10,000 Matching Annotations
  1. Last 7 days
    1. Nevertheless, the citizen science movement, genealogy trendand crowdsourcing of archaeological tasks have demonstratedthat there is an enormous aptitude and interest in contributing toarchaeological research, if there are clear paths to engagementand connections to contemporary values, questions, and interests

      Did they do any surveys about why people weren’t engaged with the data? Not sure how it works in archaeology, but in psychology, we do sort of exit interviews, when a program or intervention isn’t going as planned, to see how it went wrong.

    2. Framed by the motivation to make publicly funded research datapublicly accessible,

      Preach, my friend! I love the italics that imply it's idiotic that public-funded research is behind paywalls.

    3. style, iconography, font, material

      I am sad to see that phrases aren't listed. The linguist in me wants to know how people are remembered, by the roles they held (mother, child, etc) or if there is nothing, or something religious?

    4. usefulness of data and its relevanceto contemporary research and understandings of the past

      It would be fun to run a comparison between death records and known grave sites to see whos ended up where, when and why. if socio-economic variables are to play, culture etc.

    1. Dabrowski, Marek. “The Former Soviet Union Thirty Years On.” Bruegel, 14 Feb. 2023, https://www.bruegel.org/essay/limping-transition-former-soviet-union-thirty-years . Accessed 8 Sept. 2025. This essay helps the economic and political systems of the former Soviet Union countries three decades after the USSR's dissolution. This adds to Dorn's writing by highlighting the uneven progress of economic reforms across the region. Showing how some countries advanced and others didn't.

    1. However, evidence supporting the effectiveness and implementation of culturally sensitive CBT remains sparse.

      I'm wondering if this is because you can implement things like cultural awareness into the training of therapist, but will that really convince clients of ethnic minorities that you can help them with racism, when they feel like you wouldn't be able to relate? could clients of color be comfortable with white therapist if they know they are already getting lesser quality care from situations like Medicaid who only cover certain treatments. Building a relationship with your clients over years would open up possibilities for therapist to avoid facing the biased that has been brought to our attention.

    2. Although people of color comprise 40% of the US population (US Census Bureau 2020), 84% of psychologists are White (APA 2019). Thus, the mental health workforce does not reflect the racial and ethnic demographics of this country, which may decrease clients’ willingness to seek and engage in services, especially for clients of color who may prefer to be matched with a clinician of the same race

      This is a very big reason why people of all races might not seek out help, imagine speaking English and your therapist speaks Russian. A lot of times, the relationship the therapist is trying to form can separate itself by already feeling like your in a different world as the therapist for example "How could she understand me if she knows nothing of what my entire culture endures?" I think there are ways to avoid this, like maybe recommending them to another person or helping them to understand that different people can be more similar than you might think, (if this is a client that you feel you can still help).

    3. Compared to White people, people of color are less likely to believe that mental health treatment will be helpful and, instead, rely more on their natural support systems such as family, friends, and spiritual/religious leaders (Gone & Trimble 2012, Jimenez et al. 2012, Turner et al. 2016).

      This is something I can personally relate too or have had experiences with. A lot of the time the people of color I know don't stress mental health as such a big issue. I believe that because of research and findings, the ethnic minority should definitely seek more help for mental health struggles. coming from a family of people with mental health disorders and then living in a area where majority is people of color, we can see how widely neglected the topic is and being that our minds are so powerful. we should take control of them and push towards better for ourselves.

    1. A drug is a chemical agent which can affect living processes.

      This sentence feels like it can come later on in the paragraph. It feel like its dangling rather than integrated into the flow.

    1. A question is often asked as to whether a project manager can be successful if he or she is unfamiliar with the technology, technical vocabulary, and technical processes associated with the project.

      Consider making this more active rather passive.

    2. This includes Phase 0 exit (Concept), Phase 1 exit (Specifications; Project plan: schedule, budget, resources), and Phase 4 exit (readiness to ship to customers).

      Consider a table structure to organize how the phases are viewable.

    1. t is clear from Table 8.3 that considerable variation in the percentage of various fiber types exists even among successful athletes competing in the same event or sport. Indeed, although the percentage of type I (slow) muscle fibers is highly correlated with an individual’s V̇O2 max, the percentage of type I fibers can explain only 40% of the variation in V̇O2 max between individuals (68). Furthermore, two equally successful 10,000-m runners have been shown to differ in the percentage of slow fibers that each possesses. For example, one runner might be found to possess 70% slow fibers, whereas a similarly successful runner can possess 85% slow fibers. This observation demonstrates that an individual’s muscle fiber composition is not the only variable that determines success in athletic events (22). In fact, success in athletic performance is due to a complex interaction of psychological, biochemical, neurological, cardiopulmonary, and biomechanical factors (14).

      Tengo que checar esto

    1. Anxiety in the classroom prior to the COVID-19 pandemic focused on school workand grades, whereas post-pandemic may focus on transmission of diseases, vacci-nations, and social anxiety due to lack of exposure to social settings.

      This is also very important to note as times have changed significantly since the COVID-19 pandemic.

    2. The results from our study provide evidence that the use of smartphones in the class-room has a negative effect on levels of course comprehension and the psychologicalstate of students during lecture.

      As educators, we need to come up with a way to help students see how smartphones in the classroom can have a negative effect on the outcome of their learning. I know a math teacher that has a calculator/ phone holder and when they walk in the room they put their phone where the calculator was and then head to their seat.

    3. Mind-fulness during lectures has been found to be associated with better grades(Caballero et al., 2019), and better overall psychological health while learning(Mahfouz et al., 2018).

      Mindfulness is being aware of your body. Focused breathing, walks, and body scans are techniques that can be taught within the classroom to help with mindfulness.

    4. n general, research has found a negative correlation between smartphoneuse and psychological well-being, specifically in anxiety and depression (e.g.Demirci et al., 2012).

      This is so important to know. Especially in girls, there is a "standard" we need to follow, we need to look a certain way, act a certain way. All of these things cause great anxiety and can cause depression if you do not "fit" the standard.

    5. Within the classroom, smartphones can often be a cause of distraction, as stu-dents use the phone during class to check social media (Gupta & Irwin, 2016),multi-task (Sana et al., 2013), or contact friends (Tindell & Bohlander, 2012)

      I, as a college student, even sometimes struggle with this.

    6. The smartphone has become an integral part of society, including our educationaland professional lives. Smartphone use is highest amongst people aged 18–2

      There are many younger aged kids (10-18) who have smartphones now and are bringing them to school. It is important as future educators to be aware of the percentage of students who have access to social medias as it plays a huge part in their mental health and wellbeing.

    1. the experience of a Netflix renter circumvents the boxes altogether in exchange for generic envelopes, leaving only the image printed directly on the disc itself

      It’s amazing to realize how far Netflix has come. We used to wait on our little disc to arrive in the mail so that we could watch movie or show and now we have Netflix at our fingertips everywhere we go. They really have revolutionized the way we consume television and movies.

    2. the rise of TV-on-DVD box sets

      This was such a big deal before streaming. You didn’t have to wait for a show to come back to rerun. You could watch in order as you pleased and didn’t have to deal with commercials.

    1. The series is the major point of repetition in TV, matchingthe innovation that takes place within each segment. This pattern ofrepetition and innovation is very different from the cinematic model

      They have to have more than one perspective so that they can draw the story out longer and keep the viewer engaged and will to keep tuning in to watch. The film is a self contained story that only needs one perspective because we will get a resolution at the end.

    2. For the soapopera/drama, the deliciousness of the anticipation is worth in manyinstances more than the event itself.

      This is very true. My grandparents were very into to soap operas, their “stories” and they would discuss them all week. If the season ended on a cliffhanger, they would talk about it until next season started, being super excited to find out how the plot played out.

    3. Non-fiction films have always had a precarious place in thecommercial cinema, and nowadays they are practically non-existent

      I feel like we switched to more factual fiction. Taking a historical or prominent event and then embellishing the story to the point that it is even less than loosely based on the actual event. Events that were minor are made to seem like major events or added romances to create a story that sells.

    1. “reading like a writer.”

      The first time I really heard this phrase was in my creative writing class in high school (Which unfortunately was almost 10 years ago. I miss that class) after hearing it though, I always take a break, come back, and before returning to writing, will read my piece out loud. when painting I frequently step back to look at it as a whole rather than every component that makes up the art. I focus on what others see not each minute brush stroke that I put in. but in this case you look at a written work with the utmost interest in the minute details

    2. Remember, your writing is yours. Your name is on the top, and whatyou have to say should reflect what you believe.Always.

      This really hit me, honestly. No matter what you write, what type of writing you're doing it will always reflect your way of thinking if you aren't paying attention. even if you are writing a paper on something you don't truly believe, it might come across in your tone and the words you choose to use. Like if I was writing about the grass being green, but chose to say " everyone has convinced you that grass is green, even scientists" that would lead someone to believe that I don't actually agree and no matter how much scientific proof on grass being green I put in that piece I will still allude to the fact that I don't believe it (I do actually believe and know that grass is typically green )

    3. AUDIENCE

      Yes, Yes this is the title of the section but I wasn't about to highlight the whole thing! I feel as though this section reminds me of how people will act and speak differently depending on the situation, Reading the room (wink wink get it READING)

    4. Persona and tone are choices governed by genre, purpose, andaudience. There are no hard-and-fast rules.

      I honestly highlighted this cause I thought it was a brilliant wording, I think it really loops into more than just writing and reading, its also true for the human condition.

    5. we want tounderstand the specifications in order to name the category, ratherthan determining the category and writing to those specifications

      I think this helped narrow down part of my struggle with writing, in the past Ive never been short on ideas just short on how to get them down and or out, which then ends up leading to me getting overwhelmed so I guess in short it reframed the process on writing a bit

    6. The word shares its origin with “assay,”which means “to test the quality of.” “Essay” itself means “to try.”

      Ive always found etymology quite interesting and I tend to find better understanding in more complex explanation.

    1. FIGURE

      I know that this may be automatic, but it looks strange to read "France" on French Guyana, especially as it is the only coloured part in South America. Let me check internally if we would like to handle this differently.

    1. eLife Assessment

      This fundamental work advances our understanding of how SP5 and SP8 promote neuromesodermal competent progenitors in murine embryos. Generally the evidence is compelling, with strong developmental genetics, transcriptomic, and genomic transcription binding surveys contributing to the strength of the data. Some of the language could be softened to avoid overinterpretation of the data, and figures and diagrams could be improved.

    2. Reviewer #1 (Public review):

      This is an important, interesting, and in-depth study examining the role of Sp5/8 transcription factors in maintaining the neuromesodermal progenitor (NMP) niche. The authors first used Sp5/8 double conditional KO mouse embryos to establish that these factors function in the NMP niche to promote trunk elongation. They then conducted extensive single-cell analyses on embryos of various genetic mutant backgrounds to unravel the complex and intricate interactions between Wnt signaling and Sp5/8. The key conclusion from these experiments is that Sp5/8 function within an autoregulatory loop crucial for maintaining the NMP niche. The authors went on to identify and characterize a novel enhancer element downstream of the Wnt3a coding sequence, which mediates the effects of Sp5/8 on Wnt3a expression. Overall, the data presented are compelling and of high quality, and the study offers a prime example of how a relatively small set of signaling pathways and transcription factors can function in concert to impart robustness to developmental processes.

    3. Reviewer #2 (Public review):

      Chalamalasetty et al. investigate the regulatory circuit of signaling molecules and transcription factors that drive the fate of neuromesodermal competent progenitors (NMCs). NMCs contribute to Sox2-positive spinal cord and Tbxt/Bra-expressing somitic mesoderm, and this choice is governed by the interplay between Wnt3a and Fgf signaling. The authors discovered that the transcription factors SP5 and SP8 participate in this process. Mouse genetics, in vivo development, and transcription factors profiling point to a model where SP5 and SP8 directly regulate Wnt3a expression to foster Tbxt-marked mesoderm formation at the expense of Sox2-marked neural ectoderm. Mechanistically, SP5/8 bind to an enhancer which the authors characterize: its activity depends on the presence of SP5, CDX2, TCF7, and TBXT binding sites, and it is activated only in primitive streak cells at E7.5, in NMP, and in caudal and somitic mesoderm, underscoring the tissue and stage-specific nature of this Wnt3a enhancer.

      Moreover, the authors find that SP5/8 likely regulate the TCF7 association with the chromatin and compete for its binding to the TLE repressor.

      The study is extensive, compelling, and well written. The combination of in vivo evidence with single-cell transcriptomics, transcription factors profiling, and in vitro regulatory element characterization is notable and builds a convincing picture of the action of SP5/SP8.

      Here, I provide a series of comments and questions that, if addressed and clarified, could, in my opinion, improve the study.

      (1) While Sp5 and Sp8 are both present in NMCs, their expression does not fully overlap. Sp5 is also detected in caudal and presomitic mesoderm, notochord and gut, while Sp8 overlaps with Sox2 in neural progenitors of the spinal cord and brain (Fig. 1D). Accordingly, Sp8 expression is also activated by the neural-promoting RA+Fgf. It is not easy for me to reconcile this non-fully overlapping expression pattern - and in particular the overlap of Sp8 and Sox2 - with the presumed redundancy (or similarity of function) described later. Sp5/8 dko NMCs show reduced Tbxt and expanded Sox2, indicating that SP8 also represses Sox2 or neural fate, an observation confirmed by Sp8 overexpression (Figure 4c). What is the explanation for this, and is the function of SP8 in Sox2-positive neural progenitors different from its Wnt3a-sustaining role in NMCs? Or what am I missing?

      (2) I suggest that the authors show relevant ChIP-seq peaks in Figure 3 to lend credibility to the complicated overlapping Venn diagrams. I consider visual inspection of peak tracks as primary quality control of this type of experiment. A good choice could be the cis-regulatory elements at Sp5, Sp8, Tbxt, Cdx1, 2, 4 bound by TBXT and either CDX2, SP5, or SP8 (now referring to the Venn diagrams and the annotated peak table). On ChIP-seq visualization, in reference to Figures 5 and 7, I also suggest that the authors show the tracks of a negative control (IgG, non-related antibody, or better anti-flag in Sp5/8 dko). While I do not doubt the validity of these experiments, there are peaks in these figures bound by all factors tested that could be suspicious (even though, admittedly, they look like genuinely good TF peaks). A negative track would clearly show beyond any doubt that these are not suspect regions of positive unspecific signal caused by open chromatin, excessive cross-linking, or antibody cross-reaction.

      (3) SP5 here is found as a direct inducer of Wnt3a expression, and accordingly positive regulator of Tbxt and mesoderm, caudal development. I find this in partial contradiction with a finding by the Willert group (PMID: 29044119). They show that "genes with an associated SP5 peak, such as SP5 itself, AXIN2, AMOTL2, GPR37, GSC, MIXL1, NODAL, and T, show significant upregulation in expression upon Wnt3a treatment in SP5 mutant cells". There, essentially, SP5 inhibits Wnt target genes. While the authors are aware of this and cite Huggins et al., I find that this deserves a better discussion addressing how opposite functions could be sustained in different contexts, if these really are different cellular contexts in the first place, or if this could result from different methodologies.

      (4) The gastruloid experiment is nice, but I wonder whether there is any marker that the authors can use to show that other features of the gastruloids respond accordingly. For example, is the Sox2 expression domain expanded? And is there any unaffected marker to emphasize the specificity of the decreased Tbxt and Cdx2?

      (5) SP5/8 seems to enhance the TCF7 occupancy at WRE. And then, SP5/8 appears to counteract the presence of TLE repressor associated with TCF7. While these two mechanisms are interesting, they are not necessarily interconnected. According to the still-established view, TCF7 should be associated with WRE even in the absence of the Wnt signal, when TLEs are also present on the locus. One could expect that SP5 competes with TLE, to decrease its presence on TCF7-bound loci, leaving the abundance of TCF7 binding unchanged. Yet, the authors also observe that the TCF7 association changes. What is the mechanism implied? Do they perhaps consider a TCF7L1 > TCF7 switch, and if so, what evidence exists for this?

      (6) Along the same line as above, I wonder whether beta-catenin binding is also enhanced at these sites? Any TCF/LEF would require beta-catenin for gene upregulation.

      (7) The authors write that "Small Tle peaks were identified at these WREs in WT cells, demonstrating that both repressive Tle and activating Tcf7 could be detected at active genes". However, ChIP-seq is a population assay, and it is possible - more plausible, in fact - that cells displaying TLE binding are not expressing the target genes.

    4. Reviewer #3 (Public review):

      Summary:

      This is a well-done study. It shows, in a comprehensive manner, that Sp5 and Sp8 play essential roles in maintaining the complicated positive feedback circuitry needed for specification of neuromesodermal competent progenitors (NMCs) in caudal mesodermal development in murine embryos.

      Strengths:

      The developmental genetics, transcriptomic, and genomic survey of TF binding are all satisfactory and make a compelling story. The CRISPR deletion of the Wnt3a downstream enhancer clearly demonstrates that it plays an important role in the positive feedback circuit.

      Weaknesses:

      My only concerns are some of the language surrounding the mechanistic interpretation of the Wnt3a downstream enhancer and the relationship between TCF and TLE binding.

    1. Since 2000, energy consumption by space cooling devices has increased 4% annually, driven by rising temperatures.

      I think this highlight was changed in the last pdf

    1. Educators are the primary stewards an the particulars specialists, tions of wher we need to locate our minds and our hear of the democratic spirit.

      This is a very powerful statement, and weighty responsibility. By nature of educating students, we make a massive impact on the democratic spirit among youth.

    1. ips. However, the administration was ultimately unsuccessful in preving the development of a policy regime based firmly in legal advocacy. Leglessons, strategies, and best practices from the early successes and failures ofHaitian advocates were passed to Central American advo

      Surely in part this is just a backlash of having tried to swing the pendulum so far in the other direction

    1. Being only a daughter for my fathermeant my destiny would lead me to becomesomeone’s wife.

      This statement highlights the traditional gender expectations. Cisneros critiques the limited roles assigned to women, emphasizing her struggle to define her own path beyond societal norms.

    2. “I am theonly daughter in a family of six sons. Thatexplains everything.”

      It sets the stage for exploring how this familial dynamic influenced her identity and aspirations.

    1. directly quantifying information loss/gain by SOA approaches and MIRACLe using well-established information-theoretic, divergence, and distance metrics26,
      • Third, we will perform preliminary experiments to quantify the actual amount of

    Annotators

    1. Mentors check in frequently with their mentees, especially in the early days and weeks of a new position, to address their questions or unmet needs

      This is so valuable for new teachers and teachers who are new to a building. Having this support is so needed.

    1. Once you’ve selected a major, one way to develop a sense of the types of questions posed in your selected discipline is to read articles published in that field. For example, read a few articles published in the field and identify the questions these articles raise at the beginning of the texts. Of course, these questions are not always explicitly stated, so identifying an article’s motivating questions might take some work

      Reading and researching more about your interest can provide you with different point of views and give you a second hand opinion on things. This can therefore change your own understandings of a certain topic and provide you with a new set of questions.

    1. But on top of that, there are many unintended ways in which feedback might arise, and these are more pernicious and harder to control.

      This is an interesting concept. When navigating social media or online websites, we often encounter feedback systems that prompt users to rate their experience with the site or ask them to measure their level of satisfaction with the content. I usually find these prompts irritating as they interrupt my daily 'doom scroll'. I wonder if anyone else has any opinions on these feedback systems? Do you answer honestly or just click the first response that will make it go away?

    Annotators

    1. Organisms that exhibit Type I survivorship curves have the highest probability of surviving every age interval until old age

      So I know that some species of shark or other life can survive for hundreds of years. This may be a little off topic but how can they do this and would this not affect the curve of this drastically for the animals that do survive for possible centuries

    1. I looked up Gorbachev and found a few sources that relate to this topic. 1. Interestingly enough, Gorbachev himself gave a Nobel Peace Prize speech. So, for my first source, I'd like to briefly mention Gorbachev's Nobel Peace Prize Lecture from 1990. In his speech he looks back on his reforms and focusing on how perestroika and glasnost were very much rooted in democratic pluralism. He also talked about the rule of law and the opportunity for negotiation instead of coercion. I believe this speech is important to include because I feel like it gives us a good insight into Gorbachev's intentions aside from the writing. He also pretty directly rejected any idea of returning to repression and heavily pushed his idea of necessary reformed change. 2. For my second source I wanted to find something that is a little more recent and not directly from Gorbachev himself. I came across an article from 2011 that discusses a documentary about the lives of five students who grew up during the Soviet era and during Gorbachev's reforms. I like this article because if you do not have time to watch an entire documentary, which is called "My Perestroika" you can read the article for a good summary. The article discusses the lives of these ordinary people experiencing the reforms firsthand. I found this interesting in comparison to the political elites discussing the reforms. This article provides a deeper personal and cultural look at how Gorbachev's reforms changed people's daily lives. It also restated Illarionov's idea of non-violent revolutions.

    1. In this example the annotation is not marked “Only me” so it’s visible to everyone. But you can also mark this type of annotation “Only me.”

      Can the professor see only me so we can still get feedback without the whole class seeing my question

    1. That's right, they said. What you are is a woman. Possibly nothuman at all, certainly defective. Now be quiet while we go ontelling the Story of the Ascent of Man the Hero

      This segment is very telling as it immediately tries to put women in a place of uselessness. It sounds very contradictory as they say women take care of the home by cooking the meat the men find and caring for the children. It proves further that even now, men put value in money itself rather than what they can do with that money.

    2. It wasn 'tthe meat that made the difference. It was the story

      This is an interesting sentence because one would think that the meat is the most important part due to it being a means for survival. But men tend to want to be praised for their bravery, so they can come up with elaborate stories to enhance their image. This can still be seen today where men can share their stories and be believed whereas women are still having to push their narrative, but if they push too much they are seen as looking for attention and are not taken as seriously.

    3. The average pre-historic person could make a nice living in about a fifteen-hourwork week.

      This is such an interesting concept as compared to now. Because now, we have to work at least 40 hours a week in order to make a decent living and that usually consists of a two income household. Also another big difference is that men were the soul providers. If we tried to live that way now, it would be pretty much impossible to survive. So that is an intersting difference to note.

    1. The nurse spoke to me from the corner in a tone of near-admonishment that angered me at the time and that I’ve never been able to understand since. “It ain’t like big brother’s gonna wake up tomorrow and be all better,” she said. I looked at her stupidly. Did she think the situation didn’t look quite grim enough?

      This interaction with the nurse really made me feel like I am also at the hospital. The raw emotion showed when the nurse said that not everything was gonna be alright the next day really made me feel sad for Sullivan.

    1. The reviewers agree that the paper constitutes a valuable contribution to the literature, illuminating the use of document data networks to control the topic clustering of a science map, using a rigorous methodology and with careful presentation of results. For this purpose, one reviewer suggests that “the key result may be that BERT-based methods offer a more faithful reproduction of the existing map than bibliometric approaches using the alternative data sources”, but as this is a somewhat exploratory study, my impression is that the authors refrained from strong conclusions. The document data networks used as examples were datasets from Facebook, the former Twitter, documents cited in patents, and policy documents. The reviewers provide comments about several details that could be improved, including specifying more details of the method and datasets, availability of their data, and framing of the introduction and scope, including the addition of some important references.

    2. I read with interest the article by Bascur, Costas, and Verberne, which examines the use of diverse data sources to influence topic emergence in science maps.

      At the outset, I note that I am affiliated with Digital Science, the owner and operator of both Altmetric and Dimensions—two of the data sources analysed in the study.

      The article focuses on the mapping of articles onto science maps characterised by clusters of topical areas. These are typically visualised in two dimensions, where the relative positions of topics are determined by a selected distance metric. This area of study has seen considerable development in recent years, and science maps continue to serve as a compelling tool in various analytical and strategic contexts.

      While the paper’s focus on mapping research outputs onto science maps is timely and relevant, I was disappointed to see that key foundational works in this field were not cited. In particular, I believe the following references are highly relevant, especially the last, which explores the use of Wikipedia in a manner closely related to the current paper:

      The paper is framed as an exploration of how networks emerge, which is an important and intriguing subject. Visual representations play a crucial role in knowledge communication and decision-making, and I consider this work both significant and valuable.

      That said, I initially interpreted the paper as an exploration of science map construction via bibliometric coupling informed by different data sources. However, the paper does not appear to explore alternative embedding metrics, topological variations, or the graphs that might result from different coupling strategies. Instead, it primarily assesses how faithfully papers can be mapped onto an existing topic structure using alternative data sources. I use the term "faithful" here in its group-theoretic sense—capturing both purity and effectiveness—as it conveys the intended meaning more precisely, in my opinion.

      This focus differs somewhat from the broader ambitions implied in the title and abstract. I recommend the authors reassess whether the current framing accurately reflects the content, or alternatively, provide a more explicit explanation of the embedding method used and how it relates to the structural similarity being evaluated. Even if the scope is narrower than anticipated, the findings remain rigorous, well-articulated, and represent a valuable contribution.

      If the paper is best understood as a study of the faithfulness of mapping unclassified papers to an existing clustering structure using different linking mechanisms (e.g., social data vs. textual or citation-based), then its key result appears to be that BERT-based methods offer a more faithful reproduction of the existing map than bibliometric approaches using the alternative data sources.

      Given the clustering methodology behind the target map, this result is sensible. The use of social media data, as discussed in the paper, is more likely to yield alternative representations rather than a faithful reproduction. By contrast, BERT embeddings naturally align more closely with textual structures already reflected in the map. This outcome is consistent with the analytic approach adopted.

      As an aside, the paper does not appear to reference the work of Evans and Lambiotte (https://doi.org/10.1103/PhysRevE.80.016105), which investigates the use of bipartite graphs and their duals for community detection. Their work is directly relevant to the paper’s discussion of faithfulness, particularly in terms of minimising overlap in cluster assignments.

      Finally, I believe the paper would benefit from a stronger articulation of the contexts in which science mapping is applied. I have previously explored this in (https://doi.org/10.1162/qss_a_00244), and I believe the current work holds particular promise in evaluative settings. Preserving classification consistency over time is often vital for longitudinal comparisons, and the paper’s approach could be valuable in assessing alternative coupling strategies against a stable reference framework.

      In summary, this paper presents a thoughtful and well-executed study. I find the technical development in the methodology around the refinement of purity to be helpful and something that those in the field will want to explore further. I recommend the authors consider refining the framing and expanding the contextualisation to strengthen the contribution and clarify its position within the existing literature.

    3. The article “Use of diverse data sources to control which topics emerge in a science map” aims to analyze the effects of different data sources on topic clustering bias in science maps. For this purpose, the clustering effectiveness of different topic categories is analyzed based on different traditional and non-traditional data sources.

      (1) contribution to existing literature

      The present research is well embedded in the existing body of literature and builds on the study Which topics are best represented by science maps? An analysis of clustering effectiveness for citation and text similarity networks by Bascur, Verberne, van Eck, and Waltman (2024). That study explored the extent to which science maps can successfully cluster documents that address the same topic - a concept referred to as clustering effectiveness. This metric serves as an indicator of the thematic precision of clustering approaches. Bascur et al. (2024) found that clustering effectiveness varies depending on the topic domain: documents related to certain topics, such as diseases, were more accurately clustered than those related to others, such as geography. Building on these findings, the present study investigates whether the clustering effectiveness for documents on the same topic is influenced by the choice of data source, and whether this effectiveness can be systematically adjusted or optimized through the selection of that source.

      (2) major strengths and weaknesses

      The article’s ideas and arguments are presented with clarity and precision. Its structure follows a classic and well-established format - introduction, background, methods, results, discussion, and conclusion - which makes it easy to follow. As a reader, I never lost the thread; the narrative remains coherent and accessible throughout. The current state of research is conveyed in a thorough, well-reasoned, and nuanced manner. Particularly noteworthy is the detailed introduction to the topics of science maps based on diverse sources and comparing clustering solutions of different networks. This contextualization is both comprehensive and essential for understanding the research that follows.

      The document selection is highly extensive (4,142,511 documents) and well-justified. The rationale for which documents are included in the study is clearly and convincingly presented. All selection criteria are explained in detail in Section 3.1.

      The introduction clearly explains the rationale for using non-traditional data sources alongside traditional data sources, and the justification is both logical and easy to follow. The external data sources are introduced and described in Section 3.2. The procedures for building the different networks (Sections 3.3 and 3.4), as well as the clustering approaches (Section 3.5), are also thoroughly explained. The topics and topic categories analyzed in the study are presented and justified in detail in Section 3.6. To evaluate how well different topics are represented within the clustering networks, the study employs the concept of clustering effectiveness. The relevant calculations are described in Section 3.7.

      The article presents its complex results in a well-structured and sensible tabular format. Figure 2 provides an example to illustrate how the results are displayed. Table 3 reports all detailed results, while Table 4 offers a summary, and Table 5 draws conclusions on which network performed best for each topic. The tables and their captions are extensive and may seem overwhelming at first glance. However, the article makes it clear that this level of detail is both intentional and necessary. The thorough descriptions guide the reader through the results and enhance comprehension. Rather than being a weakness, the comprehensive presentation reflects the authors’ careful and rigorous approach.

      Regarding additional strengths of the article, I would like to highlight and support those identified by the authors themselves. This study represents a clear advancement over the 2024 publication. By focusing on a single metric—purity, rather than also including inverse cluster number—the evaluation and interpretation of results have been significantly simplified, and comparability has improved. Whereas the earlier study only allowed comparisons between cluster solutions based on identical document sets and similar cluster sizes, the current study enables comparisons across different networks, even when they involve varying documents and cluster structures. A notable innovation in this article is the introduction of purity profiles, which effectively illustrate how clearly topic clusters would be perceived by users navigating the science map.

      In addition to highlighting the strengths of their work, the authors also acknowledge three key limitations. These include the absence of a specified minimum cluster size, the combination of bipartite and non-bipartite networks, and the potential inaccessibility of certain data sources for other researchers (e.g., due to paywalls such as those associated with the Twitter API). Each of these limitations is clearly presented and discussed in the article. The authors provide thoughtful reasoning on the impact of these constraints and explain how they have addressed them within the scope of their study.

      (3)    suggestions for improvements

      I have no suggestions for improving the article.

      (4)    data and code availability/ research ethics/ MetaROR policies

      The research data is available on Zenodo in accordance with the principle as open as possible, as closed as necessary. Due to legal restrictions, the raw data used in the experiments cannot be shared. However, the code used to conduct the experiments and generate the results is provided, along with a summary of the data utilized.<br /> This ensures transparency and allows others to understand the methodology and replicate the results, even in the absence of the original raw data.

    4. In this article, the authors present a study using different networks from various data sources to measure differences in gathering scholarly document topics and to show which networks provide the best information to represent the scientific topics considered appropriately. The work is built on a previous contribution and analyses networks obtained from six sources: scholarly document authors, Facebook users, Twitter users and conversations, patents, and policy documents. These networks are also accompanied by other networks, i.e. the text similarity network and the citation network, that are mainly used for comparison purposes.

      The work particularly interests the scholarly community, aiming to work with science map generation. However, some passages need further explanation to be clear to the reader.

      1. In the abstract, there is a mention of traditional and non-traditional data sources. While in the text of the article there are, indeed, some clarifications, it would be ideal to briefly explain in the abstract what the authors refer to these terms, since it is not immediately clear what is a traditional data source in the context of topic identification.

      2. In the introduction, the authors anticipate the outcomes of a previous work they have conducted on a similar topic. They claim that some topics are well-represented in maps based on citation links and text similarity, while others are not. However, it is not clear which sources they have used to get to this claim, and it is also not evident what the main difference is that characterises the current work compared to the previous one.

      3. In section 3, the authors introduce all the methods and materials used for their analysis. Despite the fact that some of the material cannot be shared since it is behind a paywall (e.g. the Web of Science data), by reading the section, it is not clear that all the code developed and the data obtained from the analysis have been published on Zenodo. While it is okay to address this aspect in the appropriate section at the end of the article, I would suggest to anticipate this information at the beginning of section 3, citing the Zenodo record appropriately and clarifying which of material is not included in that record, thus explaining that the full reproducibility of the experiment cannot be conducted.

      4. Considering all the external sources of networks, it is not clear what the datetime window of each source is - are all these sources containing information from the year of publication of the oldest article in the document set considered to 2024?

      5. As far as I understood from the formula in section 3.7.1, the Purity is always calculated against a particular topic M. Thus, why not refer to such "M" in the formula definition, defining it in a function-like way Purity(N, M)? In addition, still in this section, it is not clear how the N clusters considered are selected. A running example of Purity calculation would probably help the reader here.

      6. In section 3.7.2, the denominator of the formula is set to 5. However, it is unclear why such a number is sensitive for the calculation presented. Why not 6 or 7? Why not 3? I think the authors should clearly justify the choice of such a denominator by bringing in explicit evidence.

      7. In section 3.7.3, it is not entirely clear what the difference is between topics and topic categories.

      8. In the discussions, it would be good to extend a bit on the work's limitation and envision possible paths for future works in the area. A few points that I would love to see discussed in detail:

        • The analysis has been done by using sources that may have changed drastically in the past months/years - e.g. Twitter that, after becoming X, has seen a series of abandons from the academics towards more open (in a broad sense) platforms and networks (e.g. Mastodon and, more recently, BlueSky). Would it be possible to gather the necessary data from these platforms to run the study again? If yes, would it be possible to download them? If not, should we consider these sources unreliable for scientific purposes and, if so, what preconditions should be in place for their reliability? Considering the present situation, what is the relevance of the results obtained with the data gathered from Twitter (now X)?

        • The authors transparently claim that some of the data used (e.g. Web of Science data) are not freely available to the reader, thus preventing the full replication of the study. Is it possible to substitute these closed sources with others offering open research information? For instance, OpenCitations for gathering the citation network (full disclosure: I'm director of OpenCitations), PubMed and PubMed Central for gathering titles and abstracts of the article considered, etc.?

        • The core set of scholarly documents considered are primarily from the biomedical domain since the authors considered only those with a PubMed identifier specified. While the results shown are sensitive for this domain, how much does the approach the authors presented scale also in other scholarly areas, e.g. Social Science and Humanities? Is it possible to speculate that the approach presented is discipline-agnostic? Is there any evidence for such a claim?

      Some final remarks:

      A. The figures should be closer (i.e. maximum on the next page) to the place they are mentioned the very first time.

      B. The research question introduced in the article is introduced in section 1, and then it is not explicitly mentioned anymore in the text. It would be ideal to add an explicit reference to that question when the authors present appropriate evidence to answer it (e.g. in section 4) and to recall the answer to that question in the conclusion of the paper.

    1. However, there’s no need to feel like it’s a sign of your lack of ability; on the contrary, many of the strongest student writers regularly seek help and support with their writing (that’s why they’re so strong). College instructors are familiar with the ups and downs of writing, and most colleges have support systems in place to help students learn how to write for an academic audience.

      There is no need to feel ashamed or scared to ask for help, due to the college instructors understanding and the system built to help students in need.

    1. Based on this information, theteacherthenmadearichinferenceaboutthelatent,under-lyingcauseof the behavior, and responded with supportand flexibility that an AI tutor could not provide

      never taking it at face value; opening up opportunities for conversation and understanding

    1. The perfect plot, accordingly, must have a single,and not (as some tell us) a double issue; the change in the subject’s fortunes mustbe not from bad fortune to good, but on the contrary from good to bad; and thecause of it must lie not in any depravity, but in some great fault on his part

      Key point

    2. ence poetry is something more philosophicand of graver import than history, since its statements are of the nature rather ofuniversals, whereas those of history are singulars.

      Key point

    3. mitation is natural to man from childhood, oneof his advantages over the lower animals being this, that he is the most imitativecreature in the world, and learns at first by imitation

      Imitation

    Annotators

    1. narrative

      I think stories are so important for everyone, because for kids it's fun for them to hear and imagine it, and for adults, it keeps them young and the imaginative qualities of kids. Also when stories are told through generations, it becomes a piece of family history and it could be the story that can pick up their mood or make them feel better after a long day

    1. The Beauty of Touch | Patrick McIvor | TEDxLehighRiver

      “The Beauty of Touch” by Patrick McIvor explains how touch is a basic human need. It helps us connect, communicate feelings without words, and show care. Patrick shows that even small, caring touches (like a hug or a pat on the shoulder) can comfort, build trust, and make people feel valued.

    1. For instance, shrubs and cushion plants mod-ify their below-canopy microclimates which facilitate the growth ofseedlings

      yes, we love the impact of microclimates on seedling recruitment!! can i study this?? pls?

    2. the heterogeneity ofmicroclimates can mediate how species respond to climate change(Zellweger et al., 2020a), see also (Bertrand et al., 2016), and thisheterogeneity can also play a critical role in the context of land usechanges (Christiansen et al., 2022)

      VERY RELEVANT!!! LOOK AT THESE REFERENCED PAPERS

    3. Recent investigations on plantcommunities show how microclimates shape species richness, turn-over and the composition of vascular plants (Opedal et al., 2015;Shen, Song, et al., 2022), bryophytes (Man et al., 2022; Shen, Corlett,et al., 2022) and lichens (Kemppinen et al., 2019)

      LOOK INTO THESE PAPERS TOO!

    4. Recentreviews have highlighted the importance of microclimate overmacroclimate (Bramer et al., 2018), and discussed microclimate inrelation to remote sensing (Zellweger et al., 2019), measurementtechniques (Maclean et al., 2021), species distribution model-ling (Lembrechts, Nijs, et al., 2019) and forest ecology (De Frenneet al., 2021).

      PAPERS TO LOK INTO!!

    1. All because their Black African identity was judged inferior to the white European one.

      Slavery was mainly done because white Europeans believe they were superior to everyone else.

    2. The color line meets him everywhere, and in a measure shuts him out from all respectable and profitable trades and callings.”

      The color line meets every individual no matter if they are successful or not.

    1. In the event, the English state collected about twice as much per person as the French state and spent a larger fraction of the national income. It is arguable that these expenditures promoted economic growth.

      Godt udgangspunkt for England i dere søkonomiske vækst

    1. Note: This response was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity):

      This manuscript described the translational responses to single and combined BCAA shortages in mouse cell lines. Using Ribo-seq and RNA-seq analysis, the authors found selective ribosome pausing at codons that encode the depleted amino acids, where the pausing at valine codons was prominent at both a single and triple starvations whereas isoleucine codons showed pausing only under a single depletion. They analyzed the mechanisms of the unexpected selective pausing and proposed that the positional codon usage bias could shape the ribosome stalling and tRNA charging patterns across different amino acids. They also examined the stress responses and the changes in the protein expression levels under BCAA starvation.

      The manuscript was well-written, and the findings are interesting, especially their model that positional codon usage bias could be a regulator of ribosome pausing and tRNA charging levels. Although different translational responses to distinct amino acid starvation have been widely documented, the positional codon usage bias is an interesting aspect. The manuscript's central message could have been made clearer. The authors may consider emphasizing this point more explicitly in the abstract. The rich multi-omics dataset in this work provides valuable resources for the translation field.

      We thank the reviewer for the thoughtful and positive evaluation of our work.

      Major comments

      1. The abstract may need to be revised since it is hard to immediately catch the authors' main point. If the authors regard this work as a resource paper, the current version is fine. But it could be better to point out the positional codon usages the authors found, which is a strong point of the current manuscript.

      Response: We thank the reviewer for highlighting the importance of positional codon usage, which indeed represents a key finding of our study. We revised the abstract, and we now emphasize this aspect more clearly. However, in response to review #2, we have framed the observed positional effects and the idea of an elongation bottleneck as one possible contributing mechanism among others and relate it specifically to the attenuation of isoleucine-specific stalling under triple starvation.

      1. Page 18 "Beyond these tRNA dynamics, our data also highlight the importance of the codon positional context within mRNAs, indicating that where a codon is located within the CDS can influence both the extent of ribosomal stalling and overall translation efficiency during nutrient stress." This idea is interesting. To what extent the authors think this could be generalized? The authors may discuss whether they think their proposed model is specific to the different ribosome stalling patterns between valine and isoleucine codons or generalized to other codon combinations. For example, the positional codon usage bias will be different among different organisms, and are there any previous reports on ribosome behaviors that align with their model?

      Response: We thank the reviewer for raising these important points. While our study primarily focuses on the differential stalling patterns of valine and isoleucine codons, we believe the underlying principle, that the position of codons within the CDS can modulate the extent of ribosome stalling, may under very specific circumstances extend beyond this amino acid pair. We expect this positional effect to be potentially relevant for combinations in which one amino acid has considerable enrichment near the 5′ end of coding sequences, coupled with starvation-sensitive tRNA isoacceptors, while the other does not. In our case, valine meets these criteria (see Fig. S11A and Fig. 6). In contrast, isoleucine and leucine codons, although also relatively frequent, show more variable positional distributions and are both decoded by isoacceptors that appear more resistant to starvation, as illustrated in Fig. 6 and reported for mammals and bacteria in Saikia et al. 2016; Darnell, Subramaniam, and O’Shea 2018; Elf et al. 2003; Dittmar et al. 2005. To explore the generalizability of this model, we have now included a transcriptome-wide analysis of codon position biases in mouse for all codons in the revised manuscript (Supplementary Figures 10 and 11). This analysis may serve as a basis to identify additional candidate codons for future studies. Furthermore, we now mention in the Discussion that amino acids with similar properties to valine regarding their positional distribution and tRNA isoacceptors, such as phenylalanine, and glutamine, whose tRNA isoacceptors are predicted to be fully deacylated under their respective starvation in bacteria (Elf et al. 2003), could be promising candidates for testing this model, in combination with amino acids, whose tRNAs are expected to remain partially charged under starvation or to be depleted at the start of the CDS such as i.e. His (Supplementary Fig.11C).

      Even if the authors think this model can be applied to BCAA starvation, would it be possible to explain the different isoleucine codon responses between single and double starvation? The authors may discuss why the ribosome stalling at isoleucine AUU and AUC codons was slightly attenuated under double starvation. And how about the different leucine codon responses among single, double, and triple starvations, although the pausing is not as strong as isoleucine and valine codons?

      Response: Regarding the attenuated isoleucine stalling under double starvation, we believe this is primarily due to stronger inhibition of the mTORC1 pathway when leucine is co-depleted (i.e., in the double starvation condition; Fig. 2D–F). This results in a more substantial suppression of global translation, reducing overall tRNA demand and thereby mitigating stalling (Darnell, 2018). A similar effect may explain the only mild leucine codon stalling observed under single leucine starvation, which also triggers strong mTORC1 inhibition and reduced initiation. In contrast, triple starvation does not suppress mTORC1 to the same extent, and thus reduced initiation alone cannot explain the absence of leucine codon stalling. Instead, we propose that additional features, such as the relative sensitivity of tRNA isoacceptors to starvation and their aminoacylation dynamics, must be considered. Valine tRNAs, for example, are known to be highly sensitive and become strongly deacylated under starvation in bacteria (Elf et al. 2003), a pattern that we also find in our own data (Fig. 6). Leucine tRNAs, by contrast, appear more resistant, possibly due to better amino acid recycling or isoacceptor-specific differences in charging kinetics, though further validation would be needed. However, combined with the strong stalling at 5′-enriched valine codons, this could reduce downstream ribosome traffic and limit exposure of leucine codons, thus preventing stalling. However, our new analysis of the positional relationship between valine and leucine codons within individual transcripts (now shown in Supplementary Figure 11B) did not reveal as strong a pattern as we observed for valine and isoleucine codons. We now discuss these points and their implications in the revised Discussion.

      Experimental validation using artificial reporters carrying biased sequences may also be considered.

      Response: We appreciate the reviewer’s suggestion. In fact, we explored this experimentally using a dual-fluorescent reporter system (GFP–RFP) (Juszkiewicz and Hegde 2017) containing consecutive Val or Ile codons. However, the constructs yielded variable and non-reproducible results under starvation conditions. In addition, testing the role of codon position would require placing the same codons at multiple defined positions within a single transcript and performing ribosome profiling directly on the reporter. This type of targeted experimental validation is technically challenging and falls beyond the scope of the current study. We now mention this explicitly in the revised Discussion as an interesting direction for future work.

      1. Page 13 "Moreover, we noticed that DT changes extend beyond the ribosomal A-site, including the P-site, E-site, and even further positions (Supplementary Fig. 2A), consistent with other studies on single amino acid starvation 39 (Supplementary Fig. 2B-C)." Could the widespread DT changes be due to Ribo-DT pipeline they used or difficulties in offset determination? Indeed the authors showed that this feature was found in other datasets, but it seems that the datasets were processed and analyzed in the same way as their data. The original Ribo-DT paper (Gobet and Naef, 2022, Methods) also showed some widespread DT changes even from RNA-seq. Another analysis method like the codon subsequence abundant shift as a part of diricore analysis (Loayza-Puch et al., 2016, Nature) did not show that broad changed regions. The authors are encouraged to re-analyze the data sets using different methods.

      Response: We agree with the reviewer that the fact that DT changes beyond the ribosomal A-site is puzzling, but this has already been seen in other papers using other approaches (Darnell, Subramaniam, and O’Shea 2018). To validate that this shift is not due to our A-site assignment, enrichment analysis, or DT method, we applied the Diricore pipeline to our Ribo-Seq data. The output of the pipeline provides either 5’-end ribosome density or “subsequence” analysis using an A-site offset for each read size based on the metagene profile at the start codon. Both analyses show the same enriched codons across the different conditions as in our analyses, and the broad shift is similar, with the maximum signal at E, -1 position (Fig. R1).

      1. Page 13 "Intriguingly, only two of the three isoleucine codons (AUU and AUC) showed increased DTs upon Ile starvation (p < 0.01), while just one leucine codon (CUU) exhibited a modest but significant DT increase (p < 0.01) under Leu starvation (Figure 1A-B, Supplementary Figure 2A)." How can the authors explain the different strengths of ribosome pausing at Ile codons under Ile and double starvation? The AUA codon did not show any pausing under either of the starvation conditions. Throughout the manuscript, the authors mainly describe the difference between amino acids but it is desirable to discuss the codon-level difference as well.

      Response: Thank you for raising this point. The observed differences in stalling between the isoleucine codons can likely be explained by differences in tRNA isoacceptor charging and positional bias within transcripts. The AUA codon is decoded by a distinct tRNAIle isoacceptor (tRNAIleUAU), which, according to our tRNA charging data (Fig. 6), remains largely charged during Ile starvation. This observation aligns with previous reports suggesting that this isoacceptor is more resistant to starvation-induced deacylation in mammalian cells and bacteria (Saikia et al. 2016; Elf et al. 2003). In contrast, the AUU and AUC codons are primarily decoded by the tRNAIleAAU isoacceptor, which we find to be strongly deacylated under Ile starvation, likely contributing to the observed codon-specific ribosome pausing. Additionally, we found that the AUA codons are relatively rare in general and particularly underrepresented near the 5′ ends of coding sequences. Our new spatial analysis (now included in Supplementary Figure 11B) confirms that AUA codons tend to occur downstream of AUU and AUC codons within transcripts. This potentially further reduces stalling on these codons and further diminishes their apparent DT increase under starvation. In order to better explain these important points, we have now expanded the codon-level discussion of these differences in the revised manuscript.

      1. Page 13 "We examined the effects of single amino acid starvations (-Leu, -Ile and -Val), as well as combinations, including a double starvation of leucine and isoleucine (hereafter referred to as "double") and a starvation of leucine, isoleucine, and valine ("triple"), allowing us to identify potential non-additive effects." The different double starvations, isoleucine and valine, and leucine and valine, will further support their hypothesis on the effects of the positional codon usage bias on ribosome pausing and tRNA charging patterns. Although this could be beyond the scope of the current manuscript, the authors are encouraged to provide a rationale for the chosen combination.

      Response: Our experimental design evolved stepwise: we initially focused on leucine and isoleucine depletion as we found that despite their structure similarity these had respectively short and long dwell times in our previous work in the mouse liver (Gobet et al. 2020). Valine was included at a later stage to cover all the BCAAs. At the time, we did not anticipate valine to yield particularly striking effects in cells, and therefore we did not include systematic pairwise depletions involving valine. However, the strong and unexpected stalling observed at valine codons, especially under triple starvation, became a central aspect of the study. Thus, we agree that additional combinations, such as Leu/Val or Val/Ile, could be informative and now mention this in the Discussion as a potential direction for future studies.

      Minor comments

      Page 16 "these results imply that BCAA deprivation lowers protein output through multiple pathways: a combination of reduced initiation, direct elongation blocks (stalling), and possibly an increased proteolysis" This conclusion is totally right but may be too general. Could the authors summarize BCAA-specific features of the events including reduced initiation, stalling, and proteolysis that all contribute to protein outputs? This is not well discussed in the latter sections including Discussion.

      Response: We thank the reviewer for this helpful suggestion. We agree that the original statement was too general and have revised the relevant section to more clearly delineate the distinct responses observed under each BCAA starvation condition. Specifically, we now summarize that valine starvation is characterized by strong, positionally biased ribosome stalling; leucine starvation primarily impacts translation initiation, likely via mTORC1 repression; and isoleucine starvation shows a mixed phenotype, with features of both impaired initiation and codon-specific elongation delays. We also clarify that while protein stability or degradation may contribute to the observed changes in protein output, our current data do not allow for quantitative assessment of proteolytic effects (e.g., changes in protein half-life). Therefore, we refrain from making direct quantitative conclusions about the differential modulations of proteolysis and instead focus our discussion on the translational mechanisms supported by our data.

      Reviewer #1 (Significance):

      The manuscript was well-written, and the findings are interesting, especially their model that positional codon usage bias could be a regulator of ribosome pausing and tRNA charging levels. Although different translational responses to distinct amino acid starvation have been widely documented, the positional codon usage bias is an interesting aspect. The manuscript's central message could have been made clearer. The authors may consider emphasizing this point more explicitly in the abstract. The rich multi-omics dataset in this work provides valuable resources for the translation field.

      We thank the reviewer for the encouraging comments and share the view that positional codon-usage bias is an important result; accordingly, we now underscore this point explicitly in the revised Abstract. We also emphasise that our other observations are, to our knowledge, novel: only a handful of multi-omics studies have combined ribosome-pausing profiles with direct tRNA-aminoacylation measurements, and none has systematically examined multiple amino-acid-deprivation conditions as presented here.

      Reviewer #2 (Evidence, reproducibility and clarity):

      This study examines the consequences of starvation for the BRCAAs, either singly, for Leu & Ile, or for all three simultaneously in HeLa cells on overall translation rates, decoding rates at each codon, and on ribosome density, protein expression, and distribution of ribosome stalling events across the CDS for each expressed gene. The single amino acid starvation regimes specifically reduce the cognate intracellular amino acid pool and lead to deacylation of at least a subset of the cognate tRNAs in a manner dependent on continuing protein synthesis. They also induce the ISR equally and decrease bulk protein synthesis equally in a manner that appears to occur largely at the initiation level for -Leu and -Val, judging by the decreased polysome:monsome ratio, but at both the initiation and elongation levels for -Ile-a distinction that remains unexplained. Only -Leu appears to down-regulate mTORC1 and TOP mRNA translation.There is a significant down-regulation of protein levels for 50-200 genes, which tend to be unstable in nutrient-replete cells, only a fraction of which are associated with reduced ribosome occupancies (RPFs measured by Ribo-Seq) on the corresponding mRNAs in the manner expected for reduced initiation, suggesting that delayed elongation is responsible for reduced protein levels for the remaining fraction of genes. All three single starvations lead to increased decoding times for a subset of the cognate "hungry" codons: CUU for -Leu, AUU and AUC for -Ile, and all of the Val codons, in a manner that is said to correspond largely to the particular tRNA isoacceptors that become deacylated, although this correspondence was not explained explicitly and might not be as simple as claimed. All three single starvations also evoke skewing of RPFs towards the 5' ends of many CDSs in a manner correlated with an enrichment within the early regions of the CDSs for one or more of the cognate codons that showed increased decoding times for -Ile (AUC codon) and -Val (GUU, GUC, and GUG), but not for -Leu-of which the latter was not accounted for. These last findings suggest that, at least for -Val and -Ile, delays in decoding N-terminal cognate codons cause elongating ribosomes to build-up early in the CDS. They go on to employ a peak calling algorithm to identify stalling sites in an unbiased way within the CDS, which are greatest in number for -Val, and find that Val codons are enriched in the A-sites (slightly) and adjacent 5' nucleotides (to a greater extent) for -Val starvation; and similarly for Ile codons in -Ile conditions, but not for -Leu starvation-again for unknown reasons. It's unclear why their called stalling sites have various other non-hungry codons present in the A sites with the cognate hungry codons being enriched further upstream, given that stalling should occur with the "hungry" cognate codon in the A site. The proteins showing down-regulation are enriched for stalling sites only in the case of the -Val starvation in the manner expected if stalling is contributing to reduced translation of the corresponding mRNA. It's unclear why this enrichment apparently does not extend to -Ile starvation which shows comparable skewing of RPFs towards the 5'ends, and this fact diminishes the claim that pausing generally contributes to reduced translation for genes with abundant hungry codons. All of the same analyses were carried out for the Double -Ile/-Leu and Triple starvations and yield unexpected results, particularly for the triple starvation wherein decoding times are increased only at Val codons, skewing of RPFs towards the 5' ends of CDSs is correlated only with an enrichment for Val codons within the early regions of the CDSs, and stall sites are enriched only for Val codons at nearly upstream sites, all consistent with the finding that only Val tRNAs become deacylated in the Triple regime. To explain why only Val tRNA charging is reduced despite the observed effective starvation for all three amino acids, they note first that stalling at Val codons is skewed towards the 5'ends of CDS for both -Val and triple starvations more so than observed for Ile or -Leu starvation, which they attribute to a greater frequency of Val codons vs Ile codons in the 5' ends of CDSs. As such, charged Val tRNAs are said to be consumed in translating the 5'ends of CDSs and the resulting stalling prevents ribosomes from reaching downstream Ile and Leu codons at the same frequencies and thus prevents deacylation of the cognate Ile and Leu tRNAs. It's unclear whether this explanation is adequate to explain the complete lack of Ile or Leu tRNA deacylation observed even when amino acid recycling by the proteasome is inhibited-a treatment shown to exacerbate deacylation of cognate tRNAs in the single amino acid starvations and of Val tRNA in the triple starvation. As such, the statement in the Abstract "Notably, we could show that isoleucine starvation-specific stalling largely diminished under triple starvation, likely due to early elongation bottlenecks at valine codons" might be too strong and the word "possibly" would be preferred over "likely". It's also unclear why the proteins that are down-regulated in the triple starvation are not significantly enriched for stalling sites (Fig. 5B) given that the degree of skewing is comparable or greater than for -Val. This last point seems to undermine their conclusion in the Abstract that "that many proteins downregulated under BCAA deprivation harbor stalling sites, suggesting that compromised elongation contributes to decreased protein output." In the case of the double -Ile/-Leu starvation, a related phenomenon occurs wherein decoding rates are decreased for only the AUU Ile codon and only the AAU Ile tRNA becomes deacylated; although in this case increased RPFs in the 5' ends are not correlated with enrichment for Ile or Leu codons and, although not presented, apparently stall sites are not associated with the Ile codon in the double starvation. In addition, stalling sites are not enriched in the proteins down-regulated by the double starvation. Moreover, because Ile codons are not enriched in the 5'ends of CDS, it doesn't seem possible to explain the selective deacylation of the single Ile tRNA observed in the double starvation by the same "bottleneck" mechanism proposed to explain selective deacylation of only Val tRNAs during the triple starvation. This is another reason for questioning their "bottleneck" mechanism.

      We thank the reviewer for their deep assessment, exhaustive reading, and constructive feedback, which have greatly contributed to improving the clarity and contextualization of our manuscript. We would first like to clarify that all experiments in this study were conducted in NIH3T3 mouse fibroblasts, not HeLa cells; we assume this was a misunderstanding and have verified that the correct cell line is consistently indicated throughout the manuscript. We also clarify that our data show that -Leu, double starvation, and to a lesser extent -Ile, downregulate mTORC1 signaling and TOP mRNA translation, whereas valine -Val and triple starvation had minimal effects on these pathways. We agree that some of our conclusions and observed phenomena were not explained in sufficient detail in the original version. To address this, we have significantly reworked the discussion, added complementary figures and clarified key points throughout the text, to better convey the underlying rationale and biological interpretation of our findings. We address each of the reviewer’s points in detail in the point-by-point responses below.

      Specific comments (some of which were mentioned above):

      -The authors have treated cells with CHX in the Ribo-Seq experiments, which has been shown to cause artifacts in determining the locations of ribosome stalling in vivo owing to continued elongation in the presence of CHX (https://doi.org/10.1371/journal.pgen.1005732 ). The authors should comment on whether this artifact could be influencing some of their findings, particular the results in Fig. 5C where the hungry codons are often present upstream of the A sites of called stalling sites in the manner expected if elongation continued slowly following stalling in the presence of CHX.

      Response: We thank the reviewer for raising this important concern. We would like to clarify that our ribosome profiling protocol did not include CHX pretreatment of live cells. CHX was added only during the brief PBS washes immediately before lysis and in the lysis buffer itself. This approach aligns with best practices aimed at minimizing post-lysis ribosome run-off, and is intended to prevent the downstream ribosome displacement artifacts described by Hussmann et al. 2015, which result from pre-incubation of live cells with CHX for several minutes before harvesting. Furthermore, recent studies have demonstrated that CHX-induced biases are species-specific. For instance, Sharma et al. 2021 found that human (and mice) ribosomes are not susceptible to conformational restrictions by CHX, nor does CHX distort gene-level measurements of ribosome occupancy. This suggests that the use of CHX in the lysis buffer, as performed in our protocol, is unlikely to introduce significant artifacts in our ribosome profiling data. To further support this, we reanalyzed data from Darnell, Subramaniam, and O’Shea 2018, where the ribosome profiling samples were prepared without any CHX pretreatment or CHX in the wash buffer, and still observed similar upstream enrichments in their stalling profiles (see Supplementary Figure 2B-C in our manuscript). Additionally, in our previous work (Gobet et al. 2020), we compared ribosome dwell times with and without CHX in the lysis buffer and found no significant differences, reinforcing the notion that CHX use during lysis does not substantially affect the measurement of ribosome stalling. Given these considerations, we believe that CHX-related artifacts, such as downstream ribosome movement, are unlikely to explain the enrichment of hungry codons upstream of identified stalling sites in our data. We have now adjusted the Methods section to clarify this point.

      -p. 12: "These starvation-specific DT and ribosome density modulations were also evident at the individual transcript level, as exemplified by Col1a1, Col1a2, Aars, and Mki67 which showed persistent Val-codon-specific ribosome density increases but lost Ile-codon-specific increases under triple starvation (Supplementary Figure 3A-D). " This conclusion is hard to visualize for any but Val codons. It would help to annotate the relevant peaks of interest for -Ile starvation with arrows.

      Response: We agree and thank the reviewer for this observation. We have now annotated exemplary peaks in Supplementary Figure 3A–D to highlight ribosome pileups over Ile codons. However, we agree that it is still hard to visualize in the given Figure. Therefore, we added scatter plots for each of the transcripts that show the RPM of each position in the Ctrl vs starvation to allow for a better illustration of the milder effects upon Ile starvation (Supplementary Figure 4).

      -To better make the point that codon-specific stalling under BCAA starvation appears to be not driven by codon usage, rather than the analysis in Fig. 1H, wouldn't it be better to examine the correlation between increases in DT under the single amino acid starvation conditions and the codon frequencies across all codons?

      Response: We appreciate the suggestion. We have now added an additional analysis correlating the change in DT with codon usage frequency for each starvation condition. This is included in Supplementary Figure 5A-D and supports our interpretation that codon frequency alone does not explain the observed stalling behavior.

      -p. 13, entire paragraph beginning with "Our RNA-seq and Ribo-seq revealed a general activation of stress response pathways across all starvations..." It is difficult to glean any important conclusions from this lengthy analysis, and the results do not appear to be connected to the overall topic of the study. If there are important conclusions here that relate to the major findings then these connections should be made or noted later in the Discussion. If not, perhaps the analysis should be largely relegated to the Supplemental material.

      Response: We thank the reviewer for this comment. The paragraph in question is intended to provide a global overview of transcriptional and translational responses across the starvation conditions. It serves both as a quality control (e.g., PCA clustering and global shifts in RPF/RNA-seq profiles), and to confirm that expected starvation-induced responses are among the strongest detectable signals separating the starved samples from the control. Indeed, these observations establish that the perturbations are effective and that hallmark nutrient stress responses are globally engaged across conditions. Importantly, very few studies to date have examined transcriptional and translational responses under single or combined branched-chain amino acid (BCAA) starvation conditions. It therefore remains unclear to what extent BCAA depletion broadly remodels gene expression and translation. Our analysis contributes to addressing this gap, revealing that while certain stress pathways are commonly induced, others show condition-specific patterns such as we observed for -Ile starvation. To maintain focus, we have kept the detailed pathway analyses and transcript-level enrichments in the Supplement and rewritten the corresponding text in a more compact manner, reducing it by more than one third.

      -p. 15: "Together, these findings highlight that BCAA starvation triggers a combination of effects on initiation and elongation, with varying dynamics by amino acid starvation." I take issue with this statement as it appears that translation is reduced primarily at the initiation step for all conditions except -Ile. As noted above, these data are never menitioned in the DISCUSSION as to why only -Ile would show a marked elongation component to the inhibition whereas -Val gives the greatest amount of ribosome stalling.

      Response: We acknowledge the reviewer’s point. While the polysome profiles (Figure 3F-H) directly indicate that most conditions repress initiation, codon- and condition-specific elongation defects can still contribute to reduced protein output, even if they are not always detectable as global polysome shifts. Polysome profiles reflect the combined outcome of reduced initiation (which decreases polysome numbers) and ribosome stalling (which can, but does not always have to, increase ribosome density on individual transcripts, potentially counteracting the effects of reduced initiation). For valine starvation strong stalling occurs very early in the CDS (Figure 5F). This bottleneck restricts overall ribosome movement to downstream regions. Thus, while elongation is profoundly impaired, the total number of ribosomes per transcript (which polysome signals largely reflect) may appear low due to reduced overall ribosome traffic. In contrast, isoleucine codon stalling tends to occur also further downstream on the transcript (Figure 5F), allowing ribosomes to accumulate in larger numbers on the mRNA, leading to a clearer "elongation signature" in polysome profiles (Figure 3F, H). Additionally, we observed slightly higher inter-replicate variance for isoleucine starvation (Supplementary Figure 6B), which may have reduced the number of statistically significant stalling sites extracted compared to valine. We have revised the main text and discussion to clarify these points.

      -I cannot decipher Fig. 4D and more detail is required to indicate the identity of each column of data.

      Response: We thank the reviewer for pointing this out. Figure 4D (now Figure 4E) presents an UpSet plot, which is a scalable alternative to Venn diagrams commonly used to visualize intersections across multiple sets. Briefly, each bar in the upper plot represents the number of transcripts with increased 5′ ribosome coverage (Δpi < -0.15; p < 0.05) shared across the conditions indicated in the dot matrix below. Each column in the dot matrix highlights the specific combination of conditions contributing to a given intersection (e.g., dots under “Val” and “Triple” show the overlap between these two). To improve clarity, we have expanded the figure legend accordingly and now refer to the UpSetR methodology in the main text.

      -In Fig. 4E, one cannot determine what the P values actually are, which should be provided in the legend to confirm statistical significance.

      Response: Thank you for pointing that out. The legend in Figure 4E (now Figure 4F) for the p-values was accidentally removed during figure editing. We have added the legend back, so that the statistical significance is clear.

      -It's difficult to understand how the -Leu condition and the Double starvation can produce polarized RPFs (Fig. 4A) without evidence of stalling at the cognate hungry codons (Fig. 4E), despite showing later in Fig. 5A that the numbers of stall sites are comparable in those cases to that found for -Ile.

      Response: We appreciate this comment, which points to an important property of RPF profiles under nutrient stress. As shown in Figure 4A, all starvation conditions induce a degree of 5′ ribosome footprint polarization, a pattern that can be observed under various stress conditions and perturbations (Allen et al. 2021; Hwang and Buskirk 2017; Li et al. 2023). This general 5′ bias likely reflects a combination of slowed elongation and altered ribosome dynamics and is not necessarily linked to codon-specific stalling. However, Val and Triple starvation show a much stronger and more asymmetric polarization, characterized by pronounced 5′ accumulation and 3′ depletion of ribosome density. To better illustrate this, we have updated the visualization of polarity scores and added a new bar chart summarizing the number of transcripts showing strong 5′ polarization under each condition. This quantification highlights that the effect is markedly more prevalent under Val and Triple conditions than under Leu or Double starvation. In addition, Figure 4F demonstrates that this polarity is codon-specific under Val and Triple starvation. We clarify that this analysis tests for enrichment of specific codons near the start codon among the polarized transcripts and does not directly assess stalling. The observed enrichment of Val codons in the 5′ regions of polarized transcripts supports the interpretation that early elongation delays contribute to the RPF shift. In contrast, no such enrichment is observed for Leu starvation, reinforcing that Leu-induced polarity is not driven by stalling at Leu codons. While Figure 5 shows a similar number of peak-called stalling sites in -Leu, -Ile, and Double starvation, we note that Ribo-seq signal variability under Ile starvation was higher, which may have limited statistical power for detecting stalling sites, even though clear dwell time increases were observed at specific codons. Additionally, we have improved the metagene plots depicting total ribosome footprint density in Figure 4A. The previous version incorrectly showed sharp drops at CDS boundaries due to binning artifacts. The updated version more accurately reflects the density distribution and further highlights the stronger polarization in Val and Triple conditions. Together, these clarifications and improvements within the main text now more clearly distinguish between general polarity effects and codon-specific stalling.

      -Fig. 5B: the P values should be given for all five columns, and it should be explained here or in the Discussion why the authors conclude that stalling is an important determinant for reduced translation when a significant correlation seems to exist only for the -Val condition and not even for the Triple condition.

      Response: We thank the reviewer for this important observation. In response, we have revised both the text and the figures to provide a clearer and biologically more meaningful representation of the relationship between ribosome stalling and reduced protein output. Specifically, we have replaced the previous Figure 5B with a new analysis that stratifies transcripts based on the number of identified stalling sites. This updated analysis, now shown in Figure 5B, reveals that under Val and Triple starvation conditions, proteins that are downregulated tend to originate from transcripts with multiple stalling sites. Importantly, the corresponding p-values for all five conditions are now explicitly shown in the figure (as red lines). As the reviewer correctly notes, only the Val condition shows a statistically significant enrichment when considering overall overlap. Triple starvation shows a similarly high proportion of overlap (72.3%) but does not reach statistical significance, likely due to the more complex background composition under combined starvation, which increases the expected overlap and reduces statistical power. By stratifying transcripts by the number of stalling sites, we uncover that transcripts with ≥2 stalling sites are enriched among downregulated proteins specifically under Val and Triple conditions, providing a more robust indication of the link between stalling and translation repression under Valine deprivations. We believe this refined approach, prompted by the reviewer’s comment, offers a clearer and biologically more relevant perspective on the role of ribosome stalling. The original analysis previously shown in Figure 5B is now provided as Supplemental Figure 10C for transparency and comparison. We have clarified this in the revised text and now interpret the relationship more cautiously.

      -p. 17: "Of note, in cases where valine or isoleucine codons were present just upstream (rather than at) the stalling position, we noted a strong bias for GAG (E), GAA (E), GAU (D), GAC (D), AAG (K), CAG (Q), GUG (V) and GGA (G) (Val starvation) and AAC (N), GAC (D), CUG (L), GAG (E), GCC (A), CAG (Q), GAA (E) and AAG (K) (Ile starvation) at the stalling site (Supplementary Figure 7B)." The authors fail to explain why these codons would be present in the A sites at stalling sites rather than the hungry codons themselves, especially since it is the decoding times of the hungry codons that are increased according to Fig. 1A-E. As suggested above, is this a CHX artifact?

      Response: We agree that the observation that the listed codons are enriched at identified stalling positions (now Supplementary Figure 10C), while the depleted amino acid codon is located upstream, is a finding that needs more detailed explanation. Importantly, this phenomenon is not attributable to CHX artifacts, as our Ribo-seq protocol employs CHX solely during brief washes and lysis to prevent post-lysis ribosome run-off, rather than live-cell pre-treatment. Instead, we propose two hypotheses to explain this pattern: Firstly, many of these enriched codons are already inherently slow-decoded with longer DTs even under control conditions (Supplementary Figure 5H, newly added). Together with the upstream hungry codons they might form a challenging consecutive decoding environment, which results in an attenuated ribosome slowdown downstream after the hungry codon. Second, ribosome queuing may further explain this pattern. When a ribosome encounters a critically hungry codon and stalls, subsequent ribosomes can form a queue. The codon within the A-site of the queued ribosome would be (more or less) independent of the identity of the hungry codon itself that caused the initial stall. Since the listed codons have a high frequency within the transcriptome (Supp. Fig 5B), they therefore have an increased likelihood of appearing at this “stalling site”. Importantly, both of these phenomena are not necessarily represented by a general increase of DT on all of the listed codons and would therefore only be captured by the direct extraction of stalling sites but might be averaged out in the global dwell time analysis. We mention this phenomenon now in the Discussion.

      -Fig. 5D: P values for the significance, or lack thereof, of the different overlaps should be provided.

      Response: Thanks for pointing out this omission. We have now computed hypergeometric p-values for comparisons shown in Figure 5D and Figure 5E, and report them directly in the main text. As described, the overlap in stalling sites between Val and triple starvation is highly significant (2522 positions, p < 2.2×10⁻¹⁶), while overlaps involving Ile-specific stalling positions are smaller but still statistically robust (e.g., 149 positions for Ile – Triple, p = 1.77×10⁻⁵²). Notably, we also calculated p-values at the transcript level and found that a large fraction of transcripts with Ile-specific stalling under single starvation also stall under triple starvation, though often at different positions (1806 transcripts, p = 1.78×10⁻⁵⁸). These values are now included in the revised results section to support the interpretation of these overlaps.

      -p. 17: "Nonetheless, when we examined entire transcripts rather than single positions, many transcripts that exhibited isoleucine-related stalling under Ile starvation also stalled under triple starvation, but at different sites along the CDS (Figure 5E). This finding is particularly intriguing, as it suggests that while Ile-starvation-specific stalling sites may shift under triple starvation, the overall tendency of these transcripts to stall remains." The authors never come back to account for this unexpected result.

      Response: Thank you for highlighting this point. We've incorporated this finding as part of the proposed "bottleneck" scenario. While the isoleucine-specific stalling sites identified under Ile starvation do shift or disappear under triple starvation, we've observed that the same transcripts still tend to exhibit stalling. However, this now primarily occurs at upstream valine codons. We interpret this as a consequence of early elongation stalling caused by strong pausing at Val codons. This restriction on ribosome progression effectively prevents ribosomes from reaching the original Ile stalling sites. Therefore, the stalling sites identified under triple starvation are largely explained by the Val codons, reflecting a redistribution of stalling rather than its loss. To further clarify this crucial point, we've now explicitly mentioned Figure 5D-E again in the subsequent paragraph, which introduces the bottleneck theory.

      -It seems very difficult to reconcile the results in Fig. 5F with those in Fig. 4A, where similar polarities in RPFs are observed for -Ile and -Val in Fig, 4A but dramatically different distributions of stalling sites in Fig. 5F. More discussion of these discrepancies is required.

      Response: Thank you for pointing this out. The apparent discrepancy between the RPF profiles shown in Figure 4A and the stalling site distributions in Figure 5F likely reflects the fact that RPF polarization includes both general (unspecific) and codon-specific components. Figure 4A displays total ribosome footprint density, capturing both broad stress-induced effects and codon-specific contributions, whereas Figure 5F focuses specifically on peak-called stalling sites, representing localized and statistically significant pauses. Importantly, we would like to emphasise that Fig 4 shows that -Val and -Ile starvation exhibit different responses and not the same patterns. To make these differences even clearer, we have now updated the visualizations in Figure 4, including improved polarity plots and a new bar chart summarizing the number of transcripts with strong 5′ polarization. These additions highlight that the RPF profiles under -Val starvation are more pronounced and asymmetric, particularly due to 3′ depletion, while the polarity under -Ile is milder and a distinct, much smaller subset of transcripts appears to show polarity score shifts. We believe the updated figures and accompanying explanations now make these distinctions clearer.

      • p. 18: " These isoacceptor-specific patterns correlate largely with the particular subsets of leucine and isoleucine codons that stalled (Figure 1A)." This correlation needs to be addressed for each codon-anticodon pair for all of the codons showing stalling in Fig. 1A.

      Response: We thank the reviewer for this important comment. In the revised manuscript, we have expanded the relevant sections to address codon–anticodon relationships more thoroughly. We now explicitly match codons that exhibited increased dwell times under starvation to the corresponding tRNA isoacceptors whose charging was affected, and we provide a clearer discussion of the caveats involved. As noted by the reviewer, this correlation is not straightforward, as it is complicated by wobble base pairing, anticodon modifications, and the fact that multiple codons can be decoded by more than one isoacceptor, and vice versa. Moreover, in our qPCR-based tRNA charging assay, certain isoacceptors cannot be distinguished due to highly similar sequences (e.g., LeuAAG and LeuUAG, and LeuCAA and LeuCAG), which limits resolution for exact pairing. In addition, we did not assess absolute tRNA abundance, which may further influence decoding capacity. Nevertheless, where resolution is possible, the patterns align well: All tRNAVal isoacceptors became uncharged under Val and triple starvation, matching the consistent dwell time increases across all Val codons. Only tRNAIleAAU (decoding AUU and AUC) was deacylated, matching to these codons showing increased dwell times, while AUA (decoded by still-charged tRNAIleUAU) did not. Only CUU (decoded by uncharged tRNALeuGAA) showed increased dwell time. A mild deacylation of the other Leu isoacceptors was observed, but isoacceptor-level resolution is limited by assay constraints. However, these rather minimal tRNA and DT changes were consistent with more dominant initiation repression rather than elongation stalls. To support this analysis, we included an illustrative figure (now in Supplementary Figure 12F) summarizing the codon–anticodon matches.

      -p. 19: "For instance, in our double starvation condition, unchanged tRNA charging levels (Figure 6E) may result from a pronounced downregulation of global translation initiation, likely driven by the activation of stress responses (Figure 2), subsequently lowering the demand for charged tRNAs as it has been observed previously for Leu starvation 39.” This seems at odds with the comparable down-regulation of protein synthesis for the Double starvation and -Leu and -Ile single starvations shown in Fig. 3C. Also, in the current study, Leu starvation does lower charging of certain Leu tRNAs.

      Response: We thank the reviewer for raising this important point. In the revised manuscript, we have clarified this section and now offer a more refined interpretation of the tRNA charging patterns observed under double starvation. While Figure 3C shows a comparable reduction in global protein synthesis across the -Leu, -Ile, and double starvation conditions, it needs to be considered that the OPP assay has limited sensitivity. It operates in a relatively low fluorescence intensity range and is subject to background signal, which may obscure subtle differences between conditions. Moreover, other factors such as changes in protein stability or turnover could also contribute to the observed differences. Therefore, inter-condition differences in translation repression should be interpreted with caution. However, based on our stress response analysis (Figure 2), mTORC1 inactivation appears strongest under double starvation, likely leading to more profound suppression of translation initiation. This would reduce the overall demand for charged tRNAs and could explain why no detectable tRNA deacylation was observed under double starvation, even though mild uncharging of Leu isoacceptors occurred under -Leu, which exhibited a milder stress response. This distinction is consistent with the observed mild dwell time increases for one Leu codon under -Leu, but not in the double condition. Similarly, the absence of Ile codon stalling and tRNA deacylation under double starvation may be attributed to stress-driven reductions in elongation demand, preventing the tRNA depletion and codon-specific delays observed under single Ile starvation. A more direct clarification is now included in the revised manuscript.

      Reviewer #2 (Significance):

      The results here are significant in showing that starvation for a single amino acid does not lead to deacylation of all isoacceptors for that amino acid and in revealing that starvation for one amino acid can prevent deacylation of tRNAs for other amino acids, as shown most dramatically for the selective deacylation of only Val tRNAs in the triple BRCAA starvation condition. For the various reasons indicated above, however, I'm not convinced that their "bottleneck" mechanism is adequate to explain this phenomenon, especially in the case of the selective deacylation of Ile vs Leu tRNA in the Double starvation regime. It's also significant that deacylation leads to ribosome build-up near the 5'ends of CDS, which seems to be associated with an enrichment for the hungry codons in the case of Val and Ile starvation, but inexplicably, not for Leu or the Double starvations. This last discrepancy makes it hard to understand how the -Leu and Double starvations produce RPF buildups near the 5 ends of CDSs. In addition, the claim in the Discussion that "our data also highlight the importance of the codon positional context within mRNAs, indicating that where a codon is located within the CDS can influence both the extent of ribosomal stalling and overall translation efficiency during nutrient stress" overstates the strength of evidence that the stalling events lead to substantial decreases in translational efficiencies for the affected mRNAs, as the stalling frequency and decreased protein output are significantly correlated only for the -Val starvation, and the data in Fig. 3 D-H suggest that the reductions in protein synthesis generally occur at the level of initiation, even for -Val starvation, with a contribution from slow elongation only for -Ile-which is in itself difficult to understand considering that stalling frequencies are highest in -Val. Thus, while many of the results are very intriguing and will be of considerable interest to the translation field, it is my opinion that a number of results have been overinterpreted and that important inconsistencies and complexities have been overlooked in concluding that a significant component of the translational inhibition arises from the increased decoding times at hungry codons during elongation and that the selective deacylation of Val tRNAs in the Triple starvation can be explained by the "bottleneck" mechanism. The complexities and limitations of the data and their intepretations should be discussed much more thoroughly in the Discussion, which currently is devoted mostly to other phenomena often of tangential importance to the current findings. A suitably revised manuscript would clearly state the limitations and caveats of the proposed mechanisms and consider other possible explanations as well.

      Again, we thank the reviewer for the valuable insights and constructive critiques. We believe that the concerns regarding potential overinterpretation and inconsistencies have now been addressed through clearer explanations and more cautious interpretation throughout the revised manuscript. We also agree that the original Discussion included aspects that, while interesting, were of secondary importance. In light of the reviewer’s suggestions, we have restructured and rebalanced the Discussion to focus more directly on the key findings and their implications. Importantly, we wish to clarify that we do not propose the elongation bottleneck model as a general mechanism across all conditions. In particular, for double (Leu/Ile) starvation, we attribute the observed effects primarily to stress response–mediated translational repression, and not to codon-specific stalling or tRNA depletion. We believe that this distinction is now more clearly conveyed in the revised manuscript.

      Reviewer #3 (Evidence, reproducibility and clarity):

      Summary

      Worpenberg and colleagues investigated the translational consequences of branched-chain amino acid (BCAA) starvation in mouse cells. Limitation of individual BCAAs has been reported to cause codon-specific and global translational repression. In this paper, the authors use RNA-seq, ribosome profiling (Ribo-seq), proteomics, and tRNA charging assays to characterize the impacts of individual and combined depletion of leucine, isoleucine, and valine on translation. They find that BCAA starvation increases codon-specific ribosome dwell times, activates global translational stress responses and reduces global protein synthesis. They infer that this effect is due to decreased translation initiation and codon-specific translational stalling. They find that the effects of simultaneous depletion are non-additive. In valine and triple (valine, leucine, and isoleucine) depletion, they show that affected transcripts have a high density of valine codons early in their coding sequences, creating an "elongation bottleneck" that obscures the impact of starvation of other amino acids. Finally, they identify isoacceptor-specific differences in tRNA charging that help explain the codon-specific effects that they observe.

      We find the major findings convincing and clear. We find that some results are incompletely explained. We suggest an additional experiment and also have some minor comments that we hope will improve clarity and rigor.

      We thank the reviewer for the thorough and constructive feedback. We appreciate the recognition of our main findings and the helpful suggestions for improving the manuscript. Below we address each point in detail.

      Major comments

      Figure 3O: In this figure and the associated text, the authors try to determine whether differences in protein degradation can explain why some proteins have higher ribosome density but lower proteomic expression. However, since this analysis relies on published protein half-lives from non-starvation conditions and on the assumption that protein synthesis has entirely stopped, we are not convinced it is informative for this experimental context. It does not distinguish between a model in which protein synthesis has been reduced by stalling and a model in which both protein synthesis and degradation rate have increased, which are both consistent with their Ribo-seq and proteomic data. To address this issue, the authors should either perform protein half-life measurements under their starvation conditions, or more clearly explain these two models in the text and acknowledge that they cannot distinguish between them.

      Response: We agree with the reviewer that our current analysis, which is based on protein half-lives obtained under non-starvation conditions, can not definitively separate the effects of reduced translation from those of increased protein degradation. We have revised the relevant section in the manuscript to more clearly state that this analysis is correlative in nature and serves only to explore one possible explanation for the observed disconnect between ribosome density and protein levels. We now also explicitly acknowledge that our dataset does not allow us to distinguish between a model in which protein output is reduced due to stalling and one in which both translation and degradation rates are altered. However, the observed log2FC in the proteomics data are often milder than expected based on complete-medium condition half-life alone, which would be difficult to reconcile with a dominant contribution from global protein destabilization. That said, we also acknowledge that protein degradation is highly context- and protein-specific, and that proteolytic regulation might still play a role. Performing a direct protein half-life measurement under our starvation conditions would indeed be required to rigorously test this, but such an experiment is outside the scope of this study. We now highlight this as a limitation and a valuable direction for future work, and we have softened any interpretations in the main text to reflect the uncertainty regarding the contribution of protein stability changes.

      Minor comments

      Figure 1G: Why does intracellular valine seem to be less depleted under starvation conditions than intracellular leucine or isoleucine? Are the limits of detections different for different amino acids? The authors should acknowledge this discrepancy and comment on whether it has any implications for interpretation of their results.

      Response: We thank the reviewer for this important point. While valine appears slightly less depleted than leucine or isoleucine in Figure 1G, the fold changes and absolute reductions are strong for all three BCAAs, including valine. To further illustrate this, we have added a supplementary bar chart showing the measured intracellular concentrations in µmol/L, including mean and variance across five biological replicates (Supplementary Figure 5A). We believe that the variation may reflect technical factors, such as differences in detection sensitivity or ionization efficiency between amino acids in the targeted metabolomics assay and, therefore, that the observed difference does not have a meaningful impact on the interpretation of our results. We now directly acknowledge these differences in the main text.

      Figure 1H: These data do not appear to meet the assumptions for linear regression. We suggest either reporting a Spearman R correlation (as the data appears linear in rank but not absolute value), or remove it entirely - we think the plot without statistics is sufficient.

      Response: We thank the reviewer for the suggestion. In the revised manuscript, we removed the statistical annotation and retained only the trend line to illustrate the general pattern. We agree that this visualization alone is sufficient to support the qualitative point we aimed to convey.

      Figure 2B: The in-text description of this figure states that "most" ISR genes show a "robust induction," but only three genes are shown in the figure, two of which are upregulated. The authors should instead specify that 2 out of the 3 genes profiled were robustly induced.

      Response: We have rephrased the sentence to say “two of the three genes profiled…” for precision and consistency with the data shown.

      Figure 2D: Please include the full, uncropped blots in the supplementary materials.

      Response: We have now added the full, uncropped western blots to the supplementary material (Supplementary Figure 8).

      Figure 2E: Swap the positions of the RPS6 and 4E-BP1 plots so they line up with their respective blots to make these figures easier to interpret. Authors should consider doing a one-way ANOVA and post-hoc analysis, if we correctly understand that they are making a conclusion about the difference between multiple groups in aggregate.

      Response: We thank the reviewer for the suggestion. The alignment of the RPS6 and 4E-BP1 plots with their respective blots has been corrected. As this panel focuses on comparisons to the control condition only, we have retained the original presentation.

      Figure 4B: Panel A in this figure is very convincing, and these plots don't add additional information. The authors could consider removing them. If this panel stays in, we suggest removing the "mid index" plot, since it is never referenced in the text and doesn't seem relevant to the message of the figure.

      Response: We appreciate the feedback. While we considered removing panel B as suggested, we decided to retain it because it provides a useful summary of panel A. To improve clarity and visual interpretation, we replaced the original boxplot with a bar plot displaying mean values and SEM error bars. We believe the bar plot now nicely illustrates that Val and Triple starvation lead to stronger effects, especially in the reduction of the 3′ index. The “mid index” plot, which was not referenced in the text and did not contribute to the central message, has been removed as suggested.

      Figure 4E: Why is there a reduction in frequency of a Leu and a Val codon under Ile starvation?

      Response: Thank you for highlighting this observation. The reduction in the frequency of a specific Leu and Val codon under Ile starvation in Figure 4F (former Figure 4E) is indeed intriguing. This figure reflects codon usage in the first 20% of the CDSs among the subset of transcripts that exhibit a footprint polarization under each starvation condition. As such, the observed depletion likely arises from the specific transcript composition of the polarized subset under -Ile, which differs from that under -Val or other conditions. Importantly, this pattern is not consistently observed when analyzing the full transcripts (another Leu codon is affected), indicating that it is not a systematic depletion of these codons. One possibility is that an increased frequency of Ile codons (AUC) within the constrained region may lead to a relative underrepresentation of other codons, such as Leu and Val. Alternatively, this may reflect non-random codon co-occurrence patterns within specific transcripts. While our current data do not allow us to investigate this further, we acknowledge these as speculative explanations and now mention this point in the Discussion as a potential avenue for future study.

      Figure 5G: There appears to be one Val codon early in the Hint1 transcript without much stalling under triple or valine starvation conditions. The authors should acknowledge this and comment on why this may be.

      Response: We thank the reviewer for pointing this out. While the Hint1 transcript indeed contains a valine codon early in its CDS, no clear stalling peak was observed at that position under valine or triple starvation. Several factors may contribute to this: local sequence context can influence ribosome pausing, and not all cognate codons necessarily lead to detectable stalling even under amino acid starvation. Additionally, coverage at the 5′ end of Hint1 is relatively sparse in our dataset, and potential mappability limitations, such as regions with low complexity or repetitive elements, may further reduce resolution at specific sites. We now briefly mention this in the manuscript to clarify the possible causes.

      Figure 5B: In the text referencing this figure, the authors state that "a high number of downregulated proteins with associated ribosome stalling sites did not show an overall decreased mean RPF count...as it would be expected from translation initiation defects, linking these stalling sites directly to proteomic changes." However, RPF is affected both by stalling (increases RPF) and initiation defects (decreases RPF). A gene with both stalling and decreased initiation may appear to have no RPF change. The data does suggest a contribution from stalling, but the authors should also acknowledge that reduced initiation may also be playing a role.

      Response: We agree with the reviewer comment. Our cited statement should indeed be more nuanced. The reviewer correctly points out that RPFs are influenced by both increased ribosome density due to stalling and decreased ribosome density due to reduced initiation. Therefore, a gene experiencing both stalling and reduced initiation might appear to have no net change in RPF, or even a slight increase if stalling is dominant. Thus, while the presence of stalling sites strongly suggests a contribution from compromised elongation to reduced protein output, we cannot definitively rule out a concurrent role for reduced initiation, even in cases where RPF counts are not globally decreased. We revised this section in the manuscript to acknowledge this interplay.

      Figure 5E: the black text on dark brown in the center of the Venn diagram is difficult to read. The diagram should either have a different color scheme, or the text in the center should be white instead of black for higher contrast.

      Response: We have adjusted the text color for better contrast and improved readability.

      Supplementary Figure 1C: The ribosome dwell time data in this study is described as "highly correlated" with another published dwell time dataset, but the P and E site data do not seem strongly correlated. The authors should remove the word "highly."

      Response: We have removed the word “highly” to have a more cautious interpretation in the text.

      Supplementary Figure 3E: Not all of the highlighted codons in this figure are ones with prolonged dwell times. To clarify the point that dwell time change is not related to codon frequency, this figure should only highlight codons that have a significantly prolonged dwell time in at least one starvation condition.

      Response: We thank the reviewer for pointing this out. To improve clarity, we have revised the figure and now specifically highlight codons with significantly prolonged dwell times with stars.

      Supplementary Figure 5C: The gene Chop is mentioned in the main text when referencing this figure, but is absent from the heatmap.

      Response: We thank the reviewer for noting this. The gene Chop is annotated under its alternative name Ddit3 in the current version of the heatmap and is indeed present. To avoid confusion, we have now updated the label in the figure to display Chop (Ddit3) directly.

      Supplementary Figure 7A: The authors could clarify this figure by adding additional language to either the figure panel or the figure legend specifying that the RPM metric being used comes from Ribo-seq.

      Response: We have updated the legend to explicitly state that the RPM values shown are derived from Ribo-seq data.

      Supplementary Figure 7D: The metric used to describe the spatial relationship between the first valine and isoleucine codons in transcripts in this figure seems to be describing something conceptually similar to the stalling sites in Figure 5G, but uses a different metric. These figures would be easier to interpret if these spatial relationships were presented in a consistent way throughout the manuscript.

      Response: We thank the reviewer for this helpful observation. Supplementary Figure 7D (now Supplementary Figure 11B) originally used a gene-length-normalized metric to describe codon spacing, whereas Figure 5G depicted absolute nucleotide distances to stalling sites. To ensure consistency across the manuscript, we have now updated Supplementary Figure 11B to also use absolute distances. We believe this adjustment improves clarity and allows for a more direct comparison between spatial codon patterns and stalling events.

      Discussion:

      Reader understanding would be improved if the relevance of paragraphs were established in the first sentence. For instance, in the paragraphs about adaptive misacylation and posttranscriptional modifications, it is unclear until the end of the paragraph how these topics are relevant. Introducing the relevant aspects of the study (the fact that some starvation conditions have less severe effects and the observation about m6A-related mRNAs) at the beginning of these paragraphs would improve clarity.

      Response: We thank the reviewer for this helpful comment. We agree that the flow and clarity of the Discussion can be improved by making the relevance of each paragraph clearer from the outset. In the revised manuscript, we have restructured these sections to better highlight the connection between each topic and our main findings. These changes also align with suggestions from Reviewer 2, and we believe they help to focus the Discussion more tightly around the core insights of our study.

      The authors should provide more information and speculation about possible physiological relevance of their findings, particularly about the way that the effects of triple starvation are highly valine-dependent. Are there physiological conditions under which starvation of all three BCAAs is more likely than starvation of one or two of them? If so, are there any reasons why a valine-based bottleneck might be advantageous?

      Response: We appreciate the reviewer's insightful question regarding the physiological relevance of our findings, particularly the valine-dependent bottleneck observed under triple BCAA starvation. This prompts a crucial discussion on the broader biological context of our work.

      While complete starvation of all three BCAAs might be less frequent than individual deficiencies, such conditions are physiologically relevant in several contexts. In prolonged fasting, starvation, or severe cachectic states associated with chronic diseases (e.g., advanced cancer, critical illness), systemic amino acid pools, including BCAAs, can become significantly depleted due to increased catabolism and insufficient intake (Yu et al. 2021). Moreover, certain specialized diets or therapeutic strategies aim to modulate BCAA levels. For instance, in some Maple Syrup Urine Disease (MSUD) management protocols, BCAA intake is severely restricted to prevent the accumulation of toxic BCAA metabolites (Mann et al. 2021). Similarly, emerging cancer therapies sometimes explore nutrient deprivation strategies to selectively target tumor cells, which could involve broad BCAA reduction (e.g. Sheen et al. 2011; Xiao et al. 2016).

      In these contexts, a valine-based bottleneck, as we describe, could indeed represent an adaptive strategy. If valine-tRNAs are particularly susceptible to deacylation and valine codons are strategically enriched at the 5' end of transcripts, stalling at these early positions could serve as a rapid "gatekeeper" for global translation. This early-stage inhibition would conserve cellular energy and available amino acids by quickly reducing the overall demand for charged tRNAs. Such a mechanism could potentially prioritize the translation of a subset of proteins that might have different codon usage biases or are translated via alternative, less valine-dependent mechanisms. This aligns with the concept of a multi-layered translational control where global initiation repression (as reflected in mTORC1 inhibition and polysome profiles) is complemented by specific elongation checkpoints, allowing for a more nuanced and adaptive response to severe nutrient stress.

      Reviewer #3 (Significance):

      Nature and significance of the advance

      The main contribution of this work is to demonstrate that depletion of multiple amino acids simultaneously impacts translation elongation in ways that are not necessarily additive. These impacts can depend on the distribution of codons in a transcript. It adds to a growing body of work showing that essential amino acid starvation can cause codon-specific ribosome stalling. The authors suggest that the position-dependent stalling they observe could be a novel regulatory mechanism to alleviate the effects of multi-amino acid starvation. However, it is not fully clear from the paper what the significance of a valine-based regulatory adaptation to BCAA starvation is, or whether simultaneous starvation of all three BCAAs is of particular physiological relevance. The paper's primary contribution is mainly focused on the similarity between valine and triple BCAA starvation, and it provides limited insight into the effects of combined depletion of two BCAAs.

      Context of existing literature

      Although ribosome profiling does not distinguish between actively-elongating and stalled ribosomes, sites with higher read coverage, and thereby higher inferred dwell time, can be used to infer ribosome stalling (Ingolia 2011). Various downstream effects of essential amino acid depletion have been documented, such as leucine deficiency being sensed by mTORC1 via leucyl-tRNA synthetase (Dittmar 2005, Han 2012), and shared transcriptional responses among many amino acid depletion conditions (Tang 2015). These authors have previously measured the translational effects of nutrient stress using ribosome profiling (e.g., Gobet 2020), as have others (Darnell 2018, Kochavi et al. 2024). The present work represents the first study (to our knowledge) combining BCAA depletions, representing an incremental and useful contribution to our understanding of translational responses to stress conditions.

      Audience

      This work is of interest to investigators studying the response of human cells in stress conditions, such as in human disease, as well as investigators studying the basic biology of eukaryotic translational control.

      Reviewer expertise: mRNA decay and translation regulation in bacteria.

      We hope the authors have found our comments thoughtful and useful. We welcome further discussion or clarification via email: Juliana Stanley (julianst@mit.edu) and Hannah LeBlanc (leblanch@mit.edu).

      We sincerely thank the reviewers for their thoughtful and constructive feedback, as well as for their careful and thorough reading of our manuscript. We also gratefully acknowledge the invitation for further discussion and would be happy to engage in future correspondence.

      References

      Allen, George E., Olesya O. Panasenko, Zoltan Villanyi, Marina Zagatti, Benjamin Weiss, Lucile Pagliazzo, Susanne Huch, et al. 2021. “Not4 and Not5 Modulate Translation Elongation by Rps7A Ubiquitination, Rli1 Moonlighting, and Condensates That Exclude eIF5A.” Cell Reports 36 (9): 109633. https://doi.org/10.1016/j.celrep.2021.109633.

      Darnell, Alicia M., Arvind R. Subramaniam, and Erin K. O’Shea. 2018. “Translational Control through Differential Ribosome Pausing during Amino Acid Limitation in Mammalian Cells.” Molecular Cell 71 (2): 229-243.e11. https://doi.org/10.1016/j.molcel.2018.06.041.

      Dittmar, Kimberly A., Michael A. Sørensen, Johan Elf, Måns Ehrenberg, and Tao Pan. 2005. “Selective Charging of tRNA Isoacceptors Induced by Amino-Acid Starvation.” EMBO Reports 6 (2): 151–57. https://doi.org/10.1038/sj.embor.7400341.

      Elf, Johan, Daniel Nilsson, Tanel Tenson, and Mans Ehrenberg. 2003. “Selective Charging of tRNA Isoacceptors Explains Patterns of Codon Usage.” Science (New York, N.Y.) 300 (5626): 1718–22. https://doi.org/10.1126/science.1083811.

      Gobet, Cédric, Benjamin Dieter Weger, Julien Marquis, Eva Martin, Nagammal Neelagandan, Frédéric Gachon, and Felix Naef. 2020. “Robust Landscapes of Ribosome Dwell Times and Aminoacyl-tRNAs in Response to Nutrient Stress in Liver.” Proceedings of the National Academy of Sciences of the United States of America 117 (17): 9630–41. https://doi.org/10.1073/pnas.1918145117.

      Hussmann, Jeffrey A., Stephanie Patchett, Arlen Johnson, Sara Sawyer, and William H. Press. 2015. “Understanding Biases in Ribosome Profiling Experiments Reveals Signatures of Translation Dynamics in Yeast.” Edited by Michael Snyder. PLOS Genetics 11 (12): e1005732. https://doi.org/10.1371/journal.pgen.1005732.

      Hwang, Jae-Yeon, and Allen R. Buskirk. 2017. “A Ribosome Profiling Study of mRNA Cleavage by the Endonuclease RelE.” Nucleic Acids Research 45 (1): 327–36. https://doi.org/10.1093/nar/gkw944.

      Juszkiewicz, Szymon, and Ramanujan S. Hegde. 2017. “Initiation of Quality Control during Poly(A) Translation Requires Site-Specific Ribosome Ubiquitination.” Molecular Cell 65 (4): 743-750.e4. https://doi.org/10.1016/j.molcel.2016.11.039.

      Li, Fajin, Jianhuo Fang, Yifan Yu, Sijia Hao, Qin Zou, Qinglin Zeng, and Xuerui Yang. 2023. “Reanalysis of Ribosome Profiling Datasets Reveals a Function of Rocaglamide A in Perturbing the Dynamics of Translation Elongation via eIF4A.” Nature Communications 14 (1): 553. https://doi.org/10.1038/s41467-023-36290-w.

      Mann, Gagandeep, Stephen Mora, Glory Madu, and Olasunkanmi A. J. Adegoke. 2021. “Branched-Chain Amino Acids: Catabolism in Skeletal Muscle and Implications for Muscle and Whole-Body Metabolism.” Frontiers in Physiology 12 (July):702826. https://doi.org/10.3389/fphys.2021.702826.

      Saikia, Mridusmita, Xiaoyun Wang, Yuanhui Mao, Ji Wan, Tao Pan, and Shu-Bing Qian. 2016. “Codon Optimality Controls Differential mRNA Translation during Amino Acid Starvation.” RNA (New York, N.Y.) 22 (11): 1719–27. https://doi.org/10.1261/rna.058180.116.

      Sharma, Puneet, Jie Wu, Benedikt S. Nilges, and Sebastian A. Leidel. 2021. “Humans and Other Commonly Used Model Organisms Are Resistant to Cycloheximide-Mediated Biases in Ribosome Profiling Experiments.” Nature Communications 12 (1): 5094. https://doi.org/10.1038/s41467-021-25411-y.

      Sheen, Joon-Ho, Roberto Zoncu, Dohoon Kim, and David M. Sabatini. 2011. “Defective Regulation of Autophagy upon Leucine Deprivation Reveals a Targetable Liability of Human Melanoma Cells In Vitro and In Vivo.” Cancer Cell 19 (5): 613–28. https://doi.org/10.1016/j.ccr.2011.03.012.

      Xiao, Fei, Chunxia Wang, Hongkun Yin, Junjie Yu, Shanghai Chen, Jing Fang, and Feifan Guo. 2016. “Leucine Deprivation Inhibits Proliferation and Induces Apoptosis of Human Breast Cancer Cells via Fatty Acid Synthase.” Oncotarget 7 (39): 63679–89. https://doi.org/10.18632/oncotarget.11626.

      Yu, Deyang, Nicole E. Richardson, Cara L. Green, Alexandra B. Spicer, Michaela E. Murphy, Victoria Flores, Cholsoon Jang, et al. 2021. “The Adverse Metabolic Effects of Branched-Chain Amino Acids Are Mediated by Isoleucine and Valine.” Cell Metabolism 33 (5): 905-922.e6. https://doi.org/10.1016/j.cmet.2021.03.025.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary

      Worpenberg and colleagues investigated the translational consequences of branched-chain amino acid (BCAA) starvation in mouse cells. Limitation of individual BCAAs has been reported to cause codon-specific and global translational repression. In this paper, the authors use RNA-seq, ribosome profiling (Ribo-seq), proteomics, and tRNA charging assays to characterize the impacts of individual and combined depletion of leucine, isoleucine, and valine on translation. They find that BCAA starvation increases codon-specific ribosome dwell times, activates global translational stress responses and reduces global protein synthesis. They infer that this effect is due to decreased translation initiation and codon-specific translational stalling. They find that the effects of simultaneous depletion are non-additive. In valine and triple (valine, leucine, and isoleucine) depletion, they show that affected transcripts have a high density of valine codons early in their coding sequences, creating an "elongation bottleneck" that obscures the impact of starvation of other amino acids. Finally, they identify isoacceptor-specific differences in tRNA charging that help explain the codon-specific effects that they observe.

      We find the major findings convincing and clear. We find that some results are incompletely explained. We suggest an additional experiment and also have some minor comments that we hope will improve clarity and rigor.

      Major comments

      Figure 3O: In this figure and the associated text, the authors try to determine whether differences in protein degradation can explain why some proteins have higher ribosome density but lower proteomic expression. However, since this analysis relies on published protein half-lives from non-starvation conditions and on the assumption that protein synthesis has entirely stopped, we are not convinced it is informative for this experimental context. It does not distinguish between a model in which protein synthesis has been reduced by stalling and a model in which both protein synthesis and degradation rate have increased, which are both consistent with their Ribo-seq and proteomic data. To address this issue, the authors should either perform protein half-life measurements under their starvation conditions, or more clearly explain these two models in the text and acknowledge that they cannot distinguish between them.

      Minor comments

      Figure 1G: Why does intracellular valine seem to be less depleted under starvation conditions than intracellular leucine or isoleucine? Are the limits of detections different for different amino acids? The authors should acknowledge this discrepancy and comment on whether it has any implications for interpretation of their results.

      Figure 1H: These data do not appear to meet the assumptions for linear regression. We suggest either reporting a Spearman R correlation (as the data appears linear in rank but not absolute value), or remove it entirely - we think the plot without statistics is sufficient.

      Figure 2B: The in-text description of this figure states that "most" ISR genes show a "robust induction," but only three genes are shown in the figure, two of which are upregulated. The authors should instead specify that 2 out of the 3 genes profiled were robustly induced.

      Figure 2D: Please include the full, uncropped blots in the supplementary materials.

      Figure 2E: Swap the positions of the RPS6 and 4E-BP1 plots so they line up with their respective blots to make these figures easier to interpret. Authors should consider doing a one-way ANOVA and post-hoc analysis, if we correctly understand that they are making a conclusion about the difference between multiple groups in aggregate.

      Figure 4B: Panel A in this figure is very convincing, and these plots don't add additional information. The authors could consider removing them. If this panel stays in, we suggest removing the "mid index" plot, since it is never referenced in the text and doesn't seem relevant to the message of the figure.

      Figure 4E: Why is there a reduction in frequency of a Leu and a Val codon under Ile starvation?

      Figure 5G: There appears to be one Val codon early in the Hint1 transcript without much stalling under triple or valine starvation conditions. The authors should acknowledge this and comment on why this may be.

      Figure 5B: In the text referencing this figure, the authors state that "a high number of downregulated proteins with associated ribosome stalling sites did not show an overall decreased mean RPF count...as it would be expected from translation initiation defects, linking these stalling sites directly to proteomic changes." However, RPF is affected both by stalling (increases RPF) and initiation defects (decreases RPF). A gene with both stalling and decreased initiation may appear to have no RPF change. The data does suggest a contribution from stalling, but the authors should also acknowledge that reduced initiation may also be playing a role.

      Figure 5E: the black text on dark brown in the center of the Venn diagram is difficult to read. The diagram should either have a different color scheme, or the text in the center should be white instead of black for higher contrast.

      Supplementary Figure 1C: The ribosome dwell time data in this study is described as "highly correlated" with another published dwell time dataset, but the P and E site data do not seem strongly correlated. The authors should remove the word "highly."

      Supplementary Figure 3E: Not all of the highlighted codons in this figure are ones with prolonged dwell times. To clarify the point that dwell time change is not related to codon frequency, this figure should only highlight codons that have a significantly prolonged dwell time in at least one starvation condition.

      Supplementary Figure 5C: The gene Chop is mentioned in the main text when referencing this figure, but is absent from the heatmap.

      Supplementary Figure 7A: The authors could clarify this figure by adding additional language to either the figure panel or the figure legend specifying that the RPM metric being used comes from Ribo-seq.

      Supplementary Figure 7D: The metric used to describe the spatial relationship between the first valine and isoleucine codons in transcripts in this figure seems to be describing something conceptually similar to the stalling sites in Figure 5G, but uses a different metric. These figures would be easier to interpret if these spatial relationships were presented in a consistent way throughout the manuscript.

      Discussion:

      Reader understanding would be improved if the relevance of paragraphs were established in the first sentence. For instance, in the paragraphs about adaptive misacylation and posttranscriptional modifications, it is unclear until the end of the paragraph how these topics are relevant. Introducing the relevant aspects of the study (the fact that some starvation conditions have less severe effects and the observation about m6A-related mRNAs) at the beginning of these paragraphs would improve clarity.<br /> The authors should provide more information and speculation about possible physiological relevance of their findings, particularly about the way that the effects of triple starvation are highly valine-dependent. Are there physiological conditions under which starvation of all three BCAAs is more likely than starvation of one or two of them? If so, are there any reasons why a valine-based bottleneck might be advantageous?

      We hope the authors have found our comments thoughtful and useful. We welcome further discussion or clarification via email: Juliana Stanley (julianst@mit.edu) and Hannah LeBlanc (leblanch@mit.edu).

      Significance

      Nature and significance of the advance

      The main contribution of this work is to demonstrate that depletion of multiple amino acids simultaneously impacts translation elongation in ways that are not necessarily additive. These impacts can depend on the distribution of codons in a transcript. It adds to a growing body of work showing that essential amino acid starvation can cause codon-specific ribosome stalling. The authors suggest that the position-dependent stalling they observe could be a novel regulatory mechanism to alleviate the effects of multi-amino acid starvation. However, it is not fully clear from the paper what the significance of a valine-based regulatory adaptation to BCAA starvation is, or whether simultaneous starvation of all three BCAAs is of particular physiological relevance. The paper's primary contribution is mainly focused on the similarity between valine and triple BCAA starvation, and it provides limited insight into the effects of combined depletion of two BCAAs.

      Context of existing literature

      Although ribosome profiling does not distinguish between actively-elongating and stalled ribosomes, sites with higher read coverage, and thereby higher inferred dwell time, can be used to infer ribosome stalling (Ingolia 2011). Various downstream effects of essential amino acid depletion have been documented, such as leucine deficiency being sensed by mTORC1 via leucyl-tRNA synthetase (Dittmar 2005, Han 2012), and shared transcriptional responses among many amino acid depletion conditions (Tang 2015). These authors have previously measured the translational effects of nutrient stress using ribosome profiling (e.g., Gobet 2020), as have others (Darnell 2018, Kochavi et al. 2024). The present work represents the first study (to our knowledge) combining BCAA depletions, representing an incremental and useful contribution to our understanding of translational responses to stress conditions.

      Audience

      This work is of interest to investigators studying the response of human cells in stress conditions, such as in human disease, as well as investigators studying the basic biology of eukaryotic translational control.

      Reviewer expertise: mRNA decay and translation regulation in bacteria.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary and General Critique:

      This study examines the consequences of starvation for the BRCAAs, either singly, for Leu & Ile, or for all three simultaneously in HeLa cells on overall translation rates, decoding rates at each codon, and on ribosome density, protein expression, and distribution of ribosome stalling events across the CDS for each expressed gene. The single amino acid starvation regimes specifically reduce the cognate intracellular amino acid pool and lead to deacylation of at least a subset of the cognate tRNAs in a manner dependent on continuing protein synthesis. They also induce the ISR equally and decrease bulk protein synthesis equally in a manner that appears to occur largely at the initiation level for -Leu and -Val, judging by the decreased polysome:monsome ratio, but at both the initiation and elongation levels for -Ile-a distinction that remains unexplained. Only -Leu appears to down-regulate mTORC1 and TOP mRNA translation. There is a significant down-regulation of protein levels for 50-200 genes, which tend to be unstable in nutrient-replete cells, only a fraction of which are associated with reduced ribosome occupancies (RPFs measured by Ribo-Seq) on the corresponding mRNAs in the manner expected for reduced initiation, suggesting that delayed elongation is responsible for reduced protein levels for the remaining fraction of genes. All three single starvations lead to increased decoding times for a subset of the cognate "hungry" codons: CUU for -Leu, AUU and AUC for -Ile, and all of the Val codons, in a manner that is said to correspond largely to the particular tRNA isoacceptors that become deacylated, although this correspondence was not explained explicitly and might not be as simple as claimed. All three single starvations also evoke skewing of RPFs towards the 5' ends of many CDSs in a manner correlated with an enrichment within the early regions of the CDSs for one or more of the cognate codons that showed increased decoding times for -Ile (AUC codon) and -Val (GUU, GUC, and GUG), but not for -Leu-of which the latter was not accounted for. These last findings suggest that, at least for -Val and -Ile, delays in decoding N-terminal cognate codons cause elongating ribosomes to build-up early in the CDS. They go on to employ a peak calling algorithm to identify stalling sites in an unbiased way within the CDS, which are greatest in number for -Val, and find that Val codons are enriched in the A-sites (slightly) and adjacent 5' nucleotides (to a greater extent) for -Val starvation; and similarly for Ile codons in -Ile conditions, but not for -Leu starvation-again for unknown reasons. It's unclear why their called stalling sites have various other non-hungry codons present in the A sites with the cognate hungry codons being enriched further upstream, given that stalling should occur with the "hungry" cognate codon in the A site. The proteins showing down-regulation are enriched for stalling sites only in the case of the -Val starvation in the manner expected if stalling is contributing to reduced translation of the corresponding mRNA. It's unclear why this enrichment apparently does not extend to -Ile starvation which shows comparable skewing of RPFs towards the 5'ends, and this fact diminishes the claim that pausing generally contributes to reduced translation for genes with abundant hungry codons.<br /> All of the same analyses were carried out for the Double -Ile/-Leu and Triple starvations and yield unexpected results, particularly for the triple starvation wherein decoding times are increased only at Val codons, skewing of RPFs towards the 5' ends of CDSs is correlated only with an enrichment for Val codons within the early regions of the CDSs, and stall sites are enriched only for Val codons at nearly upstream sites, all consistent with the finding that only Val tRNAs become deacylated in the Triple regime. To explain why only Val tRNA charging is reduced despite the observed effective starvation for all three amino acids, they note first that stalling at Val codons is skewed towards the 5'ends of CDS for both -Val and triple starvations more so than observed for Ile or -Leu starvation, which they attribute to a greater frequency of Val codons vs Ile codons in the 5' ends of CDSs. As such, charged Val tRNAs are said to be consumed in translating the 5'ends of CDSs and the resulting stalling prevents ribosomes from reaching downstream Ile and Leu codons at the same frequencies and thus prevents deacylation of the cognate Ile and Leu tRNAs. It's unclear whether this explanation is adequate to explain the complete lack of Ile or Leu tRNA deacylation observed even when amino acid recycling by the proteasome is inhibited-a treatment shown to exacerbate deacylation of cognate tRNAs in the single amino acid starvations and of Val tRNA in the triple starvation. As such, the statement in the Abstract "Notably, we could show that isoleucine starvation-specific stalling largely diminished under triple starvation, likely due to early elongation bottlenecks at valine codons" might be too strong and the word "possibly" would be preferred over "likely". It's also unclear why the proteins that are down-regulated in the triple starvation are not significantly enriched for stalling sites (Fig. 5B) given that the degree of skewing is comparable or greater than for -Val. This last point seems to undermine their conclusion in the Abstract that "that many proteins downregulated under BCAA deprivation harbor stalling sites, suggesting that compromised elongation contributes to decreased protein output."<br /> In the case of the double -Ile/-Leu starvation, a related phenomenon occurs wherein decoding rates are decreased for only the AUU Ile codon and only the AAU Ile tRNA becomes deacylated; although in this case increased RPFs in the 5' ends are not correlated with enrichment for Ile or Leu codons and, although not presented, apparently stall sites are not associated with the Ile codon in the double starvation. In addition, stalling sites are not enriched in the proteins down-regulated by the double starvation. Moreover, because Ile codons are not enriched in the 5'ends of CDS, it doesn't seem possible to explain the selective deacylation of the single Ile tRNA observed in the double starvation by the same "bottleneck" mechanism proposed to explain selective deacylation of only Val tRNAs during the triple starvation. This is another reason for questioning their "bottleneck" mechanism.

      Specific comments (some of which were mentioned above):

      • The authors have treated cells with CHX in the Ribo-Seq experiments, which has been shown to cause artifacts in determining the locations of ribosome stalling in vivo owing to continued elongation in the presence of CHX (https://doi.org/10.1371/journal.pgen.1005732 ). The authors should comment on whether this artifact could be influencing some of their findings, particular the results in Fig. 5C where the hungry codons are often present upstream of the A sites of called stalling sites in the manner expected if elongation continued slowly following stalling in the presence of CHX.
      • p. 12: "These starvation-specific DT and ribosome density modulations were also evident at the individual transcript level, as exemplified by Col1a1, Col1a2, Aars, and Mki67 which showed persistent Val-codon-specific ribosome density increases but lost Ile-codon-specific increases under triple starvation (Supplementary Figure 3A-D). " This conclusion is hard to visualize for any but Val codons. It would help to annotate the relevant peaks of interest for -Ile starvation with arrows.
      • To better make the point that codon-specific stalling under BCAA starvation appears to be not driven by codon usage, rather than the analysis in Fig. 1H, wouldn't it be better to examine the correlation between increases in DT under the single amino acid starvation conditions and the codon frequencies across all codons?
      • p. 13, entire paragraph beginning with "Our RNA-seq and Ribo-seq revealed a general activation of stress response pathways across all starvations..." It is difficult to glean any important conclusions from this lengthy analysis, and the results do not appear to be connected to the overall topic of the study. If there are important conclusions here that relate to the major findings then these connections should be made or noted later in the Discussion. If not, perhaps the analysis should be largely relegated to the Supplemental material.
      • p. 15: "Together, these findings highlight that BCAA starvation triggers a combination of effects on initiation and elongation, with varying dynamics by amino acid starvation." I take issue with this statement as it appears that translation is reduced primarily at the initiation step for all conditions except -Ile. As noted above, these data are never menitioned in the DISCUSSION as to why only -Ile would show a marked elongation component to the inhibition whereas -Val gives the greatest amount of ribosome stalling.
      • I cannot decipher Fig. 4D and more detail is required to indicate the identify of each column of data.
      • In Fig. 4E, one cannot determine what the P values actually are, which should be provided in the legend to confirm statistical significance.
      • It's difficult to understand how the -Leu condition and the Double starvation can produce polarized RPFs (Fig. 4A) without evidence of stalling at the cognate hungry codons (Fig. 4E), despite showing later in Fig. 5A that the numbers of stall sites are comparable in those cases to that found for -Ile.
      • Fig. 5B: the P values should be given for all five columns, and it should be explained here or in the Discussion why the authors conclude that stalling is an important determinant for reduced translation when a significant correlation seems to exist only for the -Val condition and not even for the Triple condition.
      • p. 17: "Of note, in cases where valine or isoleucine codons were present just upstream (rather than at) the stalling position, we noted a strong bias for GAG (E), GAA (E), GAU (D), GAC (D), AAG (K), CAG (Q), GUG (V) and GGA (G) (Val starvation) and AAC (N), GAC (D), CUG (L), GAG (E), GCC (A), CAG (Q), GAA (E) and AAG (K) (Ile starvation) at the stalling site (Supplementary Figure 7B)." The authors fail to explain why these codons would be present in the A sites at stalling sites rather than the hungry codons themselves, especially since it is the decoding times of the hungry codons that are increased according to Fig. 1A-E. As suggested above, is this a CHX artifact?
      • Fig. 5D: P values for the significance, or lack thereof, of the different overlaps should be provided.
      • p. 17: "Nonetheless, when we examined entire transcripts rather than single positions, many transcripts that exhibited isoleucine-related stalling under Ile starvation also stalled under triple starvation, but at different sites along the CDS (Figure 5E). This finding is particularly intriguing, as it suggests that while Ile-starvation-specific stalling sites may shift under triple starvation, the overall tendency of these transcripts to stall remains." The authors never come back to account for this unexpected result.
      • It seems very difficult to reconcile the results in Fig. 5F with those in Fig. 4A, where similar polarities in RPFs are observed for -Ile and -Val in Fig, 4A but dramatically different distributions of stalling sites in Fig. 5F. More discussion of these discrepancies is required.
      • p. 18: " These isoacceptor-specific patterns correlate largely with the particular subsets of leucine and isoleucine codons that stalled (Figure 1A)." This correlation needs to be addressed for each codon-anticodon pair for all of the codons showing stalling in Fig. 1A.
      • p. 19: "For instance, in our double starvation condition, unchanged tRNA charging levels (Figure 6E) may result from a pronounced downregulation of global translation initiation, likely driven by the activation of stress responses (Figure 2), subsequently lowering the demand for charged tRNAs as it has been observed previously for Leu starvation 39. This seems at odds with the comparable down-regulation of protein synthesis for the Double starvation and -Leu and -Ile single starvations shown in Fig. 3C. Also, in the current study, Leu starvation does lower charging of certain Leu tRNAs.

      Significance

      The results here are significant in showing that starvation for a single amino acid does not lead to deacylation of all isoacceptors for that amino acid and in revealing that starvation for one amino acid can prevent deacylation of tRNAs for other amino acids, as shown most dramatically for the selective deacylation of only Val tRNAs in the triple BRCAA starvation condition. For the various reasons indicated above, however, I'm not convinced that their "bottleneck" mechanism is adequate to explain this phenomenon, especially in the case of the selective deacylation of Ile vs Leu tRNA in the Double starvation regime. It's also significant that deacylation leads to ribosome build-up near the 5'ends of CDS, which seems to be associated with an enrichment for the hungry codons in the case of Val and Ile starvation, but inexplicably, not for Leu or the Double starvations. This last discrepancy makes it hard to understand how the -Leu and Double starvations produce RPF buildups near the 5 ends of CDSs. In addition, the claim in the Discussion that "our data also highlight the importance of the codon positional context within mRNAs, indicating that where a codon is located within the CDS can influence both the extent of ribosomal stalling and overall translation efficiency during nutrient stress" overstates the strength of evidence that the stalling events lead to substantial decreases in translational efficiencies for the affected mRNAs, as the stalling frequency and decreased protein output are significantly correlated only for the -Val starvation, and the data in Fig. 3 D-H suggest that the reductions in protein synthesis generally occur at the level of initiation, even for -Val starvation, with a contribution from slow elongation only for -Ile-which is in itself difficult to understand considering that stalling frequencies are highest in -Val. Thus, while many of the results are very intriguing and will be of considerable interest to the translation field, it is my opinion that a number of results have been overinterpreted and that important inconsistencies and complexities have been overlooked in concluding that a significant component of the translational inhibition arises from the increased decoding times at hungry codons during elongation and that the selective deacylation of Val tRNAs in the Triple starvation can be explained by the "bottleneck" mechanism. The complexities and limitations of the data and their intepretations should be discussed much more thoroughly in the Discussion, which currently is devoted mostly to other phenomena often of tangential importance to the current findings. A suitably revised manuscript would clearly state the limitations and caveats of the proposed mechanisms and consider other possible explanations as well.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      This manuscript described the translational responses to single and combined BCAA shortages in mouse cell lines. Using Ribo-seq and RNA-seq analysis, the authors found selective ribosome pausing at codons that encode the depleted amino acids, where the pausing at valine codons was prominent at both a single and triple starvations whereas isoleucine codons showed pausing only under a single depletion. They analyzed the mechanisms of the unexpected selective pausing and proposed that the positional codon usage bias could shape the ribosome stalling and tRNA charging patterns across different amino acids. They also examined the stress responses and the changes in the protein expression levels under BCAA starvation.

      The manuscript was well-written, and the findings are interesting, especially their model that positional codon usage bias could be a regulator of ribosome pausing and tRNA charging levels. Although different translational responses to distinct amino acid starvation have been widely documented, the positional codon usage bias is an interesting aspect. The manuscript's central message could have been made clearer. The authors may consider emphasizing this point more explicitly in the abstract. The rich multi-omics dataset in this work provides valuable resources for the translation field.

      Major comments

      1. The abstract may need to be revised since it is hard to immediately catch the authors' main point. If the authors regard this work as a resource paper, the current version is fine. But it could be better to point out the positional codon usages the authors found, which is a strong point of the current manuscript.
      2. Page 18 "Beyond these tRNA dynamics, our data also highlight the importance of the codon positional context within mRNAs, indicating that where a codon is located within the CDS can influence both the extent of ribosomal stalling and overall translation efficiency during nutrient stress."<br /> This idea is interesting. To what extent the authors think this could be generalized? The authors may discuss whether they think their proposed model is specific to the different ribosome stalling patterns between valine and isoleucine codons or generalized to other codon combinations. For example, the positional codon usage bias will be different among different organisms, and are there any previous reports on ribosome behaviors that align with their model? Even if the authors think this model can be applied to BCAA starvation, would it be possible to explain the different isoleucine codon responses between single and double starvation? The authors may discuss why the ribosome stalling at isoleucine AUU and AUC codons was slightly attenuated under double starvation. And how about the different leucine codon responses among single, double, and triple starvations, although the pausing is not as strong as isoleucine and valine codons? Experimental validation using artificial reporters carrying biased sequences may also be considered.
      3. Page 13 "Moreover, we noticed that DT changes extend beyond the ribosomal A-site, including the P-site, E-site, and even further positions (Supplementary Fig. 2A), consistent with other studies on single amino acid starvation 39 (Supplementary Fig. 2B-C)." Could the widespread DT changes be due to Ribo-DT pipeline they used or difficulties in offset determination? Indeed the authors showed that this feature was found in other datasets, but it seems that the datasets were processed and analyzed in the same way as their data. The original Ribo-DT paper (Gobet and Naef, 2022, Methods) also showed some widespread DT changes even from RNA-seq. Another analysis method like the codon subsequence abundant shift as a part of diricore analysis (Loayza-Puch et al., 2016, Nature) did not show that broad changed regions. The authors are encouraged to re-analyze the data sets using different methods.
      4. Page 13 "Intriguingly, only two of the three isoleucine codons (AUU and AUC) showed increased DTs upon Ile starvation (p < 0.01), while just one leucine codon (CUU) exhibited a modest but significant DT increase (p < 0.01) under Leu starvation (Figure 1A-B, Supplementary Figure 2A)." How can the authors explain the different strengths of ribosome pausing at Ile codons under Ile and double starvation? The AUA codon did not show any pausing under either of the starvation conditions. Throughout the manuscript, the authors mainly describe the difference between amino acids but it is desirable to discuss the codon-level difference as well.
      5. Page 13 "We examined the effects of single amino acid starvations (-Leu, -Ile and -Val), as well as combinations, including a double starvation of leucine and isoleucine (hereafter referred to as "double") and a starvation of leucine, isoleucine, and valine ("triple"), allowing us to identify potential non-additive effects." The different double starvations, isoleucine and valine, and leucine and valiene, will further support their hypothesis on the effects of the positional codon usage bias on ribosome pausing and tRNA charging patterns. Although this could be beyond the scope of the current manuscript, the authors are encouraged to provide a rationale for the chosen combination.

      Minor comments

      Page 16 "these results imply that BCAA deprivation lowers protein output through multiple pathways: a combination of reduced initiation, direct elongation blocks (stalling), and possibly an increased proteolysis" This conclusion is totally right but may be too general. Could the authors summarize BCAA-specific features of the events including reduced initiation, stalling, and proteolysis that all contribute to protein outputs? This is not well discussed in the latter sections including Discussion.

      Significance

      The manuscript was well-written, and the findings are interesting, especially their model that positional codon usage bias could be a regulator of ribosome pausing and tRNA charging levels. Although different translational responses to distinct amino acid starvation have been widely documented, the positional codon usage bias is an interesting aspect. The manuscript's central message could have been made clearer. The authors may consider emphasizing this point more explicitly in the abstract. The rich multi-omics dataset in this work provides valuable resources for the translation field.

    1. However, the confounding processes previously mentioned cannot be ruled out based solely on these experiments and a direct estimation of the genetic determination is needed (de Villemereuil et al., 2016).

      I like this statement because it reminds us that the experiment is not enough to prove adaptation because of other factors.

    1. became the place to reflect more deeply about questions of mean-ing and purpose, understand how people in the past had encountered big questions, and think with these important figures.

      deeper meaning about what liberal education can be for people and what it has to offer

    2. Those dia-logues taught me to listen as well as express my own ideas.

      this answers the question of how liberal education is life changing

    1. I replied, in my simplistic Turkish, that to me this sounded like a threat: either cover your head or rape can happen. The driver protested in ornate phrases that nobody was threatening anyone, that to speak of threats in this situation was unfitting, that he could tell from my smiling face that I was a good and trusting person, but that the world was an imperfect place, that some men were less like humans than like animals, and that it was best to send clear signals about what one was or wasn’t looking for. Then he left me at the fish restaurant where I was going to meet some literature professors.If it had been just the two of us in the taxi in a political vacuum, I wouldn’t have begrudged the driver his opinions. It was his car and his country, and he was driving me where I wanted to go. I knew that my limited Turkish, which felt like such a handicap, was in his eyes a marker of privilege—a sign that I could afford to travel and live abroad. Often, the second question drivers asked, after the invariable “Where are you from?,” was “How much did the plane ticket cost?”But the cab wasn’t in a vacuum; it was in a country where the head of state, whose wife wore a head scarf, repeatedly urged all women to have at least three children, preferably four or five. Erdoğan opposed abortion, birth control, and Cesarean section. He said that Islam had set out a clear position for women, but that you couldn’t explain it to feminists, because they “don’t accept the concept of motherhood.” The longer he stayed in office, the more outspoken he became. In 2014, he went so far as to describe birth control as “treason” designed “to dry up our bloodline.” No matter how hard I tried to be tolerant—no matter how sympathetic I felt toward Muslim feminists who didn’t want to be “liberated” from the veil, and who felt just as judged by the secularist establishment as secular women felt by the Muslim patriarchy—I could never forgive Erdoğan for saying those things about women. And, because he said them in the name of Islam, I couldn’t forgive Islam, either.

      familiar

    1. Application integration on AWS is the key to building modern, scalable, and resilient cloud applications. It involves using services like Amazon SQS, SNS, and EventBridge to connect disparate microservices and automate workflows. By focusing on decoupled, asynchronous communication, you can build systems that are more flexible, fault-tolerant, and easier to scale. This approach is essential for staying agile in today’s fast-paced cloud-first world.

      Master application integration on AWS with services like SQS, SNS, EventBridge, and Step Functions. Learn best practices for building resilient, scalable, and decoupled cloud-native workflows.

    1. During each call, Stewart said, Amazon officials have not been helpful."They wanted to do background checks on all my firefighters; I wouldn't let them," he said. "And we've struggled to gain access to emergencies. They'll stop us at the gate, and our medic units have been delayed. They're denying us access to patients.

      AWS denies first responder access to facilities

    1. Monads are particularly ergonomic to use in Haskell, and the main reason for this is a bit of syntactic sugar called do-notation, which allows us to imitate imperative programming.

      do-keyword kan bruges til at imitere lidt imperative programming

    2. A monad is something that implements the Monad type class, which just means a we have access to >>= and pure, and can do anything these functions allow.

      En monade implementerer Monad typeclass som kræver implementering af pure og >>=

    1. We have waited for more than 340 years for our constitutional and God given rights. The nations of Asia and Africa are moving with jetlike speed toward gaining political independence, but we still creep at horse and buggy pace toward gaining a cup of coffee at a lunch counter. Perhaps it is easy for those who have never felt the stinging darts of segregation to say, “Wait.” But when you have seen vicious mobs lynch your mothers and fathers at will and drown your sisters and brothers at whim; when you have seen hate filled policemen curse, kick and even kill your black brothers and sisters; when you see the vast majority of your twenty million Negro brothers smothering in an airtight cage of poverty in the midst of an affluent society; when you suddenly find your tongue twisted and your speech stammering as you seek to explain to your six year old daughter why she can’t go to the public amusement park that has just been advertised on television, and see tears welling up in her eyes when she is told that Funtown is closed to colored children, and see ominous clouds of inferiority beginning to form in her little mental sky, and see her beginning to distort her personality by developing an unconscious bitterness toward white people; when you have to concoct an answer for a five year old son who is asking: “Daddy, why do white people treat colored people so mean?”; when you take a cross county drive and find it necessary to sleep night after night in the uncomfortable corners of your automobile because no motel will accept you; when you are humiliated day in and day out by nagging signs reading “white” and “colored”; when your first name becomes “nigger,” your middle name becomes “boy” (however old you are) and your last name becomes “John,” and your wife and mother are never given the respected title “Mrs.”; when you are harried by day and haunted by night by the fact that you are a Negro, living constantly at tiptoe stance, never quite knowing what to expect next, and are plagued with inner fears and outer resentments; when you are forever fighting a degenerating sense of “nobodiness”—then you will understand why we find it difficult to wait.

      Pathos--the images combined with the breathlessness is like a waterfall of overwhelm/suffocation/need to keep going.

    2. You deplore the demonstrations taking place in Birmingham. But your statement, I am sorry to say, fails to express a similar concern for the conditions that brought about the demonstrations. I am sure that none of you would want to rest content with the superficial kind of social analysis that deals merely with effects and does not grapple with underlying causes. It is unfortunate that demonstrations are taking place in Birmingham, but it is even more unfortunate that the city’s white power structure left the Negro community with no alternative.

      Logos--points to how the actions of the city people in Birmingham have led to a situation that required intervention.

      Kairos: segregation and lynchings brought about the protests. Timely.

    3. I am cognizant of the interrelatedness of all communities and states. I cannot sit idly by in Atlanta and not be concerned about what happens in Birmingham. Injustice anywhere is a threat to justice everywhere.

      We see ethos here. He is showing his moral compass. His moral values.

    1. URNs focus solely on identification, not on providing instructions or locations for accessing the resource.

      focus solely on identification

      not for accessing the resouce

    1. First, we should explain the purpose of writing clearly.

      i think that the purpose and value of writing is obvious but students will still use AI to assist them to improve grades

    2. AI canspit out 1000 words on the French Revolution more efficiently than a high-school student can, and thatstudent will never have to write anything as an adult, so what’s the point of making them write anessay?

      Why do many seem to share the value that efficiency is the most important thing?

    1. .do.how - annotate & innotate

      Nowadays I just create an annotation marking a key memorable phrase

      then copy the whole relevant text

      structure it with tintent/trail/plex marks in-notations and outlines and

      italic fonts to mark verb phrases

      bold for noun phrases

      remember that clue-names a tuples

      intetn/tail/plex mark terms and

      subject/object designations noun phrase s

      and even compose such tuples into composite trails

      as ground atomic formulae

    2. transhumanist agenda to me is a very dark force. It's a force that wants to extinguish humankind while telling us it's going to be great

      spot on

      = The Self-abolishment of Man!

    3. heart problem of consciousness

      the

      = hard problem of consciousness

      was just a rebranding - of the death of materialism.

      Yeah. basically saying that - we shouldn't by let me just say what I think about but

      by calling it a - hard problem. Yeah.

      Hard problems - you can still solve and

      we shouldn't have called it - a hard problem.

      We should have said okay - materialism just died.

    1. ny parameters you pass to the $wire method will also be passed to the PHP class method. For example, consider the following Livewire action:

      نستطيع تمرير القيم للسيرفر من خلال alpine بكل سهوله مثل المثال المرفق

    1. Learning Theory and Online TechnologiesLearning Theory and Online Technologies offers a powerful overview of the current state of onlinelearning, the foundations of its historical roots and growth, and a framework for distinguishingbetween the major

      spændende

    1. eLife Assessment

      This work presents important information on rhythmicity of overlapping target and distractor processing and how this affects behaviour. The methods are, in general, clearly laid out and defensible, with several supplementary analyses leading to a solid base of evidence for their claims.

    2. Reviewer #1 (Public review):

      Summary:

      Using a combination of EEG and behavioural measurements, the authors investigate the degree to which processing of spatially-overlapping targets (coherent motion) and distractors (affective images) are sampled rhythmically and how this affects behaviour. They found that both target processing (via measurement of amplitude modulations of SSVEP amplitude to target frequency) and distractor processing (via MVPA decoding accuracy of bandpassed EEG relative to distractor SSVEP frequency) displayed a pronounced rhythm at ~1Hz, time-locked to stimulus onset. Furthermore, the relative phase of this target/distractor sampling predicted accuracy of coherent motion detection across participants.

      Strengths:

      - The authors are addressing a very interesting question with respect to sampling of targets and distractors, using neurophysiological measurements to their advantage in order to parse out target and distractor processing.<br /> - The general EEG analysis pipeline is sensible and well-described.<br /> - The main result of rhythmic sampling of targets and distractors is striking and very clear even on a participant-level.<br /> - The authors have gone to quite a lot of effort to ensure the validity of their analyses, especially in the Supplementary Material.<br /> - It is incredibly striking how the phase of both target and distractor processing are so aligned across trials for a given participant. I would have thought that any endogenous fluctuation in attention or stimulus processing like that would not be so phase aligned. I know there is literature on phase resetting in this context, the results seem very strong here and it is worth noting. The authors have performed many analyses to rule out signal processing artifacts, e.g. the sideband and beating frequency analyses.

      Weaknesses:

      - In general, the representation of target and distractor processing is a bit of a reach. Target processing is represented by SSVEP amplitude, which is going to most likely be related to the contrast of the dots, as opposed to representing coherent motion energy which is the actual target. These may well be linked (e.g. greater attention to the coherent motion task might increase SSVEP amplitude) but I would call it a limitation of the interpretation. Decoding accuracy of emotional content makes sense as a measure of distractor processing, and the supplementary analysis comparing target SSVEP amplitude to distractor decoding accuracy is duly noted. Overall, this limitation remains and has been noted in the Limitations section.<br /> - Then comparing SSVEP amplitude to emotional category decoding accuracy feels a bit like comparing apples with oranges. They have different units and scales and reflect probably different neural processes. Is the result the authors find not a little surprising in this context? This relationship does predict performance and is thus intriguing, but I think this methodological aspect needs to be discussed further. For example, is the phase relationship with behaviour a result of a complex interaction between different levels of processing (fundamental contrast vs higher order emotional processing)? Again, this has been noted in the Limitations section, but changing the data to z-scores doesn't really take care of the conceptual issue, i.e. that on-screen contrast changes would necessarily be distracting during emotional category decision-making.

    3. Reviewer #2 (Public review):

      In this study, Xiong et al. investigate whether rhythmic sampling - a process typically observed in the attended processing of visual stimuli - extends to task-irrelevant distractors. By using EEG with frequency tagging and multivariate pattern analysis (MVPA), they aimed to characterize the temporal dynamics of both target and distractor processing and examine whether these processes oscillate in time. The central hypothesis is that target and distractor processing occur rhythmically, and the phase relationship between these rhythms correlates with behavioral performance.

      Major Strengths<br /> (1) The extension of rhythmic attentional sampling to include distractors is a novel and interesting question.<br /> (2) The decoding of emotional distractor content using MVPA from SSVEP signals is an elegant solution to the problem of assessing distractor engagement in the absence of direct behavioral measures.<br /> (3) The finding that relative phase (between 1 Hz target and distractor processes) predicts behavioral performance is compelling.

      Major Weaknesses and Limitations<br /> (1) The central claim of 1 Hz rhythmic sampling is insufficiently validated. The windowing procedure (0.5s windows with 0.25s step) inherently restricts frequency resolution, potentially biasing toward low-frequency components like 1 Hz. Testing different window durations or providing controls would significantly strengthen this claim.<br /> (2) The study lacks a baseline or control condition without distractors. This makes it difficult to determine whether the distractor-related decoding signals or the 1 Hz effect reflect genuine distractor processing or more general task dynamics.<br /> (3) The pairwise decoding accuracies for distractor categories hover close to chance (~55%), raising concerns about robustness. While statistically above chance, the small effect sizes need careful interpretation, particularly when linked to behavior.<br /> (4) Neither target nor distractor signal strength (SSVEP amplitude) correlates with behavioral accuracy. The study instead relies heavily on relative phase, which-while interesting-may benefit from additional converging evidence.<br /> (5) Phase analysis is performed between different types of signals hindering their interpretability (time-resolved SSVEP amplitude and time-resolved decoding accuracy).

      The authors largely achieved their stated goal of assessing rhythmic sampling of distractors. However, the conclusions drawn - particularly regarding the presence of 1 Hz rhythmicity - rest on analytical choices that should be scrutinized further. While the observed phase-performance relationship is interesting and potentially impactful, the lack of stronger and convergent evidence on the frequency component itself reduces confidence in the broader conclusions.

      If validated, the findings will advance our understanding of attentional dynamics and competition in complex visual environments. Demonstrating that ignored distractors can be rhythmically sampled at similar frequencies to targets has implications for models of attention and cognitive control. However, the methodological limitations currently constrain the paper's impact.

      Additional Considerations<br /> • The use of EEG-fMRI is mentioned but not leveraged. If BOLD data were collected, even exploratory fMRI analyses (e.g., distractor modulation in visual cortex) could provide valuable converging evidence.<br /> • In turn, removal of fMRI artifacts might introduce biases or alter the data. For instance, the authors might consider investigating potential fMRI artifact harmonics around 1 Hz to address concerns regarding induced spectral components.

      Comments on revisions:

      The authors have addressed my previous points, and the manuscript is substantially improved. The key methodological clarifications have been incorporated, and the interpretation of findings has been appropriately moderated. I have no further major concerns.

    4. Author response:

      The following is the authors’ response to the original reviews

      Reviewer 1:

      (1) In general, the representation of target and distractor processing is a bit of a reach. Target processing is represented by SSVEP amplitude, which is most likely going to be related to the contrast of the dots, as opposed to representing coherent motion energy, which is the actual target. These may well be linked (e.g., greater attention to the coherent motion task might increase SSVEP amplitude), but I would call it a limitation of the interpretation. Decoding accuracy of emotional content makes sense as a measure of distractor processing, and the supplementary analysis comparing target SSVEP amplitude to distractor decoding accuracy is duly noted.

      We agree with the reviewer. The SSVEP amplitude of the target at the whole trial level indeed reflected the combined effect of the stimulus parameters (e.g., contrast of the moving dots) as well as attention. However, the time course of the target SSVEP amplitude within a trial, derived from the moving window analysis, reflected the temporal fluctuations of target processing, since the stimulus parameters remained the same during the trial. We now make this clearer in the revised manuscript.

      (2) Comparing SSVEP amplitude to emotional category decoding accuracy feels a bit like comparing apples with oranges. They have different units and scales and probably reflect different neural processes. Is the result the authors find not a little surprising in this context? This relationship does predict performance and is thus intriguing, but I think this methodological aspect needs to be discussed further. For example, is the phase relationship with behaviour a result of a complex interaction between different levels of processing (fundamental contrast vs higher order emotional processing)?

      Traditionally, the SSVEP amplitude at the distractor frequency is used to quantify distractor processing. Given that the target SSVEP amplitude is stronger than that of the distractor, it is possible that the distractor SSVEP amplitude is contaminated by the target SSVEP amplitude due to spectral power leakage; see Figure S4 for a demonstration of this. Because of this issue we therefore introduced the use of decoding accuracy as an index of distractor processing. The lack of correlation between the distractor SSVEP amplitude and the distractor decoding accuracy, although it is kind of like comparing apples with oranges as pointed out by the reviewer, serves the purpose of showing that these two measures are not co-varying, and the use of decoding accuracy is free from the influence of the distractor SSVEP amplitude which is influenced by the target SSVEP amplitude. Also, to address the apples-vs-oranges issue, the correlation was computed on normalized time series, in which a z-score time series replaced the original time series so that the correlated variables are dimensionless. Regarding the question of assessing the relation between behavior and different levels of processing, we do not have means to address it, given that we are not able to empirically separate the effects of stimulus parameters versus attention.

      Reviewer 2:

      (1) Incomplete Evidence for Rhythmicity at 1 Hz: The central claim of 1 Hz rhythmic sampling is insufficiently validated. The windowing procedure (0.5s windows with 0.25s step) inherently restricts frequency resolution, potentially biasing toward low-frequency components like 1 Hz. Testing different window durations or providing controls would significantly strengthen this claim.

      We appreciate the reviewer’s insightful suggestion. In response, we tested different windowing parameters, e.g., 0.1s sliding window with a 0.05s step size. Figure S5 demonstrates that the strength of both target and distractor processing fluctuates around ~1 Hz, both at the individual and group levels. Additionally, Figures S6(A) and S6(B) show that the relative phase between target and distractor processing time series exhibits a uniform distribution across subjects. In terms of the relation between relative phase and behavior, Figure S6(C) illustrates two representative cases: a high-performing subject with 84.34% task accuracy exhibited a relative phase of 0.9483π (closer to π), while a low-performing subject with 30.95% accuracy showed a phase of 0.29π close to 0). At the group level, a significant positive correlation between relative phase and task performance was found (r = 0.6343, p = 0.0004), as shown in Figure S6(D). All these results, aligning closely with our original findings (0.5s window length and 0.25s step size), suggest that the conclusions are not dependent on windowing parameters. We discuss these results in the revised manuscript.

      To further validate our findings, we also employed the Hilbert transform to extract amplitude envelopes of the target and distractor signals on a time-point-by-time-point basis, providing a window-free estimate of signal strength (Figures R3 and R4). The results remain consistent with both the original findings and the new sliding window analyses (Figure S6). Specifically, Figure S7 reveals ~1 Hz fluctuations in target and distractor processing at both individual and group levels. Figures S8(A) and S8(B) confirm a uniform distribution of the relative phase across subjects. In Figure S8(C), the relative phase was 0.9567π for a high-performing subject (84.34% accuracy) and 0.2247π for a low-performing subject (28.57% accuracy). At the group level, a significant positive correlation was again observed between relative phase and task performance (r = 0.4020, p = 0.0376), as shown in Figure S8(D).

      (2) No-Distractor Control Condition: The study lacks a baseline or control condition without distractors. This makes it difficult to determine whether the distractor-related decoding signals or the 1 Hz effect reflect genuine distractor processing or more general task dynamics.

      The lack of a no-distractor control condition is certainly a limitation and will be acknowledged as such in the revised manuscript. However, given that our decoding results are between two different classes of distractors, we are confident that they reflect distractor processing.

      (3) Decoding Near Chance Levels: The pairwise decoding accuracies for distractor categories hover close to chance (~55%), raising concerns about robustness. While statistically above chance, the small effect sizes need careful interpretation, particularly when linked to behavior.

      This is an important point. To test robustness, we have implemented a random permutation procedure in which trial labels were randomly shuffled to construct a nullhypothesis distribution for decoding accuracy. We then compared the decoding accuracy from the actual data to this distribution. Figure S9 shows the results based on 1,000 permutations. For each of the three pairwise classifications—pleasant vs. neutral, unpleasant vs. neutral, and pleasant vs. unpleasant—as well as the three-way classification, the actual decoding accuracies fall far outside the null-hypothesis distribution (p < 0.001), and the effect size in all four cases is extremely large. These findings indicate that the observed decoding accuracies are statistically significant and robust in terms of both statistical inference and effect size.

      (4) No Clear Correlation Between SSVEP and Behavior: Neither target nor distractor signal strength (SSVEP amplitude) correlates with behavioral accuracy. The study instead relies heavily on relative phase, which - while interesting - may benefit from additional converging evidence.

      We felt that what the reviewer pointed out is actually the main point of our study, namely, it is not the target or distractor strength over the whole trial that matters for behavior, it is their temporal relationship within the trial that matters for behavior. This reveals a novel neuroscience principle that has not been reported in the past. We have stressed this point further in the revised manuscript.

      (5) Phase-analysis: phase analysis is performed between different types of signals hindering their interpretability (time-resolved SSVEP amplitude and time-resolved decoding accuracy).

      The time-resolved SSVEP amplitude is used to index the temporal dynamics of target processing whereas the time-resolved decoding accuracy is used to index the temporal dynamics of distractor processing. As such, they can be compared, using relative phase for example, to examine how temporal relations between the two types of processes impact behavior. This said, we do recognize the reviewer’s concern that these two processes are indexed by two different types of signals. We thus normalized each time course using zscoring, making them dimensionless, and then computed the temporal relations between them.

      Appraisal of Aims and Conclusions:

      The authors largely achieved their stated goal of assessing rhythmic sampling of distractors. However, the conclusions drawn - particularly regarding the presence of 1 Hz rhythmicity - rest on analytical choices that should be scrutinized further. While the observed phaseperformance relationship is interesting and potentially impactful, the lack of stronger and convergent evidence on the frequency component itself reduces confidence in the broader conclusions.

      Impact and Utility to the Field:

      If validated, the findings will advance our understanding of attentional dynamics and competition in complex visual environments. Demonstrating that ignored distractors can be rhythmically sampled at similar frequencies to targets has implications for models of attention and cognitive control. However, the methodological limitations currently constrain the paper's impact.

      Thanks for these comments and positive assessment of our work’s potential implications and impact. As indicated above, in the revision process, we have carried out a number of additional analyses, some suggested by the reviewers, and the results of the additional analyses, now included in the Supplementary Materials, served to further validate the main findings and strengthen our conclusions.

      Additional Context and Considerations:

      (1) The use of EEG-fMRI is mentioned but not leveraged. If BOLD data were collected, even exploratory fMRI analyses (e.g., distractor modulation in visual cortex) could provide valuable converging evidence.

      Indeed, leveraging fMRI data in EEG studies would be very beneficial, as has been demonstrated in our previous work. However, given that this study concerns the temporal relationship between target and distractor processing, it is felt that fMRI data, which is known to possess low temporal resolution, has limited potential to contribute. We will be exploring this rich dataset in other ways in the future, where we will be integrating the two modalities for more insights that are not possible with either modality used alone.

      Author response image 1.

      Appyling moving window analysis (0.02s window duration and 0.01 step size) to a different EEG-fMRI dataset. (A) The amplitude time series of the 4.29 Hz component and the Fourier spectrum. (B) The group level Fourier spectrum. At both individual and group level, no 1 Hz modulation is observed, suggesting that the 1 Hz modulation observed in our data is not introduced by the artifact removal procedure.

      (2) In turn, removal of fMRI artifacts might introduce biases or alter the data. For instance, the authors might consider investigating potential fMRI artifact harmonics around 1 Hz to address concerns regarding induced spectral components.

      We have done extensive work in the area of simultaneous EEG-fMRI and have not encountered artifacts with a 1Hz rhythmicity. Our scanner artifact removal procedure is very standardized. As such, it stands to reason that if the 1Hz rhythmicity observed here results from the artifact removal process, it should also be present in other datasets where the same preprocessing steps were implemented. We tested this using another EEG-fMRI dataset (Rajan et al., 2019) . Author response image 1 shows that the EEG power time series of the new dataset doesn't have 1 Hz rhythmicity, whether at the individual level or at the group level, suggesting that the 1 Hz rhythmicity reported in the manuscript is not coming from the removal of the scanner artifacts, but instead reflects true rhythmic sampling of stimulus information. Also, the fact that the temporal relations between target processing and distractor processing at 1Hz impact behavior is another indication that the 1Hz rhythmicity is a neuroscientific effect, not an artifact.

      References

      Rajan, A., Siegel, S. N., Liu, Y., Bengson, J., Mangun, G. R., & Ding, M. (2019). Theta Oscillations Index Frontal Decision-Making and Mediate Reciprocal Frontal–Parietal Interactions in Willed Attention. Cerebral Cortex, 29(7), 2832–2843. https://doi.org/10.1093/cercor/bhy149

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Prior to the point-by-point response to the reviewer, we would like to sincerely thank all the peer reviewers for their overwhelmingly positive comments and helpful suggestions. The recommendations have undoubtedly improved our initial submission, and we have done our best to incorporate as many of the suggestions as possible.

      Reviewer #1* (Evidence, reproducibility and clarity (Required)): *

      *Jones et al. have submitted a manuscript detailing the role of Coenzyme A in the regulation of macrophage polarization. Overall, the manuscript is well designed, and the conclusions are well supported by the data. I find no major or minor deficiencies that need to be corrected. *

      * Reviewer #1 (Significance (Required)): *

      For decades the immunology community has boldly stated that mitochondrial metabolism not only provides the bioenergetics for cell expansion but also dictates cell fate. This has been especially true for fatty acid beta oxidation. Macrophage, T-cell and B-cell polarization have all been shown to require FAO for their polarization, but all based on one inhibitor. NONE of these observations hold up with more rigorous experimentation. The Divakaruni group has previously suggested that intracellular CoA homeostasis was the driver of macrophage differentiation as they could reverse the inhibitory effects by providing heroic levels of CoA extracellularly. Here, they have clarified the role of CoA. Intracellular CoA does not affect macrophage polarization/differentiation. This was done with cleaver manipulation of the CoA pools. Rather, extracellular CoA can act as a weak TLR4 ligand. This work nicely clarifies their previous work and further demonstrates a role for this metabolite as an endogenous activator of type 1 macrophages.

      We are thrilled by the positive comments about our work, and we are grateful the reviewer found our submission to be clarifying for the field and significant in the larger context of immunometabolism research.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      *This is a fairly straightforward manuscript that indicated CoA acts as a "weak" TLR4 agonist and primes macrophages for alternative activation. Overall, the experiments are well done and clear enough. There are two major issues that need to be addressed: *

      We thank the reviewer for their positive comments regarding the quality and clarity of our work.

      1. *Previous work has shown the following pathway: LPS>IL10>STAT3>IL4Ra>>>increased responsiveness to IL4/IL13 and increased expression of M2 associated markers (please note, this pathway does not apply to Arg1, often erroneously associated with M2 macrophages - LPS induces Arg1 far more than IL4 and this is independent of the STAT6 pathway - Dichtl et al., Science Advances and El Kasmi et al. Nature Immunology, and others). This pathway was first described in Lang et al. 2002 J. Immunol. Subsequently, other groups showed IL6 (Jens Brüning) and OSM (Carl Richards) do the same thing, which is not surprising given that they are STAT3 activators. Thus, Il4ra is a STAT3 target gene; this also makes sense in the kinetic evolution of macrophages from inflammatory to tissue reparative (if they survive). In my view, the authors have most likely found the same pathway. In Jones, expression of the IL4Ra was not quantified. Thus, the pathway described above needs to be accounted for. It may not apply here but seems the easiest explanation of the data. *

      This is an excellent and important experiment suggested by the reviewer, and we address this in our revised Supplemental Figure 5. To determine whether the effect of CoA can be explained simply by a STAT3-mediated effect on the IL-4 receptor, we treated cells with the well-characterized STAT3 inhibitor Napabucasin and measured whether CoA could enhance the macrophage IL-4 response. Two results are clear from the data:

      • Treatment with Napabucasin reduced the expression of IL-4-linked cell surface markers and the IL-4 target gene Ccl8. This serves as an important control consistent with the Il4ra gene being a STAT3 target that increases IL-4 responsiveness.
      • Despite STAT3 inhibition and a reduced IL-4 response, CoA provision still augmented the IL-4-induced expression of Ccl8 and the percentage of CD206+/CD301+ cells, indicating a STAT3-independent mechanism. The result aligns with our ATAC-Seq data in Figure 6 that shows broad changes in chromatin accessibility that cannot be completely explained by expression-level changes in the IL-4 receptor.

      *Can the authors come up with a meaningful in vivo experiment to corroborate their data. Pantothenate-deficient mice have many phenotypes (not fully explored at all - PMID 31918006, for example) and pantothenate metabolism can be manipulated in different ways. Obviously, a complex in vivo experiment is not feasible here. But this should be discussed. What happens in human macrophages, where "polarization" is a completely different beast? *

      We thank the reviewer for these thoughtful comments, and address the questions regarding in vivo proof-of-concept and polarization of human macrophages separately:

      • Regarding the question of whether CoA can enhance the phenotype of IL-4-activated human macrophages, this is an excellent suggestion and we have added the data as Figure 1h. Indeed, Coenzyme A dramatically amplifies expression of the human IL-4 responsive genes CCL17, TGM2, and PDCD1LG2 (similarly to mouse macrophages). The result substantially expands the significance of our work by showing the phenotype is reproducible in both mouse and human macrophages – unlike many immunometabolic phenotypes – and we thank the reviewer again for suggesting this experiment.
      • With respect to an in vivo experiment to corroborate our data, we entirely agree with the reviewer regarding both the importance, but also the difficulty in interpretation, of an experiment genetically manipulating CoA synthesis in vivo. As they have suggested, we raise these issues in the discussion on Lines 370-377 of the revised manuscript. Here, we note the following points:
      • Wherever possible/appropriate (e.g. Figures 1g, 3f&g, 5g&h), we have sought to corroborate our in vitro findings with in vivo/ex vivo proofs-of-concept.
      • Studying immune phenotypes in pantothenate-deficient mice would be an exciting experiment in principle, but difficult to interpret if conducted. As noted by the reviewer in the work from Drs. Rock and Jackowski, knockout of one of four isoforms of pantothenate kinase (PANK) shows mild phenotypes consistent with compensation across isoforms for CoA provision. Global double knockout of PANK1 and PANK2, however, is postnatally lethal. Regardless, a tissue-specific double knockout in myeloid cells is unlikely to show a phenotype given our results showing that manipulating intracellular CoA levels in BMDMs does not alter the IL-4 response (Figs. 2h-j).
      • Given the established role of CoA in postnatal development, it would be difficult to attribute any immunologic phenotypes in genetically modified mice to direct effects of CoA as a metabolic DAMP as opposed to indirect effects from a chronically altered immune system.

      Reviewer #2 (Significance (Required)): *This is a fairly straightforward manuscript that indicated CoA acts as a "weak" TLR4 agonist and primes macrophages for alternative activation. Overall, the experiments are well done and clear enough.

      *

      We reiterate our gratitude for the comments on the quality and clarity of our work.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary: In this manuscript on enhancement of mIL-4 polarization by exogenous CoA, the authors follow up on their previous studies that had shown a correlation between Etomoxir-driven block in mIL-4 and a reduction of intracellular CoA levels. The results obtained (lack of enhancement of IL-4-induced changes in oxidative phosphorylation and glycolysis; lack of impact of pharmacological decrease/increase of intracellular CoA levels) led them to discard their initial hypothesis. Instead, the presence of a proinflammatory gene signature in macrophages treated with IL-4+CoA triggered experiments testing the involvement of TLR-Myd88 signaling and the identification of CoA as a weak agonist for TLR4 (which is consistent with a preprint manuscript posted in 2022 by others and showing induction of proinflammatory gene express in a TLR2/4-dependent manner).

      • Significance: Overall, these results are novel and interesting, although the use of yeast-derived CoA preparations raises a question about the contribution of contaminants that is only partially controlled by data obtained with a synthetic CoA. Regarding a biological role for CoA in macrophage biology in vivo, the authors propose that CoA may act as a DAMP upon release from dying/dead cells and thereby modify transcriptional polarization of m(IL-4). I have several comments related to specific experimental conditions and interpretation that should be addressed. Most importantly, the key findings of the manuscript should be demonstrated using synthetic CoA as described in comment #5. *

      We are heartened that the reviewer found our initial submission to be novel and interesting, and are grateful for their suggestions to reinforce our existing data with more studies comparing yeast-derived and synthetically-derived Coenzyme A. We have done our best to address each of the individual questions below:

      Major comments:

      1. *Increasing/decreasing intracellular CoA levels does not alter IL-4-induced CD206 expression (Fig. 2i/j. However, the impact of CoA addition to mIL-4 is stronger for Ccl8 and Mgl2 mRNA (Fig. 1a) than for the CD206+ cell fraction (Fig. 1d). Therefore, it would be better (higher sensitivity) to include expression of these genes as readout after CPCA/PZ-2891 treatment. *

      This is a helpful suggestion, and we have now conducted gene expression studies to complement our flow cytometry and mass spectrometry studies while manipulating the intracellular CoA pool. In line with our previous work, neither CPCA (which decreases intracellular free CoA) or PZ-2891 (which increases intracellular free CoA) meaningfully alter expression of IL-4-linked genes including Ccl8 or Mgl2. In fact, the only (statistically insignificant) trend refutes the hypothesis, as gene expression with CPCA leads to marginally increased gene expression. These results are now included in Supplemental Figure S2f. We thank the reviewer for this helpful suggestion, as it has strengthened our conclusion that intracellular CoA levels do not adjust the macrophage IL-4 response.

      • The CoA-induced proinflammatory gene expression in Fig. 3c is relatively weak (e.g. compared to LPS). The authors use CoA throughout the manuscript at a concentration of 1 mM, and we do not know how much of it is required to cause an effect at all. Therefore, dose-response curves for the stimulation of macrophages with titrated amounts of CoA should be provided. In addition, *

      We thank the reviewer for bringing up this point so we could clarify and add to our existing data. We should note that Supplemental Figures 1b&c of our previous submission (and resubmitted manuscript) detail a concentration-response curve showing that at little as 62.5 mM CoA – the lowest concentration tested – was sufficient to enhance IL-4 cell surface marker expression.

      However, it is an excellent suggestion as the reviewer notes, to conduct a similar concentration-response to determine if this lines up with CoA inducing a pro-inflammatory response. The full data set is presented in the answer to reviewer question 4 (comparing CoA purchased from Sigma vs. Avanti Polar Lipids), though we now show in Supplemental Figure S3 that 62.5 mM CoA is sufficient to elicit a pro-inflammatory response. Though it is indeed a weak effect as noted by the reviewer, our data suggest that the relatively mild stimulus is crucial for the effect. Given the results with the TLR3 agonist Poly I:C (Figure 5), which engages a Type 1 interferon response, strong TLR4 agonists that engage the TRIF/Type I interferon arm of the TLR4 response are likely to blunt or block the IL-4 response.

      • Related question: we are informed that the concentration of CoA in the mitochondrial matrix is 5mM, whereas cytosol contains 100µM. For CoA to act as DAMP, I would like to know the concentration of it in supernatants of cell cultures (live vs. dying/dead cells) and from tissues. *

      This is an important point brought up by the reviewer, and we agree that the implicit issue raised (i.e. “do the concentrations of CoA required to see an effect reconcile with a physiological role as a DAMP?”) should be more thoroughly addressed in the manuscript. Tissue concentrations of free CoA (in ng/mg tissue) are well established for mice and range from >100 nmol/g tissue (liver, heart, brown adipose tissue) to Nonetheless, the reviewer’s larger point is very well reasoned, and we address it in the following ways in the discussion on __Lines 378-391. __

      • In light of the reviewer’s comment, we now mention specific instances in the discussion where CoA acting as a DAMP may reasonably play a physiological role (e.g. acetaminophen-induced acute liver injury or other forms of sterile liver injury given that DAMPs are known to be important factors and liver tissue contains relatively high concentrations of CoA).
      • Although cytoplasmic concentrations of CoA may only be 50-100 mM, our work establishes a framework for how ubiquitous metabolic co-factors can activate pattern recognition receptors. Put another way, although CoA itself may not be a physiologically relevant DAMP, discovering this pathway could inform how other nucleotide or nucleoside analogs (e.g. adenine- or adenosine-containing molecules present at millimolar concentrations) exert their effects on innate immunity.
      • Our newly obtained data with HMDMs (Figure 1h) shows that the CoA response in human macrophages – boosting IL-4-linked gene expression by 10-100X – may be much stronger than the 1.5-5X effect observed in mouse BMDMs. As such, it is exciting to speculate that CoA may have a more potent effect on the IL-4 response in humans relative to mice. We trust the reviewer understands the limitations of obtaining human macrophages that preclude conducting a thorough concentration-response analysis given the restrictions of a manuscript revision.
      • It is very good that the authors validate the findings obtained using the yeast-derived CoA with the synthetic molecule. It is very conceivable that the 15% contaminating substances in the yeast CoA could be causing the observed changes in m(IL-4). The fact that synthetic CoA has higher activity in proinflammatory gene expression by BMM (Suppl. Fig. S3) is reassuring, however, it raises the question why this is the case. One possibility is that the concentrations of the different CoA preps cannot directly be compared. Therefore, dose response curves should also be provided for synthetic CoA. *

      This is an astute observation by the reviewer and we thank them for reading our manuscript with such detailed attention to pick this up. We are reassured that the reviewer shares our interpretation that the effect of CoA is not due to a contaminating TLR4 agonist in the yeast-derived preparation (from Sigma-Aldrich; ~85% pure) given a negative Limulus Test (Supplemental Figure S4b). Moreover, the synthetically-derived preparation (from Avanti Polar Lipids; ~99% pure) yields a stronger TLR4 response.

      An exploration of the follow-on question regarding why the effect is greater than 15% is presented below. These experiments have been added to Supplemental Figure S4c&d. The summary of our data suggests the individual concentrations indeed cannot be compared – matched concentrations of synthetic Avanti CoA have greater than a 15% effect than yeast-derived Sigma CoA. There are likely multiple factors that could explain this, some of which are listed below.

      • The physiological effect of a TLR agonist need not be linear with its concentration, as demonstrated by the sigmoidal calibration curves for the TLR-expressing HEK-blue cells (Figures 4b, S4a). This likely does not explain the dramatic difference between the two CoA preparations but is worth noting.
      • While we have determined that the 15% contaminating substances in the yeast-derived CoA are not causing the observed changes in the IL-4 response, it is formally possible that there are contaminating substances blunting the pro-inflammatory response and therefore limiting the effect of CoA purchased from Sigma-Aldrich relative to that from Avanti Polar Lipids. Importantly, however, our data in response to Reviewer Question #5 show there is no difference in amplifying the IL-4 response between the yeast- and synthetically-derived CoA.
      • The difference in activity of yeast and synth. CoA could also be caused by the additional biologically active molecules in the yeast CoA. Therefore, it is important to show that the key findings in the paper (enhancement of m(IL-4) associated gene expression and CD206+ upregulation in vitro and in vivo) are also induced by synth. CoA. This is even more important in the context of the Myd88-independence of CD206+ upregulation in BMM treated with CoA (Suppl. Fig. S4). The experiment should be repeated with synth. CoA. If the enhancement of CD206+ cells induced by CoA is indeed unchanged in Myd88 KO BMM, then the title of the manuscript "CoA enhances alternative macrophage activation via Myd88" would not be supported by the data and needed to be changed. Activation of the TLR4 reporter cell line should also be tested using the synth. CoA molecule.*

      We are grateful for this suggestion by the reviewer to further cement the idea that our observation of CoA enhancing the macrophage IL-4 response was not due to a contaminant in the Sigma-Aldrich CoA preparation. The reviewer makes a few points in this question which we address individually here.

      • The suggestion to confirm that the CoA-induced enhancement of M(IL-4) is not due to a contaminating substance in the Sigma-Aldrich CoA is excellent and necessary. Here we show that synthetically derived CoA (99% pure, purchased from Avanti Polar Lipids) quantitatively reproduces the effect from yeast-derived CoA from Sigma-Aldrich in Supplemental Figure S4e. The response is noteworthy because synthetic CoA has profoundly stronger pro-inflammatory response than yeast-derived CoA, yet both have a similar effect on augmenting M(IL-4). This suggests that any appropriate pro-inflammatory response – irrespective of the relative strength or weakness – is sufficient to maximize the effect. This can also be observed with the range of MyD88-linked TLR agonists used in Figures 5 and S6a.
      • Similarly, we also conducted experiments to show that the effect of synthetic CoA on M(IL-4) is independent of MyD88 similarly to yeast-derived CoA. These data are present in Supplemental Figure S6b&c. Here again, we should note that the effect of synthetic CoA is quantitatively similar to the effect of yeast CoA and Imiquimod (Supplemental Figure S6a).
      • Activation of the TLR4 reporter cell line is available in Supplemental Figure S4c.
      • Regarding the title of the manuscript, we acknowledge that we struggled a bit with how to frame our findings. Importantly, our findings support a model where (i) CoA provision enhances the IL-4 response not via metabolic changes but rather by acting as a mild pro-inflammatory stimulus, and (ii) MyD88 signaling augments the IL-4 response. We should also note that our findings simply show that CoA does not exclusively enhance the IL-4 response via MyD88 signaling, and there may be other redundant pathways (similarly to MyD88 agonist imiquimod but unlike the MyD88 agonists Pam3-CSK4 and low concentrations of LPS). We are open to working journal editors to strike the right balance of scientific accuracy and representation of the work when deciding on a final title.
      • The results from the tumor model in Fig. 5 are presented to show a stronger tumor-promoting effect of m(IL-4) stimulated with Pam3. However, the variability of the data is high and 2 out of 6 mice in the +Pam3 group appear to actually have a lower tumor weight than the control mice. Therefore, these data are quite superficial and preliminary, and would benefit from a replicate experiment. Furthermore, for the evaluation of CoA as a biologically relevant DAMP, it would be important to know whether CoA-treated m(IL-4) show the same tumor-promoting effect in vivo as Pam3. *

      We thank the reviewer for their comment, and agree that our in vivo work is indeed preliminary. Our goal with this report was to focus on the initial discovery of this molecular pathway and its first, broad characterization using a range of techniques (e.g. in vivo outcomes, ATAC-Seq, etc.), many of which can spur more detailed follow-up studies for future papers. As detailed in the manuscript discussion (Lines 415-419), future work beyond our initial discovery is warranted to thoroughly explore the physiological outcomes of CoA as a metabolic DAMP in relevant model systems such as acute liver injury. As an initial proof-of-concept to show that MyD88 signaling can enhance alternative activation, however, we believe our two discrete experiments (sterile inflammation and tumor formation) are sufficient to indicate the phenotype is likely relevant in animal models. In vivo syngeneic tumor models display natural variability in tumor size due to differences in implantation efficiency, host immune responses, and tumor-intrinsic growth kinetics. Nonetheless, our statistical analysis demonstrates that, with high confidence, that the observed differences are reproducible and not attributable to random variation.

      Minor comments:

        • Fig. 1b: where the gates for CD206/CD301 set based on isotype control stainings? *

      We thank the reviewer for pointing out this oversight in our methods. The gates were indeed set on isotype control stains, and this is now mentioned in Lines 519-521 of the revised manuscript.

      The formatting not cohesive m(IL-4) vs. M(IL-4)

      Again, this is an embarrassing oversight on our part and we have done our very best to copy edit the piece and remove any inconsistencies and errors.

      *Methods: primer sequences are not shown. They should be provided. *

      We thank the reviewer for pointing this out, and now include all primer sequences used in Supplemental Table 1 of the revised manuscript.

      Description of flowcytometry (L/D staining after surface? No washing steps after addition of L/D staining)

      We thank the reviewer for pointing out another oversight in our methods, and have provided a more detailed description of the flow cytometric analysis in Lines 509-521 of the revised manuscript.

      Statistics: the methods section states that variability is indicated by SD, but the Figure legends always mention SEM. Please correct.

      We are grateful for the reviewer’s helpful attention to detail, and have corrected the methods to line up with the figure legends.

      *A multitude of typos and editorial inconsistencies (e.g. spelling of m(IL-4), punctation and capitalization) should be corrected/streamlined. *

      We are grateful for the reviewer’s helpful attention to detail, and have done our best to copy edit the manuscript prior to resubmission.

      Reviewer #3 (Significance (Required)):

      strengths: I like that the authors follow up their previous work on Etomoxir and CoA, now finding again an unexpected twist in how the effect on m(IL-4) is brought about. This makes the story more complicated, but is important to get to a more precise and realistic understanding of metabolic and transcriptomic regulation and how they are interconnected (or not). In addition, the use of a relatively broad set of methods including ATACseq and mass spectrometry is a strength.

      weakness: the use of the not very pure yeast derived CoA prep, which is controlled for induction of proinflammatory cytokines by one experiment with synth. CoA. This validation needs to be expanded (see comments above) to substantiate the main message of the manuscript.

      The scope of the manuscript is quite focussed on the mechanism of CoA enhanced m(IL-4). The finding that CoA appears not to act by changing intracellular macrophage metabolism but instead after its release by activation TLR4 widens the scope and suggests a new function for CoA as DAMP. This aspect would need to be further substantiated to be convincing.

      Audience: scientists working at the intersection between metabolism and innate immunity will be interested in the results.

      We thank the reviewer for their kind comments regarding the precision, credibility, and breadth of our manuscript. We hope they find our revised manuscript an improvement over our previous submission regarding both the new experiments and modified text. The comments have undoubtedly improved our manuscript and we are grateful to the reviewer for the considerable effort they put into reading our submission.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary:

      In this manuscript on enhancement of mIL-4 polarization by exogenous CoA, the authors follow up on their previous studies that had shown a correlation between Etomoxir-driven block in mIL-4 and a reduction of intracellular CoA levels. The results obtained (lack of enhancement of IL-4-induced changes in oxidative phosphorylation and glycolysis; lack of impact of pharmacological decrease/increase of intracellular CoA levels) led them to discard their initial hypothesis. Instead, the presence of a proinflammatory gene signature in macrophages treated with IL-4+CoA triggered experiments testing the involvement of TLR-Myd88 signaling and the identification of CoA as a weak agonist for TLR4 (which is consistent with a preprint manuscript posted in 2022 by others and showing induction of proinflammatory gene express in a TLR2/4-dependent manner).

      Significance:

      Overall, these results are novel and interesting, although the use of yeast-derived CoA preparations raises a question about the contribution of contaminants that is only partially controlled by data obtained with a synthetic CoA. Regarding a biological role for CoA in macrophage biology in vivo, the authors propose that CoA may act as a DAMP upon release from dying/dead cells and thereby modify transcriptional polarization of m(IL-4). I have several comments related to specific experimental conditions and interpretation that should be addressed. Most importantly, the key findings of the manuscript should be demonstrated using synthetic CoA as described in comment #5.

      Major comments:

      1. Increasing/decreasing intracellular CoA levels does not alter IL-4-induced CD206 expression (Fig. 2i/j. However, the impact of CoA addition to mIL-4 is stronger for Ccl8 and Mgl2 mRNA (Fig. 1a) than for the CD206+ cell fraction (Fig. 1d). Therefore, it would be better (higher sensitivity) to include expression of these genes as readout after CPCA/PZ-2891 treatment.
      2. The CoA-induced proinflammatory gene expression in Fig. 3c is relatively weak (e.g. compared to LPS). The authors use CoA throughout the manuscript at a concentration of 1 mM, and we do not know how much of it is required to cause an effect at all. Therefore, dose-response curves for the stimulation of macrophages with titrated amounts of CoA should be provided. In addition,
      3. Related question: we are informed that the concentration of CoA in the mitochondrial matrix is 5mM, whereas cytosol contains 100µM. For CoA to act as DAMP, I would like to know the concentration of it in supernatants of cell cultures (live vs. dying/dead cells) and from tissues.
      4. It is very good that the authors validate the findings obtained using the yeast-derived CoA with the synthetic molecule. It is very conceivable that the 15% contaminating substances in the yeast CoA could be causing the observed changes in m(IL-4). The fact that synthetic CoA has higher activity in proinflammatory gene expression by BMM (Suppl. Fig. S3) is reassuring, however, it raises the question why this is the case. One possibility is that the concentrations of the different CoA preps cannot directly be compared. Therefore, dose response curves should also be provided for synthetic CoA.
      5. The difference in activity of yeast and synth. CoA could also be caused by the additional biologically active molecules in the yeast CoA. Therefore, it is important to show that the key findings in the paper (enhancement of m(IL-4) associated gene expression and CD206+ upregulation in vitro and in vivo) are also induced by synth. CoA. This is even more important in the context of the Myd88-independence of CD206+ upregulation in BMM treated with CoA (Suppl. Fig. S4). The experiment should be repeated with synth. CoA. If the enhancement of CD206+ cells induced by CoA is indeed unchanged in Myd88 KO BMM, then the title of the manuscript "CoA enhances alternative macrophage activation via Myd88" would not be supported by the data and needed to be changed. Activation of the TLR4 reporter cell line should also be tested using the synth. CoA molecule.
      6. The results from the tumor model in Fig. 5 are presented to show a stronger tumor-promoting effect of m(IL-4) stimulated with Pam3. However, the variability of the data is high and 2 out of 6 mice in the +Pam3 group appear to actually have a lower tumor weight than the control mice. Therefore, these data are quite superficial and preliminary, and would benefit from a replicate experiment. Furthermore, for the evaluation of CoA as a biologically relevant DAMP, it would be important to know whether CoA-treated m(IL-4) show the same tumor-promoting effect in vivo as Pam3.

      Minor comments:

      1. Fig. 1b: where the gates for CD206/CD301 set based on isotype control stainings?
      2. The formatting not cohesive m(IL-4) vs. M(IL-4)
      3. Methods: primer sequences are not shown. They should be provided.
      4. Description of flowcytometry (L/D staining after surface? No washing steps after addition of L/D staining)
      5. Statistics: the methods section states that variability is indicated by SD, but the Figure legends always mention SEM. Please correct.
      6. A multitude of typos and editorial inconsistencies (e.g. spelling of m(IL-4), punctation and capitalization) should be corrected/streamlined.

      Significance

      Strengths: I like that the authors follow up their previous work on Etomoxir and CoA, now finding again an unexpected twist in how the effect on m(IL-4) is brought about. This makes the story more complicated, but is important to get to a more precise and realistic understanding of metabolic and transcriptomic regulation and how they are interconnected (or not). In addition, the use of a relatively broad set of methods including ATACseq and mass spectrometry is a strength.

      Weakness: the use of the not very pure yeast derived CoA prep, which is controlled for induction of proinflammatory cytokines by one experiment with synth. CoA. This validation needs to be expanded (see comments above) to substantiate the main message of the manuscript.

      The scope of the manuscript is quite focussed on the mechanism of CoA enhanced m(IL-4). The finding that CoA appears not to act by changing intracellular macrophage metabolism but instead after its release by activation TLR4 widens the scope and suggests a new function for CoA as DAMP. This aspect would need to be further substantiated to be convincing.

      Audience: scientists working at the intersection between metabolism and innate immunity will be interested in the results.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      This is a fairly straightforward manuscript that indicated CoA acts as a "weak" TLR4 agonist and primes macrophages for alternative activation. Overall, the experiments are well done and clear enough. There are two major issues that need to be addressed:

      1. Previous work has shown the following pathway: LPS>IL10>STAT3>IL4Ra>>>increased responsiveness to IL4/IL13 and increased expression of M2 associated markers (please note, this pathway does not apply to Arg1, often erroneously associated with M2 macrophages - LPS induces Arg1 far more than IL4 and this is independent of the STAT6 pathway - Dichtl et al., Science Advances and El Kasmi et al. Nature Immunology, and others). This pathway was first described in Lang et al. 2002 J. Immunol. Subsequently, other groups showed IL6 (Jens Brüning) and OSM (Carl Richards) do the same thing, which is not surprising given that they are STAT3 activators. Thus, Il4ra is a STAT3 target gene; this also makes sense in the kinetic evolution of macrophages from inflammatory to tissue reparative (if they survive). In my view, the authors have most likely found the same pathway. In Jones, expression of the IL4Ra was not quantified. Thus, the pathway described above needs to be accounted for. It may not apply here but seems the easiest explanation of the data.
      2. Can the authors come up with a meaningful in vivo experiment to corroborate their data. Pantothenate-deficient mice have many phenotypes (not fully explored at all - PMID 31918006, for example) and pantothenate metabolism can be manipulated in different ways. Obviously, a complex in vivo experiment is not feasible here. But this should be discussed. What happens in human macrophages, where "polarization" is a completely different beast?

      Significance

      This is a fairly straightforward manuscript that indicated CoA acts as a "weak" TLR4 agonist and primes macrophages for alternative activation. Overall, the experiments are well done and clear enough.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Jones et al. have submitted a manuscript detailing the role of Coenzyme A in the regulation of macrophage polarization. Overall, the manuscript is well designed, and the conclusions are well supported by the data. I find no major or minor deficiencies that need to be corrected.

      Significance

      For decades the immunology community has boldly stated that mitochondrial metabolism not only provides the bioenergetics for cell expansion but also dictates cell fate. This has been especially true for fatty acid beta oxidation. Macrophage, T-cell and B-cell polarization have all been shown to require FAO for their polarization, but all based on one inhibitor. NONE of these observations hold up with more rigorous experimentation. The Divakaruni group has previously suggested that intracellular CoA homeostasis was the driver of macrophage differentiation as they could reverse the inhibitory effects by providing heroic levels of CoA extracellularly. Here, they have clarified the role of CoA. Intracellular CoA does not affect macrophage polarization/differentiation. This was done with cleaver manipulation of the CoA pools. Rather, extracellular CoA can act as a weak TLR4 ligand. This work nicely clarifies their previous work and further demonstrates a role for this metabolite as an endogenous activator of type 1 macrophages.

    1. never been easier as dozens of books have been written on the topic and hundreds of videos have been posted online demonstrating effective strategies.

      The great thing about the field of teaching is how current issues are researched and studied to find solutions for modern classrooms.

    2. Teachers use the information they gain from questioning and observation to adjust their teaching during classroom instruction.

      It can be a burden to adjust a lesson plan that a teacher has already spent a lot of time developing for students struggling to learn.

    3. informal assessments, assessments that can easily be incorporated into day-to-day classroom activities.

      As the field of education develops we should consider assessments as more than just tests and quizzes. They should fit the diverse learning styles of students. Include the Universal Design for Learning when making assessments.

    1. eLife Assessment

      This fundamental work significantly advances our understanding of gravity sensing and orientation behavior in the ctenophore, an animal of major importance in understanding the evolution of nervous systems. Through comprehensive reconstruction with volumetric electron microscopy, and time-lapse imaging of cilia motion, the authors provide compelling evidence that the aboral nerve net coordinates the activity of balancer cilia. The resemblance to the ciliomotor circuit in marine annelids provides a fascinating example of how neural circuits may convergently evolve to solve common sensorimotor challenges.

    2. Reviewer #1 (Public review):

      Summary:

      This work presents an interesting circuit dissection of the neural system allowing a ctenophore to keep its balance and orientation in its aquatic environment by using a fascinating structure called the statocyst. By combining serial-section electron microscopy with behavioral recordings, the authors found a population of neurons that exists as a syncytium and could associate these neurons with specific functions related to controlling the beating of cilia located in the statocyst. The type A ANN neurons participate in arresting cilia beating, and the type B ANN neurons participate in resuming cilia beating and increasing their beating frequency.

      Moreover, the authors found that bridge cells are connected with the ANN neurons, giving them the role of rhythmic modulators.

      From these observations, the authors conclude that the control is coordination instead of feedforward sensory-motor function, a hypothesis that had been put forth in the past but could not be validated until now. They also compare it to the circuitry implementing a similar behavior in a species that belongs to a different phylum, where the nervous system is thought to have evolved separately.

      Therefore, this work significantly advances our knowledge of the circuitry implementing the control of the cilia that participate in statocyst function, which ultimately allows the animal to correct its orientation. It represents an example of systems neuroscience explaining how the nervous system allows an animal to solve a specific problem and puts it in an evolutionary perspective, showing a convincing case of convergent evolution.

      Strengths:

      The evidence for how the circuitry is connected is convincing. Pictures of synapses showing the direction of connectivity are clear, and there are good reasons to believe that the diagram inferred is valid, even though we can always expect that some connections are missing.

      The evidence for how the cilia change their beating frequency is also convincing, and the paradigm and recording methods seem pretty robust.

      The authors achieved their aims, and the results support their conclusions. This work impacts its field by presenting a mechanism by which ctenophores correct their balance, which will provide a template for comparison with other sensory systems.

      Weaknesses:

      The evidence supporting the claim that the neural circuitry presented here controls the cilia beating is more correlational because it only relies on the fact that the location of the two types of ANN neurons coincides with the quadrants that are affected in the behavioral recordings. Discussing ways by which causality could be established might be helpful.

      The explanation of the relevance of this work could be improved. The conclusion that the work hints at coordination instead of feedforward sensory-motor control is explained over only a few lines. The authors could provide a more detailed explanation of how the two models compete (coordination vs feedforward sensory-motor control), and why choosing one option over the other could provide advantages in this context.

      Since the fact that the ANN neurons form a syncytium is an important finding of this study, it would be useful to have additional illustrations of it. For instance, pictures showing anastomosing membranes could typically be added in Figure 2.

      Also, to better establish the importance of the study, it could be useful to explain why the balancers' cilia spontaneously beat in the first place (instead of being static and just acting as stretch sensors).

    3. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors describe the production of a high-resolution connectome for the statocyst of a ctenophore nervous system. This study is of particular interest because of the apparent independent evolution of the ctenophore nervous system. The statocyst is a component of the aboral organ, which is used by ctenophores to sense gravity and regulate the activity of the organ's balancer cilia. The EM reconstruction of the aboral organ was carried out on a five-day-old larva of the model ctenophore Mnemiopsis leidyi. To place their connectome data in a functional context, the authors used high-speed imaging of ciliary beating in immobilized larvae. With these data, the authors were able to model the circuitry used for gravity sensing in a ctenophore larva.

      Strengths:

      Because of it apparently being the sister phylum to all other metazoans, Ctenophora is a particularly important group for studies of metazoan evolution. Thus, this work has much to tell us about how animals evolved. Added to that is the apparent independent evolution of the ctenophore nervous system. This study provides the first high-resolution connectomic analysis of a portion of a ctenophore nervous system, extending previous studies of the ctenophore nervous system carried out by Sid Tamm. As such, it establishes the methodology for high-resolution analysis of the ctenophore nervous system. While the generation of a connectome is in and of itself an important accomplishment, the coupling of the connectome data with analysis of the beating frequency of balancer cell cilia provides a functional context for understanding how the organization of the neural circuitry in the aboral organ carries out gravity sensing. In addition, the authors identified a new type of syncytial neuron in Mnemiopsis. Interestingly, the authors show that the neural circuitry controlling cilia beating in Mnemiopsis shares features with the circuitry that controls ciliary movement in the annelid Platynereis, suggesting convergent evolution of this circuitry in the two organisms. The data in this paper are of high quality, and the analyses have been thoroughly and carefully done.

      Weaknesses:

      The paper has no obvious weaknesses.

    4. Reviewer #3 (Public review):

      Summary:

      It has been a long time since I enjoyed reviewing a paper as much as this one. In it, the authors generate an unprecedented view of the aboral organ of a 5-day-old ctenophore. They proceed to derive numerous insights by reconstructing the populations and connections of cell types, with up to 150 connections from the main Q1-4 neuron.

      Strengths:

      The strengths of the analysis are the sophisticated imaging methods used, the labor-intensive reconstruction of individual neurons and organelles, and especially the mapping of synapses. The synaptic connections to and from the main coordinating neurons allow the authors to create a polarized network diagram for these components of the aboral organ. These connections give insight into the potential functions of the major neurons. This also gives some unexpected results, particularly the lack of connections from the balancer system to the coordinating system.

      Weaknesses:

      There were no significant weaknesses in the paper - only a slate of interesting unanswered questions to motivate future studies.

    1. eLife Assessment

      This valuable work presents a novel computational framework for modeling macroscopic traveling waves in the mouse cortex by integrating open-source connectomic and transcriptomic data into a spiking network model. This approach allows the computational model to assign excitatory/inhibitory connections based on neurotransmitter profiles and extends simulations to the 3D domain. The authors present results that demonstrate how spatiotemporal dynamics such as slow oscillations (0.5-4 Hz) emerge and self-organize at the whole-brain scale. This study provides convincing initial insights into the structural basis of traveling waves at the whole-brain scale in the mouse.

    2. Reviewer #1 (Public review):

      Summary:

      The manuscript "Realistic coupling enables flexible macroscopic traveling waves in the mouse cortex" by Sun, Forger, and colleagues presents a novel computational framework for studying macroscopic traveling waves in the mouse cortex by integrating realistic brain connectivity data with large-scale neural simulations.

      The key contributions include:<br /> (1) developing an algorithm that combines spatial transcriptomic data (providing detailed neuron positions and molecular properties) with voxelized connectivity data from the Allen Brain Atlas to construct neuron-to-neuron connections across ~300,000 cortical neurons;<br /> (2) building a GPU-accelerated simulation platform capable of modeling this large-scale network with both excitatory and inhibitory Hodgkin-Huxley neurons;<br /> (3) extending phase-based analysis methods from 2D to 3D to quantify traveling wave activity in the realistic brain geometry; and<br /> (4) demonstrating that realistic Allen connectivity generates significantly higher levels of macroscopic traveling waves compared to simplified local or uniform connectivity patterns.

      The study reveals that wave activity depends non-monotonically on coupling strength and that slow oscillations (0.5-4 Hz) are particularly conducive to large-scale wave propagation, providing new insights into how anatomical connectivity enables flexible spatiotemporal dynamics across the cortex.

      Strengths:

      The authors leverage two existing dense datasets of spatial transcriptomic data and connection strength between pairwise voxels in the mouse cortex in a novel way, allowing for the computational model to capture molecular and functional properties of neurons as determined by their neurotransmitter profiles, rather than making arbitrary assignments of excitatory/inhibitory roles. Additionally, the author's expansion of 2D phase dynamics to 3D phase gradient analysis methods is important and can be widely applied to calcium imaging, LFP recordings, and likely other electrophysiological recordings.

      Weaknesses:

      Despite these important computational advancements, a few aspects of this model, particularly the inability to validate the model with experimental neural data, diminish my enthusiasm for this paper:

      (1) The model's Allen connectivity approach overlooks critical aspects of real cortical dynamics. Most importantly, it excludes subcortical structures, especially the thalamus, which drives cortical traveling waves through thalamocortical interactions. The authors' method of electrically stimulating all layer 4 neurons simultaneously to initiate waves is artificially crude and bears little resemblance to natural wave generation mechanisms.

      (2) The model handles voxel-to-voxel connections crudely when neurons have mixed excitatory/inhibitory properties and varying synaptic strengths. Real connectivity differs dramatically between neuron types (pyramidal cells vs. interneurons, across cortical layers), but the model only distinguishes excitatory and inhibitory neurons. Additionally, uniform synaptic weights ignore natural variations in connection strength based on neuron type, distance, and functional role. Integrating the updated thalamocortical dataset mentioned by the authors, even at regional resolution, would substantially improve the model.

      (3) While the authors bridge microscopic (single neuron) and mesoscopic (regional connectivity) data to study macroscopic (whole-cortex) waves, they don't integrate the distinct mechanisms operating at each scale. The framework demonstrates that realistic connectivity enables macroscopic waves but fails to connect how wave dynamics emerge and interact across spatial scales systematically.

      (4) Claims that Allen connectivity produces higher phase gradient directionality (PGD) than local connectivity appear limited to delta oscillations at very specific coupling strengths and applied currents. Few parameter combinations show significantly higher PGD for Allen connectivity, and these are generally low PGD values overall.

      (5) Broadly, it's unclear how this computational framework can study memory, learning, sleep, sensory processing, or disease states, given the disconnect between simulated intracellular voltages and the local field potentials or other electrophysiological measurements typically used to study cortical traveling waves. While computationally impressive, the practical research applications remain vague.

      (6) The paper needs a clearer explanation for why medium coupling (100%) eliminates waves in Allen connectivity (Figure 6) while stronger coupling (150%) restores them.

      (7) Does using a single connectivity parameter (ρ = 300) across all regions miss important regional differences in cortical connectivity density?

    3. Reviewer #2 (Public review):

      Summary:

      This work presents a spiking network model of traveling waves at the whole-brain scale in the mouse neocortex. The authors use data from the Allen Institute to reconstruct connectivity between different neocortical sites. They then quantify macroscopic traveling waves following stimulation of all layer 4 neurons in the neocortex.

      Strengths:

      Overall, the results are interesting and shed new light on the dynamic organization of activity across the neocortex of the mouse. The paper uses realistic neuron models specifically fit to intracellular recordings, demonstrating that traveling waves occur in the mouse neocortex with both realistic connectivity and realistic single-neuron dynamics. The paper is also well-written in general. For these reasons, the authors have generally achieved their aims in this work.

      Weaknesses:

      (1) Description of Algorithm 1:<br /> While the Methods section clearly explains the density parameter \rho, the statement on line 358 concerning the "ideal" average number of connections is a little unclear. The authors should explicitly clarify that \rho is a free parameter that can be adjusted to balance computational feasibility (for a given set of computational resources) and biological fidelity.

      (2) Lines 102-103:<br /> The \rho parameter used here results in approximately 300 connections per neuron on average. The authors should state clearly that the number of connections per cell is the key determinant of computational feasibility (cf. Morrison et al., Neural Computation, 2005). The authors should also review neuronal density and synaptic connectivity in the mouse neocortex and clearly reference density and connectivity in their model to the biological scales found in the mouse.

      (3) Line 131:<br /> From the plots in Figure 2, it is not clear that the stimulus response is necessarily a rhythmic oscillation, in the sense of a single narrowband frequency.

      (4) Line 217:<br /> The authors should clarify how these findings relate to the results from Mohajerani et al. (Nature Neuroscience, 2013) or differ from them.

      (5) Line 230:<br /> Because higher temporal frequency activity also tends to be more spatially localized, a correlation between PGD and temporal frequency could be an inherent consequence of this relationship, rather than a meaningful result.

      (6) Line 247-248:<br /> It is not clear that the algorithm for generating connections between neurons presented here really relates to those for community detection. For example, in the case of the Allen Institute data, the communities are essentially in the data already.

      (7) Line 284-285:<br /> The relationship between conduction delay is more direct than this sentence suggests. Conduction delay is fundamentally determined by the time required for action potentials to propagate along axons, making it intrinsically linked to anatomical distance.

      (8) Line 287-288:<br /> The authors suggest at this point that they do not have enough information to estimate time delays due to axonal conduction along white matter fibers. However, experimental data from white matter connections typically includes information about fiber length, which does enable estimating conduction delays. These estimations have been previously implemented for Allen Institute connectome data in the mouse (Choi and Mihalas, PLoS Comput Biology, 2019) and human connectome data (Budzinski et al., Physical Review Research, 2023).

      (9) Lines 294-295:<br /> Several methods do exist for detecting and characterizing wave dynamics in three-dimensional data (Budzinski et al., Physical Review Research, 2023).

    1. eLife Assessment

      This important study utilizes behavioral data and computational modeling to show that spatial properties of visual attention affect human planning. The methodology and statistical analyses are solid, though the way attention is conceptualized and modeled could be refined. The findings of this study will interest cognitive scientists studying attention, perception, and decision-making.

    2. Reviewer #1 (Public review):

      Summary: This study investigated how visuospatial attention influences the way people build simplified mental representations to support planning and decision-making. Using computational modeling and virtual maze navigation, the authors examined whether spatial proximity and the spatial arrangement of obstacles determine which elements are included in participants' internal models of a task. The study developed and tested an extension of the value-guided construal (VGC) model that incorporates features of spatial attention for selecting simpler task mental representation.

      Strengths:

      (1) Original Perspective: The study introduces an explicit attentional component to established models of planning, offering an approach that bridges perception, attention, and decision-making.

      (2) Methodological Approach: The combination of computational modeling, behavioral data, and eye-tracking provides converging measures to assess the relationship between attention and planning representations.

      (3) Cross-validated data: The study relies on the analysis of three separate datasets, two already published and an additional novel one. This allows for cross-validation of the findings and enhances the robustness of the evidence.

      (4) Focus on Individual Differences: Reports of how individual variability in attentional "spillover" correlates with the sparsity of task representations and spatial proximity add depth to the analysis.

      Weaknesses:

      (1) Clarity of the VGC model and behavioral task: The exposition of the VGC model lacks sufficient detail for non-expert readers. It is not clear how this model infers which maze obstacles are relevant or irrelevant for planning, nor how the maze tasks specifically operationalize "planning" versus other cognitive processes.

      The method for classifying obstacles as relevant or irrelevant to the task and connecting metacognitive awareness (i.e., participants' reports of noticing obstacles) to attentional capture is not well justified. The rationale for why awareness serves as a valid attention proxy, as opposed to behavioral or neurophysiological markers, should be clearer.

      (2) Attention framework: The account of attention is largely limited to the "spotlight" model. When solving a maze, participants trace the correct trail, following it mentally with their overt or covert attention. In this perspective, relevant concepts are also rooted in attention literature pertaining to object-based attention using tasks like curve tracing (e.g., Pooresmaeili & Roelfsema, 2014) and to mental maze solving (e.g., Wong & Scholl, 2024), which may be highly relevant and add nuance to the current work. This view of attention may be more pertinent to the task than models of simultaneously tracking multiple objects cited here. Prior work (notably from the Roelfsema group) indicates that attentional engagement in curve-tracing tasks may be a continuous, bottom-up process that progressively spreads along a trajectory, in time and space, rather than a "spotlight" that simply travels along the path. The spread of attention depends on the spatial proximity to distractors - a point that could also be pertinent to the findings here.

      Moreover, the tracing of a "solution" trail in a maze may be spontaneous and not only a top-down voluntary operation (Wong & Scholl, 2024), a finding that requires a more careful framing of the link to conscious perception discussed in the manuscript.

      Conceptualizing attention as a spatial spotlight may therefore oversimplify its role in navigation and planning. Perhaps the observed attentional modulation reflects a perceptual stage of building the trail in the maze rather than a filter for a later representation for more efficient decision making and planning. A fuller discussion of whether the current model and data can distinguish between these frameworks would benefit readers.

      (3) Lateralization of attention: The analysis considers whether relevant information is distributed bilaterally or unilaterally across the visual display, but does not sufficiently address evidence for attentional asymmetries across the left and right visual fields due to hemispheric specialization (e.g., Bartolomeo & Seidel Malkinson, 2019). Whether effects differ for left versus right hemifield arrangements is not made explicit in the presented findings.

      (4) Individual differences: Individual differences in attentional modulation are a strength of the work, but similar analyses exploring individual variation in lateralization effects could provide further insight, and the lack of such analyses may mask important effects.

      (5) Distinction between overt and covert attention: The current report at times equates eye movement patterns with the locus of attention. However, attention can be covertly shifted without corresponding gaze changes (see, for example, Pooresmaeili & Roelfsema, 2014).

      The implications for interpreting the relationship between eye movement, memory, and attention in this setting are not fully addressed. The potential dynamics of attention along a maze trajectory and their impact on lateralization analysis would benefit from further clarification.

      Appraisal of Aims and Results:

      The study sets out to determine how spatial attention shapes the construction of task representations in planning contexts. The authors provide evidence that spatial proximity and arrangement influence which environmental features are incorporated into internal models used for navigation, and that accounting for these effects improves model predictions. There is clear documentation of individual variation, with some participants showing greater attentional spillover and more sparse awareness profiles.

      However, some conceptual and methodological aspects would be clearer with greater engagement with the broader literature on attention dynamics, a more explicit justification of operational choices, and more targeted lateralization analyses.

    3. Reviewer #2 (Public review):

      Summary:

      Castanheira et al. investigate the role of spatial attention for planning during three maze navigation experiments (one new experiment and two existing datasets). Effective planning in complex situations requires the construction of simplified representations of the task at hand. The authors find that these mental representations (as assessed by conscious awareness) of a given stimulus are influenced by (spatially) surrounding stimuli. Individual participants varied in the degree to which attention influenced their task representations, and this attentional effect correlated with the sparsity of representations (as measured by the range of awareness reports across all stimuli). Spatially grouping task-relevant information on either the left or right side of the maze led to mental representations more similar to optimal representations predicted by the value-guided construal (VGC) model - a normative model describing a theoretical approach to simplifying complex task information. Finally, the authors propose an update to this model, incorporating an attentional spotlight component; the revised descriptive model predicts empirical task representations better than the original (normative) VGC model.

      Strengths:

      The novelty of this study lies in the proposal and investigation of a cognitive mechanism through which a normative model like value-guided construal can enable human planning. After proposing attention as this mechanism, the authors make concrete hypotheses about mismatches between the VGC predictions and real human behavior, which are experimentally validated. Thus, not only does this study describe a possible mechanism for simplification of task information for planning, but the authors also propose a descriptive model, revising VGC to incorporate this attentional component.

      A strength of this paper is the variety of investigative approaches: analysis of existing data, novel experiment, and a computational approach to predict experimental findings from a theoretical model. Analyzing pre-existing datasets increases the size of the participant cohort and strengthens the authors' conclusions. Meanwhile, comparing the predictions of the existing normative model and the authors' own refined model is a clever approach to substantiate their claims. In addition, the authors describe several crucial controls, which are key to the interpretability of their results. In particular, the eye tracking results were critical.

      In summary, this paper constitutes an important step toward a more complete understanding of the human ability to plan.

      Weaknesses:

      (1) There is a critical conceptual gap in the study and its interpretation, mainly due to the reliance on a self-report metric of awareness (rather than an objective measure of behavioral performance).

      a. Awareness is tested by a 9-point self-report scale. It is currently unclear why awareness of task-irrelevant obstacles in this task would necessarily compromise optimal planning. There is no indication of whether self-reported awareness affects performance (e.g., navigation path distance, time to complete the maze, number of errors). Such behavioral evidence of planning would be more compelling.

      b. Relatedly, it would have been more convincing to have an objective measure of awareness, for instance, how the presence or absence of a "task-irrelevant" obstacle affects performance (e.g., change navigation path distance or time to complete the maze), or whether participants can accurately recall the location of obstacles.

      c. Consequently, I'm not sure that we can conclude that the spatial context does impact participants' ability to plan spatial navigation or to "incorporate task-relevant information into their construal". We know that the spatial context affects subjective (self-reported) awareness, but the authors do not present evidence that spatial context affects behavioral performance.

      d. Another concern that may complicate interpretation is the following: Figure 3c shows improved VGC model predictions (steeper slope) for mazes with greater lateralization. However, there are notable outliers in these plots, where a high lateralization index does not correspond to good model performance. There is currently no discussion/explanation of these cases.

      (2) I noticed an issue with clarity regarding task-relevance. It is currently not fully clear which obstacles are "task irrelevant". Also, the term is used inconsistently, sometimes conflating with "awareness". For example, in the "Attentional spotlight model of task representations" section, the authors state that "task-relevant information becomes less relevant when surrounded by task-irrelevant information". But they really mean that participants become less aware of those task-relevant obstacles. I assume task-relevance is an objective characteristic related to maze organization, not to a participant's construal. Indeed, the following paragraph provides evidence of model predictions of awareness.

      (3) The behavioral paradigm has some distinct disadvantages, and the validity of the task is not backed up by behavioral data.

      a. I understand the need for central fixation, but it also makes the task less naturalistic.

      b. The task with its top-down grid view does not seem to mimic real human navigation. Though this grid may be similar to mental maps we form for navigation, the sensory stimuli corresponding to possible paths and to spatial context during real-life navigation are very different.

      c. Behavioral performance is not reported, so it is unknown whether participants are able to properly complete the task. The task seems pretty difficult to navigate, especially when the obstacles disappear, and in combination with the central fixation.

      d. There is no discussion of whether/how this navigation task generalizes to other forms of planning.

    4. Reviewer #3 (Public review):

      Summary:

      The authors build on a recent computational model of planning, the "value-guided construal" framework by Ho et al. (2022), which proposes that people plan by constructing simple models of a task, such as by attending to a subset of obstacles in a maze. They analyze both published experimental data and new experimental data from a task in which participants report attention to objects in mazes. The authors find that attention to objects is affected by spatial proximity to other objects (i.e., attentional overspill) as well as whether relevant objects are lateralized to the same hemifield. To account for these results, the authors propose a "spotlight-VGC" model, in which, after calculating attention scores based on the original VGC model, attention to objects is enhanced based on distance. They find that this model better explains participant responses when objects are lateralized to different hemifields. These results demonstrate complex interactions between filtering of task-relevant information and more classical signatures of attentional selection.

      Strengths:

      (1) The paper builds on existing modeling work in a novel manner and integrates classic results on attention into the computational framework.

      (2) The authors report new and extensive analyses of existing data that shed light on additional sources of systematic variability in responses related to attentional spillover effects

      (3) They collect new data using new stimuli in the original paradigm that directly test predictions related to the lateralization of task-relevant information, including eye tracking data that allows them to control for possible confounds.

      (4) The extended model (spotlight-VGC) provides a formal account of these new results.

      Weaknesses:

      (1) The spotlight-VGC model has a free parameter - the "width" of the attentional spotlight. This seems to have been fixed to be 3 squares. It would be good if the authors could describe a more principled procedure for selecting the width so that others can use the model in other contexts.

      (2) Have the authors considered other ways in which factors such as attentional spillover and lateralization could be incorporated into the model? The spotlight-VGC model, as presented, involves first computing VGC predictions and only afterwards computing spillover. This seems psychologically implausible, since it supposes that the "optimal" representation is first formed and then it gets corrupted. Is there a way to integrate these biases directly into the VGC framework, perhaps as a prior on construals? The authors gesture towards this when they talk about "inductive biases", but this is not formalized.

      (3) Can the authors rule out that the lateralization effects are the result of memory biases since the main measure used is a self-report of attention?

    1. The slow thinking skills that college cultivates also help us as professionals in fields beyond the academy

      Besides achieving the goal in our academics, it also helps in another way in our lives. The more we think deeply about issues, the more accurate decisions we make.

    2. people tend to make decisions quickly and base them heavily on emotion

      Really agree, you know, emotion is the hardest thing we can control. It takes time to learn and consider the consequences to decide what we should do in difficult situations, such as when we are angry or shocked. That's why adults often have better recommendations based on their experiences and wisdom!

    1. Have we not all been instructed in the sacrosanct virtues of beginning, middle, end? Complication, climax, resolution? A respect for Aristotelian unities? For the clarity of chronology? For clarity itself? As if the limitations of realism were not in fact limitations.

      O: This quote is very interesting to me because it stresses the structure of plays, books, and literature that we believe is important to follow, like we have been told. Also, we are told that literature is limitless and can express anything, however this structure we have been taught to follow in most english classes for years, does in fact limit our writing.

  2. teacher.imperial-english.com teacher.imperial-english.com
    1. Look at the answers to some questions about people’s daily lifestyles. Write the questions for each answer.

      Question 1) (How / many) How many siblings does she have?

      Question 2) (Where) Where do your parents live?

      Question 3) (Who) Who was your role model growing up?

      Question 4) (How / much) How much does a black coffee without milk cost?

      Question 5) (Why) Why did you choose Loughborough University?

    1. eLife Assessment

      This study presents a valuable and rigorous molecular resource, offering subtype-specific insight into the composition of ribosome-associated protein complexes in the developing cerebral cortex. The evidence is compelling in terms of data quality and is strongly supported by the results, given the rigorous technical execution. However, the findings remain primarily descriptive, as the study lacks functional validation to support mechanistic conclusions.

    2. Reviewer #1 (Public review):

      This work provides a valuable toolkit for endogenous isolation of projection neuron subtypes. With further validation, it could present a solid method for low-input ribosome affinity purification using a ribosomal RNA (rRNA) antibody. The experimental evidence for the distinct ribosomal complexes is limited to this method and indirect support from complementary analyses of pre-existing data. However, with additional experimental data to support the specificity of ribosomal complex pulldown and confirmation of the putative ribosomal complex proteins of interest, the study would provide compelling evidence for translation regulation of neuronal development through compositional ribosome heterogeneity. This work would be of interest to neuroscientists, developmental biologists, and those studying translational networks underlying gene regulation.

      Strengths

      (1) This in vivo labeling of specific projection neurons and ribosomal rRNA affinity purification method accommodates a low input of <100K somata per replicate, which is useful for the study of neuronal subtypes with limited input. In principle, this set of techniques could work across different cell types with limited input, depending on the molecule used for cell type labeling.

      (2) The authors are also able to isolate endogenous neurons with minimal perturbation up to the point of collection, preserving the native state for the neuron in vivo as long as possible prior to processing.

      (3) This study identified over a dozen potential non-ribosomal proteins associated with SCPN ribosomal complexes, as well as a ribosomal protein enriched in CPN.

      Limitations

      (1) In this study, the authors address the advantages of their ribosomal complex isolation method in SCPN and CPN against RPL22-HA affinity purification. While this does show more pull-down of the ribosomal RNA by the Y10B rRNA antibody, the authors claim this method identifies cell-type-specific ribosomal complex proteins without demonstrating a positive control for the method's specificity. There are very limited experiments to truly delineate how "specific" this method is working and whether there could be contamination from other complexes bound by the antibody. I see this as the major limitation that should be addressed. To boost their claims of capturing cell-type-specific ribosomal complexes, the authors could consider applying their rRNA affinity purification pipeline to compare cell types with well-characterized ribosome-associated proteins, like mouse embryonic stem cells and HELA cells. The reviewer can completely appreciate the elegance in the neural characterization here, but it seems there needs to be a solid foothold on the specificity of the method, perhaps facilitated by cell types that can be more readily scaled up and tested.

      (2) The authors followed up on their differentially enriched ribosomal complex proteins by analyzing the ribosome association of these proteins in external datasets. While this analysis supports the ribosome-association of these proteins, there is limited experimental validation of physical association with the ribosome, much less any functional characterization. The reciprocal pulldown of PRKCE is promising; however, I would recommend orthogonal validation of several putative ribosomal complex proteins to increase confidence. Specifically, the authors could use sucrose gradient fractionation of SCPN and CPN, followed by a western blot to identify the putative interaction with the 80S monosome or polysomes. This would also provide evidence towards the pulldown capturing association with mature ribosome species, which is currently unclear. This experiment would provide substantial evidence for the direct association of these non-ribosomal proteins with subtype-specific ribosomal complexes.

      (3) The authors state interest in learning more about the differences underlying translational regulation of projection neuron development. This method only captures neuronal somata, which will only capture ribosomes in the main cell body. There are also ribosomes regulating local translation in the axons, which may also play a critical role in axonal circuit establishment and activity. These ribosomal complex interactions may also be rather transient and difficult to capture at only one developmental stage. Therefore, this method is currently limited to a single developmental snapshot of ribosomal complexes at P3 within the main cell body. It would be exciting to see the extended utility of this method to sample neurites and additional developmental stages to gain further resolution on the developmental translation regulation of these projection neurons.

      Likely impact of the work on the field, and the utility of the methods and data to the community:

      The authors introduce a unique pipeline of techniques to identify cell-type-specific ribosomal complex compositions. With more validation, there is certainly potential for those studying neuronal translation to leverage this method in limited primary cells as an alternative to existing methods that do not rely on ribosomal protein tagging, such as ARC-MS (Bartsch et al., 2023), RAPIDASH (Susanto and Hung et al., 2024), and RAPPL (Nature Communications, 2025).

    3. Reviewer #2 (Public review):

      Summary:

      This study presents a sophisticated molecular dissection of ribosome-associated complexes (RCs) in two well-defined cortical projection neuron subtypes (ScPN and CPN) during early postnatal development. The authors develop and optimize an rRNA immunoprecipitation-mass spectrometry (rRNA IP-MS) workflow to recover RCs from FACS-purified, retrogradely labeled neurons, achieving remarkable subtype specificity and biochemical resolution. Through proteomic profiling, they reveal both shared and distinct ribosome-associated proteins between ScPN and CPN, with a focus on non-core RC components and their potential functional relevance. The work advances our understanding of cell-type-specific translation regulation, moving beyond the transcriptome to explore the proteome-level complexity in neuronal subtypes.

      Strengths:

      This work stands out for its technical sophistication and innovation. The authors combine retrograde labeling, FACS purification, and an optimized rRNA IP-MS approach (low input) to isolate ribosome-associated complexes from highly specific neuronal subtypes in vivo, a challenging issue that they execute with impressive rigor. The methodological pipeline is both elegant and well-controlled, yielding high-quality, reproducible data. The depth of proteomic coverage is remarkable, with nearly all known cytoplasmic ribosomal proteins identified, along with hundreds of ribosome-associated proteins (RAPs), including translation factors, chaperones, and RNA-binding proteins. The analysis not only reveals shared components between ScPN and CPN RCs but also uncovers subtype-specific differences in associated proteins.

      Particularly notable is the integration of this new proteomic dataset with previously published transcriptomic and ribosome footprinting data, which helps to validate the specificity and relevance of the findings. Overall, the clarity of the writing, the robustness of the data, and the transparency of the methods make this a strong and compelling contribution.

      Weaknesses:

      Despite the depth and high quality of the dataset, the study remains descriptive. While the identification of subtype-specific RC components is intriguing, the current version of the manuscript does not explore their functional roles or the biological consequences of their alterations. There is no perturbation, causal testing, in vitro or in vivo manipulation to demonstrate whether these proteins are necessary for ScPN or CPN identity, specific axonal targeting, metabolism, or synaptic function.

      One important point highlighted by the authors in the discussion - and critical for establishing the subtype specificity of the identified proteins - is that some ribosomal complexes may be specialized for specific developmental stages, rather than exclusively for the subtype-specific needs of projection neuron development. The work presented here provides a valuable starting point for further investigation into such RC specialization. However, it will be essential to determine to what extent these RCs exhibit true subtype specificity, independently of their temporal maturation context.

      As a result, key mechanistic insights remain a bit speculative. Although several of the identified proteins have known roles in processes like synaptogenesis or metabolism, their relevance to the specific neuronal subtypes under study is not experimentally addressed. That said, given its rich content and the comprehensive early postnatal dataset, the manuscript represents an extremely valuable resource for the community. While primarily exploratory, it lays a strong foundation for future functional studies aimed at uncovering the biological impact of the identified ribosomal complexes.

    1. The students kind of recognize that the system is broken and that there’s not really apoint in doing this. Maybe the original meaning of these assignments has been lost or is not beingcommunicated to them well.

      He argues that higher education focuses on the credentials and outcomes aspect rather than the actual understanding and learning aspect of education.

    2. We’re going to target the digitalLSATs;

      As someone who just took the LSAT...wow.

      Considering how LSAC is cracking down on the entirety of the students testing in China due to cheating misconduct, wonder what will happen here once this supposed LSAT cheating tool hits the market

    3. Professors and teaching assistants increasingly found themselves staring at essays filled withclunky, robotic phrasing that, though grammatically flawless, didn’t sound quite like a college student —or even a human.

      A lot of students think they can get away with this, when it really is so easy to tell the difference.

    4. “It’s the best place to meet your co-founder and your wife

      This is such a gross way of thinking (the wife part, especially considering how the "mrs degree" used to be a thing)

    5. we can’t really provethey’re using AI,’

      I disagree with this because there are so many tools to prove against AI and signs that the naked eye could notice.

    6. sounding strangely nostalgic for her high-school English class — the lasttime she wrote an essay unassisted.

      When the enjoyment of writing is present but the grades are an issue chat may provide better writing which is something that scare me about our generation because the pressure of competition of grades takes priority than the knowledge that could be gained

    1. AI will not take over the world because it lacks independent agency, intrinsic motivation, and thecomplex, adaptable reasoning that human beings possess

      AI does not have the ability to reason and think like a human does, which makes me believe that AI will not fully take us over at this point.

    2. ’m more concerned with my own concern. I’m concerned with the disposition that it’s making me adopt

      i wrote a story about ai use in films and how people were critical of the brutalist and i interviewed someone who said that the issue is that people dont want to feel decieved-ive also noticed online discourse if something is labeled as generated with ai it wont recieve as much critiscm for being ai

    3. To sound less academic?

      the stigma that academic writing is AI frustrates me because it means that when writing as a human you need to minimize your intelligence to avoid sounding like AI, people that are lazy are ruining the writing style of people who actually put in effort

    4. The sentences sound fancy. But just because something sounds fancy doesn’t make it meaningful. Justbecause something sounds obscure doesn’t mean it makes sense.

      I feel like this can be one of those biases that AI perpetuates (that the idea of sounding fancy correlates with being smart/ right, but that isn't always the case)

    1. “What’s the most important thing humanity has engineered?” Kwan asked me, over coffee in a West Village restaurant. “Arguably, it wasn’t the internet, or agriculture. It was the creation of the systemic and institutional trust that was required for us to build societies. And a lot of that engineering was actually collective stories—God, government—that helped us see ourselves as one family, one community. With our current technology, it’s like we’re playing Jenga.” He mimed a tower of blocks at the table. “We’ve been pulling blocks from down here, from the foundation of collective understanding and belief in a shared world, and using them to build farther up on the tower. And, if we keep doing that, the whole thing will collapse, and we’ll go back to only being able to trust the hundred and fifty people in our tribes.”

      what values need this structure? also this is always sus re tribes

    2. Culture is communal. We like being part of a community of appreciators. But “there’s an option here, if computation is cheap enough, for the creation of an illusion of society,” Lanier said. “You would be getting a tailored experience, but your perception would be that it’s shared with a bunch of other people—some of whom might be real biological people, some of whom might be fake.” (I imagined this would be like Joi introducing Gosling’s character to her friends.) To inhabit this “dissociated society cut off from real life,” he went on, “people would have to change. But people do change. We’ve already gotten people used to fake friendships and fake lovers. It’s simple: it’s based on things we want.” If people yearn for something strongly enough, some of them will be willing to accept an inferior substitute. “I don’t want this to occur, and I’m not predicting that it will occur,” Lanier said, grimly. “I think naming all this is a way of increasing the chances that it doesn’t happen.”

      pseudoscenes

    3. Why do we care about what we care about? Walking into your basement in the dark, you might stumble into a cobweb; one strain of philosophical thought holds that this is how caring works. We become ensnared by the possibilities that happen to present themselves as we live—we get caught in webs of care. You run into your elderly neighbor in the morning and, that night, wonder how he’s doing. Your middle schooler likes Chappell Roan, and soon you do, too. A single encounter with “The Fountainhead” at thirteen might make you a lifelong libertarian. Algorithmic culture taps into the casual randomness with which we apportion our care; it takes advantage of the fact that what we bump into today might obsess us tomorrow. Its webs, meanwhile, are woven by machines that are owned by corporations.

      serendipity vs enmeshedness

    1. Here’s a summary of Stevenson’s argument up to this point: RCTs are some of the best evidence we have for any intervention. RCTs consistently find that criminal justice interventions don’t work, especially ones built on the “cascade” model of a small change having broad ripple effects for the rest of someone’s life. When one RCT does work, that same intervention almost always fails to scale or be replicated. Given all that, we should stop banking on the “cascade” theory of change and place greater weight on structural “stabilizers” as a cause of people’s outcomes.

      crispy

    1. Highlight key terms, unknown words (Never skip over a word if you don’t know its meaning. Look it up and jot a brief, understandable definition above your highlight.),

      Highlighting keywords is an important part of comprehension. Specially when it comes to terms one doesn't understand its best to look up the meaning. gives you a better understanding on what your reading and studying.

    1. Sorry, but I can't help but point out Dr. Sackey's environmental rhetorical practices. He makes two key points here that I think are critical in environmental rhetoric:

      • Our need to be reflexive in some capacity, and
      • That discourse runs through humans and nonhumans alike.

      This inclusion of the nonhuman is noted in at least one other prominent journal article which I can share once I can get my hands on it.

    2. Here again, the point that we treat culture as an object. Sometimes a process, and sometimes a combination of the two. But, it would seem primarily as an object.

    1. This need that Royster articulates reflects a complex system of relationality; that I think we don't often notice in our scholarship—the way our cultural community's practices shape and are simultaneously shaped by the multiple and shifting processes, habits, and artifacts within and without that community.

      This could metaphorically be applied to climate change research as well.

    2. Here's the thing I've learned about bodies—you can't look at one piece of it without seeing all the others, can't manipulate a part without having to negotiate every other aspect of that body too. You can try, but you can't do it. It just won't happen. It's not how bodies work.

      And cultures are no different, you can't look at one piece in isolation from all the rest because when you do you are very likely misreading the data!

    3. This emphasis on responsibility is deeply tied to a concern with relationality. When we work with groups of people, we are forming a relationship with them. As someone who studies rhetoric through the concept of place and place-making, I am consistently interested in the surroundings, the environment, the places and spaces of the communities I work with and within. Those places are not just physical and material, but also social, emotional, and intellectual. They are classed, raced, and gendered. And, most importantly, they are all in relationship with one another. Rather than demarcate these kinds of relationships away from one another (e.g. just focus on physical place or just focus on gendered place), I want to emphasize their connections, and a cultural rhetorics orientation and methodological foundation helps me attend to these relationships responsibly.

      This is one element that makes me worry about doing ethnographic research. These relationships we make carry a great responsibility with them that we represent the people who are being studied fairly and accurately and that we understand when we need to alter names to safeguard a community. The do no harm mantra is intimately tied with this kind of research.

    4. The way that many of us have heard this is through a question like "What does this (Native rhetorics, queer rhetorics, feminist rhetorics, etc.) do for the rest of us?" Our intention here is to intervene in this presumption, to insist that methodological practices like the ones Andrea is describing, can enable all rhetorics scholars to study all people, places, and spaces.

      As scholars, how do they not see that the ability to look at these different perspectives only enriches us and our experiences?

    1. For instance, social psychologists have found that we are attracted to others who are similar to us in terms of attitudes and interests (Byrne, 1969), that we develop our own beliefs and attitudes by comparing our opinions to those of others (Festinger, 1954), and that we frequently change our beliefs and behaviors to be similar to those of the people we care about—a process known as conformity.

      Oh

    2. experience. For instance, when a boy turns to a girl on a date and says, “You are so beautiful,” a behaviorist would probably see that as a reinforcing (positive) stimulus. And yet the girl might not be so easily fooled. She might try to understand why the boy is making this particular statement at this particular time and wonder if he might be attempting to influence her through the comment.

      This is a great example.

    3. The idea that our memory is influenced by what we already know was also a major idea behind the cognitive-developmental stage model of Swiss psychologist Jean Piaget (1896–1980).

      Sounds about right.

    1. In Research is Ceremony, Wilson builds an indigenous research paradigm using indigenous practices such as relationality and relational accountability. For Wilson, to enact relationality means to understand one's relationship: to land, people, space, ideas, and the universe as interconnected and fluid. Relational accountability is how one is respectful and accountable to those relationships (i.e.: practices). Under an indigenous research paradigm, Wilson understands epistemology, ontology, axiology, and methodology as relational concepts that are stronger as a whole and not the sum of its parts.

      I believe indigeneous frameworks could indeed be one way that we could more affectively communicate about climate change. I think here of Robin Kimmerer's "Braiding Sweetgrass." Her work was an eye opening reading for me allowing me to see the effects of humans on the earth with different eyes and I am better for having read that and experienced it.

    2. When Dolmage says that he "see[s] rhetorical history as the study not of just a selected archive of static documents or artifacts, but a study also, always of the negotiations, valences, shifting claims and refutations, canons and revisions that orbit any history" (p. 113), we hear him calling attention to how our discipline talks about the history of rhetoric as static and disembodied.

      And why do we even think of it as static and disembodied? The history of rhetoric is ongoing so it is a living thing that is always evolving.

    3. We have been taught to separate academia from real life, and that academia is not a cultural community. We have been told that what we do in academia doesn't have a substantial impact on the kinds of oppression brought about by colonization. That it's all in our heads. We put decolonial delinking at the center of our stories here as a way of addressing these misconceptions.

      And maybe herein is why academia is under attack? When we separate ourselves from real life, from the larger culture, we open ourselves up to attacks by people who don't understand what we are trying to do? Unfair those attacks may be, they still have to be dealt with in the real world.

    4. Why do we tell only one history of the discipline? Why do we claim some ancestors and not others?

      To this I would respond why not tell both stories? I don't think we need to throw out rhetoricians just to make space for others. I personally believe the canon is capable of expanding to be more inclusive of all.

    5. And although we do believe critique of our current disciplinary practices is important and necessary, we want to make sure that critique leads to something even more important—making. Critique is not the end of the process of decolonization—it's the beginning. We want to make something that people will use, rather than to take things apart only to show that they can be taken apart.

      Critique is fine but when critique is merely used to destroy instead of build something better then what is its point? It makes me think of Latour's article on Critique and how critique has been misused.

    1. No matter what type of assignment you are writing, it will be important for you to follow a writing process: a series of steps a writer takes to complete a writing task.

      Having a sense of direction is important when trying to convey an idea or information to the reader.

    1. In “Evaluating decision rules across many weak experiments”, Winston Chou, Colin Gray, Nathan Kallus, Aurélien Bibaut & Simon Ejdemyr consider how to empirically evaluate and optimize the decision rules used to make launch decisions once a team runs an experiment. In practice, these decision rules are often some combination of launching if there’s a statistically significant positive effect on some proxy metric, often in the absence of a detected negative effect on some guardrail. It’s easy to see that this can lead to some odd choices that a Bayesian decision-maker would not make (always be integrating your loss function over your posterior). But can such a simple rule have good empirical performance in terms of the aggregate effects on the main metric of interest? Yes, but the status quo rule might not be the best — and might be quite bad — on that front. As this paper highlights, naive evaluation of a decision rule can get the evaluation quite wrong. This is because many of the experiments will be underpowered for effects on the main metric of interest, so there can be quite the “winner’s curse”. And, in a phenomenon related to weak instruments, naive evaluation will often misestimate how diagnostic the proxies used in a decision rule are about those effects. So this paper provides some better ways to get at the aggregate effects of applying a decision rule to many experiments.

      i need to understand that aside better

    1. grammar"hasvirtuallyno influ-ence on the language growth of typicalsecondary school students"

      How is that possible? Without grammar, the meaning of what's being said can be lost. How could this not help with language growth?

    2. 1993, out of some340 sessions on the NCTE programand, Iwould estimate,well over 1,000 individualpapers,not a single one was devoted to lan-guage structure or linguistics. In fact, theword grammarappeared only once in theprogram-and that was in a negative way

      The year I was born. No wonder why I struggle with grammar.

    1. Nearly seventy thousand members of the Church of Jesus Christ of Latter-Day Saints (commonly called Mormons) migrated west between 1846 and 1868

      I have always wanted to learn more about Mormons as it is an interesting religion and way of life. To know that it exist in this time is baffling to me, but to know it dates back to the mid 1800's is shocking. Makes me wonder how this type of faith is allowed.

    2. Native Americans had lived in the American West for between ten and fifteen thousand years.

      This part of history is always intriguing to me. I love the native culture along with the story. To find out Native Americans have been in the West for ten to fifteen years is not shocking. That is a long time though.

    3. Debs was arrested on ten counts of sedition and sentenced to ten years in prison.

      I found this to being very interesting to learn he ran for president. Despite being behind bars he gained hundred of thousands of votes which is hard to understand. What was the reasoning behind the vote towards him?

    1. Remember, we're not on a mission to convert everyone to decolonial practice, or to our version of cultural rhetorics practices. We're visibilizing options and making those options available for others to use, and doing so as part of an attempt to intervene in and enlarge the acknowledged practices of our disciplinary community.

      Unlike some who really do try to force the dominant reading on others because that has been the traditional way we read rhetoric. It is an option that we as scholars can utilize in our disciplinary community.

    2. Up to this point, the disciplinary culture of rhetoric has been built on the canonization of idealized Western (colonial) systems and worldviews (imperial). The story we're telling about cultural rhetorics invokes a different possibility for our disciplinary culture. Again, this is a decidedly decolonial possibility in that it theorizes a constellated web of systems, discourses, communities, and indeed, paradigms alongside those of Western imperialism.

      The authors very adroitly make the point that this is not an approach to do away with western systems but is rather a web of interrelationships and paradigms that can operate alongside Western imperialism. It is additive rather than being reductive.

    3. A constellation, however, allows for all the meaning-making practices and their relationships to matter. It allows for multiply-situated subjects to connect to multiple discourses at the same time, as well as for those relationships (among subjects, among discourses, among kinds of connections) to shift and change without holding a subject captive.

      I love this concept of seeing meaning-making as a constellation. Just as constellations are drawn differntly by different cultures, so to should rhetoric be analyzed as a constellated web of interrelationships ever changing, capable of multiple interpretations, with each informing us of differences we would not see from a single dominant cultural standpoint.

    4. For De Certeau, many practices that compose cultures are hidden by dominant (aka, established) rules and authorized practices. He argues that we "must determine the procedures, bases, effects, and possibilities of this collective activity" if we are to understand how the making of culture occurs through everyday practice instead of through official, sanctioned dominant acts of cultural installation (xiv). For us, the product and process of this "collective activity" is rhetorical, and offers a way to begin to understand how such everyday practices betray the instability of colonial/capitalist claims to dominance.

      This is at the heart of decolonial approaches to rhetoric. Far too long, dominant western cultural rules and norms have been used rhetorically to reinforce that dominance never taking into account theh rich variety of cultures that have different things to show us as we analyze rhetoric, different was to see and to think about what we are communicating.

    1. will be said, an outline includes the main content. Therefore you shouldn’t include every word you’re going to say on your outline. This allows you more freedom as a speaker to adapt to your audience during your speech.

      This is very important and I've always thought about this method. In my sophomore speech class my teacher spoke about this and it has stuck with me ever since. If you have too much of a script, you'll sound very robotic and not be able to have a lot of freedom with what it is you're talking about. I know when I have too much written down on my notecards I tend to lean on them too much and not allow myself to have any freedom on my speech.

    1. The comments range from “This isn't America!” and “These people are all communists!” to “These pictures are going to change the world.”

      Siento que los sentimientos expresados ​​en estas tarjetas muestran lo poco que cambian las cosas. En aquel entonces se quejaban de los inmigrantes del medio oeste y ahora se quejan de los inmigrantes de otros países. En ambos casos hay una reacción violenta, pero aun así la gente tiene que vivir su vida.

    1. One of the key elements of academic and professional public speaking is verbally citing your supporting materials so your audience can evaluate your credibility and the credibility of your sources.

      Having evidence in anything to back you up will always be beneficial. If you have credible evidence backing you up, you can't technically be wrong. I know in my English class last year my teacher always repeated how important evidence is because it meant he could never really be that wrong. So now whenever I make an argument I always try to have an advantage by having some credibility.