provide this as a possibility, never a conclusion. We will clarify this in the revised text. 

      Reviewer #2 (Public Review):

      Summary:

      This manuscript explores the neuronal signals that underlie resistance vs resource-based models of cognitive effort. The authors use a delayed discounting task and computational models to explore these ideas. The authors find that the ACC strongly tracks value and time, which is consistent with prior work. Novel contributions include quantification of a resource-based control signal among ACC ensembles, and linking ACC theta oscillations to a resistance-based strategy.

      Strengths:

      The experiments and analyses are well done and have the potential to generate an elegant explanatory framework for ACC neuronal activity. The inclusion of local-field potential / spike-field analyses is particularly important because these can be measured in humans.

      Thank you for the endorsement of our work.

      Weaknesses:

      I had questions that might help me understand the task and details of neuronal analyses.

      (1) The abstract, discussion, and introduction set up an opposition between resource and resistance based forms of cognitive effort. It's clear that the authors find evidence for each (ACC ensembles = resource, theta=resistance?) but I'm not sure where the data fall on this dichotomy.

      a. An overall very simple schematic early in the paper (prior to the MCML model? or even the behavior) may help illustrate the main point.

      b. In the intro, results, and discussion, it may help to relate each point to this dichotomy.

      c. What would resource-based signals look like? What would resistance based signals look like? Is the main point that resistance-based strategies dominate when delays are short, but resource-based strategies dominate when delays are long?

      d. I wonder if these strategies can be illustrated? Could these two measures (dLP vs ival tracking) be plotted on separate axes or extremes, and behavior, neuronal data, LFP, and spectral relationships be shown on these axes? I think Figure 2 is working towards this. Could these be shown for each delay length? This way, as the evidence from behavior, model, single neurons, ensembles, and theta is presented, it can be related to this framework, and the reader can organize the findings.

      These are excellent suggestions, and we intend to implement each of them, where possible.

      (2) The task is not clear to me.

      a. I wonder if a task schematic and a flow chart of training would help readers.

      Yes, excellent idea, we intend to include this.

      b. This task appears to be relatively new. Has it been used before in rats (Oberlin and Grahame is a mouse study)? Some history / context might help orient readers.

      Indeed, this task has been used in rats in several prior studies in rats. Please see the following references (PMID: 39119916, 31654652, 28000083, 26779747, 12270518, 19389183).

      c. How many total sessions were completed with ascending delays? Was there criteria for surgeries? How many total recording sessions per animal (of the 54?)

      Please note that the delay does not change within a session. There was no criteria for surgery. In addition, we will update Table 1 to make the number of recording sessions more clear.

      d. How many trials completed per session (40 trials OR 45 minutes)? Where are there errors? These details are important for interpreting Figure 1.

      Every animal in this data set completed 40 trials. We will update the task description to clarify this issue. There are no errors in this task, but rather the task is designed to the tendency to make an impulsive choice (smaller reward now). We will provide clarity to this issue in the revision of the manuscript.   

      (3) Figure 1 is unclear to me.

      a. Delayed vs immediate lever presses are being plotted - but I am not sure what is red, and what is blue. I might suggest plotting each animal.

      We will clarify the colors and look into schemes to graph the data set.

      b. How many animals and sessions go into each data point?

      This information is in Table 1, but this could be clearer, and we will update the manuscript.

      c. Table 1 (which might be better referenced in the paper) refers to rats by session. Is it true that some rats (2 and 8) were not analyzed for the bulk of the paper? Some rats appear to switch strategies, and some stay in one strategy. How many neurons come from each rat?

      Table 1 is accurate, and we can add the number of neurons from each animal.

      d. Task basics - RT, choice, accuracy, video stills - might help readers understand what is going into these plots

      e. Does the animal move differently (i.e., RTs) in G1 vs. G2?

      We will look into ways to incorporate this information.

      (4) I wasn't sure how clustered G1 vs. G2 vs G3 are. To make this argument, the raw data (or some axis of it) might help.

      a. This is particularly important because G3 appears to be a mix of G1 and G2, although upon inspection, I'm not sure how different they really are

      b. Was there some objective clustering criteria that defined the clusters?

      c. Why discuss G3 at all? Can these sessions be removed from analysis?

      These are all excellent suggestions and points. We plan to revisit the strategy to assign sessions to groups, which we hope will address each of these points.

      (5) The same applies to neuronal analyses in Fig 3 and 4

      a. What does a single neuron peri-event raster look like? I would include several of these.

      b. What does PC1, 2 and 3 look like for G1, G2, and G3?

      c. Certain PCs are selected, but I'm not sure how they were selected - was there a criteria used? How was the correlation between PCA and ival selected? What about PCs that don't correlate with ival?

      d. If the authors are using PCA, then scree plots and PETHs might be useful, as well as comparisons to PCs from time-shuffled / randomized data.

      We will make several updates to enhance clarity of the neural data analysis, including adding more representative examples. We feel the need to balance the inclusion of representative examples with groups stats given the concerns raised by R1.

      (6) I had questions about the spectral analysis

      a. Theta has many definitions - why did the authors use 6-12 Hz? Does it come from the hippocampal literature, and is this the best definition of theta?. What about other bands (delta - 1-4 Hz), theta (4-7 Hz); and beta - 13- 30 Hz? These bands are of particular importance because they have been associated with errors, dopamine, and are abnormal in schizophrenia and Parkinson's disease.

      This designation comes mainly from the hippocampal and ACC literature in rodents. In addition, this range best captured the peak in the power spectrum in our data. Note that we focus our analysis on theta give the literature regarding theta in the ACC as a correlate of cognitive controls (references in manuscript). We did interrogate other bands as a sanity check and the results were mostly limited to theta. Given the scope of our manuscript and the concerns raised regarding complexity we are concerned that adding frequency analyses beyond theta obfuscates the take home message. However, we think this is worthy, and we will determine if this can be done in a brief, clear, and effective manner.

      b. Power spectra and time-frequency analyses may justify the authors focus. I would show these (y-axis - frequency, x-axis - time, z-axis, power).

      This is an excellent suggestion that we look forward to incorporating. 

      (7) PC3 as an autocorrelation doesn't seem the to be right way to infer theta entrainment or spike-field relationships, as PCA can be vulnerable to phantom oscillations, and coherence can be transient. It is also difficult to compare to traditional measures of phase-locking. Why not simply use spike-field coherence? This is particularly important with reference to the human literature, which the authors invoke.

      Excellent suggestion. We will look into the phantom oscillation issue. Note that PCA provided a way to classify neurons that exhibited peaks in the autocorrelation at theta frequencies. While spike-field coherence is a rigorous tool, it addresses a slightly different question (LFP entrainment). Notwithstanding, we plan to address this issue.  

      Reviewer #3 (Public Review):

      Summary:

      The study investigated decision making in rats choosing between small immediate rewards and larger delayed rewards, in a task design where the size of the immediate rewards decreased when this option was chosen and increased when it was not chosen. The authors conceptualise this task as involving two different types of cognitive effort; 'resistance-based' effort putatively needed to resist the smaller immediate reward, and 'resource-based' effort needed to track the changing value of the immediate reward option. They argue based on analyses of the behaviour, and computational modelling, that rats use different strategies in different sessions, with one strategy in which they consistently choose the delayed reward option irrespective of the current immediate reward size, and another strategy in which they preferentially choose the immediate reward option when the immediate reward size is large, and the delayed reward option when the immediate reward size is small. The authors recorded neural activity in anterior cingulate cortex (ACC) and argue that ACC neurons track the value of the immediate reward option irrespective of the strategy the rats are using. They further argue that the strategy the rats are using modulates their estimated value of the immediate reward option, and that oscillatory activity in the 6-12Hz theta band occurs when subjects use the 'resistance-based' strategy of choosing the delayed option irrespective of the current value of the immediate reward option. If solid, these findings will be of interest to researchers working on cognitive control and ACCs involvement in decision making. However, there are some issues with the experiment design, reporting, modelling and analysis which currently preclude high confidence in the validity of the conclusions.

      Strengths:

      The behavioural task used is interesting and the recording methods should enable the collection of good quality single unit and LFP electrophysiology data. The authors recorded from a sizable sample of subjects for this type of study. The approach of splitting the data into sessions where subjects used different strategies and then examining the neural correlates of each is in principle interesting, though I have some reservations about the strength of evidence for the existence of multiple strategies.

      Thank you for the positive comments.

      Weaknesses:

      The dataset is very unbalanced in terms of both the number of sessions contributed by each subject, and their distribution across the different putative behavioural strategies (see table 1), with some subjects contributing 9 or 10 sessions and others only one session, and it is not clear from the text why this is the case. Further, only 3 subjects contribute any sessions to one of the behavioural strategies, while 7 contribute data to the other such that apparent differences in brain activity between the two strategies could in fact reflect differences between subjects, which could arise due to e.g. differences in electrode placement. To firm up the conclusion that neural activity is different in sessions where different strategies are thought to be employed, it would be important to account for potential cross-subject variation in the data. The current statistical methods don't do this as they all assume fixed effects (e.g. using trials or neurons as the experimental unit and ignoring which subject the neuron/trial came from).

      This is an important issue that we plan to address with additional analysis in the manuscript update.

      It is not obvious that the differences in behaviour between the sessions characterised as using the 'G1' and 'G2' strategies actually imply the use of different strategies, because the behavioural task was different in these sessions, with a shorter wait (4 seconds vs 8 seconds) for the delayed reward in the G1 strategy sessions where the subjects consistently preferred the delayed reward irrespective of the current immediate reward size. Therefore the differences in behaviour could be driven by difference in the task (i.e. external world) rather than a difference in strategy (internal to the subject). It seems plausible that the higher value of the delayed reward option when the delay is shorter could account for the high probability of choosing this option irrespective of the current value of the immediate reward option, without appealing to the subjects using a different strategy.

      Further, even if the differences in behaviour do reflect different behavioural strategies, it is not obvious that these correspond to allocation of different types of cognitive effort. For example, subjects' failure to modify their choice probabilities to track the changing value of the immediate reward option might be due simply to valuing the delayed reward option higher, rather than not allocating cognitive effort to tracking immediate option value (indeed this is suggested by the neural data). Conversely, if the rats assign higher value to the delayed reward option in the G1 sessions, it is not obvious that choosing it requires overcoming 'resistance' through cognitive effort.

      The RL modelling used to characterise the subject's behavioural strategies made some unusual and arguably implausible assumptions:

      i) The goal of the agent was to maximise the value of the immediate reward option (ival), rather than the standard assumption in RL modelling that the goal is to maximise long-run (e.g. temporally discounted) reward. It is not obvious why the rats should be expected to care about maximising the value of only one of their two choice options rather than distributing their choices to try and maximise long run reward.

      ii) The modelling assumed that the subject's choice could occur in 7 different states, defined by the history of their recent choices, such that every successive choice was made in a different state from the previous choice. This is a highly unusual assumption (most modelling of 2AFC tasks assumes all choices occur in the same state), as it causes learning on one trial not to generalise to the next trial, but only to other future trials where the recent choice history is the same.

      iii) The value update was non-standard in that rather than using the trial outcome (i.e. the amount of reward obtained) as the update target, it instead appeared to use some function of the value of the immediate reward option (it was not clear to me from the methods exactly how the fival and fqmax terms in the equation are calculated) irrespective of whether the immediate reward option was actually chosen.

      iv) The model used an e-greedy decision rule such that the probability of choosing the highest value option did not depend on the magnitude of the value difference between the two options. Typically, behavioural modelling uses a softmax decision rule to capture a graded relationship between choice probability and value difference.

      v) Unlike typical RL modelling where the learned value differences drive changes in subjects' choice preferences from trial to trial, to capture sensitivity to the value of the immediately rewarding option the authors had to add in a bias term which depended directly on this value (not mediated by any trial-to-trial learning). It is not clear how the rat is supposed to know the current trial ival if not by learning over previous trials, nor what purpose the learning component of the model serves if not to track the value of the immediate reward option.

      Given the task design, a more standard modelling approach would be to treat each choice as occurring in the same state, with the (temporally discounted) value of the outcomes obtained on each trial updating the value of the chosen option, and choice probabilities driven in a graded way (e.g. softmax) by the estimated value difference between the options. It would be useful to explicitly perform model comparison (e.g. using cross-validated log-likelihood with fitted parameters) of the authors proposed model against more standard modelling approaches to test whether their assumptions are justified. It would also be useful to use logistic regression to evaluate how the history of choices and outcomes on recent trials affects the current trial choice, and compare these granular aspects of the choice data with simulated data from the model.

      Each of the issues outlined above with the RL model a very important. We are currently re-evaluating the RL modeling approach in light of these comments. Please see comments to R1 regarding the model as they are relevant for this as well.

      There were also some issues with the analyses of neural data which preclude strong confidence in their conclusions:

      Figure 4I makes the striking claim that ACC neurons track the value of the immediately rewarding option equally accurately in sessions where two putative behavioural strategies were used, despite the behaviour being insensitive to this variable in the G1 strategy sessions. The analysis quantifies the strength of correlation between a component of the activity extracted using a decoding analysis and the value of the immediate reward option. However, as far as I could see this analysis was not done in a cross-validated manner (i.e. evaluating the correlation strength on test data that was not used for either training the MCML model or selecting which component to use for the correlation). As such, the chance level correlation will certainly be greater than 0, and it is not clear whether the observed correlations are greater than expected by chance.

      This is an astute observation and we plan to address this concern. We agree that cross-validation may provide an appropriate tool here.

      An additional caveat with the claim that ACC is tracking the value of the immediate reward option is that this value likely correlates with other behavioural variables, notably the current choice and recent choice history, that may be encoded in ACC. Encoding analyses (e.g. using linear regression to predict neural activity from behavioural variables) could allow quantification of the variance in ACC activity uniquely explained by option values after controlling for possible influence of other variables such as choice history (e.g. using a coefficient of partial determination).

      This is also an excellent point that we plan to address the manuscript update.

      Figure 5 argues that there are systematic differences in how ACC neurons represent the value of the immediate option (ival) in the G1 and G2 strategy sessions. This is interesting if true, but it appears possible that the effect is an artefact of the different distribution of option values between the two session types. Specifically, due to the way that ival is updated based on the subjects' choices, in G1 sessions where the subjects are mostly choosing the delayed option, ival will on average be higher than in G2 sessions where they are choosing the immediate option more often. The relative number of high, medium and low ival trials in the G1 and G2 sessions will therefore be different, which could drive systematic differences in the regression fit in the absence of real differences in the activity-value relationship. I have created an ipython notebook illustrating this, available at: https://notebooksharing.space/view/a3c4504aebe7ad3f075aafaabaf93102f2a28f8c189ab9176d4807cf1565f4e3. To verify that this is not driving the effect it would be important to balance the number of trials at each ival level across sessions (e.g. by subsampling trials) before running the regression.

      Excellent point and thank you for the notebook. We explored a similar approach previously but did not pursue it to completion. We will re-investigate this issue.

    1. Author response:

      Reviewer #3 (Public Review):

      (1) Conditions on growth and interaction rates for feasibility and stability. The authors approach this using a mean field approximation, and it is important to note that there is no particular temperature dependence assumed here: as far as it goes, this analysis is completely general for arbitrary Lotka-Volterra interactions.

      However, the starting point for the authors' mean field analysis is the statement that "it is not possible to meaningfully link the structure of species interactions to the exact closed-form analytical solution for [equilibria] 𝑥^*_𝑖 in the Lotka-Volterra model.

      I may be misunderstanding, but I don't agree with this statement. The time-independent equilibrium solution with all species present (i.e. at non-zero abundances) takes the form

      x^* = A^{-1}r

      where A is the inverse of the community matrix, and r is the vector of growth rates. The exceptions to this would be when one or more species has abundance = 0, or A is not invertible. I don't think the authors intended to tackle either of these cases, but maybe I am misunderstanding that.

      So to me, the difficulty here is not in writing a closed-form solution for the equilibrium x^*, it is in writing the inverse matrix as a nice function of the entries of the matrix A itself, which is where the authors want to get to. In this light, it looks to me like the condition for feasibility (i.e. that all x^* are positive, which is necessary for an ecologically-interpretable solution) is maybe an approximation for the inverse of A---perhaps valid when off-diagonal entries are small. A weakness then for me was in understanding the range of validity of this approximation, and whether it still holds when off-diagonal entries of A (i.e. inter-specific interactions) are arbitrarily large. I could not tell from the simulation runs whether this full range of off-diagonal values was tested.

      We thank the reviewer for pointing this out and we agree that the language used is imprecise. The GLV model is solvable using the matrix inversion method but as they note, this does not give an interpretable expression in terms of the system parameters. This is important as we aim to build understanding of how these parameters (which in turn depend on temperature) affect the richness in communities. We have made this clearer in lines 372-379.

      In regards to the validity of the approximation we have significantly increased the detail of the method in the manuscript, including the assumptions it makes (lines 384-393). In general the method assumes that any individual interaction has a weak effect on abundance. This will fail when the variation in interactions becomes too strong but should be robust to changes in the average interaction strength across the community.

      As a secondary issue here, it would have been helpful to understand whether the authors' feasible solutions are always stable to small perturbations. In general, I would expect this to be an additional criterion needed to understand diversity, though as the authors point out there are certain broad classes of solutions where feasibility implies stability.

      As the reviewer notes previous work using the GLV model by ? has shown that stability almost surely implies stability in the GLV. Thus we expect that our richness estimates derived from feasibility will closely resemble those from stabiltiy. We have amended the maintext to make this argument clear on lines 321-335.

      (2) I did not follow the precise rationale for selecting the temperature dependence of growth rate and interaction rates, or how the latter could be tested with empirical data, though I do think that in principle this could be a valuable way to understand the role of temperature dependence in the Lotka-Volterra equations.

      First, as the authors note, "the temperature dependence of resource supply will undoubtedly be an important factor in microbial communities"

      Even though resources aren't explicitly modeled here, this suggests to me that at some temperatures, resource supply will be sufficiently low for some species that their growth rates will become negative. For example, if temperature dependence is such that the limiting resource for a given species becomes too low to balance its maintenance costs (and hence mortality rate), it seems that the net growth rate will be negative. The alternative would be that temperature affects resource availability, but never such that a limiting resource leads to a negative growth rate when a taxon is rare.

      On the other hand, the functional form for the distribution of growth rates (eq 3) seems to imply that growth rates are always positive. I could imagine that this is a good description of microbial populations in a setting where the resource supply rate is controlled independently of temperature, but it wasn't clear how generally this would hold.

      We thank the reviewer for their comment. The assumption of positive growth rates is indeed a feature of the Boltzmann-Arrhenius model of temperature dependence. We use the Boltzmann-Arrhenius model due to the dependence of growth on metabolic rate. As metabolic rate is ultimately determined by biochemical kinetics its temper- ature dependence is well described by the Boltzmann-Arrhenius. In addition to this reasoning there is a wealth of empirical evidence supporting the use of the Boltzmann- Arrhenius to describe the temperature dependence of growth rate in microbes.

      Ultimately the temperature dependence of resource supply is not something we can directly consider in our model. As such we have to assume that resource supply is sufficient to maintain positive growth rates in the community. Note that this assump- tion only requires resource supply is sufficient to maintain positive growth rates (i.e. the maximal growth rate of species in isolation) not that resource supply is sufficient to maintain growth in the presence of intra- and interspecific competition. We have updated the manuscript in lines 156-159 to make these assumptions more clear.

      Secondly, while I understand that the growth rate in the exponential phase for a single population can be measured to high precision in the lab as a function of temperature, the assumption for the form of the interaction rates' dependence on temperature seems very hard to test using empirical data. In the section starting L193, the authors seem to fit the model parameters using growth rate dependence on temperature, but then assume that it is reasonable to "use the same thermal response for growth rates and interactions". I did not follow this, and I think a weakness here is in not providing clear evidence that the functional form assumed in Equation (4) actually holds.

      The reviewer is correct, it is very difficult to measure interaction coefficients experi- mentally and to our knowledge there is little to no data available on their empirical temperature responses. We as a best guess use the observed variation in thermal physiology parameters for growth rate as a proxy assuming that interactions must also depend on metabolic rates of the interacting species (see also response to com- ment 8).

    1. Author response:

      Reviewer #1 (Public Review):

      The authors conducted cross-species comparisons between the human brain and the macaque brain to disentangle the specific characteristics of structural development of the human brain. Although previous studies had revealed similarities and differences in brain anatomy between the two species by spatially aligning the brains, the authors made the comparison along the chronological axis by establishing models for predicting the chronological ages with the inputting brain structural features. The rationale is actually clear given that brain development occurs over time in both. More interestingly, the model trained on macaque data was better able to predict the age of humans than the human-trained model was at predicting macaque age. This revealed a brain cross-species age gap (BCAP) that quantified the discrepancy in brain development between the two species, and the authors even found this BCAP measure was associated with performance on behavioral tests in humans. Overall, this study provides important and novel insights into the unique characteristics of human brain development. The authors have employed a rigorous scientific approach, reflecting diligent efforts to scrutinize the patterns of brain age models across species. The clarity of the rationale, the interpretability of the methods, and the quality of the presentation all contribute to the strength of this work.

      We are grateful to your helpful and thorough review and for being so positive about our manuscript. Following your recommendations, we have added more analytic details that have strengthened our paper. We would like to thank you for your input.

      Reviewer #2 (Public Review):

      In the current study, Li et al. developed a novel approach that aligns chronological age to a cross-species brain age prediction model to investigate the evolutionary effect. This method revealed some interesting findings, like the brain-age gap of the macaque model in predicting human age will increase as chronological age increases, suggesting an evolutionary alignment between the macaque brain and the human brain in the early stage of development. This study exhibits ample novelty and research significance. However, I still have some concerns regarding the reliability of the current findings.

      We thank you for the positive and appreciative feedback on our work and the insightful comments, which we have addressed below.

      Question 1: Although the authors named their new method a "cross-species" model, the current study only focused on the prediction between humans and macaques. It would be better to discuss whether their method can also generalize to cross-species examination of other species (e.g., C. elegans), which may provide more comprehensive evolutionary insights. Also, other future directions with their new method are worth discussing.

      We appreciate your insightful comment regarding the generalizability of our model to other species. As you said, we indeed only performed human-macaque cross-species study not including other species. In our study, we only focused human and macaque because macaque is considered to be one of the closest primates to humans except chimpanzees and thus is considered to be the best model for studying human brain evolution. However, our proposed method has limitations that limit its generalizability for other species, e.g., C. elegans. First, our model was trained using MRI data, which limits its applicability to species for which such data is unavailable. This technological requirement brings a barrier to broaden cross-species application. Second, our current model is based on homologous brain atlases that are available for both humans and macaques. The lack of comparable atlases for other species further restricts the model's generalizability. We have discussed this limitation in the revised manuscript and outlined potential future directions to overcome these challenges. This includes discussing the need for developing comparable imaging techniques and standardized brain atlases across a wider range of species to enhance the model's applicability and broaden our understanding of cross-species neurodevelopmental patterns.

      On page 15, lines 11-18

      “However, the existing limitation should be noted regarding the generalizability of our proposed approach for cross-species brain comparison. Our current model relies on homologous brain atlases, and the lack of comparable atlases for other species restricts its broader applicability. To address this limitation, future research should focus on developing prediction models that do not depend on atlases. For instance, 3D convolutional neural networks could be trained directly on raw MRI data for age prediction. These deep learning models may offer greater flexibility for cross-species applications once the training within species is complete. Such advancements would significantly enhance the model's adaptability and expand its potential for comparative neuroscience studies across a wider range of species.”

      Question 2: Algorithm of prediction model. In the method section, the authors only described how they chose features, but did no description about the algorithm (e.g., supporting vector regression) they used. Please add relevant descriptions to the methods.

      Thank you for your comment. We apologize for not providing sufficient details about the model training process in our initial submission. In our study, we used a linear regression model for prediction. We have provided more details regarding the algorithm of prediction model in our response to Reviewer #1. For your convenience, we have attached them below.

      For details on the algorithm of prediction model:

      “A linear regression model was adopted for intra- and inter-species age prediction. The linear regression model was built including the following three main steps: 1) Feature selection: a total of two steps are required to extract the final features. The first step is preliminary extraction. First, all the human or macaque participants were divided into 10-fold and 9-fold was used for model training and 1-fold for model test. The preliminary features were chosen by identifying the significantly age-associated features with p < 0.01 during calculating Pearson’s correlation coefficients between all the 260 features and actual ages of the 9-fold subjects. This process was repeated 100 times. Since we obtained not exactly the same preliminary features each time, we thus further analyzed the preliminary features using two methods to determine the final features: common features and minimum mean absolute error (min MAE). Common features are the preliminary features that were selected in all the 100 times during preliminary model training. The min MAE features were the preliminary features that with the smallest MAE value during the 100 times model test for predicting age. After the above feature selections, we obtained two sets of features: 62 macaque features and 225 human features (common features) and 117 macaque features and 239 human features (min MAE). In addition, to further exclude the influences of unequal number of features in human and macaque, we also selected the first 62 features in human and macaque to test the model prediction performances. 2) Model construction: we conducted age prediction linear model using 10-fold cross-validation based on the selected features for human and macaque separately. The linear model parameters are obtained using the training set data and applied to the test set for prediction. The above process is also repeated 100 times. 3) Prediction: with the above results, we obtained the optimal linear prediction models for human and macaque. Next, we performed intra-species and inter-species brain age prediction, i.e., human model predicted human age, human model predicted macaque age, macaque model predicted macaque age and macaque model predicted human age. Three sets of features (62 macaque features and 225 human features; 117 macaque features and 239 human features; 62 macaque features and 62 human features) were used to test the prediction models for cross-validation and to exclude effects of different number of features in human and macaque. In the main text, we showed the results of brain age prediction, brain developmental and evolutional analyses based on common features and the results obtained using other two types of features were shown in supplementary materials. The prediction performances were evaluated by calculating the Pearson’s correlation and MAE between actual ages and predicted ages.”

      Question 3: Sex difference. The sex difference results are strange to me. For example, in the second row of Figure Supplement 3A, different models show different correlation patterns, but why their Pearson's r is all equal to 0.3939? If they are only typo errors, please correct them. The authors claimed that they found no sex difference. However, the results in Figure Supplement 3 show that, the female seems to have poorer performance in predicting macaque age from the human model. Moreover, accumulated studies have reported sex differences in developing brains (Hines, 2011; Kurth et al., 2021). I think it is also worth discussing why sex differences can't be found in the evolutionary effect.

      Reference:

      Hines, M. (2011). Gender development and the human brain. Annual review of neuroscience, 34, 69-88.

      Kurth, F., Gaser, C., & Luders, E. (2021). Development of sex differences in the human brain. Cognitive Neuroscience, 12(3-4), 155-162.

      It is recommended that the authors explore different prediction models for different species. Maybe macaques are suitable for linear prediction models, and humans are suitable for nonlinear prediction models.

      Thank you for pointing the typos out and comments on sex difference. In Figure Supplement 3A, there are typos for Pearson’s r values and we have corrected it in updated Figure 2-figure supplement 3. For details, please see the updated Figure 2-figure supplement 3 and the following figure.

      Regarding gender effects, we acknowledge your point about the importance of gender differences in understanding brain evolution and development. In our study, however, our primary goal was to develop a robust age prediction model by maximizing the number of training samples. To mitigate gender-related effects in our main results, we incorporated gender information as a covariate in the ComBat harmonization process. We conducted a supplementary analysis just to demonstrate the stability of our proposed cross-species age prediction model by separating the data with gender variable not to investigate gender differences. Although our results demonstrated that gender-specific models could still significantly predict chronological age, we refrained from emphasizing these models' performance in gender-specific species comparisons due to difficulty in explanation for the predicted gender difference. For cross-species prediction, whether a higher Pearson’s r value between actual age and predicted age could reflect conserved evolution for male or female is not convincing. In addition, we adopted same not different prediction models for human and macaque aiming to establish a comparable model between species. Generally speaking, the nonlinear model could obtain better prediction accuracy than linear model. If different species used different models, it is unfair to perform cross-species prediction. Importantly, our study aimed to developed new index based on the same prediction models to quantify brain evolution difference, i.e., brain cross-species age gap (BCAP) instead of traditional statistical analyses. Different prediction models for different species may introduce bias causing by prediction methods and thus impacting the accuracy of BCAP. Thus, we adopted the linear model with best prediction performances for intra-species prediction in this study for cross-species prediction. Although our main goal in this study is to set up stable cross-species prediction model and the models built using either male or female subjects showed good performances during cross-species prediction, however, as your comment, how to unbiasedly characterize evolutionary gender differences using machining learning approaches needs to be further investigated since there are many reports about the gender difference in developing brain in humans. In fact, whether macaque brains have the same gender differences as humans is an interesting scientific question worth studying. Thus, we have included a discussion on how to use machining learning method to study the evolutionary gender difference in our revised manuscript.

      On page 15, lines 18-23 and page 16, line 1-4

      “Many studies have reported sex differences in developing human brains (Hines, 2011; Kurth, Gaser, & Luders, 2021), however, whether macaque brains have similar sex differences as humans is still unknown. We used machining learning method for cross-species prediction to quantify brain evolution and the established prediction models are stable even when only using male or female data, which may indicate that the proposed cross-species prediction model has no evolutionary sex difference. Although the stable prediction model can be established in either male or female participants for cross-species prediction, this indeed does not mean that there are no evolutionary sex differences due to lack of quantitative comparative analysis. In the future, we need to develop more objective, quantifiable and stable index for studying sex differences using machining learning methods to further identify sex differences in the evolved brain”

      Reviewer #3 (Public Review):

      The authors identified a series of WM and GM features that correlated with age in human and macaque structural imaging data. The data was gathered from the HCP and WA studies, which was parcellated in order to yield a set of features. Features that correlated with age were used to train predictive intra and inter-species models of human and macaque age. Interestingly, while each model accurately predicted the corresponding species age, using the macaque model to predict human age was more accurate than the inverse (using the human model to predict macaque age). In addition, the prediction error of the macaque model in predicting human age increased with age, whereas the prediction error of the human model predicting macaque age decreased with age.

      After elaboration of the predictive models, the authors classified the features for prediction into human-specific, macaque-specific and common to human and macaque, where they most notably found that macaque-only and common human-macaque areas were located mainly in gray matter, with only a few human-specific features found in gray matter. Furthermore, the authors found significant correlations between BCAP and picture vocabulary (positive correlation) test and visual sensitivity (negative correlation) test. Several white matter tracts (AF, OR, SLFII) were also identified showing a correlation with BCAP.

      Thank you for providing this excellent summary. We appreciate your thorough review and concise overview of our work.

      STRENGTHS AND WEAKNESSES

      The paper brings an interesting perspective on the evolutionary trajectories of human and non-human primate brain structure, and its relation to behavior and cognition. Overall, the methods are robust and support the theoretical background of the paper. However, the overall clarity of the paper could be improved. There are many convoluted sentences and there seems to be both repetition across the different sections and unclear or missing information. For example, the Introduction does not clearly state the research questions, rather just briefly mentions research gaps existing in the literature and follows by describing the experimental method. It would be desirable to clearly state the theoretical background and research questions and leave out details on methodology. In addition, the results section repeats a lot of what is already stated in the methods. This could be further simplified and make the paper much easier to read.

      In the discussion, authors mention that "findings about cortex expansion are inconsistent and even contradictory", a more convincing argument could be made by elaborating on why the cortex expansion index is inadequate and how BCAP is more accurate.

      Thank you for highlighting the interesting aspects of our work. We are sorry for the lack of the clarity in certain parts of our manuscript. Following your valuable suggestions, we have revised the manuscript to reduce unnecessary repetitions and provide a clearer statement of our research question in Introduction. Specifically, unlike previous analyses of human and macaque evolution using comparative neuroscience, this study embeds chronological axis into the cross-species evolutionary analysis process. It constructed a linear prediction model of brain age for humans and macaques, and quantitatively described the degree of evolution. The brain structure based cross-species age prediction model and cross-species brain age differences proposed in this study further eliminate the inherent developmental effects of humans and macaques on cross-species evolutionary comparisons, providing new perspectives and approaches for studying cross-species development. Regarding the existing repetition in the results section, we have simplified them for the clarity. Regarding the comparison between the cortex expansion index and BCAP, we would like to emphasize that the cortex expansion index was derived without fully considering cross-species alignment along the chronological axis. Specifically, this index does not correspond to a specific developmental stage, but rather focuses on a direct comparison between the two species. In contrast, BCAP addresses this limitation by utilizing a prediction model to establish alignment (or misalignment) between species at the individual level. Therefore, BCAP may serve as a more flexible and nuanced tool for cross-species brain comparison.

      STUDY AIMS AND STRENGTH OF CONCLUSIONS

      Overall, the methods are robust and support the theoretical background of the paper, but it would be good to state the specific research questions -even if exploratory in nature- more specifically. Nevertheless, the results provide support for the research aims.

      Thank you for excellent suggestion. We have revised our introduction to state the specific research question as mentioned above.

      IMPACT OF THE WORK AND UTILITY OF METHODS AND DATA TO THE COMMUNITY

      This study is a good first step in providing a new insight into the neurodevelopmental trajectories of humans and non-human primates besides the existing cortical expansion theories.

      Thank you for your encouraging comment.

      ADDITIONAL CONTEXT:

      It should be clearly stated both in the abstract and methods that the data used for the experiment came from public databases.

      Thank you for your suggestion. We have added this information in both abstract and method. For details, please see page 2, line 9 in Abstract section; page 16, lines 10-11 and page 17, lines 6-10 in Materials and Method section.

    1. Author response:

      Reviewer #1 - Public Review

      This report describes work aiming to delineate multi-modal MRI correlates of psychopathology from a large cohort of children of 9-11 years from the ABCD cohort. While uni-modal characterisations have been made, the authors rightly argue that multi-modal approaches in imaging are vital to comprehensively and robustly capture modes of large-scale brain variation that may be associated with pathology. The primary analysis integrates structural and resting-state functional data, while post-hoc analyses on subsamples incorporate task and diffusion data. Five latent components (LCs) are identified, with the first three, corresponding to p-factor, internal/externalising, and neurodevelopmental Michelini Factors, described in detail. In addition, associations of these components with primary and secondary RSFC functional gradients were identified, and LCs were validated in a replication sample via assessment of correlations of loadings.

      1.1) This work is clearly novel and a comprehensive study of associations within this dataset. Multi-modal analyses are challenging to perform, but this work is methodologically rigorous, with careful implementation of discovery and replication assessments, and primary and exploratory analyses. The ABCD dataset is large, and behavioural and MRI protocols seem appropriate and extensive enough for this study. The study lays out comprehensive associations between MRI brain measures and behaviour that appear to recapitulate the established hierarchical structure of psychopathology.

      We thank Reviewer 1 for appreciating our methods and findings, and we address their suggestions below:

      1.2) The work does have weaknesses, some of them acknowledged. There is limited focus on the strength of observed associations. While the latent component loadings seem reliably reproducible in the behavourial domain, this is considerably less the case in the imaging modalities. A considerable proportion of statistical results focuses on spatial associations in loadings between modalities - it seems likely that these reflect intrinsic correlations between modalities, rather than associations specific to any latent component.

      We appreciate the Reviewer’s comment, and minimized the reporting of correlations between the loadings from the different modalities in the revised Results (specifically subsections on LC1, LC2, and LC3). We now refer to Table S4 in each subsection for this information: “Spatial correlations between modality-specific loadings are reported in Supplementary file 1c.”

      For completeness, we report the intrinsic correlations between the different modalities in Supplementary file 1c (P.19):

      “Lastly, although the current work aimed to reduce intrinsic correlations between variables within a given modality through running a PCA before the PLS approach, intrinsic correlations between measures and modalities may potentially be a remaining factor influencing the PLS solution. We, thus, provided an additional overview of the intrinsic correlations between the different neuroimaging data modalities in the supporting results (Supplementary file 1c).”

      1.3) Assessment of associations with functional gradients is similarly a little hard to interpret. Thus, it is hard to judge the implications for our understanding of the neurophysiological basis of psychopathology and the ability of MRI to provide clinical tools for, say, stratification.

      We now provide additional context, including a rising body of theoretical and empirical work, that outlines the value of functional gradients and cortical hierarchies in the understanding of brain development and psychopathology. Please see P.26.

      “Initially demonstrated at the level of intrinsic functional connectivity (Margulies et al., 2016), follow up work confirmed a similar cortical patterning using microarchitectural in-vivo MRI indices related to cortical myelination (Burt et al., 2018; Huntenburg et al., 2017; Paquola et al., 2019), post-mortem cytoarchitecture (Goulas et al., 2018; Paquola et al., 2020, 2019), or post-mortem microarray gene expression (Burt et al., 2018). Spatiotemporal patterns in the formation and maturation of large-scale networks have been found to follow a similar sensory-to-association axis; moreover, there is the emerging view that this framework may offer key insights into brain plasticity and susceptibility to psychopathology (Sydnor et al., 2021). In particular, the increased vulnerability of transmodal association cortices in late childhood and early adolescence has been suggested to relate to prolonged maturation and potential for plastic reconfigurations of these systems (Paquola et al., 2019; Park et al., 2022b). Between mid-childhood and early adolescence, heteromodal association systems such as the default network become progressively more integrated among distant regions, while being more differentiated from spatially adjacent systems, paralleling the development of cognitive control, as well as increasingly abstract and logical thinking. [...] This suggests that neurodevelopmental difficulties might be related to alterations in various processes underpinned by sensory and association regions, as well as the macroscale balance and hierarchy of these systems, in line with previous findings in several neurodevelopmental conditions, including autism, schizophrenia, as well as epilepsy, showing a decreased differentiation between the two anchors of this gradient (Hong et al., 2019). In future work, it will be important to evaluate these tools for diagnostics and population stratification. In particular, the compact and low dimensional perspective of gradients may provide beneficial in terms of biomarker reliability as well as phenotypic prediction, as previously demonstrated using typically developing cohorts (Hong et al. 2020) On the other hand, it will be of interest to explore in how far alterations in connectivity along sensory-to-transmodal hierarchies provide sufficient graduality to differentiate between specific psychopathologies, or whether they, as the current work suggests, mainly reflect risk for general psychopathology and atypical development.”

      1.4) The observation of a recapitulation of psychopathology hierarchy may be somewhat undermined by the relatively modest strength of the components in the imaging domain.

      We thank the Reviewer for this comment, and now expressed this limitation in the revised Discussion, P.23.

      “The p factor, internalizing, externalizing, and neurodevelopmental dimensions were each associated with distinct morphological and intrinsic functional connectivity signatures, although these relationships varied in strength.”

      1.5) The task fMRI was assessed with a fairly basic functional connectivity approach, not using task timings to more specifically extract network responses.

      In the revised Discussion on P.24, we acknowledge that more in-depth analyses of task-based fMRI may have offered additional insights into state-dependent changes in functional architecture.

      “While the current work derived main imaging signatures from resting-state fMRI as well as grey matter morphometry, we could nevertheless demonstrate associations to white matter architecture (derived from diffusion MRI tractography) and recover similar dimensions when using task-based fMRI connectivity. Despite subtle variations in the strength of observed associations, the latter finding provided additional support that the different behavioral dimensions of psychopathology more generally relate to alterations in functional connectivity. Given that task-based fMRI data offers numerous avenues for analytical exploration, our findings may motivate follow-up work assessing associations to network- and gradient-based response strength and timing with respect to external stimuli across different functional states.”

      1.6) Overall, the authors achieve their aim to provide a detailed multimodal characterisation of MRI correlations of psychopathology. Code and data are available and well organised and should provide a valuable resource for researchers wanting to understand MRI-based neural correlates of psycho-pathology-related behavioural traits in this important age group. It is largely a descriptive study, with comparisons to previous uni-modal work, but without particularly strong testing of neuroscience hypotheses.

      We thank the Reviewer for recognizing the detail and rigor of data-driven study and extensive code and data documentation.

      Reviewer #2 - Public Review

      In "Multi-modal Neural Correlates of Childhood Psychopathology" Krebets et al. integrate multi-modal neuroimaging data using machine learning to delineate dissociable links to diverse dimensions of psychopathology in the ABCD sample. This paper had numerous strengths including a superb use of a large resource dataset, appropriate analyses, beautiful visualizations, clear writing, and highly interpretable results from a data-driven analysis. Overall, I think it would certainly be of interest to a general readership. That being said, I do have several comments for the authors to consider.

      We thank Dr Satterthwaite for the positive evaluation and helpful comments.

      2.1) Out-of-sample testing: while the permutation testing procedure for the PLS is entirely appropriate, without out-of-sample testing the reported effect sizes are likely inflated.

      As discussed in the editorial summary of essential revisions, we agree that out-of-sample prediction indeed provides stronger estimates of generalizability. We assess this by applying the PCA coefficients derived from the discovery cohort imaging data to the replication cohort imaging data. The resulting PCA scores and behavioral data were then z-scored using the mean and standard deviation of the replication cohort. The SVD weights derived from the discovery cohort were applied to the normalized replication cohort data to derive imaging and behavioral composite scores, which were used to recover the contribution of each imaging and behavioral variable to the LCs (i.e., loadings). Out-of-sample replicability of imaging (mean r=0.681, S.D.=0.131) and behavioral (mean r=0.948, S.D.=0.022) loadings was generally high across LCs 1-5. This analysis is reported in the revised manuscript (P.18).

      “Generalizability of reported findings was also assessed by directly applying PCA coefficients and latent components weights from the PLS analysis performed in the discovery cohort to the replication sample data. Out-of-sample prediction was overall high across LCs1-5 for both imaging (mean r=0.681, S.D.=0.131) and behavioral (mean r=0.948, S.D.=0.022) loadings.”

      2.2) Site/family structure: it was unclear how site/family structure were handled as covariates.

      Only unrelated participants were included in discovery and replication samples (see P.6). The site variable was regressed out of the imaging and behavioral data prior to the PLS analysis using the residuals from a multiple linear model which also included age, age2, sex, and ethnicity. This is now clarified on P.29:

      “Prior to the PLS analysis, effects of age, age2, sex, site, and ethnicity were regressed out from the behavioral and imaging data using a multiple linear regression to ensure that the LCs would not be driven by possible confounders (Kebets et al., 2021, 2019; Xia et al., 2018). The imaging and behavioral residuals of this procedure were input to the PLS analysis.”

      2.3) Anatomical features: I was a bit surprised to see volume, surface area, and thickness all evaluated - and that there were several comments on the correspondence between the SA and volume in the results section. Given that cortical volume is simply a product of SA and CT (and mainly driven by SA), this result may be pre-required.

      As suggested, we reduced the reporting of correlations between the loadings from the different modalities in the revised Results (specifically subsections on LC1, LC2, and LC3). Instead, we now refer to Table S4 in each subsection for this information: “Spatial correlations between modality-specific loadings are reported in Supplementary file 1c.”

      We also reran the PLS analysis while only including thickness and surface area as our structural metrics, to account for potential redundancy of these measures with volume. This analysis and associated findings are reported on P.36 and P.19:

      “As cortical volume is a result of both thickness and surface area, we repeated our main PLS analysis while excluding cortical volume from our imaging metrics and report the consistency of these findings with our main model.”

      “Third, to account for redundancy within structural imaging metrics included in our main PLS model (i.e., cortical volume is a result of both thickness and surface area), we also repeated our main analysis while excluding cortical volume from our imaging metrics. Findings were very similar to those in our main analysis, with an average absolute correlation of 0.898±0.114 across imaging composite scores of LCs 1-5.”

      2.4) Ethnicity: the rationale for regressing ethnicity from the data was unclear and may conflict with current best practices.

      We thank the Reviewer for this comment. In light of recent discussions on including this covariate in large datasets such as ABCD (e.g., Saragosa-Harris et al., 2022), we elaborate on our rationale for including this variable in our model in the revised manuscript on P.30:

      “Of note, the inclusion of ethnicity as a covariate in imaging studies has been recently called into question. In the present study, we included this variable in our main model as a proxy for social inequalities relating to race and ethnicity alongside biological factors (age, sex) with documented effects on brain organization and neurodevelopmental symptomatology queried in the CBCL.”

      We also assess the replicability of our analyses when removing race and ethnicity covariates prior to computing the PLS analysis and correlating imaging and behavioral composite scores across both models. We report resulting correlations in the revised manuscript (P.37, 19, and 27):

      “We also assessed the replicability of our findings when removing race and ethnicity covariates prior to computing the PLS analysis and correlating imaging and behavioral composite scores across both models.”

      “Moreover, repeating the PLS analysis while excluding this variable as a model covariate yielded overall similar imaging and behavioral composites scores across LCs to our original analysis. Across LCs 1-5, the average absolute correlations reached r=0.636±0.248 for imaging composite scores, and r=0.715±0.269 for behavioral composite scores. Removing these covariates seemed to exert stronger effects on LC3 and LC4 for both imaging and behavior, as lower correlations across models were specifically observed for these components.”

      “Although we could consider some socio-demographic variables and proxies of social inequalities relating to race and ethnicity as covariates in our main model, the relationship of these social factors to structural and functional brain phenotypes remains to be established with more targeted analyses.”

      2.5) Data quality: the authors did an admirable job in controlling for data quality in the analyses of functional connectivity data. However, it is unclear if a comparable measure of data quality was used for the T1/dMRI analyses. This likely will result in inflated effect sizes in some cases; it has the potential to reduce sensitivity to real effects.

      We agree that data quality was not accounted for in our analysis of T1w- and diffusion-derived metrics. We now accounted for T1w image quality by adding manual quality control ratings to the regressors applied to all structural imaging metrics prior to performing the PLS analysis, and reported the consistency of this new model with original findings. See P.36, P.19:

      “We also considered manual quality control ratings as a measure of T1w scan quality. This metric was included as a covariate in a multiple linear regression model accounting for potential confounds in the structural imaging data, in addition to age, age2, sex, site, ethnicity, ICV, and total surface area. Downstream PLS results were then benchmarked against those obtained from our main model.”

      “Considering scan quality in T1w-derived metrics (from manual quality control ratings) yielded similar results to our main analysis, with an average correlation of 0.986±0.014 across imaging composite scores.”

      As for diffusion imaging, we also regressed out effects of head motion in addition to age, age2, sex, site, and ethnicity from FA and MD measures and reported the consistency with our original results (P.36, P.19):

      “We tested another model which additionally included head motion parameters as regressors in our analyses of FA and MD measures, and assessed the consistency of findings from both models.”

      “Additionally considering head motion parameters from diffusion imaging metrics in our model yielded consistent results to those in our main analyses (mean r=0.891, S.D.=0.103; r=0.733-0.998).”

      Reviewer #3 - Public Review

      In this study, the authors utilized the Adolescent Brain Cognitive Development dataset to investigate the relationship between structural and functional brain network patterns and dimensions of psychopathology. They identified multiple components, including a general psychopathology (p) factor that exhibited a strong association with multimodal imaging features. The connectivity signatures associated with the p factor and neurodevelopmental dimensions aligned with the sensory-to-transmodal axis of cortical organization, which is linked to complex cognition and psychopathology risk. The findings were consistent across two separate subsamples and remained robust when accounting for variations in analytical parameters, thus contributing to a better understanding of the biological mechanisms underlying psychopathology dimensions and offering potential brain-based vulnerability markers.

      3.1) An intriguing aspect of this study is the integration of multiple neuroimaging modalities, combining structural and functional measures, to comprehensively assess the covariance with various symptom combinations. This approach provides a multidimensional understanding of the risk patterns associated with mental illness development.

      We thank the Reviewer for acknowledging the multimodal approach, and for the constructive suggestions.

      3.2) The paper delves deeper into established behavioral latent variables such as the p factor, internalizing, externalizing, and neurodevelopmental dimensions, revealing their distinct associations with morphological and intrinsic functional connectivity signatures. This sheds light on the neurobiological underpinnings of these dimensions.

      We are happy to hear the Reviewer appreciates the gain in understanding neural underpinnings of dimensions of psychopathology resulting from the current work.

      3.3) The robustness of the findings is a notable strength, as they were validated in a separate replication sample and remained consistent even when accounting for different parameter variations in the analysis methodology. This reinforces the generalizability and reliability of the results.

      We appreciate that the Reviewer found our robustness and generalizability assessment convincing.

      3.4) Based on their findings, the authors suggest that the observed variations in resting-state functional connectivity may indicate shared neurobiological substrates specific to certain symptoms. However, it should be noted that differences in resting-state connectivity between groups can stem from various factors, as highlighted in the existing literature. For instance, discrepancies in the interpretation of instructions during the resting state scan can influence the results. Hence, while their findings may indicate biological distinctions, they could also reflect differences in behavior.

      For the ABCD dataset, resting-state fMRI scans were based on eyes open and passive viewing of a crosshair, and are thus homogenized. We acknowledge, however, that there may still be state-to-state fluctuations contributing to the findings, and this is now discussed in the revised Discussion, on P.28. Note, however, that prior literature has generally also suggested rather modest impacts of cognitive and daily variation on resting-state functional networks, compared to much more dominating inter-individual and inter-group factors.

      “Finally, while prior research has shown that resting-state fMRI networks may be affected by differences in instructions and study paradigm (e.g., with respect to eyes open vs closed) (Agcaoglu et al., 2019), the resting-state fMRI paradigm is homogenized in the ABCD study to be passive viewing of a centrally presented fixation cross. It is nevertheless possible that there were slight variations in compliance and instructions that contributed to differences in associated functional architecture. Notably, however, there is a mounting literature based on high-definition fMRI acquisitions suggesting that functional networks are mainly dominated by common organizational principles and stable individual features, with substantially more modest contributions from task-state variability (Gratton et al. 2018). These findings, thus, suggest that resting-state fMRI markers can serve as powerful phenotypes of psychiatric conditions, and potential biomarkers (Abraham et al., 2017; Gratton et al., 2020; Parkes et al., 2020).”

      3.5) The authors conducted several analyses to investigate the relationship between imaging loadings associated with latent components and the principal functional gradient. They found several associations between principal gradient scores and both within- and between-network resting-state functional connectivity (RSFC) loadings. Assessing the analysis presented here proves challenging due to the nature of relating loadings, which are partly based on the RSFC, to gradients derived from RSFC. Consequently, a certain level of correlation between these two variables would be expected, making it difficult to determine the significance of the authors' findings. It would be more intriguing if a direct correlation between the composite scores reflecting behavior and the gradients were to yield statistically significant results.

      We thank the Reviewer for the comment, and agree that investigating gradient-behavior relationships could offer additional insights into the neural basis of psychiatric symptomatology. However, the current analysis pipeline precludes this direct comparison which is performed on a region-by-region basis across the span of the cortical gradient. Indeed, the behavioral loadings are provided for each CBCL item, and not cortical regions.

      The Reviewer also evokes concerns of potential circularity in our analysis, as we compared imaging loadings, which are partially based on RSFC, and gradient values generated from the same RSFC data. In response to this comment, we cross-validated our findings using an RSFC gradient derived from an independent dataset (HCP), showing highly consistent findings to those presented in the manuscript. This correlation is now reported in the Results section P.15.

      “A similar pattern of findings was observed when cross-validating between- and within-network RSFC loadings to a RSFC gradient derived from an independent dataset (HCP), with strongest correlations seen for between-network RSFC loadings for LC1 and LC3 (LC1: r=0.50, pspin<0.001; LC3: r=0.37, pspin<0.001).”

      We furthermore note similar correlations between imaging loadings and T1w/T2w ratio in the same participants, a proxy of intracortical microstructure and hierarchy (Glasser et al., 2011). These findings are now detailed in the revised Results, P.15-16:

      “Of note, we obtain similar correlations when using T1w/T2w ratio in the same participants, a proxy of intracortical microstructure and hierarchy (Glasser et al., 2011). Specifically, we observed the strongest association between this microstructural marker of the cortical hierarchy and between-network RSFC loadings related to LC1 (r=-0.43, pspin<0.001).”

      3.6) Lastly, regarding the interpretation of the first identified latent component, I have some reservations. Upon examining the loadings, it appears that LC1 primarily reflects impulse control issues rather than representing a comprehensive p-factor. Furthermore, it is worth noting that within the field, there is an ongoing debate concerning the interpretation and utilization of the p-factor. An insightful publication on this topic is "The p factor is the sum of its parts, for now" (Fried et al, 2021), which explains that the p-factor emerges as a result of a positive manifold, but it does not necessarily provide insights into the underlying mechanisms that generated the data.

      We thank the Reviewer for this comment, and added greater nuance into the discussion of the association to the p factor. We furthermore discuss some of the ongoing debate about the use of the p factor, and cite the recommended publication on P.27.

      “Other factors have also been suggested to impact the development of psychopathology, such as executive functioning deficits, earlier pubertal timing, negative life events (Brieant et al., 2021), maternal depression, or psychological factors (e.g., low effortful control, high neuroticism, negative affectivity). Inclusion of such data could also help to add further mechanistic insights into the rather synoptic proxy measure of the p factor itself (Fried et al., 2021), and to potentially assess shared and unique effects of the p factor vis-à-vis highly correlated measures of impulse control.”

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for going through our manuscript and providing valuable feedback. We are grateful to all 3 reviewers for describing our findings as important and valuable, well-designed and robust, and of value to the Parkinson's and Crohn's disease communities studying LRRK2. Below we detail a point-by-point response to the reviewers.

      __Reviewer #1 (Evidence, reproducibility and clarity (Required)): __

      The paper by Dikovskaya and collaborators investigated the activitiy and expression of LRRK2 in different subtypes of splenic and intestinal immune cells, taking advantage of a novel GFP-Lrrk2 knockin mouse. Interestingly, they found that T-cell-released IL-4 stimulates Lrrk2 expression in B cells. I have a few comments and suggestions for the authors. 1) Figure 1C. LRRK2 KO cells display residual Rab10 phosphorylation. Do the authors have any idea of which kinase other than LRRK2 could be involved in this phosphorylation?

      As far as we are aware no other kinase is known to phosphorylate Rab10 at T73 in vivo. In vitro, recombinant Rab10 can be phosphorylated by MST3 at this site (Knebel A. et al, protocols.io https://dx.doi.org/10.17504/protocols.io.bvjxn4pn), but its relevance in vivo or in cells has not been shown. It is possible that the residual band recognised by anti-pT73 Rab10 ab in splenocytes is unspecific background, as it is mainly seen in LRRK2 KO spleen cells and not in other tissues. But to be certain that our assay assesses LRRK2-dependent Rab10 phosphorylation, we have always compared with the MLi-2 control.

      2) Since there are no good antibodies for IF/IHC as pointed by the authors, the GFP-Lrrk2 mouse gives the opportunity to check endogenous LRRK2 localization, i.e. in cells untreated or treated with IL-4 or other cytokines. Also, does endogenous GFP-LRRK2 accumulate into filaments/puncta upon MLi2 inhibition? The relocalization into filaments of inhibited LRRK2 has been observed in overexpression but not under endogenous expression. This analysis would be interesting also in light of the observed side effect of type-I inhibitors.

      We thank the reviewer for this suggestion. We will attempt a super-resolution microscopy using Airyscan with isolated B-cells treated with cytokine and/or LRRK2 inhibitor to address this question.

      3) Figure 5. The authors need to label more clearly the graphs referring to wt mice versus GFP-Lrrk2 KI mice.

      We have now labelled the panels referring to the WT mice only with "WT mice", to distinguish them from the other panels that incorporate data from both EGFP-Lrrk2 mice and their WT littermates used as a background.

      They should also replace GFP-LRRK2 with GFP-Lrrk2 since they edited the endogenous murine gene.

      Thank you, we have corrected it, and also the other mouse genotypes.

      4) In the material and methods MLi-2 administration in mice is indicated at 60 mg/kg for 2 hr whereas in suppl. figure 5 the indicated dose is 30 mg/kg. Please correct with the actual dose used.

      Thank you, we have corrected the mistake.

      5) The discovery of IL-4 as a Lrrk2 activator in B cells is a very interesting and novel finding. The authors could take advantage of the GFP tag to investigate LRRK2 interactome upon IL-4 stimulation (optional). Also, is the signaling downstream of IL-4 attenuated in Lrrk2 KO cells?

      We thank the reviewer for these interesting suggestions. The role of LRRK2 in IL-4 activated B-cells is currently under active research in the lab.

      Reviewer #1 (Significance (Required)):

      The manuscript is well designed and organized, and the experimental approaches are robust. These results are significant for the field as they add additional layers in the complex regulation and regulatory roles of LRRK2 in immunity, with implication for inflammatory disorders and Parkinson's disease.

      We thank the reviewer for their positive comments and for recognising our efforts to provide some clarity to a complex field.

      __Reviewer #2 (Evidence, reproducibility and clarity (Required)): __

      The authors present a flow cytometry methodology to assess LRRK2 expression and pathway markers in mouse models and explore LRRK2 in splenic and intestinal immune cells. This is a highly valuable study given the emerging understanding that LRRK2 pathway activity in peripheral tissues may be of crucial importance to Parkinson's disease and Crohn's disease. P8 : the authors state that their results indicate 'that the effects of LRRK2-R1441C mutation and inflammation on LRRK2 activity represent two different parallel pathways'. This seems like an overinterpretation as pathway suggests the presence of additional partners in the pathway while R1441C is a LRRK2 intrinsic modification. The results can equally be explained by synergistic effects between both activation mechanisms (mutant and inflammation).

      We agree with the reviewer, and have added this into the text. The sentence now reads "suggesting that the LRRK2-R1441C mutation and inflammation have different impacts on LRRK2 activity, either in parallel or in synergy."

      Methods and experiment descriptions in results : the authors appear to use the terms anti-CD3 stimulation and CD3 stimulation interchangeably, although it is not always clear in the text that these are synonymous. This should be clarified.

      We thank reviewer for pointing out this error on our part. We have made the necessary changes to always refer to the stimulation as anti-CD3.

      One major observation in this paper is that LRRK2 is not detected in gut epithelial cells as previously has been reported. It would be useful to comment on any differences between the presented protocol and the previous reports, in particular relating to the antigen retrieval step. In order to reinforce the finding, it would be useful to include in situ hybridization data that could further strengthen the observations of which cellular subtypes express LRRK2 and which do not. Indeed, while the KO control shows that there is an unacceptable high non-specific staining, it does not prove absence of expression. Also, can any conclusions be made about expression of LRRK2 in neural cells of the gut? This important information on LRRK2 detection in gut should be mentioned in the abstract and highlighted in the discussion.

      We thank the reviewer for pointing this out. In fact, we think the observation that LRRK2 is not detected in epithelial cells is so important that we have a separate manuscript exploring this point. Please see 1. Tasegian, A. et al.https://doi.org/10.1101/2024.03.07.582590 (2024). In this manuscript we have explored the expression of LRRK2 in human and murine intestinal epithelial cells using qPCR. Although we do not have in situ hybridization data, we believe that using both the EGFP-LRRK2 and the pRab10 flow cytometry, as well as qPCR and proteomics on selected cell types, corroborates our findings on the cell types that express LRRK2. We did not analyse LRRK2 expression in the neural cells of the gut, as the focus was on the immune cells, however we hope that others will use the tools developed here to explore this further.

      The authors mention in the discussion that they 'show for the first time that eosinophils also express active LRRK2 at levels comparable to B-cells and DCs.' The relevance of this finding should be further developed. Why is this important?

      We thank the reviewer for this point. We don't know how LRRK2 is important in these cells. However, as the role of LRRK2 in eosinophils and neutrophils has not yet been explored and both cell types play important roles in IBD, we think it is important to point out. We have now added a sentence to the discussion highlighting the importance of eosinophils in IBD. "Since eosinophils have recently been implicated as key player in intestinal defense and colitis(Gurtner et al, 2022), it will be interesting to evaluate LRRK2 functions in these cells."

      In the isolation of lamina propria cells, what efforts were made to characterize the degree of purification of the lamina propria cells compared to cells of other gut wall layers such as epithelium, muscularis mucosa, or deeper layers? Please specify.

      Isolation of lamina propria cells is a very well-established process (LeFrancois and Lycke, 'Isolation of Mouse Small Intestinal Intraepithelial Lymphocytes, Peyer's Patch, and Lamina Propria Cells.' Curr. Protocols in Immunology 2001), where we extensively wash off the epithelial layer before digesting the tissue for the LP. After the digestion the muscle and wall of the gut are still intact, so we do not get any contamination with other deeper layers. The subsets of cells we find in the LP are in line with isolations from other labs.

      Minor comments Figure 5G, for the graphs indicating LRRK2 activity and LRRK2 phosphorylation, the specific measures should be specified in the graph titles to avoid any ambiguity (pT73-Rab10, pS935-LRRK2).

      We have added the specifications to the new version of the figure.

      Suppl figure 1 : please specify the figure label and abbreviation AF568 in the legend. Suppl figure 2 : please specify the figure label and abbreviation anti-rb in the legend

      Thank you, we added the abbreviations to the legends. The Figure labels for both figures have been already included at the top of figure legends.

      Reviewer #2 (Significance (Required)):

      The authors present a flow cytometry methodology to assess LRRK2 expression and pathway markers in mouse models and explore LRRK2 in splenic and intestinal immune cells. This is a highly valuable study given the emerging understanding that LRRK2 pathway activity in peripheral tissues may be of crucial importance to Parkinson's disease and Crohn's disease.

      We thank the reviewer for recognising the value of this study.

      Reviewer #3

      Evidence, reproducibility and clarity

      The paper describes a set of experiments to analyse LRRK2 activity in tissues and despite it has very important findings and technical developments is largely descriptive. It does look like a collection of experiments more than a defined hypothesis and experiments to address that.

      We thank the reviewer for recognising the importance of our findings and the technical developments. We agree that the paper's focus is to describe where LRRK2 is expressed in immune cells, and in which cells is it active or activated after inflammation in a hypothesis-free unbiased manner. We believe this is important data to share as a resource for the wider LRRK2 community and we will submit the manuscript as a Resource.

      The flow cytometry assay of the first part is a great technical challenge and represents the establishment of a potentially very useful tool for the field. It would have been important to test other organs, either as controls or for example because of their relevance e.g. lungs. This first part is disconnected from the second part below.

      We thank the reviewer for pointing out that the pRab10 assay would be useful to apply to other organs too. Since we are interested in the role of LRRK2 in IBD, we had focused on applying the pRab10 assay on intestinal tissue, with spleens also analysed as major lymphoid organ and a source of immune cells that can translocate to the gut in inflammation. We hope that the publication of this method would allow other researchers to analyse other tissues in the future.

      The authors generated a new mouse KI mouse expressing EGFP-LRRK2 and show data the levels of LRRK2 expression are reduced in tissues at different degrees and established a flow cytometry assay to measure LRRK2 expression by monitoring the GFP signal. Interestingly they found that expression does not correlate with activity (as measured by phospho-Rabs). I suggest taking this part out as it breaks the flow of the paper. If data using this mouse is included, then microscopy should be included to complement the flow cytometry data. I understand the mice were used later with the anti-CD3 treatment, but it is very confusing that some experiments are done with EGFP-LRRK2 mice and others not. It does look in general like the mice do not behave as wild types and this is an important caveat. Without microscopy of the tissues or even cells (Figure 4) is hard to conclude much about these experiments.

      We thank the reviewer for this point and would like to explain. It is true that in Suppl Figure 5, we show reduction of LRRK2 signal in the EGFP-Lrrk2-KI mice. However, based on immunoblotting, a significant reduction in EGFP-LRRK2 expression levels was seen only in the brain, but not in the tissues we analysed, that is the spleen and the intestine. Further, we have shown clearly using proteomics (Fig. 3D and 5E), that the GFP signal in immune cells correlates very well with the WT LRRK2 expression. Therefore, we think that the GFP signal in these mice reflects WT LRRK2 expression pattern. Further, despite the limitations of reduced kinase activity that we thoroughly describe, we think this model is very useful since no antibodies work to stain for LRRK2 in mice. We therefore respectfully disagree with this reviewer that the EGFP-LRRK2 data should be taken out, as it has proven to be an invaluable tool to measure and track changes in endogenous LRRK2 expression. Moreover, we think the fact that LRRK2 expression does not correlate with levels of activity, that is, LRRK2 is more active in some immune cells than in others, is a very important finding that evidences the cell-specific regulation of LRRK2 activity beyond its expression level.

      We tried but failed to visualize the EGFP-LRRK2 signal using fluorescence microscopy in the tissue. This is most likely due to the low expression of LRRK2 (proteomics data suggests that even neutrophils express less than 9000 copies), confounded further by the high background autofluorescence in tissues, especially in the gut. We now explain the lack of tissue images from the EGFP-LRRK2 mice in the text. However, we can visualize the EGFP-LRRK2 in B cells, and we will provide these images in a revised version of the manuscript.

      We have also added the following paragraph to the discussion:

      "We complemented the pRab10 assay with the development of the EGFP-Lrrk2-KI reporter mouse. Although the reporter was initially designed as a fluorescent tracker for imaging LRRK2 localisation in cells and tissues, the low expression of LRRK2, combined with high and variable autofluorescence in tissues precluded its use for microscopy. Even in neutrophils, which express highest level of LRRK2 among immune cells, there are less than 9000 copies of LRRK2 per cell (Sollberger et al, 2024), making it difficult to identify localization. However, the EGFP signal was sufficient for flow cytometry-based measurements, where background autofluorescence of each cell type was taken into account and subtracted."

      Then the authors show that LRRK2 expression and activity is different in different cell types and depends on inflammation. The anti-CD3 strategy to induce inflammation is very different from physiological inflammation such as sepsis and LPS stimulation, so experiments with other stimuli could be important here to contribute to the message of inflammatory trigger of LRRK2 activation and decoupling of cell type.

      We thank the reviewer for this suggestion. We used the anti-CD3 model as it also causes intestinal inflammation, and mimics T-cell cytokine storms that happens in many diseases. However, for the revisions we will also test another model of inflammation as suggested, such as LPS stimulation, to measure how inflammation affects LRRK2 expression and activity.

      The IL-4 data is intriguing but too preliminary. The lack of strong effect of IFN-gamma is expected as the promoter of LRRK2 in mice and humans is different and human cells responds much better with regards to LRRK2 expression after IFN-gamma stimulation.

      We are confused by what the reviewer means by saying the IL-4 data is preliminary. We have shown by flow cytometry, immunoblotting, qPCR and proteomics that IL-4 induced LRRK2 expression in B-cells. So we are uncertain as to how else this can be shown. As to the effect of IFNγ on LRRK2 expression, it may indeed be that human cells respond better than murine cells. Importantly, the IL-4 ability to induce LRRK2 in B-cells is a novel and important finding, regardless of the effects of IFNγ.

      Reviewer #3 (Significance (Required))

      The paper describes a set of experiments to analyse LRRK2 activity in tissues and despite it has very important findings and technical developments is largely descriptive. It does look like a collection of experiments more than a defined hypothesis and experiments to address that.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The authors used structural and biophysical methods to provide insight into Parkin regulation. The breadth of data supporting their findings was impressive and generally well-orchestrated. Still, the impact of their results builds on recent structural studies and the stated impact is based on these prior works.

      Strengths:

      (1) After reading through the paper, the major findings are:

      - RING2 and pUbl compete for binding to RING0.

      - Parkin can dimerize.

      - ACT plays an important role in enzyme kinetics.

      (2) The use of molecular scissors in their construct represents a creative approach to examining inter-domain interactions.

      (3) From my assessment, the experiments are well-conceived and executed.

      We thank the reviewer for their positive remark and extremely helpful suggestions.

      Weaknesses:

      The manuscript, as written, is NOT for a general audience. Admittedly, I am not an expert on Parkin structure and function, but I had to do a lot of homework to try to understand the underlying rationale and impact. This reflects, I think, that the work generally represents an incremental advance on recent structural findings.

      To this point, it is hard to understand the impact of this work without more information highlighting the novelty. There are several structures of Parkin in various auto-inhibited states, and it was hard to delineate how this is different.

      For the sake of the general audience, we have included all the details of Parkin structures and conformations seen (Extended Fig. 1). The structures in the present study are to validate the biophysical/biochemical experiments, highlighting key findings. For example, we solved the phospho-Parkin (complex with pUb) structure after treatment with 3C protease (Fig. 2C), which washes off the pUbl-linker, as shown in Fig 2B. The structure of the pUbl-linker depleted phospho-Parkin-pUb complex showed that RING2 returned to the closed state (Fig. 2C), which is confirmation of the SEC assay in Fig. 2B. Similarly, the structure of the pUbl-linker depleted phospho-Parkin R163D/K211N-pUb complex (Fig. 3C), was done to validate the SEC data showing displacement of pUbl-linker is independent of pUbl interaction with the basic patch on RING0 (Fig. 3B). In addition, the latter structure also revealed a new donor ubiquitin binding pocket in the linker (connecting REP and RING2) region of Parkin (Fig. 9). Similarly, trans-complex structure of phospho-Parkin (Fig. 4D) was done to validate the biophysical data (Fig. 4A-C, Fig. 5A-D) showing trans-complex between phospho-Parkin and native Parkin. The latter also confirmed that the trans-complex was mediated by interactions between pUbl and the basic patch on RING0 (Fig. 4D). Furthermore, we noticed that the ACT region was disordered in the trans-complex between phospho-Parkin (1-140 + 141-382 + pUb) (Fig. 8A) which had ACT from the trans molecule, indicating ACT might be present in the cis molecule. The latter was validated from the structure of trans-complex between phospho-Parkin with cis ACT (1-76 + 77-382 + pUb) (Fig. 8C), showing the ordered ACT region. The structural finding was further validated by biochemical assays (Fig. 8 D-F, Extended Data Fig. 9C-E).

      The structure of TEV-treated R0RBR (TEV) (Extended Data Fig. 4C) was done to ensure that the inclusion of TEV and treatment with TEV protease did not perturb Parkin folding, an important control for our biophysical experiments.

      As noted, I appreciated the use of protease sites in the fusion protein construct. It is unclear how the loop region might affect the protein structure and function. The authors worked to demonstrate that this did not introduce artifacts, but the biological context is missing.

      We thank the reviewer for appreciating the use of protease sites in the fusion protein construct.  Protease sites were used to overcome the competing mode of binding that makes interactions very transient and beyond the detection limit of methods such as ITC or SEC. While these interactions are quite transient in nature, they could still be useful for the activation of various Parkin isoforms that lack either the Ubl domain or RING2 domain (Extended Data Fig. 6, Fig. 10). Also, our Parkin localization assays also suggest an important role of these interactions in the recruitment of Parkin molecules to the damaged mitochondria (Fig. 6).

      While it is likely that the binding is competitive between the Ubl and RING2 domains, the data is not quantitative. Is it known whether the folding of the distinct domains is independent? Or are there interactions that alter folding? It seems plausible that conformational rearrangements may invoke an orientation of domains that would be incompatible. The biological context for the importance of this interaction was not clear to me.

      This is a great point. In the revised manuscript, we have included quantitative data between phospho-Parkin and untethered ∆Ubl-Parkin (TEV) (Fig. 5B) showing similar interactions using phospho-Parkin K211N and untethered ∆Ubl-Parkin (TEV) (Fig. 4B). Folding of Ubl domain or various combinations of RING domains lacking Ubl seems okay. Also, folding of the RING2 domain on its own appears to be fine. However, human Parkin lacking the RING2 domain seems to have some folding issues, majorly due to exposure of hydrophobic pocket on RING0, also suggested by previous efforts (Gladkova et al.ref. 24, Sauve et al. ref. 29).  The latter could be overcome by co-expression of RING2 lacking Parkin construct with PINK1 (Sauve et al. ref. 29) as phospho-Ubl binds on the same hydrophobic pocket on RING0 where RING2 binds. A drastic reduction in the melting temperature of phospho-Parkin (Gladkova et al.ref. 24), very likely due to exposure of hydrophobic surface between RING0 and RING2, correlates with the folding issues of RING0 exposed human Parkin constructs.

      From the biological context, the competing nature between phospho-Ubl and RING2 domains could block the non-specific interaction of phosphorylated-ubiquitin-like proteins (phospho-Ub or phospho-NEDD8) with RING0 (Lenka et al. ref. 33), during Parkin activation. 

      (5) What is the rationale for mutating Lys211 to Asn? Were other mutations tried? Glu? Ala? Just missing the rationale. I think this may have been identified previously in the field, but not clear what this mutation represents biologically.

      Lys211Asn is a Parkinson’s disease mutation; therefore, we decided to use the same mutation for biophysical studies.  

      I was confused about how the phospho-proteins were generated. After looking through the methods, there appear to be phosphorylation experiments, but it is unclear what the efficiency was for each protein (i.e. what % gets modified). In the text, the authors refer to phospho-Parkin (T270R, C431A), but not clear how these mutations might influence this process. I gather that these are catalytically inactive, but it is unclear to me how this is catalyzing the ubiquitination in the assay.

      This is an excellent question. Because different phosphorylation statuses would affect the analysis, we ensured complete phosphorylation status using Phos-Tag SDS-PAGE, as shown below.

      Author response image 1.

      Our biophysical experiments in Fig. 5C show that trans complex formation is mediated by interactions between the basic patch (comprising K161, R163, K211) on RING0 and phospho-Ubl domain in trans. These interactions result in the displacement of RING2 (Fig. 5C). Parkin activation is mediated by displacement of RING2 and exposure of catalytic C431 on RING2. While phospho-Parkin T270R/C431A is catalytically dead, the phospho-Ubl domain of phospho-Parkin T270R/C431would bind to the basic patch on RING0 of WT-Parkin resulting in activation of WT-Parkin as shown in Fig. 5E. A schematic figure is shown below to explain the same.

      Author response image 2.

      (7) The authors note that "ACT can be complemented in trans; however, it is more efficient in cis", but it is unclear whether both would be important or if the favored interaction is dominant in a biological context.

      First, this is an excellent question about the biological context of ACT and needs further exploration. While due to the flexible nature of ACT, it can be complemented both in cis and trans, we can only speculate cis interactions between ACT and RING0 could be more relevant from the biological context as during protein synthesis and folding, ACT would be translated before RING2, and thus ACT would occupy the small hydrophobic patch on RING0 in cis. Unpublished data shows the replacement of the ACT region by Biogen compounds to activate Parkin (https://doi.org/10.21203/rs.3.rs-4119143/v1). The latter finding further suggests the flexibility in this region.        

      (8) The authors repeatedly note that this study could aid in the development of small-molecule regulators against Parkin to treat PD, but this is a long way off. And it is not clear from their manuscript how this would be achieved. As stated, this is conjecture.

      As suggested by this reviewer, we have removed this point in the revised manuscript.

      Reviewer #2 (Public Review):

      This manuscript uses biochemistry and X-ray crystallography to further probe the molecular mechanism of Parkin regulation and activation. Using a construct that incorporates cleavage sites between different Parkin domains to increase the local concentration of specific domains (i.e., molecular scissors), the authors suggest that competitive binding between the p-Ubl and RING2 domains for the RING0 domain regulates Parkin activity. Further, they demonstrate that this competition can occur in trans, with a p-Ubl domain of one Parkin molecule binding the RING0 domain of a second monomer, thus activating the catalytic RING1 domain. In addition, they suggest that the ACT domain can similarly bind and activate Parkin in trans, albeit at a lower efficiency than that observed for p-Ubl. The authors also suggest from crystal structure analysis and some biochemical experiments that the linker region between RING2 and repressor elements interacts with the donor ubiquitin to enhance Parkin activity.<br /> Ultimately this manuscript challenges previous work suggesting that the p-Ubl domain does not bind to the Parkin core in the mechanism of Parkin activation. The use of the 'molecular scissors' approach to probe these effects is an interesting approach to probe this type of competitive binding. However, there are issues with the experimental approach manuscript that detract from the overall quality and potential impact of the work.

      We thank the reviewer for their positive remark and constructive suggestions.

      The competitive binding between p-Ubl and RING2 domains for the Parkin core could have been better defined using biophysical and biochemical approaches that explicitly define the relative affinities that dictate these interactions. A better understanding of these affinities could provide more insight into the relative bindings of these domains, especially as it relates to the in trans interactions.

      This is an excellent point regarding the relative affinities of pUbl and RING2 for the Parkin core (lacking Ubl and RING2). While we could purify p-Ubl, we failed to purify human Parkin (lacking RING2 and phospho-Ubl). The latter folding issues were likely due to the exposure of a highly hydrophobic surface on RING0 (as shown below) in the absence of pUbl and RING2 in the R0RB construct. Also, RING2 with an exposed hydrophobic surface would be prone to folding issues, which is not suitable for affinity measurements. A drastic reduction in the melting temperature of phospho-Parkin (Gladkova et al.ref. 24) also highlights the importance of a hydrophobic surface between RING0 and RING2 on Parkin folding/stability. A separate study would be required to try these Parkin constructs from different species and ensure proper folding before using them for affinity measurements.

      Author response image 3.

      I also have concerns about the results of using molecular scissors to 'increase local concentrations' and allow for binding to be observed. These experiments are done primarily using proteolytic cleavage of different domains followed by size exclusion chromatography. ITC experiments suggest that the binding constants for these interactions are in the µM range, although these experiments are problematic as the authors indicate in the text that protein precipitation was observed during these experiments. This type of binding could easily be measured in other assays. My issue relates to the ability of a protein complex (comprising the core and cleaved domains) with a Kd of 1 µM to be maintained in an SEC experiment. The off-rates for these complexes must be exceeding slow, which doesn't really correspond to the low µM binding constants discussed in the text. How do the authors explain this? What is driving the Koff to levels sufficiently slow to prevent dissociation by SEC? Considering that the authors are challenging previous work describing the lack of binding between the p-Ubl domain and the core, these issues should be better resolved in this current manuscript. Further, it's important to have a more detailed understanding of relative affinities when considering the functional implications of this competition in the context of full-length Parkin. Similar comments could be made about the ACT experiments described in the text.

      This is a great point. In the revised manuscript, we repeated ITC measurements in a different buffer system, which gave nice ITC data. In the revised manuscript, we have also performed ITC measurements using native phospho-Parkin. Phospho-Parkin and untethered ∆Ubl-Parkin (TEV) (Fig. 5B) show similar affinities as seen between phospho-Parkin K211N and untethered ∆Ubl-Parkin (TEV) (Fig. 4B). However, Kd values were consistent in the range of 1.0 ± 0.4 µM which could not address the reviewer’s point regarding slow off-rate. The crystal structure of the trans-complex of phospho-Parkin shows several hydrophobic and ionic interactions between p-Ubl and Parkin core, suggesting a strong interaction and, thus, justifying the co-elution on SEC. Additionally, ITC measurements between E2-Ub and P-Parkin-pUb show similar affinity (Kd = 0.9 ± 0.2 µM) (Kumar et al., 2015, EMBO J.), and yet they co-elute on SEC (Kumar et al., 2015, EMBO J.).

      Ultimately, this work does suggest additional insights into the mechanism of Parkin activation that could contribute to the field. There is a lot of information included in this manuscript, giving it breadth, albeit at the cost of depth for the study of specific interactions. Further, I felt that the authors oversold some of their data in the text, and I'd recommend being a bit more careful when claiming an experiment 'confirms' a specific model. In many cases, there are other models that could explain similar results. For example, in Figure 1C, the authors state that their crystal structure 'confirms' that "RING2 is transiently displaced from the RING0 domain and returns to its original position after washing off the p-Ubl linker". However, it isn't clear to me that RING2 ever dissociated when prepared this way. While there are issues with the work that I feel should be further addressed with additional experiments, there are interesting mechanistic details suggested by this work that could improve our understanding of Parkin activation. However, the full impact of this work won't be fully appreciated until there is a more thorough understanding of the regulation and competitive binding between p-Ubl and RIGN2 to RORB both in cis and in trans.

      We thank the reviewer for their positive comment. In the revised manuscript, we have included the reviewer’s suggestion. The conformational changes in phospho-Parkin were established from the SEC assay (Fig. 2A and Fig. 2B), which show displacement/association of phospho-Ubl or RING2 after treatment of phospho-Parkin with 3C and TEV, respectively. For crystallization, we first phosphorylated Parkin, where RING2 is displaced due to phospho-Ubl (as shown in SEC), followed by treatment with 3C protease, which led to pUbl wash-off. The Parkin core separated from phospho-Ubl on SEC was used for crystallization and structure determination in Fig. 2C, where RING2 returned to the RING0 pocket, which confirms SEC data (Fig. 2B).

      Reviewer #3 (Public Review):

      Summary:

      In their manuscript "Additional feedforward mechanism of Parkin activation via binding of phospho-UBL and RING0 in trans", Lenka et al present data that could suggest an "in trans" model of Parkin ubiquitination activity. Parkin is an intensely studied E3 ligase implicated in mitophagy, whereby missense mutations to the PARK2 gene are known to cause autosomal recessive juvenile parkinsonism. From a mechanistic point of view, Parkin is extremely complex. Its activity is tightly controlled by several modes of auto-inhibition that must be released by queues of mitochondrial damage. While the general overview of Parkin activation has been mapped out in recent years, several details have remained murky. In particular, whether Parkin dimerizes as part of its feed-forward signaling mechanism, and whether said dimerization can facilitate ligase activation, has remained unclear. Here, Lenka et al. use various truncation mutants of Parkin in an attempt to understand the likelihood of dimerization (in support of an "in trans" model for catalysis).

      Strengths:

      The results are bolstered by several distinct approaches including analytical SEC with cleavable Parkin constructs, ITC interaction studies, ubiquitination assays, protein crystallography, and cellular localization studies.

      We thank the reviewer for their positive remark.

      Weaknesses:

      As presented, however, the storyline is very confusing to follow and several lines of experimentation felt like distractions from the primary message. Furthermore, many experiments could only indirectly support the author's conclusions, and therefore the final picture of what new features can be firmly added to the model of Parkin activation and function is unclear.

      We thank the reviewer for their constructive criticism, which has helped us to improve the quality of this manuscript.

      Major concerns:

      (1) This manuscript solves numerous crystal structures of various Parkin components to help support their idea of in trans transfer. The way these structures are presented more resemble models and it is unclear from the figures that these are new complexes solved in this work, and what new insights can be gleaned from them.

      The structures in the present study are to validate the biophysical/biochemical experiments highlighting key findings. For example, we solved the phospho-Parkin (complex with pUb) structure after treatment with 3C protease (Fig. 2C), which washes off the pUbl-linker, as shown in Fig. 2B. The structure of pUbl-linker depleted phospho-Parkin-pUb complex showed that RING2 returned to the closed state (Fig. 2C), which is confirmation of the SEC assay in Fig. 2B. Similarly, the structure of the pUbl-linker depleted phospho-Parkin R163D/K211N-pUb complex (Fig. 3C), was done to validate the SEC data showing displacement of pUbl-linker is independent of pUbl interaction with the basic patch on RING0 (Fig. 3B). In addition, the latter structure also revealed a new donor ubiquitin binding pocket in the linker (connecting REP and RING2) region of Parkin (Fig. 9). Similarly, trans-complex structure of phospho-Parkin (Fig. 4D) was done to validate the biophysical data (Fig. 4A-C, Fig. 5A-D) showing trans-complex between phospho-Parkin and native Parkin. The latter also confirmed that the trans-complex was mediated by interactions between pUbl and the basic patch on RING0 (Fig. 4D). Furthermore, we noticed that the ACT region was disordered in the trans-complex between phospho-Parkin (1-140 + 141-382 + pUb) (Fig. 8A) which had ACT from the trans molecule, indicating ACT might be present in the cis molecule. The latter was validated from the structure of trans-complex between phospho-Parkin with cis ACT (1-76 + 77-382 + pUb) (Fig. 8C), showing the ordered ACT region. The structural finding was further validated by biochemical assays (Fig. 8 D-F, Extended Data Fig. 9C-E).

      The structure of TEV-treated R0RBR (TEV) (Extended Data Fig. 4C) was done to ensure that the inclusion of TEV and treatment with TEV protease did not perturb Parkin folding, an important control for our biophysical experiments.

      (2) There are no experiments that definitively show the in trans activation of Parkin. The binding experiments and size exclusion chromatography are a good start, but the way these experiments are performed, they'd be better suited as support for a stronger experiment showing Parkin dimerization. In addition, the rationale for an in trans activation model is not convincingly explained until the concept of Parkin isoforms is introduced in the Discussion. The authors should consider expanding this concept into other parts of the manuscript.

      We thank the reviewer for appreciating the Parkin dimerization. Our biophysical data in Fig. 5C shows that Parkin dimerization is mediated by interactions between phospho-Ubl and RING0 in trans, leading to the displacement of RING2. However, Parkin K211N (on RING0) mutation perturbs interaction with phospho-Parkin and leads to loss of Parkin dimerization and loss of RING2 displacement (Fig. 5C). The interaction between pUbl and K211 pocket on RING0 leads to the displacement of RING2 resulting in Parkin activation as catalytic residue C431 on RING2 is exposed for catalysis. The biophysical experiment is further confirmed by a biochemical experiment where the addition of catalytically in-active phospho-Parkin T270R/C431A activates autoinhibited WT-Parkin in trans using the mechanism as discussed (a schematic representation also shown in Author response image 2).

      We thank this reviewer regarding Parkin isoforms. In the revised manuscript, we have included Parkin isoforms in the results section, too.

      (2a) For the in trans activation experiment using wt Parkin and pParkin (T270R/C431A) (Figure 3D), there needs to be a large excess of pParkin to stimulate the catalytic activity of wt Parkin. This experiment has low cellular relevance as these point mutations are unlikely to occur together to create this nonfunctional pParkin protein. In the case of pParkin activating wt Parkin (regardless of artificial point mutations inserted to study specifically the in trans activation), if there needs to be much more pParkin around to fully activate wt Parkin, isn't it just more likely that the pParkin would activate in cis?

      To test phospho-Parkin as an activator of Parkin in trans, we wanted to use the catalytically inactive version of phospho-Parkin to avoid the background activity of p-Parkin. While it is true that a large excess of pParkin (T270R/C431A) is required to activate WT-Parkin in the in vitro set-up, it is not very surprising as in WT-Parkin, the unphosphorylated Ubl domain would block the E2 binding site on RING1. Also, due to interactions between pParkin (T270R/C431A) molecules, the net concentration of pParkin (T270R/C431A) as an activator would be much lower. However, the Ubl blocking E2 binding site on RING1 won’t be an issue between phospho-Parkin molecules or between Parkin isoforms (lacking Ubl domain or RING2).

      (2ai) Another underlying issue with this experiment is that the authors do not consider the possibility that the increased activity observed is a result of increased "substrate" for auto-ubiquitination, as opposed to any role in catalytic activation. Have the authors considered looking at Miro as a substrate in order to control for this?

      This is quite an interesting point. However, this will be only possible if Parkin is ubiquitinated in trans, as auto-ubiquitination is possible with active Parkin and not with catalytically dead (phospho-Parkin T270R, C431A) or autoinhibited (WT-Parkin). Also, in the previous version of the manuscript, where we used only phospho-Ubl as an activator of Parkin in trans, we tested Miro1 ubiquitination and auto-ubiquitination, and the results were the same (Author response image 4).

      Author response image 4.

      (2b) The authors mention a "higher net concentration" of the "fused domains" with RING0, and use this to justify artificially cleaving the Ubl or RING2 domains from the Parkin core. This fact should be moot. In cells, it is expected there will only be a 1:1 ratio of the Parkin core with the Ubl or RING2 domains. To date, there is no evidence suggesting multiple pUbls or multiple RING2s can bind the RING0 binding site. In fact, the authors here even show that either the RING2 or pUbl needs to be displaced to permit the binding of the other domain. That being said, there would be no "higher net concentration" because there would always be the same molar equivalents of Ubl, RING2, and the Parkin core.

      We apologize for the confusion. “Higher net concentration” is with respect to fused domains versus the domain provided in trans. Due to the competing nature of the interactions between pUbl/RING2 and RING0, the interactions are too transient and beyond the detection limit of the biophysical techniques. While the domains are fused (for example, RING0-RING2 in the same polypeptide) in a polypeptide, their effective concentrations are much higher than those (for example, pUbl) provided in trans; thus, biophysical methods fail to detect the interaction. Treatment with protease solves the above issue due to the higher net concentration of the fused domain, and trans interactions can be measured using biophysical techniques. However, the nature of these interactions and conformational changes is very transient, which is also suggested by the data. Therefore, Parkin molecules will never remain associated; rather, Parkin will transiently interact and activate Parkin molecules in trans.

      (2c) A larger issue remaining in terms of Parkin activation is the lack of clarity surrounding the role of the linker (77-140); particularly whether its primary role is to tether the Ubl to the cis Parkin molecule versus a role in permitting distal interactions to a trans molecule. The way the authors have conducted the experiments presented in Figure 2 limits the possible interactions that the activated pUbl could have by (a) ablating the binding site in the cis molecule with the K211N mutation; (b) further blocking the binding site in the cis molecule by keeping the RING2 domain intact. These restrictions to the cis parkin molecule effectively force the pUbl to bind in trans. A competition experiment to demonstrate the likelihood of cis or trans activation in direct comparison with each other would provide stronger evidence for trans activation.

      This is an excellent point. In the revised manuscript, we have performed experiments using native phospho-Parkin (Revised Figure 5), and the results are consistent with those in Figure 2 ( Revised Figure 4), where we used the K211N mutation.

      (3) A major limitation of this study is that the authors interpret structural flexibility from experiments that do not report directly on flexibility. The analytical SEC experiments report on binding affinity and more specifically off-rates. By removing the interdomain linkages, the accompanying on-rate would be drastically impacted, and thus the observations are disconnected from a native scenario. Likewise, observations from protein crystallography can be consistent with flexibility, but certainly should not be directly interpreted in this manner. Rigorous determination of linker and/or domain flexibility would require alternative methods that measure this directly.

      We also agree with the reviewer that these methods do not directly capture structural flexibility. Also, rigorous determination of linker flexibility would require alternative methods that measure this directly. However, due to the complex nature of interactions and technical limitations, breaking the interdomain linkages was the best possible way to capture interactions in trans. Interestingly, all previous methods that report cis interactions between pUbl and RING0 also used a similar approach (Gladkova et al.ref. 24, Sauve et al. ref. 29).  

      (4) The analysis of the ACT element comes across as incomplete. The authors make a point of a competing interaction with Lys48 of the Ubl domain, but the significance of this is unclear. It is possible that this observation could be an overinterpretation of the crystal structures. Additionally, the rationale for why the ACT element should or shouldn't contribute to in trans activation of different Parkin constructs is not clear. Lastly, the conclusion that this work explains the evolutionary nature of this element in chordates is highly overstated.

      We agree with the reviewer that the significance of Lys48 is unclear. We have presented this just as one of the observations from the crystal structure. As the reviewer suggested, we have removed the sentence about the evolutionary nature of this element from the revised manuscript.

      (5) The analysis of the REP linker element also seems incomplete. The authors identify contacts to a neighboring pUb molecule in their crystal structure, but the connection between this interface (which could be a crystallization artifact) and their biochemical activity data is not straightforward. The analysis of flexibility within this region using crystallographic and AlphaFold modeling observations is very indirect. The authors also draw parallels with linker regions in other RBR ligases that are involved in recognizing the E2-loaded Ub. Firstly, it is not clear from the text or figures whether the "conserved" hydrophobic within the linker region is involved in these alternative Ub interfaces. And secondly, the authors appear to jump to the conclusion that the Parkin linker region also binds an E2-loaded Ub, even though their original observation from the crystal structure seems inconsistent with this. The entire analysis feels very preliminary and also comes across as tangential to the primary storyline of in trans Parkin activation.

      We agree with the reviewer that crystal structure data and biochemical data are not directly linked. In the revised manuscript, we have also highlighted the conserved hydrophobic in the linker region at the ubiquitin interface (Fig. 9C and Extended Data Fig. 11A), which was somehow missed in the original manuscript. We want to add that a very similar analysis and supporting experiments identified donor ubiquitin-binding sites on the IBR and helix connecting RING1-IBR (Kumar et al., Nature Str. and Mol. Biol., 2017), which several other groups later confirmed. In the mentioned study, the Ubl domain of Parkin from the symmetry mate Parkin molecule was identified as a mimic of “donor ubiquitin” on IBR and helix connecting RING1-IBR.

      In the present study, a neighboring pUb molecule in the crystal structure is identified as a donor ubiquitin mimic (Fig. 9C) by supporting biophysical/biochemical experiments. First, we show that mutation of I411A in the REP linker of Parkin perturbs Parkin interaction with E2~Ub (donor) (Fig. 9F). Another supporting experiment was performed using a Ubiquitin-VS probe assay, which is independent of E2. Assays using Ubiquitin-VS show that I411A mutation in the REP-RING2 linker perturbs Parkin charging with Ubiquitin-VS (Extended Data Fig. 11 B). Furthermore, the biophysical data showing loss of Parkin interaction with donor ubiquitin is further supported by ubiquitination assays. Mutations in the REP-RING2 linker perturb the Parkin activity (Fig. 9E), confirming biophysical data. This is further confirmed by mutations (L71A or L73A) on ubiquitin (Extended Data Fig. 11C), resulting in loss of Parkin activity. The above experiments nicely establish the role of the REP-RING2 linker in interaction with donor ubiquitin, which is consistent with other RBRs (Extended Data Fig. 11A).

      While we agree with the reviewer that this appears tangential to the primary storyline in trans-Parkin activation, we decided to include this data because it could be of interest to the field.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) For clarity, a schematic of the domain architecture of Parkin would be helpful at the outset in the main figures. This will help with the introduction to better understand the protein organization. This is lost in the Extended Figure in my opinion.

      We thank the reviewer for suggesting this, which we have included in Figure 1 of the revised manuscript.

      (2) Related to the competition between the Ubl and RING2 domains, can competition be shown through another method? SPR, ITC, etc? ITC was used in other experiments, but only in the context of mutations (Lys211Asn)? Can this be done with WT sequence?

      This is an excellent suggestion. In the revised Figure 5, we have performed ITC experiment using WT Parkin, and the results are consistent with what we observed using Lys211Asn Parkin.

      (3) The authors also note that "the AlphaFold model shows a helical structure in the linker region of Parkin (Extended Data Figure 10C), further confirming the flexible nature of this region"... but the secondary structure would not be inherently flexible. This is confusing.

      The flexibility is in terms of the conformation of this linker region observed under the open or closed state of Parkin. In the revised manuscript, we have explained this point more clearly.

      (4) The manuscript needs extensive revision to improve its readability. Minor grammatical mistakes were prevalent throughout.

      We thank the reviewer for pointing out this and we have corrected these in the revised manuscript.

      (5) The confocal images are nice, but inset panels may help highlight the regions of interest (ROIs).

      This is corrected in the revised manuscript.

      (6) Trans is misspelled ("tans") towards the end of the second paragraph on page 16.

      This is corrected in the revised manuscript.

      (7) The schematics are helpful, but some of the lettering in Figure 2 is very small.

      This is corrected in the revised manuscript.

      Reviewer #3 (Recommendations For The Authors):

      (1) A significant portion of the results section refers to the supplement, making the overall readability very difficult.

      We accept this issue as a lot of relevant data could not be added to the main figures and thus ended up in the supplement.  In the revised manuscript, we have moved some of the supplementary figures to the main figures.

      (2) Interpretation of the experiments utilizing many different Parkin constructs and cleavage scenarios (particularly the SEC and crystallography experiments) is extremely difficult. The work would benefit from a layout of the Parkin model system, highlighting cleavage sites, key domain terminology, and mutations used in the study, presented together and early on in the manuscript. Using this to identify a simpler system of referencing Parkin constructs would also be a large improvement.

      This is a great suggestion. We have included these points in the revised manuscript, which has improved the readability.

      (3) Lines 81-83; the authors say they "demonstrate the conformational changes in Parkin during the activation process", but fail to show any actual conformational changes. Further, much of what is demonstrated in this work (in terms of crystal structures) corroborates existing literature. The authors should use caution not to overstate their original conclusions in light of the large body of work in this area.

      We thank the reviewer for pointing out this. We have corrected the above statement in the revised manuscript to indicate that we meant it in the context of trans conformational changes.

      (4) Line 446 and 434; there is a discrepancy about which amino acid is present at residue 409. Is this a K408 typo? The authors also present mutational work on K416, but this residue is not shown in the structure panel.

      We thank the reviewer for pointing out this. In the revised manuscript, we have corrected these typos.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Revisions Round 1

      Reviewer #1

      We thank the reviewer for their careful reading of our manuscript and have taken all of their grammatical corrections into account.

      Reviewer #2 (Public Review): 

      Weaknesses: 

      The paper contains multiple instances of non-scientific language, as indicated below. It would also benefit from additional details on the cryo-EM structure determination in the Methods and inclusion of commonly accepted requirements for cryo-EM structures, like examples of 2D class averages, raw micrographs, and FSC curves (between half-maps as well as between rigid-body fitted (or refined) atomic models of the different polymorphs and their corresponding maps). In addition, cryo-EM maps for the control experiments F1 and F2 should be presented in Figure 9.

      We tried to correct the non-scientific language and have included the suggested data on the Cryo-EM analyses including new Figures 11-17.  We did not collect data on the sample used for the seeds in the cross seeding experiments because we had already confirmed in multiple datasets that the conditions in F1 and F2 reproducibly produce fibrils of Type 1 and Type 3, respectively. We have now analyzed cryo-EM data for 6 more samples at pH 7.0 and found that several kinds of polymorphs (Types 1A, 1M, 2A, 2B and 5) are accessible at this pH, however the Type 3 polymorphs are not formed at pH 7.0 under the conditions that we used for aggregation.

      Reviewer #2 (Recommendations For The Authors): 

      - remove unscientific language: "it seems that there are about as many unique atomic-resolution structures of these aggregates as there are publications describing them"   

      We have rephrased this sentence.

      - for same reason, remove "Obviously, " 

      Done

      - What does this mean? “polymorph-unspecific” 

      Rephrased as non-polymorph-specific

      - What does this mean? "shallow amyloid energy hypersurface"  

      By “shallow hypersurface” we mean that the minimum of the multi-dimensional function that describes the energy of the amyloid is not so deep that subtle changes to the environment will not favor another fold/energy minimum. We have left the sentence because while it may not be perfect, it is concise and seems to get the point across.

      - "The results also confirm the possibility of producing disease-relevant structure in vitro." -> This is incorrect as no disease-relevant structure was replicated in this work. Use another word like “suggest”.

      We have changed to “suggest” as suggested.

      - Remove "historically" 

      Done

      - Rephrase “It has long been understood that all amyloids contain a common structural scaffold” 

      Changed to “It has long been established that all amyloids contain a common structural scaffold..” 

      - "Amyloid polymorphs whose differences lie in both their tertiary structure (the arrangement of the beta-strands) and the quaternary structure (protofilamentprotofilament assembly) have been found to display distinct biological activities [8]" -> I don't think this is true, different biological activities of amyloids have never been linked to their distinct structures.  

      We have added 5 new references (8-12) to support this sentence.

      - Reference 10 is a comment on reference 9; it should be removed. Instead, as for alpha-synuclein, all papers describing the tau structures should be included.  

      We have removed the reference, but feel that the addition of all Tau structure references is not merited in this manuscript since we are not comparing them.

      - Rephrase: "is not always 100% faithful"

      Removed “100%”

      - What is pseudo-C2 symmetry? Do the authors mean pseudo 2_1 symmetry (ie a 2-start helical symmetry)?

      Thank for pointing this out.  We did indeed mean pseudo 21 helical symmetry.  

      - Re-phrase: "alpha-Syn's chameleon-like behavior" 

      We have removed this phrase.

      - "In the case of alpha-Syn, the secondary nucleation mechanism is based on the interaction of the positively charged N-terminal region of monomeric alpha-Syn and the disordered, negatively charged C-terminal region of the alpha-Syn amyloid fibrils [54]" -> I would say the mechanisms of secondary nucleation are not that well understood yet, so one may want to tune this down a bit. 

      We have changed this to “mechanism has been proposed to be”

      - The paragraphs describing experiments by others are better suited for a Discussion rather than a Results section. Perhaps re-organize this part? 

      We have left the text intact as we are using a Results and Discussion format.

      - A lot of information about Image processing seems to be missing: what steps were performed after initial model generation? 

      We have added more details in the methods section on the EM data processing and model analysis.

      - Figure 1: Where is Type 4 on the pH scale?

      We have adjusted the Fig 1 legend to clarify that pH scale is only applicable to the structures presented in this manuscript. 

      - Figure 2: This might be better incorporated as a subpanel of Figure 1.

      We agree that this figure is somewhat of a loner on its own and we only added it in order to avoid confusion with the somewhat inconsistent naming scheme used for the Type 1B structure. However, we prefer to leave it as a separate figure so that it does not get dilute the impact of figure 1.

      - Figure 3: What is the extra density at the bottom of Type 3B from pH 5.8 samples 1 and 2. pH 5.8 + 50mM NaCl (but not pH 5.8 + 100 mM NaCl)? Could this be an indication of a local minimum and the pH 5.8 + 100 mM NaCl structure is correct? Or is this a real difference between 0/50mM NaCl and 100 mM NaCl? 

      We did not see the extra density to which the reviewer is referring, however the images used in this panel are the based on the output of 3D-classification which is more likely to produce more artifacts than a 3D refinement. With this in mind, we did not see any significant differences in the refined structures and therefore only deposited the better quality map and model for each of the polymorph types.

      - Figure 3: To what extent is Type 3B of pH 6.5 still a mixture of different types? The density looks poor. In general, in the absence of more details about the cryo-EM maps, it is hard to assess the quality of the structures presented.  

      In order to improve the quality of the images in this panel, a more complete separation of the particles from each polymorph was achieved via the filament subset selection tool in RELION 5. In each case, an unbiased could be created from the 2D classes via the relion_helix_inimodel2D program, further supporting the coexistence of 4 polymorphs in the pH 6.5 sample. The particles were individually refined to produce the respective maps that are now used in this figure.

      - Many references are incorrect, containing "Preprint at (20xx)" statements.

      This has been corrected.  

      Reviewer #3 (Public Review): 

      Weaknesses: 

      (1) The authors reveal that both Type 1 monofilament fibril polymorph (reminiscent of JOSlike polymorph) and Type 5 polymorph (akin to tissue-amplified-like polymorph) can both form under the same condition. Additionally, this condition also fosters the formation of flat ribbon-like fibril across different batches. Notably, at pH 5.8, variations in experimental groups yield disparate abundance ratios between polymorph 3B and 3C, indicating a degree of instability in fibrillar formation. The variability would potentially pose challenges for replicability in subsequent research. In light of these situations, I propose the following recommendations: 

      (a) An explicit elucidation of the factors contributing to these divergent outcomes under similar experimental conditions is warranted. This should include an exploration of whether variations in purified protein batches are contributing factors to the observed heterogeneity.

      We are in complete agreement that understanding the factors that lead to polymorph variability is of utmost importance (and was the impetus for the manuscript itself). However the number of variables to explore is overwhelming and we will continue to investigate this in our future research. Regarding the variability between batches of purified protein, we also think that this could be a factor in the polymorph variability observed for otherwise “identical” aggregation conditions, particularly at pH 7 where the largest variety of polymorphs have been observed. However, even variation between identical replicates (samples created from the same protein solution and simply aggregated simultaneously in separate tubes) can lead to different outcomes (see datasets 15 and 16 in the revised Table 1) suggesting that there are stochastic processes that can determine the outcome of an individual aggregation experiment. While our data still indicates that Type 1,2 and 3 polymorphs are strongly selected by pH, the selection between interface variants 3B vs. 3C and 2A vs. 2B might also be affected by protein purity. Our standard purification protocol produces a single band by coomassie-stained SDS-PAGE however minor truncations and other impurities below a few percent would go undetected and, given the proposed roles of the N and C-termini in secondary nucleation, could have a large effect on polymorph selection and seeding. In line with the reviewer’s comments we now include a batch number for each EM dataset. While no new conclusions can be drawn from the inclusion of this additional data, we feel that it is important to acknowledge the possible role of batch to batch variability. 

      (b) To enhance the robustness of the conclusions, additional replicates of the experiments under the same condition should be conducted, ideally a minimum of three times.  

      The pH 5.8 conditions that yield Type 3 fibrils has already been repeated several times in the original manuscript. Since the pH 7.4 conditions produce the most common a-Syn polymorph (Type 1A) and were produced twice in this manuscript (once as an unseeded and once as a cross-seeded fibrilization) we decided to focus on the intermediate condition where the most variability had been seen (pH 7.0). The revised table 1 now has 6 new datasets (11-16) representing 6 independent aggregations at pH 7.0 starting from two different protein purification batches. The results is that we now produce the type 2A/B polymorphs in three samples and in two of these samples we once again observed the type 1M polymorph.  The other samples produced Type 1A or non-twisted fibrils.

      (c) Further investigation into whether different polymorphs formed under the same buffer condition could lead to distinct toxicological and pathology effects would be a valuable addition to the study.  

      The correlation of toxicity with structure would in principle be interesting. However the Type 1 and Type 3 polymorphs formed at pH 5.8 and 7.4 are not likely to be biologically relevant. The pH 7 polymorphs (Type 5 and 1M) would be more interesting because they form under the same conditions and might be related to some disease relevant structures. Still, it is rare that a single polymorph appears at 7.0 (the Type 5 represented only 10-20% of the fibrils in the sample and the Type 1M also had unidentified double-filament fibrils in the sample). We plan to pursue this line of research and hope to include it in a future publication.

      (2) The cross-seeding study presented in the manuscript demonstrates the pivotal role of pH conditions in dictating conformation. However, an intriguing aspect that emerges is the potential role of seed concentration in determining the resultant product structure. This raises a critical question: at what specific seed concentration does the determining factor for polymorph selection shift from pH condition to seed concentration? A methodological robust approach to address this should be conducted through a series of experiments across a range of seed concentrations. Such an approach could delineate a clear boundary at which seed concentration begins to predominantly dictate the conformation, as opposed to pH conditions. Incorporating this aspect into the study would not only clarify the interplay between seed concentration and pH conditions, but also add a fascinating dimension to the understanding of polymorph selection mechanisms.

      A more complete analysis of the mechanisms of aggregation, including the effect of seed concentration and the resulting polymorph specificity of the process, are all very important for our understanding of the aggregation pathways of alpha-synuclein and are currently the topic of ongoing investigations in our lab.

      Furthermore, the study prompts additional queries regarding the behavior of cross-seeding production under the same pH conditions when employing seeds of distinct conformation. Evidence from various studies, such as those involving E46K and G51D cross-seeding, suggests that seed structure plays a crucial role in dictating polymorph selection. A key question is whether these products consistently mirror the structure of their respective seeds. 

      We thank the reviewer for reminding us to cite these studies as a clear example of polymorph selection by cross-seeding. Unfortunately, it is not 100% clear from the G51D cross seeding manuscript (https://doi.org/10.1038/s41467-021-26433-2) what conditions were used in the cross-seeding since different conditions were used for the seedless wild-type and mutant aggregations… however it appears that the wildtype without seeds was Tris pH 7.5 (although at 37C the pH could have dropped to 7ish) and the cross-seeded wild-type was in Phosphate buffer at pH 7.0. In the E46K cross-seeding manuscript, it appears that pH 7.5 Tris was used for all fibrilizations (https://doi.org/10.1073/pnas.2012435118).  In any event, both results point to the fact that at pH 7.0-7.5 under low-seed conditions (0.5%) the Type 4 polymorph can propagate in a seed specific manner.

      (3) In the Results section of "The buffer environment can dictate polymorph during seeded nucleation", the authors reference previous cell biological and biochemical assays to support the polymorph-specific seeding of MSA and PD patients under the same buffer conditions. This discussion is juxtaposed with recent research that compares the in vivo biological activities of hPFF, ampLB as well as LB, particularly in terms of seeding activity and pathology. Notably, this research suggests that ampLB, rather than hPFF, can accurately model the key aspects of Lewy Body Diseases (LBD) (refer to: https://doi.org/10.1038/s41467-023-42705-5). The critical issue here is the need to reconcile the phenomena observed in vitro with those in in-vivo or in-cell models. Given the low seed concentration reported in these studies, it is imperative for the authors to provide a more detailed explanation as to why the possible similar conformation could lead to divergent pathologies, including differences in cell-type preference and seeding capability.  

      We thank the reviewer for bring this recent report to our attention. The findings that ampLB and hPFF have different PK digestion patterns and that only the former is able to model key aspects of Lewy Body disease are in support of the seed-specific nature of some types of alpha-synuclein aggregation.  We have added this to the discussion regarding the significant role that seed type and seed conditions likely play in polymorph selection.

      (4) In the Method section of "Image processing", the authors describe the helical reconstruction procedure, without mentioning much detail about the 3D reconstruction and refinement process. For the benefit of reproducibility and to facilitate a deeper understanding among readers, the authors should enrich this part to include more comprehensive information, akin to the level of detail found in similar studies (refer to: https://doi.org/10.1038/nature23002).

      As also suggested by reviewer #2, we have now added more comprehensive information on the 3D reconstruction and refinement process.

      (5) The abbreviation of amino acids should be unified. In the Results section "On the structural heterogeneity of Type 1 polymorphs", the amino acids are denoted using three-letter abbreviation. Conversely, in the same section under "On the structural heterogeneity of Type 2 and 3 structures", amino acids are abbreviated using the one-letter format. For clarity and consistency, it is essential that a standardized format for amino acid abbreviations be adopted throughout the manuscript.

      That makes perfect sense and had been corrected.

      Reviewing Editor: 

      After discussion among the reviewers, it was decided that point 2 in Reviewer #3's Public Review (about the experiments with different concentrations of seeds) would probably lie outside the scope of a reasonable revision for this work. 

      We agree as stated above and will continue to work on this important point.

      Revisions Round 2

      Reviewer #2 (Public Review): 

      I do worry that the FSC values of model-vs-map appear to be higher than expected from the corresponding FSCs between the half-maps (e.g. see Fig 13). The implication of this observation is that the atomic models may have been overfitted in the maps, which would have led to a deterioration of their geometry. A table with rmsd on bond lengths, angles, etc would probably show this. In addition, to check for overfitting, the atomic model for each data set could be refined in one of the half-maps, and then that same model could be used to calculate 2 FSC model-vs-map curves: one against the half-map it was refined in and one against the other half-map. Deviations between these two curves are an indication of overfitting. 

      Thank you for the recommendations for model validation.  We have added the suggested statistics to Table 2 and performed the suggested model fitting to one of the half-maps and plotted 3 FSC model-vs-map curves: one for each half-map versus the model fit against only one half map and one for the model fit against the full map. We feel that the degree of overfitting is reasonable and does not  significantly impact the quality of the models. 

      In addition, the sudden drop in the FSC curves in Figure 16 shows that something unexpected has happened to this refinement. Are the authors sure that only the procedures outlined in the Methods were used to create these curves? The unexpected nature of the FSC curve for this type (2A) raises doubts about the correctness of the reconstruction. 

      We thank the reviewer for the attention to detail.  We should have caught this mistake. It turns out that in the last round of 3D refinement, the two half-maps become shifted with respect to each other in the z direction. We realigned the two maps using Chimera and then re-ran the postprocessing. The new maps have been deposited in EMD-50850. This mistake motivated us to inspect all of the maps and we found the same problem had occurred in the Type 3B maps.  This was not noticed by the reviewer because we accidentally plotted the FSC curves from postprocessing from one refinement round before the one deposited in the EMD. We performed the same half-map shifting procedure for the Type 3B data and performed a final round of real-space refinement to produce new maps and models that have been deposited as EMD-50888 and 9FYP (superseding the previous entries).

      Reviewer #3 (Public Review): 

      There are two minor points I recommend the authors to address: 

      (1) In the response to Weakness 1, point (3), the authors state that "the Type 5 represented only 10-20% of the fibrils in the sample." However, this information is not labeled in the corresponding Figure 4. I suggest the authors verify and label all relevant percentages in the figures to prevent misunderstandings. 

      We aim to be as transparent as possible and this information was included in the main text however we did not label the percentage of Type 5 fibrils in Figure 4 because that would make the other percentages ambiguous.  The percentages in Figure 4 represent the ratio of helical segments used for each type of refined structure in the dataset (always adding up to 100%), not the percent of all fibrils in the dataset.  That is, there are sometimes untwisted or unidentifiable fibrils in datasets and these were not accounted for in the listed percentages. We have added a sentence to the Figure 4 legend to explain to what the percentages refer.

      (2) While the authors have detailed the helical reconstruction procedure in the Methods section, it is necessary to indicate the scale bar or box size in the figure legend of the 2D representative classes to ensure clarity and reproducibility. 

      Thank you for reminding us to add the scale bars. This is now done for the 2D classes in Figures 11-17.

      Recommendations for the authors: 

      Reviewer #2 (Recommendations For The Authors): 

      A critical look at the maps and models of the various structures at this stage may prevent the authors from entering suboptimal structures into the databases.  

      We agree. Thank you for suggesting this.

      Reviewer #3 (Recommendations For The Authors): 

      The authors have responded adequately to these critiques in the revised version of the manuscript. There are two minor points. 

      (1) The authors state that "the Type 5 represented only 10-20% of the fibrils in the sample." However, this information is not labeled in the corresponding Figure 4. I suggest the authors verify and label all relevant percentages in the figures to prevent misunderstandings. 

      (2) While the authors have detailed the helical reconstruction procedure in the Methods section, it is necessary to indicate the scale bar or box size in the figure legend of the 2D representative classes to ensure clarity and reproducibility. 

      Answered in public comments

    1. Author response:

      eLife assessment

      Cav2 voltage-gated calcium channels play key roles in regulating synaptic strength and plasticity. In contrast to mammals, invertebrates like Drosophila encode a single Cav2 channel, raising questions on how diversity in Cav2 is achieved from a single gene. Here, the authors present convincing evidence that two alternatively spliced isoforms of the Cac gene (cacophony, also known as Dmca1A and nightblindA) enable diverse changes in Cav2 expression, localization, and function in synaptic transmission and plasticity. These valuable findings will be of interest to a variety of researchers.

      We suggest replacing “two alternatively spliced isoforms of the Cac gene” by “two alternatively spliced mutually exclusive exon pairs of the Cac gene”. 

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Bell et. al. describes an analysis of the effects of removing one of two mutually exclusive splice exons at two distinct sites in the Drosophila CaV2 calcium channel Cacophony (Cac). The authors perform imaging and electrophysiology, along with some behavioral analysis of larval locomotion, to determine whether these alternatively spliced variants have the potential to diversify Cac function in presynaptic output at larval neuromuscular junctions. The author provided valuable insights into how alternative splicing at two sites in the calcium channel alters its function.

      Strengths:

      The authors find that both of the second alternatively spliced exons (I-IIA and I-IIB) that are found in the intracellular loop between the 1st and 2nd set of transmembrane domains can support Cac function. However, loss of the I-IIB isoform (predicted to alter potential beta subunit interactions) results in 50% fewer channels at active zones and a decrease in neurotransmitter release and the ability to support presynaptic homeostatic potentiation. Overall, the study provides new insights into Cac diversity at two alternatively spliced sites within the protein, adding to our understanding of how regulation of presynaptic calcium channel function can be regulated by splicing.

      Weaknesses:

      The authors find that one splice isoform (IS4B) in the first S4 voltage sensor is essential for the protein's function in promoting neurotransmitter release, while the other isoform (IS4A) is dispensable. The authors conclude that IS4B is required to localize Cac channels to active zones. However, I find it more likely that IS4B is required for channel stability and leads to the protein being degraded, rather than any effect on active zone localization. More analysis would be required to establish that as the mechanism for the unique requirement for IS4B.

      We agree that we need to explain more clearly why IS4B is unlikely required for channel stability, but instead, likely has a unique function at the presynaptic active zone of fast synapses. We will address this by revising text and by providing additional data. If IS4B was required for evoked release because it supported channel protein stability, then the removal of IS4B should cause protein degradation throughout all sub-neuronal compartments and throughout the CNS, but this is not the case. First, upon removal of IS4B in adult motoneurons (which use cac channels at the presynapse and somatodendritically, Ryglewski et al., 2012) evoked release from axon terminals is abolished (as at the larval NMJ), but somatodendritic cac inward current is present. If IS4B was required for cac channel stability, somatodendritic current should also be abolished. We will add these data to the ms. Second, immunohistochemistry for tagged IS4B channels reveals that these are present not only at presynaptic active zones at the NMJ but also throughout the VNC motor neuropils. Excision of IS4B causes the absence of cac channels from the presynaptic active zones at the NMJ and throughout the VNC neuropils (and accordingly this is lethal). By contrast, tagged IS4A channels (with IS4B excised) are not found at the presynaptic terminals of fast synapses, but instead, in other distinct parts of the CNS. We will also provide data to show this. Together these data are in line with a unique requirement of IS4B at presynaptic active zones (not excluding additional functions of IS4B), whereas IS4A containing cac isoforms mediate different functions.

      We appreciate the additional reviewer suggestions to the authors that we will address point by point when revising the ms. 

      Reviewer #2 (Public Review):

      This study by Bell et al. focuses on understanding the roles of two alternatively spliced exons in the single Drosophila Cav2 gene cac. The authors generate a series of cac alleles in which one or the other mutually exclusive exons are deleted to determine the functional consequences at the neuromuscular junction. They find alternative splicing at one exon encoding part of the voltage sensor impacts the activation voltage as well as localization to the active zone. In contrast, splicing at the second exon pair does not impact Cav2 channel localization, but it appears to determine the abundance of the channel at active zones. Together, the authors propose that alternative splicing at the Cac locus enables diversity in Cav2 function generated through isoform diversity generated at the single Cav2 alpha subunit gene encoded in Drosophila.

      Overall this is an excellent, rigorously validated study that defines unanticipated functions for alternative splicing in Cav2 channels. The authors have generated an important toolkit of mutually exclusive Cac splice isoforms that will be of broad utility for the field, and show convincing evidence for distinct consequences of alternative splicing of this single Cav2 channel at synapses. Importantly, the authors use electrophysiology and quantitative live sptPALM imaging to determine the impacts of Cac alternative splicing on synaptic function. There are some outstanding questions regarding the mechanisms underlying the changes in Cac localization and function, and some additional suggestions are listed below for the authors to consider in strengthening this study. Nonetheless, this is a compelling investigation of alternative splicing in Cav2 channels that should be of interest to many researchers.

      We agree that some additional information on cac isoform localization (in particular for splicing at the IS4 site) will strengthen the manuscript. We will address this by providing additional data and revising text (see responses to reviewers 1 and 3). We are also grateful for the additional reviewer suggestions which we will address point by point when revising the ms.  

      Reviewer #3 (Public Review):

      Summary:

      Bell and colleagues studied how different splice isoforms of voltage-gated CaV2 calcium channels affect channel expression, localization, function, synaptic transmission, and locomotor behavior at the larval Drosophila neuromuscular junction. They reveal that one mutually exclusive exon located in the fourth transmembrane domain encoding the voltage sensor is essential for calcium channel expression, function, active zone localization, and synaptic transmission. Furthermore, a second mutually exclusive exon residing in an intracellular loop containing the binding sites for Caβ and G-protein βγ subunits promotes the expression and synaptic localization of around ~50% of CaV2 channels, thereby contributing to ~50% of synaptic transmission. This isoform enhances release probability, as evident from increased short-term depression, is vital for homeostatic potentiation of neurotransmitter release induced by glutamate receptor impairment, and promotes locomotion. The roles of the two other tested isoforms remain less clear.

      Strengths:

      The study is based on solid data that was obtained with a diverse set of approaches. Moreover, it generated valuable transgenic flies that will facilitate future research on the role of calcium channel splice isoforms in neural function.

      Weaknesses:

      (1) Based on the data shown in Figures 2A-C, and 2H, it is difficult to judge the localization of the cac isoforms. Could they analyze cac localization with regard to Brp localization (similar to Figure 3; the term "co-localization" should be avoided for confocal data), as well as cac and Brp fluorescence intensity in the different genotypes for the experiments shown in Figure 2 and 3 (Brp intensity appears lower in the dI-IIA example shown in Figure 3G)? Furthermore, heterozygous dIS4B imaging data (Figure 2C) should be quantified and compared to heterozygous cacsfGFP/+.

      We understand the reviewer’s comment and will do the following to convincingly demonstrate absence of cac from presynaptic active zones upon IS4B excision. First, we will show selective enlargements of IS4A and IS4B with Brp in presynaptic active zones to show distinct cac label in active zones following excision of IS4A but not following excision of IS4B. Second, we will provide Pearson’s co-localization coefficients of Brp with IS4B and with IS4A, respectively. Third, we will reduce the intensity of the green channels in figures 2C and 2H to the same levels as in 2A and B, and H control to allow a fair comparison of cac intensities following excision of IS4B versus excision of IS4A and control. We had increased intensity to show that following excision of IS4B, no distinct cac label is found in active zones, even at high exaggerated image brightness. However, we agree with the reviewer that the bright background hampers interpretation and thus will show the same intensity in all images that need to be compared.

      (2) They conclude that I-II splicing is not required for cac localization (p. 13). However, cac channel number is reduced in dI-IIB. Could the channels be mis-localized (e.g., in the soma/axon)? What is their definition of localization? Could cac be also mis-localized in dIS4B? Furthermore, the Western Blots indicate a prominent decrease in cac levels in dIS4B/+ and dI-IIB (Figure 1D). How do the decreased protein levels seen in both genotypes fit to a "localization" defect? Could decreased cac expression levels explain the phenotypes alone?

      We will precisely define channel localization, and we will explain why it is highly unlikely that the absence of IS4B channels as well as the lower number of I-IIA channels are simply a consequence of reduced expression, but instead of splice variant specific channel function and localization. For example, upon excision of IS4B no cac channels are found at the presynaptic active zones and these synapses are thus non-functional. The isoforms containing the mutually exclusive IS4A exon are expressed and mediate other functions (see also response to reviewer 1) but cannot substitute IS4B containing isoforms at the presynapse. In fact, our Western blots are in line with reduced cac expression if all isoforms that mediate evoked release are missing, again indicating that the presynapse specific cac isoforms cannot be replaced by other cac isoforms (see also below, response to (3)). Feedback mechanisms that regulate cac expression in the absence of presynapse specific cac isoforms are beyond the scope of this study.

      (3) Cac-IS4B is required for Cav2 expression, active zone localization, and synaptic transmission. Similarly, loss of cac-I-IIB reduces calcium channel expression and number. Hence, the major phenotype of the tested splice isoforms is the loss of/a reduction in Cav2 channel number. What is the physiological role of these isoforms? Is the idea that channel numbers can be regulated by splicing? Is there any data from other systems relating channel number regulation to splicing (vs. transcription or post-transcriptional regulation)?

      We will provide additional evidence that mutually exclusive splicing at the IS4 site results in cac channels that localize to the presynaptic active zone (IS4B) versus cac channels that localize to other brain parts and/or other subneuronal compartments (see response to reviewer 1).  In addition, we already show in figure 2J that IS4B is required for normal cac HVA current, and we can add data showing that IS4A is not essential for cac HVA current. Similarly, for I-II we find it unlikely that differential splicing regulates channel numbers, but rather splice variant specific functions in different brain parts and different sub-neuronal compartments. To substantiate this interpretation, we will add data from developing adult motoneurons showing that excision of I-IIA causes reduced activity induced calcium influx into dendrites (new data), but it does not reduce channel number at the larval NMJ (figure 4). In our opinion these data are not in line with the idea that splicing regulates cac expression levels, and this in turn, results in specific defects in distinct neuronal compartments. However, we agree that the lack of isoforms with specific functions results in altered overall cac expression levels as indicated by our Western data. If isoforms normally abundantly expressed throughout most neuropils are missing due to exon excision, we indeed find less cac protein in Westerns. By contrast, the lack of isoforms with little abundance has little effect on cac expression levels. This may be the results of unknown feedback mechanisms which are beyond the scope of this study.

      (4) Although not supported by statistics, and as appreciated by the authors (p. 14), there is a slight increase in PSC amplitude in dIS4A mutants (Figure 2). Similarly, PSC amplitudes appear slightly larger (Figure 3J), and cac fluorescence intensity is slightly higher (Figure 3H) in dI-IIA mutants. Furthermore, cac intensity and PSC amplitude distributions appear larger in dI-IIA mutants (Figures 3H, J), suggesting a correlation between cac levels and release. Can they exclude that IS4A and/or I-IIA negatively regulate release? I suggest increasing the sample size for Canton S to assess whether dIS4A mutant PSCs differ from controls (Figure 2E). Experiments at lower extracellular calcium may help reveal potential increases in PSC amplitude in the two genotypes (but are not required). A potential increase in PSC amplitude in either isoform would be very interesting because it would suggest that cac splicing could negatively regulate release.

      There are several possibilities to explain this, but as none of the effects are statistically significant, we prefer to not investigate this in depth. However, given that we cannot find IS4A at the presynaptic active zone, IS4A is unlikely to have a direct negative effect on release probability. Nonetheless, given that IS4A containing cac isoforms mediate functions in other neuronal compartments it may regulate release indirectly by affecting action potential shape. We will provide data in response to the more detailed suggestions to authors that will provide additional insight.

      (5) They provide compelling evidence that IS4A is required for the amplitude of somatic sustained HVA calcium currents. However, the evidence for effects on biophysical properties and activation voltage (p. 13) is less convincing. Is the phenotype confined to the sustained phase, or are other aspects of the current also affected (Figure 2J)? Could they also show the quantification of further parameters, such as CaV2 peak current density, charge density, as well as inactivation kinetics for the two genotypes? I also suggest plotting peak-normalized HVA current density and conductance (G/Gmax) as a function of Vm. Could a decrease in current density due to decreased channel expression be the only phenotype? How would changes in the sustained phase translate into altered synaptic transmission in response to AP stimulation?

      Most importantly, HVA current is mostly abolished upon excision of IS4B (not IS4A, we think the reviewer accidentally mixed up the genotype). This indicates that the cac isoforms that mediate evoked release encode HVA channels. However, the somatodendritic current shown in figure 2J that remains upon excision of IS4B is mediated by IS4A containing cac isoforms. Please note that these never localize to the presynaptic active zone, thus the small inactivating HVA that remains in figure 2J does normally not mediate evoked release. Therefore, the interpretation is that specifically HVA current encoded by IS4B cac isoforms is required for synaptic transmission. Reduced cac current density is not the cause for this phenotype because a specific current component is absent. 

      We agree with the reviewer that a deeper electrophysiological analysis of cac currents mediated by IS4B containing isoforms will be instructive. However, a precise analysis of activation and inactivation voltages and kinetics suffers form space clamp issues in recordings from the soma of such complex neurons (DLM motoneurons of the adult fly). Therefore, we will analyze the currents in a heterologous expression system and present these data to the scientific community as a separate study at a later time point.

      (6) Why was the STED data analysis confined to the same optical section, and not to max. intensity z-projections? How many and which optical sections were considered for each active zone? What were the criteria for choosing the optical sections? Was synapse orientation considered for the nearest neighbor Cac - Brp cluster distance analysis? How do the nearest-neighbor distances compare between "planar" and "side-view" Brp puncta?

      Max. z-projections would be imprecise because they can artificially suggest close proximity of label that is close in x and y but far away in z. Therefore, the analysis was executed in xy-direction of various planes of entire 3D image stacks. We considered active zones of different orientations (Fig. 4C, D). In fact, we searched the entire z-stacks until we found active zones of all orientations shown in figures 4C1-C6 within the same boutons. The same active zone orientations were analyzed for all exon-out mutants with cac localization in active zones. The distance between cac and brp did not change if viewed from the side.

      (7) Cac clusters localize to the Brp center (e.g., Liu et al., 2011). They conclude that Cav2 localization within Brp is not affected in the cac variants (p. 8). However, their analysis is not informative regarding a potential offset between the central cac cluster and the Brp "ring". Did they/could they analyze cac localization with regard to Brp ring center localization of planar synapses, as well as Brp-ring dimensions?

      In the top views (planar) we did not find any clear offset in cac orientation to brp between genotypes. This study focuses on cac splice isoform specific localization and function. Possible effects of different cac isoforms on Brp-ring dimensions or other aspects of scaffold structure are not central to our study, in particular given that Brp puncta are clearly present even if cac is absent from the synapse (Fig. 2H), indicating that cac is not instructive for the formation of the Brp scaffold.  

      (8) Given the accelerated PSC decay/ decreased half width in dI-IIA (Fig. 5Q), I recommend reporting PSC charge in Figure 3, and PPR charge in Figures 5A-D. The charge-based PPRs of dI-IIA mutants likely resemble WT more closely than the amplitude-based PPR. In addition, miniature PSC decay kinetics should be reported, as they may contribute to altered decay kinetics. How could faster cac inactivation kinetics in response to single AP stimulation result in a decreased PSC half-width? Is there any evidence for an effect of calcium current inactivation on PSC kinetics? On a similar note, is there any evidence that AP waveform changes accelerate PSC kinetics? PSC decay kinetics are mainly determined by GluR decay kinetics/desensitization. The arguments supporting the role of cac splice isoforms in PSC kinetics outlined in the discussion section are not convincing and should be revised.

      We agree that reporting charge in figure 3 will be informative and will do so. We also understand the reviewer’s concern attributing altered PSC kinetics to presynaptic cac channel properties. We will tone down our interpretation in the discussion and list possible alterations in presynaptic AP shape or Cav2 channel kinetics as alternative explanations (not conclusions). Moreover, we will quantify postsynaptic GluRIIA abundance to test whether altered PSC kinetics are caused by altered GluRIIA expression. In our opinion, the latter is more instructive than mini decay kinetic analysis because this depends strongly on the distance of the recording electrode to the actual site of transmission in these large muscle cells.

      (9) Paired-pulse ratios (PPRs): On how many sweeps are the PPRs based? In which sequence were the intervals applied? Are PPR values based on the average of the second over the first PSC amplitudes of all sweeps, or on the PPRs of each sweep and then averaged? The latter calculation may result in spurious facilitation, and thus to the large PPRs seen in dI-IIB mutants (Kim & Alger, 2001; doi: 10.1523/JNEUROSCI.21-24-09608.2001).

      We agree that the PP protocol and analyses have to be described more precisely in the methods, and we will do so. PPR values are based on the PPRs of each sweep and then averaged. We are aware of the study of Kim and Alger 2001, but it does not affect our data interpretation because all genotypes were analyzed identically, but only the I-IIB excision resulted in the large data spread shown in figure 5.

      (10) Could the dI-IIB phenotype be simply explained by a decrease in channel number/ release probability? To test this, I propose investigating PPRs and short-term dynamics during train stimulation at lower extracellular Ca2+ concentration in WT. The Ca2+ concentration could be titrated such that the first PSC amplitude is similar between WT and dI-IIB mutants. This experiment would test if the increased PPR/depression variability is a secondary consequence of a decrease in Ca2+ influx, or specific to the splice isoform.

      In fact, the interpretation that decreased PSC amplitude upon I-IIB excision is caused mainly by reduced channel number is precisely our interpretation (see discussion page 14, last paragraph to page 15, first paragraph). In addition, we are grateful for the reviewer’s suggestion to triturate the external calcium such that the first PSC amplitude matches the one in ΔI-IIB to test whether altered short term plasticity is solely a function of altered channel number or whether additional causes, such as altered channel properties, also play into this. We will conduct these experiments and include them in the revised manuscript.

      (11) How were the depression kinetics analyzed? How many trains were used for each cell, and how do the tau values depend on the first PSC amplitude? Time constants in the range of a few (5-10) milliseconds are not informative for train stimulations with a frequency of 1 or 10 Hz (the unit is missing in Figure 5H). Also, the data shown in Figures 5E-K suggest slower time constants than 5-10 ms. Together, are the data indeed consistent with the idea that dI-IIB does not only affect cac channel number, but also PPR/depression variability (p. 9)?

      For each animal, the amplitudes of each PSC were plotted over time and fitted with a single exponential. For depression at 1 and 10 Hz, we used one train per animal, and 5-6 animals per genotype (as reflected in the data points in Figs 5H and 5L). Given that the tau values are highly similar between control and excision of I-IIA, but ΔI-IIA tends to have larger single PSC amplitudes, differences in first PSC amplitude do not seem to skew the data (but see also response to comment 10 above). We thank the reviewer for pointing out that tau values in the range of ms are not informative at 1 and 10 Hz stimulations (Figs 5H and 5L). We mis-labeled (or did not label) the axes. The label should read seconds, not milliseconds. We apologize, and this will be corrected accordingly.

      In sum, pending the outcome of additional important control experiments for GluRIIA abundance (see response to comment 8) and trituration of control PSC amplitude for the first pulse of paired pulses in ΔI-IIB (see response to comment 10) we will either modify or further support that interpretation.

      (12) The GFP-tagged I-IIA and mEOS4b-tagged I-IIB cac puncta shown in Figure 6N appear larger than the Brp puncta. Endogenously tagged cac puncta are typically smaller than Brp puncta (Gratz et al., 2019). Also, the I-IIA and I-IIB fluorescence sometimes appear to be partially non-overlapping. First, I suggest adding panels that show all three channels merged. Second, could they analyze the area and area overlap of I-IIA and I-IIB with regard to each other and to Brp, and compare it to cac-GFP? Any speculation as to how the different tags could affect localization? Finally, I recommend moving the dI-IIA and dI-IIB localization data shown in Figure 6N to an earlier figure (Figure 1 or Figure 3).

      We will show panels with all three labels matched as suggested by the reviewer. For the size of the puncta: this could be different numbers and types of fluorophores on the different antibodies used and thus different point spread, chromatic aberration, different laser and detector intensities etc. We will re-analyze the data to test whether there are systematic differences in size. We do not want to speculate whether the different tags have any effect on localization precision because of the abovementioned reasons as well as artificial differences in localization precision that can be suggested by different antibodies. We prefer to not move the figure because we believe it is informative to show our finding that active zones usually contain both splice variants together with the finding that only one splice variant is required for PHP.

    1. Author response:

      The following is the authors’ response to the original reviews.

      (1) Please provide more background about Rpgrip1l in the introduction, particularly the past studies of mammalian homolog of Rpgrip11, if any? Is there any human disease associated with Rpgrip1l? Do these patients have scoliosis phenotype? 

      • We have added more background on the human ciliopathies caused by RPGRIP1L mutations and on their occasional association with early onset scoliosis (lines 45-54 page 2 in the introduction, see cited references). 

      (2) The allele is a large deficiency of most of the coding region of rpgrip1l, can you give details in the Supplementary data of how you show this by genotyping? It would be good to explain that this mutation is most likely behaving as a null, if you have RNAseq data that supports this please note that. Otherwise, it may be incorrect to assume it is a null allele as your shorthand nomenclature states. If you do not have stronger evidence that the deficiency allele is behaving as a null allele, then please think about using an allele nomenclature as outlined at ZFIN:  

      • We now describe in the results section (Lines 72-76, page 3) the extent of the deletion of rpgrip1l ∆/∆ (22 exons out of 26) that creates an early stop at position 88 of 1256 aas. We have submitted to ZFIN our two novel mutant lines: rpgrip1l∆  is recorded as rpgrip1l bps1 and rpgrip1l ex4 as rpgrip1l bps2 , and we provide this information in the text. Transcriptomics data confirmed this allele is behaving as a null as the most down-regulated transcript found in the brain of rpgrip1l ∆/∆ is rpgrip1l transcript itself, (volcano plot in Fig 5A, described in the results, Line 270-71, page 9).

      • We also have provided in Supplementary Figure 1 A’ a picture of a typical genotyping gel for the rpgrip1l∆ allele. Sequences of both CRISPR guide RNAs and genotyping primers are provided in the Math & Meth section. 

      (3) Throughout the manuscript, the authors refer to zebrafish mutant phenotypes as "juvenile scoliosis". However, scoliosis may not appear until 11 weeks post-fertilization in some animals. After 6-8 weeks of age, it would be more appropriate to describe the phenotype as "late-onset or adult scoliosis" to differentiate between other reported scoliosis mutants (such as hypomorphic or dominant negative alleles of scospondin) that start body curvatures at 3-5 dpf .

      • We think we can really qualify rpgrip1l-/- scoliosis as being a “juvenile scoliosis” as shown by the time course displayed in Fig 1B: rpgrip1l-/- scoliosis develops asynchronously between 4 weeks and 9 weeks (from 0.8 cm/1 cm to 1.6 cm, corresponding to juvenile stages according to Parichy et al, 2009 PMID: 19891001), after which it reaches a plateau. Half of the mutants are already scoliotic by 5 weeks and no scoliosis develops at adult stage, ie from 10 weeks on. We have acknowledged the late onset scoliosis in page 3 line 93.

      (4) A more careful demonstration of the individual vertebrae, using magnified high-resolution pictures in Figures 1D-G, should be made to more clearly show no obvious vertebral malformations are present. 

      • We now provide a movie in Sup Data that presents 3D views of controls and mutant spines, which show the intervertebral spaces as well as vertebral shape and size. With these images we could exclude vertebral fusion and the presence of dysmorphic vertebrae.

      (5) On page 5: the authors comment on transgenic expression of RPGRIP1L in foxj1a-lineages as "rescuing" scoliosis. This terminology is confusing, as rescuing a condition could be interpreted as inducing it where it was once absent. "Suppressing" scoliosis may be a more appropriate term. 

      • We agree with the reviewers, the “rescue” term is confusing, we changed it for “suppress” in the title of the paragraph (line 95 page 3) and within the text (line 115 page 3).

      (6) On page 5, lines 155-156: the authors state that "Indeed, no tissue-specific rescue has been performed yet in zebrafish ciliary gene mutants". This is misleading, as ptk7a and katnb1 mutations both disrupt cilia, and transgenic reintroduction of both ptk7a and katnb1 in foxj1a- expressing lineages has previously been shown to suppress cilia defects as well as scoliosis in these models. The statement should be removed for accuracy. 

      • We agree that we were not precise enough in our sentence: when we mentioned “ciliary gene” mutants, we were referring to genes whose products are enriched within cilia and directly affecting ciliogenesis, cilia content and maintenance such as TZ or BBS genes, without encompassing genes like ptk7 and katnb1 whose products perform multiple functions on top of cilia maintenance such as Wnt signalling and remodelling of the whole microtubule network respectively. We have therefore modified our sentence by adding zebrafish ciliary “TZ and BBS” genes (line 104, page 4).

      (7) Figure 2: panels A-B: In the text (line 196) you state that cilia length was increased and that Arl13b content was severely reduced. However, Panel B shows no significant length difference between scoliotic mutants and controls. This statement and graph should be corrected for accuracy. Also, the Arl13b staining is difficult to see in panel A - can channels be split, and/or quantified? 

      • We have now split the Arl13b and glutamylated tubulin channels (Fig 2 A-C”). We think that the reduction of Arl13b staining intensity is now obvious in both straight and scoliotic mutants (Compare 2A” with 2B” and 2C”). We were not able to quantify Arl13b staining using ciliary masks from glutamylated tubulin staining since both staining only partially overlap along the length of the cilium, Arl13b being more distal than glutamylated tubulin (Fig 2A’). 

      • Ciliary length was significantly increased (from 3.4 to 5.3 µ) in straight rpgrip1l-/-, while the average mean values for scoliotic rpgrip1l-/- were heterogenous (mean 4.1µ) and therefore not significantly different when compared to controls. This heterogeneity stems from the combined presence of both shorter and longer cilia in scoliotic fish, a finding we interpreted by the potential breakage over time of extra-long and thin cilia observed in scoliotic fish (as in Sup figure 1 H’’’, Sup Fig 2M’ and 2O’). 

      • We changed the text to be more accurate: we now state that cilia length increased in straight mutants, and became more heterogenous than controls in scoliotic mutants (line 143-144, page 5). 

      (8) Figure 3: Page 7, line 206: authors state that SCO-spondin secreting cells varied in number along SCO length. What is the evidence that these cells secrete SCO-spondin? The staining shown in Figure 3L-O appears to demonstrate extracellular accumulation of sspo:GFP. What is the evidence that this staining originated from cells in proximity to it? 

      The claim of SCO-secreting cells in Figure 2E-J is confusing. I assume you are using anatomy to infer the SCO is captured in these sections. This should be done in sspo-GFP animals (as in Figure 3) and/or dual anti-body labeling can be done to show SCO-secreting cells and cilia. 

      • We now show in Supplementary Figure 2 A-D a double staining for Sco-spondin-GFP and cilia (Ac-tub, Glu-Tub). Analyzing GFP staining along SCO length on successive sections, we identified the SCO producing cells on the diencephalic dorsal midline by their position under the posterior commissure (PC), which forms an Acetylated Tubulin positive arch), and counted the nuclei surrounded by cytoplasmic GFP from the most anterior region ( 24 cells wide, Sup Fig 2A-A’) to the most posterior region (4-8 cells wide, Sup Fig 2 C).` 

      • Furthermore, the close-ups presented on Fig 2A’ and 2B’ allow to detect the cytoplasmic Sspo-GFP staining around SCO nuclei, above the region presenting primary cilia pointing towards the diencephalic ventricle, both in controls and mutants at scoliosis onset (tail-up mutants), showing that the extracellular staining in B’ very likely originates from these cells. In these tail-up mutants, extracellular Sspo aggregates have not yet filled the whole diencephalic ventricle as in Fig 3 N and Q. 

      (9) Figure 5: Is the transcriptome data and proteomic data consistent for any transcripts and encoded protein products? Please highlight those consistent targets in both analyses. 

      • We would like to emphasize that the transcriptomic study was performed at scoliosis onset, at 5 weeks, while the proteomics analysis was performed at adult stage (3 months) so they cannot be directly compared.

      Moreover, low abundance proteins (such as centrosomal proteins and transcription factors like Foxj1a ) are not detected by label-free proteomics, without prior subcellular fractionation procedure (Lindemann et al, 2017 PMID: 28282288). The extraction protocol also does not allow to purify short neuropeptides such as Urp1-2.

      Nevertheless, we found four targets in common, now highlighted in red in Fig 5, Panel E: Anxa2, complement proteins

      C4 and C7a, and Stat3, all related to immune response, a GO term enriched in both studies as explained in the text (Lines 308-311, page 10). 

      The absence of many inflammation markers or immune response proteins at adult stage in scoliotic mutants most probably indicates a transient inflammatory episode at scoliosis onset, while astrogliosis, as detected by GFAP staining, increases with scoliosis severity. Along the same lines, the two-fold increase of Lcp1 cells within the tectum is present before axis curvature (in straight mutants) and disappears in scoliotic fish (Graph G in Sup Figure S5) as explained in the text, Lines 378-381, page 12, 

      (10) Supplementary Figure 1 F-H: What stage/age samples were used for SEM? It is only stated that they were 'adults'. It is also stated that cilia tufts in straight rpgrip1l-/- fish were morphologically normal but 'less dense'- this was not obvious from the figure. Can density be quantified? (otherwise, data does not support the statement). Similarly, can the statement that "cilia of mono-ciliated ependymal cells showed abnormal irregular structures compared to controls, with either bulged or thinner parts" be supported with measurements/quantification? 

      • The SEM study was performed on 3 months old fish, 3 controls and 5 mutants. We added this information in the figure legend. We could not quantify the number of ciliary tufts in the brain ventricle of the sole straight mutant that was analyzed. We therefore removed the statement that cilia were less dense in the straight mutant. Along the same lines, we mentioned that we could find mutant cilia of irregular shape as shown in Supplementary Figure S1, F”,G’’, H’’ and H’’’) (page 4, lines 124-129). 

      (11) Supplementary Figure 1D-E is never mentioned in the text. The Supplemental Figure legend also refers to a graph of cilia length that is not in the figure itself. As a result, many of the subsequent panel references are out of register. 

      • We now provide the correct version of the legend and refer to Sup Fig 1D-E in the text (page 3, lines 79-81) and its legend, page 53, lines 1616-1620.

      (12) Supplementary Figure 2A-F: Of interest, in panels C and F, it looks as though sspo:GFP is accumulating on cilia within the ventricles of rpgrip1l mutants. Can this be explored? Is it possible that abnormal aggregation of SSPO on cilia is ultimately leading to cilia loss, as you report for multi-ciliated cells surrounding the subcommissural organ? This could be a very interesting finding and possible mechanism for cilia loss.

      • Our observation of all brain sections led us to conclude that the majority of Sspo-GFP aggregates were floating within the brain ventricles of rpgrip1l-/- fish while a portion of aggregates were stuck on ventricle walls, in close contact with cilia as now shown on Supplementary figure S2 B’, outlined in legend page 54, lines 1634-1637. We agree that the contact between Sspo aggregates and cilia might have damaging consequences, either on cilia maintenance or on immune reaction induction and we now mention these possibilities in the discussion page16, lines 524-526. These research lines will be explored in the near future.

      (13) Supplementary Figure 5A-F is not mentioned in the manuscript. Please clarify the role of Anxa2 in neuroinflammation. Is increased Anxa2 expression in rpgrip1l mutant zebrafish reduced after anti-inflammatory drug treatment? What is the expression level of anxa2 in cep290 mutant zebrafish? 

      • We have now added mention to Supplementary Figure 5A-F in the text page 10 lines 328-331. 

      • We unfortunately did not have enough histological material to test Anxa2 staining on NACET treated fish after performing GFAP and Lcp1 staining, neither for dilatation measurement or multiciliated cells quantification. We agree this would have helped to better define which defect might be an indirect consequence of an inflammatory environment.

      • We tested the expression level of Anxa2 in cep290-/- fish. No labelling above control level was detected on cep290-/- brain sections that were positive for GFAP (N = 5). As GFAP staining in 3-4 weeks cep290-/- was not as intense and widespread as in adult rpgrip1l-/- (50% of GFAP + cells compared to 100% in the SCO for example), we concluded that Anxa2 expression may be upregulated after widespread or long-term astrogliosis/inflammation. Alternatively, Anxa2 overexpression could be specific to rpgrip1l-/- fish. 

      (14) A summary diagram at the end would be helpful for understanding the main findings. 

      We added a Graphical Abstract summarizing the main conclusions and hypotheses of this study. It is mentioned and explained in the Discussion section, p. 16 lines 504-508 and 516-529. 

      (15) The sspo-GFP zebrafish line should be listed in the STAR methods section: 

      The sspo-GFP line is now listed in the STAR methods, Scospondin-GFPut24, (Troutwine et al., 2020 PMID: 32386529), p.43, last line.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors investigate the role of chirping in a species of weakly electric fish. They subject the fish to various scenarios and correlate the production of chirps with many different factors. They find major correlations between the background beat signals (continuously present during any social interactions) or some aspects of social and environmental conditions with the propensity to produce different types of chirps. By analyzing more specifically different aspects of these correlations they conclude that chirping patterns are related to navigation purposes and the need to localize the source of the beat signal (i.e. the location of the conspecific).

      The study provides a wealth of interesting observations of behavior and much of this data constitutes a useful dataset to document the patterns of social interactions in these fish. Some data, in particular the high propensity to chirp in cluttered environments, raises interesting questions. Their main hypothesis is a useful addition to the debate on the function of these chirps and is worth considering and exploring further.

      After the initial reviewers' comments, the authors performed a welcome revision of the way the results are presented. Overall the study has been improved by the revision. However, one piece of new data is perplexing to me. The new Figure 7 presents the results of a model analysis of the strength of the EI caused by a second fish to localize when the focal fish is chirping. From my understanding of this type of model, EOD frequency is not a parameter in the model since it evaluates the strength of the field at a given point in time. Therefore the only thing that matters is the phase relationship and strength of the EOD. Assuming that the second fish's EOD is kept constant and the phases relationship is also the same, the only difference during a chirp that could affect the result of the calculation is the potential decrease in EOD amplitude during the chirp. It is indeed logical that if the focal fish decreased its EOD amplitude the target fish's EOD becomes relatively stronger. Where things are harder to understand is why the different types of chirps (e.g. type 1 vs type 2) lead to the same increase in signal even though they are typically associated with different levels of amplitude modulations. Also, it is hard to imagine that a type 2 chirps that is barely associated with any decrease in EOD amplitude (0-10% maybe), would cause doubling of the EI strength. There might be something I don't understand but the authors should provide a lot more details on how this result is obtained and convince us that it makes sense.

      We thank the author for the comments and we agree that the approach could have been better detailed. As anticipated by the Reviewer, the Boundary Element Method (BEM) model can be used simply to calculate the electric field and electric image at a specific point in time (instantaneously), regardless of EOD frequency. However, our model allows for the concatenation of consecutive instants and thus is able to render an entire sequence of electric fields - and resulting electric images - incorporating realistic EOD characteristics such as shape, duration, and frequencies (see Pedraja et al., 2014).

      Chirp-triggered EIs were modeled using real chirps produced by interacting fish. Each chirp was thus associated to its duration and peak parameters, as well as the fish positional information (distance and angle). 

      However, since we did not know the beat phase at which chirps were produced, we computed electric images for each fish position and chirp scenario by simulating various phases (here referred to the initial offset of the two EODs, set at 4 phases, equally spaced). These are intended as phases of the sender EOD and simply refer to the initial OFFSET between the two interacting EODs. However, since our simulations were run over a time window of 500 msec, all phases are likely to be covered, with a different temporal order relative to the chirp (always centered within the 500 msec).

      The simulation was run maintaining consistent timing for both chirp and non-chirp conditions, across approximately 800 body nodes. At each node, the current flow was calculated from the peak-to-peak of the EOD sum (i.e. the point-to-point of the difference between the beat positive and negative envelopes). Analyzing the EIs over this fixed time window enables us to assess the unitary changes of current flow induced by chirps over units of time (ΔI/Δt). From this, we can calculate a cumulative sum of current flow changes - expressed as delta(EI) and use it to show the effect of the chirps on the spatiotemporal EI (Figure 7C).

      One can express this cumulative change mapped onto the fish body (keeping the 800 points separated, as in Figure 7C) or further sum the current changes to obtain a single total (as shown in Figure 7D).

      One can check this by considering that a sum for example of a set of 500/800 points - judging from the size of the blue areas in C not all 800 points have a detectable change - each valued 0.1-to-0.3 mA/s, one could get circa 100 mA/s, which is what is shown in D. (is this what is happening ?)

      We do not know why chirps of different types triggered similar effects. It is possible that, since EI measurements are pooled over several chirps produced at different angles and distances, in case of a lower amount of chirps considered for a given type (as in the case of rises, very low) these measurements may not highlight more marked differences among types. In a publication we are currently working on, we are considering a larger dataset to better assess these results.

      The methods section has been edited to clarify the approach (not yet).

      Reviewer #2 (Public Review):

      Studying Apteronotus leptorhynchus (the weakly electric brown ghost knifefish), the authors provide evidence that 'chirps' (brief modulations in the frequency and amplitude of the ongoing electric signal) function in active sensing (specifically homeoactive sensing) rather than communication. Chirping is a behavior that has been well studied, including numerous studies on the sensory coding of chirps and the neural mechanisms for chirp generation.

      Chirps are largely thought to function in communication behavior, so this alternative function is a very exciting possibility that could have a great impact on the field.

      We thank the Reviewer for the extensive and constructive comments. We would like to add that, while it is true that many detailed studies have been published on the anatomy and physiology of the circuits implicated in the production and modulation of “electric chirps”, most of this  research assumed, and focused exclusively on, their possible role in communication.  In addition, most behavioral studies did the same and a meta-analysis of the existing literature on chirping allows to trace back the communication idea mainly to two studies: Hagedorn and Heiligenberg, 1985 (“Court and spark: electric signals in the courtship and mating of gymnotoid fish”) and Hopkins, 1974 (“Electric Communication: Functions in the Social Behavior of Eigenmannia Virescens”), among the main sources. Importantly, in these studies only contextual observations have been made (no playback experiment or other attempts to analyze more quantitatively the correlation of chirping with other behaviors).

      The authors do provide convincing evidence that chirps may function in homeoactive sensing. However, their evidence arguing against a role for chirps in communication is not as strong, and fails to sufficiently consider the evidence from a large body of existing research. Ultimately, the manuscript presents very interesting data that is sure to stimulate discussion and follow-up studies, but it suffers from dismissing evidence in support of, or consistent with, a communicative function for chirps.

      Although the tone of some statements present in our earlier draft may suggest otherwise, through our revisions, we have made an effort to clarify that we do not intend to dismiss a function of chirps in communication, we only intend to debate and discuss valid alternative hypothesis, advanced from reasonable considerations.

      Before writing this manuscript, we have attempted to survey  literally all the existing literature on chirps (including studies focused on behavior, peripheral sensory physiology as well as brain physiology). Although it is not unlikely that some studies have eluded our attention, an effort for a comprehensive review was made. Based on this survey we realized that none of the studies provided a clear  and  unambiguous piece of evidence to support the communication hypothesis (we refer here to the weak points highlighted in the discussion and mentioned in the previous comment). Which in fact does not come without its weak points and contradictions (see later comments).

      It follows a summary of the mentions made to the communication theory in the different section of the manuscript including several edits we have applied in response to the Reviewer’s concern:

      In the abstract we clearly state that we are considering an alternative that is only hypothetically complementary, not for sure.  Nonetheless, we have identified a couple of instances that could sound dismissive of the “communication hypothesis” in the following section.

      In the introduction we write in fact about the possibility of interference between communication signals and conspecific electrolocation cues, as they are both detected as beat perturbations. We did not mean to use “Interference” here as “reciprocal canceling”, rather we intended it as “partial or more or less conspicuous overlap” in the responses triggered in electroreceptors.

      Hoping to convey a clearer message, we have edited the related statement and changed it to “both types of information are likely to overlap and interact in highly variable ways”.

      We have also removed the statement: “According to this idea, beats and chirps are not only detected through the same input channel, but also used for the same purpose.” as at this point in the manuscript it may be too strong.

      In the results section we do not include statements that might be seen as dismissive of the communication hypothesis but only statements in support of the “probing with chirps” idea (which is the central hypothesis of the study).

      In the discussion paragraphs we elaborate on why the current functional view is either flawed or incomplete (first paragraph “existing functional hypotheses''). Namely: 1)  multiple triggering factors implied in chirp responses covary and need to be disentangled (example DF/ sex), 2) findings on brown ghosts and a few other gymnotiforms have been used to advance the hypothesis of “communication through chirps'' in all weakly electric fish (including pulse species). 3) social encounters - in which chirps are recorded - imply also other behaviors (such as probing) which have not been considered so far. This point is related to the first one on covariates. 4) most studies referring to big chirps as courtship chirps were not done in reproductive animals (added now)  and 5) no causal evidence has been provided so far to justify a role of chirps in social communication.

      We are discussing these points as challenges to the communication hypothesis, not to dismiss the hypothesis, but rather to motivate future studies addressing these challenges.

      We do not want to appear dismissive of the communication hypothesis and had therefore previously edited the manuscript to avoid the impression of exclusivity of the probing hypothesis. We have now gone over the manuscript once more and edited several sentences. Nevertheless, we want to point out again that - despite the large consensus - the communication hypothesis has, until now, never been investigated with the kind of rigor applied here.

      The authors do acknowledge that chirps could function as both a communication and homeactive sensing signal, but it seems clear they wish to argue against the former and for the latter, and the evidence is not yet there to support this.

      In both rounds of revision we have made an effort to convey a more inclusive interpretation of our findings. We tried our best to express our ideas as hypothetical, not as proof that communication through chirps does not exist. The aim of this study is to propose an alternative view, and this cannot be done without underlining the weak points of an existing hypothesis while providing and supporting reasonable arguments in favor of the alternative we advance. The actual evidence for a role of chirping in communication is much less strong than appears from the pure number of articles that have discussed chirps in this context.

      Regarding the weak evidence against communication, here we can list a few additional important points related to the proposed interpretations of chirp function (more specific than those made earlier):

      (1) A formally sound assessment of signal value/meaning - as typically done in animal communication studies should involve: 

      a) the isolation of a naturally occurring signal and determination of the context in which it is produced 

      b) the artificial replication of the signal

      c) the observation that such mimic is capable of triggering reliable and stereotyped responses in a group of individuals (identified by sex and/or species) under the same conditions (conditioned, unconditioned, state-dependent, etc.). As discussed for instance in Bradbury and Vehrencamp, 2011; Laidre and Johnstone, 2013; Wyatt, 2015; Rutz et al., 2023.

      This approach has so far not been applied to weakly electric fish. The initial purpose of the present study was in fact to conduct this type of validation.

      (2) The hypothesis of chirps used for DF-sign discrimination - for “social purposes” - although plausible in the face of theoretical considerations,  does not seem to be reasonable in practice, when one considers emission rates of 150 chirps per minute. We do find a strong correlation of chirp type with DF, which is often very abrupt and sudden (as if the fish were tracking beat frequency to guess its value) but the consideration made above on chirp rates seems to discourage this interpretation.

      (3) The hypothesis of chirp-patterning (i.e. chirping may have meaning based on the sequence of chirps of different types, a bit like syllables in birdsongs) - assessed by only one study conducted in our group - has not been enough substantiated by replication. We have surveyed all possible combinations of chirps produced by interacting pairs in different behavioral conditions using different value for chirp sequence size: 2, 3,... ,8 chirps (both considering the sender alone as well as sender+receiver together). In all cases we found no evidence for  a context dependent “modulation” of chirp types (i.e. no specific chirp type sequence in specific contexts).

      (4) The hypothesized role of “large chirps” as courtship signals could be easily criticized by noting the symmetrical distribution of these events around  a DF of 0 Hz . Although one could argue about a failure to discriminate DF-sign, to explain this well known pattern. However, we know from Walter Heiligenberg’s work and physiological considerations that such task can be solved easily through t-units and … in principle even just by motion (which would change the EOD phase in frequency dependent ways, thus potentially revealing the DF sign).

      Overall, these considerations made us think that certainly chirping occurs in a social context, but it is the meaning of this behavior that remains elusive.  We noticed that environmental factors are also strongly implied … we then formulate an alternative hypothesis to explain chirping but we do so  without dismissing the communication idea.

      All this seems to us just a careful way to critically discuss our results and those of other studies, without considering the issue resolved.

      In the introduction, the authors state, "Since both chirps and positional parameters (such as size, orientation or motion) can only be detected as perturbations of the beat, and via the same electroreceptors, the inputs relaying both types of information are inevitably interfering." I disagree with this statement, which seems to be a key assumption. Both of these features certainly modulate the activity of electroreceptors, but that does not mean those modulations are ambiguous as to their source. You do not know whether the two types of modulations can be unambiguously decoded from electroreceptor afferent population activity.

      We thank the Reviewer for noting this imprecision. We have addressed the Reviewer’s concern in another reply (see above).

      My biggest issue with this manuscript is that it is much too strong in dismissing evidence that chirping correlates with context. In your behavioral observations, you found sex differences in chirping as well as differences between freely interacting and physically separated fish. Chirps tended to occur in close proximity to another fish. Your model of chirp variability found that environmental experience, social experience, and beat frequency (DF) are the most important factors explaining chirp variability. Are these not all considered behavioral or social context? Beat frequency (DF) in particular is heavily downplayed as being a part of "context" but it is a crucial part of the context, as it provides information about the identity of the fish you're interacting with. The authors show quite convincingly that the types of chirps produced do not vary with these contexts, but chirp rates do.

      We believe the “perceived claim” may be an issue of unclear writing. We have now tried to better clarify that “context” affects chirp rates, but it does not affect chirp types as much (except when beat frequency is high).  

      We have edited two statements possibly susceptible to misinterpretation: 

      (1) In the results: “It also indicates that chirp parameters such as duration and FM do not seem to be associated with any particular context in a meaningful way, other than being affected by beat frequency.”

      (2) In the discussion: the statement

      “Recordings from interacting fish pairs confirmed the absence of any significant correlation between chirp type choice and behavioral context (Figure S2) although the variance of chirp parameters appears to be significantly affected by this factor (Figure 2). This may suggest that the effect of behavioral context is mainly detectable in the number of chirps produced (Figure S1), rather than the type (Figure S2).”

      has been changed to:

      “Recordings from interacting fish pairs confirmed the absence of any significant correlation between chirp type choice and behavioral context, except for those cases characterized by higher beat frequencies  (Figure S2). This suggests that the effect of behavioral context highlighted in our factor analysis (Figure 2) is mainly due to the number of chirps produced (Figure S1), rather than their type (Figure S2).”

      Eventually, in the results we emphasize the relatively higher impact of previously unexplored factors on chirp variance: “The plot of individual chirps (Figure 2C) shows the presence of clustering around different categorical variables and it reveals that experience levels or swimming conditions are important factors affecting chirp distribution (note for instance the large central “breeding” cluster in which fish are divided and the smaller ones in which fish are free). Sender or receiver identity does not individuate any clear clustering relative to either sex (see the overlap of male_s/male_r and female_s/female_r) or social status (dominant/subordinate). Chirps labeled based on tank experience (i.e. resident vs intruder) are instead clearly separated.”.

      Further, in your playback experiments, fish responded differently to small vs. large DFs, males chirped more than females, type 2 chirps became more frequent throughout a playback, and rises tended to occur at the end of a playback. These are all examples of context-dependent behavior.

      We do note that male brown ghosts chirp more than females. But we do also say - and show in figure 8 - that males move more in proximity to and around conspecifics. We do acknowledge that chirp time-course may be different during playbacks in a type-dependent manner. But how this can support the communication hypothesis - or other alternatives - is unclear. This result could equally imply the use of different chirp types for different probing needs. Since we cannot be sure about either, we do not want to put too much emphasis to it. Eventually, the fact that “context” (here meant broadly to define different experimental situations in which social but also physical and environmental parameters are altered) affects chirping is undeniable: cluttered and non-cluttered environments do represent different contexts which differently affect chirping in conspicuous ways.

      In the results, the authors state, "Overall, the majority of chirps were produced by male subjects, in comparable amounts regardless of environmental experience (resident, intruder or equal; Figure S1A,C), social status (dominant or subordinate; Figure S1B) or social experience (novel or experienced; Figure S1D)." This is not what is shown in Figure S1. S1A shows clear differences between resident vs. intruder males, S1B shows clear differences between dominant vs. subordinate males, and S1D shows clear differences between naïve and experienced males. The analysis shown in Figure 2 would seem to support this. Indeed, the authors state, "Overall, this analysis indicated that environmental and social experience, together with beat frequency (DF) are the most important factors explaining chirp variability."

      The Reviewer is right in pointing at this imprecise reference and we are grateful for spotting this incongruence. The writing refers probably to an earlier version of the figure in which data were grouped and analyzed differently. We now edited the text and changed it to: “Overall, the majority of chirps were produced by male subjects, at rates that seemed  affected by environmental experience (resident, intruder or equal; Figure S1A,C), social status (dominant or subordinate; Figure S1B) and social experience (novel or experienced; Figure S1D).”

      The choice of chirp type varied widely between individuals but was relatively consistent within individuals across trials of the same experiment. The authors interpret this to mean that chirping does not vary with internal state, but is it not likely that the internal states of individuals are stable under stable conditions, and that individuals may differ in these internal states across the same conditions? Stable differences in communication signals between individuals are frequently interpreted as reflecting differences between those individuals in certain characteristics, which are being communicated by these signals.

      It seems here we have been unclear in the writing: while it is true that behavioral states are stable and can imply stable chirp patterning (if the two are related), since chirp types vary abruptly and in a reliable DF-dependent manner, different types of chirps are unlikely to be matched to different internal states following the same temporal order in such a reliable way (similarly repeated through consecutive trials).

      This would imply the occurrence of different internal states in rapid sequence, reliably triggered by repeated EOD ramps, regardless of whether the playback is 20 sec long or 180 sec long.

      We have edited this paragraph to better explain this: “The reliability by which the chirping response adapts to both the rate and direction of beat frequency is variable across individuals but rather stable across trials (relative to a given subject), further suggesting that chirp type variations may not reflect changes in internal states or in the animal motivation to specific behavioral displays (which are presumably subject to less abrupt variations and stereotypical patterning based on DF).”

      I am not convinced of the conclusion drawn by the analysis of chirp transitions. The transition matrices show plenty of 1-2 and 2-1 transitions occurring.

      The only groups in which 1-2 and 2-1 transitions are as frequent as 1-1 and 2-2 (being 1 and 2 the numerical IDs of the two interacting fish) are F-F pairs. This is a result of the fact that in females chirp rates are so low that within-fish-correlations end up being as low as between-fish-correlations. We believe the impression of the Reviewer could be due to the fact that these are normalized maps (see legend of Figure 5A-B).

      Further, the cross-correlation analysis only shows that chirp timing between individuals is not phase-locked at these small timescales. It is entirely possible that chirp rates are correlated between interacting individuals, even if their precise timing is not.

      We agree with the Reviewer, this is a possibility. To address this point, we did edit the results section to acknowledge that what we see may be related to the time window chosen (i.e. 4 sec):

      “More importantly, they show that - at least in the social conditions analyzed here and within small-sized time windows - chirp time series produced by different fish during paired interactions are consistently independent of each other.”

      Further, it is not clear to me how "transitions" were defined. The methods do not make this clear, and it is not clear to me how you can have zero chirp transitions between two individuals when those two individuals are both generating chirps throughout an interaction.

      We thank the Reviewer for bringing up this unclear point. We have now clarified how transitions were calculated in the method section: “The number of chirp transitions present in each recording (dataset used for Figures 1, 2, 5) was measured by searching in a string array containing the 4 chirp types per fish pair, all their possible pairwise permutations (i.e. all possible permutations of 4+4=8 elements are: 1-1, 1-2, 1-3 … 7-6, 7-7, 7-8; considering the following legend 1 = fish1 type 1, 2 = fish 1 type 2, 3 = fish1 type 3 … 6 = fish2 type 2, 7 = fish2 type 3 and 8 = fish2 rise).”.

      Zero transitions are possible if two fish (or groups of fish) do not produce chirps of all types. Only transitions of produced types can be counted.

      In the results, "Although all chirp types were used during aggressive interactions, these seemed to be rather less frequent in the immediate surround of the chirps (Figure 6A)." A lack of precise temporal correlation on short timescales does not mean there is no association between the two behaviors. An increased rate of chirping during aggression is still a correlation between the two behaviors, even if chirps and specific aggressive behaviors are not tightly time-locked.

      The Reviewer is right in pointing out the limited temporal scaling of our observations/analysis. We have now edited the last paragraph of the results related to figure 6 to include the possibility mentioned by the Reviewer: “The significantly higher extent of chirping during swimming and locomotion, consistently confirmed by 4 different approaches (PSTH, TM, CN, MDS), suggests that - although chirp-behavior correlations may exist at time-scales larger than those here considered - chirping may be linked more strongly with scanning and environmental exploration than with a particular motivational state, thus confirming findings from our playback experiments.”

      The Reviewer here remarks an important point, yet, due to space limitations, we have considered only a sub-second scale. Most playback experiments in weakly electric fish implied the use of EOD mimics for a few tens of seconds - to avoid habituation in the fish behavioral responses -  while inter-chirp intervals usually range between a few hundreds of milliseconds to seconds (depending on how often a fish would chirp). This suggested to us that a 4 second time window may not be a bad choice to start with.

      In summary, it is simply too strong to say that chirping does not correlate with context, or to claim that there is convincing evidence arguing against a communication function of chirps. Importantly, however, this does not detract from your exciting and well-supported hypothesis that chirping functions in homeoactive sensing. A given EOD behavior could serve both communication and homeoactive sensing. I actually suspect this is quite common in electric fish (both gymnotiforms and mormyrids), and perhaps in other actively sensing species such as echolocating animals. The two are not mutually exclusive.

      We agree with the Reviewer that context - broadly speaking - does affect chirping (as we mentioned above). We hope we have improved the writing and clarified that we do not dismiss communication functions of chirping, but we do lean towards electrolocation based on the considerations above made and our results.

      We do conclude the manuscript remarking that communication and electrolocation are not mutually exclusive: ”probing cues could function simultaneously as proximity signals to signal presence, deter approaches, or coordinate behaviors like spawning, if properly timed (Henninger et al., 2018).” (see the conclusion paragraph of the discussion) .

      Therein, we further add “These findings aim to stir the pot and initiate a discussion on possible alternative functions of chirps beyond their presumed communication role.”.

      With this, we hope we’ve made it clear how we intend our manuscript to be read.

      Reviewer #3 (Public Review):

      Summary:

      This important paper provides the best-to-date characterization of chirping in weakly electric fish using a large number of variables. These include environment (free vs divided fish, with or without clutter), breeding state, gender, intruder vs resident, social status, locomotion state and social and environmental experience, without and with playback experiments. It applies state-of-the-art methods for reducing the dimensionality of the data and finding patterns of correlation between different kinds of variables (factor analysis, K-means). The strength of the evidence, collated from a large number of trials with many controls, leads to the conclusion that the traditionally assumed communication function of chirps may be secondary to its role in environmental assessment and exploration that takes social context into account. Based on their extensive analyses, the authors suggest that chirps are mainly used as probes that help detect beats caused by other fish and as well as objects.

      Strengths:

      The work is based on completely novel recordings using interaction chambers. The amount of new data and associated analyses is simply staggering, and yet, well organized in presentation. The study further evaluates the electric field strength around a fish (via modelling with the boundary element method) and how its decay parallels the chirp rate, thereby relating the above variables to electric field geometry.

      The main conclusions are that the lack of any significant behavioural correlates for chirping, and the lack of temporal patterning in chirp time series, cast doubt on a primary communication goal for most chirps. Rather, the key determinants of chirping are the difference frequency between two interacting conspecifics as well as individual subjects' environmental and social experience. The paper concludes that there is a lack of evidence for stereotyped temporal patterning of chirp time series, as well as of sender-receiver chirp transitions beyond the known increase in chirp frequency during an interaction.

      These conclusions by themselves will be very useful to the field. They will also allow scientists working on other "communication" systems to perhaps reconsider and expand the goals of the probes used in those senses. A lot of data are summarized in this paper, with thorough referencing to past work.

      The alternative hypotheses that arise from the work are that chirps are mainly used as environmental probes for better beat detection and processing and object localization, and in this sense are self-directed signals. This led to their prediction that environmental complexity ("clutter") should increase chirp rate, which is fact was revealed by their new experiments. The authors also argue that waveform EODs have less power across high spatial frequencies compared to pulse-type fish, with a resulting relatively impoverished power of resolution. Chirping in wave-type fish could temporarily compensate for the lower frequency resolution while still being able to resolve EOD perturbations with a good temporal definition (which pulse-type fish lack due to low pulse rates).

      The authors also advance the interesting idea that the sinusoidal frequency modulations caused by chirps are the electric fish's solution to the minute (and undetectable by neural wetware) echo-delays available to it, due to the propagation of electric fields at the speed of light in water. The paper provides a number of experimental avenues to pursue in order to validate the non-communication role of chirps.

      We thank the reviewer for the kind assessment.

      Weaknesses:

      My main criticism is that the alternative putative role for chirps as probe signals that optimize beat detection could be better developed. The paper could be clearer as to what that means precisely, especially since beating - and therefore detection of some aspects of beating due to the proximity of a conspecific - most often precedes chirping. One meaning the authors suggest, tentatively, is that the chirps could enhance electrosensory responses to the beat, for example by causing beat phase shifts that remediate blind spots in the electric field of view.

      We agree with the Reviewer that a better and more detailed explanation of how beat processing for conspecific electrolocation may be positively affected by chirps would be important to provide. We are currently working on a follow-up manuscript in which we intend to include these aspects. For space limitations and readability we had to discard from the current manuscript a lot of results that could further clarify these issues.

      A second criticism is that the study links the beat detection to underwater object localization. The paper does not significantly develop that line of thought given their data - the authors tread carefully here given the speculative aspect of this link. It is certainly possible that the image on the fish's body of an object in the environment will be slightly modified by introducing a chirp on the waveform, as this may enhance certain heterogeneities of the object in relation to its environment. The thrust of this argument derives mainly from the notion of Fourier analysis with pulse type fish EOD waveforms (see above, and radar theory more generally), where higher temporal frequencies in the beat waveform induced by the chirp will enable a better spatial resolution of objects. It remains to be seen whether experiments can show this to be significant.

      Perhaps the Reviewer refers to the last discussion paragraph before the conclusions in which we mention the performance of pulse or wave-type EODs in electrolocation (referring here to ideas illustrated in a recent review by Crampton, 2019). We added to this paragraph a statement which could better clarify that we do not propose that chirping could enhance object electrolocation. What we mean is that, in a context in which object electrolocation occurs through wave-type EODs - given the generally lower performance of such narrow-band signals in resolving the spatial features of any object, even a 3D electric field  - chirping could improve beat detection during social encounters by increasing the amount of information obtained by the fish.

      The edited paragraph now reads: “While broadband pulse signals may be useful to capture highly complex environments rich in foliage, roots and other structures common in vegetation featuring the more superficial habitats in which pulse-type fish live, wave-type EODs may be a better choice in the relatively simpler river-bed environments in which many wave-type fish live (e.g., the benthic zone of deep river channels; Crampton, 2019). In this case, achieving a good spatial resolution is critical during social encounters, especially considering the limited utility of visual cues in these low-light conditions. In such habitats, social encounters may “electrically” be less “abrupt”, but spatially less “conspicuous” or blurred (as a 3D electric field may be). In such a scenario, chirps could serve as a means to supplement the spatial information acquired via the beat, accentuating these cues during periods of reduced resolution.”

      Recommendations for the authors:

      Reviewer #3 (Recommendations For The Authors):

      None, my points in the original review have been properly addressed in this resubmission.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The present study provides a phylogenetic analysis of the size prefrontal areas in primates, aiming to investigate whether relative size of the rostral prefrontal cortex (frontal pole) and dorsolateral prefrontal cortex volume vary according to known ecological or social variables.

      I am very much in favor of the general approach taken in this study. Neuroimaging now allows us to obtain more detailed anatomical data in a much larger range of species than ever before and this study shows the questions that can be asked using these types of data. In general, the study is conducted with care, focusing on anatomical precision in definition of the cortical areas and using appropriate statistical techniques, such as PGLS.

      I have read the revised version of the manuscript with interest. I agree with the authors that a focus on ecological vs laboratory variables is a good one, although it might have been useful to reflect that in the title.

      I am happy to see that the authors included additional analyses using different definitions of FP and DLPFC in the supplementary material. As I said in my earlier review, the precise delineation of the areas will always be an issue of debate in studies like this, so showing the effects of different decisions in vital.

      We thank the reviewer for these positive remarks and for these very useful suggestions on the previous version of this article.

      I am sorry the authors are so dismissive of the idea of looking the models where brain size and area size are directly compared in the model, rather preferring to run separate models on brain size and area size. This seems to me a sensible suggestion.

      We agree with the reviewer 1 and the response of reviewer 3 also made it clear to us of why it was an important issue. We have therefore addressed it more thoroughly this time.

      First, we have added a new analysis, with whole brain volume included as covariate in the model accounting for regional volumes, together with the socio-ecological variables of interest. As expected given the very strong correlation across all brain measures (>90%), the effects of all socio-ecological factors disappear for both FP and DLPFC volumes when ‘whole brain’ is included as covariate. This is coherent with our previous analysis showing that the same combination of socio-ecological variables could account for the volume of FP, DLPFC and the whole brain. Nevertheless, the interpretation of these results remains difficult, because of the hidden assumptions underlying the analysis (see below).

      Second, we have clarified the theoretical reasons that made us choose absolute vs relative measures of brain volumes. In short, we understand the notion of specificity associated with relative measures, but 1) the interpretation of relative measures is confusing and 2) we have alternative ways to evaluate the specificity of the effects (which are complementary to the idea of adding whole brain volume as covariate). 

      Our goal here was to evaluate the influence of socio-ecological factors on specific brain regions, based on their known cognitive functions in laboratory conditions (working memory for the DLPFC and metacognition for the frontal pole). Thus, the null hypothesis is that socio-ecological challenges supposed to mobilize working memory and metacognition do not affect the size of the brain regions associated with these functions (respectively DLPFC and FP). This is what our analysis is testing, and from that perspective, it seems to us that direct measures are better, because within regions (across species), volumes provide a good index of neural counts (since densities are conserved), which are indicative fo the amount of computational resources available for the region. It is not the case when using relative measures, or when using the whole brain as covariate, since densities are heterogenous across brain regions (e.g. Herculano-Houzel, 2011; 2017, but see below for further details on this).

      Quantitatively, the theoretical level of specificity of the relation between brain regions and socio-ecological factors is difficult to evaluate, given that our predictions are based on the cognitive functions associated with DLPFC and FP, namely working memory and metacognition, and that each of these cognitive functions also involved other brain regions. We would actually predict that other brain regions associated with the same cognitive functions as DLPFC or FP also show a positive influence of the same socioecological variables. Given that the functional mapping of cognitive functions in the brain remains debated, it is extremely difficult to evaluate quantitatively how specific the influence of the socio-ecological factors should be on DLPFC and FP compared to the rest of the brain, in the frame of our hypothesis.

      Critically, given that FP and DLPFC show a differential sensitivity to population density, a proxy for social complexity, and that this difference is in line with laboratory studies showing a stronger implication of the FP in social cognition, we believe that there is indeed some specificity in the relation between specific regions of the PFC and socioecological variables. Thus, our results as a whole seem to indicate that the relation between prefrontal cortex regions and socio-ecological variables shows a small but significant level of specificity. We hope that the addition of the new analysis and the corresponding modifications of the introduction and discussion section will clarify this point.

      Similarly, the debate about whether area volume and number of neurons can be equated across the regions is an important one, of which they are a bit dismissive.

      We are sorry that the reviewer found us a bit dismissive on this issue, and there may have been a misunderstanding.

      Based on the literature, it is clearly established that for a given brain region, area volume provides a good proxy for the number of neurons, and it is legitimate to generalize this relation across species if neuronal densities are conserved for the region of interest (see for example Herculano-Houzel 2011, 2017 for review). It seems to be the case across primates because cytoarchitectonic maps are conserved for FP and DLPFC, at least in humans and laboratory primates (Petrides et al, 2012; Sallet et al, 2013; Gabi et al, 2016; Amiez et al, 2019). But we make no claim about the difference in number of neurons between FP and DLPFC, and we never compared regional volumes across regions (we only compared the influence of socio-ecological factors on each regional volume), so their difference in cellular density is not relevant here. As long as the neuronal density is conserved across species but within a region (DLPFC or FP), the difference in volume for that region, across species, does provide a reliable proxy for the influence of the socioecological regressor of interest (across species) on the number of neurons in that region.

      Our claims are based on the strength of the relation between 1) cross-species variability in a set of socio-ecological variables and 2) cross-species variability in neural counts in each region of interest (FP or DLPFC). Since the effects of interest relate to inter-specific differences, within a region, our only assumption is that the neural densities are conserved across distinct species for a given brain region. Again (see previous paragraph), there is reasonable evidence for that in the literature. Given that assumption, regional volumes (across species, for a given brain region) provide a good proxy for the number of neurons. Thus, the influence of a given socio-ecological variable on the interspecific differences in the volume of a single brain region provides a reliable estimate of the influence of that socio-ecological variable on the number of neurons in that region (across species), and potentially of the importance of the cognitive function associated with that region in laboratory conditions. None of our conclusions are based on direct comparison of volumes across regions, and we only compared the influence of socioecological factors (beta weights, after normalization of the variables).

      Note that this is yet another reason for not using relative measures and not including whole brain as covariate in the regression model: Given that whole brain and any specific region have a clear difference in density, and that this difference is probably not conserved across species, relative measures (or covariate analysis) cannot be used as proxies for neuronal counts (e.g. Herculano-Houzel, 2011). In other words, using the whole brain to rescale individual brain regions relies upon the assumption that the ratios of volumes (specific region/whole brain) are equivalent to the ratios of neural counts, which is not valid given the differences in densities.

      Nevertheless, I think this is an important study. I am happy that we are using imaging data to answer more wider phylogenetic questions. Combining detailed anatomy, big data, and phylogenetic statistical frameworks is a important approach.

      We really thank the reviewer for these positive remarks, and we hope that this study will indeed stimulate others using a similar approach.

      Reviewer #2 (Public Review):

      In the manuscript entitled "Linking the evolution of two prefrontal brain regions to social and foraging challenges in primates" the authors measure the volume of the frontal pole (FP, related to metacognition) and the dorsolateral prefrontal cortex (DLPFC, related to working memory) in 16 primate species to evaluate the influence of socio-ecological factors on the size of these cortical regions. The authors select 11 socio-ecological variables and use a phylogenetic generalized least squares (PGLS) approach to evaluate the joint influence of these socio-ecological variables on the neuro-anatomical variability of FP and DLPFC across the 16 selected primate species; in this way, the authors take into account the phylogenetic relations across primate species in their attempt to discover the the influence of socio-ecological variables on FP and DLPF evolution.

      The authors run their studies on brains collected from 1920 to 1970 and preserved in formalin solution. Also, they obtained data from the Mussée National d´Histoire Naturelle in Paris and from the Allen Brain Institute in California. The main findings consist in showing that the volume of the FP, the DLPFC, and the Rest of the Brain (ROB) across the 16 selected primate species is related to three socio-ecological variables: body mass, daily traveled distance, and population density. The authors conclude that metacognition and working memory are critical for foraging in primates and that FP volume is more sensitive to social constraints than DLPFC volume.

      The topic addressed in the present manuscript is relevant for understanding human brain evolution from the point of view of primate research, which, unfortunately, is a shrinking field in neuroscience. But the experimental design has two major weak points: the absence of lissencephalic primates among the selected species and the delimitation of FP and DLPFC. Also, a general theoretical and experimental frame linking evolution (phylogeny) and development (ontogeny) is lacking.

      We are sorry that the reviewer still believes that these two points are major weaknesses.

      - We have added a point on lissencephalic species in the discussion. In short, we acknowledge that our work may not be applied to lissencephalic species because they cannot be studied with our method, but on the other hand, based on laboratory data there is no evidence showing that the functional organization of the DLPFC and FP in lissencephalic primates is radically different from that of other primates (Dias et al, 1996; Roberts et al, 2007; Dureux et al, 2023; Wong et al, 2023). Therefore, there is no a priori reason to believe that not including lissencephalic primates prevents us from drawing conclusions that are valid for primates in general. Moreover, as explained in the discussion, including lissencephalic primates would require using invasive functional studies, only possible in laboratory conditions, which would not be compatible with the number of species (>15) necessary for phylogenetic studies (in particular PGLS approaches). Finally, as pointed out by the reviewer, our study is also relevant for understanding human brain evolution, and as such, including lissencephalic species should not be critical to this understanding.

      - In response to the remarks of reviewer 1 on the first version of the manuscript, we had included a new analysis in the previous version of the manuscript, to evaluate the validity of our functional maps given another set of boundaries between FP and DLPFC. But one should keep in mind that our objective here is not to provide a definitive definition of what the regions usually referred to as DLPFC and FP should be from an anatomical point of view. Rather, as our study aims at taking into account the phylogenetic relations across primate species, we chose landmarks that enable a comparison of the volume of cortex involved in metacognition (FP) and working memory (DLPFC) across species. We have also updated the discussion accordingly.

      We agree that this is a difficult point and we have always acknowledged that this was a clear limitation in our study. In the light of the functional imaging literature in humans and non-human primates, as well as the neurophysiological data in macaques, defining the functional boundary between FP and DLPFC remains a challenging issue even in very well controlled laboratory conditions. As mentioned by reviewer 1, “the precise delineation of the areas will always be an issue of debate in studies like this, so showing the effects of different decisions in vital”. Again, an additional analyses using different boundaries for FP and DLPFC was included in the supplementary material to address that issue. Now, we are not aware of solid evidence showing that the boundaries that we chose for DLPFC vs FP were wrong, and we believe that the comparison between 2 sets of measures as well as the discussion on this topic should be sufficient for the reader to assess both the strength and the limits of our conclusion. That being said, if the reviewer has any reference in mind showing better ways to delineate the functional boundary between FP and DLPFC in primates, we would be happy to include it in our manuscript.

      - The question of development, which is an important question per se,  is neither part of the hypothesis nor central for the field of comparative cognition in primates. Indeed, major studies in the field do not mention development (e.g. Byrne, 2000; Kaas, 2012; Barton, 2012). De Casien et al (2022) even showed that developmental constraints are largely irrelevant (see Claim 4 of their article): [« The functional constraints hypothesis […] predicts more complex, ‘mosaic’ patterns of change at the network level, since brain structure should evolve adaptively and in response to changing environments. It also suggests that ‘concerted’ patterns of brain evolution do not represent conclusive evidence for developmental constraints, since allometric relationships between developmentally linked or unlinked brain areas may result from selection to maintain functional connectivity. This is supported by recent computational modeling work [81], which also suggests that the value of mosaic or concerted patterns may fluctuate through time in a variable environment and that developmental coupling may not be a strong evolutionary constraint. Hence, the concept of concerted evolution can be decoupled from that of developmental constraints »].

      Finally, when studies on brain evolution and cognition mention development, it is generally to discuss energetic constraints rather than developmental mechanisms per se (Heldstab et al 2022 ; Smaers et al, 2021;  Preuss & Wise, 2021; Dunbar & Schutz, 2017; MacLean et al, 2012. Mars et al, 2018; 2021). Therefore, development does not seem to be a critical issue, neither for our article nor for the field.

      Reviewer #3 (Public Review):

      This is an interesting manuscript that addresses a longstanding debate in evolutionary biology - whether social or ecological factors are primarily responsible for the evolution of the large human brain. To address this, the authors examine the relationship between the size of two prefrontal regions involved in metacognition and working memory (DLPFC and FP) and socioecological variables across 16 primate species. I recommend major revisions to this manuscript due to: 1) a lack of clarity surrounding model construction; and 2) an inappropriate treatment of the relative importance of different predictors (due to a lack of scaling/normalization of predictor variables prior to analysis).

      We thank the reviewer for his/her remarks, and for the clarification of his /her criticism regarding the use of relative measures. We are sorry to have missed the importance of this point in the first place. We also thank the reviewer for the cited references, which were very interesting and which we have included in the discussion. As the reviewer 1 also shared these concerns, we wrote a detailed response to explain how we addressed the issue above.

      First, we did run a supplementary analysis where whole brain volume was added as covariate, together with socio-ecological variables, to account for the volume of FP or DLPFC. As expected given the very high correlation across all 3 brain measures, none of the socio-ecological variables remained significant. We have added a long paragraph in the discussion to tackle that issue. In short, we agree with the reviewer that the specificity of the effects (on a given brain region vs the rest of the brain) is a critical issue, and we acknowledge that since this is a standard in the field, it was necessary to address the issue and run this extra-analysis. But we also believe that specificity could be assessed by other means: given the differential influence of ‘population density’ on FP and DLPFC, in line with laboratory data, we believe that some of the effects that we describe do show specificity. Also, we prefer absolute measures to relative measures because they provide a better estimate of the corresponding cognitive operation, because standard allometric rules (i.e., body size or whole brain scaling) may not apply to the scaling and evolution of FP and DLPFC in primates.. Indeed, given that we use these measures as proxies of functions (metacognition for FP and working memory for DLPFC), it is clear that other parts of the brain should show the same effect since these functions are supported by entire networks that include not only our regions of interest but also other cortical areas in the parietal lobe. Thus, the extent to which the relation with socio-ecological variables should be stronger in regions of interest vs the whole brain depends upon the extent to which other regions are involved in the same cognitive function as our regions of interest, and this is clearly beyond the scope of this study. More importantly, volumetric measures are taken as proxies for the number of neurons, but this is only valid when comparing data from the same brain region (across species), but not across brain regions, since neural densities are not conserved. Thus, using relative measures (scaling with the whole brain volume) would only work if densities were conserved across brain regions, but it is not the case. From that perspective, the interpretation of absolute measures seems more straightforward, and we hope that the specificity of the effects could be evaluated using the comparison between the 3 measures (FP, DLPFC and whole brain) as well as the analysis suggested by the reviewer. We hope that the additional analysis and the updated discussion will be sufficient to cover that question, and that the reader will have all the information necessary to evaluate the level of specificity and the extent to which our findings can be interpreted.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      In my previous review of the present manuscript, I pointed out the fact that defining parts, modules, or regions of the primate cerebral cortex based on macroscopic landmarks across primate species is problematic because it prevents comparisons between gyrencephalic and lissencephalic primate species. The authors have rephrased several paragraphs in their manuscript to acknowledge that their findings do apply to gyrencephalic primates.

      I also said that "Contemporary developmental biology has showed that the selection of morphological brain features happens within severe developmental constrains. Thus, the authors need a hypothesis linking the evolutionary expansion of FP and DLPFC during development. Otherwise, the claims form the mosaic brain and modularity lack fundamental support". I insisted that the author should clarify their concept of homology of cerebral cortex parts, modules, or regions cross species (in the present manuscript, the frontal pole and the dorsolateral prefrontal cortex). Those are not trivial questions because any phylogenetic explanation of brain region expansion in contemporary phylogenetic and evolutionary biology must be rooted in evolutionary developmental biology. In this regard, the authors could have discussed their findings in the frame of contemporary studies of cerebral cortex evolution and development, but, instead, they have rejected my criticism just saying that they are "not relevant here" or "clearly beyond the scope of this paper".

      The question of development, which is an important question per se, is neither part of the hypothesis nor central for the field of comparative cognition in primates. Indeed, the major studies in the field do not mention development and some even showed that developmental constraints were not relevant (see De Casien et al., 2022 and details in our response to the public review). When studies on brain evolution and cognition mention development, it is generally to discuss energetic constraints rather than developmental mechanisms per se (Heldstab et al 2022 ; Smaers et al, 2021;  Preuss & Wise, 2021; Dunbar & Schutz, 2017;  MacLean et al, 2012. Mars et al, 2018; 2021).

      If the other reviewers agree, the authors are free to publish in eLife their correlations in a vacuum of evolutionary developmental biology interpretation. I just disagree. Explanations of neural circuit evolution in primates and other mammalian species should tend to standards like the review in this link: https://royalsocietypublishing.org/doi/full/10.1098/ rstb.2020.0522

      In this article, Paul Cizek (a brilliant neurophysiologist) speculates on potential evolutionary mechanisms for some primate brain functions, but there is surprisingly very little reference to the existing literature on primate evolution and cognition. There is virtually no mention of studies that involve a large enough number of species to address evolutionary processes and/or a comparison with fossils and/or an evaluation of specific socio-ecological evolutionary constraints. Most of the cited literature refers to laboratory studies on brain anatomy of a handful of species, and their relevance for evolution remains to be evaluated. These ideas are very interesting and they could definitely provide an original perspective on evolution, but they are mostly based on speculations from laboratory studies, rather than from extensive comparative studies. This paper is interesting for understanding developmental mechanisms and their constraints on neurophysiological processes in laboratory conditions, but we do not think that it would fit it in the framework of our paper as it goes far beyond our main topic.

      Reviewer #3 (Recommendations For The Authors):

      Yes, I am suggesting that the authors also include analyses with brain size (rather than body size) as a covariate to evaluate the effects of other variables in the model over and above the effect on brain size. In a very simplified theoretical scenario: two species have the same body sizes, but species A has a larger brain and therefore a larger FP. In this case, species A has a larger FP because of brain allometric patterns, and models including body size as a covariate would link FP size and socioecological variables characteristic of species A (and others like it). However, perhaps the FP of species A is actually smaller than expected for its brain size, while the FP of species B is larger than expected for its brain size.

      As explained in our response to the public review, we did run this analysis and we agree with the reviewer’s point from a practical point of view: it is important to know the extent to which the relation with a set of socio-ecological variables is specific of the region of interest, vs less specific and present for other brain regions. Again, we are sorry to not have understood that earlier, and we acknowledge that since it is a standard in the field, it needs to be addressed thoroughly.

      We understand that the scaling intuition, and the need to get a reference point for volumetric measures, but here the volume of each brain region is taken as a proxy for the number of neurons and therefore for the region’s computational capacities. Since, for a given brain region (FP or DLPFC) the neural densities seem to be well conserved across species, comparing regional volumes across species provides a good proxy for the contrast (across species) in neural counts for that region. All we predicted was that for a given brain region, associated with a given cognitive operation, the volume (number of neurons) would be greater in species for which socio-ecological constraints potentially involving that specific cognitive operation were greater. We do not understand how or why the rest of the brain would change this interpretation (of course, as discussed just above, beyond the question of specificity). And using whole brain volume as a scaling measure is problematic because the whole brain density is very different from the density of these regions of the prefrontal cortex (see above for further details). Again, we acknowledge that allometric patterns exist, and we understand how they can be interpreted, but we do not understand how it could prove or disprove our hypothesis (brain regions involved in specific cognitive operations are influenced by a specific set of socio-ecological variables). When using volumes as a proxy for computational capacities, the theoretical implications of scaling  procedures might be problematic. For example, it implies that the computational capacities of a given brain region are scaled by the rest of the brain. All other things being equal, the computational capacities of a given brain region, taken as the number of neurons, should decrease when the size of the rest of the brain increases. But to our knowledge there is no evidence for that in the literature. Clearly these are very challenging issues, and our position was to take absolute measures because they do not rely upon hidden assumptions regarding allometric relations and their consequence on cognition.

      But since we definitely understand that scaling is a reference in the field, we have not only completed the corresponding analysis (including the whole brain as a covariate, together with socio-ecological variables) but also expended the discussion to address this issue in detail. We hope that between this new analysis and the comparison of effects between non-scaled measures of FP, DLPFC and the whole brain, the reader will be able to judge the specificity of the effect.

      Models including brain (instead of body) size would instead link FP size and socioecological variables characteristic of species B (and others like it). This approach is supported by a large body of literature linking comparative variation in the relative size of specific brain regions (i.e., relative to brain size) to behavioral variation across species - e.g., relative size of visual/olfactory brain areas and diurnality/nocturnality in primates (Barton et al. 1995), relative size of the hippocampus and food caching in birds (Krebs et al. 1989).

      Barton, R., Purvis, A., & Harvey, P. H. (1995). Evolutionary radiation of visual and olfactory brain systems in primates, bats and insectivores. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 348(1326), 381-392.

      Krebs, J. R., Sherry, D. F., Healy, S. D., Perry, V. H., & Vaccarino, A. L. (1989). Hippocampal specialization of food-storing birds. Proceedings of the National Academy of Sciences, 86(4), 1388-1392. 

      We are grateful to the reviewer for mentioning these very interesting articles, and more generally for helping us to understand this issue and clarify the related discussion. Again, we understand the scaling principle but the fact that these methods provide interesting results does not make other approaches (such as ours) wrong or irrelevant. Since we have used both our original approach and the standard version as requested by the reviewer, the reader should be able to get a clear picture of the measures and of their theoretical implications. We sincerely hope that the present version of the paper will be satisfactory, not only because it is clearer, but also because it might stimulate further discussion on this complex question.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1

      Evidence, reproducibility and clarity:

      In this work, Anandi et al. propose an ex vivo model that can be used to recapitulate the in vivo structure of the tumor microenvironment, which allows the observation of morphological and functional changes in tumor cells in a 3D context. Due to the ability of cancer cells to induce hypoxic condition within the TME, authors propose this model to tackle the study of metastasis initiation in vitro. The proposed system successfully displays an ischemic gradient with cells accessing nutrients at different rates, similarly to what happens in solid tumors in vivo. Moreover, in line with the literature, tumor cell migration and invasiveness were promoted by hypoxic conditions. Authors also show that the system could be used to study cell-cell interaction, as co-cultures of macrophages and cancer cells were successfully cultured in the system and studied in the context of tumor hypoxia.

      The study proposed is interesting and timely, as cancer cell invasion remains an important area of tumor biology that needs further exploration. The methodology is well explained and proposed in a linear flow. However, the work could benefit from some improvement and changes, as well as from additional experiments. On an important note, authors do not properly refer to the current literature, as several studies on 3D culture systems/chambers have already been studied and developed to investigate the tumor microenvironment, but they are not cited nor referred to in the manuscript. Authors should refer to such literature and explain how this system is different and adds to it.

      Major comments:

      1. Authors propose this method to study the TME in 3D. When culturing cells with different ECM (Collagen vs. matrigel+collagen I) authors should take into consideration the effect of these materials on different cell types. It is known how collagen and matrigel can differently influence the polarization and phenotype of stromal cells (particularly in regards of fibroblasts - major components of solid cancers - e.g., PMID 21029367), therefore these points should be addressed at least in the discussion.

      We completely agree with the reviewer so we added this point (and reference) to our manuscript's introduction (lines 45-46) and discussion (lines 442-445).

      1. In addition to the previous comment, matrigel and collagen are also known to alter cancer cell phenotype (e.g., PMID 21029367) and this point should be taken into account.

      We completely agree with the reviewer so we added this point (and reference) to our discussion in the main text (lines 442-445).

      1. The need for novel 3D systems to study different aspects of the TME in vitro/ex vivo are certainly needed, however they are not inexistent. Authors should address this in the text, as the current literature already started to propose 3D models (including models involving matrigel/collagen in combination with other materials). 3D chambers (of different materials, and with different aims) are being used and designed and can be found in the literature. These works are not cited in the current study at all. For instance, Anguiano 2017; Cavo et al. 2018; Anguiano et al., 2020; Sodek et al. 2008, etc.

      We agree so we have now added those references to the main text (line 56-57).

      1. Even though the focus is on hypoxia and the achievement of an ischemic gradient in the chamber to allow resemblance of an in vivo tumor, the authors write in line 123 (and also in other parts of the text) that: "these results show that consumer cells in the 3MIC form ischemic gradients that can influence the local metabolic microenvironment experienced by neighboring tumor spheroids". The addition of the use of the PMDS membrane partly supports the claim, however it would be interesting to check whether this is indeed true, by measuring for example the levels of certain metabolites (e.g., glucose, glutamine, glutamate, lactate, aspartate) reached with the system, or pH levels, etc., in presence or absence of the hypoxic gradient/consumer cells.

      This is an insightful question and defining the exact composition of this complex ischemic microenvironment is a major ambition of our lab, so we completely agree with the reviewer's comment. However, as the 3MIC was designed specifically for microscopy, measuring specific metabolites it is unfortunately outside its capabilities.

      Having said that, and following the spirit of the reviewer's comments, we used microscopy to measure additional signs of metabolic stress. Specifically, we used fluorescent probes to detect changes in intracellular pH (pHrodo, Molecular Probes) and in Redox status (CellROX, Molecular Probes) and glucose (2-NBDG - a fluorescent D-glucose analog). As we explain below, we found exciting results from our pH measurements which led us to additional functional experiments. We are very excited about these new results, and we thank the reviewer for encouraging these experiments. These new results also provide evidence that other parameters in ischemia - and not just hypoxia - change along the 3MIC and can have an impact on tumor cells.

      1. When looking at the references presented in the manuscript, authors quote too many review articles, rather than scientific articles. Given the extremely wide literature on cancer metastasis, more of these works should be quoted in this context. For example: in the introduction - text lines 27-38 - only 4 references are research articles, out of 14 references presented in that paragraph.

      The reviewer is correct in pointing this out. Our intention was to use reviews on topics that are well established where citing primary research could be unfair to other contributions. But again, we agree with the reviewer, so we replaced reviews with primary research articles in multiple locations along the manuscript.

      1. As authors showed successfully how macrophages and cancer cells can interact in the chamber, recapitulating cell interactions in an in vivo context, it would be very interesting to see whether different consumer cells would induce similar or different changes to the spheroids and the ischemic gradient (for instance using stromal cells or non-tumor cell lines as consumers, instead of cancer cells only), as we know how tumors are a multitude of cell subsets, each contributing to nutrient production, oxygen consumption, etc.

      This is a great point. We thought about that very same point and conducted several experiments to test the combinatorial effects of different consumer cells. In broad terms, we did not observe major differences when using different consumer cells. However, we agree that this system may provide compelling opportunities to test the effect of different cell types on each other. Still, for consistency and ease, we conducted most of our experiments using the same cells in both consumers and in spheroids.

      In the resubmitted version, we added an experiment where we looked at the sprouting of SVEC endothelial cells using the same cells or Lung KPs as consumers (Fig. S6A).

      Minor comments:

      1. Studying the early metastatic development/seeding remains a timely quest, however authors should refer to several new studies in which various mouse models are used to study metastasis from different points of view (e.g., PMID 25822788; PMID 36991128; PMID 25171411; PMID 25633981; PMID 34632412; PMID 35921474; etc). Or line 41, three reviews are quoted (refs 27-29), whilst there are several works that could be quoted on metabolism in solid tumors also in the context of metastasis (e.g., PMID 36522548; PMID: 26719539, PMID 34303764). This comment applies to the rest of the text.

      We thank the reviewer for their help in processing this vast literature. We were aware of most of those works but some were new to us so thanks again! We have now added these references.

      1. The order of the references is not properly presented. In the introduction, the first reference is n. 4 (text line 22), instead of it being reference 1. Moreover, the subsequent literature ref. is number 12 and not number 2. Please revise the order of the references, and position them within the bibliography from first cited to last cited in the text.

      We apologize for this confusion. We have now revised all the references and we hope they are correctly formatted and numbered. The origin of this confusion may have been that we had references in the abstract thus their numbering started there rather than from the introduction. To avoid further confusions, we removed all references from the abstract.

      1. Lines 98-104. It would be helpful to the reader to define here what these consumer cells are. Even though it is explained in the methods that the consumer cells are cancer cells, it is important to make it clear in the text, as it could be misleading at times.

      We agree with the reviewer although we did not mean to be misleading. As mentioned above, we chose to use the same cells for both: consumers and spheroids and we have now added a new figure to illustrate this point (Fig S6A). Following the advice, we are also including additional text to make the message clearer (lines 107-109).

      1. The English grammar and spelling should be revised in some parts, as well as typos and missing words throughout the text (e.g., Line 38, the word "interraction" is misspelled and should be corrected with "interaction". Line 49, the first sentence seems incomplete. Lines 68-69 should be revised as the sentences do not flow well together, probably due to a missing word. In line 77 it should be "presents". Line 341 should be "cannot be explained").

      We apologize for these typos and mistakes. We have tried our best to avoid these type of errors in the new manuscript version.

      Referees cross-commenting

      I find the comments from the other reviewers to be in line with one another as well as with my general assessment. The major and comments of all reviewers should be addressed. The minor comments should be taken into account as well, as they would render the text and the figures more precise. I suggest that 3-6 months to complete the revision process is an appropriate time frame for the authors.

      Finally, I strongly encourage the authors to add in the discussion the points and questions raised by all reviewers, as well as to improve the bibliography in terms of organisation, linearity, and state of the art.

      Significance:

      General assessment:

      The work by Anandi et al. offers an additional tool to tackle the issue of studying the tumor microenvironment, in a 3D culture system.

      The authors show a model that can be used to study tumor hypoxia in 3D, offering the possibility to study the TME in a more in vivo-like manner without turning to mice models. The development of new tools to study the TME avoiding the excessive use of animals is definitely a timely quest. In addition, the system has the potential to be applied to tackle different biological questions, as the methodology is well explained and could be suitable to many other fields of cancer biology (e.g., drug resistance or uptake). The work is overall presented in a clear way and the methodology is explained thoroughly and it has the potential to be a useful tool for the study of cancer hypoxia.

      However, authors should address how their method could differently impact other cells when applied to other systems. As one major claim is the potential use of this methodology to study the TME, it should be taken into consideration how stromal cells are strongly affected by the ECM, and how certain settings or features of the system may impact such cell populations. In addition, the work does not properly refer to the current state of the art. As other studies started to propose 3D systems for the study of TME and cell-cell interactions - besides organoids - the authors should cite these works and frame their own study in a more appropriate context, pointing out differences with the current 3D chambers available, the advantages of one vs the other, and so on.

      Advance: the study adds to the current literature as the study of tumor hypoxia in 3D remains a complicated issue. The interesting co-culture settings with macrophages suggests potential uses of this model to study cell-cell interactions.

      Audience: the study is very methodological and offers a tool that could be used by cancer biologists - and maybe by other biology fields.

      Reviewer #2

      Evidence, reproducibility and clarity:

      Summary

      Anandi and colleagues present a manuscript describing a nice assay for exploring the progressive effect of metabolic depletion of the nutrients and oxygen on the invasion of cancer cells. This builds upon and extends a device that they previously described - MEMIC - and now enables 3D analysis of small numbers of cells. The key to their method is the inclusion of a layer of consumer cells that deplete oxygen and nutrients. Using this tool, they demonstrate that depleted environments promote invasive behavior and lower cell-cell adhesion. This is related to the nutrient-deprived and hypoxic environments found in the center of many tumors. Cellular Potts Modelling is used to explore ideas around the cooperation between reduced cell-cell adhesion and increase ECM adhesion in promoting invasion. Overall, this is a well-constructed manuscript that will be of interest to cell biologists and cancer biologists.

      Major comments

      I realize this work is submitted to review commons and this complicates the recommendation regarding publication. My view is that the 'more prestigious' journals would require greater mechanistic insight, but that the work could find a suitable place in other members of the review commons stable. My comments are divided into those essential for any journal and those that might be journal dependent.

      We hope that the mechanistic experiments added to our new manuscript version will appeal the reviewer and merit publication in any of the review commons journals.

      Essential regardless of journal

      1. Many of the figures lack information about the number of spheroids analyzed and from how many biological repeats they are derived.

      We have now added this information to all our experiments. This information can be found in the figures and on the figure legends.

      1. The authors need to provide citations for their assertion that only gases can cross the PDMS, but not other small metabolites. They should also comment on whether the build-up of CO2 might be relevant.

      We have now added the original reference where they describe PDMS's properties (Cox and Dunn, 1986).

      The point raised about CO2 is very interesting, but we do not expect a buildup of this gas. When using PDMS, CO2 would not accumulate as PDMS membranes are permeable to gases - including CO2. When using glass covers, the lack of oxygen should minimize CO2 production as hypoxic cells will not be able to conduct oxidative phosphorylation and produce lactic acid instead.

      1. The data on the directionality of migration when consumers are present are not significant and doesn't warrant the speculation in lines 186-189.

      Following the reviewer's advice we have removed this speculation.

      1. The ECM degradation in Figure 3 should be quantified.

      We agree. We added additional quantifications for the gelatin degradation assay. We also highlight the quantification we already had of the ECM degradation assessed via DQ collagen. Those data can be found in the new figures 4 and S4, respectively.

      1. Do the authors have evidence that the hypoxia-exposed cells are more adhesive to ECM. This is central to their Potts model and I could not locate the supporting experimental data. If not, then the Potts model should include matrix proteolysis, which they do have data about.

      Again, this is a very insightful observation, and we completely understand this confusion. We think that this may part of the inherent challenge of trying to condense biological problems into analogies or "metaphors" when using physical/mathematical models.

      The algorithm in a Cellular Potts model (CPM) tries to minimize the energy of the system (the entire group of cells/ECM that we are modelling). This global energy reduction is achieved by minimizing local energies in the cell-cell and cell-ECM interactions. The way the algorithm executes this minimization, is by always (probability p=1) accepting a configuration that decrease the energy while restricting the configurations that lead to higher energies (with a probability of p = e-DHT) where DH is the difference between the current and previous energy.

      So, the only thing the model is really doing is to increase the likelihood that cells are in a more "comfortable" environment - i.e. that the energy from the interactions with their neighboring cells and ECM is as low as possible. For example, if cell 1 and cell 2 adhere strongly but not to cell 3, in a CPM this is modelled as a low DH between cell 1 and 2 and a higher DH with cell 3. Conversely, when people model cells better at "invading" into a new "territory" they choose a lower energy between that cell type and that type of substratum.

      In other words, our CPM does not "care" whether ischemic cells invade the ECM because they create space through increased proteolysis or because they are more adherent to the ECM. These two scenarios are the same in a CPM and it is consistent with previous CPM models of similar scenarios (e.g.: PMID: 18835895, 33933478, 26436883, 23596570).

      We have now reworded the description of the model on the main text, and we added an illustration hoping to make this aspect of the model clearer (Fig. S4F).

      1. Is the down-regulation of E-cadherin transcriptional - i.e. is the mRNA level reduced?

      This is a great question. After the reviewer posed this question, we looked at out data and we concluded E-cad's downregulation is transcriptional. Assessing local mRNA levels in the 3MIC is challenging. However, our E-Cad reporter (pHAGE-E-cadherin-RFP, addgene #79603) is a red fluorescent protein driven by the CDH1 (E-Cad) reporter. RFP levels decrease with ischemia indicating that this regulation occurs at the promoter/transcriptional level. We now added this point to the revised manuscript (lines 259-261). We thank the reviewer for this insight!

      1. The title of figure 6 is misleading. The authors do not demonstrate chemoresistance in terms of cell survival or cell proliferation, which is how the term is normally used. The authors should measure cell number, proliferation, and cell viability. The data presented in the Supplementary Figure are inadequate with no quantification. The FUCCI reporter cells would be a good tool for this. Also, why use 150nM paclitaxel when the IC50 is 817nM? This seems bizarre. Lastly, there is a typo in the figure that suggest 150mM drug was used.

      We apologize if these experiments caused confusion. Our intention was to look at the anti-migratory effects of Taxol-related drugs. As such, we first determined the concentrations at which the drug was lethal to our cells (this is the LD50 of ~800nM). Then, we tested if lower concentrations - which we knew where not lethal - would affect cell migration, protrusions, etc. Hence the 30-150nM range we used in our experiments.

      We have now completely rewritten this section hoping that our approach is now clearer. We have also changed the title of the section and the figure legend to clarify that we are studying the effects of Taxol as anti-motility drug rather than its effects on cell survival and proliferation (now Fig. 7). Finally, we have now fixed the 150mM/150nM typo in the figure legend.

      Journal dependent

      1. The authors have not excluded that either changes in nutrients, or even a pro-invasive factor, produced by consumer cells are necessary for the increased invasion. They have only shown that they are not sufficient. The authors should perform a series of experiments comparing hypoxic conditions with normal media and normoxic conditions with nutrient depleted/condition media by prior culturing of KP cancer cells.

      This is a great point. We actually do not want or propose to exclude this possibility. So, we have now added text to clarify this issue (lines 431-435).

      In fact, we would be thrilled if there is a pro-invasive factor. If that would be the case, our results indicate this factor is only effective under ischemia. Because the same consumer cells do not have an effect on the same type of tumor spheroids under well-nurtured environments. In addition, our new pH measurements and perturbations experiments agree with this reviewer's intuition about additional factors being key in the increased invasion (see new Figure 2). We are very excited about these new results, and we hope this reviewer will be excited too.

      1. What is the oxygen sensor for increased invasion? PHD1-3 would be a good place to start looking. Is the PHD2-HIF axis important? Do VHL mutant cells still show responses to the consumer cells?

      Following the reviewer's feedback, we generated isogenic HIF1A KO cell lines to study whether HIF1A was directly needed in the invasion of tumor spheroids within the 3MIC. We complemented these loss-of-function experiments with For HIF1A gain-of-function using pharmacological interventions that stabilize HIF1A under normal oxygen levels (CoCl2 and DMOG).

      As shown in the new figure 2, these experiments mirrored our hypoxia experiments: HIF1A activity was not sufficient but it was required to drive the invasion of ischemic spheroids. We think that these new results are particularly interesting when taken together with our new pH-perturbation experiments. Briefly, our new experiments results show that in addition to the requirement of hypoxia/HIF1A, media acidity also has a strong effect on spheroid invasion. More excitingly, a drop in pH is sufficient to dramatically increase invasion - even in control well-nurtured spheroids. We think that the effects of pH and hypoxia are linked. HIF1A activation and hypoxia the increase glycolysis and thus lactic acid secretion. We speculate that this glycolytic switch is where hypoxia is important, but it is not sufficient because under well-perfused conditions (e.g. healthy tissue or large culture media volume) lactic acid levels may not buildup enough to significantly lower the extracellular pH. In contrast, under poor perfused conditions (3MIC and solid tumors) or if we flood cell cultures with lactic acid, the media's pH drops dramatically (Fig. 2).

      1. If they include both spheroids of endothelial cells and cancer cells, will the resulting protrusions in hypoxia grow towards each other? Would macrophages enhance this process?

      We agree with the reviewer this is an interesting question and we have anecdotally observed this effect. In the manuscript, we used these chimeric endothelial/tumor spheroids rather than separate ones (Fig. 6E). We do not find strong evidence that their protrusions grew towards each other, but this is something that we would like to explore in the future with more detail.

      Significance:

      The main advance is technical, as many previous studies have related hypoxia to increased cancer cell invasion, which the authors correctly acknowledge and cite. It is scholarly study, which will be of interest to many readers, and the method reported is likely to be adopted by several groups.

      Reviewer #3

      Evidence, reproducibility and clarity:

      In this work, Anandi et al., developed a cell culture system to live image the initial transformation of cells in deprivation of oxygen and nutrients in a 3D context. Using this system, 3MIC, they were able to create oxygen and nutrient gradients to simulate ischemic conditions that arise deep within tumors and that typically precede metastasis. With the 3MIC system they validated that ischemia triggers cell migration and invasion of tumor cells. In addition, 3MIC also allowed them to study the interaction of tumor spheroids with stromal cells such as macrophages and endothelial cells. Interestingly, the authors showed that co-culturing tumor spheroids with stromal cells increased the pro-metastatic features induced by ischemia conditions. Lastly, using 3MIC allowed the authors to discern that a poor paclitaxel response in ischemic-like cells is driven by intrinsic cellular resistance rather than due to lower drug concentration.

      Overall, the work is very well-written, and the results are consisting, convincing and support the conclusions. The methods are clear and complete and allow the reproducibility of the experiments. The experiments are adequately replicated and statistical analyses are well described. However, I have few suggestions to improve the impact of the manuscript:

      1. The authors conclude that 3MIC results in the accumulation of lactic acid and nutrient deprivation in an increasing manner when moving far from the opening site. Is there a way to actually show this? So far, the authors employ a hypoxia sensor only. A sensor for internal pH or other method for nutrient deprivation would help to support the conclusion and further validate the model.

      This is an excellent point. Following the reviewer's feedback, we tested additional sensors including for extra- and intra-cellular pH. As mentioned above, we observed dramatic changes in extracellular pH levels. We followed up these observations with a series of experiments that showed a key functional role for media acidification in driving invasion (Figure 2).

      1. According to figure S3E, the main cell line used by the authors is already quite mesenchymal. It would be good to know if the results showed here are consistent in cells with a more basal epithelial phenotype. Do epithelial cells need stronger ischemic conditions to undergo phenotypic changes?

      This is a great catch. To explore this further, we run a Western Blot analysis to compare epithelial and mesenchymal markers expressed by the main cells we used here (Lung KPs) and to compare them to levels in a stereotypical epithelial (MCF-7) and a mesenchymal (MDA-MB-231) cell line (new Fig. S4D). As the reviewer correctly points out, we do see that E-Cad and Vimentin are co-expressed in KP cells.

      So far, our observations in a range of cell lines are a consistent decrease in E-Cad levels with no significant effects in vimentin levels - regardless of the basal levels of this protein.

      Interestingly, a recent study[1] demonstrated in triple-negative breast cancer models, that an EMT hybrid phenotype - including the presence of Vimentin - is required for metastasis. A compelling hypothesis then is that ischemia in the tumor microenvironment may favor these hybrid phenotypes. We briefly discuss this topic in the revised version of this manuscript.

      1. The number of replicates should be included in each figure legend and not only in the methods section. From data presented it is not clearly stated what do points mean in boxplots (e.g, Fig1H, 2B,G...). How many cells/spheroids did the authors count in each experiment?

      We have now added this information to all our experiments. This information can be found in the figures and on the figure legends.

      1. Figure 3B is not mentioned in the main text.

      We apologize for this error, and we thank the reviewer for catching this issue, which have now corrected.

      1. Line 295: "In the absence of macrophages, clusters of endothelial cells remained mostly rounded, even in the presence of consumer cells and regardless of their location along the ischemic gradient (Fig. 5A; Video S6)." However, in Video S6, both images show endothelial cells co-cultured with macrophages. I consider that Video S6 should be not referenced here.

      The reviewer is correct so have removed that reference.

      1. References style should be homogeneous (e.g, in Ref 13 appears "Nature Reviews Cancer" whereas in Ref 14 "Nat Rev Cancer"). Also, in Ref 25, the journal is missing.

      We apologize for this oversight, and we have not tried to be more consistent in our references.

      1. In plots where distance to open chamber site is not especify (e.g. 6B), at what distance were the data recorded? Please, indicate in the figure legend.

      We have now added this information to our figures.

      1. In the experiment showed in Fig 4, the sorting strategy would include stromal cells such as fibroblasts and endothelial cells in the GFP- population (as only CD45+ cells are removed). These cells will likely also grow in the 3MIC system and have an effect in migration. Can the authors rule out this confounding effect?

      The reviewer is correct. We still think that the possibility of fibroblast contamination is low. First, the fluorescence of HRE-GFP cells under normoxic, is still higher than the autofluorescence of cells not expressing this constructs (such as fibroblasts). This is quite normal as most sensors/reporter have some leakage and thus there is a small amount of transcription. Second, intradermal and subcutaneous tumors are quite poor in fibroblasts. In fact, to study the role of fibroblasts in these tumors, they are usually co-injected with tumor cells (PMID: 20138012). Third, in the process of tumor dissociation and in vitroestablishment, non-transformed cells tend to die more. Since these are more technical points, we moved the cell sorting details to the material and methods section.

      1. In Fig 5C the panel of proximal + macrophages is missing

      We apologize for this mistake, and we have corrected in the new version of the manuscript.

      1. In Fig. 5, Linifanib is used to study the effect of blocking VEGF. Linifanib can also interact with RTKs and PDGF. This fact should be acknowledged.

      We agree with this point. Following the reviewer's advice, we now acknowledged the potential off-target effects of these inhibitors (lines 354-355).

      Significance

      This is a very interesting work with the development of a simple and cost-effective system that allows to continuously monitor biological processes in 3D cultures under nutrient-modified conditions. In general, these data would be broadly interesting to cancer community in general, as 3MIC is a very versatile system, where several aspects can be studied and precisely discerned.

    1. Note: This response was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We would first like to thank the reviewers for their careful reading and thoughtful feedback.

      We have substantially revised the manuscript and included additional experimental evidence on O-GlcNAc and OGT/OGA protein levels in the placenta of embryos bearing the OGT-Y851A hypomorphic mutation.

      Overall, we believe our improved manuscript provides compelling evidence that the glycosyltransferase activity of OGT, and thus the O-GlcNAc modification itself, plays a sexually dimorphic function in placental development and the developmental repression of retrotransposons in the developing embryo.

      We have addressed each of the reviewers' comments below. The original comments (C) are in italic, our responses (R) in Roman font.

      Reviewer #1

      Evidence, reproducibility and clarity

      C1: Formichetti at el. developed mice with OGT catalytic dead mutations and then studied their function during early embryogenesis. Not surprisingly, dramatic reduction in OGT activity failed to produce embryos; however, mild reduction in OGT did produce animals. The authors then use the T931 animals that have a mild reduction in activity to further characterize the function in the early embryo. Not surprisingly, male mice showed changes in gene expression, implantation sub-lethality, and an uptick in loss of retrotransposon silencing. The authors also show that an even milder reduction in OGT activity (Y851A) effects male placenta function and chromatin remodeling. Finally, the authors make a less stable OGT transgene within the mouse and again found embryogenesis issues in the males and alterations in numerous gene families including mTOR signaling and p53 function. All in all, this is an interesting study that track functions of OGT in early embryonic development. The studies are well-controlled and rigorous.

      R1: We thank the reviewer for their clear understanding and their appreciation of the rigor and impact of this work.

      Significance

      C2: This is a good study and novel. Not only is it of interest to reproductive biologist, but it echos themes found in O-GlcNAc biology.

      R1: We are pleased that the reviewer underlined the novelty of the study and its impact across fields.

      Reviewer #2

      Evidence, reproducibility and clarity

      Comments to authors

      C3: To investigate the function of OGT at specific developmental stages, the authors perturbed OGT's function in vivo by creating a murine allelic series featuring four single amino acid substitutions that variably reduced OGT's catalytic activity. The goal was to identify the direct effect of O-GlcNAcylation, using a sophisticated collection of genetic mutants to evaluate in vivo the role of this modification at early stages of development. Overall, the severity of embryonic lethality correlated with the extent of catalytic impairment of OGT, demonstrating that the O-GlcNAc modification is essential for early development.The study represents a substantial advance in our understanding of OGT and O-GlcNAcylation in mammalian development. The creation of novel murine models and inducible systems is an important contribution, providing powerful tools for future research in this field. The insights into the role of OGT's catalytic activity and its involvement in epigenetic regulation during embryonic development are noteworthy, opening new avenues for research.

      R3: We thank the reviewer for their insightful comments. We are grateful for the supporting statements. Please find below detailed response to all your comments.

      However, there are a few considerations and concerns:

      Major:

      C4: 1. An assumption of the study is that different mutations cause different levels of O-GlcNAcylation rather than alterations in substrate specificity. It might be important to test, at least in cultured cells, that the different mutations do not change the preference of OGT to modify certain proteins rather than others, which can provide alternative explanations for their findings.

      R4: Thanks for asking this question, it helped us to better explain the rationale behind the choice of the Ogt amino-acid substitutions.

      This is a critical point that we carefully considered in the design of the single amino-acid substitutions. Two lines of evidence support that the precise mutations created impact the catalytic rate without modifying the substrate specificity:

      First, as explained in the text, the choice of the single amino-acid substitutions was driven by previous structural and enzymology knowledge. The impact of the four point mutations selected on OGT protein stability and on the Michaelis-Menten kinetic values had previously been determined experimentally (Fig. 1A legend and Martinez-Fleites, C. et al. Nature Structure Molecular Biology 2008; https://doi.org/10.1038/nsmb.1443).

      There is a second important rationale that we added in the revised manuscript: the four point mutations selected are all located in the catalytic domain (specifically, H568A in the N-Cat domain and Y851A, T931A and Q849A in the C-Cat domain), while the substrate recognition is operated via two other domains namely the intervening domain (Int-D) https://doi.org/10.1038/s41589-023-01422-2) and the tetratricopeptide Repeat (TPR) superhelix (10.1021/jacs.7b13546; https://doi.org/10.1073/pnas.2303690120). Therefore, for both these reasons, it is extremely unlikely that these mutations could influence the substrate specificity.

      C5.1: 2. In Fig 1D and 1H, the thresholds to define a gene or TE as differentially expressed are not strong. According to the figure legends, "any" change in terms of log2Fc was considered as DE and colored. I think the figures should illustrate better that the changes are subtle, by for example adding a dotted line (at least) in the value 0.5 of the y-axis. These subtle transcriptional changes should be reflected better in certain paragraphs where the expression of TEs are presented/and discussed as a hallmark of the absence of O-GlcNAcylation in the OGT-mutants. The same happens with Suppl Fig 3C (changes are very minor). {. Applying a stronger threshold, among the upregulated genes, only Xist will be significantly overexpressed. If a gentle threshold needs to be applied to this data, authors should at least justify the reasons behind doing so. Same for Fig2D.

      R5.1: The reviewer means Figure 2D for MA plot of gene expression and Figure 2H for retrotransposons expression. These figures now include a dash line to indicate Log2FC = 0.5 (as all MA plots).

      The text is explicit on the subtle changes in transcription, it reads "with 2/3 of the genes downregulated and 90% of the significant changes below 1 log__2__FC"; "most of the Ogt__T931del/Y embryos showed a low magnitude upregulation of retrotransposons".

      The revised text states "Notably, most of the OgtT931__del/Y embryos showed a low magnitude (log2FC < 1) upregulation of retrotransposons".

      We expand on this topic in the next response (R5.2) noting that changes in gene expression upon O-GlcNAc perturbation in different systems were previously characterized as subtle and widespread. We suggest that this phenotype may arise from the scarcely understood pleiotropic function of O-GlcNAc in fine-tuning gene expression; this phenotype could have a biological significance.

      C5.2: If a gentle threshold needs to be applied to this data, authors should at least justify the reasons behind doing so. Same for Fig2D.

      R5.2: Previous studies in different systems reported that O-GlcNAc perturbation causes a widespread change in gene expression of low magnitude (https://doi.org/10.1101/2024.01.22.576677, https://www.pnas.org/doi/10.1073/pnas.2218332120). We use the same thresholds as a recent functional Ogt study in ES cells to call differentially expressed genes, specifically: p<0.05 (Wald test), any FC (Li et al. PNAS 2023, https://www.pnas.org/doi/10.1073/pnas.2218332120). The p value threshold is standard; the absence of FC threshold is dictated by the insufficient knowledge of the significance of the low magnitude changes observed across many transcripts.

      C6: 3. In Figure 2B, the T931del allele was recovered in the blastocyst population with a very high frequency, even higher than the male WT group (T931del: 10; WT: 3). This observation suggests that the T931del allele did not significantly affect blastocyst survival. Further clarification or additional experiments might be necessary to understand the implications of this finding on early developmental stages.

      R6: This is only a hint as the numbers of blastocysts recovered were too small to perform statistics on Mendelian distribution. Thus, more experiments are needed to perform these statistical tests. These experiments are onerous because the low frequency of germline transmission is incompatible with maintaining this mutation by breeding heterozygous animals. Because of this, a new mouse line needs to be created by CRISPR-HDR targeting in the zygote in order to compute statistics on Mandelian ratios. Importantly, this question - does T931del affect blastocyst survival? - is peripheral, and the results of these experiments would not affect our conclusions in any way.

      C7: 4. Similarly, in Figure 2G, there is an apparent higher expression of TE expression in the T931A/Y embryos group than in the T931del/Y group, which combined with the higher frequency of blastocyst generated in this latest group it may indicate a deeper molecular consequence after the deletion of the T931. A comparison of the transcriptome between these two cell lines help to address this possibility. Also, the authors should compare the O-GlcNAc levels of WT, T931A, and T931del mutant blastocysts by immunostaining, similar to what was done in Figure S5F.

      R7: We agree that a direct comparison between the two mutations of the T931 residue would be interesting; however, this comment is very difficult to address experimentally for the reasons outlined below:

      Firstly, it is not possible to perform a statistical comparison of the transcriptome T931A/Y VS. T931del/Y with the data generated because the number of hemizygous T931A/Y (n=2) is too small. Hence, it cannot be ruled out that the seemingly milder retrotransposon reactivation in one of the T931A/Y embryos could have occurred by chance.

      Secondly, considering the low magnitude effect on gene expression changes upon O-GlcNAc genetic perturbation, to statistically assess the penetrance of the molecular phenotype and perform the differential expression analysis, numerous (>>3) hemizygous blastocysts of each genotype would be needed. Because females heterozygous for the T931 mutations transmit the mutant allele at very low frequency, these experiments require numerous de novo CRISPR injection sessions.

      Thirdly, for the immunostaining of O-GlcNAc to be semi-quantitative, a large number of hemizygous blastocysts for each genotype would be required (note that in Figure S5F, 29 morulae per condition were imaged), thus requiring numerous CRISPR injection experiments as discussed above. Moreover, O-GlcNAc changes could be subtler than what expected based on the strong reduction of OGT activity, since as a compensatory mechanism Ogt expression is upregulated in the Ogt__T931A/del blastocysts (Fig. S2D), making a quantification even more challenging despite a high number of stained embryos.

      In sum, these in vivo experiments are difficult and require sacrificing many animals (about 20 females per CRISPR injection experiment). Because the results would bring refinement to the study but would not change our conclusions, we suggest that the cost/benefit is too high.

      C8: 5. In Boulard et al. 2019 O-GlcNAcylation was shown to be sufficient to modulate expression of DNA methylation-dependent TEs. It would be interesting to know (or at least discuss) if the changes in TE expression observed in OGT-mutant embryos in this study involve changes in DNA methylation. Ideally, some DNA methylation measurement optimized for low input numbers of cells would be useful.

      R8: Thank you for making the link with our previous study. In the PNAS paper, we report that targeted removal of O-GlcNAc at proteins bound to specific TEs (e.g. IAPez) causes their full-blown reactivation without detectable changes in DNA methylation, thus suggesting a role of the O-GlcNAc modification for the silencing of methylated TEs downstream or independent of DNA methylation. We agree that it would be informative to quantify DNA methylation in the T931-mutant blastocysts to test if the in vitro result is the same in vivo, but this would require performing onerous microinjection sessions as explained above.

      C9: 6. The data related with the OGT-degron system in MEs seem disconnected with the rest of the manuscript. While the developmental models (blastocyst, etc) elegantly assess the contribution of O-GlcNAcylation to the control of cell survival and gene expression through the use of different OGT mutants, the degron system is a system of graded depletion that unfortunately was only possible to be used in MEFs (instead of embryos). Thus, the results obtained with the degron system in MEFs are difficult to intersect with the data from the use of OGT-mutants in embryos. Even though there are obvious interesting questions that one may want to know about this OGT degron MEF system, none of them would demonstrate a direct role for O-GlcNAcylation in cellular function, the major point addressed in the developmental system. Using the degron system in embryonic stem cells might have provided a more parallel comparison. The authors should discuss this point in more detail and either use ESC instead of MEFs or provide a stronger justification for the use of MEFs over ESC.

      R9: We thank the reviewer for their clear understanding of the system. The choice of primary MEF as an in vitro model was imposed by technical limitations we encountered during the study. We fully agree that ES cells is the model of choice for preimplantation embryos; thus we initially derived ES cells and obtained only one male clone bearing the AID degron system. Upon auxin addition to the culture media, OGT's level remained unchanged in ES cells. Thus, the ES cells model was not usable. To test the AID degron in a different cell type, we then derived MEFs and showed its effectiveness (Figures 4C and S4C-E), which also allowed to collect functional data on OGT's cellular function (Figures 4D-F). We took the comment on board and clarified the rationale of studying MEFs in the revised manuscript. We agree that it remains to be verified that the OGT-dependent pathways uncovered in MEFs are relevant in the preimplantation embryo. Despite this caveat, we feel the mouse model for endogenous OGT-degron, as well as the negative results in vivo and conclusions in MEFs should be shared with the community, which could take advantage of our results to refine the system.

      Minor:C10: 7. In Fig 2C the color and shape codes are confusing to understand - there are some colors/shapes that are not represented in the PCA plot. The same in Fig 3H, where in the PCA plot there are pink triangles that do not match with the code legends.

      R10: We apologize for the confusion with the legends of Figures 2C and 3H, that we have made unambiguous in the revised version (as well as Figures S2B,C and S3C).

      C11: 8. In the figure legends of Figures 2D, 2E, 2F, and 2H, the notation should be corrected from "OgtT931A/Y" to "OgtT931del/Y".

      R11: This has been corrected; many thanks for bringing it to our attention.

      Significance

      C12: To investigate the function of OGT at specific developmental stages, the authors perturbed OGT's function in vivo by creating a murine allelic series featuring four single amino acid substitutions that variably reduced OGT's catalytic activity. The goal was to identify the direct effect of O-GlcNAcylation, using a sophisticated collection of genetic mutants to evaluate in vivo the role of this modification at early stages of development. Overall, the severity of embryonic lethality correlated with the extent of catalytic impairment of OGT, demonstrating that the O-GlcNAc modification is essential for early development.

      R12: We thank the reviewer for their clear understanding of our work and their appreciation of the biological importance of the findings.

      Reviewer #3

      Evidence, reproducibility and clarity

      C13: This is a conceptually interesting paper that attempts to leverage the knowledge of OGT catalysis to begin to dissect OGT function. The evidence is presented I a straightforward fashion and is in general well documented. The breeding strategies are well informed and the paper draws heavily on previous work carried out in the mouse.

      R13: We greatly appreciate the overall supporting review. However, we fail to understand what they mean with "the paper draws heavily on previous work carried out in the mouse". This comment may stem from a misunderstanding because this work is not based on any previously published study. Specifically, neither the seven murine alleles presented and analyzed nor the single embryo-transcriptomic data sets on which our conclusions are based have been published elsewhere.

      To put this work into context, before our study there were two seminal studies published two decades ago that reported the essential role of Ogt for mouse development, but no molecular profiling was performed (10.1073/pnas.100471497, 10.1128/mcb.24.4.1680-1690.2004). The two Ogt loss-of-function alleles studied in these papers were deemed as not suitable for interrogating molecular phenotypes because they caused cell death that confounds molecular profiling and embryonic lethality at implantation, thus preventing study of the sexually-dimorphic role of Ogt placenta. To overcome this long-standing problem, we created new seven murine alleles, which allowed us to tease apart molecular phenotypes at key stages of mouse embryonic development, focusing on the blastocyst and the placenta.

      Significance

      C14: The paper describes tools which will help dissect the many potential roles of O-GlcNAc addition in early development. As it stands, this is a descriptive manuscript that will lead to hypothesis generation and testing and this should not be undervalued. The biological reagents produced and characterized will be of general interest to the field. Most of the findings presented represented a verification of existing ideas in the field but this is not meant as a criticism since part of the motivation for the approach was to generate a reproducible system for analyzing the biological phenomena.

      R14: We thank the reviewer for their appreciation of the importance of experimentally testing ideas shared in the field without direct evidence.

      However, we must respectfully disagree with the qualification of "descriptive manuscript". This qualification may stem from the particularly difficult challenge to accessing the molecular details on how the O-GlcNAc modification exerts the biological functions we report. We are fully cognizant of the limitations of the study that we discussed in the discussion section and in R20.2. However, we feel that the adjective "descriptive" is not a fair qualification because we provide numerous novel functional evidence. Specifically, we introduce two novel orthogonal in vivo perturbations for endogenous Ogt that allowed us to interrogate for the first time its function in the developing mouse embryo. These perturbations allow us to draw causative conclusions (not descriptive) on the essential role of the O-GlcNAc modification itself for preimplantation development, its sexually-dimorphic role in the placenta and its requirement in vivo for the stable repression of retrotransposons.

      C15: There are perhaps some bioinformatic shortcuts taken that may need to be corrected upon thorough review. These do not lessen the overall impact of the contribution.

      R15: All the code written for the bioinformatic analyses performed in this study is publicly available: https://github.com/boulardlab/Ogt_mouse_models_Formichetti2024. The reviewer needs to specify which bioinformatic analysis they suggest could be improved.

      Reviewer #4 (Evidence, reproducibility and clarity (Required)):

      Summary

      C16: O-GlcNAcylation is the fundamental post-translational modification of numerous nuclear and cytosolic proteins. OGT is the sole enzyme catalyzing O-GlcNAc addition onto the proteins. The essentiality of OGT for early development and cellular viability has been established by using OGT-KO mice and cell lines. However, it remains to be elucidated whether the catalytic activity of OGT is required for the early development, and if the catalytic activity of OGT is required what are the functions of OGT or O-GlcNAcylation in early development due to a lack of appropriate mouse models. To overcome the technical difficulty of manipulating the levels of O-GlcNAcylation in early embryos, Formichetti et al. created the series of four mouse models (OgtY851A, OgtT931A, OgtQ849N, and OgtH568A) with different OGT activity by introducing single amino acid substitution in the catalytic domain. By analyzing the inheritance of the hypomorphic OGT alleles and the lethality of mouse embryos, they discovered OGT activity is a critical factor for early development. Subsequently, RNA-seq analyses with two mouse models showing the maternal inheritance of the hypomorphic OGT alleles indicated that sever hypo-OGT activity altered transcription and silencing of retrotransposon in preimplantation development while mild reduction of OGT's activity affected placental development in a sexually dimorphic manner rather than preimplantation development. Furthermore, to study the function of OGT at specific developmental stages, they developed a mouse model bearing endogenously AID-tagged OGT for acute degradation of OGT. Although the degron system wasn't efficient in preimplantation embryos, they discovered quick transcriptional changes upon OGT deletion in MEFs. The quality of the manuscript is good because the question to be solved was appropriately set, the approach was well designed, and their findings were interesting, although their writing was sometimes hard to understand as I raised in my following comments. Nevertheless, there are several points to be fixed before being published.

      R16: We thank the reviewer for their clear understanding of our work and their appreciation of the biological importance of the findings. Your comprehensive review of the manuscript and the questions you raised were extremely helpful in improving the manuscript and fully addressing its limitations. Below, we respond to comments in full, have revised the manuscript to improve clarity and have included novel results.

      Major Comments

      C17: 1. Although the authors showed in vitro activity of each mutant of OGT used in this manuscript by referencing the previous literature, they never showed the levels of global O-GlcNAcylation (and OGT itself) in their established mouse embryos. Although it could be impossible to determine O-GlcNAc levels in OgtQ849N and OgtH568A embryos because of the lack of germline transmission and founder line, respectively, they could do that in OgtY851A and OgtT931A embryos. Given that Y851A and T931A mutants had similar VMAX/KM with different VMAX, it is possible that their activity is comparable or Y851A has even lower activity in vivo depending on the concentration of UDP-GlcNAc in embryos. Therefore, it is critical to assess whether in vivo OGT activity is correlated with that in vitro as expected to conclude that severity of sub-Mendelian inheritance is proportional to the reduction of activity of OGT in vivo. Moreover, since the authors developed the elegant system to deplete OGT, the activity of Q849N and H568A mutant OGT can be examined at least in cells by expressing them in MEFs with OGT-degron system. Thus, I propose determination of global O-GlcNAc levels compensated by OGT levels by western blotting in OgtY851A, and OgtT931A embryos or MEFs with the OGT degron system re-expressing the individual four mutant OGTs. If the protein amount is insufficient for western blotting in the embryos because of the sizes of the earlier stages of embryos, I believe the author could address this by utilizing immunofluorescence as shown in Figure S5.

      R17: We fully agree that this is an important point that requires revision. The only mutation for which the level of O-GlcNAc and OGT can be assessed by western blot in vivo is Y851A, the other mutations resulting in embryonic lethality before the blastocyst stage.

      We have included in the revised manuscript western blot analyses of protein expression for OGT, OGA and O-GlcNAc levels in the placenta of the OgtY851A mutants (new Figures 3C,D). The new data show that OGT is upregulated at the protein level in homozygous females, in good agreement with our transcriptomic analysis. Furthermore, O-GlcNAc levels were slightly reduced in homozygous and hemizygous placentae thus showing the impact of the point mutation on global O-GlcNAc levels in the placentae. Moreover, the analysis of OGA protein level unexpectedly revealed the enrichment of a previously uncharacterized OGA fast migrating isoform in hemizygous and homozygous placentae.

      We agree that it would be informative to compare O-GlcNAc levels in OgtT931A versus OgtY851A embryos. A comparison implies performing the experiment at the same developmental stage, which has to be the blastocyst stage or prior because T931A/Y embryos die around implantation. The blastocyst being made of approximately 140 cells, it would require to pool many single blastocysts to obtain the necessary protein input for western blot. We are not aware of another study performing western blot with pooled blastocysts. An additional great challenge for this experiment is the necessity to genotype and sex the blastocysts before pooling. Thus, the feasibility of this experiment is uncertain.

      As an alternative, the reviewer suggests measuring O-GlcNAc levels in the degron MEFs after introduction of OGT transgenes bearing the mutation studied. This experiment would not be conclusive because of residual O-GlcNAc after OGT degradation (Figure S4E). Furthermore, the O-GlcNAc proteome is dynamic during development (as shown in the developing brain by Liu et al. https://doi.org/10.1371/journal.pone.0043724), therefore the MEFs results would have limited value to explain our results in the early embryo.

      In sum, available technologies to quantify O-GlcNAc (e.g. western bot, mass spectrometry) are inadequate for low input samples as the early embryo. However, our series of hypomorphic alleles backed up with in vitro enzymology measurements brings indirect evidence to this question. Specifically, the qualitative correlation between the measured OGT activity in vitro and the developmental phenotype indicates that the resulting relative levels of O-GlcNAc are consistent with in vitro measurements.

      C18.1 : 2. I didn't understand why the authors couldn't find any founder lines of the OgtH568A mutant. Was that because mosaic mice with OgtH568A mutation are lethal?

      R18.1: To answer to this question, it is important to recall two key features of the biological system:

      1) The mutation H568A was reported to disrupt the glycosyltransferase activity completely (10.1038/nsmb.1443). Hence, OGT-H588A is catalytic dead.

      2) We performed the CRISPR-HDR targeting in the 1-cell embryo.

      Based on these premises, the absence of F0 with the OgtH568A mutation (0/31) suggests that introducing this mutation causes embryonic lethality in both males and females. This hypothesis is consistent with the previously reported lethality around implementation of Ogt-null alleles (10.1128/mcb.24.4.1680-1690.2004). It is possible that the sgRNA is very efficient and results in homozygous mutations in all female zygotes injected (as we have not obtained heterozygous females bearing these mutations). High efficiency of the targeted mutagenesis in the zygote results in mutants where all or the majority of cells bear the mutation (no or low mosaicism). The high number of microinjections performed (416 embryos over the 3 injection sessions) allows us to make these claims.

      C18.2 : Also, I believe there was no explanation why the OgtQ849N allele showed no maternal inheritance. Was that because Q849N possesses enough activity for sustaining mosaic embryos, but not oocytes? The authors should better explain these points in the manuscript text.

      R18.2: Thanks for this comment, we agree that this maternal effect phenotype demands further explanation.

      The phenotype observed suggests two possibilities: either that the oocyte cannot maturate or that the cleavage-stage embryo cannot develop with the resulting lower levels of O-GlcNAc. The cleavage-stage embryo does not transcribe a catalytically active OGT before the 8-cell stage and thus relies on the OGT protein inherited from the oocyte until this stage (https://doi.org/10.1101/2024.01.22.576677).

      Thank you for this comment, we added this interpretation of the result in the text:<br /> "The lack of maternal transmission of the Q849N allele from seemingly mosaic founder females is likely explained by the reliance of the cleavage stage embryo onto the oocyte payload of OGT and O-GlcNAc modified proteins. Specifically, Ogt's exons encoding for the catalytic domains are not detectable before the 8-cell stage, while OGT full-length protein is present and thus maternally inherited (Formichetti et al, 2024)."

      C19: 3. The authors serendipitously found a T931del-allele in the "WT" allele of the OgtT931A line, and suggested that T931del had milder activity loss, although the lethality of embryos was greatly mitigated. Nevertheless, transcriptome analyses in male blastocysts revealed that 120 genes' expression was changed in T931del/Y males. This raised the question about which mutant OGT has higher activity, Y851A or T931del. I think comparing the activity of Y851A and T931del mutants in MEFs with OGT-degron system is important to confirm the proportional relationship between activity and phenotypic severity.

      R19: We agree that it is a limitation that the effect of the T931del mutation on OGT activity has not been biochemically characterized. However, the important point here is that our assessment of phenotypic severity based on maternal inheritance of the mutant allele and embryonic lethality is based on the point mutations for which the catalytic activity has been determined, namely Y851A, T931A, Q849N and H568A, but not T931del.

      We studied the serendipitously discovered T931del mutation to obtain transcriptional insights in the blastocyst. Because the deleted residue T931 is key for the binding to the donor substrate, we can reasonably assume that this mutation affects the catalytic activity, albeit to an undetermined level.

      Hence, our conclusions regarding the requirement of O-GlcNAcylation for development are unaffected by the lack of biochemical knowledge on T931del.

      C20.1: 4. Regarding transcriptomes of T931del/Y, the authors found the upregulation of proteasomal activity and stress granules along with the downregulation of amino acid metabolism, mitochondrial respiration, and so on. To validate the results, the authors should perform qPCR on several up- or down-regulated genes.

      R20.1 : We agree that, in principle, qPCR validation is suitable. However, this validation experiment is particularly expensive in this case because of the requirement of numerous CRISPR zygote pronuclear injection sessions.

      The conclusions of the RNA-seq analysis are strongly supported by a high number of biological replicates (n=10). This high number of biological replicates was essential to obtain sufficient statistical power to quantify with a high level of confidence transcriptional changes of low magnitudes (below 2-fold change, see R5.1 and R5.2).

      Therefore, the qPCR validation experiment would require to repeat the CRISPR zygote pronuclear injection sessions with the same high number of animals. This represents a major investment in experimental work and the sacrificing of about 40 animals. Importantly, the RNA-seq results presented are authoritative because of a high number of biological replicates and high number of sequencing reads per sample. Thus, we argue that qPCR validation is not essential and thus the high cost of this experiment is difficult to justify.

      C20.2: In addition, according to Figure S2E, the authors pointed out that at least for genes upregulated in OgtT931A embryos, the changes were not explained by a developmentally delayed transcriptome, suggesting that upregulation of these genes was the cause of developmental delay. Therefore, I strongly encourage them to discuss in the manuscript text how up-regulated genes could contribute to developmental delay.

      R20.2: Throughout the manuscript, we have been cautious to avoid establishing causal relationships between the differentially expressed genes uncovered and the developmental phenotypes (e.g. delayed development). There are two main obstacles which we believe prevent us from establishing causality with the data available. Firstly, it is not possible to disentangle differentially expressed genes and developmental delay (in other words, we have no way to tell which is the cause and which is the consequence). Secondly, O-GlcNAc modifies over 5000 proteins and the developing embryo is a particularly dynamic system; thus we cannot know whether the differentially expressed promoters are direct targets of O-GlcNAc modified proteins (or alternatively secondary effect of another molecular alteration, for example of the proteome). We discuss this limitation of the study in the discussion section.

      C21: 5. Regarding the transcriptome in OgtY851A mice, Y851A/Y male mice had huge transcriptomic differences, while Y851A/Y851A female mice barely had any. Although it seems to agree with the number of Ogt alleles, I wonder whether other X-linked genes expressed higher in female placenta as shown in Figure 3C could attenuate the effects of decreased OGT activity. I don't think this possibility can be excluded, unless the authors further decrease OGT activity in Y851A/Y851A female placenta and obtain the similar results as for male placenta. Or if they compared the levels of global O-GlcNAcylation between Y851A/Y and Y851A/Y851A mouse placentas and discovered they had similar levels of O-GlcNAcylation, then the authors could conclude that the number of Ogt alleles was not the reason of sexual-dimorphism. The authors should determine the levels of O-GlcNAcylation in Y851A/Y and Y851A/Y851A mouse placentas and/or at least discuss the above possibilities in the manuscript text.

      R21: Thank you for the thoughtful feedback. We agree that the most likely explanation for the higher sensitivity of males placenta as compared to females to OGT reduced activity is the difference in Ogt copy number, especially because Ogt escapes X-chromosome inactivation in the placenta (new Figure S3A).

      Western blot quantification of global O-GlcNAc levels was now performed (new Figures 3C,D). We measured similar level of O-GlcNAc in Y851A/Y and Y851A/Y851A placentas (lowered than WT males in both cases), but we cannot exclude that the WB does not have the dynamic range required to detect a subtle difference. In fact, female homozygous were expected to have an intermediate level between WT males and hemizygous males, and the difference between the two male genotypes (also considering sample-to-sample variability) is already small when quantified from the blot (new Figure 3D). It is possible that a X-linked modifier attenuates the impact of hypo-O_GlcNAcylation in female mutant placenta in the case of identical O-GlcNAc levels in homozygous females and hemizygous males. Thank you for the idea that we included in the revised manuscript:

      "Of note, the lower sensitivity of the homozygous females' transcriptome to Ogt disruption (Fig. 3F,I and S3B) seems difficult to reconcile with their lower O-GlcNAc level comparable (lower) O-GlcNAc level to the hemizygous males (Fig. 3C). It is possible that the western blot technique is not sensitive enough to detect subtle differences in O-GlcNAcylation. An alternative hypothesis, if O-GlcNAc levels were truly identical between Y851A/Y and Y851A/Y851A, could be the existence of a modifier in female that could be a XCI-escapee."

      C22: 6. In terms of the transcriptome in OgtY851A mice, similar to comment 4, the authors should confirm their transcriptomics data shown as Figure 3D by qPCR. In addition, the authors should describe the potential mechanisms by which the differentiation of precursor cells of LaTPs and JZPs were disrupted. Were master regulators of the differentiation known to be O-GlcNAcylated and loss of O-GlcNAcylation perturbed the function?

      R22: As for the whole embryo discussed in R20.2, we also interpret cautiously the gene expression phenotype observed in the placenta. Specifically, we state in the manuscript that it could either be caused by an impact of lower O-GlcNAcylation on placental differentiation or by a general delay in placentation or in the development of the embryo as a whole. The hypothesis of a general delay (of the whole embryo and/or of placental formation specifically) is supported by the downregulation of essentially all markers of more differentiated cell types and the upregulation of the precursor marker. We favor this hypothesis because it is consistent with what observed with the T931 mutants and also with the enzymatic removal of O-GlcNAc in the zygote (Formichetti et al., 2024 BioRxiv). Because of the thousands of O-GlcNAcylated proteins present in the cell, it is impossible to know which is the responsible molecular mechanism, which could even start at much earlier stages.

      Minor Comments

      C23: 1. Regarding DFP461-463 mutant, I couldn't understand the point of this figure because the results had no difference, and the meaning of the mutation was quite different from the others. Thus, the figure was awkward and a little confusing to me. If the authors still want to include the figures, I would suggest that they should reorganize the position of the figure (maybe after figure 3 is better to show you had tried to investigate the effects of nuclear localization of OGT on the changes of transcriptomes) and add some results. Since WT OGT seems to be localized mainly in the cytosol at steady state (Figure S1B and S1C), the effect of mutation on its nuclear localization should not be obvious. Therefore, it is difficult to conclude the mutation had no effect on the nuclear localization unless the ratio of nuclear and cytosol localization is quantified. Also, I wonder whether the O-GlcNAc levels of nuclear and cytosolic proteins in the mutant cells were comparable to those in WT cells. If this is the case, the results would also support the authors' conclusion.

      R23: We took the comments on board and made it clearer that the rationale for the DFP461-463 mutant was an attempt to separate OGT's nuclear and cytosolic functions. We fully agree that these results are peripheral, and thus we presented these results in Supplementary Figure 1 (not in the main figure).

      The biochemical evidence presented in Fig S1C shows that the genetic substitution of DFP to AAA on endogenous OGT has no detectable impact on its nuclear localization in primary MEFs. This result is far more authoritative than the evidence provided by Seo et al. 2016 (doi: 10.1038/srep34614), which is based on the overexpression of OGT transgenes in HeLa cells. Importantly, Seo et al. 2016 did not assess the impact of their mutations on endogenous OGT.

      We believe that the negative results we obtained with the DFP461-463 mouse model shall be extremely valuable for the field. Firstly, science can move forward only if both negative and positive results are shared. In this specific case, we found that mutation of endogenous OGT in MEFs yielded to a different result than previously reported overexpression of the same mutant construct in HeLa cells. Secondly, we want to make the Ogt-NLS- mouse model available for further investigations.

      C24: 2. Since OGT or O-GlcNAcylation regulates chromatin status, the authors analyzed the gene expression profiles of retrotransposons in T931del/Y or T931A/Y mice. Is it possible to investigate if the release of gene silencing is also seen in non-retrotransposon genes? I assumed retrotransposons might be a well-established system to analyze gene silencing status, however, if the authors could find similar effects on genes other than retrotransposons, that would be highly valuable.

      R24: This is an interesting idea. This notion refers to the activation of promoters that are normally epigenetically repressed (e.g. silent despite the presence of all trans-active factors required for their expression). Epigenetically repressed promoters include retrotransposons, imprinted genes and germline specific genes that are normally expressed in germ cells and maintained in a repressed state in somatic cells (10.1038/s41580-019-0159-6). Testing of mono-allelic expression of imprinted genes required F1-hybrid. Thus, we assessed whether well-studied germline specific genes could be realized from silencing in T931del/Y or T931A/Y blastocyst and found no evidence for it (see dot plot below). The unbiased transcriptomic analysis presented in the manuscript shows that the product of upregulated genes are enriched in mRNA processing (Figure 2E), but these genes are not normally epigenetically repressed. Thus, contrary to retrotransposons, the role of O-GlcNAc at cellular gene promoters appears not to be linked to epigenetic silencing. This could be explained by the many different protein substrates for O-GlcNAc.

      C25: 3. OgtY851A mice with milder OGT activity loss didn't exhibit impaired preimplantation development, but did display postimplantation development such as placental development, suggesting that O-GlcNAcylation of proteins required for preimplantation and postimplantation development relies on different degrees of OGT activity. I wonder whether global O-GlcNAc levels in embryos in preimplantation and postimplantation developmental stages are different or not. This might include both the pattern of blotting and intensities. The results would give the authors an explanation why the dependency on OGT activity was different in two developmental stages. Can the authors provide data? If not, then the authors should at least describe hypotheses in the manuscript to address these questions.

      R25: We recently reported that the subcellular patterns of O-GlcNAc are highly dynamic during preimplantation development (Formichetti et al. 2024, BioRxiv). The most striking O-GlcNAc remodeling we observed is the enrichment of nuclear O-GlcNAc as compared to cytoplasmic O-GlcNAc that is concomitant to embryonic genome activation (Formichetti et al. 2024, BioRxiv). We quantified the ratio of the nuclear/cytoplasmic signal by immunofluorescence, but absolute quantification is not possible with this method. Due to the limited number of cells of the preimplantation embryo, this analysis cannot be performed by western blot. Hence, there is no appropriate method to quantitatively compare O-GlcNAc levels between preimplantation and postimplantation embryos.

      C26: 4. The authors' AID-degron system elegantly worked in MEFs but was inefficient in preimplantation embryos. I wonder if this was because of the high expression of the shorter isoform of OGT detected as OGTp78 in the author's western blot. Is it possible to examine this possibility in the embryos? Either way, the authors should describe a potential explanation for why the efficiency in the embryos was low. In addition, the authors should describe why they inserted the AID tag only into the longest OGT isoform.

      R26: This is a good point. The smallest isoform OGTp78 bears the catalytic domain and thus can partially compensate for the degradation of OGTp110. Note that the level of OGTp78 is low and does not increase upon OGTp110 degradation; thus a compensation can only be partial (Figures S4A and S4D). Alternative hypotheses for the ineffectiveness of the degron system in ex vivo grown embryos include: i) the expression level of OsTIR that may be too low in the early embryo (Rosa26 promoter not being activated at EGA), ii) a possible steric hindrance of the N-ter AID tag in these cells, iii) the lower concentration of Auxin imposed by toxicity on the embryo is likely suboptimal. Testing these possibilities is very difficult in preimplantation embryos.

      It is unclear how the OGTp78 isoform is produced; it was hypothesized to originate from an alternative transcription start site (https://doi.org/10.1007/s00335-001-2108-9). We initially attempted to target both isoforms by inserting the AID tag at the C-terminus, but we were unsuccessful in producing this mouse model. It is possible that the C-terminus that is near the catalytic site cannot tolerate the AID knock-in.

      C27: 5. In Figure S1C, is the band detected right below OGTp78 in nuclei fractions non-specific or do both bands correspond to OGTp78 ?

      R27: To answer this question, a knockout control would be needed. OGTp78 being not targeted by our AID-degron, we cannot test the specificity of these bands using our perturbation tool kit.

      C28: 6. Figure 1D top row third column: hemizgous -> hemizygous

      R28: Many thanks; the embarrassing typo has been corrected.

      C29: 7. Figure 1D second row third column: hemyzygous -> hemizygous

      R29: Thanks for bringing this other typo to our attention, it is now corrected.

      Reviewer #4 (Significance (Required)):

      General assessment: strengths and limitations

      C30: Strength: This manuscript elegantly revealed the requirement of OGT in mammalian development by taking advantage knock-in mouse models with different OGT activity. In addition, the manuscript provided the interesting and important transcriptomics data in both pre- and post-implantation embryos of OGT mutant mice. These data sets could explain detailed mechanisms how OGT or O-GlcNAcylation regulates mammalian development in the future. Furthermore, development of AID-tagged OGT system would be a useful tool for other researchers studying OGT function.

      Limitation: Although they found interesting changes in terms transcriptomes in developing mice with different OGT activity, they lack the data showing how these changes caused the observed phenotypes. In other words, there are less mechanistic insights behind the developmental problems seen in mice with different OGT activity.

      In addition, although I agree the question about whether OGT activity itself is crucial for the early development of mammals has not been completely solved for a long time, I assume people thought OGT activity is actually important for the mammalian development thorough the observation of OGT-linked congenital disorders of glycosylation.

      Therefore, I would say the novelty of the manuscript is a little less impactful. Furthermore, although AID-tagged OGT system revealed fundamental questions regarding the transcriptional changes upon acute depletion of OGT in cellular levels, the system was inefficient in mouse embryos. So, they showed nothing about developmental-stage specific requirements of OGT.

      Advance: The manuscript can fill a current gap regarding requirement of OGT in mammalian development. Also, the manuscript developed a series of mutant mice with different OGT activity and an AID-tagged OGT mouse line. These mice provide technical advances.

      Audience: The manuscript will be interested in researchers in specific fields such as glycobiology, developmental biology, and clinical fields.

      Describe your expertise: Biochemistry, Glycobiology, Cell biology

      R30: We are thankful for the constructive and supportive review.

      We fully agree with the limitations of the study and discussed them in the manuscript. Our in vivo approach revealed the most phenotypically relevant transcriptional phenotypes resulting from OGT catalytic impairment during embryonic development. We make the mouse models created for this study available to the community to facilitate follow-up studies aiming at exploring the underlying molecular details.

      As pointed out in the comments, the requirement of OGT glycosyltransferase activity for mammalian development was widely assumed by the field, but this belief was without direct experimental evidence. This study provides the first in vivo evidence for this important conclusion.

      Conclusion: The reviewers' comments were tremendously useful to improving the clarity of the manuscript and adding important new in vivo evidence. We note that none of the reviewers provided any reason to doubt our important conclusions:

      • The demonstration that the enzymatic activity of Ogt, thus the O-GlcNAc modification itself, is essential for preimplantation development.
      • The finding that a mild reduction of OGT's activity is sufficient to perturb the silencing of multiple families of retrotransposons in the growing embryo.
      • The indication, from transcriptomes of hypo-O-GlcNAcylated embryos, of a developmental retardation upon a mild O-GlcNAc perturbation.

      • The discovery that OGT's rapid depletion in vitro downregulates basal cellular function, including translation. This result provides mechanistic support to the embryonic growth delay resulting from decreasing O-GlcNAc in vivo.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer 1:

      Thank you for your review and pointing out multiple things to be discussed and clarified! Below, we go through the various limitations you pointed out and refer to the places where we have tried to address them.

      (1) It's important to keep in mind that this work involves simplified models of the motor system, and often the terminology for 'motor cortex' and 'models of motor cortex' are used interchangeably, which may mislead some readers. Similarly, the introduction fails in many cases to state what model system is being discussed (e.g. line 14, line 29, line 31), even though these span humans, monkeys, mice, and simulations, which all differ in crucial ways that cannot always be lumped together.

      That is a good point. We have clarified this in the text (Introduction and Discussion), to highlight the fact that our model isn’t necessarily meant to just capture M1. We have also updated the introduction to make it more clear which species the experiments which motivate our investigation were performed in.

      (2) At multiple points in the manuscript thalamic inputs during movement (in mice) is used as a motivation for examining the role of preparation. However, there are other more salient motivations, such as delayed sensory feedback from the limb and vision arriving in the motor cortex, as well as ongoing control signals from other areas such as the premotor cortex.

      Yes – the motivation for thalamic inputs came from the fact that those have specifically been shown to be necessary for accurate movement generation in mice. However, it is true that the inputs in our model are meant to capture any signals external to the dynamical system modeled, and as such are likely to represent a mixture of sensory signals, and feedback from other areas. We have clarified this in the Discussion, and have added this additional motivation in the Introduction.

      (3) Describing the main task in this work as a delayed reaching task is not justified without caveats (by the authors' own admission: line 687), since each network is optimized with a fixed delay period length. Although this is mentioned to the reader, it's not clear enough that the dynamics observed during the delay period will not resemble those in the motor cortex for typical delayed reaching tasks.

      Yes, we completely agree that the terminology might be confusing. While the task we are modeling is a delayed reaching task, it does differ from the usual setting since the network has knowledge of the delay period, and that is indeed a caveat of the model. We have added a brief paragraph just after the description of the optimal control objective to highlight this limitation.

      We have also performed additional simulations using two different variants of a model-predictive control approach that allow us to relax the assumption that the go-cue time is known in advance. We show that these modifications of the optimal controller yield results that remain consistent with our main conclusions, and can in fact in some settings lead to preparatory activity plateaus during the preparation epoch as often found in monkey M1 (e.g in Elsayed et al. 2016). We have modified the Discussion to explain these results and their limitations, which are summarized in a new Supplementary Figure (S9).

      (4) A number of simplifications in the model may have crucial consequences for interpretation.

      a) Even following the toy examples in Figure 4, all the models in Figure 5 are linear, which may limit the generalisability of the findings.

      While we agree that linear models may be too simplistic, much prior analyses of M1 data suggest that it is often good enough to capture key aspects of M1 dynamics; for example, the generative model underlying jPCA is linear, and Sussillo et al. (2015) showed that the internal activity of nonlinear RNN models trained to reproduce EMG data aligned best with M1 activity when heavily regularized; in this regime, the RNN dynamics were close to linear. Nevertheless, this linearity assumption is indeed convenient from a modeling viewpoint: the optimal control problem is more easily solved for linear network dynamics and the optimal trajectories are more consistent across networks. Indeed, we had originally attempted to perform the analyses of Figure 5 in the nonlinear setting, but found that while the results were overall similar to what we report in the linear regime, iLQR was occasionally trapped into local minimal, resulting in more variable results especially for inhibition-stabilized network in the strongly connected end of the spectrum. Finally, Figure 5 is primarily meant to explore to what extent motor preparation can be predicted from basic linear control-theoretic properties of the Jacobian of the dynamics; in this regard, it made sense to work with linear RNNs (for which the Jacobian is constant).

      b) Crucially, there is no delayed sensory feedback in the model from the plant. Although this simplification is in some ways a strength, this decision allows networks to avoid having to deal with delayed feedback, which is a known component of closed-loop motor control and of motor cortex inputs and will have a large impact on the control policy.

      This comment resonates well with Reviewer 3's remark regarding the autonomous nature (or not) of M1 during movement. Rather than thinking of our RNN models as anatomically confined models of M1 alone, we think of them as models of the dynamics which M1 implements possibly as part of a broader network involving “inter-area loops and (at some latency) sensory feedback”, and whose state appears to be near-fully decodable from M1 activity alone. We have added a paragraph of Discussion on this important point.

      (5) A key feature determining the usefulness of preparation is the direction of the readout dimension. However, all readouts had a similar structure (random Gaussian initialization). Therefore, it would be useful to have more discussion regarding how the structure of the output connectivity would affect preparation, since the motor cortex certainly does not follow this output scheme.

      We agree with this limitation of our model — indeed one key message of Figure 4 is that the degree of reliance on preparatory inputs depends strongly on how the dynamics align with the readout. However, this strong dependence is somewhat specific to low-dimensional models; in higher-dimensional models (most of our paper), one expects that any random readout matrix C will pick out activity dimensions in the RNN that are sufficiently aligned with the most controllable directions of the dynamics to encourage preparation.

      We did consider optimizing C away (which required differentiating through the iLQR optimizer, which is possible but very costly), but the question inevitably arises what exactly should C be optimized for, and under what constraints (e.g fixed norm or not). One possibility is to optimize C with respect to the same control objective that the control inputs are optimized for, and constrain its norm (otherwise, inputs to the M1 model, and its internal activity, could become arbitrarily small as C can grow to compensate). We performed this experiment (new Supplementary Figure S7) and obtained a similar preparation index; there was one notable difference, namely that the optimized readout modes led to greater observability compared to a random readout; thus, the same amount of “muscle energy” required for a given movement could now be produced by a smaller initial condition. In turn, this led to smaller control inputs, consistent with a lower control cost overall.

      Whilst we could have systematically optimized C away, we reasoned that (i) it is computationally expensive, and (ii) the way M1 affects downstream effectors is presumably “optimized” for much richer motor tasks than simple 2D reaching, such that optimizing C for a fixed set of simple reaches could lead to misleading conclusions. We therefore decided to stick with random readouts.

      Additional comments:

      (1) The choice of cost function seems very important. Is it? For example, penalising the square of u(t) may produce very different results than penalising the absolute value.

      Yes, the choice of cost function does affect the results, at least qualitatively. The absolute value of the inputs is a challenging cost to use, as iLQR relies on a local quadratic approximation of the cost function. However, we have included additional experiments in which we penalized the squared derivative of the inputs (Supplementary Figure S8; see also our response to Reviewer 3's suggestion on this topic), and we do see differences in the qualitative behavior of the model (though the main takeaway, i.e. the reliance on preparation, continues to hold). This is now referred to and discussed in the Discussion section.

      (2) In future work it would be useful to consider the role of spinal networks, which are known to contribute to preparation in some cases (e.g. Prut and Fetz, 1999).

      (3) The control signal magnitude is penalised, but not the output torque magnitude, which highlights the fact that control in the model is quite different from muscle control, where co-contraction would be a possibility and therefore a penalty of muscle activation would be necessary. Future work should consider the role of these differences in control policy.

      Thank you for pointing us to this reference! Regarding both of these concerns, we agree that the model could be greatly improved and made more realistic in future work (another avenue for this would be to consider a more realistic biophysical model, e.g. using the MotorNet library). We hope that the current Discussion, which highlights the various limitations of our modeling choices, makes it clear that a lot of these choices could easily be modified depending on the specific assumptions/investigation being performed.

      Reviewer 2:

      Thank you for your positive review! We very much agree with the limitations you pointed out, some of which overlapped with the comments of the other reviewers. We have done our best to address them through additional discussion and new supplementary figures. We briefly highlight below where those changes can be found.

      (1) Though the optimal control theory framework is ideal to determine inputs that minimize output error while regularizing the input norm, it however cannot easily account for some other varied types of objectives especially those that may lead to a complex optimization landscape. For instance, the reusability of parts of the circuit, sparse use of additional neurons when learning many movements, and ease of planning (especially under uncertainty about when to start the movement), may be alternative or additional reasons that could help explain the preparatory activity observed in the brain. It is interesting to note that inputs that optimize the objective chosen by the authors arguably lead to a trade-off in terms of other desirable objectives. Specifically, the inputs the authors derive are time-dependent, so a recurrent network would be needed to produce them and it may not be easy to interpolate between them to drive new movement variants. In addition, these inputs depend on the desired time of output and therefore make it difficult to plan, e.g. in circumstances when timing should be decided depending on sensory signals. Finally, these inputs are specific to the full movement chain that will unfold, so they do not permit reuse of the inputs e.g. in movement sequences of different orders.

      Yes, that is a good point! We have incorporated further Discussion related to this point. We have additionally included a new example in which we regularize the temporal complexity of the inputs (see also our response to Reviewer 3's suggestion on this topic), which leads to more slowly varying inputs, and may indeed represent a more realistic constraint and lead to simpler inputs that can more easily be interpolated between. We also agree that uncertainty about the upcoming go cue may play an important role in the strategy adopted by the animals. While we have not performed an extensive investigation of the topic, we have included a Supplementary Figure (S9) in which we used Model Predictive Control to investigate the effect of planning under uncertainty about the go cue arrival time. We hope that this will give the reader a better sense of what sort of model extensions are possible within our framework.

      (2) Relatedly, if the motor circuits were to balance different types of objectives, the activity and inputs occurring before each movement may be broken down into different categories that may each specialize into one objective. For instance, previous work (Kaufman et al. eNeuron 2016, Iganaki et al., Cell 2022, Zimnik and Churchland, Nature Neuroscience 2021) has suggested that inputs occurring before the movement could be broken down into preparatory inputs 'stricto sensu' - relating to the planned characteristics of the movement - and a trigger signal, relating to the transition from planning to execution - irrespective of whether the movement is internally timed or triggered by an external event. The current work does not address which type(s) of early input may be labeled as 'preparatory' or may be thought of as a part of 'planning' computations.

      Yes, our model does indeed treat inputs in a very general way, and does not distinguish between the different types of processes they may be composed of. This is partly because we do not explicitly model where the inputs come from, such that our inputs likely englobe multiple processes. We have added discussion related to this point.

      (3) While the authors rightly point out some similarities between the inputs that they derive and observed preparatory activity in the brain, notably during motor sequences, there are also some differences. For instance, while both the derived inputs and the data show two peaks during sequences, the data reproduced from Zimnik and Churchland show preparatory inputs that have a very asymmetric shape that really plummets before the start of the next movement, whereas the derived inputs have larger amplitude during the movement period - especially for the second movement of the sequence. In addition, the data show trigger-like signals before each of the two reaches. Finally, while the data show a very high correlation between the pattern of preparatory activity of the second reach in the double reach and compound reach conditions, the derived inputs appear to be more different between the two conditions. Note that the data would be consistent with separate planning of the two reaches even in the compound reach condition, as well as the re-use of the preparatory input between the compound and double reach conditions. Therefore, different motor sequence datasets - notably, those that would show even more coarticulation between submovements - may be more promising to find a tight match between the data and the author's inputs. Further analyses in these datasets could help determine whether the coarticulation could be due to simple filtering by the circuits and muscles downstream of M1, planning of movements with adjusted curvature to mitigate the work performed by the muscles while permitting some amount of re-use across different sequences, or - as suggested by the authors - inputs fully tailored to one specific movement sequence that maximize accuracy and minimize the M1 input magnitude.

      Regarding the exact shape of the occupancy plots, it is important to note that some of the more qualitative aspects (e.g the relative height of the two peaks) will change if we change the parameters of the cost function. Right now, we have chosen the parameters to ensure that both reaches would be performed at roughly the same speed (as a way to very loosely constrain the parameters based on the observed behavior). However, small changes to the hyperparameters can lead to changes in the model output (e.g one of the two consecutive reaches being performed using greater acceleration than the other), and since our biophysical model is fairly simple, changes in the behavior are directly reflected in the network activity. Essentially, what this means is that while the double occupancy is a consistent feature of the model, the exact shape of the peaks is more sensitive to hyperparameters, and we do not wish to draw any strong conclusions from them, given the simplicity of the biophysical model. However, we do agree that our model exhibits some differences with the data. As discussed above, we have included additional discussion regarding the potential existence of separate inputs for planning vs triggering the movement in the context of single reaches.

      Overall, we are excited about the suggestions made by the Reviewer here about using our approach to analyze other motor sequence datasets, but we think that in order to do this properly, one would need to adopt a more realistic musculo-skeletal model (such as one provided by MotorNet).

      (4) Though iLQR is a powerful optimization method to find inputs optimizing the author's cost function, it also has some limitations. First, given that it relies on a linearization of the dynamics at each timestep, it has a limited ability to leverage potential advantages of nonlinearities in the dynamics. Second, the iLQR algorithm is not a biologically plausible learning rule and therefore it might be difficult for the brain to learn to produce the inputs that it finds. It remains unclear whether using alternative algorithms with different limitations - for instance, using variants of BPTT to train a separate RNN to produce the inputs in question - could impact some of the results.

      We agree that our choice of iLQR has limitations: while it offers the advantage of convergence guarantees, it does indeed restrict the choice of cost function and dynamics that we can use. We have now included extensive discussion of how the modeling choices affect our results.

      We do not view the lack of biological plausibility of iLQR as an issue, as the results are agnostic to the algorithm used for optimization. However, we agree that any structure imposed on the inputs (e.g by enforcing them to be the output of a self-contained dynamical system) would likely alter the results. A potentially interesting extension of our model would be to do just what the reviewer suggested, and try to learn a network that can generate the optimal inputs. However, this is outside the scope of our investigation, as it would then lead to new questions (e.g what brain region would that other RNN represent?).

      (5)  Under the objective considered by the authors, the amount of input occurring before the movement might be impacted by the presence of online sensory signals for closed-loop control. It is therefore an open question whether the objective and network characteristics suggested by the authors could also explain the presence of preparatory activity before e.g. grasping movements that are thought to be more sensory-driven (Meirhaeghe et al., Cell Reports 2023).

      It is true that we aren’t currently modeling sensory signals explicitly. However, some of the optimal inputs we infer may be capturing upstream information which could englobe some sensory information. This is currently unclear, and would likely depend on how exactly the model is specified. We have added new discussion to emphasize that our dynamics should not be understood as just representing M1, but more general circuits whose state can be decoded from M1.

      Reviewer #2 (Recommendations For The Authors):

      Additionally, thank you for pointing out various typos in the manuscript, we have fixed those!

      Reviewer 3:

      Thank you very much for your review, which makes a lot of very insightful points, and raises several interesting questions. In summary, we very much agree with the limitations you pointed out. In particular, the choice of input cost is something we had previously discussed, but we had found it challenging to decide on what a reasonable cost for “complexity” could be. Following your comment, we have however added a first attempt at penalizing “temporal complexity”, which shows promising behavior. We have only included those additional analyses as supplementary figures, and we have included new discussion, which hopefully highlights what we meant by the different model components, and how the model behavior may change as we vary some of our choices. We hope this can be informative for future models that may use a similar approach. Below, we highlight the changes that we have made to address your comments.

      The main limitation of the study is that it focuses exclusively on one specific constraint - magnitude - that could limit motor-cortex inputs. This isn't unreasonable, but other constraints are at least as likely, if less mathematically tractable. The basic results of this study will probably be robust with regard such issues - generally speaking, any constraint on what can be delivered during execution will favor the strategy of preparing - but this robustness cuts both ways. It isn't clear that the constraint used in the present study - minimizing upstream energy costs - is the one that really matters. Upstream areas are likely to be limited in a variety of ways, including the complexity of inputs they can deliver. Indeed, one generally assumes that there are things that motor cortex can do that upstream areas can't do, which is where the real limitations should come from. Yet in the interest of a tractable cost function, the authors have built a system where motor cortex actually doesn't do anything that couldn't be done equally well by its inputs. The system might actually be better off if motor cortex were removed. About the only thing that motor cortex appears to contribute is some amplification, which is 'good' from the standpoint of the cost function (inputs can be smaller) but hardly satisfying from a scientific standpoint.

      The use of a term that punishes the squared magnitude of control signals has a long history, both because it creates mathematical tractability and because it (somewhat) maps onto the idea that one should minimize the energy expended by muscles and the possibility of damaging them with large inputs. One could make a case that those things apply to neural activity as well, and while that isn't unreasonable, it is far from clear whether this is actually true (and if it were, why punish the square if you are concerned about ATP expenditure?). Even if neural activity magnitude an important cost, any costs should pertain not just to inputs but to motor cortex activity itself. I don't think the authors really wish to propose that squared input magnitude is the key thing to be regularized. Instead, this is simply an easily imposed constraint that is tractable and acts as a stand-in for other forms of regularization / other types of constraints. Put differently, if one could write down the 'true' cost function, it might contain a term related to squared magnitude, but other regularizing terms would by very likely to dominate. Using only squared magnitude is a reasonable way to get started, but there are also ways in which it appears to be limiting the results (see below).

      I would suggest that the study explore this topic a bit. Is it possible to use other forms of regularization? One appealing option is to constrain the complexity of inputs; a long-standing idea is that the role of motor cortex is to take relatively simple inputs and convert them to complex time-evolving inputs suitable for driving outputs. I realize that exploring this idea is not necessarily trivial. The right cost-function term is not clear (should it relate to low-dimensionality across conditions, or to smoothness across time?) and even if it were, it might not produce a convex cost function. Yet while exploring this possibility might be difficult, I think it is important for two reasons.

      First, this study is an elegant exploration of how preparation emerges due to constraints on inputs, but at present that exploration focuses exclusively on one constraint. Second, at present there are a variety of aspects of the model responses that appear somewhat unrealistic. I suspect most of these flow from the fact that while the magnitude of inputs is constrained, their complexity is not (they can control every motor cortex neuron at both low and high frequencies). Because inputs are not complexity-constrained, preparatory activity appears overly complex and never 'settles' into the plateaus that one often sees in data. To be fair, even in data these plateaus are often imperfect, but they are still a very noticeable feature in the response of many neurons. Furthermore, the top PCs usually contain a nice plateau. Yet we never get to see this in the present study. In part this is because the authors never simulate the situation of an unpredictable delay (more on this below) but it also seems to be because preparatory inputs are themselves strongly time-varying. More realistic forms of regularization would likely remedy this.

      That is a very good point, and it mirrors several concerns that we had in the past. While we did focus on the input norm for the sake of simplicity, and because it represents a very natural way to regularize our control solutions, we agree that a “complexity cost” may be better suited to models of brain circuits. We have addressed this in a supplementary investigation. We chose to focus on a cost that penalizes the temporal complexity of the inputs, as ||u(t+1) - u(t)||^2. Note that this required augmenting the state of the model, making the computations quite a bit slower; while it is doable if we only penalize the first temporal derivative, it would not scale well to higher orders.

      Interestingly, we did find that the activity in that setting was somewhat more realistic (see new Supplementary Figure S8), with more sustained inputs and plateauing activity. While we have kept the original model for most of the investigations, the somewhat more realistic nature of the results under that setting suggests that further exploration of penalties of that sort could represent a promising avenue to improve the model.

      We also found the idea of a cost that would ensure low-dimensionality of the inputs across conditions very interesting. However, it is challenging to investigate with iLQR as we perform the optimization separately for each condition; nevertheless, it could be investigated using a different optimizer.

      At present, it is also not clear whether preparation always occurs even with no delay. Given only magnitude-based regularization, it wouldn't necessarily have to be. The authors should perform a subspace-based analysis like that in Figure 6, but for different delay durations. I think it is critical to explore whether the model, like monkeys, uses preparation even for zero-delay trials. At present it might or might not. If not, it may be because of the lack of more realistic constraints on inputs. One might then either need to include more realistic constraints to induce zero-delay preparation, or propose that the brain basically never uses a zero delay (it always delays the internal go cue after the preparatory inputs) and that this is a mechanism separate from that being modeled.

      I agree with the authors that the present version of the model, where optimization knows the exact time of movement onset, produces a reasonably realistic timecourse of preparation when compared to data from self-paced movements. At the same time, most readers will want to see that the model can produce realistic looking preparatory activity when presented with an unpredictable delay. I realize this may be an optimization nightmare, but there are probably ways to trick the model into optimizing to move soon, but then forcing it to wait (which is actually what monkeys are probably doing). Doing so would allow the model to produce preparation under the circumstances where most studies have examined it. In some ways this is just window-dressing (showing people something in a format they are used to and can digest) but it is actually more than that, because it would show that the model can produce a reasonable plateau of sustained preparation. At present it isn't clear it can do this, for the reasons noted above. If it can't, regularizing complexity might help (and even if this can't be shown, it could be discussed).

      In summary, I found this to be a very strong study overall, with a conceptually timely message that was well-explained and nicely documented by thorough simulations. I think it is critical to perform the test, noted above, of examining preparatory subspace activity across a range of delay durations (including zero) to see whether preparation endures as it does empirically. I think the issue of a more realistic cost function is also important, both in terms of the conceptual message and in terms of inducing the model to produce more realistic activity. Conceptually it matters because I don't think the central message should be 'preparation reduces upstream ATP usage by allowing motor cortex to be an amplifier'. I think the central message the authors wish to convey is that constraints on inputs make preparation a good strategy. Many of those constraints likely relate to the fact that upstream areas can't do things that motor cortex can do (else you wouldn't need a motor cortex) and it would be good if regularization reflected that assumption. Furthermore, additional forms of regularization would likely improve the realism of model responses, in ways that matter both aesthetically and conceptually. Yet while I think this is an important issue, it is also a deep and tricky one, and I think the authors need considerable leeway in how they address it. Many of the cost-function terms one might want to use may be intractable. The authors may have to do what makes sense given technical limitations. If some things can't be done technically, they may need to be addressed in words or via some other sort of non-optimization-based simulation.

      Specific comments

      As noted above, it would be good to show that preparatory subspace activity occurs similarly across delay durations. It actually might not, at present. For a zero ms delay, the simple magnitude-based regularization may be insufficient to induce preparation. If so, then the authors would either have to argue that a zero delay is actually never used internally (which is a reasonable argument) or show that other forms of regularization can induce zero-delay preparation.

      Yes, that is a very interesting analysis to perform, which we had not considered before! When investigating this, we found that the zero-delay strategy does not rely on preparation in the same way as is seen in the monkeys. This seems to be a reflection of the fact that our “Go cue” corresponds to an “internal” go cue which would likely come after the true, “external go cue” – such that we would indeed never actually be in the zero delay setting. This is not something we had addressed (or really considered) before, although we had tried to ensure we referred to “delta prep” as the duration of the preparatory period but not necessarily the delay period. We have now included more discussion on this topic, as well as a new Supplementary Figure S10.

      I agree with the authors that prior modeling work was limited by assuming the inputs to M1, which meant that prior work couldn't address the deep issue (tackled here) of why there should be any preparatory inputs at all. At the same time, the ability to hand-select inputs did provide some advantages. A strong assumption of prior work is that the inputs are 'simple', such that motor cortex must perform meaningful computations to convert them to outputs. This matters because if inputs can be anything, then they can just be the final outputs themselves, and motor cortex would have no job to do. Thus, prior work tried to assume the simplest inputs possible to motor cortex that could still explain the data. Most likely this went too far in the 'simple' direction, yet aspects of the simplicity were important for endowing responses with realistic properties. One such property is a large condition-invariant response just before movement onset. This is a very robust aspect of the data, and is explained by the assumption of a simple trigger signal that conveys information about when to move but is otherwise invariant to condition. Note that this is an implicit form of regularization, and one very different from that used in the present study: the input is allowed to be large, but constrained to be simple. Preparatory inputs are similarly constrained to be simple in the sense that they carry only information about which condition should be executed, but otherwise have little temporal structure. Arguably this produces slightly too simple preparatory-period responses, but the present study appears to go too far in the opposite direction. I would suggest that the authors do what they can to address these issue via simulations and/or discussion. I think it is fine if the conclusion is that there exist many constraints that tend to favor preparation, and that regularizing magnitude is just one easy way of demonstrating that. Ideally, other constraints would be explored. But even if they can't be, there should be some discussion of what is missing - preparatory plateaus, a realistic condition-invariant signal tied to movement onset - under the present modeling assumptions.

      As described above, we have now included two additional figures. In the first one (S8, already discussed above), we used a temporal smoothness prior, and we indeed get slightly more realistic activity plateaus. In a second supplementary figure (S9), we have also considered using model predictive control (MPC) to optimize the inputs under an uncertain go cue arrival time. There, we found that removing the assumption that the delay period is known came with new challenges: in particular, it requires the specification of a “mental model” of when the Go cue will arrive. While it is reasonable to expect that monkeys will have a prior over the go time arrival cue that will be shaped by the design of the experiment, some assumptions must be made about the utility functions that should be used to weigh this prior. For instance, if we imagine that monkeys carry a model of the possible arrival time of the go cue that is updated online, they could nonetheless act differently based on this information, for instance by either preparing so as to be ready for the earliest go cue possible or alternatively to be ready for the average go cue. This will likely depend on the exact task design and reward/penalty structure. Here, we added simulations with those two cases (making simplifying assumptions to make the problem tractable/solvable using model predictive control), and found that the “earliest preparation” strategy gives rise to more realistic plateauing activity, while the model where planning is done for the “most likely go time” does not. We suspect that more realistic activity patterns could be obtained by e.g combining this framework with the temporal smoothness cost. However, the main point we wished to make with this new supplementary figure is that it is possible to model the task in a slightly more realistic way (although here it comes at the cost of additional model assumptions). We have now added more discussion related to those points. Note that we have kept our analyses on these new models to a minimum, as the main takeaway we wish to convey from them is that most components of the model could be modified/made more realistic. This would impact the qualitative behavior of the system and match to data but – in the examples we have so far considered – does not appear to modify the general strategy of networks relying on preparation.

      On line 161, and in a few other places, the authors cite prior work as arguing for "autonomous internal dynamics in M1". I think it is worth being careful here because most of that work specifically stated that the dynamics are likely not internal to M1, and presumably involve inter-area loops and (at some latency) sensory feedback. The real claim of such work is that one can observe most of the key state variables in M1, such that there are periods of time where the dynamics are reasonably approximated as autonomous from a mathematical standpoint. This means that you can estimate the state from M1, and then there is some function that predicts the future state. This formal definition of autonomous shouldn't be conflated with an anatomical definition.

      Yes, that is a good point, thank you for making it so clearly! Indeed, as previous work, we do not think of our “M1 dynamics” as being internal to M1, but they may instead include sensory feedback / inter-area loops, which we summarize into the connectivity, that we chose to have dynamics that qualitatively resemble data. We have now incorporated more discussion regarding what exactly the dynamics in our model represent.

      Round 2 of reviews

      Reviewer 3:

      My remaining comments largely pertain to some subtle (but to me important) nuances at a few locations in the text. These should be easy for the authors to address, in whatever way they see fit.

      Specific comments:

      (1) The authors state the following on line 56: "For preparatory processes to avoid triggering premature movement, any pre-movement activity in the motor and dorsal pre-motor (PMd) cortices must carefully exclude those pyramidal tract neurons."

      This constraint is overly restrictive. PT neurons absolutely can change their activity during preparation in principle (and appear to do so in practice). The key constraint is looser: those changes should have no net effect on the muscles. E.g., if d is the vector of changes in PT neuron firing rates, and b is the vector of weights, then the constraint is that b'd = 0. d = 0 is one good way of doing this, but only one. Half the d's could go up and half could go down. Or they all go up, but half the b's are negative. Put differently, there is no reason the null space has to be upstream of the PT neurons. It could be partly, or entirely, downstream. In the end, this doesn't change the point the authors are making. It is still the case that d has to be structured to avoid causing muscle activity, which raises exactly the point the authors care about: why risk this unless preparation brings benefits? However, this point can be made with a more accurate motivation. This matters, because people often think that a null-space is a tricky thing to engineer, when really it is quite natural. With enough neurons, preparing in the null space is quite simple.

      That is a good point – we have now reformulated this sentence to instead say “to avoid triggering premature movement, any pre-movement activity in the motor and dorsal premotor (PMd) cortices must engage the pyramidal tract neurons in a way that ensures their activity patterns will not lead to any movement”.

      (2) Line 167: 'near-autonomous internal dynamics in M1'.

      It would be good if such statements, early in the paper, could be modified to reflect the fact that the dynamics observed in M1 may depend on recurrence that is NOT purely internal to M1. A better phrase might be 'near-autonomous dynamics that can be observed in M1'. A similar point applies on line 13. This issue is handled very thoughtfully in the Discussion, starting on line 713. Obviously it is not sensible to also add multiple sentences making the same point early on. However, it is still worth phrasing things carefully, otherwise the reader may have the wrong impression up until the Discussion (i.e. they may think that both the authors, and prior studies, believe that all the relevant dynamics are internal to M1). If possible, it might also be worth adding one sentence, somewhere early, to keep readers from falling into this hole (and then being stuck there till the Discussion digs them out).

      That is a good point: we have now edited the text after line 170 to make it clear that the underlying dynamics may not be confined to M1, and have referenced the later discussion there.

      (3) The authors make the point, starting on line 815, that transient (but strong) preparatory activity empirically occurs without a delay. They note that their model will do this but only if 'no delay' means 'no external delay'. For their model to prepare, there still needs to be an internal delay between when the first inputs arrive and when movement generating inputs arrive.

      This is not only a reasonable assumption, but is something that does indeed occur empirically. This can be seen in Figure 8c of Lara et al. Similarly, Kaufman et al. 2016 noted that "the sudden change in the CIS [the movement triggering event] occurred well after (~150 ms) the visual go cue... (~60 ms latency)" Behavioral experiments have also argued that internal movement-triggering events tend to be quite sluggish relative to the earliest they could be, causing RTs to be longer than they should be (Haith et al. Independence of Movement Preparation and Movement Initiation). Given this empirical support, the authors might wish to add a sentence indicating that the data tend to justify their assumption that the internal delay (separating the earliest response to sensory events from the events that actually cause movement to begin) never shrinks to zero.

      While on this topic, the Haith and Krakauer paper mentioned above good to cite because it does ponder the question of whether preparation is really necessary. By showing that they could get RTs to shrink considerably before behavior became inaccurate, they showed that people normally (when not pressured) use more preparation time than they really need. Given Lara et al, we know that preparation does always occur, but Haith and Krakauer were quite right that it can be very brief. This helped -- along with neural results -- change our view of preparation from something more cognitive that had to occur, so something more mechanical that was simply a good network strategy, which is indeed the authors current point. Working a discussion of this into the current paper may or may not make sense, but if there is a place where it is easy to cite, it would be appropriate.

      This is a nice suggestion, and we thank the reviewer for pointing us to the Haith and Krakauer paper. We have now added this reference and extended the paragraph following line 815 to briefly discuss the possible decoupling between preparation and movement initiation that is shown in the Haith paper, emphasizing how this may affect the interpretation of the internal delay and comparisons with behavioral experiments.

    1. AbstractBackground Visualization is an indispensable facet of genomic data analysis. Despite the abundance of specialized visualization tools, there remains a distinct need for tailored solutions. However, their implementation typically requires extensive programming expertise from bioinformaticians and software developers, especially when building interactive applications. Toolkits based on visualization grammars offer a more accessible, declarative way to author new visualizations. Nevertheless, current grammar-based solutions fall short in adequately supporting the interactive analysis of large data sets with extensive sample collections, a pivotal task often encountered in cancer research.Results We present GenomeSpy, a grammar-based toolkit for authoring tailored, interactive visualizations for genomic data analysis. Users can implement new visualization designs with little effort by using combinatorial building blocks that are put together with a declarative language. These fully customizable visualizations can be embedded in web pages or end-user-oriented applications. The toolkit also includes a fully customizable but user-friendly application for analyzing sample collections, which may comprise genomic and clinical data. Findings can be bookmarked and shared as links that incorporate provenance information. A distinctive element of GenomeSpy’s architecture is its effective use of the graphics processing unit (GPU) in all rendering. GPU usage enables a high frame rate and smoothly animated interactions, such as navigation within a genome. We demonstrate the utility of GenomeSpy by characterizing the genomic landscape of 753 ovarian cancer samples from patients in the DECIDER clinical trial. Our results expand the understanding of the genomic architecture in ovarian cancer, particularly the diversity of chromosomal instability. We also show how GenomeSpy enabled the discovery of clinically actionable genomic aberrations.Conclusions GenomeSpy is a visualization toolkit applicable to a wide range of tasks pertinent to genome analysis. It offers high flexibility and exceptional performance in interactive analysis. The toolkit is open source with an MIT license, implemented in JavaScript, and available at https://genomespy.app/.

      A version of this preprint has been published in the Open Access journal GigaScience (see paper https://doi.org/10.1093/gigascience/giae040), where the paper and peer reviews are published openly under a CC-BY 4.0 license. These peer reviews were as follows:

      Reviewer 1: Andrea Sboner

      In this manuscript, the authors present Genome Spy, a visualization toolkit geared toward the rapid and interactive exploration of genomic features. They demonstrate how this tool can help investigators explore a large cohort of 753 ovarian cancers sequenced by whole-genome sequencing (WGS). By using the tool, they were able to identify outliers in the dataset and refine their diagnosis. The tool is inspired by Vega-lite, a high-level grammar for interactive graphics, and extends it for genomic applications.

      The manuscript is clearly written, and the authors provide links to the applications itself, tutorials and examples. I want to commend them for doing this. This is a tool that would nicely complement others and has a specific advantage of using high-performance GPUs that are now common in modern computers.

      The only concern that I have is about a couple of claims that may not be fully supported by the data provided: 1. Claim: users can implement new visualization designs easily. While the grammar certainly enables the users to define new designs, I do not think that this is necessarily easy, as the authors themselves recognize in the discussion section when they suggest providing templates to reduce the learning curve. Indeed, the example in Figure 2 is still quite verbose and would need some time for anyone to understand the syntax and the style. The playground web application facilitates testing it, though. 2. Claim: the grammar-based approach allows to be mixed and matched. I did not find any specific example of how to do this. It would have been quite interesting to see the intersection between the DNA representation of structural variants and RNA-seq data (if this is what it means as "mix and match").

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In this manuscript, by using simulation, in vitro and in vivo electrophysiology, and behavioral tests, Peng et al. nicely showed a new approach for the treatment of neuropathic pain in mice. They found that terahertz (THz) waves increased Kv conductance and decreased the frequency of action potentials in pyramidal neurons in the ACC region. Behaviorally, terahertz (THz) waves alleviated neuropathic pain in the mouse model. Overall, this is an interesting study. The experimental design is clear, the data is presented well, and the paper is well-written. I have a few suggestions.

      (1) The authors provide strong theoretical and experimental evidence for the impact of voltage-gated potassium channels by terahertz wave frequency. However, the modulation of action potential also relies on non-voltage-dependent ion channels. For example, I noticed that the RMP was affected by THz application (Figure 3F) as well. As the RMP is largely regulated by the leak potassium channels (Tandem-pore potassium channels), I would suggest testing whether terahertz wave photons have also any impact on the Kleak channels as well.

      Thank you for your positive comment and for providing us with this valuable suggestion. After testing the leak K+ current with and without HFTS on the SNI model, we observed a notable increase in the leak K+ current with HFTS when the holding potential surpassed -40 mV (please see the revised Figs. 2m and n). This finding prompted us to delve deeper into the shifts in the resting membrane potential (RMP). The data, along with statistical analysis, are detailed in Tables S1-3.

      (2) The activation curves of the Kv currents in Figure 2h seem to be not well-fitted. I would suggest testing a higher voltage (>100 mV) to collect more data to achieve a better fitting.

      Thanks for your advice. We repeated the experiment while maintaining the voltage of patched neurons at a higher level (>100 mV) to collect ample data for better fitting. The outcomes are illustrated in the revised Figs. 2g-j. Clearly, the data reveals a significant increase in K+ conductance in the HFTS group as compared to the SNI group. We have integrated these discoveries into the revised manuscript, replacing the earlier results.

      (3) In the part of behavior tests, the pain threshold increased after THz application and lasted within 60 mins. I suggest conducting prolonged tests to determine the end of the analgesic effect of terahertz waves.

      Thank you for your insightful comment. We echo your curiosity about the duration of the HFTS effect. In the process of revising our work, we conducted a comparative analysis of the analgesic duration resulting from 10-minute and 15-minute applications of HFTS. The findings are visualized in the revised Fig. 5c. Our observations indicate that after 160 minutes, the PWMT value for the 15-minute HFTS group decreased to a level comparable to that of the SNI group. Meanwhile, the analgesic effects persisted for 140 minutes in the case of the 10-minute HFTS application. These results imply a direct correlation between the duration of HFTS application and the duration of analgesia.

      (4) Regarding in vivo electrophysiological recordings, the post-HFTS recordings were acquired from a time window of up to 20 min. It seems that the HFTS effect lasted for minutes, but this was not tested in vitro where they looked at potassium currents. This long-lasting effect of HFTS is interesting. Can the authors discuss it and its possible mechanisms, or test it in slice electrophysiological experiments?

      Thank you for your comment. Based on the results from in vivo electrophysiological recordings, it was observed that the effect of HFTS can endure for a minimum of 20 minutes, and this duration was even more extended in behavioral assessments. Taking your advice, we employed slice electrophysiological recording for further testing. Following a 15-minute application of HFTS, we evaluated the K+ current at 5 and 20 minutes after incubation. Our observations clearly indicated a substantial and lasting increase in K+ current, with the effect persisting for at least 20 minutes (refer to Fig. 2l). This provides confirmation of the long-lasting influence of HFTS. The relevant data and statistical analysis are documented in Table S1-2.

      (5) How did the authors arrange the fiber for HFTS delivery and the electrode for in vivo multi-channel recordings? Providing a schematic illustration in Figure 4 would be useful.

      Thank you for your comment. To enhance the reader's understanding of the HFTS delivery device during multi-channel recording, we have included a schematic illustration in Fig. 4a in the revised manuscript. The top portion of Fig. 4a depicts a quantum cascade laser (QCL) with a center frequency located at approximately 36 THz. This laser is then connected to the recording electrode via a PIR fiber. The left section illustrates the detailed structure of the recording electrode.

      (6) Some grammatical errors should be corrected.

      Thank you for your thorough review. We have carefully checked and corrected grammar errors we found throughout the entire text to ensure that readers can better comprehend the content of the article.

      Reviewer #2 (Public Review):

      In this manuscript, Peng et al., reported that 36 THz high-frequency terahertz stimulation (HFTS) can suppress the activity of pyramidal neurons by enhancing the conductance of voltage-gated potassium channel. The authors also demonstrated the effectiveness of using 36THz HFTS for treating neuropathic pain.

      Strengths:

      The manuscript is well written and the conclusions are supported by robust results. This study highlighted the potential of using 36 THz HFTS for neuromodulation.

      Weaknesses:

      More characterization of HFTS is needed, so the readers can have a better assessment of the potential usage of HFTS in their own applications.

      Thank you for your suggestion. We have created schematic diagrams illustrating the HFTS delivery (Fig. 4a and Fig. 5a in the revised manuscript). Fig. 4a presents the structure designed for in vivo multi-channel recording. Fig. 5a shows the structure used in behavior test, the recording electrode is replaced by a metal hollow tube, allowing the PIR fiber to pass through the tube and target the ACC region of the mice.

      (1) It would be very helpful to estimate the volume of tissue that can be influenced by HFTS. It is not clear how 15 mins HFTS was chosen for this functional study. Does a longer time have a stronger effect? A better characterization of the relationship between the stimulus duration of HFTS and its beneficial effects would be very useful.

      Thank you for your feedback. The degree of tissue influence is directly related to the size of the spot emerging from the fiber outlet. In our experiment, we used a PIR fiber with a 630 nm inner core diameter to propagate high-frequency THz waves. This core features a refractive index of 2.15 and has an effective numerical aperture (NA) of 0.35 ± 0.05.

      Our decision to apply HFTS for 15 minutes in the behavioral study was primarily based on observations from in vivo multi-channel recordings. Specifically, we noticed a considerable reduction in the average firing rate of PYR cells after 15 minutes of HFTS exposure. To further investigate the correlation between the duration of HFTS stimulation and its effects, we conducted a comparative study using a 10-minute HFTS session. The results, depicted in revised Fig. 5c, reveal that the PWMT value decreased to the level seen in the SNI group after approximately 160 minutes following 15 minutes of HFTS, and after about 140 minutes with 10 minutes of HFTS. This suggests a direct relationship between the length of HFTS application and its beneficial outcomes.

      (2) How long does the behavioral effect last after 15 minutes of HFTS? Figure 5b only presents the behavioral effect for one hour, but the pain level is still effectively reduced at this time point. The behavioral measurement should last until pain sensitization drops back to pre-stim level.

      Thank you for your feedback. Similar question is also mentioned by reviewer 1. As depicted in Fig. 5c, it was observed that the analgesic effects lasted for 140-160 min with 10-15 minutes application of HFTS. Based on these findings, we can conclude that in the SNI model, targeting the ACC brain region with HFTS for a duration of 10-15 minutes results in an analgesic effect that lasts for roughly 140-160 minutes. This provides valuable insights into the potential clinical applications and duration of relief that can be achieved through HFTS treatment.

      (3) Although the manuscript only tested in ACC, it will also be useful to demonstrate the neural modulation effect on other brain regions. Would 36THz HFTS also robustly modulate activities in other brain regions? Or are different frequencies needed for different brain regions?

      Thank you for your comment. We hypothesize that light waves at a frequency of approximately 36 THz effectively modulate neuronal activities in various brain regions, primarily due to their impact on K channels. Additionally, we speculate that the application of THz waves at different frequencies may influence other channels, such as Na and Ca channels, potentially facilitating or inhibiting neuronal activities. We believe this is a fascinating and significant area of research to explore in the future.

      Reviewer #3 (Public Review):

      Summary:

      This manuscript by Peng et al. presents intriguing data indicating that high-frequency terahertz stimulation (HFTS) of the anterior cingulate cortex (ACC) can alleviate neuropathic pain behaviors in mice. Specifically, the investigators report that terahertz (THz) frequency stimulation widens the selectivity filter of potassium channels thereby increasing potassium conductance and leading to a reduction in the excitability of cortical neurons. In voltage clamp recordings from layer 5 ACC pyramidal neurons in acute brain slice, Peng et al. show that HFTS enhances K current while showing minimal effects on Na current. Current clamp recording analyses show that the spared nerve injury model of neuropathic pain decreases the current threshold for action potential (AP) generation and increases evoked AP frequency in layer 5 ACC pyramidal neurons, which is consistent with previous studies. Data are presented showing that ex-vivo treatment with HFTS in slice reduces these SNI-induced changes to excitability in layer 5 ACC pyramidal neurons. The authors also confirm that HFTS reduces the excitability of layer 5 ACC pyramidal neurons via in vivo multi-channel recordings from SNI mice. Lastly, the authors show that HFTS is effective at reducing mechanical allodynia in SNI using both the von Frey and Catwalk analyses. Overall, there is considerable enthusiasm for the findings presented in this manuscript given the need for non-pharmacological treatments for pain in the clinical setting.

      Strengths:

      The authors use a multifaceted approach that includes modeling, ex-vivo and in-vivo electrophysiological recordings, and behavioral analyses. Interpretation of the findings is consistent with the data presented. This preclinical work in mice provides new insight into the potential use of directed high-frequency stimulation to the cortex as a primary or adjunctive treatment for chronic pain.

      Weaknesses:

      There are a few concerns noted that if addressed, would significantly increase enthusiasm for the study.

      (1) The left Na current trace for SNI + HFTS in Figure 2B looks to have a significant series resistance error. Time constants (tau) for the rate of activation and inactivation for Na currents would be informative.

      Thank you for your feedback. We have carefully considered your comments and made several adjustments in the revised Figs. 2b-f to improve clarity and accuracy. Firstly, we have conducted a comparison of the time constants (tau) between the SNI group and the SNI+HFTS group. These time constants represent the latency of Na current activation or inactivation relative to the half-activated/inactivated voltage. Our analysis reveals that there is no statistically significant difference in tau between the two groups for both activation and deactivation curves. Secondly, we have updated the sample traces in Fig. 2b of the revised manuscript. These new traces illustrate that tau does not significantly differ between the SNI and SNI+HFTS groups, providing a visual representation of our findings. We believe that these modifications strengthen the presentation of our study's details and results, making the data more accessible and understandable for readers.

      (2) It is unclear why an unpaired t-test was performed for paired data in Figure 2. Also, statistical methods and values for non-significant data should be presented.

      Thank you for your comment. I think you mean the results in Fig. 3. We agree with you that we should use one-way ANOVA to analyze the data since there are more than 2 groups for comparison. We thus re-analyzed the data by using one-way ANOVA in Figs. 3g-k, and have included detailed statistical methods and P values in the revised manuscript.

      (3) It would seem logical to perform HFTS on ACC-Pyr neurons in acute slices from sham mice (i.e. Figure 3 scenario). These experiments would be informative given the data presented in Figure 4.

      Thank you for your valuable advice. During the revision process, we performed HFTS on ACC-PYR neurons in acute slices obtained from sham mice. The findings from this experiment have been integrated into the updated Fig. 3, where the sham group is represented by the green line and histogram (the revised Fig. 3 in the manuscript). It is noteworthy that a significant decrease in spike frequency was observed in the sham mice following HFTS.

      (4) As the data are presented in Figure 4g, it does not seem as if SNI significantly increased the mean firing rate for ACC-Pyr neurons, which is observed in the slice. The data were analyzed using a paired t-test within each group (sham and SNI), but there is no indication that statistical comparisons across groups were performed. If the argument is that HFTS can restore normal activity of ACC-Pyr neurons following SNI, this is a bit concerning if no significant increase in ACC-Pyr activity is observed in in-vivo recordings from SNI mice.

      Thank you for highlighting the inaccuracies in the analysis. After reviewing the data, we re-analyzed it using alternative statistical methods. In the revised version, since the data did not follow a normal distribution, we employed Wilcoxon matched-paired signed rank tests within the sham and SNI groups, and Mann-Whitney tests between the sham and SNI groups.

      Upon comparing the statistical outcomes across the groups, we found that the mean firing rate of 130 ACC neurons in SNI mice was significantly higher compared to that of 108 ACC neurons in sham mice (P = 0.0447, Mann-Whitney test). Notably, the mean firing rate of ACC-PYR exhibited a more pronounced increase with a P value of 0.0274 in SNI pre-HFTS versus sham pre-HFTS, while the mean firing rate of ACC-INT did not display a significant change across the groups. These findings align with the observations we made in the slice, reinforcing the validity of our results.

      (5) The authors indicate that the effects of HFTS are due to changes in Kv1.2. However, they do not directly test this. A blocking peptide or dendrotoxin could be used in voltage clamp recordings to eliminate Kv1.2 current and then test if this eliminates the effects of HFTS. If K current is completely blocked in VC recordings then the authors can claim that currents they are recording are Kv1.1 or 1.2.

      Thank you for your kind suggestion. In our research, we employed the Kv1.2 structure as a model to determine the response frequency of terahertz waves. Through both in vitro and in vivo experiments, we were able to demonstrate that the frequency of approximately 36 THz affects the Kv channel and its corresponding spike frequency. Upon analyzing the action potential waveform, we observed a notable variance in the resting membrane potential (RMP). This RMP is predominantly controlled by leak potassium channels, specifically the Tandem-pore potassium channels. In accordance with the recommendation of reviewer 1, we have addressed this particular aspect of our experimentation in the revised manuscript.

      We agree that we should use blocking peptides or dendrotoxin to eliminate Kv1.2 current. However, we meet problems in purchasing and delivery of the drugs. We thus added some explanation in the Discussion part to emphasize the value for this pharmacological experiment and can further confirm this in the future works.

      (6) The ACC is implicated in modulating the aversive aspect of pain. It would be interesting to know whether HFTS could induce conditioned place preference in SNI mice via negative reinforcement (i.e. alleviation of spontaneous pain due to the injury). This would strengthen the clinical relevance of using HFTS in treating pain.

      Thank you for this valuable advice. We share your intrigue regarding this experiment, and we fully recognize the importance and potential of further exploring this area. At present, however, our equipment and platform limitations prevent us from conducting the necessary tests. However, we remain committed to pursuing relevant research opportunities in the future.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1:

      (1) Study suggests that the effects of their tumor models of mouse behavioral are largely non-specific to the tumor as most behaviors are rescued by analgesic treatment. So, most of the changes were likely due to site-specific pain and not a unique signal from the tumor.

      The tumor generates pain at the site it is implanted, and it is likely amplified by the oral activities tumor bearing mice have to engage in. As there is no pain in the absence of the tumor, the pain is, by definition, caused by the tumor, not by the site. Concerning the relationship between pain and behavior, the behavioral assays undertaken in our study (nesting, cookie test, wheel running) were very limited in scope.  Two of these assays (nesting, cookie test) require use of the oral cavity. Only nesting and wheel running were assessed in the context of treatment for pain. Nesting behavior was completely restored with carprofen and buprenorphine treatment suggesting that in the absence of pain, mice were able to make perfect nests. Consistent with this, carprofen and buprenorphine treated animals also gained weight indicating that eating (another activity dependent on the oral cavity) was also restored.  Wheel running, an activity that does not rely on the oral cavity, was only partially restored with drug treatment. While additional behavioral tests are necessary to confirm this finding, the data suggest that there is pain-independent information relayed to the brain which accounts for this decline in wheel running.

      Reviewer #2:

      (1) The main claim is that tumor-infiltrating nerves underlie cancer-induced behavioral alterations, but the experimental interventions are not specific enough to support this. For example, all TRPV1 neurons, including those innervating the skin and internal organs, are ablated to examine sensory innervation of the tumor. Within the context of cancer, behavioral changes may be due to systemic inflammation, which may alter TRPV1 afferents outside the local proximity of tumor cells. A direct test of the claims of this paper would be to selectively inhibit/ablate nerve fibers innervating the tumor or mouth region.

      We agree with the reviewer that a direct test of the hypothesis would require selectively inhibiting the nerve fibers innervating the tumor and assessing the impact on behavior. Studies in the lab are on-going using pharmacological interventions to do this. These studies are beyond the scope of this current manuscript.

      (2) Behavioral results from TRPV1 neuron ablation studies are in part confounded by differing tumor sizes in ablated versus control mice. Are the differences in behavior potentially explained by the ablated animals having significantly smaller tumors? The differences in tumor sizes are not negligible. One way to examine this possibility might be to correlate behavioral outcomes with tumor size.

      As suggested by the reviewer, we have graphed nesting scores and time-to-interact (cookie test) relative to tumor volume.  In both cases, we used simple linear regression to fit the data and analyzed the slopes of the lines. In the case of nesting, there was no significant difference between the slopes. This is now included as Supplemental Figure 4A. In the case of the cookie test, there was a significant difference between the slopes. This is now included as Supplemental Figure 4B. Graphing the data in this way allows one to look at any given tumor volume and infer what the nesting score and the time-to-interact for the two groups of mice. The linear regression model fits the time to interact with the cookie reasonably well, thus from this graph, we can see that at any given tumor volume the time to interact with the cookie was generally shorter in TRPV1cre::DTAfl/wt animals as compared to C57BL/6 mice. Unfortunately, the linear regression does not fit the nesting data very well and thus it is more difficult to make the comparison of tumor volume and nesting score.

      The following text has been added to the results section.

      Given the impact of nociceptor neuron ablation on tumor growth, we wondered whether differences in tumor volume contributed to the behavioral differences we noted. Thus, the behavior data were graphed as a function of tumor volume (Supplemental Fig 4A, B). A simple linear regression model was used to fit the data. In the case of nesting scores, the linear regression did not fit the data points very well making it difficult to assess nesting scores at a given tumor volume (Supplemental Fig 4A). However, the linear regression model fit the time to interact data better. Here, the graph suggests that tumor volume did not influence behavior as at any given tumor volume the time to interact with the cookie is generally smaller in TRPV1-Cre::Floxed-DTA animals as compared to C57BL/6 animals (Supplemental Fig 4B).

      Reviewer #3:

      (1) The authors mention in their Discussion the need for additional experiments. Could they also include / comment on the potential impact on the anti-tumor immune system in their model?

      The following text has been added to the discussion:

      Neuro-immune interactions have been studied in the context of a variety of conditions including, but not limited to infection 109, inflammation 110,111, homeostasis in the gut 112-114, as well as neurological diseases115,116. Neuro-immune communications in the context of cancer and behavior have also been studied (e.g., sickness behavior, depression) 117-119 however, these studies did not assess these interactions at the tumor bed. Investigations into neuro-immune interactions occurring within primary malignancies which harbor nerves have shed light on these critical communications. In the context of melanoma, which is innervated by sensory nerves, we identified that release of the neuropeptide calcitonin gene related peptide (CGRP) induces immune suppression. This effect is mediated by CGRP binding to its receptor, RAMP1, which is expressed on CD8+ T cells 49. A study utilizing a different syngeneic model of oral cancer similarly found an immune suppressive role for CGRP 120-122. These studies demonstrate that neuro-immune interactions occur at the tumor bed. Our current findings indicating that tumor-infiltrating nerves connect to a circuit that includes regions within the brain suggest that neuro-immune interactions within the peripheral malignancy may contribute to the behavioral alterations we studied.

      (2) The authors mention the importance of inflammation contributing to pain in cancer but do not clearly highlight how this may play a role in their model. Can this be clarified?

      The following text has been added to the discussion section of the manuscript.

      Moreover, given that carprofen and buprenorphine decrease inflammation 104, their ability to restore normal nesting and cookie test behaviors (which require the use of the oral cavity where the tumor is located) suggests that inflammation at the tumor site contributed to the decline in these behaviors in vehicle-treated animals. Since both drugs were given systemically and each only partially restored wheel running, it suggests that systemic inflammation alone cannot fully account for the decline in wheel running seen in vehicle-treated animals. We posit that the inflammation- and pain-independent component of this behavioral decline is mediated via the transcriptional and functional alterations in the cancer-brain circuit.

      (3) The tumor model apparently requires isoflurane injection prior to tumor growth measurements. This is different from most other transplantable types of tumors used in the literature. Was this treatment also given to control (i.e., non-tumor) mice at the same time points? If not, can the authors comment on the impact of isoflurane (if any) in their model?

      Mice in all groups (tumor and non-tumor) were treated with isoflurane. This important detail has been added to the methods section.

      (4) The authors emphasize in several places that this is a male mouse model. They mention this as a limitation in the Discussion. Was there an original reason why they only tested male mice?

      The following text has been added in the discussion section:

      Head and neck cancer is predominantly a cancer in males; it occurs in males three times more often than in females 123, this disparity increases in certain parts of the world. While smoking cigarettes and drinking alcohol are risk factors for HPV negative head and neck squamous cell carcinoma, even males that do not smoke and drink are have a higher susceptibility for this cancer than females 124,125. Thus, our studies used only male mice. However, we do recognize that females also get this cancer. In fact, female patients with head and neck cancer, particularly oral cancer, report more pain than their male counterparts 126,127. These findings suggest that differences in tumor innervation exist in males and females.

      Therefore, another project in the lab has been to compare disease characteristics (including innervation and behavior) in male and female mice. The findings from this second study are the topic of a separate manuscript.

      Recommendations For The Authors:

      Reviewing editor:

      (1) Tumors can communicate with the brain via blood-borne agents from the tumor itself or immune cells that are activated by the tumor in addition to neurons that invade the tumor. The xia and malaise that accompanies some tumors can be mediated by direct innervation and/or the humoral factors because both can activate the same parabrachial pathway. This paper makes the case for the direct innervation being important but ignores the possibility of both being involved. The interesting observation that innervation supports tumor growth (perhaps via substance P) is troublesome because the slower appearance of behavioral consequences (Figures 4 & 5) could be attributed to the smaller tumor size. A nice control for humoral effects would be to implant the tumor cells someplace in the body where innervation does not occur (if possible) and then examine behavioral outcomes.

      In the course of several projects, we have implanted different tumor cell lines in different locations in mice (oral cavity, hind limb, flank, peritoneal cavity). In each location, tumor innervation occurs. This is not a phenomenon found only in mice as we completed an immunohistological survey of human cancers from different sites and found they are all innervated (PMID 34944001). These data are consistent with tumor and locally-released factors that recruit nerves to the tumor bed (PMID: 30327461)(PMID: 32051587)(PMID: 27989802). Thus, an implantation site that does not result in tumor innervation is currently unknown and likely does not exist.

      (2) The authors should address whether there is an inflammatory component in this tumor model.

      MOC2-7 tumors have been characterized as non-inflamed and poorly immunogenic 129-131.

      This information has been added to the methods section.

      (3) The RTX experiment in Figure 5 would be more compelling if the drug was injected directly into the tumor rather than injecting it in the flank, thus ablating all TRPV1-exressing neurons as in the genetic approach.

      While we agree with the reviewer that ablating the TRPV1-expressing neurons at the tumor site directly would be ideal, RTX treatment takes approximately one week for ablation to occur but a significant amount of inflammation is associated with this. Therefore, we wait a total of 4 weeks for the inflammation to resolve. By this time, tumors have generally reached sacrifice criteria. Thus, this approach would not enable the question to be answered Moreover, we are not aware of any studies in which RTX has been injected in the oral cavity or face. While RTX is utilized clinically to treat pain, it is typically administered intrathecally, epidurally or intra-ganglionically (PMID: 37894723).

      (4) The authors address affective aspects of pain but do not adequately address the sensory aspects, e.g., sensitivity to touch, heat and/or cold. They attribute the decrease in food disappearance (consumption) and nest building to oral pain, but it could be due to anhedonia and anorexia that can accompany tumor progression.

      Assaying for touch and heat/cold sensitivity in the oral cavity is a critical aspect of studying head and neck cancer that needs to be addressed. However, in rodents these assays are not trivial given that any touch/heat/cold in the area of the tumor (oral cavity) impacts the sensitive whiskers in that region which directly influence these assays. Thus, we have been refining assays (e.g., OPAD, facial von Frey) to address these important questions. The findings from these studies are beyond the scope of this manuscript.

      The reviewer makes a good point about anhedonia and anorexia. The following text has been added to the results section:

      Pain-induced anhedonia is mediated by changes in the reward pathway. Specifically, in the context of pain, dopaminergic neurons in the ventral tegmental area (VTA) become less responsive to pain and release less serotonin.  This decreased serotonin results in disinhibition of GABA release; the resulting increased GABA promotes an increased inhibitory drive leading to anhedonia  82 and, when extreme, anorexia. Carprofen and buprenorphine treatments completely reversed nesting behavior and significantly improved eating. Inflammation 83 and opioids 84 directly influence reward processing and though our tracing studies did not indicate that the tumor-brain circuit includes the VTA, this brain region may be indirectly impacted by tumor-induced pain in the oral cavity. Thus, an alternative interpretation of the data is that the effects of carprofen and buprenorphine treatments on nesting and food consumption may be due to inhibition of anhedonia (and anorexia) rather than, or in addition to, relieving oral pain.

      (5) Comment on why only males were used in this study.

      Please see response to public reviews.

      Reviewer #1:

      (1) Please provide a justification for the use of exclusively male mice and expand in the discussion if there is potential for these findings to be directly applicable to female mice as well.

      Please see response to public reviews.

      The following text has been added to the discussion:

      Head and neck cancer is predominantly a cancer in males; it occurs in males three times more often than in females 123, this disparity increases in certain parts of the world. While smoking cigarettes and drinking alcohol are risk factors for HPV negative head and neck squamous cell carcinoma, even males that do not smoke and drink are have a higher susceptibility for this cancer than females 124,125. Thus, our studies used only male mice. However, we do recognize that females also get this cancer. In fact, female patients with head and neck cancer, particularly oral cancer, report more pain than their male counterparts 126,127. These findings suggest that differences in tumor innervation exist in males and females.

      (2) When discussing the results shown in Figure 2, please include some mention of Fus, since it was the highest expressed transcript.

      The following text has been added to the results section regarding Fus.

      The gene demonstrating the highest increase in expression, Fus, was of particular interest; it increases in expression within DRG neurons following nerve injury and contributes to injury-induced pain 51,52. Of note, we purposefully used whole trigeminal ganglia rather than FACS-sorted tracer-positive dissociated neurons to avoid artificially imposing injury and altering the transcript levels of these cells 53,54. Thus, significantly elevated expression of Fus by ipsilateral TGM neurons from tumor-bearing animals suggests the presence of neuronal injury induced by the malignancy. This is consistent with our previous findings 55 and those of others 56 showing that tumor-infiltrating nerves harbor higher expression of nerve-injury transcripts and neuronal sensitization.

      (3) In line 197 please clarify the mice used. Were all mice tumor-bearing and some had nociceptors ablated, or was there a control (no tumor) group as well?

      Line 197 refers to Figure 4D. In this figure, panels B-D show quantification of cFos and DFosB in the spinal nucleus of the TGM (SpVc), The parabrachial nucleus (PBN) and the Central nucleus of the amygdala (CeA). These data are from C57BL/6 and TRPV1cre::DTAfl/wt animals all of whom had tumor. Supplementary Figure 3C also show quantification of cFos and DFosB but these are from control, non-tumor bearing animals. The fact that controls are non-tumor-bearing has been added to the supplemental figure legend and the text of the results section has been clarified as follows.

      While Fos expression was similar between non-tumor bearing mice of the two genotypes (Supplemental Fig. 3C-E), the absence of nociceptor neurons in tumor-bearing animals decreases cFos and DFosB in the PBN, and DFosB in the SpVc (Fig. 4B, C).

      (4) Overall it would improve the readability of the figures if the colors for the IHC channels were on the image itself and not exclusively in the figure legend.

      The colors for all the staining have been added to each panel.

      (5) It is not a problem that complete cartography was not done, but please include a justification for why the brain regions that were focused on were chosen.

      In order to ensure that our neural tracing technique captured only nerves present within the tumor bed, we restricted the injection of tracer to only 2 µl. We demonstrated that this small volume did not leak out of the tumor (Figure 1) and thus any tracer labeled neurons we identified were deemed as being connected in a circuit to nerves in the tumor bed. While we acknowledged that this calculated technical approach restricted our ability to tracer label all neurons in the tumor bed (as well as those they share circuitry with), it ensured no tracer leakage and inadvertent labeling of non-tumoral nerves. In non-tumor animals injected with 10 µl of tracer, labeled regions in the brain included the spinal nucleus of the trigeminal, the parabrachial nucleus, the central amygdala, the facial nucleus and the motor nucleus of the trigeminal. The regions that were tracer positive when tumor was injected were limited to the spinal nucleus of the trigeminal, the parabrachial nucleus and the central amygdala. Thus, the regions in the brain that we focused on were the areas that became tracer-positive following injection of tracer into the tumor.

      (6) Were the cells that were injected cultured in media with 10% fetal calf serum? If so was any inflammatory response seen? If not please state in the methods section the media that cells for injection were cultured in.

      The cells injected into animals were cultured in media containing 10% fetal calf serum. When cells are harvested for tumor injections, they are first washed two times with PBS and then trypsinized to detach the cells from the plate. Cells are collected, washed again with PBS and resuspended with DMEM without serum; this is what is injected into animals. We harvest cells in this way in order to eliminate any serum being injected into mice. This information has been added to the Methods section.

      (7) Would any of the differences in drug treatment (Carprofen vs Buprenorphine) be due to the differing routes of administration and metabolism of the drugs?

      Since carprofen and buprenorphine each resulted in similar behavioral impacts (nesting and wheel running), their different routes of administration seem to play a minor or no role in the behaviors assessed.

      (8) Please include in the methods section the specific approach and software that was used for processing calcium imaging data and calculating a relative change in fluorescence.

      The specific approach used for processing calcium imaging data and calculating relative change in fluorescence as well as the software used are all included in the methods section. Please see below:

      Ca2+ imaging. TGM neurons from non-tumor and tumor-bearing animals (n=4-6 mice/condition) were imaged on the same day. Neurons were incubated with the calcium indicator, Fluo-4AM, at 37°C for 20 min. After dye loading, the cells were washed, and Live Cell Imaging Solution (Thermo-Fisher) with 20 mM glucose was added. Calcium imaging was conducted at room temperature. Changes in intracellular Ca2+ were measured using a Nikon scanning confocal microscope with a 10x objective. Fluo-4AM was excited at 488 nm using an argon laser with intensity attenuated to 1%. The fluorescence images were acquired in the confocal frame (1024 × 1024 pixels) scan mode. After 1 min of baseline measure, capsaicin (300nM final concentration) was added. Ca2+ images were recorded before, during and after capsaicin application. Image acquisition and analysis were achieved using NIS-Elements imaging software. Fluo-4AM responses were standardized and shown as percent change from the initial frame. Data are presented as the relative change in fluorescence (DF/F0), where F0 is the basal fluorescence and DF=F-F0 with F being the measured intensity recorded during the experiment. Calcium responses were analyzed only for neurons responding to ionomycin (10 µM, positive control) to ensure neuronal health. Treatment with the cell permeable Ca2+ chelator, BAPTA (200 µM), served as a negative control.

      (9) Suggestions for Figure 1:

      - In Figures 1C, D, E, include labels for the days of tumor harvest.

      - Please make the size of the labels the same for 1K an 1L and align them.

      - Microscopy image in Figure 1L for SpVc looks like it may be at a different magnification.

      - If possible, include (either in the figure or the supplement) IHC images staining for Dcx and tau, which would complement the western blot data.

      The requested changes to the figures have been made. Unfortunately, we do not have Dcx and tau IHC staining of the day 4, 10 and 20 tumors.

      (10) Suggestions for Figure 2:

      - Include directly onto the graph in Figure 2a the legend for tumor-bearing (red) and non-tumor bearing (blue).

      - Keep consistent between Figure 2G and 2H/I if the tumor/nontumor will be labeled as T/N or Tumor/Control.

      The requested changes to the figures have been made.

      (11) Suggestions for Figure 3:

      - An example trace of calcium signal would complement Figure 3G, H well.

      Example tracings of calcium signal are already provided in Supplementary Figure 3A and B.

      Reviewer #2:

      (1) While the use of male mice is acknowledged, there is not a rationale for why female mice were not included in the study.

      Please see the response to Reviewer #1 (first question).

      (2) Criteria for euthanasia should be described in the Methods. This is especially needed for interpreting the survival curve in Figure 4H.

      Criteria for euthanasia in our IACUC approved protocol include:

      - maximum tumor volume of 1000mm3

      - edema

      - extended period of weight loss progressing to emaciation

      - impaired mobility or lesions interfering with eating, drinking or ambulation

      - rapid weight loss (>20% in 1 week)

      - weight loss at or more than 20% of baseline

      In addition to tumor size and weight loss, we use the body condition score to evaluate the state of animals and to determine euthanasia.  These details have been added to the Methods section.

      (3) At what stage in cancer progression were the Fos studies conducted for Figure 4A-D?

      The brains used for Fos staining (Fig 4B-D) were harvested at week 5 post-tumor implantation.

      (4) For Fos counts, what are the bregma coordinates for the sections that were quantified?

      SpVc:  -7.56 to -8.24mm

      PBN:  -4.96 to -5.52mm

      CeA:  -0.82mm to -1.94mm

      (5) Statistics are needed for the claim in Lines 171-173.

      The statistical analysis of Fos staining from tumor-bearing and non-tumor bearing brains are included in Figure 3D-F. The statistical analysis of ex vivo Ca+2 imaging of brains from tumor-bearing and non-tumor bearing animals are included in Figure 3 I and J.

      (6) How long was the baseline period for weight and food intake measurements? How long were the animals single-housed before taking the baseline measurements?  

      Baseline weight and food intake measurements were 2 weeks and animals were singly housed before baseline measurements for 2 weeks (a total of 4 weeks).

      Minor:

      (7) The authors might consider rewording the sentence on lines 59-62, given that it is abundantly clear from rodent studies that both the tumor and chemotherapy are associated with adverse behavioral outcomes.

      We have reworded the sentence as follows:  The association of cancer with impaired mental health is directly mediated by the disease, its treatment or both; these findings suggest that the development of a tumor alters brain functions.

      (8) Line 212 needs a space between the two sentences.

      This has been fixed.

      (9) Font size in Figure 2 is not consistent with the other figures.

      This has been fixed.

      (10) "DAPI" is the more conventional than "DaPi".

      This has been fixed.

      Editorial Comments and Suggestions:

      (1) The Abstract would be better if it were more concise, e.g. ~175 words.

      The abstract has been shortened as requested and now reads:

      Cancer patients often experience changes in mental health, prompting an exploration into whether nerves infiltrating tumors contribute to these alterations by impacting brain functions. Using a mouse model for head and neck cancer and neuronal tracing we show that tumor-infiltrating nerves connect to distinct brain areas. The activation of this neuronal circuitry altered behaviors (decreased nest-building, increased latency to eat a cookie, and reduced wheel running). Tumor-infiltrating nociceptor neurons exhibited heightened calcium activity and brain regions receiving these neural projections showed elevated cFos and delta FosB as well as increased calcium responses compared to non-tumor-bearing counterparts. The genetic elimination of nociceptor neurons decreased brain Fos expression and mitigated the behavioral alterations induced by the presence of the tumor. While analgesic treatment restored nesting and cookie test behaviors, it did not fully restore voluntary wheel running indicating that pain is not the exclusive driver of such behavioral shifts. Unraveling the interaction between the tumor, infiltrating nerves, and the brain is pivotal to developing targeted interventions to alleviate the mental health burdens associated with cancer.

      (2) Lines 28, 104, 258, 486, 521, and many other places, "utilized" should be "used" because the former refers to an application for which it is not intended, e.g. a hammer was utilized as a doorstop.

      The requested changes have been made.

      (3) Lines 32 and 73, it is not clear whether the basal activity is heightened or whether excitability is increased. "manifest" might be better than "harbor" on line 73.

      We have changed the wording in the abstract to be clearer. Moreover, our finding that TGM neurons from tumor-bearing animals have increased expression of the s1-Receptor and phosphorylated TRPV1 (Fig 2G-I) indicate that these neurons have increased excitability.

      (4) Line 34 and elsewhere, it would be better to refer to Fos because the is no need to distinguish cellular, cFos, from viral, vFos, in this context.

      The requested changes have been made.

      (5) Line 38, It would be better to refer to what was actually measured rather than "oral movements".

      The requested changes have been made. The sentence now reads: “While analgesic treatment restored nesting and cookie test behaviors, it did not fully restore voluntary wheel running.”

      (6) Line 84, CXCR3-null mouse on a C57BL/6 background.

      The requested change has been made.

      (7) Lines 86,129 wild-type, male mice.

      The requested change has been made.

      (8) Lines114-115, the brackets are not necessary.

      The requested change has been made.

      (9) Lines 118, 384, 409, 527, 589, 971, 974 always leave a space between numbers and units. Use Greek u for micro.

      The requested change has been made.

      (10) Lines 123-124, it is not clear that there is meaningful labeling within the CeA.

      We have replaced this image with a more representative one of the CeA from a tumor-bearing animal with clear tracer labeling.

      (11) Lines 125, 138, and 246 transcription was not measured, only transcript levels were measured.

      The requested changes have been made.

      (12) Line 133, I think >4 fold is meant.

      Thank you for catching that. I have fixed it to >4 fold.

      (13) Line 165, single-time-point assessment (add hyphens).

      The requested change has been made.

      (14) Line 181 and elsewhere including figure, the superscripts refer to alleles of the genes; hence approved gene names should be used in italics (as in Methods), TRPV1-Cre:: Floxed-DTA (without italics) would be acceptable.

      The requested changes have been made.

      (15) Line 182, nociceptor-neuron-ablated mice (add hyphens).

      The requested changes have been made.

      (16) Line 197, It is not clear that the "speed" of food disappearance was measured or that it is due to oral pain vs loss of appetite.

      The reviewer makes a good point. We have changed the sentence to read:

      To evaluate the effects of this disruption on cancer-induced behavioral changes, we assessed the animals’ general well-being through nesting behavior 32 and anhedonia using the cookie test 76,77, as well as  body weight and food disappearance as surrogates for oral pain and/or loss of appetite.

      (17) Line 199, The reduced tumor growth after ablation could account for most of the changes in the other parameters that were measured.

      We have graphed the nesting scores and time-to-interact with the cookie as a function of tumor volume.  These data are now included as Supplemental Figure 4 and suggest that at the same tumor volume, nesting scores and times-to-interact with the cookie are different between the groups.

      (18) Line 204 TPVP1 spelling. Is the TGN smaller after ablation of half of the neurons?

      The requested change has been made.

      (19) Line 235, "now" is not necessary.

      The requested change has been made.

      (20) Line 238-239 and elsewhere, a few references for to why the TGN-SpVc-PBN-CeA circuit is relevant would be helpful.

      The following references have been added regarding the relevance of this circuit to behavior:

      Molecular Brain 14: 94 (2021) (PMID 34167570)

      Neuropharmacology 198: 108757 (2021) (PMID 34461068)

      Frontiers in Cellular Neuroscience 16: 997360 (2022)  (PMID 36385947)

      Neuropsychopharmacology  49(3): 508-520 (2024) (PMID 37542159)

      (21) Lines 371, 434 and Figures, gm should be g or grams in scientific usage. Include JAX lab stock numbers for these mouse lines.

      The requested changes have been made.

      (22) Line 432, removing food for one hour is not a fast.

      The sentence has been reworded as follows: One hour prior to testing, mouse food is removed and the animals are acclimated to the brightly lit testing room.

      (23) Line 476, 5-um sections (add hyphen).

      The hyphen has been added.

      (24) Lines 988, and 1023, DAPI are usually shown this way.

      The requested change has been made.

      (25) Figure 1K, add Bregma levels to figures.

      SpVc: -8.12 mm

      PBN: -5.34 mm

      CeA: -1.34 mm

      (26) Figure 3 line 1033, "area under the curve" What curve was examined?

      The curve examined was the change in fluorescence over time. This curve has been added as Supplemental Figure 3C.

      (27) Figure 3B, the circled area is the lateral PBN. At first glance, I thought scp was meant as the label for the circled area.

      Scp is noted in the figure legend as a landmark.

    1. Reviewer #3 (Public Review):

      Pipes and Nielsen propose a valuable new computational method for assigning individual Next Generation Sequencing (NGS) reads to their taxonomic group of origin, based on comparison with a dataset of reference metabarcode sequences (i.e. using an existing known marker sequence such as COI or 16S). The underlying problem is an important one, with broad applications such as identifying species of origin of smuggled goods, identifying the composition of metagenomics/ microbiomics samples, or detecting the presence of pathogen variants of concern from wastewater surveillance samples. Pipes and Nielsen propose (and make available with open source software) new computational methods, apply those methods to a series of exemplar data analyses mirroring plausible real-life scenarios, and compare the new method's performance to that of various field-leading alternative methods.

      In terms of methodology, the manuscript presents a novel computational analyses inspired by standard existing probabilistic phylogenetic models for the evolution of genome sequences. These form the basis for comparisons of each NGS read with a reference database of known examples spanning the taxonomic range of interest. The evolutionary aspects of the models are used (a) to statistically represent knowledge about the reference organisms (and uncertainty about their common ancestors) and their evolutionary relationships; and (b) to derive inferences about the relationship of the sample NGS reads that may be derived from reference organisms or from related organisms not represented in the reference dataset. This general approach has been considered previously and, while expected to be powerful in principle, the reliance of those methods on likelihood computations over a phylogenetic tree structure means they are slow to the point of useless on modern-sized problems that may have many thousands of reference sequences and many millions of NGS reads. Alternative methods that have been devised to be computationally feasible have had to sacrifice the phylogenetic approach, with a consequent loss of statistical power.

      Pipes and Nielsen's methodology contribution in this manuscript is to make a series of approximations to the 'ideal' phylogenetic likelihood analysis, aimed at saving computational time and keeping computer memory requirements acceptable whilst retaining as much as possible of the expected power of phylogenetic methods. Their description of their novel methods is solid; as they are largely approximations to other existing methods, their value ultimately will rest with the success of the method in application.

      Regarding the application of the new methods, to compare the accuracy of their method with a selection of existing methods the authors use 1) simulated datasets and 2) previously published mock community datasets to query sequencing reads against appropriate reference trees. The authors show that Tronko has a higher success at assigning query reads (at the species/genus/family level) than the existing tools with both datasets. In terms of computational performance, the authors show Tronko outperforms another phylogenetic tool, and is still within reasonable limits when compared with other 'lightweight' tools.

      As a demonstration of the power of phylogeny-based methods for taxonomic assignment, this ms. could gain added importance by refocusing the community towards explicitly phylogenetic methods. We agree with the authors that this would be likely to give rise to the most powerful possible methods.

      Strengths of this ms. are 1) the focus on phylogenetic approaches and 2) the reduction of a consequently difficult computational problem to a practical method (with freely available software); 3) the reminder that these approaches work well and are worthy of continued interest and development; and ultimately most-importantly 4) the creation of a powerful tool for taxonomic assignment that seems to be at least as good as any other and generally better.

      Weaknesses of the manuscript at present are 1) lack of consideration of some other existing methods and approaches, as it would be interesting to know if other ideas had been tried and rejected, or were not compatible with the methods created; 2) some over-simplifications in the description of new methods, with some aspects difficult or impossible to reproduce and some claims unsubstantiated. Further, 3) we are not convinced enough weight has been given to the complexity of 'pre-processing' the reference dataset for each metabarcode (e.g. gene) of interest, which may give the impression that the method is easier to apply to new reference datasets than we think would be the case. Lastly, 4) we encountered some difficulties getting the software installed and running on our computers. It was not possible to resolve every issue in the time available to us to perform our review, and some processing options remain untested.

      Overall, the methods that Pipes and Nielsen propose represent an important contribution that both creates a computational resource that is immediately valuable to the community, and emphasises the benefits of phylogenetic methods and provides encouragement for others to continue to work in this area to create still-better methods.

    1. AbstractPlatalea minor, the black-faced spoonbill (Threskiornithidae) is a wading bird that is confined to coastal areas in East Asia. Due to habitat destruction, it has been classified by The International Union for Conservation of Nature (IUCN) as globally endangered species. Nevertheless, the lack of its genomic resources hinders our understanding of their biology, diversity, as well as carrying out conservation measures based on genetic information or markers. Here, we report the first chromosomal-level genome assembly of P. minor using a combination of PacBio SMRT and Omni-C scaffolding technologies. The assembled genome (1.24 Gb) contains 95.33% of the sequences anchored to 31 pseudomolecules. The genome assembly also has high sequence continuity with scaffold length N50 = 53 Mb. A total of 18,780 protein-coding genes were predicted, and high BUSCO score completeness (93.7% of BUSCO metazoa_odb10 genes) was also revealed. A total of 6,155,417 bi-allelic SNPs were also revealed from 13 P. minor individuals, accounting for ∼5% of the genome. The resource generated in this study offers the new opportunity for studying the black-faced spoonbill, as well as carrying out conservation measures of this ecologically important spoonbill species.

      This work is part of a series of papers presenting outputs of the Hong Kong Biodiversity Genomics https://doi.org/10.46471/GIGABYTE_SERIES_0006 This work has been published in GigaByte Journal under a CC-BY 4.0 license (https://doi.org/10.46471/gigabyte.130), and has published the reviews under the same license. These are as follows.

      Reviewer 1. Richard Flamio Jr.

      Is the language of sufficient quality?

      No. There are some grammatical errors and spelling mistakes throughout the text.

      Is there sufficient detail in the methods and data-processing steps to allow reproduction?

      Yes. The authors did a phenomenal job at detailing the methods and data-processing steps.

      Additional Comments:

      Very nice job on the paper. The methods are sound and the statistics regarding the genome assembly are thorough. My only two comments are: 1) I think the paper could be improved by the correction of grammatical errors, and 2) I am interested in a discussion about the number of chromosomes expected for this species (or an estimate) based on related species and if the authors believe all of the chromosomes were identified. For example, is the karyotype known or can the researchers making any inferences about the number of microchromosomes in the assembly? Please see a recent paper I wrote on microchromosomes in the wood stork assembly (https://doi.org/10.1093/jhered/esad077) for some ideas in defining the chromosome architecture of the spoonbill and/or comparing this architecture to related species.

      Re-review:

      The authors incorporated the revisions nicely and have produced a quality manuscript. Well done.

      Minor revisions Line 46: A comma is needed after (Threskiornithidae). Line 47: “The” should not be capitalized. Line 48: This should read “as a globally endangered species.” Line 49: “However, the lack of genomic resources for the species hinders the understanding of its biology…” Line 56: Consider changing “also revealed” to “identified” to avoid repetition from the previous sentence. Line 65: Insert “the” before “bird’s.” Lines 69-70: Move “locally” higher in the sentence – “and it is protected locally…” Line 72: Replace “as of to date” with “prior to this study”. Lines 78-79: Pluralize “part.” Line 86: Replace “proceeded” with “processed.” Line 133: “…are listed in Table 1.” Line 158: “accounted” Line 159: “Variant calling was performed using…” Line 161: “Hard filtering was employed…” Lines 200-201: “The heterozygosity levels… from five individuals were comparable to previous reports on spoonbills – black-faced spoonbill … and royal spoonbill … (Li et al. 2022).” Line 202: New sentence. “The remaining heterozygosity levels observed…” Line 206: “…genetic bottleneck in the black-faced spoonbill…” Lines 208-209: “These results highlight the need…” Lines 213-214: “…which are useful and precious resources for future population genomic studies aimed at better understanding spoonbill species numbers and conservation.” Line 226: Missing a period after “heterozygosity.” For references, consider adding DOIs. Some citations have them but most citations would benefit from this addition.

      Reviewer 2. Phred Benham

      Is the language of sufficient quality?

      Generally yes, the language is sufficiently clear. However, a number of places could be refined and extra words removed.

      Are all data available and do they match the descriptions in the paper?

      Additional data is available on figshare.

      I do not see any of the tables that are cited in the manuscript and contain legends. Am I missing something. Also there is no legend for the GenomeScope profile in figure 3.

      The assembly appears to be on genbank as a scaffold level assembly, can you list this accession info in the data availability section in addition to the project number.

      Is there sufficient data validation and statistical analyses of data quality?

      Overall fine, but some additional analyses would aid the paper. Comparison of the spoonbill genome to other close relatives using a synteny plot would be helpful.

      It would also be useful to put heterozygosity and inbreeding coefficients into context by comparing to results from other species.

      Additional Comments:

      Hui et al. report a chromosome level genome for the black-faced spoonbill, a endangered species of coastal wetlands in East Asia. This genome will serve as an important genome for understanding the biology of and conserving this species.

      Generally, the methods are sound and appropriate for the generation of genomic sequence.

      Major comments: This is a highly contiguous genome in line with metrics for Vertebrate Genomics Project genomes and other consortia. The authors argue that they have assembled 31 Pseudo-molecules or chromosomes. It would be nice to see a plot showing synteny of these 31 chromosomes and a closely related species with a chromosome level assembly (e.g. Theristicus caerulescens; GCA_020745775.1)

      The tables appear to be missing from the submitted manuscript?

      Minor comments: Line 49: delete its

      Line 49-51: This sentence is a little awkward, please revise.

      Line 64: delete 'the'

      Line 67: replace 'with' with 'the spoonbil as a'

      Line 68: delete 'Interestingly'

      Line 70: can you be more specific about what kind of genetic methods had previously been performed?

      Line 79: can you provide any additional details on the necessary permits and/or institutional approval

      Line 78: what kind of tissue? or were these blood samples?

      Line 110: do you mean movies?

      Line 143: replace data with dataset

      Line 163: it may be worth applying some additional filters in vcftools, e.g. minor allele freq., min depth, max depth, what level of missing data was allowed?, etc.

      Line 171: delete 'resulted in'

      Line 172: do you mean scaffold L50 was 8? Line 191-195: some context would be useful here, how does this level of heterozygosity and inbreeding compare to other waterbirds?

      Line 217: why did you use the Metazoan database and not the Aves_odb10 database for Busco?

      Figure 1b: Number refers to what, scaffolds? Be consistent with capitalization for Mb. It seems like the order of scaffold N50 and L50 were reversed.

      Figure 3 is missing a legend. Hui et al. report a chromosome level genome for the black-faced spoonbill, a endangered species of coastal wetlands in East Asia. This genome will serve as an important genome for understanding the biology of and conserving this species.

      Generally, the methods are sound and appropriate for the generation of genomic sequence.

      Major comments: This is a highly contiguous genome in line with metrics for Vertebrate Genomics Project genomes and other consortia. The authors argue that they have assembled 31 Pseudo-molecules or chromosomes. It would be nice to see a plot showing synteny of these 31 chromosomes and a closely related species with a chromosome level assembly (e.g. Theristicus caerulescens; GCA_020745775.1)

      The tables appear to be missing from the submitted manuscript?

      Minor comments: Line 49: delete its

      Line 49-51: This sentence is a little awkward, please revise.

      Line 64: delete 'the'

      Line 67: replace 'with' with 'the spoonbil as a'

      Line 68: delete 'Interestingly'

      Line 70: can you be more specific about what kind of genetic methods had previously been performed?

      Line 79: can you provide any additional details on the necessary permits and/or institutional approval

      Line 78: what kind of tissue? or were these blood samples?

      Line 110: do you mean movies?

      Line 143: replace data with dataset

      Line 163: it may be worth applying some additional filters in vcftools, e.g. minor allele freq., min depth, max depth, what level of missing data was allowed?, etc.

      Line 171: delete 'resulted in'

      Line 172: do you mean scaffold L50 was 8? Line 191-195: some context would be useful here, how does this level of heterozygosity and inbreeding compare to other waterbirds?

      Line 217: why did you use the Metazoan database and not the Aves_odb10 database for Busco?

      Figure 1b: Number refers to what, scaffolds? Be consistent with capitalization for Mb. It seems like the order of scaffold N50 and L50 were reversed.

      Figure 3 is missing a legend. Re-review:

      I previously reviewed this manuscript and overall the authors have done a nice job addressing all of my comments.

      I appreciate that the authors include the MCscan analysis that I suggested. However, the alignment of the P. minor assembly and annotations to other genomes suggests rampant mis-assembly or translocations. Birds have fairly high synteny and I would expect Pmin to look more similar to the comparison between T. caerulescens and M. americana in the MCscan plot. For instance, parts of the largest scaffold in the Pmin assembly map to multiple different chromosomes in the Tcae assembly. Similarly, the Z in Tcae maps to 11 different scaffolds in the Pmin assembly and there does not appear to be a single large scaffold in the Pmin assembly that corresponds to the Z chromosome.

      The genome seems to be otherwise of strong quality, so I urge the authors to double-check their MCscan synteny analysis. If this pattern remains, can you please add some comments about it to the end of the Data Validation and Quality Control section? I think other readers will also be surprised at the low levels of synteny apparent between the spoonbill and ibis assemblies.

    1. Popular/Well-known Name

      This is a great addition. I think it would actually be better to use the popular names in the above RA plot as well.

      We may also have some data source internally at SB that has a mapping from NCBI taxonomic virus name to common name.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      In this work, Odenwald and colleagues show that mutant biotin ligases used to perform proximity-dependent biotin identification (TurboID) can be used to amplify signal in fluorescence microscopy and to label phase-separated compartments that are refractory to many immunofluorescence approaches. Using the parasite Trypanosoma brucei, they show that fluorescent methods such as expansion microscopy and CLEM, which require bright signals for optimal detection, benefit from the elevated signal provided by TurboID fusion proteins when coupled with labeled streptavidin. Moreover, they show that phase-separated compartments, where many antibody epitopes are occluded due to limited diffusion and potential sequestration, are labeled reliably with biotin deposited by a TurboID fusion protein that localizes within the compartment. They show successful labeling of the nucleolus, likely phase-separated portions of the nuclear pore, and stress granules. Lastly, they use a panel of nuclear pore-TurboID fusion proteins to map the regions of the T. brucei nuclear pore that appear to be phase-separated by comparing antibody labeling of the protein, which is susceptible to blocking, to the degree of biotin deposition detected by streptavidin, which is not. 

      Strengths: 

      Overall, this study shows that TurboID labelling and fluorescent streptavidin can be used to boost signal compared to conventional immunofluorescence in a manner similar to tyramide amplification, but without having to use antibodies. TurboID could prove to be a viable general strategy for labeling phase-separated structures in cells, and perhaps as a means of identifying these structures, which could also be useful. 

      Weaknesses: 

      However, I think that this work would benefit from additional controls to address if the improved detection that is being observed is due to the increased affinity and smaller size of streptavidin/biotin compared to IgGs, or if it has to do with the increased amount of binding epitope (biotin) being deposited compared to the number of available antibody epitopes. I also think that using the biotinylation signal produced by the TurboID fusion to track the location of the fusion protein and/or binding partners in cells comes with significant caveats that are not well addressed here, mostly due to the inability to discern which proteins are contributing to the observed biotin signal. 

      To dissect the contributions of the TurboID fusion to elevating signal, anti-biotin antibodies could be used to determine if the abundance of the biotin being deposited by the TurboID is what is increasing detection, or if streptavidin is essential for this.

      We agree with the reviewer, that it would be very interesting to distinguish whether the increase in signal comes from the multiple biotinylation sites or from streptavidin being a very good binder, or perhaps from both. However, this question is very hard to answer, as antibodies differ massively in their affinity to the antigen which is further dependent on the respective IF-conditions, and are therefore not directly comparible. Even if anti-biotin gives a better signal then anti-HA, this can be either caused by the increase in antigen-number (more biotin than HA-tag) or by the higher binding affinity, or by a combination of both, thus hard to distinguish. Nevertheless, we have tested monoclonal mouse anti-biotin targeting the (non-phase-separated) NUP158. We found the signal from the biotin-antibody to be much weaker than from anti-HA, indicating that, at least this particular biotin antibody, is not a very good binder in IF. 

      Alternatively, HaloTag or CLIP tagging could be used to see if diffusion of a small molecule tag other than biotin can overcome the labeling issue in phase-separated compartments. There are Halo-biotin substrates available that would allow the conjugation of 1 biotin per fusion protein, which would allow the authors to dissect the relative contributions of the high affinity of streptavidin from the increased amount of biotin that the TurboID introduces. 

      This is a very good idea, as in this case, the signals are both from streptavidin and are directly comparable. We expressed NUP158 with HaloTag and added PEG-biotin as a Halo ligand. However, PEG-biotin is poorly cell-permeable, and is in general only used on lysates. In trypanosomes, cell permeability is particular restricted, and even Halo-ligands that are considered highly cell-penetrant give only a weak signal. Even after over-night incubation, we could not get any signal with PEG-biotin. Our control, the TMR-ligand 647, gave a weak nuclear pore staining, confirming the correct expression and function of the HaloTag-NUP158.

      The idea of using the biotin signal from the TurboID fusion as a means to track the changing localization of the fusion protein or the location of interacting partners is an attractive idea, but the lack of certainty about what proteins are carrying the biotin signal makes it very difficult to make clear statements. For example, in the case of TurboID-PABP2, the appearance of a biotin signal at the cell posterior is proposed to be ALPH1, part of the mRNA decapping complex. However, because we are tracking biotin localization and biotin is being deposited on a variety of proteins, it is not formally possible to say that the posterior signal is ALPH1 or any other part of the decapping complex. For example, the posterior labeling could represent a localization of PABP2 that is not seen without the additional signal intensity provided by the TurboID fusion. There are also many cytoskeletal components present at the cell posterior that could be being biotinylated, not just the decapping complex. Similar arguments can be made for the localization data pertaining to MLP2 and NUP65/75. I would argue that the TurboID labeling allows you to enhance signal on structures, such as the NUPs, and effectively label compartments, but you lack the capacity to know precisely which proteins are being labeled.  

      We fully agree with the reviewer, that tracking proteins by streptavidin imaging alone is problematic, because it cannot distinguish, which protein is biotinylated. We therefore used words like “likely”  in the description of the data. However, we still think, it is a valid method, as long as it is confirmed by an orthogonal method. We have added this paragraph to the end of this chapter:

      “Importantly, tracking of proteins by streptavidin imaging requires orthogonal controls, as the imaging alone does not provide information about the nature of the biotinylated proteins. These can be proximity ligation assay, mass spectrometry or specific tagging visualisation of protein suspects by fluorescent tags. Once these orthogonal controls are established for a specific tracking, streptavidin imaging is an easy and cheap and highly versatile method to monitor protein interactions in a specific setting.”

      Reviewer #2 (Public Review): 

      Summary: 

      The authors noticed that there was an enhanced ability to detect nuclear pore proteins in trypanosomes using a streptavidin-biotin-based detection approach in comparison to conventional antibody-based detection, and this seemed particularly acute for phase-separated proteins. They explored this in detail for both standard imaging but also expansion microscopy and CLEM, testing resolution, signal strength, and sensitivity. An additional innovative approach exploits the proximity element of biotin labelling to identify where interacting proteins have been as well as where they are. 

      Strengths: 

      The data is high quality and convincing and will have obvious application, not just in the trypanosome field but also more broadly where proteins are tricky to detect or inaccessible due to phase separation (or some other steric limitations). It will be of wide utility and value in many cell biological studies and is timely due to the focus of interest on phase separation, CLEM, and expansion microscopy. 

      Thank you! We are glad you liked it.

      Reviewer #3 (Public Review): 

      Summary: 

      The authors aimed to investigate the effectiveness of streptavidin imaging as an alternative to traditional antibody labeling for visualizing proteins within cellular contexts. They sought to address challenges associated with antibody accessibility and inconsistent localization by comparing the performance of streptavidin imaging with a TurboID-HA tandem tag across various protein localization scenarios, including phase-separated regions. They aimed to assess the reliability, signal enhancement, and potential advantages of streptavidin imaging over antibody labeling techniques. 

      Overall, the study provides a convincing argument for the utility of streptavidin imaging in cellular protein visualization. By demonstrating the effectiveness of streptavidin imaging as an alternative to antibody labeling, the study offers a promising solution to issues of accessibility and localization variability. Furthermore, while streptavidin imaging shows significant advantages in signal enhancement and preservation of protein interactions, the authors must consider potential limitations and variations in its application. Factors such as the fact that tagging may sometimes impact protein function, background noise, non-specific binding, and the potential for off-target effects may impact the reliability and interpretation of results. Thus, careful validation and optimization of streptavidin imaging protocols are crucial to ensure reproducibility and accuracy across different experimental setups. 

      Strengths: 

      - Streptavidin imaging utilizes multiple biotinylation sites on both the target protein and adjacent proteins, resulting in a substantial signal boost. This enhancement is particularly beneficial for several applications with diluted antigens, such as expansion microscopy or correlative light and electron microscopy. 

      - This biotinylation process enables the identification and characterization of interacting proteins, allowing for a comprehensive understanding of protein-protein interactions within cellular contexts. 

      Weaknesses: 

      - One of the key advantages of antibodies is that they label native, endogenous proteins, i.e. without introducing any genetic modifications or exogenously expressed proteins. This is a major difference from the approach in this manuscript, and it is surprising that this limitation is not really mentioned, let alone expanded upon, anywhere in the manuscript. Tagging proteins often impacts their function (if not their localization), and this is also not discussed.

      - Given that BioID proximity labeling encompasses not only the protein of interest but also its entire interacting partner history, ensuring accurate localization of the protein of interest poses a challenge. 

      - The title of the publication suggests that this imaging technique is widely applicable. However, the authors did not show the ability to track the localization of several distinct proteins on the same sample, which could be an additional factor demonstrating the outperformance of streptavidin imaging compared with antibody labeling. Similarly, the work focuses only on small 2D samples. It would have been interesting to be able to compare this with 3D samples (e.g. cells encapsulated in an extracellular matrix) or to tissues.  

      Recommendations for the authors:

      To enhance the assessment from 'incomplete' to 'solid', the reviewers recommend that the following major issues be addressed: 

      Major issues: 

      (1) Anti-biotin antibodies in combination with TurboID labeling should be used to compare the signal/labelling penetrance to streptavidin results. That would show if elevated biotin deposition matters, or if it is really the smaller size, more fluors, and higher affinity of streptavidin that's making the difference. 

      We agree with the reviewer, that it would be very interesting to distinguish whether the increase in signal comes from the multiple biotinylation sites or from streptavidin being a very good binder, or perhaps from both, and whether the size matters (IgG versus streptavidin). However, this question is very hard to answer, as antibodies differ massively in their affinity to the antigen. Thus, even if antibiotin would give a better signal then anti-HA, this could be either caused by the increase in antigen-number (more biotin than HA-tag) or by the better binding affinity, or by a combination, and it would not allow to truly answer the question. We have now tested anti-biotin antibodies, also in repsonse to reviewer 1, and got a much poorer signal in comparison to anti-HA or streptavidin.

      Please note that we made another attempt using nanobodies to target phase-separated proteins, to see, whether size matters (Fig. 2I). The nanobody did not stain Mex67 at the nuclear pores, but gave a weak nucelolar signal for NOG1, which may suggest that the nanobody can slightly better penetrate than IgG, but it does not rule out that the nanobody simply binds with higher affinity. Reviewer 1 has suggested to use the Halo Tag with PEG-biotin: this would indeed allow to directly compare the streptavidin signal caused by the TurboID with a single biotin added by the Halo tag. Unfortunately, the PEG-biotin does not  penetrate trypanosome cells. In conclusion, we are not aware of a method that would allow to establish why streptavidin but not IgGs can penetrate to phase separated areas. We therefore prefer to not overinterpret our data, but stick to what is supported by the data: “the inability to label phase-separated areas is not restricted to anti-HA but applies to other antibodies”.

      (3) Figure 4 A-B. The validity of claiming the correct localization demonstrated by streptavidin imaging comes into question, especially when endogenous fluorescence, via the fusion protein, remains undetectable (as indicated by the yellow arrow at apex). 

      In this figure, the streptavidin imaging does NOT show the correct localisation of the bait protein, but it does show proteins from historic interactions that have a distinct localisation to the bait. We had therefore introduced this chapter with the paragraph below, to make sure, the reader is aware of the limitations (which we also see as an opportunity, if properly controlled):

      “We found that in most cases, streptavidin labelling faithfully reflects the steady state localisation of a bait protein, e.g., the localisation resembles those observed with immunofluorescence or direct fluorescence imaging of GFP-fusion proteins. For certain bait proteins, this is not the case, for example, if the bait protein or its interactors have a dynamic localisation to distinct compartments, or if interactions are highly transient. It is thus essential to control streptavidin-based de novo localisation data by either antibody labelling (if possible) or by direct fluorescence of fusion-proteins for each new bait protein.”

      In particular, on lines 450-460, there's a fundamental issue with the argument put forward here. It is not possible to formally know that the posterior labeling is ALPH1 vs. another part of the decapping complex that was associated with PABP2-Turbo, or if the higher detection capacity of the Turbo-biotin label is uncovering a novel localization of the PABP2. While it is likely that it is ALPH1, it is not possible to rule out other possibilities with this approach. These issues should be discussed here and more generally the possibility of off-target labeling with this approach should be addressed in the discussion. 

      We fully agree with the reviewer, that tracking proteins by streptavidin imaging alone is problematic, because it cannot distinguish, which protein is biotinylated. We therefore used words like “likely”  in the description of the data. However, we still think, it is a valid method, as long as it is back-uped by an orthogonal method. We have added this paragraph to the end of this chapter:

      “Importantly, tracking of proteins by streptavidin imaging requires orthogonal controls, as the imaging alone does not provide information about the nature of the biotinylated proteins. These can be proximity ligation assay, mass spectrometry or specific tagging visualisation of protein suspects by fluorescent tags. Once these orthogonal controls are established for a specific tracking, streptavidin imaging is an easy and cheap and highly versatile method to monitor protein interactions in a specific setting.”

      (4) More discussion and acknowledgment of the general limitations in using tagged proteins are needed to balance the manuscript, especially if the hope is to draw a comparison with antibody labeling, which works on endogenous proteins (not requiring a tag). For example: (a) tagging proteins requires genetic/molecular work ahead of time to engineer the constructs and/or cells if trying to tag endogenous proteins; (b) tagged proteins should technically be validated in rescue experiments to confirm the tag doesn't disrupt function in the cell/tissue/context of interest; and (c) exogenous tagged proteins compete with endogenous untagged proteins, which can complicate the interpretation of data.  

      We have added this paragraph to the first paragraph of the discussion part:

      “Like many methods that are frequently used in cell- and molecular biology, streptavidin imaging is based on the expression of a genetically engineered fusion protein: it is essential to validate both, function and localisation of the TurboID-HA tagged protein by orthogonal methods. If the fusion protein is non-functional or mis-localised, tagging at the other end may help, but if not, this protein cannot be imaged by streptavidin imaging. Likewise, target organisms not amenable to genetic manipulation, or those with restricted genetic tools,  are not or less suitable for this method.”

      Also, we like to point out that for non-mainstream organisms like trypanosomes, antibodies are not commercially available and often genetic manipulation is more time-efficient and cheaper than the production of antiserum against the target protein.

      Also, the introduction would ideally be more general in scope and introduce the pros and cons of antibody labeling vs biotin/streptavidin, which are mentioned briefly in the discussion. The fact that the biotin-streptavidin interaction is ~100-fold higher affinity than an IgG binding to its epitope is likely playing a key role in the results here. The difference in size between IgG and streptavidin, the likelihood that the tetrameric streptavidin carries more fluors than a IgG secondary, and the fact that biotin can likely diffuse into phase-separated environments should be clearly stated. The current introduction segues from a previous paper that a more general audience may not be familiar with. 

      We have now included this paragraph to the introduction:

      “It remains unclear, why streptavidin was able to stain biotinylated proteins within these antibody inaccessible regions, but possible reasons are: (i) tetrameric streptavidin is smaller and more compact than IgGs (60 kDa versus a tandem of two IgGs, each with 150 kDa) (ii) the interaction between streptavidin and biotin is ~100 fold stronger than a typical interaction between antibody and antigen and (iii) streptavidin contains four fluorophores, in contrast to only one per secondary IgG.”

      Minor issues: 

      The copy numbers of the HA and Ty1 epitope tags vary depending on the construct being used. For example, Ty1 is found as a single copy tag in the TurboID tag, but on the mNeonGreen tag there are 6 copies of the epitope. It makes it hard to know if differences in detection are due to variations in copies of the epitope tags. Line 372-374: can the authors explain why they chose to use nanobodies in this case? It would be great to show the innate mNeonGreen signal in 2K to compare to the Ty1 labeling. The presence of 6 copies of the Ty1 epitope could be essential to the labeling seen here.

      We agree with the reviewer, that these data are a bit confusing. We have now removed Figure 3K, as it is the only construct with 6 Ty1 instead of one, and it does not add to the conclusions. (the mNeonsignal is entirely in the nucleolus, as shown by Tryptag). We have also added an explanation why we used nanobodies (“The absence of a nanobody signal rules out that its simply the size of IgGs that prevents the staining of Mex67 at the nuclear pores, as nanobodies are smaller than (tetrameric) streptavidin”). However, as stated above, we prefer not to overinterpret the data, as signals from different antibodies/nanobodies – antigen combinations are not comparable. Important to us was to stress that the absence of signal in phase-separated areas is NOT restricted to the anti-HA antibody, which is clearly supported by the data.

      What is the innate streptavidin background labeling look like in cells that are not carrying a TurboID fusion, from the native proteins that are biotinylated? That should be discussed. 

      We have now included the controls without the TurboID fusions for trypanosomes and HeLa cells: “Wild type cells of both Trypanosomes and human showed only a very low streptavidin signal, indicating that the signal from naturally biotinylated proteins is neglectable (Figure S8 in supplementary material).”

      Line 328-331: This is likely to be dependent on whether or not the protein moves to different localizations within the cell. 

      True, we agree, and we have added this paragraph:

      “The one exception are very motile proteins that produce a “biotinylation trail” distinct to the steady state localisation; these exceptions, and how they can be exploited to understand protein interactions, are discussed in chapter 4 below. “

      Line 304-305: Does biotin supplementation not matter at all? 

      No, we never saw any increase in biotinylation when we added extra biotin to trypanosomes. The 0.8 µM biotin concentration in the medium were sufficient.

      Line 326-327: Was the addition of biotin checked for enhancement in the case of the mammalian NUP98? I would argue that there is a significant number of puncta in Figure 1D that are either green or magenta, not both. The amount of extranuclear puncta in the HA channel is also difficult to explain. Biotin supplementation to 500 µM was used in mammalian TurboID experiments in the original Nature Biotech paper- perhaps nanomolar levels are too low. 

      We now tested HeLa cells with 500 µM Biotin and saw an increase in signal, but also in background; due to the increased background  we conclude that low biotin concentrations are more suitable . We have also repeated the experiment using 4HA tags instead of 1HA, and we found a minor improvement in the antibody signal for NUP88 (while the phase separated NUP54 was still not detectable). We have replaced the images in Figure 1D  (NUP88) and also in Figure 2F (NUP54) with improved images and using 4HA tags. However, we like to note that single nuclear pore resolution is beyond what can be expected of light microscopy.

      Line 371: In 2I, I see a signal that looks like the nucleus, similar to the Ty1 labeling in 2G, so I don't think it's accurate to say that that Mex67 was "undetectable". Does the serum work for blotting? 

      Thank you, yes, “undetectable” was not the correct phrase here. Mex67 localises to the nuclear pores, to the nuceoplasm and to the nucleolus (GFP-tagging or streptavidin). Antibodies, either to the tag or to the endogenous proteins, fail to detect Mex67 at the nuclear pores and also don’t show any particular enrichment in the nucleolus. They do, however, detect Mex67 in the (not-phase-separated) area of the nucleoplasm. We have changed the text to make this clearer. The Mex67 antiserum works well on a western blot (see for example: Pozzi, B., Naguleswaran, A., Florini, F., Rezaei, Z. & Roditi, I. The RNA export factor TbMex67 connects transcription and RNA export in Trypanosoma brucei and sets boundaries for RNA polymerase I. Nucleic Acids Res. 51, 5177–5192 (2023))

      Line 477: "lacked" should be "lagged".

      Thank you, corrected.

      Line 468-481: My previous argument holds here - how do you know that the difference in detection here is just a matter of much higher affinity/quantity of binding partner for the avidin?

      See answer to the second point of (3), above.

      483-491: Same issue - without certainty about what the biotin is on, this argument is difficult to make. 

      See answer to the second point of (3), above.

      Line 530: "bone-fine" should be "bonafide"

      Thank you, corrected.

      Line 602: biotin/streptavidin labeling has been used for expansion microscopy previously (Sun, Nature Biotech 2021; PMID: 33288959). 

      Thank you, we had overlooked this! We have now included this reference and describe the differences to our approach clearer in the discussion part:

      “Fluorescent streptavidin has been previously used in expansion microscopy to detect biotin residues in target proteins produced by click chemistry (Sun et al., 2021). However, to the best of our knowledge, this is the first report that employs fluorescent streptavidin as a signal enhancer in expansion microscopy and CLEM, by combining it with multiple biotinylation sites added by a biotin ligase. Importantly, for both CLEM and expansion, streptavidin imaging is the only alternative approach to immunofluorescence, as denaturing conditions associated with these methods rule out direct imaging of fluorescent tags.”

    1. Author response:

      The following is the authors’ response to the previous reviews.

      eLife assessment:

      This study presents valuable framework and findings to our understanding of the brain as a fractal object by observing the stability of its shape property within 11 primate species and by highlighting an application to the effects of aging on the human brain. The evidence provided is solid but the link between brain shape and the underlying anatomy remains unclear. This study will be of interest to neuroscientists interested in brain morphology, whether from an evolutionary, fundamental or pathological point of view, and to physicists and mathematicians interested in modeling the shapes of complex objects.

      We now clarified the outstanding questions regarding if our model outputs can be related to actual primate brain anatomy, which we believe was mainly based on comments regarding the validity of our output of apparently thicker cortices than nature can produce.

      We address this point in more detail in the point-by-point response below, but want to address this misunderstanding directly here: Our algorithm does not produce thicker cortices with increasing coarse-graining scales; in fact, the cortical thickness never exceeds the actual cortical thickness in our outputs, but rather thins with each coarse-graining scale. In other words, we believe that our outputs are fully in line with neuroanatomy across species.

      Reviewer #2 (Public Review): 

      In this manuscript, the authors analyze the shapes of cerebral cortices from several primate species, including subgroups of young and old humans, to characterize commonalities in patterns of gyrification, cortical thickness, and cortical surface area. The authors state that the observed scaling law shares properties with fractals, where shape properties are similar across several spatial scales. One way the authors assess this is to perform a "cortical melting" operation that they have devised on surface models obtained from several primate species. The authors also explore differences in shape properties between brains of young (~20 year old) and old (~80) humans. A challenge the authors acknowledge struggling with in reviewing the manuscript is merging "complex mathematical concepts and a perplexing biological phenomenon." This reviewer remains a bit skeptical about whether the complexity of the mathematical concepts being drawn from are justified by the advances made in our ability to infer new things about the shape of the cerebral cortex. 

      To allow scientists from all backgrounds to adopt these complex ideas, we have made our code to “melt” the brains and for further downstream analysis publicly available. We have now also provided a graphical user interface, to allow users without substantial coding experience to run the analysis. We also believe that the algorithmic concepts are easy to understand due to the similarity to the coarse-graining procedures found in long-standing and well-accepted box-counting algorithms.

      Beyond the theoretical insight of the fractal nature of cortices and providing an explicit and crucial link between vastly different brains that are gyrified and those that are not, we believe that the advance gained by our methods for future applications is clearly demonstrated in our proof-of-principle with a four-fold increase in effect size. For reference, an effect size of 8 would translate to an almost perfect separation of groups, i.e. an ideal biomarker with near 100% sensitivity and specificity.

      (1) The series of operations to coarse-grain the cortex illustrated in Figure 1 produces image segmentations that do not resemble real brains.

      As re-iterated in our Methods and Discussion: “Note, of course, that the coarse-grained brain surfaces are an output of our algorithm alone and are not to be directly/naively likened to actual brain surfaces, e.g. in terms of the location or shape of the folds. Our comparisons here between coarse-grained brains and actual brains is purely on the level of morphometrics across the whole cortex.”

      Fig. 1 therefore serves as an explanation to the reader on the algorithmic outputs, but each melted brain is not supposed to be directly/visually compared to actual brains. Similar to algorithms measuring the fractal dimension, or the exposed surface area of a given brain, the intermediate outputs of these algorithms are not supposed to represent any biologically observed brain structures, but rather serve as an abstraction to obtain meaningful morphometrics.

      We additionally added a note to the caption of Fig. 1 to clarify this point:

      “Note that the actual size of the brains for analysis are rescaled (see Methods and Fig. 3); we display all brains scaled at an equal size here for the ease of visualisation of the method.”

      Finally, we also edited the entire paper for terminology to clearly distinguish the terms of (1) the cortex as a 3D object, (2) coarse-grained and voxelised versions thereof, and (3) summary morphological measures derived from the former. When we invite comparisons in our paper between real brains and coarse-grained brains, this is always at the level of summary morphological measures, not at the level of the 3D objects/voxelisations themselves.

      The process to assign voxels in downsampled images to cortex and white matter is biased towards the former, as only 4 corners of a given voxel are needed to intersect the original pial surface, but all 8 corners are needed to be assigned a white matter voxel. The reason for introducing this bias (and to the extent that it is present in the authors' implementation) is not provided.

      This detail was in the Supplementary, and we have now added additional clarification on this specific point to our Supplementary:

      “In detail, we assign all voxels in the grid with at least four corners inside the original pial surface to the pial voxelization. This process allows the exposed surface to remain approximately constant with increasing voxel sizes. A constant exposed surface is desirable, as we only want to gradually ‘melt’ and fuse the gyri, but not grow the bounding/exposed surface as well. We want the extrinsic area to remain approximately constant as we decrease the intrinsic area via coarse-graining; it is like generating iterates of a Koch curve in reverse, from more to less detailed, by increasing the length of smallest line segment.

      We then assign voxels with all eight corners inside the original white matter surface to the white matter voxelization. This is to ensure integrity of the white matter, as otherwise white matter voxels in gyri may become detached from the core white matter, and thus artificially increase white matter surface area. Indeed, the main results of the paper are not very sensitive to this decision using all eight corners, vs. e.g. only four corners, as we do not directly use white matter surface area for the scaling law measurements. However, we still maintained this choice in case future work wants to make use of the white matter voxelisations or derivative measures.”

      Note on the point of white matter integrity that if both grey and white matter voxelisations require all 8 corner to be inside the respective mesh, there will be voxels not assigned to either at the grey/white matter interface, causing potential downstream issues.

      We further acknowledge:

      “Of course, our proposed procedure is not the only conceivable way to erase shape details below a given scale; and we are actively working on related algorithms that are also computationally cheaper. Nevertheless, the current version requires no fine-tuning, is computationally feasible and conceptually simple, thus making it a natural choice for introducing the methodology and approach.”

      The authors provide an intuitive explanation of why thickness relates to folding characteristics, but ultimately an issue for this reviewer is, e.g., for the right-most panel in Figure 2b, the cortex consists of several 4.9-sided voxels and thus a >2 cm thick cortex. A structure with these morphological properties is not consistent with the anatomical organization of typical mammalian neocortex. 

      We assume the reviewer refers to Fig. 1B with the panel on scale=4.9mm. We would like to point out that Fig. 1 serves as an explanation of the voxelisation method. For the actual analysis and Results, we are using re-scaled brains (see Fig. 2 with the ever decreasing brain sizes). The rescaling procedure is now expanded as below:

      “Morphological properties, such as cortical thicknesses measured in our ‘melted’ brains are to be understood as a thickness relative to the size of the brain. Therefore, to analyse the scaling behaviour of the different coarse-grained realisations of the same brain, we apply an isometric rescaling process that leaves all dimensionless shape properties unaffected (more details in Suppl. S3.1). Conceptually, this process fixes the voxel size, and instead resizes the surfaces relative to the voxel size, which ensures that we can compare the coarse-grained realisations to the original cortices, and test if the former, like the latter, also scale according to Eqn. (1). Resizing, or more precisely, shrinking the cortical surface is mathematically equivalent to increasing the box size in our coarse-graining method. Both achieved an erasure of folding details below a certain threshold. After rescaling, as an example, the cortical thickness also shrinks with increasing levels of coarse-graining, and never exceeds the thickness measured at native scale.”

      We additionally added a note to the caption of Fig. 1 to clarify this point:

      “Note that the actual size of the brains for analysis are rescaled (see Methods and Fig. 3); we display all brains scaled at an equal size here for the ease of visualisation of the method.”

      Finally, we also edited the entire paper for terminology to clearly distinguish the terms of (1) the cortex as a 3D object, (2) coarse-grained versions thereof, and (3) summary morphological measures derived from the former. When we invite comparisons in our paper between real brains and coarse-grained brains, this is always at the level of summary morphological measures, not at the level of the 3D objects themselves and their detailed anatomical features.

      (2) For the comparison between 20-year-old and 80-year-old brains, a well-documented difference is that the older age group possesses more cerebral spinal fluid due to tissue atrophy, and the distances between the walls of gyri becomes greater. This difference is born out in the left column of Figure 4b. It seems this additional spacing between gyri in 80 year olds requires more extensive down-sampling (larger scale values in Figure 4a) to achieve a similar shape parameter K as for the 20 year olds. The authors assert that K provides a more sensitive measure (associated with a large effect size) than currently used ones for distinguishing brains of young vs. old people. A more explicit, or elaborate, interpretation of the numbers produced in this manuscript, in terms of brain shape, might make this analysis more appealing to researchers in the aging field.

      We have removed the main results relating to K and aging from our last revision already to avoid confusion. This is now only in the supplementary analysis, and our claim of K being a more sensitive measure for age and ageing – whilst still true – will be presented in more detail in a series of upcoming papers.

      (3) In the Discussion, it is stated that self-similarity, operating on all length scales, should be used as a test for existing and future models of gyrification mechanisms. Given the lack of association between the abstract mathematical parameters described in this study and explicit properties of brain tissue and its constituents, it is difficult to envision how the coarse-graining operation can be used to guide development of "models of cortical gyrification."

      We have clarified in more detail what we meant originally in Discussion:

      “Finally, this dual universality is also a more stringent test for existing and future models of cortical gyrification mechanisms at relevant scales, and one that moreover is applicable to individual cortices. For example, any models that explicitly simulate a cortical surface as an output could be directly coarse-grained with our method and the morphological trajectories can be compared with those of actual human and primate cortices. The simulated cortices would only be ‘valid’ in terms of the dual universality, if it also produces the same morphological trajectories.”

      However, we agree with the reviewer that our paper could be misread as demanding direct comparisons of each coarse-grained brain with an actual brain, and we have now added the following text to clarify that this is not our intention for the proposed method or outputs.

      “Note, we do not suggest to directly compare coarse-grained brain surfaces with actual biological brain surfaces. As we noted earlier, the coarse-grained brain surfaces are an output of our algorithm alone and not to be directly/naively likened to actual brain surfaces, e.g. in terms of the location or shape of the folds. Our comparisons here between coarse-grained brains and actual brains is purely on the level of morphometrics across the whole cortex.”

      Indeed, the dual universality imposes restrictive constraints on the possible shapes of real cortices, but do not fully specify them. Presumably, the location of individual folds in different individuals and species will depend on their respective evolutionary histories, so there is no reason to expect a match in fold location between the ‘melted’ cortices of more gyrified species, on one hand, and the cortex of a less-gyrified one, on the other,  even if their global morphological parameters and global mechanism of folding coincide.

      (4) There are several who advocate for analyzing cortical mid-thickness surfaces, as the pial surface over-represents gyral tips compared to the bottoms of sulci in the surface area. The authors indicate that analyses of mid-thickness representations will be taken on in future work, but this seems to be a relevant control for accepting the conclusions of this manuscript.

      In the context of some applications and methods, we agree that the mid-surface is a meaningful surface to analyse. However, in our work, the mid-surface is not. The fractal estimation rests on the assumption that the exposed area hugs the object of interest (hence convex hull of the pial surface), as the relationship between the extrinsic and intrinsic areas across scales determine the fractal relationship (Eq. 2). If we used the mid-surface instead of the pial surface for all estimation, this would not represent the actual object of interest, and it is separated from the convex hull. Estimating a new convex hull based on the mid surface would be the equivalent of asking for the fractal dimension of the mid-surface, not of the cortical ribbon. In other words, it would be a different question, bound to yield a different answer.

      Hence, we indicated in our original response that we only have a provisional answer, but more work beyond the scope of this paper is required to answer this question, as it is a separate question. The mid-surface, as a morphological structure in its own right, will have its own scaling properties, and our provisional understanding is that these also yield a scaling law parallel to those of the cortical ribbon with the same or a similar fractal dimension. But more systematic work is required to investigate this question at native scale and across scales.

      Reviewer #3 (Public Review):

      Summary: Through a rigorous methodology, the authors demonstrated that within 11 different primates, the shape of the brain followed a universal scaling law with fractal properties. They enhanced the universality of this result by showing the concordance of their results with a previous study investigating 70 mammalian brains, and the discordance of their results with other folded objects that are not brains. They incidentally illustrated potential applications of this fractal property of the brain by observing a scale-dependant effect of aging on the human brain. 

      Strengths: 

      - New hierarchical way of expressing cortical shapes at different scales derived from previous report through implementation of a coarse-graining procedure 

      - Investigation of 11 primate brains and contextualisation with other mammals based on prior literature 

      - Proposition of tool to analyse cortical morphology requiring no fine tuning and computationally achievable 

      - Positioning of results in comparison to previous works reinforcing the validity of the observation. 

      - Illustration of scale-dependance of effects of brain aging in the human. 

      Weaknesses: 

      - The notion of cortical shape, while being central to the article, is not really defined, leaving some interpretation to the reader 

      - The organization of the manuscript is unconventional, leading to mixed contents in different sections (sections mixing introduction and method, methods and results, results and discussion...). As a result, the reader discovers the content of the article along the way, it is not obvious at what stages the methods are introduced, and the results are sometimes presented and argued in the same section, hindering objectivity. 

      To improve the document, I would suggest a modification and restructuring of the article such that: 1) by the end of the introduction the reader understands clearly what question is addressed and the value it holds for the community, 2) by the end of the methods the reader understands clearly all the tools that will be used to answer that question (not just the new method), 3) by the end of the results the reader holds the objective results obtained by applying these tools on the available data (without subjective interpretations and justifications), and 4) by the end of the discussion the reader understands the interpretation and contextualisation of the study, and clearly grasps the potential of the method depicted for the better understanding of brain folding mechanisms and properties. 

      We thank this reviewer again for their attention to detail and constructive comments. We have followed the detailed suggestions provided by us in the Recommendations For The Authors, and summarise the main changes here:

      - We have restructured all sections to be more clearly following Introduction, Methods, Results, and Discussion; by using subsections, we believe the structure is now more accessible to readers.

      -  We have now clarified the concept of “cortical shape”, as we use it in our paper in several places, by distinguishing clearly the object of study, and the morphological properties measured from it.

      Recommendations for the authors: 

      Reviewer #2 (Recommendations For The Authors): None 

      Reviewer #3 (Recommendations For The Authors): 

      I once again compliment the authors for their elegant work. I am happy with the way they covered my first feedback. My second review takes into account some comments made by other reviewers with which I agree. 

      We thank this reviewer again for their attention to detail and constructive comments.

      Recommendations for clarifications: 

      General comments: The purpose of the article could be made clearer in the introduction. When I differentiate results from discussion, I think of results as objective measures or observations, while discussion will relate to the interpretation of these results (including comparison with previous literature, in most cases). 

      We have restructured all sections to be more clearly following Introduction, Methods, Results, and Discussion; by using subsection, we believe the structure is now more accessible to readers.

      - l.39: define or discuss "cortical shape" 

      We have gone through the entire paper and corrected for any ambiguities. We specifically distinguish between the cortex as a structure overall, shape measures derived from this structure, and coarse-grained versions of the structure.

      - l.48-74: this would match either an introduction or a discussion rather than a methods section. 

      Done

      - l.98-106: this would match a discussion rather than a methods section. 

      Done

      - l.111: here could be a good spot to discuss the 4 vs 8 corners for inclusion of pial vs white matter voxelization 

      We have discussed this in the more detailed Supplementary section now, as after restructuring, this appears to be the more suitable place.

      - l.140-180: it feels that this section mixes methods, results and discussion of the results 

      We agree and we have resolved this by removing sentences and re-arranging sections.

      - l.183-217: mix of results and discussion 

      We agree and we have resolved this by removing sentences and re-arranging sections.

      Small cosmetic suggestions: 

      - l.44: conservation of 'some' quantities: vague 

      Changed to conservation of morphological relationships across evolution

      - l.66: order of citations ([24, 22,23]) 

      Will be fixed at proof stage depending on format of references.

      - l.77: delete space between citation and period 

      Done

      - l.77: I would delete 'say' 

      Done

      - l.86: 'but to also analyse' -> 'to analyse' 

      Done

      - l.105: remove 'we are encouraged that' 

      Done

      - l.111: 'also see' -> 'see also' 

      Done

      - l.164: 'remarkable': subjective 

      Done

      - l.189: define approx. abbreviation 

      Done

      - l.190: 'approx' -> 'approx.' 

      Revised

      - l.195: 'dramatic': subjective 

      removed

      -l. 246: 'much' -> vague 

      explained

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Answers to reviewers


      Reviewer #1

      Sagia et al. present a manuscript using A. nidulans as model to study different transport routes of membrane proteins from the ER to the plasma membrane. They showed in earlier work that apparently at least two different transport routes exist, one involving the classical ER-ERES-ERGIC-Golgi route, one bypassing the Golgi. Unpolarized membrane proteins use the former, apically sorted membrane proteins the latter route. The study here confirms their earlier findings, uses a better model (co-expression of representatives for both routes in the same cell) and provides additional mechanistic insights about the roles of rabs, SNARES and other important proteins of the secretory pathway. The study is thoroughly done, figures are of high quality, data and methods well described and adequately replicated.

      Thank you for your positive comments

      I do have, however, a number of comments that could help to improve the manuscript.

      -I suggest using the term polarized or apical rather than polar. Polar alone to me refers more to physico-chemical properties like water-solubility.

      Amended in most parts of the revised text.

      -introduction and discussion: I don’t think the literature about unconventional secretion bypassing the Golgi is complete, for example studies about TMED10 like Zhang, M. et al. Cell 181, 637-652 e615 (2020) or Zhang et al. Elife 4 (2015) are missing, there might be others. Is UapA a leader-less cargo that could be inserted via TMED10 translocation?

      Thank you for letting us know, we have missed these articles. More references on UPS are now added, including the Zhang et all publications. UapA, as all transporters, is a multispan transmembrane protein with no leader peptide. In fact, we have checked the role of p24 family proteins (homologous to TMED10) in UapA trafficking. The knock-out of key p24 proteins does not affect UapA sorting to the PM (please consider this as confidential unpublished results)

      -Fig. 1C. Can these intracellular structures be characterized in more detail?

      As explained briefly to the handling editor above, and following the reviewer’s suggestion, we performed new experiments to better characterize the identity of the cargo-labeled fluorescent puncta. To do so, we used co-expression of a standard ERES marker, Sec16, in cells expressing either UapA or SynA, tagged with different fluorescent tags. More specifically, we constructed and analyzed strains co-expressing UapA-GFP/Sec16-mCherry or GFP-SynA/mCherry-Sec16 in the sec31ts genetic background, which allows synchronization and better analysis of ER exit, as described in our text. The new findings appear as Figure 5C __in the revised manuscript. Notice that sec16-mCherry introduced in the native sec16 locus by standard knock-in reverse genetics of A. nidulans (see Materials and methods) does not affect Aspergillus growth or secretion. Experiments depicted in __5C show that both cargoes, UapA and SynA, co-localize significantly (PCC ≈ 0.6), with Sec16, suggesting that most of these puncta are indeed ERES structures. Given that the puncta marked with UapA or SynA are clearly distinct (see Figures 1C,2A, 3A, 5B), this new experiment strongly suggests that there are indeed two distinct ERES, one populated mostly by UapA and the other by SynA. Notice, as we already outline in our response to the editor above, a three-colored approach using Sec16-BFP (or Sec13-BFP) for showing directly the existence of these two populations of cargo-specific ERES in the same cell failed as the BFP signal was problematic for colocalization studies.

      Where is the Golgi localized in A. nidulans, is it decentralized like in yeast?

      Yes, as in S. cerevisiae, A. nidulans Golgi cisternae are individually scattered throughout the cytoplasm, also similarly to other filamentous fungi. Notice that in A. nidulans Golgi structures are moderately polarized (Pantazopoulou and Penalva 2009).

      Is the UapA at the time points shown in Fig. 1C in some sub-PM structures? To me the distribution at or near the PM is more punctate than in the steady state image shown in 1B

      The punctuate appearance of PM transporters at the periphery of fungal cells is a common theme when these do not reach high, steady-state, levels of accumulation. In fact, several transporters mark specific subdomains of the PM, more evident before achieving their steady-state levels. For example, in yeast several amino acid and nucleobase transporters mark punctuate structures that colocalize with eisosomes markers (caveolin-like PM subdomains), while the proton pump ATPase Pma1 marks distinct punctuate domains. Similarly, UapA and other solute transporters mark punctuate structures before reaching their state-state accumulation in the PM. Figure 1C shows the de novo synthesis of cargoes after 100 min of transcription, while Figure 1B depicts the steady-state localization of UapA and SynA after 4h. In the latter case, the PM is ‘saturated’ with UapA molecules and thus the fluorescent signal of distinct puncta ‘fuses’, creating continuous fluorescent labeling. Notice also that in several cases, in our work, we have also performed UapA transport assays, which provide a direct tool to test and confirm the presence of UapA in the PM (see Figures 4D or 6C).

      -Fig. 3A. To me it looks like there is actually a lot of colocalization of UapA and SynA, especially at or near the PM, where there is quite some white, punctate staining. The green fluorescence is just much stronger, overlaying the violet. Can you show separate channels and explain?

      We think the reviewer means Figure 2A, which compares UapA and SynA (Figure 3A compares UapA with Golgi markers). If so, we have quantitatively estimated and performed statistical analysis (PCC) which indicates that this, visually apparent colocalization, is not significant (right panel in Figure 2A). Notice also that we cannot totally exclude very minimal colocalization of UapA and SynA signals as both cargoes mark very proximal early secretory domains (i.e., ERES or ERGIC), especially in fungal cells. Anyhow, in the revised Figure 2 we also added a panel depicting separate channels, as the reviewer asks.

      -Fig. 3: In my opinion the statement that UapA "is probably sorted from an early secretory compartment, ultimately bypassing the need for Golgi maturation" is too strong at that point. You say for both UapA and SynA you don’t get significant colocalization with early Golgi/ERGIC marker, then you cannot conclude that one takes the conventional route via early-late Golgi and the other does not. What you can say is that UapA is apparently not going through late Golgi.

      The reviewer is in principle correct. However, significant colocalization with the late Golgi marker, as SynA shows, strongly suggests that this cargo has passed via the early Golgi compartment. The fact we failed to detect significant colocalization of any cargo tested with early Golgi/ERGIC markers (e.g., SedV) is very probably due to very rapid passage of cargoes from these compartments, which conventional widefield or confocal microscopy cannot detect. To achieve this, ultra-fast fluorescent microcopy, as Lattice Light Sheet Microscopy (LLSM), should be used. In fact, we are currently initiating these studies, which will appear in the near future elsewhere.

      -Fig. 4C: UapA does not seem to accumulate in the ER in the Sec24 and 13 mutants but in punctate structures. This for me is unexpected, any explanations? Can you characterize that punctate staining?

      This is an interesting observation. Notice that UapA is a large homodimeric protein (e.g., 28 transmembrane domains) that oligomerizes further upon translocation into the ER membrane. Repression of Sec24, and to a less extent of Sec13, leads to inability to exit the ER properly. Consequently, this will lead to UapA overaccumulation in the ER, which might in turn lead to ER stress and turnover, reflected in UapA aggregates. In line with this, we have previously shown that specific mutants of UapA unable to exit the ER are indeed degraded by selective autophagy (Evangelinos et al., 2016). In contrast to UapA, SynA partitions in the entire ER without forming aggregates when sec24 or sec13 are repressed. This might be due to the fact that is a single-pass, much smaller, membrane protein compared to UapA and one that is not known to form oligomers. Thus, its overaccumulation in the ER might not lead to aggregation, allowing it to diffuse laterally in the membrane of the ER. A note on this is included in the Figure legend of the revised manuscript.

      -Fig. 6D: You state that BFA "has only a very modest effect on UapA translocation to the PM". To me the PM (or very near PM) staining of UapA looks very different in the PFA treated cells, more uneven/punctate. Is there an explanation for that?

      Our explanation is the following. When BFA is added, conventional secretion is blocked and Golgi collapses. We believe that this might have a moderate indirect effect also on cargoes bypassing the late Golgi/TGN, as UapA (i.e., lower levels of UapA present in the PM). This is based on the fact that UapA, in addition to conventional cargoes, requires the Q-SNARE complex SsoA/Sec9 to translocate to the PM. SsoA, being a membrane protein cargo itself, also needs to traffic to the PM. Interestingly, we have previously obtained evidence suggesting that SsoA traffics to the PM by both conventional and a Golgi-bypass routes (Dimou et al 2020). Thus, UapA translocation to the PM might indeed be partially impeded or delayed due to repression of proteins, such as SsoA (and probably Sec9), needed for its final integration into the PM bilayer. Importantly, in line with an indirect effect of BFA on the levels of UapA localized in the PM, notice that, unlike SynA, UapA was never trapped in brefeldin bodies (i.e., Golgi aggregates).

      Reviewer #1 (Significance):

      One strength of the study is the use of a model organism, A. nidulans, not cell cultures. Also, the use of both reporters, UapA and SynA, in the same cell is an advantage over previous studies using different lines and different promotors. Limitation of the study might be that it remains unclear to what extend the basic mechanism (UapA and SynA are transported to PM in different carrier and via different routes) can be generalized to other polarized (apically?) membrane proteins versus non-polarized membrane proteins in A. nidulans and whether a similar mechanism exists in other organisms. Some of the basic findings of the study are not new but were published by the same group. However, as the authors point out, the current study uses improved assays and extends their previous studies, advancing our understanding of the mechanistics of transport in the conventional secretory pathway and novel alternative routes. The study will be of interest for basic researchers in the trafficking field. My own expertise is transport through the secretory pathway in mammalian cells, many years ago more post-Golgi, now mostly ER-Golgi and ER itself.

      We thank the reviewer for his positive comments.

      __Reviewer #2 __

      __ __The idea that transmembrane proteins of the plasma membrane move from the ER to the Golgi and then to the cell surface is firmly entrenched, and the mechanisms and components of this secretory pathway have been extensively characterized. Secretory vesicles are often delivered from the Golgi to sites of polarized growth. This paper builds on previous work by the same group to provide evidence that in Aspergillus nidulans, some non-polarly localized plasma membrane proteins follow a very different pathway, which bypasses components of the conventional secretory machinery such as SNAREs that have been implicated in secretion as well as the exocyst. In particular, they systematically compare the trafficking of the SNARE SynA, which follows the conventional secretory pathway, with that of the purine transporter UapA, which apparently does not. The two proteins were co-expressed in the same cells using the same promoter. A variety of genetic and microscopy methods are used to support the conclusion that UapA reaches the plasma membrane by a route distinct from that followed by SynA.

      In my view, the authors present a convincing case. The individual experimental results are sometimes ambiguous, but the combined results favor the conclusion that UapA follows a novel pathway to the plasma membrane. I have only a few relatively minor comments.

      Thank you for your positive comments

      1. In the Introduction and elsewhere: to my knowledge, there is no clear evidence that AP-1-containing clathrin-coated vesicles carry cargoes from the Golgi to the plasma membrane. On the contrary, as recently reported by Robinson (https://pubmed.ncbi.nlm.nih.gov/38578286/), AP-1-containing vesicles likely mediate retrograde traffic in the late secretory pathway.

      Thank you for this comment and the relative reference. We are aware that AP-1 is likely to also mediate retrograde traffic in the late secretory pathway or/and intra-Golgi recycling, as also reported by the group of Benjamin Glick. Thus, in the revised version we added a short comment on this plus relative references. Along this line, our previous work has shown that transcriptional repression of AP-1 arrests the polar localization of several apical markers in A. nidulans and we reported that this might be due to an effect on both anterograde and retrograde trafficking. Please see “Secretory Vesicle Polar Sorting, Endosome Recycling and Cytoskeleton Organization Require the AP-1 Complex in Aspergillus nidulans”. Martzoukou O, Diallinas G, Amillis S. Genetics. 2018 Aug;209(4):1121-1138. Overall, the fact that AP-1 was found absolutely dispensable for UapA trafficking, further strengthens our conclusion that UapA bypasses the Golgi.

      1. In Figure 2, is there any known significance to the presence of UapA in "cytoplasmic oscillating thread structures decorated by pearl-like foci as well as a very faint vesicular/tubular network"?

      At present we cannot answer this question. In order to understand what these structures represent and answer what is their role, we will need to employ super-resolution and ultra-fast microscopy and additional markers, which we envision to do. We suspect that they might be tubular networks, but this extends beyond the present work.

      1. SynA is related to S. cerevisiae Snc1/2, which are known to be present in late Golgi compartments due to repeated rounds of endocytosis to the Golgi and exocytosis to the plasma membrane. The SynA shown here to colocalize with PHosbp is probably present in a similar recycling loop rather than being en route to the plasma membrane for the first time. Therefore, the differential colocalization of UapA and SynA with PHosbp does not by itself provide "strong evidence that the two cargoes studied traffic via different routes" as stated in the text but might instead indicate that only SynA undergoes frequent endocytosis. The text should be amended accordingly.

      The reviewer is in principle correct. However, given that colocalization of SynA and PHosbp occurred all over the cytoplasm of hyphae and not only at the apical region, and because we record colocalization of cargoes before their steady-state accumulation to the PM, thus at a stage where recycling must be minimal, the recorded colocalization should reflect anterograde transport rather than recycling. We added this reasoning it the revised text.

      1. A missing piece of the story is a test of whether the puncta visualized for the two cargoes in Figure 5B are indeed distinct populations of COPII-containing ER exit sites. The relevant experiment would involve co-labeling of the cargoes together with a COPII marker. Three-color labeling would presumably be needed.

      This point was also raised by reviewer 1 (and review 3) and thus performed new experiments to better characterize the identity of the cargo-labeled fluorescent puncta. To do so, we used co-expression of a standard ERES marker, Sec16, in cells expressing either UapA or SynA, tagged with different fluorescent tags. More specifically, we constructed and analyzed strains co-expressing UapA-GFP/Sec16-mCherry or GFP-SynA/Sec16-mCherry in the sec31ts genetic background, which allows synchronization and better analysis of ER exit, as described in our text. The new findings appear as Figure 5C __in the revised manuscript. Notice that sec16-mCherry introduced in the native sec16 locus by standard knock-in reverse genetics of A. nidulans (see Materials and methods) does not affect Aspergillus growth or secretion. Experiments depicted in __5C show that both cargoes, UapA and SynA, co-localize significantly (PCC ≈ 0.6), with Sec16, suggesting that most of these puncta are indeed ERES structures. Given that the puncta marked with UapA or SynA are clearly distinct (see Figures 1C,2A, 3A, 5B), this new experiment strongly suggests that there are indeed two distinct ERES, one populated mostly by UapA and the other by SynA. Notice, as we already outline in our response to the editor above, a three-colored approach using Sec16-BFP (or Sec13-BFP) for showing directly the existence of these two populations of cargo-specific ERES in the same cell failed as the BFP signal was problematic for colocalization studies.

      Reviewer #2 (Significance):

      This study provides compelling evidence that in the fungus Aspergillus nidulans, some transmembrane transporter proteins reach the plasma membrane by a pathway that bypasses much of the conventional machinery associated with the Golgi apparatus and secretory vesicles. Although previous publications pointed toward a similar conclusion, the present work tackles the problem in a more rigorous and systematic way. These findings are important for cell biologists who study membrane traffic, it remains to be determined how prevalent this type of non-canonical secretion might be in other organisms.

      We thank the reviewer for his positive comments

      Reviewer #3

      The manuscript by Sagia et al compares the trafficking of a polarized (SynA) with a non-polarized (UapA) transmembrane protein. In agreement with previous work of the same lab, they find that UapA reaches the plasma membrane through a Golgi-bypass route, which they characterize to some extent. Overall, the data are of good quality and the story is interesting and timely. Understanding trafficking routes that bypass the Golgi is highly interesting. Nevertheless, there are several points of criticism that I have and below is a list where I combine major and minor points together:

      Thank you for your positive comments

      Major Comments:

      1- Is it possible that the polarized phenotype of SynA is caused by selective removal, i.e. SynA is delivered to the entire plasma membrane, but endocytosed rapidly from all areas except the tip of the hyphae. This would also result in a polarized distribution.

      This is in principle possible, but here this is not the case. SynA is polarized due to rapid local endocytosis and immediate recycling at the subapical region, known as the subapical collar. Please see:

      Taheri-Talesh N, Horio T, Araujo-Bazán L, Dou X, Espeso EA, Peñalva MA, Osmani SA, Oakley BR. The tip growth apparatus of Aspergillus nidulans. Mol Biol Cell. 2008 Apr;19(4):1439-49. doi: 10.1091/mbc.e07-05-0464.

      Hernández-González M, Bravo-Plaza I, Pinar M, de Los Ríos V, Arst HN Jr, Peñalva MA. Endocytic recycling via the TGN underlies the polarized hyphal mode of life. PLoS Genet. 2018;14(4):e1007291. Published 2018 Apr 2. doi:10.1371/journal.pgen.1007291

      This applies to all apical markers; they remain polarized by continuous local recycling after the diffuse laterally to the subapical collar.

      2- The authors describe the distribution of SynA and UapA in cells deficient of various COPII/ERES proteins. However, these data are not shown, and it is not clear how they were quantified. It would be important to add quantitative data here.

      Quantitative data are included in Figure 4C, displaying the percentages of cells with UapA either retained in the ER or reaching the PM for each background deficient in a COPII protein. Repression of SarA and Sec31 resulted in UapA retention in the ER in all analyzed cells (100%). However, repression of Sec12, Sec24, or Sec13 had a differential effect across the cell population, with UapA reaching the PM in some cells, while remaining trapped in the ER in others. To quantify these data and determine which cargo localization pattern prevails, we measured the number of cells in each category and represented them as percentages. A similar approach was used to examine the role of Golgi proteins in the trafficking of UapA and SynA (Figure 6).

      3- on page 8, the authors discuss the discrepancy regarding the role of Sec13. They offer as an explanation that the previous studies have been performed in strains that separately expressed the two cargoes. However, I am unable to see why and how this would be a valid explanation.

      Given that Sec13 has a variable/partial effect on UapA, we have previously been biased towards images that showed an effect on localization, as expected, and considered that the lack of an effect might have been due to inefficient repression in a fraction of cells. In our new system, we were able to directly compare UapA to SynA and find out that while SynA was always affected under our conditions, the effect of UapA was still variable. Thus, the partial effect of Sec13 on UapA is physiologically valid and not a matter of insufficient repression in a fraction of cells. This shows the importance of our new improved system where we follow the synchronous expression of two cargoes in the same cells.

      4- Why is the effect of Sec24 depletion so much stronger than of Sec12 depletion? Sec12 is the GEF for SarA, without which Sec24 should not be recruited to ERES. The explanation that low amounts of Sec12 are still present and sufficient to carry out the role of this protein. What is the evidence for that?

      Sec24 is the principal receptor of cargoes responsible for their recruitment to ERES. Sec12 is the catalytic effector for SarA required for the initiation of COPII vesicle formation. The question of the reviewer is thus logical.

      However, Sec12 is indeed present at extremely very low levels when expressed from its native promoter under the condition of our experiment (minimal media). This is supported by our recent proteomic analysis, performed under similar conditions, which failed to detect the Sec12 protein, unlike all other COPII components (see Dimou et al., 2021, doi; 10.3390/jof7070560), but also by cellular studies of the group of M.A. Peñalva, who failed to detect Sec12 tagged with GFP (Bravo-Plaza et al., 2019, doi: 10.1016/j.bbamcr.2019.118551). Additionally, in yeast, immune detection of Sec12 has been possible only in cells harboring sec12 on a multicopy plasmid, suggesting its low abundance in wild-type cells (Nakano et al., 1988, doi:10.1083/jcb.107.3.851).

      Given that repression of sec12 transcription via the thiAp promoter still allows 68% of cells to secrete normally both SynA and UapA, while 32% of cells are blocked in the trafficking of both cargoes, suggests that in most cells either SarA can catalyze the exchange of GDP for GTP without Sec12, maybe through a cryptic guanine nucleotide exchange factor (GEF), or that very small amounts of Sec12 remaining after repression are sufficient for significant SarA activation. Whichever scenario is true, Sec12, similarly to SarA, is not critical for distinguishing Golgi-dependent from Golgi-independent routes, as both cargoes are affected similarly. In the revised text we added a not on this issue.

      5- In Figure 5, it would help readers who are not so familiar with Aspergillus organelle morphology to explain the figure a bit better. This might appear trivial for experts, but anyone from outside this field is slightly lost.

      In the revised manuscript we added a figure panel depicting a schematic representation of A. nidulans key secretory compartments.

      6- The authors write that not seeing UapA in Golgi membranes is evidence that it does not pass through this organelle. However, when they write that SynA is never seen in cis-Golgi elements, they do not conclude that SynA bypasses the cis-Golgi.

      The fact that SynA, unlike UapA, colocalized significantly with late-Golgi/TGN and follows conventional secretion in general, strongly suggests that SynA also passes from the early-Golgi. Cargo traffic through the Golgi is mediated by cisternal maturation, where an individual cisterna gradually changes its nature from an earlier to a later one, while the cargo remains inside. UapA, unlike SynA, never colocalized with any Golgi marker used and was not affected by BFA. We agree with the reviewer that we did not have direct proof for passage of UapA or SynA from the early-Golgi in the wt background, which allows for the alternative, but rather unlikely hypothesis, that none of the two cargos is sorted to the early Golgi and that SynA traffics directly to late-Golgi/TGN. Our inability to detect sorting of any cargo to the early-Golgi is seemingly due to ultra-fast passage of cargoes from very early secretory compartments, such as ERGIC/early-Golgi. In fact, we have obtained evidence of this using Lattice Light Sheet microscopy (results in progress, to appear elsewhere).

      7- Figure 5C: the authors claim that the CopA and ArfA affects trafficking of UapA and SynA from ER to plasma membrane and assign CopA and ArfA as regulators for anterograde trafficking. I think this interpretation is not justified by the data. Depletion of CopA and ArfA will affect the Golgi apparatus in structure and function. The more straight-forward interpretation is that repression of the COPI machinery results in a defect in Golgi exit and therefore retention in pre-Golgi compartments (including the ER and maybe the ERGIC should it exist in Aspergillus). The same is true for BFA treatment where there are also negative effects on ER export, which are rather indirect consequences of alterations of Golgi function and integrity. Likewise, the interpretation of the papers by Weigel et al and Shomron et al is not correct. It is more likely that COPI is recruited to the growing ERES-derived tubule (or ERGIC) to recycle proteins back to the ER. This is not necessarily a proof that COPI regulates anterograde trafficking

      This is a highly debatable issue which our work cannot address. However, we amended the text accordingly.

      8- Figure 6: The images look like in Figure 5, yet here you don't call them ER-associated.

      The two images are not alike. In Figure 5 upon activation of Sec31 (permissive temperature) we detect mostly punctual structures resembling ERES, whereas at the nonpermissive temperature we detect a membranous network typical of the ER. Upon repression of CopA we also detect punctual structures similar to ERES. In Figure 6, we mostly detect an effect on SynA. Repression of early secretory steps (SedV, GeaA) lead to collapse of SynA in the entire ER network. Repression at later stages of Golgi maturation and post-Golgi secretion (RabO, HypB, RabE, AP-1) lead to the appearance of punctual structures, most probably Golgi aggregates.

      9- Figure 6D: How long was the BFA treatment. I am surprised that the pool of SynA preexisting at the plasma membrane seems to also be sensitive to BFA.

      Cells were grown overnight under repressed conditions for both UapA and SynA. After 12-14h cells were shifted to derepressed conditions using fructose as carbon source. BFA was added after 90min of cargo derepression, while both cargoes were still in cytoplasmic structures so there was not preexisting SynA or UapA at the PM (see also Figure 1C). Subcellular localization of both cargoes was studied for 60min after BFA treatment.

      10- This might be beyond the scope of this study, but as far as I know UapA is not N-glycosylated. Would the introduction of an N-glycosylation site shift it towards the Golgi-based route?

      Thank you for this suggestion. We have performed this experiment, adding a glycosylation site on UapA, based on the glycosylation sites found in tis mammalians homologues. We did not detect any effect on UapA trafficking route or its activity. As the reviewer recognizes this goes beyond the scope of this study and thus, we did not include it the manuscript. Differential cargo glycosylation is however an important issue to be studied systemically in respect to different trafficking routes, and we envision to investigate it systematically.

      Minor Comments

      1- This might be just a personal preference, but I think that the term polar is misleading, because it implies something about the polarity of the amino acids. I think "polarized" might be the more common term. Anyway, this is just a minor point and just a suggestion from my side.

      Amended in the revised text.

      2- The paper by the Saraste lab should be mentioned and discussed (PMID: 16421253), which I think is very relevant to the current story.

      We thank the reviewer for pointing out this important publication. In that case, the Rab1 GTPase defined a pathway connecting a pre-Golgi intermediate compartment with the PM in mammalians nerve cells. Thus, the Saraste lab publication is indeed along the lines of findings supporting that Golgi-independent unconventional cargo trafficking routes initiate at very early secretory compartments. Notice, however, that RabO, the A. nidulans homologue of Rab1, which in their case was essential for direct cargo sorting from the ERES/ERGIC to the PM, in or system, was dispensable for Golgi bypass. The Saraste lab article is now mentioned and discussed.

      3- Having worked with ERES for over two decades, I find it strange to see it written ERes. I see no reason why ER exit sites in Aspergillus should be abbreviated differently from all other types of cells (yeast, drosophila, worms, mammals). I think that the entire acronym should be capitalized.

      Amended in the text

      4- When discussing the data about the partial effect of Sec13, it would be good to refer to a previous paper by the Stephens lab that showed that silencing Sec13/31 results in a defect in trafficking of collagen, but not of VSVG (PMID: 18713835).

      We thank the reviewer for also pointing out the publication of the Stephens lab, now mentioned in the revised text. Noticeably, in that case silencing of both Sec13 and Sec31 has no effect on the trafficking of specific cargoes, whereas in our case Sec31 is still absolutely needed for both conventional and Golgi-independent secretion of SynA and UapA, respectively.

      Reviewer #3 (Significance):

      Overall, the data are of good quality and the story is interesting and timely. Understanding trafficking routes that bypass the Golgi is highly interesting. The main weakness is the lack of mechanistic understanding of the Golgi-bypass pathway. In addition, the study is limited to two proteins as representatives of polarized vs. non-polarized proteins. The main target audience for this paper are scientists working in the area of secretion and trafficking in the secretory pathway.

      We thank the reviewer for his positive comments.

      We are aware that the mechanistic details of Golgi bypass are missing and this is our next goal, dissecting those via various approaches genetic and biochemical approaches and employment of super resolution and ultra-fast microscopy.

      __Reviewer #4 __

      In this study, Sagia et al investigate the trafficking of different secretory cargo in Aspergillus nidulans under conditions that repress expression of transport factors or block stages in membrane trafficking. The primary approach is to conduct dual live-cell imaging of GFP-tagged UapA (plasma membrane localized purine transporter) and SynA (plasma membrane R-SNARE) after their simultaneous derepression to monitor trafficking routes. In germlings, both secretory proteins are detected in non-overlapping intracellular compartments and puncta after 60-90 min of derepression. After 4-6 hrs, SynA localizes to hyphal tips whereas UapA localizes to non-polar regions of the PM. Colocalization studies do not show UapA overlap with Golgi markers (SedV, PH-OSBP) during its biogenesis whereas SynA displays significant co-localization. Repression of COPII and COPI components generally block transport of both cargos to the PM and cause accumulation in ER compartments, although there are some differential effects on UapA and SynA localization. Finally, repression of other transport factors (ER-Golgi SNAREs, Golgi transport factors, and exocytic machinery) had differential effects on UapA and SynA localization over time with UapA reaching the plasma membrane in many instances and SynA accumulating in intracellular compartments.

      Based on these observations, the authors conclude that UapA and SynA follow distinct trafficking routes to the plasma membrane where SynA uses a canonical SNARE-dependent secretory pathway route and UapA follows a non-canonical route that may bypass Golgi compartments. The study is extensive and supports the model that biogenesis of SynA and UapA follow distinct processes. However, there are some complexities that may limit interpretation. First, the cargo studied are targeted to the ER differently. UapA is a multispanning transmembrane protein that is likely dependent on the Sec61 translocon for co-translational membrane insertion and will involve ER chaperones and quality control machinery for its biogenesis. SynA will depend on the tail-anchored machinery (GET/TRC pathway) for insertion into the ER and is processed by cytosolic factors/chaperones. Therefore, the sites of ER insertion and the rates of biogenesis of these cargoes will be different. In addition, the repression of trafficking machinery used in this study appears to be variable and may exert partial blocks on intracellular transport stages. Regardless, the study clearly documents that SynA and UapA follow distinct biogenesis and transport processes when co-expressed in cells under experimentally controlled conditions.

      Thank you for your positive comments.

      To our knowledge there is no evidence suggesting that SynA translocates via a tail-anchored machinery (GET/TRC pathway) and not through the translocase. Despite this, we agree with the reviewer that translocation to the ER, as well as exit from it, might be cargo-dependent, especially when it concerns proteins with very different size, structures and oligomerization. Thus, the rate of biogenesis of UapA and SynA is probably quite different. However, this still does not dismiss our basic conclusion that the two cargoes follow distinct routes to traffic to the PM. The ‘problem’ of variable transcriptional repression of some trafficking-related proteins is solved by comparing the relative effect on the two cargoes in the same cells, and this is in fact the advantage of our new system. Importantly, notice that we took care to use conditions of repression where SynA trafficking by the conventional path was totally abolished and compared it to UapA.

      1. It was not clear if the translation, ER insertion and folding of UapA and SynA are fully synchronous. Is it possible that the rate of UapA synthesis and transport to the plasma membrane is substantially faster than for SynA? The imposition of transport blocks could trap SynA and not UapA if this cargo was at later transport stages.

      As already discussed above translation, ER insertion and folding of UapA and SynA might indeed by different. This might somehow affect the trafficking path followed, but this issue is beyond the scope of this work. Notice, however, that the transcription of both cargoes is kept fully repressed during establishment of repression of secretion. Only when repression and blocking of secretion is established (12-14 h germination), as verified by Western blot analysis, we derepress the transcription of UapA and SynA, expressed from the same promoter, and follow their dynamic subcellular localization. Hence, this system ensures that both cargoes start from the earliest transport stage, the ER, upon imposition of transport blocks.

      1. In repressing transport factors (e.g., SarA, Sec12, Sec24, Sec13, SedV, RabE), it is clear that under thiamine repressing conditions these cells do not grow or have greatly reduced growth rates. However, it was not clear if proteins are depleted to the same extent in cells after repression for 12-14 hr or 16-22 hr. as mentioned in the methods. Indeed, in some cases depleted cells display different cargo localization patterns, for example 67% of cells show normal localization of UapA and SynA after sec12 repression and 33% show ER accumulation of both cargoes. There is differential localization of UapA and SynA in many cases where transport factors are repressed, but this could be due to partial inhibition and not complete blocks. It would be helpful to clearly indicate the time points and conditions in each of the figure legends as in points 3-5 below.

      In the revised manuscript we did our best to clearly indicate the time points and conditions in each of the figure legends. Differential localization of UapA and SynA in many cases where trafficking factors are repressed is indeed an interesting outcome. Inefficient repression was dismissed based on the lack of colony growth (see relative growth tests of SarA, Sec24, Sec13, Sec31, SedV, GeaA, RabO, RabE, Ykt6, Sft1, SsoA and Sec9), but also by western blots (e.g., Sec24, Sec13, Sec31 or Sec9 shown in the present manuscript, or other trafficking proteins studied previously. Martzoukou et al., 2018; Dimou et al., 2020). Repression of Sec12 and HypB, and to lower degree AP-1, allowed formation of small and/or compact colonies, but even in these cases relative protein levels could not be detected in western blots, guaranteeing efficient repression.

      1. In Fig 4A immunoblot, HA-tagged proteins are not detected after thiamine repression. Please state the time of thiamine repression used before protein extraction and blot. Is this for the same length of time as for cells shown in panel 4C? It would also be helpful to state the time of cargo derepression before capturing images in 4C. The methods section mentions 12-14 hr or 16-22 hr of growth, presumably with thiamine in the culture, and then 1-8 hr or 60 min to 4 hr of cargo derepression before imaging. Please specify.

      The time of thiamine repression before protein extraction was 16-18h. The same repression time was used for experiments shown in Figures 4C and 6C (ER/COPII and Golgi/post-Golgi repression respectively). More specifically, for microscopy experiments cells were grown in the presence of glucose and thiamine for 12-14h (repressed UapA/SynA and thiAp expressed gene). After this time, cells were shifted to fructose and thiamine for 4h (derepression of UapA/SynA and repression of thiAp expressed gene). In both cases (protein extraction and microscopy experiments) the total time of thiamine repression was 16-18h.

      1. For the thiA-copA and thiA-arfA repression experiments (Fig 5C), the methods section states that thiamine was not added ab initio in the culture, but after an 8 h time window without thiamine at the start of spore incubation. This is interpreted to mean that repression was for a shorter period to time than the 12-14 hr overnight growth. However, the figure legend states that De novo synthesis of cargos takes place after full repression of CopA and ArfA is achieved (>16 hr). Please clarify.

      We think that the review was confused with repression of cargo synthesis (via alcAp+glucose) versus repression of trafficking proteins (via thiAp+thiamine). Please see Materials and methods. We clarify our protocol also here:

      For the thiAp-copA and thiAp-arfA repression experiments addition of thiamine ab initio in the culture leads to total arrest of spore germination and germling formation. Thus, we added an 8-hour time window without thiamine to allow conidiospores to germinate until the stage of young germlings, under conditions where cargo expression via the alcAp was repressed by glucose. Subsequently, thiamine was added in the media (16-18 h) to repress CopA and ArfA, while cargo expression remained glucose-repressed. The transcriptional repression of the cargoes UapA and SynA was maintained for a longer period (24-26 h) compared to other repression experiments, but longer times of repression of cargoes do not make any difference, as full repression is achieved already at 12 h. De novo cargo trafficking was followed next day by eliciting depression, via a shift to fructose media, while still maintaining thiamine to repress CopA or ArfA.

      1. In Fig 6D, BFA treatment is shown to trap SynA in Golgi aggregates while UapA still reaches the plasma membrane. Please state the time of BFA treatment before collecting these images. Do longer treatments with BFA before cargo derepression cause accumulation of UapA in intracellular compartments?

      As mentioned above (response to Reviewer’s #3 comment 9) cells were grown overnight under repressed conditions for both UapA and SynA. After 12-14h cells were shifted to derepressed conditions using fructose as carbon source. BFA was added after 90min of cargo derepression, while both cargoes were still in cytoplasmic structures so there was not preexisting SynA or UapA at the PM (see also Figure 1C). We have not noticed any different effect on UapA trafficking after a max of 1h of BFA treatment.

      1. A minor point, but on page 21 the methods state that "cells were shifted down to the permissive temperature (25 C), to restore the secretory block...". Suggest changing to "to reverse the secretory block..."

      Modified accordingly

      Reviewer #4 (Significance):

      This manuscript nicely builds on a developing line of investigation in the Aspergillus nidulans model that specific plasma membrane proteins are efficiently delivered to the cell surface in a pathway that is distinct from the canonical secretory pathway. Previous work from this lab has suggested that a subpopulation of COPII carriers can bypass the Golgi for delivery of specific cargo to the plasma membrane. The current study uses dual expression of UapA-GFP and mCherry-SynA to provide further support for this model. Molecular definition of a direct ER to PM transport pathway for secretory cargo would be a significant advance to a broad audience. This study provides additional depth and support that such a pathway exists but does not define how COPII vesicles or related intermediates are transported to the PM.

      Again, thank you for your positive comments.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Response to reviewers (minor points):

      We thank all reviewers for their very helpful suggestions and greatly appreciate their positive evaluation of our work.

      Reviewer #1:

      Ad 1) The reviewer states: Fig 5 While the data very nicely show that CPX and Syt1 have interdependent interactions in the chromaffin neurons, this seems to be not the case in neurons, where the loss of complexins and synaptotagmins have additive effects, suggesting independent mechanisms (eg Xue et al., 2010). This would be a good opportunity to discuss some possible differences between secretion in endocrine cells vs neurons.

      We greatly appreciate the insightful suggestion by the reviewer. To accommodate the reviewer’s suggestion, we now discuss this issue on page 21, line 486-491: “In murine hippocampal neurons, loss of CpxI and Syt1 has additive effects on fast synchronous release, suggesting independent mechanisms (Xue et al., 2010). On the other hand, the same study also showed that Syt1 heterozygosity fails to reduce release probability in wild-type neurons, but does so in the absence of Cpx, again suggesting that Cpx and Syt1 may functionally interact in Ca2+-triggered release.”

      Ad 2) The reviewer states: Fig 8 Shows an apparent shift in Ca sensitivity in N-terminal mutants suggesting a modification of Ca sensitivity of Syt1. Could there be also an alternative mechanism, that explains this phenotype which is based on a role of the n-term lowering the energy barrier for fusion, that in turn shifts corresponding fusion rates to take place at lower Ca saturation levels?

      We fully agree with the reviewer. While our data indicate that Cpx and Syt1 act in a dependent manner in accelerating exocytosis, they do not provide decisive evidence that the NTD of CpxII directly modulates the Ca2+ affinity of Syt1, an issue that we discuss on page 23 , line 523529: ”The results favor a model wherein the CpxII NTD either directly regulates the biophysical properties of the Ca2+-sensor by increasing the apparent forward rate of Ca2+-binding or indirectly affects SytI-SNARE or SytI-membrane interactions, thereby, lowering the energy barrier of Ca2+triggered fusion.”

      Reviewer #2:

      Ad 1) The reviewer states: The authors provide a "chromaffin cell-centric" view of the function of mammalian Cplx in vesicle fusion. With the exception of mammalian renal ribbon synapses (and some earlier RNAi knockdown studies that had off-target effects), there is very little evidence for a "fusion-clamp"-like function of Cplxs in mammalian synapses. At conventional mammalian synapses, genetic loss of Cplx (i.e. KO) consistently decreases AP-evoked release, and generally either also decreases spontaneous release rates or does not affect spontaneous release, which is inconsistent with a "fusion-clamp" theory. This is in stark contrast to invertebrate (D. m. and C. e.) synapses where genetic Cplx loss is generally associated with strong upregulation of spontaneous release, providing support for Cplx acting as a "fusion-clamp".

      We agree with the reviewer that it is difficult to reconcile contradictory findings regarding the role of Cpx in membrane fusion in vertebrates and invertebrates or between murine hippocampal neurons and neuroendocrine cells. On the other hand, we respectfully disagree with the statement of providing a "chromaffin cell-centric" view of the function of mammalian Cplx in vesicle fusion. In fact, a large number of model systems (in vitro and in vivo studies) support a scenario where complexin takes center stage in clamping of premature vesicle release. For example, in vitro analyses using a liposome fusion assay (Schaub et al., 2006, Nat Struct Mol Biol 13, 748; Schupp et al., 2016) or Hela cells that ectopically express “flipped” SNAREs on their cell surface (Giraudo et al., 2008, JBC 283, 21211) showed that complexin can inhibit the SNARE-driven fusion machinery. Likewise, several studies boosting complexin action by either genetic overexpression or peptide supplementation have provided evidence for the complexin clamp function in neuronal and nonneuronal cells (e.g. Itakura et al., 1999, BBRC 265, 691; Liu et al., 2007, Biochemistry 72, 439; Abderrahmani et al., 2004, J Cell Sci 117, 2239; Archer et al., 2002, JBC 277, 18249; Tang et al, 2006,

      Cell 126, 1175; Vaithianathan et al., 2013, J Neurosci 33, 8216; Roggero et al., 2007, JBC, 282, 26335.)

      In addition, chromaffin cells enable the investigation of secretion on the background of a well-defined intracellular calcium concentration. Indeed, CplxII knock-out in chromaffin cells demonstrated an enhanced tonic release which is evident at elevated levels of [Ca]i (>100nM), but absent at low resting [Ca]i (Dhara et al., 2014). Given this observation, it is tempting to speculate that variations in [Ca]i among the different preparations may contribute to the deviating expression of the complexin null phenotype in different preparations.

      Ad 2) The reviewer states: The authors use a Semliki Forest virus-based approach to express mutant proteins in chromaffin cells. This strategy leads to a strong protein overexpression (~7-8 fold, Figure 3 Suppl. 1). Therefore, experimental findings under these conditions may not necessarily be identical to findings with normal protein expression levels.

      As shown in Fig. 4, we use the secretion response of wt cells as a control so that we can assess the specificity and quality of the rescue approach in our experiments. In addition, the comparative analysis of the CpxII mutants was performed with respect to the equally overexpressed CpxII wt protein (Fig. 3 Suppl. 1), which we used as a control to determine the standard response under these conditions.

      Ad 3) The reviewer states: Measurements of delta Cm in response to Ca2+ uncaging by ramping [Ca2+ ] from resting levels up to several µM over a me period of several seconds were used to establish changes in the release rate vs [Ca2+ ]i relationship. It is not clear to this reviewer if and how concurrently occurring vesicle endocytosis together with a possibly Ca2+-dependent kinetics of endocytosis may affect these measurements.

      By infusing bovine chromaffin cells with 50µM free Ca2+, Smith and Betz have shown that the total capacitance increase is dominated by exocytosis and that significant endocytosis only sets in after 3 minutes (Smith and Betz, 1996, Nature, 380, 531). In the same line, we previously showed that mouse chromaffin cells (infused with 19µM free calcium over 2 minutes) responded with robust increase in membrane capacitance which strongly correlated with the number of simultaneously recorded amperometric events monitoring fusion of single vesicles (Dhara et al., 2014, Fig. 5B). Thus, capacitance alterations recorded under tonic intracellular Ca2+ increase in chromaffin cells are solely due to exocytosis and are not contaminated by significant endocytosis. As our Ca2+ ramp experiments were carried out for 6 seconds and the intracellular free [Ca]i did not exceed 19 µM the observed phenotypical differences between the experimental groups are most likely due to changes in exocytosis rather than endocytosis.

      Ad 4) The reviewer states: It should be pointed out that an altered "apparent Ca2+ affinity" or "apparent Ca2+ binding rate" does not necessarily reflect changes at Ca2+-binding sites (e.g. Syt1).

      We fully agree with the reviewer’s comment. As pointed out also in the response to reviewer 1, our experiments do not provide decisive evidence that the NTD of CpxII directly modulates the Ca2+ affinity of Syt1, an issue that we discuss on page 23 , line 523-529: ” The results favor a model wherein the CpxII NTD either directly regulates the biophysical properties of the Ca2+sensor by increasing the apparent forward rate of Ca2+-binding or indirectly affects SytI-SNARE or SytI-membrane interactions, thereby, lowering the energy barrier of Ca2+-triggered fusion.” 

      AD 5) There are alternative models on how Cplx may "clamp" vesicle fusion (see Bera et al. 2022, eLife) or how Cplx may achieve its regulation of transmitter release without mechanistically "clamping" fusion (Neher 2010, Neuron). Since the data presented here cannot rule out such alternative models (in this reviewer's opinion), the authors may want to mention and briefly discuss such alternative models.

      The study by Bara et al reiterates the model proposed by the Rothman group which attributes the clamping function of Cpx to its accessory alpha helix by hindering the progressive SNARE complex assembly. We have explicitly stated this issue in the original version of the manuscript (page 19, line 425) “As the accessory helix of Cpx has been found to bind to membrane proximal cytoplasmic regions of SNAP-25 and SybII (Malsam et al., 2012; Bykhovskaia et al., 2013; Vasin et al., 2016), an attractive scenario could be that both domains of CpxII, the CTD and the accessory helix, synergistically cooperate to stall final SNARE assembly”. In this context, we will now cite also the study by Bera et al.. 

      A related view of the function of complexin suggested that it may act as an allosteric adaptor for sytI (Neher 2010, Neuron). Here, rather than postulang independent "clamp" and "trigger" functions for the dual action of complexin, these were explained as facets of a simple allosteric mechanism by which complexin modulates the Ca2+ dependence of release. Yet, this interpretation appears to be difficult to reconcile with the observation of our and other laboratories, showing that the fusion-promoting and clamping effects are separable (e.g. Dhara et al., 2014; Lai et al., 2014; Makke et al., 2018; Bera et al., 2022).  

      Some parts of the Discussion are quite general and not specifically related to the results of the present study. The authors may want to consider shortening those parts.

      Considering the contrary findings in the field of SNARE-regulating proteins, the authors hope that the reviewer will agree that it is necessary to discuss the new observations in a broader context, as also acknowledged by the first reviewer.

      Last but not least, the presentation of the results could be improved to make the data more accessible to non-specialists, this concerns providing necessary background information, choice of colors, and labeling of diagrams.

      Done

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors): 

      Regarding figures: 

      (1) Please use clearly distinct colors in diagrams. For example, in Figure 2 Suppl. 3, four different shades of red (or reddish) are used to color the traces and the respective bars. These different shades of red are difficult to discriminate. In Figure 5 Suppl. 1, the two greens are nearly indistinguishable.  

      Done

      (2) RRP size and SRP size on the one hand, and SR rate on the other represent different quantities which are measured in different units. Please use a separate y-axis for the SR (a rate measured in fF/s) and do not combine with RRP and SRP (pool sizes measured in fF). This would also automatically alleviate the need for axis breaks in the plots of RRP size and SRP size. In general, please do not use axis breaks which make interpretation of data unnecessarily more complicated.  

      In order to clarify the display, we now define the different units together with the quantified parameter (e.g. RRP [fF], SRP [fF], SR [fF/s]) allowing us to omit a second axis in those subpanels.

      (3) When plotting bar graphs showing mean tau_RRP, mean tau_SRP, and mean delay, please always use the correct y-axis labels, i.e. use "tau_RRP", "tau_SRP" and "delay" as y-axis labels as it was done for example in Figure 4D, and do not use "tau_RRP", "tau_SRP" and "delay" as x-axis labels as it was done for example in Figure 1D and many other figure panels.  

      We have standardized the figure display. Yet, we would prefer to keep our way subpanel labelling which states the parameter underneath the bar graph and thereby makes the results more accessible.  

      (4) Are the asterisks indicating statistical significance perhaps missing in Figure 4D, middle panel (tau_SRP)?

      There was not a statistically significant difference (wt vs cpxIIko+CpxII EA, P=0.0826, Kruskal-Wallis with Dunn’ post hoc test).  

      (5) According to the Results section (pages 12 to 13), I assume that in Figures 6 and 7 the labels "+Cplx XYZ" are used by the authors to identify an overexpression of Cplx XYZ in a Cplx WT background. The legend text reads however " ... cells expressing either Cplx2 wt or the mutant ...", which would not be correct. Please check.

      We have changed the formulations to “overexpression” accordingly.

      (6) The x-axis unit in Figure 8C is likely "µM" and not "M".

      Done.

      (7) The abbreviations "CplxII LL-EE" and "CplxII LL-WW", and "CplxII LLEE" and "CplxII LLWW" are very similar but refer to different mutants. Could you please think of a more specific and unambiguous abbreviation? Perhaps "CplxII L124E-L128E"?  

      We have changed the abbreviations, accordingly (i.e. CpxII L124E-L128E).  

      Regarding the manuscript text:  

      Line 65: "prevents" instead of "impairs"? 

      done

      Line 67: why "in vivo"? 

      We changed the formulation to ‘Several’

      Line 83: "in addition to the clamping function ..." This is misleading. Many of the studies listed here did not provide evidence for enhanced spontaneous release following Cplx loss and often observed the opposite, reduced spontaneous release. The enhanced delayed release was observed by Strenzke et al 2009 J.Neurosci. and by Chang et al. 2015 J.Neurosci. (which the authors may want to cite). However, that enhanced delayed release occurred despite reduced spontaneous release indicating that it is not simply the result of a missing "fusion clamp". 

      To accommodate the reviewer’s suggestion, we have changed the formulation to “Independent of the clamping function of Cpx….”

      Line 104: "speeds up exocytosis that is controlled by the forward rate of Ca2+ binding" This is difficult to understand without context.  

      We have now added the corresponding citations (Voets et al., 2001; Sorensen et al., 2003), which showed that exocytosis timing in chromaffin cells is largely determined by the kinetics of Ca2+-binding to SytI.

      Line 116: "Cplx2 knock out ..." Please provide (here or earlier in the manuscript) information to the reader about which Cplx paralogs are expressed in chromaffin cells.  

      We now state on line 111 that “CpxII is the only Cpx isoform expressed in chromaffin cells (Cai et al., 2008)”

      Line 118: "=~" either "=" or "~". 

      done

      Line 120: "instead" seems superfluous.

      done

      Line 272: "calcium binding rates" should perhaps better read "apparent calcium binding rates". 

      done

      Line 290: "enhancing SytI's Ca2+ affinity" should perhaps better be "enhancing the apparent Ca2+ affinity of the release machinery". Ca2+ binding kinetics is never directly assayed here.

      We agree and have phrased the sentence accordingly.

      Line 300: "Expression of Cplx ... in Syt1 R233Q ki cells, ..." Perhaps better "Overexpression of Cplx ... in Syt1 R233Q ki/Cplx2 wt cells, ..." for clarification?

      done

      Lines 313ff: What is assayed here is the apparent Ca2+ binding kinetics and apparent KD values of the release machinery. Ca2+ binding to Syt1 is never directly measured!  

      We agree and have changed the wording accordingly to “CpxII NTD supports the forward rate of calcium binding to SytI in accelerating exocytosis”

      Line 347: "Complexin plays a dual role ..." This is partially misleading. It does so in chromaffin cells and D.m. and C.e. NMJs but not at conventional mammalian synapses. 

      We agree and have changed the formulation to “In many secretory systems, Complexin plays a dual role in the regulation of SNARE-mediated vesicle fusion”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors): 

      The authors should perform experiments to answer this question: does Cav3 transcription increase in the G369i-KI, or is there instead some post-transcriptional modulation that permits surface expression of functional Cav3-containing channels in the absence of typical HVA Ca conductances? Also, the authors should determine whether G369i-KI can mediate Ca2+ release from intracellular stores and whether release from stores is upregulated as Cav3-containing channel expression (or function) is increased. 

      We performed transcriptomic (drop-seq) analysis to test whether a Cav3 subtype is upregulated in cones of G369i KI mice. These experiments show that, consistent with previous studies (PMID 35803735, 26000488), Cacna1h appears to be the primary Cav3 subtype expressed mouse cones. However, as shown in new Supp.Fig.S3, there was no significant difference in the levels of Cacna1h transcripts in WT and G369i KI cones. Therefore, we propose that there may be some post-transcriptional modification, or alteration in a pathway that regulates channel availability, that enables the contribution Cav3 channels to the whole-cell Ca2+ current in the absence of functional Cav1.4 channels cones.

      We also performed Ca2+ imaging experiments in WT vs G369i KI cone terminals to assess whether the diminutive Cav3 current in G369i KI cone terminals may be compensated by upregulation of a Ca2+ signal such as from intracellular stores. Arguing against this possibility, depolarization-evoked Ca2+ signals in G369i KI cones were dramatically reduced compared to WT cones (new Fig.9). 

      Reviewer #2 (Recommendations For The Authors): 

      Major points- 

      (1) It is stated in too many places that cone features in the Cav1.4 knock-in are "intact", preserved, or spared, but this representation is not accurate. There are two instances in this study that qualify as intact when comparing KI to WT: 1) the photopic a-waves in the Cav1.4 knock-in (also demonstrated in Maddox et al 2020) and 2) latency to the platform (current MS, Figure 7f). However, in the numerous instances listed below, the authors compared the Cav1.4 knock-in to the Cav1.4 knock-out, and then referred to the KI as exhibiting intact responses. The reference point for intactness needs to be wildtype, as appropriately done for Figures 2 and 3, and when comparing the KI to the KO the phrasing should be altered; for example: "the KI was spared from the extensive degeneration witnessed in the KO....". 

      In most cases, we clearly note that there are key differences in the WT and the G369i KI cone synapses, which highlight the importance of Cav1.4-specific Ca2+ signals for certain aspects of the cone synapse. We disagree with the reviewer on the point that we did not often use the WT as a reference since most of our experiments involved comparisons of only WT and G369i KI (Figs. 3-6) or WT, G369i KI, and Cav1.4 KO (Figs.1,7—and in these cases comparisons specifically between WT and G369i KI mice were included). We used “intact” as a descriptor for G369i KI cone synapses since these are actually present, albeit abnormal in the G369i KI retina, whereas cone synapses are completely absent in the Cav1.4 KO retina. To avoid confusion, we modified our use of “intact” and “preserved” where appropriate.

      A. Abstract, line 34 to 35: ".......preserved in KI but not in KO.". 

      Abstract was rewritten and this line was removed.

      B. Line 36: "....synaptogenesis remains intact". The MS documents many differences in the morphology of KI and WT cones (immunofluorescence and electron microscopy data), which is counter to an intact phenotype. 

      The sentence was: “In CSNB2, we propose that Cav3 channels maintain cone synaptic output provided that the Ca2+-independent role of Cav1.4 in cone synaptogenesis remains intact.”

      Here the meaning of “intact” refers to the Ca2+ -independent role of Cav1.4, not synapses. Thus, we have left the sentence unchanged.

      C. This strikes the right balance, lines 67 to 68: "....although greatly impaired.....". 

      D. Line 149, "Cone signaling to a postsynaptic partner is intact in G369i KI mice". This description is inaccurate. Here there is only WT and KI, and the text reads as follows in line 162: "terminals (Figure 6b). The ON and OFF components of EPSCs in G369i KI HCs were measurable, although lower in amplitude than in WT (Figure 6a,b)." Neither "measurable" nor "lower in amplitude" meet the definition of "intact", and actual numerical values are lacking in the text. 

      We have added results showing that there are no light responses in the Cav1.4 KO horizontal cells and have modified the sentence to: “Cone synaptic responses are present in horizontal cells of G369i KI but not Cav1.4 KO mice”. 

      We have modified discussion of these results as (line 210-213): “Consistent with the lack of mature ribbons and abnormal cone pedicles (Fig.1), HC light responses were negligible in Cav1.4 KO mice (Fig.8a,b). In contrast, the ON and OFF responses were present in G369i KI HCs although significantly lower in amplitude than in WT HCs (Fig. 8a,b).”

      E. Please add a legend to Figure 6a to indicate the intensities. The shape of the KI responses is different from the control which is worthy of discussion: i) there is no clear cessation of HC EPSCs in the KI during the light ON period (when release stops, Im fluctuations should be minimal), and ii) the "peaked" appearances of the initial 500ms of the On and Off periods are very similar in shape for the KI (hard to interpret in the same fashion as a control response). How were the On and Off amplitudes analyzed? Furthermore, the OFF current is not summarized in Figure 6D, but should not this be when Cav3 should be opening and triggering release: Off response-EPSC? Lastly, Figure 6b,d shows a ~70% reduction in On-current in the KI, and the KI example of 6b an 80% reduction in Off current compared to WT. Yet, the only place asterisks are used to indicate sig diff is the DNQX data within each genotype in Fig 6d. These data cannot be described as showing "intact" KI responses, and the absence of numerical and statistical values needs to be addressed. 

      New Fig.8a depicting the horizontal cell light responses has been modified to include the legend indicating light intensities. The ON and OFF amplitudes were analyzed as the peak current amplitudes. This information has been added to the legend.

      The reviewer is correct in that the OFF response represents the EPSC whereas the ON response represents the decrease in the EPSC with light. To avoid confusion, we changed the y axis label for the averaged data to read ON or OFF “response” rather than “current” in new Fig.8b.

      As the reviewer suggests, the more transient nature of the KI response during the light ON period could result from aberrant continuation of vesicular release during the light-induced hyperpolarization of cones in the KI mice, in contrast to the prolonged suppression of release by light which is evident in the WT responses. We speculated on this difference as follows (lines 237-241):

      “In addition to its smaller amplitude, the transient nature of the ON response in G369i KI HCs suggested inadequate cessation of cone glutamate release by light (Fig.8b). Slow deactivation of Cav3 channels and/or their activation at negative voltages20 could give rise to Ca2+ signals that support release following light-induced hyperpolarization of G369i KI cones.”

      We added astericks to new Fig.8b,d indicating statistical differences and description of the tests in the legend.

      F. line 168 the section titled "Light responses of bipolar cells and visual behavior is spared in G369i KI but not Cav1.4 KO mice". 

      Changed to: “Light responses of bipolar cells and visual behavior are present in G369i KI but not Cav1.4 KO mice”

      Last sentence of erg results, 189-190: "These results suggest that cone-to-CBC signaling is intact in G369i KI mice.". "Spared and intact" are not accurate descriptions. The ERG data presented here shows massive differences between WT and the KI, except in the instance of awaves. 

      This sentence was removed.

      As for Figure 6, the results text related to Figure 7a-d does not present real numbers for ERG responses, and there is no indication of significant differences there or in the Figure panels. For instance, in Figure 7b, b-waves are KI are comparable to KO, except at the two highest-intensity flashes that show KI responses ~20% the amplitude of WT. Presentation of KI and KO data on a 6- to 10-fold expanded scale higher than WT can be misleading: a quick read of these Figure panels might make one incorrectly conclude that the KI is intact while the KO is impaired when compared to WT. The Methods section needs more details on the ERG analysis (e.g. any filtering out of oscillatory potentials when measuring b-wave, and what was the allowable range of time-to-peak for b-wave amplitude, etc..). 

      The vertical scaling of the ERG results in new Fig.10c,d has been changed so as to reflect clearly diminished responses of the KO and KI vs the WT. Further details regarding the ERG analysis was added to the Methods section.

      G. Can you point to other studies that have used the "visible platform swim test" used in Figure 7e, f, and specify further how mice were dark/light adapted prior to the recordings? 

      As referenced in the Methods, original line 674, the methods we used for the swim test were described in our previous study (PMID 29875267). Other studies that have used this assay include PMIDs: 28262416, 26402607.

      (2) The Maddox et al 2020 study does not safely address whether rods have a residual T-type Ca2+ current in the Cav 1.4 KO or KI. The study showed that membrane currents measured from rods in the KI and KO retina were distinct from WT, supporting their claim that L-type Ca2+ current is absent in the KI and KO. However, the recordings had shortcomings that challenge the analysis of Ca2+ currents: i) collected at room temp (22-24{degree sign}C), ii) at an unknown distance from the terminal (uncertain voltage clamp), iii) with a very slow voltage ramp rate that is not suitable for probing T-type currents (Figure 1d Maddox 2020, 140 mV over 1 sec: 7msec/1mV), and iv) at a signal-to-noise that does not allow to resolve a membrane current under 1 pA (avg wt rod Ca2+ current was -3.5 pA, and line noise ~1pA peak-to-peak in Maddox 2020). Suggestion: say T-type currents were not probed in Maddox et al 2020, but Davison et al 2022 did not find PCR signal for Cav3.2 in rods. 

      We disagree that recordings in the Maddox 2020 study were not sufficient to uncover a T-type current. The voltage ramps in that study were not much slower than that of the Davison et al. 2022 study (they used 0.19 mV/ms). Moreover, in new Supp. Fig.S1, we show that like the slower voltage ramp (0.15 mV/ms) used in the prior study of G369i KI rods, the voltage ramps we used in the present study (0.5 mV/ms), which clearly evoke currents with T-type properties in G369i KI cones (Fig.2a,b, Fig.3a,b) do not evoke currents in WT or G369i KI rods.  

      Minor comments. 

      (1) Suggestion: add an overview panel to Figure 1 that shows the rod terminals in the KI. The problem is that cropping out the ribbon and active zone signals from rods, to highlight cones, can give the impression that the cones are partially spared in the KI, and the rods are not spared at all. (yet you nicely clarify this in Figure 4 and in the legend and text, etc.). 

      We chose to modify the legend with this information as in Fig.4 rather than modify the figure.

      (2) Mouse wt cone Ca2+ currents look like L-type currents, as do your monkey and squirrel cone recordings, and also much like those of mouse rods (see Figure S5, Hagiwara et al., 2018 or Grabner and Moser 2021). Your pharm data from mice and squirrels further supports your conclusion, and certainly took much effort. Davison et al 2022 J Neurosci showed PCR results that support their claim that a Cav3 current exists in wt cones. Questions: 1) have you tried PCR? 2) Can you offer more details on what Cav3 KO you tried and what antibodies failed to confirm the KO? As the authors know, one complication is that the deletion of one Cav can be compensated for by the expression of a new Cav. There are 3 types of Cav3s and removal of one type may be compensated for by another Cav3. 

      We have included drop-seq data (new Supp.Fig.S3) implicating Cav3.2 as the main Cav3 subtype in cones and have modified our discussion of these results accordingly. These experiments did not reveal any changes in Cav3 subtype expression in G369i KI vs WT cones.

      (3) Lines 95/96- onward, spend more time telling the story. When working out the biophysical and pharmacological behavior of the Ca2+ currents, you might want to initially refer to the membrane current as a membrane current, and then state how your voltage protocols, intra- and extra-cell solutions, and drugs helped you verify 1) L-type and 2) T-type Ca2+ currents. 

      We have modified the text with more detail.

      (4) If data is in hand, add a ramp I-V to Figure S2, which shows the response of the ground squirrel cone. The steps in S2a are excellent for making your point that a transient current is missing, and the bipolar is a great control to illustrate ML218 works. However, a comparison of a squirrel cone ramp to a bipolar ramp response could complete the figure. 

      See Reponse to #5 below.

      (5) Consider moving Supplementary Figures S2 and S3 to the main text; these are highly relevant to the story, novel, and well-executed. 

      Fig.S2 and S3 were added as new Figs.4,5. The new Fig.4 includes voltage ramps in ground squirrel cones (panel a) to compare with the bipolar data (panel f).

      (6) The nice electron microscopy reconstructions are not elaborated on in any detail, and there is no mention of ribbon size. Is the resolution sufficient to estimate ribbon size, the number of synaptic vesicles around the ribbon and in the adjacent cytosol? The images indicate major changes in the morphology of the terminals. Is the glial envelope similar in WT and KI? 

      Since ribbons were quantified extensively in the confocal analyses in Fig.6, we felt it unnecessary to add this to the EM analysis which focused mainly on aspects of 3D structure (i.e., arrangement of ribbons, postsynaptic wiring, cone pedicle morphology). We added further discussion of the change in morphology of the G369i KI cone pedicle (lines 200-203): “Compared to WT, ribbons in G369i KI pedicles appeared disorganized and were often parallel rather than perpendicular to the presynaptic membrane (Fig.7a-c). Consistent with our confocal analyses (Fig.1), G369i KI cone pedicles extended telodendria in multiple directions rather than just apically (Fig. 7a).”

      While we did not opt to characterize the glial envelope in WT cones, we did add an analysis of synaptic vesicles around ribbons to Table 2.

      (7) Discussion line 250: "we found no evidence for a functional contribution of Cav3 in our recordings of cones in WT mice (Figures. 2,3), ground squirrels, or macaque (Supplementary Figures S2 and S3).". I would not use "functional" in this context because when comparing your work to Davison et al 2022, they defined functional as a separate response component driven by Cav3. For instance, they examined the influence of their T-type current on exocytosis (by membrane capacitance) and other features like spiking Ca2+ transients. Suggestion: substitute functional with "detectable", and say "we found no detectable Cav currents". Or if you had Ttype staining, but not T-type Ca2+ currents, then say "no functional current even though there is staining...". 

      We have modified the text as (lines 336-338): “However, in contrast to recordings of WT mouse cone pedicles in a previous study21, we found no evidence for Cav3-mediated currents in somatic recordings of cones in WT mice (Figs.2,3).”

      We propose an alternative interpretation of the results in the Davison et al study concerning the conclusion that Cav3 channels contribute to Ca2+ spikes and exocytosis. That study used 100 µM Ni2+ to block a “T-type” contribution to spike activity in cones. In their Figs.4,5, the spikes are suppressed by 100 µM Ni2+ and 10 µM nifedipine, a Cav1 antagonist, and spared by the T-type selective drug Z944. This is problematic for several reasons. First, as shown by the authors

      (their Fig.2A1,A2) and others (PMID: 15541900), 100 µM Ni2+ inhibits Cav1-type currents in photoreceptors. Second, Z944 potentiates Cav1 current in their mouse cones (their Fig.2C1,C2). Thus, both reagents are suboptimal for dissecting the contribution of either Cav subtype to spiking activity. With respect to Cav3 channels and exocytosis, these authors interpreted a reduction in exocytosis upon holding at -39 mV compared to at -69 mV as indicating a loss of a T-type driven component of release. However, Cav1 channel inactivation (PMID: 12473074) could lead to the observed reduction in exocytosis at -30 mV.

      (8) Additional literature related to your Intro and Discussion. Regarding CSNB2, related mutations of active zone proteins, and what happens to Ca2+ currents when ribbons are deleted, you might want to consider the following studies that measure Ca2+ currents from rods: conditional KO of RIM1/2 (Grabner et al 2015 JN), KO of ELKS1/2 (Hagiwara et al, 2018 JCB), and KO of Ribeye (Grabner and Moser eLife 2021). In these studies, the Cav currents were absent in rods of the ELKS1/2 DKO, strongly reduced (80%) in the RIM1/2DKO, but altered in more subtle ways (activation-inactivation) without significantly changing steady-state Ca2+ current in the Ribeye KO. This does not seem to support some of the arguments you have made in the Introduction and Discussion regarding ribbon size and Ca2+ currents, yet the suggested literature is related to the topic at hand. 

      A description of these synaptic proteins as potential mediators of the effect of Cav1.4 on ribbon morphogenesis was added to the Discussion, lines 325-327.

      (9) Line 129: "Along with the major constituents of the ribbon, CtBP2, and RIBEYE", for clarity Ribeye has two domains, one that is identical to CtBP2 (B-domain) and the unique Ribeye domain (A-domain) that is only expressed at ribbon synapses. And, Piccolino is also embedded in the ribbon (Brandstaetter lab, Wichmann/Moser labs). In other words, Ribeye and Piccolino are the major constituents of the ribbon. 

      To avoid confusion, we simply mention Ctbp2 and RIBEYE in the context of the corresponding antibodies that were used to label ribbons.

      (10) Abstract: consider to rephrase "Ca2+-independent role of Cav1.4" by "Ca2+-permeationindependent role of Cav1.4" or alike 

      Sentence changed to: “In CSNB2, we propose that Cav3 channels maintain cone synaptic output provided that the nonconducting role of Cav1.4 in cone synaptogenesis remains intact.”

      Reviewer #3 (Recommendations For The Authors): 

      Cav1.4 voltage-gated calcium channels play an important role in neurotransmission at mammalian photoreceptor synapses. Mutations in the CACNA1f gene lead to congenital stationary night blindness that particularly affects the rod pathway. Mouse Cav1.4 knockout and Cav1.4 knockin models suggest that Cav1.4 is also important for the cone pathway. Deletion of Cav1.4 in the knockout models leads to signaling malfunctions and to abundant morphological re-arrangements of the synapse suggesting that the channel not only has a role in the influx of Ca2+ but also in the morphological organization of the photoreceptor synapse. Of note, also additional Cav-channels have been previously detected in cone synapses by different groups, including L-type Cav1.3 (Wu et al., 2007; pmid; Kersten et al., 2020; pmid), and also T-type Cav3.2 (Davison et al., 2021; pmid 35803735). 

      In order to study a conductivity-independent role of Cav1.4 in the morphological organization of photoreceptor synapses, the authors generated the knockin (KI) mouse Cav1.4 G369i in a previous study (Maddox et al., eLife 2020; pmid 32940604). The Cav1.4 G369i KI channel no longer works as a Ca2+-conducting channel due to the insertion of a glycine in the pore-forming unit (Madox et al. elife 2020; pmid 32940604). In this previous study (Madox et al. elife 2020; pmid 32940604), the authors analyzed Cav1.4 G369i in rod photoreceptor synapses. In the present study, the authors analyzed cone synapses in this KI mouse. 

      For this purpose, the authors performed a comprehensive set of experimental methods

      including immunohistochemistry with antibodies (also with quantitative analyses), electrophysiological measurements of presynaptic Ca2+ currents from cone photoreceptors in the presence/absence of inhibitors of L-type- and T-type- calcium channels, electron microscopy (FIB-SEM), ERG recordings and visual behavior tests of the Cav G369i KI in comparison to the Cav1.4 knockout and wild-type control mice. 

      The authors found that the non-conducting Cav channel is properly localized in cone synapses and demonstrated that there are no gross morphological alterations (e.g., sprouting of postsynaptic components that are typically observed in the Cav1.4 knockout). These findings demonstrate that cone synaptogenesis relies on the presence of Cav1.4 protein but not on its Ca2+ conductivity. This result, obtained at cone synapses in the present study, is similar to the previously reported results observed for rod synapses (Maddox et al., eLife 2020, pmid 32940604). No further mechanistic insights or molecular mechanisms were provided that demonstrated how the presence of the Cav channels could orchestrate the building of the cone synapse. 

      We respectfully disagree regarding the mechanistic advance of our study. As indicated by Reviewer 2, a major advance of our study is in providing a mechanism that can explain the longstanding conundrum that congenital stationary night blindness type 2 mutations that would be expected to severely compromise Cav1.4 function do not produce complete blindness. Our study provides an important contrast to the Maddox et al 2020 study in showing that rods and cones respond differentially to loss of Cav1.4 function, which is also relevant to the visual phenotypes of CSNB2. How the presence of Cav1.4 orchestrates cone synaptogenesis is an important topic that is outside the scope of our present study.

      In the present study, the authors also propose a homeostatic switch from L-type to (newly occurring) T-type calcium channels in the Cav1.4 G369i KI mouse as a consequence of the deficient calcium channel conductivity in the Cav1.4 G369i Cav1.4 KI mouse. In cones of the Cav1.4 G369i, the high-voltage activated, L-type Ca2+-entry was abolished, in agreement with their previous paper (Maddox et al., eLife 2020, pmid 32940604). The authors found a lowvoltage activated Ca2+ current instead that they assigned to T-type Ca2+-currents based on pharmacological inhibitor experiments. T-type Ca2+-currents/channels were already previously identified in other studies by independent groups and independent techniques

      (electrophysiology, RT-PCR, single-cell sequencing) in cones of wild-type mice (Davison et al.,

      2021, pmid 35803735; Macosko et al., 2015, pmid 26000488; Williams et al., 2022, pmid 35650675). In the present manuscript (Figures 3a/b), the authors also observed a low-voltage activated, T-type like current in cones of wild-type mice, that is isradipine-resistant and affected by the T-type inhibitor ML218. This finding appears compatible with a T-type-like current in wildtype cones and is consistent with the published data mentioned above, although the authors interpret this data in a different way in the discussion. 

      Due to the noise inherent in whole cell voltage clamp measurements and some crossover effects in the pharmacology, we cannot completely exclude the presence of a T-type current in WT mouse cones. However, our results very clearly support a conclusion opposite to that stated by the reviewer. Namely, if WT mouse cones have T-type Ca currents, then they are far smaller than those in the Cav1.4 G369i KI and KO cones. In particular, while we identified message for Cav3.2 in WT mouse cones, we were unable to identify a functional T-type current by either voltage clamp measurements or pharmacology. See below for a detailed rebuttal.

      This proposal of a homeostatic switch is not convincingly supported in this reviewer's opinion

      (for further details, please see below). Furthermore, no data on possible molecular mechanisms were provided that would support such a proposal of a homeostatic switch of calcium channels. No mechanistic/molecular insights were provided for a proposed homeostatic switch between Ltype to T-type channels that the authors propose to occur between wild-type and Cav1.4 G369i as a consequence of conduction-deficient Cav1.4 G369i channels. Is this e.g. based on posttranslational modifications that switch on T-type channels or regulation at the transcriptional level inducing expression of T-type calcium channel or on other mechanisms? The authors remain descriptive with their central hypotheses. No molecular mechanisms/signaling pathways were provided that would support the idea of such a homeostatic switch. 

      Homeostatic plasticity refers to the maintenance of neuronal function in response to some perturbation in neuronal activity and can result from changes in the expression of ion channel genes (PMID: 36377048, 32747440, 19778903) or regulatory pathways that modulate ion channels (PMID: 15051886, 32492405). We present multiple lines of evidence showing that Cav3 currents appear in cones upon genetically induced Cav1.4 loss of function and can support cone synaptic responses and visual behavior if cone synapse structure is maintained. Our new transcriptomic studies show no difference between levels of Cav3 channel transcripts in WT and G369i KI cones, suggesting that the appearance of the Cav3 currents in G369i KI cones does not result from an increase in Cav3 gene expression. We are currently investigating our transcriptomic dataset to determine if Cav3 regulatory pathways are upregulated in G369i KI cones and will present this in a follow-up study.

      The authors show residual photopic signaling in the non-conducting Cav1.4 G369i KI mouse as judged by the recording of postsynaptic currents, ERG recordings and visual behavior tests though in a reduced manner. The residual cone-based signaling could be based on the nonaffected T-type Ca2+ channel conductivity in cone synapses. Given that the L-type current through Cav1.4 is gone in the Cav1.4 G369i KI as previously shown (Maddox et al., 2020, pmid 32940604), the T-type calcium current will remain. However as discussed above, this does not necessarily support the idea of a homeostatic switch. 

      A major point which we highlighted with new results is that despite the expression of Cav3 transcripts in WT mouse cones, Cav3 channels do not contribute to the cone Ca2+ current. This is at odds with the Davison et al study (PMID: 35803735, see our response to Reviewer 2, pt 7 for caveats of this study), but our results convincingly show that the Cav3 current appears only when Cav1.4 is genetically inactivated. Pharmacological or electrophysiological methods that should reveal the presence of Cav3 currents do not change the properties of the Ca2+ current in cones of WT mice, ground squirrel, or macaque:

      • Figs.2-4: Voltage steps to -40 mV (Fig 2e) that activate a sizeable T-current in G369i KI mouse cones produce a negligible transient at pulse onset in WT mouse cones. Similarly, transient currents that are obvious in G369i KI mouse cones during the final step to -30 mV are absent in WT cones.  When we block Cav1.4 with isradipine either in cones of WT mice or ground squirrel, the current that remains does not resemble a Cav3 current but rather a scaled down version of the L-type current. ML218, which readily blocks Cav3 channels in HEK293T cells and in G369i KI cones, has only minor effects in cones of WT mice and ground squirrel; these effects of ML218 can be attributed to non-specific actions on Cav1.4 (new Supp.Fig.S2). New Fig.4 (moved from the supplementary data to the main article) clearly shows that the ML218-sensitive current in ground squirrel cones exhibits properties of Cav1.4 not Cav3 channels. 

      • Figs.2,5: Holding voltages that inactivate Cav3 channels have no effect on the Ca2+ current in cones of WT mice or macaque (recordings of macaque cones were moved from the supplement to the main article as new Fig.5).

      In Figure 4 the authors measured an increase in the size of the active zone (as judged by the size of the bassoon cluster) and of the synaptic ribbons in the Cav1.4 G369i. A mechanistic explanation for this phenomenon was not provided and the underlying molecular mechanisms were not unraveled. 

      The FIB-SEM data uncover some ultrastructural alteration/misalignments of the synaptic ribbons and misalignments of the regular arrangement of the postsynaptic dendrites in the G369i KI mice. Also concerning this observation, the study remains descriptive and does not reveal the underlying mechanisms as it would be expected for eLife. 

      We respectfully disagree on the descriptive nature of our study and the need for a full characterization of the molecular mechanism underlying the cone synaptic defects in the G369i KI mouse.   

      An important study in the field (Zanetti et al., Sci. Rep. 2021; pmid 33526839) should be also cited that used a gain-of-function mutation of Cav1.4 to analyze its functional and structural role in the cone pathway. 

      We have added citation of this paper to the Discussion (lines 354-356).

      In conclusion, the study has been expertly performed but remains descriptive without deciphering the underlying molecular mechanisms of the observed phenomena, including the proposed homeostatic switch of synaptic calcium channels. Furthermore, a relevant part of the data in the present paper (presence of T-type calcium channels in cone photoreceptors) has already been identified/presented by previous studies of different groups (Macosko et al., 2015; pmid 26000488; Davison et al., 2021; pmid 35803735; Williams et al., 2022; pmid 35650675). The degree of novelty of the present paper thus appears limited. I think that the study might be better suited in a more specialized journal than eLife. 

      We thank the reviewer for acknowledging the rigor of our study but disagree with their evaluation regarding the novelty of our work as outlined in our responses above.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      My comments are largely limited to suggestions to make the manuscript easier to read and digest.

      In the abstract they say RNA sequencing highlights changes in innate...

      Could they be more specific? Innate immune system up or down? They do not indicate actual findings in the abstract.

      We thank the reviewer for the comment and we have revised the abstract accordingly.  

      Their use of non‐intuitive abbreviations is often confusing. Perhaps they can add a table in methods listing all the abbreviations so that the reader can follow the data better. mNGA, vmHT....etc.

      As suggested, we have now included a list of the abbreviations used in the paper.

      There are mis‐spellings in the manuscript.

      We have gone through the manuscript and corrected the mis-spellings.   

      Has the SPR RNAi line been validated?

      The SPR RNAi line that we used has been extensively validated by Yapici et al., 2007 and several subsequent publications. Importantly, the effectiveness of SPR knockdown is evident in female flies as they exhibit dramatically reduced egg laying and, importantly, lack the typical post-mating behaviors (such as rejection of male flies after initial mating) observed in the wild type mated female flies. In fact, female flies with RNAi-mediated SPR knockdown behave identically to females mated with SP-null male flies, confirming the effective disruption of the SP-SPR signaling pathway. We have revised the manuscript and added these statements in the results section concerning SPR RNAi.  

      In the figures showing the Climbing Index vs time, can they abbreviate seconds as sec vs s? At least I think it is seconds. At first, I thought it was Time or Times, and was confused about what they were indicating on those types of graphs (Figures 1D‐F).

      We have revised the figure as suggested by the reviewer.

      In Figure 3F, they have a significance indicated in an unclear manner. It looks like they are comparing neuropil to the cortex, but I think they really mean to compare the cortex of sham to cortex of D31?

      The reviewer was correct. We have revised figure 3F to make this clear.     

      In Figure 4B, what is the y‐axis? Percentage of what? Is that percentage of total flies?

      The reviewer was correct. We have revised the figure to make this clear. 

      In a figure like SF3 B, what is the y‐axis? "Norm. Accum. CI" Can they explain the abbreviation?

      We have revised the Y-axis label to be “Normalized accumulative CI”.  We have also made this clear in the legend.   

      In the methods, what does this mean: "Regions devoid of Hoechst and phalloidin signal in non‐physiologically appropriate areas were considered vacuoles"? What are non‐physiologically appropriate areas? To me, that would mean outside of the brain. I would have thought the areas should be physiologically appropriate (aka neuropil and cortex)? This is confusing.

      We have revised the method section to be more specific.  In the Drosophila brain, there are structures such as esophagus that are devoid of both Hoechst and phalloidin staining, which were excluded from our vacuole quantification.    

      Reviewer #2 (Recommendations For The Authors):

      Since I use mammalian systems, my comment about the confirmation of siRNA should be removed if this is not possible in the Drosophila system.

      We have revised the figures to include total N values when appropriate. Including individual n values for each experimental assay and condition will inevitably crowd the figure legends, so specific values are available upon request. 

      Regarding RNAi knockdown of sex peptide receptors (SPRs), we agree that confirmation of the knockdown by IHC or qRT-PCR will further strengthen our findings. It should be noted, however, that the RNAi line we used has been extensively validated by Yapici et al., 2007 and several subsequent publications. Importantly, the effectiveness of SPR knockdown is evident in female flies as they exhibit dramatically reduced egg laying and, importantly, lack the typical post-mating behaviors (such as rejection of male flies after initial mating) observed in the wild type mated female flies. In fact, female flies with RNAi-mediated SPR knockdown behave identically to females mated with SP-null male flies, confirming the effective disruption of the SP-SPR signaling pathway. We have revised the manuscript to include these statements in the results concerning the SPR RNAi knockdown.    

      Reviewer #3 (Recommendations For The Authors):

      (1) In Figures 1 and 2, the authors found that females have a lower climbing index in the acute phase in D17 injury, not due to neurodegeneration as shown no significant changes of brain vacuolation and other markers. However, in Figure 3, the authors found that female flies have a lower climbing index, more brain vacuolation, and neurodegeneration in the late phase. It's not very convincing that having a lower climbing index at the late phase is due to neurodegeneration. Is it possible that females suffered from more severe acute effects, at least in D17 injury?

      We thank the reviewer for this point. Female flies injured on D17 displayed acute climbing deficits at 90 minutes post-injury. Since we did not observe significant structural changes in the brain at this time, we believe that this short-term functional deficit is not due to acute neuronal death. Here it is important to note that males did not display any acute climbing deficits when injured on D17, which suggests that the females suffered from more severe acute effects than males. However, these injured female flies recovered fully at 24 hours post-injury and displayed no climbing deficits. At two weeks post-injury, we observe climbing deficits and increased vacuole formation as a direct result of the injuries on D17 (see Supplemental Figure 3). When we assessed sensorimotor behavior and brain vacuolation on D45, we found that the injured females had significantly lower climbing indices and more brain vacuolation than the non-injured females of the same age. In this case, the concurrent observance of decreased climbing ability and increased brain vacuolation suggests chronic neurodegeneration in aged, injured females. This is not to be confused with the acute neuronal death observed by other groups using injury models of stronger severity. Overall, our data are consistent with the current view that in many neurodegenerative diseases, functional deficits often precede observable brain degeneration, which may take years to manifest.

      (2) The authors determined late‐life brain deficits and neurodegeneration purely based on climbing index and vacuole formation. These phenotypes are not really specific to TBI‐related neurodegeneration and the significance and mechanisms of vacuole formation are not clear. Indeed, in Figures 3 A and B, male flies especially D31inj tend to have a much larger variation than any other groups. What could be the reasons? The authors should perform additional analyses on TBI‐related neurodegeneration in flies, which have been shown before, such as retinal degeneration and loss, neuronal degeneration, and loss, neuromuscular junction abnormalities, etc (Genetics. 2015 Oct; 201(2): 377‐402).

      We thank the reviewer for the thorough evaluation of our manuscript. The reviewer raised a very important question: whether the neurodegeneration observed in our model is specific to TBI. As the reviewer rightly pointed out, the neurodegenerative phenotypes are unlikely to be specific to TBI-related neurodegeneration. Throughout the manuscript, we have tried to convey the notion that the mild physical impacts to the head represent one form of environmental insults, which in combination with other risk factors such as aging can lead to the emergence of neurodegenerative conditions. It should be noted that the negative geotaxis assay and vacuolation quantification are two well-established approaches to assess sensorimotor deficits and frank brain degeneration in fly brains. 

      It is important to emphasize that the head-specific impacts delivered to the flies in our study are much milder than those used in previous studies. As we showed in our figure 1, this very mild form of head trauma (referred to as vmHT) did not cause any death, nor affected the lifespan of the injured flies. Our supplemental data also show very minimal structural neuronal damage and no acute and chronic apoptosis induced by vmHT exposure. Consistently, we did not observe any exoskeletal or eye damage immediately following injuries, nor did we observe any retinal degeneration and pseudopupil loss at the chronic stage of these flies. We have incorporated these important points in the revised manuscript.  

      (3) In Figure 4, it would be important to perform the behavior test fly speed and directional movement in the acute phase as well to determine whether the females have reduced performance at the acute phase.

      We thank the reviewer for this suggestion. Please note that our modified NGA has already improved the spatiotemporal resolution over the classic NGA.  The data presented in Fig.3 show that there are no acute deficits for young cohorts.  Therefore, we do not believe that the detailed analysis of the direction and speed of these flies is essential.  

      Unfortunately, the current setup for the AI-based analysis requires manual corrections of tracking errors, which are time-consuming and tedious.  We are building a newly designed AI-based NGA (NGA.ai) that will allow automatic tracking and quantification with minimal manual interventions. Once it is completed, we will perform some of the analyses that the reviewer suggested.  

      (4) In Figure 8, the authors performed an RNA‐seq analysis and identified some dysregulated gene expressions. However, it is really surprising to see so few DEGs even in wild‐type males and mated females, and to see that none of DEGs overlap among groups or related to the SP‐signaling. This raises questions about the validity of the RNAseq analysis. It is critical to independently verify their RNA‐sequencing results and to add some more molecular evidence to support their conclusion.

      We agree that future studies are needed to independently validate our RNA sequencing results. We believe that the small number of DEGs are likely due to two unique features of our study: (1) the very mild nature of our injury paradigm and (2) the chronic examination timepoint that was long after the head injury and SP exposure, which distinguish our study from previous fly TBI studies.  As pointed out in the manuscript, our study was aimed to understand how early life exposure to repetitive head traumatic insults could lead to the latelife onset of neurodegenerative conditions. We hope to further validate our results in our next phase of experiments using single-cell RNA sequencing and RT-qPCR. 

      (5) The current results raise a series of interesting questions: what implication of female fly mating and its associated Sex Peptide signaling would be to mammalians or humans? Would mammalian female animals mating with wild‐type or sex hormone‐null male animals have different effects on their post‐injury behavior tests or neuropathological changes? What are the mechanisms underlying the sexual dimorphism?

      As the reviewer pointed out, it would be very interesting to explore the possible roles of sex peptide-signaling in other animals and humans. As far as we know, there is no known mammalian ortholog to the insect sex peptide, so it would be difficult to study SP or an SPlike molecule in mammalian models. However, we believe that prolonged post-mating changes associated with reproduction in female fruit flies contribute to their elevated vulnerability to neurodegeneration.  In this regard, drastic changes within the biology of female mammals associated with reproduction can potentially lead to vulnerability to neurodegeneration. We agree that this demands further study, which may be done with future collaborators using rodent or large animal models.  We have discussed this point in the manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We would like to thank you very much for reviewing our manuscript and express our sincere appreciation for the valuable and thoughtful comments that led us to significantly improve the manuscript on Fshr-ZsGreen reporter mice. We have seriously taken your comments to make a major revision of the manuscript, and here is a summary of the revision:

      (1) New data on Fshr expression are input to the revised Manuscript:

      a. Fshr expression in the testis and adipose tissues (WAT and BAT) of B6 mice;

      b. Fshr expression in the testis of B6 by RNA-smFISH;

      c. Comparison of Fshr expression in the testis and ovary between Fshr-ZsGreen and B8 mice by ddRT-PCR to prove Fshr expression without interruptions by insertion of P2A-ZsGreen vector;

      d. Reduction of Fshr expression in osteocytes within the femoral sections from DMP1-CreERT2:Fshrfl/fl mice;

      e. Fshr expression in an established Leydig cell line-TM3 by immunofluorescence and ddRT-PCR, also show Fshr located in the nuclei of TM3 cells;

      f. Fshr expression at scRNA-seq level from 5 public single cell portals as Supplementary Data 3 to support our findings of the widespread expression pattern of Fshr, particularly in Leydig cells.

      (2) Re-organization of Figure 2 with a new legend.

      (3) A new paragraph is added to the Discussion Section of the revised MS to explain the function of P2A peptide in generation of GFP reporter mice and why Fshr express is not interrupted by the P2A-ZsGreen insertion in Fshr-ZsGreen reporter.

      (4) Deletion of Figure 1-D-c, as it is not necessary.

      (5) Replace of Figure 8-A (the left panel) with a reduced exposure time image.

      (6) Amended parts of the revised MS are labeled in red.

      A point by point response to the Reviewers’ comments:

      Reviewer 1:

      One of the shocking observations in this manuscript is the expression of FSHR in Leydig cells. Other observations are in the osteoblasts and endothelial cells as well as epithelial cells in different organs. The expression of ZsGreen in these tissues seems high and one shall start questioning if there are other mechanisms at play here.

      First, the turnover of fluorescent proteins is long, longer than 48h, which means that they accumulate at a different speed than the endogenous FSHR This means that ZsGreen will accumulate in time while the FSHR receptor might be degraded almost immediately. This correlated with mRNA expression (by the authors) but does not with the results of other studies in single-cell sequencing (see below).

      The expression of ZsGreen in Leydig cells seems much higher than in Sertoli cells, this is "disturbing" to put it mildly. This is visible in both the ZsGreen expression and the FISH assay (Figure 2 B-D).

      Thank you for this valuable comments. We added new data on Fshr expression to prove the presence of Fshr in Leydig cells in B6 detected by immunofluorescence staining, RNA-smFISH and ddRT-PCR, as well as in TM3 cells-isolated Leydig cells from a male mice in the revise MS (Fig 2E, F and G), that demonstrate no interruptions of normal Fshr expression by insertion of P2A-ZsGreen vector into a locus located between exon10 and stop code. We use ZsGreen as an indicator for active Fshr promoter status, rather than a method to measure Fshr expression, which is done by ddRT-PCR. These data are shown in Figure 2G of the revised MS

      In addition, we provide scRNA-seq based evidence on Fshr expression in human Leydig cells from two single cell portals (DISCO and BioGPS) as shown in Supplementary Data 3 in the revised MS. We also cited a recent report on scRNA-seq analysis of Fshr expression in Hu sheep in the revised MS as Reference 65 (PMID: 37541020) 1, which also clearly showed Fshr expression in Leydig cells at single cell level in Hu Sheep.

      We believe that the lack of Fshr expression in some single cell databases may be due to the degradation of Fshr transcript in cells during the process of single cell populations. In our laboratory, we spent more than 6 months to optimize methods and reagents to perverse mRNA integrity more than 8 for RAN-seq.

      The expression in WAT and BAT is also questionable as the expression of ZsGreen is high everywhere. That makes it difficult to believe that the images are truly informative. For example, the stainings of aorta show the ZsGreen expression where elastin and collagen fibres are - these are not "cells" and therefore are not expressing ZsGreen.

      FISH expression (for FSHR) in WT mice is missing.

      Also, the tissue sections were stained with the IgG only (neg control) but in practice both the KI and the WT tissues should be stained with the primary and secondary antibodies. The only control that I could think of to truly get a sense of this would be a tagged receptor (N-terminal) that could then be analysed by immunohistochemistry.

      Reply 2 and 3: Thank you for these comments. New data on Fshr expression in WAT and BAT of B6 mice by immunofluorescence staining and in the testis of B6 mice by immunofluorescence staining and RNA-smFISH are added to the revised MS (Fig.2D and E, and Fig. 4G), showing similar patterns to that of Fshr-ZsGreen mice. Furthermore, we provide more evidences as Supplementary Data 3 on Fshr expression obtained from 4 public single cell portables, showing FSHR expression in a widespread organs and tissues (including different fractions of adipose cells) of human, mice and rat at single cell levels. Please also check Fshr expression pattern in adipose tissues by immunostaining for Fshr in previous reports (Fig. 3a of PMID: 28538730 and Fig. 2 of PMID: 25754247) 2 3, which showed a similar expression pattern to our finding. These data should address your concerns on Fshr expression in WAT and BAT and other organs/tissues.

      Regard of “For example, the stainings of aorta show the ZsGreen expression where elastin and collagen fibres are - these are not "cells" and therefore are not expressing ZsGreen.” We believe that you referred to the image of the aorta in Supplementary Data2. However, Please take a look at the images of the aorta in Figure 5-C, which shows positively stained the layer of ‘elastin and collagen fibres’ for EMCN and a-SMA colocalized with Fshr expression with stained DAPI at a 1000X magnification, indicating endothelial cells and the cellular membrane presented in this layer, not just ‘elastin and collagen’.

      The authors also claim:

      To functionally prove the presence of FSHR in osteoblasts/osteocytes, we also deleted FSHR in osteocytes using an inducible model. The conditional knockout of FSHR triggered a much more profound increase in bone mass and decrease in fat mass than blockade by FSHR antibodies (unpublished data).

      This would be a good control for all their images. I think it is necessary to make the large claim of extragonadal expression, as well as intragonadal such as Leydig cells.

      Thank you for this very encouraging comment. As you suggested, we did add a result of reduced Fshr expression in osteocytes from DMP1-CreERT2+:Fshrfl/fl mice treated with tamoxifen to the revise MS, as shown in Figure 3D, demonstrating Fshr present in osteocytes and the specificity of Fshr antibody. Furthermore, we incorporated your advice on making ‘ large claim of extrogonadal and intragonadal expression of Fshr’ into the revised MS in red.

      Claiming that the under-developed Leydig cells in FSHR KO animals are due to a direct effect of the FSHR, and not via a cross-talk between Sertoli and Leydig cells, is too much of a claim. It might be speculated to some degree but as written at the moment it suggests this is "proven".

      Thank you for pointing out this incorrect claim and we apologized for it. In the revised MS, we deleted this claim.

      We also do not know if this FSHR expressed is a spliced form that would also result in the expression of ZsGreen but in a non-functional FSHR, or whether the FSHR is immediately degraded after expression. The insertion of the ZsGreen might have disturbed the epigenetics, transcription, or biosynthesis of the mRNA regulation.

      Thanks for this comment. In the revised MS, we added a new section to explain the function of P2A peptide in generation of a GFP reporter by sgRNA-guilded site specific knockin of P2A ZsGreen vector through CRISPRA/cas9 and provided a new result on comparison of Fshr expression in the testes and ovaries from Fshr-ZsGreen and B6 mice, showing equivalent Fshr expression between Fshr-ZsGreen and B6 mice (Figure 2G), which indicates no interruptions of Fshr expression by the insertion of P2A vector.

      The authors should go through single-cell data of WT mice to show the existence of the FSHR transcript(s).<br /> For example here:<br /> https://www.nature.com/articles/sdata2018192

      Thank you so much for the valuable comment. Yes, we took you critical advice to check Fshr expression through 4 single cell portals, including DISCO, GTEx, BioGPS and Human single cell portal, and present the collected data as Supplementary Data 3 in the revised MS, that strongly support our findings of the wider Fshr expression. Particularly, Fshr expression in Leydig cells is proved by scRNA-seq studies of human cells from DISCO and BioGPS, as well as a recent study in Hu sheep (PMID: 37541020) 1 and we cited it in the revised MS.

      Reviewer 2:

      Is the FSHR expression pattern affected by the knockin mice (no side-by-side comparison between wt and GSGreen mice, using in situ hybridization and ddRTPCR, at least in the gonads, is provided)?

      Thanks for the comment. In the revised MS, we provided a set of new data on Fshr expression in the testis, ovary, WAT and BAT of B6 mice by immunofluorescence staining and by RNA-smFISH for Fshr expression, showing similar expression patterns. Additionally, we also performed ddRT-PCT to compare Fshr expression in the testes and ovaries between Fshr-ZsGreen and B6 mice, demonstrating equivalent expression of Fshr expression between Fshr-ZsGreen and B6 mice. Interestingly, we also observed an significantly higher Fshr expression in the testis than that in the ovary (more than 30 folds).

      Is the splicing pattern of the FSHR affected in the knockin compared to wt mice, at least in the gonads?

      Thanks for the question. Please see our reply to the Reviewer 1 for the function of P2A peptide used for generation of GFP reporters.  Although we didn’t directly assess the splicing pattern, we provide a result of comparison of Fshr expression in Figure 2F in the revised MS, indirectly showing no changes of the splicing pattern. We will assess the splicing pattern of Fshr in the future that has been neglected in the field.

      Are there any additional off-target insertions of GSGreen in these mice?” and “Are similar results observed in separate founder mice?

      Thanks for the questions. As we describe it in the method section  in detail in the MS, Fshr-ZsGreen reporter was produced by the a site-specific long ssDNA recombination of the P2A-ZsGreen targeting vector to the locus between Exon10 and stop code by CRIPRA/cas9, which was guided by site-specific single guide RNA (sgRNA). We showed the results of Southern blot, DNA sequencing and site-specific PCR, proving the site-specific insertion of P2A-ZsGreen as shown in Figure 1. Because of the site-specific recombination, professionally, only one funder line is required for the study and there are no additional off-target insertions.

      How long is GSGreen half-life? Could a very long half-life be a major reason for the extremely large expression pattern observed?

      Thanks for the question. The half life of ZsGreen, also called ZsGreen1, is at least 26 h in mammalian cells or slightly longer due to its tetrameric structure, in contrast with the monomeric configuration of other well-known fluorescent proteins (PMID: 17510373) 4. The rationale for using this GFP protein is that ZsGreen is an exceptionally bright green fluorescent protein, which is up to 4X brighter than EGFP—and is ideally suited for whole-cell labelling, promoter-reporter studies, considering of the higher turnover and rapid degradation of Fshr transcript. In this study, we used ZsGreen as a monitor or an indicator of the active Fshr endogenous promoter, rather than a means for measuring the promoter activity. Therefore, regardless of its accumulation or not, ZsGreen driven by Fshr promoter, indicates the presence of active Fshr promoter in the defined cells. In stead, we used ddRT-PCR to measure Fshr expression degrees in this study. In addition, we also provide single cell sequence-based evidence from 4 public single cell portables to support our findings of the wide Fshr expression. Please see Supplementary Data 3 in the revised MS.

      References:

      (1) Su J, Song Y, Yang Y, et al. Study on the changes of LHR, FSHR and AR with the development of testis cells in Hu sheep. Anim Reprod Sci. Sep 2023;256:107306. doi:10.1016/j.anireprosci.2023.107306

      (2) Liu P, Ji Y, Yuen T, et al. Blocking FSH induces thermogenic adipose tissue and reduces body fat. Nature. Jun 1 2017;546(7656):107-112. doi:10.1038/nature22342

      (3) Liu XM, Chan HC, Ding GL, et al. FSH regulates fat accumulation and redistribution in aging through the Galphai/Ca(2+)/CREB pathway. Aging Cell. Jun 2015;14(3):409-20. doi:10.1111/acel.12331

      (4) Bell P, Vandenberghe LH, Wu D, Johnston J, Limberis M, Wilson JM. A comparative analysis of novel fluorescent proteins as reporters for gene transfer studies. J Histochem Cytochem. Sep 2007;55(9):931-9. doi:10.1369/jhc.7A7180.2007

    1. Author response:

      eLife assessment

      This useful study examines the neural activity in the motor cortex as a monkey reaches to intercept moving targets, focusing on how tuned single neurons contribute to an interesting overall population geometry. The presented results and analyses are solid, though the investigation of this novel task could be strengthened by clarifying the assumptions behind the single neuron analyses, and further analyses of the neural population activity and its relation to different features of behaviour.

      Thanks for recognizing the content of our research, and please stay tuned for our follow-up studies on neural dynamics during interception.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This study addresses the question of how task-relevant sensory information affects activity in the motor cortex. The authors use various approaches to address this question, looking at single units and population activity. They find that there are three subtypes of modulation by sensory information at the single unit level. Population analyses reveal that sensory information affects the neural activity orthogonally to motor output. The authors then compare both single unit and population activity to computational models to investigate how encoding of sensory information at the single unit level is coordinated in a network. They find that an RNN that displays similar orbital dynamics and sensory modulation to the motor cortex also contains nodes that are modulated similarly to the three subtypes identified by the single unit analysis.

      Strengths:

      The strengths of this study lie in the population analyses and the approach of comparing single-unit encoding to population dynamics. In particular, the analysis in Figure 3 is very elegant and informative about the effect of sensory information on motor cortical activity. The task is also well designed to suit the questions being asked and well controlled.

      We appreciate these kind comments.

      It is commendable that the authors compare single units to population modulation. The addition of the RNN model and perturbations strengthen the conclusion that the subtypes of individual units all contribute to the population dynamics. However, the subtypes (PD shift, gain, and addition) are not sufficiently justified. The authors also do not address that single units exhibit mixed modulation, but RNN units are not treated as such.

      We’re sorry for not providing sufficient grounds to introduce the subtypes. We determined the PD shift, gain, and addition as pertinent subtypes based on classical cosine tuning model (Georgopoulos et al., 1982) and referred to some gain modulation studies (e.g. Pesaran et al. 2010, Bremner and Andersen, 2012). Here, we applied this subtype analysis as a criteria to identify the modulation in neuronal population rather than to sort neuron into distinct cell types. We will update Methods in the revised version of manuscript.

      Weaknesses:

      The main weaknesses of the study lie in the categorization of the single units into PD shift, gain, and addition types. The single units exhibit clear mixed selectivity, as the authors highlight. Therefore, the subsequent analyses looking only at the individual classes in the RNN are a little limited. Another weakness of the paper is that the choice of windows for analyses is not properly justified and the dependence of the results on the time windows chosen for single-unit analyses is not assessed. This is particularly pertinent because tuning curves are known to rotate during movements (Sergio et al. 2005 Journal of Neurophysiology).

      The mixed selectivity or precisely the mixed modulation is indeed a significant feature of neuronal population in the present study. The purpose of the subtype analysis was to serve as a criterion for the potential modulation mechanisms. However, the results appear to be a spectrum than clusters. It still through some insights to understand the modulation distribution and we will refine the description in the next version. In the current version, we observed single-unit tuning and population neural state with sliding windows, focusing on the period around movement onset (MO) due to the emergence of a ring-like structure. We will clarify the choice of windows and the dependence assessment in the next version. It’s a great suggestion to consider the role of rotating tuning curves in neural dynamics during interception.

      This paper shows sensory information can affect motor cortical activity whilst not affecting motor output. However, it is not the first to do so and fails to cite other papers that have investigated sensory modulation of the motor cortex (Stavinksy et al. 2017 Neuron, Pruszynski et al. 2011 Nature, Omrani et al. 2016 eLife). These studies should be mentioned in the Introduction to capture better the context around the present study. It would also be beneficial to add a discussion of how the results compare to the findings from these other works.

      Thanks for the reminder. We will introduce the relevant research in the next version of manuscript.

      This study also uses insights from single-unit analysis to inform mechanistic models of these population dynamics, which is a powerful approach, but is dependent on the validity of the single-cell analysis, which I have expanded on below.

      I have clarified some of the areas that would benefit from further analysis below:

      (1) Task:

      The task is well designed, although it would have benefited from perhaps one more target speed (for each direction). One monkey appears to have experienced one more target speed than the others (seen in Figure 3C). It would have been nice to have this data for all monkeys.

      Great suggestion! However, it’s hard to implement as the implanted arrays have been removed.

      (2) Single unit analyses:

      In some analyses, the effects of target speed look more driven by target movement direction (e.g. Figures 1D and E). To confirm target speed is the main modulator, it would be good to compare how much more variance is explained by models including speed rather than just direction. More target speeds may have been helpful here too.

      Nice suggestion! The fitting goodness of the simple model (just motor direction) is much less than the complex model (including target speed). We will update the results in the next version.

      The choice of the three categories (PD shift, gain addition) is not completely justified in a satisfactory way. It would be nice to see whether these three main categories are confirmed by unsupervised methods.

      A good point. We will have a try with unsupervised methods. 

      The decoder analyses in Figure 2 provide evidence that target speed modulation may change over the trial. Therefore, it is important to see how the window considered for the firing rate in Figure 1 (currently 100ms pre - 100ms post movement onset) affects the results.

      Thanks for the suggestion and close reading. We will test the decoder in other epochs.

      (3) Decoder:

      One feature of the task is that the reach endpoints tile the entire perimeter of the target circle (Figure 1B). However, this feature is not exploited for much of the single-unit analyses. This is most notable in Figure 2, where the use of a SVM limits the decoding to discrete values (the endpoints are divided into 8 categories). Using continuous decoding of hand kinematics would be more appropriate for this task.

      This is a very reasonable suggestion. In this study, we discrete the reach-direction as the previous studies (Li et al., 2018&2022) and thought that the discrete decoding was already enough to show the interaction of sensory and motor variables. In future studies, we will try continuous decoding of hand kinematics.

      (4) RNN:

      Mixed selectivity is not analysed in the RNN, which would help to compare the model to the real data where mixed selectivity is common. Furthermore, it would be informative to compare the neural data to the RNN activity using canonical correlation or Procrustes analyses. These would help validate the claim of similarity between RNN and neural dynamics, rather than allowing comparisons to be dominated by geometric similarities that may be features of the task. There is also an absence of alternate models to compare the perturbation model results to.

      Thank you for these helpful suggestions. We will perform decoding analysis on RNN units to verify if there is interaction of sensory and motor variables as in real data, as well as the canonical correlation or Procrustes analysis.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Zhang et al. examine neural activity in the motor cortex as monkeys make reaches in a novel target interception task. Zhang et al. begin by examining the single neuron tuning properties across different moving target conditions, finding several classes of neurons: those that shift their preferred direction, those that change their modulation gain, and those that shift their baseline firing rates. The authors go on to find an interesting, tilted ring structure of the neural population activity, depending on the target speed, and find that (1) the reach direction has consistent positioning around the ring, and (2) the tilt of the ring is highly predictive of the target movement speed. The authors then model the neural activity with a single neuron representational model and a recurrent neural network model, concluding that this population structure requires a mixture of the three types of single neurons described at the beginning of the manuscript.

      Strengths:

      I find the task the authors present here to be novel and exciting. It slots nicely into an overall trend to break away from a simple reach-to-static-target task to better characterize the breadth of how the motor cortex generates movements. I also appreciate the movement from single neuron characterization to population activity exploration, which generally serves to anchor the results and make them concrete. Further, the orbital ring structure of population activity is fascinating, and the modeling work at the end serves as a useful baseline control to see how it might arise.

      Thank you for recognizing our work.

      Weaknesses:

      While I find the behavioral task presented here to be excitingly novel, I find the presented analyses and results to be far less interesting than they could be. Key to this, I think, is that the authors are examining this task and related neural activity primarily with a single-neuron representational lens. This would be fine as an initial analysis since the population activity is of course composed of individual neurons, but the field seems to have largely moved towards a more abstract "computation through dynamics" framework that has, in the last several years, provided much more understanding of motor control than the representational framework has. As the manuscript stands now, I'm not entirely sure what interpretation to take away from the representational conclusions the authors made (i.e. the fact that the orbital population geometry arises from a mixture of different tuning types). As such, by the end of the manuscript, I'm not sure I understand any better how the motor cortex or its neural geometry might be contributing to the execution of this novel task.

      The present study shows the sensory modulation on motor tuning in single units and neural state during motor execution period. It’s a pity that the findings were constrained in certain time windows. We are still working this topic, and hopefully will address related questions in our follow-up studies.

      Main Comments:

      My main suggestions to the authors revolve around bringing in the computation through a dynamics framework to strengthen their population results. The authors cite the Vyas et al. review paper on the subject, so I believe they are aware of this framework. I have three suggestions for improving or adding to the population results:

      (1) Examination of delay period activity: one of the most interesting aspects of the task was the fact that the monkey had a random-length delay period before he could move to intercept the target. Presumably, the monkey had to prepare to intercept at any time between 400 and 800 ms, which means that there may be some interesting preparatory activity dynamics during this period. For example, after 400ms, does the preparatory activity rotate with the target such that once the go cue happens, the correct interception can be executed? There is some analysis of the delay period population activity in the supplement, but it doesn't quite get at the question of how the interception movement is prepared. This is perhaps the most interesting question that can be asked with this experiment, and it's one that I think may be quite novel for the field--it is a shame that it isn't discussed.

      Great idea! We are on the way, and close to complete the puzzle.

      (2) Supervised examination of population structure via potent and null spaces: simply examining the first three principal components revealed an orbital structure, with a seemingly conserved motor output space and a dimension orthogonal to it that relates to the visual input. However, the authors don't push this insight any further. One way to do that would be to find the "potent space" of motor cortical activity by regression to the arm movement and examine how the tilted rings look in that space (this is actually fairly easy to see in the reach direction components of the dPCA plot in the supplement--the rings will be highly aligned in this space). Presumably, then, the null space should contain information about the target movement. dPCA shows that there's not a single dimension that clearly delineates target speed, but the ring tilt is likely evident if the authors look at the highest variance neural dimension orthogonal to the potent space (the "null space")--this is akin to PC3 in the current figures, but it would be nice to see what comes out when you look in the data for it.

      Nice suggestion. Target-speed modulation mainly influences PC3, which is consistent with ‘null space’ hypothesis. We will try other methods of dimensionality reduction (e.g. dPCA, Manopt) to determine the potent and null space.

      (3) RNN perturbations: as it's currently written, the RNN modeling has promise, but the perturbations performed don't provide me with much insight. I think this is because the authors are trying to use the RNN to interpret the single neuron tuning, but it's unclear to me what was learned from perturbing the connectivity between what seems to me almost arbitrary groups of neurons (especially considering that 43% of nodes were unclassifiable). It seems to me that a better perturbation might be to move the neural state before the movement onset to see how it changes the output. For example, the authors could move the neural state from one tilted ring to another to see if the virtual hand then reaches a completely different (yet predictable) target. Moreover, if the authors can more clearly characterize the preparatory movement, perhaps perturbations in the delay period would provide even more insight into how the interception might be prepared.

      We are sorry that we didn’t clarify the definition of “none” type, which can be misleading. The 43% unclassified nodes include those inactive ones, when only activate (task-related) nodes included, the ratio of unclassified nodes would be much lower. By perturbing the connectivity, we intended to explore the interaction between different modulations.

      Thank you for the great advice. We tried moving neural states from one ring to another without changing the directional cluster, but this perturbation didn’t have a significant influence on network performance as expected. We will check this result again and try perturbations in the delay period.

      Reviewer #3 (Public Review):

      Summary:

      This experimental study investigates the influence of sensory information on neural population activity in M1 during a delayed reaching task. In the experiment, monkeys are trained to perform a delayed interception reach task, in which the goal is to intercept a potentially moving target.

      This paradigm allows the authors to investigate how, given a fixed reach endpoint (which is assumed to correspond to a fixed motor output), the sensory information regarding the target motion is encoded in neural activity.

      At the level of single neurons, the authors found that target motion modulates the activity in three main ways: gain modulation (scaling of the neural activity depending on the target direction), shift (shift of the preferred direction of neurons tuned to reach direction), or addition (offset to the neural activity).

      At the level of the neural population, target motion information was largely encoded along the 3rd PC of the neural activity, leading to a tilt of the manifold along which reach direction was encoded that was proportional to the target speed. The tilt of the neural manifold was found to be largely driven by the variation of activity of the population of gain-modulated neurons.

      Finally, the authors studied the behaviour of an RNN trained to generate the correct hand velocity given the sensory input and reach direction. The RNN units were found to similarly exhibit mixed selectivity to the sensory information, and the geometry of the « neural population » resembled that observed in the monkeys.

      Strengths:

      - The experiment is well set up to address the question of how sensory information that is directly relevant to the behaviour but does not lead to a direct change in behavioural output modulates motor cortical activity.

      - The finding that sensory information modulates the neural activity in M1 during motor preparation and execution is non trivial, given that this modulation of the activity must occur in the nullspace of the movement.

      - The paper gives a complete picture of the effect of the target motion on neural activity, by including analyses at the single neuron level as well as at the population level. Additionally, the authors link those two levels of representation by highlighting how gain modulation contributes to shaping the population representation.

      Thanks for your recognition.

      Weaknesses:

      - One of the main premises of the paper is the fact that the motor output for a given reach point is preserved across different target motions. However, as the authors briefly mention in the conclusion, they did not record muscle activity during the task, but only hand velocity, making it impossible to directly verify how preserved muscle patterns were across movements. While the authors highlight that they did not see any difference in their results when resampling the data to control for similar hand velocities across conditions, this seems like an important potential caveat of the paper whose implications should be discussed further or highlighted earlier in the paper.

      Thanks for the suggestion. We will highlight the resampling results as important control in the next version of manuscript.

      - The main takeaway of the RNN analysis is not fully clear. The authors find that an RNN trained given a sensory input representing a moving target displays modulation to target motion that resembles what is seen in real data. This is interesting, but the authors do not dissect why this representation arises, and how robust it is to various task design choices. For instance, it appears that the network should be able to solve the task using only the motion intention input, which contains the reach endpoint information. If the target motion input is not used for the task, it is not obvious why the RNN units would be modulated by this input (especially as this modulation must lie in the nullspace of the movement hand velocity if the velocity depends only on the reach endpoint). It would thus be important to see alternative models compared to true neural activity, in addition to the model currently included in the paper. Besides, for the model in the paper, it would therefore be interesting to study further how the details of the network setup (eg initial spectral radius of the connectivity, weight regularization, or using only the target position input) affect the modulation by the motion input, as well as the trained population geometry and the relative ratios of modulated cells after training.

      Great suggestions. It’s a considerable pity that we didn’t dissect the formation reason and influence factor of the representation in the current version. We’ve tried several combinations of inputs before: in the network which received only motor intention and GO inputs, there were rings but not tilting related to target-speed; in the network which received only target location and GO inputs, there were ring-like structures but not clear directional clusters. We will check these results and try alternative models in the next version. In future studies, we will examine the influence of network setup details.

      - Additionally, it is unclear what insights are gained from the perturbations to the network connectivity the authors perform, as it is generally expected that modulating the connectivity will degrade task performance and the geometry of the responses. If the authors wish the make claims about the role of the subpopulations, it could be interesting to test whether similar connectivity patterns develop in networks that are not initialized with an all-to-all random connectivity or to use ablation experiments to investigate whether the presence of multiple types of modulations confers any sort of robustness to the network.

      Thank you for the great suggestions. By perturbations, we intended to explore the contribution of interaction between certain subpopulations. We tried ablation experiments, but the result was not significant. Probably because the most units were of mixed selectivity, the units of only modulations were not enough for bootstrapping, or the random sampling from single subpopulation (bearing mixed selectivity) could be repeated. We will consider these suggestions carefully in the revised version.

      - The results suggest that the observed changes in motor cortical activity with target velocity result from M1 activity receiving an input that encodes the velocity information. This also appears to be the assumption in the RNN model. However, even though the input shown to the animal during preparation is indeed a continuously moving target, it appears that the only relevant quantity to the actual movement is the final endpoint of the reach. While this would have to be a function of the target velocity, one could imagine that the computation of where the monkeys should reach might be performed upstream of the motor cortex, in which case the actual target velocity would become irrelevant to the final motor output. This makes the results of the paper very interesting, but it would be nice if the authors could discuss further when one might expect to see modulation by sensory information that does not directly affect motor output in M1, and where those inputs may come from. It may also be interesting to discuss how the findings relate to previous work that has found behaviourally irrelevant information is being filtered out from M1 (for instance, Russo et al, Neuron 2020 found that in monkeys performing a cycling task, context can be decoded from SMA but not from M1, and Wang et al, Nature Communications 2019 found that perceptual information could not be decoded from PMd)?

      How and where sensory information modulates M1 are very interesting and open questions. We will discuss further about this topic in the next version.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Semenova et al. have studied a large cross-sectional cohort of people living with HIV on suppressive ART, N=115, and performed high dimensional flow cytometry to then search for associations between immunological and clinical parameters and intact/total HIV DNA levels.

      A number of interesting data science/ML approaches were explored on the data and the project seems a serious undertaking. However, like many other studies that have looked for these kinds of associations, there was not a very strong signal. Of course, the goal of unsupervised learning is to find new hypotheses that aren't obvious to human eyes, but I felt in that context, there were (1) results slightly oversold, (2) some questions about methodology in terms mostly of reservoir levels, and (3) results were not sufficiently translated back into meaning in terms of clinical outcomes.

      We appreciate the reviewer’s perspective.  In our revised version of the manuscript, we have attempted to address these concerns by more adequately explaining the limitations of the study and by more thoroughly discussing the context of the findings.  We are not able to associate the findings with specific clinical outcomes for individual study participants but we speculate about the overall biological meaning of these associations across the cohort.  We cannot disagree with the reviewer, but we find the associations statistically significant, potentially reflecting real biological associations, and forming the basis for future hypothesis testing research. 

      Strengths:

      The study is evidently a large and impressive undertaking and combines many cutting-edge statistical techniques with a comprehensive experimental cohort of people living with HIV, notably inclusive of populations underrepresented in HIV science. A number of intriguing hypotheses are put forward that could be explored further. Sharing the data could create a useful repository for more specific analyses.

      We thank the reviewer for this assessment.

      Weaknesses:

      Despite the detailed experiments and methods, there was not a very strong signal for the variable(s) predicting HIV reservoir size. The Spearman coefficients are ~0.3, (somewhat weak, and acknowledged as such) and predictive models reach 70-80% prediction levels, though sometimes categorical variables are challenging to interpret.

      We agree with the reviewer that individual parameters are only weakly correlated with the HIV reservoir, likely reflecting the complex and multi-factorial nature of reservoir/immune cell interactions.  Nevertheless, these associations are statistically significant and form the basis for functional testing in viral persistence.

      There are some questions about methodology, as well as some conclusions that are not completely supported by results, or at minimum not sufficiently contextualized in terms of clinical significance.  On associations: the false discovery rate correction was set at 5%, but data appear underdetermined with fewer observations than variables (144vars > 115ppts), and it isn't always clear if/when variables are related (e.g inverses of one another, for instance, %CD4 and %CD8).

      When deriving a list of cell populations whose frequency would be correlated with the reservoir, we focused on well-defined cell types for which functional validation exists in the literature to consider them as distinct cell types.  For many of the populations, gating based on combinations of multiple markers leads to recovery of very few cells, and so we excluded some potential combinations from the analysis.  We are also making our raw data available for others to examine and find associations not considered by our manuscript.

      The modeling of reservoir size was unusual, typically intact and defective HIV DNA are analyzed on a log10 scale (both for decays and predicting rebound). Also, sometimes in this analysis levels are normalized (presumably to max/min?, e.g. S5), and given the large within-host variation of level we see in other works, it is not trivial to predict any downstream impact of normalization across population vs within-person.

      We have repeated the analysis using log10 transformed data and the new figures are shown in Figure 1 and S2-S5.

      Also, the qualitative characterization of low/high reservoir is not standard and naturally will split by early/later ART if done as above/below median. Given the continuous nature of these data, it seems throughout that predicting above/below median is a little hard to translate into clinical meaning.

      Our ML models included time before ART as a variable in the analysis, and this was not found to be a significant driver of the reservoir size associations, except for the percentage of intact proviruses (see Figure 2C). Furthermore, we analyzed whether any of the reservoir correlated immune variables were associated with time on ART and found that, although some immune variables are associated with time on therapy, this was not the case for most of them (Table S4). We agree that it is challenging to translate above or below median into clinical meaning for this cohort, but we emphasize that this study is primarily a hypothesis generating approach requiring additional validation for the associations observed.  We attempted to predict reservoir size as a continuous variable using the data and this approach was not successful (Figure S13). We believe that a significantly larger cohort will likely be required to generate a ML model that can accurately predict the reservoir as a continuous variable.  We have added additional discussion of this to the manuscript.

      Lastly, the work is comprehensive and appears solid, but the code was not shared to see how calculations were performed.

      We now provide a link to the code used to perform the analyses in the manuscript, https://github.com/lesiasemenova/ML_HIV_reservoir.

      Reviewer #2 (Public Review):

      Summary:

      Semenova et. al., performed a cross-sectional analysis of host immunophenotypes (using flow cytometry) and the peripheral CD4+ T cell HIV reservoir size (using the Intact Proviral DNA Assay, IPDA) from 115 people with HIV (PWH) on ART. The study mostly highlights the machine learning methods applied to these host and viral reservoir datasets but fails to interpret these complex analyses into (clinically, biologically) interpretable findings. For these reasons, the direct translational take-home message from this work is lost amidst a large list of findings (shown as clusters of associated markers) and sentences such as "this study highlights the utility of machine learning approaches to identify otherwise imperceptible global patterns" - lead to overinterpretation of their data.

      We have addressed the reviewer’s concern by modifications to the manuscript that enhance the interpretation of the findings in a clinical and biological context.

      Strengths:

      Measurement of host immunophenotyping measures (multiparameter flow cytometry) and peripheral HIV reservoir size (IPDA) from 115 PWH on ART.

      Major Weaknesses:

      (1) Overall, there is little to no interpretability of their machine learning analyses; findings appear as a "laundry list" of parameters with no interpretation of the estimated effect size and directionality of the observed associations. For example, Figure 2 might actually give an interpretation of each X increase in immunophenotyping parameter, we saw a Y increase/decrease in HIV reservoir measure.

      We have added additional text to the manuscript in which we attempt to provide more immunological and clinical interpretation of the associations.  We also have emphasized that these associations are still speculative and will require additional validation.  Nevertheless, our data should provide a rich source of new hypotheses regarding immune system/reservoir interaction that could be tested in future work.

      (2) The correlations all appear to be relatively weak, with most Spearman R in the 0.30 range or so.

      We agree with the review that the associations are mostly weak, consistent with previous studies in this area.  This likely is an inherent feature of the underlying biology – the reservoir is likely associated with the immune system in complex ways and involves stochastic processes that will limit the predictability of reservoir size using any single immune parameter. We have added additional text to the manuscript to make this point clearer.

      (3) The Discussion needs further work to help guide the reader. The sentence: "The correlative results from this present study corroborate many of these studies, and provide additional insights" is broad. The authors should spend some time here to clearly describe the prior literature (e.g., describe the strength and direction of the association observed in prior work linking PD-1 and HIV reservoir size, as well as specify which type of HIV reservoir measures were analyzed in these earlier studies, etc.) and how the current findings add to or are in contrast to those prior findings.

      We have added additional text to the manuscript to help guide the readers through the possible biological significance of the findings and the context with respect to prior literature.

      (4) The most interesting finding is buried on page 12 in the Discussion: "Uniquely, however, CD127 expression on CD4 T cells was significantly inversely associated with intact reservoir frequency." The authors should highlight this in the abstract, and title, and move this up in the Discussion. The paper describes a very high dimensional analysis and the key takeaways are not clear; the more the author can point the reader to the take-home points, the better their findings can have translatability to future follow-up mechanistic and/or validation studies.

      We appreciate the reviewer’s comment.  We have increased the emphasis on this finding in the revised version of the manuscript.

      (5) The authors should avoid overinterpretation of these results. For example in the Discussion on page 13 "The existence of two distinct clusters of PWH with different immune features and reservoir characteristics could have important implications for HIV cure strategies - these two groups may respond differently to a given approach, and cluster membership may need to be considered to optimize a given strategy." It is highly unlikely that future studies will be performing the breadth of parameters resulting here and then use these directly for optimizing therapy.

      Our analyses indicate that membership of study participants in cluster1 or cluster 2 can be fairly accurately determined by a small number of individual parameters (KLRG1 etc, Figure 4F), and measuring the cells of PWH with the degree of breadth used in this paper would not be necessary to classify PWH into these clusters.  As such, we feel that it is not unrealistic to speculate that this finding could turn out to be clinically useful, if it becomes clear that the clusters are biologically meaningful.

      (6) There are only TWO limitations listed here: cross-sectional study design and the use of peripheral blood samples. (The subsequent paragraph notes an additional weakness which is misclassification of intact sequences by IPDA). This is a very limited discussion and highlights the need to more critically evaluate their study for potential weaknesses.

      We have expanded on the list of limitations discussed in the manuscript. In particular, we now address the size of the cohort, the composition with respect to different genders and demographics, lack of information for the timing of ART and the lack of information regarding intracellular transcriptional pathways.

      (7) A major clinical predictor of HIV reservoir size and decay is the timing of ART initiation. The authors should include these (as well as other clinical covariate data - see #12 below) in their analyses and/or describe as limitations of their study.

      All of the participants that make up our cohort were treated during chronic infection, and the precise timing of ART initiation is unclear in most of these cases.  We have added additional information to explain this in the manuscript and include this in the list of limitations.

      Reviewer #3 (Public Review):

      Summary:

      This valuable study by Semenova and colleagues describes a large cross-sectional cohort of 115 individuals on ART. Participants contributed a single blood sample which underwent IPDA, and 25-color flow with various markers (pre and post-stimulation). The authors then used clustering, decision tree analyses, and machine learning to look for correlations between these immunophenotypic markers and several measures of HIV reservoir volume. They identified two distinct clusters that can be somewhat differentiated based on total HIV DNA level, intact HIV DNA level, and multiple T cell cellular markers of activation and exhaustion.

      The conclusions of the paper are supported by the data but the relationships between independent and dependent variables in the models are correlative with no mechanistic work to determine causality. It is unclear in most cases whether confounding variables could explain these correlations. If there is causality, then the data is not sufficient to infer directionality (ie does the immune environment impact the HIV reservoir or vice versa or both?). In addition, even with sophisticated and appropriate machine learning approaches, the models are not terribly predictive or highly correlated. For these reasons, the study is very much hypothesis-generating and will not impact cure strategies or HIV reservoir measurement strategies in the short term.

      We appreciate the reviewer’s comments regarding the value of our study.  We fully acknowledge that the causal nature and directionality of these associations are not yet clear and agree that the study is primarily hypothesis generating in nature.  Nevertheless, we feel that the hypotheses generated will be valuable to the field.  We have added additional text to the manuscript to emphasize the hypothesis generating nature of this paper.

      Strengths:

      The study cohort is large and diverse in terms of key input variables such as age, gender, and duration of ART. Selection of immune assays is appropriate. The authors used a wide array of bioinformatic approaches to examine correlations in the data. The paper was generally well-written and appropriately referenced.

      Weaknesses:

      (1) The major limitation of this work is that it is highly exploratory and not hypothesis-driven. While some interesting correlations are identified, these are clearly hypothesis-generating based on the observational study design.

      We agree that the major goal of this study was hypothesis generating and that our work is exploratory in nature. Performing experiments with mechanism testing goals in human participants with HIV is challenging.  Additionally, before such mechanistic studies can be undertaken, one must have hypotheses to test. As such we feel our study will be useful for the field in helping to identify hypotheses that could potentially be tested.

      (2) The study's cross-sectional nature limits the ability to make mechanistic inferences about reservoir persistence. For instance, it would be very interesting to know whether the reservoir cluster is a feature of an individual throughout ART, or whether this outcome is dynamic over time.

      We agree with the reviewer’s comment. Longitudinal studies are challenging to carry out with a study cohort of this size, and addressing questions such as the one raised by the reviewer would be of great interest. We believe our study nevertheless has value in identifying hypotheses that could be tested in a longitudinal study.

      (3) A fundamental issue is that I am concerned that binarizing the 3 reservoir metrics in a 50/50 fashion is for statistical convenience. First, by converting a continuous outcome into a simple binary outcome, the authors lose significant amounts of quantitative information. Second, the low and high reservoir outcomes are not actually demonstrated to be clinically meaningful: I presume that both contain many (?all) data points above levels where rebound would be expected soon after interruption of ART. Reservoir levels would also have no apparent outcome on the selection of cure approaches. Overall, dividing at the median seems biologically arbitrary to me.

      The reviewer raises a valid point that the clinical significance of above or below median reservoir metrics is unclear, and that the size of the reservoir has potentially little relation to rebound and cure approaches.  In the manuscript, we attempted to generate models that can predict reservoir size as a continuous variable in Figure S13 and find that this approach performs poorly, while a binarized approach was more successful. As such we have included both approaches in the manuscript.  It is possible that future studies with larger sample sizes and more detailed measurements will perform better for continuous variable prediction.  While this is a fairly large study (n=115) by the standards of HIV reservoir analyses, it is a small study by the standards of the machine learning field, and accurate predictive ML models for reservoir size as a continuous variable will likely require a much larger set of samples/participants.  Nevertheless, we feel our work has value as a template for ML approaches that may be informative for understanding HIV/immune interactions and generates novel hypotheses that could be validated by subsequent studies.

      (4) The two reservoir clusters are of potential interest as high total and intact with low % intact are discriminated somewhat by immune activation and exhaustion. This was the most interesting finding to me, but it is difficult to know whether this clustering is due to age, time on ART, other co-morbidity, ART adherence, or other possible unmeasured confounding variables.

      We agree that this finding is one of the more interesting outcomes of the study. We examined a number of these variables for association with cluster membership, and these data are reported in Figure S8A-D.  Age, years of ART and CD4 Nadir were all clearly different between the clusters.   The striking feature of this clustering, however, is the clear separation between the two groups of participants, as opposed to a continuous gradient of phenotypes.  This could reflect a bifurcation of outcomes for people with HIV, dynamic changes in the reservoir immune interactions over time, or different levels of untreated infection.  It is certainly possible that some other unmeasured confounding variables contribute to this outcome and we have attempted to make this limitation clearer.

      (5) At the individual level, there is substantial overlap between clusters according to total, intact, and % intact between the clusters. Therefore, the claim in the discussion that these 2 cluster phenotypes may require different therapeutic approaches seems rather speculative. That said, the discussion is very thoughtful about how these 2 clusters may develop with consideration of the initial insult of untreated infection and / or differences in immune recovery.

      We agree with the reviewer that this claim is speculative, and we have attempted to moderate the language of the text in the revised version.

      (6) The authors state that the machine learning algorithms allow for reasonable prediction of reservoir volume. It is subjective, but to me, 70% accuracy is very low. This is not a disappointing finding per se. The authors did their best with the available data. It is informative that the machine learning algorithms cannot reliably discriminate reservoir volume despite substantial amounts of input data. This implies that either key explanatory variables were not included in the models (such as viral genotype, host immune phenotype, and comorbidities) or that the outcome for testing the models is not meaningful (which may be possible with an arbitrary 50/50 split in the data relative to median HIV DNA volumes: see above).

      We acknowledge that the predictive power of the models generated from these data is modest and we have clarified this point in the revised manuscript. As the reviewer indicates, this may result from the influence of unmeasured variables and possible stochastic processes.  The data may thus demonstrate a limit to the predictability of reservoir size which may be inherent to the underlying biology.  As we mention above, this study size (n-115) is fairly small for the application of ML methods, and an increased sample size will likely improve the accuracy of the models. At this stage, the models we describe are not yet useful as predictive clinical tools, but are still nonetheless useful as tools to describe the structure of the data and identify reservoir associated immune cell types.

      (7) The decision tree is innovative and a useful addition, but does not provide enough discriminatory information to imply causality, mechanism, or directionality in terms of whether the immune phenotype is impacting the reservoir or vice versa or both. Tree accuracy of 80% is marginal for a decision tool.

      The reviewer is correct about these points.  In the revised manuscript, we have attempted to make it clear that we are not yet advocating using this approach as a decision tool, but simply a way to visualize the data and understand the structure of the dataset.  As we discuss above, the models will likely need to be trained on a larger dataset and achieve higher accuracy before use as a decision tool.

      (8) Figure 2: this is not a weakness of the analysis but I have a question about interpretation. If total HIV DNA is more predictive of immune phenotype than intact HIV DNA, does this potentially implicate a prior high burden of viral replication (high viral load &/or more prolonged time off ART) rather than ongoing reservoir stimulation as a contributor to immune phenotype? A similar thought could be applied to the fact that clustering could only be detected when applied to total HIV DNA-associated features. Many investigators do not consider defective HIV DNA to be "part of the reservoir" so it is interesting to speculate why these defective viruses appear to have more correlation with immunophenotype than intact viruses.

      We agree with the reviewer that this observation could reflect prior viral burden and we have added additional text to make this clearer.  Even so, we cannot rule out a model in which defective viral DNA is engaged in ongoing stimulation of the immune system during ART, leading to the stronger association between total DNA and the immune cell phenotypes. We hypothesize that the defective proviruses could potentially be triggering innate immune pattern recognition receptors via viral RNA or DNA, and a higher burden of the total reservoir leads to a stronger apparent association with the immune phenotype.  We have included text in the discussion about this hypothesis.

      (9) Overall, the authors need to do an even more careful job of emphasizing that these are all just correlations. For instance, HIV DNA cannot be proven to have a causal effect on the immunophenotype of the host with this study design. Similarly, immunophenotype may be affecting HIV DNA or the correlations between the two variables could be entirely due to a separate confounding variable

      We have revised the text of the manuscript to emphasize this point, and we acknowledge that any causal relationships are, at this point, simply speculation. 

      (10) In general, in the intro, when the authors refer to the immune system, they do not consistently differentiate whether they are referring to the anti-HIV immune response, the reservoir itself, or both. More specifically, the sentence in the introduction listing various causes of immune activation should have citations. (To my knowledge, there is no study to date that definitively links proviral expression from reservoir cells in vivo to immune activation as it is next to impossible to remove the confounding possible imprint of previous HIV replication.) Similarly, it is worth mentioning that the depletion of intact proviruses is quite slow such that provial expression can only be stimulating the immune system at a low level. Similarly, the statement "Viral protein expression during therapy likely maintains antigen-specific cells of the adaptive immune system" seems hard to dissociate from the persistence of immune cells that were reactive to viremia.

      We updated the text of the manuscript to address these points and have added additional citations as per the reviewer’s suggestion.

      (11) Given the many limitations of the study design and the inability of the models to discriminate reservoir volume and phenotype, the limitations section of the discussion seems rather brief.

      We have now expanded the limitations section of the discussion and added additional considerations. We now include a discussion of the study cohort size, composition and the detail provided by the assays.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      A few specific comments:

      "This pattern is likely indicative of a more profound association of total HIV DNA with host immunophenotype relative to intact HIV DNA."

      Most studies I have seen (e.g. single cell from Lictherfeld/Yu group) show intact proviruses are generally more activated/detectable/susceptible to immune selection, so I have a hard time thinking defective proviruses are actually more affected by immunotype.

      We hypothesize that this association is actually occurring in the opposite direction – that the defective provirus are having a greater impact on the immune phenotype, due to their greater number and potential ability to engage innate or adaptive immune receptors. We have clarified this point in the manuscript

      "The existence of two distinct clusters of PWH with different immune features and reservoir characteristics could have important implications for HIV cure strategies - these two groups may respond differently to a given approach, and cluster membership may need to be considered to optimize a given strategy."

      I find this a bit of a reach, given that the definition of 2 categories depended on the total size.

      We have modified the language of this section to reduce the level of speculation.

      "This study is cross-sectional in nature and is primarily observational, so caution should be used interpreting findings associated with time on therapy".

      I found this an interesting statement because ultimately time on ART shows up throughout the analysis as a significant predictor, do you mean something about how time on ART could indicate other confounding variables like ART regimen or something?

      We have rephrased this comment to avoid confusion.  We were simply trying to make the point that we should avoid speculating about longitudinal dynamics from cross sectional data.

      "As expected, the plots showed no significant correlation for intact HIV DNA versus years of ART (Figure 1B), while total reservoir size was positively correlated with the time of ART (Figure 1A, Spearman r = 0.31)."<br />  Is this expected? Studies with longitudinal data almost uniformly show intact decay, at least for the first 10 or so years of ART, and defective/total stability (or slight decay). Also probably "time on ART" to not confuse with the duration of infection before ART.

      We have updated the language of this section to address this comment.  We have avoided comparing our data with respect to time on ART to longitudinal studies for reasons given above.

      On dimensionality reduction, as this PaCMAP seems a relatively new technique (vs tSNE and UMAP which are more standard, but absolutely have their weaknesses), it does seem important to contextualize. I think it would still be useful to show PCA and asses the % variance of each additional dimension to assess the effective dimensionality, it would be helpful to show a plot of % variance by # components to see if there is a cutoff somewhere, and if PaCMAP is really picking this up to determine the 2 dimensions/2 clusters is ideal. Figure 4B ultimately shows a lot of low/high across those clusters, and since low/high is defined categorically it's hard to know which of those dots are very close to the other categories.

      We have added this analysis to the manuscript – found in Figure S9. The PCA plot indicates that members of the two clusters also separate on PCA although this separation is not as clear as for the PaCMAP plot.

      Minor comments on writing etc:

      Intro

      -Needs some references on immune activation sequelae paragraph.

      We have added some additional references to this section.

      -"promote the entry of recently infected cells into the reservoir" -- that is only one possible mechanistic explanation, it's not unreasonable but it seems important to keep options open until we have more precise data that can illuminate the mechanism of the overabundance.

      We have modified the text to discuss additional hypotheses.

      -You might also reference Pankau et al Ppath for viral seeding near the time of ART.

      We have added this reference.

      -"Viral protein expression during therapy likely maintains antigen-specific cells of the adaptive immune system" - this was unclear to me, do you mean HIV-specific cells that act against HIV during ART? I think most studies show immunity against HIV (CD8 and CD4) wanes over time during ART.

      The Goonetilleke lab has recently generated data indicating that antiviral T cell responses are remarkably stable over time on ART, but we agree with the reviewer that the idea that ongoing antigen expression in the reservoir maintains these cells is speculative.  We have modified the text to make this point clearer.

      -Overall I think the introduction lacked a little bit of definitional precision: i.e. is the reservoir intact vs replication competent vs all HIV DNA and whether we are talking about PWH on long-term ART and how long we should be imagining? The first years of ART are certainly different than later, in terms of dynamics. The ultimate implications are likely specific for some of these categorizations.

      -"persistent sequelae of the massive disruptions to T cell homeostasis and lymphoid structures that occur during untreated HIV infection" needs a lot more context/referencing. For instance, Peter Hunt showed a decrease in activation after ART a long time ago.

      -Heather Best et al show T cell clonality stays perturbed after ART.

      We have updated the text of the introduction and added references to address the reviewer’s comments.

      Results

      -It would be important to mention the race of participants and any information about expected clades of acquired viruses, this gets mentioned eventually with reference to the Table but the breakdown would be helpful right away.

      We have added this information to the results section.

      -"performed Spearman correlations", may be calculated or tested?

      We have corrected the language for this sentence.

      Comments on figures:

      -Figure 1 data on linear scale (re discussion above) -- hard to even tell if there is a decay (to match with all we know from various long-term ART studies).

      -Figure 4 data is shown on ln (log_e) scale, which is hard to interpret for most people.

      -Figures 4 C,D, and E should have box plots to visually assess the significance.

      -Figure 4B legend says purple/pink but I think the colors are different in the plot, could be about transparency

      -Figure 5 it is now not clear if log_e(?).

      -Figure 6 "HIV reservoir characteristics" might be better to make this more explicit. Do you mean for instance in the 6B title Total HIV DNA per million CD4+ T cells I think?

      We have made these modifications.

      Reviewer #2 (Recommendations For The Authors):

      Minor Weaknesses:

      (1) The Introduction is too long and much of the text is not directly related to the study's research question and design.

      We have streamlined the introduction in the revised manuscript.

      (2) While no differences were seen by age or race, according to the authors, this is unlikely to be useful since the numbers are so small in some of these subcategories. Results from sensitivity analyses (e.g., excluding these individuals) may be more informative/useful.

      We agree that the lower numbers of participants for some subgroupings makes it challenging to know for sure if there are any differences based on these variables.  Have added text to clarify this. We have added age, race and gender to the LOCO analysis and to the variable inflation importance analysis (Table S5).

      (3) For Figure 4, based on what was described in the Results section of the manuscript, the authors should clarify that the figures show results for TOTAL HIV DNA only (not intact DNA): "Dimension reduction machine learning approaches identified two robust clusters of PWH when using total HIV DNA reservoir-associated immune cell frequencies (Figure 4A), but not for intact or percentage intact HIV DNA (Figure 4B and 4C)".

      We have added this information.

      (4) The statement on page 5, first paragraph, "Interestingly, when we examined a plot of percent intact proviruses versus time on therapy (Figure 1C), we observed a biphasic decay pattern," is not new (Peluso JCI Insight 2020, Gandhi JID 2023, McMyn JCI 2023). Prior studies have clearly demonstrated this biphasic pattern and should be cited here, and the sentence should be reworded with something like "consistent with prior work", etc.

      We have added citations to these studies and rephrased this comment.

      (5) The Cohort and sample collection sections are somewhat thin. Further details on the cohort details should include at the very minimum some description of the timing of ART initiation (is this mostly a chronic-treated cohort?) and important covariate data such as nadir CD4+ T cell count, pre-ART viral load, duration of ART suppression, etc.

      The cohort was treated during chronic infection, and we have clarified this in the manuscript.  Information regarding CD4 nadir and years on ART are included in Table 1.  Unfortunately, pre-ART viral load was not available for most members of this cohort, so we did not use it for analyses. The partial pre-ART viral load data is included with the dataset we are making publicly available.

      Reviewer #3 (Recommendations For The Authors):

      Minor points:

      (1) What is meant by CD4 nadir? Is this during primary infection or the time before ART initiation?

      We have clarified this description in the manuscript.  This term refers to the lowest CD4 count recorded during untreated infection.

      (2) The authors claim that determinants of reservoir size are starting to emerge but other than the timing of ART, I am not sure what studies they are referring to.

      We have updated the language of this section.  We intended to refer to studies looking at correlates of reservoir size, and feel that this is a more appropriate term that ‘determinants’

      (3) The discussion does not tie in the model-generated hypotheses with the known mechanisms that sustain the reservoir: clonal proliferation balanced by death and subset differentiation. It would be interesting to tie in the proposed reservoir clusters with these known mechanisms.

      We have added additional text to the manuscript to address these mechanisms.

      (4) Figure 1: Total should be listed as total HIV DNA.

      We have updated this in the manuscript.

      (5) Figure 1C: Worth mentioning the paper by Reeves et al which raises the possibility that the flattening of intact HIV DNA at 9 years may be spurious due to small levels of misclassification of defective as intact.

      We have added this reference.

      (6) "Total reservoir frequency" should be "total HIV DNA concentration"

      We respectfully feel that “frequency” is a more accurate term than “concentration”, since we are expressing the reservoir as a fraction of the CD4 T cells, while “concentration” suggests a denominator of volume.

      (7) Figure S2-5: label y-axis total HIV DNA.

      We have updated this figure.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Rebuttal_ Preprint- #RC-2023-02144

      First of all we would like to thank the three reviewers for their constructive and positive comments and suggestions, and the time spent in reviewing our manuscript. Their suggestions and comments had contributed to improve our manuscript. We feel the manuscript is much strengthened by this revision.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      __Summary:____ __The manuscript by Dabsan et al builds on earlier work of the Igbaria lab, who showed that ER-luminal chaperones can be refluxed into the cytosol (ERCYS) during ER stress, which constitutes a pro-survival pathway potentially used by cancer cells. In the current work, they extent these observations and a role for DNAJB12&14 in ERCYS. The work is interesting and the topic is novel and of great relevance for the proteostasis community. I have a number of technical comments:

      We thank the reviewer for his/her positive comments on our manuscript.


      __Major and minor comments: __

      1- In the description of Figure 2, statistics is only show to compare untreated condition with those treated with Tg or Tm, but no comparison between condition and different proteins. As such, the statement made by the authors "...DNAJB14-silenced cells were only affected in AGR2 but not in DNAJB11 or HYOU1 cytosolic accumulation" cannot be made.

      Answer: We totally agree with the reviewer#1. The aim of this figure is to show that during ER stress, a subset of ER proteins are refluxed to the cytosol. This is happening in cells expressing DNAJB12 and DNAJB14. We are not comparing the identity of the expelled proteins between DNAJB12-KD cells and DNAJB14-KD cells, This is not the scoop of this paper as such the statement was removed.

      2- Figure S2C: D11 seems to increase in the cytosolic fraction after Tm and Tg treatment. However, this is not reflected in the text. The membrane fraction also increases in the DKO. Is the increase of D11 in both cytosol and membrane and indication for a transcriptional induction of this protein by Tm/Tg? Again, the authors are not reflecting on this in their text.

      Answer: We performed qPCR experiments in control, DNAJB12-KD, DNAJB14-KD and in the DNAJB12/DNAJB14 double knock down cells (in both A549 and PC3 cells) to follow the mRNA levels of DNAJB11. As shown in (Figure S2F-S2N), there is no increase in the mRNA levels of DNAJB11, AGR2 or HYOU1 in the different cells in normal (unstressed conditions). Upon ER stress with tunicamycin or thapsigargin there is a little increase in the mRNA levels of HYOU1 and AGR2 but not in DNAJB11 mRNA levels. On the other hand, we also performed western blot analysis and we did not detect any difference between the different knockdown cells when we analyzed the levels of DNAJB11 compared to GAPDH. Those data are now added as (Figure S2F-S2N).

      We must note that although AGR2 and HYOU1 are induced at the mRNA as a result of ER stress, the data with the overexpression of DNAJB12 and DNAJB14 are important as control experiments because when DNAJB12 is overexpressed it doesn’t inducing the ER stress (Figure S3C-S3D). In those conditions there is an increase of the cytosolic accumulation of AGR2, HYOU1 and DNAJB11 despite that there was no induction of AGR2, HYOU1 or DNAJB11 (Figure 3C and Figure 3E, Figure S3, Figure 4, and Figure S4) . Those results argue against the idea that the reflux is a result of protein induction and an increase in the total proteins levels.

      3- Figure 2D: Only p21 is quantified. phospho-p53 and p53 levels are not quantified.


      Answer: We added the quantification of phospho-p53 and the p53 levels to (Figure 2E-G). Additional blots of the P21, phosphor-p53 and p53 now added to FigureS2O.

      4- Figure 2D: There appears to be a labelling error

      Answer: Yes, the labelling error was corrected.

      5- Are there conditions where DNAJB12 would be higher?

      Answer: In some cancer types there is a higher DNAJB12, DNAJB14 and SGTA expression levels that are associated with poor prognosis and reduced survival (New Figure S6E-M). The following were added to the manuscript: “Finally, we tested the effect of DNAJB12, DNAJB14, and SGTA expression levels on the survival of cancer patients. A high copy number of DNAJB12 is an unfavorable marker in colorectal cancer and in head and neck cancer because it is associated with poor prognosis in those patients (Figure S6E). A high copy number of DNAJB12, DNAJB14, and SGTA is associated with poor prognosis in many other cancer types, including colon adenocarcinoma (COAD), acute myeloid leukemia (LAML), adrenocortical carcinoma (ACC), mesothelioma (MESO), and Pheochromocytoma and paraganglioma (PCPG) (Figure S6F-M). In uveal melanoma (UVM), a high copy number of the three tested genes, DNAJB12, DNAJB14, and SGTA, are associated with poor prognosis and poor survival (Figure S6I, S6J, and S6M). The high copy number of DNAJB12, DNAJB14, and SGTA is also associated with poor prognosis in many other cancer types but with low significant scores. More data is needed to make significant differences (TCGA database). We suggest that the high expression of DNAJB12/14 and SGTA in those cancer types may account for the poor prognosis by inducing ERCYS and inhibiting pro-apoptotic signaling, increasing cancer cells' fitness.

      6- What do the authors mean by "just by mass action"?

      Answer: Mass action means increasing the amount of the protein (overexpression). We corrected this in the main text to overexpression.

      7- Figure 3C: Should be labelled to indicate membrane and cytosolic fraction. The AGR2 blot in the left part is not publication quality and should be replaced.

      Answer: We added the labelling to indicate cytosolic and membrane fractions to Figure 3C. We re-blotted the AGR2, new blot of AGR2 was added.

      8- What could be the reason for the fact that DNAJB12 is necessary and sufficient for ERCYS, while DNAJB14 is only necessary?

      Answer: Because of their very high homology, we speculate that the two proteins have partial redundancy. Partial because we believe that some of the roles of DNAJB12 cannot be carried by DNAJB14 in its absence. Although they are highly homologous, we expect that they probably have different affinities in recruiting other factors that are necessary for the reflux of proteins.

      We further developed around this point in the discussion and the main text.

      9- Figure 5A: Is the interaction between SGTA and JB12 UPR-independent?HCS70 seems to show only background binding. The interaction of JB12 with SGTA is not convincing. A better blot is needed.

      Answer: In the conditions of Figure 5A, we did not observe any induction of the UPR (Figure S3C-D). Thus, we concluded that in those condition of overexpression, DNAJB12 interacts with SGTA in UPR independent manner.

      We repeated this experiment another 3 times with very high number of cells (2X15cm2 culture dishes for each condition) and instead of coimmunoprecipitating with DNAJB12 antibodies we IP-ed with FLAG-beads, the results are very clear as shown in the new Figure 5A compared to Figure S5A.

      10- Figure 5B: the expression of DNAJB14 was induced by Tg50, but not by Tg25 or Tm. However, the authors have not commented on this. This should be mentioned in the text and discussed.

      Answer: In most of the experiments we did not see an increase in DNAJB14 upon ER stress except in this replicate. To be sure we looked at the DNAJB14 levels upon ER stress by protein and qPCR experiment as shown in new (in the Input of Figure 5 and Figure S5) and (Figure S5H-I). We also added new IP experiments in Figure 5 and Figure S5.

      11- Figure 6A: Why is a double knockdown important at all? DNAJB14 does not seem to do much at all (neither in overexpression nor with single knockdown).

      Answer: the data shows that DNAJB12 can compensate for the lack of DNAJB14 while DNAJB14 can only partially compensate for some of the DNAJB12 functions. DNAJB12 could have higher affinity to recruit other factor needed for the reflux process and thus the impact of DNAJB12 is higher. In summary, neither DNAJB12 or DNAJB14 is essential in the single knockdown which means that they compensate for each other. In the overexpression experiment, it is enough to have the endogenous DNAJB14 for the DNAJB12 activity. When DNAJB14 is overexpressed at very high levels, we believe that it binds to some factors that are needed for proper DNAJB12 activity (Figure 4 showing that the WT-DNAJB14 inhibits ER-stress induced ER protein reflux when overexpressed). We believe that DNAJB14 is important because only when we knock both DNAJB12 and DNAJB14 we see an effect on the ER-protein reflux. DNAJB14 is part of a complex of DNAJB12/HSC70 and DSGTA.

      (DNAJB12 is sufficient while DNAJB14 is not- please refer to point #8 above).

      **Referees cross-commenting**

      I agree with the comments raised by reviewer 1 about the manuscript. I also agree with the points written in this consultation session. In my opinion, the comments of reviewer 2 are phrased in a harsh tone and thus the reviewer reaches the conclusion that there are "serious" problems with this manuscript. However, I think that the authors could address many of the points of this reviewer in a matter of 3 months easily. For instance, it is easy to control for the expression levels of exogenous wild type and mutant D12 and compare it to the endogenous one (point 3). This is a very good point of this reviewer and I agree with this experiment. Likewise, it is easy to provide data about the levels of AGR2 to address the concern whether its synthesis is affected by D12 and D14 overexpression. Again, an excellent suggestion, but no reason for rejecting the story. As for not citing the literature, I think this can also easily be addressed and I am sure that this is just an oversight and no ill intention by the authors. __Overall, I am unable to see why the reviewer reaches such a negative verdict about this work. With proper revisions that might take 3 months, I think the points of all reviewers can be addressed. __

      Reviewer #1 (Significance (Required)):

      Significance: The strength of the work is that it provides further mechanistic insight into a novel cellular phenomenon (ERCYS). The functions for DNAJB12&14 are unprecedented and therefore of great interest for the proteostasis community. Potentially, the work is also of interest for cancer researchers, who might capitalize of the ERCYS to establish DNAJB12/14 as novel therapeutic targets. The major weaknesses are as follows: (i) the work is limited to a single cell line. To better probe the cancer relevance, the work should have used at least a panel of cell lines from one (or more) cancer entity. Ideally even data from patient derived samples would have been nice. Having said this, I also appreciate that the work is primarily in the field of cell biology and the cancer-centric work could be done by others. Certainly, the current work could inspire cancer specialists to explore the relevance of ERCYS. (ii) No physiological or pathological condition is shown where DNAJB12 is induced or depleted.

      Answer: We previously showed that ERCYS is conserved in many different cell lines including A549, MCF7, GL-261, U87, HEK293T, MRC5 and others and is also conserved in murine models of GBM (GL-261 and U87 derived tumors) and human patients with GBM (Sicari et al. 2021). Here, we tested the reflux process and the IP experiments in many different cell lines including A549, MCF-7, PC3 and Trex-293 cells. We also added new fractionation experiment in DNAJB12 and DNAJB14 -depleted MCF-7, PC3 and A549 cells. We added all those data to the revised version.

      We also added survival curves from the TCGA database showing that high copy number of DNAB12, DNAJB14 and SGTA are associated with poor prognosis compared to conditions where DNAJB12, DNAJB14, and SGTA are at low copy number (Figure S6E-M). Finally, we included immunofluorescent experiment to show that the interaction between the refluxed AGR2 and the cytosolic SGTA occurs in tumors collected from patients with colorectal cancer patients (Figure S5F-G) compared to non-cancerous tissue.

      This study is highly significant and is relevant not only to cancer but for other pathways that may behave in similar manner. For instance, DNAJB12 and DNAJB14 are part of the mechanism that is used by non-envelope viruses to escape the ER to the cytosol. Thus, the role of those DNAJB proteins seems to be mainly in the reflux of functional (not misfolded) proteins from the ER to the cytosol. We reported earlier that the UDP-Glucose-Glucosyl Transferase 1 (UGGT1) is also expelled during ER stress. UGGT1 is important because it is redeploy to the cytosol during enterovirus A71 (EA71) infection to help viral RNA synthesis (Huang et al, 2017). This redeployment of EAA71 is similar to what happens during the reflux process because on one hand, UGGT1 exit the ER by an ER stress mediated process (Sicari et al. 2021) and it is also a functional in the cytosol as a proteins which help viral RNA synthesis ((Huang et al, 2017). All those data showing that there is more of DNAJB12, DNAJB14, DNAJC14, DNAJC30 and DNAJC18 that still needs to be explored in addition to what is published. Thus, we suggest that viruses hijacked this evolutionary conserved machinery and succeeded to use it in order to escape the ER to the cytosol in a manner that depends on all the component needed for ER protein reflux.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The authors present a study in which they ascribe a role for a complex containing DNAJB12/14-Hsc70-SGTA in facilitating reflux of a AGR2 from the ER to cytosol during ER-stress. This function is proposed to inhibit wt-P53 during ER-stress.

      Concerns: 1. The way the manuscript is written gives the impression that this is the first study about mammalian homologs of yeast HLJ1, while there are instead multiple published papers on mammalian orthologs of HLJ1. Section 1 and Figure 1 of the results section is redundant with a collection of previously published manuscripts and reviews. The lack of proper citation and discussion of previous literature prevents the reader from evaluating the results presented here, compared to those in the literature.

      Answer: We highly appreciate the reviewer’s comments. This paper is not to show that DNAJB12 and DNAJB14 are the orthologues of HLJ-1 but rather to show that DNAJB12 and DNAJB14 are part of a mechanism that we recently discovered and called ERCYS that cause proteins to be refluxed out of the ER. A mechanism that is regulated in by HLJ-1 in yeast. ERCYS is an adaptive and pro-survival mechanism that results in increased chemoresistance and survival in cancer cells. The papers that reviewer #2 refer to are the ones that report DNAJB12 can replace some of the ER-Associated Degradation (ERAD) functions of HLJ-1 in degradation of membranal proteins such as CFTR. These two mechanism are totally different and the role of the yeast HLJ-1 in degradation of CFTR is not needed for ERCYS. This is because we previously showed that the role of the yeast HLJ-1 and probably its orthologues in ERCYS is independent of their activity in ERAD(Igbaria et al. 2019). Surprisingly, the role of HLJ-1 in refluxing the ER proteins is not only independent of the reported ERAD-functions of HLJ1 and the mammalian DNAJBs but rather proceeds more rigorously when the ERAD is crippled (Igbaria et al. 2019). This role of DNAJBs is unique in cancer cells and is responsible in regulating the activity of p53 during the treatment of DNA damage agents.

      In our current manuscript we show by similarity, functionality, and topological orientation, that DNAJB12 and DNJB14 may be part of a well conserved mechanism to reflux proteins from the ER to the cytosol. A mechanism that is independent of DNAJB12/14’s reported activity in ERAD(Grove et al. 2011; Yamamoto et al. 2010; Youker et al. 2004). In addition, DNAJB12 and DNAJB14 facilitate the escape of non-envelope viruses from the ER to the cytosol in similar way to the reflux process(Goodwin et al. 2011; Igbaria et al. 2019; Sicari et al. 2021). All those data show that HLJ-1 reported function may be only the beginning of our understanding on the role that those orthologues carry and that are different from what is known about their ERAD function.

      Action: We added the references to the main text and discussed the differences between the reported DNAJB12 and HLJ-1 functions to the function of DNAJB12, DNAJB14 and the other DNAJ proteins in the reflux process. We also developed around this in the discussion.

      The conditions used to study DNAJB12 and DNAJ14 function in AGR2 reflux from the ER do not appear to be of physiological relevance. As seen below they involve two transfections and treatment with two cytotoxic drugs over a period of 42 hours. The assay for ERCY is accumulation of lumenal ER proteins in a cytosolic fraction. Yet, there is no data or controls that describe the path taken by AGR2 from the ER to cytosol. It seems like pleotropic damage to the ER due the experimental conditions and accompanying cell death could account for the reported results?

      Transfection of cells with siRNA for DNAJB12 or DNAJB14 with a subsequent 24-hour growth period.

      Transfection of cells with a p53-lucifease reporter.

      Treatment of cells with etoposide for 2-hours to inhibit DNA synthesis and induce p53. D. Treatment of cells for 16 hours with tunicamycin to inhibit addition of N-linked glycans to secretory proteins and cause ER-stress.

      Subcellular fractionation to determine the localization of AGR2, DNAJB11, and HYOU1

      KD of DNAJB12 or DNAJB14 have modest if any impact on AGR2 accumulation in the cytosol. There is an effect of the double KD of DNAJB12 or DNAJB14 on AGR2 accumulation in the cytosol. Yet there are no western blots showing AGR2 levels in the different cells, so it is possible that AGR2 is not synthesized in cells lacking DNAJB12 and DNAKB14. The lack of controls showing the impact of single and double KD or DNAJB12 and DNAJB14 on cell viability and ER-homeostasis make it difficult to interpret the result presented. How many control versus siRNA KD cells survive the protocol used in these assays?


      Answer: Despite the long protocol we see differences between the control cells and the DNAJB-silenced cells in terms of the quantity of the refluxed proteins to the cytosol. The luciferase construct was used to assess the activity of p53 so the step of the second transfection was used only in experiments were we assayed the p53-luciferase activity. The rest of the experiments especially those where we tested the levels of p53 and P21 levels, were performed with one transfection. Moreover, all the experiments with the subcellular protein fractionation were performed after one transfection without the second transfection of the p53-Luciferase reporter. Finally, the protocol of the subcellular protein fractionation requires first to trypsinize the cells to lift them up from the plates, at the time of the experiment the cells were almost at 70-80% confluency and in the right morphology under the microscope.

      Here, we performed XTT assay and Caspase-3 assay to asses cell death at the end of the experiment and before the fractionation assay. We did not observe any differences at this stage between the different cell lines (Figure-RV1 for reviewers Only). This can be explained by the fact that we use low concentrations of Tm and Tg for short time of 16 hour after the pulse of etoposide.

      Finally, the claim that and ER-membrane damage result in a mix between the ER and cytosolic components is not true for the following reasons: (1) In case of mixing we would expect that GAPDH levels in the membrane fraction will be increased and that we do not see, and (2) we used our previously described transmembrane-eroGFP (TM-eroGFP) that harbors a transmembrane domain and is attached to the ER membrane facing the ER lumen. The TM-eroGFP was found to be oxidized in all conditions tested. Those data argue against a rupture of the ER membrane which can results in a mix of the highly reducing cytosolic environment with the highly oxidizing ER environment by the passage of the tripeptide GSH from the cytosol to the ER. All those data argue against (1) cell death, and (2) rupture of the ER membrane. Figure RV1 Reviewers Only.

      Moreover, as it is shown in Figure S2, AGR2 is found in the membrane fraction in all the four different knock downs, thus it is synthesized in all of them. Moreover, we assayed the mRNA levels of AGR2 in all the knockdowns and we so that they are at the same levels in all the 4 different conditions and still AGR2 mRNA levels increase upon ER stress in all of the 4 knockdown cells in different backgrounds (Figure S2F-N).

      In Figure 3 the authors overexpress WT-D12 and H139Q-D12 and examine induction of the p53-reporter. There are no western blots showing the expression levels of WT-D12 and H139Q-D12 relative to endogenous DNAJB12. HLJ1 stands for high-copy lethal DnaJ1 as overexpression of HLJ1 kills yeast. The authors present no controls showing that WT-D12 and H139-D12 are not expressed at toxic levels, so the data presented is difficult to evaluate.

      Answer: The expression levels of the overexpression of DNAJB12 and DNAJB14 were present in the initial submission of the manuscript as Figure S3A and S3B. The data showing the relationship between the expression degree and the viability were also included in the initial submission as Figure S3C (Now S3H).

      There is no mechanistic data used to help explain the putative role DNAJB12 and DNAJB14 in ERCY? In Figure 4, why does H139Q JB12 prevent accumulation of AGR2 in the cytosol? There are no westerns showing the level to which DNAJB12 and DNAJB14 are overexpressed.


      Answer: The data showing the levels of DNAJB12 compared to the endogenous were present in the initial submission as Figure S3A and S3B.

      We suggest a mechanism by which DNAJB12 and DNAJB14 interact (Figure 5 and Figure S5) and oligomerize to expel those proteins in similar way to expelling non-envelope viruses to the cytosol. Thus, when expressing the mutant DNAJB12 H139Q may indicate that the J-domain dead-mutant can still be part of the complex but affects the J-domain activity in this oligomer and thus inhibit ER-protein reflux. In other words, we showed that the H139Q exhibits a dominant negative effect when overexpressed. Moreover, here we added another IP experiment in the D12/D14-DKD cells to show that in the absence of DNAJB12 and DNAJB14, SGTA cannot bind the ER-lumenal proteins because they are not refluxed (Figure 5 and Figure S5). Those data indicate that in order for SGTA bind the refluxed proteins they have to go through the DNAJB12 and DNAJB14 and their absence this interaction does not occur. This explanation was also present in the discussion of the initial submission.

      Mechanistically, we show that AGR2 interacts with DNAJB12/14 which are necessary for its reflux. This mechanism involves the functionality of cytosolic HSP70 chaperones and their cochaperones (SGTA) proteins that are recruited by DNAJB12 and 14. This mechanism is conserved from yeast to mammals. Moreover, by using the alpha-fold prediction tools, we found that AGR2 is predicted to interact with SGTA in the cytosol by the interaction between the cysteines of SGTA and AGR2 in a redox-dependent manner.

      **Referees cross-commenting**

      __ __ I appreciate the comments of the other reviewers. I agree that the authors could revise the manuscript. Yet, based on my concerns about the physiological significance of the process under study and lack of scholarship in the original draft, I would not agree to review a revised version of the paper.

      Answer: Regards the physiological relevance, we showed in our previous study (Sicari et al. 2021) how relevant is ERCYS in human patients of GBM and murine model of GBM. ERCYS is conserved from yeast to human and is constitutively active in GL-261 GBM model, U87 GBM model and human patients with GBM (Sicari et al. 2021). Here, extended that to other tumors and showed that DNAJB12, DNAJB14 and SGTA high levels are associated with poor prognosis in many cancer types (Figure S6). We also show some data from to show the relevance and added data showing the interaction of SGTA with AGR2 in CRC samples obtained from human patients compared to healthy tissue (Figure S5). This study is highly significant and is relevant not only to cancer but for other pathways that may behave in similar manner. For instance, DNAJB12 and DNAJB14 are part of the mechanism that is used by non-envelope viruses to escape the ER to the cytosol. Thus, the role of those DNAJB proteins seems to be mainly in the reflux of functional (not misfolded) proteins from the ER to the cytosol. We reported earlier that the UDP-Glucose-Glucosyl Transferase 1 (UGGT1) is also expelled during ER stress. UGGT1 is important because it is redeploy to the cytosol during enterovirus A71 (EA71) infection to help viral RNA synthesis (Huang et al, 2017). This redeployment of EAA71 is similar to what happens during the reflux process because on one hand, UGGT1 exit the ER by an ER stress mediated process (Sicari et al. 2021) and it is also a functional in the cytosol as a proteins which help viral RNA synthesis ((Huang et al, 2017). All those data showing that there is more of DNAJB12, DNAJB14, DNAJC14, DNAJC30 and DNAJC18 that still needs to be explored in addition to what is published. We suggest that viruses hijacked this evolutionary conserved machinery and succeeded to use it in order to escape.

      We appreciate the time spent to review our paper and we are sorry that the reviewer reached such verdict that is also not understood by the other reviewers. Most of the points raised by reviewer 2 were already addressed and explained in the initial submission, anyways we appreciate the time and the comments of reviewer #2 on our manuscript.

      Reviewer #2 (Significance (Required)):

      Overall, there are serious concerns about the writing of this paper as it gives the impression that it is the first study on higher eukaryotic and mammalian homologs of yeast HLJ1. The reader is not given the ability to compare the presented data to related published work. There are also serious concerns about the quality of the data presented and the physiological significance of the process under study. In its present form, this work does not appear suitable for publication.

      Answer: Again we thank reviewer #2 for giving us the opportunity to explain how significant is this manuscript especially for people who are less expert in this field. The significance of this paper (1) showing a the unique role of DNAJB12 and DNAJB14 in the molecular mechanism of the reflux process in mammalian cells (not their role in ERAD), (2) showing the implication of other cytosolic chaperones in the process including HSC70 and SGTA (3), our alpha-fold prediction show that this process may be redox dependent that implicate the cysteines of SGTA in extracting the ER proteins, (4) overexpression of the WT DNAJB12 is sufficient to drive this process, (5) mutation in the HPD motif prevent the reflux process probably by preventing the binding to the cytosolic chaperones, and (6) we need both DNAJB12 and DNAJB14 in order to make the interaction between the refluxed ER-proteins and the cytosolic chaperones occur.

      In Summary, this study is highly significant in terms of physiology, we previously reported that ERCYS is conserved in mammalian cells and is constitutively active in human and murine tumors (Sicari et al. 2021). Moreover, DNAJB12 and DNAJB14 are part of the mechanism that is used by non-envelope viruses to escape the ER to the cytosol in a mechanism that is similar to reflux process (Goodwin et al. 2011; Goodwin et al. 2014). Thus, the role of those DNAJB proteins seems to be mainly in the reflux of functional proteins from the ER to the cytosol, viruses used this evolutionary conserved machinery and succeeded to use in order to escape. This paper does not deal with the functional orthologues of the HLJ-1 in ERAD but rather suggesting a mechanism by which soluble proteins exit the ER to the cytosol.

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)):____ __

      Summary: Reflux of ER based proteins to the cytosol during ER stress inhibits wt-p53. This is a pro-survival mechanism during ER stress, but as ER stress is high in many cancers, it also promotes survival of cancer cells. Using A549 cells, Dabsan et al. demonstrate that this mechanism is conserved from yeast to mammalian cells, and identify DNAJB12 and DNAJB14 as putative mammalian orthologues of yeast HLJ1.

      This paper shows that DNAJB12 and 14 are likely orthologues of HLJ1 based on their sequences, and their behaviour. The paper develops the pathway of ER-stress > protein reflux > cytosolic interactions > inhibition of p53. The authors demonstrate this nicely using knock downs of DNAJB12 and/or 14 that partially blocks protein reflux and p53 inhibition. Overexpression of WT DNAJB12, but not the J-domain inactive mutant, blocks etoposide-induced p53 activation (this is not replicated with DNAJB14) and ER-resident protein reflux. The authors then show that DNAJB12/14 interact with refluxed ER-resident proteins and cytosolic SGTA, which importantly, they show interacts with the ER-resident proteins AGR2, PRDX4 and DNAJB11. Finally, the authors show that inducing ER stress in cancer cell lines can increase proliferation (lost by etoposide treatment), and that this is partially dependent on DNAJB12/14.

      This is a very interesting paper that describes a nice mechanism linking ER-stress to inhibition of p53 and thus survival in the face of ER-stress, which is a double edged sword regarding normal v cancerous cells. The data is normally good, but the conclusions drawn oversimplify the data that can be quite complex. The paper opens a lot of questions that the authors may want to develop in more detail (non-experimentally) to work on these areas in the future, or alternatively to develop experimentally and develop the observations further. There are only a few experimental comments that I make that I think should be done to publish this paper, to increase robustness of the work already here, the rest are optional for developing the paper further.

      We thank the reviewer for his/her positive comments His/her comments contributed to make our manuscript stronger.

      __Major comments:____ __

      1. Number of experimental repeats must be mentioned in the figure legends. Figures and annotations need to be aligned properly

      __Answer____: __All experiments were repeated at least 3 times. We added the number of repeats on each figure in the figures legends

      Results section 2:

      No intro to the proteins you've looked at for relocalization. Would be useful to have some info on why you chose AGR2. Apart from them being ER-localized, do they all share another common characteristic? Does ability to inhibit p53 vary in potency?

      Answer: We previously showed that AGR2 is refluxed from the ER to the cytosol to bind and inhibit wt-p53 (Sicari et al. 2021). Here, we used AGR2 because, (1) we know that AGR2 is refluxed from the ER to the cytosol, and (2) we know which novel functions it gains in the cytosol so we are able to measure and provide a physiological significance of those novel functions when the levels of DNAJB12 and DNAJB14 are altered. Moreover, we used DNAJB11 (41 kDa) and HYOU1 (150 kDa) proteins to show that alteration in DNAJB12 or DNAJB14 prevent the reflux small, medium and large sized proteins. We added a sentence in the discussion stating that DNAJB12/14 are responsible for the reflux of ER-resident proteins independently of their size. We also added in the result section that we are looking at proteins of different sizes and activities.


      What are the roles of DNAJB12/14 if overexpression can induce reflux? Does it allow increased binding of an already cytosolic protein, causing an overall increase in an interaction that then causes inhibition of p53? What are your suggested mechanisms?

      Answer: Previously it was reported that over-expression of DNAJB12 and DNAJB14 tend to form membranous structures within cell nuclei, which was designate as DJANGOS for DNAJ-associated nuclear globular structures(Goodwin et al. 2014). Because those structures which contain both DNAJB12 and DNAJB14 also form on the ER membrane (Goodwin et al. 2014), we speculate that during stress DNAJB12/14 overexpression may facilitate ERCYS. Interestingly, those structures contain Hsc70 and markers of the ER lumen, the nuclear and ER and nuclear membranes (Goodwin et al. 2014).

      The discussion was edited accordingly to further strengthen and clarify this point

      Fig3: A+B show overexpression of individual DNAJs but not combined. As you go on to discuss the effect of the combination on AGR2 reflux, it would be useful to include this experimentally here.

      Answer: This is a great idea, we tried to do it for long time. Unfortunately when we used cells overexpress DNAJB12 under the doxycycline promoter and transfect with DNAJB14 plasmid expressing DNAJB14 under the CMV promoter, most of the cells float within 24 hours compared to cells transfected with the empty vector alone or with DNAJB14-H136Q. We also did overexpression of DNAJB14 in cells with DNAJB12 conditional expression and also were lethal in Trex293T cells and A549-cells.

      Fig 3C: Subfractionation of cells shows AGR2 in the cytosol of A549 cells. The quality of the data is good but the bands are very high on the blot. For publication is it possible to show this band more centralized so that we are sure that we are not missing bands cut off in the empty and H139Q lanes?

      Also, you have some nice immunofluorescence in the 2021 EMBO reports paper, is it possible to show this by IF too? It is not essential for the story, but it would enrich the figure and support the biochemistry nicely. Also it is notable that the membrane fraction of the refluxed proteins doesn't appear to have a decrease in parallel (especially for AGR2). Is this because the % of the refluxed protein is very small? Is there a transcriptional increase of any of them (the treatments are 12+24 h so it would be enough time)? This could be a nice opportunity to discuss the amount of protein that is refluxed, whether this response is a huge emptying of the ER or more like a gentle release, and also the potency of the gain of function and effect on p53 vs the amount of protein refluxed. This latter part isn't essential but it would be a nice element to expand upon.

      Answer: We re-blotted the AGR2 again, new blot of AGR2 was added. More blots also are added in Figure S2, the text is edited accordingly.

      In new Figure S5 we added immunofluorescence experiment from tumors and non-tumors tissues obtained from Colorectal cancer (CRC) patients showing that the interaction between SGTA and the refluxed AGR2 also occurs in more physiological settings. It is also to emphasize that the suggested mechanism that implicates SGTA is also valid in CRC tumors.

      We performed qPCR experiments in control, DNAJB12-KD, DNAJB14-KD and in the DNAJB12/DNAJB14 double knock down cells (in both A549 and PC3 cells) to follow the mRNA levels of DNAJB11. As shown in the Figure S2F-N, there is no increase in the mRNA levels of DNAJB11, AGR2 or HYOU1 in the different cells in normal (unstressed conditions). Upon ER stress with tunicamycin or thapsigargin there is a little increase in the mRNA levels of HYOU1 and AGR2 but in DNAJB11 mRNA levels. On the other hand, we also performed western blot analysis and we did not detect any difference between the different knockdown cells when we analyzed the levels of DNAJB11 compared to GAPDH. Those data are now added to Figure S2F-N. We must note that in AGR2 and HYOU1 are induced at the mRNA as a result of ER stress. The data with the overexpression of DNAJB12 and DNAJB14 are important control experiment where we show a reflux when DNAJB12 is overexpressed without inducing the ER stress (Figure 3, Figure 4, and Figure S3). In those conditions no induction of AGR2, HYOU1 or DNAJB11 were observed. Those results argue against the reflux as a result of protein induction and the increase in the proteins levels.

      The overall protein levels in steady state are function of how much proteins are made, degraded and probably secreted outside the cell. We do see in Figure S2 under ER stress there are some differences in the levels of the mRNA, moreover, from our work in yeast we showed that the expelled proteins have very long half-life in the cytosol (Igbaria et al. 2019). Because it is difficult to assay how many of the mRNA is translated and how much of it is stable/degraded and the stability of the cytosolic fraction vs the ER, it is hard to interpret on the stability and the levels of the proteins.

      Those data are now added to the manuscript, the text is edited accordingly.

      You still mention DNAJB12 and 14 as orthologues, even though DNAJB14 has no effect on p53 activity when overexpressed. Do you think that this piece of data diminishes this statement?

      Answer: The fact that DNAJB12 and DNAJB14 are highly homologous and that only the double knockdown has a great effect on the reflux process may indicate that they are redundant. Moreover, because only DNAJB12 is sufficient may indicate that some of DNAJB12 function cannot be carried by DNAJB14. In one hand they share common activities as shown in the double knock down and on the other hand DNAJB12 has a unique function that may not be compensated by DNAJB14 when overexpressed.

      __ __ Fig 3D/F: Overexpression of DNAJB14 induces reflux of DNAJB11 at 24h, what does this suggest? Does this indicate having the same role as DNAJB12 but less potently? What's your hypothesis?

      Answer: ERCYS is new and interesting phenomenon and the redistribution of proteins to the cytosol has been documented lately by many groups. Despite that we still do not know what is the specificity of DNAJB12 and DNAJB14 to the refluxed proteins. DNAJB11 is glycosylated protein and now we are testing whether other glycosylated proteins prefer the DNAJB14 pathway or not. This data is beyond the scope of this paper

      "This suggests that the two proteins may have different functions when overexpressed, despite their overlapping and redundant functions" What does it suggest about their dependence on each other? If overexpression of WT DNAJB12 inhibits Tg induced reflux, is it also blocking the ability of DNAJB14 to permit flux?

      Answer: We hypothesize that it is all about the stichometry and the ratios between proteins. When we overexpress DNAJB14 (the one that is not sufficient to cause reflux it may hijack common components and factor by non-specifically binding to them. Those factors may be needed for DNAJB12 to function properly (Like the dominant negative effect of the DNAJB12-HPD mutant for instance). On the other hand, DNAJB12 may have higher affinity for some cytosolic partner and thus can do the job when overexpressed. Here, we deal with the DNAJB12/DNAJB14 as essential components of the reflux process, yet we need to identify the interactome of each of the proteins during stress and the role of the other DNAJ proteins that also share some of the topological and structural similarity to DNAJB12, DNAJB14 and HLJ-1 (DNAJC30, DNAJC14, and DNAJC18). We edited the text accordingly and integrated this in the discussion.

      __ __ Fig 4: PDI shown in blots but not commented on in text. Then included in the schematics. Please comment in the text.

      Answer: We commented PDI in the text.

      Fig 4F: Although the quantifications of the blots look fine, the blot shown does not convincingly demonstrate this data for AGR2. The other proteins look fine, but again it could be useful to see the individual means for each experiment, or the full gels for all replicates in a supplementary figure.

      Answer: the other two repeats are in Figure S4

      __ __Results section 3

      Fig 5A, As there is obviously a difference between DNAJB12/14 it would be useful to do the pulldown with DNAJB14 too. Re. HSC70 binding to DNAJB12 and 14, the abstract states that DNAJB12/14 bind HSC70 and SGTA through their cytosolic J domains. Fig 5 shows pulldowns of DNAJB12 with an increased binding of SGTA in FLAG-DNAJB12 induced conditions, but the HSC70 band does not seem to be enriched in any of the conditions, including after DNAJB12 induction. This doesn't support the statement that DNAJB12 binds HSC70. In fact, in the absence of a good negative control, this would suggest that the HSC70 band seen is not specific. There is also no data to show that DNAJB14 binds HSC70. I recommend including a negative condition (ie beads only) and the data for DNAJB14 pulldown.

      Answer: In Figure 5A we used the Flp-In T-REx-293 cells as it is easier to control and to tune up and down the expression levels of DNAJB12 and DNAJB14. According to new Figure S5A, DNAJB12 binds at the basal levels to HSC70 all the time. It was also surprising for us not to see the differences in the overexpression and we relate that to the fact that all the HSC70 are saturated with DNAJB12. In order to better assay that we repeated the IP in Figure 5A but instead of the IP with DNAJB12, we IP-ed with FLAG antibodies to selectively IP the transfected DNAJB12. As shown in the new Fig 5A, the increase of DNAJB12-FLAG is accompanied with an increase in the binding of HSC70.

      We further tested the interaction between DNAJB12, DNAJB14 and HSC70 during ER stress in cancer cells. In those cells we found that DNAJB12 and DNAJB14 bind to HSC70 and they recruit SGTA upon stress. We also tested the binding between DNAJB12 and DNAJB14, in unstressed conditions, there was a basal binding between both, this interaction was stronger during ER stress. Those data are now added to Figure 5 and Figure S5 and the discussion was edited accordingly.

      The binding of DNAJB12 to SGTA under stress conditions in Fig5B looks much more convincing than SGTA to DNAJB12 in Fig 5A. Bands in all blots need to be quantified from 3 independent experiments, and repeated if not already n=3. If this is solely a technical difference, please explain in the text.

      The conclusions drawn from this interaction data are important and shold be elaborated upon to support th claims made in the paper. The authors may also chose to expand the pulldowns to demonstrate their claims made on olidomerisation of DNAJB12 and 14 here. It is also clear that the interaction data of the SGTA with ER-resident proteins AGR2, PRDX4 and DNAJB11 is strong. The authors may want to draw on this in their hypotheses of the mechanism. I would imagine a complex such as DNAJB14/DNAJB12 - SGTA - AGR2/PRDX4/DNAJB11 would be logical. Have any experiments been performed to prove if complexes like this would form?

      Answer: In Figure 5A we used the Flp-In T-REx-293 cells as it is easier to control and to tune up and down the expression levels of DNAJB12 and DNAJB14. T-REx-293 are highly sensitive to ER stress, they do not die (as we did not observe apoptosis markers to be elevated) but they float and can regrow after the stress is gone. In Figure 5B we are using ER stress without the need to express DNAJB12 in A549 cell line. In order to further verify those data, we repeated the IP in another cell line as well to confirm the data in 5B. We also repeated the IP in 5A with anti-FLAG antibody to improve the IP and to specifically map he interaction with the overexpressed FLAG-DNAJB12 (discussed above). All experiments were done in triplicates and added to Figure 5 and Figure S5.

      We agree with the reviewer on the complex between the refluxed proteins and SGTA. We believed that SGTA may form a complex with other refluxed ER-proteins but we were unable to see an interaction between AGR2-DNAJB11 in the cytosolic fraction or between AGR2-PRDX4 in the conditions tested in the cytosolic fraction. We could not do this in the whole cell lysate because those proteins bind each other in the ER. Finally, our structural prediction using Alpha-fold suggests that the interaction between SGTA and the refluxed AGR2 (and probably others) is redox depending and that it requires disulfide bridge between cysteine 81 on AGR2 and cysteine 153 on SGTA. Thus, we hypothesize that SGTA binds one refluxed protein at the time.

      We repeated the figure with improvement: (1) using more cells in order to increase the amount of IP-ed proteins and to overcome the problem of the faint bands, (2) performing the IP with the FLAG antibodies instead of the DNAJB12 endogenous antibodies.

      Fig 5B: It is clear that DNAJB12 interacts with SGTA. The authors state that DNAJB14 also interacts with SGTA under normal and stress conditions, but the band in 25/50 Tg is very feint. Why would there be stronger binding at the 2 extremes than during low stress induction? In the input, there is a much higher expression of DNAJB14 in 50 Tg. What does this say about the interaction? Is there an effect of ER stress on DNAJB14 expression? A negative control should be included to show any background binding, such as a "beads only" control

      __Answer: __DNAJB14 does not change with ER stress as shown in the Ips (Input) and in the qPCR experiment in Figure S5I. We added beads only control, we also added new Ips to assess the binding between DNAJB14 and DNAJB12, and between DNAJB14-SGTA. All the new Ips and controls now added as Figure 5 and Figure S5.

      Fig 5C data is sound, although a negative control should be included.

      Answer: Negative control was added in Figure S5.

      __Results section 4____ __

      Fig 6A-B: Given that there is the complexity of overexpression v KD of DNAJB12 v 14 causing similar effects on p53 actvity (Fig 2 v 3), it would be interesting to see whether the effect of overexpression mirrors the results in Fig 6A. Is it known what SGTA overexpression does (optional)?

      Answer: In the overexpression system, cells overexpressing DNAJB12 start to die between 24-48 hours as shown in Figure S3C. Thus, it is difficult to assay the proliferation of these cells in those conditions. On the other hand, overexpression of Myc-tagged SGTA in A549 cells, MCF7 or T-ReX293 did not show any reflux of ER-proteins to the cytosol and it didn’t show any significant changes in the proliferation index (Figure Reviewers only RV2).

      Fig 6D: resolution very low

      Answer: Figure 6D was changed

      __ __ Fig 6C-D: There is an interesting difference though between the proposed cytosolic actions of the refluxed proteins. You show that AGR2, PRDX4 and DNAJB11 all bind to SGTA in stress conditions, but in the schematics you show: DNAJB11 binding to HSC70 through SGTA (not shown in the paper), then also PDIA1, PDIA3 binding to SGTA and AGR2 binding to SGTA. What role does SGTA have in these varied reactions? Sometimes it is depicted as an intermediate, sometimes a lone binder, what is its role as a binder? It should be clarified which interactions are demonstrated in the paper (or before) and which are hypothesized in a graphical way (eg. for hypotheses dotted outlines or no solid fill etc). The schematics also suggest that DNAJB14 binding to HSC70 and SGTA is inducible in stress conditions, as is PDIA3, which is not shown in the paper. Discussion "In cancer cells, DNAJB12 and DNAJB14 oligomerize and recruit cytosolic chaperones and cochaperones (HSC70 and SGTA) to reflux AGR2 and other ER-resident proteins and to inhibit wt-p53 and probably different proapoptotic signaling pathways (Figure 5, and Figure 6C-6D)." You havent shown oligomerisation between DNAJB12/14. Modify the text to make it clear that it is a hypothesis.

      Answer: We removed “oligomerize” from the text and added that it as a hypothesis. Figure (C-D) also were changed to be compatible with the text.

      Minor comments:

      __ __ It would be useful to have page or line numbers to help with document navigation, please include them. Typos and inconsistency in how some proteins are named throughout the manuscript

      Answer: Page numbers and line numbers are added. Typos are corrected

      Title: Include reference to reflux. Suggest: "chaperone complexes (?proteins) reflux from the ER to cytosol..." I presume it would be more likely that the proteins go separately rather than in complex. Do you have any ideas on the size range of proteins that can undergo this process?

      Answer: this is true, proteins may cross the ER membrane separately and then be in a complex with cytosolic chaperones. The title is changed accordingly. As discussed earlier, the protein we chose were of different sizes to show that they are refluxed independently of their size. Moreover, our previous work showed that the proteins that were refluxed are of different sizes. Most importantly UGGT1 (around 180 Kda) which is reported to deploy to the cytosol upon viral infection (Huang et al. 2017; Sicari et al. 2020). In this study we used AGR2 (around 19 Kda) and HYOU1 (150Kda).

      ERCY in abstract, ERCYS in intro. There are typos throughout, could be a formatting problem, please check

      Answer: Checked and corrected

      What about the selection of refluxed proteins? Is this only a certain category of proteins? Could it be anything? Have you looked at other cargo / ER resident proteins?

      __ ____Answer: __in our previous study by (Sicari, Pineau et al. 2020) we looked at many other proteins especially glycoproteins from the ER. In (Sicari, Pineau et al. 2020) we used mass spectrometry in order to identify new refluxed proteins and we found 26 new glycoprotein that are refluxed from cells treated with ER stressor and from human tissues obtained from GBM patients (Sicari, Pineau et al. 2020).

      We previously showed that AGR2 is refluxed from the ER to the cytosol to bind and inhibit p53 (Sicari, Pineau et al. 2020). Here, we selected AGR2 because we know that (1) it is refluxed, and (2) we know which novel functions it acquires in the cytosol so we are able to measure and provide a physiological significance of those novel functions when the levels of DNAJB12 and DNAJB14 are altered. Moreover, we selected DNAJB11 (41 kDa) and HYOU1 (150 kDa) proteins to show that alteration in DNAJB12 or DNAJB14 prevent the reflux small, medium and large protein (independently of their size). We also showed earlier by mass spectrometry analysis that the refluxed proteins range from small to very large proteins such as UGGT1, thus we believe that soluble ER-proteins can be substrates of ERCYS independently of their size. In the discussion, we added a note that the reflux by the cytosolic and ER chaperones operates on different proteins independently of their size.

      "Their role in ERCYS and cells' fate determination depends..." Suggest change to "Their role in ERCYS and determination of cell fate..."

      Answer: changed and corrected

      I think that the final sentence of the intro could be made stronger and more concise. There's a repeat of ER and cytosol. Instead could you comment on the reflux permitting new interactions between proteins otherwise spatially separated, then the effect on wt-p53 etc.

      Answer: The sentence was rephrased as suggested to “ In this study, we found that HLJ1 is conserved through evolution and that mammalian cells have five putative functionality orthologs of the yeast HLJ1. Those five DNAJ- proteins (DNAJB12, DNAJB14, DNAJC14, DNAJC18, and DNAJC30) reside within the ER membrane with a J-domain facing the cytosol (Piette et al. 2021; Malinverni et al. 2023). Among those, we found that DNAJB12 and DNAJB14, which are strongly related to the yeast HLJ1 (Grove et al. 2011; Yamamoto et al. 2010), are essential and sufficient for determining cells' fate during ER stress by regulating ERCYS. Their role in ERCYS and determining cells' fate depends on their HPD motif in the J-domain. Downregulation of DNAJB12 and DNAJB14 increases cell toxicity and wt-p53 activity during etoposide treatment. Mechanistically, DNAJB12 and DNAJB14 interact and recruit cytosolic chaperones (HSC70/SGTA) to promote ERCYS. This later interaction is conserved in human tumors including colorectal cancer.

      In summary, we propose a novel mechanism by which ER-soluble proteins are refluxed from the ER to the cytosol, permitting new inhibitory interactions between spatially separated proteins. This mechanism depends on cytosolic and ER chaperones and cochaperones, namely DNAJB12, DNAJB14, SGTA, and HSC70. As a result, the refluxed proteins gain new functions to inhibit the activity of wt-p53 in cancer cells. “

      __Figure legends: __

      In some cases the authors state the number of replicates, but this should be stated for all experiments. If experiments don't already include 3 independent repeats, this should be done. Check text for typos, correct letter capitalisation, spaces and random bold text (some of this could be from incompatability when saving as PDF)

      Answer: all experiments were repeated at least three times. The number of repeats is now indicated in the figure legends of each experiment. Typos and capitalization is corrected as well.

      Fig2E: scrambled not scramble siRNA

      Answer: corrected

      Fig 3: "to expel" is a term not used in the rest of the paper for reflux. Useful to remain consistent with terminology where possible

      Answer: Rephrased and corrected

      Results section 1:

      "Protein alignment of the yeast HLJ1p showed high amino acids similarity to the mammalian..."

      Answer: Rephrased to “ Comparing the amino acid sequences revealed significant similarity between the yeast protein HLJ1p and the mammalian proteins DNAJB12 and DNAJB14”

      __ __ Fig 1C: state in legend which organism this is from (presumably human)

      Answer: in Figure 1C legends it is stated that: “ the HPD motif within the J-domain is conserved in HLJ-1 and its putative human orthologs DNAJB12, DNAJB14, DNAJC14, DNAJC18, and DNAJC30.”

      Results Section 2

      "Test the two strongest hits DNAJB12/14" Add reference to previous paper showing this

      Answer: the references were added.

      __ __ "In the WT and J-protein-silenced A549 cells, there were no differences in the cytosolic enrichment of the three ER resident proteins AGR2, DNAJB11, and HYOU1 in normal and unstressed conditions (Figure 2A-C and Figure S2C)." I think that this is an oversimplification, and in your following discussion, you show this it's more subtle than this.

      Answer: We expanded on this both in the discussion and the results section.

      __ __ The text here isn't so clear: normal and unstressed conditions? Do you mean stressed? Please be careful in your phrases: "DNAJB12-silenced cells are slightly affected in AGR2 and DNAJB11 cytosolic accumulation but not HYOU1." This is the wrong way around. DNAJB12 silencing effects AGR2, not that AGR2 effects the cells (which is how you have written it). This also occurs agan in the next para:

      Answer: Normal cells are non-cancer cells. Unstressed conditions= without ER stress. The sentence was rephrased to: In the absence of ER stress, the cytosolic levels of the three ER-resident proteins (AGR2, DNAJB11, and HYOU1) were similar in wild-type and J-protein-silenced A549 cells.

      "During stress, DNAJB12/DNAJB14 double knockdown was highly affected in the cytosolic..." I think you mean it highly affected the cytosolic accumulation, not that it was affected by the cytosolic accumulation. Please change in the text

      Answer: the sentence is now rephrased to” During stress, double knockdown of DNAJB12 and DNAJB14 highly affected the cytosolic accumulation of all three tested proteins”

      __ __ "DNAJB12 and DNAJB14 are strong hits of the yeast HLJ1" Not clear, I presume you mean they are likely orthologues? Top candidates for being closest orthologues?

      Answer: this is correct, the sentence is rephrased and corrected

      __ __ Fig 2D: typos in WB labelling? I think Tm should be - - +, not - + +as it is now (if it's not a typo, you need more controls, eto alone.

      Answer: the labeling is now corrected

      Fig 2D-E-F typos for DKD? D12/D12 or D12/14?

      Answer: This is correct, thank you for pointing this out. The labeling in corrected

      __ __ "We assayed the phosphorylation state of wt- p53 and p21 protein expression levels (a downstream target of p53 signaling) during etoposide treatment." What are the results of this? Explain what Fig 2D-E shows, then build on this with the +Tm results. Results should be explained didactically to be clear.

      Answer: The paragraph was edited and we explained the results: In these conditions, we saw an increase in the phosphorylation of wt-p53 in the control cells and in cells knocked-down with DNAJB12, DNAJB14 or both. This phosphorylation increased the protein levels of p21 as well (Figure 2D-G). Tm addition to cells treated with etoposide resulted in a reduction in wt-p53 phosphorylation, and as a consequence, the p21 protein levels were also decreased (Figure 2D-G and Figure S2O). Cells lacking DNAJB12 or DNAJB14 have partial protection in wt-p53 phosphorylation and p21 protein levels. Silencing both proteins in A549 and MCF7 cells rescued wt-p53 phosphorylation and p21 levels (Figure 2D-G and Figure S2D). Moreover, similar results were obtained when we assayed the transcriptional activity of wt-p53 in cells transfected with a luciferase reporter under the p53-DNA binding site (Figure 2H). These data confirm that DNAJB12 and DNAJB14 are involved in ER protein reflux and the inhibition of wt-p53 activity during ER stress.


      "(Figure 2D- E). Cells lacking DNAJB12 and or DNAJB14 have partial protection in wt-p53 phosphorylation and p21 protein levels."

      Answer: This sentence is now removed

      You comment on p53 phosphorylation, but you haven't quantified this. This should be done, normalized to p53 levels, if you want to draw these conclusions, especially as total p53 varies between condition. Does Eto increase p53 txn? Does Tm alone increase p53 activity/phospho-p53? These are shown in the Sicari EMBO reports paper in 2021, you should briefly reference those.

      Answer: The blots are now quantified and new blot is added to Figure S2D. The Paragraph was edited and referenced to our previous paper (Sicari et al. 2021). “We then wanted to examine whether the gain of function of AGR2 and the inhibition of wt-p53 depends on the activity of DNAJB12 and DNJAB14. We assayed the phosphorylation state of wt-p53 and p21 protein expression levels (a downstream target of wt-p53 signaling) during etoposide treatment. In these conditions, there was an increase in the phosphorylation of wt-p53 in the control cells and in cells knocked down with DNAJB12, DNAJB14, or both. This phosphorylation also increases protein levels of p21 (Figure 2D-G and Figure S2O). Tm addition to cells treated with etoposide resulted in a reduction in wt-p53 phosphorylation, and as a consequence, the p21 protein levels were also decreased (Figure 2D-G and Figure S2O). Silencing DNAJB12 and DNAJB14 in A549 and MCF-7 cells rescued wt-p53 phosphorylation and p21 levels (Figure 2D-G and Figure S2O). Moreover, similar results were obtained when we assayed the transcriptional activity of wt-p53 in cells transfected with a luciferase reporter under the p53-DNA binding site (Figure 2H). In the latter experiment, etoposide treatment increased the luciferase activity in all the cells tested. Adding ER stress to those cells decreased the luciferase activity except in cells silenced with DNAJB12 and DNAJB14.

      These data confirm that DNAJB12 and DNAJB14 are involved in the reflux of ER proteins in general and AGR2 in particular. Inhibition of DNAJB12 and DNAJB14 prevented the inhibitory interaction between AGR2 and wt-p53 and thus rescued wt-p53 phosphorylation and its transcriptional activity as a consequence. “

      Fig3A: overexpression of DNAJB12 decreases Eto induced p53 but not at steady state. Is this because at steady state the activity is already basal? Or is there another reason?

      Answer: yes, at steady state the activity is already basal

      Switch Figs S3D and S3C as they are not referred to in order. Also Fig S3C: vary colour (or add pattern) on bars more between conditions

      Answer: The Figures now are called by their order in the new version. Colors are now added to Figure S3C.

      Need to define HLJ1 at first mention

      Answer: defined as” HLJ1 - High copy Lethal J-protein -an ER-resident tail-anchored HSP40 cochaperone.

      Results section 3

      HSC70 cochaperone (SGTA) defined twice

      Answer: the second one was removed

      "These data are important because SGTA and the ER-resident proteins (PRDX4, AGR2, and DNAJB11) are known to be expressed in different compartments, and the interaction occurs only when those ER-resident proteins localize to the cytosol." Is there a reference for this?

      Answer: Peroxireoxin 4 is the only peroxerodin that is expressed in the ER. AGR2 and DNAJB11 are also ER luminal proteins that are known to be solely expressed in the ER. SGTA is part of the cytosolic quality control system and is expressed in the cytosol. The references are added in the main text.

      Results section 4

      "by almost two folds"

      Answer: corrected

      Fig 6A: It seems strange that the difference between purple and blue bars in scrambled, and D14-KD are very significant but D12-KD is only significant. Why is this? The error bars don't look that different. It would be interesting to see the individual means for each different replicate.

      Answer: Thank you for pointing this, the two asterixis were aligned in the middle as one during figure alignments. In D14 the purple one has a lower error bar thus this changes the significance when compared to the blue while in D12-KD, the error bars in the eto treatment and the eto-Tm both are slightly higher. Graphs of the three different replicates are now added in Figure S6. Each one of the three biological replicates was repeated in three different technical repeats (averaged in the graphs).

      Figures: Fig 6A: Scale bars not well placed. Annotation on final set should be D12/D14 DKD?

      Answer: both were Corrected

      __Discussion __47. The authors mention that they want to use DNAJB12/4-HSC70/SGTA axis to impair cancer cell fitness: What effect would this have though in a non cancer model? Would this be a viable approach Although it is obviously early days, which approach would the authors see as potentially favorable?


      Answer: In our previous study we used an approach to target AGR2 in the cytosol because the reflux of AGR2 occurs only in cancer cells and not in normal cells. In that study we targeted AGR2 with scFv that targets AGR2 and is expressed in the cytosol, in this case it will target AGR2 in the cytosol which only occurs in cancer. Here, we suggest to target the interaction between the refluxed proteins and their new partners in the cytosol or to target the mechanism that causes their reflx to the cytosol by inhibiting for instance the interaction between SGTA and DNAJB proteins.


      __ __ Second para: Should be "Here we present evidences"

      Answer: we replaced with “Here we present evidences”

      "DNAJB12 overexpression was also sufficient to promote ERCYS by refluxing AGR2 and inhibit wt-p53 signaling in cells treated with etoposide" Suggest:

      Answer: DNAJB12 overexpression is also sufficient to promote ERCYS by refluxing AGR2 and inhibit wt-p53 signaling in cancer cells treated with etoposide (Figure 3). This suggests that it is enough to increase the levels of DNAJB12 without inducing the unfolded protein response in order to activate ERCYS. Moreover, the downregulation of DNAJB12 and DNAJB14 rescued the inhibition of wt-p53 during ER stress (Figure 2). Thus, wt-p53 inhibition is independent of the UPR activation but depends on the inhibitory interaction of AGR2 with wt-p53 in the cytosol.

      .

      DNAJB12 overexpression was also sufficient to promote ERCYS by increasing reflux of AGR2 and inhibition of wt-p53 signaling in cells treated with etoposide

      Answer: This sentence is repeated twice and was removed

      "Moreover, DNAJB12 was sufficient to promote this phenomenon and cause ER protein reflux by mass action without causing ER stress (Figure 3, Figure 4, and Figure S3)." You dont look at induction of ER stress here, please change the text or explain in more depth with refs if suitable

      Answer: In the initial submission and in the revised version we assayed the activation of the UPR by looking at the levels of spliced Xbp1 and Bip in the different conditions when DNAJB12 and DNAJB14 are overexpressed (Figure S3C and S3D). Our data show that although DNAJB12 overexpression induces ERCYS, there was no UPR activation.

      The mention of viruses is sparse in this paper. If it is a main theory, put it more centrally to the concept, and explain in more detail. As it is, its appearance in the final sentence is out of context.

      Answer: DNAJB12 and DNAJB14 were reported to facilitate the escape of non-envelope viruses from the endoplasmic reticulum to the cytosol. The mechanism of non-envelope penetration is highly similar to the reflux of proteins from the ER to the cytosol. Interestingly, this mechanism takes place when the DNAJB12 and DNAJB14 form a complex with chaperones from both the ER and the cytosol including HSC70, SGTA and BiP (Walczak et al. 2014; Goodwin et al. 2011; Goodwin et al. 2014)..

      Moreover, the UGGT1 that was independently found in our previous mass spectrometry analysis of the digitonin fraction obtained from HEK293T cells treated with the ER stressor thapsigargin and from isolated human GBM tumors (Sicari et al. 2020), is known to deploy to the cytosol upon viral infection (Huang et al. 2017; Sicari et al. 2020). We therefore hypothesized that the same machinary that is known to allow viruses to escape the ER to penetrate the cytosol may play an important role in the reflux of ER proteins to the cytosol.

      Because ER protein reflux and the penetration of viruses from the ER to the cytosol behave similarly, we speculate that viruses hijacked an evolutionary conserved machinery -ER protein reflux- to penetrate to the cytosol. This is key because it was also reported that during the process of nonenveloped viruses penetration, large, intact and glycosylated viral particles are able to penetrate the ER membrane on their way to the cytosol (Inoue and Tsai 2011).

      Action: we developed the discussion around this point and clarified it better because we believe it central to show that viruses hijacked this conserved mechanism.

      **Referees cross-commenting**

      I agree with the comments from Reviewer 1.

      Reviewer 2 also is correct in many ways, but I think that they have somewhat overlooked the relevance of the ER-stress element and treatments. The authors do need to reference past papers more to give a full story, as this includes the groups own papers, I don't think that it is an ethical problem but rather an oversight in the writing. Regarding reviewer 2's concerns about overexpression levels and cell death, the authors do use an inducible cell line and show the levels of DNAJB12 induced (could CRISPR also be considered?). This could be used to further address reviewer 2's concerns. It would also be useful to see data on cell death in the conditions used in the paper. Re concerns about ER integrity, this could be addressed by using IF (or EM) to show a secondary ER marker that remains ER-localised, and this would also be of interest regarding my comment on which categories of proteins can undergo reflux. If everything is relocalised, then reviewer 2's point would be validated.

      Reviewer #3 (Significance (Required)):

      Significance

      General assessment: This paper robustly shows that the yeast system of ER to cytosol reflux of ER-resident proteins is conserved in mammalian cells, and it describes clearly the link between ER stress, protein reflux and inhibition of p53 in mammalian cells. The authors have the tools to delve deeper into this mechanism and robustly explore this pathway, however the mechanistic elements - where not instantly clear from the results - have been over interpreted somewhat The results have been oversimplified in their explanations and some points and complexities of the study need to be addressed further to make the most of them - these are often some of the more interesting concepts of the paper, for example the differences in DNAJB12/14 and how the proteins orchestrate in the cytosol to play their cytosol-specific effects. I think that many points can be addressed in the text, by the authors being clear and concise with their reporting, while other experiments would turn this paper from an observational one, into a very interesting mechanistic one.

      Advance: This paper is based on previous nice papers from the group. It is a nice progressions from yeast, to basic mechanism, to physiological model. But as mentioned, without a strong mechanistic improvement, the paper would remain observatory.

      Audience: This paper is interesting to cell biologists (homeostasis, quality control and trafficking) as well as cancer cell biologists (fitness of cancer cells and homeostasis) and it is a very interesting demonstration of a process that is a double edged sword, depending on the environment of the cells.

      My expertise: cell biology, trafficking, ER homeostasis

      Answer: We would like to thank the reviewer for his/her positive feedback on our manuscript. All the comments of the three reviewers are now addressed and the manuscript has been strengthen. We put more emphasis on the mechanistic aspect with more Ips and knockdowns. We also added data to show that it is physiologically relevant. We hope that after that the revised version addressed all the concerns raised by the reviewers.

      Goodwin, E. C., A. Lipovsky, T. Inoue, T. G. Magaldi, A. P. Edwards, K. E. Van Goor, A. W. Paton, J. C. Paton, W. J. Atwood, B. Tsai, and D. DiMaio. 2011. 'BiP and multiple DNAJ molecular chaperones in the endoplasmic reticulum are required for efficient simian virus 40 infection', MBio, 2: e00101-11.

      Goodwin, E. C., N. Motamedi, A. Lipovsky, R. Fernandez-Busnadiego, and D. DiMaio. 2014. 'Expression of DNAJB12 or DNAJB14 causes coordinate invasion of the nucleus by membranes associated with a novel nuclear pore structure', PLoS One, 9: e94322.

      Grove, D. E., C. Y. Fan, H. Y. Ren, and D. M. Cyr. 2011. 'The endoplasmic reticulum-associated Hsp40 DNAJB12 and Hsc70 cooperate to facilitate RMA1 E3-dependent degradation of nascent CFTRDeltaF508', Mol Biol Cell, 22: 301-14.

      Huang, P. N., J. R. Jheng, J. J. Arnold, J. R. Wang, C. E. Cameron, and S. R. Shih. 2017. 'UGGT1 enhances enterovirus 71 pathogenicity by promoting viral RNA synthesis and viral replication', PLoS Pathog, 13: e1006375.

      Igbaria, A., P. I. Merksamer, A. Trusina, F. Tilahun, J. R. Johnson, O. Brandman, N. J. Krogan, J. S. Weissman, and F. R. Papa. 2019. 'Chaperone-mediated reflux of secretory proteins to the cytosol during endoplasmic reticulum stress', Proc Natl Acad Sci U S A, 116: 11291-98.

      Inoue, T., and B. Tsai. 2011. 'A large and intact viral particle penetrates the endoplasmic reticulum membrane to reach the cytosol', PLoS Pathog, 7: e1002037.

      Malinverni, D., S. Zamuner, M. E. Rebeaud, A. Barducci, N. B. Nillegoda, and P. De Los Rios. 2023. 'Data-driven large-scale genomic analysis reveals an intricate phylogenetic and functional landscape in J-domain proteins', Proc Natl Acad Sci U S A, 120: e2218217120.

      Piette, B. L., N. Alerasool, Z. Y. Lin, J. Lacoste, M. H. Y. Lam, W. W. Qian, S. Tran, B. Larsen, E. Campos, J. Peng, A. C. Gingras, and M. Taipale. 2021. 'Comprehensive interactome profiling of the human Hsp70 network highlights functional differentiation of J domains', Mol Cell, 81: 2549-65 e8.

      Sicari, D., F. G. Centonze, R. Pineau, P. J. Le Reste, L. Negroni, S. Chat, M. A. Mohtar, D. Thomas, R. Gillet, T. Hupp, E. Chevet, and A. Igbaria. 2021. 'Reflux of Endoplasmic Reticulum proteins to the cytosol inactivates tumor suppressors', EMBO Rep: e51412.

      Sicari, Daria, Raphael Pineau, Pierre-Jean Le Reste, Luc Negroni, Sophie Chat, Aiman Mohtar, Daniel Thomas, Reynald Gillet, Ted Hupp, Eric Chevet, and Aeid Igbaria. 2020. 'Reflux of Endoplasmic Reticulum proteins to the cytosol yields inactivation of tumor suppressors', bioRxiv.

      Walczak, C. P., M. S. Ravindran, T. Inoue, and B. Tsai. 2014. 'A cytosolic chaperone complexes with dynamic membrane J-proteins and mobilizes a nonenveloped virus out of the endoplasmic reticulum', PLoS Pathog, 10: e1004007.

      Yamamoto, Y. H., T. Kimura, S. Momohara, M. Takeuchi, T. Tani, Y. Kimata, H. Kadokura, and K. Kohno. 2010. 'A novel ER J-protein DNAJB12 accelerates ER-associated degradation of membrane proteins including CFTR', Cell Struct Funct, 35: 107-16.

      Youker, R. T., P. Walsh, T. Beilharz, T. Lithgow, and J. L. Brodsky. 2004. 'Distinct roles for the Hsp40 and Hsp90 molecular chaperones during cystic fibrosis transmembrane conductance regulator degradation in yeast', Mol Biol Cell, 15: 4787-97.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary:

      Reflux of ER based proteins to the cytosol during ER stress inhibits wt-p53. This is a pro-survival mechanism during ER stress, but as ER stress is high in many cancers, it also promotes survival of cancer cells. Using A549 cells, Dabsan et al. demonstrate that this mechanism is conserved from yeast to mammalian cells, and identify DNAJB12 and DNAJB14 as putative mammalian orthologues of yeast HLJ1.

      This paper shows that DNAJB12 and 14 are likely orthologues of HLJ1 based on their sequences, and their behaviour. The paper develops the pathway of ER-stress > protein reflux > cytosolic interactions > inhibition of p53. The authors demonstrate this nicely using knock downs of DNAJB12 and/or 14 that partially blocks protein reflux and p53 inhibition. Overexpression of WT DNAJB12, but not the J-domain inactive mutant, blocks etoposide-induced p53 activation (this is not replicated with DNAJB14) and ER-resident protein reflux. The authors then show that DNAJB12/14 interact with refluxed ER-resident proteins and cytosolic SGTA, which importantly, they show interacts with the ER-resident proteins AGR2, PRDX4 and DNAJB11. Finally, the authors show that inducing ER stress in cancer cell lines can increase proliferation (lost by etoposide treatment), and that this is partially dependent on DNAJB12/14.

      This is a very interesting paper that describes a nice mechanism linking ER-stress to inhibition of p53 and thus survival in the face of ER-stress, which is a double edged sword regarding normal v cancerous cells. The data is normally good, but the conclusions drawn oversimplify the data that can be quite complex. The paper opens a lot of questions that the authors may want to develop in more detail (non-experimentally) to work on these areas in the future, or alternatively to develop experimentally and develop the observations further. There are only a few experimental comments that I make that I think should be done to publish this paper, to increase robustness of the work already here, the rest are optional for developing the paper further.

      Major comments:

      1. Number of experimental repeats must be mentioned in the figure legends. Figures and annotations need to be aligned properly

      Results section 2: 2. No intro to the proteins you've looked at for relocalisation. Would be useful to have some info on why you chose AGR2. Apart from them being ER-localised, do they all share another common characteristic? Does ability to inhibit p53 vary in potency? 3. What are the roles of DNAJB12/14 if overexpression can induce reflux? Does it allow increased binding of an already cytosolic protein, causing an overall increase in an interaction that then causes inhibition of p53? What are your suggested mechanisms? 4. Fig3: A+B show overexpression of individual DNAJs but not combined. As you go on to discuss the effect of the combination on AGR2 reflux, it would be useful to include this experimentally here. 5. Fig 3C: Subfractionation of cells shows AGR2 in the cytosol of A549 cells. The quality of the data is good but the bands are very high on the blot. For publication is it possible to show this band more centralized so that we are sure that we are not missing bands cut off in the empty and H139Q lanes? Also, you have some nice immunofluorescence in the 2021 EMBO reports paper, is it possible to show this by IF too? It is not essential for the story, but it would enrich the figure and support the biochemistry nicely. Also it is notable that the membrane fraction of the refluxed proteins doesn't appear to have a decrease in parallel (especially for AGR2). Is this because the % of the refluxed protein is very small? Is there a transcriptional increase of any of them (the treatments are 12+24 h so it would be enough time)? This could be a nice opportunity to discuss the amount of protein that is refluxed, whether this response is a huge emptying of the ER or more like a gentle release, and also the potency of the gain of function and effect on p53 vs the amount of protein refluxed. This latter part isn't essential but it would be a nice element to expand upon. 6. You still mention DNAJB12 and 14 as orthologues, even though DNAJB14 has no effect on p53 activity when overexpressed. Do you think that this piece of data diminishes this statement? 7. Fig 3D/F: Overexpression of DNAJB14 induces reflux of DNAJB11 at 24h, what does this suggest? Does this indicate having the same role as DNAJB12 but less potently? What's your hypothesis? 8. "This suggests that the two proteins may have different functions when overexpressed, despite their overlapping and redundant functions" What does it suggest about their dependence on each other? If overexpression of WT DNAJB12 inhibits Tg induced reflux, is it also blocking the ability of DNAJB14 to permit flux? 9. Fig 4: PDI shown in blots but not commented on in text. Then included in the schematics. Please comment in the text. 10. Fig 4F: Although the quantifications of the blots look fine, the blot shown does not convincingly demonstrate this data for AGR2. The other proteins look fine, but again it could be useful to see the individual means for each experiment, or the full gels for all replicates in a supplementary figure. Results section 3 11. Fig 5A, As there is obviously a difference between DNAJB12/14 it would be useful to do the pulldown with DNAJB14 too. Re. HSC70 binding to DNAJB12 and 14, the abstract states that DNAJB12/14 bind HSC70 and SGTA through their cytosolic J domains. Fig 5 shows pulldowns of DNAJB12 with an increased binding of SGTA in FLAG-DNAJB12 induced conditions, but the HSC70 band does not seem to be enriched in any of the conditions, including after DNAJB12 induction. This doesn't support the statement that DNAJB12 binds HSC70. In fact, in the absence of a good negative control, this would suggest that the HSC70 band seen is not specific. There is also no data to show that DNAJB14 binds HSC70. I recommend including a negative condition (ie beads only) and the data for DNAJB14 pulldown. 12. The binding of DNAJB12 to SGTA under stress conditions in Fig5B looks much more convincing than SGTA to DNAJB12 in Fig 5A. Bands in all blots need to be quantified from 3 independent experiments, and repeated if not already n=3. If this is solely a technical difference, please explain in the text. The conclusions drawn from this interaction data are important and shold be elaborated upon to support th claims made in the paper. The authors may also chose to expand the pulldowns to demonstrate their claims made on olidomerisation of DNAJB12 and 14 here. It is also clear that the interaction data of the SGTA with ER-resident proteins AGR2, PRDX4 and DNAJB11 is strong. The authors may want to draw on this in their hypotheses of the mechanism. I would imagine a complex such as DNAJB14/DNAJB12 - SGTA - AGR2/PRDX4/DNAJB11 would be logical. Have any experiments been performed to prove if complexes like this would form? 13. Fig 5B: It is clear that DNAJB12 interacts with SGTA. The authors state that DNAJB14 also interacts with SGTA under normal and stress conditions, but the band in 25/50 Tg is very feint. Why would there be stronger binding at the 2 extremes than during low stress induction? In the input, there is a much higher expression of DNAJB14 in 50 Tg. What does this say about the interaction? Is there an effect of ER stress on DNAJB14 expression? A negative control should be included to show any background binding, such as a "beads only" control. 14. Fig 5C data is sound, although a negative control should be included. Results section 4 15. Fig 6A-B: Given that there is the complexity of overexpression v KD of DNAJB12 v 14 causing similar effects on p53 actvity (Fig 2 v 3), it would be interesting to see whether the effect of overexpression mirrors the results in Fig 6A. Is it known what SGTA overexpression does (optional)? 16. Fig 6D: resolution very low 17. Fig 6C-D: There is an interesting difference though between the proposed cytosolic actions of the refluxed proteins. You show that AGR2, PRDX4 and DNAJB11 all bind to SGTA in stress conditions, but in the schematics you show: DNAJB11 binding to HSC70 through SGTA (not shown in the paper), then also PDIA1, PDIA3 binding to SGTA and AGR2 binding to SGTA. What role does SGTA have in these varied reactions? Sometimes it is depicted as an intermediate, sometimes a lone binder, what is its role as a binder? It should be clarified which interactions are demonstrated in the paper (or before) and which are hypothesized in a graphical way (eg. for hypotheses dotted outlines or no solid fill etc). The schematics also suggest that DNAJB14 binding to HSC70 and SGTA is inducible in stress conditions, as is PDIA3, which is not shown in the paper. Discussion "In cancer cells, DNAJB12 and DNAJB14 oligomerize and recruit cytosolic chaperones and cochaperones (HSC70 and SGTA) to reflux AGR2 and other ER-resident proteins and to inhibit wt-p53 and probably different proapoptotic signaling pathways (Figure 5, and Figure 6C-6D)." You havent shown oligomerisation between DNAJB12/14. Modify the text to make it clear that it is a hypothesis. Minor comments: 18. It would be useful to have page or line numbers to help with document navigation, please include them. Typos and inconsistency in how some proteins are named throughout the manuscript 19. Title: Include reference to reflux. Suggest: "chaperone complexes (?proteins) reflux from the ER to cytosol..." I presume it would be more likely that the proteins go separately rather than in complex. Do you have any ideas on the size range of proteins that can undergo this process? 20. ERCY in abstract, ERCYS in intro. There are typos throughout, could be a formatting problem, please check 21. What about the selection of refluxed proteins? Is this only a certain category of proteins? Could it be anything? Have you looked at other cargo / ER resident proteins? 22. "Their role in ERCYS and cells' fate determination depends..." Suggest change to "Their role in ERCYS and determination of cell fate..." 23. I think that the final sentence of the intro could be made stronger and more concise. There's a repeat of ER and cytosol. Instead could you comment on the reflux permitting new interactions between proteins otherwise spatially separated, then the effect on wt-p53 etc.

      Figure legends:

      1. In some cases the authors state the number of replicates, but this should be stated for all experiments. If experiments don't already include 3 independent repeats, this should be done. Check text for typos, correct letter capitalisation, spaces and random bold text (some of this could be from incompatability when saving as PDF)
      2. Fig2E: scrambled not scramble siRNA
      3. Fig 3: "to expel" is a term not used in the rest of the paper for reflux. Useful to remain consistent with terminology where possible

      Results section 1:

      1. "Protein alignment of the yeast HLJ1p showed high amino acids similarity to the mammalian..."
      2. Fig 1C: state in legend which organism this is from (presumably human) Results Section 2
      3. "Test the two strongest hits DNAJB12/14" Add reference to previous paper showing this
      4. "In the WT and J-protein-silenced A549 cells, there were no differences in the cytosolic enrichment of the three ER resident proteins AGR2, DNAJB11, and HYOU1 in normal and unstressed conditions (Figure 2A-C and Figure S2C)." I think that this is an oversimplification, and in your following discussion, you show this it's more subtle than this.
      5. The text here isn't so clear: normal and unstressed conditions? Do you mean stressed? Please be careful in your phrases: "DNAJB12-silenced cells are slightly affected in AGR2 and DNAJB11 cytosolic accumulation but not HYOU1." This is the wrong way around. DNAJB12 silencing effects AGR2, not that AGR2 effects the cells (which is how you have written it). This also occurs agan in the next para:
      6. "During stress, DNAJB12/DNAJB14 double knockdown was highly affected in the cytosolic..." I think you mean it highly affected the cytosolic accumulation, not that it was affected by the cytosolic accumulation. Please change in the text
      7. "DNAJB12 and DNAJB14 are strong hits of the yeast HLJ1" Not clear, I presume you mean they are likely orthologues? Top candidates for being closest orthologues?
      8. Fig 2D: typos in WB labelling? I think Tm should be - - +, not - + +as it is now (if it's not a typo, you need more controls, eto alone.
      9. Fig 2D-E-F typos for DKD? D12/D12 or D12/14?
      10. "We assayed the phosphorylation state of wt- p53 and p21 protein expression levels (a downstream target of p53 signaling) during etoposide treatment." What are the results of this? Explain what Fig 2D-E shows, then build on this with the +Tm results. Results should be explained didactically to be clear.
      11. "(Figure 2D- E). Cells lacking DNAJB12 and or DNAJB14 have partial protection in wt-p53 phosphorylation and p21 protein levels."
      12. You comment on p53 phosphorylation, but you haven't quantified this. This should be done, normalized to p53 levels, if you want to draw these conclusions, especially as total p53 varies between condition. Does Eto increase p53 txn? Does Tm alone increase p53 activity/phospho-p53? These are shown in the Sicari EMBO reports paper in 2021, you should briefly reference those.
      13. Fig3A: overexpression of DNAJB12 decreases Eto induced p53 but not at steady state. Is this because at steady state the activity is already basal? Or is there another reason?
      14. Switch Figs S3D and S3C as they are not referred to in order. Also Fig S3C: vary colour (or add pattern) on bars more between conditions
      15. Need to define HLJ1 at first mention Results section 3
      16. HSC70 cochaperone (SGTA) defined twice
      17. "These data are important because SGTA and the ER-resident proteins (PRDX4, AGR2, and DNAJB11) are known to be expressed in different compartments, and the interaction occurs only when those ER-resident proteins localize to the cytosol." Is there a reference for this? Results section 4
      18. "by almost two folds"
      19. Fig 6A: It seems strange that the difference between purple and blue bars in scrambled, and D14-KD are very significant but D12-KD is only significant. Why is this? The error bars don't look that different. It would be interesting to see the individual means for each different replicate.
      20. Figures: Fig 6A: Scale bars not well placed. Annotation on final set should be D12/D14 DKD? Discussion
      21. The authors mention that they want to use DNAJB12/4-HSC70/SGTA axis to impair cancer cell fitness: What effect would this have though in a non cancer model? Would this be a viable approach? Although it is obviously early days, which approach would the authors see as potentially favourable?
      22. Second para: Should be "Here we present evidences"
      23. "DNAJB12 overexpression was also sufficient to promote ERCYS by refluxing AGR2 and inhibit wt-p53 signaling in cells treated with etoposide" Suggest:
      24. DNAJB12 overexpression was also sufficient to promote ERCYS by increasing reflux of AGR2 and inhibition of wt-p53 signaling in cells treated with etoposide
      25. "Moreover, DNAJB12 was sufficient to promote this phenomenon and cause ER protein reflux by mass action without causing ER stress (Figure 3, Figure 4, and Figure S3)." You dont look at induction of ER stress here, please change the text or explain in more depth with refs if suitable
      26. The mention of viruses is sparse in this paper. If it is a main theory, put it more centrally to the concept, and explain in more detail. As it is, its appearance in the final sentence is out of context.

      Referees cross-commenting

      I agree with the comments from Reviewer 1. Reviewer 2 also is correct in many ways, but I think that they have somewhat overlooked the relevance of the ER-stress element and treatments. The authors do need to reference past papers more to give a full story, as this includes the groups own papers, I don't think that it is an ethical problem but rather an oversight in the writing. Regarding reviewer 2's concerns about overexpression levels and cell death, the authors do use an inducible cell line and show the levels of DNAJB12 induced (could CRISPR also be considered?). This could be used to further address reviewer 2's concerns. It would also be useful to see data on cell death in the conditions used in the paper. Re concerns about ER integrity, this could be addressed by using IF (or EM) to show a secondary ER marker that remains ER-localised, and this would also be of interest regarding my comment on which categories of proteins can undergo reflux. If everything is relocalised, then reviewer 2's point would be validated.

      Significance

      General assessment: This paper robustly shows that the yeast system of ER to cytosol reflux of ER-resident proteins is conserved in mammalian cells, and it describes clearly the link between ER stress, protein reflux and inhibition of p53 in mammalian cells. The authors have the tools to delve deeper into this mechanism and robustly explore this pathway, however the mechanistic elements - where not instantly clear from the results - have been over interpreted somewhat. The results have been oversimplified in their explanations and some points and complexities of the study need to be addressed further to make the most of them - these are often some of the more interesting concepts of the paper, for example the differences in DNAJB12/14 and how the proteins orchestrate in the cytosol to play their cytosol-specific effects. I think that many points can be addressed in the text, by the authors being clear and concise with their reporting, while other experiments would turn this paper from an observational one, into a very interesting mechanistic one.

      Advance: This paper is based on previous nice papers from the group. It is a nice progressions from yeast, to basic mechanism, to physiological model. But as mentioned, without a strong mechanistic improvement, the paper would remain observatory.

      Audience: This paper is interesting to cell biologists (homeostasis, quality control and trafficking) as well as cancer cell biologists (fitness of cancer cells and homeostasis) and it is a very interesting demonstration of a process that is a double edged sword, depending on the environment of the cells.

      My expertise: cell biology, trafficking, ER homeostasis

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2024-02491

      Corresponding author(s): Gilbert, Vassart

      1. General Statements [optional]

      We thank referees 1 and 2 for their in-depth analysis of our manuscript. They see interest in our study, with questions to be answered. Referee 3 is essentially negative, considering that there is nothing new ("novel finding is missing"). We respectfully disagree with him/her, comforted by the opinion of referee 2 that "the authors developed a protocol to reproducibly generate fetal-like spheroids from adult tissue is an important advancement in the field and ... the manuscript should attract a significant amount of attention in the intestinal field" and we provide evidence in our answers that he/she did not read the manuscript with the same attention as referees 1 and 2 (see in particular answer to his/her question 5).

      Here is a summary of the main reason why we consider that our study represents valuable new information in the field of intestinal regeneration.

      It is based on the serendipitous observation that dissociation of adult intestinal tissue by collagenase generates stably replatable spheroids upon culture in matrigel. Surprisingly and contrary to canonical EDTA-generated intestinal organoids and fetal spheroids, these spheroids are not traced in Rosa26Tomato mice harboring a VilCre transgene, despite expressing robustly endogenous Villin. Our interpretation is that adult intestinal spheroids originate from a cell lineage, distinct from the main developmental intestinal lineage, in which the VilCre transgene is unexpectedly not expressed, probaly due to the absence of cis regulatory sequences required for expression in this lineage.

      Adult spheroid transcriptome shares a gene signature with the YAP/TAZ signature commonly expressed in models of intestinal regeneration. This led us to look for VilCre negative crypts in the regenerating intestine of Lgr5/DTR mice in which Lgr5-positive stem cells have been ablated by diphtheria toxin. Numerous VilCre negative clones were observed, identifying a novel lineage of stem cells implicated in intestinal regeneration.

      FACS purification and scRNAseq analysis of the rare VilCre negative cells present at homeostasis identified a population of cells with characteristics of quiescent stem cells.

      In sum, we believe that our study demonstrates the existence of a hitherto undescribed stem cell lineage involved in intestinal regeneration. It points to the existence of a hierarchical model of intestinal regeneration in addition to the well-accepted plasticity model.

      2. Description of the planned revisions

      See section 3 below.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Here is a point-by-point reply to the queries of the three referees, with indication of the revisions introduced in the manuscript.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      • *In this manuscript, Marefati et al report an Lgr5-independent lineage in the regenerating intestine using in vitro organoids and in vivo injury-coupled lineage tracing model. In organoids, collagenase/dispase dissociated resulted in "immortal spheroids" that maintain a cystic and undifferentiated phenotype in the absence of standard growth factors (Rspondin/Noggin/EGF). Bulk RNAseq of spheroids demonstrates downregulation of classical CBC signatures and upregulation of fetal spheroid, mesenchymal, inflammation and regenerative signatures. In mice, Villin-Cre lineage tracing revealed some Villin- negative progenies that lack reporter tracing throughout crypt-villus ribbons after injury.

      *The authors proposed that there is Lgr5-independent population support the regenerative response upon CBC depletion. A major caveat of this study is the identification of this population is based on absence of VilCre expression. *

      We respectfully disagree. It is precisely this characteristic that makes the interest of our study. Whereas mosaicism of transgene expression is widespread and usually of little significance, our study shows that the rare VilCre-negative cells in the intestinal epithelium are not randomly showing this phenotype: they give specifically birth to what we call adult spheroids and regenerating crypts, which cannot be due to chance. The absence of VilCre expression allows tracing these cells from the zygote stage of the various VilCre/Ros26 reporter mice. We have modified our text to emphasize this point.

      *It is surprising that there is no characterisation of Lgr5 expression throughout the manuscript whilst claiming of a Lgr5- independent lineage. *

      We understand the perplexity of the referee not to see direct Lgr5 expression data in our manuscript, given our title. However, our point is that it is the cells at the origin of adult spheroids and the regenerating crypts we have identified that are Lgr5-negative, not the spheroids or the regenerated crypts themselves. Those are downstream offspring that may, and indeed have, gained some Lgr5 expression (e.g. figure 3F). We believe that our data showing that VilCre-negative spheroids are not traced in Lgr5-CreERT2/Rosa reporter mice convincingly demonstrate absence of Lgr5 expression in the cells at the origin of adult spheroids (figure 4G). We think that this experiment is better evidence than attempts to show absence of two markers (Tom and Lgr5) in the rare "white" cells present in the epithelium. Regarding the Lgr5 status of cells at the origin of the regenerating "white" crypts that we have identified, the early appearance of these crypts following ablation of CBC (i.e. Lgr5+ve) cells is a strong argument that they originate from Lgr5-negative cells. Regarding the scRNAseq experiment, Lgr5 transcripts are notoriously low and difficult to measure reliably in CBCs (Haber et al 2017). However, blowing up the pertinent regions of the merged UMAP allows showing some Lgr5 transcripts in clusters 5,6 and none in cluster 1 of figure 8GH. Given the very low level of detection, we had chosen not to include these data in the manuscript, but we hope they may help answer the point of the referee (see portion of UMAP below, with Olfm4 as a control, together with the corresponding violin plot). Several markers that gave significant signals in the CBC cluster (Smoc2, Axin2, Slc12a2) were virtually undetectable in the Olfm4-low /Tom-negative cluster of our scRNAseq data (figure 8I) supporting our conclusion.

      Although the research question is potentially interesting, the concept of epithelial reprogramming upon injury is well documented in the field. The data generated in this manuscript also seem to be preliminary and lack of detailed characterisation. Below are specific comments.

      We do not question the existence of epithelial reprogramming upon injury. We believe our data show, in addition to this well demonstrated phenomenon, the existence of rare cells traced by absence of VilCre expression that are at the origin of a developmental cell lineage distinct from Lgr5+ stem cells and also implicated in regeneration.

      • Expression of Lgr5 should be properly characterised throughout the manuscript in both organoid models and injury-induced regeneration in vivo.
      • *

      See above for a detailed answer to this point.

      • An important question is the origin of these "Lgr5-independent" adult spheroids. They look and appear like fetal organoids, which could be induced by injury (e.g. upon collagenase/dispase dissociation). Have the authors tried to culture fetal spheroids in BCM over extensive period of time? Do they behave the same? This would be a great way to directly compare the collagenase/dispase-derived organoids with fetal origin. * *Fetal spheroids require ENR for survival and die in BCM. We have chosen to illustrate this point in Fig2A by showing that, contrary to adult spheroid, they die even when only Rspondin is missing.

      • Fig 1C, Why is the replating spheroid culture time different between mesenchymal cells and conditioned medium? We took the earliest time showing convincingly the return to the organoid phenotype. This timing difference does not modify the conclusion that EDTA organoids becoming spheroid-like when exposed to factors originating from mesenchymal cells revert to the organoid phenotype when returned to ENR medium without mesenchymal influence.

      • *It is unclear how the bulk RNA-seq data in Fig. 3 were compared. How long were the adult organoids and spheroids cultured for (how many passages)? Were they culture in the same condition of were they in ENR vs BCM? * Both EDTA organoids and spheroids displaying a stable phenotype were used in this experiment. Organoids were collected at passage 4, day 5; spheroids were collected at passage passage 9 day 3.

      As stated in the legend to the figure: "...to allow pertinent comparison spheroids and organoids were cultured in the same ENR-containing medium...".

      These are important information to consider when interpreting the results. For instance, are Ptgs1 & Ptgs2 expression in adult spheroids the same in ENR vs BCM? Are the gene signatures (regenerative, fetal and YAP) changed in adult spheroids culturing in ENR vs BCM?

      We did compare bulk RNAseq of EDTA organoids to ENR-cultured spheroids, short term (passage 6, day 6) BCM-cultured spheroids and long term BCM-cultured (passage 26, day 6) spheroids. To avoid overloading the manuscript these data were not shown in the original manuscript. In summary the BCM-cultured spheroids display a similar phenotype as those cultured in ENR, but with further de-differentiation. See in revision plan folder the results for PTGS, some differentiation markers and fetal regenerative markers including YAP induced genes.

      We have included a brief description of these data in the new version of the manuscript and added an additional supplementary file (Suppl table 2) presenting the whole data set.

      • It is stated: "In agreement with their aptitude to grow indefinitely, adult spheroids express a set of upregulated genes overlapping significantly with an "adult tissue stem cell module" [159/721 genes; q value 2.11 e-94) (Fig.S2F)].". What is the definition of "indefinitely"? Are they referring to the Fig 1B where spheroid were passaged to P10? The authors should avoid the term "indefinitely" but use a more specific time scale, e.g. passages, months etc.

      We agree that the term indefinitely should be avoided, as it is vague. We have introduced the maximum number of passages during which we have maintained the stable spheroid phenotype (26 passages). Also worth noting, the spheroids could be frozen and cultured repeatedly over many months.

      SuppFig 3D: Row Z-Score is missing the "e" in Score.

      Corrected

      • Fig 4E: Figure legend says QNRQ instead of CNRQ. Corrected

      • Fig 4G: The brightfield image of adult spheroids 5 days after 3x TAM injections doesn't look like a spheroid. It seems to be differentiating. True, the choice was not the best as the spheroids started to darken. When further replated, however, the offspring of these spheroids showing a clear phenotype remain negative 30 days after tamoxifen administration as shown on the figure. We are sorry, but for reasons explained in section 4 below, we cannot redo the experiment to get a better picture.

      • Fig 4: Most mouse model data are missing the number of mice & their respective age used for organoid isolation. We have introduced these data in the legend.

      • *Fig 4A-D, H-G: How was fluorescent signal of organoids quantified? *

      The settings of fluo imaging or time of LacZ staining were the same for organoids and spheroid pictures. This has been added to the material and methods of the figure and an example is shown below for Rosa26Tomato.

      *How many images? * 2 per animal per condition.

      *Were there equal numbers of organoids? *

      No, see number of total elements counted added to the figure

      This all needs to be included in methods/figure legends.

      We have introduced additional pertinent information in the material and methods section.

      • Figure 4B-D, G-H: Which culturing conditions were used for adult spheroids? Original method or sandwich method? These data were obtained with the original protocol

      • Fig 6D-E: Please add the timepoint after DT administration these samples are from. It is not listed in text or figure legend. These samples were those obtained from mice sacrificed at the end of the 5 day period as indicated in panel A. This has been emphasized in the legend of the figure.

      • SuppFig 6D: again timepoint is missing. In this experiment all samples were untreated as indicated. This has been emphasized in the legend of the figure.

      • SuppFig 6: How were the crypts of these mice (DT WT & DT HE) isolated? Was this via EDTA? This was RNA extracted from total uncultured EDTA-released material (crypts). This has been emphasized in the legend of the figure.

      Also, what is the timepoint for isolation for these samples? Even if untreated, the timepoint adds context to the data. Please add more context to describing these different experiments, either in the figure legends or methods section.

      All these experiments were from 2 month old animals. We have indicated this in the legend of the figure.

      • SuppFig 6E: The quality of the heatmap resolution is too poor to read gene names. We have improved the resolution of the figure and hope the name of the genes are readable now.

      • 5-7, are the regenerating crypt-villus units fully differentiated or are they maintained in the developmental state? Immunostaining of markers for stem cells (Lgr5), differentiated lineages (Alpi, Muc2, Lyz, ChgA etc.) and fetal state (Sca1, Trop2 etc) should be analysed in those "white" unrecombined crypt-villus units. The differentiation phenotype is shown by the clear presence of morphologically-identified Paneth and Goblet cells. We agree that specific immunostainings could have been performed to further explore this point. Regarding the fetal state, Clu expression was shown during the regeneration period (see figure 7D,E).

      Unfortunately, for reasons explained in section 4 below, we are not in a position to perform these additional experiments.

      • The following text needs clarification: "The kinetics of appearance of newly formed un-recombined ("white") crypts was studied after a single pulse of DT (Fig.7A). This demonstrated an increase at 48 hours, with further increase at day 10 and stable maintenance at day 30. The presence of newly formed white crypts one month after toxin administration indicates that the VilCre-negative lineage is developmentally stable and does not turn on the transgene during differentiation of the various epithelial lineages occurring after regeneration (Fig.7B).

      *Comment: The "newly formed" is an overstatement, the data doesn't conclude that those are "new" crypts. *

      Except if we do not understand the point, we think we can write that a fraction of "white" crypts must be "newly formed", since they are in excess of those present in untreated animals at the same time point.

      *The end of the sentence states that these "white" crypts form developmentally stable lineages, thus these white crypts at day 30 could originate from the initial injury. *

      As stated above, we consider that crypts found in excess of those present in untreated animals result from the initial injury.

      *There was no characterisation of the various epitheial lineages. Are they fully differentiated? *

      See above the point related to Paneth cells and Goblet cells.

      Is Lgr5 expressed one month after toxin administration? Can the VilCre neg lineage give rise to CBCs?

      We have tried hard to show presence or absence of Lgr5 in white crypts at the various times following DT administration. We tried double RFP / Lgr5-RNA scope labeling and double GFP/RFP immunolabeling. Unfortunately, we could not get these methods to produce convincing specific labeling of CBCs in homeostatic crypts, which explains why we could not reach a conclusion regarding the white crypts.

      However, there is an indirect indication that "chronic" white crypts (i.e. those caused by DTR expression in CBC, plus those observed 30 days after DT administration) do not express Lgr5. Indeed, acute regeneration indicated by Clu expression at day 5 in Fig.7C is lower in white crypts than in red ones strongly suggesting that white crypts preexisting DT administration (the "chronic ones) do not express Lgr5DTR.

      The relationship between white crypt generation and appearance of Clu-positive revival cells (Ayyaz et al., 2019) was then explored. In agreement with others and similar to what happens in the irradiation model, (Ayyaz et al., 2019; Yuan et al., 2023) Clu-positive cells were rare in crypts of untreated mice and their number transiently increased forty-eight hours after a single pulse of DT, and more so after three pulses of DT (Fig.7C,D).

      Comment: Comparing 1 pulse at day 2 vs 3 pulses at day 5 makes the data hard to interpret. How is the Clu ISH level for 1 pulse at day 5? Are they equivalent?

      After a single pulse of of DT, Clu is only transiently increased. As shown by Ayyaz et al it is back to the starting point at day 5 (supplementary figure 4 of Ayyaz et al).

      Clu-positive cells were less frequently observed in white crypts (see "Total" versus "White" in Fig.7C). This fits with the hypothesis that Clu expression marks acutely regenerating crypts and that a proportion of the white crypts are chronically regenerating due to DTR expression in CBCs."

      *Comment: I believe the authors suggested that the discrepancy of less Clu expression in white crypts is due to the ectopic expression of DTR in CBCs causing low grade injury without DT administration. This means that some white crypts could have been formed before the administration of DT, and thus are on a different regenerative timeline compared to the white crypts formed from DT administration. *

      Yes, this is our interpretation. We have clarified it in the text.

      Is there any proof of the chronic regeneration? Immunostaining of chronic regenerative markers such as Sca1, Anxa1 or Yap1 nuclear localization would support the claim. It'd be important to show only the white crypts, but not the RFP+ ones, show regenerative markers.

      We think that the steady state higher number of white crypts in untreated Lgr5-DTR animals, compared to wild type siblings indicates chronical low-grade regeneration, which is supported by the RNAseq data (Suppl fig6). It must be noted, however, that this phenotype is mild compared to the well described fetal-like regeneration phenotype described in most injury models. Since these white crypts were made at undetermined earlier stages, the great majority of them are not expected to show markers of acute regeneration like Clu, Sca1....

      Fig 7D-E: What are the timepoints of harvest for HE-WT-HE 1 pulse DT mice and HE- HE-HE PBS injected mice?

      We have added this information in the figure.

      • *Fig 8-9: Regarding the CBC-like Olfm4 low population, what is the status of Lgr5? This should be shown in the figure since the argument is that this is an Lgr5-independent lineage. * See response to the second point.

      And what about the regenerative, Yap, mesenchymal and inflammatory signatures? Are they enriched in the white crypts similar to the in vitro spheroids?

      In a portion of white crypts, those we believe are newly formed after CBC ablation (see above), there is a transient increase in Clu, which may be considered a marker of Yap activation. In the CBC-like Olfm4 low cells, as seen by scRNAseq, there is nothing like an actively regenerating phenotype. This is expected, since these cells are coming from homeostatic untreated VilCre/Rosa26Tom animals and are supposed to be quiescent "awaiting to be activated".

      Reviewer #1 (Significance (Required)):

      Strengths: The study employed a range of in vitro and in vivo models to test the hypothesis.

      • *

      *Limitations: Unfortunately, the models chosen did not provide sufficient evidence to draw the conclusions. Injury induced reprogramming, both in vivo and in vitro, has been well documented in the field. The new message here is to show that such reprogrammed state is continuous rather than transient; instead of regenerating Lgr5+ stem cells, it can continue to differentiate to all cell lineages in Lgr5-independent manner.

      *

      We respectfully disagree with this analysis of our results. What we show is not "that such reprogrammed state is continuous rather than transient; instead of regenerating Lgr5+ stem cells, it can continue to differentiate to all cell lineages in Lgr5-independent manner", but that a quiescent stem cell line, not previously identified, is activated to regenerate a portion of crypts following CBC ablation. These cells are not reprogrammed, they correspond to a developmental lineage waiting to be activated and keep their VilCre-negative state at least of 30 days. We believe that their "by default tracing" (VilCre negative from the zygote stage) is as strong an evidence for the existence of such a lineage as positive lineage tracing would be. The increase in crypts originating from this lineage after CBC ablation indicates that it is implicated in regeneration. We do not question the well-demonstrated plasticity-associated reprogramming taking place during regeneration; we simply suggest that this would coexist with the involvement of the quiescent VilCre-negative lineage we have identified.

      *However, through the manuscript, there was no immunostaining of Lgr5 and other differentiation markers. The conclusion is an overstatement without solid proof. * We have provided the best answer we could to this point in our answer to the second question of the referee hereabove.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, the Marefati et al. developed a novel approach to generate spheroids from adult intestinal epithelium using a collagenase/dispase based protocol. Adult spheroids were found to be distinct from classic budding-type organoids normally generated from EDTA based release of the crypt epithelium. Transcriptional profiling indicated that adult spheroids were undifferentiated and similar to regenerating crypts or fetal spheroids. To identify the cell of origin that generates adult spheroids, the authors labelled epithelial cells with VilCreERT-LSL-Tom, VilCre-LSL-GFP and Lgr5CreERT- LSLTom mice. From these experiments the authors conclude that that spheroids are only generated from Vil-Cre negative and Lgr5 negative cells. Next the authors deleted the anti- apoptotic gene Mcl1 using Vil-CreERT mice. This led to a strong apoptotic response throughout the crypt epithelium and tissues processed from knockout mice readily generated spheroids, and in vivo, replenishment of the gut epithelium was mediated by unrecombined cells. In a second model, CBCs were ablated using Lgr5DTR mice and VilCre negative cells were found again to contribute to regeneration of the crypt epithelium. Finally based on the absence of Vil-Cre reporter activity, the authors were able to sort out and perform scRNAseq to profile VilCre negative cells. These cells were found to be quiescent, express the stem cell marker Olfm4 and were also abundant in ribosomal gene expression.

      • *

      The fact that the authors developed a protocol to reproducibly generate fetal-like spheroids from adult tissue is an important advancement in the field. Previous reports have shown that treatment with various small molecule inhibitors can revert budding organoids into a spheroid morphology, but this manuscript demonstrates that spheroids can also be generated from otherwise untreated cells. This new methodology will provide new tools to dissect the molecular determinants of fetal/regenerative cells in the gut. Based on this, the manuscript should attract a significant amount of attention in the intestinal field.

      • *

      As pointed out by the authors themselves the study has important limitations that diminish enthusiasm. The primary issue relates to the inability of the team to identify markers of VilCre neg cells other than the fact that these cells are Olfm4+ and quiescent. Nonetheless, for the reasons stated above the manuscript should reach the target audience within the research community, if the authors can address the specific points below related to issues with methodology as well as defining more precisely the characteristics and growth requirements of adult spheroid cultures.

      Thank you for this positive analysis of our study.

      Major comments

      The main conclusion of the study is that Vil-Cre neg cells are rare quiescent Olfm4+ crypt cells. If this is the case, then standard EDTA treatment should release these cells as well. Consequently, spheroids should also emerge from isolated crypts grown in the absence of ENR. If this is not the case how do the authors explain this?

      We have tried hard to generate spheroids by culturing EDTA organoids in medium lacking ENR and by treating EDTA organoids with collagenase/dispase, without success. Therefore, we are left with the conclusion that spheroid-generating cells must be more tightly attached to the matrix than those released by EDTA, and that it is their release from this attachment by collagenase that triggers a regeneration-like phenotype. This hypothesis is supported by several models of regeneration in other tissues as indicated in our references (Gilbert et al., 2010; Machado et al., 2021; Montarras et al., 2005).

      From the text the authors appear to suggest that growth of adult spheroids is dependent initially on "material" released by collagenase/dispase treatment. An obvious candidate would be mesenchymal cells, which are known to secrete factors such as Wnts and PGE2 that drive spheroid morphology. To test this, the authors should treat spheroid cultures with Porcupine and/or PGE2 inhibitors.

      We followed similar reasoning, considering that spheroids express strongly Ptgs1 ,2 (Figure 3A). We thought their phenotype might be maintained by autocrine prostaglandin action. We tested aspirin, a Ptgs inhibitor, which was without effect on the spheroid phenotype. Besides, we explored a wide variety of conditions to test whether they would affect the spheroid phenotype [Aspirin-see above, cAMP agonists/antagonists, YapTaz inhibitors (verteporfin and CA3), valproic acid, Notch inhibitors (DAPT, DBZ, LY511455), all-trans retinoic acid, NFkB inhibitors (TCPA, BMS), TGFbeta inhibitor (SB431542)]. As these results were negative, we did not include them in the manuscript.

      • If these inhibitors block growth then this would suggest that either stromal cells or autocrine signalling involving these pathways is important. Overall, more in-depth analysis of the growth requirements of adult spheroids is required.*

      Figure 1d indicates that adult spheroids can be propagated for at least 10 passages. The abstract mentions they are "immortal". The text itself does not address this issue. More precise information as to how long spheroids can be propagated is required. If these cultures can be propagated for 10 passages or more it becomes important to determine what nutrients/mitogens in the basal media are driving growth? Alternatively, what is the evidence that spheroid cultures are completely devoid of mesenchymal cells. The text only mentions that "Upon replating, these spheroids could be stably cultured free of mesenchymal cells (Fig.1B)". No validation is shown to support this.

      We agree that "immortal" is not a good way to characterize our spheroids, as also pointed out by referee nr 1. We have changed that in the text, indicating the maximal number of replating we tested was 26 and replacing immortal by stably replatable. Of note, the spheroids could frozen/thawed and recultured many times.

      Related to the question whether mesenchymal cells could still contaminate the spheroid cultures, we can provide the following answers:

      • No fibroblasts could be seen in replated cultures and multiple spheroids could be repeatedly propagated from a single starting spheroid.
      • The bulk RNAseq experiment comparing organoids to ENR or BCM cultured spheroids show, despite expression of several mesenchymal markers (see matrisome in Fig3), absence of significant expression of Pdgfra (see in revision plan folder for CP20Millions results from the raw data of new suppl table 2, with Clu, Tacstd2 and Alpi shown as controls).
      • Regarding the nutrients/mitogens in the medium driving spheroid growth, we did not explore the point further than showing that they grow in basal medium (i.e. advanced DMEM), given that the presence of Matrigel makes it difficult to pinpoint what is really needed. In Figure 2, the authors describe the growth requirements for adult spheroids and indicate that spheroids grown in ENR or EN became dark and shrink. The representative images showing this are clear, but this analysis should be quantified.

      Added to the manuscript.

      In SF3, the gene expression profile of organoids from the sandwich method only partially overlaps with that of organoids from the old protocol. What are the gene expression differences between the 2 culture systems? Secondly, the sandwich method appears to sustain growth of Tom+ spheroids based on RNAseq and the IF images. This suggest that Vil-Cre negative cells are not necessarily the only source of adult spheroids and thus this experiment seems to indicate that any cell may be converted to grow as a spheroid under the right conditions. These points should be addressed.

      Looking back to our data in order to answer the point raised by the referee, we realized that we had inadvertently-compared organoids to ENR-cultured spheroids generated by the first protocol to BCM-cultured spheroids generated by the sandwich method. We have corrected this error in a new version of suppl fig3. This shows increased correspondence between genes up- or downregulated in the spheroids obtained in the two protocols (from 49/48% to 57/57% (Venn diagram on the new figure). We agree that, even after this correction, the spheroids obtained with the two protocols present sizeable differences in their transcriptome. However, considering the very different way these spheroids were obtained and cultured initially, we do not believe this to be unexpected. The important point in our opinion is that the core of the up- and down-regulated genes typical of the de-differentiation phenotype of adult spheroids is very similar, as shown in the heatmap (which was made with the correct samples!). Also, a key observation is that that both kind of spheroids survive and can be replated in basal medium. As already stated, this characteristic is only seen rare cases [spheroids obtained from rare FACS-purified cells (Smith et al 2018) or helminth-infected intestinal tissue (Nusse et al.2018)]. Together with the observation that the majority of them is not traced by VilCre constitutes what we consider the halmark of the spheroids described in our study. As shown in figure 4E (old protocol) and Suppl Fig.3 (sandwich protocol) both red and white spheroids were extremely low in VilCre expression. As stated in the text, the fact that some spheroids are nevertheless red is most probably related to the extreme sensitivity of the Rosa26Tom marker to recombination (Liu et al., 2013), but this does not mean that there are two phenotypically different kind of spheroids. It means that the arbitrary threshold of Rosa26Tom recombination introduces an artificial subdivision of spheroids with no phenotypical significance.

      Regarding the point made by the referee that "that any cell may be converted to grow as a spheroid under the right conditions", we agree and have shown with others that organoids acquire indeed a spheroid phenotype when cultured for instance in fibroblasts-conditioned medium (see suppl fig1B and (Lahar et al., 2011; Roulis et al., 2020) quoted in the manuscript). However, these spheroids cannot be propagated in basal medium, and revert to an organoid phenotype when put back in ENR (Suppl fig1B).

      *In Figure 4, the authors conclude that spheroids do not originate from Lgr5 cell derived clones even after 30days post Tam induction. Does this suggest that in vivo and under homeostatic conditions VilCre neg cells are derived from a distinct stem cell pool or are themselves a quiescent stem cell. Given the rarity of VilCre neg cells, the latter seems unlikely.

      *

      Despite their rarity, we believe VilCre-negative cells observed under homeostatic conditions are themselves quiescent stem cells. Actually, if they were derived from a larger stem cell pool, this pool should also be VilCre-negative. And we do not see such larger number of VilCre-neg cells under homeostatic conditions.

      The problem with the original assertion is that Lgr5-CreERT mice are mosaic and therefore not all Lgr5+ cells are labelled in this model. "White" spheroids may thus derive from cells that in turn derive from these unlabelled Lgr5 cells.

      We had considered the possibility that mosaicism [very low for VilCre (Madison et al., 2002); in the 40-50% range for Lgr5CreERT2 (Barker & Clevers. Curr Protoc Stem Cell Biol. 2010 Chapter 5)] could explain our data. We think, however that we can exclude this possibility on the basis that spheroids do not conform to the expected ratio of unrecombined cells, given the observed level of mosaicism. Indeed, for VilCre, a few percent, at most, of unrecombined cells in the epithelium translates into almost 100% unrecombined spheroids. For Lgr5CreERT2 mice, the mosaicism level is in the range of 40%, which is what we observe for EDTA organoids (Figure 4G), while spheroids were in their vast majority unrecombined.

      We have included a discussion about the possible role of mosaicism in the new version.

      ATACseq experiments were briefly mentioned in the manuscript but unfortunately little information was extracted from this experiment. What does this experiment reveal about the chromatin landscape of adult spheroids relative to normal organoids?

      We only performed this experiment to search for an explanation to the paradoxical absence of expression of the VilCre transgene in spheroids, despite robust expression of endogenous villin (Suppl Fig.4). We chose to show the chromatin landscape of a gene equally expressed in both organoids and spheroids (Krt19), a gene specifically expressed in spheroids (Tacstd2) and the endogenous Villin gene also expressed in both. We believe that the observation of a clear difference in pattern of the chromatin accessibility around the endogenous villin gene in organoids and spheroids provides an explanation to the observed results. The cis regulatory sequences needed for expression of the endogenous villin gene seem to be different in organoids and spheroids, which may explain why the regulatory sequences present in the transgene (only 12.4kb) might not allow expression of the transgene in spheroids. We have added a sentence in the manuscript clarifying this point. Missing is obviously the chromatin landscape around the VilCre transgene, but this is beyond reach in such kind of experiments.

      Reviewer #2 (Significance (Required)):

      The fact that the authors developed a protocol to reproducibly generate fetal-like spheroids from adult tissue is an important advancement in the field. Previous reports have shown that treatment with various small molecule inhibitors can revert budding organoids into a spheroid morphology, but this manuscript demonstrates that spheroids can also be generated from otherwise untreated cells. This new methodology will provide new tools to dissect the molecular determinants of fetal/regenerative cells in the gut. Based on this, the manuscript should attract a significant amount of attention in the intestinal field.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)): CR-2024-02491

      An Lgr5-independent developmental lineage is involved in mouse intestinal regeneration

      Marefati et al.

      Homeostatic maintenance of the intestinal epithelium has long been thought to rely upon Wnt signaling responsive Lgr5-expressing stem cells that reside at the crypt base.

      However, myriad reported mechanisms or populations have been reported to underlie epithelial regeneration after injury. Many groups have reported that reacquisition of a fetal- link intestinal phenotype is an import part of the regenerative response, however the originating cell type has not been definitively identified. Herein, the authors demonstrate that cells from adult homeostatic intestine can generate immortal spheroids that resemble fetal spheroids and are derived independent of Lgr5+ intestinal stem cells (ISCs). The authors then draw the conclusion that this indicates that a hierarchical stem cell model applies to regeneration of the intestinal epithelium, in addition to the plasticity model.

      • *

      Comments:

      1. Please indicate what species is used for studies in Fig 1.

      All experiments were performed in Mus musculus.

      Please clarify if Figure 2 studies utilize Matrigel or not.

      Yes

      RNA-seq analyses of adult intestinal generated spheroids lack the granularity of single cell analyses and thus it is unclear if this is a homogeneous population or if the population has diversity across it (i.e., enteroids/organoids have a high level of diversity). Many of the conclusions from the RNA-seq study are broad and generalized-for example Fig 3F indicates that markers of the +4 ISC populations (Bmi1, tert, lrig1, hopx) were all expressed similarly in adult spheroids as compared to adult organoids. However, while this may be true in the bulk-RNA-seq analyses, clearly scRNA-seq would provide a better foundation to make this statement, as enteroids/organoids are comprised of heterogeneous subpopulations. . .and it might indicate that these +4 markers have only very low expression in the spheroids. Based upon these concerns, misconclusions are likely to be drawn.

      We agree and it would be certainly worthwhile to perform scRNAseq of adult spheroid populations. This would certainly be worth doing in future studies to explore the possible heterogeneity of adult spheroids. We nevertheless believe that our scRNAseq performed on homeostatic intestinal tissue from VilCre/Rosa26Tom mice identify Olfm4-low VilCre-neg cells that are likely at the origin of adult spheroids and display a quite homogenous phenotype.

      *The language around Figure 4 results is confusing. Please define "white" and "red". It might be simpler to designate recombined versus not recombined lineage.

      *

      We have clarified this in the figure.

      The hypothesis that collagenase/dispase solution acts as a proxy for injury is not demonstrated and backed by data. Thus, it is difficult to make the conclusion that this approach could represent a "stable avatar" of intestinal regenerating cells. It is clear that subpopulations of crypt-based cells generate spheroids in culture without collagenase/dispase (see the cited reference Smith et al, 2018).

      * *Smith et al demonstrate clearly the possibility to obtain spheroids with properties probably similar to ours from EDTA derived intestinal crypt cells. However they need to prepurify them by FACS. Besides, Nusse et al describe spheroids similar to ours after infection of the intestine by helminths (Nusse et al. 2018). In our case, and for most labs preparing enteroids with the EDTA protocol, the result is close to 100% organoids. Even if we treat EDTA organoids with collagenase, we do not obtain spheroids. This brought us to the conclusion that spheroid-generating cells must be more tightly attached to the matrix than CBCs and that it is their release from the matrix that activates the spheroid regeneration-like phenotype. This hypothesis is supported by several models of regeneration in other tissues as indicated in our references (Gilbert et al., 2010; Machado et al., 2021; Montarras et al., 2005)

      A study based on the absence of recombination in a VilCre lineage tracing scenario is not well-established to be strong experimental approach, as there are many reasons why recombination may not cells may not be lineage marked. In order to use this system as the authors intend, they first need to demonstrate that villin is not expressed in the discrete cell population that they are targeting. For the presented observational studies, this would be difficult to do. While they do demonstrate differences in chromatin accessibility between cells from organoids versus spheroids (fig s4), some of these differences could merely be due to the bulk analytical nature of the study and the lack of comparing stem cell populations from spheroids to stem cell populations from organoids-since the spheroids are likely homogenous versus the organoids that only have a small fraction of stem cells-and thus represent a mix of stem cell and differentiated cell populations. The authors do not demonstrate that villin protein expression varies in these cells.

      If it were found that villin is not expressed in their "novel" population, then one would expect that the downstream use of villin-based recombination would demonstrate the same recombination potential (i.e., Mcl1 would not be recombined). Both recombination studies in Fig 6 are difficult to interpret, and thus it is not clear if these studies support the stated conclusions. Quantification of number of crypts that are negative should be reported as a percentage of recombined crypts.

      We are sorry but there seems to be a complete misunderstanding of our data regarding the point raised by the referee. The important point of our initial observation is that despite robust expression of villin in spheroids, the VilCre transgene is not expressed (see figure 4E). This in our opinion makes absence of VilCre expression (or of Rosa marker recombination) a trustful marker of a new developmental lineage. All the data in figure 4 constitute an answer.

      *The reasoning about heterogeneity of cell type in organoids versus probable homogeneity of spheroids is well taken. However, as the endogenous villin gene is expressed in all cells of both organoids and spheroids, it is highly significant that only spheroids do not express the transgene. *

      We performed the ATACseq experiment to search for an explanation to the paradoxical absence of expression of the VilCre transgene in spheroids, despite robust expression of endogenous villin (Suppl Fig.4). We chose to show the chromatin landscape of a gene equally expressed in both organoids and spheroids (Krt19), a gene specifically expressed in spheroids (Tacstd2) and the endogenous Villin gene also expressed in both. We believe that the observation of a clear difference in pattern of the chromatin accessibility around the endogenous villin gene in organoids and spheroids provides an explanation to the observed results. The cis regulatory sequences needed for expression of the endogenous villin gene seem to be different in organoids and spheroids, which may explain why the regulatory sequences present in the transgene (only 12.4kb) might not allow expression of the transgene in spheroids. We have added a sentence in the manuscript clarifying this point. Missing is obviously the chromatin landscape around the VilCre transgene, but this is beyond reach in such kind of experiments.

      *Figure 8 indicates that the cell population identified by scRNA-seq may be quiescent. Companion IF or IHC should be conducted to confirm this finding, as well as other conclusions from the informatics conducted.

      *

      We agree that additional experiments could be performed to support this point. We are unfortunately not in a position to perform these experiments (see section 4 below).

      Clearly the data is intriguing, however, the conclusion is strong and is an over interpretation of the presented data. There are a number of validation or extension data that would enhance the overall interpretation of the study: 1. validation of scRNA-seq or bulk RNA-seq concepts by protein staining of intestinal tissues in the damage model will serve as a secondary observation. 2. identification of the ISC that they are defining is critical and important. There is already the notion that this cell type exists and it has been shown with various different markers. 3. expand the analyses of the fetal-like expression profiling to injured intestines to demonstrate that the lineage negative cells indeed express fetal-like proteins. 4. expand the discussion of the Clu+ cell type. Is this cell the previously described revival cell? If so, how does this body of work provide unique aspects to the field?

      We agree that all these suggested experiments could be performed and would be of interest. However, we consider that they would not modify the main message of our study and would only constitute an expansion of the present work. As already stated, we are not in the position to perform them (see section 4).

      *There is some level of conflicting data, with the stem population being proliferative in culture stimulated by the stromal cells, but quiescent in vivo and also based upon scRNA- seq data in Fig 9.

      *

      We do not see any conflict in our observation regarding this point. The observation that cells that are quiescent in vivo become proliferative when subjected to culture (with or without addition of stromal cells) is routinely made in a multitude of cell culture systems. In particular, it has been shown that intestinal tissue dissociation activates the Yap/Taz pathway, resulting in proliferation (Yu et al. Hippo Pathway Regulation of Gastrointestinal Tissues. Annual Review of Physiology, 2015 Volume 77, 201-227).

      Many of the findings have been previously reported: Population that grows as spheroids (Figure 2), Population that is Wnt independent (Figure 2), Lgr5 independent regenerative growth of the intestine (figure 3F, Figure 4), Clu+ ISCs drive regeneration (Figure 7).

      Whereas these individual findings have indeed been reported, it was in a different context. We strongly disagree with the underlying suggestion that our study would not bring new information. We have identified here a developmental lineage involved in intestinal regeneration that has not been described up to now.

      Minor comments:

        • The statement that spheroids must originate from collagenase/dispase digested material might be an overstatement. As spheroids generation from EDTA treated intestines have been previously reported (Smith et al, 2018). * See answer to point 4 above. *Overall while the study includes an extensive amount of work and different approaches, a foundationally supported novel finding is missing. Many of the statements have already been demonstrated by others in the fields. In addition, one of the most intriguing aspects of the study is that the stromal population impacts this stem cell population, however, interactions and factors stimulating the crosstalk are not addressed.

      *

      Reviewer #3 (Significance (Required)):

      Overal while the study includes an extensive amount of work and different approaches, a foundationally supported novel finding is missing. Many of the statements have already been demonstrated by others in the fields. In addition, one of the most intriguing aspects of the study is that the stromal population impacts this stem cell population, however, interactions and factors stimulating the crosstalk are not addressed.

      We can only disagree.

      4. Description of analyses that authors prefer not to carry out

      • *

      We have answered most questions raised by the referees by explaining our view, by clarifying individual points and, in several cases, by providing additional information that was not included in the original manuscript.

      In a limited number of cases when additional experiments were suggested, we were unfortunately obliged to write that we are not in a position to perform them. This is because my lab is closing after more than fifty years of uninterrupted activity. There will unfortunately be nobody to perform additional experiments.

      Nevertheless, as written by referees 1 and 2, we believe that the revised manuscript, as it stands, contains data that will be of interest to the people in the field and may be the bases for future developments. We hope editors will find interest in publishing it.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2023-02306

      Corresponding author(s): John, Yates

      [Please use this template only if the submitted manuscript should be considered by the affiliate journal as a full revision in response to the points raised by the reviewers.

      • *

      If you wish to submit a preliminary revision with a revision plan, please use our "Revision Plan" template. It is important to use the appropriate template to clearly inform the editors of your intentions.]

      1. General Statements [optional]

      We greatly appreciate the reviewers taking time from their busy scientific careers to evaluate our manuscript. We were elated to read all the positive comments, such as “the conclusions are well-supported and convincing”, “should contribute to a more nuanced understanding of SCZ pathogenesis”; “The potential implications for drug development underscore the broader significance of the study in advancing our knowledge of neurobiology and its relevance to neurological disorders like schizophrenia”, and “The study is informative, and has great potential to enrich the specific literature of this field”. We also found the constructive criticism very helpful for improving our manuscript. We performed additional experiments and bioinformatic analyses, as requested. We modified the manuscript to answer the reviewers’ questions. Due to its complexity, it is difficult to describe the different and sometimes conflicting hypotheses of SCZ pathogenesis in a single manuscript. This complexity is reflected in the conflicting requests from the reviewers. One reviewer requested we investigate and highlight the role of non-neuronal cells in SCZ while another reviewer suggested we did not focus enough on synaptic proteins. We believe we have achieved a balance to represent the intricacy of SCZ biology and the different opinions of the reviewers.

      Thanks again.

      2. Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *

      • *

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary: Provide a short summary of the findings and key conclusions (including methodology and model system(s) where appropriate). In this manuscript, McClatchy and colleagues used a conventional approach combining immunoprecipitation (IP) of endogenous target proteins (baits) followed by liquid chromatography mass spectrometry (MS) analysis of the co-immunoprecipitating proteins to map protein-protein interaction (PPI). This interaction network is centered around baits that had been annotated as susceptibility factors for schizophrenia (SCZ). A variety of previous studies have identified thousands of such SCZ susceptibility factors. Mostly based on the availability of antibodies, 8 bait proteins were selected in this study. The authors reasoned that immunoprecipitating endogenous proteins from tissues using specific antibodies was a more accurate view of physiological conditions than epitope tagging followed by affinity purification (AP) from cells in culture. The model system from which proteins were extracted was the hippocampus dissected from mice that had been treated or not by phencyclidine (PCP), a drug that has been shown to induce SCZ symptoms in humans and animals. By comparing the proteins identified and quantified from the PCP-treated samples against control IPs and/or saline-injected mouse controls, a large number of PPI were deemed statistically significant. Most of these potential interactors were not present in PPI databases (BioGRID), most likely because such databases are populated with large-scale APMS datasets from cell cultures, with very few studies using brain tissue. Strikingly, many of the co-immunoprecipitated proteins were also known as SCZ susceptibility factors, which lend weight to the hypothesis that these factors form a large protein interaction network, localized at the synapses.

      Major comments: - Are the key conclusions convincing? Overall, the conclusions drawn from the experimental design, data analysis, and corroboration with existing literature are well-supported and convincing. When selecting the SCZ susceptibility factors, the authors clearly state their goal, the databases used for gene selection, and the rationale for choosing proteins with synaptic localization. The inclusion of evidence from genetic studies and previous publications strengthens the credibility of the selected genes. The methodology used to establish the novel SCZ PPI network is mostly well-described (see minor comments below). The use of an 15N internal standard also adds rigor to the quantitation of PPI. The GO enrichment analysis provides valuable insights into the biological functions and cellular components associated with the SCZ PPI network. The annotation of identified proteins using the SynGo synaptic database and the distribution of annotated synaptic proteins among different baits further support the biological relevance of this PPI network. The cross-referencing of the PPI network with published genetic studies on SCZ susceptibility genes adds robustness to the findings. Specifically, the observation that 68% of protein interactors have evidence of being potential SCZ risk factors is a strong corroboration of the prevailing hypothesis in the field. Finally, the significant changes induced by PCP that were identified for all baits except Syt1, along with the comparison of altered proteins with SAINT-identified PPI, add depth to the understanding of PCP modulation.

      - Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether? No, but note that APMS/IPMS has been around for more than a decade (Introduction page 3).

      We agree and did not mean to imply that IP-MS is new technology. We tried to convey that IP-MS is not new technology, but the number of IP-MS studies employed to study the PPI of endogenous proteins in brain tissue is a small percentage of all the published PPI MS studies.

      We added the following to the Conclusions to clarify this point: “Although IP-LC-MS technology has been employed for more than a decade, quantitation of proteins using this strategy in mammalian tissue is scarce in the literature.”

      - Would additional experiments be essential to support the claims of the paper? Request additional experiments only where necessary for the paper as it is, and do not ask authors to open new lines of experimentation. One piece of data that is missing are Western blots using the 8 selected antibodies against the proteins extracted from their experimental samples to validate the antibodies recognize 1 protein of the expected size from these tissue extracts.

      We took your suggestion and performed immunoblots with our 8 IP antibodies using the starting material (i.e. rat brain hippocampus). All antibodies recognized a single band of the approximate molecular weight of the target except for the Gsk3b, which produced a doublet instead of a single band. This image is similar to what has been observed with the phosphorylation of Gsk3b(Krishnankutty, Kimura et al. 2017, Vainio, Taponen et al. 2021). To provide evidence that the additional band observed for Gsk3b is the phosphorylated target protein, we searched our Gsk3b IP dataset for a differential phosphorylation (i.e. 79.9663) on S,T, or Y. Even though we did not perform phosphorylation enrichment, we identified S389 as abundantly phosphorylated in all Sal and PCP samples consistent with our immunoblot. Images of these immunoblots are now Supplementary Figure 1.

      • Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated cost and time investment for substantial experiments. Running SDS-PAGE and Western blotting should be straightforward and cheap.

      - Are the data and the methods presented in such a way that they can be reproduced? Yes

      - Are the experiments adequately replicated and statistical analysis adequate? Yes

      Minor comments: - Specific experimental issues that are easily addressable. The rationale for the short duration between PCP injection and animal sacrifice is only explained in the discussion section (page 17). The fact that this short treatment of less than 30 min should prevent any change in transcription or translation should be introduced earlier (in the experimental procedures).

      We agree this is an important aspect of the study and that it suggests that the effect of PCP is independent of changes in transcription and translation as stated in the Discussion.

      We added the following to the Introduction:

      “PCP was administered for less than 30min., which precluded any changes in transcription or translation and allowed us to focus on PPI.*” *

      Note that the duration is written as 26 min on page 4 and 25 min on page 9. Please reconcile these numbers*. *

      We have corrected this typo. It was 26min.<br /> Is there any biological significance for this SCZ study that the mice were maintained on a reverse day-night cycle?

      Rats are nocturnal animals, i.e. active at night and sleep during the day. In this study, rats were housed on a reverse day-night cycle so that assessment of the response to PCP could be evaluated during their active phase. This is not specific SCZ research and is the routine protocol for behavioral testing in the Powell laboratory. It is not clear from reading Experimental Procedures/Bioinformatic Analysis section (page 6) if normalized N14/N15 protein ratios measured in the bait-IPs and control-IPs were used for the SAINT analysis? Or did the authors used label-free quantitation with spectral counts?

      We apologize for not making the methods clearer. In the results, it is stated that the N14 identifications are used in the SAINT analysis, and we state in the Discussion that SAINT uses spectral counts. We modified the Experimental Procedures/Bioinformatic Analysis section (page 6) to state: The input for SAINT was only the 14N identifications.

      *- Are prior studies referenced appropriately? Yes

      • Are the text and figures clear and accurate? *Fig1C: The workflow is a little too simple, the authors might want to add more details.

      We revised Fig1C with more details as suggested.

      FigS1C: Please add x-axis title (spectral counts) directly to the figure.

      “Spectral counts” was added to the x-axis. FigS1C is now FigS2C ,with the addition of the immunoblots you suggested. Fig2B-D: The color scale bar should have number values to denote lower and upper limits in % (as opposed to "lowest" and "highest"). Numerical values were added to replace the upper and lower limits. - Do you have suggestions that would help the authors improve the presentation of their data and conclusions? No * *

      Reviewer #1 (Significance (Required)):

      • Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field. In this study, the authors have drastically expanded the protein interaction landscape around 8 known SCZ susceptibility factors by using a conventional IPMS approach. Performing the IPs on protein extracted from hippocampus dissected from mice treated with phencyclidine to model SCZ increases the biological significance of such lists of proteins. Furthermore, the co-immunoprecipitation of many other SCZ susceptibility factors along with the 8 selected baits supports the hypothesis that these proteins of varied functions are part of large interaction networks. Overall, the integration of experimental data with in silico networks, along with the quantification of PPI changes in response to PCP, should contribute to a more nuanced understanding of SCZ pathogenesis. The potential implications for drug development underscore the broader significance of the study in advancing our knowledge of neurobiology and its relevance to neurological disorders like schizophrenia.

      • Place the work in the context of the existing literature (provide references, where appropriate). Overall, this study contributes to the existing literature by providing experimental data on in vivo PPI networks related to SCZ risk factors. Not only do the authors validate 124 known interactions but also they identify many novel PPI, due to a gap in the existing literature regarding the comprehensive mapping of PPI directly from tissue extracts, especially brain tissue. The authors advocate for more IPMS studies in mammalian tissues to generate robust tissue-specific in silico networks, which agrees with the growing understanding of the importance of tissue-specific networks for identifying disease mechanisms and potential drug targets. Furthermore, the SCZ PPI network reported here is enriched in proteins previously associated with SCZ, which aligns with the existing literature emphasizing the involvement of certain proteins and pathways in the pathogenesis of SCZ [References: 78-85]. The authors also investigate the response of the SCZ network to PCP treatment, hence providing insights into the potential effects of post-translational modifications, protein trafficking, and PPI alterations in a model of schizophrenia, which adds to existing knowledge about the impact of PCP on the molecular processes associated with SCZ [References: 88, 89, 92].

      • State what audience might be interested in and influenced by the reported findings. Overall, the findings reported in this manuscript have implications for both basic research in molecular biology and potential translational applications in the development of targeted therapies for neurological disorders, particularly schizophrenia. The study delves into in vivo protein-protein interaction (PPI) networks related to genes implicated in schizophrenia (SCZ) risk factors. Researchers in neuroscience, molecular biology, and psychiatry would find the information valuable for understanding the molecular basis of SCZ. The study highlights the potential for identifying disease "hubs" that could be drug targets. Pharmacologists and drug developers interested in targeting protein complexes for drug development, especially in the context of neurological disorders, may find the study relevant.

      • Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate. Technical Expertise | biochemistry, liquid chromatography mass spectrometry, proteomics, computational biology, protein engineering, protein interaction networks, post-translational modifications, protein crosslinking, proximity labeling, limited proteolysis, thermal shift assay, label-free and isotope-labeled quantitation. Biological Applications | human transcriptional complexes, apicomplexan parasites, viruses, nuclear envelope, ubiquitin ligases, non-model organisms.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary: McClatchy, Powell and Yates aimed at identifying a protein interactome associated to schizophrenia. For that, they treated rats (N14 and N15) with PCP, which disturbs gutamatergic transmission, as a model for the disease and co-immunoprecipitated hippocampi proteins, which were further analyzed by standard LC-MS.

      The study is new, considering not much has been done in this direction in the field of schizophrenia. This justifies its publication. On the other hand, a major flaw of the is the lack of information on the level of interaction of the so called protein interactome. Meaning, we cannot distinguish, as the study was performed, which proteins are directly interacting with the targets of interest from proteins which are interacting with targets´ interactors. The different shells of interaction are crucial information in protein interactomics.

      Major: most of I am pointing below must be at least discussed or better presented in the paper, as It may not be solvable considering how the study has been conducted.

      1) The study fails in defining the level of interaction of the protein interactome with the considered targets. This has been shortly mentioned in the discussion, but must be more explicit to readers, for instance, in the abstract, introduction and in the methods sections. We agree this is crucial information that is absent from our dataset. As we explained in the Discussion, we cannot distinguish between PPI that are direct interactors with the target protein and PPI that reside in a multi-protein complex that includes the protein (i.e. indirect). This is an inherent problem with any IP-MS study. We amended the Introduction to highlight the ambiguity of the interaction data produced by the IP-MS approach, as you suggested.

      Text added to the Introduction:

      “Regardless of whether Ab or tagged proteins are employed to identify PPI from a biological sample, it cannot be determined if the identified interactor binds directly to the target protein or reside in a complex of proteins that includes the target protein (i.e. indirect).”

      Since this important information is routinely missing from IP-MS studies, we decided to try to determine the level of interaction by using the artificial intelligence algorithm AlphaFold3(AF3). We believe it is not yet optimized for PPI, but AF3 is a big leap forward in the field of structural biology. For example, we observed AF3 did not predict high confident structures for our large membrane target proteins and was unable to validate known direct PPI of these targets. In addition, analyzing data with AF3 is currently not automated or streamlined so with ~1600 PPI identified in our dataset, we chose to look at one target protein, Ppp1ca. AF3 identified many known direct binding proteins in our Ppp1ca PPI dataset, which gives high confidence to the novel PPI predicted to be direct interactors. The AF3 data is encompassed in an additional Figure 6.

      The following was added to the Results Section:

      “A disadvantage of IP-MS studies is that it cannot distinguish between a PPI that binds directly to the target protein, and a PPI in which the interactor and target protein reside the same multiprotein complex (i.e. indirect). We sought to predict which PPI may be directly interacting with its target protein by using the artificial intelligence algorithm AlphaFold3(AF3) (Abramson, Adler et al. 2024). First, we analyzed the predicted AF3 structure of the targets using the pTM score and the fraction of each structure calculated to be disordered (Figure 6A and Supplementary Table7). Our reasoning was that if targets have a poorly resolved structures, it will be difficult to screen them for direct PPI. A pTM score >0.5 suggests that the structure may be correct (the highest confidence score is 1). Undefined or disordered regions hinder the accuracy of the prediction. All targets possessed a pTM score > 0.5 except Syt1. The disordered fraction negatively correlated with the pTM score, as expected. Gsk3b, Ppp1ca, and Map2k1 had the highest pTM scores and were also the smallest of our target proteins (Figure 6B). Ppp1ca had the most confident structure (i.e. pTM 0.9) and the smallest disordered fraction (i.e. 0.07). Next, we determined the AF3 prediction of previously reported direct interactions of the targets. We used the iPTM score to determine interaction confidence. An iPTM score >0.8 is considered a highly confident direct interaction, whereas 0.8. These eight PPI have all previously been reported to form a direct interaction with Ppp1ca, except Phactr3 (Zhang, Zhang et al. 1998, Terrak, Kerff et al. 2004, Hurley, Yang et al. 2007, Marsh, Dancheck et al. 2010, Ragusa, Dancheck et al. 2010, Ferrar, Chamousset et al. 2012, Choy, Srivastava et al. 2024, Xu, Sadleir et al. 2024)*. Phactr3 is structurally similar to, but less studied than, the reported direct interactor Phactr1. These interactors are all inhibitors of PP1 except Ppp1r9b which targets Ppp1ca to specific subcellular compartments. Nine PPI were assigned a score The following has been added to the Discussion:

      Our SCZ PPI network consists of two types of PPI: direct physical interactions and “co-complex” or indirect interactions. Typically, the nature of the interaction can be distinguished in IP-MS studies. We decided to employ the new AF3 algorithm to screen the PPI of Ppp1ca to provide evidence for direct interactors. We chose to examine the PPI assigned to Ppp1ca, because its structure was the most confident among our target proteins and AF3 correctly predicted a known direct interactor with high confidence. Ppp1ca is a catalytic subunit of the phosphatase PP1, which is required to associate with regulatory subunits to create holoenzymes (Li, Wilmanns et al. 2013). Eighteen PPI were predicted to be directly interacting with Ppp1ca using a 0.6 or higher iPTM filter. This filter may be too conservative and generate false negatives, because another study employed a 0.3 filter followed by additional interrogation to screen for direct PPI (Weeratunga, Gormal et al. 2024). Forty-four percent of these predictions were confirmed by previous publications. Most of the validated direct interactions are inhibitors of the phosphatase, but one, Ppp1r9b (aka spinophilin), is known to target Ppp1ca to dendrite spines to enhance its activity to specific substrates (Allen, Ouimet et al. 1997, Salek, Claeboe et al. 2023). This high correlation with the literature provides substantial confidence in the novel PPI predicted to be direct Ppp1ca interactors. The AF3 screen predicted that NDRG2 directly interacts with Ppp1ca. This protein is known to regulate many phosphorylation dependent signaling pathways by directly interacting with other phosphatases including Pp1ma and PP2A (Feng, Zhou et al. 2022, Lee, Lim et al. 2022). Actin binding protein Capza1 was also predicted to directly interact with Ppp1ca and Ppp1ca interacts with actin and its binding proteins to maintain optimal localization for efficient activity to specific substrates (Foley, Ward et al. 2023). Hsp1e is a heat shock protein predicted to directly interact with Ppp1ca. Although there is no direct connection to Ppp1ca, other heat shock proteins have been reported to regulate Ppp1ca (Mivechi, Trainor et al. 1993, Flores-Delgado, Liu et al. 2007, Qian, Vafiadaki et al. 2011). We also observed that many of these direct PPI were altered with PCP treatment. One direct interactor, Ppp1r1b (aka DARPP-32), is phosphorylated at Thr34 by PKA in the brain upon PCP treatment. This phosphorylation event converts Ppp1rb to a potent inhibitor of Ppp1ca(Svenningsson, Tzavara et al. 2003). Importantly, manipulation of Thr34 attenuated the behavioral effects of PCP. Consistent with this report, Ppp1r1b-Ppp1ca interaction was only observed with PCP in our study. Further investigation is needed to determine if our novel direct interactors regulate the PCP phenotype. We conclude that AF3 can provide important structural insights into the nature of PPI obtained from large scale IP-MS studies.

      2) Considering the protein extraction protocol, it is fair to mention that only the most soluble proteins are being considered here. I am bringing this up since the importance of membrane receptors is clear in the studied context. This is an interesting point. It has been predicted that transmembrane proteins constitute 25-30% of the proteome(Dobson, Remenyi et al. 2015). Thus, we would predict our dataset will have more soluble proteins than membrane proteins. Half of our target proteins were transmembrane proteins, so in designing the protocol for this study we ensured that these membrane proteins could be significantly enriched compared to the control IPs (Supplementary Figure 2C). In addition, compared to soluble proteins, membrane proteins are notoriously difficult to identify by bottom-up proteomics (Savas, Stein et al. 2011). We decided to investigate how many of our protein interactors were transmembrane proteins. Using Uniprot, 199 (20%) of our protein interactors were determined to have a transmembrane domain. Therefore, this data does not support the statement that only the most soluble proteins are being considered in our study. We added this percentage of transmembrane proteins in our network to the text of the Results section.

      3) It is not clear from the methods description if antibodies from all 8 targets were all together in one Co-IP or have been incubated separately in 8 different hippocampi samples. It seems the first, given how results have been presented. If so, this maximizes the major issue raised above (in 1). We apologize for not clearly describing our experimental design. All the targets were immunoprecipitated separately and analyzed separately on the mass spectrometer. With all the biological replicates and two conditions (i.e. Saline and PCP), we performed 48 individual, separate IPs. There were an additional 48 individual, separate IPs run in parallel that were the control IPs.

      We modified the schematic of our experimental design in Figure 1C to clarify that the 8 targets IPs were analyzed separately. In addition, we modified the Results to read:

      “In total, 96 (48 bait and 48 control) IPs were performed, and each was analyzed separately by LC-MS analysis.”

      4) Definitely, results here are not representing a "SCZ PPI network". PCP-treated animals, as any other animal model, are rather limited models to schizophrenia. As a complex multifactorial disease, synaptic deficits, which is the focus of this study, can no longer be considered "the pivot" of the disease. Synaptic dysfunction is only one among many other factors associated to schizophrenia.

      We do agree that synaptic dysfunction is only one factor associated with SCZ and we will discuss this more in our response to your next comment.

      We understand the limitations of PCP as an animal model of SCZ. It is quite difficult to model a specific human complex multifactorial neurological disease in rodents and we would contend that there is no single universal SCZ model that everyone agrees with. We addressed this by adding the following to the Introduction:

      Since many SCZ symptoms are uniquely human, this is no single animal model that truly replicates all the complex human SCZ phenotypes(Winship, Dursun et al. 2019). In this respect, all SCZ animal models can be considered limited.* “ *

      We respectfully disagree, however, with the term SCZ PPI network. This study is focused on SCZ by choosing proteins implicated in SCZ, quantitating how the PPI changes in a SCZ model, and discussing how our findings are relevant to SCZ pathogenesis. So, it seems logical to call our dataset a SCZ PPI network. We do concede that without further experimentation we do not know if these PPI play a causal role in SCZ. Furthermore, our novel PPI may involve biological pathways unrelated to SCZ and that have relevance to other biological conditions.

      We added the following statement to the Discussion to address this comment:

      “Even though our network was constructed in the context of SCZ, our dataset has relevance to other neurological diseases where our targets have been implicated in the pathogenesis.

      5) Authors should look for protein interactions that might be happening also in glial cells. They are not the majority in hippocampus, but are present in the type of tissue analyzed here. Thus, some of the interactions observed might be more abundantly present in those cells. Maybe enriching using bioinformatics tools the PPI network to different cell types.

      As mentioned above, we agree that synaptic dysfunction is just one of the hypotheses of SCZ pathogenesis and emerging evidence suggests that dysfunction in astrocytes and microglia are factors. Since these non-neuronal cells can regulate synapses, these hypotheses are not mutually exclusively and suggests that at the cellular level SCZ etiology involves multiple cell types.

      We addressed your query by comparing our PPI network to an RNA-seq analysis of different cell types in the rodent brain(Zhang, Chen et al. 2014). First, we analyzed our target proteins, and found that they were expressed in all cell types to varying degrees except Syngap which was not in the RNA-seq database. This data is now represented in Figure 3E. We then determined the RNA abundance distribution of all the protein interactors, which is represented in Figure 3D as a heatmap. From a bird’s eye view, it suggests that some PPI exist in non-neuronal cells. Next, we determine how many of our protein interactors were enriched in one cell type, which is shown in Figure 3F. We defined an enriched protein as having >50% of the RNA signal in one cell type. We identified 175 proteins that were enriched in one cell type compared to the entire RNA-seq dataset which had 4008 enriched proteins. In the entire RNA-seq dataset, 24% of the enriched proteins were in neurons whereas 47% of our protein interactors were enriched in neurons. This is consistent with the enrichment of synaptic proteins in our network. There was also an increased percentage of astrocytes (19%) and oligodendrocytes (6%) in our network compared to the entire database (i.e. astrocytes-11% and oligodendrocytes-4%). In other cell types, such as microglia, there was less protein enrichment in our network compared to the database. We have amended this cell type analysis to our manuscript and concluded that a portion of our PPI network may occur in non-neuronal cells. We also created a supplementary table of our network with its associated RNA-seq data.

      Text added to the Results:

      “Non-synaptic proteins represented 59% of our network suggesting that some PPI may occur in non-neuronal cells. To investigate this possibility, we annotated our network with a transcriptome rodent brain database of eight cell types(Zhang, Chen et al. 2014). All the targets were detected in all cell types but there was obvious enrichment in specific cell types for some targets (Figure 3E). Syngap1 was not in the database. We also observed a large variation of cellular distributions for the interactors (Figure 3D). Next, we sought to determine how many interactors are enriched in a particular cell type by defining cell enrichment as a protein having >50% RNA signal in one cell type. We identified 175 protein interactors enriched in one cell type, whereas the entire database had 4008 proteins enriched (Figure 3F). Consistent with our synaptic enrichment, 47% of the enriched protein interactors were in neurons whereas only 24% of the enriched protein in the entire database were in neurons. We also observed an increase in protein interactors enriched in astrocytes compared to the database. Overall, this analysis provides evidence that our identified PPI may occur in non-neuronal cells.”

      Text added to the Discussion:

      “The exact etiology of SCZ, however, remains unclear and synaptic dysfunction is only one hypothesis (Misir and Akay 2023). There is evidence for the involvement of non-neuronal cell types, including endothelial cells, astrocytes, and microglia(Tarasov, Svistunov et al. 2019, Rodrigues-Neves, Ambrosio et al. 2022, Stanca, Rossetti et al. 2024). Although we observed an enrichment of synaptic proteins in our SCZ network, we provided evidence that a portion of our network may occur in non-neuronal cells. Since non-neuronal cells can regulate synapses(Vilalta and Brown 2018, Bauminger and Gaisler-Salomon 2022), synaptic dysfunction and perturbations in non-neuron cells in SCZ etiology are not mutually exclusive. Our data corresponds with emerging evidence that pathogenesis is multifaceted, involving dysfunction in multiple cell types.

      Minor: 1) in the abstract, it is not clear if 90% of the PPI are novel to brain tissue in general or specifically schizophrenia. We apologize for the confusing sentence. 90% are novel meaning the PPI have not been reported in any study. We changed the abstract to read:

      “Over 90% of the PPI have not been previously reported.”

      2) authors refer to LC-MS-based proteomics as "MS" all across the text. Who am I to say this to Yates et al, but I think it is rather simplified use "Mass Spectrometry Analysis", when this is a typical LC-MS type of analysis We agree with you. We have replaced MS analysis with LC-MS analysis in the manuscript.

      3) Several references used to construct the hypothesis of the paper are rather outdated: several from 10-15 years ago. It would be interesting to provide to the reader up to date references, given the rapid pace science has been progressing. We agree many of the references are 10-15 years old. Many of the hypotheses and biological mechanisms we discussed can be supported by too many studies to cite them all, due to space. If we could, we would. We also agree that there are many more recent studies that have confirmed and added more details to the original discovery or hypothesis cited. We cite the first study to support our conclusions because it deserves the most credit.

      4) "UniProt rat database". Please, state the version and if reviewed or unreviewed.

      This information was added to the Methods section. UniProt reviewed rat database with isoforms 03-25-2014.

      Reviewer #2 (Significance (Required)):

      The study is informative, and has great potential to enrich the specific literature of this field. But should tone down some arguments, given the experimental limitations of the PPI network (as described above) and should state PCP-treated rats as a limited model to schizophrenia.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary

      It is now widely accepted that schizophrenia is polygenic disorder in which a large fraction of the genetic risk is in variants affecting the expression of synaptic proteins. Moreover, it is known that these synaptic proteins are found in multiprotein complexes and that many proteins encoded by schizophrenia risk genes interact directly or indirectly in these complexes. It is also known that some drugs including phencyclidine, which binds to NMDA receptors and to Dopamine D2 receptors (not mentioned by the authors) can induce schizophreniform psychosis. The authors have set out to advance on this position by performing proteomic mass spectrometry studies on proteins identified as encoded by schizophrenia risk genes. They target 8 proteins for immunoprecipitation from rat brain and identify coisolated proteins and perform various network analyses. In the most interesting part of the paper they ask if PCP-treatment altered protein interactions and report various changes.

      Major comments:

      1. Choice of target proteins. It was not until the first paragraph of the results section that the authors first name the 8 synaptic proteins that have chosen to study. This information should be in the abstract.

      This information was added to the abstract as requested.

      The authors then use figure 1A and 1B as evidence that these 8 "baits" are schizophrenia-relevant proteins. Figure 1A does not provide any evidence at all and Figure 1B is about as weak a line of evidence imaginable - a histogram of the number of papers that have the search term "schizophrenia" and the protein name. I tried this search for Grin2B and almost immediately found papers that reported no association between Grin2B and schizophrenia (e.g. PMID: 33237434). Figure 1B should be scrapped.

      The purpose of Figure 1A was not to demonstrate that there is evidence that our proteins are involved in SCZ. The purpose of this figure is to show that these proteins are diverse in function and structure (blue = membrane proteins; yellow = soluble proteins), and that there are published studies reporting physical and functional interactions between these 8 proteins. This suggests that a more extensive network may exist.

      We agree that Figure 1B does not specifically describe how each protein is related to SCZ but demonstrates how many papers investigating their connection to SCZ have been published. We understand how by itself, this can be considered weak. We still think it is important to show that multiple laboratories have published papers connecting these proteins to SCZ. Instead of scrapping this figure, we have moved it to the Supplementary Figure 2A.

      We read PMID: 33237434 and interpret their findings quite differently than you. This report examined whether one single nucleotide mutation (SNV) in Grin2b is associated with the cognitive dysfunction in SCZ but did not examine if this mutation is associated with the other major SCZ phenotypes (i.e. psychotic and emotional). Specifically, the study selected 117 “patients in whom cognitive dysfunctions are present despite effective antipsychotic treatment of other schizophrenia symptoms.” The study concluded that Grin2B SNV was not associated with this subset of patients but concluded that they need to search for other NMDAR variants and study their association with SCZ. We would argue that the only reason this group performed these experiments was the well-known association between Grin2b and SCZ. Many studies have found SNVs in Grin2B that are associated with SCZ, but there are conflicting reports. It is unclear if the discrepancies are connected to different cohorts, complexity of SCZ phenotype, or small sample sizes. Regardless of Grin2B mutations significantly associated with SCZ, there are several lines of evidence that Grin2B is involved in SCZ. Most importantly, Grin2b is a component of the NMDAR, which is a key player to the SCZ hypo-glutamate hypothesis and the receptor that binds PCP. By immunoprecipitating Grin2b, we are analyzing the PPI network of NMDAR, which is arguably the most studied complex in SCZ research.

      The remaining part of paragraph 1 of the results does not provide an adequate, let alone systematic, justification for the use of the 8 baits. It would be appropriate to construct a table with the 8 proteins and cite relevant papers and identify the basis for why they are implicated in schizophrenia (is it a direct mutation or some other evidence?). What makes these 8 proteins better than many others that are cited as synaptic schizophrenia relevant proteins?

      We apologize for not clearly and thoroughly describing the reasons for choosing our baits. As stated in the first paragraph of the Results, we chose the proteins that had evidence of being a SCZ risk factor in SCZ databases that included a plethora of human genomic studies. This criterion by itself results in ~5000 genes. To further narrow our candidates, we chose targets that were synaptic and were observed to have phosphorylation changes in response to PCP in an SCZ animal model. Since protein-protein interactions (PPI) are often dependent on phosphorylation, we believe this is an important criterion for quantitation of PPI in response to PCP. These requirements still resulted in a list of hundreds of proteins. So, what makes these better than any other SCZ relevant protein? As stated in the manuscript, the major limiting criterion was identifying commercial antibodies that can efficiently immunoprecipitate their target in brain tissue. Since there are many reports associating our targets with SCZ, we directed the reader to SCZ databases that compile large genomic association studies. We understand, however, the request for more specific information regarding the biological connection between these proteins and SCZ. We took your suggestion and constructed a table with our 8 targets, and it is now Figure 1A. In this table, we selected references to indicate if the target has reported changes in expression and/or activity in SCZ samples (i.e. human and animal model) or genetic association with SCZ in human studies.

      The methods of protein extraction are particularly concerning. The postsynaptic density of excitatory synapses (which contains several of the target proteins in this study) has been notoriously difficult to solubilise unless one uses high pH (9) and harsh detergent extraction (1% deoxycholate). The authors use pH 7 and weak detergent conditions, which are likely to be inefficient for solubilising at least several of the target proteins. Nowhere do the authors report how much of the total of their target protein is being solubilised. Indeed, there are no figures showing biochemical conditions at all. What if only a small percentage of the target protein is being immunoprecipitated - what does this mean for the interaction data? How do we know if the fraction being immunoprecipitated is from the synapse? (why did they not use synaptosomes).

      How do we know if the fraction being immunoprecipitated is from the synapse? (why did they not use synaptosomes). The absence of this kind of data undermines the reader's confidence in the findings.

      We apologize for not clearly explaining our experimental design We were not interested in identifying the PPI of the PSD. All these proteins have been localized to the synapse, but they are also localized to other neuronal compartments and non-neuronal cell types. Synaptic dysfunction is one hypothesis of SCZ pathogenesis, but there is evidence of other cell types, including astrocytes, microglia, and oligodendrocytes(Kerns, Vong et al. 2010, Ma, Abazyan et al. 2013, Goudriaan, de Leeuw et al. 2014, Park, Noh et al. 2020). For these reasons, we chose an unbiased approach to identifying PPI.

      The Results have been amended to read: “All the targets are localized to the synapse, but also localized to non-synaptic compartments and expressed in non-neuronal cells. Thus, since there is also evidence for non-synaptic perturbations contributing to SCZ pathogenesis, we chose to perform an unbiased analysis in unfractionated brain tissue (Tarasov, Svistunov et al. 2019, Rodrigues-Neves, Ambrosio et al. 2022, Stanca, Rossetti et al. 2024). “

      Why do we choose a specific solubilization strategy? Harsh detergents can disrupt PPI and prevent efficient enrichment of the target by disrupting the target-antibody interaction(Pankow, Bamberger et al. 2015). To identify protein interactions, mild detergent conditions are typically employed in PPI studies. We used a combination of “weak” detergents (i.e. 0.5% NP-40, 0.5% Triton, and 0.01% Deoxycholate) to help prevent non-specific PPI, but still allowing efficient enrichment of the target proteins. We do agree that with our conditions the targets were not completely solubilized. It is a balancing act to find the correct conditions for IP-MS analysis. Since we are unable to immunoprecipitate all the target protein, we did not identify all the PPI for each target, and we did not make this claim. Importantly, we did identify known interactions for all our targets. Our mild detergent protocol is similar to other PPI studies and our results validates results reported in previous studies. It is more important to significantly enrich the target protein over control than to achieve complete solubilization (Supplementary Figure 2D). This allows us to use control IPs to successfully employ the SAINT algorithm to determine which proteins are confident PPI using a 5% FDR.

      How do we know protein are being immunoprecipitated from the synapse? As we show in Figures 2B and 3A, multiple proteins are annotated to the synapse with different databases, Gene ontology and SynGO. Well-known synaptic PPI were also observed, such as Grin2B-Dlg4(i.e. PSD-95), providing further evidence for proteins being immunoprecipitated for the synapses. Besides validating over a hundred published PPI interactions, we also identified many reciprocal interactions between the target datasets demonstrating the reproducibility of our protocol. Thus, we respectfully disagree with you and assert that our PPI network is very confident.

      The immunoprecipitation protocol is unusual in that the homogenates were incubated overnight (twice), which is a very long period compared to most published protocols. This is a concern because spurious protein interactions could form during this long incubation.

      There are many different immunoprecipitation protocols in the literature. The IP conditions depend upon the target protein and the antibody employed. Specifically, the abundance of the target and the affinity of the antibody to the target will dictate the IP conditions. We routinely perform overnight incubation for our IP-MS studies(Pankow, Bamberger et al. 2016, McClatchy, Yu et al. 2018). In our experience with brain tissue, this results in the highest enrichment of the target protein and the best reproducibility between biological replicates compared to IP protocols with shorter incubation times. Many other laboratories use overnight incubations(Lin and Lai 2017, Iqbal, Akins et al. 2018, Lagundzin, Krieger et al. 2022), so we do not consider our protocol unusual. We do find that IPs with tagged proteins in cell culture are more amenable to short incubation times. We have no evidence that overnight incubation causes spurious protein interactions nor could find any in the literature. Non-specific interactions are a concern with IP-MS experiments regardless of the incubation time. We took multiple steps to reduce the non-specific PPI from affecting our dataset. The first overnight incubation was incubating the brain lysate with agarose beads linked to IgGs to preclear the lysate from “sticky” non-specific interactors binding to IgGs and the beads. In addition, control IPs with IgG crosslinked to beads were incubated with brain lysate in parallel to each target IP. We computationally compared the non-specific control IPs with the target IPs using the SAINT algorithm to generate a confident list of PPI with a stringent 5% FDR. Therefore, our pipeline is specifically designed to prevent spurious PPI.

      In the section "Biological interpretation of scz PPI network". Surprisingly the authors found that synaptic proteins that are exclusively postsynaptic (Grin2B, SynGAP) or exclusively presynaptic (Syt1) show very high percentages of their interacting proteins are from the synaptic compartments where the target protein is not expressed. The authors offer no explanation for this paradox. One explanation for this could be that spurious PPIs have formed in the protein extraction/immunoprecipitation protocol. These findings need validation by biochemical fractionation of synapses into pre and post synaptic fractions and immunohistochemistry to demonstrate the subsynaptic localisation of the proteins. Grin2b is traditionally described as exclusively post-synaptic, but there is evidence for other localizations, including presynaptic(Berretta and Jones 1996, Sjostrom, Turrigiano et al. 2003, Bouvier, Larsen et al. 2018) and expression in astrocytes(Serrano, Robitaille et al. 2008, Lee, Ting et al. 2010, Lalo, Koh et al. 2021, Kim, Choi et al. 2024). Syngap has been localized to non-synaptic sites and glia expression in addition to its heavily studied role at the post synapse(Moon, Sakagami et al. 2008, Araki, Zeng et al. 2015, Birtele, Del Dosso et al. 2023). Syt1 is commonly used as a presynaptic marker, but along with other proteins previously reported to be exclusively presynaptic (such as SNAP-25), it has been localized to the postsynapse (Selak, Paternain et al. 2009, Tomasoni, Repetto et al. 2013, Hussain, Egbenya et al. 2017, Madrigal, Portales et al. 2019, Sumi and Harada 2023). Similarly, SynGo database assigns both post-synaptic and pre-synaptic localizations to Grin2b as stated in the manuscript. Thus, our data is not paradoxical, but supports the emerging evidence against the canonical exclusivity of the pre- and post-synaptic compartments. Determining subsynaptic localization of a protein is a huge undertaking and requires expertise we do not possess. This is why we relied on synaptic databases and the literature for our interpretation of our data, as other publications have done.

      We added the following to the Discussion to address this issue:

      “Using the SynGo database, 418 proteins (i.e. 41% of our network) were identified as synaptic proteins consistent with the targets having a synaptic localization. Defining the synaptic proteome is inherently difficult because the synapse is an “open organelle”, and many synaptic proteins also have non-synaptic localizations and are expressed in non-neuronal cells. We further attempted to define our synaptic PPI by differentiating between pre- and post- synaptic compartments via SynGo. Half of our targets were annotated to both compartments and all targets had PPI that were annotated to both. This data supports the emerging evidence against the canonical localization exclusivity of the pre and post synapse(Bouvier, Larsen et al. 2018, Madrigal, Portales et al. 2019).”

      My concerns about spurious interactions are raised again because the authors say that 92% of their interactions are novel (I note that they authors have not compared their interaction data of the NMDA receptor with published datasets from Dr Seth Grant's laboratory). BioGrid itself is good but not enough for comparison, maybe at this point it worth taking String, which accumulates several sources of PPIs, just select the direct PPIs.

      Since the MS-IP experiments in our study have never been performed before, we are not surprised by the extent of novel data we produced. As described above, we took many steps to prevent spurious PPI from entering our final dataset, including the use of detergents, preclearing and stringent bioinformatic filtering. Our entire dataset is very large, so the 8% of PPI that we replicated from other studies represents 124 interactions. We believe this to be an impressive number which correlates to the confidence of our data. Providing more confidence, we identified many reciprocal PPI where shared protein interactors between target proteins were identified in both target protein datasets.

          The PPI described for our targets in BioGrid encompassed 713 publications.  Two of the BioGrid datasets that were compared to our Grin2b PPI data were from the laboratory of Seth Grant.  Arbuckle et al (2010) is a low-throughout paper that describes a Grin2b and DLG4 PPI (that we also identified) and Husi et al (__2000__) is a seminal paper using high-throughput LC-MS to identify PPI in the PSD of mouse brain.  There were many differences between Husi et al and our pipeline.  Husi et al employed the C-terminal Grin2b peptide to pull down interactors from the PSD fraction whereas we employed Grin2b antibody to enrich Grin2b and its interactors from unfractionated brain tissue.  Despite these differences, our studies found 8 proteins in common.
      

      We took your suggestion and compared our data to String which includes direct PPI and functional PPI. Our input was the high confidence PPI identified by SAINT with 5% FDR as with the BioGrid comparison. The PPI network for each target protein had a more significant enrichment (p We think the problem you suggest with SynGO is more of an inherent problem with characterizing the synaptic proteome. The synaptic proteome is difficult to define since it is an “open organelle” with proteins transporting in and out. In addition, most synaptic proteins, such as mitochondrial and translational proteins, also have non-synaptic localizations. It is not possible to isolate a contaminant-free “pure” synaptic preparation by biochemical fractionation. Recently, SynGO was used in a meta-analysis of previously published PSD datasets(Kaizuka, Hirouchi et al. 2024). Kaizuka et al. found 123 proteins identified in 20 PSD datasets. SynGo annotated proteins with post-synaptic localization from this list. To a lesser extent they also identified presynaptic localizations, but it is unclear if the presynaptic proteins are novel localizations. Kaizuka et al. continued the investigation and identified a novel PSD protein, thus demonstrating that our knowledge of pre- and post- synaptic proteomes is incomplete.

      Minor comments

      1. A number of papers have reported protein interactions of native NMDA receptor complexes and their associated proteins isolated from rodent brain and are neither referenced in this paper. It would be relevant to compare these published datasets with the Grin2B IP datasets.

      We employed BioGrid as a reference of reported PPI for each of our target proteins. For Grin2B, the PPI came from 142 different publications. For eight target proteins, we decided *BioGrid * was the best resource for determining the novelty of our PPI because it is routinely used for large-scale unbiased PPI analysis. To determine the novelty of our network, we compared our PPI network to 713 publications via BioGrid. We are unsure whether the papers you are referring to are included in the BioGrid database. To make it easier for readers with similar queries, we added an additional supplementary table (TableS4) including all the publications (i.e. PMID numbers) included in BioGrid comparison for each target protein.

      We amended the Results with the following sentence, so the readers realized the extensiveness of the Biogrid comparison analysis:

      “There were 713 publications in BioGrid that describe at least one interaction with one of our targets (Supplementary Table4).”

      The use of the term "bait" in purification experiments typically refers to a protein and not an antibody. I suggest removing the word bait to avoid ambiguity and simply use the word target. We took your suggestion and used “target” instead of “bait” to avoid ambiguity.

      26 mins of treatment gives completely different set of PPIs between PCP and saline which is very interesting, so both networks should be included in Supplementary. Also, it would be useful to have a list of modulated (phosphorylated in their case, but also ubiquitinated etc) proteins, which is not presented. Table S1 lists the PPI for each target, and we designated whether the interactors were for Sal, PCP, or both. Phosphorylated and ubiquitinated proteins are very hard to reproducibly identify without an additional enrichment step. Since we did not perform this enrichment step, we did not search for these modifications and do not have any modified proteins to report.

      As they say their final network is composed of "direct physical and "co-complex" interactors and they cannot distinguish between them. This is particularly bad for the postsynapse, where all the PSD components can be co-IP-ed in different combinations. It can explain the Figure 5C, where most of the proteins have FDR = 1, which means they do not reproduce. Figure 5C represents the intersection of 15N quantification and SAINT analysis. The x-axis is the FDR reported for SAINT analysis, and the y-axis is the significant proteins from the N15 analysis. This figure demonstrates that some proteins that were significantly different with PCP via N15 quantification also were annotated as PPI by SAINT (i.e. 5%. As stated in the Discussion, we concluded that the SAINT analysis and N15 quantitation are complementary in identifying PPI and that the quantification of a biological perturbation may aid the identification of PPI. Figure 5C is not related to whether our PPI are direct physical or "co-complex" interactors. Distinguishing between direct physical and co-complex interactors is an inherent problem for all IP studies. Since another reviewer also highlighted this deficit in our manuscript, we decided to analyze our PPI dataset with the artificial intelligence algorithm AlphaFold 3(AF3). The AF3 data is encompassed in Figure 6.

      The following AF3 data was added to the Results Section:

      “A disadvantage of IP-MS studies is that it cannot distinguish between a PPI that binds directly to the target protein, and a PPI in which the interactor and target protein reside in the same multiprotein complex (i.e. indirect). We sought to predict which PPI may be directly interacting with its target protein by using the artificial intelligence algorithm AlphaFold3(AF3) (Abramson, Adler et al. 2024). First, we analyzed the predicted AF3 structure of the targets using the pTM score, and determined the fraction of each structure that was calculated to be disordered (Figure 6A and Supplementary Table7). Our reasoning was that if our targets have a poorly resolved structures then it will be difficult to screen for direct PPI. A pTM score >0.5 suggests that the structure may be correct, with the highest confidence equaling 1. Undefined or disordered regions hinder the accuracy of the prediction, and all our targets possessed a pTM score > 0.5 except Syt1. The fraction of disordered negatively correlated with the pTM score, as expected. Gsk3b, Ppp1ca, and Map2k1 were the target proteins with the highest pTM scores and were also the smallest of our targets (Figure 6B). Ppp1ca had the most confident structure (i.e. pTM 0.9) and the least fraction disordered (i.e. 0.07). Next, we determined the AF3 prediction of previously reported direct interactions of the targets. We used the iPTM score to determine an interaction confidence. An iPTM score >0.8 is a highly confident direct interaction, whereas 0.8. These eight PPI have all previously been reported to form a direct interaction with Ppp1ca, except Phactr3 (Zhang, Zhang et al. 1998, Terrak, Kerff et al. 2004, Hurley, Yang et al. 2007, Marsh, Dancheck et al. 2010, Ragusa, Dancheck et al. 2010, Ferrar, Chamousset et al. 2012, Choy, Srivastava et al. 2024, Xu, Sadleir et al. 2024)*. Phactr3 is structurally similar to, but less studied than, the reported direct interactor, Phactr1. These interactors are all inhibitors of PP1 except for Ppp1r9b which targets Ppp1ca to specific subcellular compartments. Nine PPI were assigned a score The following AF3 interpretation was added to the Discussion:

      “Our SCZ PPI network consists of two types of PPI: direct physical interactions and “co-complex” or indirect interactions. Typically, the nature of the interaction cannot be distinguished in IP-MS studies. We decided to employ the new AF3 algorithm to screen the PPI of Ppp1ca to provide evidence for direct interactors. We chose to examine the PPI assigned to Ppp1ca, because its structure was the most confident among our target proteins and AF3 correctly predicted a known direct interactor with high confidence. Ppp1ca is a catalytic subunit of the phosphatase PP1, which is required to associate with regulatory subunits to create holoenzymes (Li, Wilmanns et al. 2013). Eighteen PPI were predicted to be directly interacting with Ppp1ca using a 0.6 or higher iPTM filter. This filter may be too conservative and may generate false negatives, because another study employed a 0.3 filter followed by additional interrogation to screen for direct PPI (Weeratunga, Gormal et al. 2024). Forty-four percent of these predictions were confirmed by previous publications. Most of these validated direct interactions are inhibitors of the phosphatase, but one, Ppp1r9b (aka spinophilin), is known to target Ppp1ca to dendritic spines (Allen, Ouimet et al. 1997, Salek, Claeboe et al. 2023). This high correlation with the literature provides substantial confidence to the novel PPI predicted to be direct Ppp1ca interactors. The AF3 screen predicted that NDRG2 directly interacts with Ppp1ca. This protein is known to regulate many phosphorylation dependent signaling pathways by directly interacting with other phosphatases including Pp1ma and PP2A (Feng, Zhou et al. 2022, Lee, Lim et al. 2022). Actin binding protein Capza1 was also predicted to directly interact with Ppp1ca and Ppp1ca interacts with actin and its binding proteins to maintain optimal localization for efficient activity to specific substrates (Foley, Ward et al. 2023). Hsp1e is a heat shock protein predicted to directly interact with Ppp1ca. Although there is no direct connection to Ppp1ca, other heat shock proteins have been reported to regulate Ppp1ca (Mivechi, Trainor et al. 1993, Flores-Delgado, Liu et al. 2007, Qian, Vafiadaki et al. 2011). We also observed that many of the direct PPI were altered with PCP treatment. One direct interactor, Ppp1r1b (aka DARPP-32), is phosphorylated at Thr34 by PKA in the brain upon PCP treatment. This phosphorylation event converts Ppp1rb to a potent inhibitor of Ppp1ca(Svenningsson, Tzavara et al. 2003). Importantly, the manipulation of Thr34 attenuated the behavioral effects of PCP. Consistent with this report, Ppp1r1b-Ppp1ca interaction was only observed with PCP in our study. Further investigation is needed to determine if our novel direct interactors regulate the PCP phenotype. We conclude that AF3 can provide important structural insights into the nature of PPI obtained from large scale IP-MS studies.”

      The way PPI data is reported can be improved so that I does not have to be extracted from Table 1 and 2. It would be good if they provide just two columns PPI list, with names or IDs, plus PSP/saline/both conditions in third column, for ease of comparison with other sources and building the graph. They can add it as another spreadsheet to Table 2. We generated this table (TableS2) as you requested.

      Is Figure 2 built for Sal or PCP conditions? as they have only 23% interactions in common (Figure 4A) the Figure 2 should be pretty different for two conditions. Are the 1007 interactors combined from SAL and PCP?

      Figure 2 contains ALL the unique PPI for each target regardless of Sal or PCP conditions. The 1007 protein interactors shown in Figure 2Awhere Sal and PCP were combined to generate a non-redundant list of proteins for each target.

      We amended the Results to make this clearer:

      “When the PCP and SAL datasets were combined, there were 1007 unique proteins.”

      This sentence was added to Figure 2A:

      “For this comparison, Sal and PCP PPI were combined into a unique PPI list for each target.”

      Figure 1F is mentioned but no figure is shown. We apologize for this oversight, and we have corrected the manuscript. 8. Overall the paper could be edited and made more concise, especially the introduction and discussion. We extensively edited the manuscript to be more concise.

      Reviewer #3 (Significance (Required)):

      General assessment

      Proteomic mass spectrometry of immunoprecipitated complexes from synapses has been extensively studied since Husi et al (2000) first study of NMDA receptor and AMPA receptor complexes. Since then, a wide variety of methods have been employed to purify synaptic protein complexes including peptide affinity, tandem-affinity purification of endogenous proteins tagged with FLAG and Histine-affinity tags amongst other methods. Purification of protein complexes and the postsynaptic density from the postsynaptic terminal of mammalian excitatory synapses have been crucial for establishing that schizophrenia is a polygenic disorder affecting synapses (e.g. Fernandez et al, 2009; Kirov et al, 2012; Purcell et al, 2014, Fromer et al, 2014 etc). Network analyses of the postsynaptic proteome have described networks of schizophrenia interacting proteins (e.g. Pocklington et al, 2006; Fernandez et al, 2009) and other neuropsychiatric disorders.

      Hundreds of synaptic protein complexes have been identified (Frank et al, 2016), but very few have been characterised using proteomic mass spectrometry. This paper has chosen 8 protein targets for such analysis and identified many proteins that a putative interactors of the target protein. At this level the current manuscript does not represent a conceptual advance and the value of the data lies in its utility as a resource that may be used in future studies.

      The findings from the 8 target proteins from normal adult rat brain were used for a secondary study that describes the effects that PCP has on the interaction networks. Interestingly, this work shows that 26 minutes of drug treatment leads to considerable changes in the interactomes of the target proteins. These descriptive data could be used in future studies to understand the cell biological mechanisms that mediate these rapid changes in the proteome. PCP and drugs that interact with NMDA receptors are known to induce changes in synaptic proteome phosphorylation including modifications in protein-protein interaction sites, which may explain the PCP effects.

      The study would benefit from validation of experimental protocols for solubilisation and immunoprecipitation and validation of described interactions using orthogonal biochemical or localisation experiments.

      Audience Specialists in synapse proteins and mechanisms of schizophrenia.

      Expertise

      The reviewers' expertise is in molecular biology of synapses including synapse proteomics, protein interaction and network analysis, and genetics of schizophrenia and other brain disorders.

      Abramson, J., J. Adler, J. Dunger, R. Evans, T. Green, A. Pritzel, O. Ronneberger, L. Willmore, A. J. Ballard, J. Bambrick, S. W. Bodenstein, D. A. Evans, C. C. Hung, M. O'Neill, D. Reiman, K. Tunyasuvunakool, Z. Wu, A. Zemgulyte, E. Arvaniti, C. Beattie, O. Bertolli, A. Bridgland, A. Cherepanov, M. Congreve, A. I. Cowen-Rivers, A. Cowie, M. Figurnov, F. B. Fuchs, H. Gladman, R. Jain, Y. A. Khan, C. M. R. Low, K. Perlin, A. Potapenko, P. Savy, S. Singh, A. Stecula, A. Thillaisundaram, C. Tong, S. Yakneen, E. D. Zhong, M. Zielinski, A. Zidek, V. Bapst, P. Kohli, M. Jaderberg, D. Hassabis and J. M. Jumper (2024). "Accurate structure prediction of biomolecular interactions with AlphaFold 3." Nature 630(8016): 493-500.

      Allen, P. B., C. C. Ouimet and P. Greengard (1997). "Spinophilin, a novel protein phosphatase 1 binding protein localized to dendritic spines." Proc Natl Acad Sci U S A 94(18): 9956-9961.

      Anschuetz, A., K. Schwab, C. R. Harrington, C. M. Wischik and G. Riedel (2024). "A Meta-Analysis on Presynaptic Changes in Alzheimer's Disease." J Alzheimers Dis 97(1): 145-162.

      Araki, Y., M. Zeng, M. Zhang and R. L. Huganir (2015). "Rapid dispersion of SynGAP from synaptic spines triggers AMPA receptor insertion and spine enlargement during LTP." Neuron 85(1): 173-189.

      Bauminger, H. and I. Gaisler-Salomon (2022). "Beyond NMDA Receptors: Homeostasis at the Glutamate Tripartite Synapse and Its Contributions to Cognitive Dysfunction in Schizophrenia." Int J Mol Sci 23(15).

      Berretta, N. and R. S. Jones (1996). "Tonic facilitation of glutamate release by presynaptic N-methyl-D-aspartate autoreceptors in the entorhinal cortex." Neuroscience 75(2): 339-344.

      Birtele, M., A. Del Dosso, T. Xu, T. Nguyen, B. Wilkinson, N. Hosseini, S. Nguyen, J. P. Urenda, G. Knight, C. Rojas, I. Flores, A. Atamian, R. Moore, R. Sharma, P. Pirrotte, R. S. Ashton, E. J. Huang, G. Rumbaugh, M. P. Coba and G. Quadrato (2023). "Non-synaptic function of the autism spectrum disorder-associated gene SYNGAP1 in cortical neurogenesis." Nat Neurosci 26(12): 2090-2103.

      Bouvier, G., R. S. Larsen, A. Rodriguez-Moreno, O. Paulsen and P. J. Sjostrom (2018). "Towards resolving the presynaptic NMDA receptor debate." Curr Opin Neurobiol 51: 1-7.

      Choy, M. S., G. Srivastava, L. C. Robinson, K. Tatchell, R. Page and W. Peti (2024). "The SDS22:PP1:I3 complex: SDS22 binding to PP1 loosens the active site metal to prime metal exchange." J Biol Chem 300(1): 105515.

      Dobson, L., I. Remenyi and G. E. Tusnady (2015). "The human transmembrane proteome." Biol Direct 10: 31.

      Feng, D., J. Zhou, H. Liu, X. Wu, F. Li, J. Zhao, Y. Zhang, L. Wang, M. Chao, Q. Wang, H. Qin, S. Ge, Q. Liu, J. Zhang and Y. Qu (2022). "Astrocytic NDRG2-PPM1A interaction exacerbates blood-brain barrier disruption after subarachnoid hemorrhage." Sci Adv 8(39): eabq2423.

      Ferrar, T., D. Chamousset, V. De Wever, M. Nimick, J. Andersen, L. Trinkle-Mulcahy and G. B. Moorhead (2012). "Taperin (c9orf75), a mutated gene in nonsyndromic deafness, encodes a vertebrate specific, nuclear localized protein phosphatase one alpha (PP1alpha) docking protein." Biol Open 1(2): 128-139.

      Flores-Delgado, G., C. W. Liu, R. Sposto and N. Berndt (2007). "A limited screen for protein interactions reveals new roles for protein phosphatase 1 in cell cycle control and apoptosis." J Proteome Res 6(3): 1165-1175.

      Foley, K., N. Ward, H. Hou, A. Mayer, C. McKee and H. Xia (2023). "Regulation of PP1 interaction with I-2, neurabin, and F-actin." Mol Cell Neurosci 124: 103796.

      Goudriaan, A., C. de Leeuw, S. Ripke, C. M. Hultman, P. Sklar, P. F. Sullivan, A. B. Smit, D. Posthuma and M. H. Verheijen (2014). "Specific glial functions contribute to schizophrenia susceptibility." Schizophr Bull 40(4): 925-935.

      Hemmings, H. C., Jr., P. Greengard, H. Y. Tung and P. Cohen (1984). "DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1." Nature 310(5977): 503-505.

      Hurley, T. D., J. Yang, L. Zhang, K. D. Goodwin, Q. Zou, M. Cortese, A. K. Dunker and A. A. DePaoli-Roach (2007). "Structural basis for regulation of protein phosphatase 1 by inhibitor-2." J Biol Chem 282(39): 28874-28883.

      Hussain, S., D. L. Egbenya, Y. C. Lai, Z. J. Dosa, J. B. Sorensen, A. E. Anderson and S. Davanger (2017). "The calcium sensor synaptotagmin 1 is expressed and regulated in hippocampal postsynaptic spines." Hippocampus 27(11): 1168-1177.

      Iqbal, H., D. R. Akins and M. R. Kenedy (2018). "Co-immunoprecipitation for Identifying Protein-Protein Interactions in Borrelia burgdorferi." Methods Mol Biol 1690: 47-55.

      Kaizuka, T., T. Hirouchi, T. Saneyoshi, T. Shirafuji, M. O. Collins, S. G. N. Grant, Y. Hayashi and T. Takumi (2024). "FAM81A is a postsynaptic protein that regulates the condensation of postsynaptic proteins via liquid-liquid phase separation." PLoS Biol 22(3): e3002006.

      Kaizuka, T., T. Suzuki, N. Kishi, K. Tamada, M. W. Kilimann, T. Ueyama, M. Watanabe, T. Shimogori, H. Okano, N. Dohmae and T. Takumi (2024). "Remodeling of the postsynaptic proteome in male mice and marmosets during synapse development." Nat Commun 15(1): 2496.

      Kerns, D., G. S. Vong, K. Barley, S. Dracheva, P. Katsel, P. Casaccia, V. Haroutunian and W. Byne (2010). "Gene expression abnormalities and oligodendrocyte deficits in the internal capsule in schizophrenia." Schizophr Res 120(1-3): 150-158.

      Kim, H., S. Choi, E. Lee, W. Koh and C. J. Lee (2024). "Tonic NMDAR Currents in the Brain: Regulation and Cognitive Functions." Biol Psychiatry.

      Koopmans, F., P. van Nierop, M. Andres-Alonso, A. Byrnes, T. Cijsouw, M. P. Coba, L. N. Cornelisse, R. J. Farrell, H. L. Goldschmidt, D. P. Howrigan, N. K. Hussain, C. Imig, A. P. H. de Jong, H. Jung, M. Kohansalnodehi, B. Kramarz, N. Lipstein, R. C. Lovering, H. MacGillavry, V. Mariano, H. Mi, M. Ninov, D. Osumi-Sutherland, R. Pielot, K. H. Smalla, H. Tang, K. Tashman, R. F. G. Toonen, C. Verpelli, R. Reig-Viader, K. Watanabe, J. van Weering, T. Achsel, G. Ashrafi, N. Asi, T. C. Brown, P. De Camilli, M. Feuermann, R. E. Foulger, P. Gaudet, A. Joglekar, A. Kanellopoulos, R. Malenka, R. A. Nicoll, C. Pulido, J. de Juan-Sanz, M. Sheng, T. C. Sudhof, H. U. Tilgner, C. Bagni, A. Bayes, T. Biederer, N. Brose, J. J. E. Chua, D. C. Dieterich, E. D. Gundelfinger, C. Hoogenraad, R. L. Huganir, R. Jahn, P. S. Kaeser, E. Kim, M. R. Kreutz, P. S. McPherson, B. M. Neale, V. O'Connor, D. Posthuma, T. A. Ryan, C. Sala, G. Feng, S. E. Hyman, P. D. Thomas, A. B. Smit and M. Verhage (2019). "SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse." Neuron 103(2): 217-234 e214.

      Krishnankutty, A., T. Kimura, T. Saito, K. Aoyagi, A. Asada, S. I. Takahashi, K. Ando, M. Ohara-Imaizumi, K. Ishiguro and S. I. Hisanaga (2017). "In vivo regulation of glycogen synthase kinase 3beta activity in neurons and brains." Sci Rep 7(1): 8602.

      Lagundzin, D., K. L. Krieger, H. C. Law and N. T. Woods (2022). "An optimized co-immunoprecipitation protocol for the analysis of endogenous protein-protein interactions in cell lines using mass spectrometry." STAR Protoc 3(1): 101234.

      Lalo, U., W. Koh, C. J. Lee and Y. Pankratov (2021). "The tripartite glutamatergic synapse." Neuropharmacology 199: 108758.

      Lee, B. H., F. Schwager, P. Meraldi and M. Gotta (2018). "p37/UBXN2B regulates spindle orientation by limiting cortical NuMA recruitment via PP1/Repo-Man." J Cell Biol 217(2): 483-493.

      Lee, K. W., S. Lim and K. D. Kim (2022). "The Function of N-Myc Downstream-Regulated Gene 2 (NDRG2) as a Negative Regulator in Tumor Cell Metastasis." Int J Mol Sci 23(16).

      Lee, M. C., K. K. Ting, S. Adams, B. J. Brew, R. Chung and G. J. Guillemin (2010). "Characterisation of the expression of NMDA receptors in human astrocytes." PLoS One 5(11): e14123.

      Li, X., M. Wilmanns, J. Thornton and M. Kohn (2013). "Elucidating human phosphatase-substrate networks." Sci Signal 6(275): rs10.

      Lin, J. S. and E. M. Lai (2017). "Protein-Protein Interactions: Co-Immunoprecipitation." Methods Mol Biol 1615: 211-219.

      Ma, T. M., S. Abazyan, B. Abazyan, J. Nomura, C. Yang, S. Seshadri, A. Sawa, S. H. Snyder and M. V. Pletnikov (2013). "Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletion." Mol Psychiatry 18(5): 557-567.

      Madrigal, M. P., A. Portales, M. P. SanJuan and S. Jurado (2019). "Postsynaptic SNARE Proteins: Role in Synaptic Transmission and Plasticity." Neuroscience 420: 12-21.

      Marsh, J. A., B. Dancheck, M. J. Ragusa, M. Allaire, J. D. Forman-Kay and W. Peti (2010). "Structural diversity in free and bound states of intrinsically disordered protein phosphatase 1 regulators." Structure 18(9): 1094-1103.

      McClatchy, D. B., N. K. Yu, S. Martinez-Bartolome, R. Patel, A. R. Pelletier, M. Lavalle-Adam, S. B. Powell, M. Roberto and J. R. Yates (2018). "Structural Analysis of Hippocampal Kinase Signal Transduction." ACS Chem Neurosci 9(12): 3072-3085.

      Misir, E. and G. G. Akay (2023). "Synaptic dysfunction in schizophrenia." Synapse 77(5): e22276.

      Mivechi, N. F., L. D. Trainor and G. M. Hahn (1993). "Purified mammalian HSP-70 KDA activates phosphoprotein phosphatases in vitro." Biochem Biophys Res Commun 192(2): 954-963.

      Moon, I. S., H. Sakagami, J. Nakayama and T. Suzuki (2008). "Differential distribution of synGAP alpha1 and synGAP beta isoforms in rat neurons." Brain Res 1241: 62-75.

      Pankow, S., C. Bamberger, D. Calzolari, A. Bamberger and J. R. Yates, 3rd (2016). "Deep interactome profiling of membrane proteins by co-interacting protein identification technology." Nat Protoc 11(12): 2515-2528.

      Pankow, S., C. Bamberger, D. Calzolari, S. Martinez-Bartolome, M. Lavallee-Adam, W. E. Balch and J. R. Yates, 3rd (2015). "∆F508 CFTR interactome remodelling promotes rescue of cystic fibrosis." Nature 528(7583): 510-516.

      Park, G. H., H. Noh, Z. Shao, P. Ni, Y. Qin, D. Liu, C. P. Beaudreault, J. S. Park, C. P. Abani, J. M. Park, D. T. Le, S. Z. Gonzalez, Y. Guan, B. M. Cohen, D. L. McPhie, J. T. Coyle, T. A. Lanz, H. S. Xi, C. Yin, W. Huang, H. Y. Kim and S. Chung (2020). "Activated microglia cause metabolic disruptions in developmental cortical interneurons that persist in interneurons from individuals with schizophrenia." Nat Neurosci 23(11): 1352-1364.

      Partiot, E., A. Hirschler, S. Colomb, W. Lutz, T. Claeys, F. Delalande, M. S. Deffieu, Y. Bare, J. R. E. Roels, B. Gorda, J. Bons, D. Callon, L. Andreoletti, M. Labrousse, F. M. J. Jacobs, V. Rigau, B. Charlot, L. Martens, C. Carapito, G. Ganesh and R. Gaudin (2024). "Brain exposure to SARS-CoV-2 virions perturbs synaptic homeostasis." Nat Microbiol.

      Qian, J., E. Vafiadaki, S. M. Florea, V. P. Singh, W. Song, C. K. Lam, Y. Wang, Q. Yuan, T. J. Pritchard, W. Cai, K. Haghighi, P. Rodriguez, H. S. Wang, D. Sanoudou, G. C. Fan and E. G. Kranias (2011). "Small heat shock protein 20 interacts with protein phosphatase-1 and enhances sarcoplasmic reticulum calcium cycling." Circ Res 108(12): 1429-1438.

      Ragusa, M. J., B. Dancheck, D. A. Critton, A. C. Nairn, R. Page and W. Peti (2010). "Spinophilin directs protein phosphatase 1 specificity by blocking substrate binding sites." Nat Struct Mol Biol 17(4): 459-464.

      Rodrigues-Neves, A. C., A. F. Ambrosio and C. A. Gomes (2022). "Microglia sequelae: brain signature of innate immunity in schizophrenia." Transl Psychiatry 12(1): 493.

      Salek, A. B., E. T. Claeboe, R. Bansal, N. F. Berbari and A. J. Baucum, 2nd (2023). "Spinophilin-dependent regulation of GluN2B-containing NMDAR-dependent calcium influx, GluN2B surface expression, and cleaved caspase expression." Synapse 77(3): e22264.

      Savas, J. N., B. D. Stein, C. C. Wu and J. R. Yates, 3rd (2011). "Mass spectrometry accelerates membrane protein analysis." Trends Biochem Sci 36(7): 388-396.

      Selak, S., A. V. Paternain, M. I. Aller, E. Pico, R. Rivera and J. Lerma (2009). "A role for SNAP25 in internalization of kainate receptors and synaptic plasticity." Neuron 63(3): 357-371.

      Serrano, A., R. Robitaille and J. C. Lacaille (2008). "Differential NMDA-dependent activation of glial cells in mouse hippocampus." Glia 56(15): 1648-1663.

      Sjostrom, P. J., G. G. Turrigiano and S. B. Nelson (2003). "Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors." Neuron 39(4): 641-654.

      Stanca, S., M. Rossetti, L. Bokulic Panichi and P. Bongioanni (2024). "The Cellular Dysfunction of the Brain-Blood Barrier from Endothelial Cells to Astrocytes: The Pathway towards Neurotransmitter Impairment in Schizophrenia." Int J Mol Sci 25(2).

      Sumi, T. and K. Harada (2023). "Muscarinic acetylcholine receptor-dependent and NMDA receptor-dependent LTP and LTD share the common AMPAR trafficking pathway." iScience 26(3): 106133.

      Svenningsson, P., E. T. Tzavara, R. Carruthers, I. Rachleff, S. Wattler, M. Nehls, D. L. McKinzie, A. A. Fienberg, G. G. Nomikos and P. Greengard (2003). "Diverse psychotomimetics act through a common signaling pathway." Science 302(5649): 1412-1415.

      Tarasov, V. V., A. A. Svistunov, V. N. Chubarev, S. S. Sologova, P. Mukhortova, D. Levushkin, S. G. Somasundaram, C. E. Kirkland, S. O. Bachurin and G. Aliev (2019). "Alterations of Astrocytes in the Context of Schizophrenic Dementia." Front Pharmacol 10: 1612.

      Terrak, M., F. Kerff, K. Langsetmo, T. Tao and R. Dominguez (2004). "Structural basis of protein phosphatase 1 regulation." Nature 429(6993): 780-784.

      Tokizane, K., C. S. Brace and S. I. Imai (2024). "DMH(Ppp1r17) neurons regulate aging and lifespan in mice through hypothalamic-adipose inter-tissue communication." Cell Metab 36(2): 377-392 e311.

      Tomasoni, R., D. Repetto, R. Morini, C. Elia, F. Gardoni, M. Di Luca, E. Turco, P. Defilippi and M. Matteoli (2013). "SNAP-25 regulates spine formation through postsynaptic binding to p140Cap." Nat Commun 4: 2136.

      Vainio, L., S. Taponen, S. M. Kinnunen, E. Halmetoja, Z. Szabo, T. Alakoski, J. Ulvila, J. Junttila, P. Lakkisto, J. Magga and R. Kerkela (2021). "GSK3beta Serine 389 Phosphorylation Modulates Cardiomyocyte Hypertrophy and Ischemic Injury." Int J Mol Sci 22(24).

      van Oostrum, M., T. M. Blok, S. L. Giandomenico, S. Tom Dieck, G. Tushev, N. Furst, J. D. Langer and E. M. Schuman (2023). "The proteomic landscape of synaptic diversity across brain regions and cell types." Cell 186(24): 5411-5427 e5423.

      Vilalta, A. and G. C. Brown (2018). "Neurophagy, the phagocytosis of live neurons and synapses by glia, contributes to brain development and disease." FEBS J 285(19): 3566-3575.

      Weeratunga, S., R. S. Gormal, M. Liu, D. Eldershaw, E. K. Livingstone, A. Malapaka, T. P. Wallis, A. T. Bademosi, A. Jiang, M. D. Healy, F. A. Meunier and B. M. Collins (2024). "Interrogation and validation of the interactome of neuronal Munc18-interacting Mint proteins with AlphaFold2." J Biol Chem 300(1): 105541.

      Winship, I. R., S. M. Dursun, G. B. Baker, P. A. Balista, L. Kandratavicius, J. P. Maia-de-Oliveira, J. Hallak and J. G. Howland (2019). "An Overview of Animal Models Related to Schizophrenia." Can J Psychiatry 64(1): 5-17.

      Xu, Z., L. Sadleir, H. Goel, X. Jiao, Y. Niu, Z. Zhou, G. de Valles-Ibanez, G. Poke, M. Hildebrand, N. Lieffering, J. Qin and Z. Yang (2024). "Genotype and phenotype correlation of PHACTR1-related neurological disorders." J Med Genet 61(6): 536-542.

      Zhang, J., L. Zhang, S. Zhao and E. Y. Lee (1998). "Identification and characterization of the human HCG V gene product as a novel inhibitor of protein phosphatase-1." Biochemistry 37(47): 16728-16734.

      Zhang, Y., K. Chen, S. A. Sloan, M. L. Bennett, A. R. Scholze, S. O'Keeffe, H. P. Phatnani, P. Guarnieri, C. Caneda, N. Ruderisch, S. Deng, S. A. Liddelow, C. Zhang, R. Daneman, T. Maniatis, B. A. Barres and J. Q. Wu (2014). "An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex." J Neurosci 34(36): 11929-11947.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary: McClatchy, Powell and Yates aimed at identifying a protein interactome associated to schizophrenia. For that, they treated rats (N14 and N15) with PCP, which disturbs gutamatergic transmission, as a model for the disease and co-immunoprecipitated hippocampi proteins, which were further analyzed by standard LC-MS.

      The study is new, considering not much has been done in this direction in the field of schizophrenia. This justifies its publication. On the other hand, a major flaw of the is the lack of information on the level of interaction of the so called protein interactome. Meaning, we cannot distinguish, as the study was performed, which proteins are directly interacting with the targets of interest from proteins which are interacting with targets´ interactors. The different shells of interaction are crucial information in protein interactomics.

      Major: most of I am pointing below must be at least discussed or better presented in the paper, as It may not be solvable considering how the study has been conducted.

      1. The study fails in defining the level of interaction of the protein interactome with the considered targets. This has been shortly mentioned in the discussion, but must be more explicit to readers, for instance, in the abstract, introduction and in the methods sections.
      2. Considering the protein extraction protocol, it is fair to mention that only the most soluble proteins are being considered here. I am bringing this up since the importance of membrane receptors is clear in the studied context.
      3. It is not clear from the methods description if antibodies from all 8 targets were all together in one Co-IP or have been incubated separately in 8 different hippocampi samples. It seems the first, given how results have been presented. If so, this maximizes the major issue raised above (in 1).
      4. Definitely, results here are not representing a "SCZ PPI network". PCP-treated animals, as any other animal model, are rather limited models to schizophrenia. As a complex multifactorial disease, synaptic deficits, which is the focus of this study, can no longer be considered "the pivot" of the disease. Synaptic dysfunction is only one among many other factors associated to schizophrenia.
      5. Authors should look for protein interactions that might be happening also in glial cells. They are not the majority in hippocampus, but are present in the type of tissue analyzed here. Thus, some of the interactions observed might be more abundantly present in those cells. Maybe enriching using bioinformatics tools the PPI network to different cell types.

      Minor:

      1. in the abstract, it is not clear if 90% of the PPI are novel to brain tissue in general or specifically schizophrenia.
      2. authors refer to LC-MS-based proteomics as "MS" all across the text. Who am I to say this to Yates et al, but I think it is rather simplified use "Mass Spectrometry Analysis", when this is a typical LC-MS type of analysis
      3. Several references used to construct the hypothesis of the paper are rather outdated: several from 10-15 years ago. It would be interesting to provide to the reader up to date references, given the rapid pace science has been progressing.
      4. "UniProt rat database". Please, state the version and if reviewed or unreviewed.

      Significance

      The study is informative, and has great potential to enrich the specific literature of this field. But should tone down some arguments, given the experimental limitations of the PPI network (as described above) and should state PCP-treated rats as a limited model to schizophrenia.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1

      __Evidence, reproducibility and clarity __

      The work by Przanowska et al., sought to understand the role of ORC2 in murine development and further wanted to discover its role in liver endo-reduplication. The overall methods used is sufficient enough to address its role but is not very conclusive based on their overall results and data provided as elaborated in below comments.

      Major Comments:

      1. The major issue of the paper is how well is ORC2 depleted in perinatal liver (Fig. 2C) and is not very clear from the data as all the western blots are at very low exposure levels and bands are very weak (still weak bands seen). There are good antibodies of ORC2 which can be used for IHC staining and can be used to address the extent of ORC2 depletion.

      We have now shown that ORC2 protein is significantly decreased in the hepatocytes of the Orc2 KO and DKO livers (New Fig. 2C and 6D). The decrease is consistent, with 4-5 mice examined, and all showing the depletion. We have been unable to do immunohistochemistry on tissue sections of the mouse livers with the anti-ORC antibodies we have tried, and this could be a reflection of the low level of the proteins. On hepatocytes in culture we have obtained faint signal with the anti-ORC2 antibody in WT cells, and this is clearly absent in 100% of the hepatocytes. See Fig. R1 below.

      __Reviewer Fig R1: __


      A) Immunofluorescence of hepatocytes in culture from livers of WT and two DKO mice.

      B) Quantitation of A) from counting 70-100 cells from each specimen.

      However, the calculations in the methods and the discussion are very compelling that at least the last 6-9 cell divisions in normal development start with 2n nuclei in the livers at baseline (Fig. 3B-G and 6I).

      Why in Fig 2C, the M2 mice is showing an equivalent level of ORC2 protein compared to mice M1 with NO CRE expression (compare lane1 and lane5). So, the results are based on one mouse which I do not think is significant enough to come to the conclusion. The authors need to add more data from different mice for statistical significance. Please use IHC to show the depletion of ORC2 protein in the liver sections.

      We had used total liver and had pointed out that residual ORC2 protein will be seen from stromal cells (endothelia, blood vessels and blood cells). We have therefore removed the figure which measured ORC2 levels in total liver and have now shown that when hepatocytes are isolated from five animals there was a massive depletion of ORC2 in all five animals (new Fig. 3C).

      As nicely demonstrated in the previous paper by Okano-Uchida et al., 2018 that ORC1 depletion in the liver shows an DNA ploidy effect from 6-week onwards. The authors need to demonstrate in this paper also when the 16N phenotype is observed starting from week1 to 12 months.

      Based on the results from our previous paper (Okano-Uchida et al., 2018) we decided to measure 16N phenotype at 6 weeks of age. The endoreduplication occurs at a stage when ORC2 protein is undetectable during normal development or during regeneration.

      In the double knockout experiments (ORC1 and ORC2) the authors are not even bothered to demonstrate that how much are both the proteins are actually depleted from the cells, so on the results obtained from these mice experiments are not conclusive or explanatory.

      We have performed immunoblotting of isolated hepatocytes and immunohistochemistry of livers for ORC1 and ORC2. Our data shows that both proteins are depleted in all four mice tested (New Fig. 6D).

      Minor points:

      1. Why are scale bars missing in right panel of Fig. 2G, Fig. 6D Supp Fig. 2B KO studies. The authors need to confirm that that all the large nuclei have NO or less significant ORC2 protein through IHC H&E staining.

      The scale bars are missing from the right panels to avoid redundancy. We have added “Both panels are at the same scale.” in the figure legend, according to https://doi.org/10.1371/journal.pbio.3001161.

      1. Please explain why is EYFP in Fig. 5G is cytoplasmic compared to Fig 4C (nuclear). We consistently see this variability and it was there in our previous results (Okano-Uchida et al., 2018), where EYFP was cytoplasmic in tissues, but was nuclear (and some cytoplasmic) in hepatocytes in culture.

      We do not know the reason for this difference but consistently see this difference. We now say in the text: “We did not explore why the EYFP protein is mostly nuclear in hepatocytes in culture (Fig. 4C) and mostly cytoplasmic in hepatocytes in the liver tissue (Fig. 5G, 7G), but speculate that differences in signaling pathways or fixation techniques between the two conditions contribute to this difference.”

      Are authors using the same genotype of Alb-Cre mice as shown by Okano-Uchida et al., 2018 as I do not find the reference of Schuler et. al., 2004 (PMID:15282742).

      We have been using two independent Alb-Cre animals. This is now described in the Methods.


      Significance

      The article is exactly based on their previous published paper but instead of ORC1, they were interested in dissecting the role of ORC2. Although they have discussed that CDC6 may be involved in replacing ORC1 KO mice to rescue the extensive DNA replication in endoreduplication, but instead of going to hunt the role of CDC6 in endoreduplication they checked the effect of ORC2 which actually lower the overall impact of the paper.

      We studied ORC2 conditional KO mice in a similar manner to the previously published ORC1 conditional KO in order to ensure (1) that the lack of effect in the Orc1 KO was not because ORC1 can theoretically be substituted for by CDC6 and (2) to establish the double KO of Orc1 and Orc2. To the best of our knowledge this is the first description of removal of two subunits of ORC complex at once in a mouse model. Moreover, in the light of rising recognition of sex as biological variable, we report sex-dependent effects which are very intriguing.

      We have not attempted knocking out CDC6 to uncover novel mechanisms of DNA replication, because we first needed to make sure that the mice can truly endo-reduplicate without two of the six subunits of ORC. Note that our published results in cancer cell lines (Shibata, 2016) show that CDC6 is still essential in the ORC KO cell lines, so a future experiment will likely reveal that CDC6 is still essential for endoreduplication in the ORC KO mice in vivo.

      Reviewer #2

      __Evidence, reproducibility and clarity __

      It has been reported that in the absence of ORC1, liver cells can still endoreduplicate and it has been speculated that this might occur if CDC6 can replace, at least partially, the function of ORC1. Here, authors evaluate if this is also true in the absence of ORC2 and found that ORC2 is required for cell proliferation in mouse hepatocytes but not for endoreduplication. This is also the case after combining the conditional mutations of ORC1 and ORC2. They propose that a mechanism must exist to load sufficient MCM2-7 to support DNA replication in the absence of these two ORC subunits. Some of the conclusions need further experimental support. The rationale for testing the requirement of ORC2, with or without ORC1, for endoreduplication is valid. However, a key point is that the endoreduplication level seems to be higher in the absence of ORC2 or both ORC1 and ORC2, and this is not properly addressed. Also, mechanistic details on how this could be triggered are absent from this study. As indicated below almost every figure in this manuscript contains weak points (see below).

      We now discuss the following: “One possible explanation of the greater endoreduplication in both our papers is that mitosis may be arrested earlier in development by G2 DNA damage checkpoints activated by incomplete licensing and replication of the genome in the absence of ORC. As a result, endoreduplication cycles could begin earlier in development resulting in greater endoreduplication.”

      Major 1. Fig 1G, needs a detailed comment and justification.

      We have added the following to the text: “The proliferation rate of the MEF were measured by MTT assays. Even in the Orc2+/+ MEF, the infection with adeno-Cre decreased proliferation a little (the orange line compared to the blue line in Fig. 1G). However, for Orc2f/f MEF infection with adeno-Cre impairs proliferation even further (yellow line compared to black line in Fig. 1G)..

      Note that Adeno-Cre has been reported to be toxic for cell proliferation (citations 1, 2, 3), and so we included Adeno-Cre expression in ORC2+/+ (WT) as a background control.

      Citation:

      1. Pfeifer A, Brandon EP, Kootstra N, Gage FH, Verma IM: Delivery of the Cre recombinase by a self deleting lentiviral vector: Efficient gene targeting in vivo. Proc Natl Acad Sci USA. 2001, 98: 11450-11455. 10.1073/pnas.201415498.
      2. Loonstra A, Vooijs M, Beverloo HB, Allak BA, Drunen EV, Kanaar R, Berns A, Jonkers J: Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc Natl Acad Sci USA. 2001, 98: 9209-9214. 10.1073/pnas.161269798.
      3. Schmidt EE, Taylor DS, Prigge JR, Barnet S, Capecchi R: Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc Natl Acad Sci USA. 2000, 97: 13702-13707. 10.1073/pnas.240471297.
      4. Fig 2D-F. Is this conclusion applicable to other endoreplicating tissues? Have authors consider to analyze body weight and liver weight measurements after normalization with similar data from a non-affected organ? The conditional KO was performed specifically in the liver. ORC is intact in other tissues in these animals. As a future direction our lab plans to study cardiac-specific conditional KO of ORC subunits to test whether other endo-reduplicating tissues can also synthesize DNA in the absence of ORC subunits.

      Fig 3 shows inconsistent results or results that lack proper justification in the text. The 2C peak is missing in Fig 3E (yellow line, positive control). However, 2n nuclei appear in Fig 3F-H. Also, the blue and yellow peaks do not coincide in the flow cytometry profiles, in particular for 8C and 16C.

      There was an error in the plotting of the former Fig. 3E. The information is better presented in the former Fig. 3F-H (now Fig. 3E-G) and so have removed the former Fig. 3E from the paper.

      Fig 4. Shorter EdU pulses could be more informative of the actual amount of S-phase cells. Thus, the use of a 2h EdU pulse needs a clear justification.

      The half-life of EDU incorporation differs slightly between in vivo and in vitro conditions. In vivo, slower cell proliferation requires a longer time, approximately 4 hours. However, in vitro, liver cells grow faster, and a 2-hour EDU pulse with 20 µM is sufficient for detection compared to a 3-hour pulse with 10 µM BrdU (Okano-Uchida et al., 2018). Several publications also use a 2-hour EDU incubation time (https://doi.org/10.1098/rsob.150172).

      Fig 5. EYFP is cytoplasmic, in contrast with results shown in Fig 4C

      We consistently see this variability and it was there in our previous results (Okano-Uchida et al., 2018), where EYFP was cytoplasmic in tissues, but was nuclear (and some cytoplasmic) in hepatocytes in culture.

      We do not know the reason for this difference but consistently see this difference. We now say in the text: “We did not explore why the EYFP protein is mostly nuclear in hepatocytes in culture (Fig. 4C) and mostly cytoplasmic in hepatocytes in the liver tissue (Fig. 5G, 7G), but speculate that differences in signaling pathways or fixation techniques between the two conditions contribute to this difference.”

      Fig 6. Results obtained with the double mutant are poorly described.

      We have split the figure into two figures (New Fig. 6 and 7) edited the results section to ensure that they are easily comprehended by the readers. We have also included Westerns from hepatocyte cell lysates of four DKO mice to show that ORC1 and ORC2 proteins are reproducible decreased (New Fig. 6D).

      What are the level of other pre-RC components in the mutants used in this study. This could be easily evaluated by Western blotting

      Despite the technical difficulty of not having antibodies that recognize all the mouse initiation proteins, we have now measured mouse ORC1, ORC2, ORC3, ORC5, ORC6, CDC6 and the MCM2 and MCM3 subunits of MCM2-7. The results do not show a consistent decrease or increase of any of these proteins in individual mice of the two genotypes, Orc2-/- or DKO (New Fig. 2D and 6E)

      How do authors justify their claim that a very limited amount of ORC are sufficient to load a vast excess of MCM2-7 hexamers?

      The rationale is stated in the introduction from data from cancer cell lines: “Given that WT cells have about 150,000 molecules of ORC2, even if this truncated protein is functional ORC2, ~150 molecules of the protein would be expected to load MCM2-7 double hexamers on at least 50,000 origins of replication. Experimentally, we show in Shibata, 2020 (Fig. 7C), that although ORC subunits are undetectable on Westerns, MCM2-7 association with the chromatin is unchanged. By the way, we do not say “vast excess” of MCM2-7, just sufficient MCM2-7 to fire 50,000 origins.

      Minor 1. The titles of the Results section could be more informative of the main conclusion rather than simply descriptive

      We updated our Results titles to be more informative.

      The Discussion is too long

      We have shortened the discussion by removing our calculations to the Results section and abbreviating some of the discussion on endoreduplication. However we had to insert new items brough forth by the reviewers. Due to the controversy of this topic in our field, we had to include extensive discussion of current literature and put our results in their proper context.

      Significance

      The topic is relevant and the hypothesis tested is reasonable, although the conceptual advance is limited (see also below). The major limitation is the absence of mechanistic details addressing the occurrence of extra endoreduplication cycles (compared to controls) in the ORC1 and ORC2 mutants.

      Reviewer #3

      __Evidence, reproducibility and clarity: __

      The origin recognition complex (ORC) is an essential loading factor for the replicative Mcm2-7 helicase complex. Despite ORC's critical role in DNA replication, there have been instances where the loss of specific ORC subunits has still seemingly supported DNA replication in cancer cells, endocycling hepatocytes, and Drosophila polyploid cells. Critically, all tested ORC subunits are essential for development and proliferation in normal cells. This presents a challenge, as conditional knockouts need to be generated, and a skeptic can always claim that there were limiting but sufficient ORC levels for helicase loading and replication in polyploid or transformed cells. That being said, the authors have consistently pushed the system to demonstrate replication in the absence or extreme depletion of ORC subunits.

      Here, the authors generate conditional ORC2 mutants to counter a potential argument with prior conditional ORC1 mutants that Cdc6 may substitute for ORC1 function based on homology. They also generate a double ORC1 and ORC2 mutant, which is still capable of DNA replication in polyploid hepatocytes. While this manuscript provides significantly more support for the ability of select cells to replicate in the absence or near absence of select ORC subunits, it does not shed light on a potential mechanism. While a mechanistic understanding of how these cells proliferate in the absence or extreme depletion of ORC subunits is outside the scope of the current manuscript, it would have been beneficial to see more functional analyses to help guide the field. For example, is there a delay or impairment in Mcm2-7 loading in G1 (FACs-based loading assay from the Cook Lab (Matson et al., eLife. 2017)) in primary hepatocytes with the ORC2 conditional deletion? Is copy number maintained as cells increase polyploidy in the absence of ORC subunits, or are some regions of the genome more sensitive to ORC depletion (CGH arrays or sequencing of the flow-sorted polyploid cells)?

      We thank the reviewer for recognizing the main point of these experiments: to dispel the argument that CDC6 can substitute for ORC1 in the six-subunit ORC (although no one has demonstrated this, the argument is made on the basis of close sequence homology between CDC6 and ORC1). The second point, also appreciated by the reviewer is to show that it is possible to find cells that replicate in the absence or near absence of two ORC subunits.

      The mechanistic questions raised are important, and we will address them here:

      Is there a delay or impairment of MCM2-7 loading in G1? The hepatocytes in culture are fragile and not immortalized and thus, this issue can be much more easily addressed in the cancer cell lines we have made that are missing several ORC subunits and will do that in a later paper. Note however, the surprising lack of change in MCM2-7 association in cell lines where both ORC2 and ORC5 are deleted (Shibata, 2020, Fig. 7C).

      Are some regions of the genome more sensitive to ORC deletion during the polyploidization? We could not find any paper where people have investigated whether the whole genome is uniformly polyploidized in livers. In other words, the baseline conditions in WT livers have not been established. We therefore have postponed experiments to answer this question for a later paper. Note that in unpublished data from mapping SNS-seq origins in WT and ORC deletion cell lines there does not appear to be selective firing of certain origins over others in the deletion cell lines.

      Additional points: I didn't understand how the numbers were derived in Table 2. Was there really a 20-fold decrease in nuclear density for female ORC1 and ORC2 double-deletion hepatocytes? The differences in Figure S2 are dramatic, but not 20-fold dramatic.

      We measure the relative nuclear density by counting the number of plump nuclei (hepatocytes) per field as described for Fig. 5F and 7F now in the Methods section. The reviewer is correct in that we overestimated the decrease of nuclear density in the female DKO mice by two-fold. The revised calculations suggest that 6 cell divisions occur in the female DKO mice after the ORC proteins have decreased to at least __Significance: __

      The strengths of this manuscript are the mouse genetics and the generation of conditional alleles of Orc2 and the rigorous assessment of phenotypes resulting from limiting amounts of specific ORC subunits. It also builds on prior work with ORC1 to rule out Cdc6 complementing the loss of ORC1. The weakness is that it is a very hard task to resolve the fundamental question of how much ORC is enough for replication in cancer cells or hepatocytes. Clearly, there is a marked reduction in specific ORC subunits that is sufficient to impact replication during development and in fibroblasts, but the devil's advocate can always claim limiting levels of ORC remaining in these specialized cells. The significance of the work is that the authors keep improving their conditional alleles (and combining them), thus making it harder and harder (but not impossible) to invoke limiting but sufficient levels of ORC. At this point, the investigators and the field are well-positioned to attempt future functional CRISPR screens to identify other factors that may modulate the response to the loss of ORC subunits. This work will be of interest to the DNA replication, polyploidy, and genome stability communities.

      We thank the reviewer for getting the important point of this paper: “making it harder and harder (but not impossible) to invoke limiting but sufficient levels of ORC….” In other words, either ORC is completely dispensable for loading MCM2-7 in certain cancer cell lines and hepatocytes or it is highly catalytic and one molecule of ORC can load a few hundred MCM2-7 doublets so that most origins in the genome are licensed and capable of firing. We are trying the CRISPR screens in cancer cell lines that the reviewer envisages

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The manuscript considers a mechanistic extension of MacArthur's consumer-resource model to include chasing down food and potential encounters between the chasers (consumers) that lead to less efficient feeding in the form of negative feedback. After developing the model, a deterministic solution and two forms of stochastic solutions are presented, in agreement with each other. Finally, the model is applied to explain observed coexistence and rank-abundance data.

      We thank the reviewer for the accurate summary of our manuscript.

      Strengths:

      The application of the theory to natural rank-abundance curves is impressive. The comparison with the experiments that reject the competitive exclusion principle is promising. It would be fascinating to see if in, e.g. insects, the specific interference dynamics could be observed and quantified and whether they would agree with the model.

      The results are clearly presented; the methods adequately described; the supplement is rich with details.

      There is much scope to build upon this expansion of the theory of consumer-resource models. This work can open up new avenues of research.

      We appreciate the reviewer for the very positive comments. We have followed many of the suggestions raised by the reviewer, and the manuscript is much improved as a result.

      Following the reviewer’s suggestions, we have now used Shannon entropies to quantify the model comparison with experiments that reject the Competitive Exclusion Principle (CEP). Specifically, for each time point of each experimental or model-simulated community, we calculated the Shannon entropies using the formula:

      , where is the probability that a consumer individual belongs to species C<sub>i</sub> at the time stamp of t. The comparison of Shannon entropies in the time series between those of the experimental data and SSA results shown in Fig. 2D-E is presented in Appendix-fig. 7C-D. The time averages and standard deviations (δH) of the Shannon entropies for these experimental or SSA model-simulated communities are as follows:

      , ; ,

      , , .

      Meanwhile, we have calculated the time averages and standard deviations (δC<sub>i</sub>) of the species’ relative/absolute abundances for the experimental or SSA model-simulated communities shown in Fig. 2D-E, which are as follows:

      , ; , ; , , , , where the superscript “(R)” represents relative abundances.

      From the results of Shannon entropies shown in Author response image 1 (which are identical to those of Appendix-fig. 7C-D) and the quantitative comparison of the time average and standard deviation between the model and experiments presented above, it is evident that the model results in Fig. 2D-E exhibit good consistency with the experimental data. They share roughly identical time averages and standard deviations in both Shannon entropies and the species' relative/absolute abundances for most of the comparisons. All these analyses are included in the appendices and mentioned in the main text.

      Author response image 1.

      Shannon Entropies of the experimental data and SSA results in Fig. 2D-E, redrawn from Appendix-fig. 7C-D.

      Weaknesses:

      I am questioning the use of carrying capacity (Eq. 4) instead of using nutrient limitation directly through Monod consumption (e.g. Posfai et al. who the authors cite). I am curious to see how these results hold or are changed when Monod consumption is used.

      We thank the reviewer for raising this question. To explain it more clearly, the equation combining the third equation in Eq. 1 and Eq. 4 of our manuscript is presented below as Eq. R1:

      where x<sub>il</sub> represents the population abundance of the chasing pair C<sub>i</sub><sup>(P)</sup> ∨ R<sub>l</sub><sup>(P)</sup>, κ<sub>l</sub> stands for the steady-state population abundance of species R<sub>l</sub> (the carrying capacity) in the absence of consumer species. In the case with no consumer species, then x<sub>il</sub> \= 0 since C<sub>i</sub> \= 0 (i\=1,…,S<sub>C</sub>), thus R<sub>l</sub> = κ<sub>l</sub> when R<sub>l</sub> = 0.

      Eq. R1 for the case of abiotic resources is comparable to Eq. (1) in Posfai et al., which we present below as Eq. R2:

      where c<sub>i</sub> represents the concentration of nutrient i, and thus corresponds to our R<sub>l</sub> ; n<sub>σ</sub>(t) is the population of species σ, which corresponds to our C<sub>i</sub> ; s<sub>i</sub> stands for the nutrient supply rate, which corresponds to our ζl ; µi denotes the nutrient loss rate, corresponding to our is the coefficient of the rate of species σ for consuming nutrient i, which corresponds to our in Posfai et al. is the consumption rate of nutrient i by the population of species σ, which corresponds to our x<sub>il</sub>.

      In Posfai et al., is the Monod function: and thus

      In our model, however, since predator interference is not involved in Posfai et al., we need to analyze the form of x<sub>il</sub> presented in the functional form of x<sub>il</sub> ({R<sub>l</sub>},{C<sub>i</sub>}) in the case involving only chasing pairs. Specifically, for the case of abiotic resources, the population dynamics can be described by Eq. 1 combined with Eq. R1:

      where and . For convenience, we consider the case of S<sub>R</sub> \=1 where the Monod form was derived (Monod, J. (1949). Annu. Rev. Microbiol., 3, 371-394.). From , we have

      where , and l =1. If the population abundance of the resource species is much larger than that of all consumer species (i.e., ), then,

      and R<sub>l</sub><sup>(F)</sup> ≈ R<sub>l</sub>. Combined with R5, and noting that C<sub>i</sub> \= C<sub>i</sub>(F) + xil we can solve for x<sub>il</sub> :

      with l =1 since S<sub>R</sub> \=1. Comparing Eq. R6 with Eq. R3, and considering the symbol correspondence explained in the text above, it is now clear that our model can be reduced to the Monod consumption form in the case of S<sub>R</sub> \=1 where the Monod form was derived from.

      Following on the previous comment, I am confused by the fact that the nutrient consumption term in Eq. 1 and how growth is modeled (Eq. 4) are not obviously compatible and would be hard to match directly to experimentally accessible quantities such as yield (nutrient to biomass conversion ratio). Ultimately, there is a conservation of mass ("flux balance"), and therefore the dynamics must obey it. I don't quite see how conservation of mass is imposed in this work.

      We thank the reviewer for raising this question. Indeed, the population dynamics of our model must adhere to flux balance, with the most pertinent equation restated here as Eq. R7:

      Below is the explanation of how Eq. R7, and thus Eqs. 1 and 4 of our manuscript, adhere to the constraint of flux balance. The interactions and fluxes between consumer and resource species occur solely through chasing pairs. At the population level, the scenario of chasing pairs among consumer species C<sub>i</sub> and resource species R<sub>l</sub> is presented in the follow expression:

      where the superscripts "(F)" and "(P)" represent the freely wandering individuals and those involved in chasing pairs, respectively, "(+)" stands for the gaining biomass of consumer C<sub>i</sub> from resource R<sub>l</sub>. In our manuscript, we use x<sub>l</sub> to represent the population abundance (or equivalently, the concentration, for a well-mixed system with a given size) of the chasing pair C<sub>i</sub><sup>(P)</sup> ∨ R<sub>l</sub><sup>(P)</sup>, and thus, the net flow from resource species R<sub>l</sub> to consumer species C<sub>i</sub> per unit time is k<sub>il</sub>x<sub>il</sub>. Noting that there is only one R<sub>l</sub> individual within the chasing pair C<sub>i</sub><sup>(P)</sup> ∨ R<sub>l</sub><sup>(P)</sup>, then the net effect on the population dynamics of species is −k<sub>il</sub>x<sub>il</sub>. However, since a consumer individual from species C<sub>i</sub> could be much heavier than a species R<sub>l</sub> individual, and energy dissipation would be involved from nutrient conversion into biomass, we introduce a mass conversion ratio w<sub>l</sub> in our manuscript. For example, if a species C<sub>i</sub> individual is ten times the weight of a species R<sub>l</sub> individual, without energy dissipation, the mass conversion ratio wil should be 1/10 (i.e., wil \= 0.1 ), however, if half of the chemical energy is dissipated into heat from nutrient conversion into biomass, then w<sub>l</sub> \= 0.1 0.5× = 0.05. Consequently, the net effect of the flux from resource species _R_l to consumer species C<sub>i</sub> per unit time on the population dynamics is , and flux balance is clearly satisfied.

      For the population dynamics of a consumer species C<sub>i</sub>, we need to consider all the biomass influx from different resource species, and thus there is a summation over all species of resources, which leads to the term of in Eq. R7. Similarly, for the population dynamics of a resource species R<sub>l</sub>, we need to lump sum all the biomass outflow into different consumer species, resulting in the term of in Eq. R7.

      Consequently, Eq. R7 and our model satisfy the constraint of flux balance.

      These models could be better constrained by more data, in principle, thereby potential exists for a more compelling case of the relevance of this interference mechanism to natural systems.

      We thank the reviewer for raising this question. Indeed, our model could benefit from the inclusion of more experimental data. In our manuscript, we primarily set the parameters by estimating their reasonable range. Following the reviewer's suggestions, we have now specified the data we used to set the parameters. For example, in Fig. 2D, we set 𝐷<sub>2</sub>\=0.01 with τ=0.4 days, resulting in an expected lifespan of Drosophila serrata in our model setting of 𝜏⁄𝐷<sub>2</sub>\= 40 days, which roughly agrees with experimental data showing that the average lifespan of D. serrata is 34 days for males and 54 days for females (lines 321-325 in the appendices; reference: Narayan et al. J Evol Biol. 35: 657–663 (2022)). To explain biodiversity and quantitatively illustrate the rank-abundance curves across diverse communities, the competitive differences across consumer species, exemplified by the coefficient of variation of the mortality rates - a key parameter influencing the rank-abundance curve, were estimated from experimental data in the reference article (Patricia Menon et al., Water Research (2003) 37, 4151) using the two-sigma rule (lines 344-347 in the appendices).

      Still, we admit that many factors other than intraspecific interference, such as temporal variation, spatial heterogeneity, etc., are involved in breaking the limits of CEP in natural systems, and it is still challenging to differentiate each contribution in wild systems. However, for the two classical experiments that break CEP (Francisco Ayala, 1969; Thomas Park, 1954), intraspecific interference could probably be the most relevant mechanism, since factors such as temporal variation, spatial heterogeneity, cross-feeding, and metabolic tradeoffs are not involved in those two experimental systems.

      The underlying frameworks, B-D and MacArthur are not properly exposed in the introduction, and as a result, it is not obvious what is the specific contribution in this work as opposed to existing literature. One needs to dig into the literature a bit for that.

      The specific contribution exists, but it might be more clearly separated and better explained. In the process, the introduction could be expanded a bit to make the paper more accessible, by reviewing key features from the literature that are used in this manuscript.

      We thank the reviewer for these very insightful suggestions. Following these suggestions, we have now added a new paragraph and revised the introduction part of our manuscript (lines 51-67 in the main text) to address the relevant issues. Our paper is much improved as a result.

      Reviewer #2 (Public Review):

      Summary:

      The manuscript by Kang et al investigates how the consideration of pairwise encounters (consumer-resource chasing, intraspecific consumer pair, and interspecific consumer pair) influences the community assembly results. To explore this, they presented a new model that considers pairwise encounters and intraspecific interference among consumer individuals, which is an extension of the classical Beddington-DeAngelis (BD) phenomenological model, incorporating detailed considerations of pairwise encounters and intraspecific interference among consumer individuals. Later, they connected with several experimental datasets.

      Strengths:

      They found that the negative feedback loop created by the intraspecific interference allows a diverse range of consumer species to coexist with only one or a few types of resources. Additionally, they showed that some patterns of their model agree with experimental data, including time-series trajectories of two small in-lab community experiments and the rank-abundance curves from several natural communities. The presented results here are interesting and present another way to explain how the community overcomes the competitive exclusion principle.

      We appreciate the reviewer for the positive comments and the accurate summary of our manuscript.

      Weaknesses:

      The authors only explore the case with interspecific interference or intraspecific interference exists. I believe they need to systematically investigate the case when both interspecific and intraspecific interference exists. In addition, the text description, figures, and mathematical notations have to be improved to enhance the article's readability. I believe this manuscript can be improved by addressing my comments, which I describe in more detail below.

      We thank the reviewer for these valuable suggestions. We have followed many of the suggestions raised by the reviewer, and the manuscript is much improved as a result.

      (1) In nature, it is really hard for me to believe that only interspecific interference or intraspecific interference exists. I think a hybrid between interspecific interference and intraspecific interference is very likely. What would happen if both the interspecific and intraspecific interference existed at the same time but with different encounter rates? Maybe the authors can systematically explore the hybrid between the two mechanisms by changing their encounter rates. I would appreciate it if the authors could explore this route.

      We thank the reviewer for raising this question. Indeed, interspecific interference and intraspecific interference simultaneously exist in real cases. To differentiate the separate contributions of inter- and intra-specific interference on biodiversity, we considered different scenarios involving inter- or intra-specific interference. In fact, we have also considered the scenario involving both inter- and intra-specific interference in our old version for the case of S<sub>C</sub> = 2 and S<sub>R</sub> = 1, where two consumer species compete for one resource species (Appendix-fig. 5, and lines 147-148, 162-163 in the main text of the old version, or lines 160-161, 175-177 in the new version).

      Following the reviewer’s suggestions, we have now systematically investigated the cases of S<sub>C</sub> = 6, S<sub>R</sub> = 1, and S<sub>C</sub> = 20, S<sub>R</sub> = 1, where six or twenty consumer species compete for one resource species in scenarios involving chasing pairs and both inter- and intra-specific interference using both ordinary differential equations (ODEs) and stochastic simulation algorithm (SSA). These newly added ODE and SSA results are shown in Appendix-fig. 5 F-H, and we have added a new paragraph to describe these results in our manuscript (lines 212-215 in the main text). Consistent with our findings in the case of S<sub>C</sub> = 2 and S<sub>R</sub> = 1, the species coexistence behavior in the cases of both S<sub>C</sub> = 6, S<sub>R</sub> = 1, and S<sub>C</sub> = 20, S<sub>R</sub> = 1 is very similar to those without interspecific interference: all consumer species coexist with one type of resources at constant population densities in the ODE studies, and the SSA results fluctuate around the population dynamics of the ODEs.

      As for the encounter rates of interspecific and intraspecific interference, in fact, in a well-mixed system, these encounter rates can be derived from the mobility rates of the consumer species using the mean field method. For a system with a size of L2, the interspecific encounter rate between consumer species C<sub>i</sub> and C<sub>j</sub> (ij) is please refer to lines 100-102, 293-317 in the main text, and see also Appendix-fig. 1), where r<sup>(I)</sup> is the upper distance for interference, while v<sub>C<sub>i</sub></sub> and v<sub>C<sub>j</sub></sub> represent the mobility rates of species C<sub>i</sub> and C<sub>j</sub>, respectively. Meanwhile, the intraspecific encounter rates within species C<sub>i</sub> and species C<sub>j</sub> are and , respectively.

      Thus, once the intraspecific encounter rates a’<sub>ii</sub> are a’<sub>jj</sub> given, the interspecific encounter rate between species C<sub>i</sub> and C<sub>j</sub> is determined. Consequently, we could not tune the encounter rates of interspecific and intraspecific interference at will in our study, especially noting that for clarity reasons, we have used the mortality rate as the only parameter that varies among the consumer species throughout this study. Alternatively, we have made a systematic study on analyzing the influence of varying the separate rate and escape rate on species coexistence in the case of two consumers competing for a single type of resources (see Appendix-fig. 5A).

      (2) In the first two paragraphs of the introduction, the authors describe the competitive exclusion principle (CEP) and past attempts to overcome the CEP. Moving on from the first two paragraphs to the third paragraph, I think there is a gap that needs to be filled to make the transition smoother and help readers understand the motivations. More specifically, I think the authors need to add one more paragraph dedicated to explaining why predator interference is important, how considering the mechanism of predator interference may help overcome the CEP, and whether predator interference has been investigated or under-investigated in the past. Then building upon the more detailed introduction and movement of predator interference, the authors may briefly introduce the classical B-D phenomenological model and what are the conventional results derived from the classical B-D model as well as how they intend to extend the B-D model to consider the pairwise encounters.

      We thank the reviewer for these very insightful suggestions. Following these suggestions, we have added a new paragraph and revised the introduction part of our paper (lines 51-67 in the main text). Our manuscript is significantly improved as a result.

      (3) The notations for the species abundances are not very informative. I believe some improvements can be made to make them more meaningful. For example, I think using Greek letters for consumers and English letters for resources might improve readability. Some sub-scripts are not necessary. For instance, R^(l)_0 can be simplified to g_l to denote the intrinsic growth rate of resource l. Similarly, K^(l)_0 can be simplified to K_l. Another example is R^(l)_a, which can be simplified to s_l to denote the supply rate. In addition, right now, it is hard to find all definitions across the text. I would suggest adding a separate illustrative box with all mathematical equations and explanations of symbols.

      We thank the reviewer for these very useful suggestions. We have now followed many of the suggestions to improve the readability of our manuscript. Given that we have used many English letters for consumers and there are already many symbols of English and Greek letters for different variables and parameters in the appendices, we have opted to use Greek letters for parameters specific to resource species and English letters for those specific to consumer species. Additionally, we have now added Appendix-tables 1-2 in the appendices (pages 16-17 in the appendices) to illustrate the symbols used throughout our manuscript.

      (4) What is the f_i(R^(F)) on line 131? Does it refer to the growth rate of C_i? I noticed that f_i(R^(F)) is defined in the supplementary information. But please ensure that readers can understand it even without reading the supplementary information. Otherwise, please directly refer to the supplementary information when f_i(R^(F)) occurs for the first time. Similarly, I don't think the readers can understand \Omega^\prime_i and G^\prime_i on lines 135-136.

      We thank the reviewer for raising these questions. We apologize for not illustrating those symbols and functions clearly enough in our previous version of the manuscript. f<sub>i</sub>R<sup>(F)</sup>⟯ is a function of the variable R<sup>(F)</sup> with the index i, which is defined as and for i=2. Following the reviewer’s suggestions, we have now added clear definitions for symbols and functions and resolved these issues. The definitions of \Omega_i, \Omega^\prime_i, G, and G^\prime are overly complex, and hence we directly refer to the Appendices when they occur for the first time in the main text.

      Reviewer #3 (Public Review):

      Summary:

      A central question in ecology is: Why are there so many species? This question gained heightened interest after the development of influential models in theoretical ecology in the 1960s, demonstrating that under certain conditions, two consumer species cannot coexist on the same resource. Since then, several mechanisms have been shown to be capable of breaking the competitive exclusion principle (although, we still lack a general understanding of the relative importance of the various mechanisms in promoting biodiversity).

      One mechanism that allows for breaking the competitive exclusion principle is predator interference. The Beddington-DeAngelis is a simple model that accounts for predator interference in the functional response of a predator. The B-D model is based on the idea that when two predators encounter one another, they waste some time engaging with one another which could otherwise be used to search for resources. While the model has been influential in theoretical ecology, it has also been criticized at times for several unusual assumptions, most critically, that predators interfere with each other regardless of whether they are already engaged in another interaction. However, there has been considerable work since then which has sought either to find sets of assumptions that lead to the B-D equation or to derive alternative equations from a more realistic set of assumptions (Ruxton et al. 1992; Cosner et al. 1999; Broom et al. 2010; Geritz and Gyllenberg 2012). This paper represents another attempt to more rigorously derive a model of predator interference by borrowing concepts from chemical reaction kinetics (the approach is similar to previous work: Ruxton et al. 1992). The main point of difference is that the model in the current manuscript allows for 'chasing pairs', where a predator and prey engage with one another to the exclusion of other interactions, a situation Ruxton et al. (1992) do not consider. While the resulting functional response is quite complex, the authors show that under certain conditions, one can get an analytical expression for the functional response of a predator as a function of predator and resource densities. They then go on to show that including intraspecific interference allows for the coexistence of multiple species on one or a few resources, and demonstrate that this result is robust to demographic stochasticity.

      We thank the reviewer for carefully reading our manuscript and for the positive comments on the rigorously derived model of predator interference presented in our paper. We also appreciate the reviewer for providing a thorough introduction to the research background of our study, especially the studies related to the BeddingtonDeAngelis model. We apologize for our oversight in not fully appreciating the related study by Ruxton et al. (1992) at the time of our first submission. Indeed, as suggested by the reviewer, Ruxton et al. (1992) is relevant to our study in that we both borrowed concepts from chemical reaction kinetics. Now, we have reworked the introduction and discussion sections of our manuscript, cited, and acknowledged the contributions of related works, including Ruxton et al. (1992).

      Strengths:

      I appreciate the effort to rigorously derive interaction rates from models of individual behaviors. As currently applied, functional responses (FRs) are estimated by fitting equations to feeding rate data across a range of prey or predator densities. In practice, such experiments are only possible for a limited set of species. This is problematic because whether a particular FR allows stability or coexistence depends on not just its functional form, but also its parameter values. The promise of the approach taken here is that one might be able to derive the functional response parameters of a particular predator species from species traits or more readily measurable behavioral data.

      We appreciate the reviewer's positive comments regarding the rigorous derivation of our model. Indeed, all parameters of our model can be derived from measurable behavioral data for a specific set of predator species.

      Weaknesses:

      The main weakness of this paper is that it devotes the vast majority of its length to demonstrating results that are already widely known in ecology. We have known for some time that predator interference can relax the CEP (e.g., Cantrell, R. S., Cosner, C., & Ruan, S. 2004).

      While the model presented in this paper differs from the functional form of the B-D in some cases, it would be difficult to formulate a model that includes intraspecific interference (that increases with predator density) that does not allow for coexistence under some parameter range. Thus, I find it strange that most of the main text of the paper deals with demonstrating that predator interference allows for coexistence, given that this result is already well known. A more useful contribution would focus on the extent to which the dynamics of this model differ from those of the B-D model.

      We appreciate the reviewer for raising this question and apologize for not sufficiently clarifying the contribution of our manuscript in the context of existing knowledge upon our initial submission. We have now significantly revised the introduction part of our manuscript (lines 51-67 in the main text) to make this clearer. Indeed, with the application of the Beddington-DeAngelis (B-D) model, several studies (e.g., Cantrell, R. S., Cosner, C., & Ruan, S. 2004) have already shown that intraspecific interference promotes species coexistence, and it is certain that the mechanism of intraspecific interference could lead to species coexistence if modeled correctly. However, while we acknowledge that the B-D model is a brilliant phenomenological model of intraspecific interference, for the specific research topic of our manuscript on breaking the CEP and explaining the paradox of the plankton, it is highly questionable regarding the validity of applying the B-D model to obtain compelling results.

      Specifically, the functional response in the B-D model of intraspecific interference can be formally derived from the scenario involving only chasing pairs without consideration of pairwise encounters between consumer individuals (Eq. S8 in Appendices; related references: Gert Huisman, Rob J De Boer, J. Theor. Biol. 185, 389 (1997) and Xin Wang and Yang-Yu Liu, iScience 23, 101009 (2020)). Since we have demonstrated that the scenario involving only chasing pairs is under the constraint of CEP (see lines 139-144 in the main text and Appendix-fig. 3A-C; related references: Xin Wang and Yang-Yu Liu, iScience 23, 101009 (2020)), and given the identical functional response mentioned above, it is thus highly questionable regarding the validity of the studies relying on the B-D model to break CEP or explain the paradox of the plankton.

      Consequently, one of the major objectives of our manuscript is to resolve whether the mechanism of intraspecific interference can truly break CEP and explain the paradox of the plankton in a rigorous manner. By modeling intraspecific predator interference from a mechanistic perspective and applying rigorous mathematical analysis and numerical simulations, our work resolves these issues and demonstrates that intraspecific interference enables a wide range of consumer species to coexist with only one or a handful of resource species. This naturally breaks CEP, explains the paradox of plankton, and quantitatively illustrates a broad spectrum of experimental results.

      For intuitive understanding, we introduced a functional response in our model (presented as Eq. 5 in the main text), which indeed involves approximations. However, to rigorously break the CEP or explain the paradox of plankton, all simulation results in our study were directly derived from equations 1 to 4 (main text), without relying on the approximate functional response presented in Eq. 5.

      The formulation of chasing-pair engagements assumes that prey being chased by a predator are unavailable to other predators. For one, this seems inconsistent with the ecology of most predator-prey systems. In the system in which I work (coral reef fishes), prey under attack by one predator are much more likely to be attacked by other predators (whether it be a predator of the same species or otherwise). I find it challenging to think of a mechanism that would give rise to chased prey being unavailable to other predators. The authors also critique the B-D model: "However, the functional response of the B-D model involving intraspecific interference can be formally derived from the scenario involving only chasing pairs without predator interference (Wang and Liu, 2020; Huisman and De Boer, 1997) (see Eqs. S8 and S24). Therefore, the validity of applying the B-D model to break the CEP is questionable.".

      We appreciate the reviewer for raising this question. We fully agree with the reviewer that in many predator-prey systems (e.g., coral reef fishes as mentioned by the reviewer, wolves, and even microbial species such as Myxococcus xanthus; related references: Berleman et al., FEMS Microbiol. Rev. 33, 942-957 (2009)), prey under attack by one predator can be targeted by another predator (which we term as a chasing triplet) or even by additional predator individuals (which we define as higher-order terms). However, since we have already demonstrated in a previous study (Xin Wang, Yang-Yu Liu, iScience 23, 101009 (2020)) from a mechanistic perspective that a scenario involving chasing triplets or higher-order terms can naturally break the CEP, while our manuscript focuses on whether pairwise encounters between individuals can break the CEP and explain the paradox of plankton, we deliberately excluded confounding factors that are already known to promote biodiversity, just as we excluded prevalent factors such as cross-feeding and temporal variations in our model.

      However, the way "chasing pairs" are formulated does result in predator interference because a predator attacking prey interferes with the ability of other predators to encounter the prey. I don't follow the author's logic that B-D isn't a valid explanation for coexistence because a model incorporating chasing pairs engagements results in the same functional form as B-D.

      We thank the reviewer for raising this question, and we apologize for not making this point clear enough at the time of our initial submission. We have now revised the related part of our manuscript (lines 56-62 in the main text) to make this clearer.

      In our definition, predator interference means the pairwise encounter between consumer individuals, while a chasing pair is formed by a pairwise encounter between a consumer individual and a resource individual. Thus, in these definitions, a scenario involving only chasing pairs does not involve pairwise encounters between consumer individuals (which is our definition of predator interference).

      We acknowledge that there can be different definitions of predator interference, and the reviewer's interpretation is based on a definition of predator interference that incorporates indirect interference without pairwise encounters between consumer individuals. We do not wish to argue about the appropriateness of definitions. However, since we have proven that scenarios involving only chasing pairs are under the constraint of CEP (see lines 139-144 in the main text and Appendix-fig. 3A-C; related references: Xin Wang and Yang-Yu Liu, iScience 23, 101009 (2020)), while the functional response of the B-D model can be derived from the scenario involving only chasing pairs without consideration of pairwise encounters between consumer individuals (Eq. S8 in Appendices; related references: Gert Huisman, Rob J De Boer, J. Theor. Biol. 185, 389 (1997) and Xin Wang and Yang-Yu Liu, iScience 23, 101009 (2020)), it is thus highly questionable regarding the validity of applying the B-D model to break CEP.

      More broadly, the specific functional form used to model predator interference is of secondary importance to the general insight that intraspecific interference (however it is modeled) can allow for coexistence. Mechanisms of predator interference are complex and vary substantially across species. Thus it is unlikely that any one specific functional form is generally applicable.

      We thank the reviewer for raising this issue. We agree that the general insight that intraspecific predator interference can facilitate species coexistence is of great importance. We also acknowledge that any functional form of a functional response is unlikely to be universally applicable, as explicit functional responses inevitably involve approximations. However, we must reemphasize the importance of verifying whether intraspecific predator interference can truly break CEP and explain the paradox of plankton, which is one of the primary objectives of our study. As mentioned above, since the B-D model can be derived from the scenario involving only chasing pairs (Eq. S8 in Appendices; related references: Gert Huisman, Rob J De Boer, J. Theor. Biol. 185, 389 (1997) and Xin Wang and Yang-Yu Liu, iScience 23, 101009 (2020)), while we have demonstrated that scenarios involving only chasing pairs are subject to the constraint of CEP (see lines 139-144 in the main text and Appendix-fig. 3A-C; related references: Xin Wang and Yang-Yu Liu, iScience 23, 101009 (2020)), it is highly questionable regarding the validity of applying the B-D model to break CEP.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      I do not see any code or data sharing. They should exist in a prominent place. The authors should make their simulations and the analysis scripts freely available to download, e.g. by GitHub. This is always true but especially so in a journal like eLife.

      We appreciate the reviewer for these recommendations. We apologize for our oversight regarding the unsuccessful upload of the data in our initial submission, as the data size was considerable and we neglected to double-check for this issue. Following the reviewer’s recommendation, we have now uploaded the code and dataset to GitHub (accessible at https://github.com/SchordK/Intraspecific-predator-interference-promotesbiodiversity-in-ecosystems), where they are freely available for download.

      The introduction section should include more background, including about BD but also about consumer-resource models. Part of the results section could be moved/edited to the introduction. You should try that the results section should contain only "new" stuff whereas the "old" stuff should go in the introduction.

      We thank the reviewer for these recommendations. Following these suggestions, we have now reorganized our manuscript by adding a new paragraph to the introduction section (lines 51-62 in the main text) and revising related content in both the introduction and results sections (lines 63-67, 81-83 in the main text).

      I found myself getting a little bogged down in the general/formal description of the model before you go to specific cases. I found the most interesting part of the paper to be its second half. This is a dangerous strategy, a casual reader may miss out on the most interesting part of the paper. It's your paper and do what you think is best, but my opinion is that you could improve the presentation of the model and background to get to the specific contribution and specific use case quickly and easily, then immediately to the data. You can leave the more general formulation and the details to later in the paper or even the appendix. Ultimately, you have a simple idea and a beautiful application on interesting data-that is your strength I think, and so, I would focus on that.

      We appreciate the reviewer for the positive comments and valuable suggestions. Following these recommendations, we have revised the presentation of the background information to clarify the contribution of our manuscript, and we have refined our model presentation to enhance clarity. Meanwhile, as we need to address the concerns raised by other reviewers, we continue to maintain systematic investigations for scenarios involving different forms of pairwise encounters in the case of S<sub>C</sub> = 2 and S<sub>R</sub> = 1 before applying our model to the experimental data.

      Reviewer #2 (Recommendations For The Authors):

      (1) I believe the surfaces in Figs. 1F-H corresponds to the zero-growth isoclines. The authors should directly point it out in the figure captions and text descriptions.

      We thank the reviewer for this suggestion, and we have followed it to address the issue.

      (2) After showing equations 1 or 2, I believe it will help readers understand the mechanism of equations by adding text such as "(see Fig. 1B)" to the sentences following the equations.

      We appreciate the reviewer's suggestion, and we have implemented it to address the issue.

      (3) Lines 12, 129 143 & 188: "at steady state" -> "at a steady state"

      (4) Line 138: "is doom to extinct" -> "is doomed to extinct"

      (5) Line 170: "intraspecific interference promotes species coexistence along with stochasticity" -> "intraspecific interference still robustly promotes species coexistence when stochasticity is considered"

      (6) Line 190: "The long-term coexistence behavior are exemplified" -> "The long-term coexistence behavior is exemplified"

      (7) Line 227: "the coefficient of variation was taken round 0.3" -> "the coefficient of variation was taken around 0.3"?

      (8) Line 235: "tend to extinct" -> "tend to be extinct"

      We thank the reviewer for all these suggestions, and we have implemented each of them to revise our manuscript.

      Reviewer #3 (Recommendations For The Authors):

      I think this would be a much more useful paper if the authors focused on how the behavior of this model differs from existing models rather than showing that the new formation also generates the same dynamics as the existing theory.

      We thank the reviewers for this suggestion, and we apologize for not explaining the limitations of the B-D model and the related studies on the topic of CEP clearly enough at the time of our initial submission. As we have explained in the responses above, we have now revised the introduction part of our manuscript (lines 5167 in the main text) to make it clear that since the functional response in the B-D model can be derived from the scenario involving only chasing pairs without consideration of pairwise encounters between consumer individuals, while we have demonstrated that a scenario involving only chasing pairs is under the constraint of CEP, it is thus highly questionable regarding the validity of the studies relying on the B-D model to break CEP or explain the paradox of the plankton. Consequently, one of the major objectives of our manuscript is to resolve whether the mechanism of intraspecific interference can truly break CEP and explain the paradox of the plankton in a rigorous manner. By modeling from a mechanistic perspective, we resolve the above issues and quantitatively illustrate a broad spectrum of experimental results, including two classical experiments that violate CEP and the rank-abundance curves across diverse ecological communities.

      Things that would be of interest:

      What are the conditions for coexistence in this model? Presumably, it depends heavily on the equilibrium abundances of the consumers and resources as well as the engagement times/rates.

      We thank the reviewer for raising this question. We have shown that there is a wide range of parameter space for species coexistence in our model. Specifically, for the case involving two consumer species and one resource species (S<sub>C</sub> = 2 and S<sub>R</sub> \= 1), we have conducted a systematic study on the parameter region for promoting species coexistence. For clarity, we set the mortality rate 𝐷<sub>i</sub> (i = 1, 2) as the only parameter that varies with the consumer species, and the order of magnitude of all model parameters was estimated from behavioral data. The results for scenarios involving intraspecific predator interference are shown in Appendix-figs. 4B-D, 5A, 6C-D and we redraw some of them here as Fig. R2, including both ODEs and SSA results, wherein Δ = (𝐷<sub>1</sub>-𝐷<sub>2</sub>)/ 𝐷<sub>2</sub> represents the competitive difference between the two consumer species. For example, Δ =1 means that species C2 is twice the competitiveness of species C<sub>1</sub>. In Fig. R2 (see also Appendix-figs. 4B-D, 5A, 6C-D), we see that the two consumer species can coexist with a large competitive difference in either ODEs and SSA simulation studies.

      Author response image 2.

      The parameter region for two consumer species coexisting with one type of abiotic resource species (S<sub>C</sub> =2 and S<sub>R</sub> \=1). (A) The region below the blue surface and above the red surface represents stable coexistence of the three species at constant population densities. (B) The blue region represents stable coexistence at a steady state for the three species. (C) The color indicates (refer to the color bar) the coexisting fraction for long-term coexistence of the three species. Figure redrawn from Appendixfigs. 4B, 6C-D.

      For systems shown in Fig. 3A-D, where the number of consumer species is much larger than that of the resource species, we set each consumer species with unique competitiveness through a distinctive 𝐷<sub>i</sub> (i =1,…, S<sub>C</sub>). In Fig. 3A-D (see also Appendix fig. 10), we see that hundreds of consumer species may coexist with one or three types of resources when the coefficient of variation (CV) of the consumer species’ competitiveness was taken around 0.3, which indicates a large parameter region for promoting species coexistence.

      Is there existing data to estimate the parameters in the model directly from behavioral data? Do these parameter ranges support the hypothesis that predator interference is significant enough to allow for the coexistence of natural predator populations?

      We appreciate the reviewer for raising this question. Indeed, the parameters in our model were primarily determined by estimating their reasonable range from behavioral data. Following the reviewer's suggestions, we have now specified the data we used to set the parameters. For instance, in Fig. 2D, we set 𝐷<sub>2</sub>\=0.01 with τ=0.4 Day, resulting in an expected lifespan of Drosophila serrata in our model setting of 𝜏⁄𝐷<sub>2</sub>\= 40 days, which roughly agrees with experimental behavioral data showing that the average lifespan of D. serrata is 34 days for males and 54 days for females (lines 321325 in the appendices; reference: Narayan et al. J Evol Biol. 35: 657–663 (2022)). To account for competitive differences, we set the mortality rate as the only parameter that varies among the consumer species. As specified in the Appendices, the CV of the mortality rate is the only parameter that was used to fit the experiments within the range of 0.15-0.43. This parameter range (i.e., 0.15-0.43) was directly estimated from experimental data in the reference article (Patricia Menon et al., Water Research 37, 4151(2003)) using the two-sigma rule (lines 344-347 in the appendices).

      Given the high consistency between the model results and experiments shown in Figs. 2D-E and 3C-D, where all the key model parameters were estimated from experimental data in references, and considering that the rank-abundance curves shown in Fig. 3C-D include a wide range of ecological communities, there is no doubt that predator interference is significant enough to allow for the coexistence of natural predator populations within the parameter ranges estimated from experimental references.

      Bifurcation analyses for the novel parameters of this model. Does the fact that prey can escape lead to qualitatively different model behaviors?

      Author response image 3.

      Bifurcation analyses for the separate rate d’<sub>i</sub> and escape rate d<sub>i</sub> (i =1, 2) of our model in the case of two consumer species competing for one abiotic resource species (S<sub>C</sub> =2 and S<sub>R</sub> \=1). (A) A 3D representation: the region above the blue surface signifies competitive exclusion where C<sub>1</sub> species extinct, while the region below the blue surface and above the red surface represents stable coexistence of the three species at constant population densities. (B) a 2D representation: the blue region represents stable coexistence at a steady state for the three species. Figure redrawn from Appendix-fig. 4C-D.

      We appreciate the reviewer for this suggestion. Following this suggestion, we have conducted bifurcation analyses for the separate rate d’<sub>i</sub> and escape rate d<sub>i</sub> of our model in the case where two consumer species compete for one resource species (S<sub>C</sub> =2 and S<sub>R</sub> \=1). Both 2D and 3D representations of these results have been included in Appendix-fig. 4, and we redraw them here as Fig. R3. In Fig. R3, we set the mortality rate 𝐷<sub>i</sub> (i =1, 2) as the only parameter that varies between the consumer species, and thus Δ = _(D1-𝐷<sub>2</sub>)/𝐷<sub>2</sub> represents the competitive difference between the two species.

      As shown in Fig. R3A-B, the smaller the escape rate d<sub>i</sub>, the larger the competitive difference Δ tolerated for species coexistence at steady state. A similar trend is observed for the separate rate d’<sub>i</sub>. However, there is an abrupt change for both 2D and 3D representations at the area where d’<sub>i</sub> =0, since if d’<sub>i</sub> =0, all consumer individuals would be trapped in interference pairs, and then no consumer species could exist. On the contrary, there is no abrupt change for both 2D and 3D representations at the area where d<sub>i</sub>\=0, since even if d<sub>i</sub>\=0, the consumer individuals could still leave the chasing pair through the capture process.

      Figures: I found the 3D plots especially Appendix Figure 2 very difficult to interpret. I think 2D plots with multiple lines to represent predator densities would be more clear.

      We thank the reviewer for this suggestion. Following this suggestion, we have added a 2D diagram to Appendix-fig. 2.

    1. Author response:

      “Overall, the paper has several strengths, including leveraging large-scale, multi-modal datasets, using computational reasonable tools, and having an in-depth discussion of the significant results.”

      We thank the reviewer for the very supportive comments.

      Based on the comments and questions, we have grouped the concerns and corresponding responses into three categories.

      (1) The scope and data selection

      “The results are somewhat inconclusive or not validated.

      The overall results are carefully designed, but most of the results are descriptive. While the authors are able to find additional evidence either from the literature or explain the results with their existing knowledge, none of the results have been biologically validated. Especially, the last three result sections (signaling pathways, eQTLs, and TF binding) further extended their findings, but the authors did not put the major results into any of the figures in the main text.”

      The goal of this manuscript is to provide a list of putative childhood obesity target genes to yield new insights and help drive further experimentation. Moreover, the outputs from signaling pathways, eQTLs, and TF binding, although noteworthy and supportive of our method, were not particularly novel. In our manuscript we placed our focus on the novel findings from the analyses. We did, however, report the part of the eQTLs analysis concerning ADCY3, which brought new insight to the pathology of obesity, in Figure 4C.

      “The manuscript would benefit from an explanation regarding the rationale behind the selection of the 57 human cell types analyzed. it is essential to clarify whether these cell types have unique functions or relevance to childhood development and obesity.”

      We elected to comprehensively investigate the GWAS-informed cellular underpinnings of childhood development and obesity. By including a diverse range of cell types from different tissues and organs, we sought to capture the multifaceted nature of cellular contributions to obesity-related mechanisms, and open new avenues for targeted therapeutic interventions.

      There are clearly cell types that are already established as being key to the pathogenesis of obesity when dysregulated: adipocytes for energy storage, immune cell types regulating inflammation and metabolic homeostasis, hepatocytes regulating lipid metabolism, pancreatic cell types intricately involved in glucose and lipid metabolism, skeletal muscle for glucose uptake and metabolism, and brain cell types in the regulation of appetite, energy expenditure, and metabolic homeostasis.

      While it is practical to focus on cell types already proven to be associated with or relevant to obesity, this approach has its limitations. It confines our understanding to established knowledge and rules out the potential for discovering novel insights from new cellular mechanisms or pathways that could play significant roles in the pathogenesis if obesity. Therefore, it is was essential to reflect known biology against the unexplored cell types to expand our overall understanding and potentially identify innovative targets for treatment or prevention.

      “I wonder whether the used epigenome datasets are all from children. Although the authors use literature to support that body weight and obesity remain stable from infancy to adulthood, it remains uncertain whether epigenomic data from other life stages might overlook significant genetic variants that uniquely contribute to childhood obesity.”

      The datasets utilized in our study were derived from a combination of sources, both pediatric and adult. We recognize that epigenetic profiles can vary across different life stages but our principal effort was to characterize susceptibility BEFORE disease onset.

      “Given that the GTEx tissue samples are derived from adult donors, there appears to be a mismatch with the study's focus on childhood obesity. If possible, identifying alternative validation strategies or datasets more closely related to the pediatric population could strengthen the study's findings.” 

      We thank the reviewer for raising this important point. We acknowledge that the GTEx tissue samples are derived from adult donors, which might not perfectly align with the study's focus on childhood obesity. The ideal strategy would be a longitudinal design that follows individuals from childhood into adulthood to bridge the gap between pediatric and adult data, offering systematic insights into how early-life epigenetic markers influencing obesity later in life. In future work, we aim to carry out such efforts, which will represent substantial time and financial commitment.

      Along the same lines, the Developmental Genotype-Tissue Expression (dGTEx) Project is a new effort to study development-specific genetic effects on gene expression at 4 developmental windows spanning from infant to post-puberty (0-18 years). Donor recruitment began in August 2023 and remains ongoing. Tissue characterization and data production are underway. We hope that with the establishment of this resource, our future research in the field of pediatric health will be further enhanced.

      “Figure 1B: in subplots c and d, the results are either from Hi-C or capture-C. Although the authors use different colors to denote them, I cannot help wondering how much difference between Hi-C and capture-C brings in. Did the authors explore the difference between the Hi-C and capture-C?”.

      Thank you for your comment. It is not within the scope of our paper to explore the differences between the Hi-C and Capture-C methods. In the context of our study, both methods serve the same purpose of detecting chromatin loops that bring putative enhancers to sometimes genomically distant gene promoters. Consequently, our focus was on utilizing these methods to identify relevant chromatin interactions rather than comparing their technical differences.

      (2) Details on defining different categories of the regions of interest

      “Some technical details are missing.

      While the authors described all of their analysis steps, a lot of the time, they did not mention the motivation. Sometimes, the details were also omitted.”

      We will add a section to the revision to address the rationale behind different OCRs categories.

      “Line 129: should "-1,500/+500bp" be "-500/+500bp"? 

      A gene promoter was defined as a region 1,500 bases upstream to 500 bases downstream of the TSS. Most transcription factor binding sites are distributes upstream (5’) from TSS, and the assembly of transcription machinery occurs up to 1000 bases 5’ from TSS. Given our interest in SNPs that can potentially disrupt transcription factor binding, this defined promoter length allowed us to capture such SNPs in our analyses.

      “How did the authors define a contact region?”

      Chromatin contact regions identified by Hi-C or Capture-C assays are always reported as pairs of chromatin regions. The Supplementary eMethods provide details on the method of processing and interaction calling from the Hi-C and Capture-C data.

      “The manuscript would benefit from a detailed explanation of the methods used to define cREs, particularly the process of intersecting OCRs with chromatin conformation data. The current description does not fully clarify how the cREs are defined.”

      “In the result section titled "Consistency and diversity of childhood obesity proxy variants mapped to cREs", the authors introduced the different types of cREs in the context of open chromatin regions and chromatin contact regions, and TSS. Figure 2A is helpful in some way, but more explanation is definitely needed. For example, it seems that the authors introduced three chromatin contacts on purpose, but I did not quite get the overall motivation.”

      We apologize for the confusion. Our definition of cREs is consistent throughout the study. Figure 2A will be the first Figure 1A in the revision in order to aid the reader.

      The 3 representative chromatin loops illustrate different ways the chromatin contact regions (pairs of blue regions under blue arcs) can overlap with OCRs (yellow regions under yellow triangles – ATAC peaks) and gene promoters.

      [1] The first chromatin loop has one contact region that overlaps with OCRs at one end and with the gene promoter at the other. This satisfies the formation of cREs; thus, the area under the yellow ATAC-peak triangle is green.

      [2] The second loop only overlapped with OCR at one end, and there was no gene promoter nearby, so it is unqualified as cREs formation.

      [3] The third chromatin loop has OCR and promoter overlapping at one end. We defined this as a special cRE formation; thus, the area under the yellow ATAC-peak triangle is green.

      To avoid further confusion for the reader, we will eliminate this variation in the new illustration for the revised manuscript.

      “Figure 2A: The authors used triangles filled differently to denote different types of cREs but I wonder what the height of the triangles implies. Please specify.”

      The triangles are illustrations for ATAC-seq peaks, and the yellow chromatin regions under them are OCRs. The different heights of ATAC-seq peaks are usually quantified as intensity values for OCRs. However, in our study, when an ATAC-seq peak passed the significance threshold from the data pipeline, we only considered their locations, regardless of their intensities. To avoid further confusion for the reader, we will eliminate this variation in the new illustration for the revised manuscript.

      “Figure 1B-c. the title should be "OCRs at putative cREs". Similarly in Figure 1B-d.”

      cREs are a subset of OCRs.

      - In the section "Cell type specific partitioned heritability", the authors used "4 defined sets of input genomic regions". Are you corresponding to the four types of regions in Figure 2A? 

      Figure 2A will be the first Figure 1A in the revision and will be modified to showcase how we define OCRs and cREs.

      “It seems that the authors described the 771 proxies in "Genetic loci included in variant-to-genes mapping" (ln 154), and then somehow narrowed down from 771 to 94 (according to ln 199) because they are cREs. It would be great if the authors could describe the selection procedure together, rather than isolated, which made it quite difficult to understand.”

      In the Methods section entitled “Genetic loci included in variant-to-genes mapping," we described the process of LD expansion to include 771 proxies from 19 sentinel obesity-significantly associated signals. Not all of these proxies are located within our defined cREs. Figure 2B, now Figure 2A in the revision, illustrates different proportions of these proxies located within different types of regions, reducing the proxy list to 94 located within our defined cREs.

      “Figure 2. What's the difference between the 771 and 758 proxies? “

      13 out of 771 proxies did not fall within any defined regions. The remaining 758 were located within contact regions of at least one cell type regardless of chromatin state.

      (3) Typos

      “In the paragraph "Childhood obesity GWAS summary statistics", the authors may want to describe the case/control numbers in two stages differently. "in stage 1" and "921 cases" together made me think "1,921" is one number.”

      This will be amended in the revision.

      “Hi-C technology should be spelled as Hi-C. There are many places, it is miss-spelled as "hi-C". In Figure 1, the author used "hiC" in the legend. Similarly, Capture-C sometime was spelled as "capture-C" in the manuscript.”

      “At the end of the fifth row in the second paragraph of the Introduction section: "exisit" should be "exist".

      “In Figure 2A: "Within open chromatin contract region" should be "Within open chromatin contact region". 

      These typos and terminology inconsistencies will be amended in the revision.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this study, Komarova et al. investigate the clinical prognostic ability of cell-level metabolic heterogeneity quantified via the fluorescence lifetime characteristics of NAD(P)H. Fluorescence lifetime imaging microscopy (FLIM) has been studied as a minimally invasive approach to measure cellular metabolism in live cell cultures, organoids, and animal models. Its clinical translation is spearheaded through macroscopic implementation approaches that are capable of large sampling areas and enable access to otherwise constrained spaces but lack cellular resolution for a one-to-one transition with traditional microscopy approaches, making the interpretation of the results a complicated task. The merit of this study primarily lies in its design by analyzing with the same instrumentation and approach colorectal samples in different research scenarios, namely in vitro cells, in vivo animal xenografts, and tumor tissue from human patients. These conform to a valuable dataset to explore the translational interpretation hurdles with samples of increasing levels of complexity. For human samples, the study specifically investigates the prediction ability of NAD(P)H fluorescence metrics for the binary classification of tumors of low and advanced stage, with and without metastasis, and low and high grade. They find that NAD(P)H fluorescence properties have a strong potential to distinguish between high- and low-grade tumors and a moderate ability to distinguish advanced-stage tumors from low-stage tumors. This study provides valuable results contributing to the deployment of minimally invasive optical imaging techniques to quantify tumor properties and potentially migrate into tools for human tumor characterization and clinical diagnosis.

      Strengths:

      The investigation of colorectal samples under multiple imaging scenarios with the same instrument and approach conforms to a valuable dataset that can facilitate the interpretation of results across the spectrum of sample complexity.

      The manuscript provides a strong discussion reviewing studies that investigated cellular metabolism with FLIM and the metabolic heterogeneity of colorectal cancer in general.

      The authors do a thorough acknowledgement of the experimental limitations of investigating human samples ex vivo, and the analytical limitation of manual segmentation, for which they provide a path forward for higher throughput analysis.

      Weaknesses:

      To substantiate the changes in fluorescence properties at the examined wavelength range (associated with NAD(P)H fluorescence) in relationship to metabolism, the study would strongly benefit from additional quantification of metabolic-associated metrics using currently established standard methods. This is especially interesting when discussing heterogeneity, which is presumably high within and between patients with colorectal cancer, and could help explain the particularities of each sample leading to a more in-depth analysis of the acquired valuable dataset.

      In order to address this issue, we have performed immunohistochemical staining of the available tumor samples for the two standard metabolic markers GLUT3 and LDHA.

      The results are included in Supplementary (Fig.S4). Discussion has been extended.

      Additionally, NAD(P)H fluorescence does not provide a complete picture of the cell/tissue metabolic characteristics. Including, or discussing the implications of including fluorescence from flavins would comprise a more compelling dataset. These additional data would also enable the quantification of redox metrics, as briefly mentioned, which could positively contribute to the prognosis potential of metabolic heterogeneity.

      We agree with the Reviewer that fluorescence from flavins could be helpful to obtain more complete data on cellular metabolic states. However, we lack to detect sufficiently intensive emission from flavins in colorectal cancer cells and tissues. The paragraph about flavins was added in Discussion and representative images - in Supplementary Material (Figure S5).

      In the current form of the manuscript, there is a diluted interpretation and discussion of the results obtained from the random forest and SHAP analysis regarding the ability of the FLIM parameters to predict clinicopathological outcomes. This is, not only the main point the authors are trying to convey given the title and the stated goals, but also a novel result given the scarce availability of these type of data, which could have a remarkable impact on colorectal cancer in situ diagnosis and therapy monitoring. These data merit a more in-depth analysis of the different factors involved. In this context, the authors should clarify how is the "trend of association" quantified (lines 194 and 199).

      We thank the Reviewer for this suggestion. The section has been updated with SHAP analysis using different parameters (dispersion D of t2, a1, tm and bimodality index BI of t2, a1, tm). It is now more clear that D-a1 is more strongly associated with clinicopathological outcomes compared with other variables. We have also added some biological interpretation of these results in the Discussion.

      Reviewer #2 (Public Review):

      Summary:

      In the manuscript "Metabolic heterogeneity of colorectal cancer as a prognostic factor: insights gained from fluorescence lifetime imaging" by Komarova et al., the authors used fluorescence lifetime imaging and quantitative analysis to assess the metabolic heterogeneity of colorectal cancer. Generally, this work is logically well-designed, including in vitro and in vivo animal models and ex vivo patient samples. However, since the key parameter presented in this study, the BI index, is already published in a previous paper by this group (Shirshin et al., 2022), and the quantification method of metabolic heterogeneity has already been well (and even better) described in previous studies (such as the one by Heaster et al., 2019), the novelty of this study is doubted. Moreover, I am afraid that the way of data analysis and presentation in this study is not well done, which will be mentioned in detail in the following sections.

      Strengths:

      (1) Solid experiments are performed and well-organized, including in vitro and in vivo animal models and ex vivo patient samples.

      (2) Attempt and efforts to build the association between the metabolic heterogeneity and prognosis for colorectal cancer.

      Weaknesses:

      (1) The human sample number (from 21 patients) is very limited. I wonder how the limited patient number could lead to reliable diagnosis and prognosis;.

      Additional 8 samples of patients’ tumors collected while the manuscript was under review were added to the present data. We agree that the number is still limited to conclude about the prognostic value of cell-level metabolic heterogeneity. But at this point we can expect that this parameter will become a metric for prognosis. We will continue this study to collect more samples of colorectal tumors and expand the approach to different cancer types.

      (2) The BI index or similar optical metrics have been well established by this and other groups; therefore, the novelty of this study is doubted.

      The purpose of this research was to quantify and compare the cellular metabolic heterogeneity across the systems of different complexity - commercial cell lines, tumor xenografts and patients’ tumors - using previously established FLIM-based metrics. For the first time, using FLIM, it was shown that heterogeneity of patients’ samples is much higher than of laboratory models and that it has associations with clinical characteristics of the tumors - the stage and the grade. In addition, this study provides evidence that bimodality (BI) in the distribution of metabolic features in the cell population is less important than the width of the spread (the dispersion value D).

      Some corrections have been made in the text on this point.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      The following comments should be addressed to strengthen the rigor and clarity of the manuscript.

      (1) The ethical committee that approved the human studies should also be mentioned in the methods section, as was done with the animal studies.

      Information about the ethics committee has been added in the Manuscript.

      The study with the use of patients’ material was approved by the ethics committee of the Privolzhsky Research Medical University (approval № 09 from 30.06.2023).

      (2) The captions in Figures 2 and 3 must be revised. In Figure 2, it seems the last 2 sentences for the description of (C) do not belong there, and instead, the last sentence in the description of (D) may need to be included in (C) instead. Figure 3 is similar.

      The captions were revised.

      (3) From supplement Figure S2 it seems that EpCam and vimentin staining were only done in two of the mouse tumor types. No further mention is made in the results or methods section. Is there any reason this was not performed in the other tumor types? Were the histology and IHC protocols the same for the mouse and human tumors?

      The data on other tumor types and patients’ tumors have been added in Figure S3. Discussion was extended with the following paragraph.

      One of the possible reasons for metabolic heterogeneity could be the presence of stromal cells or diversity of epithelial and mesenchymal phenotypes of cancer cells within a tumor. Immunohistochemical staining of tumors for EpCam (epithelial marker) and vimentin (mesenchymal marker) showed that the fraction of epithelial, EpCam-positive, cells was more than 90% in tumor xenografts and on average 76±10 % in patients’ tumors (Figure S3). However, the ratio of EpCam- to vimentin-positive cells in patients’ samples neither correlated with D-a1 nor with BI-a1, which means that the presence of cells with mesenchymal phenotype did not contribute to metabolic heterogeneity of tumors identified by NAD(P)H FLIM.

      (4) Clarify the design of the experiments: The results come from 50 - 200 cells in each sample (except 30 in the CaCo2 cell culture) that were counted from 5 - 10 images acquired from each sample. There were 21 independent human samples. How many independent samples were included in the cell culture experiments and the mouse tumor models? Why is there an order of magnitude fewer cells included in the CaCo2 group compared to the other groups (Figure 1)? From the image (Figure 1A - CaCo2), it seems to be a highly populated type of sample, yet only 30 cells were quantified. What prevents the inclusion of the same number of cells to be quantified in each group for a more systematic evaluation?

      We thank the Reviewer for this comment.

      Cell culture experiments included two independent replicates for each cell line, the data from which were then combined. In animal experiments measurements were made in three mice (numbered 1-3 in Figure 2C) for each tumor type. We have made calculations for additional >100 cells of CaCo2 cell line. In the revised version the number of Caco2 cells is 146.

      The text of the Manuscript was revised accordingly.

      (5) Regarding references: Some claims throughout the text would benefit from an additional reference. For example: line 70 "Metabolic heterogeneity [...] is believed to have prognostic value"; line 121 " [...] the uniformity of cell metabolism in a culture, which is consistent with the general view on standard cell lines [...]". The clinical translational aspect (i.e., paragraph in line 255) warrants the inclusion of the efforts already done with FLIM imaging in the clinical setting both in vivo and ex vivo with point-spectroscopy and macroscopy imaging (e.g., Jo Lab, Marcu Lab, French Lab, and earlier work by Mycek and Richards-Kortum in colorectal cancer to name a few).

      Additional references were added.

      Reviewer #2 (Recommendations For The Authors):

      (1) In the Introduction, line 85, the authors mention that "Specifically, the unbound state of NAD(P)H has a short lifetime (~0.4 ns) and is associated with glycolysis, while the protein-bound state has a long lifetime (~1.7-3.0 ns) and is associated with OXPHOS". I do not think this claim is appropriate. One cannot simply say that the unbound state is associated with glycolysis, nor that the bound state is associated with OXPHOS; both unbound and bound state are associated with almost all the metabolic pathways. Instead, the expression of "glycolytic/ OXPHOS shift", as authors used in other sections of this manuscript, is a more appropriate one in this case.

      The text of the Introduction was revised.

      (2) What are the biological implications of the bimodality index (BI)? Please provide specific insights.

      Bimodal distribution indicates there are two separate and independent peaks in the population data. In the metabolic FLIM data, this indicates that there are two sub-populations of cells with different metabolic phenotypes. Previously, we have observed bimodal distribution in the population of chemotherapy treated cancer cells, where one sub-population was responsive (shifted metabolism) and the second - non-responsive (unchanged metabolism) [Shirshin et al., PNAS, 2022]. In the naive tumor, a number of factors have an impact on cellular metabolism, including genetics features and microenvironment, so it is difficult to determine which ones resulted in bimodality. Our data on correlation of bimodality (BI) with clinical characteristics of the tumors show that there are no associations between them. What really matters is the width of the parameter spread in the population. The early-stage tumors (T1, T2) were metabolically more heterogeneous than the late-stage ones (T3, T4). A degree of heterogeneity was also associated with differentiation state, a stage-independent prognostic factor in colorectal cancer where the lower grade correlates with better the prognosis. The early-stage tumors (T1, T2) and high-grade (G3) tumors had significantly higher dispersion of NAD(P)H-a1, compared with the late-stage (T3, T4) and low-grade ones (G1, G2). From the point of view of biological significance of heterogeneity, this means that in stressful and unfavorable conditions, to which the tumor cells are exposed, the spread of the parameter distribution in the population rather than the presence of several distinct clusters (modes) matters for adaptation and survival. The high diversity of cellular metabolic phenotypes provided the survival advantage, and so was observed in more aggressive (undifferentiated or poorly differentiated) and the least advanced tumors.

      The discussion has been expanded on this account.

      (3) Have you run statistics in Figure 1B? If yes, do you find any significance? The same question also applies to Figures 2C and 3C.

      We performed statistical analysis to compare different cell lines in in vitro and in vivo models, the results obtained are presented in Table S4.

      (4) Line 119, why is the BI threshold set at 1.1?

      When setting the BI threshold at 1.1, we relied on the work by Wang et al, Cancer Informatics, 2009. The authors recommended the 1.1 cutoff as more reliable to select bimodally expressed genes. Further, we validated this BI threshold to identify chemotherapy responsive and non-responsive sub-populations of cancer cells (Shirshin et al. PNAS, 2022)

      (5) Line 123, what does the high BI of mean lifetime stand for? Please provide biological implications and insights.

      The sentence was removed because inclusion of additional CaCo2 cells (n=146) for quantification NAD(P)H FLIM data showed no bimodality in this cell culture.

      (6) In the legend for Figure 2C, the authors mention that "the bimodality index (BI-a1) is shown above each box"; however, I do not see such values. It is also true for Figure 3C.

      The legends for Fig. 2 and 3 were corrected.

      (7) In Figure 2, t1-t3 were not explained and mentioned in the main text. What do they mean? Do they mean different time points or different tumors?

      t1-t3 means different tumors in a group. Changes have been made to the figure - individual tumors are indicated by numbers.

      (8) In Figure 3, what do p13, p15 and p16 mean? It is not clearly explained. If they just represent patients numbered 13, 15, and 16, then why are these patients chosen as representatives? Do they represent different stages or are they just chosen randomly?

      Figure 3 was revised. Representative images were changed and a short description for each representative sample was included. In the revised version, representatives have been selected to show different stages and grades.

      (9) In Figure 3, instead of showing the results for each patient, I would suggest that authors show representative results from tumors at different stages; or, at least, clearly indicate the specific information for each patient. I do not think that providing the patient number only without any patient-specific information is helpful.

      Figure 3 was revised.

      (10) The sample number (21 patients) is very limited. I wonder how the limited patient number could lead to reliable diagnosis and prognosis.

      Additional eight samples were added. The text, figures and tables were revised accordingly.

      (11) In Discussion, it would be helpful to compare the BI index used in this study with the previously developed OMI-index (Line 275).

      We believe that BI index and OMI index describe different things and, therefore, it is hard to compare them. While BI index is used to describe the degree of the metabolic heterogeneity, OMI index is an integral parameter that includes redox ratio, mean fluorescence lifetimes of NAD(P)H and FAD, and rather indicates the metabolic state of a cell. In this sense it is more relevant to compare it with conventional redox ratio or Fluorescence Lifetime Redox Ratio (FLIRR) (H. Wallrabe et al., Segmented cell analyses to measure redox states of autofluorescent NAD(P)H, FAD & Trp in cancer cells by FLIM, Sci. Rep. 2018; 8: 79). The assessment of the heterogeneity of the FLIM parameters has been previously reported using the weighted heterogeneity (wH) index (Amy T. Shah et al, In Vivo Autofluorescence Imaging of Tumor Heterogeneity in Response to Treatment, Neoplasia 17, pp. 862–870 (2015). To the best of our knowledge, this is the only metric to quantify metabolic heterogeneity on the basis of FLIM data for today. A comparison of BI with the wH-index showed that the value of wH-index provides results similar to BI in the heterogeneity evaluation as demonstrated in our earlier paper (E.A. Shirshin et al, Label-free sensing of cells with fluorescence lifetime imaging: The quest for metabolic heterogeneity, PNAS 119 (9) e2118241119 (2022).  Yet, the BI provides dimensionless estimation on the inherent heterogeneity of a sample, and therefore it can be used to compare heterogeneity assessed by different decay parameters and FLIM data analysis methods. The limitation of using the OMI index for FLIM data analysis is the low intensity of the FAD signal, which was the case in our experiments.

    1. Reviewer #1 (Public Review):

      The authors developed an extension to the pairwise sequentially Markov coalescent model that allows to simultaneously analyze multiple types of polymorphism data. In this paper, they focus on SNPs and DNA methylation data. Since methylation markers mutate at a much faster rate than SNPs, this potentially gives the method better power to infer size history in the recent past. Additionally, they explored a model where there are both local and regional epimutational processes.

      Integrating additional types of heritable markers into SMC is a nice idea which I like in principle. However, a major caveat to this approach seems to be a strong dependence on knowing the epimutation rate. In Fig. 6 it is seen that, when the epimutation rate is known, inferences do indeed look better; but this is not necessarily true when the rate is not known. (See also major comment #1 below about the interpretation of these plots.) A roughly similar pattern emerges in Supp. Figs. 4-7; in general, results when the rates have to be estimated don't seem that much better than when focusing on SNPs alone. This carries over to the real data analysis too: the interpretation in Fig. 7 appears to hinge on whether the rates are known or estimated, and the estimated rates differ by a large amount from earlier published ones.

      Overall, this is an interesting research direction, and I think the method may hold more promise as we get more and better epigenetic data, and in particular better knowledge of the epigenetic mutational process.

    2. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors developed an extension to the pairwise sequentially Markov coalescent model that allows to simultaneously analyze multiple types of polymorphism data. In this paper, they focus on SNPs and DNA methylation data. Since methylation markers mutate at a much faster rate than SNPs, this potentially gives the method better power to infer size history in the recent past. Additionally, they explored a model where there are both local and regional epimutational processes. Integrating additional types of heritable markers into SMC is a nice idea which I like in principle. However, a major caveat to this approach seems to be a strong dependence on knowing the epimutation rate. In Fig. 6 it is seen that, when the epimutation rate is known, inferences do indeed look better; but this is not necessarily true when the rate is not known. (See also major comment #1 below about the interpretation of these plots.) A roughly similar pattern emerges in Supp. Figs. 4-7; in general, results when the rates have to be estimated don't seem that much better than when focusing on SNPs alone. This carries over to the real data analysis too: the interpretation in Fig. 7 appears to hinge on whether the rates are known or estimated, and the estimated rates differ by a large amount from earlier published ones.

      Overall, this is an interesting research direction, and I think the method may hold more promise as we get more and better epigenetic data, and in particular better knowledge of the epigenetic mutational process. At the same time, I would be careful about placing too much emphasis on new findings that emerge solely by switching to SNP+SMP analysis.

      Major comments:

      - For all of the simulated demographic inference results, only plots are presented. This allows for qualitative but not quantitative comparisons to be made across different methods. It is not easy to tell which result is actually better. For example, in Supp. Fig. 5, eSMC2 seems slightly better in the ancient past, and times the trough more effectively, while SMCm seems a bit better in the very recent past. For a more rigorous approach, it would be useful to have accompanying tables that measure e.g. mean-squared error (along with confidence intervals) for each of the different scenarios, similar to what is already done in Tables 1 and 2 for estimating $r$.

      We believe this comment was addressed in the previous revision (Sup Table 6-10) by adding Root Mean Square Errors for the demographic estimates (and RMSE for recent versus past portions of the demography). 

      - 434: The discussion downplays the really odd result that inputting the true value of the mutation rate, in some cases, produces much worse estimates than when they are learned from data (SFig. 6)! I can't think of any reason why this should happen other than some sort of mathematical error or software bug. I strongly encourage the authors to pin down the cause of this puzzling behaviour. (Comment addressed in revision. Still, I find the explanation added at 449ff to be somewhat puzzling -- shouldn't the results of the regional HMM scan only improve if the true mutation rate is given?)

      We do understand that our results and explanation can appear counter-intuitive. As acknowledged by the reviewer, in the previous round of revision we have at length clarified this puzzling behaviour by the discrepancy in assessing methylation regions using the HMM method which then differs from the HMM for the SMC inference. We are happy to clarify further in response to the new question of reviewer 1:

      If the Reviewer #1 means the SNP mutations (e.g. A → T), knowing the true mutation rate does not help the HMM to recover the region level methylation status. 

      If the Reviewer #1 means the epimutations (whether it is the region, site or both), knowing the true epimutations rates could theoretically help the HMM to recover the region level methylation status. However, at present, our method does not leverage information from epimutation rates to infer the region level methylation status. As inferring the epimutations rates is one of the goals of this study in the SMC inference, and that region level methylation status is required to infer those rates, we suspect that using epimutations rates to infer the region level methylation status could be statistically inappropriate (generating some kind of circular estimations). Instead, our HMM uses only the proportion of methylated and unmethylated sites (estimated from the genome) to determine whether or not a region status is most-likely to be methylated or unmethylated. We now explicit this fact in the HMM for methylation region in the method section.

      We acknowledge that our HMM to infer region level methylation status could be improved, but this would be a complete project and study on its own (due to the underlying complexity of the finite site and the lack of a consensus model for epimutations at evolutionary time scale). We believe our HMM to have been the best compromise with what was known from methylation and our goals when the study was conducted, and future work is definitely worth conducting on the estimation of the methylation regions.

      - As noted at 580, all of the added power from integrating SMPs/DMRs should come from improved estimation of recent TMRCAs. So, another way to study how much improvement there is would be to look at the true vs. estimated/posterior TMRCAs. Although I agree that demographic inference is ultimately the most relevant task, comparing TMRCA inference would eliminate other sources of differences between the methods (different optimization schemes, algorithmic/numerical quirks, and so forth). This could be a useful addition, and may also give you more insight into why the augmented SMC methods do worse in some cases. (Comment addressed in revision via Supp. Table 7.).

      - A general remark on the derivations in Section 2 of the supplement: I checked these formulas as best I could. But a cleaner, less tedious way of calculating these probabilities would be to express the mutation processes as continuous time Markov chains. Then all that is needed is to specify the rate matrices; computing the emission probabilities needed for the SMC methods reduces to manipulating the results of some matrix exponentials. In fact, because the processes are noninteracting, the rate matrix decomposes into a Kronecker sum of the individual rate matrices for each process, which is very easy to code up. And this structure can be exploited when computing the matrix exponential, if speed is an issue.

      We believe this comment was acknowledged in the previous revision (line 649), and we thank the reviewer for this interesting insight.

      - Most (all?) of the SNP-only SMC methods allow for binning together consecutive observations to cut down on computation time. I did not see binning mentioned anywhere, did you consider it? If the method really processes every site, how long does it take to run?

      We believe this comment was addressed in the previous revision and was added to the manuscript in the methods Section (subsection :  SMC optimization function).

      - 486: The assumed site and region (de)methylation rates listed here are several OOM different from what your method estimated (Supp. Tables 5-6). Yet, on simulated data your method is usually correct to within an order of magnitude (Supp. Table 4). How are we to interpret this much larger difference between the published estimates and yours? If the published estimates are not reliable, doesn't that call into question your interpretation of the blue line in Fig. 7 at 533? (Comment addressed in revision.)

      Reviewer #2 (Public Review):

      A limitation in using SNPs to understand recent histories of genomes is their low mutation frequency. Tellier et al. explore the possibility of adding hypermutable markers to SNP based methods for better resolution over short time frames. In particular, they hypothesize that epimutations (CG methylation and demethylation) could provide a useful marker for this purpose. Individual CGs in Arabidopsis tends to be either close to 100% methylated or close to 0%, and are inherited stably enough across generations that they can be treated as genetic markers. Small regions containing multiple CGs can also be treated as genetic markers based on their cumulative methylation level. In this manuscript, Tellier et al develop computational methods to use CG methylation as a hypermutable genetic marker and test them on theoretical and real data sets. They do this both for individual CGs and small regions. My review is limited to the simple question of whether using CG methylation for this purpose makes sense at a conceptual level, not at the level of evaluating specific details of the methods. I have a small concern in that it is not clear that CG methylation measurements are nearly as binary in other plants and other eukaryotes as they are in Arabidopsis. However, I see no reason why the concept of this work is not conceptually sound. Especially in the future as new sequencing technologies provide both base calling and methylating calling capabilities, using CG methylation in addition to SNPs could become a useful and feasible tool for population genetics in situations where SNPs are insufficient.

      We thank again the reviewer #2 for his positive comments.  

      Reviewer #3 (Public Review):

      I very much like this approach and the idea of incorporating hypervariable markers. The method is intriguing, and the ability to e.g. estimate recombination rates, the size of DMRs, etc. is a really nice plus. I am not able to comment on the details of the statistical inference, but from what I can evaluate it seems reasonable and in principle the inclusion of highly mutable sties is a nice advance. This is an exciting new avenue for thinking about inference from genomic data. I remain a bit concerned about how well this will work in systems where much less is understood about methylation,

      The authors include some good caveats about applying this approach to other systems, but I think it would be helpful to empiricists outside of thaliana or perhaps mammalian systems to be given some indication of what to watch out for. In maize, for example, there is a nonbimodal distribution of CG methlyation (35% of sites are greater than 10% and less than 90%) but this may well be due to mapping issues. The authors solve many of the issues I had concerns with by using gene body methylation, but this is only briefly mentioned on line 659. I'm assuming the authors' hope is that this method will be widely used, and I think it worth providing some guidance to workers who might do so but who are not as familiar with these kind of data.

      We thank the reviewer #3 for his positive comments. And we agree with Reviewer #3 concerning the application to data and that our approach needs to be carefully thought before applied. Our results clearly show that methylation processes are not well enough understood to apply our approach as we initially (maybe naively) designed it. Further investigations need to be conducted and appropriate theoretical models need to be developed before reliable results can be obtained. And we hope that our discussion points this out. However, our approach, the theoretical models and the additional tools contained in this study can be used to help researchers in their investigations to whether or not use different genomic markers to build a common (potentially more reliable) ancestral history. We enhanced the discussion in this second revision by clarifying also the use of the methylation from genic regions to avoid  confusion (lines 700-731).

      Recommendations for the authors:  

      Reviewer #1 (Recommendations For The Authors):

      In added Supp. Table 7, I don't think these are in log10 units as stated in the caption.

      Well Spotted! Indeed, the RMSE is not in log10 scale, we corrected the caption. We also added that the TMRCA used for MRSE calculations is in generations units to avoid potential confusion.  

      Reviewer #3 (Recommendations for The Authors):

      I very much appreciate the authors' attention to previous questions. I would ask that a bit more is spent in the discussion on concerns/approaches empiricists should keep in mind -- I am wary of this being uncritically applied to data from non-model species. It was not clear to me, for example (only mentioned on line 659 in the discussion) that the thaliana data is only using gene-body methylation. This poses potential issues with background selection that the authors acknowledge appropriately, but also assuages many of my concerns about using genome-wide data. I think text with recommendations for data/filtering/etc or at least cautions of assumptions empiricists should be aware of would help.

      We apologize for the confusion at line 659. As written in the other section of the manuscript we meant CG sites in genic regions (and not only gene body methylated regions).

      Due to the manuscript’s structure, the data from Arabidopsis thaliana is only described at the very end of the manuscript (line 900+). However, a brief description could also be found line 291-296. We however added a sentence in the introduction (line 128) for clarity. 

      We however agree with the comment made by reviewer #3 concerning the application to data. We pointed in the discussion the risk of applying our approach on ill-understood (or illprepared) data and stressed the current need of studies on the epimutations processes at evolutionary time scale ( i.e. at Ne time scale) (line 700-703).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The development of effective computational methods for protein-ligand binding remains an outstanding challenge to the field of drug design. This impressive computational study combines a variety of structure prediction (AlphaFold2) and sampling (RAVE) tools to generate holo-like protein structures of three kinases (DDR1, Abl1, and Src kinases) for binding to type I and type II inhibitors. Of central importance to the work is the conformational state of the Asp-Phy-Gly "DFG motif" where the Asp points inward (DFG-in) in the active state and outward (DFG-out) in the inactive state. The kinases bind to type I or type II inhibitors when in the DFG-in or DFG-out states, respectively.

      It is noted that while AlphaFold2 can be effective in generating ligand-free apo protein structures, it is ineffective at generating holo-structures appropriate for ligand binding. Starting from the native apo structure, structural fluctuations are necessary to access holo-like structures appropriate for ligand binding. A variety of methods, including reduced multiple sequence alignment (rMSA), AF2-cluster, and AlphaFlow may be used to create decoy structures. However, those methods can be limited in the diversity of structures generated and lack a physics-based analysis of Boltzmann weight critical to their relative evaluation.

      To address this need, the authors combine AlphaFold2 with the Reweighted Autoencoded Variational Bayes for Enhanced Sampling (RAVE) method, to explore metastable states and create a Boltzmann ranking. With that variety of structures in hand, grid-based docking methods Glide and Induced-Fit Docking (IFD) were used to generate protein-ligand (kinase-inhibitor) complexes.

      The authors demonstrate that using AlphaFold2 alone, there is a failure to generate DFG-out structures needed for binding to type II inhibitors. By applying the AlphaFold2 with rMSA followed by RAVE (using short MD trajectories, SPIB-based collective variable analysis, and enhanced sampling using umbrella sampling), metastable DFG-out structures with Boltzmann weighting are generated enabling protein-ligand binding. Moreover, the authors found that the successful sampling of DFG-out states for one kinase (DDR1) could be used to model similar states for other proteins (Abl1 and Src kinase). The AF2RAVE approach is shown to result in a set of holo-like protein structures with a 50% rate of docking type II inhibitors.

      Overall, this is excellent work and a valuable contribution to the field that demonstrates the strengths and weaknesses of state-of-the-art computational methods for protein-ligand binding. The authors also suggest promising directions for future study, noting that potential enhancements in the workflow may result from the use of binding site prediction models and free energy perturbation calculations.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript explores the utility of AlphaFold2 (AF2) and the author's own AF2-RAVE method for drug discovery. As has been observed elsewhere, the predictive power of docking against AF2 structures is quite limited, particularly for proteins like kinases that have non-trivial conformational dynamics. However, using enhanced sampling methods like RAVE to explore beyond AF2 starting structures leads to a significant improvement.

      Strengths:

      This is a nice demonstration of the utility of the authors' previously published RAVE method.

      Weaknesses:

      My only concern is the authors' discussion of induced fit. I'm quite confident the structures discussed are present in the absence of ligand binding, consistent with conformational selection. It seems the author's own data also argues for an important role in conformational selection. It would be nice to acknowledge this instead of going along with the common practice in drug discovery of attributing any conformational changes to induced fit without thoughtful consideration of conformational selection.

      The reviewer is correct. We aim to highlight the significant role of conformational selection. To clarify this, we have expanded the discussion on conformational selection in the introduction.

      Reviewer #3 (Public Review):

      In this manuscript, the authors aim to enhance AlphaFold2 for protein conformation-selective drug discovery through the integration of AlphaFold2 and physics-based methods, focusing on improving the accuracy of predicting protein structures ensemble and small molecule binding of metastable protein conformations to facilitate targeted drug design.

      The major strength of the paper lies in the methodology, which includes the innovative integration of AlphaFold2 with all-atom enhanced sampling molecular dynamics and induced fit docking to produce protein ensembles with structural diversity. Moreover, the generated structures can be used as reliable crystal-like decoys to enrich metastable conformations of holo-like structures. The authors demonstrate the effectiveness of the proposed approach in producing metastable structures of three different protein kinases and perform docking with their type I and II inhibitors. The paper provides strong evidence supporting the potential impact of this technology in drug discovery. However, limitations may exist in the generalizability of the approach across other structures, especially complex structures such as protein-protein or DNA-protein complexes.

      Proteins undergo thermodynamic fluctuations and can occasionally reach metastable configurations. It can be assumed that other biomolecules, such as proteins and DNA, stabilize these metastable states when forming protein-protein or protein-DNA complexes. Since our method has the potential to identify these metastable states, it shows promise for designing drugs targeting proteins in allosteric configurations induced by other biomolecules.

      The authors largely achieved their aims by demonstrating that the AF2RAVE-Glide workflow can generate holo-like structure candidates with a 50% successful docking rate for known type II inhibitors. This work is likely to have a significant impact on the field by offering a more precise and efficient method for predicting protein structure ensemble, which is essential for designing targeted drugs. The utility of the integrated AF2RAVE-Glide approach may streamline the drug discovery process, potentially leading to the development of more effective and specific medications for various diseases.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Suggestions

      (1) The computational protocol is found to be insufficient to generate precise values of the relative free energies between structures generated. The authors note in the Conclusion that an enhancement in the workflow might result from the addition of free energy calculations. Can the authors comment on the prospects for generating more accurate estimates of the free energy that might be used to qualitatively evaluate poses and the free energy landscape surrounding putative metastable states? What are the principal challenges and what might help overcome them? What would the most effective computational protocol be?

      More accurate estimates of the free energy can theoretically be achieved by increasing the number of umbrella sampling windows and extending the simulation length until the PMF converges. However, there is always a trade-off between PMF accuracy and computational costs, so we have chosen to stick with the current setup. Metadynamics is another method to obtain a more accurate free energy profile, which we have used in previous versions of AlphaFold2-RAVE, but for the specific systems we investigated, it had issues in achieving back and forth movement given the high entropic nature of the activation loop. Research in enhanced sampling methods and dimensionality reduction techniques for reaction coordinates is continually evolving and will play a critical role in alleviating this problem.

      (2) I was surprised that there was not more correlation of a funnel-like shape in Figures S16 and S18, showing a stronger correlation between low RMSD and better docking score. This is true for both the ponatinib and imatinib applications in DDR1 and Abl1. That also seems true for the trimmed results for Src kinase in Figure S19. I was also surprised that there are structures with very large RMSD but docking scores comparable to the best structures of the lowest RMSD. Might something be done to make the docking score a more effective discriminator?

      The docking algorithm and docking score are used to filter out highly improbable docking poses. False positives in predicted docking poses are a common issue across all docking methods as described for instance in:

      Fan, Jiyu, Ailing Fu, and Le Zhang. "Progress in molecular docking." Quantitative Biology 7 (2019): 83-89.

      Ferreira, R.S., Simeonov, A., Jadhav, A., Eidam, O., Mott, B.T., Keiser, M.J., McKerrow, J.H., Maloney, D.J., Irwin, J.J. and Shoichet, B.K., 2010. "Complementarity between a docking and a high-throughput screen in discovering new cruzain inhibitors." Journal of medicinal chemistry, 53(13), pp.4891-4905.

      Moreover, there is always a trade-off between docking accuracy and computational cost. While employing more accurate docking methods may decrease false positives, it can also be resource-intensive. In such scenarios, our approach to enriching holo-structures can be impactful by reducing the number of pocket structures in the input ensembles and significantly enhancing docking efficiency.

      (3) I think that it is fine to identify one structure as "IFD winner" but also feel that its significance is overstressed, especially given that it can be identified only in a retrospective analysis rather than through de novo prediction.

      We agree with the reviewer. We did not intend to emphasize the specific structure "IFD winner". Rather, we aimed to demonstrate that our method can enrich promising candidates for holo-structures. We verified this by showing that our holo-structure candidates performed well in retrospective docking using IFD, which we previously referred to as "IFD winner". We have now revised this term to "holo-model".

      Minor Points

      p. 3 "DymanicBind" should be "DynamicBind"

      p. 3 Change "We chosen" to "We have chosen" or "we chose."

      p. 3 In identifying the Schrödinger software Glide and IFD, I recommend removing the subjective modifier "industry-leading."

      Modifications done.

      Reviewer #2 (Recommendations For The Authors):

      In the view of this reviewer, the writing is 'choppy'.

      We have tried to improve the writing.

      Reviewer #3 (Recommendations For The Authors):

      (1) In Figure 1, the workflow labels (i) to (iv) are not shown on the figures, making it difficult for readers to follow. Consider adding these labels to the figures.

      Modifications done.

      (2) Explain how Boltzmann ranks were calculated based on unbiased MD simulations to guide the enrichment of holo-like structures in metastable states.

      The Methods section is now updated for clarification.

      (3) The authors could clarify how the classical DFG-out decoys in the DDR1 rMSA AF2 ensemble are transferred to Abl1 kinase in the Methods section.

      The Methods section is now updated for clarification.

      (4) The authors can clarify the methodology section by providing more detailed explanations about how the unbiased MD simulations are performed, including which MD simulation software was used and whether energy minimization and equilibrium steps were needed as in conventional MD simulations, and other setup details.

      The Methods section is now updated for clarification.

      (5) The validation of the proposed approach in this work used three kinase proteins. The authors can enhance the discussion section by addressing other types of protein structure prediction that can use the proposed approach in drug discovery, beyond the three kinase proteins tested.

      The proposed approach is theoretically applicable to other types of proteins, such as GPCRs, where both conformational selection and the induced-fit effect are crucial. We have expanded the discussion on the generalization of our protocol in the Conclusion section.

      (6) The authors should add appropriate citations for the software and tools used in the manuscript. For example, a reference should be added for the Glide XP docking experiments that utilized the Maestro software. Double-check all related software citations.

      We have now updated the citations for docking experiments based on the instruction of the Maestro Glide User manual and IFD User manual.

      (7) The authors should consider offering a comprehensive list of software tools and databases utilized in the study to assist in replicating the experiments and further validating the results.

      We have now added a summary of tools used in the Methods section.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      eLife assessment

      The authors present evidence suggesting that MDA5 can substitute as a sensor for triphosphate RNA in a species that naturally lacks RIG-I. The key findings are potentially important for our understanding of the evolution of innate immune responses. Compared to an earlier version of the paper, the strength of evidence has improved but it is still partially incomplete due to a few key missing experiments and controls.

      We would like to thank the editorial team for their positive comments and constructive suggestions on improving our manuscript. We have made further improvements based on the valuable suggestions of the reviewers, and we are pleased to send you the revised manuscript now. After revising the manuscript and further supplementing with experiments, we think that our existing data can support our claims.

      Public Reviews:

      Reviewer #1 (Public Review):

      This study offers valuable insights into host-virus interactions, emphasizing the adaptability of the immune system. Readers should recognize the significance of MDA5 in potentially replacing RIG-I and the adversarial strategy employed by 5'ppp-RNA SCRV in degrading MDA5 mediated by m6A modification in different species, further indicating that m6A is a conservational process in the antiviral immune response.

      However, caution is warranted in extrapolating these findings universally, given the dynamic nature of host-virus dynamics. The study provides a snapshot into the complexity of these interactions, but further research is needed to validate and extend these insights, considering potential variations across viral species and environmental contexts. Additionally, it is noted that the main claims put forth in the manuscript are only partially supported by the data presented.

      After meticulous revisions of the manuscript, including adjustments to the title, abstract, results, and discussion, the main claim of our study now is the arm race between the MDA5 receptor and SCRV virus in a lower vertebrate fish, M. miiuy. This mainly includes two parts: Firstly, the MDA5 of M. miiuy can recognize virus invasion and initiate host immune response by recognizing the triphosphate structure of SCRV. Secondly, as an adversarial strategy, 5’ppp-RNA SCRV virus can utilize the m6A mechanism to degrade MDA5 in M. miiuy. Based on the reviewer's suggestions, we have further supplemented the critical experiments (Figure 3F-3G, Figure 4D, Figure 5G) and provided a more detailed and accurate explanation of the experimental conclusions, we believe that our existing manuscript can support our main claims. In addition, because virus-host coevolution complicates the derivation of universal conclusions, we will further expand our insights in future research.

      Reviewer #2 (Public Review):

      This manuscript by Geng et al. aims to demonstrate that MDA5 compensates for the loss of RIG-I in certain species, such as teleost fish miiuy croaker. The authors use siniperca cheats rhabdovirus (SCRV) and poly(I:C) to demonstrate that these RNA ligands induce an IFN response in an MDA5-dependent manner in m.miiuy derived cells. Furthermore, they show that MDA5 requires its RD domain to directly bind to SCRV RNA and to induce an IFN response. They use in vitro synthesized RNA with a 5'triphosphate (or lacking a 5'triphosphate as a control) to demonstrate that MDA5 can directly bind to 5'-triphosphorylated RNA. The second part of the paper is devoted to m6A modification of MDA5 transcripts by SCRV as an immune evasion strategy. The authors demonstrate that the modification of MDA5 with m6A is increased upon infection and that this causes increased decay of MDA5 and consequently a decreased IFN response.

      One critical caveat in this study is that it does not address whether ppp-SCRV RNA induces IRF3-dimerization and type I IFN induction in an MDA5 dependent manner. The data demonstrate that mmiMDA5 can bind to triphosphorylated RNA (Fig. 4D). In addition, triphosphorylated RNA can dimerize IRF3 (4C). However, a key experiment that ties these two observations together is missing.

      Specifically, although Fig. 4C demonstrates that 5'ppp-SCRV RNA induces dimerization (unlike its dephosphorylated or capped derivatives), this does not proof that this happens in an MDA5-dependent manner. This experiment should have been done in WT and siMDA5 MKC cells side-by-side to demonstrate that the IRF3 dimerization that is observed here is mediated by MDA5 and not by another (unknown) protein. The same holds true for Fig. 4J.

      Thank you for the referee's professional suggestions. In fact, we have transfected SCRV RNA into WT and si-MDA5 MKC cells, and subsequently assessed the dimerization of IRF3 and the IFN response (Figure 2P-2Q). The results indicated that knockdown of MDA5 prevents immune activation of SCRV RNA. However, considering the potential for SCRV RNA to activate immunity independent of the triphosphate structure, this experimental observation does not comprehensively establish the MDA5-dependent induction of IRF3 dimer by 5’ppp-RNA. Accordingly, in accordance with the referee's recommendation, we proceeded to investigate the inducible activity of 5'ppp-SCRV on IRF3 dimerization in WT and si-MDA5 MKC cells, revealing that 5'ppp-SCRV indeed elicits immunity in an MDA5-dependent manner (Figure 4D). Additionally, poly(I:C)-HMW, a known ligand for MDA5, demonstrated a residual, albeit attenuated, activation of IRF3 following MDA5 knockdown, potentially attributed to its capacity to stimulate immunity through alternative pathways such as TLR3.

      - Fig 1C-D: these experiments are not sufficiently convincing, i.e. the difference in IRF3 dimerization between VSV-RNA and VSV-RNA+CIAP transfection is minimal.

      We have reconstituted the necessary materials and repeated the pertinent experiments depicted in Fig 1C-1D. The results demonstrate that SCRV-RNA+CIAP and VSV-RNA+CIAP exhibit a mitigating effect on the induction activity of SCRV-RNA and VSV-RNA on IRF3 dimerization, albeit without complete elimination (Figure 1C and 1D). These findings suggest the presence of receptors within M. miiuy and G. gallus capable of recognizing the viral triphosphate structure; however, it is worth noting that RNA derived from SCRV and VSV viruses does not exclusively depend on the triphosphate structure to activate the host's antiviral response.

      Fig. 2N and 2O: why did the authors decide to use overexpression of MDA5 to assess the impact of STING on MDA5-mediated IFN induction? This should have been done in cells transfected with SCRV or polyIC (as in 2D-G) or in infected cells (as in 2H-K). In addition, it is a pity that the authors did not include an siMAVS condition alongside siSTING, to investigate the relative contribution of MAVS versus STING to the MDA5-mediated IFN response. Panel O suggests that the IFN response is completely dependent on STING, which is hard to envision.

      In our previous laboratory investigations, we have substantiated the induction effect of STING on IFN under SCRV infection or poly(I:C) stimulation, as documented in the relevant literature (10.1007/s11427-020-1789-5), which we have referenced in our manuscript (lines 177-178). While we did assess the impact of STING on MDA5-mediated IFN induction in SCRV-infected cells, as indicated in the figure legends, we have revised Figure 2N-2O for improved clarity, and similarly, Figure 1H-1I has also been updated. Furthermore, considering that RNA virus infection can activate the cGAS/STING axis (10.3389/fcimb.2023.1172739) and the significant role of MAVS in sensing RNA virus invasion in the NLR pathway (10.1038/ni.1782), it is challenging to ascertain the respective contributions of STING and MAVS to the immune signaling cascade mediated by MDA5 during RNA virus infection. We intend to explore this aspect further in future research endeavors.

      Fig. 3F and 3G: where are the mock-transfected/infected conditions? Given that ectopic expression of hMDA5 is known to cause autoactivation of the IFN pathway, the baseline ISG levels should be shown (ie. In absence of a stimulus or infection). Normalization of the data does not reveal whether this is the case and is therefore misleading.

      Based on the reviewer's suggestions, we have rerun the experiment. We examined the effects of MDA5 and MDA5-ΔRD on antiviral factors in both uninfected, SCRV-infected, and poly(I:C)-HMW-stimulated MKC cells. Results showed that overexpression of both MDA5 and MDA5-ΔRD stimulated the expression of antiviral genes. However, when cells were infected or stimulated with SCRV or poly(I:C)-HMW, only the overexpression of MDA5, not MDA5-ΔRD, significantly increased the expression of antiviral genes (Figure 3F-3I).

      Fig. 4F and 4G: can the authors please indicate in the figure which area of the gel is relevant here? The band that runs halfway the gel? If so, the effects described in the text are not supported by the data (i.e. the 5'OH-SCRV and 5'pppGG-SCRV appear to compete with Bio-5'ppp-SCRV as well as 5'ppp-SCRV).

      Apologies for any confusion. The relevant areas in the gel pertaining to the experimental findings were denoted with asterisks and elaborated upon in the figure legends (Figure 4G, 4H, and 4M). The findings indicated that 5'ppp-SCRV, in contrast to 5'OH-SCRV and 5'pppGG-SCRV, demonstrated the ability to compete with bio-5'ppp-SCRV.

      My concerns about Fig. 5 remain unaltered. The fact that MDA5 is an ISG explains its increased expression and increased methylation pattern. The authors should at the very least mention in their text that MDA5 is an ISG and that their observations may be partially explained by this fact.

      First, as our m6A change analysis pipeline controls for changes in gene expression, these data should represent true changes in m6A modification rather than changes in the expression of m6A-modified transcripts (10.1038/s41598-020-63355-3). Similar studies demonstrated that m6A modification in RIOK3 and CIRBP mRNAs are altered following Flaviviridae infection (10.1016/j.molcel.2019.11.007). The specific calculation method is as follows: relative m6A level for each transcript was calculated as the percent of input in each condition normalized to that of the respective positive control spike-in. Fold change of enrichment was calculated with mock samples normalized to 1. Therefore, changes in the expression level of MDA5 can partially explain the increase in m6A modification on all MDA5 mRNA in cells, but it cannot indicate changes in m6A modification on each mDA5 transcript. We have supplemented the calculation method process in the manuscript and cited relevant literature (Lines 606-608). In addition, we have elaborated on the fact that MDA5 is an ISG gene in the experimental results (lines 260-261), and emphasized its compatibility with enhanced m6A modification of MDA5 in the discussion section (lines 405-409).

      Reviewer #3 (Public Review):

      In this manuscript, the authors explored the interaction between the pattern recognition receptor MDA5 and 5'ppp-RNA in the Miiuy croaker. They found that MDA5 can serve as a substitute for RIG-I in detecting 5'ppp-RNA of Siniperca cheilinus rhabdovirus (SCRV) when RIG-I is absent in Miiuy croaker. Furthermore, they observed MDA5's recognition of 5'ppp-RNA in chickens (Gallus gallus), a species lacking RIG-I. Additionally, the authors documented that MDA5's functionality can be compromised by m6A-mediated methylation and degradation of MDA5 mRNA, orchestrated by the METTL3/14-YTHDF2/3 regulatory network in Miiuy croaker during SCRV infection. This impairment compromises the innate antiviral immunity of fish, facilitating SCRV's immune evasion. These findings offer valuable insights into the adaptation and functional diversity of innate antiviral mechanisms in vertebrates.

      We extend our sincere appreciation for your professional comments and insightful suggestions on our manuscript, as they have significantly contributed to enhancing its quality.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The interpretation of Figures 1H and I, along with the captions, seems unclear. Particularly, understanding the meaning of the X-axis in Figure I is challenging. Additionally, the designation of "H2O = 1" on the Y-axis in Figure 1E lacks clarity. It would be helpful if the author could revise and clarify these figures for better comprehension.

      We appreciate your reminder and have corrected and clarified these figures and figure legends (lines 768-772). We have replaced the Y-axis of Figure 1I with "Relative mRNA expression" instead of " Relative IFN-1 expression" (Figure 1I). In addition, we have added an explanation of "H2O=1" in the legend of Figure 1E.

      (2) The interpretation of Figure 5 in section 2.5 seems incomplete. The author mentioned that both m6A levels and MDA5 expression levels are increased (lines 256-257), prompting questions about the relationship between m6A and MDA5 expression. If higher m6A levels typically lead to MDA5 mRNA instability and lower MDA5 expression, observing both increasing simultaneously appears contradictory. Considering the dynamic changes shown in Figure 5, it would be more appropriate to propose an alteration in both m6A levels and MDA5 expression levels. Given the fluctuating nature of these changes, definitively labeling them as solely "increased" is challenging. Therefore, offering a nuanced interpretation of the results and clarifying this aspect would bolster the study's conclusions.

      While changes in m6A modification and the expression of m6A-modified transcripts are biologically relevant, identifying bona fide m6A alterations during viral infection will allow us to understand how m6A modification of cellular mRNA is regulated. As our m6A change analysis pipeline controls for changes in gene expression, these data should represent true changes in m6A modification rather than changes in the expression of m6A-modified transcripts (10.1038/s41598-020-63355-3). Similar studies demonstrated that m6A modification in RIOK3 and CIRBP mRNAs are altered following Flaviviridae infection (10.1016/j.molcel.2019.11.007). The specific calculation method is as follows: relative m6A level for each transcript was calculated as the percent of input in each condition normalized to that of the respective positive control spike-in. Fold change of enrichment was calculated with mock samples normalized to 1. Therefore, the upregulation of MDA5 expression can partially explain the increase in m6A modification on all MDA5 mRNA in cells, but it cannot indicate changes in m6A modification on each mDA5 transcript. We have supplemented the calculation method process in the manuscript and cited relevant literature. I hope to receive your understanding.

      In addition, although higher m6A levels often lead to unstable MDA5 mRNA and lower MDA5 expression, SCRV can affect MDA5 expression through multiple pathways. For example, since MDA5 is an interferon-stimulated gene, the infection of SCRV virus can cause strong expression of interferon and indirectly induce high-level expression of MDA5. Therefore, the expression of MDA5 is not contradictory to the simultaneous increase in MDA5 modification (24 h). In order to further enhance our experimental conclusions, we supplemented the dual fluorescence experiment. The results indicate that, the infection of SCRV can inhibit the fluorescence activity of MDA5-exon1 reporter plasmids containing m6A sites but not including the promoter sequence of the MDA5 gene, and this inhibitory effect can be counteracted by cycloleucine (CL, an amino acid analogue that can inhibit m6A modification) (Figure 5G). This further indicates that SCRV can reduce the expression of MDA5 through the m6A pathway.

      Finally, in light of the fluctuations in MDA5 expression levels, we have changed the subheadings of Results 2.5 section and provided a more comprehensive and precise elucidation of the experimental outcomes. We are grateful for your valuable feedback.

      (3) In the discussion section, it would indeed be advantageous for the author to explore the novelty of this work more comprehensively, moving beyond merely acknowledging the widespread loss of RIG-I and suggesting MDA5 as a compensatory mechanism. Considering the well-established roles of MDA5 and m6A in host-virus interactions, the findings of this study may seem familiar in light of previous research. To enhance the discussion, it would be valuable for the author to delve into the implications of this evolutionary model. For instance, does the compensation or loss of RIG-I impact a species' susceptibility to specific types of viruses? Exploring such questions would provide insight into the broader significance of this compensation model and its potential effects on host-virus interactions, thus adding depth to the study's contribution.

      We appreciate the expert advice provided by the referee. In response, we have expanded our discussion in the relevant section, addressing the potential influence of RIG-I deficiency and MDA5 compensation on the antiviral immune system in vertebrates (lines 371-376). Furthermore, we underscore the significance of exploring the impact of SCRV infection on MDA5 m6A modification, considering its compatibility with MDA5 as an ISG gene, in elucidating the host response to viral infection (lines 405-409).

      (4) To improve the manuscript, it would be beneficial if the editors could aid the author in refining the language. Many descriptions in the article are overly redundant, and there should be appropriate differentiation between experimental methods and results.

      We appreciate the reviewer’s comment. We have carefully revised the manuscript and removed redundant descriptions in the experimental results and methods.

      Reviewer #3 (Recommendations For The Authors):

      The authors have addressed all of my concerns.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer 1

      R1 Cell profiling is an emerging field with many applications in academia and industry. Finding better representations for heterogeneous cell populations is important and timely. However, unless convinced otherwise after a rebuttal/revision, the contribution of this paper, in our opinion, is mostly conceptual, but in its current form - not yet practical. This manuscript combined two concepts that were previously reported in the context of cell profiling, weakly supervised representations. Our expertise is in computational biology, and specifically applications of machine learning in microscopy.

      In our revised manuscript, we have aimed to better clarify the practical contributions of our work by demonstrating the effectiveness of the proposed concepts on real-world datasets. We hope that these revisions and our detailed responses address your concerns and highlight the potential impact of our approach.

      R1.1a. CytoSummaryNet is evaluated in comparison to aggregate-average profiling, although previous work has already reported representations that capture heterogeneity and self-supervision independently. To argue that both components of contrastive learning and sets representations are contributing to MoA prediction we believe that a separate evaluation for each component is required. Specifically, the authors can benchmark their previous work to directly evaluate a simpler population representation (PMID: 31064985, ref #13) - we are aware that the authors report a 20% improvement, but this was reported on a separate dataset. The authors can also compare to contrastive learning-based representations that rely on the aggregate (average) profile to assess and quantify the contribution of the sets representation.

      We agree that evaluating the individual contributions of the contrastive learning framework and single-cell data usage is important for understanding CytoSummaryNet's performance gains.

      To assess the impact of the contrastive formulation independently, we applied CytoSummaryNet to averaged profiles from the cpg0004 dataset. This isolated the effect of contrastive learning by eliminating single-cell heterogeneity. The experiment yielded a 32% relative improvement in mechanism of action retrieval, compared to the 68% gain achieved with single-cell data. These findings suggest that while the contrastive formulation contributes significantly to CytoSummaryNet's performance, leveraging single-cell information is crucial for maximizing its effectiveness. We have added a discussion of this experiment to the Results section:

      “We conducted an experiment to determine whether the improvements in mechanism of action retrieval were due solely to CytoSummaryNet's contrastive formulation or also influenced by the incorporation of single-cell data. We applied the CytoSummaryNet framework to pre-processed average profiles from the 10 μM dose point data of Batch 1 (cpg0004 dataset). This approach isolated the effect of the contrastive architecture by eliminating single-cell data variability. We adjusted the experimental setup by reducing the learning rate by a factor of 100, acknowledging the reduced task complexity. All other parameters remained as described in earlier experiments.

      This method yielded a less pronounced but still substantial improvement in mechanism of action retrieval, with an increase of 0.010 (32% enhancement - Table 1). However, this improvement was not as high as when the model processed single-cell level data (68% as noted above). These findings suggest that while CytoSummaryNet's contrastive formulation contributes to performance improvements, the integration of single-cell data plays a critical role in maximizing the efficacy of mechanism of action retrieval.”

      We don't believe comparing with PMID: 31064985 is useful: while the study showcased the usefulness of modeling heterogeneity using second-order statistics, its methodology is limited in scalability due to the computational burden of computing pairwise similarities for all perturbations, particularly in large datasets. Additionally, the study's reliance on similarity network fusion, while expedient, introduces complexity and inefficiency. We contend that this comparison does not align with our objective of testing the effectiveness of heterogeneity in isolation, as it primarily focuses on capturing second and first-order information. Thus, we do not consider this study a suitable baseline for comparison.

      R1.1b. The evaluation metric of mAP improvement in percentage is misleading, because a tiny improvement for a MoA prediction can lead to huge improvement in percentage, while a much larger improvement in MoA prediction can lead to a small improvement in percentage. For example, in Fig. 4, MEK inhibitor mAP improvement of ~0.35 is measured as ~50% improvement, while a much smaller mAP improvement can have the same effect near the origins (i.e., very poor MoA prediction).

      We agree that relying solely on percentage improvements can be misleading, especially when small absolute changes result in large percentage differences.

      However, we would like to clarify two key points regarding our reporting of percentage improvements:

      • We calculate the percentage improvement by first computing the average mAP across all compounds for both CytoSummaryNet and average profiling, and then comparing these averages. This approach is less susceptible to the influence of outlier improvements compared to calculating the average of individual compound percentage improvements.
      • We report percentage improvements alongside their corresponding absolute improvements. For example, the mAP improvement for Stain4 (test set) is reported as 0.052 (60%). To further clarify this point, we have updated the caption of Table 1 to explicitly state how the percentage improvements are calculated:

      The improvements are calculated as mAP(CytoSummaryNet)-mAP(average profiling). The percentage improvements are calculated as (mAP(CytoSummaryNet)-mAP(average profiling))/mAP(average profiling).

      R1.1b. (Subjective) visual assessment of this figure does not show a convincing contribution of CytoSummaryNet representations of the average profiling on the test set (3.33 uM). This issue might also be relevant for the task of replicate retrieval. All in all, the mAP improvement reported in Table 1 and throughout the manuscript (including the Abstract), is not a proper evaluation metric for CytoSummaryNet contribution. We suggest reporting the following evaluations:

      1. Visualizing the results of cpg0001 (Figs. 1-3) similarly to cpg0004 (Fig. 4), i.e., plotting the matched mAP for CytoSummaryNet vs. average profile.

      2. In Table 1, we suggest referring to the change in the number of predictable MoAs (MoAs that pass a mAP threshold) rather than the improvement in percentages. Another option is showing a graph of the predictability, with the X axis representing a threshold and Y-axis showing the number of MoAs passing it. For example see (PMID: 36344834, Fig. 2B) and (PMID: 37031208, Fig. 2A), both papers included contributions from the corresponding author of this manuscript.

      Regarding the suggestion to visualize the results for compound group cpg0001 similarly to cpg0004, unfortunately, this is not feasible due to the differences in data splitting between the two datasets. In cpg0001, an MoA might have one compound in the training set and another in the test or validation set. Reporting a single value per MoA would require combining these splits, which could be misleading as it would conflate performance across different data subsets.

      However, we appreciate the suggestion to represent the number of predictable MoAs that surpass a certain mAP threshold, as it provides another intuitive measure of performance. To address this, we have created a graph that visualizes the predictability of MoAs across various thresholds, similar to the examples provided in the referenced papers (PMID: 36344834, Figure 2B and PMID: 37031208, Figure 2A). This graph, with the x-axis depicting the threshold and the y-axis showing the number of MoAs meeting the criterion, has been added to Supplementary Material K.

      R1.1c.i. "a subset of 18 compounds were designated as validation compounds" - 5 cross-validations of 18 compounds can make the evaluation complete. This can also enhance statistical power in figures 1-3.

      We appreciate your suggestion and acknowledge the potential benefits of employing cross-validation, particularly in enhancing statistical power. While we understand the merit of cross-validation for evaluating model performance and generalization to unseen data, we believe the results as presented already highlight the generalization characterics of our methods.

      Specifically, (the new) Figure 3 demonstrates the model's improvement over average profiling in both training and validation plates, supporting its ability to generalize to unseen compounds (but not to unseen plates).

      While cross-validation could potentially enhance our analysis, retraining five new models solely for different validation set results may not substantially alter our conclusions, given the observed trends in Suppl Figure A1 and (the new) Figure 4, both of which show results across multiple stain sets (but a single train-test-validation split).


      R1.1c.ii. Clarify if the MoA results for cpg0001 are drawn from compounds from both the training and the validation datasets. If so, describe how the results differ between the sets in text and graphs.

      We confirm that the Mechanism of Action (MoA) retrieval results for cpg0001 are derived from all available compounds. It's important to note that the training and validation dataset split for the replicate retrieval task is different from the MoA prediction task. For replicate retrieval, we train using all available compounds and validate on a held-out set (see Figure 2). For MoA prediction, we train using the replicate retrieval task as the objective on all available compounds but validate using MoA retrieval, which is a distinct task. We have added a brief clarification in the main text to highlight the distinction between these tasks and how validation is performed for each:

      “We next addressed a more challenging task: predicting the mechanism of action class for each compound at the individual well level, rather than simply matching replicates of the exact same compound (Figure 5). It's also important to note that mechanism of action matching is a downstream task on which CytoSummaryNet is not explicitly trained. Consequently, improvements observed on the training and validation plates are more meaningful in this context, unlike in the previous task where only improvements on the test plate were meaningful. For similar reasons, we calculate the mechanism of action retrieval performance on all available compounds, combining both the training and validation sets. This approach is acceptable because we calculate the score on so-called "sister compounds" only—that is, different compounds that have the same mechanism of action annotation. This ensures there is no overlap between the mechanism of action retrieval task and the training task, maintaining the integrity of our evaluation. ”

      R1.1c.iii. "Mechanism of action retrieval is evaluated by quantifying a profile's ability to retrieve the profile of other compounds with the same annotated mechanism of action.". It was unclear to us if the evaluation of mAP for MoA identification can include finding replicates of the same compound. That is, whether finding a close replicate of the same compound would be included in the AP calculation. This would provide CytoSummaryNet with an inherent advantage as this is the task it is trained to do. We assume that this was not the case (and thus should be more clearly articulated), but if it was - results need to be re-evaluated excluding same-compound replicates.

      The evaluation excludes replicate wells of the same compound and only considers wells of other compounds with the same MoA. This methodology ensures that the model's performance on the MoA prediction task is not inflated by its ability to find replicates of the same compound, which is the objective of the replicate retrieval task. Please see the explanation we have added to the main text in our response to R1.1c.ii. Additionally, we have updated the Methods section to clearly describe this evaluation procedure:

      “Mechanism of action retrieval is evaluated by quantifying a profile’s ability to retrieve the profile of different compounds with the same annotated mechanism of action.”



      __R1.2a. __The description of Stain2-5 was not clear for us at first (and second) read. The information is there, but more details will greatly enhance the reader's ability to follow. One suggestion is explicitly stating that these "stains" partitioning was already defined in ref 26. Another suggestion is laying out explicitly a concrete example on the differences between two of these stains. We believe highlighting the differences between stains will strengthen the claim of the paper, emphasizing the difficulty of generalizing to the out-of-distribution stain.

      We appreciate your feedback on the clarity of the Stain2-5 dataset descriptions; we certainly struggled to balance detail and concepts in describing these. We have made the following changes:

      • Explicitly mentioned that the partitioning of the Stain experiments was defined in https://pubmed.ncbi.nlm.nih.gov/37344608/: “The partitioning of the Stain experiments have been defined and explained previously [21].”
      • Moved an improved version of (now) Figure 2 from the Methods section to the main text to help visually explain how the stratification is done early on.
      • Added a new section in the Experimental Setup: Diversity of stain sets, which includes a concrete example highlighting the differences between Stain2, and Stain5 to emphasize the diversity in experimental setups within the same dataset: “Stain2-5 comprise a series of experiments which were conducted sequentially to optimize the experimental conditions for image-based cell profiling. These experiments gradually converged on the most optimal set of conditions; however, within each experiment, there were significant variations in the assay across plates. To illustrate the diversity in experimental setups within the dataset, we will highlight the differences between Stain2 and Stain5.

      Stain2 encompasses a wide range of nine different experimental protocols, employing various imaging techniques such as Widefield and Confocal microscopy, as well as specialized conditions like multiplane imaging and specific stains like MitoTracker Orange. This subset also includes plates acquired with strong pixel binning instead of default imaging and plates with varying concentrations of dyes like Hoechst. As a result, Stain2 exhibits greater variance in the experimental conditions across different plates compared to Stain5.

      In contrast, Stain5, the last experiment in the series, follows a more systematic approach, consistently using either confocal or default imaging across three well-defined conditions. Each condition in Stain5 utilizes a lower cell density of 1,000 cells per well compared to Stain2's 2,500 cells per well. Being the final experiment in the series, Stain5 had the least variance in experimental conditions.

      For training the models, we typically select the data containing the most variance to capture the broadest range of experimental variation. Therefore, we chose Stain2-4 for training, as they represented the majority of the data and captured the most experimental variation. We reserved Stain5 for testing to evaluate the model's ability to generalize to new experimental conditions with less variance.

      All StainX experiments were acquired in different passes, which may introduce additional batch effects.”

      These changes aim to provide a clearer understanding of the dataset's complexity and the challenges associated with generalizing to out-of-distribution data.

      R1.2b. What does each data point in Figures 1-3 represent? Is it the average mAP for the 18 validation compounds, using different seeds for model training? Why not visualize the data similarly to Fig. 4 so the improvement per compound can be clearly seen?

      The data points in (the new) Figures 3,4,5 represent the average mAP for each plate, calculated by first computing the mAP for each compound and then averaging across compounds to obtain the average mAP per plate. We have updated the figure captions to clarify this:

      "... (each data point is the average mAP of a plate) ..."

      While visualizing the mAP per compound, similar to (the new) Figure 6 for cpg0004, could provide insights into compound-level improvements, it would require creating numerous additional figures or one complex figure to adequately represent all the stratifications we are analyzing (plate, compound, Stain subset). By averaging the data per plate across different stratifications, we aim to provide a clearer and more comprehensible overview of the trends and improvements while allowing us to draw conclusions about generalization.

      Please note: this comment is related to the comment R1.1b (Subjective)

      R1.2.c [On the topic of enhancing clarity and readability:] Justification and interpretation of the evaluation metrics.

      Please refer to our response to comment R1.1b, where we have addressed your concerns regarding the justification and interpretation of the evaluation metrics.

      R1.2d. Explicitly mentioning the number of MoAs for each datasets and statistics of number of compounds per MoA (e.g., average\median, min, max).

      We have added the following to the Experimental Setup: Data section:

      “A subset of the data was used for evaluating the mechanism of action retrieval task, focusing exclusively on compounds that belong to the same mechanism class. The Stain plates contained 47 unique mechanisms of action, with each compound replicated four times. Four mechanisms had only a single compound; the four mechanisms (and corresponding compounds) were excluded, resulting in 43 unique mechanisms used for evaluation. In the LINCS dataset, there were 1436 different mechanisms, but only 661 were used for evaluation because the remaining had only one compound.”

      R1.2e. The data split in general is not easily understood. Figure 8 is somewhat helpful, however in our view, it can be improved to enhance understanding of the different splits. Specifically, the training and validation compounds need to be embedded and highlighted within the figure.

      Thank you for highlighting this. We have completely revised the figure, now Figure 2 which we hope more clearly conveys the data split strategy.

      Please note: this comment is related to the comment R1.2a.





      R1.3a. Why was stain 5 used for the test, rather than the other stains?

      Stain2-5 were part of a series of experiments aimed at optimizing the experimental conditions for image-based cell profiling using Cell Painting. These experiments were conducted sequentially, gradually converging on the most optimal set of conditions. However, within each experiment, there were significant variations in the assay across plates, with earlier iterations (Stain2-4) having more variance in the experimental conditions compared to Stain5. As Stain5 was the last experiment in the series and consisted of only three different conditions, it had the least variance. For training the models, we typically select the data containing the most variance to capture the broadest range of experimental variation. Therefore, Stain2-4 were chosen for training, while Stain5 was reserved for testing to evaluate the model's ability to generalize to new experimental conditions with less variance.

      We have now clarified this in the Experimental Setup: Diversity of stain sets section. Please see our response to comment R1.2a. for the full citation.

      R1.3b How were the 18 validation compounds selected?

      20% of the compounds (n=18) were randomly selected and designated as validation compounds, with the remaining compounds assigned to the training set. We have now clarified this in the Results section:

      “Additionally, 20% of the compounds (n=18) were randomly selected and designated as validation compounds, with the remaining compounds assigned to the training set (Supplementary Material H).”

      R1.3c. For cpg0004, no justification for the specific doses selected (10uM - train, 3.33 uM - test) for the analysis in Figure 4. Why was the data split for the two dosages? For example, why not perform 5-fold cross validation on the compounds (e.g., of the highest dose)?

      We chose to use the 10 μM dose point as the training set because we expected this higher dosage to consist of stronger profiles with more variance than lower dose points, making it more suitable for training a model. We decided to use a separate test set at a different dose (3.33 μM) to assess the model's ability to generalize to new dosages. While cross-validation on the highest dose could also be informative, our approach aimed to balance the evaluation of the model's generalization capability with its ability to capture biologically relevant patterns across different dosages.

      This explanation has been added to the text:

      “We chose the 10 μM dose point for training because we expected this high dosage to produce stronger profiles with more variance than lower dose points, making it more suitable for model training.”

      “The multiple dose points in this dataset allowed us to create a separate hold-out test set using the 3.33 μM dose point data. This approach aimed to evaluate the model's performance on data with potentially weaker profiles and less variance, providing insights into its robustness and ability to capture biologically relevant patterns across dosages. While cross-validation on the 10 μM dose could also be informative, focusing on lower dose points offers a more challenging test of the model's capacity to generalize beyond its training conditions, although we do note that all compounds’ phenotypes would likely have been present in the 10 μM training dataset, given the compounds tested are the same in both.”

      R1.3d. A more detailed explanation on the logic behind using a training stain to test MoA retrieval will help readers appreciate these results. In our first read of this manuscript we did not grasp that, we did in a second read, but spoon-feeding your readers will help.

      This comment is related to the rationale behind training on one task and testing on another, which is addressed in our responses to comments R1.1.cii and R1.1.ciii.

      R1.4 Assessment of interpretability is always tricky. But in this case, the authors can directly confirm their interpretation that the CytoSummaryNet representation prioritizes large uncrowded cells, by explicitly selecting these cells, and using their average profile re

      We progressively filtered out cells based on a quantile threshold for Cells_AreaShape features (MeanRadius, MaximumRadius, MedianRadius, and Area), which were identified as important in our interpretability analysis, and then computed average profiles using the remaining cells before determining the replicate retrieval mAP. In the exclusion experiment, we gradually left out cells as the threshold increased, while in the inclusion experiment, we progressively included larger cells from left to right.

      The results show that using only the largest cells does not significantly increase the performance. Instead, it is more important to include the large cells rather than only including small cells. The mAP saturates after a threshold of around 0.4, indicating that larger cells define the profile the most, and once enough cells are included to outweigh the smaller cell features, the profile does not change significantly by including even larger cells.

      These findings support our interpretation that CytoSummaryNet prioritizes large, uncrowded cells. While this approach could potentially be used as a general outlier removal strategy for cell profiling, further investigation is needed to assess its robustness and generalizability across different datasets and experimental conditions.

      We have created Supplementary Material L to report these findings and we additionally highlight them in the Results:

      “To further validate CytoSummaryNet's prioritization of large, uncrowded cells, we progressively filtered cells based on Cells_AreaShape features and observed the impact on replicate retrieval mAP (Supplementary Material L). The results support our interpretation and highlight the key role of larger cells in profile strength.”

      __R1.5. __Placing this work in context of other weakly supervised representations. Previous papers used weakly supervised labels of proteins / experimental perturbations (e.g., compounds) to improve image-derived representations, but were not discussed in this context. These include PMID: 35879608, https://www.biorxiv.org/content/10.1101/2022.08.12.503783v2 (from the same research groups and can also be benchmarked in this context), https://pubs.rsc.org/en/content/articlelanding/2023/dd/d3dd00060e , and https://www.biorxiv.org/content/10.1101/2023.02.24.529975v1. We believe that a discussion explicitly referencing these papers in this specific context is important.

      While these studies provide valuable insights into improving cell population profiles using representation learning, our work focuses specifically on the question of single-cell aggregation methods. We chose to use classical features for our comparisons because they are the current standard in the field. This approach allows us to directly assess the performance of our method in the context of the most widely used feature extraction pipeline in practice. However, we see the value in incorporating them in future work and have mentioned them in the Discussion:

      “Recent studies exploring image-derived representations using self-supervised and self-supervised learning [35][36] could inspire future research on using learned embeddings instead of classical features to enhance model-aggregated profiles.”

      R1.minor1. "Because the improved results could stem from prioritizing certain features over others during aggregation, we investigated each cell's importance during CytoSummaryNet aggregation by calculating a relevance score for each" - what is the relevance score? Would be helpful to provide some intuition in the Results.

      We have included more explanation of the relevance score in the Results section, following the explanation of sensitivity analysis (SA) and critical point analysis (CPA):

      “SA evaluates the model's predictions by analyzing the partial derivatives in a localized context, while CPA identifies the input cells with the most significant contribution to the model's output. The relevance scores of SA and CPA are min-max normalized per well and then combined by addition. The combination of the two is again min-max normalized, resulting in the SA and CPA combined relevance score (see Methods for details).”

      R1.minor2. Figure 1:

      1. Colors of the two methods too similar
      2. The dots are too close. It will be more easily interpreted if they were further apart.
      3. What do the dots stand for?
      4. We recommend considering moving this figure to the supp. material (the most important part of it is the results on the test set and it appears in Fig.2).
      1. We chose a lighter and darker version of the same color as a theme to simplify visualization, as this theme is used throughout (the new) Figures 3,4,5.
      2. We agree; we have now redrawn the figure to fix this.
      3. Each data point is the average mAP of a plate. Please see our answer for R1.2b as well.
      4. We believe that (the new) Figures 3,4,5 serve distinct purposes in testing various generalization hypotheses. We have added the following text to emphasize that the first figures are specifically about generalization hypothesis testing: “We first investigated CytoSummaryNet’s capacity to generalize to out-of-distribution data: unseen compounds, unseen experimental protocols, and unseen batches. The results of these investigations are visualized in Figures 3, 4, and 5, respectively.”

      R1.minor3 Figure 4: It is somewhat misleading to look at the training MoAs and validation MoAs embedded together in the same graph. We recommend showing only the test MoAs (train MoAs can move to SI).

      We addressed this comment in R1.1c.ii. To reiterate briefly, there are no training, validation, or test MoAs because these are not used as labels during the training process. There is an option to split them based on training and validation compounds, which is addressed in R1.1c.ii.


      R1.minor4 Figure 5

      1. Why only Stain3? What happens if we look at Stains 2,3 and 4 together? Stain 5?

      2. Should validation compounds and training compounds be analyzed separately?

      3. Subfigure (d): it is expected that the data will be classified by compound labels as it is the training task, but for this to be persuasive I would like to see this separately on the training compounds first and then and more importantly on the validation compounds.

      4. For subfigures (b) and (d): it appears there are not enough colors for d, which makes it partially not understandable. For example, the pink label in (d) shows a single compound which appears to represent two different MoAs. This is probably not the case, and it has two different compounds, but it cannot be inferred when they are represented by the same color.

      5. For the Subfigure (e) - only 1 circle looks justified (in the top left). And for that one, is it not a case of an outlier plate that would perhaps need to be removed from analysis? Is it not good that such a plate will be identified?

      We have addressed this point in the text, stating that the results are similar for Stain2 and Stain4. Stain5 represents an out-of-distribution subset because of a very different set of experimental conditions (see Experimental Setup: Diversity of stain sets). To improve clarity, we have revised the figure caption to reiterate this information:

      “... Stain2 and Stain4 yielded similar results (data not shown). …”

      1. For replicate retrieval, analyzing validation and training compounds separately is appropriate. However, this is not the case for MoA retrieval, as discussed in our responses to R1.1c.ii and R1.1c.i.
      2. We have created the requested plot (below) but ultimately decided not to include it in the manuscript because we believe that (the new) Figures 3 and 4 are more effective for making quantitative comparative claims.

      [Please see the full revision document for the figures]

      Top: training compounds (validation compounds grayed out); not all compounds are listed in the legend.

      *Bottom: validation compounds (training compounds grayed out). *

      Left: average profiling; Right: CytoSummaryNet

      1. We agree with your observation and have addressed this issue by labeling the center mass as a single class (gray) and highlighting only the outstanding pairs in color. Please refer to the updated figure and our response to R3.6 for more details.

      2. In the updated figure, we have revised the figure caption to focus solely on the annotation of same mechanism of action profile clusters, as indicated by the green ellipses. The annotation of isolated plate clusters has been removed (Figures 7e and 7f) to maintain consistency and avoid potential confusion. Despite being an outlier for Stain3, the plate (BR00115134bin1) clusters with Stain4 plates (Supplementary Figure F1, green annotated square inside the yellow annotated square), indicating it is not merely a noisy outlier and can provide insights into the out-of-sample performance of our model.

      R1.minor5a. Discussion: "perhaps in part due to its correction of batch effects" - is this statement based on Fig. 5F - we are not convinced.

      We appreciate the reviewer's scrutiny regarding our statement about batch effect correction. Upon reevaluation, we agree that this claim was not adequately substantiated by empirical data. We quantified the batch effects using comparison mean average precision for both average profiles and CytoSummaryNet profiles, and the statistical analysis revealed no significant difference between these profiles in terms of batch effect correction. Therefore, we have removed this theoretical argument from the manuscript entirely to ensure that all claims are strongly supported by the data presented.

      R1.minor5b. "Overall, these results improve upon the ~20% gains we previously observed using covariance features" - this is not the same dataset so it is hard to reach conclusions - perhaps compare performance directly on the same data?

      We have now explicitly clarified this is a different dataset. Please see our response to R1.1a for why a direct comparison was not performed. The following clarification can be found in the Discussion:

      “These results improve upon the ~20% gains previously observed using covariance features [13] albeit on a different dataset, and importantly, CytoSummaryNet effectively overcomes the challenge of recomputation after training, making it easier to use.”

      Reviewer 2

      R2.1 The authors present a well-developed and useful algorithm. The technical motivation and validation are very carefully and clearly explained, and their work is potentially useful to a varied audience.

      That said, I think the authors could do a better job, especially in the figures, of putting the algorithm in context for an audience that is unfamiliar with the cell painting assay. (a) For example, a figure towards the beginning of the paper with example images might help to set the stage. (b) Similarly a schematic of the algorithm earlier in the paper would provide a graphical overview. (c) For the sake of a biologically inclined audience, I would consider labeling the images in the caption by cell type and label.

      Thank you for your valuable suggestions on improving the accessibility of our figures for readers unfamiliar with the Cell Painting assay. We have made the following changes to address your comments:

      1. and b. To provide visual context and a graphical overview of the algorithm, we have moved the original Figure 7 to Figure 1. This figure now includes example images that help readers new to the Cell Painting assay.
      2. We have added relevant details to the example images in (the new) Figure 1

        R2.2 The interpretability results were intriguing. The authors might consider further validating these interpretations by removing weakly informative cells from the dataset and retraining. Are the cells so uninformative that the algorithm does better without them, or are they just less informative than other cells?

      Please see our responses to R1.4 and R3.0

      R2.3 As far as I can tell, the authors only oblique state whether the code associated with the manuscript is openly available. Posting the code is needed for reproducibility. I would provide not only a github, but a doi linked to the code, or some other permanent link.

      We have now added a Code Availability and Data Availability section, clearing stating that the code and data associated with the manuscript are openly available.

      R2.4 Incorporating biological heterogeneity into machine-learning driven problems is a critical research question. Replacing means/modes and such with a machine learning framework, the authors have identified a problem with potentially wide significance. The application to cell painting and related assays is of broad enough significance for many journals, However, the authors could further broaden the significance by commenting on other possible cell biology applications. What other applications might the algorithm be particularly suited for? Are there any possible roadblocks to wider use. What sorts of data has the code been tested on so far?

      We have added the following paragraph to discuss the broader applicability of CytoSummaryNet:

      “The architecture of CytoSummaryNet holds significant potential for broader applications beyond image-based cell profiling, accommodating tabular, permutation-invariant data and enhancing downstream task performance when applied to processed population-level profiles. Its versatility makes it valuable for any omics measurements where downstream tasks depend on measuring similarity between profiles. Future research could also explore CytoSummaryNet's applicability to genetic perturbations, expanding its utility in functional genomics.”

      Reviewer 3

      R3.0 The authors have done a commendable job discussing the method, demonstrating its potential to outperform current models in profiling cell-based features. The work is of considerable significance and interest to a wide field of researchers working on the understanding of cell heterogeneity's impact on various biological phenomena and practical studies in pharmacology.

      One aspect that would further enhance the value of this work is an exploration of the method's separation power across different modes of action. For instance, it would be interesting to ascertain if the method's performance varies when dealing with actions that primarily affect size, those that affect marker expression, or compounds that significantly diminish cell numbers.

      Thank you for encouraging comments!

      We have added the following to Results: Relevance scores reveal CytoSummaryNet's preference for large, isolated cells:

      “Statistical t-tests were conducted to identify the features that most effectively differentiate mechanisms of action from negative controls in average profiles, focusing on the three mechanisms of action where CytoSummaryNet demonstrates the most significant improvement and the three mechanisms where it shows the least. Consistent with our hypothesis that CytoSummaryNet emphasizes larger, more sparse cells, the important features for the CytoSummaryNet-improved mechanisms of action (Supplementary Material I1) often involve the radial distribution for the mitochondria and RNA channels. These metrics capture the fraction of those stains near the edge of the cell versus concentric rings towards the nucleus, which are more readily detectable in larger cells compared to small, rounded cells.

      In contrast, the important features for mechanisms of action not improved by CytoSummaryNet (Supplementary Material I) predominantly include correlation metrics between brightfield and various fluorescent channels, capturing spatial relationships between cellular components. Some of these mechanisms of action included compounds that were not individually distinguishable from negative controls, and CytoSummaryNet did not overcome the lack of phenotype in these cases. This suggests that while CytoSummaryNet excels in identifying certain cellular features, its effectiveness is limited when dealing with mechanisms of action that do not exhibit pronounced phenotypic changes.”

      We have also added supplementary material to support (I. Relevant features for CytoSummaryNet improvement).

      R3.0 Another test on datasets that are not concerned with chemical compounds, but rather genetic perturbations would greatly increase the reach of the method into the functional genomics community and beyond. This additional analysis could provide valuable insights into the versatility and applicability of the proposed method.

      We agree that testing the method's behavior on genetic perturbations would be interesting and could provide insights into its versatility. However, the efficacy of the methodology may vary depending on the specific properties of different genetic perturbation types.

      For example, the penetrance of phenotypes may differ between genetic and chemical perturbations. In some experimental setups, a selection agent ensures that nearly all cells receive a genetic perturbation (though not all may express a phenotype due to heterogeneity or varying levels of the target protein). Other experiments may omit such an agent. Additionally, different patterns might be observed in various classes of reagents, such as overexpression, CRISPR-Cas9 knockdown (CRISPRn), CRISPR-interference (CRISPRi), and CRISPR-activation (CRISPRa).

      We believe that selecting a single experiment with one of these technologies would not adequately address the question of versatility. Instead, we propose future studies that may conclusively assess the method's performance across a variety of genetic perturbation types. This would provide a more comprehensive understanding of CytoSummaryNet's applicability in functional genomics and beyond. We have update the Discussion section to reflect this:

      “Future research could also explore CytoSummaryNet's applicability to genetic perturbations, expanding its utility in functional genomics.”

      R3.1. The datasets were stratified based on plates and compounds. It would be beneficial to clarify the basis for data stratification applied for compounds. Was the data sampled based on structural or functional similarity of compounds? If not, what can be expected from the model if trained and validated using structurally or functionally diverse and non-diverse compounds?

      Thank you for raising the important question of data stratification based on compound similarity. In our study, the data stratification was performed by randomly sampling the compounds, without considering their structural or functional similarity.

      This approach may limit the generalizability of the learned representations to new structural or functional classes not captured in the training set. Consequently, the current methodology may not fully characterize the model’s performance across diverse compound structures.

      In future work, it would be valuable to explore the impact of compound diversity on model performance by stratifying data based on structural or functional similarity and comparing the results to our current random stratification approach to more thoroughly characterize the learned representations.

      R3.2. Is the method prioritizing a particular biological reaction of cells toward common chemical compounds, such as mitotic failure? Could this be oncology-specific, or is there more utility to it in other datasets?

      Our analysis of CytoSummaryNet's performance in (the new) Figure 6 reveals a strong improvement in MoAs targeting cancer-related pathways, such as MEK, HSP, MDM, dehydrogenase, and purine antagonist inhibitors. These MoAs share a common focus on cellular proliferation, survival, and metabolic processes, which are key characteristics of cancer cells.

      Given the composition of the cpg0004 dataset, which contains 1,258 unique MoAs with only 28 annotated as oncology-related, the likelihood of randomly selecting five oncology-related MoAs that show strong improvement is extremely low. This suggests that the observed prioritization is not due to chance.

      Furthermore, the prioritization cannot be solely attributed to the frequency of oncology-related MoAs in the dataset. Other prevalent disease areas, such as neurology/psychiatry, infectious disease, and cardiology, do not exhibit similar improvements despite having higher MoA counts.

      While these findings indicate a potential prioritization of oncology-related MoAs by CytoSummaryNet, further research is necessary to fully understand the extent and implications of this bias. Future work should involve conducting similar analyses across other disease areas and cell types to assess the method's broader utility and identify areas for refinement and application. However, given the speculative nature of these observations, we have chosen not to update the manuscript to discuss this potential bias at this time.

      R3.3 Figures 1 and 2 demonstrate that the CytoSummaryNet profiles outperform average-aggregated profiles. However, the average profiling results seem more consistent when compared to CytoSummaryNet profiling. What further conditions or approaches can help improve CytoSummaryNet profiling results to be more consistent?

      The observed variability in CytoSummaryNet's performance is primarily due to the intentional technical variance in our datasets, where each plate tested different staining protocol variations. It's important to note that this level of technical variance is not typical in standard cell profiling experiments. In practice, the variance across plates would be much lower. We want to emphasize that while a model capable of generalizing across diverse experimental conditions might seem ideal, it may not be as practically useful in real-world scenarios. This is because such non-uniform conditions are uncommon in typical cell profiling experiments. In normal experimental settings, where technical variance is more controlled, we expect CytoSummaryNet's performance to be more consistent.

      R3.4 Can the poor performance on unseen data (in the case of stain 5) be overcome? If yes, how? If no, why not?

      We believe that the poor performance on unseen data, such as Stain 5, can be overcome depending on the nature of the unseen data. As shown in Figure 4 (panel 3), the model improves upon average profiling for unseen data when the experimental conditions are similar to the training set.

      The issue lies in the different experimental conditions. As explained in our response to R3.3, this could be addressed by including these experimental conditions in the training dataset. As long as CytoSummaryNet is trained (seen) and tested (unseen) on data generated under similar experimental conditions, we are confident that it will improve or perform as well as average profiling.

      It's important to note that the issue of generalization to vastly different experimental conditions was considered out of scope for this paper. The main focus is to introduce a new method that improves upon average profiling and can be readily used within a consistent experimental setup.

      R3.5 It needs to be mentioned how the feature data used for CytoSummaryNet profiling was normalized before training the model. What would be the impact of feature data normalization before model training? Would the model still outperform if the skewed feature data is normalized using square or log transformation before model training?

      We have clarified in the manuscript that we standardized the feature data on a plate-by-plate basis to achieve zero mean and unit variance across all cells per feature within each plate. We have added the following statement to improve clarity:

      “The data used to compute the average profiles and train the model were standardized at the plate-level, ensuring that all cell features across the plate had a zero mean and unit variance. The negative control wells were then removed from all plates."

      We chose standardization over transformations like squaring or logging to maintain a balanced scale across features while preserving the biological and morphological information inherent in the data. While transformations can reduce skewness and are useful for data spanning several orders of magnitude, they might distort biological relevance by compressing or expanding data ranges in ways that could obscure important cellular variations.

      Regarding the potential impact of square or log transformations on skewed feature data, these methods could improve the model's learning efficiency by making the feature distribution more symmetrical. However, the suitability and effectiveness of these techniques would depend on the specific data characteristics and the model architecture.

      Although not explored in this study, investigating various normalization techniques could be a valuable direction for future research to assess their impact on the performance and adaptability of CytoSummaryNet across diverse datasets and experimental setups.

      R3.6. In Figure 5 b and c, MoAs often seem to be represented by singular compounds and thus, the test (MoA prediction) is very similar to the training (compound ID). Given this context, a discussion about the extent this presents a circular argument supported by stats on the compound library used for training and testing would be beneficial.

      Clusters in (the new) Figure 7 that contain only replicates of a single compound would not yield an improved performance on the MoA task unless they also include replicates of other compounds sharing the same MoA in close proximity. Please see our response to R1.1c.iii. for details. To improve visual clarity and avoid misinterpretation, we have recomputed the colors for (the new) Figure 7 and grayed out overlapping points.

      R3.7 Can you estimate the minimum amount of supervision (fuzzy/sparse labels, often present in mislabeled compound libraries with dirty compounds and polypharmacology being present) that is needed for it to be efficiently trained?

      It's important to note that the metadata used by the model is only based on identifying replicates of the same compound. Mechanism of action (MoA) annotations, which can be erroneous due to dirty compounds, polypharmacology, and incomplete information, are not used in training at all. MoA annotations are only used in our evaluation, specifically for calculating the mAP for MoA retrieval.

      We have successfully trained CytoSummaryNet on 72 unique compounds with 4 replicates each. This is the current empirical minimum, but it is possible that the model could be trained effectively with even fewer compounds or replicates.

      Determining the absolute minimum amount of supervision required for efficient training would require further experimentation and analysis. Factors such as data quality, feature dimensionality, and model complexity could influence the required level of supervision.

      R3.minor1 Figure 5: The x-axis and y-axis tick values are too small, and image resolution/size needs to be increased.

      We have made the following changes to address the concerns:

      • Increased the image resolution and size to improve clarity and readability.
      • Removed the x-axis and y-axis tick values, as they do not provide meaningful information in the context of UMAP visualizations. We believe these modifications enhance the visual presentation of the data and make it easier for readers to interpret the results.

      R3.minor2 The methods applied to optimize hyperparameters in supplementary data need to be included.

      We added the following to Supplementary Material D:

      “We used the Weights & Biases (WandB) sweep suite in combination with the BOHB (Bayesian Optimization and HyperBand) algorithm for hyperparameter sweeps. The BOHB algorithm [47] combines Bayesian optimization with bandit-based strategies to efficiently find optimal hyperparameters.

      Additionally Table D1 provides an overview of all tunable hyperparameters and their chosen values based on a BOHB hyperparameter optimization.”

      R3.minor3 Figure 5(c, d): The names of compound 2 and Compound 5 need to be included in the labels.

      These compounds were obtained from external companies and are proprietary, necessitating their anonymization in our study. This has now been added in the caption of (the new) Figure 7:

      “Note that Compound2 and Compound5 are intentionally anonymized.”

      R3.minor4 Table C1: Plate descriptions need to be included.

      *Table C1: The training, validation, and test set stratification for Stain2, Stain3, Stain4, and Stain5. Five training, four validation, and three test plates are used for Stain2, Stain3, and Stain4. Stain5 contains six test set plates only. *

      __Stain2 __

      Stain3

      Stain4

      Stain5

      Training plates

      Test plates

      BR00113818

      BR00115128

      BR00116627

      BR00120532

      BR00113820

      BR00115125highexp

      BR00116631

      BR00120270

      BR00112202

      BR00115133highexp

      BR00116625

      BR00120536

      BR00112197binned

      BR00115131

      BR00116630highexp

      BR00120530

      BR00112198

      BR00115134

      200922_015124-Vhighexp

      BR00120526

      Validation plates

      BR00120274

      BR00112197standard

      BR00115129

      BR00116628highexp

      BR00112197repeat

      BR00115133

      BR00116629highexp

      BR00112204

      BR00115128highexp

      BR00116627highexp

      BR00112201

      BR00115127

      BR00116629

      Test plates

      BR00112199

      BR00115134bin1

      200922_044247-Vbin1

      BR00113819

      BR00115134multiplane

      200922_015124-V

      BR00113821

      BR00115126highexp

      BR00116633bin1

      We have added a reference to the metadata file in the description of Table C1: https://github.com/carpenter-singh-lab/2023_Cimini_NatureProtocols/blob/main/JUMPExperimentMasterTable.csv

      R3.minor5 Figure F1: Does the green box (stain 3) also involve training on plates from stain 4 (BR00116630highexp) and 5 (BR00120530) mentioned in Table C1? Please check the figure once again for possible errors.

      We have carefully re-examined Figure F1 and Table C1 to ensure their accuracy and consistency. Upon double-checking, we can confirm that the figure is indeed correct. We intentionally omitted the training and validation plates from Figure F1 to maintain clarity and readability, as including them resulted in a cluttered and difficult-to-interpret figure.

      Regarding the specific plates mentioned:

      • BR00116630highexp (Stain4) is used for training, as correctly stated in Table C1. This plate is considered an outlier within the Stain4 dataset and happens to cluster with the Stain3 plates in Figure F1.
      • BR00120530 (Stain5) is part of the test set only and correctly falls within the Stain5 cluster in Figure F1. To improve the clarity of the training, validation, and test split in Table C1, we have added a color scheme that visually distinguishes the different data subsets. This should make it easier for readers to understand the distribution of plates across the various splits.
  3. Jul 2024
    1. Cohort studies increasingly collect biosamples for molecular profiling and are observing molecular heterogeneity. High throughput RNA sequencing is providing large datasets capable of reflecting disease mechanisms. Clustering approaches have produced a number of tools to help dissect complex heterogeneous datasets, however, selecting the appropriate method and parameters to perform exploratory clustering analysis of transcriptomic data requires deep understanding of machine learning and extensive computational experimentation. Tools that assist with such decisions without prior field knowledge are nonexistent. To address this we have developed Omada, a suite of tools aiming to automate these processes and make robust unsupervised clustering of transcriptomic data more accessible through automated machine learning based functions. The efficiency of each tool was tested with five datasets characterised by different expression signal strengths to capture a wide spectrum of RNA expression datasets. Our toolkit’s decisions reflected the real number of stable partitions in datasets where the subgroups are discernible. Within datasets with less clear biological distinctions, our tools either formed stable subgroups with different expression profiles and robust clinical associations or revealed signs of problematic data such as biased measurements.

      This work has been peer reviewed in GigaScience (see paper), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer name: **Pierre Cauchy **

      Kariotis et al present Omada, a tool dedicated to automated partitioning of large-scale, cohort-based RNA-Sequencing data such as TCGA. A great strength for the manuscript is that it clearly shows that Omada is capable of performing partitioning from PanCan into BRCA, COAD and LUAD (Fig 5), and datasets with no known groups (PAH and GUSTO), which is impressive and novel. I would like to praise the authors for coming up with such a tool, as the lack of a systematic tool dedicated to partitioning TCGA-like expression data is indeed a shortcoming in the field of medical genomics Overall, I believe the tool will be very valuable to the scientific community and could potentially contribute to meta-analysis of cohort RNA-Seq data. I only have a few comments regarding the methodology and manuscript. I also think that it should be more clearly stated that Omada is dedicated to large datasets (e.g. TCGA) and not differential expression analysis. I would also suggest benchmarking Omada to comparable tools via ROC curves if possible (see below). Methods: This section should be a bit more homogeneous between text descriptive and mathematical descriptive. It should specify what parts are automated and what part needs user input and refer to the vignette documentation. I also could not find the Omada github repository. Sample and gene expression preprocessing: To me, this section lacks methods/guidelines and only loosely describes the steps involved. "numerical data may need to be normalised in order to account for potential misdirecting quantities" - which kind of normalisation? "As for the number of genes, it is advised for larger genesets (>1000 genes) to filter down to the most variable ones before the application of any function as genes that do not vary across samples do not contribute towards identifying heterogeneity" What filtering is recommended? Top 5% variance? 1%? Based on what metric? Determining clustering potential: To me, it was not clear if this is automatically performed by Omada and how the feasibility score is determined. Intra-method Clustering Agreement: Is this from normalised data? Because affinity matrix will be greatly affected whether it's normalised or non-normalised data as the matrix of exponential(-normalised gene distance)^2 Spectral clustering step 2: "Define D to be the diagonal matrix whose (i, i)-element is the sum of A's i-th row": please also specify that A(i,j) is 0 in this diagonal matrix. Please also confirm which matrix multiplication method is used, product or Cartesian product? Also if there are 0 values, NAs will be obtained in this step. Hierarchical clustering step 5: "Repeat Step 3 a total of n − 1 times until there is only one cluster left." This is a valuable addition as this merges identical clusters, the methods should emphasise that the benefits of this clustering reduction method to help partition data, i.e. that this minimises the number of redundant clusters. Stability-based assessment of feature sets: "For each dataset we generate the bootstrap stability for every k within range". Here it should be mentioned that this is carried out by clusterboot, and the full arguments should be given for documentation "The genes that comprise the dataset with the highest stability are the ones that compose the most appropriate set for the downstream analysis" - is this the single highest or a gene list in the top n datasets? Please specify. Choosing k number of clusters: "This approach prevents any bias from specific metrics and frees the user from making decisions on any specific metric and assumptions on the optimal number of clusters.". Out of consistency with the cluster reduction method in the "intra-clustering agreement" section which I believe is a novelty introduced by Omada, and within the context of automated analysis, the package should also ideally have an optimized number of k-clusters. K-means clustering analysis is often hindered due to the output often resulting in redundant, practically identical clusters which often requires manual merging. While I do understand the rationale described there and in Table 3, in terms of biological information and especially for deregulated genes analysis (e.g. row z-score clustering), should maximum k also not be determined by the number of conditions, i.e 2n, e.g. when n=2, kmax=4; n=3, kmax=8? Test datasets and Fig 6: Please expand on how the number of features 300 was determined. While this number of genes corresponds to a high stability index, is this number fixed or can it be dynamically estimated from a selection (e.g. from 100 to 1000)? Results Overall this section is well written and informative. I would just add the following if applicable: Figure 3: I think this figure could additionally include benchmarking, ROC curves of. Omada vs e.g. previous TCGA clustering analyses (PMID 31805048) Figure 4: I think it would be useful to compare Omada results to previous TCGA clustering analyses, e.g. PMID 35664309 Figure 6: swap C and D. Why is cluster 5 missing on D)?

    1. Today, in order to bridge an emerging chasm, African-Americanwriters may seek to initiate and sustain a greater dialogue betweenactivists and academics. Analyzing the relationship between commen-tary and organizing strengthens critical writing, research, and activ-ism. Or, as Cornel West notes: "Local activists must become more andmore at the center of how we think about the condition for the possibilityof social motion and social movement."52 This seems particularly truein interracial rape cases where racism and sexism violently converge andmythology shapes cultural meanings and social and legal prosecution

      !!!!

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2024-02491

      Corresponding author(s): Gilbert, Vassart

      1. General Statements [optional]

      We thank referees 1 and 2 for their in-depth analysis of our manuscript. They see interest in our study, with questions to be answered. Referee 3 is essentially negative, considering that there is nothing new ("novel finding is missing"). We respectfully disagree with him/her, comforted by the opinion of referee 2 that "the authors developed a protocol to reproducibly generate fetal-like spheroids from adult tissue is an important advancement in the field and ... the manuscript should attract a significant amount of attention in the intestinal field" and we provide evidence in our answers that he/she did not read the manuscript with the same attention as referees 1 and 2 (see in particular answer to his/her question 5).

      Here is a summary of the main reason why we consider that our study represents valuable new information in the field of intestinal regeneration.

      It is based on the serendipitous observation that dissociation of adult intestinal tissue by collagenase generates stably replatable spheroids upon culture in matrigel. Surprisingly and contrary to canonical EDTA-generated intestinal organoids and fetal spheroids, these spheroids are not traced in Rosa26Tomato mice harboring a VilCre transgene, despite expressing robustly endogenous Villin. Our interpretation is that adult intestinal spheroids originate from a cell lineage, distinct from the main developmental intestinal lineage, in which the VilCre transgene is unexpectedly not expressed, probaly due to the absence of cis regulatory sequences required for expression in this lineage.

      Adult spheroid transcriptome shares a gene signature with the YAP/TAZ signature commonly expressed in models of intestinal regeneration. This led us to look for VilCre negative crypts in the regenerating intestine of Lgr5/DTR mice in which Lgr5-positive stem cells have been ablated by diphtheria toxin. Numerous VilCre negative clones were observed, identifying a novel lineage of stem cells implicated in intestinal regeneration.

      FACS purification and scRNAseq analysis of the rare VilCre negative cells present at homeostasis identified a population of cells with characteristics of quiescent stem cells.

      In sum, we believe that our study demonstrates the existence of a hitherto undescribed stem cell lineage involved in intestinal regeneration. It points to the existence of a hierarchical model of intestinal regeneration in addition to the well-accepted plasticity model.

      2. Description of the planned revisions

      See section 3 below.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Here is a point-by-point reply to the queries of the three referees, with indication of the revisions introduced in the manuscript.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      • *In this manuscript, Marefati et al report an Lgr5-independent lineage in the regenerating intestine using in vitro organoids and in vivo injury-coupled lineage tracing model. In organoids, collagenase/dispase dissociated resulted in "immortal spheroids" that maintain a cystic and undifferentiated phenotype in the absence of standard growth factors (Rspondin/Noggin/EGF). Bulk RNAseq of spheroids demonstrates downregulation of classical CBC signatures and upregulation of fetal spheroid, mesenchymal, inflammation and regenerative signatures. In mice, Villin-Cre lineage tracing revealed some Villin- negative progenies that lack reporter tracing throughout crypt-villus ribbons after injury.

      *The authors proposed that there is Lgr5-independent population support the regenerative response upon CBC depletion. A major caveat of this study is the identification of this population is based on absence of VilCre expression. *

      We respectfully disagree. It is precisely this characteristic that makes the interest of our study. Whereas mosaicism of transgene expression is widespread and usually of little significance, our study shows that the rare VilCre-negative cells in the intestinal epithelium are not randomly showing this phenotype: they give specifically birth to what we call adult spheroids and regenerating crypts, which cannot be due to chance. The absence of VilCre expression allows tracing these cells from the zygote stage of the various VilCre/Ros26 reporter mice. We have modified our text to emphasize this point.

      *It is surprising that there is no characterisation of Lgr5 expression throughout the manuscript whilst claiming of a Lgr5- independent lineage. *

      We understand the perplexity of the referee not to see direct Lgr5 expression data in our manuscript, given our title. However, our point is that it is the cells at the origin of adult spheroids and the regenerating crypts we have identified that are Lgr5-negative, not the spheroids or the regenerated crypts themselves. Those are downstream offspring that may, and indeed have, gained some Lgr5 expression (e.g. figure 3F). We believe that our data showing that VilCre-negative spheroids are not traced in Lgr5-CreERT2/Rosa reporter mice convincingly demonstrate absence of Lgr5 expression in the cells at the origin of adult spheroids (figure 4G). We think that this experiment is better evidence than attempts to show absence of two markers (Tom and Lgr5) in the rare "white" cells present in the epithelium. Regarding the Lgr5 status of cells at the origin of the regenerating "white" crypts that we have identified, the early appearance of these crypts following ablation of CBC (i.e. Lgr5+ve) cells is a strong argument that they originate from Lgr5-negative cells. Regarding the scRNAseq experiment, Lgr5 transcripts are notoriously low and difficult to measure reliably in CBCs (Haber et al 2017). However, blowing up the pertinent regions of the merged UMAP allows showing some Lgr5 transcripts in clusters 5,6 and none in cluster 1 of figure 8GH. Given the very low level of detection, we had chosen not to include these data in the manuscript, but we hope they may help answer the point of the referee (see portion of UMAP below, with Olfm4 as a control, together with the corresponding violin plot). Several markers that gave significant signals in the CBC cluster (Smoc2, Axin2, Slc12a2) were virtually undetectable in the Olfm4-low /Tom-negative cluster of our scRNAseq data (figure 8I) supporting our conclusion.

      Although the research question is potentially interesting, the concept of epithelial reprogramming upon injury is well documented in the field. The data generated in this manuscript also seem to be preliminary and lack of detailed characterisation. Below are specific comments.

      We do not question the existence of epithelial reprogramming upon injury. We believe our data show, in addition to this well demonstrated phenomenon, the existence of rare cells traced by absence of VilCre expression that are at the origin of a developmental cell lineage distinct from Lgr5+ stem cells and also implicated in regeneration.

      • Expression of Lgr5 should be properly characterised throughout the manuscript in both organoid models and injury-induced regeneration in vivo.
      • *

      See above for a detailed answer to this point.

      • An important question is the origin of these "Lgr5-independent" adult spheroids. They look and appear like fetal organoids, which could be induced by injury (e.g. upon collagenase/dispase dissociation). Have the authors tried to culture fetal spheroids in BCM over extensive period of time? Do they behave the same? This would be a great way to directly compare the collagenase/dispase-derived organoids with fetal origin. * *Fetal spheroids require ENR for survival and die in BCM. We have chosen to illustrate this point in Fig2A by showing that, contrary to adult spheroid, they die even when only Rspondin is missing.

      • Fig 1C, Why is the replating spheroid culture time different between mesenchymal cells and conditioned medium? We took the earliest time showing convincingly the return to the organoid phenotype. This timing difference does not modify the conclusion that EDTA organoids becoming spheroid-like when exposed to factors originating from mesenchymal cells revert to the organoid phenotype when returned to ENR medium without mesenchymal influence.

      • *It is unclear how the bulk RNA-seq data in Fig. 3 were compared. How long were the adult organoids and spheroids cultured for (how many passages)? Were they culture in the same condition of were they in ENR vs BCM? * Both EDTA organoids and spheroids displaying a stable phenotype were used in this experiment. Organoids were collected at passage 4, day 5; spheroids were collected at passage passage 9 day 3.

      As stated in the legend to the figure: "...to allow pertinent comparison spheroids and organoids were cultured in the same ENR-containing medium...".

      These are important information to consider when interpreting the results. For instance, are Ptgs1 & Ptgs2 expression in adult spheroids the same in ENR vs BCM? Are the gene signatures (regenerative, fetal and YAP) changed in adult spheroids culturing in ENR vs BCM?

      We did compare bulk RNAseq of EDTA organoids to ENR-cultured spheroids, short term (passage 6, day 6) BCM-cultured spheroids and long term BCM-cultured (passage 26, day 6) spheroids. To avoid overloading the manuscript these data were not shown in the original manuscript. In summary the BCM-cultured spheroids display a similar phenotype as those cultured in ENR, but with further de-differentiation. See in revision plan folder the results for PTGS, some differentiation markers and fetal regenerative markers including YAP induced genes.

      We have included a brief description of these data in the new version of the manuscript and added an additional supplementary file (Suppl table 2) presenting the whole data set.

      • It is stated: "In agreement with their aptitude to grow indefinitely, adult spheroids express a set of upregulated genes overlapping significantly with an "adult tissue stem cell module" [159/721 genes; q value 2.11 e-94) (Fig.S2F)].". What is the definition of "indefinitely"? Are they referring to the Fig 1B where spheroid were passaged to P10? The authors should avoid the term "indefinitely" but use a more specific time scale, e.g. passages, months etc.

      We agree that the term indefinitely should be avoided, as it is vague. We have introduced the maximum number of passages during which we have maintained the stable spheroid phenotype (26 passages). Also worth noting, the spheroids could be frozen and cultured repeatedly over many months.

      SuppFig 3D: Row Z-Score is missing the "e" in Score.

      Corrected

      • Fig 4E: Figure legend says QNRQ instead of CNRQ. Corrected

      • Fig 4G: The brightfield image of adult spheroids 5 days after 3x TAM injections doesn't look like a spheroid. It seems to be differentiating. True, the choice was not the best as the spheroids started to darken. When further replated, however, the offspring of these spheroids showing a clear phenotype remain negative 30 days after tamoxifen administration as shown on the figure. We are sorry, but for reasons explained in section 4 below, we cannot redo the experiment to get a better picture.

      • Fig 4: Most mouse model data are missing the number of mice & their respective age used for organoid isolation. We have introduced these data in the legend.

      • *Fig 4A-D, H-G: How was fluorescent signal of organoids quantified? *

      The settings of fluo imaging or time of LacZ staining were the same for organoids and spheroid pictures. This has been added to the material and methods of the figure and an example is shown below for Rosa26Tomato.

      *How many images? * 2 per animal per condition.

      *Were there equal numbers of organoids? *

      No, see number of total elements counted added to the figure

      This all needs to be included in methods/figure legends.

      We have introduced additional pertinent information in the material and methods section.

      • Figure 4B-D, G-H: Which culturing conditions were used for adult spheroids? Original method or sandwich method? These data were obtained with the original protocol

      • Fig 6D-E: Please add the timepoint after DT administration these samples are from. It is not listed in text or figure legend. These samples were those obtained from mice sacrificed at the end of the 5 day period as indicated in panel A. This has been emphasized in the legend of the figure.

      • SuppFig 6D: again timepoint is missing. In this experiment all samples were untreated as indicated. This has been emphasized in the legend of the figure.

      • SuppFig 6: How were the crypts of these mice (DT WT & DT HE) isolated? Was this via EDTA? This was RNA extracted from total uncultured EDTA-released material (crypts). This has been emphasized in the legend of the figure.

      Also, what is the timepoint for isolation for these samples? Even if untreated, the timepoint adds context to the data. Please add more context to describing these different experiments, either in the figure legends or methods section.

      All these experiments were from 2 month old animals. We have indicated this in the legend of the figure.

      • SuppFig 6E: The quality of the heatmap resolution is too poor to read gene names. We have improved the resolution of the figure and hope the name of the genes are readable now.

      • 5-7, are the regenerating crypt-villus units fully differentiated or are they maintained in the developmental state? Immunostaining of markers for stem cells (Lgr5), differentiated lineages (Alpi, Muc2, Lyz, ChgA etc.) and fetal state (Sca1, Trop2 etc) should be analysed in those "white" unrecombined crypt-villus units. The differentiation phenotype is shown by the clear presence of morphologically-identified Paneth and Goblet cells. We agree that specific immunostainings could have been performed to further explore this point. Regarding the fetal state, Clu expression was shown during the regeneration period (see figure 7D,E).

      Unfortunately, for reasons explained in section 4 below, we are not in a position to perform these additional experiments.

      • The following text needs clarification: "The kinetics of appearance of newly formed un-recombined ("white") crypts was studied after a single pulse of DT (Fig.7A). This demonstrated an increase at 48 hours, with further increase at day 10 and stable maintenance at day 30. The presence of newly formed white crypts one month after toxin administration indicates that the VilCre-negative lineage is developmentally stable and does not turn on the transgene during differentiation of the various epithelial lineages occurring after regeneration (Fig.7B).

      *Comment: The "newly formed" is an overstatement, the data doesn't conclude that those are "new" crypts. *

      Except if we do not understand the point, we think we can write that a fraction of "white" crypts must be "newly formed", since they are in excess of those present in untreated animals at the same time point.

      *The end of the sentence states that these "white" crypts form developmentally stable lineages, thus these white crypts at day 30 could originate from the initial injury. *

      As stated above, we consider that crypts found in excess of those present in untreated animals result from the initial injury.

      *There was no characterisation of the various epitheial lineages. Are they fully differentiated? *

      See above the point related to Paneth cells and Goblet cells.

      Is Lgr5 expressed one month after toxin administration? Can the VilCre neg lineage give rise to CBCs?

      We have tried hard to show presence or absence of Lgr5 in white crypts at the various times following DT administration. We tried double RFP / Lgr5-RNA scope labeling and double GFP/RFP immunolabeling. Unfortunately, we could not get these methods to produce convincing specific labeling of CBCs in homeostatic crypts, which explains why we could not reach a conclusion regarding the white crypts.

      However, there is an indirect indication that "chronic" white crypts (i.e. those caused by DTR expression in CBC, plus those observed 30 days after DT administration) do not express Lgr5. Indeed, acute regeneration indicated by Clu expression at day 5 in Fig.7C is lower in white crypts than in red ones strongly suggesting that white crypts preexisting DT administration (the "chronic ones) do not express Lgr5DTR.

      The relationship between white crypt generation and appearance of Clu-positive revival cells (Ayyaz et al., 2019) was then explored. In agreement with others and similar to what happens in the irradiation model, (Ayyaz et al., 2019; Yuan et al., 2023) Clu-positive cells were rare in crypts of untreated mice and their number transiently increased forty-eight hours after a single pulse of DT, and more so after three pulses of DT (Fig.7C,D).

      Comment: Comparing 1 pulse at day 2 vs 3 pulses at day 5 makes the data hard to interpret. How is the Clu ISH level for 1 pulse at day 5? Are they equivalent?

      After a single pulse of of DT, Clu is only transiently increased. As shown by Ayyaz et al it is back to the starting point at day 5 (supplementary figure 4 of Ayyaz et al).

      Clu-positive cells were less frequently observed in white crypts (see "Total" versus "White" in Fig.7C). This fits with the hypothesis that Clu expression marks acutely regenerating crypts and that a proportion of the white crypts are chronically regenerating due to DTR expression in CBCs."

      *Comment: I believe the authors suggested that the discrepancy of less Clu expression in white crypts is due to the ectopic expression of DTR in CBCs causing low grade injury without DT administration. This means that some white crypts could have been formed before the administration of DT, and thus are on a different regenerative timeline compared to the white crypts formed from DT administration. *

      Yes, this is our interpretation. We have clarified it in the text.

      Is there any proof of the chronic regeneration? Immunostaining of chronic regenerative markers such as Sca1, Anxa1 or Yap1 nuclear localization would support the claim. It'd be important to show only the white crypts, but not the RFP+ ones, show regenerative markers.

      We think that the steady state higher number of white crypts in untreated Lgr5-DTR animals, compared to wild type siblings indicates chronical low-grade regeneration, which is supported by the RNAseq data (Suppl fig6). It must be noted, however, that this phenotype is mild compared to the well described fetal-like regeneration phenotype described in most injury models. Since these white crypts were made at undetermined earlier stages, the great majority of them are not expected to show markers of acute regeneration like Clu, Sca1....

      Fig 7D-E: What are the timepoints of harvest for HE-WT-HE 1 pulse DT mice and HE- HE-HE PBS injected mice?

      We have added this information in the figure.

      • *Fig 8-9: Regarding the CBC-like Olfm4 low population, what is the status of Lgr5? This should be shown in the figure since the argument is that this is an Lgr5-independent lineage. * See response to the second point.

      And what about the regenerative, Yap, mesenchymal and inflammatory signatures? Are they enriched in the white crypts similar to the in vitro spheroids?

      In a portion of white crypts, those we believe are newly formed after CBC ablation (see above), there is a transient increase in Clu, which may be considered a marker of Yap activation. In the CBC-like Olfm4 low cells, as seen by scRNAseq, there is nothing like an actively regenerating phenotype. This is expected, since these cells are coming from homeostatic untreated VilCre/Rosa26Tom animals and are supposed to be quiescent "awaiting to be activated".

      Reviewer #1 (Significance (Required)):

      Strengths: The study employed a range of in vitro and in vivo models to test the hypothesis.

      • *

      *Limitations: Unfortunately, the models chosen did not provide sufficient evidence to draw the conclusions. Injury induced reprogramming, both in vivo and in vitro, has been well documented in the field. The new message here is to show that such reprogrammed state is continuous rather than transient; instead of regenerating Lgr5+ stem cells, it can continue to differentiate to all cell lineages in Lgr5-independent manner.

      *

      We respectfully disagree with this analysis of our results. What we show is not "that such reprogrammed state is continuous rather than transient; instead of regenerating Lgr5+ stem cells, it can continue to differentiate to all cell lineages in Lgr5-independent manner", but that a quiescent stem cell line, not previously identified, is activated to regenerate a portion of crypts following CBC ablation. These cells are not reprogrammed, they correspond to a developmental lineage waiting to be activated and keep their VilCre-negative state at least of 30 days. We believe that their "by default tracing" (VilCre negative from the zygote stage) is as strong an evidence for the existence of such a lineage as positive lineage tracing would be. The increase in crypts originating from this lineage after CBC ablation indicates that it is implicated in regeneration. We do not question the well-demonstrated plasticity-associated reprogramming taking place during regeneration; we simply suggest that this would coexist with the involvement of the quiescent VilCre-negative lineage we have identified.

      *However, through the manuscript, there was no immunostaining of Lgr5 and other differentiation markers. The conclusion is an overstatement without solid proof. * We have provided the best answer we could to this point in our answer to the second question of the referee hereabove.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, the Marefati et al. developed a novel approach to generate spheroids from adult intestinal epithelium using a collagenase/dispase based protocol. Adult spheroids were found to be distinct from classic budding-type organoids normally generated from EDTA based release of the crypt epithelium. Transcriptional profiling indicated that adult spheroids were undifferentiated and similar to regenerating crypts or fetal spheroids. To identify the cell of origin that generates adult spheroids, the authors labelled epithelial cells with VilCreERT-LSL-Tom, VilCre-LSL-GFP and Lgr5CreERT- LSLTom mice. From these experiments the authors conclude that that spheroids are only generated from Vil-Cre negative and Lgr5 negative cells. Next the authors deleted the anti- apoptotic gene Mcl1 using Vil-CreERT mice. This led to a strong apoptotic response throughout the crypt epithelium and tissues processed from knockout mice readily generated spheroids, and in vivo, replenishment of the gut epithelium was mediated by unrecombined cells. In a second model, CBCs were ablated using Lgr5DTR mice and VilCre negative cells were found again to contribute to regeneration of the crypt epithelium. Finally based on the absence of Vil-Cre reporter activity, the authors were able to sort out and perform scRNAseq to profile VilCre negative cells. These cells were found to be quiescent, express the stem cell marker Olfm4 and were also abundant in ribosomal gene expression.

      • *

      The fact that the authors developed a protocol to reproducibly generate fetal-like spheroids from adult tissue is an important advancement in the field. Previous reports have shown that treatment with various small molecule inhibitors can revert budding organoids into a spheroid morphology, but this manuscript demonstrates that spheroids can also be generated from otherwise untreated cells. This new methodology will provide new tools to dissect the molecular determinants of fetal/regenerative cells in the gut. Based on this, the manuscript should attract a significant amount of attention in the intestinal field.

      • *

      As pointed out by the authors themselves the study has important limitations that diminish enthusiasm. The primary issue relates to the inability of the team to identify markers of VilCre neg cells other than the fact that these cells are Olfm4+ and quiescent. Nonetheless, for the reasons stated above the manuscript should reach the target audience within the research community, if the authors can address the specific points below related to issues with methodology as well as defining more precisely the characteristics and growth requirements of adult spheroid cultures.

      Thank you for this positive analysis of our study.

      Major comments

      The main conclusion of the study is that Vil-Cre neg cells are rare quiescent Olfm4+ crypt cells. If this is the case, then standard EDTA treatment should release these cells as well. Consequently, spheroids should also emerge from isolated crypts grown in the absence of ENR. If this is not the case how do the authors explain this?

      We have tried hard to generate spheroids by culturing EDTA organoids in medium lacking ENR and by treating EDTA organoids with collagenase/dispase, without success. Therefore, we are left with the conclusion that spheroid-generating cells must be more tightly attached to the matrix than those released by EDTA, and that it is their release from this attachment by collagenase that triggers a regeneration-like phenotype. This hypothesis is supported by several models of regeneration in other tissues as indicated in our references (Gilbert et al., 2010; Machado et al., 2021; Montarras et al., 2005).

      From the text the authors appear to suggest that growth of adult spheroids is dependent initially on "material" released by collagenase/dispase treatment. An obvious candidate would be mesenchymal cells, which are known to secrete factors such as Wnts and PGE2 that drive spheroid morphology. To test this, the authors should treat spheroid cultures with Porcupine and/or PGE2 inhibitors.

      We followed similar reasoning, considering that spheroids express strongly Ptgs1 ,2 (Figure 3A). We thought their phenotype might be maintained by autocrine prostaglandin action. We tested aspirin, a Ptgs inhibitor, which was without effect on the spheroid phenotype. Besides, we explored a wide variety of conditions to test whether they would affect the spheroid phenotype [Aspirin-see above, cAMP agonists/antagonists, YapTaz inhibitors (verteporfin and CA3), valproic acid, Notch inhibitors (DAPT, DBZ, LY511455), all-trans retinoic acid, NFkB inhibitors (TCPA, BMS), TGFbeta inhibitor (SB431542)]. As these results were negative, we did not include them in the manuscript.

      • If these inhibitors block growth then this would suggest that either stromal cells or autocrine signalling involving these pathways is important. Overall, more in-depth analysis of the growth requirements of adult spheroids is required.*

      Figure 1d indicates that adult spheroids can be propagated for at least 10 passages. The abstract mentions they are "immortal". The text itself does not address this issue. More precise information as to how long spheroids can be propagated is required. If these cultures can be propagated for 10 passages or more it becomes important to determine what nutrients/mitogens in the basal media are driving growth? Alternatively, what is the evidence that spheroid cultures are completely devoid of mesenchymal cells. The text only mentions that "Upon replating, these spheroids could be stably cultured free of mesenchymal cells (Fig.1B)". No validation is shown to support this.

      We agree that "immortal" is not a good way to characterize our spheroids, as also pointed out by referee nr 1. We have changed that in the text, indicating the maximal number of replating we tested was 26 and replacing immortal by stably replatable. Of note, the spheroids could frozen/thawed and recultured many times.

      Related to the question whether mesenchymal cells could still contaminate the spheroid cultures, we can provide the following answers:

      • No fibroblasts could be seen in replated cultures and multiple spheroids could be repeatedly propagated from a single starting spheroid.
      • The bulk RNAseq experiment comparing organoids to ENR or BCM cultured spheroids show, despite expression of several mesenchymal markers (see matrisome in Fig3), absence of significant expression of Pdgfra (see in revision plan folder for CP20Millions results from the raw data of new suppl table 2, with Clu, Tacstd2 and Alpi shown as controls).
      • Regarding the nutrients/mitogens in the medium driving spheroid growth, we did not explore the point further than showing that they grow in basal medium (i.e. advanced DMEM), given that the presence of Matrigel makes it difficult to pinpoint what is really needed. In Figure 2, the authors describe the growth requirements for adult spheroids and indicate that spheroids grown in ENR or EN became dark and shrink. The representative images showing this are clear, but this analysis should be quantified.

      Added to the manuscript.

      In SF3, the gene expression profile of organoids from the sandwich method only partially overlaps with that of organoids from the old protocol. What are the gene expression differences between the 2 culture systems? Secondly, the sandwich method appears to sustain growth of Tom+ spheroids based on RNAseq and the IF images. This suggest that Vil-Cre negative cells are not necessarily the only source of adult spheroids and thus this experiment seems to indicate that any cell may be converted to grow as a spheroid under the right conditions. These points should be addressed.

      Looking back to our data in order to answer the point raised by the referee, we realized that we had inadvertently-compared organoids to ENR-cultured spheroids generated by the first protocol to BCM-cultured spheroids generated by the sandwich method. We have corrected this error in a new version of suppl fig3. This shows increased correspondence between genes up- or downregulated in the spheroids obtained in the two protocols (from 49/48% to 57/57% (Venn diagram on the new figure). We agree that, even after this correction, the spheroids obtained with the two protocols present sizeable differences in their transcriptome. However, considering the very different way these spheroids were obtained and cultured initially, we do not believe this to be unexpected. The important point in our opinion is that the core of the up- and down-regulated genes typical of the de-differentiation phenotype of adult spheroids is very similar, as shown in the heatmap (which was made with the correct samples!). Also, a key observation is that that both kind of spheroids survive and can be replated in basal medium. As already stated, this characteristic is only seen rare cases [spheroids obtained from rare FACS-purified cells (Smith et al 2018) or helminth-infected intestinal tissue (Nusse et al.2018)]. Together with the observation that the majority of them is not traced by VilCre constitutes what we consider the halmark of the spheroids described in our study. As shown in figure 4E (old protocol) and Suppl Fig.3 (sandwich protocol) both red and white spheroids were extremely low in VilCre expression. As stated in the text, the fact that some spheroids are nevertheless red is most probably related to the extreme sensitivity of the Rosa26Tom marker to recombination (Liu et al., 2013), but this does not mean that there are two phenotypically different kind of spheroids. It means that the arbitrary threshold of Rosa26Tom recombination introduces an artificial subdivision of spheroids with no phenotypical significance.

      Regarding the point made by the referee that "that any cell may be converted to grow as a spheroid under the right conditions", we agree and have shown with others that organoids acquire indeed a spheroid phenotype when cultured for instance in fibroblasts-conditioned medium (see suppl fig1B and (Lahar et al., 2011; Roulis et al., 2020) quoted in the manuscript). However, these spheroids cannot be propagated in basal medium, and revert to an organoid phenotype when put back in ENR (Suppl fig1B).

      *In Figure 4, the authors conclude that spheroids do not originate from Lgr5 cell derived clones even after 30days post Tam induction. Does this suggest that in vivo and under homeostatic conditions VilCre neg cells are derived from a distinct stem cell pool or are themselves a quiescent stem cell. Given the rarity of VilCre neg cells, the latter seems unlikely.

      *

      Despite their rarity, we believe VilCre-negative cells observed under homeostatic conditions are themselves quiescent stem cells. Actually, if they were derived from a larger stem cell pool, this pool should also be VilCre-negative. And we do not see such larger number of VilCre-neg cells under homeostatic conditions.

      The problem with the original assertion is that Lgr5-CreERT mice are mosaic and therefore not all Lgr5+ cells are labelled in this model. "White" spheroids may thus derive from cells that in turn derive from these unlabelled Lgr5 cells.

      We had considered the possibility that mosaicism [very low for VilCre (Madison et al., 2002); in the 40-50% range for Lgr5CreERT2 (Barker & Clevers. Curr Protoc Stem Cell Biol. 2010 Chapter 5)] could explain our data. We think, however that we can exclude this possibility on the basis that spheroids do not conform to the expected ratio of unrecombined cells, given the observed level of mosaicism. Indeed, for VilCre, a few percent, at most, of unrecombined cells in the epithelium translates into almost 100% unrecombined spheroids. For Lgr5CreERT2 mice, the mosaicism level is in the range of 40%, which is what we observe for EDTA organoids (Figure 4G), while spheroids were in their vast majority unrecombined.

      We have included a discussion about the possible role of mosaicism in the new version.

      ATACseq experiments were briefly mentioned in the manuscript but unfortunately little information was extracted from this experiment. What does this experiment reveal about the chromatin landscape of adult spheroids relative to normal organoids?

      We only performed this experiment to search for an explanation to the paradoxical absence of expression of the VilCre transgene in spheroids, despite robust expression of endogenous villin (Suppl Fig.4). We chose to show the chromatin landscape of a gene equally expressed in both organoids and spheroids (Krt19), a gene specifically expressed in spheroids (Tacstd2) and the endogenous Villin gene also expressed in both. We believe that the observation of a clear difference in pattern of the chromatin accessibility around the endogenous villin gene in organoids and spheroids provides an explanation to the observed results. The cis regulatory sequences needed for expression of the endogenous villin gene seem to be different in organoids and spheroids, which may explain why the regulatory sequences present in the transgene (only 12.4kb) might not allow expression of the transgene in spheroids. We have added a sentence in the manuscript clarifying this point. Missing is obviously the chromatin landscape around the VilCre transgene, but this is beyond reach in such kind of experiments.

      Reviewer #2 (Significance (Required)):

      The fact that the authors developed a protocol to reproducibly generate fetal-like spheroids from adult tissue is an important advancement in the field. Previous reports have shown that treatment with various small molecule inhibitors can revert budding organoids into a spheroid morphology, but this manuscript demonstrates that spheroids can also be generated from otherwise untreated cells. This new methodology will provide new tools to dissect the molecular determinants of fetal/regenerative cells in the gut. Based on this, the manuscript should attract a significant amount of attention in the intestinal field.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)): CR-2024-02491

      An Lgr5-independent developmental lineage is involved in mouse intestinal regeneration

      Marefati et al.

      Homeostatic maintenance of the intestinal epithelium has long been thought to rely upon Wnt signaling responsive Lgr5-expressing stem cells that reside at the crypt base.

      However, myriad reported mechanisms or populations have been reported to underlie epithelial regeneration after injury. Many groups have reported that reacquisition of a fetal- link intestinal phenotype is an import part of the regenerative response, however the originating cell type has not been definitively identified. Herein, the authors demonstrate that cells from adult homeostatic intestine can generate immortal spheroids that resemble fetal spheroids and are derived independent of Lgr5+ intestinal stem cells (ISCs). The authors then draw the conclusion that this indicates that a hierarchical stem cell model applies to regeneration of the intestinal epithelium, in addition to the plasticity model.

      • *

      Comments:

      1. Please indicate what species is used for studies in Fig 1.

      All experiments were performed in Mus musculus.

      Please clarify if Figure 2 studies utilize Matrigel or not.

      Yes

      RNA-seq analyses of adult intestinal generated spheroids lack the granularity of single cell analyses and thus it is unclear if this is a homogeneous population or if the population has diversity across it (i.e., enteroids/organoids have a high level of diversity). Many of the conclusions from the RNA-seq study are broad and generalized-for example Fig 3F indicates that markers of the +4 ISC populations (Bmi1, tert, lrig1, hopx) were all expressed similarly in adult spheroids as compared to adult organoids. However, while this may be true in the bulk-RNA-seq analyses, clearly scRNA-seq would provide a better foundation to make this statement, as enteroids/organoids are comprised of heterogeneous subpopulations. . .and it might indicate that these +4 markers have only very low expression in the spheroids. Based upon these concerns, misconclusions are likely to be drawn.

      We agree and it would be certainly worthwhile to perform scRNAseq of adult spheroid populations. This would certainly be worth doing in future studies to explore the possible heterogeneity of adult spheroids. We nevertheless believe that our scRNAseq performed on homeostatic intestinal tissue from VilCre/Rosa26Tom mice identify Olfm4-low VilCre-neg cells that are likely at the origin of adult spheroids and display a quite homogenous phenotype.

      *The language around Figure 4 results is confusing. Please define "white" and "red". It might be simpler to designate recombined versus not recombined lineage.

      *

      We have clarified this in the figure.

      The hypothesis that collagenase/dispase solution acts as a proxy for injury is not demonstrated and backed by data. Thus, it is difficult to make the conclusion that this approach could represent a "stable avatar" of intestinal regenerating cells. It is clear that subpopulations of crypt-based cells generate spheroids in culture without collagenase/dispase (see the cited reference Smith et al, 2018).

      * *Smith et al demonstrate clearly the possibility to obtain spheroids with properties probably similar to ours from EDTA derived intestinal crypt cells. However they need to prepurify them by FACS. Besides, Nusse et al describe spheroids similar to ours after infection of the intestine by helminths (Nusse et al. 2018). In our case, and for most labs preparing enteroids with the EDTA protocol, the result is close to 100% organoids. Even if we treat EDTA organoids with collagenase, we do not obtain spheroids. This brought us to the conclusion that spheroid-generating cells must be more tightly attached to the matrix than CBCs and that it is their release from the matrix that activates the spheroid regeneration-like phenotype. This hypothesis is supported by several models of regeneration in other tissues as indicated in our references (Gilbert et al., 2010; Machado et al., 2021; Montarras et al., 2005)

      A study based on the absence of recombination in a VilCre lineage tracing scenario is not well-established to be strong experimental approach, as there are many reasons why recombination may not cells may not be lineage marked. In order to use this system as the authors intend, they first need to demonstrate that villin is not expressed in the discrete cell population that they are targeting. For the presented observational studies, this would be difficult to do. While they do demonstrate differences in chromatin accessibility between cells from organoids versus spheroids (fig s4), some of these differences could merely be due to the bulk analytical nature of the study and the lack of comparing stem cell populations from spheroids to stem cell populations from organoids-since the spheroids are likely homogenous versus the organoids that only have a small fraction of stem cells-and thus represent a mix of stem cell and differentiated cell populations. The authors do not demonstrate that villin protein expression varies in these cells.

      If it were found that villin is not expressed in their "novel" population, then one would expect that the downstream use of villin-based recombination would demonstrate the same recombination potential (i.e., Mcl1 would not be recombined). Both recombination studies in Fig 6 are difficult to interpret, and thus it is not clear if these studies support the stated conclusions. Quantification of number of crypts that are negative should be reported as a percentage of recombined crypts.

      We are sorry but there seems to be a complete misunderstanding of our data regarding the point raised by the referee. The important point of our initial observation is that despite robust expression of villin in spheroids, the VilCre transgene is not expressed (see figure 4E). This in our opinion makes absence of VilCre expression (or of Rosa marker recombination) a trustful marker of a new developmental lineage. All the data in figure 4 constitute an answer.

      *The reasoning about heterogeneity of cell type in organoids versus probable homogeneity of spheroids is well taken. However, as the endogenous villin gene is expressed in all cells of both organoids and spheroids, it is highly significant that only spheroids do not express the transgene. *

      We performed the ATACseq experiment to search for an explanation to the paradoxical absence of expression of the VilCre transgene in spheroids, despite robust expression of endogenous villin (Suppl Fig.4). We chose to show the chromatin landscape of a gene equally expressed in both organoids and spheroids (Krt19), a gene specifically expressed in spheroids (Tacstd2) and the endogenous Villin gene also expressed in both. We believe that the observation of a clear difference in pattern of the chromatin accessibility around the endogenous villin gene in organoids and spheroids provides an explanation to the observed results. The cis regulatory sequences needed for expression of the endogenous villin gene seem to be different in organoids and spheroids, which may explain why the regulatory sequences present in the transgene (only 12.4kb) might not allow expression of the transgene in spheroids. We have added a sentence in the manuscript clarifying this point. Missing is obviously the chromatin landscape around the VilCre transgene, but this is beyond reach in such kind of experiments.

      *Figure 8 indicates that the cell population identified by scRNA-seq may be quiescent. Companion IF or IHC should be conducted to confirm this finding, as well as other conclusions from the informatics conducted.

      *

      We agree that additional experiments could be performed to support this point. We are unfortunately not in a position to perform these experiments (see section 4 below).

      Clearly the data is intriguing, however, the conclusion is strong and is an over interpretation of the presented data. There are a number of validation or extension data that would enhance the overall interpretation of the study: 1. validation of scRNA-seq or bulk RNA-seq concepts by protein staining of intestinal tissues in the damage model will serve as a secondary observation. 2. identification of the ISC that they are defining is critical and important. There is already the notion that this cell type exists and it has been shown with various different markers. 3. expand the analyses of the fetal-like expression profiling to injured intestines to demonstrate that the lineage negative cells indeed express fetal-like proteins. 4. expand the discussion of the Clu+ cell type. Is this cell the previously described revival cell? If so, how does this body of work provide unique aspects to the field?

      We agree that all these suggested experiments could be performed and would be of interest. However, we consider that they would not modify the main message of our study and would only constitute an expansion of the present work. As already stated, we are not in the position to perform them (see section 4).

      *There is some level of conflicting data, with the stem population being proliferative in culture stimulated by the stromal cells, but quiescent in vivo and also based upon scRNA- seq data in Fig 9.

      *

      We do not see any conflict in our observation regarding this point. The observation that cells that are quiescent in vivo become proliferative when subjected to culture (with or without addition of stromal cells) is routinely made in a multitude of cell culture systems. In particular, it has been shown that intestinal tissue dissociation activates the Yap/Taz pathway, resulting in proliferation (Yu et al. Hippo Pathway Regulation of Gastrointestinal Tissues. Annual Review of Physiology, 2015 Volume 77, 201-227).

      Many of the findings have been previously reported: Population that grows as spheroids (Figure 2), Population that is Wnt independent (Figure 2), Lgr5 independent regenerative growth of the intestine (figure 3F, Figure 4), Clu+ ISCs drive regeneration (Figure 7).

      Whereas these individual findings have indeed been reported, it was in a different context. We strongly disagree with the underlying suggestion that our study would not bring new information. We have identified here a developmental lineage involved in intestinal regeneration that has not been described up to now.

      Minor comments:

        • The statement that spheroids must originate from collagenase/dispase digested material might be an overstatement. As spheroids generation from EDTA treated intestines have been previously reported (Smith et al, 2018). * See answer to point 4 above. *Overall while the study includes an extensive amount of work and different approaches, a foundationally supported novel finding is missing. Many of the statements have already been demonstrated by others in the fields. In addition, one of the most intriguing aspects of the study is that the stromal population impacts this stem cell population, however, interactions and factors stimulating the crosstalk are not addressed.

      *

      Reviewer #3 (Significance (Required)):

      Overal while the study includes an extensive amount of work and different approaches, a foundationally supported novel finding is missing. Many of the statements have already been demonstrated by others in the fields. In addition, one of the most intriguing aspects of the study is that the stromal population impacts this stem cell population, however, interactions and factors stimulating the crosstalk are not addressed.

      We can only disagree.

      4. Description of analyses that authors prefer not to carry out

      • *

      We have answered most questions raised by the referees by explaining our view, by clarifying individual points and, in several cases, by providing additional information that was not included in the original manuscript.

      In a limited number of cases when additional experiments were suggested, we were unfortunately obliged to write that we are not in a position to perform them. This is because my lab is closing after more than fifty years of uninterrupted activity. There will unfortunately be nobody to perform additional experiments.

      Nevertheless, as written by referees 1 and 2, we believe that the revised manuscript, as it stands, contains data that will be of interest to the people in the field and may be the bases for future developments. We hope editors will find interest in publishing it.

    1. Reviewer #2 (Public Review):

      Summary:

      Schmidlin & Apodaca et al. aim to distinguish mutants that resist drugs via different mechanisms by examining fitness tradeoffs across hundreds of fluconazole-resistant yeast strains. They barcoded a collection of fluconazole-resistant isolates and evolved them in different environments with a view to having relevance for evolutionary theory, medicine, and genotype-phenotype mapping.

      Strengths:

      There are multiple strengths to this paper, the first of which is pointing out how much work has gone into it; the quality of the experiments (the thought process, the data, the figures) is excellent. Here, the authors seek to induce mutations in multiple environments, which is a really large-scale task. I particularly like the attention paid to isolates with are resistant to low concentrations of FLU. So often these are overlooked in favour of those conferring MIC values >64/128 etc. What was seen is different genotype and fitness profiles. I think there's a wealth of information here that will actually be of interest to more than just the fields mentioned (evolutionary medicine/theory).

      Weaknesses:

      Not picking up low fitness lineages - which the authors discuss and provide a rationale as to why. I can completely see how this has occurred during this research, and whilst it is a shame I do not think this takes away from the findings of this paper. Maybe in the next one!

      In the abstract the authors focus on 'tradeoffs' yet in the discussion they say the purpose of the study is to see how many different mechanisms of FLU resistance may exist (lines 679-680), followed up by "We distinguish mutants that likely act via different mechanisms by identifying those with different fitness tradeoffs across 12 environments". Whilst I do see their point, and this is entirely feasible, I would like a bit more explanation around this (perhaps in the intro) to help lay-readers make this jump. The remainder of my comments on 'weaknesses' are relatively fixable, I think:

      In the introduction I struggle to see how this body of research fits in with the current literature, as the literature cited is a hodge-podge of bacterial and fungal evolution studies, which are very different! So example, the authors state "previous work suggests that mutants with different fitness tradeoffs may affect fitness through different molecular mechanisms" (lines 129-131) and then cite three papers, only one of which is a fungal research output. However, the next sentence focuses solely on literature from fungal research. Citing bacterial work as a foundation is fine, but as you're using yeast for this I think tailoring the introduction more to what is and isn't known in fungi would be more appropriate. It would also be great to then circle back around and mention monotherapy vs combination drug therapy for fungal infections as a rationale for this study. The study seems to be focused on FLU-resistant mutants, which is the first-line drug of choice, but many (yeast) infections have acquired resistance to this and combination therapy is the norm.

      Methods: Line 769 - which yeast? I haven't even seen mention of which species is being used in this study; different yeast employ different mechanisms of adaptation for resistance, so could greatly impact the results seen. This could help with some background context if the species is mentioned (although I assume S. cerevisiae). In which case, should aneuploidy be considered as a mechanism? This is mentioned briefly on line 556, but with all the sequencing data acquired this could be checked quickly?

      I think the authors could be bolder and try and link this to other (pathogenic) yeasts. What are the implications of this work on say, Candida infections?

    1. Author response:

      We thank you for the opportunity to provide a concise response. The criticisms are accurately summarized in the eLife assessment:

      the study fails to engage prior literature that has extensively examined the impact of variance in offspring number, implying that some of the paradoxes presented might be resolved within existing frameworks.

      The essence of our study is to propose the adoption of the Haldane model of genetic drift, based on the branching process, in lieu of the Wright-Fisher (WF) model, based on sampling, usually binomial.  In addition to some extensions of the Haldane model, we present 4 paradoxes that cannot be resolved by the WF model. The reviews suggest that some of the paradoxes could be resolved by the WF model, if we engage prior literature sufficiently.

      We certainly could not review all the literature on genetic drift as there must be thousands of them. Nevertheless, the literature we do not cover is based on the WF model, which has the general properties that all modifications of the WF model share.  (We should note that all such modifications share the sampling aspect of the WF model. To model such sampling, N is imposed from outside of the model, rather than self-generating within the model.  Most important, these modifications are mathematically valid but biologically untenable, as will be elaborated below. Thus, in concept, the WF and Haldane models are fundamentally different.)

      In short, our proposal is general with the key point that the WF model cannot resolve these (and many other) paradoxes.  The reviewers disagree (apparently only partially) and we shall be specific in our response below.

      We shall first present the 4th paradox, which is about multi-copy gene systems (such as rRNA genes and viruses, see the companion paper). Viruses evolve both within and between hosts. In both stages, there are severe bottlenecks.  How does one address the genetic drift in viral evolution? How can we model the effective population sizes both within- and between- hosts?  The inability of the WF model in dealing with such multi-copy gene systems may explain the difficulties in accounting for the SARS-CoV-2 evolution. Given the small number of virions transmitted between hosts, drift is strong which we have shown by using the Haldane model (Ruan, Luo, et al. 2021; Ruan, Wen, et al. 2021; Hou, et al. 2023). 

      As the reviewers suggest, it is possible to modify the WF model to account for some of these paradoxes. However, the modifications are often mathematically convenient but biologically dubious. Much of the debate is about the progeny number, K.  (We shall use haploid model for this purpose but diploidy does not pose a problem as stated in the main text.) The modifications relax the constraint of V(k) = E(k) inherent in the WF sampling.  One would then ask how V(k) can be different from E(k) in the WF sampling even though it is mathematically feasible (but biologically dubious)?  Kimura and Crow (1963) may be the first to offer a biological explanation.  If one reads it carefully, Kimura's modification is to make the WF model like the Haldane model. Then, why don't we use the Haldane model in the first place by having two parameters, E(k) and V(k), instead of the one-parameter WF model?

      The Haldane model is conceptually simpler. It allows the variation in population size, N, to be generated from within the model, rather than artificially imposed from outside of the model.  This brings us to the first paradox, the density-dependent Haldane model. When N is increasing exponentially as in bacterial or yeast cultures, there is almost no drift when N is very low and drift becomes intense as N grows to near the carrying capacity.  We do not see how the WF model can resolve this paradox, which can otherwise be resolved by the Haldane model.

      The second and third paradoxes are about how much mathematical models of population genetic can be detached from biological mechanisms. The second paradox about sex chromosomes is rooted in the realization of V(k) ≠ E(k).  Since E(k) is the same between sexes but V(k) is different, how does the WF sampling give rise to V(k) ≠ E(k)? We are asking a biological question that troubled Kimura and Crow (1963) alluded above. The third paradox is acknowledged by two reviewers. Genetic drift manifested in the fixation probability of an advantageous mutation is 2s/V(k).  It is thus strange that the fundamental parameter of drift in the WF model, N (or Ne), is missing.  In the Haldane model, drift is determined by V(k) with N being a scaling factor; hence 2s/V(k) makes perfect biological sense,

      We now answer the obvious question: If the model is fundamentally about the Haldane model, why do we call it the WF-Haldane model? The reason is that most results obtained by the WF model are pretty good approximations and the branching process may not need to constantly re-derive the results.  At least, one can use the WF results to see how well they fit into the Haldane model. In our earlier study (Chen, et al. (2017); Fig. 3), we show that the approximations can be very good in many (or most) settings.

      We would like to use the modern analogy of gas-engine cars vs. electric-motor ones. The Haldane model and the WF model are as fundamentally different concepts as the driving mechanisms of gas-powered vs electric cars.  The old model is now facing many problems and the fixes are often not possible.  Some fixes are so complicated that one starts thinking about simpler solutions. The reservations are that we have invested so much in the old models which might be wasted by the switch. However, we are suggesting the integration of the WF and Haldane models. In this sense, the WF model has had many contributions which the new model gratefully inherits. This is true with the legacy of gas-engine cars inherited by EVs.

      The editors also issue the instruction: while the modified model yields intriguing theoretical predictions, the simulations and empirical analyses are incomplete to support the authors' claims. 

      We are thankful to the editors and reviewers for the thoughtful comments and constructive criticisms. We also appreciate the publishing philosophy of eLife that allows exchanges, debates and improvements, which are the true spirits of science publishing.

      References for the provisional author responses

      Chen Y, Tong D, Wu CI. 2017. A New Formulation of Random Genetic Drift and Its Application to the Evolution of Cell Populations. Mol. Biol. Evol. 34:2057-2064.

      Hou M, Shi J, Gong Z, Wen H, Lan Y, Deng X, Fan Q, Li J, Jiang M, Tang X, et al. 2023. Intra- vs. Interhost Evolution of SARS-CoV-2 Driven by Uncorrelated Selection-The Evolution Thwarted. Mol. Biol. Evol. 40.

      Kimura M, Crow JF. 1963. The measurement of effective population number. Evolution:279-288.

      Ruan Y, Luo Z, Tang X, Li G, Wen H, He X, Lu X, Lu J, Wu CI. 2021. On the founder effect in COVID-19 outbreaks: how many infected travelers may have started them all? Natl. Sci. Rev. 8:nwaa246.

      Ruan Y, Wen H, He X, Wu CI. 2021. A theoretical exploration of the origin and early evolution of a pandemic. Sci Bull (Beijing) 66:1022-1029.

      Review comments

      eLife assessment 

      This study presents a useful modification of a standard model of genetic drift by incorporating variance in offspring numbers, claiming to address several paradoxes in molecular evolution.

      It is unfortunate that the study fails to engage prior literature that has extensively examined the impact of variance in offspring number, implying that some of the paradoxes presented might be resolved within existing frameworks.

      We do not believe that the paradoxes can be resolved.

      In addition, while the modified model yields intriguing theoretical predictions, the simulations and empirical analyses are incomplete to support the authors' claims. 

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      The authors present a theoretical treatment of what they term the "Wright-Fisher-Haldane" model, a claimed modification of the standard model of genetic drift that accounts for variability in offspring number, and argue that it resolves a number of paradoxes in molecular evolution. Ultimately, I found this manuscript quite strange.

      The notion of effective population size as inversely related to the variance in offspring number is well known in the literature, and not exclusive to Haldane's branching process treatment. However, I found the authors' point about variance in offspring changing over the course of, e.g. exponential growth fairly interesting, and I'm not sure I'd seen that pointed out before.

      Nonetheless, I don't think the authors' modeling, simulations, or empirical data analysis are sufficient to justify their claims. 

      Weaknesses: 

      I have several outstanding issues. First of all, the authors really do not engage with the literature regarding different notions of an effective population. Most strikingly, the authors don't talk about Cannings models at all, which are a broad class of models with non-Poisson offspring distributions that nonetheless converge to the standard Wright-Fisher diffusion under many circumstances, and to "jumpy" diffusions/coalescents otherwise (see e.g. Mohle 1998, Sagitov (2003), Der et al (2011), etc.). Moreover, there is extensive literature on effective population sizes in populations whose sizes vary with time, such as Sano et al (2004) and Sjodin et al (2005).

      Of course in many cases here the discussion is under neutrality, but it seems like the authors really need to engage with this literature more. 

      The most interesting part of the manuscript, I think, is the discussion of the Density Dependent Haldane model (DDH). However, I feel like I did not fully understand some of the derivation presented in this section, which might be my own fault. For instance, I can't tell if Equation 5 is a result or an assumption - when I attempted a naive derivation of Equation 5, I obtained E(K_t) = 1 + r/c*(c-n)*dt. It's unclear where the parameter z comes from, for example. Similarly, is equation 6 a derivation or an assumption? Finally, I'm not 100% sure how to interpret equation 7. I that a variance effective size at time t? Is it possible to obtain something like a coalescent Ne or an expected number of segregating sites or something from this? 

      Similarly, I don't understand their simulations. I expected that the authors would do individual-based simulations under a stochastic model of logistic growth, and show that you naturally get variance in offspring number that changes over time. But it seems that they simply used their equations 5 and 6 to fix those values. Moreover, I don't understand how they enforce population regulation in their simulations---is N_t random and determined by the (independent) draws from K_t for each individual? In that case, there's no "interaction" between individuals (except abstractly, since logistic growth arises from a model that assumes interactions between individuals). This seems problematic for their model, which is essentially motivated by the fact that early during logistic growth, there are basically no interactions, and later there are, which increases variance in reproduction. But their simulations assume no interactions throughout! 

      The authors also attempt to show that changing variance in reproductive success occurs naturally during exponential growth using a yeast experiment. However, the authors are not counting the offspring of individual yeast during growth (which I'm sure is quite hard). Instead, they use an equation that estimates the variance in offspring number based on the observed population size, as shown in the section "Estimation of V(K) and E(K) in yeast cells". This is fairly clever, however, I am not sure it is right, because the authors neglect covariance in offspring between individuals. My attempt at this derivation assumes that I_t | I_{t-1} = \sum_{I=1}^{I_{t-1}} K_{i,t-1} where K_{i,t-1} is the number of offspring of individual i at time t-1. Then, for example, E(V(I_t | I_{t-1})) = E(V(\sum_{i=1}^{I_{t-1}} K_{i,t-1})) = E(I_{t-1})V(K_{t-1}) + E(I_{k-1}(I_{k-1}-1))*Cov(K_{i,t-1},K_{j,t-1}). The authors have the first term, but not the second, and I'm not sure the second can be neglected (in fact, I believe it's the second term that's actually important, as early on during growth there is very little covariance because resources aren't constrained, but at carrying capacity, an individual having offspring means that another individuals has to have fewer offspring - this is the whole notion of exchangeability, also neglected in this manuscript). As such, I don't believe that their analysis of the empirical data supports their claim. 

      Thus, while I think there are some interesting ideas in this manuscript, I believe it has some fundamental issues:

      first, it fails to engage thoroughly with the literature on a very important topic that has been studied extensively. Second, I do not believe their simulations are appropriate to show what they want to show. And finally, I don't think their empirical analysis shows what they want to show. 

      References: 

      Möhle M. Robustness results for the coalescent. Journal of Applied Probability. 1998;35(2):438-447. doi:10.1239/jap/1032192859 

      Sagitov S. Convergence to the coalescent with simultaneous multiple mergers. Journal of Applied Probability. 2003;40(4):839-854. doi:10.1239/jap/1067436085 

      Der, Ricky, Charles L. Epstein, and Joshua B. Plotkin. "Generalized population models and the nature of genetic drift." Theoretical population biology 80.2 (2011): 80-99 

      Sano, Akinori, Akinobu Shimizu, and Masaru Iizuka. "Coalescent process with fluctuating population size and its effective size." Theoretical population biology 65.1 (2004): 39-48 

      Sjodin, P., et al. "On the meaning and existence of an effective population size." Genetics 169.2 (2005): 1061-1070 

      Reviewer #2 (Public Review): 

      Summary: 

      This theoretical paper examines genetic drift in scenarios deviating from the standard Wright-Fisher model. The authors discuss Haldane's branching process model, highlighting that the variance in reproductive success equates to genetic drift. By integrating the Wright-Fisher model with the Haldane model, the authors derive theoretical results that resolve paradoxes related to effective population size. 

      Strengths: 

      The most significant and compelling result from this paper is perhaps that the probability of fixing a new beneficial mutation is 2s/V(K). This is an intriguing and potentially generalizable discovery that could be applied to many different study systems. 

      The authors also made a lot of effort to connect theory with various real-world examples, such as genetic diversity in sex chromosomes and reproductive variance across different species. 

      Weaknesses: 

      One way to define effective population size is by the inverse of the coalescent rate. This is where the geometric mean of Ne comes from. If Ne is defined this way, many of the paradoxes mentioned seem to resolve naturally. If we take this approach, one could easily show that a large N population can still have a low coalescent rate depending on the reproduction model. However, the authors did not discuss Ne in light of the coalescent theory. This is surprising given that Eldon and Wakeley's 2006 paper is cited in the introduction, and the multiple mergers coalescent was introduced to explain the discrepancy between census size and effective population size, superspreaders, and reproduction variance - that said, there is no explicit discussion or introduction of the multiple mergers coalescent. 

      The Wright-Fisher model is often treated as a special case of the Cannings 1974 model, which incorporates the variance in reproductive success. This model should be discussed. It is unclear to me whether the results here have to be explained by the newly introduced WFH model, or could have been explained by the existing Cannings model. 

      The abstract makes it difficult to discern the main focus of the paper. It spends most of the space introducing "paradoxes". 

      The standard Wright-Fisher model makes several assumptions, including hermaphroditism, non-overlapping generations, random mating, and no selection. It will be more helpful to clarify which assumptions are being violated in each tested scenario, as V(K) is often not the only assumption being violated. For example, the logistic growth model assumes no cell death at the exponential growth phase, so it also violates the assumption about non-overlapping generations. 

      The theory and data regarding sex chromosomes do not align. The fact that \hat{alpha'} can be negative does not make sense. The authors claim that a negative \hat{alpha'} is equivalent to infinity, but why is that? It is also unclear how theta is defined. It seems to me that one should take the first principle approach e.g., define theta as pairwise genetic diversity, and start with deriving the expected pair-wise coalescence time under the MMC model, rather than starting with assuming theta = 4Neu. Overall, the theory in this section is not well supported by the data, and the explanation is insufficient. 

      {Alpha and alpha' can both be negative.  X^2 = 0.47 would yield x = -0.7}

      Reviewer #3 (Public Review): 

      Summary: 

      Ruan and colleagues consider a branching process model (in their terminology the "Haldane model") and the most basic Wright-Fisher model. They convincingly show that offspring distributions are usually non-Poissonian (as opposed to what's assumed in the Wright-Fisher model), and can depend on short-term ecological dynamics (e.g., variance in offspring number may be smaller during exponential growth). The authors discuss branching processes and the Wright-Fisher model in the context of 3 "paradoxes": (1) how Ne depends on N might depend on population dynamics; (2) how Ne is different on the X chromosome, the Y chromosome, and the autosomes, and these differences do match the expectations base on simple counts of the number of chromosomes in the populations; (3) how genetic drift interacts with selection. The authors provide some theoretical explanations for the role of variance in the offspring distribution in each of these three paradoxes. They also perform some experiments to directly measure the variance in offspring number, as well as perform some analyses of published data. 

      Strengths: 

      (1) The theoretical results are well-described and easy to follow. 

      (2) The analyses of different variances in offspring number (both experimentally and analyzing public data) are convincing that non-Poissonian offspring distributions are the norm. 

      (3) The point that this variance can change as the population size (or population dynamics) change is also very interesting and important to keep in mind. 

      (4) I enjoyed the Density-Dependent Haldane model. It was a nice example of the decoupling of census size and effective size. 

      Weaknesses: 

      (1) I am not convinced that these types of effects cannot just be absorbed into some time-varying Ne and still be well-modeled by the Wright-Fisher process. 

      (2) Along these lines, there is well-established literature showing that a broad class of processes (a large subset of Cannings' Exchangeable Models) converge to the Wright-Fisher diffusion, even those with non-Poissonian offspring distributions (e.g., Mohle and Sagitov 2001). E.g., equation (4) in Mohle and Sagitov 2001 shows that in such cases the "coalescent Ne" should be (N-1) / Var(K), essentially matching equation (3) in the present paper. 

      (3) Beyond this, I would imagine that branching processes with heavy-tailed offspring distributions could result in deviations that are not well captured by the authors' WFH model. In this case, the processes are known to converge (backward-in-time) to Lambda or Xi coalescents (e.g., Eldon and Wakely 2006 or again in Mohle and Sagitov 2001 and subsequent papers), which have well-defined forward-in-time processes. 

      (4) These results that Ne in the Wright-Fisher process might not be related to N in any straightforward (or even one-to-one) way are well-known (e.g., Neher and Hallatschek 2012; Spence, Kamm, and Song 2016; Matuszewski, Hildebrandt, Achaz, and Jensen 2018; Rice, Novembre, and Desai 2018; the work of Lounès Chikhi on how Ne can be affected by population structure; etc...) 

      (5) I was also missing some discussion of the relationship between the branching process and the Wright-Fisher model (or more generally Cannings' Exchangeable Models) when conditioning on the total population size. In particular, if the offspring distribution is Poisson, then conditioned on the total population size, the branching process is identical to the Wright-Fisher model. 

      (6) In the discussion, it is claimed that the last glacial maximum could have caused the bottleneck observed in human populations currently residing outside of Africa. Compelling evidence has been amassed that this bottleneck is due to serial founder events associated with the out-of-Africa migration (see e.g., Henn, Cavalli-Sforza, and Feldman 2012 for an older review - subsequent work has only strengthened this view). For me, a more compelling example of changes in carrying capacity would be the advent of agriculture ~11kya and other more recent technological advances. 

      Recommendations for the authors: 

      Reviewing Editor Comments: 

      The reviewers recognize the value of this model and some of the findings, particularly results from the density-dependent Haldane model. However, they expressed considerable concerns with the model and overall framing of this manuscript.

      First, all reviewers pointed out that the manuscript does not sufficiently engage with the extensive literature on various models of effective population size and genetic drift, notably lacking discussion on Cannings models and related works.

      Second, there is a disproportionate discussion on the paradoxes, yet some of the paradoxes might already be resolved within current theoretical frameworks. All three reviewers found the modeling and simulation of the yeast growth experiment hard to follow or lacking justification for certain choices. The analysis approach of sex chromosomes is also questioned. 

      The reviewers recommend a more thorough review of relevant prior literature to better contextualize their findings. The authors need to clarify and/or modify their derivations and simulations of the yeast growth experiment to address the identified caveats and ensure robustness. Additionally, the empirical analysis of the sex chromosome should be revisited, considering alternative scenarios rather than relying solely on the MSE, which only provides a superficial solution. Furthermore, the manuscript's overall framing should be adjusted to emphasize the conclusions drawn from the WFH model, rather than focusing on the "unresolved paradoxes", as some of these may be more readily explained by existing frameworks. Please see the reviewers' overall assessment and specific comments. 

      Reviewer #2 (Recommendations For The Authors): 

      In the introduction -- "Genetic drift is simply V(K)" -- this is a very strong statement. You can say it is inversely proportional to V(K), but drift is often defined based on changes in allele frequency. 

      Page 3 line 86. "sexes is a sufficient explanation."--> "sex could be a sufficient explanation" 

      The strongest line of new results is about 2s/V(K). Perhaps, the paper could put more emphasis on this part and demonstrate the generality of this result with a different example. 

      The math notations in the supplement are not intuitive. e.g., using i_k and j_k as probabilities. I also recommend using E[X] and V[X]for expectation and variance rather than \italic{E(X)} to improve the readability of many equations. 

      Eq A6, A7, While I manage to follow, P_{10}(t) and P_{10} are not defined anywhere in the text. 

      Supplement page 7, the term "probability of fixation" is confusing in a branching model. 

      E.q. A 28. It is unclear eq. A.1 could be used here directly. Some justification would be nice. 

      Supplement page 17. "the biological meaning of negative..". There is no clear justification for this claim. As a reader, I don't have any intuition as to why that is the case.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      eLife assessment:

      Franke et al. explore and characterize the color response properties in the mouse primary visual cortex, revealing specific color opponent encoding strategies across the visual field. The data is solid; however, the evidence supporting some conclusions is incomplete. In its current form, the paper makes a useful contribution to how color is coded in mouse V1. Significance would be enhanced with some additional analyses and a clearer discussion of the limitations of the data presented.

      We thank the reviewers for appreciating our manuscript. We have rewritten the conclusions of the paper to be more conservative and now more explicitly focus on color processing in mouse V1, rather than comparing V1 to the retina. Additionally, we discuss the limitations of our approach in detail in the Discussion section. Finally, we have addressed all comments from the reviewers below.

      Referee 1 (Remarks to the Author):

      In this study, Franke et al. explore and characterize color response properties across primary visual cortex, revealing specific color opponent encoding strategies across the visual field. The authors use awake 2P imaging to define the spectral response properties of visual interneurons in layer 2/3. They find that opponent responses are more pronounced at photopic light levels, and that diversity in color opponent responses exists across the visual field, with green ON/ UV OFF responses more strongly represented in the upper visual field. This is argued to be relevant for the detection of certain features that are more salient when using chromatic space, possibly due to noise reduction. In the revised version, Franke et al. have addressed the potential pitfalls in the discussion, which is an important point for the non-expert reader. Thus, this study provides a solid characterization of the color properties of V1 and is a valuable addition to visual neuroscience research.

      My remaining concerns are based more on the interpretation. I’m still not convinced by the statement "This type of color-opponency in the receptive field center of V1 neurons was not present in the receptive field center of retinal ganglion cells and, therefore, is likely computed by integrating center and surround information downstream of the retina." and I would suggest rewording it in the abstract.

      As discussed previously and now nicely added to the discussion, it is difficult to make a direct comparison given the different stimulus types used to characterize the retina and V1 recordings and the different levels of adaptation in both tissues. I will leave this point to the discussion, which allows for a more nuanced description of the phenomenon. Why do I think this is important? In the introduction, the authors argue that "the discrepancy [of previous studies] may be due to differences in stimulus design or light levels." However, while different light levels can be tested in V1, this cannot be done properly in the retina with 2P experiments. To address this, one would have to examine color-opponency in RGC terminals in vivo, which is beyond the scope of this study. Addressing these latter points directly in the discussion would, in my opinion, only strengthen the study.

      We thank the reviewer for the feedback. We removed the sentence mentioned by the reviewer from the abstract, as well as from the summary of our results in the Introduction. Additionally, we now phrase the interpretation of the retinal results more conservatively and specifically highlight in the Discussion that comparing ex-vivo retinal to in-vivo cortical data is challenging. With these changes, we believe that the focus of the paper is explicitly defined to be on the neuronal representation of color in mouse visual cortex, rather than on the comparison of retinal and cortical color processing.

      Minor:

      In the abstract, the second sentence says that we already know the mechanisms in primates.

      Unfortunately, I do not think this is true. First, primates refers to an order with several species, which might have adaptations to their color-processing. Second, I’m aware of several characterizations in "primates" that have led to convincing models (as referenced), but in my opinion, this is far from a true understanding the mechanisms, especially since very little is known about foveal color processing due to the difficulties of these experiments. Similarly in the introduction. "Primates" is indirectly defined as a species. Perhaps some rewording is needed here as well, since we know how different cone distributions can be in rodents (see Peichl’s work).

      Thanks. We have reworded the Abstract and Introduction towards indicating that many studies have been performed in primate species, without suggesting that the mechanisms are described.

      The legend in Fig. 2 has a "Fig. ???"

      Fixed.

      Referee 2 (Remarks to the Author):

      Franke et al. characterize the representation of color in the primary visual cortex of mice, highlighting how this changes across the visual field. Using calcium imaging in awake, head-fixed mice, they characterize the properties of V1 neurons (layer 2/3) using a large center-surround stimulation where green and ultra-violet colors were presented in random combinations. Clustering of responses revealed a set of functional cell-types based on their preference to different combinations of green and UV in their center and surround. These functional types were demonstrated to have different spatial distributions across V1, including one neuronal type (Green-ON/UV-OFF) that was much more prominent in the posterior V1 (i.e. upper visual field). Modelling work suggests that these neurons likely support the detection of predator-like objects in the sky.

      Strengths: The large-scale single-cell resolution imaging used in this work allows the authors to map the responses of individual neurons across large regions of the visual cortex. Combining this large dataset with clustering analysis enabled the authors to group V1 neurons into distinct functional cell types and demonstrate their relative distribution in the upper and lower visual fields. Modelling work demonstrated the different capacity of each functional type to detect objects in the sky, providing insight into the ethological relevance of color opponent neurons in V1.

      We thank the reviewer for appreciating our study.

      Weaknesses: While the study presents convincing evidence about the asymmetric distribution of color-opponent neurons in V1, the paper would greatly benefit from a more in-depth discussion of the caveats related to the conclusions drawn about their origin. This is particularly relevant regarding the conclusion drawn about the contribution of color opponent neurons in the retina. The mismatch between retinal color opponency and V1 color opponency could imply that this feature is not solely inherited from the retina, however, there are other plausible explanations that are not discussed here. Direct evidence for this statement remains weak.

      Thanks for this comment. We removed the retinal findings from the abstract, as well as from the summary of our results in the Introduction. In addition, we now phrase the interpretation of the retinal results more conservatively and specifically highlight in the Discussion that comparing ex-vivo retinal to in-vivo cortical data is challenging. With these changes, we believe that the focus of the paper is explicitly defined to be on the neuronal representation of color in mouse visual cortex, rather than on the comparison of retinal and cortical color processing.

      In addition, the paper would benefit from adding explicit neuron counts or percentages to the quadrants of each of the density plots in Figures 2-5. The variance explained by the principal components does not capture the percentage of color opponent cells. Additionally, there appear to be some remaining errors in the figure legend and labels that have not been addressed (e.g. ’??’ in Fig 2 legend).

      Thank you for this suggestion. We believe that adding the numbers or percentages to the figure panels would make them too crowded. Instead, we have now mentioned in the Results section and the legends that the percentages of variance explained by the color (off-diagonal) and luminance axis (diagonal) correlate with the number of neurons located in the color (top left and bottom right) and luminance contrast quadrants (top right and bottom left), respectively. Together with the number of neurons in each plot stated in the legends and the scale bar indicating the number of neurons per gray level, we hope this approach provides clarity for the reader to interpret the panels. Additionally, we have fixed the broken reference in the legend of Fig. 2.

      Overall, this study will be a valuable resource for researchers studying color vision, cortical processing, and the processing of ethologically relevant information. It provides a useful basis for future work on the origin of color opponency in V1 and its ethological relevance.

      General Suggestions:

      -  Please add possible caveats of using ETA method to the discussion section. For example, it is unclear to what extent ON/OFF cells are being overlooked by using ETA method.

      We now discuss the limitations of the ETA approach in the Discussion section.

      - The caveats of using the percentage of variance explained in the retina as evidence against V1 solely inheriting color-opponency from retinal output neurons are not adequately addressed. For example, could the mismatch in explained variance of the color axis between V1 and RGCs be explained by a subset of non-color opponent RGCs projecting elsewhere (not dLGN-V1) or that color opponent cells project to a larger number of neurons in V1 than non-color opponent cells? We suggest adding a paragraph to the discussion to address this issue.

      We have removed these conclusions from the paper, more carefully interpret the retinal results and mention that comparing ex-vivo retina data with in-vivo cortical data is challenging.

      - Please clarify how the different response types shown in Figure 5e-f lead to differences in noise detection and thereby differences in predator discriminability. For example, why does Gon/UVoff not respond to the noise scene while Goff/UVoff does?

      We added this to the Results section.

      - Please clarify the relationship between ETA amplitude, neural response probability, and neural response amplitude. For example, do color-opponent cells have equal absolute neural response amplitudes to the different colors?

      Thank you for bringing up this point. The ETA is obtained by summing the stimulus sequences that elicit an event (i.e., response), weighted by the amplitude of the response. Consequently, the absolute amplitude of the ETA correlates with the calcium amplitude. Importantly, the ETA amplitudes of different stimulus conditions are comparable because they were estimated on the same normalized calcium trace. Therefore, comparing the absolute amplitudes of ETAs of color-opponent neurons reveals the response magnitude of the cells to different colors. We have now included this information in the Results section.

      Abstract: - "more than a third of neurons in mouse V1 are color-opponent in their receptive field center". It is unclear what data supports this statement. Can you please provide a statement in the manuscript that supports this directly using the number of neurons?

      We added the following sentence to the Results section: Nevertheless, a substantial fraction of neurons (33.1%) preferred color-opponent stimuli and scattered along the off-diagonal in the upper left and lower right quadrants, especially for the RF center.

      Figure 2: - There is a ?? in the figure legend. Which figure should this refer to? - please provide explicit neuron counts/percentages for each quadrant in b.

      We fixed the figure reference. We believe that adding the numbers or percentages to the figure panels would make them too crowded. Instead, we have now mentioned in the Results section and the legends that the percentages of variance explained by the color (off-diagonal) and luminance axis (diagonal) correlate with the number of neurons located in the color (top left and bottom right) and luminance contrast quadrants (top right and bottom left), respectively. Together with the number of neurons in each plot stated in the legends and the scale bar indicating the number of neurons per gray level, we hope this approach provides clarity for the reader to interpret the panels.

      Figure 3: - Fig 3: Color scheme makes it very difficult to differentiate the different conditions, especially when printed.

      Thanks we changed the color scheme.

      - Add explicit neuron counts/percentages for each quadrant in b.

      See above.

      Figure 4: - Add explicit neuron counts/percentages for each quadrant in b.

      See above.

      Figure 5: - Add explicit neuron counts/percentages for each quadrant in c.

      See above.

      Methods: - "we modeled each response type to have a square RF with 10 degrees visual angle in diameter". There appears to be a mismatch between this statement and Figure 5e where 18 degrees is reported.

      Thanks we fixed that.

      Referee 3 (Remarks to the Author):

      This paper studies chromatic coding in mouse primary visual cortex. Calcium responses of a large collection of cells are measured in response to a simple spot stimulus. These responses are used to estimate chromatic tuning properties - specifically sensitivity to UV and green stimuli presented in a large central spot or a larger still surrounding region. Cells are divided based on their responses to these stimuli into luminance or chromatic sensitive groups. The results are interesting and many aspects of the experiments and conclusions are well done; several technical concerns, however, limit the support for several main conclusions,

      Limitations of stimulus choice The paper relies on responses to a large (37.5 degree diameter) modulated spot and surround region. This spot is considerably larger than the receptive fields of both V1 cells and retinal ganglion cells (it is twice the area of the average V1 receptive field). As a result, the spot itself is very likely to strongly activate both center and surround mechanisms, and responses of cells are likely to depend on where the receptive fields are located within the spot

      (and, e.g., how much of the true neural surround samples the center spot vs the surround region). Most importantly, the surrounds of most of the recorded cells will be strongly activated by the central spot. This brings into question statements in the paper about selective activation of center and surround (e.g. page 2, right column). This in turn raises questions about several subsequent analyses that rely on selective center and surround activation.

      Thank you for this comment. A similar point was raised by a reviewer in the first round of revision. We agree with the reviewers that it is critical to discuss both the rationale behind our stimulus design and its limitations to facilitate better interpretation by the reader.

      To be able to record from many V1 neurons simultaneously, we used a stimulus size of 37.5 degree visual angle in diameter, which is slightly larger than center RFs of single V1 neurons (between 20 - 30 degrees visual angle depending on the stimulus, see here). The disadvantage of this approach is that the stimulus is only roughly centered on the neurons’ center RFs. To reduce the impact of potential stimulus misalignment on our results, we used the following steps: { For each recording, we positioned the monitor such that the mean RF across all neurons lies within the center of the stimulus field of view.

      We confirmed that this procedure results in good stimulus alignment for the large majority of recorded neurons within individual recording fields by using a sparse noise stimulus (Suppl. Fig. 1a-c). Specifically, we found that for 83% of tested neurons, more than two thirds of their center RF, determined by the sparse noise stimulus, overlapped with the center spot of the color noise stimulus.

      For analysis, we excluded neurons without a significant center STA, which may be caused by misalignment of the stimulus.

      Together, we believe these points strongly suggest that the center spot and the surround annulus of the noise stimulus predominantly drive center (i.e. classical RF) and surround (i.e. extraclassical RF), respectively, of the recorded V1 neurons. This is further supported by the fact that color response types identified using an automated clustering method were robust across mice (Suppl. Fig. 6c), indicating consistent stimulus centering.

      Nevertheless, we cannot exclude the possibility that the stimulus was misaligned for a subset of the recorded neurons used in our analysis. We agree with the reviewer that such misalignment might have caused the center stimulus to partially activate the surround. To further address this issue beyond the controls we have already implemented, one could compare the results of our approach with an approach that centers the stimulus on individual neurons. However, we believe that performing these additional experiments is beyond the scope of the current study.

      To acknowledge the experimental limitations of our study and the concerns brought up by the reviewer, we have added the steps we perform to reduce the effects of stimulus misalignment in the Results section and discuss the problem of stimulus alignment in the Discussion in a separate section. With this, we believe our manuscript explains both the rationale behind our stimulus design as well as important limitations of the approach.

      Comparison with retina A key conclusion of the paper is that the chromatic tuning in V1 is not inherited from retinal ganglion cells. This conclusion comes from comparing chromatic tuning in a previously-collected data set from retina with the present results. But the retina recordings were made using a considerably smaller spot, and hence it is not clear that the comparison made in the paper is accurate. For example, the stimulus used for the V1 experiments almost certainly strongly stimulates both center and surround of retinal ganglion cells. The text focuses on color opponency in the receptive field centers of retinal ganglion cells, but center-surround opponency seems at least as relevant for such large spots. This issue needs to be described more clearly and earlier in the paper.

      Thanks for this comment. We removed the retinal findings from the abstract, as well as from the summary of our results in the Introduction. In addition, we now phrase the interpretation of the retinal results more conservatively and specifically highlight in the Discussion that comparing ex-vivo retinal to in-vivo cortical data is challenging. With these changes, we believe that the focus of the paper is explicitly defined to be on the neuronal representation of color in mouse visual cortex, rather than on the comparison of retinal and cortical color processing.

      Limitations associated with ETA analysis One of the reviewers in the previous round of reviews raised the concern that the ETA analysis may not accurately capture responses of cells with nonlinear receptive field properties such as On/Off cells. This possibility and whether it is a concern should be discussed.

      Thanks for this comment. We now discuss the limitation of using an ETA analysis in the

      Discussion section.

      Discrimination performance poor Discriminability of color or luminance is used as a measure of population coding. The discrimination performance appears to be quite poor - with 500-1000 neurons needed to reliably distinguish light from dark or green from UV. Intuitively I would expect that a single cell would provide such discrimination. Is this intuition wrong? If not, how do we interpret the discrimination analyses?

      Thank you for raising this point. The plots in Fig. 2c (and Figs. 3-5) show discriminability in bits, with the discrimination accuracy in % highlighted by the dotted horizontal lines. For 500 neurons, the discriminability is approx. 0.8 bits, corresponding to 95% accuracy. Even for 50 neurons, the accuracy is significantly above chance level. We now mention in the legends that the dotted lines indicate decoding accuracy in %.

    1. Author response:

      The following is the authors’ response to the current reviews.

      (1) Though we cannot survey all mutants, our observation that 774 genetically diverse adaptive mutants converge at the level of phenotype is important. It adds to growing evidence (see PMID33263280, PMID37437111, PMID22282810, PMID25806684) that the genetic basis of adaptation is not as diverse as the phenotypic basis. This convergence could make evolution more predictable.

      (2) Previous fitness competitions using this specific barcode system have been run for greater than 25 generations (PMID33263280, PMID27594428, PMID37861305, PMID27594428). We measure fitness per cycle, rather than per generation, so our fitness advantages are comparable to those in the aforementioned studies, including Venkataram and Dunn et al. (PMID27594428).

      (3) Our results remain the same upon removing the ~150 lineages with the noisiest fitness inferences, including those the reviewer mentions (see Figure S7).

      (4) We agree that there are likely more than the 6 clusters that we validated with follow-up studies (see Discussion). The important point is that we see a great deal of convergence in the behavior of diverse adaptive mutants.

      (5) The growth curves requested by the reviewer were included in our original manuscript; several more were added in the revision (see Figures 5D, 5E, 7D, S11B, S11C).


      The following is the authors’ response to the original reviews.

      Public Reviews.

      Reviewer #1 (Public Review): 

      Summary: 

      In their manuscript, Schmidlin, Apodaca, et al try to answer fundamental questions about the evolution of new phenotypes and the trade-offs associated with this process. As a model, they use yeast resistance to two drugs, fluconazole and radicicol. They use barcoded libraries of isogenic yeasts to evolve thousands of strains in 12 different environments. They then measure the fitness of evolved strains in all environments and use these measurements to examine patterns in fitness trade-offs. They identify only six major clusters corresponding to different trade-off profiles, suggesting the vast genotypic landscape of evolved mutants translates to a highly constrained phenotypic space. They sequence over a hundred evolved strains and find that mutations in the same gene can result in different phenotypic profiles.  

      Overall, the authors deploy innovative methods to scale up experimental evolution experiments, and in many aspects of their approach tried to minimize experimental variation. 

      We thank the reviewer for this positive assessment of our work. We are happy that the reviewer noted what we feel is a unique strength of our approach: we scaled up experimental evolution by using DNA barcodes and by exploring 12 related selection pressures.  Despite this scaling up, we still see phenotypic convergence among the 744 adaptive mutants we study. 

      Weaknesses: 

      (1) One of the objectives of the authors is to characterize the extent of phenotypic diversity in terms of resistance trade-offs between fluconazole and radicicol. To minimize noise in the measurement of relative fitness, the authors only included strains with at least 500 barcode counts across all time points in all 12 experimental conditions, resulting in a set of 774 lineages passing this threshold. This corresponds to a very small fraction of the starting set of ~21 000 lineages that were combined after experimental evolution for fitness measurements. 

      This is a misunderstanding that we clarified in this revision. Our starting set did not include 21,000 adaptive lineages. The total number of unique adaptive lineages in this starting set is much lower than 21,000 for two reasons. 

      First, ~21,000 represents the number of single colonies we isolated in total from our evolution experiments. Many of these isolates possess the same barcode, meaning they are duplicates. Second, and perhaps more importantly, most evolved lineages do not acquire adaptive mutations, meaning that many of the 21,000 isolates are genetically identical to their ancestor. In our revised manuscript, we explicitly stated that these 21,000 isolated lineages do not all represent unique, adaptive lineages. We changed the word “lineages” to “isolates” where relevant in Figure 2 and the accompanying legend. And we have added the following sentence to the figure 2 legend (line 212), “These ~21,000 isolates do not represent as many unique, adaptive lineages because many either have the same barcode or do not possess adaptive mutations.”

      More broadly speaking, several previous studies have demonstrated that diverse genetic mutations converge at the level of phenotype and have suggested that this convergence makes adaptation more predictable (PMID33263280, PMID37437111, PMID22282810, PMID25806684). Most of these studies survey fewer than 774 mutants. Further, our study captures mutants that are overlooked in previous studies, such as those that emerge across subtly different selection pressures (e.g., 4 𝜇g/ml vs. 8 𝜇g/ml flu) and those that are undetectable in evolutions lacking DNA barcodes. Thus, while our experimental design misses some mutants (see next comment), it captures many others. Thus, we feel that “our work – showing that 774 mutants fall into a much smaller number of groups” is important because it “contributes to growing literature suggesting that the phenotypic basis of adaptation is not as diverse as the genetic basis (lines 176 - 178).”

      As the authors briefly remark, this will bias their datasets for lineages with high fitness in all 12 environments, as all these strains must be fit enough to maintain a high abundance. 

      We now devote 19 lines of text to discussing this bias (on lines 160 - 162, 278-284, and in more detail on 758 - 767).

      We walk through an example of a class of mutants that our study misses. One lines 759 - 763, we say, “our study is underpowered to detect adaptive lineages that have low fitness in any of the 12 environments. This is bound to exclude large numbers of adaptive mutants. For example, previous work has shown some FLU resistant mutants have strong tradeoffs in RAD (Cowen and Lindquist 2005). Perhaps we are unable to detect these mutants because their barcodes are at too low a frequency in RAD environments, thus they are excluded from our collection of 774.”

      In our revised version, we added more text earlier in the manuscript that explicitly discusses this bias. Lines 278 – 283 now read, “The 774 lineages we focus on are biased towards those that are reproducibly adaptive in multiple environments we study. This is because lineages that have low fitness in a particular environment are rarely observed >500 times in that environment (Figure S4). By requiring lineages to have high-coverage fitness measurements in all 12 conditions, we may be excluding adaptive mutants that have severe tradeoffs in one or more environments, consequently blinding ourselves to mutants that act via unique underlying mechanisms.”

      Note that while we “miss” some classes of mutants, we “catch” other classes that may have been missed in previous studies of convergence. For example, we observe a unique class of FLU-resistant mutants that primarily emerged in evolution experiments that lack FLU (Figure 3). Thus, we think that the unique design of our study, surveying 12 environments, allows us to make a novel contribution to the study of phenotypic convergence.

      One of the main observations of the authors is phenotypic space is constrained to a few clusters of roughly similar relative fitness patterns, giving hope that such clusters could be enumerated and considered to design antimicrobial treatment strategies. However, by excluding all lineages that fit in only one or a few environments, they conceal much of the diversity that might exist in terms of trade-offs and set up an inclusion threshold that might present only a small fraction of phenotypic space with characteristics consistent with generalist resistance mechanisms or broadly increased fitness. This has important implications regarding the general conclusions of the authors regarding the evolution of trade-offs. 

      We agree and discussed exactly the reviewer’s point about our inclusion threshold in the 19 lines of text mentioned previously (lines 160 - 162, 278-284, and 758 - 767). To add to this discussion, and avoid the misunderstanding the reviewer mentions, we added the following strongly-worded sentence to the end of the paragraph on lines 749 – 767 in our revised manuscript: “This could complicate (or even make impossible) endeavors to design antimicrobial treatment strategies that thwart resistance”. 

      More generally speaking, we set up our study around Figure 1, which depicts a treatment strategy that works best if there exists but a single type of adaptive mutant. Despite our inclusion threshold, we find there are at least 6 types of mutants. This diminishes hopes of designing simple multidrug strategies like Figure 1. Our goal is to present a tempered and nuanced discussion of whether and how to move forward with designing multidrug strategies, given our observations. On one hand, we point out how the phenotypic convergence we observe is promising. But on the other hand, we also point out how there may be less convergence than meets the eye for various reasons including the inclusion threshold the reviewer mentions (lines 749 - 767).

      We have made several minor edits to the text with the goal of providing a more balanced discussion of both sides. For example, we added the words, “may yet” to the following sentences on lines 32 – 36 of the abstract: “These findings, on one hand, demonstrate the difficulty in relying on consistent or intuitive tradeoffs when designing multidrug treatments. On the other hand, by demonstrating that hundreds of adaptive mutations can be reduced to a few groups with characteristic tradeoffs, our findings may yet empower multidrug strategies that leverage tradeoffs to combat resistance.”

      (2) Most large-scale pooled competition assays using barcodes are usually stopped after ~25 to avoid noise due to the emergence of secondary mutations. 

      The rate at which new mutations enter a population is driven by various factors such as the mutation rate and population size, so choosing an arbitrary threshold like 25 generations is difficult. 

      We conducted our fitness competition following previous work using the Levy/Blundell yeast barcode system, in which the number of generations reported varies from 32 to 40 (PMID33263280, PMID27594428, PMID37861305, see PMID27594428 for detailed calculation of the fraction of lineages biased by secondary mutations in this system). 

      The authors measure fitness across ~40 generations, which is almost the same number of generations as in the evolution experiment. This raises the possibility of secondary mutations biasing abundance values, which would not have been detected by the whole genome sequencing as it was performed before the competition assay. 

      Previous work has demonstrated that in this evolution platform, most mutations occur during the transformation that introduces the DNA barcodes (Levy et al. 2015). In other words, these mutations are already present and do not accumulate during the 40 generations of evolution. Therefore, the observation that we collect a genetically diverse pool of adaptive mutants after 40 generations of evolution is not evidence that 40 generations is enough time for secondary mutations to bias abundance values.

      We have added the following sentence to the main text to highlight this issue (lines 247 - 249): “This happens because the barcoding process is slightly mutagenic, thus there is less need to wait for DNA replication errors to introduce mutations (Levy et al. 2015; Venkataram et al. 2016).

      We also elaborate on this in the method section entitled, “Performing barcoded fitness competition experiments,” where we added a full paragraph to clarify this issue (lines 972 - 980).

      (3) The approach used by the authors to identify and visualize clusters of phenotypes among lineages does not seem to consider the uncertainty in the measurement of their relative fitness. As can be seen from Figure S4, the inter-replicate difference in measured fitness can often be quite large. From these graphs, it is also possible to see that some of the fitness measurements do not correlate linearly (ex.: Med Flu, Hi Rad Low Flu), meaning that taking the average of both replicates might not be the best approach.  Because the clustering approach used does not seem to take this variability into account, it becomes difficult to evaluate the strength of the clustering, especially because the UMAP projection does not include any representation of uncertainty around the position of lineages. This might paint a misleading picture where clusters appear well separate and well defined but are in fact much fuzzier, which would impact the conclusion that the phenotypic space is constricted. 

      Our noisiest fitness measurements correspond to barcodes that are the least abundant and thus suffer the most from stochastic sampling noise. These are also the barcodes that introduce the nonlinearity the reviewer mentions. We removed these from our dataset by increasing our coverage threshold from 500 reads to 5,000 reads. The clusters did not collapse, which suggests that they were not capturing this noise (Figure S7B).

      More importantly, we devoted 4 figures and 200 lines of text to demonstrating that the clusters we identified capture biologically meaningful differences between mutants (and not noise). We have modified the main text to point readers to figures 5 through 8 earlier, such that it is more apparent that the clustering analysis is just the first piece of our data demonstrating convergence at the level of phenotype.

      (4) The authors make the decision to use UMAP and a gaussian mixed model to cluster and represent the different fitness landscapes of their lineages of interest. Their approach has many caveats. First, compared to PCA, the axis does not provide any information about the actual dissimilarities between clusters. Using PCA would have allowed a better understanding of the amount of variance explained by components that separate clusters, as well as more interpretable components. 

      The components derived from PCA are often not interpretable. It’s not obvious that each one, or even the first one, will represent an intuitive phenotype, like resistance to fluconazole.  Moreover, we see many non-linearities in our data. For example, fitness in a double drug environment is not predicted by adding up fitness in the relevant single drug environments. Also, there are mutants that have high fitness when fluconazole is absent or abundant, but low fitness when mild concentrations are present. These types of nonlinearities can make the axes in PCA very difficult to interpret, plus these nonlinearities can be missed by PCA, thus we prefer other clustering methods. 

      Still, we agree that confirming our clusters are robust to different clustering methods is helpful. We have included PCA in the revised manuscript, plotting PC1 vs PC2 as Figure S9 with points colored according to the cluster assignment in figure 4 (i.e. using a gaussian mixture model). It appears the clusters are largely preserved.

      Second, the advantages of dimensional reduction are not clear. In the competition experiment, 11/12 conditions (all but the no drug, no DMSO conditions) can be mapped to only three dimensions: concentration of fluconazole, concentration of radicicol, and relative fitness. Each lineage would have its own fitness landscape as defined by the plane formed by relative fitness values in this space, which can then be examined and compared between lineages. 

      We worry that the idea stems from apriori notions of what the important dimensions should be. The biology of our system is unfortunately not intuitive. For example, it seems like this idea would miss important nonlinearities such as our observation that low fluconazole behaves more like a novel selection pressure than a dialed down version of high fluconazole. 

      Third, the choice of 7 clusters as the cutoff for the multiple Gaussian model is not well explained. Based on Figure S6A, BIC starts leveling off at 6 clusters, not 7, and going to 8 clusters would provide the same reduction as going from 6 to 7. This choice also appears arbitrary in Figure S6B, where BIC levels off at 9 clusters when only highly abundant lineages are considered. 

      We agree. We did not rely on the results of BIC alone to make final decisions about how many clusters to include. Another factor we considered were follow-up genotyping and phenotyping studies that confirm biologically meaningful differences between the mutants in each cluster (Figures 5 – 8). We now state this explicitly. Here is the modified paragraph where we describe how we chose a model with 7 clusters, from lines 436 – 446 of the revised manuscript:

      “Beyond the obvious divide between the top and bottom clusters of mutants on the UMAP, we used a gaussian mixture model (GMM) (Fraley and Raftery, 2003) to identify clusters. A common problem in this type of analysis is the risk of dividing the data into clusters based on variation that represents measurement noise rather than reproducible differences between mutants (Mirkin, 2011; Zhao et al., 2008). One way we avoided this was by using a GMM quality control metric (BIC score) to establish how splitting out additional clusters affected model performance (Figure S6). Another factor we considered were follow-up genotyping and phenotyping studies that demonstrate biologically meaningful differences between mutants in different clusters (Figures 5 – 8). Using this information, we identified seven clusters of distinct mutants, including one pertaining to the control strains, and six others pertaining to presumed different classes of adaptive mutant (Figure 4D). It is possible that there exist additional clusters, beyond those we are able to tease apart in this study.”

      This directly contradicts the statement in the main text that clusters are robust to noise, as more a stringent inclusion threshold appears to increase and not decrease the optimal number of clusters. Additional criteria to BIC could have been used to help choose the optimal number of clusters or even if mixed Gaussian modeling is appropriate for this dataset. 

      We are under the following impression: If our clustering method was overfitting, i.e. capturing noise, the optimal number of clusters should decrease when we eliminate noise. It increased. In other words, the observation that our clusters did not collapse (i.e.

      merge) when we removed noise suggests these clusters were not capturing noise. 

      Most importantly, our validation experiments, described below, provide additional evidence that our clusters capture meaningful differences between mutants (and not noise).  

      (5) Large-scale barcode sequencing assays can often be noisy and are generally validated using growth curves or competition assays. 

      Some types of bar-seq methods, in particular those that look at fold change across two time points, are noisier than others that look at how frequency changes across multiple timepoints (PMID30391162). Here, we use the less noisy method. We also reduce noise by using a stricter coverage threshold than previous work (e.g., PMID33263280), and by excluding batch effects by performing all experiments simultaneously, since we found this to be effective in our previous work (PMID37237236). 

      Perhaps also relevant is that the main assay we use to measure fitness has been previously validated (PMID27594428) and no subsequent study using this assay validates using the methods suggested above (see PMID37861305, PMID33263280, PMID31611676, PMID29429618, PMID37192196, PMID34465770, PMID33493203). Similarly, bar-seq has been used, without the suggested validation, to demonstrate that the way some mutant’s fitness changes across environments is different from other mutants (PMID33263280, PMID37861305, PMID31611676, PMID33493203, PMID34596043). This is the same thing that we use bar-seq to demonstrate. 

      For all of these reasons above, we are hesitant to confirm bar-seq itself as a valid way to infer fitness. It seems this is already accepted as a standard in our field. However, please see below.

      Having these types of results would help support the accuracy of the main assay in the manuscript and thus better support the claims of the authors. 

      While we don’t agree that fitness measurements obtained from this bar-seq assay generally require validation, we do agree that it is important to validate whether the mutants in each of our 6 clusters indeed are different from one another in meaningful ways.

      Our manuscript has 4 figures (5 - 8) and over 200 lines of text dedicated to validating whether our clusters capture reproducible and biologically meaningful differences between mutants. In the revised manuscript, we added additional validation experiments, such that three figures (Figures 5, 7 and S11) now involve growth curves, as the reviewer requested. 

      Below, we walk through the different types of validation experiments that are present in our manuscript, including those that were added in this revision.

      (1) Mutants from different clusters have different growth curves: In our original manuscript, we measured growth curves corresponding to a fitness tradeoff that we thought was surprising. Mutants in clusters 4 and 5 both have fitness advantages in single drug conditions. While mutants from cluster 4 also are advantageous in the relevant double drug conditions, mutants from cluster 5 are not! We validated these different behaviors by studying growth curves for a mutant from each cluster (Figures 7 and S11), finding that mutants from different clusters have different growth curves. In the revised manuscript, we added growth curves for 6 additional mutants (3 from cluster 1 and 3 from cluster 3), demonstrating that only the cluster 1 mutants have a tradeoff in high concentrations of fluconazole (see Figure 5D & 5E). In sum, this work demonstrates that mutants from different clusters have predictable differences in their growth phenotypes.

      (2) Mutants from different clusters have different evolutionary origins: In our original manuscript, we came up with a novel way to ask whether the clusters capture different types of adaptive mutants. We asked whether the mutants in each cluster originate from different evolution experiments. They often do (see pie charts in Figures 5, 6, 7, 8). In the revised manuscript, we extended this analysis to include mutants from cluster 1. Cluster 1 is defined by high fitness in low fluconazole that declines with increasing fluconazole. In our revised manuscript, we show that cluster 1 lineages were overwhelmingly sampled from evolutions conducted in our lowest concentration of fluconazole (see pie chart in new Figure 5A). No other cluster’s evolutionary history shows this pattern (compare to pie charts in figures 6, 7, and 8).

      **These pie charts also provide independent confirmation supporting the fitness tradeoffs observed for each cluster in figure 4E. For example, mutants in cluster 5 appear to have a tradeoff in a particular double drug condition (HRLF), and the pie charts confirm that they rarely originate from that evolution condition. This differs from cluster 4 mutants, which do not have a fitness tradeoff in HRLF, and are more likely to originate from that environment (see purple pie slice in figure 7). Additional cases where results of evolution experiments (pie charts) confirm observed fitness tradeoffs are discussed in the manuscript on lines 320 – 326, 594 – 598, 681 – 685.

      (3) Mutants from each cluster often fall into different genes: We sequenced many of these mutants and show that mutants in the same gene are often found in the same cluster. For example, all 3 IRA1 mutants are in cluster 6 (Fig 8), both GPB2 mutants are in cluster 4 (Figs 7 & 8), and 35/36 PDR mutants are in either cluster 2 or 3 (Figs 5 & 6). 

      (4) Mutants from each cluster have behaviors previously observed in the literature: We compared our sequencing results to the literature and found congruence. For example, PDR mutants are known to provide a fitness benefit in fluconazole and are found in clusters that have high fitness in fluconazole (lines 485 - 491). Previous work suggests that some mutations to PDR have different tradeoffs than others, which corresponds to our finding that PDR mutants fall into two separate clusters (lines 610 - 612). IRA1 mutants were previously observed to have high fitness in our “no drug” condition and are found in the cluster that has the highest fitness in the “no drug” condition (lines 691 - 696). Previous work even confirms the unusual fitness tradeoff we observe where IRA1 and other cluster 6 mutants have low fitness only in low concentrations of fluconazole (lines 702 - 704).

      (5) Mutants largely remain in their clusters when we use alternate clustering methods:  In our original manuscript, we performed various different re-clustering and/or normalization approaches on our data (Fig 6, S5, S7, S8, S10). The clusters of mutants that we observe in figure 4 do not change substantially when we re-cluster the data. In our revised manuscript, we added another clustering method: principal component analysis (PCA) (Fig S9).  Again, we found that our clusters are largely preserved.

      While these experiments demonstrate meaningful differences between the mutants in each cluster, important questions remain. For example, a long-standing question in biology centers on the extent to which every mutation has unique phenotypic effects versus the extent to which scientists can predict the effects of some mutations from other similar mutations. Additional studies on the clusters of mutants discovered here will be useful in deepening our understanding of this topic and more generally of the degree of pleiotropy in the genotype-phenotype map.

      Reviewer #2 (Public Review): 

      Summary: 

      Schmidlin & Apodaca et al. aim to distinguish mutants that resist drugs via different mechanisms by examining fitness tradeoffs across hundreds of fluconazole-resistant yeast strains. They barcoded a collection of fluconazole-resistant isolates and evolved them in different environments with a view to having relevance for evolutionary theory, medicine, and genotypephenotype mapping. 

      Strengths: 

      There are multiple strengths to this paper, the first of which is pointing out how much work has gone into it; the quality of the experiments (the thought process, the data, the figures) is excellent. Here, the authors seek to induce mutations in multiple environments, which is a really large-scale task. I particularly like the attention paid to isolates with are resistant to low concentrations of FLU. So often these are overlooked in favour of those conferring MIC values >64/128 etc. What was seen is different genotype and fitness profiles. I think there's a wealth of information here that will actually be of interest to more than just the fields mentioned (evolutionary medicine/theory). 

      We are grateful for this positive review. This was indeed a lot of work! We are happy that the reviewer noted what we feel is a unique strength of our manuscript: that we survey adaptive isolates across multiple environments, including low drug concentrations.  

      Weaknesses: 

      Not picking up low fitness lineages - which the authors discuss and provide a rationale as to why. I can completely see how this has occurred during this research, and whilst it is a shame I do not think this takes away from the findings of this paper. Maybe in the next one! 

      We thank the reviewer for these words of encouragement and will work towards catching more low fitness lineages in our next project.

      In the abstract the authors focus on 'tradeoffs' yet in the discussion they say the purpose of the study is to see how many different mechanisms of FLU resistance may exist (lines 679-680), followed up by "We distinguish mutants that likely act via different mechanisms by identifying those with different fitness tradeoffs across 12 environments". Whilst I do see their point, and this is entirely feasible, I would like a bit more explanation around this (perhaps in the intro) to help lay-readers make this jump. The remainder of my comments on 'weaknesses' are relatively fixable, I think: 

      We have expanded the introduction, in particular lines 129 – 157 of the revised manuscript, to walk readers through the connection between fitness tradeoffs and molecular mechanisms. For example, here is one relevant section of new text from lines 131 - 136: “The intuition here is as follows. If two groups of drug resistant mutants have different fitness tradeoffs, it could mean that they provide resistance through different underlying mechanisms. Alternatively, both could provide drug resistance via the same mechanism, but some mutations might also affect fitness via additional mechanisms (i.e. they might have unique “side-effects” at the molecular level) resulting in unique fitness tradeoffs in some environments.”

      In the introduction I struggle to see how this body of research fits in with the current literature, as the literature cited is a hodge-podge of bacterial and fungal evolution studies, which are very different! So example, the authors state "previous work suggests that mutants with different fitness tradeoffs may affect fitness through different molecular mechanisms" (lines 129-131) and then cite three papers, only one of which is a fungal research output. However, the next sentence focuses solely on literature from fungal research. Citing bacterial work as a foundation is fine, but as you're using yeast for this I think tailoring the introduction more to what is and isn't known in fungi would be more appropriate. It would also be great to then circle back around and mention monotherapy vs combination drug therapy for fungal infections as a rationale for this study. The study seems to be focused on FLU-resistant mutants, which is the first-line drug of choice, but many (yeast) infections have acquired resistance to this and combination therapy is the norm. 

      We ourselves are broadly interested in the structure of the genotype-phenotype-fitness map (PMID33263280, PMID32804946). For example, we are interested in whether diverse mutations converge at the level of phenotype and fitness. Figure 1A depicts a scenario with a lot of convergence in that all adaptive mutations have the same fitness tradeoffs.

      The reason we cite papers from yeast, as well as bacteria and cancer, is that we believe general conclusions about the structure of the genotype-phenotype-fitness map apply broadly. For example, the sentence the reviewer highlights, “previous work suggests that mutants with different fitness tradeoffs may affect fitness through different molecular mechanisms” is a general observation about the way genotype maps to fitness. So, we cited papers from across the tree of life to support this sentence.  And in the next sentence, where we cite 3 papers focusing solely on fungal research, we cite them because they are studies about the complexity of this map. Their conclusions, in theory, should also apply broadly, beyond yeast.

      On the other hand, because we study drug resistant mutations, we hope that our dataset and observations are of use to scientists studying the evolution of resistance. We use our introduction to explain how the structure of the genotype-phenotype-fitness map might influence whether a multidrug strategy is successful (Figure 1).

      We are hesitant to rework our introduction to focus more specifically on fungal infections as this is not our primary area of expertise.

      Methods: Line 769 - which yeast? I haven't even seen mention of which species is being used in this study; different yeast employ different mechanisms of adaptation for resistance, so could greatly impact the results seen. This could help with some background context if the species is mentioned (although I assume S. cerevisiae). 

      In the revised manuscript, we have edited several lines (line 95, 186, 822) to state the organism this work was done with is Saccharomyces cerevisiae. 

      In which case, should aneuploidy be considered as a mechanism? This is mentioned briefly on line 556, but with all the sequencing data acquired this could be checked quickly? 

      We like this idea and we are working on it, but it is not straightforward. The reviewer is correct in that we can use the sequencing data that we already have. But calling aneuploidy with certainty is tough because its signal can be masked by noise. In other words, some regions of the genome may be sequenced more than others by chance.

      Given this is not straightforward, at least not for us, this analysis will likely have to wait for a subsequent paper. 

      I think the authors could be bolder and try and link this to other (pathogenic) yeasts. What are the implications of this work on say, Candida infections? 

      Perhaps because our background lies in general study of the genotype-phenotype map, we are hesitant about making bold assertions about how our work might apply to pathogenic yeasts. We are hopeful that our work will serve as a stepping-stone such that scientists from that community can perhaps make (and test) such statements.   

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      I found the ideas and the questions asked in this manuscript to be interesting and ambitious. The setup of the evolution and fitness competition experiments was well poised to answer them, but the analysis of the data is not currently enough to properly support the claims made. I would suggest revising the analysis to address the weaknesses raised in the public review and if possible, adding some more experimental validations. As you already have genome sequencing data showing the causal mutation for many mutants across the different clusters, it should be possible for you to reconstruct some of the strains and test validate their phenotypes and cluster identity. 

      Yes, this is possible. We added more validation experiments (see figure 5). We already had quite a few validation experiments (figures 5 - 8 and lines 479 - 718), but we did not clearly highlight the significance of these analyses in our original manuscript. Therefore, we modified the text in our revised manuscript in various places to do so. For example, we now make clearer that we jointly use BIC scores as well as validation experiments to decide how many clusters to describe (lines 436 - 446). We also make clearer that our clustering analysis is only the first step towards identifying groups of mutants with similar tradeoffs by using words and phrases like, “we start by” (line 411) and “preliminarily” (line 448) when discussing the clustering analysis.  We also point readers to all the figures describing our validation experiments earlier (line 443), and list these experiments out in the discussion (lines 738 - 741).

      Also, please deposit your genome sequencing data in a public database (I am not sure I saw it mentioned anywhere). 

      We have updated line 1088 of the methods section to include this sentence: “Whole genome sequences were deposited in GenBank under SRA reference PRJNA1023288.”

      Reviewer #2 (Recommendations For The Authors):

      I don't think the figures or experiments can be improved upon, they are excellent. There are a few times I feel things are written in a rather confusing way and could be explained better, but also I feel there are places the authors jump from one thing to another really quickly and the reader (who might not be an expert in this area) will struggle to keep up. For example: 

      Explaining what RAD is - it is introduced in the methods, but what it is, is not really explained. 

      Since the introduction is already very long, we chose not to explain radicicol’s mechanism of action here. Instead, we bring this up later on lines 614 – 621 when it becomes relevant.

      More generally, in response to this advice and that from reviewer 1, we also added text to various places in the manuscript to help explain our work more clearly. In particular, we clarified the significance of our validation experiments and various important methodological details (see above). We also better explained the connection between fitness tradeoffs and mechanisms (see above) and added more details about the potential use cases of our approach (lines 142 – 150).

      The abstract states "some of the groupings we find are surprising. For example, we find some mutants that resist single drugs do not resist their combination, and some mutants to the same gene have different tradeoffs than others". Firstly, this sentence is a bit confusing to read but if I've read it as intended, then is it really surprising? It's difficult for organisms (bacteria and fungi) to develop multiple beneficial mutations conferring drug resistance on the same background, hence why combination antifungal drug therapy is often used to treat infections. 

      This is a place where brevity got in the way of clarity. We added a bit of text to make clear why we were surprised. Specifically, we were surprised because not all mutants behave the same. Some resist single drugs AND their combination. Some resist single drugs but not their combination. The sentence in the abstract now reads, “For example, we find some mutants that resist single drugs do not resist their combination, while others do. And some mutants to the same gene have different tradeoffs than others.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      This study is convincing because they performed time-resolved X-ray crystallography under different pH conditions using active/inactive metal ions and PpoI mutants, as with the activity measurements in solution in conventional enzymatic studies. Although the reaction mechanism is simple and may be a little predictable, the strength of this study is that they were able to validate that PpoI catalyzes DNA hydrolysis through "a single divalent cation" because time-resolved X-ray study often observes transient metal ions which are important for catalysis but are not predictable in previous studies with static structures such as enzyme-substrate analog-metal ion complexes. The discussion of this study is well supported by their data. This study visualized the catalytic process and mutational effects on catalysis, providing new insight into the catalytic mechanism of I-PpoI through a single divalent cation. The authors found that His98, a candidate of proton acceptor in the previous experiments, also affects the Mg2+ binding for catalysis without the direct interaction between His98 and the Mg2+ ion, suggesting that "Without a proper proton acceptor, the metal ion may be prone for dissociation without the reaction proceeding, and thus stable Mg2+ binding was not observed in crystallo without His98". In future, this interesting feature observed in I-PpoI should be investigated by biochemical, structural, and computational analyses using other metal-ion dependent nucleases. 

      We appreciate the reviewer for the positive assessment as well as all the comments and suggestions.

      Reviewer #2 (Public Review): 

      Summary: 

      Most polymerases and nucleases use two or three divalent metal ions in their catalytic functions. The family of His-Me nucleases, however, use only one divalent metal ion, along with a conserved histidine, to catalyze DNA hydrolysis. The mechanism has been studied previously but, according to the authors, it remained unclear. By use of a time resolved X-ray crystallography, this work convincingly demonstrated that only one M2+ ion is involved in the catalysis of the His-Me I-PpoI 19 nuclease, and proposed concerted functions of the metal and the histidine. 

      Strengths: 

      This work performs mechanistic studies, including the number and roles of metal ion, pH dependence, and activation mechanism, all by structural analyses, coupled with some kinetics and mutagenesis. Overall, it is a highly rigorous work. This approach was first developed in Science (2016) for a DNA polymerase, in which Yang Cao was the first author. It has subsequently been applied to just 5 to 10 enzymes by different labs, mainly to clarify two versus three metal ion mechanisms. The present study is the first one to demonstrate a single metal ion mechanism by this approach. 

      Furthermore, on the basis of the quantitative correlation between the fraction of metal ion binding and the formation of product, as well as the pH dependence, and the data from site-specific mutants, the authors concluded that the functions of Mg2+ and His are a concerted process. A detailed mechanism is proposed in Figure 6. 

      Even though there are no major surprises in the results and conclusions, the time-resolved structural approach and the overall quality of the results represent a significant step forward for the Me-His family of nucleases. In addition, since the mechanism is unique among different classes of nucleases and polymerases, the work should be of interest to readers in DNA enzymology, or even mechanistic enzymology in general. 

      Thank you very much for your comments and suggestions.

      Weaknesses: 

      Two relatively minor issues are raised here for consideration: 

      p. 4, last para, lines 1-2: "we next visualized the entire reaction process by soaking I-PpoI crystals in buffer....". This is a little over-stated. The structures being observed are not reaction intermediates. They are mixtures of substrates and products in the enzyme-bound state. The progress of the reaction is limited by the progress of the soaking of the metal ion. Crystallography has just been used as a tool to monitor the reaction (and provide structural information about the product). It would be more accurate to say that "we next monitored the reaction progress by soaking....". 

      We appreciate the clarification regarding the description of our experimental approach. We agree that our structures do not represent reaction intermediates but rather mixtures of substrate and product states within the enzyme-bound environment. We have revised the text accordingly to more accurately reflect our methodology.

      p. 5, the beginning of the section. The authors on one hand emphasized the quantitative correlation between Mg ion density and the product density. On the other hand, they raised the uncertainty in the quantitation of Mg2+ density versus Na+ density, thus they repeated the study with Mn2+ which has distinct anomalous signals. This is a very good approach. However, there is still no metal ion density shown in the key Figure 2A. It will be clearer to show the progress of metal ion density in a figure (in addition to just plots), whether it is Mg or Mn. 

      Thank you for your insightful comments. We recognize the importance of visualizing metal ion density alongside product density data. To address this, we included in Figure S4 to present Mg2+/Mn2+ and product densities concurrently.

      Reviewer #1 (Recommendations For The Authors): 

      (1) Figure 6. I understand that pre-reaction state (left panel) and Metal-binding state (two middle panels) are in equilibrium. But can we state that the Metal-binding state (two middle panels) and the product state (right panel) are in equilibrium and connected by two arrows? 

      Thank you for your comments. We agree that the DNA hydrolysis reaction process may not be reversible within I-Ppo1 active site. To clarify, we removed the backward arrows between the metal-binding state and product state. In addition, we thank the reviewer for giving a name for the middle state and think it would be better to label the middle state. We added the metal-binding state label in the revised Figure 6 and also added “on the other hand, optimal alignment of a deprotonated water and Mg2+ within the active site, labeled as metal-binding state, leads to irreversible bond breakage (Fig. 6a)” within the text.

      (2) The section on DNA hydrolysis assay (Materials and Methods) is not well described. In this section, the authors should summarize the methods for the experiments in Figure 4 AC, Figure 5BC, Figure S3C, Figure S4EF, and Figure S6AB. The authors presented some graphs for the reactions. For clarity, the author should state in the legends which experiments the results are from (in crystallo or in solution). Please check and modify them. 

      Thank you for the suggestion. We have added four paragraphs to detail the experimental procedures for experiments in these figures. In addition, we have checked all of the figure legends and labeled them as “in crystallo or in solution.” To clarify, we also added “in crystallo” or “solution” in the corresponding panels.

      (3) The authors showed the anomalous signals of Mn2+ and Tl+. The authors should mention which wavelength of X-rays was used in the data collections to calculate the anomalous signals. 

      Thank you for the suggestion. We have included the wavelength of the X-ray in the figure legends that include anomalous maps, which were all determined at an X-ray wavelength of 0.9765 Å.

      (4) The full names of "His-Me" and "HNH" are necessary for a wide range of readers. 

      Thank you for the suggestion. We have included the full nomenclature for His-Me (histidine-metal) nucleases and HNH (histidine-asparagine-histidine) nuclease.

      (5) The authors should add the side chain of Arg61 in Figure 1E because it is mentioned in the main text. 

      Thank you for the suggestion. We have added Arg61 to Figure 1E.

      (6) Figure 5D. For clarity, the electron densities should cover the Na+ ion. The same request applies to WatN in Figure S3B.

      Thank you for catching this detail. We have added the electron density for the Na+ ion in Figure 5D and WatN in Figure S3B.

      (7) At line 269 on page 8, what is "previous H98A I-PpoI structure with Mn2+"? Is the structure 1CYQ? If so, it is a complex with Mg2+. 

      Thank you for catching this detail. We have edited the text to “previous H98A I-PpoI structure with Mg2+.”

      (8) At line 294 on page 9, "and substrate alignment or rotation in MutT (66)." I think "alignment of the substrate and nucleophilic water" is preferred rather than "substrate alignment or rotation". 

      Thank you for the suggestion. We have edited the text to “alignment of the substrate and nucleophilic water.”

      (9) At line 305 on page 9, "Second, (58, 69-71) single metal ion binding is strictly correlated with product formation in all conditions, at different pH and with different mutants (Figure 3a and Supplementary Figure 4a-c) (58)". The references should be cited in the correct positions. 

      Thank you for catching this typo. We have removed the references.

      (10) At line 347 on page 10, "Grown in a buffer that contained (50 g/L glucose, 200 g/L α-lactose, 10% glycerol) for 24 hrs." Is this sentence correct? 

      Thank you for catching this detail. We have corrected the sentence.

      (11) At line 395 on page 11, "The His98Ala I-PpoI crystals of first transferred and incubated in a pre-reaction buffer containing 0.1M MES (pH 6.0), 0.2 M NaCl, 1 mM MgCl2 or MnCl2, and 20% (w/v) PEG3350 for 30 min." In the experiments using this mutant, does a pre-reaction buffer contain MgCl2 or MnCl2? 

      Thank you for bringing this to our attention. We have performed two sets of experiments: 1) metal ion soaking in 1 mM Mn2+, which is performed similarly as WT and does not have Mn2+ in the pre-reaction buffer; 2) imidazole soaking, 1 mM Mn2+ was included in the pre-reaction buffer. We reasoned that the Mn2+ will not bind or promote reaction with His98Ala I-PpoI, but pre-incubation may help populate Mn2+ within the lattice for better imidazole binding. However, neither Mn2+ nor imidazole were observed. We have added experimental details for both experiments with His98Ala I-PpoI.

      (12) In the figure legends of Figure 1, is the Fo-Fc omit map shown in yellow not in green? Please remove (F) in the legends. 

      We have changed the Fo-Fc map to be shown in violet. We have also removed (f) from the figure legends.

      (13) I found descriptions of "MgCl". Please modify them to "MgCl2". 

      Thank you for catching these details. We have modified all “MgCl” to “MgCl2.”

      (14) References 72 and 73 are duplicated. 

      We have removed the duplicated reference.

      Reviewer #2 (Recommendations For The Authors): 

      p. 9, first paragraph, last three lines: "Thus, we suspect that the metal ion may play a crucial role in the chemistry step to stabilize the transition state and reduce the electronegative buildup of DNA, similar to the third metal ion in DNA polymerases and RNaseH." This point is significant but the statement seems a little uncertain. You are saying that the single metal plays the role of two metals in polymerase, in both the ground state and the transition state. I believe the sentence can be stronger and more explicit. 

      Thank you for raising this point. We suspect the single metal ion in I-PpoI is different from the A-site or B-site metal ion in DNA polymerases and RNaseH, but similar to the third metal ion in DNA polymerases and nucleases. As we stated in the text,

      (1) the metal ion in I-PpoI is not required for substrate alignment. The water molecule and substrate can be observed in place even in the presence of the metal ion. In contrast, the A-site or B-site metal ion in DNA polymerases and RNaseH are required for aligning the substrates.

      (2) Moreover, the appearance of the metal ion is strictly correlated with product formation, similar as the third metal ion in DNA polymerase and RNaseH.

      To emphasize our point, we have revised the sentence as

      “Thus, similar to the third metal ion in DNA polymerases and RNaseH, the metal ion in I-PpoI is not required for substrate alignment but is essential for catalysis. We suspect that the single metal ion helps stabilize the transition state and reduce the electronegative buildup of DNA, thereby promoting DNA hydrolysis.”

      Minor typos: 

      p. 2, line 4 from bottom: due to the relatively low resolution... 

      Thank you for catching this. We have edited the text to “due to the relatively low resolution.”

      Figure 4F: What is represented by the pink color? 

      The structures are color-coded as 320 s at pH 6 (violet), 160 s at pH 7 (yellow), and 20 s at pH 8 (green). We have included the color information in figure legend and make the labeling clearer in the panel.

      p. 9, first paragraph, last line: ...similar to the third... 

      Thank you for catching this. We have edited the text.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment 

      This important study explores the potential influence of physiologically relevant mechanical forces on the extrusion of vesicles from C. elegans neurons. The authors provide compelling evidence to support the idea that uterine distension can induce vesicular extrusion from adjacent neurons. The work would be strengthened by using an additional construct (preferably single-copy) to demonstrate that the observed phenotypes are not unique to a single transgenic reporter. Overall, this work will be of interest to neuroscientists and investigators in the extracellular vesicle and proteostasis fields. 

      We now include supporting data using a single copy alternate fluorescent reporter expressed in touch neurons (Fig. 3H).

      In brief, we examined the induction of exophergenesis in an alternative single-copy transgene strain that expresses mKate fluorescent protein specifically in touch receptor neurons. As compared to the multi-copy transgene that is broadly used in this study and expresses mCherry fluorescent protein specifically in touch receptor neurons, the mKate single-copy transgene is associated with a much lower frequency of exophergenesis. However, increasing uterine distension via blocking egg-laying can increase the exophergenesis of the mKate single-copy transgenic line from 0% to approximately 60% on adult day 1, indicating that the observed response is not tied to a single reporter.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      The authors sought to understand the stage-dependent regulation of exophergenesis, a process thought to contribute to promoting neuronal proteostasis in C. elegans. Focusing on the ALMR neuron, they show that the frequency of exopher production correlates with the timing of reproduction. Using many genetic tools, they dissect the requirements of this pathway to eventually find that occupancy of the uterus acts as a signal to induce exophergenesis. Interestingly, the physical proximity of neurons to the egg zone correlates with exophergenesis frequency. The authors conclude that communication between the uterus and proximal neurons occurs through the sensing of mechanic forces of expansion normally provided by egg occupancy to coordinate exophergenesis with reproduction. 

      Strengths: 

      The genetic data presented is thorough and solid, and the observation is novel. 

      Weaknesses: 

      The main weakness of the study is that the detection of exophers is based on the overexpression of a fluorescent protein in touch neurons, and it is not clear whether this process is actually stimulated in wild-type animals, or if neurons have accumulated damaged proteins in relatively young day 2 animals. 

      We now include data using a single copy alternate fluorescent reporter expressed in touch neurons. Although baseline exopher levels are low in this strain, we demonstrate that inducing egg retention in this background markedly increases exopher generation from a baseline of near zero to ~60% (new Fig. 3H), supporting that uterine distention, rather than reporter identity, is associated with early life exopher elevation. Data also add to our observations indicating that high protein-expressing strains generally produce higher baseline levels of exophers in early adulthood (for example, Melentijevic et al. (PMID 28178240) documented that mCherry RNAi knockdown in the strain primarily studied here can lower exopher levels).

      The second point raised here, regarding the occurrence and physiological role of early-adult exophers in “native” non-stressed neurons is a fascinating question that we are beginning to address in continuing experiments. Readers will appreciate that quantifying relatively rare, “invisible” touch receptor neuron exophergenesis accurately without expressing a fluorescent reporter is technically challenging. Our speculation, outlined now a bit more clearly in the Discussion here, is that certain molecular and organelle debris that cannot readily be degraded in cells during larval development may be stored until release to more capable degradative neighbors or to the coelomocytes for later management, as one component of the early adult transition in proteostasis (see J. Labbadia and R. I. Morimoto, PMID 24592319). Receiving cells may be primed for this at a particular timepoint, possibly analogous to the “bulky garbage” collection of over-sized difficult-to-dispose-of household items that a town will address with specialized action only at specific times. The prediction is that we should be able to detect some mass protein aggregation through early development, and at least partial elimination by adult day 3; this elimination should be impaired when eggs are eliminated. Initial testing is underway.

      Reviewer #2 (Public Review): 

      Summary: 

      This paper reports that mechanical stress from egg accumulation is a biological stimulus that drives the formation of extruded vesicles from the neurons of C. elegans ALMR touch neurons. Using powerful genetic experiments only readily available in the C. elegans system, the authors manipulate oocyte production, fertilization, embryo accumulation, and egg-laying behavior, providing convincing evidence that exopher production is driven by stretch-dependent feedback of fertilized, intact eggs in the adult uterus. Shifting the timing of egg production and egg laying alters the onset of observed exophers. Pharmacological manipulation of egg laying has the predicted effects, with animals retaining fewer eggs having fewer exophers and animals with increased egg accumulation having more. The authors show that egg production and accumulation have dramatic consequences for the viscera, and moving the ALMR process away from eggs prevents the formation of exophers. This effect is not unique to ALMR but is also observed in other touch neurons, with a clear bias toward neurons whose cell bodies are adjacent to the filled uterus. Embryos lacking an intact eggshell with reduced rigidity have impaired exopher production. Acute injection into the uterus to mimic the stretch that accompanies egg production causes a similar induction of exopher release. Together these results are consistent with a model where stretch caused by fertilized embryo accumulation, and not chemical signals from the eggs themselves or egg release, underlies ALMR exopher production seen in adult animals. 

      Strengths: 

      Overall, the experiments are very convincing, using a battery of RNAi and mutant approaches to distinguish direct from indirect effects. Indeed, these experiments provide a model generally for how one would methodically test different models for exopher production. The paper is well-written and easy to understand. I had been skeptical of the origin and purpose of exophers, concerned they were an artefact of imaging conditions, caused by deranged calcium activity under stressful conditions, or as evidence for impaired animal health overall. As this study addresses how and when they form in the animal using otherwise physiologically meaningful manipulations, the stage is now set to address at a cellular level how exophers like these are made and what their functions are. 

      Weaknesses: 

      Not many. The experiments are about as good as could be done. Some of the n's on the more difficult-to-work strains or experiments are comparatively low, but this is not a significant concern because of the number of different, complementary approaches used. The microinjection experiment in Figure 7 is very interesting, there are missing details that would confirm whether this is a sound experiment. 

      We expanded description of details for the microinjection experiment in both the figure legend and the methods section, to enhance clarity and substantiate approach.

      Reviewer #3 (Public Review): 

      Summary: 

      In this paper, the authors use the C. elegans system to explore how already-stressed neurons respond to additional mechanical stress. Exophers are large extracellular vesicles secreted by cells, which can contain protein aggregates and organelles. These can be a way of getting rid of cellular debris, but as they are endocytosed by other cells can also pass protein, lipid, and RNA to recipient cells. The authors find that when the uterus fills with eggs or otherwise expands, a nearby neuron (ALMR) is far more likely to secrete exophers. This paper highlights the importance of the mechanical environment in the behavior of neurons and may be relevant to the response of neurons exposed to traumatic injury. 

      Strengths: 

      The paper has a logical flow and a compelling narrative supported by crisp and clear figures. 

      The evidence that egg accumulation leads to exopher production is strong. The authors use a variety of genetic and pharmacological methods to show that increasing pressure leads to more exopher production, and reducing pressure leads to lower exopher production. For example, egg-laying defective animals, which retain eggs in the uterus, produce many more exophers, and hyperactive egg-laying is accompanied by low exopher production. The authors even inject fluid into the uterus and observe the production of exophers. 

      Weaknesses: 

      The main weakness of the paper is that it does not explore the molecular mechanism by which the mechanical signals are received or responded to by the neuron, but this could easily be the subject of a follow-up study. 

      We agree that the molecular mechanisms operative are of considerable interest, and our initial pursuit suggests that a comprehensive study will be required for satisfactory elaboration of how mechanical signals are received or responded to by the neuron.

      I was intrigued by this paper, and have many questions. I list a few below, which could be addressed in this paper or which could be the subject of follow-up studies. 

      - Why do such a low percentage of ALMR neurons produce exophers (5-20%)? Does it have to do with the variability of the proteostress? 

      We do not yet understand why some ALMR neurons within a same genotype will produce exophers and some will not. We know that in addition to the uterine occupation we report here, proteostasis compromise, feeding status, oxidative stress, and osmotic stress can elevate exopher numbers (PMID 34475208); cell autonomous influences on exopher levels include aggresome-associated biology (PMID 37488107) and expression levels of the mCherry protein (PMID 28178240). Turek reports that social interaction on plates can influence muscle exopher levels (PMID 34288362). Thus, although variable proteostress experienced by neurons is likely a factor, we have not yet experimentally defined specific trigger rules. We suspect the summation of internal proteostasis crisis and environmental conditions, including particular force vectors/frequency will underlie the variable exopher production phenomeonon.

      - Why does the production of exophers lag the peak in progeny production by 24-48 hours? Especially when the injection method produces exophers right away?

      The progeny production can track well with exopher production (Fig. 1B), although the nature of egg counts (permanent, one time events) vs. exophers (which are slowly degraded) can skew the peak scores apart. We synchronized animals at the L4 stage. 24 hours later was adult day 1, and we measured then and every subsequent 24 hours. The daily progeny count reflects the total number of progeny produced every 24 hours; exopher events were scored once a day, but exophers can persist such that the daily exopher count can partially reflect slow degradation, with some exophers being counted on two days. We now explain our scoring details better in the Methods section.

      The rapid appearance of exophers, as early as about ~10 minutes after sustained injection, is fascinating and probably holds mechanistic implications for exopher biology. For one thing, we can infer that in the mCherry Ag2 background, touch neurons can be poised to extrude exophers, but that the pressure/push acts to trigger or license final expulsion. It is interesting that we found we needed to administer sustained injection of two minutes to find exopher increase (now better emphasized in the expanded Methods section). We speculate that a multiple pressure events, or sustained force vector might be critical (like an egg slowly passing through??). Minimally, this assay may help us assign molecular roles to pathway components as we identify them moving forward. 

      - As mentioned in the discussion, it would be interesting to know if PEZO-1/PIEZO is required for uterine stretching to activate exophergenesis. pezo-1 animals accumulate crushed oocytes in the uterus. 

      We have begun to test the hypothesis that PEZO-1 is a signaling component for ALMR exophergenesis, initially using the N and C terminal pezo-1 deletion mutants as in Bai et al. (PMID 32490809). These pezo-1 mutants have a mild decrease in ALMR exophergenesis under normal conditions. However, vulva-less conditions in pezo-1N and piezo-1C increased ALMR exophergenesis from approximately 10% to 60%, similar to the response of wild-type worms to high mechanical stress, data that suggest PEZO-1 is not a required player in mediating mechanical force-induced ALMR exophergenesis. We are currently testing genetic requirements for other known mechanosensors. We intend comprehensive investigation of the molecular mechanisms of mechanical signaing in a future study.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      -The study would be significantly strengthened by the addition of data detecting regulation of exophergenesis by uterine forces in a more physiological context, in the absence of overexpression of a toxic protein. In other words, is this a process that occurs naturally during reproduction, or is it specific to proteotoxic stress induced by overexpression? Perhaps the authors could repeat key experiments using a single copy transgene, and challenge the animals with exogenous proteotoxic stress if necessary.

      We now include data using a single copy alternate fluorescent reporter expressed in touch neurons. Although baseline exopher levels are low in this strain, we demonstrate that inducing egg retention in this background markedly increases exopher generation from a baseline of near zero to ~60% (Fig. 3H), supporting that uterine distention, rather than reporter identity or over-expression alone dries early life exopher elevation.

      Also noteworthy is that we find exophergenesis in the single-copy transgenic line is only approximately 0.3% on adult day 2 (average in three trials, data not shown), which is much lower than the 5-20% exophergenesis rate typically observed in the multi-copy high expression mCherry transgenic line. Therefore, consequences of overexpression of mCherry likely potentiate exophergenesis.

      -The authors mention that exophergenesis has been described in muscle cells. Is this also dependent on the proximity to the uterus? It would have been interesting to include data on other cell types in the vicinity of the reproductive system.

      Yes, in interesting work on exophers produced by muscle, Turek et al. reported that muscle exopher events are mostly located in a region proximal to the uterus. Moreover, this work also documented that sterile hermaphrodites are associated with approximately 0% muscle exophergenesis, and egg retention in the uterus strongly increases muscle exophergenesis (PMID: 34288362).  

      -Is exophergenesis also induced by other forms of mechanical stress? For example, swimming.

      We have looked at crude treatments such as centrifugation or vortexing without observing changes in exopher levels. Our preliminary work indicates that swimming can increase exophergenesis, and this effect depends on the presence of eggs in the uterus. We appreciate the question, and expect to include documentation of alternative pressure screening in our planned future paper on molecular mechanisms.

      -In Figure 1E, the profile of exopher production for the control condition at 25oC is very similar to the profile observed at 20oC in Figure 1B. However, the profile of progeny production at 25oC is known to have an earlier peak of progeny production. Perhaps egg retention is differently correlated with progeny production at this temperature? The authors could easily test this.

      Overall, exophers (which degrade with time) and progeny counts (a fixed number) have slightly different temporal features, anchored in part by how long exophers or their “starry night” debris persist. Most exophers start to degrade within 1-6 hours (PMID: 36861960), but exopher debris can persist for more than 24 hours. An exopher event observed on day 1 may thus also be recorded at the day 2 time point, which leads to a higher frequency of exopher events on day 2 as compared to day 1.

      We have previously published on the impact of temperature on exopher number (Supplemental Figure 2 in PMID 34475208). In brief, increasing culture temperature for animals that are raised over constant lifetime temperature modestly increases exopher number; a greater increase in exophers is observed under conditions in which animals were switched to a higher temperature in adult life, suggesting changes in temperature (a mandatory part of the ts mutant studies) engages complex biology that modulates exopher production. Our previous data show that in a temperature shift to 25oC, the peak of exophers was at adult day 1. Here, Fig. 1B is constant temperature, 20oC; Fig. 1E has a temperature shift 15-25oC. That egg retention might be temperature-influenced is a plausible hypothesis, but given the complexities of temperature shifts for some mutants, we elected to defer drill-down on the temperature-exopher-egg relationship. 

      -It is not clear how to compare panels A and B in Figure 3. In panel A the males are present throughout the adult life of the hermaphrodites whereas in panel B the males are added in later life. Therefore, the effect of later-life mating on progeny production is not shown and the title of panel A in the legend is misleading. The authors need to perform a progeny count in the same conditions of mating presented in Figure 3B to allow direct comparison.

      As Reviewer 1 suggested, we performed a new progeny count now presented in new Fig. 3A, which more appropriately matches the study presented in Fig. 3B; legends adjusted.

      -On page 12, the authors state that the baseline of exophergenesis in rollers is 71%, but then attribute the 71% in Figure 4F to exophergenesis specifically in ALMR that is posterior to AVM. The authors need to clarify this point.

      Good catch on our error. The baseline of exophergenesis in rollers is ~40%, and we corrected the main text.

      -Considering the conclusion of Figure 2 that blocking embryonic events passed the 4-cell stage does not impact exopher production, it would have been interesting to compare the uterine length for emb-8 and for mex-3, since it is quite intriguing that the former suppresses exopher production while the latter has no effect.

      We repeated the emb-8 and mex-3 RNAi for these studies and encountered variability in outcome for 2 cell stage disruption via emb-8 RNAi, which is consistent with the range of published endpoints for emb-8 RNAi. We elected to include these emb-8 findings in the figure legend 2G, but removed the RNAi data from the main text figure. mex-3 uterine measures are added to revised panels 5H, 6I.

      Reviewer #2 (Recommendations For The Authors): 

      -Leaving the worms in halocarbon oil for too long (e.g. 10 min) can desiccate and kill them. Did the authors take them out of the oil before analyzing exopher production? The authors refer to these as 'sustained injections' without much description beyond that. As the worms are very small, the flow rate needed for a sustained injection over 2 minutes must be very low - so low that the needle is in danger of being clogged. Do the authors have an estimate of how much fluid was injected or the overall flow rate? I realize the flow rate measured outside of the worm may not compare directly to that of a pressurized worm, but such estimates would be instructive, particularly if they can be related to the relative volume of the eggs the injection is trying to mimic.

      After injection or mock injection, we removed the animal from the oil and flipped it if necessary to observe the ALMR neuron on the NGM-agar plate. We now expanded description of the experimental details of injection, including the estimated flow rate, in the revised Methods section.

      - The authors describe the ALMR neurons as "proteostressed", but I am not clear on whether these neurons were treated in a unique procedure to induce such a state or if the authors are merely building on other observations that egg-laying adults are dedicating significant resources to egg production, so they must be proteostressed. If they are not inducing a proteostressed state in their experiments, the authors should refrain from describing their neurons and effects as depending on such a state.

      We revised to more explicity feature published evidence that the ALMR neurons we track with mCherryAg2 bz166 are likely protestressed. Overexpression of mCherry in bz166 is associated with enlargement of lysosomes and formation of large mCherry foci that often correspond toe LAMP::GFP-positive structures in ALMR neurons (PMID: 28178240; PMID: 37488107). Marked changes in ultrastructure reflect TN stress in this background. These cellular features are not seen in wild type animals. We previously published that mCherry, polyQ74, polyQ128, Ab1-42 (which enhance proteostress) over-expression all increase exophers (PMID: 28178240). Likewise most genetic compromise of different proteostasis branches--heat shock chaperones, proteasome and autophagy--promote exophergenesis, supporting exophergenesis as a response to proteostress. In sum, the mCherryAg2 bz166 appear markedly stressed above a non-over expressing line and produce more exophers. RNAi knockdown of the mCherry lowers exopher levels (PMID: 28178240).

      In response to reviewer comment, we added a study with a single copy mKate reporter (new data Fig. 3H). We find a very low baseline of exophers in this background. This would support that high autonomous compromise associated with over-expression influences exopher levels. Interestingly, however, we found that ALMR neurons expressing mKate under a single-copy transgene still exhibit excessive exopher production (>60%) under high mechanical stress (Fig. 3H). These data are consistent with ideas that mechanical stresses can enhance exopher production, and may markedly lower the threshold for exophergenesis in close-to-native stress level neurons.

      - The authors should include more details on the source and use of the RNAi, for example, if the clones were from the Ahringer RNAi library, made anew for this study, or both.

      We now add this information in the methods section.

      - I would be curious if the authors would similarly see an induction in exopher production after acute vulval muscle silencing with histamine. I'm not suggesting this experiment, but it may offer a way to induce exophers in a more controlled manner.

      This is a great suggestion that we will try in future studies.

      - I am not sure if Figure 5 needs to be a main figure in the paper or if it would be more appropriate as a supplement.

      We considered this suggestion but we think that the strikingly strong correleation of uterus length and exopher levels is a major point of the story and these data establish a metric that we will use moving forward to distinquish whethere an exopher modulation disruption is more likely to act by modulation of reproduction or modulation of touch neuron biology. For this reason we elected to keep Figure 5 in the main text.

      Reviewer #3 (Recommendations For The Authors): 

      -The Statistics section in the methods should be expanded to describe the statistics used in the experiments that aren't nominal, of which there are many.

      We have updated and expanded the statistics section.

      -P.2 Line 49 spelling 'que' should be queue (I remember this by the useless queue of letters lined up after the 'q').

      Corrected 

      -The introduction has a bit too much information about oocyte maturation, not relevant to the study.

      We agree that the information about oocyte maturation is not critical for the laying out the related experiments and cut this section to improve focus.

      -p.3 line 22: Some exophers are seen on Day 3, so this should be restated for accuracy.

      Corrected

      -p.3 line 26. Explain here why sperm is necessary (ooyctes don't mature or ovulate effectively without sperm).

      We added this clarifying explanation.

      -p.3 line 44 Clarify in the spe-44 the oocytes are in the oviduct (not the uterus). Might be helpful to include a DIC image to accompany the helpful diagram in Figure 1D. 

      We added a sentence describing the impact of sperm absence on oocyte maturation, progression into the uterus, and retention in the gonad, with reference to PMID: 17472754.  We were able to add a DIC in the tightly packed Figure 1.

      In Supplemental Figure 6, we now include a field picture of oocyte retention in the sem-2 mutant and upon treatment of lin-39(RNAi).

      -p.5 line 3 in the Figure 1D legend; recommend delete 'light with' which is confusing and just refer to the sperm as dark dots. 

      Corrected

      -p.6 line 22-24 Check for alignment of the statements with Figure 2 (2F is cited, but it should be 2G).

      Corrected

      -p12 line 13-15; Many ALMRs not in the egg zone (70%) did not produce exophers - this is still quite a lot. It would be good to state this section in a more straightforward way (less leading the reader) and if possible to give a possible explanation.

      We modified the text to be less leading: “Thus, although ALMR soma positioning in the egg zone does not guarantee exophergenesis in the mCherryAg2 strain, the neurons that did make exophers were nearly always in the egg zone.”

      -p.15 paragraph 3 - clarify how uterine length was controlled for the overall body length of the worm.

      We did not systematically measure body length, but rather focused on uterine distention. It would be of interest to determine if length of the body correlates with uterine size, and then address how that relationship translates to exopher production but here our attention came to rest on the striking correlation of uterine length and number of exophers.

      -p.17 line 23-25; Could be stated more simply. 

      We adjusted the text: “Moreover, the oocyte retention was similarly efficacious in elevating exopher production to egg retention, increasing ALMR exophergenesis to approximately 80% in the sem-2(rf) mutant (Fig. 6C)”.

      -p.23 Line 4. I think by the time the reader reaches this sentence, the egg-coincident exophorgenesis will not be 'puzzling'. 

      Agreed, corrected.

      -p.26, Line 22, Male 'mating', not 'matting'.

      Corrected.

      -Throughout, leave space between number and unit (this is not required for degree or percent, but be consistent). 

      Corrected.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements [optional]

      This section is optional. Insert here any general statements you wish to make about the goal of the study or about the reviews.

      We thank the reviewers for their insights and helpful suggestions on the manuscript. Based on these, we have prepared a revision plan for this manuscript, which is outlined below. We believe these revisions will improve the overall quality of the manuscript.

      2. Description of the planned revisions

      Insert here a point-by-point reply that explains what revisions, additional experimentations and analyses are planned to address the points raised by the referees.

      • *

      Reviewer #1

      (Evidence, reproducibility and clarity (Required)):

      Summary:

      This study builds on previous work from the same group, where they use Drosophila photoreceptors as a model system to investigate the role or ER-plasma membrane contact sites in an in vivo setting. The authors recently described a role of the ER-PM contact site protein dEsyt in regulating photoreceptor function in Drosophila. In this follow-up study, they explore whether this function of dEsyt is connected Ca2+ signaling downstream of photoreceptor activation. Using a dEsyt mutant that should be unable to bind Ca2+, they find that Ca2+ to some extent is required for dEsyt localization, membrane contact site formation and photoreceptor function.

      Major comments:

      The use of photoreceptor cells in Drosophila is an elegant model system that enable studies of membrane contact sites and associated proteins in a native condition. The data presented by the authors clearly shows that these structures are important for photoreceptor function, and that dEsyt plays a role at these sites. However, this was already known from previous studies by the same group. When it comes to whether these contacts are sensing Ca2+ changes and if these changes are acting through dEsyt, which is the focus of the current manuscript, the results are unclear to me and would need to be clarified by the authors both in text and with new experiments.

      1) What is the role of cellular Ca2+ signaling in the regulation of dEsyt function? There are several aspects here that needs to be clarified. 1) How is WT dEsyt localization regulated by Ca2+? This could for example be evaluated in the mutant flies used in Fig. 1 (trpl302; trp343), where lack of light-induced Ca2+ influx would be predicted to result in a localization of dEsyt that resembles that observed for dEsytCaBM. 2) Is Ca2+ important for dEsyt localization, lipid exchange or both? The authors express a version of dEsyt with mutation made in all three C2 domains. In mammalian E-Syts, Ca2+ binding to the C2A domain is important for lipid exchange while binding to C2C (in E-Syt1) is important for interactions with lipids in the plasma membrane. Using more carefully designed mutants will allow the authors to determine how Ca2+ regulates dEsyt function in vivo. In addition, the authors must show experimentally that the mutant dEsytCaBM is unable to bind Ca2+ (could e.g. be done by acute Ca2+ changes in the cell-based model used in Fig. 3). Writing that "This transgene carrying a total of nine mutations should render the protein unable to bind calcium" (p. 6, line 173) is not sufficient.

      1) How is WT dEsyt localization regulated by Ca2+?

      We agree that further experimental evidence would be helpful in establishing the significance of cellular Ca2+ signaling in the control of dEsyt function. As suggested by the reviewer, the localization of wild type dEsyt will be examined in the mutants: norpAP24 (PLC null mutant) and trpl302; trp343 (protein null mutants of TRPL and TRP channels respectively) in which light induced calcium influx is eliminated. These data will be included in the revision.

      2) Is Ca2+ important for dEsyt localization, lipid exchange or both?

      We have already performed experiments to address the question of how important calcium binding to dEsyt is for lipid transport at the ER-PM interface in Drosophila photoreceptors. This results indicate a previously unexpected role for lipid exchange and will be included in the revision.

      3). Writing that "This transgene carrying a total of nine mutations should render the protein unable to bind calcium" (p. 6, line 173) is not sufficient.

      We concur with the reviewers that at present we do not have experimental data to demonstrate that dEsytCaBM can't bind Ca2+. However, as Reviewer 4 pointed out, it will be challenging to demonstrate this experimentally. A direct proof would only come from measurements of the calcium binding affinity of dEsyt (which involves protein purification that is beyond the scope of the current work). An indirect demonstration would be any cellular or in vivo experiment. In addition to the in silico analysis already included in Fig 2 C-F, we propose the following to provide additional evidence to strengthen our in silico analysis: Use AlphaFold model to demonstrate that the arrangement of the calcium binding residues in the C2 domain of dEsyt is compatible with Ca2+ binding.

      2) The localization of dEsyt shown in Fig. 3B is a bit confusing. First of all, I would recommend including markers of the ER and the plasma membrane, because without these it is difficult to make statements about the localization of dEsyt to these structures.

      As suggested, to better appreciate the localization of dEsyt in photoreceptors, we will perform colocalization of dEsyt with markers of the PM (Rhabdomere) and ER (Sub Microvillar Cisternae).

      Second, it appears that WT dEsyt localize to the reticular ER, and that the CaBM version localize to the plasma membrane. This is somewhat opposite to mammalian ESyts, where mutations that prevent Ca2+ binding either had no effect (for ESyt2) or prevented (for ESyt1) the interaction with the plasma membrane. It also appears different from the localization in vivo (Fig. 3C). Clarifying this will be important. It will also be important to connect this localization to changes in Ca2+ and not just to the localization of a mutant that may or may not be deficient in Ca2+ binding (see comment above).

      In considering this comment, we need to bear in mind the following:

      • Mammalian cells have three genes that encode for Esyt: Esyt 1, 2 and 3 whereas the Drosophila genome encodes only a single gene for Esyt.
      • In terms of sequence similarity and structure, dEsyt and hEsyt2 are very similar. However, in contrast to hEsyt2 and hEsyt3, which localize to the plasma membrane (PMID: 17360437), dEsyt acts like hEsyt1 and localizes to the ER-PM junctions.
      • A single study (PMID: 27065097) has shown that the SMP domain of Esyt1 can transfer lipids in an in vitro assay. In our studies, we have noted an unexpected function for the SMP domain of dEsyt for in vivo function as measured through phenotypes in the eye (data will be presented in the revised ms).
      • While knocking out the single dEsyt in Drosophila photoreceptor neurons results in phenotypes (Nath et.al PMID: 32716137) to date, knocking out all three Esyts in mammalian cell culture models or mice has not revealed an in vivo Bearing these points in mind it may not be reasonable to expect every observation on mammalian Esyt to be recapitulated in the fly system or vice versa. 3) I don't fully understand the time course of events. The authors show that dEsytCaBM is mislocalized already at day 1 in dark-reared flies (Fig. 3C) but this mislocalization is not accompanied by a change in MCS density or gap distance, and consistently does not influence the localization of RDGB. The authors next expose the flies to constant light illumination to trigger Ca2+ dependent signaling, and this leads to mislocalization of RDGB, perhaps indicating changes in MCS (this is not shown). From these results it is difficult to know what the role of dEsyt is. It would be necessary to also show a control where Ca2+ signaling is not induced, e.g. a parallel dark-control (same number of days but no illumination).

      It is important to remember that even complete loss of Esyt does not result in altered MCS or mislocalization of RDGB on day 1 post eclosion. This has been published by us previously (Nath et.al PMID: 32716137). Since we show in this manuscript that dEsytCaBM exerts a dominant negative effect when expressed in wild type and phenocopies dEsytKO, one might expect expression of dEsytCaBM to also lead to altered MCS density and mislocalization of RDGB by 6D constant light.

      Bearing this in mind, we will incorporate the following data in the manuscript: Addition of MCS density in dEsytKO photoreceptors at Day1 in Figure 3C.

      • Electron Microscopy to check MCS density in Rh1>dEsytCaBM at Day 6CL with appropriate control genotypes.
      • Confocal Imaging: RDGB staining in Rh1>dEsytCaBM- Day 6CD reared flies with appropriate control genotypes- dark control where only reduced Ca2+ signaling is induced due to dark noise or spontaneous PLC activation. This is particularly important given that the authors show in Fig. 1 that preventing Ca2+ influx had a dramatic impact on MCS density even at day 1 (which is in sharp contrast to dEsytCaBM-expressing flies, that show normal morphology at day 1, which rather implies that dEsyt is not a major Ca2+ effector).

      In thinking about this comment, it is important to bear in mind the details of the experimental paradigm in use in each of the experiments while drawing comparisons between the observed results. It is to be noted that throughout the manuscript dEsytCaBM is expressed selectively in photoreceptors using the Rhodopsin enhancer which drives expression of the transgene during late eye development. By contrast, in germ line mutant strains such as trpl302;trp343 the channels are blocked throughout development. Thus the phenotypes of trpl302;trp343 might be broader than that of expressing dEsytCaBM. Therefore, mutating the calcium binding residues of dEsyt and expressing it using Rh1 enhancer at a specific developmental time window might not have the same impact on the contact site density as completely blocking the major calcium permeable channels, TRP and TRPL that is important to sustain the ongoing phototransduction cascade all through the development.

      4) The experiments done in dEsyt KO flies are important, and here the authors show that dEsyt1 could to some extent rescue all phenotypes. Some results are a bit puzzling. For example, dEsyt1CaBM localization in dEsyt1 KO flies is identical to that of WT dEsyt (Fig. 5C), which is in sharp contrast to the data shown in Fig. 3C. What is the reason for this? I would have anticipated the opposite (i.e. that in WT flies, dEsytCaBM can form dimers with endogenous dEsyt through SMP-domain interactions which may have an impact on its localization and the function of endogenous dEsyt, but that in the dEsyt KO cells, dEsytCaBM would show a different localization due to the lack of endogenous dEyt to interact with). It is important to clarify as one of the major observations here is that dEsytCaBM no longer localize to MCS. Since the CaBM version of dEsyt could rescue, to some extent, MCS density and delay photoreceptor degeneration, this implies that Ca2+ may not be required for regulation of dEsyt function or that the mutant is still able to partially bind to Ca2+.

      The localization shown in Fig 5C is not of dEsytCaBM in dEsytKO photoreceptors but the localization of RDGB in Rh1>dEsytCaBM; dEsytKO at Day 1 (Figure 5C i) and as a function of age and illumination- Day 6CL (Figure 5C ii).

      One experiment that would help the authors determining the function of dEsyt in vivo would be to use a mutant that lacks functional SMP domain (ideally also with and without mutations in the C2-domains).

      There is information available to address the question of how the lipid binding module, SMP is important to render dEsyt functional at the ER-PM interface in Drosophila photoreceptors. The same will be included in the revision.

      5) PLC activation typically couples to rapid signaling and involved hydrolysis of PIP2 and release of Ca2+ from the ER. Mammalian Esyts also require PIP2 for plasma membrane binding (through interactions with C2-domains), so constitutive PLC activity would be expected to impair ESyt localization to MCS. Here, the authors expose flies for days of constant illumination. How does this influence plasma membrane PIP2 levels and could this be of relevance for how data is interpreted?

      This is an interesting question from the reviewer. However, we would like to clarify the fact that constitutive activation of PLC is different from constant activation of PLC during illumination. Flies have robust mechanisms for controlling PLC turnover and PIP2 levels during continuous illumination and Ca2+ is a key regulator of this process; the underlying mechanisms have been described by Raghu and Hardie in multiple past papers (PMID: 11343651, PMID: 15355960). This is why, apart from adaptation, flies grown in constant light for many days do not show electrophysiological defects and neither do they undergo retinal degeneration. We will however measure the kinetics of PIP2 resynthesis in (i) wild type (Day 1 vs Day 6CD vs Day 6CL) and (ii) Control, Rh1>dEsyt and Rh1>dEsytCaBM (Day 1 vs Day6CL). This might reveal some interesting insight into the mutants.

      Do the authors know whether the CaBM mutant has reduced affinity for PIP2?

      The ability of wild type dEsyt to bind PIP2 has not been determined. We will test this and if it does so, the impact of CaBM on PIP2 binding can be tested.

      Minor comments:

      • The overexpression of WT dEsyt had a dramatic impact on MCS density and gap distance, while expression of dEsytCaBM did not. If these contacts are important for photoreceptor function, is it not surprising that such a dramatic change in photoreceptor structure was without effect on function? This should be further discussed. The establishment of more contact sites and reduction in contact site distance in Rh1>dEsyt::GFP photoreceptors is likely indicative of the proposed tethering role of the protein at the ER-PM MCS. Increase in contact site density or reduction in distance need not directly parallel to the increase in the levels of MCS proteins that are expressed at these contact sites to enhance the ongoing signal transduction. We will test this idea proposed by the reviewer and include the following data in a revision to strengthen our statement:

      • RDGB levels in control vs Rh1>dEsyt::GFP - Western blot

      • Electroretinograms from the genotypes indicated above as a functional readout of the ongoing signaling cascade.
      • PIP2 kinetics in control vs Rh1>dEsyt::GFP to understand if establishing more contact sites can enhance the replenishment of the lipid at the PM. 2) How is quantification of MCS density and gap distance influenced by retinal degeneration (e.g. induced by dEsyt KO)?

      Wherever we have analyzed MCS density or gap distance, these experiments have been done in flies at ages prior to the onset of retinal degeneration defined as collapse of the microvilli of the rhabdomere. Therefore, our measurements of MCS density and gap in this paper are not affected by retinal degeneration.

      3) The graphical abstract is a bit confusing. It seems to suggest that changes in dEsyt is a consequence of ageing and does not show any role of this protein in photoreceptor function. I think that the abstract could be improved to more clearly highlight the findings in the manuscript. For example, it doesn't at all show the difference in localization between WT and CaBM.

      We will modify the graphical abstract.

      4) P. 5, line 135 the authors state that "The tethering and lipid transfer activity of mammalian Esyts are reported to be influenced by Ca2+". This is a massive understatement. Ca2+ is a critical regulator of Esyt function in mammalian cells.

      The statement will be modified.

      5) In figure legend 1B and C: correct µM to µm.

      Changes will be incorporated as per the suggestion.

      6) In figure legend 2A: should be red rectangles and not black rectangles.

      Changes will be incorporated as per the suggestion.

      7) In Fig. 2B: specify which isoform of human ESyt that is shown.

      Changes will be incorporated as per the suggestion.

      8) In Fig. 2C: do the authors mean D374 or D384 (as indicated in Fig. 2A)?

      Changes will be incorporated as per the suggestion; the residue is D374.

      Significance

      Light-induced signal transduction in photoreceptor cells involves Ca2+ influx and signaling and also depends on correct formation of ER-plasma membrane contact sites. In mammalian cells, the Esyts (esp. Esyt1 and Esyt2) localize to ER-PM contacts in a Ca2+-dependent manner, and the ion has dual effects in both enriching the protein at the membrane contact sites and in promoting lipid transport. Mammalian Esyts form homo- and heterodimers, and the properties of the dimers depends on their composition (PMID: 26202220). Drosophila only have one Esyt (dEsyt) which is structurally most similar to mammalian Esyt2, and the authors have previously shown how this protein is required for photoreceptor function (PMID: 32716137), although the role of Ca2+ was not investigated in that study. However, an earlier study has shown that mutations of all Ca2+-coordinating residues in dEsyt impairs protein function in Drosophila neurons (PMID: 28882990), so a similar Ca2+-dependence in the retina would be expected. The results from the present study confirm the requirement of Ca2+ signaling for dEsyt function, and extends this Ca2+-dependent regulation to also involve photoreceptor-induced Ca2+ signaling, which corroborates many other studies showing the requirement of Ca2+ signaling for the regulation of Esyt function in mammalian cells (e.g. PMID: 23791178; PMID: 27065097; PMID: 29222176; PMID: 26202220; PMID: 24183667; PMID: 30589572). As such, the results from this study represent an incremental step towards understanding Esyt function in vivo. These results would be of greatest interest to researchers working of photoreceptor function, and of some interest to a broader audience working on membrane contact sites and signal transduction. My own background is in mammalian cell biology, with a focus on lipid and Ca2+ signaling and inter-organelle communication. I have limited understanding of the model system used here (Drosophila photoreceptor cells).


      We would like to provide an alternative perspective on the reviewer’s view that “As such, the results from this study represent an incremental step towards understanding Esyt function in vivo.”

      We are well aware of the content in several studies of Esyt in mammalian cells including the ones cited by the reviewer (e.g. PMID: 23791178; PMID: 27065097; PMID: 29222176; PMID: 26202220; PMID: 24183667; PMID: 30589572). These have been cited in our manuscript. However, it is important to recognize that each of these studies is an analysis of the properties of mammalian Esyt as a molecule in the context of Ca2+. However, none of these studies addresses the key question of whether the regulation of Esyt by Ca2+ is important for cellular function or to support cell physiology. The reason for this is quite straightforward and well known in the field. To date, there is no cellular or physiological phenotype that is reported to depend on endogenous Esyt function in mammalian cellular or animal models. As an illustrative example, deletion of all three mammalian Esyt does not affect cell signalling (PMID 23791178) including Ca2+ signalling and a triple knockout of all three Esyt in mice (PMID: 27348751) has no discernable phenotype.

      By contrast, deletion of the single Esyt gene in Drosophila results in robust phenotypes in adult photoreceptors (PMID: 32716137). Using these phenotypes, in this manuscript we study the importance of Ca2+ dependent regulation of cellular functions mediated by dEsyt. Therefore, this study fills an important unfilled gap in establishing the mechanism by which dEsyt proteins regulate cellular functions in vivo, in a Ca2+ dependent manner. We respectfully ask that this not be caricatured as an incremental step.


      Reviewer #2

      Evidence, reproducibility and clarity

      Esyt is a C domain (a Ca2+ binding domain) containing protein that localizes to the ER-MCS, playing a role in ER-mitochondria tethering and lipid transfer. At the same time, proteins at the ER-MCS are well-positioned to sense changing levels of Ca2+. Previous studies reported that loss of Esyt in Drosophila causes a loss of ER-PM integrity and retinal degeneration. Here, the authors report the consequence of disrupting the Esyt C domain in Drosophila photoreceptor cells. They used in-silico strategies to identify the Ca2+ contacting residues within the C domain and generated transgenic flies containing either the wild type or the Esyt-CaBM mutants. They show that the wild type transgene rescues several Esyt KO phenotypes in the Drosophila photoreceptors. In some cases, they report dominant negative effects of Esyt-CaBM overexpression.

      This is a straightforward structure-function analysis of the Esyt C domain. Overall, the experiments are well executed. At the same time, a few aspects of the manuscript could be further improved. For example, the authors analyze multiple aspects of photoreceptor integrity. In some cases, they show that the mutant Esyt transgene shows dominant negative effects. In others, there is no evidence or even a partial function. Clarifying these points could be helpful. Below are a few specific points for the authors' consideration:

      Major Comments

      1. RDGB is a protein that localizes to the ER-MCS. Esyt-CABM-GFP expression causes RDGB mis-localization even in the presence of wild type Esyt expression, suggestive of a dominant negative effect (Fig. 4C). But Esyt CaBM-GFP expression doesn't seem to have a dominant negative effect on contact site distance (Fig. 4D). Are the authors not seeing a dominant negative effect because they didn't examine older flies? Or, is there a distinct effect of Esyt CaBM on RDGB localization and contact site distance? If there is a distinct effect, what is the reason? As the reviewer correctly mentions, we are not seeing a dominant negative effect of dEsytCaBM::GFP expression on contact site distance because we didn't examine older flies.

      Dominant negative effect of dEsytCaBM on the wild type protein is observed in all phenotypes analyzed. The contact site distance analysis shown in the paper is done on day 1 old constant dark reared flies. Contact site distance exhibited by dEsytCaBM is like that of dEsytKO photoreceptors at day 1 post eclosion. dEsyt deprived photoreceptors are comparable to its wild type counterpart at Day 1 in all aspects of phototransduction (PMID: 32716137). But as a function of age and illumination, the dEsytKO photoreceptors exhibit progressive loss in contact site integrity, followed by induction of retinal degeneration and RDGB mis-localisation (PMID: 32716137). These observations are consistent in dEsytCaBM.

      During the revision, the following experiments will be included to strengthen this statement:

      • Add the MCS density and gap distance in dEsytKO photoreceptors at Day1 in Figure 3C.
      • Electron Microscopy to check MCS density and distance in Rh1>dEsytCaBM at Day 6CL with appropriate control genotypes.

      Esyt-CABM-GFP partially rescues the Esyt KO phenotype in retinal degeneration (Fig 6). This is surprising since cellular assays in Fig 4 show a failure of Esyt-CaBM to localize to ER-MCS. The results here contrast with earlier data showing that Esyt-CABM has dominant negative effects. How will the authors interpret the results? Is it possible that Esyt-CAMB still has some residual Ca2+ binding activity? Alternatively, does this result imply that Esyt can still function (albeit at lower capacity) without binding Ca2+? Is there Esyt function unrelated to ER-MCS site maintenance when it comes to its role in retinal degeneration? A reasonable explanation is warranted.

      Partial rescue of dEsytKO phenotypes by Rh1>dEsytCaBM; dEsytKO photoreceptors indicate that apart from calcium sensing, there might be another function for dEsyt at the ER-PM interface which is yet to be discovered.


      Minor Comments:

      Figure legends refer to "SMC" (I am guessing they are referring to Sub microvillar cisternae) without defining it in the text.

      Changes will be incorporated as per the suggestion.


      Significance

      This study will be of interest to those generally interested in the ER mitochondria contact sites. The main significance here is in dissecting the role of the C-domain within the Esyt protein. The authors demonstrate a physiological role using Drosophila photoreceptors as a model.

      We thank the reviewer for appreciating the significance of our study which seeks to show the in vivo significance of the Ca2+ regulation of dEsyt for in vivo function.

      __Reviewer #3 __

      (Evidence, reproducibility and clarity (Required)):

      Summary

      In the present work, the authors explore the role of Ca2+ binding to Esyt in the regulation of ER-PM contact sites using drosophila photoreceptors as a model system. By expressing in wild type or in EsytKO flies a mutated version of dEsyt which is predicted to lose Ca2+ binding, they highlight a potential role of Ca2+ binding to Esyt in the regulation of ER-PM contact sites density and the development of rhabdomeres. The data clearly show the effect of Esyt mutant during development of photoreceptors in Drosophila. However, as discussed below, one essential missing point is the experimental proof that the mutant has indeed lost its ability to bind Ca2+, and that PIP2 binding is not perturbed.

      Major comments

      1. One major comment is the lack of experimental proof that the EsytCABM mutant is indeed unable to bind Ca2+. The MIB tool only gives a prediction and it is not sufficient to prove their statements throughout the manuscript on the requirement of Ca2+ binding for the regulation of MCS. We understand the reviewer’s comment that this manuscript does not contain experimental data demonstrating that dEsytCaBM does not bind Ca2+. However, as Reviewer 4 pointed out, it will be challenging to demonstrate this experimentally. A direct proof would likely come from measurements of the calcium binding affinity of dEsyt (which involves protein purification that is beyond the scope of this work). An indirect demonstration would be any cellular or in vivo experiment oar any additional in silico analysis. To provide additional indirect evidence to address this question, we will:

      2. Use the AlphaFold model to demonstrate that the arrangement of the calcium binding residues in dEsyt is compatible with Ca2+

      3. Evaluate if the wild type dEsyt is mislocalized in the photoreceptors upon eliminating the calcium entry to these specialized sensory neurons. The localization of wild type dEsyt will be examined in the mutants: norpAP24 (PLC null mutant) and trpl302; trp343 (protein null mutant of TRPL and TRP channels respectively) in which light induced calcium influx is eliminated. Moreover, they should check experimentally the potential differences in the capacity of EsytCABM mutant to bind PI(4,5)P2, which can potentially perturb its subcellular localization.

      As recommended by the reviewer, it is important to determine the PIP2 binding capacity of dEsytCaBM. The ability of wild type dEsyt to bind PIP2 has not been determined. We will test this and if it does so, the impact of CaBM on PIP2 binding can be tested.

      Figure 1A: the legend on the right side of the scheme is missing. On the left, RDGB and dEsyt don't associate with the PM.

      Changes will be incorporated as per the suggestion.

      line 125: the authors should describe more precisely the Trp mutant that they used.

      The text will be modified.

      Concerning the quantification of MCS density done throughout the paper, can the authors mention what they considered as an MCS, in other words, what distance they defined as the maximal distance between the ER and the PM.

      We used fixation methods that allow enhanced membrane preservation and better visualization of membranes and MCS (PMID: 2496206). Such images allowed us to quantify the fraction of SMC that are present at the base of the microvilli in each ultrathin section of a photoreceptor. The MCS is the dark stretch that can be seen at the base of the rhabdomere in each TEM image (PMID: 32716137). Contact site distance measured is the absolute distance between the visible demarcation of the PM and SMC as indicated by the yellow arrows in Figure 4D iii, vi, and ix.

      Figure 3: the localization of Esyt and EsytCABM in S2R cells and in vivo is not precisely analyzed: a co-staining with PM and ER markers should be added in order to state the localization at ER-PM MCS or at apical PM.

      As suggested, to better understand the compartmental localization of dEsyt in photoreceptors, we will use markers of PM (Rhabdomere) and ER (Sub Microvillar Cisternae) and conduct co-localization assays.

      line 181: the authors should precise in which membrane compartments Esyt is localized.

      The text will be modified.

      line 185-187: the conclusion here doesn't seem to fit the data, as the EsytCABM mutant looks enriched at ER-PM contact sites.

      As previously answered, we will remark on whether there is an enrichment of dEsytCaBM at the ER-PM contact sites following the co-localization experiment that is recommended in Q5.

      a paragraph on the production of Drosophila transgene mutants should be added to the Mat et Med section.

      The text will be added as suggested.

      considering the phenotypes observed for the EsytCABM mutant in vivo, the authors should provide an analysis of the level of expression of the exogenous proteins Esyt and EsytCABM by western blot in the different backgrounds. EsytCABM seems to be expressed at lower levels in Figure 3C.

      As per the suggestion, western blot analysis will be conducted and better representative confocal images depicting the protein levels will be added in the manuscript.

      Fig 4D: considering the perturbation of RDGB localization observed at Day 6, the authors should analyze the organization of MCS by TEM at Day 6, in addition to Day 1.

      We agree that to support the observation of RDGB mis-localization, the decrease in contact site integrity as a function of age and illumination (Day6CL) should be evaluated in Rh1>dEsytCaBM photoreceptors. The manuscript revision will include data from this experiment.

      the EsytCABM mutant exhibits strong dominant negative effects, but rescues completely or partially some of the phenotypes of Esyt KO: could the authors discuss and provide some hypothesis on this apparent discrepancy?

      We are unsure what the reviewer means by “apparent discrepancy”. When dEsytCaBM is expressed in wild type photoreceptors, it exhibits a strong dominant negative effect presumably by inhibiting the function of wild type dEsyt protein.

      dEsytKO is a protein null allele. Therefore, when dEsytCaBM is expressed in the dEsytKO background it does not exert a dominant negative effect as there is no wild type protein to interact with. The partial rescue of dEsytKO phenotypes by Rh1>dEsytCaBM; dEsytKO photoreceptors likely indicates that calcium binding is not the sole factor affecting dEsyt function at the ER-PM interface.

      lines 230-233: the sentence is not clear. I don't see any consistency between data in Figure 5B, showing only very partial rescue by EsytCABM, and the data in Figure 5C (ii) showing complete rescue of RDGB localization by EsytCABM.

      The time point (six days of continuous light exposure following eclosion) at which RDGB localization was analyzed becomes extremely important in thinking about this reviewer comment. If we look at the degeneration kinetics depicted in figure 5B, we can see that neurodegeneration begins in both dEsytKO and Rh1>dEsytCaBM on Day 8 post-eclosion; prior to which, on Day 6, RDGB is mislocalized from the base. However, in Rh1>dEsytCaBM; dEsytKO, the onset of degeneration is delayed, and the photoreceptors show intact structure until Day 8 or Day 10, and measurable retinal degeneration begins on Day 12. This may be the reason why, RDGB continues to be correctly localized in Rh1>dEsytCaBM; dEsytKO at Day 6CL.

      Figure 6D: could the authors comment the increase of MCS density observed in Esyt-GFP expressing flies.

      Esyt is proposed to function as a tether that connects the ER and PM (PMID: 23791178; PMID: 27065097; PMID: 29222176), bringing them closer together. Based on this idea, perhaps by expressing dEsyt::GFP we are drawing the membranes together thus establishing more MCS.

      on several TEM images, some pictures illustrating different conditions look very similar, as if they were serial cuts: Fig 1B (Day 1 and Day 14), Fig 4D (Rh1 and Rh1>dEsytCABM::GFP), Fig 6B Day 1 and Day 14 and Fig 6C Day 1. Could the authors check if there was a mistake with these pictures?

      The images are not taken from serial sections of the same TEM block as is evident from the arrangement of nucleus of each photoreceptor cell. As mentioned in the figure legends, all experiments are carried out using 3 independent blocks (N=3 fly heads) prepared from each genotype and 10 photoreceptors from each block/ fly retinae are used for quantification of contact site density/ contact site distance. Aside from the arrangement of the accessory cells and cellular nuclei, the TEM images will appear very similar since Drosophila photoreceptor neurons are symmetrically arranged, with around 700–800 ommatidia per eye each comprising 8 photoreceptors.

      Minor comments:

      • lines 84-88 : the sentence is not clear. Besides, the authors should precise what they mean by "extra-cellular Ca2+ influx enhance ER-PM contact sites". Which parameter exactly has been shown to be regulated by Ca2+?

      The paper by Idevall-Hagren et al. proposes that following store operated Ca2+ influx, Esyt1 translocates to ER-PM junctions and the number of ER-PM contact sites increases. Please refer to this section of the publication from Idevall-Hagren et al. (2015) (PMID: 26202220):

      “As detected by TIRF microscopy, the depletion of Ca2+ from the lumen of the ER occurring under these conditions led to a progressive accumulation of ER‐anchored STIM1 at the PM, where it activates Orai Ca2+ channels (Fig 4C). Subsequent addition of 1–10 mM Ca2+ to the extracellular medium, either in the absence or in the presence of SERCA inhibitors, caused a massive increase in cytosolic Ca2+ (SOCE) through the activated Ca2+ channels (Figs 4A and EV4D–G). Such increase induced a very robust translocation of E‐Syt1 to the PM (Figs 4B and EV4D–G), which, in the absence of SERCA inhibition (i.e., when a reversible inhibitor of the SERCA pump had been washed out), preceded the dissociation of STIM1 and the inactivation of SOCE (Fig 4D). Inspection of TIRF microscopy images during the manipulation showed that E‐Syt1 does not form new contacts but populates and expands contacts previously occupied by STIM1.”

      • lines 108-110: can you give the reference?

      Reference for the localization of dEsyt to ER-PM MCS is Nath et.al PMID PMID: 32716137

      Reference for the localization of TRP and TRPL at the microvillar plasma membrane: Numerous primary research papers have shown this- for example see review PMID: 11557987, PMID: 22487656

      • line 189: the authors should summarize the findings in one sentence. "Functional activity" would refer to lipid transfer.

      The text will be modified as per the suggestion.

      Reviewer #3 (Significance (Required)):

      General assessment

      The work relies on a model system that enables the exploration of the role of Esyt in vivo, in a fundamental process highly regulated during development. The data clearly show the effect of Esyt mutant during development of photoreceptors in Drosophila but as discussed before, some experimental evidences are missing to completely prove the statements.

      Advance

      This work brings new insights in the functional role of lipid transfer during development and explores how the dialog between lipid transfer and Ca2+ flux can influence MCS organization. The interesting points that could be explored in the paper are the effects of a Ca2+ influx on Esyt and EsytCABM localization, and on their lipid transfer activity.

      Audience

      This work would be of interest for the membrane contact sites community and for the Developmental biology community.

      We thank the reviewer for highlighting the significance of our work and the clarity of the data. Additional data to address the points they have raised will be provided.

      __Reviewer #4 __

      (Evidence, reproducibility and clarity (Required)):

      In this study, Nath et al., aim at understanding the role of dESyt Ca2+ binding activity on ER-PM MCS in D. melanogaster photoreceptors. Using a combination of transmission electron microscopy and fluorescence microscopy, the authors explore the ability of a dESyt mutant, supposedly unable to bind Ca2+ (based on homology with the human ortholog hESyt2), to recapitulate the function of the wild type version of the protein in establishing ER-PM MCS and modulating their density.

      Findings:

      1) MCS density depends on the activity of TRP and TRPL channels in aging photoreceptors.

      2) Mutation of dESyt Ca2+ binding residues (dEsytCaBM::GFP) leads to a gross mis-localization of the protein, even in the presence of the endogenous protein.

      3) Overexpression of the mutant affects the structure of photoreceptors upon constant illumination.

      4) After 6 days of continuous illumination, RDGB is mis-localized in cells overexpressing dEsytCaBM::GFP.

      5) Overexpressed dEsytCaBM::GFP fails to reduce the distance between ER and PM, meaning it fails to establish ER-PM contract sites, while overexpressed dEsyt::GFP show reduced MCS distance. Overexpressed dEsyt::GFP also leads to a 10% increase in MCS density compared to WT or cells expressing dEsytCaBM::GFP.

      6) dEsytCaBM::GFP is not able to rescue the light dependent retinal degeneration of dESytKO, although it slightly delays the onset, but is able to rescue RDGB localization at day 6 of constant illumination.

      7) Examining MCS density in dESytKO cells, rescues with dEsyt::GFP and dEsytCaBM::GFP show a slightly higher MCS density than dESytKO at day 1. At day 14, ER-PM MCS were non-existent in dESytKO, unchanged in dEsyt::GFP and reduced by 20% in dEsytCaBM::GFP compared to day1.

      Specific comments:

      My field of expertise is biochemistry and structural biology (including cellular cryo-electron tomography), but I have no experience with drosophila biology, so I am not able to judge the drosophila work per se.

      While I find the confocal microscopy experiments compelling, I have some reservations regarding the quantification of the TEM images (MCS distances and density) as it was done manually, and therefore, to some extent subjective, especially, when differences between conditions are in the order of 10%. I would have found the quantification more convincing if done systematically, i.e. segmenting the MCS and computationally measuring distances and densities. Otherwise, the authors could expand a little bit on how their methodology is accurate.

      As the reviewer correctly mentions, the quantification will be more convincing if done systematically, i.e. segmenting the MCS and computationally measuring distances and densities. For MCS measurements, we have experimented with the segmentation method using ImageJ and Imaris. As mentioned in the answer to Q4 of reviewer 3, we used fixation methods that allow enhanced membrane preservation and better visualization of membranes and MCS (Matsumoto‐Suzuki et al, 1989). However, this staining method does not selectively stain the ER which is part of the MCS but all the ER. Due to this, automated segmentation poses significant challenges.

      The primary drawback of the segmentation method is that, in the process of training the software to predict/detect distinct cellular compartments, it recognizes all ER membranes, including SMC as well as the ER that is not part of the MCS. As a result, the software's minimum distance calculation may be between PM and SMC or PM and generic ER, which does not help the analysis we wish to perform. Similarly, to determine the contact site distance in images with obscure ER and PM boundaries, the software uses the border it can identify—which is typically inside the rhabdomere rather than at its edge. For the contact site density measurements, software is not able to distinguish between ER and pigment granules close to the rhabdomere as the gray scale value for both these compartments are comparable.

      Advantages of manual approach:

      To account for potential effects of photoreceptor depth on contact site density and distance, we have analyzed TEM sections obtained directly from the nuclear plane of the photoreceptors to calculate both contact site density and distance. Additionally, by utilizing the freehand line tool, manual analysis enables us to define the length of each little section of the MCS and the base of the rhabdomere. The entire length of the MCS at the base is then calculated by adding each segment together. An illustration of how the manual analysis is done will be included as part of methods in the revision.

      Another point is whether the levels of expression of dESyt proteins (dESyt-GFP and dESytCABM-GFP) are comparable. In the overexpression experiments, what are the expression levels of the constructs compared to the endogenous protein? The authors should provide e.g. a Western blot.

      As per the suggestion, western blot analysis will be conducted to compare the expression levels of the constructs utilized to the endogenous protein.

      Concerning the modelling, while I do think that the identification of dESyt Ca2+ binding residues is correct (the sequence alignment is convincing and the sequence identity is very high), and that most likely the structural arrangement will be conserved, homology modelling (using MODELLER with a single reference) leads to models highly similar to the input reference (in particular when the sequence identity is very high). Therefore, rmsd will necessarily be low and the side chain arrangement of conserved residues will be identical. This is unlikely to happen, as protein structures will not be identical despite high sequence conservation. In addition, a crystal structure is a snapshot of a protein conformation that is favorable for crystal formation. It would have been more interesting to use an AlphaFold model and show that the arrangement on the residues is compatible with Ca2+ binding (i.e., the C positions are similar).

      We agree with the reviewer that the data presented to demonstrate the inability of dEsytCaBM to bind Ca2+ is inadequate as is also pointed out by other reviewers. It would be crucial to prove this using multiple approaches. As suggested AlphaFold model will be used to answer the same.

      Minor comments:

      Line 102: indicate what PI and PA stand for (I don't think that there is a need for acronyms when they are not reused in the text later on).

      Changes will be incorporated as per the suggestion.

      Line 217-219: "When the same experimental set was examined for MCS density, we discovered that the density enhanced by 10% in Rh1>dEsyt::GFP while being comparable between wild type and dEsytCaBM::GFP flies." The authors don't comment on this finding. Does that imply that increase in the protein levels leads to increase in MCS density?

      Yes. Increase in wild type dEsyt protein levels can establish more contact sites as well as reduce the contact site distance which further elucidates the protein's role in functional tethering as mentioned in line 215 as proposed by previous studies in other models (PMID: 23791178; PMID: 27065097; PMID: 29222176).

      Lines 298-302: "...implying that dEsytCaBM exerts a dominant negative effect on wild type dEsyt. One possible mechanism for the phenotypes exhibited by dEsytCaBM expression in wild type cells is suggested by the findings of a structural and mass spectrometry investigation of hEsyt2 that reveals that the SMP domain dimerizes to create a 90Å long cylinder to facilitate the transfer of lipids (Schauder et al., 2014)." It is not clear to me what the authors suggest here: because of the dimerisation between wild type and mutant, the mutant has a negative effect or that the SMP dimerization is somehow impaired in dEsytCaBM?

      SMP domain of Esyt proteins have previously been shown to dimerize (PMID: 23791178, PMID: 24847877). They are known to form either homodimers or heterodimers in mammalian system where there are three genes that code for the protein (Esyt1, 2 and 3). In Drosophila, since it is just one gene that codes for the protein, our hypothesis is that one copy of the functional wild type gene dimerizes with the CaBM mutant and thereby render the wild type gene product nonfunctional.

      Line 304-305: "...protein expression was restricted to the cell body rather than the presynaptic terminals...". I am not sure that this is correct. The fact that a protein is localizing to a compartment does not mean that its expression is restricted to that compartment (one should measure mRNA levels to conclude this).

      The statement is based on the findings made by Kikuma et al, 2017 (PMID: 28882990) when they tried to understand the role of dEsyt at the NMJs.

      In figure 1B legend, indicate what SMC stands for (the acronym should be indicated in figure 1A legend).

      The text will be added as suggested.

      In figure 2A legend Ca binding in black box but in red boxes in figure.

      Changes will be incorporated as per the suggestion.

      **Referees cross-commenting**

      I agree with the other reviewers that one of the premise of this study relies on the loss of calcium binding by the dESyt mutant and this is not experimentally proven by the authors. However, I find that this will be difficult to prove in vivo. Only measurements of dESyt calcium binding affinity would constitute a direct proof (which requires protein purification. Any in vivo or cellular experiment would be an indirect proof. I believe that based on the high sequence conservation with ESyt proteins, the calcium binding residues have been correctly identified.

      Reviewer #4 (Significance (Required)):

      ESyt proteins are known ER-PM tethers involved in lipid transfer at MCS in a Ca2+ dependent manner. Contrary to yeast and mammals, that have several ESyt orthologs, D. melanogaster has only one ESyt, making it an ideal model to study ESyt function in vivo. It has been previously shown that proper localization of ESyt at MCS depends on Ca2+ concentration: ESyts are anchors to the ER but translocate to the PM in response to elevation of Ca2+ levels in the cytosol (Fernández-Busnadiego et al., 2015). The finding that an ESyt mutant unable to bind calcium is not localized properly is therefore not surprising. The link between RDGB, a protein known to localize at MCS, and ESyt has been shown before but to my knowledge Nath et al., show for the first time that RDBG localization at MCS is directly dependent on the Ca2+ binding activity of ESyt. In addition, the authors convincingly demonstrate that the Ca2+ binding activity of dESyt is necessary to maintain the structure of aging photoreceptors.

      The main finding of this study is that the Ca2+ binding activity of dESyt regulates the density of ER-PM MCS in photoreceptors. If true (see my comment below), that would be a novel finding, although the authors don't propose any mechanistic explanation for this.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. If no revisions have been carried out yet, please leave this section empty.

      We haven't made any changes to the manuscript yet. However, we will be able to implement the changes mentioned in the pointwise response to reviewers above.

      4. Description of analyses that authors prefer not to carry out

      Please include a point-by-point response explaining why some of the requested data or additional analyses might not be necessary or cannot be provided within the scope of a revision. This can be due to time or resource limitations or in case of disagreement about the necessity of such additional data given the scope of the study. Please leave empty if not applicable.

      • *

      We feel that experiments to directly determine the calcium binding of dEsyt and the loss of this in dEsytCaBM are beyond the scope of this study. This is because of the huge work to heterologously express and purify the protein. We have proposed alternate ways to strengthen this conclusion.

    1. Author response:

      The following is the response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Nitta et al, in their manuscript titled, "Drosophila model to clarify the pathological significance of OPA1 in autosomal dominant optic atrophy." The novelty of this paper lies in its use of human (hOPA1) to try to rescue the phenotype of an OPA1 +/- Drosophilia DOA model (dOPA). The authors then use this model to investigate the differences between dominant-negative and haploinsufficient OPA1 variants. The value of this paper lies in the study of DN/HI variants rather than the establishment of the drosophila model per se as this has existed for some time and does have some significant disadvantages compared to existing models, particularly in the extra-ocular phenotype which is common with some OPA1 variants but not in humans. I judge the findings of this paper to be valuable with regards to significance and solid with regards to the strength of the evidence.

      Suggestions for improvements:

      (1) Stylistically the results section appears to have significant discussion/conclusion/inferences in section with reference to existing literature. I feel that this information would be better placed in the separate discussion section. E.g. lines 149-154.

      We appreciate the reviewer’s suggestion to relocate the discussion, conclusions, and inferences, particularly those that reference existing literature, to a separate discussion section. For lines 149–154, we placed them in the discussion section (lines 343–347) as follows. “Our established fly model is the first simple organism to allow observation of degeneration of the retinal axons. The mitochondria in the axons showed fragmentation of mitochondria. Former studies have observed mitochondrial fragmentation in S2 cells (McQuibban et al., 2006), muscle tissue (Deng et al., 2008), segmental nerves (Trevisan et al., 2018), and ommatidia (Yarosh et al., 2008) due to the LOF of dOPA1.”

      For lines 178–181, we also placed them in the discussion section (lines 347–351) as follows. “Our study presents compelling evidence that dOPA1 knockdown instigates neuronal degeneration, characterized by a sequential deterioration at the axonal terminals and extending to the cell bodies. This degenerative pattern, commencing from the distal axons and progressing proximally towards the cell soma, aligns with the paradigm of 'dying-back' neuropathy, a phenomenon extensively documented in various neurodegenerative disorders (Wang et al., 2012). ”

      For lines 213–217, 218–220, and 222–223, we also placed them in the discussion section (lines 363– 391) as follows. “To elucidate the pathophysiological implications of mutations in the OPA1 gene, we engineered and expressed several human OPA1 variants, including the 2708-2711del mutation, associated with DOA, and the I382M mutation, located in the GTPase domain and linked to DOA. We also investigated the D438V and R445H mutations in the GTPase domain and correlated with the more severe DOA plus phenotype. The 2708-2711del mutation exhibited limited detectability via HA-tag probing. Still, it was undetectable with a myc tag, likely due to a frameshift event leading to the mutation's characteristic truncated protein product, as delineated in prior studies (Zanna et al., 2008). Contrastingly, the I382M, D438V, and R445H mutations demonstrated expression levels comparable to the WT hOPA1. However, the expression of these mutants in retinal axons did not restore the dOPA1 deficiency to the same extent as the WT hOPA1, as evidenced in Figure 5E. This finding indicates a functional impairment imparted by these mutations, aligning with established understanding (Zanna et al., 2008). Notably, while the 2708-2711del and I382M mutations exhibited limited functional rescue, the D438V and R445H mutations did not show significant rescue activity. This differential rescue efficiency suggests that the former mutations, particularly the I382M, categorized as a hypomorph (Del Dotto et al., 2018), may retain partial functional capacity, indicative of a LOF effect but with residual activity. The I382M missense mutation within the GTPase domain of OPA1 has been described as a mild hypomorph or a disease modifier. Intriguingly, this mutation alone does not induce significant clinical outcomes, as evidenced by multiple studies (Schaaf et al., 2011; Bonneau et al., 2014; Bonifert et al., 2014; Carelli et al., 2015). A significant reduction in protein levels has been observed in fibroblasts originating from patients harboring the I382M mutation. However, mitochondrial volume remains unaffected, and the fusion activity of mitochondria is only minimally influenced (Kane et al., 2017; Del Dotto et al., 2018). This observation is consistent with findings reported by de la Barca et al. in Human Molecular Genetics 2020, where a targeted metabolomics approach classified I382M as a mild hypomorph. In our current study, the I382M mutation preserves more OPA1 function compared to DN mutations, as depicted in Figures 5E and F. Considering the results from our Drosophila model and previous research, we hypothesize that the I382M mutation may constitute a mild hypomorphic variant. This might explain its failure to manifest a phenotype on its own, yet its contribution to increased severity when it occurs in compound heterozygosity.

      (2) I do think further investigation as to why a reduction of mitochondria was noticed in the knockdown. There are conflicting reports on this in the literature. My own experience of this is fairly uniform mitochondrial number in WT vs OPA1 variant lines but with an increased level of mitophagy presumably reflecting a greater turnover. There are a number of ways to quantify mitochondrial load e.g. mtDNA quantification, protein quantification for tom20/hsp60 or equivalent. I feel the reliance on ICC here is not enough to draw conclusions. Furthermore, mitophagy markers could be checked at the same time either at the transcript or protein level. I feel this is important as it helps validate the drosophila model as we already have a lot of experimental data about the number and function of mitochondria in OPA+/- human/mammalian cells.

      We thank the reviewer for the insightful comments and suggestions regarding our study on the impact of mitochondrial reduction in a knockdown model. We concur with the reviewer’s observation that our initial results did not definitively demonstrate a decrease in the number of mitochondria in retinal axons. Furthermore, we measured mitochondrial quantity by conducting western blotting using antiCOXII and found no reduction in mitochondrial content with the knockdown of dOPA1 (Figure S4A and B). Consequently, we have revised our manuscript to remove the statement “suggesting a decreased number of mitochondria in retinal axons. However, whether this decrease is due to degradation resulting from a decline in mitochondrial quality or axonal transport failure remains unclear.” Instead, we have refocused our conclusion to reflect our electron microscopy findings, which indicate reduced mitochondrial size and structural abnormalities. The reviewer’s observation of consistent mitochondrial numbers in WT versus mutant variant lines and elevated mitophagy levels prompted us to evaluate mitochondrial turnover as a significant factor in our study. Regarding verifying mitophagy markers, we incorporated the mito-QC marker in our experimental design. In our experiments, mito-QC was expressed in the retinal axons of Drosophila to assess mitophagy activity upon dOPA1 knockdown. We observed a notable increase in mCherry positive but GFP negative puncta signals one week after eclosion, indicating the activation of mitophagy (Figure 2D–H). This outcome strongly suggests that dOPA1 knockdown enhances mitophagy in our Drosophila model. The application of mito-QC as a quantitative marker for mitophagy, validated in previous studies, offers a robust approach to analyzing this process. Our findings elucidate the role of dOPA1 in mitochondrial dynamics and its implications for neuronal health. These results have been incorporated into Figure 2, with the corresponding text updated as follows (lines 159–167): “Given that an increase in mitophagy activity has been reported in mouse RGCs and nematode ADOA models (Zaninello et al., 2022; Zaninello et al., 2020), the mitoQC marker, an established indicator of mitophagy activity, was expressed in the photoreceptors of Drosophila. The mito-QC reporter consists of a tandem mCherry-GFP tag that localizes to the outer membrane of mitochondria (Lee et al., 2018). This construct allows the measurement of mitophagy by detecting an increase in the red-only mCherry signal when the GFP is degraded after mitochondria are transported to lysosomes. Post dOPA1 knockdown, we observed a significant elevation in mCherry positive and GFP negative puncta signals at one week, demonstrating an activation of mitophagy as a consequence of dOPA1 knockdown (Figure 2D–H).”  

      (3) Could the authors comment on the failure of the dOPA1 rescue to return their biomarker, axonal number to control levels. In Figure 4D is there significance between the control and rescue. Presumably so as there is between the mutant and rescue and the difference looks less.

      As the reviewer correctly pointed out, there is a significant difference between the control and rescue groups, which we have now included in the figure. Additionally, we have incorporated the following comments in the discussion section (lines 329–342) regarding this significant difference: “In our study, expressing dOPA1 in the retinal axons of dOPA1 mutants resulted in significant rescue, but it did not return to control levels. There are three possible explanations for this result. The first concerns gene expression levels. The Gal4-line used for the rescue experiments may not replicate the expression levels or timing of endogenous dOPA1. Considering that the optimal functionality of dOPA1 may be contingent upon specific gene expression levels, attaining a wild-type-like state necessitates the precise regulation of these expression levels. The second is a nonautonomous issue. Although dOPA1 gene expression was induced in the retinal axons for the rescue experiments, many retinal axons were homozygous mutants, while other cell types were heterozygous for the dOPA1 mutation. If there is a non-autonomous effect of dOPA1 in cells other than retinal axons, it might not be possible to restore the wild-type-like state fully. The third potential issue is that only one isoform of dOPA1 was expressed. In mouse OPA1, to completely restore mitochondrial network shape, an appropriate balance of at least two different isoforms, lOPA1 and s-OPA1, is required (Del Dotto et al., 2017). This requirement implies that multiple isoforms of dOPA1 are essential for the dynamic activities of mitochondria.”

      (4) The authors have chosen an interesting if complicated missense variant to study, namely the I382M with several studies showing this is insufficient to cause disease in isolation and appears in high frequency on gnomAD but appears to worsen the phenotype when it appears as a compound het. I think this is worth discussing in the context of the results, particularly with regard to the ability for this variant to partially rescue the dOPA1 model as shown in Figure 5.

      As the reviewer pointed out, the I382M mutation is known to act as a disease modifier. However, in our system, as suggested by Figure 5, I382M appears to retain more activity than DN mutations. Considering previous studies, we propose that I382M represents a mild hypomorph. Consequently, while I382M alone may not exhibit a phenotype, it could exacerbate severity in a compound heterozygous state. We have incorporated this perspective in our revised discussion (lines 375-391).

      “Notably, while the 2708-2711del and I382M mutations exhibited limited functional rescue, the D438V and R445H mutations did not show significant rescue activity. This differential rescue efficiency suggests that the former mutations, particularly the I382M, categorized as a hypomorph (Del Dotto et al., 2018), may retain partial functional capacity, indicative of a LOF effect but with residual activity. The I382M missense mutation within the GTPase domain of OPA1 has been described as a mild hypomorph or a disease modifier. Intriguingly, this mutation alone does no induce significant clinical outcomes, as evidenced by multiple studies (Schaaf et al., 2011; Bonneau et al., 2014; Bonifert et al., 2014; Carelli et al., 2015). A significant reduction in protein levels has been observed in fibroblasts originating from patients harboring the I382M mutation. However, mitochondrial volume remains unaffected, and the fusion activity of mitochondria is only minimally influenced (Kane et al., 2017; Del Dotto et al., 2018). This observation is consistent with findings reported by de la Barca et al. in Human Molecular Genetics 2020, where a targeted metabolomics approach classified I382M as a mild hypomorph. In our current study, the I382M mutation preserves more OPA1 function compared to DN mutations, as depicted in Figures 5E and F. Considering the results from our Drosophila model and previous research, we hypothesize that the I382M mutation may constitute a mild hypomorphic variant. This might explain its failure to manifest a phenotype on its own, yet its contribution to increased severity when it occurs in compound heterozygosity.”

      (5) I feel the main limitation of this paper is the reliance on axonal number as a biomarker for OPA1 function and ultimately rescue. I have concerns because a) this is not a well validated biomarker within the context of OPA1 variants b) we have little understanding of how this is affected by over/under expression and c) if it is a threshold effect e.g. once OPA1 levels reach <x% pathology develops but develops normally when opa1 expression is >x%. I think this is particularly relevant when the authors are using this model to make conclusions on dominant negativity/HI with the authors proposing that if expression of a hOPA1 transcript does not increase opa1 expression in a dOPA1 KO then this means that the variant is DN. The authors have used other biomarkers in parts of this manuscript e.g. ROS measurement and mito trafficking but I feel this would benefit from something else particularly in the latter experiments demonstrated in figure 5 and 6.

      The reviewer raised concerns regarding the adequacy of axonal count as a validated biomarker in the context of OPA1 mutants. In response, we corroborated its validity using markers such as MitoSOX, Atg8, and COXII. Experiments employing MitoSOX revealed that the augmented ROS signals resulting from dOPA1 knockdown were mitigated by expressing human OPA1. Conversely, the mutant variants 2708-2711del, D438V, and R445H did not ameliorate these effects, paralleling the phenotype of axonal degeneration observed. These findings are documented in Figure 5F, and we have incorporated the following text into section lines 248–254 of the results:

      “Furthermore, we assessed the potential for rescuing ROS signals. Similar to its effect on axonal degeneration, wild-type hOPA1 effectively mitigated the phenotype, whereas the 2708-2711del, D438V, and R445H mutants did not (Figure 5F). Importantly, the I382M variant also reduced ROS levels comparably to the wild type. These findings demonstrate that both axonal degeneration and the increase in ROS caused by dOPA1 downregulation can be effectively counteracted by hOPA1. Although I382M retains partial functionality, it acts as a relatively weak hypomorph in this experimental setup.”

      Moreover, utilizing mito-QC, we observed elevated mitophagy in our Drosophila model, with these results now included in Figure 2D–H. Given the complexity of the genetics involved and the challenges in establishing lines, autophagy activity was quantified by comparing the ratio of Atg8-1 to Atg8-2 via Western blot analysis. However, no significant alterations were detected across any of the genotypes. Additionally, mitochondrial protein levels derived from COXII confirmed consistent mitochondrial quantities, showing no considerable variance following knockdown. These insights affirm that retinal axon degeneration and mitophagy activation are present in the Drosophila DOA model, although the Western blot analysis revealed no significant changes in autophagy activation. Such findings necessitate caution as this model may not fully replicate the molecular pathology of the corresponding human disease. These Western blot findings are presented in Figure S4, with the following addition made to section lines 255–263 of the results:

      “We also conducted Western blot analyses using anti-COXII and anti-Atg8a antibodies to assess changes in mitochondrial quantity and autophagy activity following the knockdown of dOPA1. Mitochondrial protein levels, indicated by COXII quantification, were evaluated to verify mitochondrial content, and the ratio of Atg8a-1 to Atg8a-2 was used to measure autophagy activation. For these experiments, Tub-Gal4 was employed to systemically knockdown dOPA1. Considering the lethality of a whole-body dOPA1 knockdown, Tub-Gal80TS was utilized to repress the knockdown until eclosion by maintaining the flies at 20°C. After eclosion, we increased the temperature to 29°C for two weeks to induce the knockdown or expression of hOPA1 variants. The results revealed no significant differences across the genotypes tested (Figure S4A–D).”

      In assessing the effects of dominant negative mutations, measurements including ROS levels, the ratio of Atg8-1 to Atg8-2, and the quantity of COXII protein were conducted, yet no significant differences were observed (Figure S6). This limitation of the fly model is mentioned in the results, noting the observation of the axonal degeneration phenotype but not alterations in ROS signaling, autophagy activity, or mitochondrial quantity as follows (line 287–290):

      “We investigated the impacts of dominant negative mutations on mitochondrial oxidation levels, mitochondrial quantity, and autophagy activation levels; however, none of these parameters showed statistical significance (Figure S6).”

      The reviewer also inquired about the effects of overexpressing and underexpressing OPA1 on axonal count and whether these effects are subject to a threshold. In response, we expressed both wild-type and variant forms of human OPA1 in Drosophila in vivo and assessed their protein levels using Western blot analysis. The results showed no significant differences in expression levels between the wild-type and variant forms in the OPA1 overexpression experiments, suggesting the absence of a variation threshold effect. These findings have been newly documented as quantitative data in Figure 5C. Furthermore, we have included a statement in the results section for Figure 6A, clarifying that overexpression of hOPA1 exhibited no discernible impact, as detailed on lines 274–276.

      “The results presented in Figure 5C indicate that there are no significant differences in the expression levels among the variants, suggesting that variations in expression levels do not influence the outcomes.”

      (6) Could the authors clarify what exons in Figure 5 are included in their transcript. My understanding is transcript NM_015560.3 contains exon 4,4b but not 5b. According to Song 2007 this transcript produces invariably s-OPA1 as it contains the exon 4b cleavage site. If this is true, this is a critical limitation in this study and in my opinion significantly undermines the likelihood of the proposed explanation of the findings presented in Figure 6. The primarily functional location of OPA1 is at the IMM and l-OPA1 is the primary opa1 isoform probably only that localizes here as the additional AA act as a IMM anchor. Given this is where GTPase likely oligomerizes the expression of s-OPA1 only is unlikely to interact anyway with native protein. I am not aware of any evidence s-OPA1 is involved in oligomerization. Therefore I don't think this method and specifically expression of a hOPA1 transcript which only makes s-OPA1 to be a reliable indicator of dominant negativity/interference with WT protein function. This could be checked by blotting UAS-hOPA1 protein with a OPA1 antibody specific to human OPA1 only and not to dOPA1. There are several available on the market and if the authors see only s-OPA1 then it confirms they are not expressing l-OPA1 with their hOPA1 construct.

      As suggested by the reviewer, we performed a Western blot using a human OPA1 antibody to determine if the expressed hOPA1 was producing the l-OPA1 isoform, as shown in band 2 of Figure 5D. The results confirmed the presence of both l-OPA1 and what appears to be s-OPA1 in bands 2 and 4, respectively. These findings are documented in the updated Figure 5D, with a detailed description provided in the manuscript at lines 224-226. Additionally, the NM_015560.3 refers to isoform 1, which includes only exons 4 and 5, excluding exons 4b and 5b. This isoform can express both l-OPA1 and s-OPA1 (refer to Figure 1 in Song et al., J Cell Biol. 2007). We have updated the schematic diagram in the figure to include these exons. The formation of s-OPA1 through cleavage occurs at the OMA1 target site located in exon 5 and the Yme1L target site in exon 5b of OPA1. Isoform 1 of OPA1 is prone to cleavage by OMA1, but a homologous gene for OMA1 does not exist in Drosophila. Although a homologous gene for Yme1L is present in Drosophila, exon 5b is missing in isoform 1 of OPA1, leaving the origin of the smaller band resembling s-OPA1 unclear at this point.

      Reviewer #2 (Public Review):

      The data presented support and extend some previously published data using Drosophila as a model to unravel the cellular and genetic basis of human Autosomal dominant optic atrophy (DOA). In human, mutations in OPA1, a mitochondrial dynamin like GTPase (amongst others), are the most common cause for DOA. By using a Drosophila loss-of-function mutations, RNAi- mediated knockdown and overexpression, the authors could recapitulate some aspects of the disease phenotype, which could be rescued by the wild-type version of the human gene. Their assays allowed them to distinguish between mutations causing human DOA, affecting the optic system and supposed to be loss-of-function mutations, and those mutations supposed to act as dominant negative, resulting in DOA plus, in which other tissues/organs are affected as well. Based on the lack of information in the Materials and Methods section and in several figure legends, it was not in all cases possible to follow the conclusions of the authors.

      We appreciate the reviewer's constructive feedback and the emphasis on enhancing clarity in our manuscript. We recognize the concerns raised about the lack of detailed information in the Materials and Methods section and several figure legends, which may have obscured our conclusions. In response, we have appended the detailed genotypes of the Drosophila strains used in each experiment to a supplementary table. Additionally, we realized that the description of 'immunohistochemistry and imaging' was too brief, previously referenced simply as “immunohistochemistry was performed as described previously (Sugie et al., 2017).” We have now expanded this section to include comprehensive methodological details. Furthermore, we have revised the figure legends to provide clearer and more thorough descriptions.

      Similarly, how the knowledge gained could help to "inform early treatment decisions in patients with mutations in hOPA1" (line 38) cannot be followed.

      To address the reviewer's comments, we have refined our explanation of the clinical relevance of our findings as follows. We believe this revision succinctly articulates the practical application of our research, directly responding to the reviewer’s concerns about linking the study's outcomes to treatment decisions for patients with hOPA1 mutations. By underscoring the model’s value in differential diagnosis and its influence on initiating treatment strategies, we have clarified this connection explicitly, within the constraints of the abstract’s word limit. The revised sentence now reads: "This fly model aids in distinguishing DOA from DOA plus and guides initial hOPA1 mutation treatment strategies."

      Reviewer #3 (Public Review):

      Nitta et al. establish a fly model of autosomal dominant optic atrophy, of which hundreds of different OPA1 mutations are the cause with wide phenotypic variance. It has long been hypothesized that missense OPA1 mutations affecting the GTPase domain, which are associated with more severe optic atrophy and extra-ophthalmic neurologic conditions such as sensorineural hearing loss (DOA plus), impart their effects through a dominant negative mechanism, but no clear direct evidence for this exists particularly in an animal model. The authors execute a well-designed study to establish their model, demonstrating a clear mitochondrial phenotype with multiple clinical analogs including optic atrophy measured as axonal degeneration. They then show that hOPA1 mitigates optic atrophy with the same efficacy as dOPA1, setting up the utility of their model to test disease-causing hOPA1 variants. Finally, they leverage this model to provide the first direct evidence for a dominant negative mechanism for 2 mutations causing DOA plus by expressing these variants in the background of a full hOPA1 complement.

      Strengths of the paper include well-motivated objectives and hypotheses, overall solid design and execution, and a generally clear and thorough interpretation of their results. The results technically support their primary conclusions with caveats. The first is that both dOPA1 and hOPA1 fail to fully restore optic axonal integrity, yet the authors fail to acknowledge that this only constitutes a partial rescue, nor do they discuss how this fact might influence our interpretation of their subsequent results.

      As the reviewer rightly points out, neither dOPA1 nor hOPA1 achieve a complete recovery. Therefore, we acknowledge that this represents only a partial rescue and have added the following explanations regarding this partial rescue in the results and discussion sections.

      Result:

      Significantly —> partially (lines 207 and 228) Discussion (lines 329–342):

      In our study, expressing dOPA1 in the retinal axons of dOPA1 mutants resulted in significant rescue, but it did not return to control levels. There are three possible explanations for this result. The first concerns gene expression levels. The Gal4-line used for the rescue experiments may not replicate the expression levels or timing of endogenous dOPA1. Considering that the optimal functionality of dOPA1 may be contingent upon specific gene expression levels, attaining a wild-type-like state necessitates the precise regulation of these expression levels. The second is a non-autonomous issue. Although dOPA1 gene expression was induced in the retinal axons for the rescue experiments, many retinal axons were homozygous mutants, while other cell types were heterozygous for the dOPA1 mutation. If there is a non-autonomous effect of dOPA1 in cells other than retinal axons, it might not be possible to restore the wild-type-like state fully. The third potential issue is that only one isoform of dOPA1 was expressed. In mouse OPA1, to completely restore mitochondrial network shape, an appropriate balance of at least two different isoforms, l-OPA1 and s-OPA1, is required (Del Dotto et al., 2017). This requirement implies that multiple isoforms of dOPA1 are essential for the dynamic activities of mitochondria.

      The second caveat is that their effect sizes are small. Statistically, the results indeed support a dominant negative effect of DOA plus-associated variants, yet the data show a marginal impact on axonal degeneration for these variants. The authors might have considered exploring the impact of these variants on other mitochondrial outcome measures they established earlier on. They might also consider providing some functional context for this marginal difference in axonal optic nerve degeneration.

      In response to the reviewer’s comment regarding the modest effect sizes observed, we acknowledge that the magnitude of the reported changes is indeed small. To explore the impact of these variants on additional mitochondrial outcomes as suggested, we employed markers such as MitoSOX, Atg8, and COXII for validation. However, we could not detect any significant effects of the DOA plus-associated variants using these methods. We apologize for the redundancy, but to address Reviewer #1's fifth question, we present experimental results showing that while the increased ROS signals observed upon dOPA1 knockdown were rescued by expressing human OPA1, the mutant variants 2708-2711del, D438V, and R445H did not ameliorate this effect. This outcome mirrors the axonal degeneration phenotype and is documented in Figure 5F. The following text has been added to the results section lines 248–254:

      “Furthermore, we assessed the potential for rescuing ROS signals. Similar to its effect on axonal degeneration, wild-type hOPA1 effectively mitigated the phenotype, whereas the 2708-2711del, D438V, and R445H mutants did not (Figure 5F). Importantly, the I382M variant also reduced ROS levels comparably to the wild type. These findings demonstrate that both axonal degeneration and the increase in ROS caused by dOPA1 downregulation can be effectively counteracted by hOPA1. Although I382M retains partial functionality, it acts as a relatively weak hypomorph in this experimental setup.”

      Moreover, utilizing mito-QC, we observed elevated mitophagy in our Drosophila model, with these results now included in Figure 2D–H. Given the complexity of the genetics involved and the challenges in establishing lines, autophagy activity was quantified by comparing the ratio of Atg8-1 to Atg8-2 via Western blot analysis. However, no significant alterations were detected across any of the genotypes. Additionally, mitochondrial protein levels derived from COXII confirmed consistent mitochondrial quantities, showing no considerable variance following knockdown. These insights affirm that retinal axon degeneration and mitophagy activation are present in the Drosophila DOA model, although the Western blot analysis revealed no significant changes in autophagy activation. Such findings necessitate caution as this model may not fully replicate the molecular pathology of the corresponding human disease. These Western blot findings are presented in Figure S4, with the following addition made to section lines 255–263 of the results:

      “We also conducted Western blot analyses using anti-COXII and anti-Atg8a antibodies to assess changes in mitochondrial quantity and autophagy activity following the knockdown of dOPA1. Mitochondrial protein levels, indicated by COXII quantification, were evaluated to verify mitochondrial content, and the ratio of Atg8a-1 to Atg8a-2 was used to measure autophagy activation. For these experiments, Tub-Gal4 was employed to systemically knockdown dOPA1. Considering the lethality of a whole-body dOPA1 knockdown, Tub-Gal80TS was utilized to repress the knockdown until eclosion by maintaining the flies at 20°C. After eclosion, we increased the temperature to 29°C for two weeks to induce the knockdown or expression of hOPA1 variants. The results revealed no significant differences across the genotypes tested (Figure S4A–D).”

      In assessing the effects of dominant negative mutations, measurements including ROS levels, the ratio of Atg8-1 to Atg8-2, and the quantity of COXII protein were conducted, yet no significant differences were observed (Figure S6). This limitation of the fly model is mentioned in the results, noting the observation of the axonal degeneration phenotype but not alterations in ROS signaling, autophagy activity, or mitochondrial quantity as follows (line 287–290):

      “We investigated the impacts of dominant negative mutations on mitochondrial oxidation levels, mitochondrial quantity, and autophagy activation levels; however, none of these parameters showed statistical significance (Figure S6).”

      Despite these caveats, the authors provide the first animal model of DOA that also allows for rapid assessment and mechanistic testing of suspected OPA1 variants. The impact of this work in providing the first direct evidence of a dominant negative mechanism is under-stated considering how important this question is in development of genetic treatments for DOA. The authors discuss important points regarding the potential utility of this model in clinical science. Comments on the potential use of this model to investigate variants of unknown significance in clinical diagnosis requires further discussion of whether there is indeed precedent for this in other genetic conditions (since the model is nevertheless so evolutionarily removed from humans).

      As suggested by the reviewer, we have expanded the discussion in our study to emphasize in greater detail the significance of the fruit fly model and the MeDUsA software we have developed, elaborating on the model's potential applications in clinical science and its precedents in other genetic disorders. Our text is as follows (lines 299–318):

      “We have previously utilized MeDUsA to quantify axonal degeneration, applying this methodology extensively to various neurological disorders. The robust adaptability of this experimental system is demonstrated by its application in exploring a wide spectrum of genetic mutations associated with neurological conditions, highlighting its broad utility in neurogenetic research. We identified a novel de novo variant in Spliceosome Associated Factor 1, Recruiter of U4/U6.U5 Tri-SnRNP (SART1). The patient, born at 37 weeks with a birth weight of 2934g, exhibited significant developmental delays, including an inability to support head movement at 7 months, reliance on tube feeding, unresponsiveness to visual stimuli, and development of infantile spasms with hypsarrhythmia, as evidenced by EEG findings. Profound hearing loss and brain atrophy were confirmed through MRI imaging. To assess the functional impact of this novel human gene variant, we engineered transgenic Drosophila lines expressing both wild type and mutant SART1 under the control of a UAS promoter.

      Our MeDUsA analysis suggested that the variant may confer a gain-of-toxic-function (Nitta et al.,  2023). Moreover, we identified heterozygous loss-of-function mutations in DHX9 as potentially causative for a newly characterized neurodevelopmental disorder. We further investigated the pathogenic potential of a novel heterozygous de novo missense mutation in DHX9 in a patient presenting with short stature, intellectual disability, and myocardial compaction. Our findings indicated a loss of function in the G414R and R1052Q variants of DHX9 (Yamada et al., 2023). This experimental framework has been instrumental in elucidating the impact of gene mutations, enhancing our ability to diagnose how novel variants influence gene function.”

      Recommendations for the Authors:

      Reviewer #1 (Recommendations For The Authors):

      Overall I enjoyed reading this paper. It is well presented and represents a significant amount of well executed study. I feel it further characterizes a poorly understood model of OPA1 variants and one which displays significant differences with the human phenotype. However I feel the use of this model with the author's experiments are not enough to validate this model/experiment as a screening tool for dominant negativity. I have therefore suggested the above experiments as a way to both further validate the mitochondrial dysfunction in this model and to ensure that the expressed transcript is able affect oligomerization as this is a pre-requisite to the authors conclusions.

      We assessed the extent to which our model reflects mitochondrial dysfunction using COXII, Atg8, and MitoSOX markers. Unfortunately, neither COXII levels nor the ratio of Atg8a-1 to Atg8a-2 showed significant variations across genotypes that would clarify the impact of dominant negative mutations. Nonetheless, MitoSOX and mito-QC results revealed that mitochondrial ROS levels and mitophagy are increased in Drosophila following intrinsic knockdown of dOPA1. These findings are documented in Figures 2, 5, and S6.

      Regarding oligomer formation, the specifics remain elusive in this study. However, the expression of dOPA1K273A, identified as a dominant negative variant in Drosophila, significantly disrupted retinal axon organization, as detailed in Figure S7. From these observations, we hypothesize that oligomerization of wild-type and dominant negative forms in Drosophila results in axonal degeneration. Conversely, co-expression of Drosophila wild-type with human dominant negative forms does not induce degeneration, suggesting that they likely do not interact.

      Reviewer #2 (Recommendations For The Authors):

      Materials and Methods:

      The authors used GMR-Gal4 to express OPA1-RNAi. I) GMR is expressed in most cells in the developing eye behind the morphogenetic furrow. So the defects observed can be due to knock- down in support cells rather than in photoreceptor cells.

      We have added the following sentences in the result (lines 194–196)."The GMR-Gal4 driver does not exclusively target Gal4 expression to photoreceptor cells. Consequently, the observed retinal axonal degeneration could potentially be secondary to abnormalities in support cells external to the photoreceptors.”

      OPA1-RNAi: how complete is the knock-down? Have the authors tested more than one RNAi line?

      We conducted experiments with an additional RNAi line, and similarly observed degeneration in the retinal axons (Figure S2 A and B; lines 178–179).

      The loss-of-function allele, induced by a P-element insertion, gives several eye phenotypes when heterozygous (Yarosh et al., 2008). Does RNAi expression lead to the same phenotypes?

      A previous report indicated that the compound eyes of homozygous mutations of dOPA1 displayed a glossy eye phenotype (Yarosh et al., 2008). Upon knocking down dOPA1 using the GMR-Gal4 driver, we also observed a glossy eye-like rough eye phenotype in the compound eyes. These findings have been added to Figure S3 and lines 192–194.

      There is no description on the way the somatic clones were generated. How were mutant cells in clones distinguished from wild-type cells (e. g. in Fig. 4).

      In the Methods section, we described the procedure for generating clones and their genotypes as follows (lines 502–505): "The dOPA1 clone analysis was performed by inducing flippase expression in the eyes using either ey-Gal4 with UAS-flp or ey3.5-flp, followed by recombination at the chromosomal location FRT42D to generate a mosaic of cells homozygous for dOPA1s3475." Furthermore, we have created a table detailing these genotypes. In these experiments, it was not possible to differentiate between the clone and WT cells. Accordingly, we have noted in the Results section (lines 201–203): "Note that the mutant clone analysis was conducted in a context where mutant and heterozygous cells coexist as a mosaic, and it was not possible to distinguish between them.”

      Why were flies kept at 29{degree sign}C? this is rather unusual.

      Increased temperature was demonstrated to induce elevated expression of GAL4 (Kramer and Staveley, Genet. Mol. Res., 2003), which in turn led to an enhanced expression of the target genes. Therefore, experiments involving knockdown assays or Western blotting to detect human OPA1 protein were exclusively conducted at 29°C. However, all other experiments were performed at 25°C, as described in the methods sections: “Flies were maintained at 25°C on standard fly food. For knockdown experiments (Figures 1C–E, 1F–H, 2A–H, 3B–K, 5F, S1, S2 A and B, and S6A), flies were kept at 29°C in darkness.” Furthermore, “We regulated protein expression temporally across the whole body using the Tub-Gal4 and Tub-GAL80TS system. Flies harboring each hOPA1 variant were maintained at a permissive temperature of 20°C, and upon emergence, females were transferred to a restrictive temperature of 29°C for subsequent experiments.”

      Legends:

      It would be helpful to have a description of the genotypes of the flies used in the different experiments. This could also be included as a table.

      We have created a table detailing the genotypes. Additionally, in the legend, we have included a note to consult the supplementary table for genotypes.

      Results:

      Line 141: It is not clear what they mean by "degradation", is it axonal degeneration? And if so, what is the argument for this here?

      In the manuscript, we addressed the potential for mitochondrial degradation; however, recognizing that the expression was ambiguous, the following sentence has been omitted: "Nevertheless, the degradation resulting from mitochondrial fragmentation may have decreased the mitochondrial signal.”

      Fig. 2: Axons of which photoreceptors are shown?

      We have added "a set of the R7/8 retinal axons" to the legend of Figure 2.

      Line 167: The authors write that axonal degeneration is more severe after seven days than after eclosion. Is this effect light-dependent? The same question concerns the disappearance of the rhabdomere (Fig. 3G–J).

      We conducted the experiments in darkness, ensuring that the observed degeneration is not light- dependent. This condition has been added to the methods section to clarify the experimental conditions.

      Line 178/179: Based on what results do they conclude that there is degeneration of the "terminals" of the axons?

      Quantification via MeDUsA has enabled us to count the number of axonal terminals, and a noted decrease has led us to conclude axonal terminal degeneration. We have published two papers on these findings. We have added the following description to the results section to clarify how we defined degeneration (lines 174–176): "We have assessed the extent of their reduction from the total axonal terminal count, thereby determining the degree of axonal terminal degeneration (Richard JNS 2022; Nitta HMG 2023).

      Line 189: They write: ".. we observed dOPA1 mutant axons...". How did they distinguish es mutant from the controls?

      Fig. 5 and Fig. 6: How did they distinguish genetically mutant cells from genetically control cells in the somatic clones?

      Mutant clone analysis was conducted in a context where mutant and heterozygous cells coexist as a mosaic, and it was not possible to distinguish between them. Accordingly, this point has been added to lines 201–203, “Note that the mutant clone analysis was conducted in a context where mutant and heterozygous cells coexist as a mosaic, and it was not possible to distinguish between them.” and the text in the results section has been modified as follows:

      (Before “To determine if dOPA1 is responsible for axon neurodegeneration, we observed the dOPA1 mutant axons by expressing full- length versions of dOPA1 in the photoreceptors at one day after eclosion and found that dOPA1 expression significantly rescued the axonal degeneration” —>

      (After “To determine if dOPA1 is responsible for axon neurodegeneration, we quantify the number of the axons in the dOPA1 eye clone fly with the expression of dOPA1 at one day after eclosion and found that dOPA1 expression partially rescued the axonal degeneration”

      Line 225/226: It is not clear to me how their approach "can quantitatively measure the degree of LOF".

      To address the reviewer's question and clarify how our approach quantitatively measures the degree of loss of function (LOF), we revised the statement (lines 238–247):

      "Our methodology distinctively facilitates the quantitative evaluation of LOF severity by comparing the rescue capabilities of various mutations. Notably, the 2708-2711del and I382M mutations demonstrated only partial rescue, indicative of a hypomorphic effect with residual activity. In contrast, the D438V and R445H mutations failed to show significant rescue, suggesting a more profound LOF. The correlation between the partial rescue by the 2708-2711del and I382M mutations and their classification as hypomorphic is significant. Moreover, the observed differences in rescue efficacy correspond to the clinical severities associated with these mutations, namely in DOA and DOA plus disorders. Thus, our results substantiate the model’s ability to quantitatively discriminate among mutations based on their impact on protein functionality, providing an insightful measure of LOF magnitude.”

      Discussion:

      Line 251, 252 and line 358: What is "the optic nerve" in the adult Drosophila?

      In humans, the axons of retinal ganglion cells (RGCs) are referred to as the optic nerve, and we posit that the retinal axons in flies are similar to this structure. In the introduction section, where it is described that the visual systems of flies and humans bear resemblance, we have appended the following definition (lines 107–108): “In this study, we defined the retinal axons of Drosophila as analogous to the human optic nerve.”

      Line 344: These bands appear only upon overexpression of the hOPA1 constructs, so this part of the is very speculative.

      Confirmation was achieved using anti-hOPA1, demonstrating that myc is not nonspecific. These results have been added to Figure 5D. Furthermore, the phrase “The upper band was expected as” has been revised to “From a size perspective, the upper band was inferred to represent the full-length hOPA1 including the mitochondria import sequence (MIS).” (lines 464–465)

      I was missing a discussion about the increase of ROS upon loss/reduction of dOPA1 observed by others and described here. Is there an increase of ROS upon expression of any of the constructs used?

      We demonstrated that not only axonal degeneration but also ROS can be suppressed by expressing human OPA1 in the genetic background of dOPA1 knockdown. Additionally, rescue was not possible with any variants except for I382M. Furthermore, we assessed whether there were changes in ROS in the evaluation of dominant negatives, but no significant differences were observed in this experimental system. These findings have been added to the discussion section as follows (lines 318–328). “Our research established that dOPA1 knockdown precipitates axonal degeneration and elevates ROS signals in retinal axons. Expression of human OPA1 within this context effectively mitigated both phenomena; it partially reversed axonal degeneration and nearly completely normalized ROS levels. These results imply that factors other than increased ROS may drive the axonal degeneration observed post-knockdown. Furthermore, while differences between the impacts of DN mutations and loss-of- function mutations were evident in axonal degeneration, they were less apparent when using ROS as a biomarker. The extensive use of transgenes in our experiments might have mitigated the knockdown effects. In a systemic dOPA1 knockdown, assessments of mitochondrial quantity and autophagy activity revealed no significant changes, suggesting that the cellular consequences of reduced OPA1 expression might vary across different cell types.”

      Reviewer #3 (Recommendations For The Authors):

      Consider being more explicit regarding literature that has or has failed to test a direct dominant negative effect by expressing a variant in question in the background of a full OPA1 complement. My understanding is that this is the first direct evidence of this widely held hypothesis. This lends to the main claim promoting the utility of fly as a model in general. The authors might also outline this in the introduction as a knowledge gap they fill through this study.

      In the introduction, we have incorporated a passage that highlights precedents capable of distinguishing between LOF and DN effects, and we note the absence of models capable of dissecting these distinctions within an in vivo organism. This study aims to address this gap, proposing a model that elucidates the differential impacts of LOF and DN within the context of a living model organism, thereby contributing to a deeper understanding of their roles in disease pathology. We added the following sentences in the introduction (lines 71–80).

      “In the quest to differentiate between LOF and DN effects within the context of genetic mutations, precedents exist in simpler systems such as yeast and human fibroblasts. These models have provided valuable insights into the conserved functions of OPA1 across species, as evidenced by studies in yeast models (Del Dotto et al., 2018) and fibroblasts derived from patients harboring OPA1 mutations (Kane et al., 2017). However, the ability to distinguish between LOF and DN effects in an in vivo model organism, particularly at the structural level of retinal axon degeneration, has remained elusive. This gap underscores the necessity for a more complex model that not only facilitates molecular analysis but also enables the examination of structural changes in axons and mitochondria, akin to those observed in the actual disease state.”

      The authors should clarify the language used in the abstract and introduction on the effect of hOPA1 DOA and DOA plus on the dOPA1- phenotype. Currently written as "none of the previously reports mutations known to cause DOA or DOA plus were rescued, their functions seems to be impaired." but presumably the authors mean that these variants failed to rescue to the dOPA1 deficient phenotype.

      We thank the reviewer for the constructive feedback. We acknowledge the need for clarity in our description of the effects of hOPA1 DOA and DOA plus mutations on the dOPA1- phenotype in both the abstract and the introduction. The current phrasing, "none of the previously reported mutations known to cause DOA or DOA plus were rescued, their functions seem to be impaired," may indeed be confusing. To address your concern, we have revised this statement to more accurately reflect our findings: "Previously reported mutations failed to rescue the dOPA1 deficiency phenotype." For Abstract site, we have changed as following. "we could not rescue any previously reported mutations known to cause either DOA or DOA plus.”→ “mutations previously identified did not ameliorate the dOPA1 deficiency phenotype.”

      DOA plus is associated with a multiple sclerosis-like illness; as written it suggests that the pathogenesis of sporadic multiple sclerosis and that associated with DOA plus share and underlying pathogenic mechanism. Please use the qualifier "-like illness." 

      We have added the term “multiple sclerosis-like illness” wherever “multiple sclerosis” is mentioned.

    1. Studies of the motions of the most remote globular clusters and the small galaxies that orbit our own show that the total mass of the Galaxy is at least 2 × 1012 MSun, which is about twenty times greater than the amount of luminous matter. Moreover, the dark matter (as astronomers have come to call the invisible material) extends to a distance of at least 200,000 light-years from the center of the Galaxy. Observations indicate that this dark matter halo is almost but not quite spherical. The obvious question is: what is the dark matter made of? Let’s look at a list of “suspects” taken from our study of astronomy so far. Since this matter is invisible, it clearly cannot be in the form of ordinary stars. And it cannot be gas in any form (remember that there has to be a lot of it). If it were neutral hydrogen gas, its 21-cm wavelength spectral-line emission would have been detected as radio waves. If it were ionized hydrogen, it should be hot enough to emit visible radiation. If a lot of hydrogen atoms out there had combined into hydrogen molecules, these should produce dark features in the ultraviolet spectra of objects lying beyond the Galaxy, but such features have not been seen. Nor can the dark matter consist of interstellar dust, since in the required quantities, the dust would significantly obscure the light from distant galaxies.

      Dark matter is an interesting concept in astrophysics precisely because we have absolutely no idea what it is. Because of how it affects gravity, we assume its some form of matter, but in truth we are unsure. Dark matter is more grounded in our current model of the universe that dark energy is, due to its effect on gravity, but it still follows the same habit of physicists encountering an unknown an labeling it "dark something" to account for the discrepancy in their model. It goes to show how there's still a lot more to learn about the universe, and that our current model may not be as correct as we think it is.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The study of human intelligence has been the focus of cognitive neuroscience research, and finding some objective behavioral or neural indicators of intelligence has been an ongoing problem for scientists for many years. Melnick et al, 2013 found for the first time that the phenomenon of spatial suppression in motion perception predicts an individual's IQ score. This is because IQ is likely associated with the ability to suppress irrelevant information. In this study, a high-resolution MRS approach was used to test this theory. In this paper, the phenomenon of spatial suppression in motion perception was found to be correlated with the visuo-spatial subtest of gF, while both variables were also correlated with the GABA concentration of MT+ in the human brain. In addition, there was no significant relationship with the excitatory transmitter Glu. At the same time, SI was also associated with MT+ and several frontal cortex FCs.

      Strengths:

      (1) 7T high-resolution MRS is used.

      (2) This study combines the behavioral tests, MRS, and fMRI.

      Weaknesses:

      (1) In the intro, it seems to me that the multiple-demand (MD) regions are the key in this study. However, I didn't see any results associated with the MD regions. Did I miss something?

      Thank you to the reviewer for pointing this out. After careful consideration, we agree with your point of view. According to the results of Melnick 2013, the motion surround suppression (SI) and the time thresholds of small and large gratings representing hMT+ functionality are correlated with Verbal Comprehension, Perceptual Reasoning, Working Memory, and Processing Speed Indicators, with correlation coefficients of 0.69, 0.47, 0.49, and 0.50, respectively. This suggests that hMT+ does have the potential to become the core of MD system. However, due to our results only delving into “the GABA-ergic inhibition in human MT predicts visuo-spatial intelligence mediated through the frontal cortex”, it is not yet sufficient to prove that hMT+is the core node of the MD system, we have adjusted the explanatory logic of the article. Briefly, we emphasize the de-redundancy of hMT+ in visual-spatial intelligence and the improvement of information processing efficiency, while weaken the significance of hMT+ in MD systems.

      (2) How was the sample size determined? Is it sufficient?

      Thank you to reviewer for pointing this out. We use G*power to determine our sample size. In the study by Melnick (2013), they reported a medium effect between SI and Perception Reasoning sub-ability (r=0.47). Here we use this r value as the correlation coefficient (ρ H1), setting the power at the commonly used threshold of 0.8 and the alpha error probability at 0.05. The required sample size is calculated to be 26. This ensures that our study has reasonable power to yield valid statistical results. Furthermore, compared to earlier within-subject studies like Schallmo et al.'s 2018 research, which used 22 datasets to examine GABA levels in MT+ and the early visual cortex (EVC), our study includes an enough dataset.

      (3) In Schallmo elife 2018, there was no correlation between GABA concentration and SI. How can we justify the different results different here?

      Thank reviewer for pointing this out. There are several differences between us:

      a. While the earlier study by Schallmo et al. (2018) employed 3T MRS, we utilize 7T MRS, enhancing our ability to detect and measure GABA with greater accuracy.

      b. Schallmo elife 2018 choose to use the bilateral hMT+ as the MRS measurement region while we use the left hMT+. The reason why we focus on left hMT+ are describe in reviewer 1. (6). Briefly, use of left MT/V5 as a target was motivated by studies demonstrating that left MT/V5 TMS is more effective at causing perceptual effects (Tadin et al., 2011).

      c. The resolution of MRS sequence in Schallmo elife 2018 is 3 cm isotropic voxel, while we apply 2 cm isotropic voxel. This helps us more precisely locate hMT+ and exclude more white matter signal.

      (4) Basically this study contains the data of SI, BDT, GABA in MT+ and V1, Glu in MT+ and V1-all 6 measurements. There should be 6x5/2 = 15 pairwise correlations. However, not all of these results are included in Figure 1 and supplementary 1-3. I understand that it is not necessary to include all figures. But I suggest reporting all values in one Table.

      We thank the reviewer for the good suggestion, we have made a correlation matrix to reporting all values in Figure Supplementary 9.

      (5) In Melnick (2013), the IQ scores were measured by the full set of WAIS-III, including all subtests. However, this study only used the visual spatial domain of gF. I wonder why only the visuo-spatial subtest was used not the full WAIS-III?

      We thank the reviewer for pointing this out. The decision was informed by Melnick’s findings which indicated high correlations between Surround suppression (SI) and the Verbal Comprehension, Perceptual Reasoning, Working Memory, and Processing Speed Indexes, with correlation coefficients of 0.69, 0.47, 0.49, and 0.50, respectively. It is well-established that the hMT+ region of the brain is a sensory cortex involved in visual perception processing (3D perception). Furthermore, motion surround suppression (SI), a specific function of hMT+, aligns closely with this region's activities. Given this context, the Perception Reasoning sub-ability was deemed to have the clearest mechanism for further exploration. Consequently, we selected the most representative subtest of Perception Reasoning—the Block Design Test—which primarily assesses 3D visual intelligence.

      (6) In the functional connectivity part, there is no explanation as to why only the left MT+ was set to the seed region. What is the problem with the right MT+?

      We thank the reviewer for pointing this out. The main reason is that our MRS ROI is the left hMT+, we would like to make different models’ ROI consistent to each other. Use of left MT/V5 as a target was motivated by studies demonstrating that left MT/V5 TMS is more effective at causing perceptual effects (Tadin et al., 2011).

      (7) In Melnick (2013), the authors also reported the correlation between IQ and absolute duration thresholds of small and large stimuli. Please include these analyses as well.

      We thank the reviewer for the good advice. Containing such result do help researchers compare the result between Melnick and us. We have made such figures in the revised version (Figure 3f, g).

      Reviewer #2 (Public Review):

      Summary:

      Recent studies have identified specific regions within the occipito-temporal cortex as part of a broader fronto-parietal, domain-general, or "multiple-demand" (MD) network that mediates fluid intelligence (gF). According to the abstract, the authors aim to explore the mechanistic roles of these occipito-temporal regions by examining GABA/glutamate concentrations. However, the introduction presents a different rationale: investigating whether area MT+ specifically, could be a core component of the MD network.

      Strengths:

      The authors provide evidence that GABA concentrations in MT+ and its functional connectivity with frontal areas significantly correlate with visuo-spatial intelligence performance. Additionally, serial mediation analysis suggests that inhibitory mechanisms in MT+ contribute to individual differences in a specific subtest of the Wechsler Adult Intelligence Scale, which assesses visuo-spatial aspects of gF.

      Weaknesses:

      (1) While the findings are compelling and the analyses robust, the study's rationale and interpretations need strengthening. For instance, Assem et al. (2020) have previously defined the core and extended MD networks, identifying the occipito-temporal regions as TE1m and TE1p, which are located more rostrally than MT+. Area MT+ might overlap with brain regions identified previously in Fedorenko et al., 2013, however the authors attribute these activations to attentional enhancement of visual representations in the more difficult conditions of their tasks. For the aforementioned reasons, It is unclear why the authors chose MT+ as their focus. A stronger rationale for this selection is necessary and how it fits with the core/extended MD networks.

      We really appreciate reviewer’s opinions. The reason why we focus on hMT+ is following: According to the results of Melnick 2013, the motion surround suppression (SI) and the time thresholds of small and large gratings representing hMT+ functionality are correlated with Verbal Comprehension, Perceptual Reasoning, Working Memory, and Processing Speed Indicators, with high correlation coefficients of 0.69, 0.47, 0.49, and 0.50, respectively. In addition, Fedorenko et al. 2013, the averaged MD activity region appears to overlap with hMT+. Based on these findings, we assume that hMT+ does have the potential to become the core of MD system.

      (2) Moreover, although the study links MT+ inhibitory mechanisms to a visuo-spatial component of gF, this evidence alone may not suffice to position MT+ as a new core of the MD network. The MD network's definition typically encompasses a range of cognitive domains, including working memory, mathematics, language, and relational reasoning. Therefore, the claim that MT+ represents a new core of MD needs to be supported by more comprehensive evidence.

      Thank reviewer for pointing this out. After careful consideration, we agree with your point of view. Due to our results only delving into visuo-spatial intelligence, it is not yet sufficient to prove that hMT is the core node of the MD system. We will adjust the explanatory logic of the article, that is, emphasizing the de-redundancy of hMT+in visual-spatial intelligence and the improvement of information processing efficiency, while weakening the significance of hMT+ in MD systems.

      Reviewer #3 (Public Review):

      Summary:

      This manuscript aims to understand the role of GABA-ergic inhibition in the human MT+ region in predicting visuo-spatial intelligence through a combination of behavioral measures, fMRI (for functional connectivity measurement), and MRS (for GABA/glutamate concentration measurement). While this is a commendable goal, it becomes apparent that the authors lack fundamental understanding of vision, intelligence, or the relevant literature. As a result, the execution of the research is less coherent, dampening the enthusiasm of the review.

      Strengths:

      (1) Comprehensive Approach: The study adopts a multi-level approach, i.e., neurochemical analysis of GABA levels, functional connectivity, and behavioral measures to provide a holistic understanding of the relationship between GABA-ergic inhibition and visuo-spatial intelligence.

      (2) Sophisticated Techniques: The use of ultra-high field magnetic resonance spectroscopy (MRS) technology for measuring GABA and glutamate concentrations in the MT+ region is a recent development.

      Weaknesses:

      Study Design and Hypothesis

      (1) The central hypothesis of the manuscript posits that "3D visuo-spatial intelligence (the performance of BDT) might be predicted by the inhibitory and/or excitation mechanisms in MT+ and the integrative functions connecting MT+ with the frontal cortex." However, several issues arise:

      (1.1) The Suppression Index depicted in Figure 1a, labeled as the "behavior circle," appears irrelevant to the central hypothesis.

      We thank the reviewer for pointing this out. In our study, the inhibitory mechanisms in hMT+ are conceptualized through two models: the neurotransmitter model and the behavioral model. The Suppression Index is essential for elucidating the local inhibitory mechanisms within the behavioral model. However, we acknowledge that our initial presentation in the introduction may not have clearly articulated our hypothesis, potentially leading to misunderstandings. We have revised the introduction to better clarify these connections and ensure the relevance of the Suppression Index is comprehensively understood.

      (1.2) The construct of 3D visuo-spatial intelligence, operationalized as the performance in the Block Design task, is inconsistently treated as another behavioral task throughout the manuscript, leading to confusion.

      We thank the reviewer for pointing this out. We acknowledge that our manuscript may have inconsistently presented this construct across different sections, causing confusion. To address this, we ensured a consistent description of 3D visuo-spatial intelligence in both the introduction and the discussion sections. But we maintained ‘Block Design task score' within the results section to help readers clarify which subtest we use.

      (1.3) The schematics in Figure 1a and Figure 6 appear too high-level to be falsifiable. It is suggested that the authors formulate specific and testable hypotheses and preregister them before data collection.

      We thank the reviewer for pointing this out. We have revised the Figure 1a and made it less abstract and more logical. For Figure 6, the schematic represents our theoretical framework of how hMT+ contributes to 3D visuo-spatial intelligence, we believe the elements within this framework are grounded in related theories and supported by evidence discussed in our results and discussions section, making them specific and testable.

      (2) Central to the hypothesis and design of the manuscript is a misinterpretation of a prior study by Melnick et al. (2013). While the original study identified a strong correlation between WAIS (IQ) and the Suppression Index (SI), the current manuscript erroneously asserts a specific relationship between the block design test (from WAIS) and SI. It should be noted that in the original paper, WAIS comprises Similarities, Vocabulary, Block design, and Matrix reasoning tests in Study 1, while the complete WAIS is used in Study 2. Did the authors conduct other WAIS subtests other than the block design task?

      Thank you for pointing this out. Reviewer #1 also asked this question, we copy the answers in here “The decision was informed by Melnick’s findings which indicated high correlations between Surround suppression (SI) and the Verbal Comprehension, Perceptual Reasoning, Working Memory, and Processing Speed Indexes, with correlation coefficients of 0.69, 0.47, 0.49, and 0.50, respectively. It is well-established that the hMT+ region of the brain is a sensory cortex involved in visual perception processing (3D perception). Furthermore, motion surround suppression (SI), a specific function of hMT+, aligns closely with this region's activities. Given this context, the Perception Reasoning sub-ability was deemed to have the clearest mechanism for further exploration. Consequently, we selected the most representative subtest of Perception Reasoning—the Block Design Test—which primarily assesses 3D visual intelligence.”

      (3) Additionally, there are numerous misleading references and unsubstantiated claims throughout the manuscript. As an example of misleading reference, "the human MT ... a key region in the multiple representations of sensory flows (including optic, tactile, and auditory flows) (Bedny et al., 2010; Ricciardi et al., 2007); this ideally suits it to be a new MD core." The two references in this sentence are claims about plasticity in the congenitally blind with sensory deprivation from birth, which is not really relevant to the proposal that hMT+ is a new MD core in healthy volunteers.

      Thank you for pointing this out. We have carefully read the corresponding references and considered the corresponding theories and agree with these comments. Due to our results only delving into “the GABA-ergic inhibition in human MT predicts visuo-spatial intelligence mediated by reverberation with frontal cortex”, it is not yet sufficient to prove that hMT+ is the core node of the MD system, we will adjust the explanatory logic of the article, that is, emphasizing the de redundancy of hMT+in visual-spatial intelligence and the improvement of information processing efficiency, while weakening the significance of hMT+ in MD systems. In addition, regarding the potential central role of hMT+ in the MD system, we agree with your view that research on hMT+ as a multisensory integration hub mainly focuses on developmental processes. Meanwhile, in adults, the MST region of hMT+ is considered a multisensory integration area for visual and vestibular inputs, which potentially supports the role of hMT+ in multitasking multisensory systems (Gu et al., J. Neurosci, 26(1), 73–85, 2006; Fetsch et al., Nat. Neurosci, 15, 146–154, 2012.). Further research could explore how other intelligence sub-ability such as working memory and language comprehension are facilitated by hMT+'s features.

      Another example of unsubstantiated claim: the rationale for selecting V1 as the control region is based on the assertion that "it mediates the 2D rather than 3D visual domain (Born & Bradley, 2005)". That's not the point made in the Born & Bradley (2005) paper on MT. It's crucial to note that V1 is where the initial binocular convergence occurs in cortex, i.e., inputs from both the right and left eyes to generate a perception of depth.

      Thank you for pointing this out. We acknowledge the inappropriate citation of "Born & Bradley, 2005," which focuses solely on the structure and function of the visual area MT. However, we believe that choosing hMT+ as the domain for 3D visual analysis and V1 as the control region is justified. Cumming and DeAngelis (Annu Rev Neurosci, 24:203–238.2001) state that binocular disparity provides the visual system with information about the three-dimensional layout of the environment, and the link between perception and neuronal activity is stronger in the extrastriate cortex (especially MT) than in the primary visual cortex. This supports our choice and emphasizes the relevance of hMT+ in our study. We have revised our reference in the revised version.

      Results & Discussion

      (1) The missing correlation between SI and BDT is crucial to the rest of the analysis. The authors should discuss whether they replicated the pattern of results from Melnick et al. (2013) despite using only one WAIS subtest.

      We thank for the reviewer’s suggestion. We have placed it in the main text (Figure 3e).

      (2) ROIs: can the authors clarify if the results are based on bilateral MT+/V1 or just those in the left hemisphere? Can the authors plot the MRS scan area in V1? I would be surprised if it's precise to V1 and doesn't spread to V2/3 (which is fine to report as early visual cortex).

      We thank for the reviewer’s suggestion. We have drawn the V1 ROI MRS scanning area (Figure supplement 1). Using the template, we checked the coverage of V1, V2, and V3. Although the MRS overlap regions extend to V2 (3%) and V3 (32%), the major coverage of the MRS scanning area is in V1, with 65% overlap across subjects.

      (3) Did the authors examine V1 FC with either the frontal regions and/or whole brain, as a control analysis? If not, can the author justify why V1 serves as the control region only in the MRS but not in FC (Figure 4) or the mediation analysis (Figure 5)? That seems a little odd given that control analyses are needed to establish the specificity of the claim to MT+

      We thank for the reviewer’s suggestion. We have done the V1 FC-behavior connection as control analysis (Figure supplement 7). Only positive correlations in the frontal area were detected, suggesting that in the 3D visuo-spatial intelligence task, V1 plays a role in feedforward information processing. However, hMT+, which showed specific negative correlations in the frontal, is involved in the inhibition mechanism. These results further emphasize the de-redundancy function of hMT+ in 3D visuo-spatial intelligence.

      Regarding the mediation analysis, since GABA/Glu concentration in V1 has no correlation with BDT score, it is not sufficient to apply mediation analysis.

      (4) It is not clear how to interpret the similarity or difference between panels a and b in Figure 4.

      We thank the reviewer for pointing this out. We have further interpreted the difference between a and b in the revised version. Panels a represents BDT score correlated hMT+-region FC, which is obviously involved in frontal cortex. While panels b represents SI correlated hMT+-region FC, which shows relatively less regions. The overlap region is what we are interested in and explain how local inhibitory mechanisms works in the 3D visuo-spatial intelligence. In addition, we have revised Figure 4 and point out the overlap region.

      (5) SI is not relevant to the authors‘ priori hypothesis, but is included in several mediation analyses. Can the authors do model comparisons between the ones in Figure 5c, d, and Figure S6? In other words, is SI necessary in the mediation model? There seem discrepancies between the necessity of SI in Figures 5c/S6 vs. Figure 5d.

      We thank the reviewer for highlighting this point. The relationship between the Suppression Index (SI) and our a priori hypotheses is elaborated in the response to reviewer 3, section (1). SI plays a crucial role in explicating how local inhibitory mechanisms, on the psychological level, function within the context of the 3D visuo-spatial task. Additionally, Figure 5c illustrates the interaction between the frontal cortex and hMT+, showing how the effects from the frontal cortex (BA46) on the Block Design Task are fully mediated by SI. This further underscores the significance of SI in our model.

      (6) The sudden appearance of "efficient information" in Figure 6, referring to the neural efficiency hypothesis, raises concerns. Efficient visual information processing occurs throughout the visual cortex, starting from V1. Thus, it appears somewhat selective to apply the neural efficiency hypothesis to MT+ in this context.

      We thank the reviewer for highlighting this point. There is no doubt that V1 involved in efficient visual information processing. However, in our result, the V1 GABA has no significant correlation between BDT score, suggesting that the V1 efficient processing might not sufficiently account for the individual differences in 3D visuo-spatial intelligence. Additionally, we will clarify our use of the neural efficiency hypothesis by incorporating it into the introduction of our paper to better frame our argument.

      Transparency Issues:

      (1) Don't think it's acceptable to make the claim that "All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary information". It is the results or visualizations of data analysis, rather than the raw data themselves, that are presented in the paper/supp info.

      We thank the reviewer for pointing this out. We realized that such expression would lead to confusion. We have deleted this expression.

      (2) No GitHub link has been provided in the manuscript to access the source data, which limits the reproducibility and transparency of the study.

      We thank the reviewer for pointing this out. We have attached the GitHub link in the revised version.

      Minor:

      "Locates" should be replaced with "located" throughout the paper. For example: "To investigate this issue, this study selects the human MT complex (hMT+), a region located at the occipito-temporal border, which represents multiple sensory flows, as the target brain area."

      We thank the reviewer for pointing this out. We have revised it.

      Use "hMT+" instead of "MT+" to be consistent with the term in the literature.

      We thank the reviewer for pointing this out. We agree to use hMT+ in the literature.

      "Green circle" in Figure 1 should be corrected to match its actual color.

      We thank the reviewer for pointing this out. We have revised it.

      The abbreviation for the Wechsler Adult Intelligence Scale should be "WAIS," not "WASI."

      We thank the reviewer for pointing this out. We have revised it.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The figures and tables should be substantially improved.

      We thank the reviewer for pointing this out. We have improved some of the figures’ quality.

      (2) Please explain the sample size, and the difference between Schallmo eLife 2018, and Melnick, 2013.

      We thank the reviewer for pointing this out. These questions are answered in the public review. We copy the answer in the public review.

      (2.1)  How was the sample size determined? Is it sufficient??

      Thank you to the reviewer for pointing this out. We use G*power to determine our sample size. In the study by Melnick (2013), they reported a medium effect between SI and Perception Reasoning sub-ability (r=0.47). Here we use this r value as the correlation coefficient (ρ H1), setting the power at the commonly used threshold of 0.8 and the alpha error probability at 0.05. The required sample size is calculated to be 26. This ensures that our study has adequate power to yield valid statistical results. Furthermore, compared to earlier within-subject studies like Schallmo et al.'s 2018 research, which used 22 subjects to examine GABA levels in MT+ and the early visual cortex (EVC), our study includes an enough dataset.

      (2.2)  In Schallmo elife 2018, there was no correlation between GABA concentration and SI. How can we justify the different results different here?

      Thank you to the reviewer for pointing this out. There are several differences between the two studies, ours and theirs:

      a. While the earlier study by Schallmo et al. (2018) employed 3T MRS, we utilize 7T MRS, enhancing our ability to detect and measure GABA with greater accuracy.

      b. Schallmo elife 2018 choose to use the bilateral hMT+ as the MRS measurement region while we use the left hMT+. The reason why we focus on left hMT+ are described in review 1. (6). Briefly, use of left MT/V5 as a target was motivated by studies demonstrating that left MT/V5 TMS is more effective at causing perceptual effects (Tadin et al., 2011).

      c. The resolution of MRS sequence in Schallmo elife 2018 is 3 cm isotropic voxel, while we apply 2 cm isotropic voxel. This helps us more precisely locate hMT+ and exclude more white matter signal.

      (3) Table 1 and Table Supplementary 1-3 contain many correlation results. But what are the main points of these values? Which values do the authors want to highlight? Why are only p-values shown with significance symbols in Table Supplementary 2?

      (3.1) what are the main points of these values?

      Thank you to the reviewer for pointing this out. These correlations represent the relationship between behavior task (SI/BDT) and resting-state functional connectivity. It indicates that left hMT+ is involved in the efficient information integration network when it comes to the BDT task. In addition, left hMT+’s surround suppression is involved in several hMT+ - frontal connectivity. Furthermore, the overlapping regions between two tasks indicate a shared underlying mechanism.

      (3.2) Which values do the authors want to highlight?

      Table 1 and Table Supplementary 1-3 present the preliminary analysis results for Table 2 and Table Supplementary 4-6. So, we generally report all value. Conversely, in the Table 2 and Table Supplementary 4-6, we highlight (bold font) indicating the significant correlations survived from multi correlation correction.

      (3.3) Why are only p-values shown with significance symbols in Table Supplementary 2?

      Thank you for pointing this out, it is a mistake. We have revised it and delete the significance symbols.

      (4) Line 27, it is unclear to me what is "the canonical theory".

      We thank the reviewer for pointing this out. We have revised “the canonical theory" to “the prevailing opinion”.

      (5) Throughout the paper, the authors use "MT+", I would suggest using "hMT+" to indicate the human MT complex, and to be consistent with the human fMRI literature.

      We thank the reviewer for pointing this out. We have revised them and used "hMT+" to be consistent with the human fMRI literature.

      (6) At the beginning of the results section, I suggest including the total number of subjects. It is confusing what "31/36 in MT+, and 28/36 in V1" means.

      We thank the reviewer for pointing this out. We have included the total number of subjects in the beginning of result section.

      (7) Line 138, "This finding supports the hypothesis that motion perception is associated with neural activity in MT+ area". This sentence is strange because it is a well-established finding in numerous human fMRI papers. I think the authors should be more specific about what this finding implies.

      We thank the reviewer for pointing this out. We have deleted the inappropriate sentence "This finding supports the hypothesis that motion perception is associated with neural activity in MT+ area".

      (8) There are no unit labels for all x- and y-axies in Figure 1. I only see the unit for Conc is mmol per kg wet weight.

      We thank the reviewer for pointing this out. Figure 1 is a schematic and workflow chart, so labels for x- and y-axes are not needed. I believe this confusion might pertain to Figure 3. In Figures 3a and 3b, the MRS spectrum does not have a standard y-axis unit as it varies based on the individual physical conditions of the scanner; it is widely accepted that no y-axis unit is used. While the x-axis unit is ppm, which indicate the chemical shift of different metabolites. In Figure 3c, the BDT represents IQ scores, which do not have a standard unit. Similarly, in Figures 3d and 3e, the Suppression Index does not have a standard unit.

      (9) Although the correlations are not significant in Figure Supplement 2&3, please also include the correlation line, 95% confidence interval, and report the r values and p values (i.e., similar format as in Figure 1C).

      We thank the reviewer for pointing this out. We have revised them.

      (10) There is no need to separate different correlation figures into Figure Supplementary 1-4. They can be combined into the same figure.

      We thank the reviewer for the suggestion. However, each correlation figure in the supplementary figures has its own specific topic and conclusion. The correlation figures in Supplementary Figure 1 indicate that GABA in V1 does not show any correlation with BDT and SI, illustrating that inhibition in V1 is unrelated to both 3D visuo-spatial intelligence and motion suppression processing. The correlations in Supplementary Figure 2 indicate that the excitation mechanism, represented by Glutamate concentration, does not contribute to 3D visuo-spatial intelligence in either hMT+ or V1. Supplementary Figure 3 validates our MRS measurements. Supplementary Figure 4 addresses potential concerns regarding the impact of outliers on correlation significance. Even after excluding two “outliers” from Figures 3d and 3e, the correlation results remain stable.

      (11) Line 213, as far as I know, the study (Melnick et al., 2013) is a psychophysical study and did not provide evidence that the spatial suppression effect is associated with MT+.

      We thank the reviewer for pointing this out. It was a mistake to use this reference, and we have revised it accordingly.

      (12) At the beginning of the results, I suggest providing more details about the motion discrimination tasks and the measurement of the BDT.

      We thank the reviewer for pointing this out. We have included some brief description of task at the beginning of the result section.

      (13) Please include the absolute duration thresholds of the small and large sizes of all subjects in Figure 1.

      We thank the reviewer for the suggestion. We have included these results in Figure 3.

      (14) Figure 5 is too small. The items in plot a and b can be barely visible.

      We thank the reviewer for pointing this out. We increase the size and resolution of Figure 5.

      Reviewer #2 (Recommendations For The Authors):

      Recommendations for improving the writing and presentation.

      I highly recommend editing the manuscript for readability and the use of the English language. I had significant difficulties following the rationale of the research due to issues with the way language was used.

      We thank the reviewer for pointing this out. We apologize for any shortcomings in our initial presentation. We have invited a native English speaker to revise our manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:  

      Reviewer #1 (Public Review):  

      Summary:  

      Heer and Sheffield used 2 photon imaging to dissect the functional contributions of convergent dopamine and noradrenaline inputs to the dorsal hippocampus CA1 in head-restrained mice running down a virtual linear path. Mice were trained to collect water rewards at the end of the track and on test days, calcium activity was recorded from dopamine (DA) axons originating in the ventral tegmental area (VTA, n=7) and noradrenaline axons from the locus coeruleus (LC, n=87) under several conditions. When mice ran laps in a familiar environment, VTA DA axons exhibited ramping activity along the track that correlated with distance to reward and velocity to some extent, while LC input activity remained constant across the track, but correlated invariantly with velocity and time to motion onset. A subset of recordings taken when the reward was removed showed diminished ramping activity in VTA DA axons, but no changes in the LC axons, confirming that DA axon activity is locked to reward availability. When mice were subsequently introduced to a new environment, the ramping to reward activity in the DA axons disappeared, while LC axons showed a dramatic increase in activity lasting 90 s (6 laps) following the environment switch. In the final analysis, the authors sought to disentangle LC axon activity induced by novelty vs. behavioral changes induced by novelty by removing periods in which animals were immobile and established that the activity observed in the first 2 laps reflected novelty-induced signal in LC axons.  

      Strengths:  

      The results presented in this manuscript provide insights into the specific contributions of catecholaminergic input to the dorsal hippocampus CA1 during spatial navigation in a rewarded virtual environment, offering a detailed analysis of the resolution of single axons. The data analysis is thorough and possible confounding variables and data interpretation are carefully considered.  

      Weaknesses:  

      Aspects of the methodology, data analysis, and interpretation diminish the overall significance of the findings, as detailed below.  

      The LC axonal recordings are well-powered, but the DA axonal recordings are severely underpowered, with recordings taken from a mere 7 axons (compared to 87 LC axons).

      Additionally, 2 different calcium indicators with differential kinetics and sensitivity to calcium changes (GCaMP6S and GCaMP7b) were used (n=3, n=4 respectively) and the data pooled. This makes it very challenging to draw any valid conclusions from the data, particularly in the novelty experiment. The surprising lack of novelty-induced DA axon activity may be a false negative. Indeed, at least 1 axon (axon 2) appears to be showing a novelty-induced rise in activity in Figure 3C. Changes in activity in 4/7 axons are also referred to as a 'majority' occurrence in the manuscript, which again is not an accurate representation of the observed data.  

      We appreciate the reviewer's detailed feedback regarding the analysis of VTA axons in our dataset. The relatively low sample size for VTA axons is due to their sparsity in the dCA1 region of the hippocampus and the inherent difficulty in recording from these axons. VTA axons are challenging to capture due to their low baseline fluorescence and long-range axon segments, resulting in a typical yield of only a single axon per field of view (FOV) per animal. In contrast, LC axons are more abundant in dCA1.

      To address the disparity in sample sizes between LC and VTA axons, we down-sampled the LC axons to match the number of VTA axons, repeating this process 1000 times to create a distribution. However, we acknowledge the reviewer's concern that the relatively low sample size for VTA axons might result in insufficient sampling of this population. Increasing the baseline expression of GCaMP to record from VTA axons requires several months, limiting our ability to quickly expand the sample size.

      In response to the reviewer's comments, we have added recordings from 2 additional VTA axons, increasing the sample size from 7 to 9. We re-analyzed all data from the familiar environment with n=9 VTA axons, comparing them to down-sampled LC axons as previously described. However, the additional axons were not recorded in the novel environment. We agree with the reviewer that the lack of novelty-induced DA axon activity may be a false negative. To address this, we have revised the description of our results to include the following sentence:

      “However, 1 VTA ROI showed an increase in activity immediately following exposure to novelty, indicating heterogeneity across VTA axons in CA1, and the lack of a novelty signal on average may be due to a small sample size.”

      Regarding the use of two different GCaMP constructs, we understand the reviewer's concern. We used GCaMP6s and GCaMP7b variants to determine if one would improve the success rate of recording from VTA axons. Given the long duration of these experiments and the low yield, we pooled the data from both GCaMP variants to increase statistical power. However, we recognize the importance of verifying that there are no differences in the signals recorded with these variants.

      With the addition of 2 VTA DA axons expressing GCaMP6s, we now have n=5 GCaMP6s and n=4 GCaMP7b VTA DA axons. This allowed us to compare the activity of the two sensors in the familiar environment. As shown in new Supplementary Figure 2, both sets of axons responded similarly to the variables measured: position in VR, time to motion onset, and animal velocity (although the GCaMP6s expressing axons showed stronger correlations). Since all LC axons recorded expressed GCaMP6s, we also specifically compared VTA GCaMP6s axons to LC GCaMP6s axons (Supp Fig. 3). Our conclusions remained consistent when comparing this subset of VTA axons to LC axons.

      Overall, our paper now includes comparisons of combined VTA axons (n=9) and separately the GCaMP6s-expressing VTA axons (n=5) with LC axons. Both datasets support our initial conclusions that VTA axons signal proximity to reward, while LC axons encode velocity and motion initiation in familiar environments.

      The authors conducted analysis on recording data exclusively from periods of running in the novelty experiment to isolate the effects of novelty from novelty-induced changes in behavior. However, if the goal is to distinguish between changes in locus coeruleus (LC) axon activity induced by novelty and those induced by motion, analyzing LC axon activity during periods of immobility would enhance the robustness of the results.  

      We appreciate the reviewer's insightful suggestion to analyze LC axon activity during periods of immobility to distinguish between changes induced by novelty and those induced by motion. This additional analysis would indeed strengthen our conclusions regarding the LC novelty signal.

      In response to this suggestion, we performed the same analysis as before, but focused on periods of immobility. Our findings indicate that following exposure to novelty, there was a significant increase in LC activity specifically during immobility. This supports the idea that LC axons produce a novelty signal that is independent of novelty-induced behavioral changes. The results of this analysis are now presented in new Supplementary Figure 5b

      The authors attribute the ramping activity of the DA axons to the encoding of the animals' position relative to reward. However, given the extensive data implicating the dorsal CA1 in timing, and the remarkable periodicity of the behavior, the fact that DA axons could be signalling temporal information should be considered.  

      This is an insightful comment regarding the potential role of VTA DA axons in signaling temporal information. We agree that VTA DA axons could indeed be encoding temporal information, as previous work from our lab has shown that these axons exhibit ramping activity when averaged by time to reward (Krishnan et al., 2022).

      To address this, we have now examined DA axon activity relative to time to reward, as shown in new Supplementary Figure 4. Our analysis confirms that these axons ramp up in activity relative to time to reward. Given the periodicity of our mice's behavior in these experiments, as the reviewer correctly points out, we are unable to distinguish between spatial proximity to reward and time to reward. We have added a sentence to our paper highlighting this limitation and stating that further experiments are necessary to differentiate these two variables.

      Krishnan, L.S., Heer, C., Cherian, C., Sheffield, M.E. Reward expectation extinction restructures and degrades CA1 spatial maps through loss of a dopaminergic reward proximity signal. Nat Commun 13, 6662 (2022).

      The authors should explain and justify the use of a longer linear track (3m, as opposed to 2m in the DAT-cre mice) in the LC axon recording experiments.  

      We appreciate the reviewer's insightful comment regarding the use of a longer linear track (3m, as opposed to 2m in the DAT-cre mice) in the LC axon recording experiments. The choice of a 3m track for LC axon recordings was made to align with a previous experiment from our lab (Dong et al., 2021), in which mice were exposed to a novel 3m track while CA1 pyramidal cell populations were recorded. In that study, we detailed the time course of place field formation within the novel track. Our current hypothesis is that LC axons signal novelty, and we aimed to investigate whether the time course of LC axon activity aligns with the time course of place field formation. This hypothesis, and the potential role of LC axons in facilitating plasticity for new place field formation, is further discussed in the Discussion section of our paper.

      For the VTA axon recordings, we utilized a 2m track, consistent with another recent study from our lab (Krishnan et al., 2022), where reward expectation was manipulated, and CA1 pyramidal cell populations were recorded. By matching the track length to this prior study, we aimed to explore how VTA dopaminergic inputs to CA1 might influence CA1 population dynamics along the track under conditions of varying reward expectations.

      We acknowledge that using different track lengths for LC and VTA recordings introduces a variable that could potentially confound direct comparisons. To address this, we normalized the track lengths for our LC versus VTA comparison analysis. This normalization allowed us to directly compare patterns of activity across the two types of axons by adjusting the data to a common scale, thereby ensuring that any observed differences or similarities are attributable to the intrinsic properties of the axons rather than differences in track lengths. By doing so, we could assess relative changes in activity levels at matched spatial bins.

      Although the experiences of the animals on the different track lengths are not identical, our observations suggest that LC and VTA axon signals are not majorly influenced by variations in track length. LC axons are associated with velocity and a pre-motion initiation signal, neither of which are affected by track length. VTA axons, which also correlate with velocity, can be compared to LC axon velocity signals because mice reach maximal velocity very quickly a long the track, well before the end of the 2m track. The range of velocities are therefore capture on both track lengths. While VTA axons exhibit ramping activity as they approach the reward zone—a signal potentially modulated by track length—LC axons do not show such ramping to reward signals. Thus, a comparison across different track lengths is justified for this aspect of our analysis.

      To further enhance the rigor of our comparisons between axon dynamics recorded on 2m and 3m tracks, we conducted an additional analysis plotting axon activity by time to reward and actual (un-normalized) distance from reward (Supplementary Figure 4). This analysis revealed very similar signals between the two sets of axons, supporting our initial conclusions.

      We thank the reviewer for raising this important point and hope that our detailed explanation and additional analysis address their concern.

      Krishnan, L.S., Heer, C., Cherian, C., Sheffield, M.E. Reward expectation extinction restructures and degrades CA1 spatial maps through loss of a dopaminergic reward proximity signal. Nat Commun 13, 6662 (2022).

      Dong, C., Madar, A. D. & Sheffield, M.E. Distinct place cell dynamics in CA1 and CA3 encode experience in new environments. Nat Commun 12, 2977 (2021).

      Reviewer #2 (Public Review):  

      Summary:  

      The authors used 2-photon Ca2+-imaging to study the activity of ventral tegmental area (VTA) and locus coeruleus (LC) axons in the CA1 region of the dorsal hippocampus in head-fixed male mice moving on linear paths in virtual reality (VR) environments.  

      The main findings were as follows:  

      - In a familiar environment, the activity of both VTA axons and LC axons increased with the mice's running speed on the Styrofoam wheel, with which they could move along a linear track through a VR environment.  

      - VTA, but not LC, axons showed marked reward position-related activity, showing a ramping-up of activity when mice approached a learned reward position.  

      - In contrast, the activity of LC axons ramped up before the initiation of movement on the Styrofoam wheel.  

      - In addition, exposure to a novel VR environment increased LC axon activity, but not VTA axon activity.  

      Overall, the study shows that the activity of catecholaminergic axons from VTA and LC to dorsal hippocampal CA1 can partly reflect distinct environmental, behavioral, and cognitive factors. Whereas both VTA and LC activity reflected running speed, VTA, but not LC axon activity reflected the approach of a learned reward, and LC, but not VTA, axon activity reflected initiation of running and novelty of the VR environment.  

      I have no specific expertise with respect to 2-photon imaging, so cannot evaluate the validity of the specific methods used to collect and analyse 2-photon calcium imaging data of axonal activity.  

      Strengths:  

      (1) Using a state-of-the-art approach to record separately the activity of VTA and LC axons with high temporal resolution in awake mice moving through virtual environments, the authors provide convincing evidence that the activity of VTA and LC axons projecting to dorsal CA1 reflect partly distinct environmental, behavioral and cognitive factors.  

      (2) The study will help a) to interpret previous findings on how hippocampal dopamine and norepinephrine or selective manipulations of hippocampal LC or VTA inputs modulate behavior and b) to generate specific hypotheses on the impact of selective manipulations of hippocampal LC or VTA inputs on behavior.  

      Weaknesses:  

      (1) The findings are correlational and do not allow strong conclusions on how VTA or LC inputs to dorsal CA1 affect cognition and behavior. However, as indicated above under Strengths, the findings will aid the interpretation of previous findings and help to generate new hypotheses as to how VTA or LC inputs to dorsal CA1 affect distinct cognitive and behavioral functions.  

      (2) Some aspects of the methodology would benefit from clarification.  

      First, to help others to better scrutinize, evaluate, and potentially to reproduce the research, the authors may wish to check if their reporting follows the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines for the full and transparent reporting of research involving animals (https://arriveguidelines.org/). For example, I think it would be important to include a sample size justification (e.g., based on previous studies, considerations of statistical power, practical considerations, or a combination of these factors). The authors should also include the provenance of the mice. Moreover, although I am not an expert in 2-photon imaging, I think it would be useful to provide a clearer description of exclusion criteria for imaging data.

      We thank the reviewer for helping us formalize the scientific rigor of our study. There are ten ARRIVE Guidelines and we have addressed most of them in our study already. However, there is an opportunity to add detail. We have listed below all ten points and how we have addressed each one (and point out any new additions):

      (1) Experimental design - we go into great depth explaining the experimental set-up, how we used the autofluorescent blebs as imaging controls, how we controlled for different sample sizes between the two populations, and the statistical tests used for comparisons. We also carefully accounted for animal behavior when quantifying and describing axon dynamics both in the familiar and novel environments.

      (2) Sample size - we state both the number of ROIs and mice for each analysis. We have now also added the number of mice we observed specific types of activity in. 

      (3) Inclusion/exclusion criteria - The following has now been added to the Methods section: Out of the 36 NET-Cre mice injected, 15 were never recorded from for either failing to reach behavioral criteria, or a lack of visible expression in axons. Out of the 54 DAT-Cre mice injected, imaging was never conducted in 36 of them for lack of expression or failing to reach behavioral criteria. Out of the remaining 21 NET-CRE, 5 were excluded for heat bubbles, z-drift, or bleaching, while 10 DAT-Cre were excluded for the same reasons. This was determined by visually assessing imaging sessions, followed by using the registration metrics output by suite2p. This registration metric conducted a PCA on the motion-corrected ROIs and plotted the first PC. If the PC drifted largely, to the point where no activity was apparent, the video was excluded from analysis. 

      (4) Randomization - Already included in the paper is a description of random downsampling of LC axons to make statistical comparisons with VTA axons. LC axons were selected pseudo-randomly (only one axon per imaging session) to match VTA sampling statistics. This randomization was repeated 1000 times and comparisons were made against this random distribution. 

      (5) Blinding-masking - no blinding/masking was conducted as no treatments were given that would require this. We will include this statement in the next version. 

      (6) Outcomes - We defined all outcomes measured, such as those related to animal behavior and axon signaling. 

      (7) Statistical methods - None of the reviewers had any issues regarding our description of statistical methods, which we described in great detail in this version of the paper. 

      (8) Experimental animals - We have now described that DAT- Cre mice were obtained through JAX labs, and NET-Cre mice were obtained from the Tonegawa lab (Wagatsuma et al. 2017). This was absent in the initial version of the paper.

      (9) Experimental procedure - Already listed in great detail in Methods section.

      (10) Results - Rigorously described in detail for behaviors and related axon dynamics.

      Wagatsuma, Akiko, Teruhiro Okuyama, Chen Sun, Lillian M. Smith, Kuniya Abe, and Susumu Tonegawa. “Locus Coeruleus Input to Hippocampal CA3 Drives Single-Trial Learning of a Novel Context.” Proceedings of the National Academy of Sciences 115, no. 2 (January 9, 2018): E310–16. https://doi.org/10.1073/pnas.1714082115.

      Second, why were different linear tracks used for studies of VTA and LC axon activity (from line 362)? Could this potentially contribute to the partly distinct activity correlates that were found for VTA and LC axons?  

      We thank the reviewer for pointing this out and giving us a chance to address it directly. A detailed response to this is written above for a similar comment from reviewer 1.

      Third, the authors seem to have used two different criteria for defining immobility. Immobility was defined as moving at <5 cm/s for the behavioral analysis in Figure 3a, but as <0.2 cm/s for the imaging data analysis in Figure 4 (see legends to these figures and also see Methods, from line 447, line 469, line 498)? I do not understand why, and it would be good if the authors explained this.  

      This is a typo leftover from before we converted velocity from rotational units of the treadmill to cm/s. This has now been corrected.

      (3) In the Results section (from line 182) the authors convincingly addressed the possibility that less time spent immobile in the novel environment may have contributed to the novelty-induced increase of LC axon activity in dorsal CA1 (Figure 4). In addition, initially (for the first 2-4 laps), the mice also ran more slowly in the novel environment (Figure 3aIII, top panel). Given that LC and VTA axon activity were both increasing with velocity (Figure 1F), reduced velocity in the novel environment may have reduced LC and VTA axon activity, but this possibility was not addressed. Reduced LC axon activity in the novel environment could have blunted the noveltyinduced increase. More importantly, any potential novelty-induced increase in VTA axon activity could have been masked by decreases in VTA axon activity due to reduced velocity. The latter may help to explain the discrepancy between the present study and previous findings that VTA neuron firing was increased by novelty (see Discussion, from line 243). It may be useful for the authors to address these possibilities based on their data in the Results section, or to consider them in their Discussion.  

      We appreciate the reviewer's insightful comment regarding the potential impact of decreased velocity on novelty responses in LC and VTA axons. The decreased velocity in the novel environment could lead to a diminished novelty response in LC axons and could mask a subtle novelty signal in VTA axons. We have now included the following points in our discussion:

      “In addition, as noted above, on average we did observe a velocity associated signal in VTA axons. When mice were exposed to the novel environment their velocity initially decreased. This would be expected to reduce the average signal across the VTA axon population relative to the higher velocity in the familiar environment. It is possible that this decrease could somewhat mask a subtle novelty induced signal in VTA axons. Therefore, additional experiments should be conducted to investigate the heterogeneity of these axons and their activity under different experimental conditions during tightly controlled behavior.”

      “As discussed above, the slowing down of animal behavior in the novel environment could have decreased LC axon activity and reduced the magnitude of the novelty signal we detected during running. The novelty signal we report here may therefore be an under estimate of it's magnitude under matched behavioral settings.”

      However, it is important to note that although VTA axons, on average, showed activity modulated by velocity in a familiar rewarded environment, this relationship was largely due to the activity of two VTA axons that were strongly modulated by velocity, indicating heterogeneity within the VTA axon population in dCA1. We have highlighted this point in the discussion. We also discuss that:

      “It is possible that some VTA DA inputs to dCA1 respond to novel environments, and the small number of axons recorded here are not representative of the whole population.”

      (4) Sensory properties of the water reward, which the mice may be able to detect, could account for reward-related activity of VTA axons (instead of an expectation of reward). Do the authors have evidence that this is not the case? Occasional probe trials, intermixed with rewarded trials, could be used to test for this possibility.  

      Mice receive their water reward through a water spout that is immobile and positioned directly in front of their mouth. Water delivery is triggered by a solenoid when the mice reach the end of the virtual track. Therefore, because the water spout is immobile and the water reward is not delivered until they reach the end of the track, there is nothing for the mice to detect during their run. We have added clarifications about the water spout to the Methods and Results sections, along with appropriate discussion points.

      Additionally, we note that the ramping activity of VTA axons is still present on the initial laps with no reward (Krishnan et al., 2022), indicating that this activity is not directly related to the presence or absence of water but is instead associated with the animal’s reward expectation.

      We thank the reviewer for raising this point and hope that these clarifications address their concern.

      Reviewer #3 (Public Review):  

      Summary:  

      Heer and Sheffield provide a well-written manuscript that clearly articulates the theoretical motivation to investigate specific catecholaminergic projections to dorsal CA1 of the hippocampus during a reward-based behavior. Using 2-photon calcium imaging in two groups of cre transgenic mice, the authors examine the activity of VTA-CA1 dopamine and LC-CA1 noradrenergic axons during reward seeking in a linear track virtual reality (VR) task. The authors provide a descriptive account of VTA and LC activities during walking, approach to reward, and environment change. Their results demonstrate LC-CA1 axons are activated by walking onset, modulated by walking velocity, and heighten their activity during environment change. In contrast, VTA-CA1 axons were most activated during the approach to reward locations. Together the authors provide a functional dissociation between these catecholamine projections to CA1. A major strength of their approach is the methodological rigor of 2-photon recording, data processing, and analysis approaches. These important systems neuroscience studies provide solid evidence that will contribute to the broader field of learning and memory. The conclusions of this manuscript are mostly well supported by the data, but some additional analysis and/or experiments may be required to fully support the author's conclusions.  

      Weaknesses:  

      (1) During teleportation between familiar to novel environments the authors report a decrease in the freezing ratio when combining the mice in the two experimental groups (Figure 3aiii). A major conclusion from the manuscript is the difference in VTA and LC activity following environment change, given VTA and LC activity were recorded in separate groups of mice, did the authors observe a similar significant reduction in freezing ratio when analyzing the behavior in LC and VTA groups separately?  

      In response to the comment regarding the freezing ratios during teleportation between familiar and novel environments, we have analyzed the freezing ratios and lap velocities of DAT-Cre and NET-Cre mice separately (Fig. 3Aiii). Our analysis shows that the mean lap velocities of both groups overlap in the familiar environment and significantly decrease on the first lap of the novel environment (Fig. 3iii, top). For subsequent laps, the velocities in both groups are not statistically significantly different from the familiar environment lap velocities.

      Freezing ratios also show a statistically significant decrease on the first lap of the novel environment compared to the familiar environment in both groups (Fig. 3iii, bottom). In the NETCRE mice, the freezing ratios remain statistically lower in subsequent laps, while in the DATCRE mice, the following laps show a similar trend but without statistical significance. This lack of statistical significance in the DAT-CRE mice is likely due to their already lower freezing ratios in the familiar environment. Overall, the data demonstrate similar behavioral responses in the two groups of mice during the switch from the familiar to the novel environment.

      (2) The authors satisfactorily apply control analyses to account for the unequal axon numbers recorded in the LC and VTA groups (e.g. Figure 1). However, given the heterogeneity of responses observed in Figures 3c, 4b and the relatively low number of VTA axons recorded (compared to LC), there are some possible limitations to the author's conclusions. A conclusion that LC-CA1 axons, as a general principle, heighten their activity during novel environment presentation, would require this activity profile to be observed in some of the axons recorded in most all LC-CA1 mice.

      We agree with the reviewer’s point. To address this issue, when downsampling LC axons to compare to VTA axons, we matched the sampling statistics of the VTA axons/mice by only selecting one LC axon from each mouse to match the VTA dataset.

      Additionally, we have now included the number of recording sessions and the number of mice in which we observed each type of activity. This information has been added to further clarify and support our conclusions.

      Additionally, if the general conclusion is that VTA-CA1 axons ramp activity during the approach to reward, it would be expected that this activity profile was recorded in the axons of most all VTA-CA1 mice. Can the authors include an analysis to demonstrate that each LC-CA1 mouse contained axons that were activated during novel environments and that each VTA-CA1 mouse contained axons that ramped during the approach to reward?  

      As above, we have now added the number of mice that had each activity type we report in the paper here.  

      (3) A primary claim is that LC axons projecting to CA1 become activated during novel VR environment presentation. However, the experimental design did not control for the presentation of a familiar environment. As I understand, the presentation order of environments was always familiar, then novel. For this reason, it is unknown whether LC axons are responding to novel environments or environmental change. Did the authors re-present the familiar environment after the novel environment while recording LC-CA1 activity?  

      While we did not vary the presentation order of familiar and novel environments, we recorded the activity of LC axons in some mice when exposed to a dark environment (no VR cues) prior to exposure to the familiar environment. Our analysis of this data demonstrates that LC axons are also active following abrupt exposure to the familiar environment.

      We have added a new figure showing this response (Supplementary Figure 5A) and expanded on our original discussion point that LC axon activity generally correlates with arousal, as this result also supports that interpretation.

      We thank the reviewer for highlighting this important consideration. It certainly helps with the interpretation regarding what LC axons generally encode.  

      >Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):  

      In addition to what has been described in the public review, I have the following recommendations:  

      The sample size of DA axon recordings should be increased with the use of a single GCaMP for valid conclusions to be made about the lack of novelty-inducted activity in these axons.  

      We have increased the n of VTA GCaMP6s axons in the familiar environment by including two axons that were recorded in the familiar rewarded condition. We have also conducted an analysis comparing GCaMPs versus GCaMP7b, which is discussed in detail above.

      Regarding the concerns about valid conclusions of novelty-induced activity in VTA axons, we have added a comment in the discussion to tone down our conclusions regarding the lack of a novelty signal in the VTA axons. This valid concern is discussed in detail above.  

      The title is currently very generic, and non-informative. I recommend the use of more specific language in describing the type of behavior under investigation. It is not clear to the reviewer why 'learning' is included here.  

      Original title: “Distinct catecholaminergic pathways projecting to hippocampal CA1 transmit contrasting signals during behavior and learning”

      To make it more specific to the experiments conducted here, we have changed the title to this:

      New title: “Distinct catecholaminergic pathways projecting to hippocampal CA1 transmit contrasting signals during navigation in familiar and novel environments”

      Error noted in Figure 4C legend - remove reference to VTA ROIs.  

      The reference to VTA ROIs has been removed from the figure legend

      Reviewer #2 (Recommendations For The Authors):  

      (1) The concluding sentence of the Abstract could be more specific: which distinct types of information are reflected/'signaled'/'encoded' by LC and VTA inputs to dorsal CA1?  

      The abstract has been adjusted accordingly. The new sentence is more specific: “These inputs encode unique information, with reward information in VTA inputs and novelty and kinematic information in LC inputs, likely contributing to differential modulation of hippocampal activity during behavior and learning.”

      (2) Line 46/47: The study by Mamad et al. (2017) did not quite show that VTA dopamine input to dorsal CA1 'drives place preference'. To my understanding, the study showed that suppression of VTA dopamine signaling in a specific place caused avoidance of this place and that VTA dopamine signaling modulated hippocampal place-related firing. So, please consider rephrasing.  

      Corrected, thanks for pointing this out.

      (3) Legend to Figure 3AIII: 'Each lap was compared to the first lap in F . . .' Could you clarify if 'F' refers to the 'familiar environment?  

      Figure legend has been changed accordingly

      (4) Line 176: '36 LC neurons' - should this not be '36 imaged axon terminals in dorsal CA1' or something along these lines?  

      This reference has been changed to “LC axon ROIs”

      (5) Line 353: Why was water restriction started before the hippocampal window implant, if behavioral training to run for water reward only started after the implant? Please clarify.

      A sentence was added to the methods to explain that this was done to reduce bleeding and swelling during the hippocampal window implantation.  

      (6) Line 377: '. . . which took 10-14 days (although some mice never reached this threshold).' How many mice did not reach the criterion within 14 days? I think it is not accurate to say the mice 'never' reached the threshold, as they were only tested for a limited period of time.  

      We have added details of how many mice were excluded from each group and the reason why they were excluded.

      (7) Exclusion criteria for imaging data: The authors state (from line 402): 'Imaging sessions with large amounts of drift or bleaching were excluded from analysis (8 sessions for NET mice, 6 sessions for LC Mice).' What exactly were the quantitative exclusion criteria? Were these defined before the onset of the study or throughout the study?  

      Imaging sessions were first qualitatively assessed by looking for disappearance or movement of structures in the Z-plane throughout the imaging FOV. Additionally, following motion correction in suite2p, we used the registration metrics, which plots the first Principle Component of the motion corrected images, to assess for drift, bleaching, or heat bubbles. If this variable increased or decreased greatly throughout a session, to the point where any apparent activity was not visible in the first PC, the dataset was excluded. We have added these exclusion criteria to the methods section.

      Reviewer #3 (Recommendations For The Authors):  

      Please provide a justification or rationale for having two different criteria for immobility (< 5cm/sec) and freezing (<0.2 cm/sec). If VTA and LC axon activities are different between these two velocities, please provide some commentary on this difference.  

      This is a typo leftover from before we converted velocity from rotational units to cm/s.

    1. Welcome back and in this demo lesson I'm going to step through how you can register a domain using Route 53. Now this is an optional step within the course. Worst case you should know how to perform the domain registration process within AWS and optionally you can use this domain within certain demos within the course to get a more real-world like experience.

      To get started, as always, just make sure that you're logged in to the IAM admin user of the general AWS account which is the management account of the organization. Now make sure that you have the Northern Virginia region selected. While Route 53 is a global service, I want you to get into the habit of using the Northern Virginia region. Now we're going to be using the Route 53 product, so click in the search box at the top of the screen, type Route 53 and then click to move to the Route 53 console.

      Now Route 53, at least in the context of this demo lesson, has two major areas. First is hosted zones and this is where you create or manage DNS zones within the product. Now DNS zones, as you'll learn elsewhere in the course, you can think of as databases which store your DNS records. When you create a hosted zone within Route 53, Route 53 will allocate four name servers to host this hosted zone. And that's important, you need to understand that every time you create a new hosted zone, Route 53 will allocate four different name servers to host that zone. Now the second area of Route 53 is registered domains, and it's in the registered domains area of the console where you can register a domain or transfer a domain in to Route 53.

      Now we're going to register a domain, but before we do that, if you do see any notifications about trying out new versions of the console, then go ahead and click to try out that new version. Where possible, I always like to teach using the latest version of the console UI because it's going to be what you'll be using long-term. So in my case, I'm going to go ahead and click on, try out the new console, depending on when you're doing this demo, you may see this or not. In either case, you want to be using this version of the console UI. So if you are going to register a domain for this course, then you need to go ahead and click register domains.

      The first step is to type the domain that you want into this box. Now, a case study that I use throughout the course is animals for life. So I'm going to go ahead and register a domain related to this case study. So if I type animalsforlive.com and press enter, it will search for the domain and tell us whether it's available. In this case, animalsforlive.com is not available. It's already been registered. In my case, I'm going to use an alternative, so I'm going to try and register animalsforlive.io. Now, I/O domains are one of the most expensive, so if you are registering a domain yourself, I would tend to advise you to look for one of the cheaper ones. I'm going to register this one and it is available.

      Once I've verified that it is available and it's the one I want, we're gonna go ahead and click on select. We can verify the price of this domain for one year, in this case it's 71 US dollars, and then go ahead and click on proceed to check out. Now it's here where you can specify a duration for the domain registration. You can use the default of one year, or alternatively you can go ahead and pick a longer registration period. For this domain I'm going to choose one year and then you can choose whether you want to auto renew the domain after that initial period. In my case I'm going to leave this selected. You'll see a subtotal at the price and then you can click next to move on to the next step.

      Now at this point you need to specify the contact type. In most cases you'll be putting a person or a company but there's also association, public body or reseller. You need to go ahead and fill in all of these details and they do need to be valid details, that's really important. If you are worried about privacy, most domains will allow you to turn on privacy protection, so any details that you enter here cannot be seen externally. Now obviously to keep my privacy intact, I'm going to go ahead and fill in all of these details and I'm going to hide the specifics and once I've entered them all, I'm going to go ahead and click on 'Next' and you should do the same. Again I've hidden my details on the bottom of the screen.

      Route 53 does tell you that in addition to the domain registration cost there is a monthly cost for the hosted zone which will be created as part of this registration. So there is a small monthly cost for every hosted zone which you have hosted using Route 53 and every domain that you have will need one hosted zone. So I'm going to scroll down. Everything looks good, you'll need to agree to the terms and conditions and then click on submit. Now at this point the domain is registering and it will take some time to complete. You may receive a registration email which may include something that you need to do, clicking on a link or some other form of identity verification. You might not get that, but if you do get it, it's important that you do follow all of the steps contained within that email. And if you don't receive an email, you should check your spam folder, because if there are any actions to perform and you don't, it could result in the domain being disabled.

      You can see the status of the domain registration by clicking on "requests" directly below "registered domains". The status will initially be listed as "in progress", and we need this to change to "successful". So pause the video, wait for this status to change, and then you're good to continue. Welcome back, in my case this took about 20 minutes to complete, but as you can see my domain is now registered. So if we go to registered domains you'll be able to see the domain name listed together with the expiration date, the auto renew status, and the status of the transfer lock. Now transfer lock is a security feature, it means the domain cannot be transferred away from route 53 without you disabling this lock.

      Now we're able to see additional details on the domain if we click on the domain name. Now obviously I've hidden my contact information. If you click on the DNSsecKeys tab then it's here where you can configure DNSsec on the domain. We won't be doing anything with that at this stage. One of the important points I want to draw your attention to is the name servers. So I've registered animalsforlife.io and it's these name servers that will be entered into the Animals for Life record within the .io top level domain zone. So these servers are the ones that the DNS system will point at. These currently are set to four Route 53 name servers. And because we've registered the domain inside Route 53, this process is automatic. So a hosted zone is created, four name servers are allocated to host this hosted zone And then those four name servers are entered into our domain records in our top level domain zone.

      This process end-to-end is all automatic. So the four name servers for the animalsforlife.io hosted zone. These are entered into the animalsforlife.io record within the .io top level domain zone. It's all automatic. So if we move to the hosted zone area of the console and then go inside AnimalsForLife.io and then expand the hosted zone details at the top These are the four name servers which are hosting this hosted zone And if you're paying attention You'll note these are the same four servers that are contained within the registered domains Area of the console and these are the same four servers which have been entered into the .io top level domain zone. Now if you ever delete and then recreate a hosted zone It's going to be allocated with four brand new name servers. These name servers will be different than the name servers for the zone which you deleted So if you delete and recreate a hosted zone You'll be given four brand new name servers. In order to stop any DNS problems you'll need to take these brand new name servers and update the items within the registered domains area of the console but again because you've registered the domain within route 53 this process has been handled for you end to end you won't need to worry about any of this unless you delete and recreate the host of zone.

      Now that's everything you need to do at this point if you followed this process throughout this demo lesson you now have an operational domain within the global DNS infrastructure that's manageable within Route 53. Now as I mentioned earlier this is an optional step for the course if you do have a domain registered then you will have the opportunity to use it within various demo lessons within the course. If you don't, don't worry, none of this is mandatory you can do the rest of the course without having a domain. At this point though that is everything I wanted you to do in this demo lesson. Go ahead and complete the video and when you're ready I'll look forward to you joining me in the next.

    1. Welcome back and in this demo lesson you're going to get some experience interacting with CloudWatch. So you're going to create an EC2 instance, you're going to cause that instance to consume some CPU capacity and then you're going to monitor exactly how that looks within CloudWatch. Now to do this in your own environment you'll just need to make sure that you're logged into the general AWS account as the IAM admin user and as always make sure that you have the Northern Virginia region selected which is US-East-1. Once you've got those set correctly then click in the search box at the top and type EC2, find the EC2 service and then just go ahead and open that in a brand new tab.

      Now we're going to skip through the instance creation process because you've done that in a previous demo lesson. So just go ahead and click on instances and then Launch Instance. Under Name, I just want you to put CloudWatch Test as the instance name. Then scroll down and then under the Amazon Machine image to use, go ahead and select Amazon Linux. We're going to pick the Amazon Linux 2023 version, so that's the most recent version of this AMI. It should be listed as Free Tier Eligible, so just make sure that's the case. We'll leave the architecture set to 64-bit x86 and scroll down. It should already be set to an instance type which is free tier eligible, in my case t2.micro. We'll be connecting to this instance using ec2 instance connect so we won't be using an SSH key pair. So in this drop down just click and then say proceed without a key pair. We won't need one because we won't be connecting with a local SSH client. Scroll down further still and under Network Settings click on Edit and just make sure that the default VPC is selected. There should only be one in this list but just make sure that it's set as default. Under Subnet we can leave this as No Preference because we don't need to set one. We will need to make sure that Auto Assign Public IP is set to Enable.

      Under create security group for the name and for the description just go ahead and type CloudWatch SG so CloudWatch SG for both the security group name and the description now the default for security group rule should be fine because it allows SSH to connect from any source location and that's what we want scroll down further still and we'll be leaving storage as default remember this is set from the AMI that we pick. Now because this is a CloudWatch lesson, we're going to set something a little bit different. So expand Advanced Details and then scroll down and look for Detailed CloudWatch Monitoring. Now this does come at an additional cost, so you've got a couple of options. You can just watch me do this or you can do this demo without Detailed Monitoring enabled. And if you don't enable this, it will be entirely free, but you might need to wait a little bit longer for things to happen in the demo lesson so keep that in mind.

      What I'm going to do is I'm going to enable detailed CloudWatch monitoring and if we click on info here we can see some details about exactly what that does and we can also open this in a new tab and explore what additional charges apply if we want to enable it. Now in this case I'm going to enable it you don't have to it's not a huge charge but I think for me demoing this to you it's good that I enable it you don't have to you might just have to wait a little bit longer for things to happen in the demo. Now once all of that set just scroll all the way down to the bottom and go ahead and click launch instance. Now this might take a few minutes to create we're first waiting for this success dialog and once that shows we can go ahead and click on view all instances. Go ahead and click refresh until you see the instance it will start off in a pending state with nothing listed under status check. After a few moments this will change status we'll see that it's in a running state and then we need to wait for this to change to two of two status checks before we continue. So go ahead and pause the video wait for your status check to update and once it does we're good to continue.

      Okay so now this has changed to two out of two checks passed and that's good that's what we want so so it should display running on the instant state and then two out of two checks passed under status check. Once this is the case, go ahead and click in the search box at the top and just type CloudWatch, locate the CloudWatch service, and then open that in a brand new tab. This is the CloudWatch console, and it's here where we're going to create a CloudWatch alarm. Now if you see anything about a new UI or new features, you can just go ahead and close down that dialog. Once we're here, go ahead and click on Alarms on the left and then click on all alarms. This will show a list of all the alarms that you've configured within CloudWatch, and currently there aren't any. What we're going to do is to create an alarm. So click on create alarm, and then click on select metric. Once we're on this screen, scroll down, and we're going to be looking for an EC2 metric, because we need to find the CPU utilization metric, which is inside the EC2 namespace. In other words, it comes from the EC2 service. So go ahead and click on EC2, and then we're looking for per instance metrics. So click on per instance metrics, and this will show all of the EC2 instance metrics that we currently have. Now if I scroll through this list, what you'll see is that I have two different instance IDs, because I'm using this account to create all of these demo lessons. In my case, I see previous instances. Now if you're doing this in your account, if you go back to the EC2 Management Console, you can see your instance ID here. Just remember the last four digits of this instance ID, and then go back to the CloudWatch Console. If you have more than one instance listed in CloudWatch, look for the instance ID that ends with the four digits that you just noted down, and then from that list you need to identify CPU utilization. And so I'm going to check the box next to this metric. Now this is the metric that monitors, as the name suggests, CPU utilization on this specific instance ID, which is our CloudWatch test instance. If I scroll up, I'm able to see any data that's already been gathered for this specific instance. And as you can see, it's not a great deal at the moment because we've only just launched this instance. So I'm gonna go ahead and click on Select Metric, and then because we're creating an alarm, it's going to ask us for what metric and conditions we want to evaluate.

      So I'm going to scroll down, and under Conditions, I'm going to pick Static, because I want this alarm to go into an alarm state when something happens to the CPU utilization. So I'm going to ask CloudWatch that whenever the CPU utilization is greater or equal to a specific value than to go into an alarm state. So that value is going to be 15%. So whenever the CPU utilization on this EC2 instance is greater or equal to 15%, then this alarm will go into the alarm state. So I'm gonna go ahead and click on Next. Now you can set this up so that if this alarm goes into an alarm state, it can notify you using SNS. Now that's useful if this is in production usage, but in this case we're not using it in production, so I'm going to go ahead and click on remove. Scroll down to the bottom, there's also other things that you could pick, so you could do an auto scaling action, an EC2 action, or a systems manager action. But we're going to be talking about these in much more detail as we move through the course. For now we're going to keep this simple, it's just going to be a basic alarm which goes into an alarm state or not. So click on next and then under alarm name I'm going to put CloudWatch test and then high CPU and you should do the same. So type that, click on next, scroll down to the bottom and create that alarm.

      Now initially this alarm state will be insufficient data because CloudWatch hasn't yet gathered enough data on the CPU utilization to generate the state. That's fine because we've we've got another thing that we need to do first. So now move back to the EC2 console and we're going to connect into this instance using EC2 Instance Connect. Remember, that's the web-based way to get access to this instance. So over the top of the CloudWatch Test instance, right click and go to Connect. Make sure that EC2 Instance Connect is selected, so click that tab. You can leave everything as default and click on Connect and that will connect you to this EC2 instance. Now at this point, we need to install an application called stress on this EC2 instance. And stress is an application which will put artificial CPU load onto a system. And that's what we want to do in order to see how CloudWatch reacts. To install stress, we're going to run this command. And this next command will use the yum package manager to install the stress utility. So go ahead and run this command and then clear the screen again. Now the stress command can be run by typing stress and what we're going to do is do a double hyphen help just to get the help for this command. So what we're going to do is we're going to run stress and we're going to specify the number of CPUs to use and we want that number to be the same number of virtual CPUs that this instance has. Now a t2.micro has one virtual CPU and so the command that we need to run is stress space hyphen c space 1 and then space and then we're going to use hyphen t which is the timeout command and this specifies how long we want to run this for. So we're going to specify 3600 so hyphen t and then a space 3600 and this will run the stress for 3600 seconds and that's plenty for us to see how this affects the metrics which are being monitored by CloudWatch.

      Now what I want to do before we do that is go back to the CloudWatch console. You might need to refresh if you haven't seen the state update yet. In my case it's already showing as okay. So this means that it's now got access to some data. So click on this alarm and you'll be able to see that currently the CPU started off at very low levels and then it spiked up and potentially in my case that's because we've just installed some software. But note here this red line which indicates the alarm level for this alarm. So if the CPU utilisation, which is in blue, exceeds this red line then this alarm will move from OK to ALARM. And that's what we want to simulate. So go back to the instance and press Enter to run this stress command. And that's going to begin placing high levels of CPU load on this instance and what we'll see over the next few minutes is CloudWatch will detect this additional CPU load and it will cause this alarm to go from OK into an alarm state. So move back to the CloudWatch console and just keep hitting refresh until you see a change in the alarm state. Again this might take a few minutes. What I suggest you do is pause the video and wait for your alarm to change away from OK and then you're good to continue.

      Now in my case this only took a few minutes and as you can see the CPU load reported by this alarm in CloudWatch went from this value here and spiked all the way up to this value which is well above the 15% of the alarm threshold. So the alarm changed from OK to IN alarm based on this excessive CPU and if we keep monitoring this over time you'll see that this trend continues because this CPU is under extremely high load because it's been artificially simulated using the stress utility. Now if we go back to this EC2 instance and press ctrl and C at the same time this will exit out of the stress utility and at this point the artificial CPU load has been removed and the instance will gradually move back down to its normal levels which is very close to zero. So again what you'll see is this may take a few minutes to be reflected inside CloudWatch. So keep refreshing this once you've cancelled the stress utility and wait for the reported CPU utilization to move back down below the alarm value. Again that might take a few minutes so go ahead and pause the video and wait for this blue line to move back under the red line and once it does you should see that the alarm state changes from in alarm to OK again.

      In my case it took a few minutes for the blue line to move below the alarm threshold and then a few more minutes afterwards for the alarm to change from in alarm to OK. But as you can see at this point that's exactly what's happened once the CPU usage goes below the configured threshold value then the alarm changes back to an OK state. And at this point that's everything that I wanted to cover in this demo lesson on CloudWatch. CloudWatch is a topic that I'm going to be going into much more detail later on in the course. This has just been a really brief introduction to the product and how it interacts with EC2. Now at this point the only thing left is to clear up the account and put it back into the same state as it was at the start of this lesson. So to do that go ahead and click on All Alarms, select the CloudWatch Test High CPU Alarm that you created, click on the actions dropdown, select delete, and then confirm that deletion. Then go back to EC2, go to the instances overview, right click on the CloudWatch test instance, making sure that it is the correct instance, so CloudWatch test, and then select terminate instance and confirm that termination. Now that's going to move through a few states, it will start with shutting down, and you need to wait until that instance is in a terminated state. Go ahead and pause the video and wait for your instance to change into terminated.

      Okay so once your instance has terminated on the menu on the left scroll down go to security groups select the CloudWatch SG security group making sure that you do pick the correct one so CloudWatch SG click on actions scroll down delete security groups and click on delete and at that point the account is back in the same state as it was at the start of this demo lesson. So thanks for watching this video. I hope you gained some experience of the CloudWatch product and again we're going to be talking about it in much more detail later in the course. At this point though go ahead and complete this video and when you're ready I'll look forward to you joining me in the next.

    1. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Otero-Coronel and colleagues use a combination of acoustic stimuli and electrical stimulation of the tectum to study MSI in the M-cells of adult goldfish. They first perform a necessary piece of groundwork in calibrating tectal stimulation for maximal M-cell MSI, and then characterize this MSI with slightly varying tectal and acoustic inputs. Next, they quantify the magnitude and timing of FFI that each type of input has on the M-cell, finding that both the tectum and the auditory system drive FFI, but that FFI decays more slowly for auditory signals. These are novel results that would be of interest to a broader sensory neuroscience community. By then providing pairs of stimuli separated by 50ms, they assess the ability of the first stimulus to suppress responses to the second, finding that acoustic stimuli strongly suppress subsequent acoustic responses in the M-cell, that they weakly suppress subsequent tectal stimulation, and that tectal stimulation does not appreciably inhibit subsequent stimuli of either type. Finally, they show that M-cell physiology mirrors previously reported behavioural data in which stronger stimuli underwent less integration.

      The manuscript is generally well-written and clear. The discussion of results is appropriately broad and open-ended. It's a good document. Our major concerns regarding the study's validity are captured in the individual comments below. In terms of impact, the most compelling new observation is the quantification of the FFI from the two sources and the logical extension of these FFI dynamics to M-cell physiology during MSI. It is also nice, but unsurprising, to see that the relationship between stimulus strength and MSI is similar for M-cell physiology to what has previously been shown for behavior. While we find the results interesting, we think that they will be of greatest interest to those specifically interested in M-cell physiology and function.

      Strengths:

      The methods applied are challenging and appropriate and appear to be well executed. Open questions about the physiological underpinnings of M-cell function are addressed using sound experimental design and methodology, and convincing results are provided that advance our understanding of how two streams of sensory information can interact to control behavior.

      Weaknesses:

      Our concerns about the manuscript are captured in the following specific comments, which we hope will provide a useful perspective for readers and actionable suggestions for the authors.

      Comment 1 (Minor):

      Line 124. Direct stimulation of the tectum to drive M-cell-projecting tectal neurons not only bypasses the retina, it also bypasses intra-tectal processing and inputs to the tectum from other sources (notably the thalamus). This is not an issue with the interpretation of the results, but this description gives the (false) impression that bypassing the retina is sufficient to prevent adaptation. Adding a sentence or two to accurately reflect the complexity of the upstream circuitry (beyond the retina) would be welcome.

      Comment 2 (Major):

      The premise is that stimulation of the tectum is a proxy for a visual stimulus, but the tectum also carries the auditory, lateral line, and vestibular information. This seems like a confound in the interpretation of this preparation as a simple audio-visual paradigm. Minimally, this confound should be noted and addressed. The first heading of the Results should not refer to "visual tectal stimuli".

      Comment 3 (Major):

      Figure 1 and associated text.

      It is unclear and not mentioned in the Methods section how phasic and tonic responses were calculated. It is clear from the example traces that there is a change in tonic responses and the accumulation of subthreshold responses. Depending on how tonic responses were calculated, perhaps the authors could overlay a low-passed filtered trace and/or show calculations based on the filtered trace at each tectal train duration.

      Comment 4 (Minor):

      Figure 3 and associated text.<br /> This is a lovely experiment. Although it is not written in text, it provides logic for the next experiment in choosing a 50ms time interval. It would be great if the authors calculated the first timepoint at which the percentage of shunting inhibition is not significantly different from zero. This would provide a convincing basis for picking 50ms for the next experiment. That said, I suspect that this time point would be earlier than 50m s. This may explain and add further complexity to why the authors found mostly linear or sublinear integration, and perhaps the basis for future experiments to test different stimulus time intervals. Please move calculations to Methods.

      Comment 5 (Major):

      Figure 4C and lines 398-410.<br /> These are beautiful examples of M-cell firing, but the text suggests that they occurred rarely and nowhere close to significantly above events observed from single modalities. We do not see this as a valid result to report because there is insufficient evidence that the phenomenon shown is consistent or representative of your data.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC- 2024-02497

      Corresponding author(s): Tourriere, Hélene and Maraver, Antonio

      1. General Statements [optional]

      We sincerely thank the Editors and Reviewers for the time devoted to our manuscript. We found their critiques interesting and very helpful. After careful examination and thanks to a large collaborative effort, we will be able to answer to all the reviewers’ comments by adding significantly new experimental data.

      We are also encouraged by the positive comments of the Reviewers:

      “This manuscript will likely engage oncologists who investigate the chemotherapy-resistant mechanisms of platinum compounds in NSCLC treatment” (Reviewer 1);

      “Overall, the authors have conducted experiments that sufficiently elucidate their claims, and the description of the experiments is detailed.”; and “Overall, this work unveils a novel mechanism for Notch activation in response to platinum chemotherapy, providing a renewed outlook on overcoming chemotherapy resistance in NSCLC” (Reviewer 2).

      We are also aware that both reviewers agreed that there is room for improvement, and we are sure that upon accomplishment of all proposed experiments both reviewers will be fully satisfied.

      Please bear in mind that although it was known that platinum-based chemotherapy induced the Notch pathway in lung cancer cells, the underlying molecular mechanism was largely unknown. Thanks to the molecular dissection we performed in our study, we propose an innovative treatment for patients with lung cancer, the main cause of death by cancer in the world. Hence, we agree with both reviewers that our study will be appealing for a large number of cancer researchers, and we feel it will be also the case for those interested in DNA damage, Notch and MDM2 pathways.

      2. Description of the planned revisions

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary: This manuscript from Maraver and co-authors investigates the putative resistance mechanisms that hinder the efficacy of platinum-based therapies (e.g., carboplatin) against non-small cell lung carcinoma (NSCLC). Using in vitro lung cancer cell lines, shRNA-based knockdown, and exogenous overexpression systems, the research describes a DNA damage-induced resistance mechanism involving the NOTCH signaling pathway and the E3 ligase MDM2. The authors show that carboplatin treatment induces DNA damage and promotes ATM activation, which in turn activates the NOTCH signaling pathway via ubiquitination and stabilization of the Notch Intracellular Domain (NICD). New findings include the MDM2-mediated ubiquitination and stabilization of NICD. Using in vivo NSCLC-PDX models, they demonstrate that combining carboplatin with Notch and MDM2 inhibitors can enhance tumor killing, suggesting that targeting the MDM2/NICD axis in conjunction with carboplatin may be a viable therapeutic alternative. Furthermore, they show that NICD and MDM2 levels are elevated among tumor samples from chemo-resistant patients. Consistent with these findings, high MDM2 levels correlate with poor progression-free survival (PFS) in NSCLC patients.

      [Authors] We thank this reviewer for her/his fair summary of our work that highlights our new findings.

      Major comments:

      Some of the key conclusions may not be convincing.

      [Authors] We understand the concerns that reviewer might have and we are sure that upon accomplishment of all experiments detailed below, she/he will be convinced that the manuscript will be ready for publication.

      1. One significant weakness of the manuscript is the lack of exploration into the underlying mechanism of how MDM2 mediates the stabilization of NICD. While the observation of MDM2-mediated NICD stabilization is intriguing, it is important to provide a more convincing explanation for the reviewers. This could be achieved by offering a detailed molecular mechanism, especially considering that MDM2 typically targets proteins for degradation.

      [Authors] After reading this reviewer’s comment, we realize we did a poor job discussing better the previous study demonstrating that MDM2 induced ubiquitination on NICD but not for degradative purposes (Pettersson et al., 2013). In particular, they performed it using a mutated form of ubiquitin in lysine 48, i.e., the K48R mutant. Like this, the authors of this seminal study demonstrated that MDM2 was still able to induce ubiquitination in NICD, and hence it was not degradative.

      Still, and to confirm that this is the case also upon DNA damage, we will perform experiments using same K48R mutant to formally prove that MDM2 upon DNA damage does not ubiquitinate NICD via lysine 48-linked polymers, and hence it is not degradative. Even more, upon discussion with Laetitia Linares, author of our study and long-lasting expert in ubiquitination (for instance see (Riscal et al., 2016) and (Arena et al., 2018)), we will use another ubiquitin mutant in lysine 63. This different type of ubiquitination does not mark proteins for degradation but promote an association of the targeted protein with DNA helping for DNA repair (Liu et al., 2018). Using a ubiquitin mutated in this lysine, i.e., K63R, this type of ubiquitination cannot occur. Taking into account that we observe NICD increase ubiquitination upon DNA damage, the use of K63R will be very informative.

      Hence, we will repeat experiments of current Figure 3A with the same WT ubiquitin as before, and now also with K48R and K63R mutants. Even more, we will also include mutant forms of ubiquitin which can only form ubiquitin chains on lysine 48 (K48 only) or lysine 63 (K63 only) and we anticipate that in the presence of K48 only mutant, NICD will not be ubiquitinated upon DNA damage, while the use of K63 only mutant will be very useful. All these data will be part of the new Figure 3A.

      Of note, Dr Linares has all tools required to perform these experiments and hence we will start them soon.

      Another weakness lies in the unclear role and the underlying mechanism of ATM in the MDM2-mediated NICD stabilization. While the data presented (Fig. 3B, 3C) suggest that carboplatin could elevate MDM2 levels for NICD stabilization, a more precise method to induce MDM2 overexpression specifically for targeting NICD is required. It appears that ATM plays a crucial role in this regulatory process. The following questions must be addressed: Does ATM induce the phosphorylation of MDM2 for its protein stabilization and/or E3 ligase activity?

      [Authors] There are several points here.

      For the first one, the use of a more precise method to induce MDM2 overexpression, it is exactly what we did in Figure 4A, i.e., ectopic expression of MDM2 to demonstrate that MDM2 is sufficient to increase NICD levels.

      For the second one, i.e., the phosphorylation status of MDM2 by ATM in our system, we will perform different experiments. There are up to six proposed residues in MDM2 to be phosphorylated by ATM upon DNA damage: S386, S395, S407, T419, S425, and S429 (Cheng et al., 2011). Among all of them, S395 is the most well-known and again Dr Linares has interesting tools we will use to answer to this specific reviewer’s point. We will use an MDM2 mutant harboring an aspartate instead of the serine in this position, i.e., S395D, that mimics the serine 395 phosphorylation induced by ATM upon DNA damage. We will use this mutant together with the WT and 464A MDM2 proteins already used, and if this residue is important in our phenotype, total levels of NICD will be even higher and/or localize more in the nuclei when compared with WT MDM2. All these new data will appear as the new Figure 4A __and new Figure 4B__.

      Furthermore, we will also use an antibody that recognizes this phosphorylation site by WB after carboplatin treatment and it will be part of the new Figure 3B.

      Finally, we will also express WT MDM2 and purify it by immunoprecipitation in different experimental conditions: steady state, upon carboplatin treatment and also in combination of carboplatin and ATM inhibitor, to perform phospho-proteomics analysis upon all these conditions. Of note, and to show the feasibility of this approach, the proteomic platform at Biocampus in Montpellier has experience using this technique (Kassouf et al., 2019).

      The combination therapy of carboplatin with MDM2 and NICD inhibitors may lack compelling rationale (see below).

      [Authors] This is a very important point but we discuss it below, where more information is provided by the reviewer. Still, we anticipate we will perform a new in vivo experiment to answer to this point.

      In lines 275-276, the authors stated that their preclinical data establish the enhancement of carboplatin's therapeutic effect in NSCLC in vivo through MDM2-NICD axis inhibition. However, it's important to note that this finding remains preliminary at this stage.

      [Authors] We consider that our statement is not exaggerated, but we will tone down the message as proposed by the reviewer in the next submission.

      Minor comments:

      1. The observed loss of NICD during ATMi + carboplatin treatment in Figures 2A and 2B raises the question of whether ATM regulates the gene transcription of NOTCH. In addition to the CHX assay conducted in Figures 2C and 2D, quantifying NOTCH mRNA upon ATM inhibition could provide further insights. Alternatively, referencing relevant studies on this topic may strengthen the discussion.

      [Authors] This is an interesting experiment and we will perform it.

      In Figures 4A and 4B, the noticeable discrepancy between the exogenous expression of wild-type (WT) MDM2 and catalytically inactive MDM2-464A raises concerns. It is essential to consider if the reduced ubiquitination and stability of NICD might be attributed to varying levels of MDM2-464A in the cells rather than its catalytic inactivity. While p53 ubiquitination was utilized as a control, ensuring comparable levels of MDM2 and MDM2-464A expression could enhance the experimental rigor. Compared to the smear poly-ubiquitination bands observed for MDM2 in Figure 4B, the ubiquitination of NICD appears simpler. What distinguishes the feature of MDM2-mediated NICD ubiquitination? Could it potentially involve mono-ubiquitination?

      [Authors] The point of the reviewer is well taken, and importantly, as mentioned above in main point 2, we will repeat these experiments and will appear as new Figure 4A and new Figure 4B.

      Regarding the type of ubiquitination, as explained in detail in major point 1 to same reviewer, we will fully characterize the type of ubiquitination on NICD induced by DNA damage, and we will confirm that MDM2 is required for this specific ubiquitination in future new Figure 4C where we will overexpress the required ubiquitin forms and WT MDM2.

      In Figure 5A, the authors need to consider conducting additional NOTCH-associated factors to definitively demonstrate the activation of NOTCH signaling beyond HES1. Alternatively, in Figure 5B, the NICD Western blot could be complemented by detecting HES1 or other NOTCH-associated factors.

      [Authors] To answer to this particular point, we will test for other downstream targets of Notch as NRARP and it will appear as part of new Figure 5C.

      In Figures 5C and 5D, crucial control groups are missing, specifically mice treated solely with SP141+DBZ, carboplatin+SP141, and SP141+DBZ. It is essential to include these groups to demonstrate that the enhanced tumor killing results from the combination of carboplatin with SP141 and/or DBZ, rather than from SP141 and DBZ alone. Furthermore, in addition to the currently used NSCLC-PDX model harboring the p53 (P151R) mutation, it would be informative to include a NSCLC-PDX model expressing WT p53.

      [Authors] This is a crucial point in this rebuttal as mentioned before in major point 3 and we detail it in here.

      We did only 3 groups because preliminary data indicated that SP141 in combination with carboplatin was not showing any benefit compared to carboplatin alone while upon combination of carboplatin with Notch inhibition there was only a slight increase in therapeutic carboplatin benefit but otherwise not very potent, and for simplicity we preferred to don’t show these data. But, after reading this point from Reviewer 1, even if we will propose later only the triple combination for patients, we clearly need to demonstrate that the other combinations are not potent enough or not at all.

      The reviewer asked to include: “SP141+DBZ, carboplatin+SP141, and SP141+DBZ”. We imagine that she/he meant: SP141+DBZ, carboplatin+SP141, and carboplatin +DBZ, that together with the vehicle, carboplatin and carboplatin+SP141+DBZ makes 6 groups of treatments. Putting together the 8 mice devoted for tumor growth and survival, plus 4 mice for the acute treatment for IHC and WB purposes (for current Figures 5A and 5B) makes a total of 72, that is a substantial number of mice. Of note, since we performed the in vivo experiment presented in the current manuscript, a new Notch inhibitor called nirogacestat, appear in the market being the first in class Notch inhibitor to treat solid cancer patients (desmoid tumors) after demonstrating a significant therapeutic effect in clinical trials (Gounder et al., 2023).

      Hence, we will take advantage of the repetition of this experiment to substitute this new molecule instead of DBZ, that is an interesting molecule for preclinical research, but without any clinical relevance. Therefore, the use of nirogacestat will further increase the medical impact of our data. Importantly, nirogacestat is better tolerated than DBZ, meaning that mice can be treated for longer periods of time and we propose in here to treat up to 12 weeks. Finally, after discussion with Quentin Thomas, author of the manuscript and clinical researcher in the lab, we will provide 4 carboplatin cycles as it is proposed today to NSCLC patients in an attempt of getting closer to the clinical setting. In particular we will provide carboplatin to mice on weeks 1, 4, 7 and 10, while treating with MDM2 inhibitor (SP141) and Notch inhibitor (nirogacestat) from Monday to Friday for the 12 weeks.

      This experiment will be long and will require an important use of resources both human and financial, but we are sure that the effect in tumor growth and survival will be more dramatic than the one presented now.

      On the contrary and as explained in the 4th subheading part of this “revision plan”, including another 72 mice to treat a p53 proficient NSCLC PDX, when we already demonstrated in vitro that p53 is not required for the phenotype described in this study, for us it is totally unfeasible by ethical reasons, i.e., the use of animals in research (please see below for further details).

      All the new data will appear as new Figure 5 (B to E). For new Figure 5A please see below the major comment 2 of Reviewer 2.

      Though beyond the current study's scope, in the discussion section, the authors may want to propose or hypothesize on how MDM2-mediated NICD stabilization contributes to carboplatin resistance. This could provide valuable insights for future research directions.

      [Authors] We will discuss this part as proposed by the reviewer.

      In the Western blot results, the total ATM and ATR controls were absent.

      [Authors] The reviewer is totally right and we will repeat experiments to include all the totals as requested.

      Authors may choose to include a graphical abstract at the end of their study to visually illustrate the mechanisms they have described.

      [Authors] Very good idea thanks, we will do it.

      Reviewer #1 (Significance (Required)):

      Advance: The authors aim to present a novel perspective on the resistance mechanisms to platinum compounds in NSCLC therapy. They explore platinum compounds-induced DNA damage, ATM activation, and MDM2-mediated stabilization of the active form of NOTCH (NICD). However, to strengthen their claims, they must provide more conclusive results.

      Audience: This manuscript will likely engage oncologists who investigate the chemotherapy-resistant mechanisms of platinum compounds in NSCLC treatment, as well as scientists specializing in NOTCH and MDM2 pathways. However, the manuscript's central claims lack robust support from the available data, and the current approaches employed are not sufficiently thoughtful and rigorous; there is room for improvement.

      My expertise is molecular medicine, cancer biology, and epigenetics.

      [Authors] We want to thank again this reviewer for her/his helpful comments that will increase the impact and the relevance of our study while keeping the original message.

      We are also very satisfied when she/he said: “This manuscript will likely engage oncologists who investigate the chemotherapy-resistant mechanisms of platinum compounds in NSCLC treatment”.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, Sara Bernardo et al. investigated the molecular mechanisms underlying the activation of the Notch signaling in response to DNA damage induced by platinum-based chemotherapeutic agents in non-small cell lung cancer (NSCLC). They demonstrated that carboplatin treatment induces DNA double-strand breaks (DSBs) and stabilizes NICD, a process dependent on ATM and mediated by MDM2. In vivo experiments in patient-derived xenografts (PDX) showed that inhibition of NICD and MDM2 enhanced platinum effectiveness. Furthermore, clinical analysis revealed a correlation between MDM2 expression and poor prognosis in NSCLC patients treated with platinum compounds, emphasizing the clinical relevance of the MDM2-NICD axis in platinum resistance.

      [Authors] We thank this reviewer for her/his nice synopsis of our study.

      Major comments:

      Overall, the authors have conducted experiments that sufficiently elucidate their claims, and the description of the experiments is detailed. However, there is still room for the improvement.

      [Authors] We are very pleased that reviewer finds our experimental work “…sufficiently elucidate their claims, and the description of the experiments is detailed.” And we are sure that after all the new experiments we are proposing in here, she/he will be fully satisfied.

      1.The finding that MDM2 promoted NICD stability through non degradative ubiquitination is interesting and in line with a previous study. As it is also known that NICD is regulated by various post-translational modifications, including ubiquitination that promotes NICD degradation. It is unclear what's the potential difference between these two types of ubiquitination. For example, do these two differ in specific ubiquitination sites? Can the authors provide some discussion?

      [Authors] We agree with the reviewer and hence we will perform a new set of experiments to determine the role of 2 key lysine residues in the ubiquitin protein promoting either degradation or DNA binding. As explained in detail in major point 1 from reviewer 1, we will determine if DNA damage promotes ubiquitination in position 48, i.e., to degrade, or in position 63, i.e., to facilitate the binding to DNA for repairing upon DNA damage, or in any of these 2 positions. And as mentioned above, we will then confirm that MDM2 is responsible of the specific ubiquitination type we will uncover. We are sure that the reviewer will be satisfied by these new data once is generated.

      As for the specific ubiquitination sites in NICD, there are up to 17 lysine residues susceptible of being ubiquitinated. Hence unveiling what residues are targeted by MDM2 and if they differ from others inducing degradation as those promoted by the E3 ligase FBXW7, we feel is out of the scope of the current manuscript. Still, we will discuss all this part as kindly proposed by the reviewer.

      Could the overexpression of MDM2 or NICD lead to carboplatin resistance in A549 or H358 cells?

      [Authors] This is a very interesting experiment and prompted by the reviewer’s comment we started the subcloning of inducible NICD into lentiviral vectors to generate stable cells and test the carboplatin sensitivity in presence of different levels of NICD. These new data will be the new Figure 5A.

      The trends observed in the western blot data within the manuscript appear inconsistent. While the authors propose that NICD levels increased upon incubation with carboplatin, the discrepancy arises when considering the NICD levels without cycloheximide (CHX) treatment in Figure 1E, where no significant elevation is observed (Lane 6 vs. Lane 1).

      [Authors] The point of the reviewer is well taken. Please bear in mind that in here we are handling several signaling pathways that interact among them while having each one different kinetics. Our finding of increased NICD upon carboplatin treatment is highly consistent in vitro and in vivo, but it is true that in the experiment mentioned by the reviewer is not obvious, probably due to some kinetic issue. We are repeating this experiment to have the increased in NICD upon carboplatin as it is in the rest of the manuscript (up to 9 times only in main figures).

      The quality of western blots needs to be improved, especially Fig. 1C and S1C, also Figure 3B. Moreover, the NICD western blot sometimes appears as one band and sometimes as two bands. Please provide an explanation. If possible, please quantify the bands in western blots.

      [Authors] We agree with the reviewers that not all WB have the same quality and we will repeat some of them to homogenize the quality all over the manuscript, and particularly, we will repeat the ones kindly pointed out by the reviewer.

      The two bands it is something we also noticed and we will pay attention while reproducing the WB, since it might be related to discrepancies in the percentage of acrylamide. If this is not the case, i.e., upon repetition we still observe in some conditions and not in others, we will provide explanations for this in the new submission as kindly proposed by the reviewer.

      Finally, and also as proposed by the reviewer we will quantify the WB bands.

      Please provide a necessary discussion on whether the targeted treatment approach towards the MDM2-NICD axis is applicable to all patients or only to those with high expression of MDM2/NICD.

      [Authors] In the discussion of the current manuscript, we focused into the MDM2 high expression subset of patients for this issue, but in the next submission we will enlarge to patients with high levels of NICD also.

      How to interpret the significance of the simultaneous increase in NICD ubiquitination and stability mediated by MDM2? Please provide a relevant discussion.

      [Authors] We will provide strong experimental data to go beyond discussion (please see above the experiments with ubiquitin mutants), but we will also provide discussion of this particular point.

      In Figure 5B, please also check the level of MDM2. In Figure 5C, carboplatin appears to have little impact on tumor growth. How to explain the increase of Ki-67 in the carboplatin treatment group in Figure 5A?

      [Authors] We will measure also levels of MDM2 in the future new Figure 5C as requested by the reviewer.

      As for the interesting observation of the Ki67, since we will repeat the whole experiment, we will pay special attention to this point if ever it is repeated. Should be this the case, we will elaborate an explanation.

      Minor comments:

      1.Please include scale bars in Figure 1B and Supplemental Figure 1B.

      [Authors] We thank the reviewer for this comment. We will include the scale bars where required.

      2.Figure 5D, the P values of the survival curve should be indicated in the figures.

      [Authors] We will include the P values in the future new Figure 5E.

      3.The presentation of survival curve data in Figures 5D and 6A should be consistent.

      [Authors] The point of the reviewer is well taken and we will use Prism to draw the PFS for patients in Figure 6A as we did for the mice in current Figure 5D.

      4.It seems that supplemental figure 2 is missing.

      [Authors] We actually jumped from supplemental figure 1 to 3 because we do not have any associated supplemental figure to main Figure 2. We will clarify this point in the next submission.

      5.Please carefully check the spelling of the entire text, for example, on page 20, line 426 it should be 'western'. Also, please spell out the abbreviations DDR and ATM.

      [Authors] We will double check all spelling and provide the abbreviations kindly suggested by the reviewer.

      6.The abbreviation for Cleaved caspase 3 should be CC3.

      [Authors] We thank the reviewer for this information, we will use CC3 in the next submission.

      Reviewer #2 (Significance (Required)):

      Notch signaling is associated with the occurrence and development of non-small cell lung cancer (NSCLC). Previous study indicates that the expression of Notch protein is significantly higher in NSCLC tissues compared to normal tissues (PMID: 31170211). Additionally, the upregulation of Notch1 is correlated with higher tumor grades, lymph node metastasis, tumor-node-metastasis (TNM) staging, and poor prognosis (PMID: 25996086). Abnormal activation of Notch signaling pathway is frequently observed in chemotherapy-resistant NSCLC, and some studies have aimed to address NSCLC drug resistance via modulating Notch signaling (PMID: 30087852, 38301911). This manuscript firstly proposes that MDM2-mediated stabilization of NICD upon DNA damage plays a major role in NSCLC response to platinum chemotherapy. It further suggests that targeting the MDM2-NICD axis could prove to be an effective therapeutic strategy. Overall, this work unveils a novel mechanism for Notch activation in response to platinum chemotherapy, providing a renewed outlook on overcoming chemotherapy resistance in NSCLC. This manuscript will attract those interested in the mechanisms of chemotherapy resistance and novel treatment approaches.

      [Authors] We sincerely thank the reviewer for finding that our “…work unveils a novel mechanism for Notch activation in response to platinum chemotherapy, providing a renewed outlook on overcoming chemotherapy resistance in NSCLC”. We are also very satisfied when she/he says: “This manuscript will attract those interested in the mechanisms of chemotherapy resistance and novel treatment approaches.”

      Finally, we are convinced that the reviewer will appreciate all the new proposed experimental data, and also that upon finishing all experiments, she/he will think that the manuscript will be suitable for publication.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      For simplicity, we decided to introduce all changes in next submission upon conclusion of all experimental approaches proposed above.

      4. Description of analyses that authors prefer not to carry out

      While we will perform almost all experiments proposed by reviewers, there is one we feel is not possible to do due to ethical reasons. Reviewer 1 wanted us to perform a new in vivo experiment with the same PDX using up to 6 treatment groups. We use 8 mice per condition (for tumor growth and survival) plus 4 for the “acute” treatment for WB and IHC purposes, hence 12 mice x 6 groups = 72 mice, and we will perform this experiment as indicated above and proposed by the reviewer.

      On the contrary, the reviewer asked us also to repeat the same experiment with a PDX p53 proficient. While we understand the possible interest, since we demonstrated in vitro that p53 is not required for the protective phenotype of MDM2 and Notch upon DNA damage, we honestly believe that using another 72 mice to confirm this aspect in vivo, is against the rational use of animals in research going against the 3Rs rule. Hence, we will not perform this experiment unless Editors believe is strictly required.

      REFERENCES

      Arena, G., Cisse, M. Y., Pyrdziak, S., Chatre, L., Riscal, R., Fuentes, M., Arnold, J. J., Kastner, M., Gayte, L., Bertrand-Gaday, C., et al. (2018). Mitochondrial MDM2 Regulates Respiratory Complex I Activity Independently of p53. Mol Cell 69, 594-609 e598.

      Cheng, Q., Cross, B., Li, B., Chen, L., Li, Z., and Chen, J. (2011). Regulation of MDM2 E3 ligase activity by phosphorylation after DNA damage. Mol Cell Biol 31, 4951-4963.

      Gounder, M., Ratan, R., Alcindor, T., Schoffski, P., van der Graaf, W. T., Wilky, B. A., Riedel, R. F., Lim, A., Smith, L. M., Moody, S., et al. (2023). Nirogacestat, a gamma-Secretase Inhibitor for Desmoid Tumors. N Engl J Med 388, 898-912.

      Kassouf, T., Larive, R. M., Morel, A., Urbach, S., Bettache, N., Marcial Medina, M. C., Merezegue, F., Freiss, G., Peter, M., Boissiere-Michot, F., et al. (2019). The Syk Kinase Promotes Mammary Epithelial Integrity and Inhibits Breast Cancer Invasion by Stabilizing the E-Cadherin/Catenin Complex. Cancers (Basel) 11.

      Liu, P., Gan, W., Su, S., Hauenstein, A. V., Fu, T. M., Brasher, B., Schwerdtfeger, C., Liang, A. C., Xu, M., and Wei, W. (2018). K63-linked polyubiquitin chains bind to DNA to facilitate DNA damage repair. Sci Signal 11.

      Pettersson, S., Sczaniecka, M., McLaren, L., Russell, F., Gladstone, K., Hupp, T., and Wallace, M. (2013). Non-degradative ubiquitination of the Notch1 receptor by the E3 ligase MDM2 activates the Notch signalling pathway. Biochem J 450, 523-536.

      Riscal, R., Schrepfer, E., Arena, G., Cisse, M. Y., Bellvert, F., Heuillet, M., Rambow, F., Bonneil, E., Sabourdy, F., Vincent, C., et al. (2016). Chromatin-Bound MDM2 Regulates Serine Metabolism and Redox Homeostasis Independently of p53. Mol Cell 62, 890-902.

    1. Reviewer #2 (Public Review):

      Summary:

      Turning behavior plays a crucial role in animal exploration and escape responses, regardless of the presence or absence of environmental cues. These turns can be broadly categorized into two categories: strong reorientations, characterized by sudden changes in path directionality, and smooth turns, which involve gradual changes in the direction of motion, leading to sinuosity and looping patterns. One of the key model animals to study these behaviors is the nematode Caenorhabditis elegans, in which the role of strong reorientations has been thoroughly studied. Despite their impact on trajectories, smooth turns have received less attention and remain poorly understood. This study addresses this gap in the literature, by studying the interplay between smooth turns and strong reorientations in nematodes moving in a uniform environment, surrounded by an aversive barrier. The authors use this set-up to study both exploration behavior (when the worm is far from the aversive barrier) and avoidance behavior (when the worm senses the aversive barrier). The main claims of the paper are that (1) during exploratory behavior, the parameters governing strong reorientations are optimized to compensate for the effect of smooth turns, increasing exploration efficiency, and (2) during avoidance, strong reorientations are biased towards the side that maximizes escape success. To support these two claims, the paper presents a detailed quantitative characterization of the statistics of smooth turns and strong reorientations. These results offer insights that may interest a diverse audience, including those in movement ecology, animal search behavior, and the study of Caenorhabditis elegans. In our opinion, the experimental work and data analysis are of the highest quality, resulting in a very clean characterization of C. elegans' turning behavior. However, the experimental design and data analyses presented are not fully aligned with some of the central conclusions drawn, and in particular, we believe that further work is needed to fully support the claim that strong reorientations are optimized to increase exploration efficiency.

      Strengths:

      The authors have addressed important questions in movement ecology through hypothesis-driven experiments. The choice of C. elegans as a model organism to investigate the impact of turning dynamics on escape and exploration is well-justified by its limited repertoire of strong reorientation behaviors and consistent turning bias across strains and individuals. The quality of the experimental data is very high, using state-of-the-art techniques, and a set-up where a robust and reproducible avoidance response can be studied. The data analysis benefits from state-of-the-art techniques and a deep understanding of C. elegans' behavior, resulting in a very clean and very clear set of results. We particularly appreciated the use of a ventral/dorsal reference system (rather than a left/right one), which is more natural and insightful. As a result, the paper presents one of the best characterizations of C. elegans sharp turning behavior published to date. We find that the claim that strong reorientations are chosen in a way that optimizes avoidance behavior is solid and well-supported. The manuscript is well-written and maintains a coherent line of reasoning throughout.

      Weaknesses:

      Our primary concerns revolve around the significance and rigor of the research on exploratory behavior. First, we believe that the experimental arena was too small for accurately observing the unfolding of exploration. The movement of assayed animals was clearly impaired by boundary effects, which obscured key elements of C. elegans exploratory behavior such as the mean square displacement or large-scale trajectory structures emerging from curvature bias. Second, we think that the proof that strong reorientations are optimized to maximize exploration performance is too indirect: it relies on a particular model with some unrealistic assumptions and lacks a quantification of the gains provided by the optimization to the individuals. We believe that a more thorough and direct analysis would be needed to fully support the claim.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Responses to recommendations

      Reviewer #1 (Recommendations For The Authors):

      Describe more precisely how gene expression graphs are built (tissues, reads counts). For example, how were read counts normalized? Were they from DESeq2 data, which only works by comparing two samples? If so, all samples should be independently compared to a reference and the normalized expression value of the reference will change from sample to sample... thus introducing a pure technical artifact.

      We have added additional information about the normalisation method to the

      Material and Methods section (Lines 597-598: “Lastly, expression levels shown in figures 2-5 are normalised gene counts produced by DESeq2.”) and figure legends

      (lines 247, 286, 372, 404: “Gene expression data was generated from whole fish.

      Expression levels were derived from DESeq2 normalised gene counts.”) to address this recommendation. 

      DESeq2 provides a reference independent normalisation through a median of ratios method (a good explanation can be found here:

      https://hbctraining.github.io/DGE_workshop/lessons/02_DGE_count_normalization.h tml). The normalised expression values are independent of any reference, and therefore will not change from sample and sample as suggested in this comment. In contrast, the pairwise comparisons are done when analysing significantly differentially expressed genes between two treatments using a Wald test, which is done against a reference and generates log2 fold change information and p-values.; however, this is different to the normalisation we described above.

      Provide bioinformatics workflows and, if possible, the set of parameters used, the computing resources, etc. Were some assembly finishing steps carried out (by long-range PCR?) and experimental validations (especially for allelespecific transcripts, by conventional RT-PCR based on diagnostic mutations)?

      We have added additional information on the bioinformatics workflows where required, including parameters used (Lines 530, 536, 549-551, and 574-583.). No finishing steps other than HiC scaffolding were performed. No allele-specific analysis was done as part of this manuscript.

      To further improve transparency, we have also uploaded all the scripts used for this study to https://github.com/R-Huerlimann/Malabar_grouper_genome and the gene models and functional annotation to https://figshare.com/projects/Malabar_grouper_Epinephelus_malabaricus_genome_ annotation/199909. This information has been added to the manuscript in lines 600601 and 609-611.

      Reviewer #3 (Recommendations For The Authors):

      General author response:

      All the recommendations of this reviewer are very relevant and would certainly provide a lot of information, but they are constituting a full project in themselves as they would imply establishing this grouper species as an experimental model in our lab. Currently we only have access to the larval and juvenile stages via a collaboration with the Okinawa Prefectural Sea Farming Center, which is an hour drive from our lab, and is limited to the grouper spawning season. If we want to do all what is suggested, we need to have a regular and easy access to the fishes. This would require establishing this model in our marine station, which is not possible due to space and time issues. These groupers grow to a very large size (1-2 m in length, and up to 150 kg in weight) and only mature into males after > 6 years.

      First and foremost, I would advise the authors to extend their TH and cortisol levels measurements to the entire developmental time considered in their analysis.

      For the reasons stated above we could not perform these experiments. We must emphasize that the data regarding TH are available for a closely related species (e.g., Epinephelus coioides, de Jesus et al. 1998) and there is no reason to think that the situation will be drastically different in E. malabaricus. In addition, given that we have now studied several coral reef fish species in the same context (clownfish, surgeonfish, damselfish, gobies) we observed that the transcriptomic data are more robust, more sensitive, and more precise than hormone measurements. 

      Consider carrying out in situ hybridisation of TSH with putative CRH receptors to determine if thyrotrophin could be competent to respond to HPA axis signals.

      We agree studying the interplay between corticoids and thyroid hormones at the neuroendocrine level would be desirable and we fully agree with the experiment suggested by the reviewer, but this is impossible in our current situation. We are not working with an establish animal model like zebrafish or Xenopus, but with a large, long-lived marine fish that reproduces in spawning aggregations and whose husbandry is notoriously difficult.

      Consider conducting cortisol treatment experiments to functionally determine if indeed cortisol is involved in grouper metamorphosis.

      We tried to do TH and cortisol treatments specifically on the early larval stages corresponding to the early TH peak to see how this would impact the development of the fin spines, but our trials were unsuccessful. The larvae at that stage are extremely fragile and even putting them into small volumes of treatment drugs induced massive mortalities. Again, this would mean establishing this grouper species as a model organism and would require a massive effort to improve larval rearing as discussed above. We feel that our data stands on its own in the meantime and adds valuable information to the existing literature by studying a rarely investigated species.

      Responses to comments

      Reviewer #1 (Public Review):

      Weaknesses:

      The manuscript needs proper editing and is not complete. Some wordings lack precision and make it difficult to follow (e.g. line 98 "we assembled a chromosome-scale genome of ..." should read instead "we assembled a chromsome-scla genome sequence of ...". Also, panel Figure 2E is missing.

      We made the suggested change of adding “sequence” in lines 32 and 121. Concerning additional changes, we have carefully edited our manuscript and looked for any incomplete sections. Unfortunately, it is difficult to see what other issues are being raised here without any further information. 

      As for panel E of figure 2, it is not missing. The panel is located to the right, just below “Target Cells”.

      The shortcomings of the manuscripts are not limited to the writing style, and important technical and technological information is missing or not clear enough, thereby preventing a proper evaluation of the resolution of the genomic resources provided:

      Several RNASeq libraries from different tissues have been built to help annotate the genome and identify transcribed regions. This is fine. But all along the manuscript, gene expression changes are summarized into a single panel where it is not clear at all which tissue this comes from (whole embryo or a specific tissue ?), or whether it is a cumulative expression level computed across several tissues (and how it was computed) etc. This is essential information needed for data interpretation.

      No fertilised eggs or embryos have been sequenced. The individual tissues derived from juvenile fish were used for the genome annotation only, using ISOseq. The whole larval fish were used for the developmental analysis using RNAseq, as well as the genome annotation. We have added additional information in the figures and text that the results shown are from whole larvae, and added more detail to the material and methods section about which type of sample was analysed in which way.

      Specifically, we have added “Lastly, expression levels shown in figures 2-5 are normalised gene counts produced by DESeq2.” to lines 597-598 in the Material and Methods section, “Gene expression data was generated from whole larvae.” to line 191, and “Gene expression data was generated from whole fish. Expression levels were derived from DESeq2 normalised gene counts.” to the figure legends in lines 247, 286, 372, 404). Additionally, we have added clarifications in lines 489, 497, 530, and 536. 

      The bioinformatic processing, especially of the assemble and annotation, is very poorly described. This is also a sensitive topic, as illustrated by the numerous "assemblathon" and "annotathon" initiatives to evaluate tools and workflows. Importantly, providing configuration files and in-depth description of workflows and parameter settings is highly recommended. This can be made available through data store services and documents even benefit from DOIs. This provides others with more information to evaluate the resolution of this work. No doubt that it is well done,but especially in the field of genome assembly and annotation, high resolution is VERY cost and time-intensive. Not surprisingly, most projects are conditioned by trade-offs between cost, time, and labor. The authors should provide others with the information needed to evaluate this.

      We have added additional information on parameters used in the genome assembly, annotation and transcriptome analysis in lines 549-551, 577, 579, 580, and 582. Additionally, we have uploaded all scripts to github as outlined in the Code and Data Availability section (lines 599-614).

      The genome assembly did not use a specific workflow (e.g., nextflow), but was done with a simple command and standard parameters in IPA. Scaffolding was carried out by Phase Genomics using their standardised proprietary workflow, of which a detailed description provided by Phase Genomics can be found in the supplementary material.

      Quantifications of T3 and T4 levels look fairly low and not so convincing. The work would clearly benefit from a discussion about why the signal is so low and what are the current technological limitations of these quantifications.

      This would really help (general) readers.

      The T3/T4 levels are consistent with other published work in fish. In the present manuscript for grouper we have a peak level of 1.2 ng/g (1,200 pg/g) of T4 and 0.06 ng/g (60 pg/g) of T3. This is a higher level of T4 and comparable level of T3 to what was found in convict tang (Holzer et al. 2017; Figure 2) with 30 pg/g of T4 and 100 pg/g of T3. Of course, there are also examples with higher levels, such as clownfish (Roux et al. 2023; Figure 1), with 10 ng/g (10,000 pg/g) of T4 and 2 ng/g (2,000 pg/g) of T3.

      The differences could be due to different structure of fish tissues and therefore different hormone extraction efficiency, different hormone measurement protocols, different fish physiology, different fish size (e.g., the weighting of tiny grouper larvae is difficult and less precise than in convict tang). What is important is not the absolute level but the relative level, which shows the change within different larval stages of a species with identical extraction and measurement protocols. Which means our data is internally consistent and coherent with what the grouper literature says.

      Holzer, Guillaume, et al. "Fish larval recruitment to reefs is a thyroid hormonemediated metamorphosis sensitive to the pesticide chlorpyrifos." Elife 6 (2017): e27595.

      Roux, Natacha, et al. "The multi-level regulation of clownfish metamorphosis by thyroid hormones." Cell Reports 42.7 (2023).

      Differential analysis highlights up to ~ 15,000 differentially expressed genes (DEG), out of a predicted 26k genes. This corresponds to more than half of all genes. ANOVA-based differential analysis relies on the simple fact that only a minority of genes are DEG. Having >50% DEG is well beyond the validity of the method. This should be addressed, or at least discussed.

      The large number of differentially expressed genes is due to the fact that this is coming from a larval developmental transcriptome going from one day old larva to fully metamorphosed juveniles at around day 60. 

      While DESeq2 indeed works on an assumption that most genes are not differentially expressed, this affects normalization but not hypothesis testing (Wald-test, LRT tests or ANOVA). However, normalisation in DESeq2 is fairly robust to this assumption. According to the author of DESeq2, Micheal Love, DESeq2 is using the median ratio for normalisation, and as long as the number of up and down regulated genes is relatively even, DESeq2 will be able to handle the data. As part of our general quality control for this project we consulted the MA plots, which do not show any overrepresented up or down expression patterns. Additionally see Michael Love comment on comparing different tissues, which is also applicable here when comparing vastly different larval stages (https://support.bioconductor.org/p/63630/):

      “For experiments where all genes increase in expression across conditions, the median ratio method will not be able to capture this difference, but this is typically not the case for a tissue comparison, as there are many "housekeeping" genes with relatively similar expression pattern across tissues.”

      Reviewer #3 (Public Review):

      Weaknesses:

      However, the authors make substantial considerations that are not proven by experimental or functional data. In fact, this is a descriptive study that does not provide any functional evidence to support the claims made.

      We agree with the reviewer that our paper lacks functional experiments but despite that, the transcriptomic data clearly show the activation of TH and corticoid pathways during two distinct periods: an early activation between D1 and D10, and a second one between D32 and juvenile stage. These data are interesting as they call for further examination of 1) the existence of an early larval developmental step also involving TH and corticosteroids and 2) the possible interaction of corticoids and TH during metamorphosis. This is a question that is certainly not settled yet in teleost fishes and which is of great interest.

      Especially 1) is of interest and importance, since this early activation (unique to our knowledge in any teleost fish studied so far) raises a lot of new questions and once again will certainly be scrutinised by other groups in the years to come, therefore ensuring a good citation impact of this study. We hope that the reviewer, while disagreeing with some our statements, will recognize that our study will be stimulating at that level and that this is what scientific studies should do.

      We acknowledge the descriptive nature of the data and the lack of functional experiments in the Discussion in lines 443 to 445: “This may suggest that in some aspect, cortisol synthesis could work in concert with TH, as has been shown in several different contexts in amphibians, but functional experiments need to be conducted to confirm this hypothesis.” As stated above doing such functional experiment would require establishing the grouper as an experimental model in our husbandry, which currently is not possible due to the large size of the adult fish.

      The consideration that cortisol is involved in metamorphosis in teleosts has never been shown, and the only example cited by the authors (REF 20) clearly states that cortisol alone does not induce flatfish metamorphosis. In that work, the authors clearly state that in vivo cortisol treatment had no synergistic effect with TH in inducing metamorphosis. Moreover, in Senegalensis, the sole pre-otic CRH neuron number decreases during metamorphosis, further arguing that, at least in flatfish, cortisol is not involved in flatfish metamorphosis (PMID: 25575457).  

      We will do our best to improve the clarity of the revised manuscript to avoid any misunderstanding about our claims. However, we would like to point out the semantic shift in the reviewer first sentence: Indeed “being involved” is not the same as “cortisol alone does not induce”. In ref 20 the authors explicitly wrote that “Cortisol further enhanced the effects of both T4 and T3, but was ineffective in the absence of thyroid hormones” and in our view this indeed corresponds to ”being involved in metamorphosis”.

      We are not claiming that cortisol alone is involved in metamorphosis as the reviewer suggests, but simply that there is a possible involvement of cortisol together with TH in metamorphosis. We stand on this claim as we indeed observed an activation of corticoid pathway genes around D32, which is sufficient to say it is involved. We do agree that functional experiments will be needed to properly demonstrate the involvement of corticoids in grouper metamorphosis, but this was not possible in the current study as it would imply to set up a full grouper life cycle in lab conditions which is impossible for the scope of this manuscript.

      We also mentioned in the discussion that the role of corticoids in fish larval development is still debated, and we agree that this remains a contentious issue. We have clarified the Discussion on this point (lines 375-376, lines 439-464).

      We wrote that “There is contrasting evidence of communication between these two pathways during teleost fish larval development with some data suggesting a synergic and other an antagonistic relationship. In terms of synergy, an increase in cortisol level concomitantly with an increase in TH levels has been observed in flatfish [26], golden sea bream [64] and silver sea bream [65]. Cortisol was also shown to enhance in vitro the action of TH on fin ray resorption (phenomenon occurring during flatfish metamorphosis) in flounder[27]. It has also been shown that cortisol regulates local T3 bioavailability in the juvenile sole via regulation of deiodinase 2 in an organ-specific manner [66]. On the antagonistic side, it has been shown that experimentally induced hyperthyroidism in common carp decreases cortisol levels[67], whereas cortisol exposure decreases TH levels in European eel [68]. Given this scattered evidence, the existence of a crosstalk active during teleost larval development and metamorphosis has never been formally demonstrated. The results we obtained in grouper are clearly indicating that HPI axis is activated during both early development and metamorphosis and that cortisol synthesis is activated during early development. This may suggest that in some aspect, cortisol synthesis could work in concert with TH, as has been shown in several different contexts in amphibians [25], but functional experiments need to be conducted to confirm this hypothesis.” In the revised manuscript, we have also added the interesting case of the Senegal sole mentioned by the reviewer.

      In the last revision, we had also added that our results “brought a first insight into the potential role of corticoids in the metamorphosis of E. malabaricus and call for functional experiments directly testing a possible synergy” meaning that we clearly acknowledge that we are only revealing a hypothesis that remains to be tested. We later follow up with a discussion about the most novel observation and focus of our study, the increase in THs and cortisol during early development, which was unexpected and very intriguing. Again, these results suggest that there might be a link between the two, as has been shown in amphibians. This is typically the kind of results that should encourage more investigations into other fish species. Indeed, this has been pointed out by other authors and in particular by Bob Denver (probably the foremost expert on this topic) in Crespi and Denver 2012: “Elevation in HPA/I axis activity has been described prior to Metamorphosis in amphibians and fish, birth in mammals (reviewed in Crespi & Denver 2005a; Wada 2008)”. B. Denver also adds that: “Experiments in which GCs were elevated prior to metamorphosis or prior to hatching or birth (e.g. Weiss, Johnston & Moore 2007) or inhibited by treatments with GC synthesis blockers (e.g. metyrapone) or receptor antagonists (e.g. RU486, Glennemeir & Denver 2002) demonstrate that GCs play a causal role in precipitating these life-history transitions (also reviewed in Crespi & Denver 2005a; Wada 2008).” We believe the reviewer will be convinced by these elements coming from a colleague unanimously respected in the field. 

      Furthermore, the authors need to recognise that the transcriptomic analysis is whole-body and that HPA axis genes are upregulated, which does not mean they are involved in regulating the HPT axis. The authors do not show that in thyrotrophs, any CRH receptor is expressed or in any other HPT axis-relevant cells and that changes in these genes correlate with changes in TSH expression. An in-situ hybridisation experiment showing co-expression on thyrotrophs of HPA genes and TSH could be a good start. However, the best scenario would be conducting cortisol treatment experiments to see if this hormone affects grouper metamorphosis.

      We agree that functional experiments are needed to validate our hypothesis. As the early peaks of expression levels observed for many genes were very intriguing for us, we did carry out thyroid hormones and goitrogenic treatment on young grouper larvae to test their effect on the morphological changes. Unfortunately, such experiments, already tricky on metamorphosing larvae, are even more risky on such tiny individuals just after hatching and we encountered high mortality rates. We must add that because we cannot establish a full grouper life cycle under lab conditions, we have done these experiments in the context of a commercial husbandry system in Japan, which while excellent limits the scope of possible experiments. We were thus not able to provide functional validation of our hypothesis. Such experiments will be a full project in itself, requiring setting up a rearing system suitable for both larval survival and economical constraints related to drug treatments. We were further limited by the spawning times of the grouper in the operational aquaculture farm, which are limited to a short time during each year. So even if we strongly agree with the necessity of conducting such experiments, we think that this is not in the scope of the present paper, but something future research can explore.

      High TSH and Tg levels usually parallel whole-body TH levels during teleost metamorphosis. However, in this study, high Tg expression levels are only achieved at the juvenile stage, whereas high TSH is achieved at D32, and at the juvenile stage, they are already at their lowest levels.

      This is exactly our point. We observe two peaks in TSH expression, one at D3 and one at D32. The peak at D3 coincides with high thyroid hormone levels on the same day, and while we have not measured TH at D32, existing literature shows that there is a peak in TH during that time (e.g., de Jesus et al., 1998). Similarly, there is a small peak of Tg at D3. Our manuscript focused more on the upregulation of these genes at D3, which has not been reported before in the literature and raised the question of the role of TH so early in the larval development, outside of the metamorphosis period. 

      Regarding the respective levels of TSH and Tg, we first would like to add that their respective order of appearance before metamorphosis (TSH at D32, Tg after) is consistent with what we would expect. We agree however that the strong increase of Tg and TPO expression is later than expected. Therefore, we have added the following sentence in lines 212 to 216: “The respective order of appearance of TSH and Tg (TSH at D32, Tg after) is consistent with what we would expect but a bit later than expected given the morphologicl transformation. It would be interesting to revisit this in a future series of experiments, with tighter temporal sampling to study how gene expression and morphological transformation aligned.“.

      It is very difficult to conclude anything with the TH and cortisol levels measurements. The authors only measured up until D10, whereas they argue that metamorphosis occurs at D32. In this way, these measurements could be more helpful if they focus on the correct developmental time. The data is irrelevant to their hypothesis.

      We respectfully disagree with the reviewer, considering that 1) TH levels have already been investigated in groupers coinciding with pigmentation changes and fin rays resorption (Figure 4 in de Jesus et al, 1998), 2) there is also evidence in numerous fish species that TH level increase is concomitant with increase of TH related genes, and 3) we observed in our data an increase in the expression of TH related genes as well as pigmentation changes and fin rays resorption. Based on our experience in fish metamorphosis and the literature we can say confidently that those observations indicate that metamorphosis is occurring between D32 and the juvenile stage. This clearly shows that our inference is correct. Additionally, we would like to reemphasize that from our experience in several fish species transcriptomic data are more robust and precise than hormone measurements.

      However, as we were surprised by the activation of TH and corticoid pathway genes very early in the larval development (at D3), which is clearly outside of the metamorphosis period, we decided to measure TH and cortisol levels during this period of time to determine if whether or not there this surprising early activation was indeed corresponding to an increase in both TH and cortisol. As such observation has never been made in other teleost species (to our knowledge), and as we were wondering if gene activation was accompanied by hormonal increase, the measurements we did for TH and cortisol between D1 and D10 are relevant. In order to clarify our message further, we have changed some of the mentions of

      “metamorphosis” to “larval development” throughout the manuscript and added other improvements to avoid any confusion between the two periods we are studying: early larval development (between D1 and D10) and metamorphosis (between D32 and juvenile stage).  

      Moreover, as stated in the previous review, a classical sign of teleost metamorphosis is the upregulation of TSHb and Tg, which does not occur at D32 therefore, it is very hard for me to accept that this is the metamorphic stage. With the lack of TH measurements, I cannot agree with the authors. I think this has to be toned down and made clear in the manuscript that D32 might be a putative metamorphic climax but that several aspects of biology work against it. Moreover, in D10, the authors show the highest cortisol level and lowest T4 and T3 levels. These observations are irreconcilable, with cortisol enhancing or participating in TH-driven metamorphosis.

      We thank the reviewer for this comment, but we think that there might be a misunderstanding here. 

      (1) We clearly observed an increase of TSHb (that occurs between D18 and juvenile stage) and an increase of tg from D32 which coincide with the activation of other genes involved in TH pathway (dio2, dio3, and also a strong increase of TRb). All this and put in the context of what we know from previous grouper studies, clearly supports our conclusion that TH-regulated metamorphosis is starting at around D32 in grouper. We also observed morphological changes such as fin rays resorption and pigmentation changes between D32 and juvenile stage. Such morphological changes have already been associated as corresponding to metamorphosis in groupers (De Jesus et al 1998) as they occur during TH level increase, and they also happen to be under the control of TH in grouper (De Jesus et al 1998). Based on this study but also on studies (conducted on many other teleost species) showing that the increase of TH levels is always associated with an activation of TH pathway genes and morphological and pigmentation changes we concluded that metamorphosis of E. malabaricus occurs between D32 and juvenile stage. We have improved the clarity of the manuscript in several places to make sure that our conclusion is based on our transcriptomic and morphological data plus the available literature.

      (2) We clearly observed another activation of TH related gene earlier in the development (between D1 and D10, with a surge of trhrs, tg and tpo at D3. As this activation was very unexpected for us, we decided to focus the analysis of TH levels between D1 and D10 and very interestingly we observed high level of T4 at D3 indicating that THs are instrumental very precociously in the larval development of the malabar grouper which has never been shown before. We declared lines 224-225 that our “data reinforce the existence of two distinct periods of TH signalling activity, one early on at D3 and one late corresponding to classic metamorphosis at D32”. However, we agree that we could have been clearer and clearly explained that this early activation was very intriguing for us and that we wanted to investigate hormonal levels around that period. However, we never claimed anywhere in the manuscript

      that this early developmental period corresponds to metamorphosis. Something else is occurring and both TH and cortisol seem to be involved but further experiments need to be conducted to understand their role and their possible interaction. We have added corresponding statements in the abstract (lines 39-43) and discussion (lines 447 to 449).

      (3) Finally, regarding the comment about cortisol enhancing or participating in TH driven metamorphosis, our data clearly showed an activation of the corticoid pathway genes around metamorphosis (between D32 and juvenile stage) suggesting a potential implication of corticoids in metamorphosis, but we agree with the reviewer that further experiment are needed to test that. We never claimed that cortisol was enhancing or participating in metamorphosis, on the contrary we are “suggesting a possible interaction between TH and corticoid pathway during metamorphosis”. And we also say that our “results brought a first insight into the potential role of corticoids in the metamorphosis of E. malabaricus and call for functional experiments directly testing a possible synergy.” Nonetheless, we agree that some parts of our manuscript can be confusing in regards of cortisol synthesis during metamorphosis as we did not measure cortisol levels between D32 and juvenile stage. We have therefore made changes throughout the Introduction and Discussion to make this clearer.

      Given this, the authors should quantify whole-body TH levels throughout the entire developmental window considered to determine where the peak is observed and how it correlates with the other hormonal genes/systems in the analysis.

      We did not measure TH levels at later stages as it has already been measured during Epinephelus coioides metamorphosis and the morphological changes observed in this species around the TH peak corresponds to what we observed in Epinephelus malabaricus around the peak of expression of TH pathway genes (see De Jesus et al., 1998 General and Comparative Endocrinology, 112:10-16). The main focus of this manuscript is the novel observation of the existence of an early activation period observed at D3, and for which we needed TH levels to determine if they were involved in another early developmental process (not related to metamorphosis). Our hypothesis is that this early activation might be related to the growth of fin rays necessary to enhance floatability during the oceanic larval dispersal. As we may have arrived at the explanation of this hypothesis too rapidly without setting up the context well enough, we have made changes to the introduction and discussion.

      Even though this is a solid technical paper and the data obtained is excellent, the conclusions drawn by the authors are not supported by their data, and at least hormonal levels should be present in parallel to the transcriptomic data. Furthermore, toning down some affirmations or even considering the different hypotheses available that are different from the ones suggested would be very positive.

      We thank the reviewer for acknowledging the solidity of the method of our paper and the quality of the results. We agree that there were several parts where our message was unclear. We have addressed these points in the revised version of the manuscript to make sure there is no more confusion between the two distinct periods we studied in this paper (early larval development and metamorphosis). We also made sure that our claims about TH/corticoids interaction during both periods remain hypothetical as we cannot yet, despite trials, sustain them with functional experiment.

    1. Author response:

      eLife assessment

      This study offers a useful treatment of how the population of excitatory and inhibitory neurons integrates principles of energy efficiency in their coding strategies. The analysis provides a comprehensive characterisation of the model, highlighting the structured connectivity between excitatory and inhibitory neurons. However, the manuscript provides an incomplete motivation for parameter choices. Furthermore, the work is insufficiently contextualized within the literature, and some of the findings appear overlapping and incremental given previous work.

      We thank the Reviewers and the Reviewing Editor for taking time to provide extremely valuable suggestions and comments, which will help us to substantially improve our paper. In what follows we summarize our current plan to improve the paper taking up on their suggestions.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary: Koren et al. derive and analyse a spiking network model optimised to represent external signals using the minimum number of spikes. Unlike most prior work using a similar setup, the network includes separate populations of excitatory and inhibitory neurons. The authors show that the optimised connectivity has a like-to-like structure, leading to the experimentally observed phenomenon of feature competition. They also characterise the impact of various (hyper)parameters, such as adaptation timescale, ratio of excitatory to inhibitory cells, regularisation strength, and background current. These results add useful biological realism to a particular model of efficient coding. However, not all claims seem fully supported by the evidence. Specifically, several biological features, such as the ratio of excitatory to inhibitory neurons, which the authors claim to explain through efficient coding, might be contingent on arbitrary modelling choices. In addition, earlier work has already established the importance of structured connectivity for feature competition. A clearer presentation of modelling choices, limitations, and prior work could improve the manuscript.

      Thanks for these insights and for this summary of our work.

      Major comments:

      (1) Much is made of the 4:1 ratio between excitatory and inhibitory neurons, which the authors claim to explain through efficient coding. I see two issues with this conclusion: (i) The 4:1 ratio is specific to rodents; humans have an approximate 2:1 ratio (see Fang & Xia et al., Science 2022 and references therein); (ii) the optimal ratio in the model depends on a seemingly arbitrary choice of hyperparameters, particularly the weighting of encoding error versus metabolic cost. This second concern applies to several other results, including the strength of inhibitory versus excitatory synapses. While the model can, therefore, be made consistent with biological data, this requires auxiliary assumptions.

      We will describe better the ratio of numbers of E and I neurons found in real data, as suggested. The first submission already contained an analysis of how this ratio of neuron numbers depends on the weighting of the loss of E and I neurons and on the relative weighting of the encoding error vs the metabolic cost in the loss function (see Fig 6E). We will make sure that these results are suitably expanded and better emphasized in revision. We will also include new analysis of dependence of optimal parameters on the relative weighting of encoding error vs metabolic cost in the loss function when studying other parameters (namely: noise intensity, metabolic constant, ratio of mean I-I to E-I connectivity, time constants of single E and I neurons).

      (2) A growing body of evidence supports the importance of structured E-I and I-E connectivity for feature selectivity and response to perturbations. For example, this is a major conclusion from the Oldenburg paper (reference 62 in the manuscript), which includes extensive modelling work. Similar conclusions can be found in work from Znamenskiy and colleagues (experiments and spiking network model; bioRxiv 2018, Neuron 2023 (ref. 82)), Sadeh & Clopath (rate network; eLife, 2020), and Mackwood et al. (rate network with plasticity; eLife, 2021). The current manuscript adds to this evidence by showing that (a particular implementation of) efficient coding in spiking networks leads to structured connectivity. The fact that this structured connectivity then explains perturbation responses is, in the light of earlier findings, not new.

      We agree that the main contribution of our manuscript in this respect is to show how efficient coding in spiking networks can lead to structured connectivity similar to those proposed in the above papers. We apologize if this was not clear enough in the previous version. We will make it clearer in revision.  We nevertheless think it useful to report the effects of perturbations within this network because the structure derived in our network is not identical to those studied in the above paper, and because these results give information about how lateral inhibition works in this network. Thus, we will keep presenting it in the revised version, although we will de-emphasize and simplify its presentation to give more emphasis to the novelty of the derivation of this connectivity rule from the principles of efficient coding.

      (3) The model's limitations are hard to discern, being relegated to the manuscript's last and rather equivocal paragraph. For instance, the lack of recurrent excitation, crucial in neural dynamics and computation, likely influences the results: neuronal time constants must be as large as the target readout (Figure 4), presumably because the network cannot integrate the signal without recurrent excitation. However, this and other results are not presented in tandem with relevant caveats.

      We will improve the Limitations paragraph in Discussion, and also anticipate caveats in tandem with results when needed, as suggested.

      (4) On repeated occasions, results from the model are referred to as predictions claimed to match the data. A prediction is a statement about what will happen in the future - but most of the "predictions" from the model are actually findings that broadly match earlier experimental results, making them "postdictions".

      This distinction is important: compared to postdictions, predictions are a much stronger test because they are falsifiable. This is especially relevant given (my impression) that key parameters of the model were tweaked to match the data.

      We will better distinguish between pre- and post-dictions  in revision.

      Reviewer #2 (Public Review):

      Summary: In this work, the authors present a biologically plausible, efficient E-I spiking network model and study various aspects of the model and its relation to experimental observations. This includes a derivation of the network into two (E-I) populations, the study of single-neuron perturbations and lateral-inhibition, the study of the effects of adaptation and metabolic cost, and considerations of optimal parameters. From this, they conclude that their work puts forth a plausible implementation of efficient coding that matches several experimental findings, including feature-specific inhibition, tight instantaneous balance, a 4 to 1 ratio of excitatory to inhibitory neurons, and a 3 to 1 ratio of I-I to E-I connectivity strength. It thus argues that some of these observations may come as a direct consequence of efficient coding.

      Strengths:

      While many network implementations of efficient coding have been developed, such normative models are often abstract and lacking sufficient detail to compare directly to experiments. The intention of this work to produce a more plausible and efficient spiking model and compare it with experimental data is important and necessary in order to test these models.

      In rigorously deriving the model with real physical units, this work maps efficient spiking networks onto other more classical biophysical spiking neuron models. It also attempts to compare the model to recent single-neuron perturbation experiments, as well as some long-standing puzzles about neural circuits, such as the presence of separate excitatory and inhibitory neurons, the ratio of excitatory to inhibitory neurons, and E/I balance. One of the primary goals of this paper, to determine if these are merely biological constraints or come from some normative efficient coding objective, is also important.

      Though several of the observations have been reported and studied before (see below), this work arguably studies them in more depth, which could be useful for comparing more directly to experiments.

      Thanks for these insights and for the kind words of appreciation of the strengths of our work.

      Weaknesses:

      Though the text of the paper may suggest otherwise, many of the modeling choices and observations found in the paper have been introduced in previous work on efficient spiking models, thereby making this work somewhat repetitive and incremental at times. This includes the derivation of the network into separate excitatory and inhibitory populations, discussion of physical units, comparison of voltage versus spike-timing correlations, and instantaneous E/I balance, all of which can be found in one of the first efficient spiking network papers (Boerlin et al. 2013), as well as in subsequent papers. Metabolic cost and slow adaptation currents were also presented in a previous study (Gutierrez & Deneve 2019). Though it is perfectly fine and reasonable to build upon these previous studies, the language of the text gives them insufficient credit.

      We will improve the text to make sure that credit to previous studies is more precisely and more clearly given.

      Furthermore, the paper makes several claims of optimality that are not convincing enough, as they are only verified by a limited parameter sweep of single parameters at a time, are unintuitive and may be in conflict with previous findings of efficient spiking networks. This includes the following. Coding error (RMSE) has a minimum at intermediate metabolic cost (Figure 5B), despite the fact that intuitively, zero metabolic cost would indicate that the network is solely minimizing coding error and that previous work has suggested that additional costs bias the output. Coding error also appears to have a minimum at intermediate values of the ratio of E to I neurons (effectively the number of I neurons) and the number of encoded variables (Figures 6D, 7B). These both have to do with the redundancy in the network (number of neurons for each encoded variable), and previous work suggests that networks can code for arbitrary numbers of variables provided the redundancy is high enough (e.g., Calaim et al. 2022). Lastly, the performance of the E-I variant of the network is shown to be better than that of a single cell type (1CT: Figure 7C, D). Given that the E-I network is performing a similar computation as to the 1CT model but with more neurons (i.e., instead of an E neuron directly providing lateral inhibition to its neighbor, it goes through an interneuron), this is unintuitive and again not supported by previous work. These may be valid emergent properties of the E-I spiking network derived here, but their presentation and description are not sufficient to determine this.

      We are addressing this issue in two ways. First, we will present results of joint sweeps of variations of pairs of parameters whose joint variations are expected to influence optimality in a way that cannot be understood varying one parameter at a time. Namely we plan to vary jointly the noise intensity and the metabolic constant, as well as the ratio of E to I neuron numbers and the ratio of mean I-I to E-I connectivity. Second, we will individuate a reasonable/realistic range of possible variations of each individual parameter and then perform a Monte Carlo search for the optimal point within this range, and compare the so-obtained results with those obtained from the understanding gained from varying one or two parameters at a time.  We will also add the suggested citation to Calaim et al. 2022 in regard to the points discussed above.

      We will improve the comparison between the Excitatory-Inhibitory and the 1-Cell-Type model (see reply to the suggestions of Referee 3 for more details).

      Alternatively, the methodology of the model suggests that ad hoc modeling choices may be playing a role. For example, an arbitrary weighting of coding error and metabolic cost of 0.7 to 0.3, respectively, is chosen without mention of how this affects the results. Furthermore, the scaling of synaptic weights appears to be controlled separately for each connection type in the network (Table 1), despite the fact that some of these quantities are likely linked in the optimal network derivation. Finally, the optimal threshold and metabolic constants are an order of magnitude larger than the synaptic weights (Table 1). All of these considerations suggest one of the following two possibilities. One, the model has a substantial number of unconstrained parameters to tune, in which case more parameter sweeps would be necessary to definitively make claims of optimality. Or two, parameters are being decoupled from those constrained by the optimal derivation, and the optima simply corresponds to the values that should come out of the derivation.

      In the previously submitted manuscript we presented both the encoding error and the metabolic cost separately as a function of the parameters, so that readers could get an understanding of how stable optimal parameters would be to the change of the relative weighting of encoding error and metabolic cost. We will improve this work by adding the suggested calculations to provide quantitative measures of the dependence of the optimal network parameters and configurations on this relative weighting.

      Reviewer #3 (Public Review):

      Summary: In their paper the authors tackle three things at once in a theoretical model: how can spiking neural networks perform efficient coding, how can such networks limit the energy use at the same time, and how can this be done in a more biologically realistic way than previous work?

      They start by working from a long-running theory on how networks operating in a precisely balanced state can perform efficient coding. First, they assume split networks of excitatory (E) and inhibitory (I) neurons. The E neurons have the task to represent some lower dimensional input signal, and the I neurons have the task to represent the signal represented by the E neurons. Additionally, the E and I populations should minimize an energy cost represented by the sum of all spikes. All this results in two loss functions for the E and I populations, and the networks are then derived by assuming E and I neurons should only spike if this improves their respective loss. This results in networks of spiking neurons that live in a balanced state, and can accurately represent the network inputs.

      They then investigate in-depth different aspects of the resulting networks, such as responses to perturbations, the effect of following Dale's law, spiking statistics, the excitation (E)/inhibition (I) balance, optimal E/I cell ratios, and others. Overall, they expand on previous work by taking a more biological angle on the theory and showing the networks can operate in a biologically realistic regime.

      Strengths:

      (1) The authors take a much more biological angle on the efficient spiking networks theory than previous work, which is an essential contribution to the field.

      (2) They make a very extensive investigation of many aspects of the network in this context, and do so thoroughly.

      (3) They put sensible constraints on their networks, while still maintaining the good properties these networks should have.

      Thanks for this summary and for these kind words of appreciation of the strengths of our work.

      Weaknesses:

      (1) The paper has somewhat overstated the significance of their theoretical contributions, and should make much clearer what aspects of the derivations are novel. Large parts were done in very similar ways in previous papers. Specifically: the split into E and I neurons was also done in Boerlin et al (2008) and in Barrett et al (2016). Defining the networks in terms of realistic units was already done by Boerlin et al (2008). It would also be worth it to discuss Barrett et al (2016) specifically more, as there they also use split E/I networks and perform biologically relevant experiments.

      We will improve the text to make sure that credit to previous studies is more precisely and more clearly given.

      (2) It is not clear from an optimization perspective why the split into E and I neurons and following Dale's law would be beneficial. While the constraints of Dale's law are sensible (splitting the population in E and I neurons, and removing any non-Dalian connection), they are imposed from biology and not from any coding principles. A discussion of how this could be done would be much appreciated, and in the main text, this should be made clear.

      We indeed removed non-Dalian connections because having only connections respecting Dale’s law is a major constraint for biological plausibility. Our logic was to consider efficient coding within the space of networks that satisfy this (and other) biological plausibility constraints. We did not intend to claim that removing the non-Dalian connections was the result of an analytical optimization. However, to get better insights into how Dale’s Law constrains or influences the design of efficient networks, we added a comparison of the coding properties of networks that either do or do not satisfy Dale’s law. We apologize if this was not sufficiently clear in the previous version and we will clarify this in revision. 

      (3) Related to the previous point, the claim that the network with split E and I neurons has a lower average loss than a 1 cell-type (1-CT) network seems incorrect to me. Only the E population coding error should be compared to the 1-CT network loss, or the sum of the E and I populations (not their average). In my author recommendations, I go more in-depth on this point.

      We will perform the suggested detailed comparisons between the network loss in the 1CT-model and E-I model and then revise or refine conclusions if and as needed, according to the results we will obtain.

      (4) While the paper is supposed to bring the balanced spiking networks they consider in a more experimentally relevant context, for experimental audiences I don't think it is easy to follow how the model works, and I recommend reworking both the main text and methods to improve on that aspect.

      We will try to make the presentation of the model more accessible to a non-computational audience.

      Assessment and context: Overall, although much of the underlying theory is not necessarily new, the work provides an important addition to the field. The authors succeeded well in their goal of making the networks more biologically realistic, and incorporating aspects of energy efficiency. For computational neuroscientists, this paper is a good example of how to build models that link well to experimental knowledge and constraints, while still being computationally and mathematically tractable. For experimental readers, the model provides a clearer link between efficient coding spiking networks to known experimental constraints and provides a few predictions.

      Thanks for these kind words. We will make sure that these points emerge more clearly and in a more accessible way from the revised paper.

    1. https://web.archive.org/web/20240725080148/https://fossacademic.tech/2024/02/11/Move-Slowy-Preview.html [[Move Slowly and Build Bridges by Robert Gehl]] is a forthcoming book on 'Mastodon, the Fediverse, and the Struggle for Ethical Social Media'. This post gives summaries per chapter of the draft. Ch1 focuses on Xodus after Musk only. Odd, there are many examples where costs of leaving socmed platforms played a role, which may well be more informative than just n=1. Ch 2 on AP as protocol Ch 3 CoC as a social layer on networked tech (no regard here it seems for the fact that human networks exist outside of tech and span multiple tech platforms simultaneously, and themselves have social norms that guid behaviour regardless whether codified in CoC or expressed in federation choices) Ch 4 on blocking and defederation as a needed safety tool. Socially I think the default might need to be the other way around, federating is the choice, defed the default, as it is how we do it socially irl. We are not unwelcoming to newcomers in a group but we are wary. Ch 5. Who pays for the fediverse infra. Short answer is we all do/many of us do. I pay my own instance, and also contribute hours to the governance of the largest Dutch instance. Good point about people forgetting there are other bizz models for digital media than what centralised adtech kraken do. Ch 6. on eco impact of socmed, and need of awareness what running this stuff costs ecologically. Seems to then pivot to how degrowth and solarpunk people using fediverse tech to interact, which is not the same thing. (It says mitigate, but compared to what, X? ) Ch 7. Threads , or the corp reaction to a growing fediverse. Conclusion, this is where the ethics will be discussed finally.

      Forthcoming w Oxford Univ Press. Not sure this is for me, reads like a snapshot with a limited time window in which it might be informative. Perhaps of interest for [[Stichting ActivityClub Bestuur Hoofdnote]].

    1. Reviewer #1 (Public Review):

      Summary:

      Boldt et al test several possible relationships between trandiagnostically-defined compulsivity and cognitive offloading in a large online sample. To do so, they develop a new and useful cognitive task to jointly estimate biases in confidence and reminder-setting. In doing so, they find that over-confidence is related to less utilization of reminder-setting, which partially mediates the negative relationship between compulsivity and lower reminder-setting. The paper thus establishes that, contrary to the over-use of checking behaviors in patients with OCD, greater levels of transdiagnostically-defined compulsivity predict less deployment of cognitive offloading. The authors offer speculative reasons as to why (perhaps it's perfectionism in less clinically-severe presentations that lowers the cost of expending memory resources), and set an agenda to understand the divergence in cognition between clinical and nonclinical samples. Because only a partial mediation had robust evidence, multiple effects may be at play, whereby compulsivity impacts cognitive offloading via overconfidence and also by other causal pathways.

      Strengths:

      The study develops an easy-to-implement task to jointly measure confidence and replicates several major findings on confidence and cognitive-offloading. The study uses a useful measure of cognitive offloading - the tendency to set reminders to augment accuracy in the presence of experimentally manipulated costs. Moreover, the utilizes multiple measures of presumed biases - overall tendency to set reminders, the empirically estimated indifference point at which people engage reminders, and a bias measure that compares optimal indifference points to engage reminders relative to the empirically-observed indifference points. That the study observes convergenence along all these measures strengthens the inferences made relating compulsivity to the under-use of reminder-setting. Lastly, the study does find evidence for one of several a priori hypotheses and sets a compelling agenda to try to explain why such a finding diverges from an ostensible opposing finding in clinical OCD samples and the over-use of cognitive offloading.

      Weaknesses:

      Although I think this design and study are very helpful for the field, I felt that a feature of the design might reduce the tasks's sensitivity to measuring dispositional tendencies to engage cognitive offloading. In particular, the design introduces prediction errors, that could induce learning and interfere with natural tendencies to deploy reminder-setting behavior. These PEs comprise whether a given selected strategy will be or not be allowed to be engaged. We know individuals with compulsivity can learn even when instructed not to learn (e.g., Sharp, Dolan, and Eldar, 2021, Psychological Medicine), and that more generally, they have trouble with structure knowledge (eg Seow et al; Fradkin et al), and thus might be sensitive to these PEs. Thus, a dispositional tendency to set reminders might be differentially impacted for those with compulsivity after an NPE, where they want to set a reminder, but aren't allowed to. After such an NPE, they may avoid more so the tendency to set reminders. Those with compulsivity likely have superstitious beliefs about how checking behaviors leads to a resolution of catastrophes, which might in part originate from inferring structure in the presence of noise or from purely irrelevant sources of information for a given decision problem.

      It would be good to know if such learning effects exist if they're modulated by PE (you can imagine PEs are higher if you are more incentivized - e.g., 9 points as opposed to only 3 points - to use reminders, and you are told you cannot use them), and if this learning effect confounds the relationship between compulsivity and reminder-setting.

      A more subtle point, I think this study can be more said to be an exploration than a deductive test of a particular model -> hypothesis -> experiment. Typically, when we test a hypothesis, we contrast it with competing models. Here, the tests were two-sided because multiple models, with mutually exclusive predictions (over-use or under-use of reminders) were tested. Moreover, it's unclear exactly how to make sense of what is called the direct mechanism, which is supported by partial (as opposed to complete) mediation.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2024-02394

      Corresponding author(s): Altman, Brian J

      1. General Statements [optional]

      We thank all three Reviewers for their insightful and helpful feedback and suggestions. We strongly believe that addressing these comments has now resulted in a much-improved manuscript. We appreciate that the Reviewers found the manuscript "interesting" with "valuable insights and... obvious novelty", "an important study that is well-done", and "an important understanding of the crosstalk between cancer cells and immune cells as well as the understanding of how the TME disrupts circadian rhythms". All three Reviewers requested a significant revision, which we provide here. We carefully and completely responded to each Reviewer question or suggestion, in most cases with new experiments and text, and in a very few cases with changes or additions to the Discussion section. This includes new data in seven of the original Figures and Supplementary Figures, and one new main Figure and three new Supplementary Figures. Highlights of these new data include testing the role of low pH in cancer cell supernatant on macrophage rhythms, and analysis of single-cell RNA-sequencing data for heterogeneity in macrophage circadian gene expression. Additional experiments were also performed that were not included in the manuscript, and these data are presented in this Response. A detailed point-by-point response to each comment is included below with excerpts of the data and updated text for the reviewers. Please note that the PDF version of this Response includes images of the new Figures inserted in to the manuscript.

      2. Point-by-point description of the revisions

      __Reviewer #1 __

      Evidence, reproducibility and clarity

      The manuscript by Knudsen-Clark et al. investigates the novel topic of circadian rhythms in macrophages and their role in tumorigenesis. The authors explore how circadian rhythms of macrophages may be influenced by the tumor microenvironment (TME). They utilize a system of bone marrow-derived macrophages obtained from transgenic mice carrying PER2-Luciferase (PER2-Luc), a trackable marker of rhythmic activity. The study evaluates how conditions associated with the TME, such as polarizing stimuli (to M1 or M2 subtype), acidic pH, and elevated lactate, can each alter circadian rhythms in macrophages. The authors employ several approaches to explore macrophage functions in cancer-related settings. While the manuscript presents interesting findings and may be the first to demonstrate that tumor stimuli alter circadian rhythms in macrophages and impact tumor growth, it lacks a clear conclusion regarding the role of altered circadian rhythms in suppressing tumor growth. Several discrepancies need to be addressed before publication, therefore, the manuscript requires revision before publication, addressing the following comments:

      We thank Reviewer #1 for the comments regarding the quality of our work and are pleased that the Reviewer finds that this manuscript "presents interesting findings and may be the first to demonstrate that tumor stimuli alter circadian rhythms in macrophages and impact tumor growth". We have addressed all comments and critiques from Reviewer #1 below. To summarize, we added new data on how different macrophage polarization states affect media pH (Supplementary Figure 4), further characterized gene expression in our distinct macrophage populations (Supplementary Figure 1), provided clarity in the data and text on the universal nature of Clock Correlation Distance (CCD) across macrophage populations (Figure 6), included human tumor-associated macrophage (TAM) data for CCD (Figure 7) analyzed single-cell RNA-sequencing data of TAMs to demonstrate heterogeneity in circadian gene expression (Figure 9), and used tumor-conditioned media to show that low pH still affects macrophage rhythms in this context *Supplementary Figure 5". Thanks to the helpful suggestions of the Reviewer, we also made numerous clarifications and fixed a critical referencing error that the Reviewer identified.

      Major comments: 1. It is well known that pro-inflammatory macrophages primarily rely on glycolysis during inflammation, exhibiting dysregulated tricarboxylic acid (TCA) cycle activity. These pro-inflammatory macrophages are commonly referred to as 'M1' or pro-inflammatory, as noted in the manuscript. In contrast, M2 macrophages, or pro-resolution macrophages, are highly dependent on active mitochondrial respiration and oxidative phosphorylation (OXPHOS). Given that M1 macrophages favor glycolysis, they create an acidic environment due to elevated lactate levels and other acidifying metabolites. However, the study does not address this effect. The authors' hypothesis revolves around the acidic environment created by glycolytic tumors, yet they overlook the self-induced acidification of media when culturing M1 macrophages. This raises the question of how the authors explain the reduced circadian rhythms observed in pro-inflammatory macrophages in their study, while low pH and higher lactate levels enhance the amplitude of circadian rhythms. I would encourage the authors to incorporate the glycolytic activity of pro-inflammatory macrophages into their experimental setup. Otherwise the data look contradictory and misleading in some extent.

      We appreciate the important point Reviewer #1 made that macrophages polarized toward a pro-inflammatory phenotype such as those stimulated with IFNγ and LPS (M1 macrophages) prioritize metabolic pathways that enhance glycolytic flux, resulting in increased release of protons and lactate as waste products from the glycolysis pathway. In this way, polarization of macrophages toward the pro-inflammatory phenotype can lead to acidification of the media, which may influence our observations given that we are studying the effect of extracellular pH on rhythms in macrophages. To address this point, we have performed additional experiments in which we measured pH of the media to capture changes in media pH that occur during the time in which we observe changes in rhythms of pro-inflammatory macrophages.

      In line with the documented enhanced glycolytic activity of pro-inflammatory macrophages, the media of pro-inflammatory macrophages is acidified over time, in contrast to media of unstimulated or pro-resolution macrophages. Notably, while pH decreased over time in the pro-inflammatory group, the pH differential between the pH7.4, pH6.8, and pH6.5 sample groups was maintained over the period in which we observe and measure changes in circadian rhythms of pro-inflammatory macrophages. Additionally, media that began at pH 7.4 was acidified only to pH 7 by day 2, above the acidic pH of 6.8 or 6.5. As a result, there remained a difference in pH between the two groups (pH 7.4 and pH 6.5) out to 2 days consistent with the changes in rhythms that we observe between these two groups. This indicates that the difference in circadian rhythms observed in pro-inflammatory macrophages cultured at pH 7.4 compared to pH 6.5 were indeed due to the difference in extracellular pH between the two conditions. We have incorporated these data, shown below, into Supplementary Figure 4 and added the following discussion of these data to the Results section:

      "In line with their documented enhanced glycolytic capacity, pro-inflammatory macrophages acidified the media over time (Supplementary Figure 4C). Notably, while pH of the media the pro-inflammatory macrophages were cultured in decreased over time pH, the pH differential between the pH 7.4, pH 6.8, and pH 6.5 samples groups of pro-inflammatory macrophages was maintained out to 2 days, consistent with the changes in rhythms that we observe and measure between these groups."

      The article examines the role of circadian rhythms in tumor-associated macrophages, yet it lacks sufficient compelling data to support this assertion. Two figures, Figure 7 and Figure 9, are presented in relation to cancer. In Figure 7, gene expression analysis of Arg1 (an M2 marker) and Crem (a potential circadian clock gene) is conducted in wild-type macrophages, BMAL1-knockout macrophages with dysregulated circadian rhythms, and using publicly available data on tumor-associated macrophages from a study referenced as 83. However, it is noted that this referenced study is actually a review article by Geeraerts et al. (2017) titled "Macrophage Metabolism as Therapeutic Target for Cancer, Atherosclerosis, and Obesity" published in Frontiers in Immunology. This raises concerns about the reliability of the results. Furthermore, comparing peritoneal macrophages from healthy mice with macrophages isolated from lung tumors is deemed inaccurate. It is suggested that lung macrophages from healthy mice and those from mice with lung tumors should be isolated separately for a more appropriate comparison. Consequently, Figure 7B is further questioned regarding how the authors could compare genes from the circadian rhythm pathway between these non-identical groups. As a result, the conclusion drawn from these data, suggesting that tumor-associated macrophages exhibit a gene expression pattern similar to BMAL1-KO macrophages, is deemed incorrect, affecting the interpretation of the data presented in Figure 8.

      We thank Reviewer #1 for pointing out our error in the reference provided as the source of the TAM data used for CCD in Figure 7. While we took care to provide the GEO ID for the data set (GSE188549) in the Methods section, we mistakenly cited Geeraerts (2017) Front Immunol when we should have cited Geeraerts (2021) Cell Rep. We have corrected this citation error in the main text.

      We also appreciate Reviewer #1's concern that we are comparing circadian gene expression of peritoneal macrophages to tumor-associated macrophages derived from LLC tumors, which are grown ectopically in the flank for the experiment from which the data set was produced. To ensure an accurate comparison of gene expression, we downloaded the raw FASTQ files from each dataset and processed them in identical pipelines. Our main comparison between these cell types is Clock Correlation Distance (CCD), which compares the pattern of co-expression of circadian genes (Shilts et al PeerJ 2018). CCD was built from multiple mouse and human tissues to be a "universal" tool to compare circadian rhythms, and designed to compare between different tissues and cell types. Each sample is compared to a reference control built from these multiple tissues. To better convey this concept to readers to give confidence the suitability of CCD for comparing data sets across different tissues, we have added the reference control to Figure 7 (now Figure 6B), We have also expanded our analysis to include bone marrow-derived macrophages, to further demonstrate that the organization of clock gene co-expression is not specific to peritoneal macrophages; we have added this data to Figure 7 (now Figure 6C,D). Finally, we have included an abbreviated explanation of the points made above in the results section.

      Due to the universal nature of the CCD tool, we disagree with Reviewer #1's assertion that "the conclusion drawn from these data, suggesting that tumor-associated macrophages exhibit a gene expression pattern similar to BMAL1-KO macrophages, is deemed incorrect". Indeed, this finding mirrors findings in the original CCD paper, which showed that tumor tissues universally exhibit a disordered molecular clock as compared to normal tissue. Notably, the original CCD paper also compared across cell and tumor types.

      As an additional note to the review, we would like to clarify that nowhere in the manuscript do we propose that Crem is a potential circadian clock gene. We are clear throughout the manuscript that we are using Crem as a previously established biomarker for acidic pH-sensing in macrophages. Please see below for the modified Figure and text.

      "To understand the status of the circadian clock in TAMs, we performed clock correlation distance (CCD) analysis. This analysis has previously been used to assess functionality of the circadian clock in whole tumor and in normal tissue[102]. As the circadian clock is comprised of a series of transcription/translation feedback loops, gene expression is highly organized in a functional, intact clock, with core clock genes existing in levels relative to each other irrespective of the time of day. In a synchronized population of cells, this ordered relationship is maintained at the population level, which can be visualized in a heatmap. CCD is designed to compare circadian clock gene co-expression patterns between different tissues and cell types. To accomplish this, CCD was built using datasets from multiple different healthy tissues from mouse and human to be a universal tool to compare circadian rhythms. Each sample is compared to a reference control built from these multiple tissues (Figure 6B)[102]. To validate the use of this analysis for assessing circadian disorder in macrophages, we performed CCD analysis using publicly available RNA-sequencing data from bone marrow-derived macrophages and wild type peritoneal macrophages, as a healthy control for functional rhythms in a synchronized cell population, and BMAL1 KO peritoneal macrophages, as a positive control for circadian disorder[44]."

      And in the Discussion:

      "Interestingly, analysis of TAMs by clock correlation distance (CCD) presents evidence that rhythms are disordered in bulk TAMs compared to other macrophage populations (Figure 6). CCD is one of the most practical tools currently available to assess circadian rhythms due to its ability to assess rhythms independent of time of day and without the need for a circadian time series, which is often not available in publicly available data from mice and humans[102]."

      If the authors aim to draw a clear conclusion regarding the circadian rhythms of tumor-associated macrophages (TAMs), they may need to analyze single-sorted macrophages from tumors and corresponding healthy tissues. Such data are publicly available (of course not in #83)

      We agree with Reviewer #1 that while our interpretation of the data is that there may be heterogeneity in circadian rhythms of tumor-associated macrophages, we cannot prove this without assessing circadian rhythms at the single cell level. While single-cell RNA-sequencing data of freshly isolated tumor associated macrophages of sufficient read depth for circadian gene expression analysis has historically been unavailable, fortunately a dataset was released recently (May 2024) which we were able to use to address this point. We have analyzed publicly available single-cell RNAseq data of tumor-associated macrophages (GSE260641, Wang 2024 Cell) to determine whether there are differences in expression of circadian clock genes between different TAM populations. We have added these data as a new Figure 9. Please see the figure and updated text below.

      "Tumor-associated macrophages exhibit heterogeneity in circadian clock gene expression.

      __ Our findings suggested that heterogeneity of the circadian clock may lead to disorder in bulk macrophage populations, but did not reveal if specific gene expression changes exist in tumor-associated macrophages at the single-cell level. To determine whether heterogeneity exists within the expression of circadian clock genes of the tumor-associated macrophage population, we analyzed publicly available single-cell RNA sequencing data of macrophages isolated from B16-F10 tumors[107]. To capture the heterogeneity of macrophage subsets within the TAM population, we performed unbiased clustering (Figure 9A). We then performed differential gene expression to determine if circadian clock genes were differentially expressed within the TAM subpopulations. The circadian clock genes Bhlhe40 (DEC1), Bhlhe41 (DEC2), Nfil3 (E4BP4), Rora (RORα), Dbp (DBP), and Nr1d2 (REV-ERBβ) were significantly (adj.p We next sought to determine whether differences in circadian clock gene expression between TAM subpopulations were associated with exposure to acidic pH in the TME. To this end, we first assessed Crem expression in the TAM subpopulations that were identified by unbiased clustering. Crem expression was significantly higher in TAM clusters 4, 5, and 6 compared to TAM clusters 1-3 and 7-9 (Figure 9C). Clusters were subset based on Crem expression into Crem high (clusters 4-6) and Crem low (clusters 1-3, 7-9) (Figure 9D), and differential gene expression analysis was performed. The circadian clock genes Nfil3, Rora, Bhlhe40, and Cry1 (CRY1) were significantly (adj.p __And in the Discussion:

      "Supporting the notion that population-level disorder may exist in TAMs, we used scRNA-sequencing data and found evidence of heterogeneity between the expression of circadian clock genes in different TAM subpopulations (Figure 9A, B). Phenotypic heterogeneity of TAMs in various types of cancer has previously been shown[20, 21, 125, 126], and we have identified distinct TAM subpopulations by unbiased clustering (Figure 9A). Within those TAM subpopulations, we identified differential expression of circadian clock genes encoding transcription factors that bind to different consensus sequences: DEC1 and DEC2 bind to E-boxes, NFIL3 and DBP binds to D-boxes, and RORα and REV-ERBβ binds to retinoic acid-related orphan receptor elements (ROREs)[127, 128]. While little is known about regulation of macrophages by E-box and D-box elements beyond the circadian clock, aspects of macrophage function have been shown to be subject to transcriptional regulation through ROREs[129, 130]. Thus, we speculate that variations in these transcription factors may exert influence on expression of genes to drive diversity between TAM subpopulations. Differential expression of circadian clock genes between TAM subpopulations was also associated with Crem expression (Figure 9C-E), suggesting that exposure of TAMs to acidic pH within the TME can alter the circadian clock. However, there remained significant variation in expression of circadian clock genes within the Crem high and Crem low groups (Figure 9B), suggesting that acidic pH is not the only factor in the TME that can alter the circadian clock. Together, these data implicate the TME in driving heterogeneity in TAM circadian rhythms just as it drives heterogeneity in TAM phenotype.

      Interestingly, in contrast to our observations of circadian disorder in TAMs isolated from LLC tumors (Figure 6), rhythmicity in expression of circadian genes was observed in bulk TAMs isolated from B16 tumors[107]. This suggests that circadian rhythms of TAMs are maintained differently in different types of cancer. Notably, both of these observations were at the population level. Upon separation of the B16 TAM population into subsets by unbiased clustering of single-cell RNA sequencing data, we measured differences in expression of circadian clock genes between TAM subpopulations (Figure 9A,B). This suggests that even within a rhythmic TAM population, there is heterogeneity in the circadian clock of TAM subpopulations."

      Additionally, it is widely acknowledged that human and mouse macrophages exhibit distinct gene expression profiles, both in vitro and in vivo. While assuming that genes involved in circadian rhythms are conserved across species, the authors could consider extending their funding to include analyses of single-sorted macrophages from cancer patients, such as those with lung cancer or pancreatic ductal adenocarcinoma (PDAC). These experiments would provide relevant insights into TAM biology.

      We agree that with Reviewer #1 that ultimately, being able to relate findings in mice to humans is critical. It is important to assess if circadian disorder is observed in TAMs in human cancers as it is for LLC tumor-derived macrophages in mice. To address this point, we have performed CCD using a human data set (GSE116946; Garrido 2020 J Immunother Cancer) suitable for use with CCD (wherein macrophages were isolated from bulk tumor in humans, with a high enough samples size, and not cultured prior to sequencing). We have added these data as a new Figure 7, shown below. Please see the added data and updated text below.

      "We next assessed the status of the circadian clock in human TAMs from NSCLC patients. We performed CCD with publicly available RNA-seq data of tumor-adjacent macrophages and tumor-associated macrophages from NSCLC patients, using alveolar macrophages from healthy donors as a control[104, 105]. To assess the contribution of the acidic TME to circadian disorder, we subset TAM NSCLC patient samples into groups (Crem high TAMs and Crem low TAMs) based on median Crem expression. Notably, in macrophages from human NSCLC there was a trend toward disorder in Crem low but not Crem high TAM samples (Figure 7A,B). Additionally, the co-variance among core clock genes observed in alveolar macrophages from healthy donors was absent within Crem low and Crem high TAM samples (Figure 7C). In all, these data indicate that there is population-level disorder in the circadian rhythms of tumor-associated macrophages in humans and mice, suggesting that circadian rhythms are indeed altered in macrophages within the TME."

      And in the Discussion:

      "Indeed, we observed differences in the circadian clock of Crem low human TAM samples compared to Crem high human TAM samples, suggesting that acidic pH influences circadian disorder in TAMs (Figure 7). Interestingly, Crem low TAM samples exhibited a trend toward disorder while Crem high TAM samples did not. This is of particular interest, as we have observed that acidic pH can enhance circadian rhythms in macrophages, raising the question of whether acidic pH promotes or protects against circadian disorder."

      Minor comments: 1. Figure 2C needs clarification. It's unclear why pro-inflammatory macrophages treated with lactic acid would have a shorter amplitude and period, while acidic pH would increase amplitude and period in M2 macrophages.

      We thank Reviewer #1 for this important observation. Based on the comment, it is our understanding that the Reviewer is referring to the data in Figure 2 (low pH) compared to Figure 4 (lactate). We also find it very interesting that lactate alters rhythms in a manner distinct from the way in which acidic pH alters rhythms. Reviewer 3 asked for clarification on how lactate affected circadian gene expression in pH 7.4 or 6.5. We have added these data as Figure 4C (data and text below). It is notable that lactate opposing effects on circadian gene expression in pH 6.5, enhancing the effects of low pH in some cases (Nr1d1) while blunting them in other cases (Cry1). This is mentioned in the text.

      "Lactate was also observed to alter expression of the circadian clock genes Per2, Cry1, and Nr1d1 over time in BMDMs cultured at pH 6.5, while having more subtle effects at pH 7.4 (Figure 4C). Notably, lactate blunted the effect of pH 6.5 on Cry1 expression, while enhancing the effect of low pH on Nr1d1 expression."

      Why these two stimuli alter rhythms differently remains an open question that is discussed in the Discussion section and is prime to be a topic of future investigation. We have added to the Discussion section potential reasons why these conditions may alter rhythms differently, such as the different pathways downstream of sensing these two different conditions. Please see the updated text, below.

      "Although lactate polarizes macrophages toward a pro-resolution phenotype similar to acidic pH[30, 93], exposure to lactate had different effects on circadian rhythms - and in some cases, circadian clock gene expression - than exposure to acidic pH (Figure 4). Sensing of lactate occurs through different pathways than acid-sensing, which may contribute to the different ways in which these two stimuli modulate circadian rhythms of macrophages[111]. One previously published finding that may offer mechanistic insight into how phenotype can influence circadian rhythms is the suppression of Bmal1 by LPS-inducible miR-155[54]. It has also been observed that RORα-mediated activation of Bmal1 transcription is enhanced by PPARγ co-activation[112]. In macrophages, PPARγ expression is induced upon stimulation with IL-4 and plays a key role in alternative activation of macrophages, promoting a pro-resolution macrophage phenotype, and supporting resolution of inflammation[113-115]. Such observations prompt the question of whether there are yet-unidentified factors induced downstream of various polarizing stimuli that can modulate expression of circadian genes at the transcriptional and protein levels. Further work is required to understand the interplay between macrophage phenotype and circadian rhythms."

      The scale in Figure 2C should be equal for all conditions (e.g., -200).

      We appreciate Reviewer #1's preference for the axes to be scaled similarly to enable cross-comparison between graphs. However, due to the different amplitude of pro-inflammatory macrophages compared to the others, we feel that making all axes the same will make it hard to see the rhythms of pro-inflammatory macrophages, hindering the reader's ability to observe the data. Thus, we have put the matched-axis plots, shown below, in Supplementary Figure 4A.

      Absolute values of amplitude, damping, and period differ between Figure 1 and Figure 2A, B, C. The authors should explain these discrepancies.

      As with many experimental approaches, there is slight variation in absolute values between independent experiments, which Reviewer #1 correctly notes. However, while the absolute values vary slightly, the relationship between the values in each of these conditions remains the same across the panels mentioned by Reviewer #1.

      The authors should consider modulating the acidic environment of macrophages in settings more representative of cancer. For example, by adding conditioned media from tumor cells with pronounced glycolysis.

      We appreciate Reviewer #1's desire to more closely mimic the tumor microenvironment. To address Reviewer #1's point, we cultured macrophages in RPMI or cancer cell (KCKO) supernatant at pH 6.5 or pH-adjusted to pH 7.4 and assessed rhythms by measuring rhythmic activity of Per2-Luc with LumiCycle analysis. We then compared changes in rhythms between macrophages cultured normal media to cancer cell supernatant in pH-matched conditions to assess how cancer cell-conditioned media may influence circadian rhythms of macrophages, and the contribution of acidic pH. We have added these data, shown below, as a new Supplementary Figure 5, and included a discussion of these data in the manuscript. Please see the new Figure and updated text below.

      "Cancer cell supernatant alters circadian rhythms in macrophages in a manner partially reversed by neutralization of pH.

      We have observed that polarizing stimuli, acidic pH, and lactate can alter circadian rhythms. However, the tumor microenvironment is complex. Cancer cells secrete a variety of factors and deplete nutrients in the environment. To model this, we cultured BMDMs in RPMI or supernatant collected from KCKO cells, which are a murine model of pancreatic ductal adenocarcinoma (PDAC)[94, 95], at pH 6.5 or neutralized to pH 7.4 (Supplementary Figure 5). Circadian rhythms of BMDMs cultured in cancer cell supernatant at pH 7.4 or pH 6.5 exhibited increased amplitude and lengthened period compared to RPMI control at pH 7.4 or 6.5, respectively, indicating that cancer cell supernatant contains factors that can alter circadian rhythms of BMDMs. Notably, BMDMs cultured in cancer cell supernatant at pH 6.5 had increased amplitude and shortened period compared to BMDMs cultured in cancer cell-conditioned media at pH7.4, indicating that pH-driven changes in rhythms were maintained in BMDMs cultured in cancer cell supernatant. When the pH of cancer cell supernatant was neutralized to pH7.4, the increased amplitude was decreased, and the shortened period was lengthened, indicating that neutralizing acidic pH partially reverses the changes in rhythms observed in macrophages cultured in cancer cell supernatant at pH 6.5. These data further support our observations that acidic pH can alter circadian rhythms of macrophages both alone and in combination with various factors in the TME."

      And, in the Discussion:

      "We have shown that various stimuli can alter rhythms of macrophages in a complex and contributing manner, including polarizing stimuli, acidic pH, and lactate. TGFβ is produced by a variety of cells within the TME, and was recently identified as a signal that can modulate circadian rhythms[123, 124]. Additionally, when we exposed macrophages to cancer cell-conditioned media, rhythms were modulated in a manner distinct from acidic pH or lactate, with these changes in rhythms partially reversed by neutralization of the cancer cell-conditioned media pH (Supplementary Figure 5). It is conceivable that, in addition to acidic pH, other stimuli in the TME are influencing circadian rhythms to drive population-level disorder that we observed by CCD."

      Arg1 alone is not sufficient as an M2 polarization marker. The authors should include additional markers.

      We thank Reviewer #1 for bringing up this critical point in experimental rigor. While Arg1 is a commonly-used marker for M2 polarization, Reviewer #1 points out that polarization of macrophages is typically assessed by a full panel of markers characteristic of the M2 state. To address this point, we have expanded our panel to include several other markers of M2 polarization in mice such as Retnla, Ym1, MGL1, and CD206. In response to Reviewer 2's major point 2 and Reviewer 3's major point 4 below, we have also expanded our panel of markers used to assess the M1 polarization state with Tnfa, Il1b. and Il6. We have added these data, shown below, to Supplementary Figure 1 and updated the text appropriately. Please see the new Figure and updated text below.

      "Consistent with previous studies, we found that genes associated with anti-inflammatory and pro-resolution programming characteristic of IL-4 and IL-13-stimulated macrophages such as Arg1, Retnla, Chil3 (Ym1), Clec10a (MGL1), and Mrc1 (CD206) were induced in IL-4 and IL-13-stimulated macrophages, but not IFNγ and LPS-stimulated macrophages. In contrast, genes associated with pro-inflammatory activity characteristic of IFNγ and LPS-stimulated macrophages such as Nos2 (iNOS), Tnfa, Il1b, and Il6 were induced in IFNγ and LPS-stimulated macrophages, but not IL-4 and IL-13-stimulated macrophages (Supplementary Figure 1)[28, 30, 65, 71, 74, 75]. This indicates that macrophages stimulated with IL-4 and IL-13 were polarized toward a pro-resolution phenotype, while macrophages stimulated with IFNγ and LPS were polarized toward a pro-inflammatory phenotype."

      __ Significance__

      While the manuscript provides valuable insights and has obvious novelty, it requires a significant revision

      We thank Reviewer #1 for their deep read of our manuscript, and their helpful feedback and suggestions. As shown by the comments above, we are confident we have fully addressed each of the points that were made to result in a much-improved revised manuscript.

      __ Reviewer #2 __

      Evidence, reproducibility and clarity

      Knudsen-Clark et al. showed that the circadian rhythm of bone marrow-derived macrophages (BMDM) can be affected by polarization stimuli, pH of the microenvironment, and by the presence of sodium-lactate. Mechanistically, the acidic pH of cell microenvironment is partly regulated by intracellular cAMP-mediated signaling events in BMDM. The authors also showed that the circadian clock of peritoneal macrophages is also modified by the pH of the cell microenvironment. Using publicly available data, the authors showed that the circadian rhythm of tumor-associated macrophages is similar to that of Bmal1-KO peritoneal macrophages. In a murine model of pancreatic cancer, the authors showed that the tumor growth is accelerated in C57BL/6 mice co-injected with cancer cells and Bmal1-KO BMDM as compared to mice co-injected with cancer cell and wild type BMDM.

      We thank Reviewer #2 for their insightful and helpful comments and feedback. Their Review guided key clarifying experiments and additions to the Discussion and Methods. To summarize, we added new data to Supplementary Figure 1 to characterize distinct gene expression in our different polarized macrophage populations, showed in Supplementary Figure 2 that serum shock independently induces cAMP and Icer, discussed the limitations of the artificial polarization models more clearly, and updated our Methods to better explain how macrophages were isolated from the peritoneum. We also quantified multiple immunoblots of pCREB, provided clarity in the Methods and Reviewer-only data on how our protein-extraction protocol isolates nuclear protein, better introduced the BMAL1-KO mouse model, and showed in Supplementary Figure 6 that low pH can induce oscillations in the absence of a serum shock.

      Major points of criticism: 1. Nine main figures include different experimental models on a non-systematic manner in the manuscript, and only literature-based correlation is used to link the results each other. The authors used in vitro BMDM and peritoneal cell-based model systems to study the effects of IL4+IL13, IFNg+LPS, low pH, sodium-lactate, adenylate cyclase inhibitors on the circadian clock of macrophages. The link between these microenvironment conditions of the cells is still correlative with the tumor microenvironment: publicly available data were used to correlate the increased expression level of cAMP-activated signaling events with the presence of acidic pH of tumor microenvironment. Notably, the cell signaling messenger molecule cAMP is produced by not only low extracellular pH by activated GPCRs, but also starvation of the cell. The starvation is also relevant to this study, since the BMDM used in the in vitro culture system were starving for 24 hours before the measurement of Per2-Luc expression to monitor circadian rhythm.

              We agree with the important point that Reviewer #2 makes that our synchronization protocol of serum starvation followed by serum shock can impact the cAMP signaling pathway. Indeed, it has previously been shown that serum shock induces phosphorylation of CREM in rat fibroblasts, which is indicative of signaling through the cAMP pathway. To address this point, we have added a schematic of our synchronization protocol to Supplementary Figure 2B for additional clarity. We have also performed additional experiments to test whether cAMP signaling is induced in macrophages by our synchronization protocol. For this, we assessed downstream targets of the cAMP signaling pathway, Icer and pCREB, after serum starvation but before serum shock, and at several time points post-treatment with serum shock (Supplementary Figures 2D,E). We observed that Icer and phosphorylation of Creb are induced rapidly in macrophages upon exposure to serum shock, as early as 10 minutes for pCREB and 1 hour post-exposure for Icer. Notably, this signaling is transient and rapidly returns to baseline, with pCREB levels fully returned to baseline by 2 hours post-treatment, at which time media is replaced and the experiment begins (CT 0). These data, shown below, have been added to Supplementary Figure 2 and a discussion of these data has been added to the manuscript - please see the modified text below.
      

      "The synchronization protocol we use to study circadian rhythms in BMDMs involves a 24-hour period of serum starvation followed by 2 hours of serum shock. It has previously been shown that serum shock can induce signaling through the cAMP pathway in rat fibroblasts[98]. To determine whether the synchronization protocol impacts cAMP signaling in macrophages, we harvested macrophages before and after serum shock. We then assessed Icer expression and phosphorylation of cyclic AMP-response element binding protein (CREB), which occur downstream of cAMP and have been used as readouts to assess induction of cAMP signaling in macrophages[29, 96, 100]. Serum shock of macrophages following serum starvation led to rapid phosphorylation of CREB and Icer expression that quickly returned to baseline (Supplementary Figure 2D,E). This indicates that serum starvation followed by serum shock in the synchronization protocol we use to study circadian rhythms in BMDMs induces transient signaling through the cAMP signaling pathway. "

      The definition of pre-resolution macrophages (MF) used across the manuscript could be argued. The authors defined BMDM polarized with IL-4 and IL-13 as pre-resolution MF. Resolution is followed by inflammation, but the IL-4 secretion does not occur in every inflammatory setting. Moreover, IL-4 and IL-13 are secreted during specific tissue environment and immunological settings involving type 2 inflammation or during germinal center reactions of the lymph nodes. • What are the characteristics of pre-resolution macrophages (MF)? The authors indicated that IL-4 and IL-13 cytokines were used to model the pre-resolution macrophages. In which pathological context are these cytokines produced and induce pre-resolution macrophages? IL-4 polarized BMDM can also produce pro-inflammatory protein and lipid mediators as compared to LPS-stimulated BMDM, and IL-4 polarized BMDM still have potent capacity to recruit immune cells and to establish type 2 inflammation.

      • The authors showed Arg1 and Vegfa qPCR data from BMDM only. Based on the literature, these MFs are anti-inflammatory cells particularly. Resolution-related MFs followed by acute inflammation are a specific subset of MFs, and the phenotype of pre-resolution MF should be described, referred, and measured specifically.

      We thank Reviewer #2 for bringing up this important point that clarity is required in describing our in vitro macrophage models. We chose the most commonly used models of in vitro macrophage polarization in the tumor immunology field, M2 (IL-4+IL-13) and M1 (IFNγ+LPS). These polarization conditions have been used for over two decades in the field, and have been well-characterized to drive a pro-inflammatory (for M1) and pro-resolution or anti-inflammatory (for M2) macrophage phenotype (Murray 2017 Annu Rev Phys). Each of these cell states have similarities in phenotype to pro-inflammatory and pro-resolution (pro-tumorigenic) macrophages found in tumors. In fact, in the literature, pro-inflammatory and pro-resolution TAMs will frequently be categorized as "M1" or "M2", respectively, even though this is a gross oversimplification (Ding 2019 J Immunol, Garrido-Martin 2020 J Immunother Cancer).

      As Reviewer #2 points out, IL-4 and IL-13 play a role in inflammatory settings, mediating protective responses to parasites and pathological responses to allergens. Importantly, IL-4 and IL-13 are also key regulators and effectors of resolution and wound repair (Allen 2023 Annu Rev Immunol). In line with this, M2 macrophages show many of the characteristics of pro-resolution programming in their gene expression profile, expressing genes associated with wound healing (ex. Vegf) and immunoregulation (ex. Arg1) (Mantovani 2013 J Pathol). These cells have frequently been used as a model for studying TAMs in vitro, due to the similarity in pro-resolution programming that is dysregulated/hijacked in TAMs (Biswas 2006 Blood). M2 macrophages have also been referred to as anti-inflammatory, and this is in line with their role in the type 2 response driven by IL-4 and IL-13, as this is primarily a response induced by allergy or parasites where tissue damage drives an anti-inflammatory and pro-resolution phenotype in macrophages (Pesce 2009 Plos Pathogens and Allen 2023 Annu Rev Immunol).

      We do not assert that these in vitro models recapitulate the macrophage polarization cycle that Reviewer #2 astutely describes, and indeed, stimuli polarizing macrophages in tumor are much more diverse and complex (Laviron 2022 Cell Rep). We also fully agree with Reviewer #2 that, while IL4 and IL13 may exist in the tumor and be secreted by Th2 CD4 T cells (see Shiao 2015 Cancer Immunol Res), there may be multiple reasons why macrophages may be polarized to a pro-resolution, M2-like state in a tumor (in fact, exposure to low pH and lactate each independently do this, as we show in Supplementary Figure 2 and Figure 4, and was previously shown in Jiang 2021 J Immunol and Colegio 2014 Nature). Nonetheless, using the well-described M1 and M2 in vitro models allows our findings to be directly comparable to the vast literature that also uses these models, and to understand how distinct polarization states respond to low pH.

      We fully agree with Reviewer #2 that these cells must be defined more clearly in the text. We have taken care to discuss the limitations of using in vitro polarization models to study macrophages in our Limitations of the Study section. To better address Reviewer #2's concern, we have more thoroughly introduced the M2 macrophages as a model, and are clear that that these are type 2-driven macrophages that share characteristics of pro-resolution macrophages. We have also added additional citations to the manuscript, including those highlighted above in our response. Finally, we have expanded our panel to better characterize the IL-4/IL-13 stimulated macrophages using more markers that have been characterized in the literature, in line with both Reviewer #2's comments and that of Reviewer #1 and Reviewer #3. Please see the updated data and text, below.

      "As macrophages are a phenotypically heterogeneous population in the TME, we first sought to understand whether diversity in macrophage phenotype could translate to diversity in circadian rhythms of macrophages. To this end, we used two well-established in vitro polarization models to study distinct macrophage phenotypes[5, 60-63]. For a model of pro-inflammatory macrophages, we stimulated macrophages with IFNγ (interferon γ) and LPS (lipopolysaccharide) to elicit a pro-inflammatory phenotype[60, 64]. These macrophages are often referred to as 'M1' and are broadly viewed as anti-tumorigenic, and we will refer to them throughout this paper as pro-inflammatory macrophages[65, 66]. For a model at the opposite end of the phenotypic spectrum, we stimulated macrophages with IL-4 and IL-13[60, 67]. While these type 2 stimuli play a role in the response to parasites and allergy, they are also major drivers of wound healing; in line with this, IL-4 and IL-13-stimulated macrophages have been well-characterized to adopt gene expression profiles associated with wound-healing and anti-inflammatory macrophage phenotypes[68-71]. As such, these macrophages are often used as a model to study pro-tumorigenic macrophages in vitro and are often referred to as 'M2' macrophages; throughout this paper, we will refer to IL-4 and IL-13-stimulated macrophages as pro-resolution macrophages[66, 72, 73]. Consistent with previous studies, we found that genes associated with anti-inflammatory and pro-resolution programming characteristic of IL-4 and IL-13-stimulated macrophages such as Arg1, Retnla, Chil3 (Ym1), Clec10a (MGL1), and Mrc1 (CD206) were induced in IL-4 and IL-13-stimulated macrophages, but not IFNγ and LPS-stimulated macrophages. In contrast, genes associated with pro-inflammatory activity characteristic of IFNγ and LPS-stimulated macrophages such as Nos2 (iNOS), Tnfa, Il1b, and Il6 were induced in IFNγ and LPS-stimulated macrophages, but not IL-4 and IL-13-stimulated macrophages (Supplementary Figure 1)[28, 30, 65, 71, 74, 75]. This indicates that macrophages stimulated with IL-4 and IL-13 were polarized toward a pro-resolution phenotype, while macrophages stimulated with IFNγ and LPS were polarized toward a pro-inflammatory phenotype.

      In the Limitations of the Study section, we now write the following:

      "Our observations of rhythms in macrophages of different phenotypes are limited by in vitro polarization models. It is important to note that while our data suggest that pro-inflammatory macrophages have suppressed rhythms and increased rate of desynchrony, it remains unclear the extent to which these findings apply to the range of pro-inflammatory macrophages found in vivo. We use IFNγ and LPS co-treatment in vitro to model a pro-inflammatory macrophage phenotype that is commonly referred to as 'M1', but under inflammatory conditions in vivo, macrophages are exposed to a variety of stimuli that result in a spectrum of phenotypes, each highly context-dependent. The same is true for for 'M2'; different tissue microenvironment are different and pro-resolution macrophages exist in a spectrum."

      The authors used IFNg and LPS, or IL-4 and IL-13 and co-treatments to polarize BMDM in to type 1 (referred as pro-inflammatory MF) and type 2 (referred as pre-resolution MF) activation state. The comparison between these BMDM populations has limitations, since LPS induces a potent inflammatory response in MF. The single treatment with MF-polarizing cytokines enable a more relevant comparison to study the circadian clock in classically and alternatively activated MF.

      We thank Reviewer #2 for bringing up this important point to provide additional clarity on our polarization conditions. The use of IFNγ and LPS to polarize macrophages toward a pro-inflammatory, M1 phenotype, and the use of IL-4 an IL-13 to polarize macrophages toward a pro-resolution, M2 phenotype have been commonly used for over two decades, and thus are well-characterized in the literature (please see Murray 2017 Annu Rev Phys for an extensive review on the history of these polarization models, as well as Hörhold 2020 PLOS Computational Biology, Binger 2015 JCI, McWhorter 2013 PNAS, Ying 2013 J Vis Exp for more recent studies using these models). The use of LPS alone or in combination with IFNγ, and IL-13 along with IL-4, was introduced in 1998 (Munder 1998 J Immunol). This approach was originally designed to mimic what could happen when macrophages were exposed to CD4+ Th1 cells, which produce IFNγ, or Th2 cells, which produce IL-4 and IL-13 (Munder 1998 J Immunol, Murray 2017 Annu Rev Phys). As Reviewer #2 points out, these stimuli induce potent responses, driving macrophages to adopt pro-inflammatory or pro-resolution/anti-inflammatory phenotypes that are two extremes at opposite ends of the spectrum of macrophage phenotypes (Mosser 2008 Nat Rev Immunol). Since our goal was to study rhythms of distinct macrophage phenotypes in vitro, and how TME-associated conditions such as acidic pH and lactate affect their rhythms, these cell states were appropriate for our questions. Thus, the polarization models used in this paper allowed us to achieve this goal. We include a section in the Discussion on the limitations of in vitro polarization models.

      "A critical question in understanding the role of circadian rhythms in macrophage biology is determining how different polarization states of macrophages affect their internal circadian rhythms. This is especially important considering that tumor-associated macrophages are a highly heterogeneous population. Our data indicate that compared to unstimulated macrophages, rhythms are enhanced in pro-resolution macrophages, characterized by increased amplitude and improved ability to maintain synchrony; in contrast, rhythms are suppressed in pro-inflammatory macrophages, characterized by decreased amplitude and impaired ability to maintain synchrony (Figure 1). These agree with previously published work showing that polarizing stimuli alone and in combination with each other can alter rhythms differently in macrophages[80, 81]. In a tumor, macrophages exist along a continuum of polarization states and phenotypes[18-21, 24]. Thus, while our characterizations of rhythms in in vitro-polarized macrophages provide a foundation for understanding how phenotype affects circadian rhythms of macrophages, further experiments will be needed to assess macrophages across the full spectrum of phenotypes. Indeed, alteration of rhythms may be just as highly variable and context-dependent as phenotype itself."

      There are missing links between the results of showing the circadian rhythm of polarized BMDM, sodium-lactate treated BMDM, and tumor growth. Specifically, do the used pancreatic ductal adenocarcinoma cells produce IL-4 and sodium-lactate? In the LLC-based experimental in silico analysis of tumors, the LLC do not produce IL-4.

      Reviewer #2 raises important points about the source of lactate and IL-4 in tumors as relevance for our investigation of how these factors can alter rhythms in macrophages. Tumor-infiltrating Th2 CD4 T cells are potential sources of IL-4 and IL-13 in the tumor (see Shiao 2015 Cancer Immunol Res). Various cells in the tumor can produce lactate. We discuss this in both the Introduction and the Results: poor vascularization of tumors results in hypoxia areas, where cells are pushed toward glycolysis to survive and thus secrete increased glycolytic waste products such as protons and lactate. As lactate is lactic acid, ionized it is sodium l-lactate.

      How can the circadian rhythm affect the function of BMDM? The Authors should provide evidence that circadian rhythm affects the function of polarized MF.

      We agree with Reviewer #2 that the next step is to determine how altered rhythms influence function of macrophages. This will be the topic of future work, but is outside the scope of this paper. Our contribution with this paper is providing the first evidence that rhythms are altered in the TME and the TME-associated conditions can alter rhythms in macrophages. We have added what is currently known about how circadian rhythms influence macrophages function to the discussion section to facilitate a conversation about this important future direction. Please see the updated text below.

      "Considering our observations that conditions associated with the TME can alter circadian rhythms in macrophages, it becomes increasingly important to understand the relevance of macrophage rhythms to their function in tumors. It has been shown that acidic pH and lactate can each drive functional polarization of macrophages toward a phenotype that promotes tumor growth, with acidic pH modulating phagocytosis and suppressing inflammatory cytokine secretion and cytotoxicity[28, 30, 93]. However, how the changes in circadian rhythms of macrophages driven by these conditions contributes to their altered function remains unknown. Current evidence suggests that circadian rhythms confer a time-of-day-dependency on macrophage function by gating the macrophage response to inflammatory stimuli based on time-of-day. As such, responses to inflammatory stimuli such as LPS or bacteria are heightened during the active phase while the inflammatory response is suppressed during the inactive phase. An important future direction will be to determine how changes in circadian rhythms of macrophages, such as those observed under acidic pH or high lactate, influences the circadian gating of their function."

      In Figure 3, the authors show data from peritoneal cells. The isolated peritoneal cells are not pure macrophage populations. Based on the referred article in the manuscript, the peritoneal cavity contains more then 50% of lymphocytes, and the myeloid compartment contains 80% macrophages.

      Reviewer #2 raises important concerns about the purity of the peritoneal population used in our experiments. We enrich for peritoneal macrophages from the peritoneal exudate cells by removing non-adherent cells in culture. This is described in our Methods section and is a method of isolation that is commonly used in the field, as lymphocytes are non-adherent. In addition to the source cited in the paper within our Methods section (Goncalves 2015 Curr Prot Immunol), please see Layoun 2015 J Vis Exp, de Jesus 2022 STAR Protocols, and Harvard HLA Lab protocol - macrophages enriched in this manner have been shown to be over 90% pure. We have modified our Methods section to make this clear, and added the additional references in this response to this section of our Methods. Please see the modified text below.

      "Peritoneal exudate cells were harvested from mice as previously published[137]. To isolate peritoneal macrophages, peritoneal exudate cells were seeded at 1.2*106 cells/mL in RPMI/10% HI FBS supplemented with 100U/mL Penicillin-Streptomycin and left at 37⁰C for 1 hour, after which non-adherent cells were rinsed off[136]. Isolation of peritoneal macrophages using this method has been shown to yield a population that is over 90% in purity[138, 139]. Peritoneal macrophages were then cultured in Atmospheric Media at pH 7.4 or 6.5 with 100μM D-luciferin, and kept at 37⁰C in atmospheric conditions."

      The figure legend of Figure 3 describes the effects of pH on the circadian rhythm of bone marrow-derived macrophages ex vivo. Peritoneal macrophages involve tissue resident peritoneal macrophages with yolk sac and fetal liver origin, and also involve small peritoneal MF with bone marrow origin. The altered description of results and figure legends makes confusion.

      We are very grateful to Reviewer #2 for pointing out our typo. We have fixed the caption of Figure 3 to properly describe the data as "peritoneal macrophages ex vivo".

      In Figure 6C, one single Western blot is shown with any quantification. The authors should provide data of the relative protein level of p-CREB from at least 3 independent experiments. In the Western-blot part of the methods, the authors described that the pellet was discarded after cell lysis. The p-CREB is the activated form of the transcription factor CREB and there is increased binding to the chromatin to regulate gene expression. By discarding the pellet after cell lysis, the chromatin-bond p-CREB could be also removed at the same time.

      We thank Reviewer 2 for bringing up this point. We agree that quantification is an important aspect of western blot. We have repeated the experiment again for n=3 and provide quantification of pCREB normalized to total protein. We have added these data, shown below, to Figure 5.

      Reviewer #2 also expressed concern that we may not be capturing all of the CREB due to nuclear localization and chromatin binding. We specifically chose the lysis buffer M-Per, which is formulated to lyse the nucleus and solubilize nuclear and chromatin-bound proteins. To demonstrate this, we show in the below Figure to the Reviewer that the nuclear protein p85 is solubilized and readily detectable by western blot using our protein extraction method.

      We have also added an additional sentence in the Methods section for clarity - please see the modified text below.

      "Cells were lysed using the M-Per lysis reagent (Thermo Scientific, CAT#78501), supplemented with protease and phosphatase inhibitor cocktail (1:100; Sigma, CAT#PPC1010) and phosphatase inhibitor cocktail 2 (1:50; Sigma, CAT#P5726), with 200μM deferoxamine (Sigma, CAT#D9533). M-Per is formulated to lyse the nucleus and solubilize nuclear and chromatin-bound proteins, allowing isolation of nuclear proteins as well as cytosolic proteins. Lysates were incubated on ice for 1 hour, then centrifuged at 17,000 xg to pellet out debris; supernatant was collected."

      It is confusing that adenylate-cyclase inhibitor MDL-12 elevated the phospho-CREB levels in BMDM. How can the authors exclude any other inducers of CREB phosphorylation?

      We agree with Reviewer #2 that it is surprising pCREB was elevated with MDL-12 treatment alone, and we do indeed think that there are other pathways contributing to this. We have addressed this point in the Discussion - please see the text below.

      "The mechanism through which acidic pH can modulate the circadian clock in macrophages remains unclear. Evidence in the literature suggests that acidic pH promotes a pro-resolution phenotype in macrophages by driving signaling through the cAMP pathway[29]. It has previously been shown that cAMP signaling can modulate the circadian clock[99]. However, our data indicated that cAMP signaling was not fully sufficient to confer pH-mediated changes in circadian rhythms of macrophages (Figure 5A,B). Treatment with MDL-12, commonly known as an inhibitor of adenylyl cyclase[29, 117], resulted in suppression of pH-induced changes in amplitude of circadian rhythms but did not inhibit signaling through the cAMP signaling pathway (Figure 5C,D). While MDL-12 is commonly used as an adenylyl cyclase inhibitor, it has also been documented to have inhibitory activity toward phosphodiesterases (PDEs) and the import of calcium into the cytosol through various mechanisms[118, 119]. This is of particular interest, as calcium signaling has also been shown to be capable of modulating the circadian clock[120]. Furthermore, while acid-sensing through GPCRs have been the most well-characterized pathways in macrophages, there remain additional ways in which acidic pH can be sensed by macrophages such as acid-sensing ion channels[121, 122]. Further work is required to understand the signaling pathways through which pH can influence macrophage phenotype and circadian rhythms."

      It is described in the methods that BMDM were starving for 24 hours in serum-free culture media followed by serum shock (50% FBS). The cAMP production can be induced during cell starvation which should be considered for the data representation.

      We appreciate that Reviewer #2 points out that our synchronization protocol of serum starvation followed by serum shock may impact the cAMP signaling pathway in macrophages, as serum shock has been shown to induce pCREB, a downstream mediator of cAMP signaling, in rat fibroblasts. Indeed, we show in additional experiments performed (in response to Reviewer #2's major comment 1) evidence that cAMP signaling is induced in macrophages following the serum shock phase of our synchronization protocol, as indicated by elevation of Icer and pCREB. As we note above, this induction is transient and returns to baseline by 2 hours post-serum shock, the time at which we replace media and begin our experiments (CT 0).

      Despite the transient nature of cAMP induction by our synchronization protocol, we agree wholeheartedly with Reviewer #2 that this must be considered in light of our experimental system in which we are studying the effect of acidic pH on circadian rhythms of macrophages, which in itself induces signaling through the cAMP signaling pathway. To address Reviewer #2's point, we have performed experiments in which we culture unstimulated BMDMs in neutral pH 7.4 or acidic pH 6.5, without prior serum starvation and serum shock (i.e. we do not submit these BMDMs to the synchronization protocol). We then observed circadian rhythms of Per2-Luc by LumiCycle to determine whether acidic pH alters circadian rhythms of BMDMs in the absence of prior serum starvation followed by serum shock. Similar to our observations in Figure 2, circadian rhythms of macrophages at pH 6.5 had increased amplitude and shortened period compared to rhythms of macrophages at pH 7.4. This indicates that pH-driven changes in circadian rhythms observed in our system are not due to the synchronization protocol. The data, shown below, have been placed in a new Supplementary Figure 6, and a discussion of these results has been added to the Results section - please see the updated text below.

      "As acidic pH induces signaling through the cAMP pathway, we sought to determine whether acidic pH independently contributed to the pH-driven changes in circadian rhythms we observe in BMDMs. To test this, we omitted the synchronization step and observed BMDM rhythms by LumiCycle when cultured in neutral pH 7.4 or acidic pH 6.8 or pH 6.5 (Supplementary Figure 6). Circadian rhythms of BMDMs cultured at pH 6.5 exhibited similar changes as previously observed, with enhanced amplitude and shortened period relative to BMDMs at pH 7.4. This indicates pH-driven changes observed in circadian rhythms of BMDMs occur in the absence of prior serum starvation and serum shock. "As acidic pH independently induces signaling through the cAMP pathway, we sought to determine whether acid pH could also independently contribute to the pH-driven changes in circadian rhythms we observe in BMDMs. To test this, we omitted the synchronization step and observed BMDM rhythms by LumiCycle when cultured in neutral pH 7.4 or acidic pH 6.8 or pH 6.5 (Supplementary Figure 6). Circadian rhythms of BMDMs cultured at pH 6.5 exhibited similar changes as previously observed, with enhanced amplitude and shortened period relative to BMDMs at pH 7.4. This indicates pH-driven changes observed in circadian rhythms of BMDMs occur in the absence of prior serum starvation and serum shock."

      How can the authors explain and prove that the wild type and Bmal1-KO BMDM co-injected with pancreatic cancer cells subcutaneously survive, present, and have effector functions at the same extent in the subcutaneous tissue, before and during tumor growth (Figure 9)? In other words, what kind of MF-derived parameters could be modified by disrupting the circadian rhythm of MF during tumor development? The production of MF-derived regulatory enzymes, cytokines, growth factors are affected by the disrupted circadian clock in MF?

              Review #2 poses the very important question of why we see differences in tumor growth in our co-injection model, and what might be driving it. Of note, co-injection models of tumor growth are commonly used to determine macrophage-specific roles in tumor growth (Colegio 2014 Nature, Mills 2019 Cell Rep, Lee 2018 Nat Comm). We observed that tumor growth is altered when macrophages with disrupted circadian rhythms (BMAL1 KO) are co-injected compared to when macrophages with intact circadian rhythms (WT) are co-injected in a murine model of pancreatic cancer using KCKO cells. Our observation is supported by a previously published paper in which they used a co-injection model of melanoma, which we cite in the manuscript(Alexander 2020 eLife). What drives this difference in tumor growth remains an open question that is the subject of future work and is outside the scope of this paper, which focuses on our discovery that factors associated with the tumor microenvironment can alter circadian rhythms in macrophages. We have included a discussion on what is currently known about how circadian rhythms alter macrophage function, acknowledging that we have yet to answer these important questions and identifying it as interest for future work. Please see the text below.
      

      "Considering our observations that conditions associated with the TME can alter circadian rhythms in macrophages, it becomes increasingly important to understand the relevance of macrophage rhythms to their function in tumors. It has been shown that acidic pH and lactate can each drive functional polarization of macrophages toward a phenotype that promotes tumor growth, with acidic pH modulating phagocytosis and suppressing inflammatory cytokine secretion and cytotoxicity[28, 30, 93]. However, how the changes in circadian rhythms of macrophages driven by these conditions contributes to their altered function remains unknown. Current evidence suggests that circadian rhythms confer a time-of-day-dependency on macrophage function by gating the macrophage response to inflammatory stimuli based on time-of-day. As such, responses to inflammatory stimuli such as LPS or bacteria are heightened during the active phase while the inflammatory response is suppressed during the inactive phase. An important future direction will be to determine how changes in circadian rhythms of macrophages, such as those observed under acidic pH or high lactate, influences the circadian gating of their function. Data from our lab and others suggest that disruption of the macrophage-intrinsic circadian clock accelerates tumor growth, indicating that circadian regulation of macrophages is tumor-suppressive in models of PDAC (our work) and melanoma [109]. This agrees with complementary findings that behavioral disruption of circadian rhythms in mice (through chronic jetlag) disrupts tumor macrophage circadian rhythms and accelerates tumor growth[56]. It remains unclear whether this is through the pro-tumorigenic functions of macrophages such as extracellular matrix remodeling or angiogenesis, through suppression of the anti-tumor immune response, or a combination of both functions. Further work will be needed to tease apart these distinctions."

      Minor points of criticism: 1. The figure legends of the graphs and diagrams are missing in Figure 2D,E,F

      We thank Reviewer #2 for pointing out that figure legends were missing. We have added legends for Figure 2D,E,F.

      The BMAL1-based in vivo murine model of circadian rhythm is not introduced in the manuscript.

      We thank Reviewer #2 for bringing to our attention that the BMAL1 KO macrophage model was not well-introduced in the manuscript. To address this point, we have modified the text to better introduce this model. Please see the modified text below.

      "As a positive control for circadian clock disruption, we used data from BMAL1 KO peritoneal macrophages [44]. BMAL1 KO macrophages have a genetic disruption of the circadian clock due to the loss of Bmal1, the central clock gene. As a result, circadian rhythms of BMAL1 KO macrophages are disrupted, lacking rhythmicity and downstream circadian regulation of macrophage function (Supplementary Figure 8)[45, 54]. "As a positive control for circadian clock disruption, we used data from BMAL1 KO peritoneal macrophages [44]. BMAL1 KO macrophages have a genetic disruption of the circadian clock due to the loss of Bmal1, the central clock gene. As a result, circadian rhythms of BMAL1 KO macrophages are disrupted, lacking rhythmicity and downstream circadian regulation of macrophage function (Supplementary Figure 8)[45, 54]."__ __

      Significance

      Knudsen-Clark et al. showed that the circadian rhythm of bone marrow-derived macrophages (BMDM) can be affected by polarization stimuli, pH of the microenvironment, and by the presence of sodium-lactate. Mechanistically, the acidic pH of cell microenvironment is partly regulated by intracellular cAMP-mediated signaling events in BMDM. The authors also showed that the circadian clock of peritoneal macrophages is also modified by the pH of the cell microenvironment. Using publicly available data, the authors showed that the circadian rhythm of tumor-associated macrophages is similar to that of Bmal1-KO peritoneal macrophages. In a murine model of pancreatic cancer, the authors showed that the tumor growth is accelerated in C57BL/6 mice co-injected with cancer cells and Bmal1-KO BMDM as compared to mice co-injected with cancer cell and wild type BMDM.

      We are grateful to Reviewer #2 for their very helpful comments and suggestions, which we believe have greatly enhanced the clarity and reproducibility of this manuscript.

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)): __

      Review for Knudsen-Clark et al.

      "Circadian rhythms of macrophages are altered by the acidic pH of the tumor microenvironment"

      Knudsen-Clark and colleagues explore the impact of TME alterations on macrophage circadian rhythms. The authors find that both acidic pH and lactate modulate circadian rhythms which alter macrophage phenotype. Importantly, they define circadian disruption of tumor-associated macrophages within the TME and show that circadian disruption in macrophages promotes tumor growth using a PDAC line. This represents an important understanding of the crosstalk between cancer cells and immune cells as well as the understanding of how the TME disrupts circadian rhythms. The study is well-done, however, authors need to address several important points below.

      We thank Reviewer #3 for their in-depth and insightful comments and suggestions, which have resulted in a much-improved manuscript. We were pleased that Reviewer #3 found the work to be "an important study that is well-done" and that it "represents an important understanding of the crosstalk between cancer cells and immune cells as well as the understanding of how the TME disrupts circadian rhythms.". In response to Reviewer #3's comments, we have added several new key experiments and changes to the text. To summarize, we added new data to Supplementary Figure 1 to better characterize our macrophage polarization states, showed in Figure 3 that low pH affects peritoneal macrophage circadian gene expression in a similar fashion as bone marrow-derived macrophages, added new data in Figure 4 to show how lactate and low pH affect circadian gene expression over time, and new computational analysis to Figures 6, 7, and Supplementary Figure 9 to probe circadian gene covariance from publicly available data. We also made several key additions to the Discussion to discuss the functional implications of macrophage circadian rhythm disruption by low pH and potential mechanisms of this disruption. Finally, at the request of Reviewer #3, we consolidated several existing Figures and added new data, where appropriate, to existing figures, and we worked to describe new findings succinctly.

      Major comments:

      • In Figures 3 and 4, the authors can include additional clock genes that can be run by qPCR. This was done in Figure 2 and was a nice addition to the data.

      We agree with Reviewer #3's suggestion that an analysis of clock gene expression at the mRNA level would enhance our data in Figures 3 and 4. To address this point, we have performed short time course experiments to assess circadian clock gene expression over time in BMDMs cultured with or without lactate at neutral or acidic pH (for Figure 4). In line with the difference in circadian rhythms of Per2-Luc levels between BMDMs cultured in the presence or absence of lactate which we observed by Lumicycle analysis, we measured changes in expression of the circadian clock genes Per2, Nr1d1, and Cry1 between macrophages cultured with 25 mM sodium-L-lactate compared to those cultured with 0 mM sodium-L-lactate at pH 6.5. We have added these data, shown below, to Figure 4, and updated the manuscript accordingly to discuss these results. Please see below for the new Figure Panel and modified text.

      "Lactate was also observed to alter expression of the circadian clock genes Per2, Cry1, and Nr1d1 over time in BMDMs cultured at pH 6.5, while having more subtle effects at pH 7.4 (Figure 4C). Notably, lactate blunted the effect of pH 6.5 on Cry1 expression, while enhancing the effect of low pH on Nr1d1 expression. In all, these data indicate that concentration of lactate similar to that present in the TME can influence circadian rhythms and circadian clock gene expression of macrophages."

      As an additional measure to address Reviewer #3's point about Figure 3 (peritoneal macrophages), we have compared expression of circadian clock genes in peritoneal macrophages cultured at neutral pH 7.4 or acidic pH 6.8 for 24 hours using a publicly available RNA-seq data set from Jiang 2021 J Immunol (GSE164697). In line with previous observations in macrophages cultured under acidic compared to neutral pH conditions, including the clock gene expression data from Figure 2 in BMDMs and the Per2-Luc levels observed in peritoneal macrophages in Figure 3, we found that peritoneal macrophages exhibited differences in expression of circadian clock genes when cultured at acidic pH 6.8 compared to neutral pH 7.4. We have added these data, shown below, as Figure 3B, and have updated the manuscript accordingly - please see below for the new Figure panel and modified text.

      "To test whether pH-driven changes in circadian rhythms of peritoneal macrophages were reflected at the mRNA level, we compared expression of circadian clock genes in peritoneal macrophages cultured at neutral pH 7.4 or acidic pH 6.8 for 24 hours using publicly available RNA-sequencing data [30]. In line with altered circadian rhythms observed by Lumicycle, peritoneal macrophages cultured at pH 6.8 expressed different levels of circadian clock genes than peritoneal macrophages culture at pH 7.4 (Figure 3B). The trends in changes of gene expression in peritoneal macrophages cultured at pH 6.8 matched what we observed in BMDMs, where low pH generally led to higher levels of circadian clock gene expression (Figure 2D-F). These data support our observations by LumiCycle and indicate that acidic pH drives transcriptional changes in multiple components of the circadian clock. In all, these data are evidence that pH-dependent changes in circadian rhythms are relevant to in vivo-differentiated macrophages."

      We have also updated the Methods section appropriately

      "FASTQ files from a previously published analysis of peritoneal macrophages cultured under neutral pH 7.4 or acidic pH 6.8 conditions were downloaded from NCBI GEO (accession #GSE164697) [30]."

      2) There are far too many figures with minimal data in each. Please consolidate the figures. For example, Figures 1-3 can be fully combined, Figures 4-6 can be combined, and Figures 7-8 can be combined. Additionally, it is unclear if Figure 5 needs to be in the main, it can be moved to the supplement.

      We appreciate the preference of Reviewer #3 to see some of the figures consolidated. We have combined Figures 5 and 6 into a single new Figure 5. Additionally, we have added new data from revisions to current figures to increase the amount of data in each figure and minimize the amount of new figures generated. In all, despite the large amount of new data added to the paper in response to Reviewer comments and suggestions (including additional data in Figure 4 and new Figures 6 and 8), our manuscript now contains 10 main Figures, only one more than the initial submission.

      3) The observation that conditions like pH and lactate alter macrophage phenotype and rhythmicity are important. However, macrophage phenotype via gene expression does not always correlate to function. It is important for authors to demonstrate the effect of pH or lactate on macrophage function. This can be done using co-culture assays with cancer cells. If these experiments cannot be performed, it is suggested that authors discuss these limitations and consideration in the discussion.

      Reviewer #3 correctly points out that changes in phenotype does not always correlate to changes in function. Others have shown that acidic pH and lactate can each alter macrophage phenotype, and also alter macrophage function and the ability to promote tumor growth (please see El-Kenawi 2019 Br J Cancer, Jiang 2021 J Immunol, Colegio 2014 Nature). How changes in rhythms influence macrophage function remains unknown and we agree with Reviewer #3 that this is an important future direction, We have added a section in the Discussion to facilitate the discussion of this important future direction. Please see the text below.

      "Considering our observations that conditions associated with the TME can alter circadian rhythms in macrophages, it becomes increasingly important to understand the relevance of macrophage rhythms to their function in tumors. It has been shown that acidic pH and lactate can each drive functional polarization of macrophages toward a phenotype that promotes tumor growth, with acidic pH modulating phagocytosis and suppressing inflammatory cytokine secretion and cytotoxicity[28, 30, 93]. However, how the changes in circadian rhythms of macrophages driven by these conditions contributes to their altered function remains unknown. Current evidence suggests that circadian rhythms confer a time-of-day-dependency on macrophage function by gating the macrophage response to inflammatory stimuli based on time-of-day. As such, responses to inflammatory stimuli such as LPS or bacteria are heightened during the active phase while the inflammatory response is suppressed during the inactive phase. An important future direction will be to determine how changes in circadian rhythms of macrophages, such as those observed under acidic pH or high lactate, influences the circadian gating of their function."

      4) On line 119-122, authors describe a method for polarization of macrophages. They then reference one gene to confirm each macrophage polarization state. To more definitively corroborate proper macrophage polarization, authors should perform qPCR for additional target genes that are associated with each phenotype. For example, Socs3, CD68, or CD80 for M1, and CD163 or VEGF for M2. Alternatively, the authors should cite previous literature validating this in vitro polarization model.

      We appreciate Reviewer #3's suggestion to better the phenotypic identity of our polarization models with additional canonical markers. To address this point, we have expanded our panel using transcriptional markers commonly used in the murine polarization model for M1 macrophages such as Tnfa, Il6, and Il1b. As discussed in the response to Reviewer #1's minor point 5 and Reviewer #2's major point 2, we have also expanded our panel to include additional markers for M2 such as Vegf, Retnla, Ym1, Mgl1, and CD206. We have added these new data to Supplementary Figure 1. Finally, we have added additional citations for the in vitro polarization models. Please see the modified text and new data, below.

      "As macrophages are a phenotypically heterogeneous population in the TME, we first sought to understand whether diversity in macrophage phenotype could translate to diversity in circadian rhythms of macrophages. To this end, we used two well-established in vitro polarization models to study distinct macrophage phenotypes[5, 60-63]. For a model of pro-inflammatory macrophages, we stimulated macrophages with IFNγ (interferon γ) and LPS (lipopolysaccharide) to elicit a pro-inflammatory phenotype[60, 64]. These macrophages are often referred to as 'M1' and are broadly viewed as anti-tumorigenic, and we will refer to them throughout this paper as pro-inflammatory macrophages[65, 66]. For a model at the opposite end of the phenotypic spectrum, we stimulated macrophages with IL-4 and IL-13[60, 67]. While these type 2 stimuli play a role in the response to parasites and allergy, they are also major drivers of wound healing; in line with this, IL-4 and IL-13-stimulated macrophages have been well-characterized to adopt gene expression profiles associated with wound-healing and anti-inflammatory macrophage phenotypes[68-71]. As such, these macrophages are often used as a model to study pro-tumorigenic macrophages in vitro and are often referred to as 'M2' macrophages; throughout this paper, we will refer to IL-4 and IL-13-stimulated macrophages as pro-resolution macrophages[66, 72, 73]. Consistent with previous studies, we found that genes associated with anti-inflammatory and pro-resolution programming characteristic of IL-4 and IL-13-stimulated macrophages such as Arg1, Retnla, Chil3 (Ym1), Clec10a (MGL1), and Mrc1 (CD206) were induced in IL-4 and IL-13-stimulated macrophages, but not IFNγ and LPS-stimulated macrophages. In contrast, genes associated with pro-inflammatory activity characteristic of IFNγ and LPS-stimulated macrophages such as Nos2 (iNOS), Tnfa, Il1b, and Il6 were induced in IFNγ and LPS-stimulated macrophages, but not IL-4 and IL-13-stimulated macrophages (Supplementary Figure 1)[28, 30, 65, 71, 74, 75]. This indicates that macrophages stimulated with IL-4 and IL-13 were polarized toward a pro-resolution phenotype, while macrophages stimulated with IFNγ and LPS were polarized toward a pro-inflammatory phenotype.

      5) Several portions of the manuscript are unnecessarily long, including the intro and discussion. Please consolidate the text. The results section is also very lengthy, please consider consolidation.

      We appreciate Reviewer #3's preference for a shorter manuscript. The revised manuscript, in response to the many Reviewer comments and requests, contains many new pieces of data, and we have taken care to describe these new data as briefly and simply as possible. In preparation for this Revision, we also removed and shortened several sections of the Results and Discussion where we felt extra explanation was not necessary. We will work with the editor of the journal we submit to ensure the length of the manuscript sections is compliant with the journal's guidelines.

      6) The authors find that macrophage phenotype impacts rhythmicity. However, there is no mechanistic understanding of why this occurs. The authors should provide some mechanistic insight on this topic in the discussion.

      We agree with Reviewer #3 that while the mechanism by which macrophage phenotype alters rhythms remains unknown, this is an important topic of discussion. While there is some literature on how circadian rhythms modulate inflammatory response (and hints at how it may influence phenotype) in macrophages, there is very little on the converse: how phenotype may influence circadian rhythms. We address this point by expanding on our Discussion - please see the modified text below.

      "Elucidating the role of circadian rhythms in regulation of macrophage biology necessitates a better understanding of the crosstalk between phenotype and circadian rhythms. Although lactate polarizes macrophages toward a pro-resolution phenotype similar to acidic pH[30, 93], exposure to lactate had different effects on circadian rhythms - and in some cases, circadian clock gene expression - than exposure to acidic pH (Figure 4). Sensing of lactate occurs through different pathways than acid-sensing, which may contribute to the different ways in which these two stimuli modulate circadian rhythms of macrophages[111]. One previously published finding that may offer mechanistic insight into how phenotype can influence circadian rhythms is the suppression of Bmal1 by LPS-inducible miR-155[54]. It has also been observed that RORα-mediated activation of Bmal1 transcription is enhanced by PPARγ co-activation[112]. In macrophages, PPARγ expression is induced upon stimulation with IL-4 and plays a key role in alternative activation of macrophages, promoting a pro-resolution macrophage phenotype, and supporting resolution of inflammation[113-115]. Such observations prompt the question of whether there are yet-unidentified factors induced downstream of various polarizing stimuli that can modulate expression of circadian genes at the transcriptional and protein levels. Further work is required to understand the interplay between macrophage phenotype and circadian rhythms."

      7) The data presented in Figure 9 is very intriguing and arguably the strongest aspect of the paper. To strengthen the point, the authors could repeat this experiment with an additional cell model, another PDAC line or a different cancer line.

      We appreciate Reviewer #3's comment about the impact of tumor growth data. Indeed, our finding that deletion of Bmal1 in co-injected macrophages accelerated PDAC growth has been recapitulate by others in different cancer models. This lends strength to our observations. We discuss and cite complementary work on macrophage rhythms and tumor growth in other models of cancer the Discussion, please see below.

      "Data from our lab and others suggest that disruption of the macrophage-intrinsic circadian clock accelerates tumor growth, indicating that circadian regulation of macrophages is tumor-suppressive in models of PDAC (our work) and melanoma [109]. This agrees with complementary findings that behavioral disruption of circadian rhythms in mice (through chronic jetlag) disrupts tumor macrophage circadian rhythms and accelerates tumor growth[56]."

      Minor Comments:

      1) Data is Figure 2 is interesting and the impact on circadian rhythms is clear based on changes in amplitude and period. However, though the impact on period and amplitude is clear from Figures 2A-C, the changes in circadian gene expression are less clear. For instance, though amplitude is up in 2B, amplitude is suppressed in 2C. However, that does not appear to be reflected in the gene expression data in Figures 2E and F. The authors should comment on this.

      Reviewer #3 correctly points out that there appear to be discrepancies between the LumiCycle data in Figure 2 and the circadian gene expression data in Figure 2. This discrepancy is perhaps unsurprising given that the gene expression data is only a short time course over 12 hours, while the LumiCycle data are collected over a course of 3 days. The gene expression data do not allow us to determine changes in period or rhythm. Another point of interest is that it's been shown that circadian regulation occurs on many different levels (transcriptional, post-transcriptional, translational, post-translational). As result of this, circadian patterns observed in gene transcripts don't always match those of their encoded proteins; just the same, circadian patterns of proteins aren't always reflected in their encoding gene transcripts (Collins 2021 Genome Res). Due to this multi-level regulation, we propose that the results of the LumiCycle analysis, which measures PER2-Luc levels, are a more robust readout of rhythms because they are further downstream of the molecular clock than transcriptional readouts. That said, observing changes at both the protein (by Lumicycle) and transcriptional level confirm that all components of the clock are altered by acidic pH, even if the way in which they are altered appears to differ. We have incorporated the points we raised above into the Results section.

      Please see the modified text below.

      "Low pH was also observed to alter the expression of the circadian clock genes Per2, Cry1, and Nr1d1 (REV-ERBα) over time across different macrophage phenotypes, confirming that multiple components of the circadian clock are altered by acidic pH (Figure 2D-F). Notably, the patterns in expression of circadian genes did not always match the patterns of PER2-Luc levels observed by LumiCycle. This is perhaps unsurprising, as circadian rhythms are regulated at multiple levels (transcriptional, post-transcriptional, translational, post-translational); as a result, circadian patterns observed in circadian proteins such as PER2-Luc do not always match those of their gene transcripts[77]."

      2) On line 156-158, authors describe damping rate. I believe the authors are trying to say that damping rate increases as the time it takes cells to desynchronize decreases and vice versa. However, this point needs to be better explained.

      We thank Reviewer #3 for bringing to our attention that this was not communicated clearly in the text. We have adjusted our explanation to be clearer. Please see the modified text below.

      "Damping of rhythms in most free-running cell populations (defined as populations cultured in the absence of external synchronizing stimuli) occurs naturally as the circadian clocks of individual cells in the population become desynchronized from each other; thus, damping can be indicative of desynchrony within a population[84]. The damping rate increases as the time it takes for rhythms to dissipate decreases; conversely, as damping rate decreases as the time it takes for rhythms to dissipate increases."

      3) Data presented in Figures 3 and 4 are different in terms of the impact of changing the pH. The source of the macrophages is different, but the authors could clarify this further.

      We thank Reviewer #3 for this comment. Our conclusion is that the impact of low pH is largely similar in Figure 3 (peritoneal macrophages) and Figure 4 (BMDMs exposed to low pH and lactate). In both Figures 3 and 4, exposure to acidic pH by culturing macrophages at pH 6.5 increased amplitude, decreased period, and increased damping rate compared to macrophages cultured at neutral pH 7.4.

      4) For heatmaps shown in Figures 7 and 8, please calculate covariance and display asterisks where P We thank Reviewer #3 for the excellent suggestion to use an additional approach to asses circadian clock status in samples by measuring co-variance in the circadian clock gene network. To address this point, we have performed weighted gene co-expression network analysis (WGCNA) to calculate covariance, as was originally performed in Chun and Fortin et al Science Advances 2022. For the samples analyzed in Figure 7 (now Figure 6), we have added these data to the figure. We have applied this analysis to a new set of human data that we analyzed and added it to the new Figure 7. Finally, for the samples analyzed in Figure 8, we have added these data as a new Supplementary Figure 9. Please see the data and modified text below.

      Figure 6

      "Weighted gene co-expression network analysis (WGCNA) has been used as an alternate approach to measure the co-variance between clock genes and thus assess bi-directional correlations among the core clock gene network in healthy tissue and tumor samples [103]. In line with the circadian disorder observed by CCD, while many bi-directional correlations among the core clock gene network were significant and apparent in wild type peritoneal macrophages, these relationships were altered or abolished within BMAL1 KO peritoneal macrophages and TAM samples, and in some cases replaced by new relationships (Figure 6E). This indicates that there is population-level disorder in the circadian rhythms of tumor-associated macrophages in murine lung cancer."

      Figure 7

      "We next assessed the status of the circadian clock in human TAMs from NSCLC patients. We performed CCD with publicly available RNA-seq data of tumor-adjacent macrophages and tumor-associated macrophages from NSCLC patients, using alveolar macrophages from healthy donors as a control[104, 105]. To assess the contribution of the acidic TME to circadian disorder, we subset TAM NSCLC patient samples into groups (Crem high TAMs and Crem low TAMs) based on median Crem expression. Notably, in macrophages from human NSCLC there was a trend toward disorder in Crem low but not Crem high TAM samples (Figure 7A,B). Additionally, the co-variance among core clock genes observed in alveolar macrophages from healthy donors was absent within Crem low and Crem high TAM samples (Figure 7C). In all, these data indicate that there is population-level disorder in the circadian rhythms of tumor-associated macrophages in humans and mice, suggesting that circadian rhythms are indeed altered in macrophages within the TME."

      Supplementary Figure 9

      "CCD score worsened as populations became increasingly desynchronized, with the 12hr desynchronized population having a significantly worse CCD score than synchronized, homogenous macrophage population (Figure 8C). This indicates that as circadian rhythms of individual macrophages within a population become more different from each other, circadian disorder increases at the population-level. This is further supported by WGCNA, which revealed that the significant co-variance of circadian clock genes in the synchronized population was progressively altered and lost as the population is increasing desynchronized to 12 hours (Supplementary Figure 9)."

      Reviewer #3 (Significance (Required)):

      This is an important study that is well-done. It is the feeling of the reviewer that the study warrants a revision, at the discretion of the editor. The study represents an important understanding of the crosstalk between cancer cells and immune cells as well as the understanding of how the TME disrupts circadian rhythms.

      We thank Reviewer #3 for their comments regarding the impact and significance of our work. As shown by the comments above, we are confident we have fully addressed each of the points that were made to result in a much-improved revised manuscript.




    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1:

      Point 1.1

      Summary: This paper describes a reanalysis of data collected by Gagne et al. (2020), who investigated how human choice behaviour differs in response to changes in environmental volatility. Several studies to date have demonstrated that individuals appear to increase their learning rate in response to greater volatility and that this adjustment is reduced amongst individuals with anxiety and depression. The present authors challenge this view and instead describe a novel Mixture of Strategies (MOS) model, that attributes individual differences in choice behaviour to different weightings of three distinct decision-making strategies. They demonstrate that the MOS model provides a superior fit to the data and that the previously observed differences between patients and healthy controls may be explained by patients opting for a less cognitively demanding, but suboptimal, strategy. 

      Strengths: 

      The authors compare several models (including the original winning model in Gagne et al., 2020) that could feasibly fit the data. These are clearly described and are evaluated using a range of model diagnostics. The proposed MOS model appears to provide a superior fit across several tests. 

      The MOS model output is easy to interpret and has good face validity. This allows for the generation of clear, testable, hypotheses, and the authors have suggested several lines of potential research based on this. 

      We appreciate the efforts in understanding our manuscript. This is a good summary.

      Point 1.2

      The authors justify this reanalysis by arguing that learning rate adjustment (which has previously been used to explain choice behaviour on volatility tasks) is likely to be too computationally expensive and therefore unfeasible. It is unclear how to determine how "expensive" learning rate adjustment is, and how this compares to the proposed MOS model (which also includes learning rate parameters), which combines estimates across three distinct decision-making strategies. 

      We are sorry for this confusion. Actually, our motivation is that previous models only consider the possibility of learning rate adaptation to different levels of environmental volatility. The drawback of previous computational modeling is that they require a large number of parameters in multi-context experiments. We feel that learning rate adaptation may not be the only mechanisms or at least there may exist alternative explanations. Understanding the true mechanisms is particularly important for rehabilitation purposes especially in our case of anxiety and depression. To clarify, we have removed all claims about the learning rate adaptation is “too complex to understand”.

      Point 1.3

      As highlighted by the authors, the model is limited in its explanation of previously observed learning differences based on outcome value. It's currently unclear why there would be a change in learning across positive/negative outcome contexts, based on strategy choice alone. 

      Thanks for mentioning this limitation. We want to highlight two aspect of work.

      First, we developed the MOS6 model primarily to account for the learning rate differences between stable and volatile contexts, and between healthy controls and patients, not for between positive and negative outcomes. In the other words, our model does not eliminate the possibility of different learning rate in positive and negative outcomes.

      Second, Figure 3A shows that FLR (containing different learning parameters for positive/negative outcomes) even performed worse than MOS6 (setting identical learning rate for positive/negative outcomes). This result question whether learning rate differences between positive/negative outcomes exist in our dataset.

      Action: We now include this limitation in lines 784-793 in discussion:

      “The MOS model is developed to offer context-free interpretations for the learning rate differences observed both between stable and volatile contexts and between healthy individuals and patients. However, we also recognize that the MOS account may not justify other learning rate effects based solely on strategy preferences. One such example is the valence-specific learning rate differences, where learning rates for better-than-expected outcomes are higher than those for worse-than-expected outcomes (Gagne et al., 2020). When fitted to the behavioral data, the context-dependent MOS22 model does not reveal valence-specific learning rates (Supplemental Note 4). Moreover, the valence-specific effect was not replicated in the FLR22 model when fitted to the synthesized data of MOS6.”

      Point 1.4

      Overall the methods are clearly presented and easy to follow, but lack clarity regarding some key features of the reversal learning task.

      Throughout the method the stimuli are referred to as "right" and "left". It's not uncommon in reversal learning tasks for the stimuli to change sides on a trial-by-trial basis or counterbalanced across stable/volatile blocks and participants. It is not stated in the methods whether the shapes were indeed kept on the same side throughout. If this is the case, please state it. If it was not (and the shapes did change sides throughout the task) this may have important implications for the interpretation of the results. In particular, the weighting of the habitual strategy (within the Mixture of Strategies model) could be very noisy, as participants could potentially have been habitual in choosing the same side (i.e., performing the same motor movement), or in choosing the same shape. Does the MOS model account for this? 

      We are sorry for the confusion. Yes, two shapes indeed changed sides throughout the task. We replaced the “left” and “right” with “stimulus 1” and “stimulus 2”. We also acknowledge the possibility that participants may develop a habitual preference for a particular side, rather than a shape. Due to the counterbalance design, habitual on side will introduce a random selection noise in choices, which should be captured by the MOS model through the inverse temperature parameter.  

      Point 1.5

      Line 164: "Participants received points or money in the reward condition and an electric shock in the punishment condition." What determined whether participants received points or money, and did this differ across participants? 

      Thanks! We have the design clarified in lines 187-188:

      “Each participant was instructed to complete two blocks of the volatile reversal learning task, one in the reward context and the other in the aversive context”,

      and in lines:

      “A total of 79 participants completed tasks in both feedback contexts. Four participants only completed the task in the reward context, while three participants only completed the aversive task.”

      Point 1.6

      Line 167: "The participant received feedback only after choosing the correct stimulus and received nothing else" Is this correct? In Figure 1a it appears the participant receives feedback irrespective of the stimulus they chose, by either being shown the amount 1-99 they are being rewarded/shocked, or 0. Additionally, what does the "correct stimulus" refer to across the two feedback conditions? It seems intuitive that in the reward version, the correct answer would be the rewarding stimulus - in the loss version is the "correct" answer the one where they are not receiving a shock? 

      Thanks for raising this issue. We removed the term “correct stimulus” and revised the lines 162-166 accordingly:

      “Only one of the two stimuli was associated with actual feedback (0 for the other one). The feedback magnitude, ranged between 1-99, is sampled uniformly and independently for each shape from trial to trial. Actual feedback was delivered only if the stimulus associated with feedback was chosen; otherwise, a number “0” was displayed on the screen, signifying that the chosen stimulus returns nothing.”

      Point 1.7

      Line 176: "The whole experiment included two runs each for the two feedback conditions." Does this mean participants completed the stable and volatile blocks twice, for each feedback condition? (i.e., 8 blocks total, 4 per feedback condition). 

      Thanks! We have removed the term “block”, and now we refer to it as “context”. In particular, we removed phrases like “stable block” and “volatile block” and used “context” instead.

      Action: See lines 187-189 for the revised version.

      “Each participant was instructed to complete two runs of the volatile reversal learning task, one in the reward context and the other in the aversive context. Each run consisted of 180 trials, with 90 trials in the stable context and 90 in the volatile context (Fig. 1B).”

      Point 1.8

      In the expected utility (EU) strategy of the Mixture or Strategies model, the expected value of the stimulus on each trial is produced by multiplying the magnitude and probability of reward/shock. In Gagne et al.'s original paper, they found that an additive mixture of these components better-captured participant choice behaviour - why did the authors not opt for the same strategy here? 

      Thanks for asking this. Their strategy basic means the mixture of PF+MO+HA, where PF stands for the feedback probability (e.g., 0.3 or 0.7) without multiplying feedback magnitude. However, ours are EU+MO+HA, where EU stands for feedback probability x feedback magnitude. We did compare these two strategies and the model using their strategy performed much worse than ours (see the red box below).

      Author response image 1.

      Thorough model comparison.

      Point 1.9

      How did the authors account for individuals with poor/inattentive responding, my concern is that the habitual strategy may be capturing participants who did not adhere to the task (or is this impossible to differentiate?). 

      The current MOS6 model distinguishes between the HA strategy and the inattentive response. Due to the counterbalance design, the HA strategy requires participants to actively track the stimuli on the screen. In contrast, the inattentive responding, like the same motor movement mentioned in Point 1.4, should exhibit random selection in their behavioral data, which should be account by the inverse temperature parameter.

      Point 1.10

      The authors provide a clear rationale for, and description of, each of the computational models used to capture participant choice behaviour. 

      • Did the authors compare different combinations of strategies within the MOS model (e.g., only including one or two strategies at a time, and comparing fit?) I think more explanation is needed as to why the authors opted for those three specific strategies. 

      We appreciate this great advice. Following your advice, we conducted a thorough model comparisons. Please refer to Figure R1 above. The detailed text descriptions of all the models in Figure R1 are included in Supplemental Note 1.

      Point 1.11

      Please report the mean and variability of each of the strategy weights, per group. 

      Thanks. We updated the mean of variability of the strategies in lines 490-503:

      “We first focused on the fitted parameters of the MOS6 model. We compared the weight parameters (, , ) across groups and conducted statistical tests on their logits (, , ). The patient group showed a ~37% preference towards the EU strategy, which is significantly weaker than the ~50% preference in healthy controls (healthy controls’ : M = 0.991, SD = 1.416; patients’ : M = 0.196, SD = 1.736; t(54.948) = 2.162, p = 0.035, Cohen’s d = 0.509; Fig. 4A). Meanwhile, the patients exhibited a weaker preference (~27%) for the HA strategy compared to healthy controls (~36%) (healthy controls’ : M = 0.657,  SD = 1.313; patients’ : M = -0.162, SD = 1.561; t(56.311) = 2.455, p = 0.017, Cohen’s d = 0.574), but a stronger preference for the MO strategy (36% vs. 14%; healthy controls’ : M = -1.647,  SD = 1.930; patients’ : M = -0.034, SD = 2.091; t(63.746) = -3.510, p = 0.001, Cohen’s d = 0.801). Most importantly, we also examined the learning rate parameter in the MOS6 but found no group differences (t(68.692) = 0.690, p = 0.493, Cohen’s d = 0.151). These results strongly suggest that the differences in decision strategy preferences can account for the learning behaviors in the two groups without necessitating any differences in learning rate per se.”

      Point 1.12

      The authors compare the strategy weights of patients and controls and conclude that patients favour more simpler strategies (see Line 417), based on the fact that they had higher weights for the MO, and lower on the EU.

      (1) However, the finding that control participants were more likely to use the habitual strategy was largely ignored. Within the control group, were the participants significantly more likely to opt for the EU strategy, over the HA? 2) Further, on line 467 the authors state "Additionally, there was a significant correlation between symptom severity and the preference for the HA strategy (Pearson's r = -0.285, p = 0.007)." Apologies if I'm mistaken, but does this negative correlation not mean that the greater the symptoms, the less likely they were to use the habitual strategy?

      I think more nuance is needed in the interpretation of these results, particularly in the discussion. 

      Thanks. The healthy participants seemed more likely to opt for the EU strategy, although this difference did not reach significance (paired-t(53) = 1.258, p = 0.214, Cohen’s d = 0.242). We systematically explore the role of HA. Compared to the MO, the HA saves cognitive resources but yields a significantly higher hit rate (Fig. 4A). Therefore, a preference for the HA over the MO strategy may reflect a more sophisticated balance between reward and complexity within an agent: when healthier subjects run out of cognitive resources for the EU strategy, they will cleverly resort to the HA strategy, adopting a simpler strategy but still achieving a certain level of hit rate. This explains the negative symptom-HA correlation. As clever as the HA strategy is, it is not surprising that the health control participants opt more for the HA during decision-making.

      However, we are cautious to draw strong conclusion on (1) non-significant difference between EU and HA within health controls and (2) the negative symptom-HA correlation. The reason is that the MOS22, the context-dependent variant, 1) exhibited a significant higher preference for EU over HA (paired-t(53) = 4.070, p < 0.001, Cohen’s d = 0.825) and 2) did not replicate this negative correlation (Supplemental Information Figure S3).

      Action: Simulation analysis on the effects of HA was introduced in lines 556-595 and Figure 4. We discussed the effects of HA in lines 721-733:

      “Although many observed behavioral differences can be explained by a shift in preference from the EU to the MO strategy among patients, we also explore the potential effects of the HA strategy. Compared to the MO, the HA strategy also saves cognitive resources but yields a significantly higher hit rate (Fig. 4A). Therefore, a preference for the HA over the MO strategy may reflect a more sophisticated balance between reward and complexity within an agent (Gershman, 2020): when healthier participants exhaust their cognitive resources for the EU strategy, they may cleverly resort to the HA strategy, adopting a simpler strategy but still achieving a certain level of hit rate. This explains the stronger preference for the HA strategy in the HC group (Fig. 3A) and the negative correlation between HA preferences and symptom severity  (Fig. 5). Apart from shedding light on the cognitive impairments of patients, the inclusion of the HA strategy significantly enhances the model’s fit to human behavior (see examples in Daw et al. (2011); Gershman (2020); and also Supplemental Note 1 and Supplemental Figure S3).”

      Point 1.13

      Line 513: "their preference for the slowest decision strategy" - why is the MO considered the slowest strategy? Is it not the least cognitively demanding, and therefore, the quickest? 

      Sorry for the confusion. In Fig. 5C, we conducted simulations to estimate the learning speed for each strategy. As shown below, the MO strategy exhibits a flat learning curve. Our claim on the learning speed was based solely on simulation outcomes without referring to cognitive demands. Note that our analysis did not aim to compare the cognitive demands of the MO and HA strategies directly.

      Action: We explain the learning speed of the three strategies in lines 571-581.

      Point 1.14

      The authors argue that participants chose suboptimal strategies, but do not actually report task performance. How does strategy choice relate to the performance on the task (in terms of number of rewards/shocks)? Did healthy controls actually perform any better than the patient group? 

      Thanks for the suggestion. The answers are: 1) EU is the most rewarding > the HA > the MO (Fig. 5A), and 2) yes healthy controls did actually perform better than patients in terms of hit rate (Fig. 2).

      Action: We included additional sections on above analyses in lines 561-570 and lines 397-401.

      Point 1.15

      The authors speculate that Gagne et al. (2020) did not study the relationship between the decision process and anxiety and depression, because it was too complex to analyse. It's unclear why the FLR model would be too complex to analyse. My understanding is that the focus of Gagne's paper was on learning rate (rather than noise or risk preference) due to this being the main previous finding. 

      Thanks! Yes, our previous arguments are vague and confusing. We have removed all this kind of arguments.

      Point 1.16

      Minor Comments: 

      • Line 392: Modeling fitting > Model fitting 

      • Line 580 reads "The MO and HA are simpler heuristic strategies that are cognitively demanding."

      - should this read as less cognitively demanding? 

      • Line 517: health > healthy 

      • Line 816: Desnity > density 

      Sorry for the typo! They have all been fixed.

      Reviewer #2:

      Point 2.1

      Summary: Previous research shows that humans tend to adjust learning in environments where stimulus-outcome contingencies become more volatile. This learning rate adaptation is impaired in some psychiatric disorders, such as depression and anxiety. In this study, the authors reanalyze previously published data on a reversal-learning task with two volatility levels. Through a new model, they provide some evidence for an alternative explanation whereby the learning rate adaptation is driven by different decision-making strategies and not learning deficits. In particular, they propose that adjusting learning can be explained by deviations from the optimal decision-making strategy (based on maximizing expected utility) due to response stickiness or focus on reward magnitude. Furthermore, a factor related to the general psychopathology of individuals with anxiety and depression negatively correlated with the weight on the optimal strategy and response stickiness, while it correlated positively with the magnitude strategy (a strategy that ignores the probability of outcome). 

      Thanks for evaluating our paper. This is a good summary.

      Point 2.2

      My main concern is that the winning model (MOS6) does not have an error term (inverse temperature parameter beta is fixed to 8.804). 

      (1) It is not clear why the beta is not estimated and how were the values presented here chosen. It is reported as being an average value but it is not clear from which parameter estimation. Furthermore, with an average value for participants that would have lower values of inverse temperature (more stochastic behaviour) the model is likely overfitting.

      (2) In the absence of a noise parameter, the model will have to classify behaviour that is not explained by the optimal strategy (where participants simply did not pay attention or were not motivated) as being due to one of the other two strategies.

      We apologize for any confusion caused by our writing. We did set the inverse temperature as a free parameter and quantitatively estimate it during the model fitting and comparison. We also created a table to show the free parameters for each models. In the previous manuscript, we did mention “temperature parameter beta is fixed to 8.804”, but only for the model simulation part, which is conducted to interpret some model behaviors.

      We agree with the concern that using the averaged value over the inverse temperature could lead to overfitting to more stochastic behaviors. To mitigate this issue, we now used the median as a more representative value for the population during simulation. Nonetheless, this change does not affect our conclusion (see simulation results in Figures 4&6).

      Action: We now use the term “free parameter” to emphasize that the inverse temperature was fitted rather than fixed. We also create a new table “Table 1”  in line 458 to show all the free parameters within a model. We also update the simulation details in lines 363-391 for more clarifications.

      Point 2.3

      (3) A model comparison among models with inverse temperature and variable subsets of the three strategies (EU + MO, EU + HA) would be interesting to see. Similarly, comparison of the MOS6 model to other models where the inverse temperature parameter is fixed to 8.804).

      This is an important limitation because the same simulation as with the MOS model in Figure 3b can be achieved by a more parsimonious (but less interesting) manipulation of the inverse temperature parameter.

      Thanks, we added a comparison between the MOS6 and the two lesion models (EU + MO, EU + HA). Please refer to the figure below and Point 1.8.

      We also realize that the MO strategy could exhibit averaged learning curves similar to random selection. To confirm that patients' slower learning rates are due to a preference for the MO strategy, we compared the MOS6 model with a variant (see the red box below) in which the MO strategy is replaced by Random (RD) selection that assigns a 0.5 probability to both choices. This comparison showed that the original MOS6 model with the MO strategy better fits human data.

      Author response image 2.

      Point 2.4

      Furthermore, the claim that the EU represents an optimal strategy is a bit overstated. The EU strategy is the only one of the three that assumes participants learn about the stimulus-outcomes contingencies. Higher EU strategy utilisation will include participants that are more optimal (in maximum utility maximisation terms), but also those that just learned better and completely ignored the reward magnitude.

      Thank you for your feedback. We have now revised the paper to remove all statement about “EU strategy is the optimal” and replaced by “EU strategy is rewarding but complex”. We agree that both the EU strategy and the strategy only focusing on feedback probability (i.e., ignoring the reward magnitude, refer to as the PF strategy) are rewarding but complex beyond two simple heuristics. We also included the later strategy in our model comparisons (see the next section Point 2.5).

      Point 2.5

      The mixture strategies model is an interesting proposal, but seems to be a very convoluted way to ask: to what degree are decisions of subjects affected by reward, what they've learned, and response stickiness? It seems to me that the same set of questions could be addressed with a simpler model that would define choice decisions through a softmax with a linear combination of the difference in rewards, the difference in probabilities, and a stickiness parameter. 

      Thanks for suggesting this model. We did include the proposed linear combination models (see “linear comb.” in the red box below) and found that it performed significantly worse than the MOS6.

      Action: We justified our model selection criterion in the Supplemental Note 1.

      Author response image 3.

      Point 2.6

      Learning rate adaptation was also shown with tasks where decision-making strategies play a less important role, such as the Predictive Inference task (see for instance Nassar et al, 2010). When discussing the merit of the findings of this study on learning rate adaptation across volatility blocks, this work would be essential to mention. 

      Thanks for mentioning this great experimental paradigm, which provides an ideal solution for disassociating the probability learning and decision process. We have discussed about this paradigm as well as the associated papers in discussion lines 749-751, 763-765, and 796-801.

      Point 2.7

      Minor mistakes that I've noticed:

      Equation 6: The learning rate for response stickiness is sometimes defined as alpha_AH or alpha_pi.

      Supplementary material (SM) Contents are lacking in Note1. SM talks about model MOS18, but it is not defined in the text (I am assuming it is MOS22 that should be talked about here).

      Thanks! Fixed.

      Reviewer #3:

      Point 3.1

      Summary: This paper presents a new formulation of a computational model of adaptive learning amid environmental volatility. Using a behavioral paradigm and data set made available by the authors of an earlier publication (Gagne et al., 2020), the new model is found to fit the data well. The model's structure consists of three weighted controllers that influence decisions on the basis of (1) expected utility, (2) potential outcome magnitude, and (3) habit. The model offers an interpretation of psychopathology-related individual differences in decision-making behavior in terms of differences in the relative weighting of the three controllers.

      Strengths: The newly proposed "mixture of strategies" (MOS) model is evaluated relative to the model presented in the original paper by Gagne et al., 2020 (here called the "flexible learning rate" or FLR model) and two other models. Appropriate and sophisticated methods are used for developing, parameterizing, fitting, and assessing the MOS model, and the MOS model performs well on multiple goodness-of-fit indices. The parameters of the model show decent recoverability and offer a novel interpretation for psychopathology-related individual differences. Most remarkably, the model seems to be able to account for apparent differences in behavioral learning rates between high-volatility and low-volatility conditions even with no true condition-dependent change in the parameters of its learning/decision processes. This finding calls into question a class of existing models that attribute behavioral adaptation to adaptive learning rates. 

      Thanks for evaluating our paper. This is a good summary.

      Point 3.2<br /> (1) Some aspects of the paper, especially in the methods section, lacked clarity or seemed to assume context that had not been presented. I found it necessary to set the paper down and read Gagne et al., 2020 in order to understand it properly.

      (3) Clarification-related suggestions for the methods section: <br /> - Explain earlier that there are 4 contexts (reward/shock crossed with high/low volatility). Lines 252-307 contain a number of references to parameters being fit separately per context, but "context" was previously used only to refer to the two volatility levels. 

      Action: We have placed the explanation as well as the table about the 4 contexts (stable-reward/stable-aversive/volatile-reward/volatile-aversive) earlier in the section that introduces the experiment paradigm (lines 177-186):

      “Participants was supposed to complete this learning and decision-making task in four experimental contexts (Fig. 1A), two feedback contexts (reward or aversive)  two volatility contexts (stable or volatile). Participants received points in the reward context and an electric shock in the aversive context. The reward points in the reward context were converted into a monetary bonus by the end of the task, ranging from £0 to £10. In the stable context, the dominant stimulus (i.e., a certain stimulus induces the feedback with a higher probability) provided a feedback with a fixed probability of 0.75, while the other one yielded a feedback with a probability of 0.25. In the volatile context, the dominant stimulus’s feedback probability was 0.8, but the dominant stimulus switched between the two every 20 trials. Hence, this design required participants to actively learn and infer the changing stimulus-feedback contingency in the volatile context.”

      - It would be helpful to provide an initial outline of the four models that will be described since the FLR, RS, and PH models were not foreshadowed in the introduction. For the FLR model in particular, it would be helpful to give a narrative overview of the components of the model before presenting the notation. 

      Action: We now include an overview paragraph in the section of computation model to outline the four models as well as the hypotheses constituted in the model (lines 202-220).  

      - The subsection on line 343, describing the simulations, lacks context. There are references to three effects being simulated (and to "the remaining two effects") but these are unclear because there's no statement in this section of what the three effects are.

      - Lines 352-353 give group-specific weighting parameters used for the stimulations of the HC and PAT groups in Figure 4B. A third, non-group-specific set of weighting parameters is given above on lines 348-349. What were those used for?

      - Line 352 seems to say Figure 4A is plotting a simulation, but the figure caption seems to say it is plotting empirical data. 

      These paragraphs has been rewritten and the abovementioned issues have been clarified. See lines 363-392.

      Point 3.2

      (2) There is little examination of why the MOS model does so well in terms of model fit indices. What features of the data is it doing a better job of capturing? One thing that makes this puzzling is that the MOS and FLR models seem to have most of the same qualitative components: the FLR model has parameters for additive weighting of magnitude relative to probability (akin to the MOS model's magnitude-only strategy weight) and for an autocorrelative choice kernel (akin to the MOS model's habit strategy weight). So it's not self-evident where the MOS model's advantage is coming from.

      An intuitive understanding of the FLR model is that it estimates the stimuli value through a linear combination of probability feedback (PF, )and (non-linear) magnitude .See equation:

      Also, the FLR model include the mechanisms of HA as:

      In other words, FLR model considers the mechanisms about the probability of feedback (PF)+MO+HA (see Eq. XX in the original study), but our MOS considers the mechanisms of EU+MO+HA. The key qualitative difference lies between FLR and MOS is the usage of the expected utility formula (EU) instead the probability of feedback (PF). The advantage of our MOS model has been fully evidenced by our model comparisons, indicating that human participants multiply probability and magnitude rather than only considering probability. The EU strategy has also been suggested by a large pile of literature (Gershman et al., 2015; Von Neumann & Morgenstern, 1947).

      Making decisions based on the multiplication of feedback probability and magnitude can often yield very different results compared to decisions based on a linear combination of the two, especially when the two magnitudes have a small absolute difference but a large ratio. Let’s consider two cases:

      (1) Stimulus 1: vs. Stimulus 2:

      (2) Stimulus 1: vs. Stimulus 2:

      The EU strategy may opt for stimulus 2 in both cases, since stimulus 2 always has a larger expected value. However, it is very likely for the PF+MO to choose stimulus 1 in the first case. For example, when .  If we want the PF+MO to also choose stimulus to align with the EU strategy, we need to increase the weight on magnitude . Note that in this example we divided the magnitude value by 100 to ensure that probability and magnitude are on the same scale to help illustration.

      In the dataset reported by Gagne, 2020, the described scenario seems to occur more often in the aversive context than in the reward context. To accurately capture human behaviors, FLR22 model requires a significantly larger weight for magnitude in the aversive context than in the reward context . Interestingly, when the weights for magnitude in different contexts are forced to be equal, the model (FLR6) fails, exhibiting an almost chance-level performance throughout learning (Fig. 3E, G). In contrast, the MOS6 model, and even the RS3 model, exhibit good performance using one identical set of parameters across contexts. Both MOS6 and RS3 include the EU strategy during decision-making. These findings suggest humans make decisions using the EU strategy rather than PF+MO.

      The focus of our paper is to present that a good-enough model can interpret the same dataset in a completely different perspective, not necessarily to explore improvements for the FLR model.

      Point 3.3

      One of the paper's potentially most noteworthy findings (Figure 5) is that when the FLR model is fit to synthetic data generated by the expected utility (EU) controller with a fixed learning rate, it recovers a spurious difference in learning rate between the volatile and stable environments. Although this is potentially a significant finding, its interpretation seems uncertain for several reasons: 

      - According to the relevant methods text, the result is based on a simulation of only 5 task blocks for each strategy. It would be better to repeat the simulation and recovery multiple times so that a confidence interval or error bar can be estimated and added to the figure. 

      - It makes sense that learning rates recovered for the magnitude-oriented (MO) strategy are near zero, since behavior simulated by that strategy would have no reason to show any evidence of learning. But this makes it perplexing why the MO learning rate in the volatile condition is slightly positive and slightly greater than in the stable condition. 

      - The pure-EU and pure-MO strategies are interpreted as being analogous to the healthy control group and the patient group, respectively. However, the actual difference in estimated EU/MO weighting between the two participant groups was much more moderate. It's unclear whether the same result would be obtained for a more empirically plausible difference in EU/MO weighting. 

      - The fits of the FLR model to the simulated data "controlled all parameters except for the learning rate parameters across the two strategies" (line 522). If this means that no parameters except learning rate were allowed to differ between the fits to the pure-EU and pure-MO synthetic data sets, the models would have been prevented from fitting the difference in terms of the relative weighting of probability and magnitude, which better corresponds to the true difference between the two strategies. This could have interfered with the estimation of other parameters, such as learning rate. 

      - If, after addressing all of the above, the FLR model really does recover a spurious difference in learning rate between stable and volatile blocks, it would be worth more examination of why this is happening. For example, is it because there are more opportunities to observe learning in those blocks?

      I would recommend performing a version of the Figure 5 simulations using two sets of MOS-model parameters that are identical except that they use healthy-control-like and patient-like values of the EU and MO weights (similar to the parameters described on lines 346-353, though perhaps with the habit controller weight equated). Then fit the simulated data with the FLR model, with learning rate and other parameters free to differ between groups. The result would be informative as to (1) whether the FLR model still misidentifies between-group strategy differences as learning rate differences, and (2) whether the FLR model still identifies spurious learning rate differences between stable and volatile conditions in the control-like group, which become attenuated in the patient-like group. 

      Many thanks for this great advice. Following your suggestions, we now conduct simulations using the median of the fitted parameters. The representations for healthy controls and patients have identical parameters, except for the three preference parameters; moreover, the habit weights are not controlled to be equal. 20 simulations for each representative, each comprising 4 task sequences sampled from the behavioral data. In this case, we could create error bars and perform statistical tests. We found that the differences in learning rates between stable and volatile conditions, as well as the learning rate adaptation differences between healthy controls and patients, still persisted.

      Combined with the discussion in Point 3.2, we justify why a mixture-of-strategy can account for learning rate adaptation as follow. Due to (unknown) differences in task sequences, the MOS6 model exhibits more MO-like behaviors due to the usage of the EU strategy. To capture this behavior pattern, the FLR22 model has to increase its weighting parameter 1-λ for magnitude, which could ultimately drive the FLR22 to adjust the fitted learning rate parameters, exhibiting a learning rate adaptation effect. Our simulations suggest that estimating learning rate just by model fitting may not be the only way to interpret the data.

      Action: We included the simulation details in the method section (lines 381-lines 391)

      “In one simulated experiment, we sampled the four task sequences from the real data. We simulated 20 experiments with the parameters of to mimic the behavior of the healthy control participants. The first three are the median of the fitted parameters across all participants; the latter three were chosen to approximate the strategy preferences of real health control participants (Figure 4A). Similarly, we also simulated 20 experiments for the patient group with the identical values of , and , but different strategy preferences   . In other words, the only difference in the parameters of the two groups is the switched and . We then fitted the FLR22 to the behavioral data generated by the MOS6 and examined the learning rate differences across groups and volatile contexts (Fig. 6). ”

      Point 3.4

      Figure 4C shows that the habit-only strategy is able to learn and adapt to changing contingencies, and some of the interpretive discussion emphasizes this. (For instance, line 651 says the habit strategy brings more rewards than the MO strategy.) However, the habit strategy doesn't seem to have any mechanism for learning from outcome feedback. It seems unlikely it would perform better than chance if it were the sole driver of behavior. Is it succeeding in this example because it is learning from previous decisions made by the EU strategy, or perhaps from decisions in the empirical data?

      Yes, the intuition is that the HA strategy seems to show no learning mechanism. But in reality, it yields a higher hit rate than MO by simply learning from previous decisions made by the EU strategy. We run simulations to confirm this (Figure 4B).

      Point 3.5

      For the model recovery analysis (line 567), the stated purpose is to rule out the possibility that the MOS model always wins (line 552), but the only result presented is one in which the MOS model wins. To assess whether the MOS and FLR models can be differentiated, it seems necessary also to show model recovery results for synthetic data generated by the FLR model. 

      Sure, we conducted a model recovery analysis that include all models, and it demonstrates that MOS and FLR can be fully differentiated. The results of the new model recovery analysis were shown in Fig. 7.

      Point 3.6

      To the best of my understanding, the MOS model seems to implement valence-specific learning rates in a qualitatively different way from how they were implemented in Gagne et al., 2020, and other previous literature. Line 246 says there were separate learning rates for upward and downward updates to the outcome probability. That's different from using two learning rates for "better"- and "worse"-than-expected outcomes, which will depend on both the direction of the update and the valence of the outcome (reward or shock). Might this relate to why no evidence for valence-specific learning rates was found even though the original authors found such evidence in the same data set? 

      Thanks. Following the suggestion, we have corrected our implementation of valence-specific learning rate in all models (see lines 261-268).

      “To keep consistent with Gagne et al., (2020), we also explored the valence-specific learning rate,

      is the learning rate for better-than-expected outcome, and for worse-than-expected outcome. It is important to note that Eq. 6 was only applied to the reward context, and the definitions of “better-than-expected” and “worse-than-expected” should change accordingly in the aversive context, where we defined for and for .

      No main effect of valence on learning rate was found (see Supplemental Information Note 3)

      Point 3.7

      The discussion (line 649) foregrounds the finding of greater "magnitude-only" weights with greater "general factor" psychopathology scores, concluding it reflects a shift toward simplifying heuristics. However, the picture might not be so straightforward because "habit" weights, which also reflect a simplifying heuristic, correlated negatively with the psychopathology scores. 

      Thanks. In contrast the detrimental effects of “MO”, “habit” is actually beneficial for the task. Please refer to Point 1.12.

      Point 3.8

      The discussion section contains some pejorative-sounding comments about Gagne et al. 2020 that lack clear justification. Line 611 says that the study "did not attempt to connect the decision process to anxiety and depression traits." Given that linking model-derived learning rate estimates to psychopathology scores was a major topic of the study, this broad statement seems incorrect. If the intent is to describe a more specific step that was not undertaken in that paper, please clarify. Likewise, I don't understand the justification for the statement on line 615 that the model from that paper "is not understandable" - please use more precise and neutral language to describe the model's perceived shortcomings. 

      Sorry for the confusion. We have removed all abovementioned pejorative-sounding comments.

      Point 3.9

      4. Minor suggestions: 

      - Line 114 says people with psychiatric illness "are known to have shrunk cognitive resources" - this phrasing comes across as somewhat loaded. 

      Thanks. We have removed this argument.

      - Line 225, I don't think the reference to "hot hand bias" is correct. I understand hot hand bias to mean overestimating the probability of success after past successes. That's not the same thing as habitual repetition of previous responses, which is what's being discussed here. 

      Response: Thanks for mentioning this. We have removed all discussions about “hot hand bias”.

      - There may be some notational inconsistency if alpha_pi on line 248 and alpha_HA on line 253 are referring to the same thing. 

      Thanks! Fixed!

      - Check the notation on line 285 - there may be some interchanging of decimals and commas.

      Thanks! Fixed!

      Also, would the interpretation in terms of risk seeking and risk aversion be different for rewarding versus aversive outcomes? 

      Thanks for asking. If we understand it correctly, risk seeking and risk aversion mechanisms are only present in the RS models, which show clearly worse fitting performance. We thus decide not to overly interpret the fitted parameters in the RS models.

      - Line 501, "HA and PAT groups" looks like a typo. 

      - In Figure 5, better graphical labeling of the panels and axes would be helpful. 

      Response: Thanks! Fixed!

      REFERENCES

      Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-based influences on humans' choices and striatal prediction errors. Neuron, 69(6), 1204-1215.

      Gagne, C., Zika, O., Dayan, P., & Bishop, S. J. (2020). Impaired adaptation of learning to contingency volatility in internalizing psychopathology. Elife, 9.

      Gershman, S. J. (2020). Origin of perseveration in the trade-off between reward and complexity. Cognition, 204, 104394.

      Gershman, S. J., Horvitz, E. J., & Tenenbaum, J. B. (2015). Computational rationality: A converging paradigm for intelligence in brains, minds, and machines. Science, 349(6245), 273-278.

      Von Neumann, J., & Morgenstern, O. (1947). Theory of games and economic behavior, 2nd rev.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Editors’ recommendations for the authors

      The reviewers recommend the following: 

      (a) Digging deeper into the discussion of the density-dependent dispersal. 

      (b) Clarifying the microfluidic setup.  

      (c) Clarifying the description and interpretation of the transcriptomic evidence. 

      (d) Toning down carbon cycle connections (some reviewers felt the evidence did not fully support the claims). 

      We would like to thank the editors for their thoughtful evaluation of our manuscript and their clear suggestions. We have revised the manuscript in the light of these comments, as we outline below and address in detail in the point-by-point response to the reviewers’ comments that follows. 

      (a) We have expanded the discussion of density-dependent dispersal and revised Figure 2C to improve clarity. 

      (b) We have also added further information concerning the microfluidic setup in the results section and provide an illustration of the setup in a new figure panel, Figure 1A.

      (c) Addressing the reviewers’ comments on the transcriptomic analysis, we have added more information in the description and interpretation of the results. 

      (d) We have rephrased the text describing the role of degradation-dispersal cycles for carbon cycling to highlight it as the motivation of this study and emphasize the link to literature on foraging, without creating expectations of direct measurements of global carbon cycling.

      Public Reviews:

      Reviewer #1 (Public Review):

      [...]

      Weaknesses: 

      Much of the genetic analysis, as it stands, is quite speculative and descriptive. I found myself confused about many of the genes (e.g., quorum sensing) that pop up enriched during dispersal quite in contrast to my expectations. While the authors do mention some of this in the text as worth following up on, I think the analysis as it stands adds little insight into the behaviors studied. However, I acknowledge that it might have the potential to generate hypotheses and thus aid future studies. Further, I found the connections to the carbon cycle and marine environments in the abstract weak --- the microfluidics setup by the authors is nice, but it provides limited insight into naturalistic environments where the spatial distribution and dimensionality of resources are expected to be qualitatively different. 

      We thank the reviewer for their suggestions to improve our manuscript. We agree that the original manuscript would have benefitted from more detailed interpretation of the observed changes in gene expression. We have revised the manuscript to elaborate on the interpretation of the changes in expression of quorum sensing genes (see response to reviewer 1, comment 3), motility genes (see response to reviewer 1, comment 6), alginate lyase genes (see response to reviewer 1, comment 7 and reviewer 2, comment 2), and ribosomal and transporter genes (see response to reviewer 2, comment 2).

      In general, we think that the gene expression study not only supports the phenotypic observations that we made in the microfluidic device, such as the increased swimming motility when exposed to digested alginate medium, but  also adds further insights. Our reasoning for studying the transcriptomes in well mixed-batch cultures was the inability to study gene expression dynamics to support the phenotypic observations about differential motility and chemotaxis in our microfluidics setup. The transcriptomic data clearly show that even in well-mixed environments, growth on digested alginate instead of alginate is sufficient to increase the expression of motility and chemotaxis genes. In addition, the finding that expression of alginate lyases and metabolic genes is increased during growth on digested alginate was revealed through the analysis of transcriptomes, something which would not have been possible in the microfluidic setup. We agree with the reviewer that our analyses implicate further, perhaps unexpected, mechanisms like quorum sensing in the cellular response to breakdown products, and that this represents an interesting avenue for further studies.

      Finally, we  also agree with the reviewer that it would be good to be more explicit in the text that our microfluidic system cannot fully capture the complex dynamics of natural environments. Our approach does, however, allow the characterization of cellular behaviors at spatial and temporal scales that are relevant to the interactions of bacteria, and thus provides a better understanding of colonization and dispersal of marine bacteria in a manner that is not possible through in situ experiments. We have edited our manuscript to highlight this and modified our statements regarding carbon cycling towards emphasizing the role degradation-dispersal cycles in remineralization of polysaccharides (see response to reviewer 1, comment 2).  

      Reviewer #2 (Public Review):

      [...]

      Weaknesses: 

      The explanation of the microfluidics measurements is somewhat confusing but I think this could be easily remedied. The quantitative interpretation of the dispersal data could also be improved and I'm not clear if the data support the claim made. 

      We thank the reviewer for their comments and helpful suggestions. We have revised the manuscript with these suggestions in mind and believe that the manuscript is improved by a more detailed explanation of the microfluidic setup. We have added more information in the text (detailed in response to reviewer 2, comments 1 and 2) and have added a depiction of the microfluidic setup (Fig. 1A). We have also modified the presentation and discussion of the dispersal data (Fig. 2C), as described in detail below in response to reviewer 2, comment 4, and argue that they clearly show density-dependent dispersal. We believe that this modification of how the results are presented provides a more convincing case for our main conclusion, namely that the presence of degradation products controls bacterial dispersal in a density-dependent manner.  

      Reviewer #3 (Public Review):

      [...]

      Weaknesses: 

      I find this paper very descriptive and speculative. The results of the genetic analyses are quite counterintuitive; therefore, I understand the difficulty of connecting them to the observations coming from experiments in the microfluidic device. However, they could be better placed in the literature of foraging - dispersal cycles, beyond bacteria. In addition, the interpretation of the results is sometimes confusing. 

      We thank the reviewer for their suggestions to improve the manuscript. We have edited the manuscript to interpret the results of this study more clearly, in particular with regard to the fact that breakdown products of alginate cause cell dispersal (see response to reviewer 2, comment 1), gene expression changes of ribosomal proteins and transporters (see response to reviewer 2, comment 2), as well as genes relating to alginate catabolism (see response to reviewer 2, comment 3).

      To provide more context for the interpretation of our results we now also embed our findings in more detail in the previous work on foraging strategies and dispersal tradeoffs.

      Recommendations For The Authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The authors should clarify in more detail what they mean by density dependence in Figure 2. Usually density dependence refers to a per capita dependence, but here it seems that the per capita rate of dispersal might be roughly independent of density (Figure 2c; if you double the number of cells it doubles the number of cells leaving). Rather it seems the dispersal is such that the density of remaining cells falls below a threshold (~300 cells). 

      We thank the reviewer for raising this important point. To analyze the data more explicitly in terms of per capita dependence and so make the density dependence in the dispersal from the microfluidic chambers more clear, we have modified Figure 2C and edited the text. 

      In the modified Figure 2C, we computed the fraction of dispersed cells for each chamber (i.e the change in cell number divided by the cell number at the time of the nutrient switch). This quantity directly reveals the per-capita dependence, as mentioned by reviewer 1, and is now represented on the y-axis of Figure 2C instead of the absolute change in cell number. 

      These data demonstrate that the fraction of dispersed cells increases with increasing numbers of cells present in the chamber at the time of switching, with more highly populated chambers showing a higher fraction of dispersed cells. These findings indicate that there is a strong density dependence in the dispersal process.

      As pointed out by reviewer 1, another interesting aspect of the data is the transition at low cell number. The fraction of dispersed cells is negative in the case of the chamber with approximately 70 cells, consistent with no dispersal at this low density, and a moderate density increase as a function of continued growth.  

      In addition to the new analysis presented in Figure 2C, we have modified the paragraph that discusses this result as follows (line 208):

      “We indeed found that the nutrient switch caused a few or no cells to disperse from small cell groups (Fig. 2B), whereas a large fraction of cells from large cell groups dispersed (Fig. 2C). In fact, the e fraction of cells that dispersed upon imposition of the nutrient switch showed a strong positive relationship with the number of cells present, meaning that cells in chambers with many cells were more likely to disperse than cells in chambers with fewer cells (Fig. 2C).”

      (2) The authors should tone down their claims about the carbon cycle in the abstract. I do not believe the results as they stand could be used to understand degradation-dispersal cycles in marine environments relevant to the carbon cycle, since these behaviors have been studied in microfluidic environments which in my understanding are quite different. As such, statements such as "degradation-dispersal cycles are an integral part in the global carbon cycle, we know little about how cells alternate between degradation and motility" and "Overall, our findings reveal the cellular mechanisms underlying bacterial degradation-dispersal cycles that drive remineralization in natural environments" are overstated in the abstract. 

      We appreciate the reviewer’s comments regarding the connections of our work with the carbon cycle. We have now rephrased these statements in our manuscript to describe a potential connection between our work and the marine carbon cycle. The colonization of polysaccharides particles by bacteria and subsequent degradation has been widely acknowledged to play a significant role in controlling the carbon flow in marine ecosystems. (Fenchel, 2002; Preheim et al., 2011; Yawata et al., 2014, 2020). We still refer to carbon flow in the revised manuscript, though cautiously, as microbial remineralization of biomass, which is recognized as an important factor in the marine biological carbon pump (e.g., (Chisholm, 2000; Jiao et al., 2024). As stated in the previous version of the manuscript, the main motivation of our work was to study the growth behaviors of marine heterotrophic bacteria during polysaccharide degradation, especially to understand when bacteria depart already colonized and degraded particles and find novel patches to grow and degrade, a process that is poorly understood. Therefore, it is conceivable that degradation-dispersal cycles do play a role in the flow of carbon in marine ecosystems. However, we acknowledge that the carbon cycle is influenced by a multitude of biological and chemical processes, and the bacterial degradation-dispersal cycle might not be the sole mechanism at play. 

      We also appreciate the reviewer’s comments highlighting that the complexity of natural environments is not fully captured in our microfluidics system. However, our microfluidics setup does allow us to quantify responses and behaviors of microbial groups at high spatial and temporal resolution, especially in the context of environmental fluctuations. Microbes in nature interact at small spatial scales and have to respond to changes in the environment, and the microfluidics setup enables the quantification of these responses. Moreover, dispersal of the bacterium V. cyclitrophicus that we use in our study, has been previously observed even during growth on particulate alginate (Alcolombri et al., 2021), but the cues and regulation controlling dispersal behaviors have been unclear.  Microfluidic experiments have now allowed us to study this process in a highly quantitative manner, and align well with observations from experiments from more nature-like settings. These quantitative experiments on bacterial strains isolated from marine particles are expected to constrain quantitative models of carbon degradation in the ocean (Nguyen et al., 2022).

      We have now adjusted our statements throughout our manuscript to reflect the knowledge gaps in understanding the triggers of degradation-dispersal cycles and their links with carbon flow in marine ecosystems. The revised manuscript, especially, contains the following statements (line 47 and line 60):

      “Even though many studies indicate that these degradation-dispersal cycles contribute to the carbon flow in marine systems, we know little about how cells alternate between polysaccharide degradation and motility, and which environmental factors trigger this behavioral switch.”

      “Overall, our findings reveal cellular mechanisms that might also underlie bacterial degradation-dispersal cycles, which influence the remineralization of biomass in marine environments.”

      (3) The authors should clarify why they think quorum-sensing genes are increased in expression on digested alginate. The authors currently mention that QS could be used to trigger dispersal, but given the timescales of dispersal in Figure 2 (~half an hour), I find it hard to believe that these genes are expressed and have the suggested effect on those timescales. As such I would have expected the other way round - for QS genes to be expressed highly during alginate growth, so that density could be sensed and responded to. Please clarify. 

      We have now clarified this point in the revised manuscript. While the triggering of dispersal by quorum-sensing genes may indeed appear counterintuitive, and the response is rapid (we see dispersal of cells within 30-40 minutes), both observations are in line with previous studies in another model organism Vibrio cholerae. The dispersal time is similar to the dispersal time of V. cholerae cells from biofilms, as described by Singh and colleagues, (Figure 1E of Ref. Singh et al., 2017). In that case, induction of the quorum sensing dispersal regulator HapR was observed during biofilm dispersal within one hour after switch of condition (Fig. 2, middle panel of Ref. Singh et al., 2017). Even though the specific quorum sensing signaling molecules are probably different in our strain (there is no annotated homolog of the hapR gene in V. cyclitrophicus), we observed that the full set of quorum sensing genes was enriched in cells growing on digested alginate (as reported in line 314 and Fig. 4A).

      We have added this information in the manuscript (line 317): 

      “The set of quorum sensing genes was also positively enriched in cells growing on digested alginate (Fig. 4A and S4F, Table S13). This role in dispersal is in agreement with a previous study that showed induction of the quorum sensing master regulator in V. cholerae cells during dispersal from biofilms on a similar time scale as here (less than an hour) [28].”

      Reviewer #2 (Recommendations For The Authors):

      (1) Around line 144 - I don't really understand how you flow alginate through the microfluidic platform. It seems if the particles are transiently going through the microfluidic chamber then the flow rate and hence residence time of the alginate particles will matter a lot by controlling the time the cells have to colonize and excrete enzymes for alginate breakdown. Or perhaps the alginate is not particulate but is instead a large but soluble polymer? I think maybe a schematic of the microfluidic device would help -- there is an implicit assumption that we are familiar with the Dal Co et al device, but I don't recall its details and maybe a graphic added to Figure 1 would help. 

      a. In reviewing the Dal Co paper I see that cells are trapped and the medium flows through channels and the plane where the cells are held. I am still a little confused about the size of the polymeric alginate -- large scale (>1um) particles or very small polymers? 

      We have now provided a detailed description of our microfluidic experimental system. At the start of the experiments, cells are in fact not trapped within the microfluidic device, but grow and can move freely within a chamber designed with dimensions (sub-micron heights) so that growth occurs only as a monolayer. Cells were exposed to nutrients, either alginate or alginate digestion products, both in soluble form (not particles). These compounds were flowed into the device through a main channel, but entered the flowfree growth chambers by diffusion. To make these aspects of our experiments clearer, we have added further information on this in the Materials & Methods section (line 556), added this information in the abstract (line 51), and in the results (line123).

      To make our microfluidic setup clearer, we have followed this advice and added a schematic as Figure 1A and have added more information on the setup to the main text (line 153):

      “In brief, the microfluidic chips are made of an inert polymer (polydimethylsiloxane) bound to a glass coverslip. The PDMS layer contains flow channels through which the culture medium is pumped continuously. Each channel is connected to several growth chambers that are laterally positioned. The dimensions of these growth chambers (height: 0.85 µm, length: 60 µm, width: 90-120 µm) allow cells to freely move and grow as monolayers. The culture medium, containing either alginate or digested alginate in their soluble form, is constantly pumped through the flow channel and enters the growth chambers primarily through diffusion [15,16,4,17,8]. Therefore, the number of cells and their positioning within microfluidic chambers is determined by the cellular growth rate as well as by cell movement4. This setup combined with time-lapse microscopy allowed us to follow the development of cell communities over time.”

      (2) What makes this confusing is the difference between Figure 1C and Figure S2A -- the authors state that the difference in Figure 1C is due to dispersal, but is there flow through the microfluidic device? So what role does that flow through the device have in dispersal? Is the adhesion of the cell groups driven at all by a physical interaction with high molecular weight polymers in the microfluidic devices or is this purely a biological effect? Could this also be explained by different real concentrations of nutrients in the two cases? 

      We realize from this comment that the role of flow of the medium in the microfluidic setup was not clearly addressed in our manuscript. In fact, cells were not exposed to flow, and nutrients were provided to the growth chambers by diffusion. We have added a clearer explanation of this point on line 158:

      “The culture medium, containing either alginate or digested alginate in their soluble form, is constantly pumped through the flow channel and enters the growth chambers primarily through diffusion [15,16,4,17,8]. Therefore, the number of cells and their positioning within microfluidic chambers is determined by the cellular growth rate as well as by cell movement4.“

      One purely physical effect that we anticipate is that a high viscosity of the medium could immobilize cells. To address this point, we measured the viscosity of both alginate and digested alginate and conclude that the increase in viscosity is not strong enough to immobilize cells. We added a statement in the text (line 170)

      “To test the role of increased viscosity of polymeric alginate in causing the increased aggregation of cells, we measured the viscosity of 0.1% (w/v) alginate or digested alginate dissolved in TR media. For alginate, the viscosity was 1.03±0.01 mPa·s (mean and standard deviation of three technical replicates) whereas the viscosity of digested alginate in TR media was found to be 0.74±0.01 mPa·s. Both these values are relatively close to the viscosity of water at this temperature (0.89 mPa·s18) and, while they may affect swimming behavior [19], they are insufficient to physically restrain cell movement [20].”

      as well as a section in the Materials and Methods (line 594):

      “Viscosity of the alginate and digested alginate solution

      We measured the viscosity of alginate solutions using shear rheology measurements. We use a 40 mm cone-plate geometry (4° cone) in a Netzsch Kinexus Pro+ rheometer. 1200 uL of sample was placed on the bottom plate, the gap was set at 150 um and the sample trimmed. We used a solvent trap to avoid sample evaporation during measurement. The temperature was set to 25°C using a Peltier element. We measure the dynamic viscosity over a range of shear rates  = 0.1 – 100 s-1. We report the viscosity of each solution as the average viscosity measured over the shear rates 10 – 100 s-1, where the shear-dependence of the viscosity was low.

      We measured the viscosity of 0.1% (w/V) alginate dissolved in TR media, which was 1.03 +/- 0.01 mPa·s (reporting the mean and standard deviation of three technical replicates.). The viscosity of 0.1% digested alginate in TR media was found to be 0.74+/-0.01 mPa·s. This means that the viscosity of alginate in our microfluidic experiments is 36% higher than of digested alginate, but the viscosities are close to those expected of water (0.89 mPa·s at 25 degree Celsius according to Berstad and colleagues [18]).”

      While our microfluidic setup allows us to track the position and movement of cells in a spatially structured setting, these observations do not allow us to distinguish directly whether the differences in dispersal are a result of purely physical effects of polymers on cells or are a result of them triggering a biological response in cells that causes them to become sessile. It is known that bacterial appendages like pili interact with polysaccharide residues (Li et al., 2003). Therefore, it is quite plausible that cross-linking by polysaccharides can contribute growth behaviors on alginate. However, our analysis of gene expression demonstrates that flagellum-driven motility is decreased in the presence of alginate compared to digested alginate, alongside other major changes in gene expression. In addition, our measures of dispersal show that dispersal of cells when exposed to digested alginate is density dependent. Both observations suggest that the patterns in dispersal are governed by decision-making processes by cells resulting in changes in cell motility, rather than being a product of purely physical interactions with the polymer. 

      The finding that viscosities of both alginate and digested alginate are similar to that of water, suggests that diffusion of nutrients in the growth chambers should be similar. Therefore, we think that the differences in real concentrations of nutrients is likely not contributing to the observed differences in behavior. 

      (3) Why is Figure S1 arbitrary units? Does this have to do with the calibration of LC-MS? It would be better, it seems, to know the concentrations in real units of the monomer at least. 

      We agree with the reviewer that it would have been better to have absolute concentrations for these compounds. However, to calibrate the mass spectrometer signals (ion counts) to absolute concentrations for the different alginate compounds, we would need an analytical standard of known concentration. We are not aware of such a standard and thus report only relative concentrations. We agree that the y-axis label of Figure S1 should not contain ‘arbitrary’ units, as it shows a ratio (of measurements in the same arbitrary units). We have edited the labels of Figure S1 accordingly and the figure legend in line 26 of the Supplemental Material (“Relative concentrations…”).

      (4) Line 188 - density-dependent dispersal. The claim here is that "cells in chambers with many cells were more likely to disperse than cells in chambers with less cells." (my emphasis). Looking at the data in Figure 2C it appears that about 40% of the cells disperse irrespective of the density, before the switch to digested alginate. So it would seem that there is not a higher likelihood of dispersal at higher cell densities. For the very highest cell density, it does appear that this fraction is larger, but I'd be concerned about making this claim from what I understand to be a single experiment. To support the claim made should the authors plot Change in Cell number/Starting Cell number on the y-axis of Fig. 2C to show that the fraction is increasing? It would seem some additional data at higher starting cell densities would help support this claim more strongly. 

      We thank the reviewer for this comment, which is in line with a remark made by reviewer 1 in their comment 1. In response to these two comments (and as described above), we have edited Figure 2C and now have plotted the change in cell number relative to starting cell number at the y axis to directly show the density dependence. We observe a positive (approximately linear) relationship between the fraction of dispersed cells with the number of cells present in the chamber at the time of switching. This indicates that there is a density dependence in the dispersal process, with highly populated chambers showing a higher fraction of dispersed cells. 

      In addition to the change in Figure 2C, we have modified the paragraph around line 208: “We indeed found that the nutrient switch caused a few or no cells to disperse from small cell groups (Fig. 2B), whereas a large fraction of cells from large cell groups dispersed (Fig. 2C). In fact, the e fraction of cells that dispersed upon imposition of the nutrient switch showed a strong positive relationship with the number of cells present, meaning that cells in chambers with many cells were more likely to disperse than cells in chambers with fewer cells (Fig. 2C).”

      The highest cell number at the start of the switch that we include is about 800 cells. The maximum number of cells that can fit into a chamber are ca. 1000 cells. Thus, 800 resident cells are close to the maximal density.

      (5) A comment -- I find the result of significant chemotaxis towards alginate but not the monomers of alginate to be quite surprising. The ecological relevance of this (line 219) seems like an important result that is worth expanding on a bit at least in the discussion. For now, my question is whether the authors know of any mechanism by which chemotaxis receptors could respond to alginate but not the monomer. How can a receptor distinguish between the two? 

      We agree that this result is surprising, given that oligomers can be more easily transported into the periplasm where sensing takes place, and they also provide an easier accessible nutrient source. Indeed, in case of the insoluble polymer chitin it has been shown that chemotaxis towards chitin is mediated by chitin oligomers (Bassler et al., 1991), which was suggested as a general motif to locate polysaccharide nutrient sources (Keegstra et al., 2022). However, a recent study has changed this perspective by showing widespread chemotaxis of marine bacteria towards the glucose-based marine polysaccharide laminarin, but not towards laminarin oligomers or glucose (Clerc et al., 2023). Together with our results on chemotaxis towards alginate (but not significantly toward alginate oligomers) this suggests that chemotaxis towards soluble polysaccharides can be mediated by direct sensing of the polysaccharide molecules.

      As recommended, we expanded the discussion of the ecological relevance and also added more information on possible mechanisms of selective sensing of alginate and its breakdown products (around line 479).:

      “Direct chemotaxis towards polysaccharides may facilitate the search for new polysaccharide sources after dispersal. We found that the presence of degradation products not only induces cell dispersal but also increases the expression of chemotaxis genes. Interestingly, we found that V. cyclitrophicus ZF270 cells show chemotaxis towards polymeric alginate but not digested alginate. This contrasts with previous findings for bacterial strains degrading the insoluble marine polysaccharide chitin, where chemotaxis was strongest towards chitin oligomers53, suggesting that oligomers may act as an environmental cue for polysaccharide nutrient sources55. However, recent work has shown that certain marine bacteria are attracted to the marine polysaccharide laminarin, and not laminarin oligomers56. Together with our results, this indicates that chemotaxis towards soluble polysaccharides may be mediated by the polysaccharide molecules themselves. The mechanism of this behavior is yet to be identified, but could be mediated by polysaccharide-binding proteins as have been found in Sphingomonas sp. A1 facilitating chemotaxis towards pectin57. Direct polysaccharide sensing adds complexity to chemosensing as polysaccharides cannot freely diffuse into the periplasm, which can lead to a trade-off between chemosensing and uptake58. Furthermore, most polysaccharides are not immediately metabolically accessible as they require degradation. But direct polysaccharide sensing can also provide certain benefits compared to using oligomers as sensory cues. First, it could enable bacterial strains to preferably navigate to polysaccharide nutrients sources that are relatively uncolonized and hence show little degradation activity. Second, strong chemotaxis towards degradation products could hinder a timely dispersal process as the dispersal then requires cells to travel against a strong attractant gradient formed by the degradation products. Overall, this strategy allows cells to alternate between degradation and dispersal to acquire carbon and energy in a heterogeneous world with nutrient hotspots [44,59–61].”

      (6) Comment on lines 287-8 -- that the "positive enrichment of the gene set containing bacterial motility proteins matched the increase in motile cells that we observe in Fig 3E." I'm confused about what is meant by the word "matched" here. Is the implication that there is some quantitative correspondence between increased motility in Figure 3 and the change in expression in Figure 4? Or is the statement a qualitative one -- that motility genes are upregulated in the presence of digested alginate? Table S12 didn't help me answer this question. 

      We thank the reviewer for their helpful comment. Our original statement was a qualitative one - observing that gene expression enrichment in genes associated with bacterial motility aligned with our expectations based on the previous observation of an increase in motile cells. We have now changed the wording to highlight the qualitative nature of this statement (line 315):

      “The positive enrichment of the gene set containing bacterial motility proteins aligned with our expectations based on the increase in motile cells that we observed in Figure 3E (Fig. 4A, Table S12).”

      (7) Line 326 - what is the explanation for the production of public enzymes in the presence of digest? How does this square with the previous narrative about cells growing on alginate digest expressing motility genes and chemotaxing towards alginate? It seems like the story is a bit tenuous here in the sense that digested alginates stimulate both motility - which is hypothesized to drive the discovery of new alginate particles - and lyase enzymes which are used to degrade alginate. So do the high motility cells that are chemotaxing towards alginate also express lyases en route? I'm of the opinion that constructing narratives like these in the absence of a more quantitative understanding of the colonization and degradation dynamics of alginate particles presents a major challenge and may be asking more of the data than the data can provide. 

      a. I noted later that this is addressed later around lines 393 in the Discussion section.

      Indeed, the notion that the presence of breakdown products triggers motility and also increases the expression of alginate lyases and other metabolic genes for alginate catabolism seems counterintuitive. We have now expanded our discussion of these results to contextualize these findings (around line 443):

      "One reason for this observation may be that cells primarily rely on intracellular monosaccharide levels to trigger the upregulation of genes associated with polysaccharide degradation and catabolism, as has previously been observed for E. coli across various carbon sources [50,51]. In fact, the majority of carbon sources are sensed by prokaryotes through one‑component sensors inside the cell50. In the one‑component internal sensing scheme, the enzymes and transporters for the use of various carbon sources are expressed at basal levels, which leads to an increase in pathway intermediates upon nutrient availability. The pathway intermediates are sensed by an internal sensor, usually a transcription factor, and lead to the upregulation of transporter and enzyme expression [50,51]. This results in a positive feedback loop, which enables small changes in substrate abundance to trigger large transcriptional responses [50,52]. Thus, the presence of alginate breakdown products may likely result in increased expression of all components of the alginate degradation pathway, including the expression of degrading enzymes. As the gene expression analysis was performed on well-mixed cultures in culture medium containing alginate breakdown products, we therefore expect a strong stimulation of alginate catabolism. In a natural scenario, where cells disperse from a polysaccharide hotspot before its exhaustion, the expression of alginate catabolism genes may likely decrease again once the local concentration of breakdown products decreases. However, continued production of alginate lyases could also provide an advantage when encountering a new alginate source and continued production of alginate lyases may thus help cells to prepare for likely future environments. Further investigations of bacterial enzyme secretion in changing nutrient environments and at relevant spatial scales are required to improve our understanding of the regulation of enzyme secretion along nutrient gradients."

      (8) I like Figure 6, and I think this hypothesis is a good result from this paper, but I think it would be important to emphasize this as a proposal that needs further quantitative analysis to be supported. 

      We have now edited the manuscript to make this point more clear. While both degradation and dispersal are well-appreciated parts of microbial ecology, the transitions and underlying mechanisms are unclear. We have edited the discussion to improve the clarity (line 419): 

      “This cycle of biomass degradation and dispersal has long been discussed in the context of foraging e.g., [44,45,13,46,47], but the cellular mechanisms that drive the cell dispersal remain unclear.”

      Also, we have updated Figure 6 to indicate more clearly which new findings this work proposes (now bold font) and which previous findings that were made in different bacterial taxa and carbon sources that aligns with our  work (now light font). We edited the figure legend accordingly (line 503):

      "By integrating our results with previous studies on cooperative growth on the same system, as well as results on dispersal cycles in other systems, we highlight where the specific results of this work add to this framework (bold font)."

      Minor comments 

      (1) Is there any growth on the enzyme used for alginate digestion? E.g. is the enzyme used to digest the alginate at sufficiently high concentrations that cells could utilize it for a carbon/nitrogen source? 

      We thank the reviewer for raising this point. We added the following paragraph as Supplemental Text to address it (line 179):

      “Protein amount of the alginate lyases added to create digested alginate

      Based on the following calculation, we conclude that the amount of protein added to the growth medium by the addition of alginate lyases is so small that we consider it negligible. In our experiment we used 1 unit/ml of alginate lyases in a 4.5 ml solution to digest the alginate. As the commercially purchased alginate lyases are 10,000 units/g, our 4.5 ml solution contains 0.45 mg of alginate lyase protein. The digested alginate solution diluted 45x when added to culture medium. This means that we added 0.18 µg alginate lyase protein to 1 ml of culture medium.

      As a comparison, for 1ml of alginate medium, 1000µg of alginate is added or for 1 ml of Lysogeny broth (LB) culture medium, 3,500 µg of LB are added.  Thus, the amount of alginate lyase protein that we added is ca. 5000 - 20,000 times smaller than the amount of alginate or LB that one would add to support cell growth. Therefore, we expect the growth that the digestion of the added alginate lyases would allow to be negligible.”

      (2) The lines in Figure 2B are very hard to see. 

      We have addressed this comment by using thicker lines in Figure 2B.

      (3) The black background and images in Figure 3A and B are hard to see as well. 

      We have now replaced Figure 3A and B, now using a white background.

      (4) Typo at the beginning of line 251? 

      Unfortunately we failed to find the typo referred to. We are happy to address it if it still exists in the revised manuscript.

      Reviewer #3 (Recommendations For The Authors):

      (1) I think there is not enough experimental evidence to conclude that the underlying cause of increased motility is the accumulation of digested alginate products. To conclusively show that this is the cause and not just some signal linked to cell density, perhaps the experiment should be repeated with a different carbon source. 

      We thank the reviewer for their comment, which made us realize that we did not make the nature of the dispersal cue clear. The gene expression data was obtained from batch cultures and measured at the same approximate bacterial densities in batch, which indeed shows that the digested alginate is a sufficient signal for an increase in motility gene expression. This agrees very well with our observation that cells growing on digested alginate in microfluidic chambers have an increased fraction of motile cells in comparison with cells exposed to alginate (Fig 3E). However, we did not mean to suggest that the observed dispersal by bacterial motility is not influenced by cell density, in fact, we see that dispersal (and hence the increase in cell motility) in microfluidic chambers that are switched from polymeric to digested alginate depends on the bacterial density in the chamber, with higher bacterial densities showing increased dispersal. This shows that the presence of alginate oligomers does trigger dispersal through motility, but this signal affects bacterial groups in a cell density dependent manner.

      Similar observations have been made in Caulobacter crescentus, which was found to form cell groups on the polymer xylan while cells disperse when the corresponding monomer xylose becomes available (D’Souza et al., 2021). We reference the additional work in lines 179 and 230. Taken together, these observations indicate a more general phenomenon in dispersal from polysaccharide substrates.

      (2) About the expression data: 

      • Ribosomal proteins and ABC transporters are enriched in cells grown on digested alginate and the authors discuss that this explains the difference in max growth rate between alginate and digested alginate. However, in Figure S2E the authors report no statistical difference between growth rates. 

      We have now edited the manuscript to clarify this point. We found that cells grown on degradation products reached their maximal growth rate around 7.5 hours earlier (Fig. S2D) and showed increased expression of ribosomal biosynthesis and ABC transporters in late-exponential phase (Fig. 4A). We consider this shorter lag time as a sign of a different growth state and therefore a possible reason for the difference in ribosomal protein expression.

      As the reviewer correctly points out, the maximum growth rates that were computed from the two growth curves were not significantly different (Fig. S2E). However, for our gene expression analysis, we harvested the transcriptome of cells that reached OD 0.39-0.41 (mid- to late-exponential phase). At this time point, the cell cultures may have differed in their momentary growth rate.

      We edited the manuscript to make this clearer (line 287):

      “Both observations likely relate to the different growth dynamics of V. cyclitrophicus ZF270 on digested alginate compared to alginate (Fig. S2A), where cells in digested alginate medium reached their maximal growth rate 7.5 hours earlier and thus showed a shorter lag time (Fig. S2D). As a consequence, the growth rate at the time of RNA extraction (mid-to-late exponential phase) may have differed, even though the maximum growth rate of cells grown in alginate medium and digested alginate medium were not found to be significantly different (Fig. S2E).”

      • The increased expression of transporters for lyases in cells grown on digested alginate (lines 273-274 and 325-328) is very confusing and the explanation provided in lines 412-420 is not very convincing. My two cents on this: Expression of more enzymes and induction of motility might be a strategy to be prepared for more likely future environments (after dispersal, alginate is the most likely carbon source they will find). This would be in line with observed increased chemotaxis towards the polymer rather than the monomer (Similar to C. elegans). 

      This comment is in line with reviewer 2, comment 7. In response to these two comments (and as described above), we expanded our discussion of these results to contextualize these findings (around line 443):

      “One reason for this observation may be that cells primarily rely on intracellular monosaccharide levels to trigger the upregulation of genes associated with polysaccharide degradation and catabolism, as has previously been observed for E. coli across various carbon sources [50,51]. In fact, the majority of carbon sources are sensed by prokaryotes through one‑component sensors inside the cell [50]. In the one‑component internal sensing scheme, the enzymes and transporters for the use of various carbon sources are expressed at basal levels, which leads to an increase in pathway intermediates upon nutrient availability. The pathway intermediates are sensed by an internal sensor, usually a transcription factor, and lead to the upregulation of transporter and enzyme expression [50,51]. This results in a positive feedback loop, which enables small changes in substrate abundance to trigger large transcriptional responses [50,52]. Thus, the presence of alginate breakdown products may likely result in increased expression of all components of the alginate degradation pathway, including the expression of degrading enzymes. As the gene expression analysis was performed on well-mixed cultures in culture medium containing alginate breakdown products, we therefore expect a strong stimulation of alginate catabolism. In a natural scenario, where cells disperse from a polysaccharide hotspot before its exhaustion, the expression of alginate catabolism genes may likely decrease again once the local concentration of breakdown products decreases. However, continued production of alginate lyases could also provide an advantage when encountering a new alginate source and continued production of alginate lyases may thus help cells to prepare for likely future environments. Further investigations of bacterial enzyme secretion in changing nutrient environments and at relevant spatial scales are required to improve our understanding of the regulation of enzyme secretion along nutrient gradients.”

      Additionally, we agree with the intriguing comment that continued expression of alginate lyases may also prepare cells for likely future environments. Further studies that aim to answer whether marine bacteria are primed by their growth on one carbon source towards faster re-initiation of degradation on a new particle will be an interesting research question. We now address this point in our manuscript (line 458):

      “However, continued production of alginate lyases could also provide an advantage when encountering a new alginate source and continued production of alginate lyases may thus help cells to prepare for likely future environments. Further investigations of bacterial enzyme secretion in changing nutrient environments and at relevant spatial scales are required to improve our understanding of the regulation of enzyme secretion along nutrient gradients.“

      (3) The yield reached by Vibrio on alginate is significantly higher than the yield in digested alginate, not similar, as stated in lines 133-134. Only cell counts are similar. Perhaps the author can correct this statement and speculate on the reason leading to this discrepancy: perhaps cells tend to aggregate in alginate despite the fact that these are well-mixed cultures. 

      We have edited the description of the OD measurements accordingly and agree with the reviewer that aggregation is indeed a possible reason for the discrepancy (line 141):

      “We also observed that the optical density at stationary phase was higher when cells were grown on alginate (Fig. S2B and C). However, colony counts did not show a significant difference in cell numbers (Fig. S3), suggesting that the increased optical density may stem from aggregation of cells in the alginate medium, as observed for other Vibrio species [7].”

      (4) I suggest toning down the importance of the results presented in this study for understanding global carbon cycling. There is a link but at present it is too much emphasized. 

      We have edited our statements regarding the carbon cycle. In the revised manuscript we stress the lack of direct quantifications of carbon cycling. . We still refer to carbon flow in the revised manuscript, as we would argue that microbial remineralization of biomass is recognized as an important factor in the marine biological carbon pump (e.g., Chisholm, 2000) and research on marine bacterial foraging investigates how bacterial cells manage to find and utilize this biomass.

      Our revised manuscript contains the following modified statements (line 47 and line 60): “Even though many studies indicate that these degradation-dispersal cycles contribute to the carbon flow in marine systems, we know little about how cells alternate between polysaccharide degradation and motility, and which environmental factors trigger this behavioral switch.”

      “Overall, our findings reveal cellular mechanisms that might also underlie bacterial degradation-dispersal cycles, which influence the remineralization of biomass in marine environments.”

      References

      • Alcolombri, U., Peaudecerf, F. J., Fernandez, V. I., Behrendt, L., Lee, K. S., & Stocker, R. (2021). Sinking enhances the degradation of organic particles by marine bacteria. Nature Geoscience, 14(10), 775–780. https://doi.org/10.1038/s41561-021-00817-x
      • Bassler, B. L., Gibbons, P. J., Yu, C., & Roseman, S. (1991). Chitin utilization by marine bacteria. Chemotaxis to chitin oligosaccharides by Vibrio furnissii. Journal of Biological Chemistry, 266(36), 24268–24275. https://doi.org/10.1016/S0021-9258(18)54224-1
      • Chisholm, S. W. (2000). Stirring times in the Southern Ocean. Nature, 407(6805), 685–686. https://doi.org/10.1038/35037696
      • Chubukov, V., Gerosa, L., Kochanowski, K., & Sauer, U. (2014). Coordination of microbial metabolism. Nature Reviews. Microbiology, 12(5), 327–340. https://doi.org/10.1038/nrmicro3238
      • Clerc, E. E., Raina, J.-B., Keegstra, J. M., Landry, Z., Pontrelli, S., Alcolombri, U., Lambert, B. S., Anelli, V., Vincent, F., Masdeu-Navarro, M., Sichert, A., De Schaetzen, F., Sauer, U., Simó, R., Hehemann, J.-H., Vardi, A., Seymour, J. R., & Stocker, R. (2023). Strong chemotaxis by marine bacteria towards polysaccharides is enhanced by the abundant organosulfur compound DMSP. Nature Communications, 14(1), 8080. https://doi.org/10.1038/s41467-023-43143z
      • Dal Co, A., van Vliet, S., Kiviet, D. J., Schlegel, S., & Ackermann, M. (2020). Shortrange interactions govern the dynamics and functions of microbial communities. Nature Ecology and Evolution, 4(3), 366–375. https://doi.org/10.1038/s41559-019-1080-2
      • D’Souza, G., Ebrahimi, A., Stubbusch, A., Daniels, M., Keegstra, J., Stocker, R., Cordero, O., & Ackermann, M. (2023). Cell aggregation is associated with enzyme secretion strategies in marine polysaccharide-degrading bacteria. The ISME Journal. https://doi.org/10.1038/s41396-023-01385-1
      • D’Souza, G. G., Povolo, V. R., Keegstra, J. M., Stocker, R., & Ackermann, M. (2021). Nutrient complexity triggers transitions between solitary and colonial growth in bacterial populations. The ISME Journal, 15(9), 2614–2626. https://doi.org/10.1038/s41396-021-00953-7
      • D’Souza, G., Schwartzman, J., Keegstra, J., Schreier, J. E., Daniels, M., Cordero, O. X., Stocker, R., & Ackermann, M. (2023). Interspecies interactions determine growth dynamics of biopolymer-degrading populations in microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 120(44), e2305198120. https://doi.org/10.1073/pnas.2305198120
      • Fenchel, T. (2002). Microbial Behavior in a Heterogeneous World. Science, 296(5570), 1068–1071. https://doi.org/10.1126/science.1070118
      • Jiao, N., Luo, T., Chen, Q., Zhao, Z., Xiao, X., Liu, J., Jian, Z., Xie, S., Thomas, H., Herndl, G. J., Benner, R., Gonsior, M., Chen, F., Cai, W.-J., & Robinson, C. (2024). The microbial carbon pump and climate change. Nature Reviews Microbiology. https://doi.org/10.1038/s41579-024-01018-0
      • Keegstra, J. M., Carrara, F., & Stocker, R. (2022). The ecological roles of bacterial chemotaxis. Nature Reviews Microbiology, 20(8), 491–504. https://doi.org/10.1038/s41579-022-00709-w
      • Konishi, H., Hio, M., Kobayashi, M., Takase, R., & Hashimoto, W. (2020). Bacterial chemotaxis towards polysaccharide pectin by pectin-binding protein. Scientific Reports, 10(1), 3977. https://doi.org/10.1038/s41598-020-60274-1
      • Li, Y., Sun, H., Ma, X., Lu, A., Lux, R., Zusman, D., & Shi, W. (2003). Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proceedings of the National Academy of Sciences, 100(9), 5443–5448. https://doi.org/10.1073/pnas.0836639100
      • Martínez-Antonio, A., Janga, S. C., Salgado, H., & Collado-Vides, J. (2006). Internal sensing machinery directs the activity of the regulatory network in Escherichia coli. Trends in Microbiology, 14(1), 22–27. https://doi.org/10.1016/j.tim.2005.11.002
      • McDougald, D., Rice, S. A., Barraud, N., Steinberg, P. D., & Kjelleberg, S. (2012). Should we stay or should we go: Mechanisms and ecological consequences for biofilm dispersal. Nature Reviews Microbiology, 10(1), 39–50. https://doi.org/10.1038/nrmicro2695
      • Nguyen, T. T. H., Zakem, E. J., Ebrahimi, A., Schwartzman, J., Caglar, T., Amarnath, K., Alcolombri, U., Peaudecerf, F. J., Hwa, T., Stocker, R., Cordero, O. X., & Levine, N. M. (2022). Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates. Nature Communications, 13(1), 1657. https://doi.org/10.1038/s41467-022-29297-2
      • Norris, N., Alcolombri, U., Keegstra, J. M., Yawata, Y., Menolascina, F., Frazzoli, E., Levine, N. M., Fernandez, V. I., & Stocker, R. (2022). Bacterial chemotaxis to saccharides is governed by a trade-off between sensing and uptake. Biophysical Journal, 121(11), 2046–2059. https://doi.org/10.1016/j.bpj.2022.05.003
      • Povolo, V. R., D’Souza, G. G., Kaczmarczyk, A., Stubbusch, A. K., Jenal, U., & Ackermann, M. (2022). Extracellular appendages govern spatial dynamics and growth of Caulobacter crescentus on a prevalent biopolymer. bioRxiv, 2022.06.13.495907. https://doi.org/10.1101/2022.06.13.495907
      • Preheim, S. P., Boucher, Y., Wildschutte, H., David, L. A., Veneziano, D., Alm, E. J., & Polz, M. F. (2011). Metapopulation structure of Vibrionaceae among coastal marine invertebrates. Environmental Microbiology, 13(1), 265–275. https://doi.org/10.1111/j.1462-2920.2010.02328.x
      • Schwartzman, J. A., Ebrahimi, A., Chadwick, G., Sato, Y., Orphan, V., & Cordero, O. X. (2021). Bacterial growth in multicellular aggregates leads to the emergence of complex lifecycles. bioRxiv, 2021.11.01.466752. https://doi.org/10.1101/2021.11.01.466752
      • Singh, P. K., Bartalomej, S., Hartmann, R., Jeckel, H., Vidakovic, L., Nadell, C. D., & Drescher, K. (2017). Vibrio cholerae Combines Individual and Collective Sensing to Trigger Biofilm Dispersal. Current Biology, 27(21), 3359-3366.e7. https://doi.org/10.1016/j.cub.2017.09.041
      • Ulrich, L. E., Koonin, E. V., & Zhulin, I. B. (2005). One-component systems dominate signal transduction in prokaryotes. Trends in Microbiology, 13(2), 52–56. https://doi.org/10.1016/j.tim.2004.12.006
      • Wall, M. E., Hlavacek, W. S., & Savageau, M. A. (2004). Design of gene circuits: Lessons from bacteria. Nature Reviews Genetics, 5(1), 34–42. https://doi.org/10.1038/nrg1244
      • Yawata, Y., Carrara, F., Menolascina, F., & Stocker, R. (2020). Constrained optimal foraging by marine bacterioplankton on particulate organic matter. Proceedings of the National Academy of Sciences, 117(41), 25571–25579. https://doi.org/10.1073/pnas.2012443117
      • Yawata, Y., Cordero, O. X., Menolascina, F., Hehemann, J.-H., Polz, M. F., & Stocker, R. (2014). Competition–dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations. Proceedings of the National Academy of Sciences, 111(15), 5622–5627. https://doi.org/10.1073/pnas.1318943111
      • Zöttl, A., & Yeomans, J. M. (2019). Enhanced bacterial swimming speeds in macromolecular polymer solutions. Nature Physics, 15(6), 554–558. https://doi.org/10.1038/s41567-019-0454-3
    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      __Reviewer #1 (Evidence, reproducibility, and clarity (Required)):____ __ Summary: Viruses exploit host endoplasmic reticulum (ER)-resident chaperones to support new protein synthesis during viral replication. Here, Najarro et al. study the role of the ER-resident HSP70 family member Binding immunoglobulin protein (BiP) during lytic infection by the Kaposi's sarcoma-associated herpesvirus (KSHV). Using the established doxycycline-inducible lytic reactivation infection model cell line iSLK-BAC16, they showed that KSHV reactivation leads to an upregulation of total BiP protein but not RNA, and is independent of the unfolded protein response. siRNA knockdown or pharmacological inhibition by HA15 of BiP significantly reduced global viral gene expression and infectious virus production. The authors attribute this to at least the reduction of levels of the K1 gene which is required for efficient viral replication. Finally, they showed that HA15 has cytostatic activity in KSHV-transformed B cells and cytotoxic effects in KSHV-infected lymphatic endothelial cells arguing for BiP inhibition as a potential therapeutic strategy to treat KSHV-driven malignancies. The manuscript is well-written and the conclusions were generally supported by the data with a few exceptions below.

      Major comments:

      • They propose in lines 196-199 that the reduction of K1 from HA15 treatment partially explains the defect in virion production during lytic reactivation. I am not convinced that this statement is fully supported by their data. Reduction of K1 is likely a downstream consequence and not the cause of the inhibition of lytic replication.

      We thank the reviewer for this comment. We conducted a more detailed analysis of our RNAseq data in iSLK.219 cells and confirmed the downregulation of the K1 transcript in latently infected cells treated with HA15 (See Fig 3 and Sup Fig 5). It is likely that the drop in transcript levels results from IRE1-mediated degradation in a recently-described process known as RIDDLE (IRE1-mediated RNA decay lacking endomotif), in which IRE1 depletes mRNAs1*. We have included this hypothesis in the discussion. *

      Unfortunately, we cannot confirm the downregulation of K1 at the protein level in iSLK.219 cells since the antibodies are highly specific for K1 variants in PEL cells. To overcome this technical limitation, we conducted mass spectrometry analysis of the viral proteome from whole cell lysates of latent and lytic cells undergoing HA15 treatment. While we detect the expected global downregulation of viral proteins in lytic cells treated with HA15, we were not able to detect any viral proteins except for LANA in the latently infected cells, and our detection of several lytic proteins was limited. We speculate that the levels of latent viral proteins expressed in iSLK.219 cells are below the limits of detection of our assay, or that extensive modification of some of these viral proteins may hinder their detection. Due to these limitations, we decided not to include these data in the manuscript.

      • Additionally, we note that the lower levels of K1 detected in latent iSLK.219 and TREx-BCBL-1 cells treated with HA15 may affect viral reactivation, which is consistent with findings from the Damania lab showing K1's crucial role in viral replication2.*

      • *

      • The quantification of the K1 blots in Fig. 3C only has n=2. With subtle differences by eye, large error bars, and no statistical analysis, it is hard to conclude here with confidence. *

      We agree with the reviewer. We have moved the K1 blot to the Sup. Fig. 3E and adjusted the text accordingly.* *

      • Like K1, ORF45, and K8.1 proteins are similarly decreased at 24 h in Fig. 2E, suggesting that the defect is upstream of K1. Does HA15 affect the amount of endogenous and/or transgene copy of RTA being produced (hence the broader effect in early gene expression at 24h?)?

      • **To answer the Reviewer's query, we re-evaluated the impact of HA15 treatment on the activity of dox-inducible RTA. However, we think it is unlikely for HA15 to alter RTA activity since RTA does not enter the secretory pathway. *

      To evaluate the activity of RTA in HA15 treated cells, we measured the expression of the viral episome-encoded RFP reporter, driven by the viral PAN promoter4*, at 24h post-doxycycline treatment of iSLK.219 cells. We compared the response of the PAN promoter to RTA in cells treated with or without HA15 at this early timepoint, to avoid any potential confounding effects stemming from elevated endogenous RTA expression at later times post-reactivation. We demonstrate that the levels of RFP in iSLK.219 cells treated with Dox are identical in presence or absence of HA15. This result, included in Sup. Fig. 3, indicates that the activity of RTA, crucial for initiating the lytic cycle in this context, is unaffected by BiP inhibition at early times post reactivation. *

      • *

      • K1 levels appear to decrease even during latency. Are the other latent proteins also affected? What about latent genome copies?

      To address this query, we compared the Log2 fold change of latent transcripts (K1, K2, K12, ORF71, ORF72, ORF73) in the iSLK.219 RNAseq data set (Fig 3). Only the K1 transcript is reduced in HA15-treated cells. We include these data in Sup Fig 5A.

      Regarding differences in genome copies, the consistent levels of the viral genome-encoded GFP in HA15 -/+ iSLK-219 cells (Sup Fig 3) indicate no significant changes in the levels of viral genomes at 24h post-treatment (prior to DNA replication). Previous studies by our lab and others show that knockdown of the major latency protein LANA results in episomal loss and lower levels of GFP5*. These results validate the use of GFP fluorescence in iSLK.219 as a proxy for genome copies. *

      • *

      • Fig. 3C was performed in a PEL cell line which they showed to enter cytostasis upon HA15 treatment (Fig. 5). This cytostasis (rather than K1) may be the root cause of the defect in viral replication as cells could be arrested at a different stage compared to the G2 requirement for lytic replication in PEL cells (Balisteri et al., PLOS Pathogens 2016, PMID: 26891221).

      See point 2. below

      • The cytostatic effect in PEL cell lines (Fig. 5) should be demonstrated using more direct methods that measure cell cycle (e.g. PI-BrdU).

      We thank the reviewer for this comment. While more direct methods to measure the cell cycle stage affected by HA15 treatment will inform on its mechanism of action, these experiments lie outside of the scope of this manuscript and we consider are better suited for future studies on the anticancer properties of HA15. The data presented in Fig. 5 demonstrates that HA15 treatment of PEL cells causes a reduction in cell numbers without cytotoxicity, thus supporting our conclusion of a net negative effect on proliferation rather than cell death. The loss of our LN2 tank and PEL cell lines currently limits our ability to do these more detailed analyses. At the moment, we do not have an accurate estimate of how long it will take to replace these cell lines for our subsequent studies.

      • *

      • While having an uninfected B cell as a matched negative control for PEL is challenging, primary peripheral B cells (mostly of mature memory B cell stage) may not be the appropriate negative control. PEL cells are of plasma cell lineage which have unusually high protein translation and overloaded ER. The plasma cell lineage may explain the sensitivity of PEL cells to HA15. It is possible that HA15 may be toxic to plasma cells when used as a therapeutic agent.

      We agree with the reviewer on the potential impact of HA15 on plasma cell viability. Indeed, HA15 (>2uM) treatment reduces the viability of plasma cell myeloma lines (NCI-H929 and U266 cells), substantiating its use as a potential anti-cancer drug6. Although HA15 has not been tested as a therapeutic agent in humans, studies in mice have demonstrated tolerability without evident toxicity, measured as normal body weight7*. The potential therapeutic application of HA15 for cancer warrants further investigation and is beyond the scope of our manuscript. *

      • Does HA15 have cytostatic effects in uninfected or latently infected iSLK cells?

      • *

      We observed no cytostatic or cytotoxic effects in uninfected or latently infected iSLK cells exposed to up to 30uM of HA15. Although HA15 has been tested on various cancer types8*, it has not been evaluated in Renal Carcinoma Cells (RCC), the cellular background of iSLK.219 cells. The mechanism behind the resistance of these cells to HA15 eludes us, but its link to the cellular background of iSLK.219s merits exploration in future studies. *

      Minor comments: 1. Consider changing the title of line 98 to specify cell type since BiP levels do not increase in BCBL-1 (Supp. Fig. 3).

      • *

      Revised in the manuscript

      Fig. 3A may benefit from using z-scores instead of log2TPM so differences are more obvious per gene.

      Since the data have already been collected, can the authors include both latent and lytic cells with and without HA15 treatment in Fig. 3A? It may give more information for the reader. *

      *We have reanalyzed all the RNAseq data and included a z-score plot for all samples in Fig. 3. We also providing three new supplementary tables with the raw counts, the z-scores for viral genes, and the log2 of the normalized counts.

      *

      *Reviewer #1 (Significance (Required)):

      Significance: Here, the authors convincingly demonstrate the proviral role of the ER chaperone BiP during KSHV reactivation. This manuscript will be relevant to researchers in the gammaherpesvirus field. Although the authors did present some interesting data, the scope is narrow, and mechanistic studies were not pursued that would have added more insight in BiP and/or KSHV biology. For instance, how do BiP protein levels increase during reactivation (is this at the level of RNA sequestration/export, translation, or protein stability?)? How does BiP promote lytic replication?

      Field of expertise: KSHV, molecular and cell biology

      *

      * __Reviewer #2 (Evidence, reproducibility and clarity (Required)): __ Many viruses have complex relationships with cellular ER proteostasis machinery that remain poorly understood. Here Najarro, et al. report on studies of the oncogenic gammaherpesvirus KSHV. They report that the ER chaperone BiP is upregulated in epithelial cells during KSHV lytic replication. Unexpectedly, BiP upregulation is independent of the unfolded protein response, which stimulates transcriptional activation of BiP to meet the protein folding demand in the ER. Using a combination of genetic and pharmacologic approaches (CRISPRi and selective chemical inhibitor) they demonstrate that BiP inhibition interferes with the replication of diverse enveloped viruses including poxviruses and several herpesviruses, and reduces proliferation of KSHV-infected cells.

      Figure-by-figure:

      Fig. 1: This figure convincingly demonstrates the selective upregulation of BiP at the protein level during the course of KSHV lytic replication, and that KSHV late genes are dispensable for this upregulation. It further demonstrates that BiP is not upregulated at the mRNA level at all during KSHV infection, despite the fact that the UPR-dependent BiP mRNA upregulation pathway (presumably via ATF6 and IRE1) remains functional.

      Fig. 2: This figure convincingly demonstrates that BiP ATPase activity is required to support KSHV lytic replication in both epithelial and B cell models on infection, even though it is also clear that BiP is not upregulated in the B cell model.

      Fig. 3: This data demonstrates that steady-state levels of KSHV lytic gene products are reduced following HA15-treatment, whereas later gene expression was unaffected. As an interesting side note, v-IL6 bucks the trend of HA15-mediated downregulation of viral mRNA levels, suggesting that it may be regulated in a different manner. One thing that the authors may consider is the report from Drs. Yuan Chang and Patrick Moore (PMID: 12434062) that demonstrated that the v-IL6 gene is transactivated by type I interferon. Considering the poor replication of this virus during HA15 treatment, it may be valuable to investigate IFN production by these cells, and the extent to which it is impacted by inhibition of BiP ATPase activity.*

      We thank the reviewer for bringing this report to our attention. We also found intriguing the specific transcriptional upregulation of IL6 in IFN-a treated BCP-1 cells. Although we see a dramatic upregulation of the vIL6 in HA15 treated cells, we still detect the expression of most viral genes, albeit at significantly lower levels than in untreated cells, which indicates that the viral transcriptional program in lytic+HA15 iSLK.219 cells is different from the one seen in IFN-treated BCP-1 cells. Preliminary analyses of the host transcriptome from our RNAseq results show the expression of several ISGs (OAS1, 2 and 3, IFI6, IFIT1, IFIT3, IFITM1) in lytic-untreated iSLK.219 cells, but not in those treated with HA15. Together, these observations substantiate the notion that there is no IFN-driven expression of vIL6 in HA15-treated iSLK.219 cells.

      Fig. 4: This figure demonstrates that HA15 has broad, non-cytotoxic, antiviral activity against diverse enveloped viruses.

      Figs. 5/6: These figure shows cytotoxic effects of HA15 on latently infected PEL cells, either solely infected with KSHV or co-infected with KSHV and EBV, whereas normal B cells were unaffected. HA15 was also cytotoxic to KSHV infected lymphatic endothelial cells.

      **Referees cross-commenting**

      I appreciate the insightful comments from Reviewer #1 and Reviewer #3. I think we are largely on the same page. The data is generally supportive of author's conclusions, with a few exceptions that are straightforward to address in revisions. The manuscript is limited in scope, which could also be addressed by additional experimentation if the authors are motivated to explore mechanism in greater depth. Of particular note is the lack of mechanistic insight into how BiP is upregulated at the protein level during lytic replication, if the mRNA is unchanged. The experimental approaches to this are straightforward.

      *

      *

      We appreciate the reviewers' comments on the scope of our study. The mechanism of BiP upregulation remains an outstanding question for the following technical reasons: We hypothesized that the upregulation of BiP may depend on the IRES element present in its 5' UTR9. We tested this hypothesis by transfecting iSLK.219 cells with a bicistronic Renilla-(BiP)IRES-Firefly luciferase reporter from Licursi et. al10*. Unfortunately, for reasons that still elude us, our reactivation rates in transfected cells were consistently low in all of our experiments and therefore, we were not able to measure luciferase changes consistently and reliably. A potential workaround this technical limitation is to use a lentivirus-encoded IRES reporter to a lentiviral vector, as transduction of iSLK.219 cells does not alter viral reactivation, in our experience. At the moment, we do not have access to these reporters due to our lab's move to a different institution, and the first author of our study has started the next stage of their career. Therefore, we will not be able to pursue these experiments in a timely manner. *

      • *

      *As for the scope of this manuscript, even when the mechanism of BiP upregulation in KSHV infected cells remains unsolved, we consider that the broad-spectrum antiviral effect of BiP inhibition is an exciting finding that advances the field and benefits the virology community-the proteostasis network has been seldomly explored as a potential node for broad-spectrum antiviral intervention. Our results provide important proof-of-concept to continue the investigation of factors involved in protein synthesis, folding and transport as potential targets for the development of versatile broad-spectrum antivirals. *

      Reviewer #2 (Significance (Required)):

      Strengths: This is a well-written manuscript. The text and figures are clear and accurate and the methods are sufficiently informative that the study can be reproduced. The data generally supports the authors' conclusions. BiP appears to be a druggable target with minimal off-target cytotoxicity in normal, uninfected cells, although this study does not go beyond cell culture studies to validate in vivo.

      Weaknesses: The study is somewhat limited in scope. The authors make the case for UPR transcription-independent upregulation of BiP during KSHV infection, and that late gene synthesis is dispensable, but the mechanism is not investigated further.

      Point by point discussion:

      Could an early KSHV gene product involved in this phenotype be identified by screening an ORF library or viral genome-wide CRISPRi screen?

      The question of the viral protein responsible for the upregulation of BiP during lytic infection is indeed a fascinating one. However, we suspect that the mechanism may be not specifically directed to BiP, but rather general modulation of IRES-related translation. Identifying the gene product(s) affected and corroborating IRES involvement is a major undertaking and a long-term goal requiring considerable effort. These analyses are outside the scope of this manuscript, but we will pursue them in the future.

      Or, beyond implicating viral factors in the mechanism of BiP upregulation, can some simple biochemical studies be performed to investigate BiP protein? Is the BiP mRNA more efficiently spliced and exported in KSHV infected cells?

      Do alternative translation initiation mechanisms like eIF2A play a role in boosting BiP levels during infection?

      What is the normal BiP protein turnover mechanism, and is this hindered during KSHV lytic replication? Is BiP AMPylation/de-AMPylation by FICD affected (PMID: 36041787)? These kinds of mechanistic studies are well within reach and would help extend the impact and interest to a broad audience.

      We agree on the putative involvement of translation initiation factors like eIF2A on promoting the translation of BiP (see discussion). We tested the effect of siRNA-mediated KD of eIF2A on BiP expression and found that, interestingly, the levels of BiP rose above those of controls in latent iSLK.219 cells (Data included in the manuscript and the discussion has been modified accordingly). This finding aligns with previous reports suggesting that eIF2A may suppress IRES-mediated translation in yeast cells and in mammalian in vitro translation assays. Moreover, Starck et. al11, observed a 50% increase of endogenous BiP levels in HeLa cells transfected with siRNAs against eIF2A, supporting the IRES-suppressor role for eIF2A in mammalian cells. Future work will be required to address the role of eIF2A on BiP translation. These analyses are beyond the scope our manuscript.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The manuscript by Najarro et al. investigates the contribution of BiP/GRP78 to double-stranded DNA virus infection, primarily focusing on the oncogenic gammaherpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV). The authors observe that BiP expression is increased in lytic iSLK.219 cells as well as in KSHV-infected LECs. Interestingly, the authors data suggest a post-translational regulation of BiP in the iSLK.219 cells. Using various knockdown approaches and chemical inhibitors the authors demonstrate that inhibition of BiP impacts KSHV reactivation in multiple cells lines. Importantly, the authors also find that BiP inhibition can selectively kill KSHV-infected cells, while sparing primary B cells. Overall, this is a very well controlled and presented manuscript. My comments for the manuscript are minor, and largely cosmetic to aid the presentation of the data.

      • Fig 1C, It would be ideal to show that PAA treatment did indeed prevent the virus from entering the late stage of gene expression.

      *We have included an immunoblot for K8.1 in Figure 1C to confirm the effect of PFA on arresting the KSHV lytic cycle. *

      Sup Fig2, should show KD efficiency of XBP1, same goes for ATF6.

      • *

      Sup. Fig. 2D shows the expression of XBP1s in NS vs. XBP1KD cells in the presence or absence of Tg. In Sup Fig. 2G we have also included a bar graph showing the efficiency of downregulation of ATF6 mRNA in the presence of the targeting sgRNA.

      Sup Fig 3. It is interesting that the authors do not see increased BiP in TREx-BCBL1-RTA cells. A potential caveat is that lytic reactivation in TREx-BCBL1-RTA cells is not as efficient as in iSLK.219 cells. Therefore, it may simply be a result of the reduced population entering the lytic cycle. It may be worth adding a comment regarding this.

      • Images of the microscopy for Figure 4 would be useful.

      Images have been included in Fig. 4

      • Add label of the cell types for Figure 5.

      DONE

      • Does HSV1, HCMV, or VacV increase BiP expression compared to mock-infected cells?

      Yes, we have included a comment on this in the discussion

      Reviewer #3 (Significance (Required)):

      Overall, this is a very well controlled and presented manuscript.

      • *

      • *

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Many viruses have complex relationships with cellular ER proteostasis machinery that remain poorly understood. Here Najarro, et al. report on studies of the oncogenic gammaherpesvirus KSHV. They report that the ER chaperone BiP is upregulated in epithelial cells during KSHV lytic replication. Unexpectedly, BiP upregulation is independent of the unfolded protein response, which stimulates transcriptional activation of BiP to meet the protein folding demand in the ER. Using a combination of genetic and pharmacologic approaches (CRISPRi and selective chemical inhibitor) they demonstrate that BiP inhibition interferes with the replication of diverse enveloped viruses including poxviruses and several herpesviruses, and reduces proliferation of KSHV-infected cells.

      Figure-by-figure:

      Fig. 1: This figure convincingly demonstrates the selective upregulation of BiP at the protein level during the course of KSHV lytic replication, and that KSHV late genes are dispensable for this upregulation. It further demonstrates that BiP is not upregulated at the mRNA level at all during KSHV infection, despite the fact that the UPR-dependent BiP mRNA upregulation pathway (presumably via ATF6 and IRE1) remains functional.

      Fig. 2: This figure convincingly demonstrates that BiP ATPase activity is required to support KSHV lytic replication in both epithelial and B cell models on infection, even though it is also clear that BiP is not upregulated in the B cell model.

      Fig. 3: This data demonstrates that steady-state levels of KSHV lytic gene products are reduced following HA15-treatment, whereas later gene expression was unaffected. As an interesting side note, v-IL6 bucks the trend of HA15-mediated downregulation of viral mRNA levels, suggesting that it may be regulated in a different manner. One thing that the authors may consider is the report from Drs. Yuan Chang and Patrick Moore (PMID: 12434062) that demonstrated that the v-IL6 gene is transactivated by type I interferon. Considering the poor replication of this virus during HA15 treatment, it may be valuable to investigate IFN production by these cells, and the extent to which it is impacted by inhibition of BiP ATPase activity.

      Fig. 4: This figure demonstrates that HA15 has broad, non-cytotoxic, antiviral activity against diverse enveloped viruses.

      Figs. 5/6: These figure shows cytotoxic effects of HA15 on latently infected PEL cells, either solely infected with KSHV or co-infected with KSHV and EBV, whereas normal B cells were unaffected. HA15 was also cytotoxic to KSHV infected lymphatic endothelial cells.

      Referees cross-commenting

      I appreciate the insightful comments from Reviewer #1 and Reviewer #3. I think we are largely on the same page. The data is generally supportive of author's conclusions, with a few exceptions that are straightforward to address in revisions. The manuscript is limited in scope, which could also be addressed by additional experimentation if the authors are motivated to explore mechanism in greater depth. Of particular note is the lack of mechanistic insight into how BiP is upregulated at the protein level during lytic replication, if the mRNA is unchanged. The experimental approaches to this are straightforward.

      Significance

      Strengths: This is a well-written manuscript. The text and figures are clear and accurate and the methods are sufficiently informative that the study can be reproduced. The data generally supports the authors' conclusions. BiP appears to be a druggable target with minimal off-target cytotoxicity in normal, uninfected cells, although this study does not go beyond cell culture studies to validate in vivo.

      Weaknesses: The study is somewhat limited in scope. The authors make the case for UPR transcription-independent upregulation of BiP during KSHV infection, and that late gene synthesis is dispensable, but the mechanism is not investigated further. Could an early KSHV gene product involved in this phenotype be identified by screening an ORF library or viral genome-wide CRISPRi screen? Or beyond implicating viral factors in the mechanism of BiP upregulation, can some simple biochemical studies be performed to investigate BiP protein? Is the BiP mRNA more efficiently spliced and exported in KSHV infected cells? Do alternative translation initiation mechanisms like eIF2A play a role in boosting BiP levels during infection? What is the normal BiP protein turnover mechanism, and is this hindered during KSHV lytic replication? Is BiP AMPylation/de-AMPylation by FICD affected (PMID: 36041787)? These kinds of mechanistic studies are well within reach and would help extend the impact and interest to a broad audience.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript "Engineering of PAClight1P78A: A High-Performance Class-B1 GPCR-Based Sensor for PACAP1-38" by Cola et al. presents the development of a novel genetically encoded sensor, PAClight1P78A, based on the human PAC1 receptor. The authors provide a thorough in vitro and in vivo characterization of this sensor, demonstrating its potential utility across various applications in life sciences, including drug development and basic research.

      The diverse methods to validate PAClight1P78A demonstrate a comprehensive approach to sensor engineering by combining biochemical characterization with in vivo studies in rodent brains and zebrafish. This establishes the sensor's biophysical properties (e.g., sensitivity, specificity, kinetics, and spectral properties) and demonstrates its functionality in physiologically relevant settings. Importantly, the inclusion of control sensors and the testing of potential intracellular downstream effects such as G-protein activation underscore a careful consideration of specificity and biological impact.

      Strengths:

      The fundamental development of PAClight1P78A addresses a significant gap in sensors for Class-B1 GPCRs. The iterative design process -starting from PAClight0.1 to the final PAClight1P78A variant - demonstrates compelling optimization. The innovative engineering results in a sensor with a high apparent dynamic range and excellent ligand selectivity, representing a significant advancement in the field. The rigorous in vitro characterization, including dynamic range, ligand specificity, and activation kinetics, provides a critical understanding of the sensor's utility. Including in vivo experiments in mice and zebrafish larvae demonstrates the sensor's applicability in complex biological systems.

      Weaknesses:

      The manuscript shows that the sensor fundamentally works in vivo, albeit in a limited capacity. The titration curves show sensitivity in the nmol range at which endogenous detection might be possible. However, perhaps the sensor is not sensitive enough or there are not any known robust paradigms for PACAP release. A more detailed discussion of the sensors's limitations, particularly regarding in vivo applications and the potential for detecting endogenous PACAP release, would be helpful.

      We thank the reviewer for carefully analyzing our in vivo data and highlighting the limitation of our results regarding the sensor’s applicability in detecting endogenous PACAP. We added several sections conversing future possibilities for optimization in the discussion (see paragraphs 2-4). We agree that a more specific discussion of the limitations of our study is an important addition to help design future experiments. 

      There are several experiments with an n=1 and other low single-digit numbers. I assume that refers to biological replicates such as mice or culture wells, but it is not well defined. n=1 in experimental contexts, particularly in Figure 1, raises significant concerns about the exact dynamic range of the sensor, data reproducibility, and the robustness of conclusions drawn from these experiments. Also, ROI for cell cultures, like in Figure 1, is not well defined. The methods mentioned ROIs were manually selected, which appears very selective, and the values in Figure 1c become unnecessarily questionable. The lack of definition for "ROI" is confusing. Do ROIs refer to cells, specific locations on the cell membrane, or groups of cells? It would be best if the authors could use unbiased methods for image analysis that include the majority of responsive areas or an explanation of why certain ROIs are included or excluded.

      We thank the reviewer for the helpful suggestions. We have increased the number of replicates to n=3 for both HEK293T and neuron data depicted in Fig.1c. Furthermore, we have added Fig.1c’ containing the quantification of the maximum responses obtained in the dataset shown in Fig.1c also depicting the single values for each replicate. To clarify the definition of an ROI in our manuscript, we have detailed the process of ROI selection in the Methods section “Cell culture, imaging and quantification section”. Additionally, we also increased mouse numbers for in vivo PACAP infusions in mice (see Figure 4g).

      Reviewer #2 (Public Review):

      Summary:

      The PAClight1 sensor was developed using an approach successful for the development of other fluorescence-based GPCR sensors, which is the complete replacement of the third intracellular loop of the receptor with a circularly-permuted green fluorescent protein. When expressed in HEK cells, this sensor showed good expression and a weak but measurable response to the extracellular presence of PACAP1-38 (a

      F/Fo of 43%). Additional mutation near the site of insertion of the linearized GPF, at the C-terminus of the receptor, and within the second intracellular loop produced a final optimized sensor with F/Fo of >1000%. Finally, screening of mutational libraries that also included alterations in the extracellular ligand-binding domain of the receptor yielded a molecule, PAClight1P78A, that exhibited a high ligand-dependent fluorescence response combined with a high differential sensitivity to PACAP (EC50 30 nM based on cytometric sorting of stably transfected HEK293 cells) compared to its congener VIP, (with which PACAP shares two highly related receptors, VPAC1 and VPAC2) as well as several unrelated neuropeptides, and significantly slowed activation kinetics by PACAP in the presence of a 10-fold molar excess of the PAC1 antagonist PACAP6-38. A structurally highly similar control construct, PAClight1P78Actl, showed correspondingly similar basal expression in HEK293 cells, but no PACAP-dependent enhancement in fluorescent properties.

      PAClight1P78A was expressed in neurons of the mouse cortex via AAV9.hSyn-mediated gene transduction. Slices taken from PAClight1P78A-transfected cortex, but not slices taken from PAClight1P78Actl-transfected cortex exhibited prompt and persistent elevation of F/Fo after 2 minutes of perfusion with PACAP1-38 which persisted for up to 14 minutes and was statistically significant after perfusion with 3000, but not 300 or 30 nM, of peptide. Likewise, microinfusion of 200 nL of 300 uM PACAP1-38 into the cortex of optical fiber-implanted freely moving mice elicited a F/Fo (%) of greater than 15, and significantly higher than that elicited by application of similar concentrations of VIP, CRF, or enkephalin, or vehicle alone. In vivo experiments were carried out in zebrafish larvae by the introduction of PAClight1P78A into single-cell stage Danio rerio embryos using a Tol2 transposase-based plasmid with a UAS promoter via injection (of plasmid and transposase mRNA), and sorting of post-fertilization embryos using a marker for transgenesis carried in the UAS :

      PAClight1P78A construct. Expression of PAClight1P78A was directed to cells in the olfactory bulb which express the fish paralog of the human PAC1 receptor by using the Tg(GnRH3:gal4ff) line, and fluorescent signals were elicited by intracerebroventricular administration of PACAP1-38 at a single concentration (1 mM), which were specific to PACAP and to the presence of PAClight1P78A per se, as controlled by parallel experiments in which PAClight1P78Actl instead of PAClight1P78A was contained in the transgenic plasmid.

      Major strengths and weaknesses of the methods and results

      The report represents a rigorous demonstration of the elicitation of fluorescent signals upon pharmacological exposure to PACAP in nervous system tissue expressing PAClight1P78A in both mammals (mice) and fish (zebrafish larvae). Figure 4d shows a change in GFP fluorescence activation by PACAP occurring several seconds after the cessation of PACAP perfusion over a two-minute period, and its persistence for several minutes following. One wonders if one is apprehending the graphical presentation of the data incorrectly, or if the activation of fluorescence efficiency by ligand presentation is irreversible in this context, in which case the utility of the probe as a real-time indicator, in vivo, of released peptide might be diminished.

      We thank the reviewer for their careful consideration of our manuscript and agree that the activation of PAClight persisting for several minutes at micromolar concentrations could be a potential limitation for in vivo applications. We added a possible explanation for the persisting sensor activation in response to artificial application of PACAP38 in paragraph 3 of the discussion. We agree that this addition eases the interpretation of PAClight signals detected in vivo. 

      Appraisal of achievement of aims, and data support of conclusions:

      Small cavils with controls are omitted for clarity; the larger issue of appraisal of results based on the scope of the designed experiments is discussed in the section below. An interesting question related to the time dependence of the PACAP-elicited activation of PAClight1P87A is its onset and reversibility, and additional data related to this would be welcome.

      We agree that the reversibility of the sensor’s fluorescence is indeed an important feature especially for detecting endogenous PACAP release. Our data indicate that the sensor’s fluorescence is reversible when detecting small to medium doses of PACAP38 (see Figure 4d – Application of 30-300nM) that are presumably closer to physiological concentrations than the non-reversible concentration of 3000nM. Please, see also our new discussion on peptide concentrations in paragraph 4 of our discussion. For future experiments, it is indeed advisable to adjust the interval of repeated applications to the decay of the response at the respective concentration. Considering, the long-lasting downstream effects of endogenous signaling, longer intervals between ligand applications are generally preferred to match more closely the physiological range in which endogenous PAC1 is most likely affective. 

      Discussion of the impact of the work, and utility of the methods and data:

      Increasingly, neurotransmitter function may be observed in vivo, rather than by inferring in vivo function from in vitro, in cellular, or ex vivo experimentation. This very valuable report discloses the invention of a genetically encoded sensor for the class B1 GPCR PAC1. PAC1 is the major receptor for the neuropeptide PACAP, which in turn is a major neurotransmitter involved in brain response to psychogenic stress, or threat, in vertebrates as diverse as mammals and fishes. If this sensor possesses the sensitivity to detect endogenously released PACAP in vivo it will indeed be an impactful tool for understanding PACAP neurotransmission (and indeed PACAP action in general, in immune and endocrine compartments as well) in future experiments.

      However, the sensor has not yet been used to detect endogenously released PACAP. Until this has been done, one cannot answer the question as to whether the levels of exogenously perfused/administered PACAP used here merely to calibrate the sensor's sensitivity are indeed unphysiologically high. If endogenous PACAP levels don't get that high, then the sensor will not be useful for its intended purpose. The authors should address this issue and allude to what kind of experiments would need to be done in order to detect endogenous PACAP release in living tissue in intact animals. The authors could comment upon the success of other GPCR sensors that have been used to observe endogenous ligand release, and where along the pathway to becoming a truly useful reagent this particular sensor is.

      We thank the reviewer for highlighting the lack in clarity that the scope of this paper was not intended to cover the detection of endogenous PACAP release. We therefore expanded our discussion to encompass the intended purpose of detecting artificially infused or applied PAC1 agonists, such as conducting fundamental tests of drug specificity and developing new pharmacological ligands to selectively target PAC1. This includes a more detailed discussion of our in vivo findings and a clearer phrasing that stresses the potential application for applied drugs and not endogenous PACAP (see last paragraph in the discussion).

      We also agree that little is known about endogenous concentrations of PACAP in the brain. However, we have supplemented our discussion with several references estimating lower concentrations of PACAP and other peptides in vivo, suggesting average PACAP levels below the detection threshold of the sensor. Importantly, within certain brain regions and in closer proximity to release sites, significantly higher concentrations might be reached. Additionally, our data indicate that the concentrations observed under our current conditions do not saturate the sensor in vivo.  

      We therefore acknowledge the reviewer’s comment on the sensor’s potential limitations under our current experimental conditions. Hence, we expanded our discussion and suggest the use of higher resolution imaging to potentially reveal loci of high PACAP concentrations, which should be validated by future studies (see also our added discussion in paragraph 4). 

      Reviewer #3 (Public Review):

      Summary:

      The manuscript introduces PAClight1P78A, a novel genetically encoded sensor designed to facilitate the study of class-B1 G protein-coupled receptors (GPCRs), focusing on the human PAC1 receptor. Addressing the significant challenge of investigating these clinically relevant drug targets, the sensor demonstrates a high dynamic range, excellent ligand selectivity, and rapid activation kinetics. It is validated across a variety of experimental contexts including in vitro, ex vivo, and in vivo models in mice and zebrafish, showcasing its utility for high-throughput screening, basic research, and drug development efforts related to GPCR dynamics and pharmacology.

      Strengths:

      The innovative design of PAClight1P78A successfully bridges a crucial gap in GPCR research by enabling realtime monitoring of receptor activation with high specificity and sensitivity. The extensive validation across multiple models emphasizes the sensor's reliability and versatility, promising significant contributions to both the scientific understanding of GPCR mechanisms and the development of novel therapeutics. Furthermore, by providing the research community with detailed methodologies and access to the necessary viral vectors and plasmids, the authors ensure the sensor's broad applicability and ease of adoption for a wide range of studies focused on GPCR biology and drug targeting.

      Weaknesses

      To further strengthen the manuscript and validate the efficacy of PAClight1P78A as a selective PACAP sensor, it is crucial to demonstrate the sensor's ability to detect endogenous PACAP release in vivo under physiological conditions. While the current data from artificial PACAP application in mouse brain slices and microinfusion in behaving mice provide foundational insights into the sensor's functionality, these approaches predominantly simulate conditions with potentially higher concentrations of PACAP than naturally occurring levels.

      We thank the reviewer for their valuable comments and agree that the use of PAClight for detecting endogenous PACAP will be of big interest for the scientific community and should be a goal for future research. Considering the time, equipment and additional animal licenses necessary, we are convinced that these questions would go beyond the scope of the current paper and might rather be addressed in a follow-up publication. We therefore rephrased the discussion and added more details to clarify further the intended purpose of the current study. Additionally, we added a paragraph in the discussion suggesting experiments needed to validate PAClight for putative future in vivo applications. 

      Although the sensor's specificity for the PAC1 receptor and its primary ligand is a pivotal achievement, exploring its potential application to other GPCRs within the class-B1 family or broader categories could enhance the manuscript's impact, suggesting ways to adapt this technology for a wider array of receptor studies. Additionally, while the sensor's performance is convincingly demonstrated in short-term experiments, insights into its long-term stability and reusability in more prolonged or repeated measures scenarios would be valuable for researchers interested in chronic studies or longitudinal behavioral analyses. Addressing these aspects could broaden the understanding of the sensor's practical utility over extended research timelines.

      We extend our gratitude to the reviewer for diligently assessing our results. 

      Indeed, the very high level of sensitivity that we could achieve in PAClight leads us to think that potentially a grafting-based approach, such as the one we’ve recently described for class-A GPCR-based sensors (PMID: 37474807) could also work for the direct generation of multiple class-B1 sensors based on the optimized fluorescent protein module present in PAClight. Unfortunately, considering the amount of work that testing this hypothesis would entail, we are not able to perform these experiments in the context of this revision, and would rather pursue them as a future project. Nevertheless, we have expanded the discussion of the manuscript with a paragraph with these considerations.

      While we lack comprehensive data on the long-term stability of the sensor, our preliminary findings from photometry recordings optimization indicate consistent baseline expression of PAClight and PACLight ctrl over several weeks. Conducting experiments to systematically assess stability would require several months, which is currently impractical due to limitations in tools and licenses for repeated in vivo infusions. Hence, we intend to include these experiments in potential follow-up studies.

      Furthermore, the current in vivo experiments involving microinfusion of PACAP near sensor-expressing areas in behaving mice are based on a relatively small sample size (n=2), which might limit the generalizability of the findings. Increasing the number of subjects in these experimental groups would enhance the statistical power of the results and provide a more robust assessment of the sensor's in vivo functionality. Expanding the sample size will not only validate the findings but also address potential variability within the population, thereby reinforcing the conclusions drawn from these crucial experiments.

      We agree with the reviewer that a sample size of N=2 is not sufficient for in vivo recordings. We therefore increased the sample size and now present recordings with 5 PAClight1P78A and 4 PACLight-control mice. Of note, the new data validate our previous findings and conclusions and give a better idea of the variability in vivo that we now discuss in much more detail in the discussion (see paragraph 2). 

      Recommendations for the Authors:

      Reviewer #1 (Recommendations For The Authors):

      The lower potency of maxadilan activation might reflect broader implications for ligand-receptor dynamics. Perhaps the authors could discuss the maxadilan binding from a structural perspective, including AlphaFold models. Also, discussing how these findings might influence sensor application in diverse biological contexts would be insightful. Clear definitions and consistent use of these terms are crucial for ensuring that readers understand the methods and results.

      We would like to thank the reviewer for the comments. As part of this work, we did not obtain a dose-response curve for maxadilan peptide, and only reported the maximal response of the sensor to a high concentration of the peptide (10 µM). Thus, our findings would rather inform us on the maximal efficacy of the peptide, as opposed to its potency towards the PAC1R. Furthermore, we would like to point out that due to the lack of structural details for any GPCR-based sensor published to date, we cannot make any molecularly accurate conclusion regarding the precise reasons why a different ligand (in this case the sandfly maxadilan) induces a lower maximal efficacy of the response compared to the endogenous cognate ligand of the receptor. We do not believe that AlphaFold models can accurately replace structural information in this regard, especially given the consideration that the aminoacid linker regions between the GPCR and the fluorescent protein, which are a critical determinant of allosteric chromophore modulation by ligand-induced conformational changes, typically obtain the lowest confidence score in all AlphaFold predicted structural models of GPCR-based sensors. Finally, we would like to refer the reviewer to a very nice recent publication (PMID: 32047270) which resolved the structures of each of these peptides bound to the PAC1 receptor-Gs protein complex, which provides accurate molecular details on the different modalities of receptor binding and activation by PACAP138  versus maxadilan.

      Reviewer #2 (Recommendations For The Authors):

      The authors are congratulated on the meticulous achievement of their aim, i.e. a fluorescence-based sensor for the detection of PACAP with in vivo utility. Whether or not this sensor will have the requisite sensitivity to detect the release of endogenous PACAP within various regions of the nervous system, in response to specific environmental stimuli or changes in brain or physiological state, remains to be determined.

      We thank the reviewer for the very positive evaluation of our manuscript and for the suggested additions that will improve the strength of our arguments.

      We agree that the in vivo detection of endogenous PACAP will be an important objective for future studies. Due to time, resource and animal license constraints, we are not able to address this objective in our current study, but we now detail possible future experiments in the discussion section. Please see also our answer to the suggested discussion points previously.

      Reviewer #3 (Recommendations For The Authors):

      To comprehensively assess the sensor's sensitivity and specificity to endogenous PACAP, I recommend conducting additional in vivo experiments where PAClight1P78A is expressed in neurons that endogenously express the Pac1r receptor (using Adcyap1r1-Cre mouse line). These experiments should involve applying sensory or emotional stimuli known to evoke PACAP release or activating upstream PACAP-expressing neurons. Such studies would offer valuable data on the sensor's performance under natural physiological conditions and its potential utility for exploring PACAP's roles in vivo.

      We express our gratitude to the reviewer for providing detailed methodological approaches to examine endogenous PACAP release. These suggestions will prove invaluable for future investigations and are important additions to a follow-up publication. As mentioned earlier, we have incorporated some of these approaches into our discussion. Additionally, we have underscored the existing limitations in detecting endogenous PACAP in vivo and emphasized the relevance of PAClight for drug development purposes.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)): Throughout, the authors claim that there is a cross-talk between UPRmt and SG. This is unsubstantiated and unclear.

      We strongly disagree this comment. Throughout the manuscript, we show how manipulating UPRmt signalling affects SG formation, and how manipulating SG assembly alters mitochondrial functions and UPRmt-associated mitochondrial ouputs. In addition, both other reviewers are supportive of our conclusions.

      Major: Link between UPRmt and stress granules:

      The authors claim a link between the UPRmt and stress granule formation based on the finding that the loss of ATF5 affects the expression of UPRmt markers, but not ISR markers. Yet, the authors actually show that GTPP-induced SGs form in a manner independent of ATF5 (Supp. Fig. 2). Thus, there is no data in the manuscript that substantiates this claim.

      In the revised manuscript, we show that reducing ATF5 level results in defective SG assembly, with SGs displaying small size and more numerous, reflecting a maturation defect (Sup Figure 6B, 6C and 6D). In addition, we show a clear dependence of SGs to PERK activation (see comment below) and a specific increase of the ISR main negative regulator GADD34 (Figure 2A and 2B). Therefore, we disagree with this reviewer's conclusion and provide data supporting a link between UPRmt and SG formation.

      PERK-mediated activation of the ISR. The authors claim that PERK mediates activation of the ISR following GTPP treatment. However, the experiments in Fig. 2E were done 1h after treatment. The authors in Fig. 1C nicely show that SG formation begins at 2h. Thus, it is possible that following a longer GTPP treatment (i.e. >2h) the ISR is activated by different branches; for example, the mitochondrial branch that is mediated by HRI. Thus, the authors should determine which kinase mediates ISR activation at the time point that SG formation is maximal.

      We apologise if the description of the experimental procedure was unclear. These experiments are performed at 2h post GTPP treatment as explained in the text (see line 222) and legend (see lines 715-717, Figure 2 legend), and therefore performed at a time of maximal SG induction. Therefore, the identification of PERK as the driver for eIF2α-P and SG formation is performed at a time point where SG formation is maximal.

      Role of SG-linked decrease in cellular adaptation to stress. The finding that SGs limit mitochondrial respiration is interesting. Presumably this promotes cellular adaptation to mitochondrial stresses. The authors should test whether G3BP1/2 DKO cells are more susceptible to death following longer GTPP treatments.

      We thank the reviewer for this comment. These data are presented in Figure 8, where we show that G3BP1/2 dKO cells are less viable compared to wild-type cells following GTPP treatment for up to 28 hours.

      Minor: Fig. 2C should be moved to supplemental as well as the data indicated the lack of ISR inhibition.

      Figure 2C is now supplementary Figure 3.

      Fig. 3A should have representative images of all conditions from Fig. 3B.

      This has now been included as supplementary Figure 4.

      IFAs in Fig. 3 and 4 are hard to interpret given both DAPI and G3BP1 are in shades of blue. Ideally, insets of a merged panel should show each individual panel.

      We adopted the combination cyan, magenta and clue for our images to make scientific figures accessible to readers with red/green color-blindness. For these figures, G3BP1 is in light cyan and DAPI in dark blue, a colour we adopted previously in three publications (PMID 36965618, PMID 35098996, PMID 31905230), allowing colour blind reader to appreciate the results.

      Reviewer #1 (Significance (Required)): The link between the UPRmt and SGs is interesting and would be an advance. However, the authors put forward data that indicates SGs form in an UPRmt (ATF5)- independent manner. An interesting aspect of this story for which there is data is that SGs limit mitochondrial function. This should be explored further (i.e. although it limits mitochondrial respiration, perhaps SGs protect mitochondria against chronic ISR stress).

      As suggested we now provided an extensive amount of additional data supporting a role in mitochondrial functions, with data demonstrating that the absence of SGs rescues cell viability (Figure 8A and 8B), restoring mitochondrial functions such as respiration, ATP production (Figure 6D, 6E and 6F) or translation (Figure 7A), and reducing the production mitochondrial ROS (Figure 6C) or mitochondrial fragmentation (Figure 6A and 6B).

      Reviewer #2 (Evidence, reproducibility and clarity (Required)): Summary: The article by Lopez-Nieto Jordana et al entitled "Activation of the mitochondrial unfolded protein response regulates the dynamic formation of stress granules" describes the identification of a novel cross talk between the mitochondrial unfolded protein response (UPRmt) and the integrated stress response (ISR) and the contributory role SG regulation plays in mitochondrial function and adaptation to stress. This manuscript presents data highlighting that activation of the UPRmt results in the temporal modulation of SG formation via GADD34 levels and further this analysis by suggesting that these levels of GADD34 may enable cells to be protected from prolonged stress.

      Minor comments: This is a very well written manuscript with beautifully presented data. There are some inconsistencies/typos with the abbreviation GTPP- this needs to be checked within the manuscript but examples are on Lines: 204/206/214/324/328/357.

      This has now been corrected throughout.

      Check reference list for inconsistencies; line 680 reference has no page numbers, line 718 reference has no issue or page numbers

      This has now been corrected, references curated throughout.

      Line 255 - is it correct to say induction here? I think impairment should be used.

      This has now been corrected, see lines 283-284.

      Cell type not mentioned in Fig 2 legend.

      This has now been corrected, see line 707.

      Errors in Fig 4 legend - 4F, G do not exist.

      This has now been corrected, see lines 748-750.

      Major comments: In figure 1- the GTPP treatment only results in 25% of cells showing SGs compared with 80% in Ars treated cells. While the activation of ISR markers by GTPP treatment is convincing (in Figure 2A), What happens to overall protein synthesis levels in these cells? Puromycin incorporation assays would be a useful addition here.

      We now show in Figure 1D that GTPP treatment result in a global reduction in translation, and that cells displaying SGs present with a stronger shut-off when compared with treated cell lacking SGs.

      Fig. 1A - ATF4 upregulation is lower in ATF5 siRNA treated cells - what is % uptake of the siRNA in these cells - also see comment below. If possible, it would be nice to see the re-localisation of ATF5 to the nucleus to confirm the UPRmt activation of this protein

      These are experiments that we had planned to perform, however in our hands none of the commercially available antibodies allowed us to determine with confidence the localisation of ATF5. We have not determined the uptake of ATF5 siRNA but show by qPCR a reduction in ATF5 mRNA levels following siRNA treatment (see Figure 1A).

      Does the dispersal of SGs also correlate with a recovery of protein synthesis- there is still a relatively high level of eIF2alph-P at the 8h (from Figure 2A).

      We have not performed these experiments as we do not believe they would have added depth to our study. It is well accepted that SG disassembly results in mRNA re-entry in polysomes and the restart of translation (PMID: 30664789). SGs disappear a few minutes before translation is resumed.

      In Figure 2A the 30 min treatment of GTPP induces a robust level of eIF2α-P yet SGs are only observed following the induction of ATF4/GADD34 at 2h. Puromycin incorporation assays may also be able to shed light on the lack of SG inductions at this stage. The formation of SGs around the time when ATF4 and GADD34 are induced seems counterintuitive and should be commented on.

      As commented in response to an earlier point, our analysis shows that GTPP result in a global reduction in translation level, the assembly of SGs in a subpopulation of cells (as reported also in the context of many viral infection) may reflect cell-specific differences in the levels of eIF2α kinases and/or differences in reaching the threshold needed for eIF2α phosphorylation to induce SG assembly (as shown in PMID 30674674 and PMID 35319985).

      In line 207-208 you state that "PERK is the main eIF2α kinase responsive to GTTP. Overall, these results suggest that induction of the UPRmt is associated with an early SG assembly and ISR activation through PERK." Does the PERK inhibitor inhibit the formation of SG following GTTP treatment? # This is now shown in Figures 2E and 2F. Indeed pharmacological inhibition of PERK following GTPP treatment resulted in inhibition of SG assembly.

      Additionally, does GTPP activation of the UPRmt also induce an oxidative stress and therefore activate an additional EIF2AK such as HRI? If so could be the reason you don't get formation of SGs following Ars treatment? Have you considered what would happen if you used the UV stress which activates GCN2 followed by Ars treatment?

      As shown on Figures 2D and 2E, we could not detect contribution from the other eIF2a kinases GCN2 and PKR following GTPP treatment; and Figures 2E, 2F demonstrate that PERK inhibition is sufficient to revert eIF2a phosphorylation and ablate SG induction, as noted in the response to the point above. This strongly suggest that the eIF2a kinase HRI does not contribute to eIF2a signalling, however we do not exclude in the broader sense (beyond eIF2a signalling) an induction of oxidative during UPRmt activation. Furthermore, as shown in Figure 2D, A-92 treatment reduced p-eIF2a levels in response to UV treatment but not those induced by GTPP therefore we can exclude a contribution from GCN2. If we understand correctly, this reviewer asks what would happen if cells were UV-stressed to activate GCN2 followed by oxidative stress with arsenite. This is outside the scope of this manuscript, but based on our previous work showing that mRNA GADD34 mRNA levels act as the molecular memory of the ISR and drives cell adaptation to acute and chronic stress, we would expect that the response to a second pulse of stress would be dampened by the sustained level of GADD34 mRNA induced following the first stress (see PMID 35319985). In these previous studies we already demonstrated that induction of p-eIF2a and SGs by a first acute stress (heat shock or thapsigargin) impairs the induction of p-eIF2a and SGs by a second acute (heat shock or arsenite) or chronic (HCV infection) stress (PMID 35319985, see Figure 6; PMID: 38602876, see Figure 7).

      Overall, this and the response to the previous comment strongly support that PERK activation, and the resulting induction of GADD34, are responsible for SG regulation following GTPP treatment.

      In Figure 3, for the paraquat experiments have you missed the transient induction of SGs by only looking at 48h? You already have GADD34 levels high here so SGs/eIF2α-P levels will already be lowered.

      We have now included additional timepoints, see supplementary Figure 5, showing the absence of SGs at 1, 2, 6 and 24h post paraquat treatment, to complement the 48h treatment previously shown.

      In addition, when analysing GTPP + Ars treatment impact on SG formation (Fig 2B), could the 2 h GTPP + Ars data also be included, as this is the peak time for SG induction by GTPP

      This is now included in Figure 3B.

      In line 211 you refer to the early and late stages of the stress, how have these been defined? It seems that the ability of the UPRmt to be protective to an additional stressor is time dependent- the number of SGs that are present following the additional stress increases from 4-8h. Does this correlate with a decrease in the level of GADD34?

      We define early and late to the time points corresponding to induction (early) or disassembly (late) of SGs. Also see lines 227-230.

      In line 254 you state that ATF5 silencing didn't impact the ISR or SG formation? These data suggest that the formation of SGs is not a direct impact of activation of the UPRmt but rather activation of the cellular ISR possibly due to the proteotoxic and/or oxidative stress? Can the authors comment on this?

      We now show in supplementary Figure 6 that reducing the expression of ATF5 results in defects in SG maturation with GTPP treatment resulting in more numerous and smaller SGs. Moreover, it should be noted that HSF1, in addition to ATF5, is a key controller of UPRmt induction and future studies could aimed at dissecting the role of HSF1 in the SG-UPRmt crosstalk (discussed in lines 459-461).

      In Figure 4, If GADD34 was driving the loss of SGs in GTPP treated cells why are SGs not persistent in these KO cells. Please comment on this.

      Two phosphatases are known to catalyse eIF2a-P dephosphorylation, GADD34 and CReP. The current model proposes that GADD34, which is induced following stress, acts in a negative feedback loop to resolve cellular stress. In contrast, CReP is constitutively expressed and controls basal P-eIF2α levels independently from stress levels (PMID 27161320). In recent work, we have shown that when GADD34 expression is silenced, CReP takes over to revert eIF2a -P and therefore disassemble SGs (PMID: 38602876). This work also showed that CreP is stress-induced in the absence of GADD34. Therefore, in Figure 4 we can speculate that the absence of SGs in GTPP treated KO cells is due to the ability of CReP to compensate for the absence of GADD34. In the context of GTPP treatment followed by arsenite, GADD34 is important to increase the threshold at which SGs can form, altering the response to a second pulse of stress.

      In addition, in these GADD34KO cells there should also be a persistent level of eIF2α-P when treated with GTPP and Pq, there is some as evidenced by the quantification but this is not very convincing

      As noted here, we do provide evidence of sustained levels of eIF2a-P in cells treated with GTPP at least, the results of independent experiments (n=3) showing persistent phosphorylation when compared treatment in GADD34 KO relative to WT cells. But as noted in the point above the likely activity of CReP can compensate for the lack GADD34, and therefore dampen the amount of eIF2a phosphorylation observed.

      Fig 4B shows no cells exhibiting SG following 4h GTPP treatment, which does not correlate with other experiments in the original cell line, e.g. supp 2B - please explain. Can GTPP still activate the UPR-mt in this CRISPR control cell line

      GTPP still activates the UPRmt in the CRISPR control cell line has shown by the inhibition of arsenite-induced SGs assembly when cells are pre-treated with GTPP for 4h (Figure 4A). However, we have noted that the timings of the response to GTPP can vary slightly, impacting on the exact SG kinetics, depending on the purity of the drug (synthetised through organic routes by our collaborator Dr Altieri), with the SG peak either at 2 h or at 4 h post-GTPP treatment. Potentially live imaging of SGs in control and GADD34 KO cells would alleviate this caveat, however in the time frame of the rebuttal, further engineering of GADD34 KO and parental lines into G3BP1/2 knock-outs / GFP-G3BP1 knock-ins was not achievable.

      In Figure 5, of the 80% of SG still present in GTPP treated Sil SGs- was size or frequency impacted here too as in Pq treatment? # These data are now provided, see Figure 5C and in the result section lines 325-329. These show that GTPP treatment resulted in a reduction in average size of silvestrol-induced SGs, from 0.98 μm2 to 0.9 μm2, and increased average number of SGs, from 18 to 22, when compared to non-treated cells. Additionally, we also quantified features of Ars-induced SGs in GTPP-pretreated cells, data provided in Figure 3C and in the result section lines 245-250. The analysis showed that as paraquat, GTPP pre-treatment also impacts size and frequency of arsenite-induced SGs.

      This is just for clarification but If GTPP is a hsp90 inhibitor, is it specific to mitochondrial Hsp90 proteins?

      Indeed GTPP is specific to mitochondrial Hsp90.

      In the last results section the authors suggest that G3BP1/2 KO cells unable to assemble SGs present with improved mitochondrial function during stress. Firstly, is the UPRmt activated in these KO cells? Could the increased activity just be a consequence of the cells not being able to sense the stress and adapt? Are these cells able to recover from the GTPP stress to the same extent as the wt? Do they die at later timepoints? If you inhibited the disassembly of SGs using DYRK3 inhibitors would you decrease mitochondrial activity? # The figure below confirms the upregulation of UPRmt genes mRNA levels after GTPP treatment in U2OS G3BP1/2 dKO (rebuttal Figure 1). We did not include this in the main manuscript given it is figure heavy already and this did not add depth to our results. Our extensive additional analysis shows that cells unable to assemble SGs present with multiple restored mitochondrial functions following UPRmt induction, including increased ATP production (Fig 6D), and respiration (FIG 6E, 6F), reduced mitochondrial ROS level (Fig 6C) and fragmentation (Fig 6A, 6B). These all support a model in which SG assembled following UPRmt induction contribute to impaired mitochondrial function and that their inhibition/disassembly is necessary to restore mitochondrial homeostasis.

      Rebuttal Figure 1: RT-qPCR analysis of the UPRmt and ISR markers DNAJA3, HSPD1, CHOP and ATF4 mRNA levels in U2OS cells treated with GTPP for up to 6 h. Results shown representative of n=3, normalised to RPL9 mRNA and shown relative to DMSO.

      Reviewer #2 (Significance (Required)): Significance: This is an interesting and clearly important observation providing mechanistic insight into the role SGs may play in the cells control of mitochondrial function during stress. The functional role of SGs in disease and stress is still widely unknown and this manuscript therefore sheds light on how the cell may use SGs to modulate and adapt to mitochondrial stress. This is an exciting area of research that will be applicable to a large audience as SGs are implicated in a wide range of diseases. While the data is significant there are currently a number of important experiments required to strengthen the current observational analysis. Below are some minor and major comments linked to the manuscript. # We thank the reviewer for highlighting the importance of our work in an 'exciting area of research'.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)): As it stands, this study will be suited for a specialized cell biology journal. In order to be published in a journal of a broader readership, the authors would need to address two major points:

      1. Mitochondrial dysfunction affects cellular function in many ways. Reduced levels of ATP, oxidative stress by increased ROS levels and mitochondrial precursor proteins that challenge proteostasis in the cytosol are just three major consequences of mitochondrial defects. Arguably, for the generation of stress granules, it will be important which of these consequences of mitochondrial dysfunction are prevalent. Since mitochondrial dysfunction is an ill-defined umbrella term, this study would be stronger if the authors could link stress granule formation to the specific molecular defects that arise from specific inhibition of mitochondrial functions.

      We agree with this reviewer that mitochondrial dysfunction can take many shapes and therefore to address their comment we have now performed an extensive amount of additional experiments probing various aspects of mitochondrial functions. In addition to the data previously included we can now show to that inhibition of SG formation during UPRmt induction result in increased cell viability (Figure 8A-B), restoring mitochondrial functions such as respiration, ATP production (Figure 6C-F) or translation (Figure 7A), and reduce mitochondrial ROS (Figure 6C) or fragmentation (Figure 6A-B). These all support a model in which SGs assembled following UPRmt induction contribute to impaired mitochondrial function and that their inhibition/disassembly is necessary to restore mitochondrial homeostasis.

      1. Also stress granules are an umbrella term. Different treatments will presumably change the spectrum of transcripts that are sequestered in these granules. As mitochondrial defects remodel the transcription and translation of mitochondrial precursor proteins, the study would benefit from a comprehensive analysis of the spectrum of transcripts that are contained in granules induced by GTPP and sodium arsenite, respectively.

      Previous studies, including our own, have demonstrated that indeed different stress (or infections) can result in the assembly of compositionally distinct SGs (or SG-like foci) that sequester specific subset of mRNAs or proteins. These studies are based on affinity purification or proximity ligation approaches followed by multi-omics analysis of SG components by RNA-seq and mass spectrometry. While we agree with this reviewer that determining the composition of UPRmt-induced SGs could help understand their function, we believe these studies are outside the scope of the current manuscript, and this would instead form the basis of subsequent study and manuscript.

      Reviewer #3 (Significance (Required)): The study is interesting but descriptive. It confirms previous observations. The advance in mechanistic insights is limited. Nevertheless, the study is technically sound and of interest for a specialized readership. As it stands, the study might be published in a specialized journal. In order to be of general interest for a large and general readership, the authors will have to provide much more mechanistic and molecular insight, which will require at least another six months of work.

      We have now produced an extensive additional body of work to answer specific comments made by all three reviewers, bolstering our hypothesis, and delving deeper into the impact of SG assembly on mitochondrial functions.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements

      We are grateful for the valuable, constructive comments of the reviewers, which helped to substantially improve the quality of our manuscript. We particularly agree that the original structure of the manuscript was confusing and in parts misleading, since we followed the history of the project, which first identified the RBM39 mediated impact on IRF3 expression, whereas the -omics studies, identifying additional factors, were done at a far later point. Many discrepancies further arose from the low sensitivity of our initial proteomics analysis, which we now repeated, thereby obtaining far more sensitive detection of the key factors we also found in the transcriptomics data.

      We have re-structured the entire manuscript by moving the -omics data from the end of the paper towards the middle and provide similar depth downstream analysis of all relevant key factors identified (RIG-I/MDA5, IFN receptors, STAT1/2), to reduce the focus on IRF3, as suggested. We further changed the title and abstract to reflect this major conceptual change. Thanks to this helpful comment, we think that our manuscript is now conceptually much clearer.

      We further added new data to support the central claims of our manuscript, including a repetition of the proteomics study. Proteomics and transcriptomics now consistently demonstrate the impact of RMB39 knockdown as well as indisulam treatment on several key factors of innate immunity, including IRF3, STAT1/2, RIG-I and MDA5 (now in Fig. 5), with IFNAR2 and IL10RB additionally found in transcriptomics. We provide additional functional evidence that IRF3 is the key factor affected in the TLR3 pathway (IRF3 overexpression, Fig. 6B, C), whereas diminished abundance of RIG-I/MAD5 is equally important in the respective pathway, thereby also affecting NF-κB response (Fig. 6F-I). We further show the functional significance of IFN-receptor/STAT downregulation on type I and III IFN responses (Fig. 7E-G).

      The reviewers also pointed to some datasets showing the expected trends, but in some cases lacking statistical significance, due to variability in knockdown efficiency. We repeated all mentioned datasets with new batches of siRNA with sufficient biological replicates (n=3). We thereby obtained consistent, statistically significant data in all cases. Importantly, all experiments implementing the RMB39.esc control now show consistent rescue (Fig2. A-E).

      To generate a homogenous experimental design for virus infections, we further added new data showing a comparable impact of siRNA knockdown (Fig. 3F) and indisulam treatment (new Fig. 3G) on Sendai virus infection in A549 cells and took this as a rationale to consistently use indisulam for all other infections.

      2. Point-by-point description of the revisions

      __Reviewer #1 (Evidence, reproducibility and clarity (Required)): __ This manuscript by Li and colleagues examines the role of RBM39 in innate immune signaling. Splicing factor RBM39 was identified through a genome wide screen with a death reporter under control of the IFIT1 promoter that got stimulated with pIC in a TLR3-dependent manner. Besides IFIT1, further experiments showed that RBM39 is also involved in optimal expression of other innate immunity genes like IFNB, CXCL10, RIG-I or MDA5. While NFkB-dependent genes seem not to depend on RBM39, for IRF3 it was shown that protein levels decrease under conditions of RBM39 depletion, because IRF3 mRNAs are (slightly) reduced and spliced differently. The sulfonamid Indisulam could largely recapitulate the phenotype of RBM39 depletion. Further analyses using proteomics and transcriptomics showed that RBM39 is required for mRNA splicing and expression of a large set of other proteins. Altogether, this well designed and written study highlights the fundamental role played by RBM39 in in maintaining the pathways of immunity and metabolism. The key conclusions are convincing but some additional experiments would strengthen them further.

      We are grateful for the very positive general comments of this reviewer.

      Major comments: - For the statistics, authors seem not to have done multiple tests but rather tested individual datasets within larger graphs against each other. Please explain where this is the case and use corrections if multiple testing was done

      We apologize for not have been clearer here, we indeed used multiple testing. In the proteomics, statistical significance was evaluated by "two-sample tests" (Student's T-test with permutation-based FDR 0.05 and 250 number of randomizations). For the analysis of RNAseq data, p values were calculated with the Wald test and corrected for multiple testing according to Benjamini-Hochberg. We have now included this information in the materials and methods section and in the respective figure legends.

      • Fig. 4 shows that RBM39 depletion reduces IFIT expression in virus infected cells and slightly increases virus replication. RBM39 has a major effect on IRF3 levels, but also on other players in innate immunity. What happens if IRF3 is ectopically expressed as in figure 5? With this experiment one could measure how high the contribution of IRF3 miss-splicing is to innate immunity.

      We thank this reviewer for the valuable suggestion. We restructured the entire manuscript, to address several reviewer comments regarding the focus on IRF3 and the lack of data on other factors in the pathway. We now clearly demonstrate that ectopic IRF3 expression entirely rescues the TLR3 response to poly(I:C) in PH5CH cells (Fig. 6B-C), which also explains the lack of impact on the NF-κB pathway (Fig. 2G-H). In contrast, overexpression of IRF3 does not rescue the RIG-I/MDA5 response in A549 cells (new data, Fig. 6F-I). Here, also the NF-κB pathway is affected by knockdown of RBM39, suggesting that reduced RIG-I/MDA5 abundance upon RMB39 knockdown substantially contributed to the diminished innate immune response.

      • Fig. 4 A uses siRNAs but B, C and D only indisulam treatment. It would be better if siRNAs would also be used for the other viruses.

      We agree that a homogenous setup for virus infection would be favorable, however, the use of different cell lines was authorative due to limited permissivess of the used cell types towards virus infection and it appeared challenging to achieve similar knockdown efficiencies. To generate a homogenous experimental design, we now added new data showing a comparable impact of siRNA knockdown (Fig. 3F) and indisulam treatment (new Fig. 3G) on Sendai virus infection in A549 cells and took this as a rationale to consistently use indisulam for all other infections.

      • RBM39 depletion strongly reduces IRF3 levels in the WB, but not so much in RT-PCR and not at all in proteomics. Is the antibody used for WB perhaps recognizing a domain that is underrepresented in isoforms after disturbed splicing? Please clarify.

      Our previous proteomics data suffered from a very low sensitivity, therefore we missed clear detection of many factors, including IRF3. We repeated the whole proteomics analysis with siRNA and indisulam treatment (new Fig. 5A, B) and now found significantly reduced IRF3 protein levels in both conditions (new Fig. S5C), in agreement with the WB data. The lower impact on IRF3 mRNA abundance is due to the additional contribution of alternative splicing (Fig. 6A, Fig. S6A-D), which both in combination affect protein abundance.

      • Volcano plots in figure 7 show a lot of hits obtained after both RBM38 siRNA and indisulam (green dots), and some that are additionally identified in transcriptomes and in proteomes (red dots). Nonetheless only innate immunity and stress response genes are marked, although they do not belong to these highly conserved classes. Please elaborate more on the most RBM39-dependent genes, e.g. by presenting them in a heat map.

      To our knowledge, our study is the first with a comprehensive comparison on the impact of RBM39 knockdown and indisulam treatment on the host cell proteome and transcriptome. However, several studies already did -omics studies on individual conditions/readouts (e.g. (Coomar et al, 2023; Dou et al, 2023; Mai et al, 2016; Nijhuis et al, 2022)). These studies already identified and described in detail key changes in transcriptome and proteome e.g. affecting genes involved in cell cycle control and metabolism, which we find as well. However, the novelty of our paper is the impact on innate immune response, we therefore rather decided to put an even stronger focus on these genes and to omit other factors, like stress response pathway components, etc.. This strategy is supported by the higher sensitivity of our new proteome analysis, which now generated a far better overlap with the transcriptomics, favoring a display setting on highlighting only those factors that were further analyzed in detail in the volcano blots (Fig. 5). Still, interested readers will find the comprehensive list of data in the supplementary Excel-datasheets as well as in our primary data in online depositories.

      Minor comments: - Some abbreviations are not explained, like PGK, siNT, siVTN

      We apologize and have added the missing explanation of abbreviations.

      • Welsch should read Welch

      Corrected.

      • Fig. 2H: were cells also stimulated and if yes, how?

      These were unstimulated conditions, to show the impact of RBM39 on basal expression of the IFNlambda receptor chains. However, we deleted this dataset due to the re-organisation of the manuscript. The analysis of the type I and type III receptor and STAT1/2 expression is now comprehensively shown in Fig. 7/S6E, F, solely based on the transcriptomic data for consistency reasons, along with the functional impact on the IFN response.

      • Fig. 6E: I cannot see a difference between to IRF3-203 and 228 isoforms. And what are the white boxes?

      • Also 6E: Location of the primers is barely visible

      Due to the re-organization of the manuscript these data are now shown in Fig. S6D. Both isoforms are indeed very similar and only differ by a very small (16nt) additional exon in isoform 228. The white boxes are exons not translated in the respective isoforms. We have included this important information in the legend to Fig. S6 and increased the arrows indicating the positions of the primer.

      • Some materials are not properly referenced, like the death reporter, the lentiviral system, or the Rift Valley fever luciferase virus

      We are sorry for the missing information, which has now been added to the materials and methods section.

      • Supplement has no page numbers

      We have added page numbers to the supplementary information.

      Reviewer #1 (Significance (Required)):

      The study advances our knowledge about the regulation of innate immunity. Strengths are the discovery of a novel layer of innate immunity regulation by splicing and the in-depth analysis of the importance of RBM39 for cellular gene expression. A potential weakness might be the focus on innate immunity as other biological functions seem even more dependent on RBM39. However, this reviewer sees the necessity that covering all aspects of RBM39 finction would be beyond the scope of a single study. The relevant literature is appropriately cited (except for some materials, see minor comments). Results will be of interest not only to people doing basic research on innate immunity, but also to those interested in gene regulation in general or to cancer researchers using indisulam

      __Reviewer #2 (Evidence, reproducibility and clarity (Required)): __ The authors performed a CRISPR-based screen for genes required for TLR3-mediated signaling and gene expression in Hepatoma cells. Interferon-stimulated expression of an apoptosis inducer was used as a read-out system. A number of candidate genes were identified and one of these, RBM39, investigated in detail. The protein has previously been linked to both transcriptional control and RNA processing. Validation studies confirm that reduction of cellular RBM39 results in less TLR3-mediated IFN-beta synthesis and lower levels of ISG mRNA synthesis. Initial studies suggest a role of RBM39 in regulating of IRF3 levels, the transcription factor activated by TLR3 signaling to induce IFN-beta synthesis. However, the effect is variable and poorly supported by transcriptomic and proteomic data. Moreover, only one out of four cell-based viral infection models reports a substantial effect of the RBM39 knockdown.

      We apologize for the lack of consistency among several datasets, which was mainly due to the low sensitivity of the proteomic analysis. This has been repeated and now fully confirms all other data. In part due to the comments of this reviewer, we further broadened the scope of the manuscript away from IRF3, including a change of the title.

      Major comments:

      1. The data do not support the claim that RBM39 is a broadly acting player in innate immune responses. In addition, they suggest that IRF3 may not be the only relevant RBM39 target. The most informative knockdown control in this regard would be IRF3 siRNA.

      We have re-structured the entire manuscript and added new data to support the central claims of our manuscript, including a repetition of the proteomics study. Proteomics and transcriptomics now consistently demonstrate the impact of RMB39 knockdown as well as indisulam treatment on several key factors of innate immunity, including IRF3, STAT1/2, RIG-I and MDA5 (now in Fig. 5), with IFNAR2 and IL10RB additionally found in transcriptomics. We further provide functional evidence that IRF3 is the key factor affected in the TLR3 pathway (IRF3 overexpression, Fig. 6B, C), whereas diminished abundance of RIG-I/MAD5 is equally important in the respective pathway, thereby also affecting NF-κB response (Fig. 6F-I). We further show the functional significance of IFN-receptor/STAT downregulation on type I and III IFN responses (Fig. 7E-G). We hope this reviewer now agrees with our claim that RBM39 is a broadly acting player in innate immune responses.

      1. The structure of the manuscript is rather confusing because IRF3 is presented as the main RBM39 target in figures 3-6, but the -omics data in figures 7 and 8 do not support this view. The authors argue different sensitivities of the experimental approaches, but I think few people would agree that western blots are more sensitive than MS. To my opinion a narrative with less focus on IRF3 and a broader integration of candidates of the -omics approaches would be preferable.

      We are grateful for this valuable comment and fully agree that the original structure of the manuscript was confusing and in parts misleading, which was mainly due to the fact that we followed the history of the project, which first identified the RBM39 mediated impact on IRF3 expression, whereas the -omics studies, identifying additional factors, were done at a far later point. Many discrepancies further arose from the low sensitivity of our proteomics analysis, which we now repeated, thereby obtaining far more sensitive detection of the key factors we also found in the transcriptomics data. We now moved the -omics data from the end of the paper towards the middle and provide similar depth downstream analysis of all relevant key factors identified (RIG-I/MDA5, IFN receptors, STAT1/2, to reduce the focus on IRF3, as suggested. We further changed the title and abstract to reflect this major conceptual change. Thanks to this helpful comment, we think that our manuscript is now conceptually much clearer.

      Investigating the role of RBM39 by RNA-seq in pIC-treated cells would further strengthen the manuscript. It will yield a broader view of the protein's role in induced innate immunity.

      We did not add pIC treatment to the RNA-seq analysis, since, based on own experience and numerous papers, this will change the expression of literally thousands of genes. Based on the key factors of the pIC response modulated by RBM39 (RLRs and IRF3), this would very likely simply result in reduced induction of the whole ISG panel (as exemplified for IFIT1, ISG15, MxA and CXCL10 in Fig. 2B-E).

      3.The results in figures 6A-C are confusing for two reasons. First, the siRNA-mediated knockdown should result in reduced RBM39 protein as well (as shown in Fig. 3A) and, therefore, in an increase in RBM39 levels. Second, why was this effect not noted in the experiments shown in figs. 1-5? To avoid this confusion it might be good to mention which IRF3 splice isoforms are detected by the primers and antibodies used in these figures.

      Unfortunately, the reviewer seems to have conceptually misinterpreted Fig. 6A-C of the original paper, which did not show protein, but transcriptome data. We now added the corresponding data of the proteomic analysis in the new Fig. S5, for all detectable, relevant candidates, showing consistency to all previous data. The confusing point in previous Fig. 6B, which the reviewer appears to refer to, is the upregulation of RBM39 transcript levels upon indisulam treatment, which was not apparent in previous experiments, since we always used WB to show diminished RBM39 protein levels upon indisulam treatment. This increase in RBM39 mRNA is due to an autoregulation of RBM39 mRNA by protein abundance, which has been reported in literature (Campagne et al, 2023). Since this is rather confusing and not relevant for our study, we removed previous Fig. 6B and show this aspect only in the volcano blot in Fig. 5D, mentioning and citing the paper on autoregulation.

      Minor comments.

      1. Fig S1: the figure panels and legend are inconsistent. IFIT1 is labeled as ISG56 in panel S1A.

      We apologie for this inconsistency and now use IFIT1 throughout the paper.

      1. Data with the siRNA escape mutant of RBM39 are inconsistent. For example, why is its effect significantly different only in 1 out of 4 ISG in figures S2A-D?

      We apologize for the inconsistency, which is due to variability of silencing efficiency. We repeated the entire set of experiments (n=3) with a new batch of siRNA and obtained comparable, significant differences for all ISGs analyzed (new Fig. 2B-E).

      1. Line 164: the statement that TRIF and RBM39 siRNAs produce effects of similar magnitude is incorrect for the IFIT1 gene in figure S2A.

      This experiment was repeated (see previous point), now obtaining significant, more homogenous data. We have modified the text accordingly.

      4.Fig. 2H: In absence of additional evidence for functional implications, the data showing reduced IL10RB expression should be omitted.

      We omitted the data, as suggested by the reviewer, however, we provide a more in depth analysis of the type I and III IFN response in Fig. 7, based on the transcriptomic data and a functional analysis.

      5.Fig. 3: More datapoints would be needed in panel A to sustain the lack of significant difference between the untreated and escape mutant samples. Are the viability data in panels B and C normalized to untreated cells to control for Indisulam toxicity? In figure S3A the effect of the mutant is rather small. To allow for comparison, the Indisulam titration curves should be adapted to the concentrations used in Fig. 3.

      Fig. 3 (now Fig. 4) was replaced by another representative experiment, now also containing the quantification of the shown western blots, however, the statistical analysis shown in the previous version was and is based on three independent biological replicates, as indicated in the figure legend. Viability data was normalized to controls and this information is now added to the figure lengend as well. The mutant analyzed in Fig. S3A (now S4A) confers only partial resistance, which explains the limited but clear rescue. We did not include higher indisulam concentrations here due to the increased cytotoxicity of concentration above 5 µM in PH5CH, in the absence of pronounced additional effects on RBM39 abundance (Fig. 4B).

      6.RNA-seq measures steady-state RNA, not transcription.

      This is of course correct, we changed all sentences, where our wording might have indicated that we are measuring transcription by RNAseq. However, we still need to differentiate between the role of RBM39 in transcriptional regulation and splicing, where changes in RNA abundance found in RNAseq rather point to transcriptional regulation.

      Reviewer #2 (Significance (Required)):

      The identification of RBM39 as a candidate player in innate immune responses is of interest to a large scientific community with interest in signalling by pattern recognition receptors. Its role should be strengthened with additional infection models. It is puzzling that three out of four viruses don't benefit from the reduced IFN-beta synthesis in the RBM39 knockdown. Moreover, the data are not convincing (or too diverse) to nail down IRF3 as a major, or the most relevant, RBM39 target.

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)): __ CRISPR Screen for factors that are required for dsRNA-dependent ISG production. Found a large number of hits but most did not validate in subsequent assays. The authors follow up the one candidate that did pass secondary screening criteria, RBM39, although re-expression of RBM39 only rescues the phenotype of the siRNAs against RBM39 (siRBM39) in one of the two cell lines tested. Additionally, siRBM39 impacts only a subset of polyIC-induced ISGs and does not regulate NFkB-driven gene expression. They go on to attempt to investigate the impact of siRBM39 on other key innate immune genes and proteins, although many key controls and appropriate methods are missing.

      We thank this reviewer for pointing at inconsistencies and missing controls in our manuscript. We have critically re-evaluated the respective datasets.

      Major comments: 1) The authors propose some rationale for the limited success of the screen, however, while RBM39 may have a role in dsRNA-induced innate immunity, in general the screen seems to have limited value.

      The aim of our CRISPR/Cas9 death reporter screen was the identification of so far unknown contributors to innate immune response. This was achieved by identifying a critical role of RBM39, followed by an in depth validation focusing on RBM39. We further found known components of the TLR3 pathway in our candidate list (e.g. TRIF and UNC93B1), pointing to the overall quality of the experimental setup. At no point of the manuscript we claim that our screen aimed for or delivered a comprehensive overview on innate immunity pathways. Honestly, no comparable screen (e.g. on cytopathic viruses) has delivered such data.

      2) Given that the siRBM39 clearly has off-target effects (since expression of a resistant RBM39 cDNA only gives limited rescue in many cases - Fig S2), each of the experiments in which siRBM39 is used (i.e. Fig 2) should have the RBM39.esc control - especially those that drive subsequent experiments such as the expression of IFNbeta and IFNLR1 (Fig 2a, h)

      The inconsistency in some datasets, showing all the same trends, but in some cases lacking statistical significance was due to variability in knockdown efficiency. We repeated all mentioned datasets with new batches of siRNA with sufficient biological replicates (n=3) with now all of them revealing consistent, statistically significant data. Importantly, all experiments implementing the RMB39.esc control now show consistent rescue.

      3) Since RBM39 reduction has an apparent impact even if IFNLR1-deficient cells (although need the rescue control to know if this is real) the authors conclude that RBM39 regulates the initial wave of dsRNA signaling-events, but this should be tested with the use of Ruxilitinib to block JAK-STAT signaling.

      Due to the general major re-organization of the manuscript, aiming for a less confusing data presentation and consistency towards depth of candidate evaluation, we have removed the data on the IFNLR-deficient cell line. The claim that RBM39 affects the initial wave of ISG responses is based on reduced IFNb expression, which is exclusively induced by the initial wave of ISG response and by the general impact on ISG expression, which we measure at 6h after induction, too early for autocrine IFN stimulation (Burkart et al, 2023). However, we further demonstrate that downregulation of type I and type III IFN receptors in conjunction with STAT1/2 affect the type I and the type III IFN response as well (Fig. 7E-G, in part new data). Therefore, RBM39 affects both, the intial wave and the auto-/paracrine IFN response, and we therefore undertook no further efforts to separate these effects.

      4) IRF3 expression in the Indisulam-treated cells more closely tracks cell viability than RBM39 expression. For example in Fig 3C 10 microM gives 50% IRF3 expression and 50% viability but still 95% RBB39 expression - arguing that the impact of siRBM39 on IRF3 might be very indirect (and error bars on rescue are large so unclear if the rescue really worked in Fig 3A).

      Based on this reviewer comment we re-evaluated the quantification in previous Fig. 3C (now Fig. 4C), which combines data from three independent experiments. We deeply apologize, but the initial quantification proved to be wrong, due erroneous background subtraction, which was relatively high in one of the PHH-replicates (Replicate 1, see Reviewer Fig. 1 in uploaded file). The re-evaluated quantification revealed 55% for the RBM39 abundance at 10µM indisulam, which better reflects the data shown and is now in line with the impact on cytotoxicity and IRF3 abundance.

      5) It is unclear in Fig 4 why some cell/virus combinations are tested with siRBM39 and others are tested with Indisulam. Also the conclusion that RBM39 "substantially contributes to the cell intrinsic innate immune response to viral infections" is greatly overstated given that the differences are between ~3 fold and non-significant.

      We agree that a homogenous setup for virus infection would be favorable, however, the use of different cell lines was authoritave due to limited permissivess of the used cell types towards virus infection and it appeared challenging to achieve similar knockdown efficiencies. To generate a homogenous experimental design, we now added new data showing a comparable impact of siRNA knockdown (Fig. 3F) and indisulam treatment (new Fig. 3G) on Sendai virus infection in A549 cells and took this as a rationale to consistently use indisulam for all other infections. Overall, the aim of the virus infection experiments was using a variety of natural triggers of innate immunity beyond synthetic poly(I:C). Here we found indeed significant reductions of ISG induction for all viruses tested, similar to poly(I:C), this is the basis for the statement that RBM39 contributes the cell intrinsic innate immune response to viral infections. Our experimental design did not intend to see pronounced effects on viral replication, this was only measured to secure that reduced ISG induction was not due to inhibition of viral replication. We have explained this strategy now clearer and tuned down corresponding statements, to exclude potential overinterpretation of the data.

      6) Neither DTU/DRIMseq or qPCR are valid methods to measure splice isoform differences. The authors need to use rMATS or MAJIQ and validate by gel-based RT-PCR.

      Output generated by modern alignment algorithms like salmon is suitable for studies on an isoform level (Love et al, 2018) and has been used in a variety of studies (e.g.(Jabs et al, 2020; Xiong et al, 2023). MAJIQ and rMATS are only superior tools if the detection of so far unknown isoforms is of interest (Love et al., 2018), which is beyond the scope of this project. We have validated the data for IRF3 in RT-qPCR, showing close to identical results to the DTU analysis (compare Fig. 6A and S6D). We disagree that a gel-based RT-PCR analysis would be superior here, due to the lack of quantification.

      7) The conclusions from the proteomic and transcriptomic analyses should be treated with extreme caution given the caveats of methodology and controls discussed above.

      We are aware of the caveats of these technologies. The previous proteomic analysis indeed suffered from low sensitivity, failing to detect essential candidates like IRF3. The repetition of the experiment (new Fig. 5A, B, new Fig. S5) now revealed data very consistent with the transcriptomic data. Overall, the strength of our approach is the direct comparison of siRNA based RBM39 knockdown and RBM39 depletion by indisulam throughout transcriptomics and proteomics analyses. The wide overlap argues for the validity of our data and suggests that we thereby circumvented many caveats.

      Reviewer #3 (Significance (Required)):

      Innate immune signaling is a complex and essential pathway for maintaining health. While much is known about key components of this pathway, additional regulators are likely to exist. This manuscript describes an attempt to identify new regulators of dsRNA-mediated gene expression.

      References

      Burkart SS, Schweinoch D, Frankish J, Sparn C, Wust S, Urban C, Merlo M, Magalhaes VG, Piras A, Pichlmair A et al (2023) High-resolution kinetic characterization of the RIG-I-signaling pathway and the antiviral response. Life Sci Alliance 6

      Campagne S, Jutzi D, Malard F, Matoga M, Romane K, Feldmuller M, Colombo M, Ruepp MD, Allain FH (2023) Molecular basis of RNA-binding and autoregulation by the cancer-associated splicing factor RBM39. Nat Commun 14: 5366

      Coomar S, Mota P, Penson A, Schwaller J, Abdel-Wahab O, Gillingham D (2023) Overlaid Transcriptional and Proteome Analyses Identify Mitotic Kinesins as Important Targets of Arylsulfonamide-Mediated RBM39 Degradation. Mol Cancer Res 21: 768-778

      Dou Z, Zhang X, Su W, Zhang T, Ye F, Zhao D, Chen X, Li Q, Zhang H, Di C (2023) Indisulam exerts anticancer effects via modulation of transcription, translation and alternative splicing on human cervical cancer cells. Am J Cancer Res 13: 2922-2937

      Jabs S, Biton A, Becavin C, Nahori MA, Ghozlane A, Pagliuso A, Spano G, Guerineau V, Touboul D, Giai Gianetto Q et al (2020) Impact of the gut microbiota on the m(6)A epitranscriptome of mouse cecum and liver. Nat Commun 11: 1344

      Love MI, Soneson C, Patro R (2018) Swimming downstream: statistical analysis of differential transcript usage following Salmon quantification. F1000Res 7: 952

      Mai S, Qu X, Li P, Ma Q, Cao C, Liu X (2016) Global regulation of alternative RNA splicing by the SR-rich protein RBM39. Biochim Biophys Acta 1859: 1014-1024

      Nijhuis A, Sikka A, Yogev O, Herendi L, Balcells C, Ma Y, Poon E, Eckold C, Valbuena GN, Xu Y et al (2022) Indisulam targets RNA splicing and metabolism to serve as a therapeutic strategy for high-risk neuroblastoma. Nat Commun 13: 1380

      Xiong L, Liu J, Han SY, Koppitch K, Guo JJ, Rommelfanger M, Miao Z, Gao F, Hallgrimsdottir IB, Pachter L et al (2023) Direct androgen receptor control of sexually dimorphic gene expression in the mammalian kidney. Dev Cell 58: 2338-2358 e2335