- Jan 2025
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:<br /> Authors introduced a computational framework, DyNoPy, that integrates residue coevolution analysis with molecular dynamics (MD) simulations to identify functionally important residues in proteins. DyNoPy identifies key residues and residue-residue coupling to generate an interaction graph and attempts to validate using two clinically relevant β-lactamases (SHV-1 and PDC-3).
Strengths:<br /> DyNoPy could not only show clinically relevance of mutations but also predict new potential evolutionary mutations. Authors have provided biologically relevant insights into protein dynamics which can have potential applications in drug discovery and understanding molecular evolution.
Weaknesses:<br /> Although DyNoPy could show the relevance of key residues in active and non-active site residues, no experiments have been performed to validate their predictions. In addition, they should compare their method with conventional techniques and show how their method could be different.
An explanation of "communities" divided in the work and how these communities are relevant to the article should be provided. In addition, choice of collective variables and their relevance in residue coupling movement is also not very well explained. Dynamics cross correlation map can also be a good method for understanding the residue movements and can explain the residue-residue coupling, it is not explained how DyNoPy is different from the conventional methods or can perform better.
In the sentence "DyNoPy identified eight significant communities of strongly coupled residues within SHV-1 (Supporting Fig. S4A)" I could not find a clear description of eight significant communities.
Again the description of communities is not clear to me in the following sentence "Detailed description of the other three communities is provided in the supporting information (Fig. S6)."
In the sentence "N170 acts as an intermediary between N136 and E166". Kindly cite the reference figure to show N179 as intermediate residue.
Please be careful with the numbers. In the sentence "These residues not only interact with each other directly but are also indirectly coupled via 21 other residues." I could count 22 other residues and not 21.
In the sentence "Unlike other substitution sites that are adjacent to the active site, R205 is situated more than 16 Å away from catalytic serine S70". Please add this label somewhere in the figure.
Please cite a reference in the sentence "This indicates that mutations on G238 would result in an alteration on protein catalytic function, as well as an increased flexibility of the protein, which strongly aligns with previous finding."
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This manuscript reports the application of a combined targeted therapeutic approach to gastric cancer treatment. The RTK, FGFR2 and the phosphatase, SHP2 are targeted with existing drugs; AZD457 and SHP099 respectively. Having shown increased mRNA levels of FGFR2 and SHP2 in a patient population and highlighted the issue of resistance to single therapies the combination of inhibitors is shown to reduce cancer-related signalling in two gastric cell lines. The efficacy of the dual therapy is further demonstrated in a single patient case study and mouse xenograft models. Finally, the rationale for SHP2 inhibition is shown to be linked to immune response.
Strengths:
The data is generally well presented and the study invokes a novel patient data set which could have wider value. The study provides additional evidence to support the combined therapeutic approach of RTK and phosphatase inhibition.
Weaknesses:
Combined therapy approaches targeting RTKs and SHP2 have been widely reported. Indeed, SHP099 in combination with FGFR inhibitors has been shown to overcome adaptive resistance in FGFR-driven cancers. Furthermore, the inhibition of SHP2 has been documented to have important implications in both targeting proliferative signalling as well as immune response. Thus, it is difficult to see novelty or a significant scientific advance in this manuscript. Although the data is generally well presented, there is inconsistency in the interpretation of the experimental outcomes from ex vivo, patient and mouse systems investigated. In addition, the study provides only minor or circumstantial understanding of the dual mechanism.
Using data from a 161 patient cohort FGFR2 was identified as displaying amplification of FGFR2 in ~6% with concomitant elevation of mRNA of patients which correlated with PTPN11 (SHP2) mRNA expression. The broader context of this data is of value and could add a different patient demographic to other data on gastric cancer. However, there is no detail on patient stratification or prior therapeutic intervention.
In SNU16 and KATOIII cells the combined therapy is shown to be effective and appears to be correlated with increased apoptotic effects (i.e. not immune response).
Fig 2E suggests that the combined therapy in SNU16 cells is a little better than FGFR2-directed AZD457 inhibitor alone, particularly at the higher dose.
The individual patient case study described via Fig 3 suggests efficacy of the combined therapy (at very high dosage), however, the cell biopsies only show reduced phosphorylation of ERK, but not AKT. This is at odds with the ex vivo cell-based assays. Thus, it is not clear how relevant this study is.
The mouse xenograft study shows a convincing reduction in tumor mass/volume and clear reduction in pAKT, whilst pERK remains largely unaffected by the combined therapeutic approach. This is in conflict with the previous data which seems to show the opposite effect. In all, the impact of the dual therapy is unclear with respect to the two pathways mediated by ERK and AKT.
Finally, the authors demonstrate the impact of SHP2 on PD-1 expression and propose that the SHP099/AZD4547 combination therapy significantly induces the production of IFN-γ in CD8+ T cells. This part of the study is unconvincing and would benefit from the investigation of the tumor micro-environment to assess T cell infiltration.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors define the m6A methyltransferase Mettl5 as a novel sleep-regulatory gene that contributes to specific aspects of Drosophila sleep behaviors (i.e., sleep drive and arousal at early night; sleep homeostasis) and propose the possible implication of Mettl5-dependent clocks in this process. The model was primarily based on the assessment of sleep changes upon genetic/transgenic manipulations of Mettl5 expression (including CRISPR-deletion allele); differentially expressed genes between wild-type vs. Mettl5 mutant; and interaction effects of Mettl5 and clock genes on sleep. These findings exemplify how a subclass of m6A modifications (i.e., Mettl5-dependent m6A) and possible epi-transcriptomic control of gene expression could impact animal behaviors.
Strengths:
Comprehensive DEG analyses between control and Mettl5 mutant flies reveal the landscape of Mettl5-dependent gene regulation at both transcriptome and translatome levels. The molecular/genetic features underlying Mettl5-dependent gene expression may provide important clues to molecular substrates for circadian clocks, sleep, and other physiology relevant to Mettl5 function in Drosophila.
Weaknesses:
While these findings indicate the potential implication of Mettl5-dependent gene regulation in circadian clocks and sleep, several key data require substantial improvement and rigor of experimental design and data interpretation for fair conclusions. Weaknesses of this study and possible complications in the original observations include but are not limited to:
(1) Genetic backgrounds in Mettl5 mutants: the heterozygosity of Mettl5 deletion causes sleep suppression at early night and long-period rhythms in circadian behaviors. The transgenic rescue using Gal4/UAS may support the specificity of the Mettl5 effects on sleep. However, it does not necessarily exclude the possibility that the Mettl5 deletion stocks somehow acquired long-period mutation allelic to other clock genes. Additional genetic/transgenic models of Mettl5 (e.g., homozygous or trans-heterozygous mutants of independent Mettl5 alleles; Mettl5 RNAi etc.) can address the background issue and determine 1) whether sleep suppression tightly correlates with long-period rhythms in Mettl5 mutants; and 2) whether Mettl5 effects are actually mapped to circadian pacemaker neurons (e.g., PDF- or tim-positive neurons) to affect circadian behaviors, clock gene expression, and synaptic plasticity in a cell-autonomous manner and thereby regulate sleep. Unfortunately, most experiments in the current study rely on a single genetic model (i.e., Mettl5 heterozygous mutant).
(2) Gene expression and synaptic plasticity: gene expression profiles and the synaptic plasticity should be assessed by multiple time-point analyses since 1) they display high-amplitude oscillations over the 24-h window and 2) any phase-delaying mutation (e.g., Mettl5 deletion) could significantly affect their circadian changes. The current study performed a single time-point assessment of circadian clock/synaptic gene expression, misleading the conclusion for Mettl5 effects. Considering long-period rhythms in Mettl5 mutant clocks, transcriptome/translatome profiles in Mettl5 cannot distinguish between direct vs. indirect targets of Mettl5 (i.e., gene regulation by the loss of Mettl5-dependent m6A vs. by the delayed circadian phase in Mettl5 mutants).
(3) The text description for gene expression profiling and Mettl5-dependent gene regulation was very detailed, yet there is a huge gap between gene expression profiling and sleep/behavioral analyses. The model in Figure 5 should be better addressed and validated.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
In this manuscript, the authors seek to demonstrate that it is possible to sequence antibody variable domains from cryoEM reconstructions in combination with bottom-up LC-MSMS. In particular, they extract de novo sequences from single particle-cryo-EM-derived maps of antibodies using the "deep-learning tool ModelAngelo", which are run through the program Stitch to try to select the top scoring V-gene and construct a placeholder sequence for the CDR3 of both the heavy and light chain of the antibody under investigation. These reconstructed variable domains are then used as templates to guide the assembly of de novo peptides from LC-MS/MS data to improve the accuracy of the candidate sequence.
Using this approach the authors claim to have demonstrated that "cryoEM reconstructions of monoclonal antigen-antibody complexes may contain sufficient information to accurately narrow down candidate V-genes and that this can be integrated with proteomics data to improve the accuracy of candidate sequences".
WhiIe the approach is clearly a work in progress, the manuscript should made easier to understand for the general reader. Indeed, I had a hard time understanding the workflow until I got to Fig. 3. So re-ordering the figures, for example, may be helpful in this regard.
It would be useful to provide additional concrete examples where the described workflow would assist in the elucidation of CDR3's, in cases where this isn't already known. (In the benchmark dataset from the Electron Microscopy Data Bank, all the antibodies and Fabs are presumably known, as is the case for the monoclonal antibody CR3022). I am having difficulty envisioning how one would prepare samples from actual plasma samples that would be appropriate for single particle cryo-EM and MS data on dominant antibodies of interest. In my experience, most of these samples tend to be quite complex mixtures. So additional discussion of this point would be helpful.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Kim et al. report that two disease mutations in proBMP4, Ser91Cys and Glu93Gly, which disrupt the Ser91 FAM20C phosphorylation site, block the activation of proBMP4 homodimers. Consequently, analysis of DMZ explants from Xenopus embryos expressing the proBMP4 S91C or E93G mutants showed reduced pSmad1 and tbxt1 expression. The block in BMP4 activity caused by the mutations could be overcome by co-expression of BMP7, suggesting that the missense mutations selectively affect the activity of BMP4 homodimers but not BMP4/7 heterodimers. The expert amphibian tissue transplant studies were extended to in vivo studies in Bmp4S91C/+ and Bmp4E93G/+ mice, demonstrating the impact of these mutations on embryonic development, particularly in female mice, in line with patient studies. Finally, studies in MEFs revealed that the mutations did not affect proBMP4 glycosylation or ER-to-Golgi transport but appeared to inhibit the furin-dependent cleavage of proBMP4 to BMP4. Based on these findings and AI (AlphaFold) modeling of proBMP4, the authors speculate that pSer91 influences access of furin to its cleavage site at Arg289AlaLysArg292.
Strengths:
The Xenopus and mouse studies are valuable and elegantly describe the impact of the S91C and E93G disease mutations on BMP signaling and embryonic development.
Weaknesses:
The interpretation of how the mutations may disturb the furin-mediated cleavage of proBMP4 is underdeveloped and does not consider all of their data. Understanding how pS91 influences the furin-dependent cleavage at Arg292 seems to be the crux of this work and thus warrants more consideration. Specifically:
(1) Figure S1 may be significantly more informative than implied. The authors report that BMP4S91D activates pSmad1 only incrementally better than S91C and much less than WT BMP4. However, Fig. S1B does not support the conclusion on page 7 (numbering beginning with title page); "these findings suggest that phosphorylation of S91 is required to generate fully active BMP4 homodimers". The authors rightly note that the S91C change likely has manifold effects beyond inhibiting furin cleavage. The E93G change may also affect proBMP4 beyond disturbing FAM20C phosphorylation. Additional mutation analyses would strengthen the work.
(2) These findings in Figure S1 are potentially significant because they may inform how proBMP4 is protected from cleavage during transit through the TGN and entry into peripheral cellular compartments. Intriguing modeling studies in Figure 6 suggest that pSer91 is proximal to the furin cleavage site. Based on their presentation, pSer91 may contact Arg289, the critical P4 residue at the furin site. If so, might that suggest how pS91 may prevent furin cleavage, thus explaining why the S91D mutation inhibits processing as presented, and possibly how proBMP4 processing is delayed until transit to distal compartments (perhaps activated by a change in the endosomal microenvironment or a Ser91 phosphatase)? Have the authors considered or ruled out these possibilities? In addition to additional mutation analyses of the FAM20C site, moving the discussion of this model to an "Ideas and Speculation" subsection may be warranted.
(3) The lack of an in vitro protease assay to test the effect of the S91 mutations on furin cleavage is problematic.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The membrane mimetic thermal proteome profiling (MM-TPP) presented by Jandu et al. seems to be a useful way to minimize the interference of detergents in efficient mass spectrometry analysis of membrane proteins. Thermal proteome profiling is a mass spectrometric method that measures binding of a drug to different proteins in a cell lysate by monitoring thermal stabilization of the proteins because of the interaction with the ligands that are being studied. This method has been underexplored for membrane proteome because of the inefficient mass spectrometric detection of membrane proteins and because of the interference from detergents that are used often for membrane protein solubilization.
Strengths:
In this report the binding of ligands to membrane protein targets has been monitored in crude membrane lysates or tissue homogenates exalting the efficacy of the method to detect both intended and off-target binding events in a complex physiologically relevant sample setting.
The manuscript is lucidly written and the data presented seems clear. The only insignificant grammatical error I found was that the 'P' in the word peptidisc is not capitalized in the beginning of the methods section "MM-TPP profiling on membrane proteomes". The clear writing made it easy to understand and evaluate what has been presented. Kudos to the authors.
Weaknesses:
While this is a solid report and a promising tool for analyzing membrane protein drug interactions, addressing some of the minor caveats listed below could make it much more impactful.
The authors claim that MM-TPP is done by "completely circumventing structural perturbations invoked by detergents". This may not be entirely accurate, because before reconstitution of the membrane proteins in peptidisc, the membrane fractions are solubilized by 1% DDM. The solubilization and following centrifugation step lasts at least for 45 min. It is less likely that all the structural perturbations caused by DDM to various membrane proteins and their transient interactions become completely reversed or rescued by peptidisc reconstitution. In the introduction, the authors make statements such as "..it is widely acknowledged that even mild detergents can disrupt protein structures and activities, leading to challenges in accurately identifying drug targets.." and "[peptidisc] libraries are instrumental in capturing and stabilizing IMPs in their functional states while preserving their interactomes and lipid allosteric modulators...'. These need to be rephrased, as it has been shown by countless studies that even with membrane protein suspended in micelles robust ligand binding assays and binding kinetics have been performed leading to physiologically relevant conclusions and identification of protein-protein and protein-ligand interactions.
If the method involves detergent solubilization, for example using 1% DDM, it is a bit disingenuous to argue that 'interactomes and lipid allosteric modulators' characterized by low-affinity interactions will remain intact or can be rescued upon detergent removal. Authors should discuss this or at least highlight the primary caveat of the peptidisc method of membrane protein reconstitution - which is that it begins with detergent solubilization of the proteome and does not completely circumvent structural perturbations invoked by detergents.
It would also be important to test detergents that are even milder than 1% DDM and ones which are harsher than 1% DDM to show that this method of reconstitution can indeed rescue the perturbations to the structure and interactions of the membrane protein done by detergents during solubilization step. Based on the methods provided, it appears that the final amount of detergent in peptidisc membrane protein library was 0.008%, which is ~150 uM. The CMC of DDM depending on the amount of NaCl could be between 120-170 uM. Perhaps, to completely circumvent the perturbations from detergents other methods of detergent-free solubilization such as using SMA polymers and SMALP reconstitution could be explored for a comparison. Moreover, a comparison of the peptidisc reconstitution with detergent-free extraction strategies, such as SMA copolymers, could lend more strength to the presented method.
Cross-verification of the identified interactions, and subsequent stabilization or destabilizations, should be demonstrated by other in vitro methods of thermal stability and ligand binding analysis using purified protein to support the efficacy of the MM-TPP method. An example cross-verification using SDS-PAGE, of the well-studied MsbA, is shown in Figure 2. In a similar fashion, other discussed targets such as, BCS1L, P2RX4, DgkA, Mao-B, and some un-annotated IMPs shown in supplementary figure 3 that display substantial stabilization or destabilization should be cross-verified.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The study in question utilizes functional magnetic resonance imaging (fMRI) to dynamically estimate the locus and extent of covert spatial attention from visuocortical activity. The authors aim to address an important gap in our understanding of how the size of the attentional field is represented within the visual cortex. They present a novel paradigm that allows for the estimation of the spatial tuning of the attentional field and demonstrate the ability to reliably recover both the location and width of the attentional field based on BOLD responses.
Strengths:
(1) Innovative Paradigm: The development of a new approach to estimate the spatial tuning of the attentional field is a significant strength of this study. It provides a fresh perspective on how spatial attention modulates visual perception.<br /> (2) Refined fMRI Analysis: The use of fMRI to track the spatial tuning of the attentional field across different visual regions is methodologically rigorous and provides valuable insights into the neural mechanisms underlying attentional modulation.<br /> (3) Clear Presentation: The manuscript is well-organized, and the results are presented clearly, which aids in the reader's comprehension of the complex data and analyses involved.
Weaknesses:
(1) Lack of Neutral Cue Condition: The study does not include a neutral cue condition where the cue width spans 360{degree sign}, which could serve as a valuable baseline for assessing the BOLD response enhancements and diminishments in both attended and non-attended areas.<br /> (2) Clarity on Task Difficulty Ratios: The explicit reasoning for the chosen letter-to-number ratios for various cue widths is not detailed. Ensuring clarity on these ratios is crucial, as it affects the task difficulty and the comparability of behavioral performance across different cue widths. It is essential that observed differences in behavior and BOLD signals are attributable solely to changes in cue width and not confounded by variations in task difficulty.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Kapoor et. al. investigated the role of the mycobacterial protein Wag31 in lipid and peptidoglycan synthesis and sought to delineate the role of the N- and C- terminal domains of Wag31. They demonstrated that modulating Wag31 levels influences lipid homeostasis in M. smegmatis and cardiolipin (CL) localisation in cells. Wag31 was found to preferentially bind CL-containing liposomes, and deleting the N-terminus of the protein significantly decreased this interaction. Novel interactions between Wag31 and proteins involved in lipid metabolism and cell wall synthesis were identified, suggesting that Wag31 recruits proteins to the intracellular membrane domain by direct interaction.
Strengths:
(1) The importance of Wag31 in maintaining lipid homeostasis is supported by several lines of evidence.<br /> (2) The interaction between Wag31 and cardiolipin, and the role of the N-terminus in this interaction was convincingly demonstrated.
Weaknesses:
(1) MS experiments provide some evidence for novel protein-protein interactions, however, the pull-down experiments are lacking a valid negative control.<br /> (2) The role of the N-terminus in the protein-protein interaction has not been ruled out.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary of goals:
Untranslated regions are key cis-regulatory elements that control mRNA stability, translation, and translocation. Through interactions with small RNAs and RNA binding proteins, UTRs form complex transcriptional circuitry that allows cells to fine-tune gene expression. Functional annotation of UTR variants has been very limited, and improvements could offer insights into disease relevant regulatory mechanisms. The goals were to advance our understanding of the determinants of UTR regulatory elements and characterize the effects of a set of "disease-relevant" UTR variants.
Strengths:
The use of a massively parallel reporter assay allowed for analysis of a substantial set (6,555 pairs) of 5' and 3' UTR fragments compiled from known disease associated variants. Two cell types were used.
The findings confirm previous work about the importance of AREs, which helps show validity and adds some detailed comparisons of specific AU-rich motif effects in these two cell types.
Using a Lasso regression, TA-dinucleotide content is identified as a strong regulator of RNA stability in a context dependent manner based on GC content and presence of RNA binding protein binding motifs. The findings have potential importance, drawing attention to a UTR feature that is not well characterized.
The use of complementary datasets, including from half-life analyses of RNAs and from random sequence library MRPA's, is a useful addition and supports several important findings. The finding the TA dinucleotides have explanatory power separate from (and in some cases interacting with) GC content is valuable.
The functional enrichment analysis suggests some new ideas about how UTRs may contribute to regulation of certain classes of genes.
Weaknesses:
In this section, original reviewer comments about the initial submission and the responses of the authors are listed together with new reviewer responses to the authors:
Reviewer original comment 1: It is difficult to understand how the calculations for half-life were performed. The sequencing approach measures the relative frequency of each sequence at each time point (less stable sequences become relatively less frequent after time 0, whereas more stable sequences become relatively more frequent after time 0). Since there is no discussion of whether the abundance of the transfected RNA population is referenced to some external standard (e.g., housekeeping RNAs), it is not clear how absolute (rather than relative) half-lives were determined.
Author response: [The authors showed the equations used to calculate half lives based on read counts.] They stated that "The absolute abundance was not required for the half-life calculation."
Reviewer response to authors: The methods section states that DESeq2 was used to normalize read counts. DESeq2 normalization assumes that levels of most RNAs are not different between samples. That assumption is not valid here, since RNAs in the library are introduced into cells at time 0 and all RNAs decrease over time. If DESeq2 is applied without modification to normalize across timepoints, normalized reads from less stable RNAs will decrease over time (as expected) but normalized reads from more stable RNAs will increase. Can the authors please clarify in the methods how the read counts were normalized to account for this issue?
Reviewer original comment 2: Fig. S1A and B are used to assess reproducibility. They show that read counts at a given time point correlate well across replicate experiments. However, this is not a good way to assess reproducibility or accuracy of the measurements of t1/2 are. (The major source of variability in read counts in these plots - especially at early time points - is likely starting abundance of each RNA sequence, not stability.) This creates concerns about how well the method is measuring t1/2. Also creating concern is the observation that many RNAs are associated with half-lives that are much longer than the time points analyzed in the study. For example, based upon Figure S1 and Table S1 correctly, the median t1/2 for the 5' UTR library in HEK cells appears to be >700 minutes. Given that RNA was collected at 30, 75, and 120 minutes, accurate measurements of RNAs with such long half lives would seem to be very difficult.
Author response: ... The calculation of the half-life involves first determining the decay constant 𝜆, which represents a constant rate of decay. Since 𝜆 is a constant, it is possible to accurately calculate it without needing data over the entire decay range. Our experimental design considers this by selecting appropriate time points to ensure a reliable estimation of 𝜆, and thus, the half-life. To determine the most suitable time points, we conducted preliminary experiments using RT-PCR. These experiments indicated that 30, 75, and 120 minutes provided an effective range for capturing the decay dynamics of the transcripts.
Reviewer response to author comments: Based on Fig. S1D, for 3' UTRs in both cell types and for 5' UTRs in SH-SY5Y cells, median t1/2 is in the range of ~30 to 90 minutes (corresponding to ln t1/2 = 3.5 to 4.5). Measuring RNAs at 30, 75, and 120 minutes would therefore be a good choice for these cases, However, median t1/2 in HEK cells appears to be ~600 minutes (corresponding to ln t1/2 ~6.4) for HEK cells. For t1/2 of 600 minutes, RNA levels at the final time point (120 minutes) would be 90% of the those at the first time point (30 minutes), which illustrates why the method would need to be able to reliably capture very small changes in RNA abundance to accurately measure t1/2 for transcripts with half-lives much longer than 120 minutes. As suggested in our original review, this concern could be addressed by showing the correlation of half-lives across replicates for the 5' and 3' UTR libraries in both cell types. Alternatively, the authors could show other measures of reproducibility for the half-life measurements across replicates. This requires no additional experimentation and can be done using the data from replicate runs shown in Fig. S1A and B. We remain concerned that for sequences with very long half-lives, extrapolating the half-life from small changes between 30 and 120 minutes will lead to imprecise measurements.
Reviewer original comment 3: There is no direct comparison of t1/2 between the two cell types studied for the full set of sequences studied. This would be helpful in understanding whether the regulatory effects of UTRs are generally similar across cell lines (as has been shown in some previous studies) or whether there are fundamental differences. The distribution of t1/2's is clearly quite different in the two cell lines, but it is important to know if this reflects generally slow RNA turnover in HEK cells or whether there are a large number of sequence-specific effects on stability between cell lines. A related issue is that it is not clear whether the relatively small number of significant variant effects detected in HEK cells versus SH-SY5Y cells is attributable to real biological differences between cell types or to technical issues (many fewer read counts and much longer half lives in HEK cells).
Author response: For both cell lines, we selected oligonucleotides with R2 > 0.5 and mean squared error (MSE) < 1 for analysis when estimating half-life (λ) by linear regression. This selection criterion was implemented to minimize the effect of experimental noise. After quality control, we selected common UTRs and compared the RNA half-lives of the two cell lines using a scatter plot. The figure below shows that RNA half-lives are quite different between the cell lines, with a moderate similarity observed in the 5' UTRs (R = 0.21), while the correlation in the 3' UTRs is non-significant. Despite the low correlation of mRNA half-life between the two cell lines, UA-dinucleotide and UA-rich sequences consistently emerge as the most significant destabilizing features, suggesting a shared regulatory mechanism across diverse cellular environments.
Reviewer response to author comments: We appreciate that the authors shared this additional analysis of the data. We believe that this is an important finding and that the additional figure showing correlations of half-lives across cell types should be included in the manuscript or supplement. Discussion of this result in the manuscript would also be useful for readers. This result is surprising to us since we would have expected that widely expressed RNA-binding proteins would have led to more similar effects between the two cell types, as previously found using other approaches (e.g., studies of 3' UTR effects in MPRAs). It would also be appropriate to discuss that differences seen between the two cell types indicate that caution is warranted when trying to generalize the results of this study to other cell types.
Reviewer original comment 4 has been addressed adequately in the revised manuscript.
Appraisal and impact:
Reviewer original comment 1: The work adds to existing studies that previously identified sequence features, including AREs and other RNA binding protein motifs, that regulate stability and puts a new emphasis on the role of "TA" (better "UA") dinucleotides. It is not clear how potential problems with the RNA stability measurements discussed above might influence the overall conclusions, which may limit the impact unless these can be addressed.
It is difficult to understand whether the importance of TA dinucleotides is best explained by their occurrence in a related set of longer RBP binding motifs (see Fig 5J, these motifs may be encompassed by the "WWWWWW cluster") or whether some other explanation applies. Further discussion of this would be helpful. Does the LASSO method tend to collapse a more diverse set of longer motifs that are each relatively rare compared to the dinucleotide? It remains unclear whether TA dinucleotides are associated with less stability independent of the presence of the known larger WWWWWWW motif. As noted above, the importance of TA dinucleotides in the HEK experiments appears to be less than is implied in the text.
Author response: To ensure the representativeness of the features entered into the LASSO model, we pre-selected those with an occurrence greater than 10% among all UTRs. There is no evidence to support a preference for dinucleotides by LASSO. To address whether the destabilizing effect of UA dinucleotides is part of the broader WWWWWW motif, we divided UA dinucleotides into two groups: those within the WWWWWW motif and those outside of it. Specifically, we divided UTRs into two categories: 'at least one UA within a WWWWWW motif' and 'no UA within a WWWWWW motif,' and visualized the results using a boxplot. As shown in [figures provided to the reviewers], the destabilizing trend still remains for UA dinucleotides outside of the WWWWWW motif, although the effect appears to be more pronounced when UA is within the WWWWWW motif. This suggests that while UA dinucleotides have a destabilizing effect independently, their impact is amplified when they are part of the broader WWWWWW motif.
Reviewer response to authors: These are useful additional analyses, and we suggest that the additional figure and discussion should be included in the manuscript/supplement so that readers can benefit from them.
Reviewer original comment 2: The inclusion of more than a single cell type is an acknowledgement of the importance of evaluating cell type-specific effects. The work suggests a number of cell type-specific differences, but due to technical issues (especially with the HEK data, as outlined above) and the use of only two cell lines, it is difficult to understand cell type effects from the work.
The inclusion of both 3' and 5' UTR sequences distinguishes this work from most prior studies in the field. Contrasting the effects of these regions on stability is of interest, although the role of these UTRs (especially the 5' UTR) in translational regulation is not assessed here.
Author response: We examined the role of UTR and UTR variants in translation regulation using polysome profiling. By both univariate analysis and an elastic regression model, we identified motifs of short repeated sequences, including SRSF2 binding sites, as mutation hotspots that lead to aberrant translation. Furthermore, these polysome-shifting mutations had a considerable impact on RNA secondary structures, particularly in upstream AUG-containing 5' UTRs. Integrating these features, our model achieved high accuracy (AUROC > 0.8) in predicting polysome-shifting mutations in the test dataset. Additionally, metagene analysis indicated that pathogenic variants were enriched at the upstream open reading frame (uORF) translation start site, suggesting changes in uORF usage underlie the translation deficiencies caused by these mutations. Illustrating this, we demonstrated that a pathogenic mutation in the IRF6 5' UTR suppresses translation of the primary open reading frame by creating a uORF. Remarkably, site-directed ADAR editing of the mutant mRNA rescued this translation deficiency. Because the regulation of translation and stability does not converge, we illustrate these two mechanisms in two separate manuscripts (this one and doi.org/10.1101/2024.04.11.589132).
Reviewer response to authors: This is useful context. No further comment.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Bloch et al. studied the relationships between aerial foragers (lesser swifts) tracked using an automated radio telemetry system (Atlas) and their prey (flying insects) monitored using a small vertical-looking radar (BirdScan MR1). The aim of the study was to check whether swifts optimise their foraging according to the abundance of their prey. The results provide evidence that small swifts can increase their foraging rate when aerial insect abundance is high, but found no correlation between insect abundance and flight energy expenditure.
Key points:
This study fills gaps in fundamental knowledge of prey-predator dynamics in the air. It describes the coincidence between the abundance of flying insects and the characteristics derived from monitoring individual swifts.
Weaknesses:
The paper uses assumptions largely derived from optimal foraging theory, but mixes up the form of natural selection: parental energy, parental survival (predation risk), nestling foraging and reproductive success. The results are partly inconsistent, and confounding factors (e.g., the brooding phase versus the nestling phase) remained ignored. In conclusion, the analyses performed are insufficient to rigorously assess whether lesser swifts are optimising their foraging beyond making shorter foraging trips.
The filters applied to the monitoring data are necessary but may strongly influence the characteristics derived based on maximum or mean values. Sensitivity tests or the use of characteristics that are less dependent on extreme values could provide more robust results.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Li et al.'s goal is to understand the mechanisms of audiovisual temporal recalibration. This is an interesting challenge that the brain readily solves in order to compensate for real-world latency differences in the time of arrival of audio/visual signals. To do this they perform a 3-phase recalibration experiment on 9 observers that involves a temporal order judgment (TOJ) pretest and posttest (in which observers are required to judge whether an auditory and visual stimulus were coincident, auditory leading or visual leading) and a conditioning phase in which participants are exposed to a sequence of AV stimuli with a particular temporal disparity. Participants are required to monitor both streams of information for infrequent oddballs, before being tested again in the TOJ, although this time there are 3 conditioning trials for every 1 TOJ trial. Like many previous studies, they demonstrate that conditioning stimuli shift the point of subjective simultaneity (pss) in the direction of the exposure sequence.
These shifts are modest - maxing out at around -50 ms for auditory leading sequences and slightly less than that for visual leading sequences. Similar effects are observed even for the longest offsets where it seems unlikely listeners would perceive the stimuli as synchronous (and therefore under a causal inference model you might intuitively expect no recalibration, and indeed simulations in Figure 5 seem to predict exactly that which isn't what most of their human observers did). Overall I think their data contribute evidence that a causal inference step is likely included within the process of recalibration.
Strengths:
The manuscript performs comprehensive testing over 9 days and 100s of trials and accompanies this with mathematical models to explain the data. The paper is reasonably clearly written and the data appear to support the conclusions.
Comments on revision:
In the revised manuscript the authors incorporate an alternative model (the asynchrony contingent model), and demonstrate that the causal inference model still out performs this. They provide additional analysis with Bayes factors to perform model comparisons, and provide significant individual subject data in the supplementary materials. Overall they have addressed most of the key points that my original review raised, including a demonstration of the conditions under which recalibration effects do not delay to zero over long delays. The number of subjects remains rather low, but at least we can now appreciate the heterogeneity within them. I still have some reservations about the magnitude of the conceptual advance that this study makes.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This work by Bimbard et al., introduces a new implant for Neuropixels probes. While Neuropixels probes have critically improved and extended our ability to record the activity of a large number of neurons with high temporal resolution, the use of these expensive devices in chronic experiments has so far been hampered by the difficulty of safely implanting them and, importantly, to explant and reuse them after conclusion of the experiment. The authors present a newly designed two-part implant, consisting of a docking and a payload module, that allows for secure implantation and straightforward recovery of the probes. The implant is lightweight, making it amenable for use in mice and rats, and customizable. The authors provide schematics and files for printing of the implants, which can be easily modified and adapted to custom experiments by researchers with little to no design experience. Importantly, the authors demonstrate the successful use of this implant across multiple use cases, in head-fixed and freely moving experiments, in mice and rats, with different versions of Neuropixels probes and across 8 different labs. Taken together, the presented implants promise to make chronic Neuropixels recordings and long-term studies of neuronal activity significantly easier and attainable for both current and future Neuropixels users.
Strengths:<br /> - The implants have been successfully tested across 8 different laboratories, in mice and rats, in head-fixed and freely moving conditions and have been adapted in multiple ways for a number of distinct experiments.<br /> - Implants are easily customizable and authors provide a straightforward approach for customization across multiple design dimensions even for researchers not experienced in design.<br /> - The authors provide clear and straightforward descriptions of the construction, implantation and explant of the described implants.<br /> - The split of the implant into a docking and payload module makes reuse even in different experiments (using different docking modules) easy.<br /> - The authors demonstrate that implants can be re-used multiple times and still allow for high-quality recordings.<br /> - The authors show that the chronic implantations allow for the tracking of individual neurons across days and weeks (using additional software tracking solutions), which is critical for a large number of experiments requiring the description of neuronal activity, e.g. throughout learning processes.<br /> - The authors show that implanted animals can even perform complex behavioral tasks, with no apparent reduction in their performance.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The manuscript investigates to what degree neonates show evidence for statistical learning from regularities in streams of syllables, either with respect to phonemes or with respect to speaker identity. Using EEG, the authors found evidence for both, stronger entrainment to regularities as well as ERP differences in response to violations of previously introduced regularities. In addition, violations of phoneme regularities elicited an ERP pattern which the authors argue might index a precursor of the N400 response in older children and adults.
Strengths:
All in all, this is a very convincing paper, which uses a clever manipulation of syllable streams to target the processing of different features. The combination of neural entrainment and ERP analysis allows for the assessment of different processing stages, and implementing this paradigm in a comparably large sample of neonates is impressive.
Weaknesses
The authors addressed all the concerns I previously raised well and I have no further comments.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
In this manuscript, Hou et al. investigate the interplay between OCT4 and SOX2 in driving the pluripotent state during early embryonic lineage development. Using knockout (KO) embryos, the authors specifically analyze the transcriptome and chromatin state within the ICM-to-EPI developmental trajectory. They emphasize the critical role of OCT4 and the supportive function of SOX2, along with other factors, in promoting embryonic fate. Although the paper presents high-quality data, several key claims are not well-supported, and direct evidence is generally lacking.
Comments on revisions:
The authors have addressed many of the concerns raised in the initial review and provided alternative analytical approaches to address the relevant questions in this revision. Some of these are useful; however, they have not fully addressed one critical point.<br /> In my original critique, I noted that the maternal KO might not be suitable as a control, given that there is no significant phenotypic difference between the maternal-only KO and the maternal-zygotic KO. While we did not dispute the molecular differences presented in Figure 2, so how the authors conclude in the Response "embryos with a maternal KO or zygotic heterozygous KO of Oct4 or Sox2 show no noticeable ... molecular difference (Figure 2-figure supplement 4A)"? The authors should recheck whether this is a typographical error or a valid statement.
Additionally, I recommend the removal of phrases such as "absolutely priority" and "pivotal" throughout the manuscript, as these terms are overly assertive without sufficient supporting evidence.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Canonical Wnt signaling has previously been shown to be responsible for correct patterning of the oral-aboral axis as well as germ layer formation in several cnidarians. In the post-gastrula stage, the planula larvae are not only elongated, they have a specific swimming direction due to the decentralized cellular positioning and slanted anchoring of the cilia. This in turn is in most other animals the result of a Wnt-Planar-cell polarity pathway. This paper by Uveira et al investigates the role of Wnt3 signaling in serving as a local cue for the PCP pathway which then is responsible for the orientation of the cilia and elongation of the planula larva of the hydrozoan Clytia hemisphaerica. Wnt3 was shown before to activate the canonical pathway via ß-catenin and to act as an axial organizer. The authors provide compelling evidence for this somewhat unusual direct link between the pathways through the same signaling molecule, Wnt3. In conclusion, they propose a two-step model: (1) local orientation by Wnt3 secretion and (2) global propagation by the PCP pathway over the whole embryo.
Strengths:
In a series of elegant and also seemingly sophisticated experiments, they show that Wnt3 activates the PCP pathway directly, as it happens in the absence of canonical Wnt signaling (e.g. through co-expression of dnTCF). Conversely, constitutive active ß-catenin was not able to rescue PCP coordination upon Wnt3 depletion, yet restored gastrulation. This uncouples the effect of Wnt3 on axis specification and morphogenetic movements from the elongation via PCP. Through transplantation of single blastomeres providing a local source of Wnt3, they also demonstrate the reorganization of cellular polarity immediately adjacent to the Wnt3-expressing cell patch. These transplantation experiments also uncover that mechanical cues can also trigger polarization, suggesting a mechanotransduction or direct influence on subcellular structures, e.g. actin fiber orientation.
This is a beautiful and elegant study addressing an important question. The results have significant implications also for our understanding of the evolutionary origin of axis formation and the link of these two ancient pathways, which in most animals are controlled by distinct Wnt ligands and Frizzled receptors. The quality of the data is stunning and the paper is written in a clear and succinct manner. This paper has the potential to become a widely cited milestone paper.
Weaknesses:
I can not detect any major weaknesses. The work only raises a few more follow-up questions, which the authors are invited to comment on.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Kanie et all have carried out a tour-de-force effort to further understand the hierarchy and function of centriole distal appendages in ciliogenesis. They made a thorough effort to understand the localization of all the known distal appendage proteins. To examine the distal appendage hierarchy, they used an automated analysis of centrosomal localization. It is not clear how this was quantified and pictures are not shown. They used CEP170, a marker for subdistal appendages, to define a mask around centrioles. It is not clear how the experiment was analyzed and normalized. The techniques used in this study cannot be compared with those commonly used in the field which normally include storm and other super-resolution techniques (which are less prone to artifacts) and correlated electron microscopy. Thus, it is not possible to make a head-to-head comparison. The lack of rescue experiments further weakens the conclusions of this paper.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this manuscript, Guayasamin et al. show that early-life stress (ELS) can induce a shift in fear generalisation in mice. They took advantage of a fear conditioning paradigm followed by a discrimination test and complement learning and memory findings with measurements for anxiety-like behaviors. Next, astrocytic dysfunction in the lateral amygdala was investigated at the cellular level by combining staining for c-Fos with astrocyte-related proteins. Changes in excitatory neurotransmission were observed in acute brains slices after ELS suggesting impaired communication between neurons and astrocytes. To confirm causality of astrocytic-neuronal dysfunction in behavioral changes, viral manipulations were performed in unstressed mice. Occlusion of functional coupling with a dominant negative construct for gap junction connexin 43 or reduction in astrocytic calcium with CalEx mimicked the behavioral changes observed after ELS suggesting that dysfunction of the astrocytic network underlies ELS-induced memory impairments.
Strengths:
Overall, this well written manuscript highlights a key role for astrocytes in regulating stress-induced behavioral and synaptic deficits in the lateral amygdala in the context of ELS. Results are innovative, and methodological approaches relevant to decipher the role of astrocytes in behaviors. As mentioned by the authors, non-neuronal cells are receiving increasing attention in the neuroscience, stress and psychiatry fields.
Weaknesses:
I did have several suggestions and comments that were addressed during the review process. I believe that it improved clarity and will increase the impact of the work.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public review):
Summary:
In this work, the authors use a Hidden Markov Model (HMM) to describe dynamic connectivity and amplitude patterns in fMRI data, and propose to integrate these features with the Fisher kernel to improve the prediction of individual traits. The approach is tested using a large sample of healthy young adults from the Human Connectome Project. The HMM-Fisher Kernel approach was shown to achieve higher prediction accuracy with lower variance on many individual traits compared to alternate kernels and measures of static connectivity. As an additional finding, the authors demonstrate that parameters of the HMM state matrix may be more informative in predicting behavioral/cognitive variables in this data compared to state-transition probabilities.
Comments on revisions:
The authors have now addressed my comments, and I believe this work will be an interesting contribution to the literature.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
This is a nice article that presents interesting findings. The model's predictions match the data, which is good. The discussion points to modeling plasticity after SCI, which will be important.
The manuscript is well-written and interesting, and the putative neural circuit mechanisms that the model uncovers are super cool if they can be tested in an animal.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Tsurumi et al. show that recurrent neural networks can learn state and value representations in simple reinforcement learning tasks when trained with random feedback weights. The traditional method of learning for recurrent network in such tasks (backpropagation through time) requires feedback weights which are a transposed copy of the feed-forward weights, a biologically implausible assumption. This manuscript builds on previous work regarding "random feedback alignment" and "value-RNNs", and extends them to a reinforcement learning context. The authors also demonstrate that certain non-negative constraints can enforce a "loose alignment" of feedback weights. The author's results suggest that random feedback may be a powerful tool of learning in biological networks, even in reinforcement learning tasks.
Strengths:
The authors describe well the issues regarding biologically plausible learning in recurrent networks and in reinforcement learning tasks. They take care to propose networks which might be implemented in biological systems and compare their proposed learning rules to those already existing in literature. Further, they use small networks on relatively simple tasks, which allows for easier intuition into the learning dynamics.
Weaknesses:
The principles discovered by the authors in these smaller networks are not applied to deeper networks or more complicated tasks, so it remains unclear to what degree these methods can scale up, or can be used more generally.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
RNA guanine-rich G-quadruplexes (rG4s) are non-canonical higher order nucleic acid structures that can form under physiological conditions. Interestingly, cellular stress is positively correlated with rG4 induction.
In this study, the authors examined human hippocampal postmortem tissue for the formation ofrG4s in aging and Alzheimer Disease (AD). rG4 immunostaining strongly increased in the hippocampus with both age and with AD severity. 21 cases were used in this study (age range 30-92).
This immunostaining co-localized with hyper-phosphorylated tau immunostaining in neurons. The BG4 staining levels were also impacted by APOE status. rG4 structure was previously found to drive tau aggregation. Based on these observations, the authors propose a model of neurodegeneration in which chronic rG4 formation drives proteostasis collapse.
This model is interesting, and would explain different observations (e.g., RNA is present in AD aggregates and rG4s can enhance protein oligomerization and tau aggregation).
Main issue from the previous round of review:
There is indeed a positive correlation between Braak stage severity and BG4 staining, but this correlation is relatively weak and borderline significant ((R = 0.52, p value = 0.028). This is probably the main limitation of this study, which should be clearly acknowledged (together with a reminder that "correlation is not causality"). Related to this, here is no clear justification to exclude the four individuals in Fig 1d (without them R increases to 0.78). Please remove this statement. On the other hand, the difference based on APOE status is more striking.
Comments on current version:
The authors have made laudable efforts to address the criticisms I made in my evaluation of the original manuscript.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public review):
Summary:
The authors study the function of HCN channels in L2/3 pyramidal neurons, employing somatic whole-cell recordings in acute slices of visual cortex in adult mice and a bevy of technically challenging techniques. Their primary claim is a non-uniform HCN distribution across the dendritic arbor with greater density closer to the soma (roughly opposite of the gradient found in L5 PT-type neurons). The second major claim is that multiple sources of long-range excitatory input (cortical and thalamic) are differentially affected by the HCN distribution. They further describe an interesting interplay of NMDAR and HCN, serotonergic modulation of HCN, and compare HCN-related properties at 1-, 2- and 6-weeks of age. Several results are accompanied by biophysical simulations.
Strengths:
The authors collected data from both male and female mice, at an age (6-10 weeks) that permits comparison with in vivo studies, in sufficient numbers for each condition, and they collected a good number of data points for almost all figure panels. This is all the more positive, considering the demanding nature of multi-electrode recording configurations and pipette-perfusion. The main strength of the study is the question and focus.
Weaknesses:
Unfortunately, in its present form, the main claims are not adequately supported by the experimental evidence: primarily because the evidence is indirect and circumstantial, but also because multiple unusual experimental choices (along with poor presentation of results) undermine the reader's confidence. Additionally, the authors overstate the novelty of certain results and fail to cite important related publications. Some of these weaknesses can be addressed by improved analysis, statistics, resolving inconsistent data across figures, reorganizing/improving figure panels, more complete methods, improved citations, and proofreading. In particular, given the emphasis on EPSPs, the primary data (example EPSPs, overlaid conditions) should be shown much more.
However on the experimental side, addressing the reviewer's concerns would require a very substantial additional effort: direct measurement of HCN density at different points in the dendritic arbor and soma; the internal solution chosen here (K-gluconate) is reported to inhibit HCN; bath-applied cesium at the concentrations used blocks multiple potassium channels, i.e. is not selective for HCN (the authors have concerns about using the more selective blocker ZD7288, but did use it in a subset of experiments, some of which show quantitatively different results). In response to initial review, the authors performed pathway-specific synaptic stimulation, via optogenetic activation of specific long-range inputs - this approach is valuable and interesting, however the results are presented very minimally and only partially match those obtained by layer-specific electrical stimulation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The authors employ molecular dynamics simulations to understand the selectivity of FDA approved inhibitors within dimeric and monomeric BRAF species. Through these comprehensive simulations, they shed light on the selectivity of BRAF inhibitors by delineating the main structural changes occurring during dimerization and inhibitor action. Notably, they identify the two pivotal elements in this process: the movement and conformational changes involving the alpha-C helix and the formation of a hydrogen bond involving the Glu-501 residue. These findings find support in the analyses of various structures crystallized from dimers and co-crystallized monomers in the presence of inhibitors. The elucidation of this mechanism holds significant potential for advancing our understanding of kinase signalling and the development of future BRAF inhibitor drugs.
Strengths:
The authors employ a diverse array of computational techniques to characterize the binding sites and interactions between inhibitors and the active site of BRAF in both dimeric and monomeric forms. They combine traditional and advanced molecular dynamics simulation techniques such as CpHMD (All-atom continuous constant pH molecular dynamics) to provide mechanistic explanations. Additionally, the paper introduces methods for identifying and characterizing the formation of the hydrogen bond involving the Glu501 residue without the need for extensive molecular dynamics simulations. This approach facilitates the rapid identification of future BRAF inhibitor candidates.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Although recent cochlear micromechanical measurements in living animals have shown that outer hair cells drive broadband vibration of the reticular lamina, the role of this vibration in cochlear fluid circulation remains unclear. The authors hypothesized that motile outer hair cells facilitate cochlear fluid circulation. To test this, they investigated the effects of acoustic stimuli and salicylate on kainic acid-induced changes in the cochlear nucleus activities. The results reveal that low-frequency tones accelerate the effect of kainic acid, while salicylate reduces the impact of acoustic stimuli, indicating that outer hair cells actively drive cochlear fluid circulation.
The major strengths of this study lie in its high significance and the synergistic use of both electrophysiological recording and computational modeling. Recent in vivo observations of the broadband reticular lamina vibration challenge the traditional view of frequency-specific cochlear amplification. Furthermore, there is currently no effective noninvasive method to deliver the drugs or genes to the cochlea. This study addresses these important questions by observing outer hair cells' roles in the cochlear transport of kainic acid. The author utilized a well-established electrophysiological method to produce valuable new data and a custom-developed computational model to enhanced the interpretation of their experimental results.
The authors successfully validated their hypothesis, showing through the experimental and modeling results that active outer hair cells enhance cochlear fluid circulation in the living cochlea.
These findings have significant implications for advancing our understanding of cochlear amplification and offer promising clinical applications for treating hearing loss by accelerating cochlear drug delivery.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors aim to provide a comprehensive understanding of the evolutionary history of the Major Histocompatibility Complex (MHC) gene family across primate species. Specifically, they sought to:
(1) Analyze the evolutionary patterns of MHC genes and pseudogenes across the entire primate order, spanning 60 million years of evolution.
(2) Build gene and allele trees to compare the evolutionary rates of MHC Class I and Class II genes, with a focus on identifying which genes have evolved rapidly and which have remained stable.
(3) Investigate the role of often-overlooked pseudogenes in reconstructing evolutionary events, especially within the Class I region.
(4) Highlight how different primate species use varied MHC genes, haplotypes, and genetic variation to mount successful immune responses, despite the shared function of the MHC across species.
(5) Fill gaps in the current understanding of MHC evolution by taking a broader, multi-species perspective using (a) phylogenomic analytical computing methods such as Beast2, Geneconv, BLAST, and the much larger computing capacities that have been developed and made available to researchers over the past few decades, (b) literature review for gene content and arrangement, and genomic rearrangements via haplotype comparisons.
(6) The authors overall conclusions based on their analyses and results are that 'different species employ different genes, haplotypes, and patterns of variation to achieve a successful immune response'.
Strengths:
Essentially, much of the information presented in this paper is already well-known in the MHC field of genomic and genetic research, with few new conclusions and with insufficient respect to past studies. Nevertheless, while MHC evolution is a well-studied area, this paper potentially adds some originality through its comprehensive, cross-species evolutionary analysis of primates, focus on pseudogenes and the modern, large-scale methods employed. Its originality lies in its broad evolutionary scope of the primate order among mammals with solid methodological and phylogenetic analyses.
The main strengths of this study are the use of large publicly available databases for primate MHC sequences, the intensive computing involved, the phylogenetic tool Beast2 to create multigene Bayesian phylogenetic trees using sequences from all genes and species, separated into Class I and Class II groups to provide a backbone of broad relationships to investigate subtrees, and the presentation of various subtrees as species and gene trees in an attempt to elucidate the unique gene duplications within the different species. The study provides some additional insights with summaries of MHC reference genomes and haplotypes in the context of a literature review to identify the gene content and haplotypes known to be present in different primate species. The phylogenetic overlays or ideograms (Figures 6 and 7) in part show the complexity of the evolution and organisation of the primate MHC genes via the orthologous and paralogous gene and species pathways progressively from the poorly-studied NWM, across a few moderately studied ape species, to the better-studied human MHC genes and haplotypes.
Weaknesses:
The title 'The Primate Major Histocompatibility Complex: An Illustrative Example of Gene Family Evolution' suggests that the paper will explore how the Major Histocompatibility Complex (MHC) in primates serves as a model for understanding gene family evolution. The term 'Illustrative Example' in the title would be appropriate if the paper aimed to use the primate Major Histocompatibility Complex (MHC) as a clear and representative case to demonstrate broader principles of gene family evolution. That is, the MHC gene family is not just one instance of gene family evolution but serves as a well-studied, insightful example that can highlight key mechanisms and concepts applicable to other gene families. However, this is not the case, this paper only covers specific details of primate MHC evolution without drawing broader lessons to any other gene families. So, the term 'Illustrative Example' is too broad or generalizing. In this case, a term like 'Case Study' or simply 'Example' would be more suitable. Perhaps, 'An Example of Gene Family Diversity' would be more precise. Also, an explanation or 'reminder' is suggested that this study is not about the origins of the MHC genes from the earliest jawed vertebrates per se (~600 mya), but it is an extension within a subspecies set that has emerged relatively late (~60 mya) in the evolutionary divergent pathways of the MHC genes, systems, and various vertebrate species.
Phylogenomics. Particular weaknesses in this study are the limitations and problems associated with providing phylogenetic gene and species trees to try and solve the complex issue of the molecular mechanisms involved with imperfect gene duplications, losses, and rearrangements in a complex genomic region such as the MHC that is involved in various effects on the response and regulation of the immune system. A particular deficiency is drawing conclusions based on a single exon of the genes. Different exons present different trees. Which are the more reliable? Why were introns not included in the analyses? The authors attempt to overcome these limitations by including genomic haplotype analysis, duplication models, and the supporting or contradictory information available in previous publications. They succeed in part with this multidiscipline approach, but much is missed because of biased literature selection. The authors should include a paragraph about the benefits and limitations of the software that they have chosen for their analysis, and perhaps suggest some alternative tools that they might have tried comparatively. How were problems with Bayesian phylogeny such as computational intensity, choosing probabilities, choosing particular exons for analysis, assumptions of evolutionary models, rates of evolution, systemic bias, and absence of structural and functional information addressed and controlled for in this study?
Gene families as haplotypes. In the Introduction, the MHC is referred to as a 'gene family', and in paragraph 2, it is described as being united by the 'MHC fold', despite exhibiting 'very diverse functions'. However, the MHC region is more accurately described as a multigene region containing diverse, haplotype-specific Conserved Polymorphic Sequences, many of which are likely to be regulatory rather than protein-coding. These regulatory elements are essential for controlling the expression of multiple MHC-related products, such as TNF and complement proteins, a relationship demonstrated over 30 years ago. Non-MHC fold loci such as TNF, complement, POU5F1, lncRNA, TRIM genes, LTA, LTB, NFkBIL1, etc, are present across all MHC haplotypes and play significant roles in regulation. Evolutionary selection must act on genotypes, considering both paternal and maternal haplotypes, rather than on individual genes alone. While it is valuable to compile databases for public use, their utility is diminished if they perpetuate outdated theories like the 'birth-and-death model'. The inclusion of prior information or assumptions used in a statistical or computational model, typically in Bayesian analysis, is commendable, but they should be based on genotypic data rather than older models. A more robust approach would consider the imperfect duplication of segments, the history of their conservation, and the functional differences in inheritance patterns. Additionally, the MHC should be examined as a genomic region, with ancestral haplotypes and sequence changes or rearrangements serving as key indicators of human evolution after the 'Out of Africa' migration, and with disease susceptibility providing a measurable outcome. There are more than 7000 different HLA-B and -C alleles at each locus, which suggests that there are many thousands of human HLA haplotypes to study. In this regard, the studies by Dawkins et al (1999 Immunol Rev 167,275), Shiina et al. (2006 Genetics 173,1555) on human MHC gene diversity and disease hitchhiking (haplotypes), and Sznarkowska et al. (2020 Cancers 12,1155) on the complex regulatory networks governing MHC expression, both in terms of immune transcription factor binding sites and regulatory non-coding RNAs, should be examined in greater detail, particularly in the context of MHC gene allelic diversity and locus organization in humans and other primates.
Diversifying and/or concerted evolution. Both this and past studies highlight diversifying selection or balancing selection model is the dominant force in MHC evolution. This is primarily because the extreme polymorphism observed in MHC genes is advantageous for populations in terms of pathogen defence. Diversification increases the range of peptides that can be presented to T cells, enhancing the immune response. The peptide-binding regions of MHC genes are highly variable, and this variability is maintained through selection for immune function, especially in the face of rapidly evolving pathogens. In contrast, concerted evolution, which typically involves the homogenization of gene duplicates through processes like gene conversion or unequal crossing-over, seems to play a minimal role in MHC evolution. Although gene duplication events have occurred in the MHC region leading to the expansion of gene families, the resulting paralogs often undergo divergent evolution rather than being kept similar or homozygous by concerted evolution. Therefore, unlike gene families such as ribosomal RNA genes or histone genes, where concerted evolution leads to highly similar copies, MHC genes display much higher levels of allelic and functional diversification. Each MHC gene copy tends to evolve independently after duplication, acquiring unique polymorphisms that enhance the repertoire of antigen presentation, rather than undergoing homogenization through gene conversion. Also, in some populations with high polymorphism or genetic drift, allele frequencies may become similar over time without the influence of gene conversion. This similarity can be mistaken for gene conversion when it is simply due to neutral evolution or drift, particularly in small populations or bottlenecked species. Moreover, gene conversion might contribute to greater diversity by creating hybrids or mosaics between different MHC genes. In this regard, can the authors indicate what percentage of the gene numbers in their study have been homogenised by gene conversion compared to those that have been diversified by gene conversion?
Duplication models. The phylogenetic overlays or ideograms (Figures 6 and 7) show considerable imperfect multigene duplications, losses, and rearrangements, but the paper's Discussion provides no in-depth consideration of the various multigenic models or mechanisms that can be used to explain the occurrence of such events. How do their duplication models compare to those proposed by others? For example, their text simply says on line 292, 'the proposed series of events is not always consistent with phylogenetic data'. How, why, when? Duplication models for the generation and extension of the human MHC class I genes as duplicons (extended gene or segmental genomic structures) by parsimonious imperfect tandem duplications with deletions and rearrangements in the alpha, beta, and kappa blocks were already formulated in the late 1990s and extended to the rhesus macaque in 2004 based on genomic haplotypic sequences. These studies were based on genomic sequences (genes, pseudogenes, retroelements), dot plot matrix comparisons, and phylogenetic analyses of gene and retroelement sequences using computer programs. It already was noted or proposed in these earlier 1999 studies that (1) the ancestor of HLA-P(90)/-T(16)/W(80) represented an old lineage separate from the other HLA class I genes in the alpha block, (2) HLA-U(21) is a duplicated fragment of HLA-A, (3) HLA-F and HLA-V(75) are among the earliest (progenitor) genes or outgroups within the alpha block, (4) distinct Alu and L1 retroelement sequences adjoining HLA-L(30), and HLA-N genomic segments (duplicons) in the kappa block are closely related to those in the HLA-B and HLA-C in the beta block; suggesting an inverted duplication and transposition of the HLA genes and retroelements between the beta and kappa regions. None of these prior human studies were referenced by Fortier and Pritchard in their paper. How does their human MHC class I gene duplication model (Fig. 6) such as gene duplication numbers and turnovers differ from those previously proposed and described by Kulski et al (1997 JME 45,599), (1999 JME 49,84), (2000 JME 50,510), Dawkins et al (1999 Immunol Rev 167,275), and Gaudieri et al (1999 GR 9,541)? Is this a case of reinventing the wheel?
Results. The results are presented as new findings, whereas most if not all of the results' significance and importance already have been discussed in various other publications. Therefore, the authors might do better to combine the results and discussion into a single section with appropriate citations to previously published findings presented among their results for comparison. Do the trees and subsets differ from previous publications, albeit that they might have fewer comparative examples and samples than the present preprint? Alternatively, the results and discussion could be combined and presented as a review of the field, which would make more sense and be more honest than the current format of essentially rehashing old data.
Minor corrections:
(1) Abstract, line 19: 'modern methods'. Too general. What modern methods?
(2) Abstract, line 25: 'look into [primate] MHC evolution.' The analysis is on the primate MHC genes, not on the entire vertebrate MHC evolution with a gene collection from sharks to humans. The non-primate MHC genes are often differently organised and structurally evolved in comparison to primate MHC.
(3) Introduction, line 113. 'In a companion paper (Fortier and Pritchard, 2024)' This paper appears to be unpublished. If it's unpublished, it should not be referenced.
(4) Figures 1 and 2. Use the term 'gene symbols' (circle, square, triangle, inverted triangle, diamond) or 'gene markers' instead of 'points'. 'Asterisks "within symbols" indicate new information.
(5) Figures. A variety of colours have been applied for visualisation. However, some coloured texts are so light in colour that they are difficult to read against a white background. Could darker colours or black be used for all or most texts?
(6) Results, line 135. '(Fortier and Pritchard, 2024)' This paper appears to be unpublished. If it's unpublished, it should not be referenced.
(7) Results, lines 152 to 153, 164, 165, etc. 'Points with an asterisk'. Use the term 'gene symbols' (circle, square, triangle, inverted triangle, diamond) or 'gene markers' instead of 'points'. A point is a small dot such as those used in data points for plotting graphs .... The figures are so small that the asterisks in the circles, squares, triangles, etc, look like points (dots) and the points/asterisks terminology that is used is very confusing visually.
(8) Line 178 (BEA, 2024) is not listed alphabetically in the References.
(9) Lines 188-190. 'NWM MHC-G does not group with ape/OWM MHC-G, instead falling outside of the clade containing ape/OWM MHC-A, -G, -J and -K.' This is not surprising given that MHC-A, -G, -J, and -K are paralogs of each other and that some of them, especially in NWM have diverged over time from the paralogs and/or orthologs and might be closer to one paralog than another and not be an actual ortholog of OWM, apes or humans.
(10) Line 249. Gene conversion: This is recombination between two different genes where a portion of the genes are exchanged with one another so that different portions of the gene can group within one or other of the two gene clades. Alternatively, the gene has been annotated incorrectly if the gene does not group within either of the two alternative clades. Another possibility is that one or two nucleotide mutations have occurred without a recombination resulting in a mistaken interpretation or conclusion of a recombination event. What measures are taken to avoid false-positive conclusions? How many MHC gene conversion (recombination) events have occurred according to the authors' estimates? What measures are taken to avoid false-positive conclusions?
(11) Lines 284-286. 'The Class I MHC region is further divided into three polymorphic blocks-alpha, beta, and kappa blocks-that each contains MHC genes but are separated by well-conserved non-MHC genes.' The MHC class I region was first designated into conserved polymorphic duplication blocks, alpha and beta by Dawkins et al (1999 Immunol Rev 167,275), and kappa by Kulski et al (2002 Immunol Rev 190,95), and should be acknowledged (cited) accordingly.
(12) Lines 285-286. 'The majority of the Class I genes are located in the alpha-block, which in humans includes 12 MHC genes and pseudogenes.' This is not strictly correct for many other species, because the majority of class I genes might be in the beta block of new and old-world monkeys, and the authors haven't provided respective counts of duplication numbers to show otherwise. The alpha block in some non-primate mammalian species such as pigs, rats, and mice has no MHC class I genes or only a few. Most MHC class I genes in non-primate mammalian species are found in other regions. For example, see Ando et al (2005 Immunogenetics 57,864) for the pig alpha, beta, and kappa regions in the MHC class I region. There are no pig MHC genes in the alpha block.
(13) Line 297 to 299. 'The alpha-block also contains a large number of repetitive elements and gene fragments belonging to other gene families, and their specific repeating pattern in humans led to the conclusion that the region was formed by successive block duplications (Shiina et al., 1999).' There are different models for successive block duplications in the alpha block and some are more parsimonious based on imperfect multigenic segmental duplications (Kulski et al 1999, 2000) than others (Shiina et al., 1999). In this regard, Kulski et al (1999, 2000) also used duplicated repetitive elements neighbouring MHC genes to support their phylogenetic analyses and multigenic segmental duplication models. For comparison, can the authors indicate how many duplications and deletions they have in their models for each species?
(14) Lines 315-315. 'Ours is the first work to show that MHC-U is actually an MHC-A-related gene fragment.' This sentence should be deleted. Other researchers had already inferred that MHC-U is actually an MHC-A-related gene fragment more than 25 years ago (Kulski et al 1999, 2000) when the MHC-U was originally named MHC-21.
(15) Lines 361-362. 'Notably, our work has revealed that MHC-V is an old fragment.' This is not a new finding or hypothesis. Previous phylogenetic analysis and gene duplication modelling had already inferred HLA-V (formerly HLA-75) to be an old fragment (Kulski et al 1999, 2000).
(16) Line 431-433. 'the Class II genes have been largely stable across the mammals, although we do see some lineage-specific expansions and contractions (Figure 2 and Figure 2-gure Supplement 2).' Please provide one or two references to support this statement. Is 'gure' a typo?
(17) Line 437. 'We discovered far more "specific" events in Class I, while "broad-scale" events were predominant in Class II.' Please define the difference between 'specific' and 'broad-scale'.<br /> 450-451. 'This shows that classical genes experience more turnover and are more often affected by long-term balancing selection or convergent evolution.' Is balancing selection a form of divergent evolution that is different from convergent evolution? Please explain in more detail how and why balancing selection or convergent evolution affects classical and nonclassical genes differently.
References. Some references in the supplementary materials such as Alvarez (1997), Daza-Vamenta (2004), Rojo (2005), Aarnink (2014), Kulski (2022), and others are missing from the Reference list. Please check that all the references in the text and the supplementary materials are listed correctly and alphabetically.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The aim was to decipher the regulatory networks of KRAB-ZNFs and TEs that have changed during human brain evolution and in Alzheimer's disease.
Strengths:
This solid study presents a valuable analysis and successfully confirms previous assumptions, but also goes beyond the current state of the art.
Weaknesses:
The design of the analysis needs to be slightly modified and a more in-depth analysis of the positive correlation cases would be beneficial. Some of the conclusions need to be reinterpreted.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this study, Cho et al. investigate the role of ether lipid biosynthesis in B cell biology, particularly focusing on GC B cell, by inducible deletion of PexRAP, an enzyme responsible for the synthesis of ether lipids.
Strengths:
Overall, the data are well-presented, the paper is well-written and provides valuable mechanistic insights into the importance of PexRAP enzyme in GC B cell proliferation.
Weaknesses:
More detailed mechanisms of the impaired GC B cell proliferation by PexRAP deficiency remain to be further investigated. In the minor part, there are issues with the interpretation of the data which might cause confusion for the readers.
-
-
-
Reviewer #2 (Public review):
Summary:
In this study, the authors aimed to investigate how humans learn and adapt their behavior in dynamic environments characterized by two distinct types of uncertainty: volatility (systematic changes in outcomes) and noise (random variability in outcomes). Specifically, they sought to understand how participants adjust their learning rates in response to changes in these forms of uncertainty.
To achieve this, the authors employed a two-step approach:
(1) Reinforcement Learning (RL) Model: They first used an RL model to fit participants' behavior, revealing that the learning rate was context-dependent. In other words, it varied based on the levels of volatility and noise. However, the RL model showed that participants misattributed noise as volatility, leading to higher learning rates in noisy conditions, where the optimal strategy would be to be less sensitive to random fluctuations.
(2) Bayesian Observer Model (BOM): To better account for this context dependency, they introduced a Bayesian Observer Model (BOM), which models how an ideal Bayesian learner would update their beliefs about environmental uncertainty. They found that a degraded version of the BOM, where the agent had a coarser representation of noise compared to volatility, best fit the participants' behavior. This suggested that participants were not fully distinguishing between noise and volatility, instead treating noise as volatility and adjusting their learning rates accordingly.
The authors also aimed to use pupillometry data (measuring pupil dilation) as a physiological marker to arbitrate between models and understand how participants' internal representations of uncertainty influenced both their behavior and physiological responses. Their objective was to explore whether the BOM could explain not just behavioral choices but also these physiological responses, thereby providing stronger evidence for the model's validity.
Overall, the study sought to reconcile approximate rationality in human learning by showing that participants still follow a Bayesian-like learning process, but with simplified internal models that lead to suboptimal decisions in noisy environments.
Strengths:
The generative model presented in the study is both innovative and insightful. The authors first employ a Reinforcement Learning (RL) model to fit participants' behavior, revealing that the learning rate is context-dependent-specifically, it varies based on the levels of volatility and noise in the task. They then introduce a Bayesian Observer Model (BOM) to account for this context dependency, ultimately finding that a degraded BOM - in which the agent has a coarser representation of noise compared to volatility - provides the best fit for the participants' behavior. This suggests that participants do not fully distinguish between noise and volatility, leading to the misattribution of noise as volatility. Consequently, participants adopt higher learning rates even in noisy contexts, where an optimal strategy would involve being less sensitive to new information (i.e., using lower learning rates). This finding highlights a rational but approximate learning process, as described in the paper.
Weaknesses:
While the RL and Bayesian models both successfully predict behavior, it remains unclear how to fully reconcile the two approaches. The RL model captures behavior in terms of a fixed or context-dependent learning rate, while the BOM provides a more nuanced account with dynamic updates based on volatility and noise. Both models can predict actions when fit appropriately, but the pupillometry data offers a promising avenue to arbitrate between the models. However, the current study does not provide a direct comparison between the RL framework and the Bayesian model in terms of how well they explain the pupillometry data. It would be valuable to see whether the RL model can also account for physiological markers of learning, such as pupil responses, or if the BOM offers a unique advantage in this regard. A comparison of the two models using pupillometry data could strengthen the argument for the BOM's superiority, as currently, the possibility that RL models could explain the physiological data remains unexplored.
The model comparison between the Bayesian Observer Model and the self-defined degraded internal model could be further enhanced. Since different assumptions about the internal model's structure lead to varying levels of model complexity, using a formal criterion such as Bayesian Information Criterion (BIC) or Akaike Information Criterion (AIC) would allow for a more rigorous comparison of model fit. Including such comparisons would ensure that the degraded BOM is not simply favored due to its flexibility or higher complexity, but rather because it genuinely captures the participants' behavioral and physiological data better than alternative models. This would also help address concerns about overfitting and provide a clearer justification for using the degraded BOM over other potential models.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This study aims to show how structural and functional brain organization develops during childhood and adolescence using two large neuroimaging datasets. It addresses whether core principles of brain organization are stable across development, how they change over time, and how these changes relate to cognition and psychopathology. The study finds that brain organization is established early and remains stable but undergoes gradual refinement, particularly in higher-order networks. Structural-functional coupling is linked to better working memory but shows no clear relationship with psychopathology.
Strengths:
This study effectively integrates two different modalities (structural and functional) to identify shared patterns. It is supported by a relatively large dataset, which enhances its value and robustness.
Weaknesses:
General Comments:<br /> - The introduction is overly long and includes numerous examples that can distract readers unfamiliar with the topic from the main research questions.
- While the methods are thorough, it is not always clear whether the optimal approaches were chosen for each step, considering the available data.<br /> Detailed Comments:<br /> - The use of COMBAT may have excluded extreme participants from both datasets, which could explain the lack of correlations found with psychopathology.<br /> - Some differences in developmental trajectories between CALM and NKI (e.g., Figure 4d) are not explained. Are these differences expected, or do they suggest underlying factors that require further investigation?<br /> - There is no discussion of whether the stable patterns of brain organization could result from preprocessing choices or summarizing data to the mean. This should be addressed to rule out methodological artifacts.
-
-
www.youtube.com www.youtube.com
-
It makes a lot of sense to have this different strategy of being rooted in the real physical world and have digital nomads being as like a guild of knowledge workers that seed their specialized knowledge because localism is necessary and good, but it's also not necessarily very innovative. Most people at the local level just keep repeating stuff. It's good to have people coming in from the outside and innovating.
for - insight - good for digital nomads to be rooted somewhere in the physical word - they are like a cosmo guild of knowledge workers - localities tend to repeat the same things - digital nomads as outsiders can inject new patterns - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
-
Even for themselves, it's going to be necessary because if things get really bad and you're seen as a parasitical force, they'll come after you.
for - shadow side - of root-less digital nomads - when the sh*t hits the fan, working class will target digital nomads - as they will be seen as a parasitical force - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
-
role for digital nomads. There's an author called Austin Wade Smith
for - cosmolocal strategy - locals - permaculture, bioregional regeneration - cosmo - digital nomads - share collective protocols with locals to create cosmolocal networks - Austin Wade Smith - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
-
global coding class, which is about 34 million digital nomads right now and maybe 10 million with a crypto wallet. Again, they're not rooted. They're rootless, and they should be root-full.
for - stats - 2025 - digital nomads - 34 million - with crypto - 10 million - rootless - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
-
Fundamentally, I think Web3 is mainly an exit strategy for privileged layers of society. First of all, people within capital will see the system is not doing well and they want to do arbitrage between nation-states.
for - quote - Web3 is mainly an exit (escape) strategy for privileged layers of society - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
-
was sitting with a climate denier, a collapsist, a deep adaptationist, and an impact investor. You can say a greenwasher if you want to be mean about it. Anyway, they were talking peacefully and respectfully, and I thought, "Wow, this is more than what I thought. This is not just money. This is, there's community there
for - open space for perspectival knowing - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
-
voting systems, which are essentially anti-oligarchic, like quadratic voting. Basically, one share, one vote. That's your first vote, but then to have a second vote, you need the-- How do you call it? The square root? Anyway, so the next, I think, is 4 and then 16. You basically cream off the power of money and give it to the contributors, to the people collaborating on the project.
for - investigate - quadratic voting - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
-
history of labor
for - paraphrase - history of labor - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2 - to - stats - Gallup Chairman's Blog - world poll 2024 - 15% of employees worldwide are engaged - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
paraphrase - history of labor - Michel gives a nice succinct summary of the broad strokes of the history of labor over the last few millennia: - Civilizations have begun as slave-based societies first - Then when the Christian revolution occurred after the fall of the Roman Empire, "Ora et Labora (Pray and Work)" was adopted to transform work into a spiritually meaningful endeavor - Then in the 16th century, this philosophy was replaced by turning labor into a commodity, where it has remained ever since, - resulting in a world where 85% of those surveyed say they are not engaged with their job
to - stats - Gallup Chairman's Blog - world poll 2024 - 15% of employees worldwide are engaged - https://hyp.is/iOlXbNBOEe-t6hdOWtvTYw/news.gallup.com/opinion/chairman/212045/world-broken-workplace.aspx
-
for - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
// - COMMENTS - This is a very insightful interview with Michel that provides a lot of historical contexts for the many challenges faced by contemporary society - Within these historical contexts, we can glimpse how today's problems are part of a repeating pattern, albeit with many new elements that have emerged - He offers the possibility of a commons approach of mutualization, - in particular cosmolocalism - as a powerful leverage point to evolve a future wellbeing civilization - Contexualizing modernity in the alternate growth and downfall periods of human civilizations, he points out how we are in a transition period in which the current system is fraying - He outlines the many seed forms that exist now which, just like those that appeared in past cycles of downfall, combined to emerge the next growth cycle - crypto and blockchain - which can provide a global way of coordinating planetary health - the internet in general, which can bring mutualization of knowledge for locailzed production - There are some strong exemplars of promising seed forms but to scale, - the cosmo processes have to integrate with - local, place-anchored processes such as permacutlure and bioregion-based regeneration.
//
-
Funding the Commons
for - event - Funding the Commons - Bangkok conference 2024 - Michel Bauwens - guest - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2 - to - Funding the Commons - Bangkok conference 2024
to - Funding the Commons - Bangkok conference 2024 - https://hyp.is/fF-mVNBJEe-OWvM5g4ZLOQ/www.fundingthecommons.io/bangkok-2024
-
coalition of community land trusts. They're all local, doing their work locally, but they also have a global commons. That global commons has all the common protocols of cooperation, the common knowledge, the common patterns, but also it's a vehicle to attract capital that can go local.
for - bottom up mobilization - leverage the strength of the commons - create global coalition of local projects within in a common area - IE. Land trust - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
-
What's missing, and that's what I try to work on is, because at the same time we have this exponential growth of millions of people doing regenerative local work, but they're underfunded, they're undercapitalized. Usually, it's like two people getting half a wage from an NGO, and they work 16 hours a day. After five years, they totally burn out. How can we fund that? I think that Web3 can be the vehicle for capital to be invested in regeneration.
for - work to find way to use web 3 / crypto to fund currently underfunded regenerative work done by millions of people - the missing link - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
-
trans-financial capital. Now we cannot regulate market anymore, and that's why everybody is so frustrated with politics because it doesn't matter whether you vote left or right. The power is not there. The power is in the power of capital to move around and to basically punish you if you do anything that goes against their interest.
for - adjacency - trans-financial capital - political polarization - powerlessness of two party politics - culture wars distraction - Yanis Varoufakis - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
-
use the commons as a new regulatory mechanism. That would mean not local commons but trans-local commons. What I imagine, I call this the magisteria of the commons, you have a coalition of, let's say, permaculture, a particular way of doing respectful agriculture. Locally, they're weak. It's just a bunch of people. Globally, what if there are 12,000 of them? What if they have a common social power, like common property that can help the nodes individually? I think that would create the premises and the seeds for a new type of institution that can operate at the trans-local level. That's what I call cosmolocalism
for - cosmolicalism - nice articulation - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
-
Imagine we do that at scale everywhere. Every provisioning system, we re-localize it, we mutualize it to a certain degree again. If we do that, we can maintain a very high level of complexity in our societies. Everything we love about modernity, despite all the things that we hate about it,
for - mutualise at scale - add much in the SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
-
A shared car association, every shared car replaces 9 to 13 private cars for the same amount of travel freedom, point to point. You don't lose any freedom like you would in public transport. It's just like a neighborhood shares a dozen cars. 95% of the cars are in the garage at any time.
for - example - efficacy of mutualisation - transportation - cars - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2 - stats - mutualisation - transportation - cars - 1 car can replace 13 - car is parked most of the time - 10% of existing cars doubles our requirement - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
-
Jordan Hall calls this the Civium, right? Civilization is place-based, and the civium is not place-based. You can still learn.
for - definition - Civium - Jordan Hall - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2 - adjacency - Civium - Tipping Point Festival - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
adjacency - between - civium - Tipping Point Festival - Civiums are the terminology that applies for the vision of the TIpping Point Festival, where twice a year, - solstice - equinox - People gather and converge at a central temporary, cosmolocal event to mutually exchange ideas, network, seed new projects and review the past years successes and failures - This is an event also used to operationalize a planetary framework for restoration and regeneration that is syncrhonized to earth system boundaries, but contextualized to each locality, - but needs to be done at the scale of thousands of cities to have planetary-scale impact - It is, by design, a cosmolocal event
Tags
- insight - good for digital nomads to be rooted somewhere in the physical word - they are like a cosmo guild of knowledge workers - localities tend to repeat the same things - digital nomads as outsiders can inject new patterns - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
- shadow side - of root-less digital nomads - when the sh*t hits the fan, working class will target digital nomads - as they will be seen as a parasitical force - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
- adjacency - Civium - Tipping Point Festival - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
- open space for perspectival knowing - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
- paraphrase - history of labor - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
- bottom up mobilization - leverage the strength of the commons - create global coalition of local projects within in a common area - IE. Land trust - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
- Youtube - regenerative financing - host - Mathew Monahan - guest - Michel Bauwens - 2025 Jan 2
- event - Funding the Commons - Bangkok conference 2024 - Michel Bauwens - guest - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
- stats - 2025 - digital nomads - 34 million - with crypto - 10 million - rootless - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
- quote - Web3 is mainly an exit (escape) strategy for privileged layers of society - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
- to - stats - Gallup Chairman's Blog - world poll 2024 - 15% of employees worldwide are engaged - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
- mutualise at scale - add much in the SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
- stats - mutualisation - transportation - cars - 1 car can replace 13 - car is parked most of the time - 10% of existing cars doubles our requirement - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
- investigate - quadratic voting - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
- cosmolicalism - nice articulation - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
- Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
- cosmolocal strategy - locals - permaculture, bioregional regeneration - cosmo - digital nomads - share collective protocols with locals to create cosmolocal networks - Austin Wade Smith - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
- work to find way to use web 3 / crypto to fund currently underfunded regenerative work done by millions of people - the missing link - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
- example - efficacy of mutualisation - transportation - cars - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
- to - Funding the Commons - Bangkok conference 2024
- adjacency - trans-financial capital - political polarization - powerlessness of two party politics - culture wars distraction - Yanis Varoufakis - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2
Annotators
URL
-
-
news.gallup.com news.gallup.com
-
for - stats - job satisfaction - Gallup poll 2024 - engaged employees worldwide - 15% - Gallup CEO - Jim Clifton - from - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2 - https://hyp.is/FiFXpNBMEe-n_Jc4-PJ5_A/www.youtube.com/watch?v=UCkLHj6r7y8
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors use yeast genetics, lipidomic and biochemical approaches to demonstrate the DAG isoforms (36:0 and 36:1) can specifically activate PKC. Further, these DAG isoforms originate from PI and PI(4,5)P2. The authors propose that the Psi1-Plc1-Dip2 functions to maintain a normal level of specific DAG species to modulate PKC signalling.
Strengths:
Data from yeast genetics are clear and strong. The concept is potentially interesting and novel.
Weaknesses:
More evidence is needed to support the central hypothesis. The authors may consider the following:
(1) Figure 2: the authors should show/examine C36:1 DAG. Also, some structural evidence would be highly useful here. What is the structural basis for the assertion that the PKC C1 domain can only be activated by C36:0/1 DAG but not other DAGs? This is a critical conclusion of this work and clear evidence is needed.
(2) Does Dip2 colocalize with Plc1 or Pkc1? Does Dip2 reach the plasma membrane upon Plc activation?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
This is an interesting paper from Alonso-Caraballo and colleagues that examines the influence of opioid use, abstinence, and sex on paraventricular thalamus (PVT) to nucleus accumbens shell (NAcSh) medium spiny neurons circuit physiology. The authors first find that prolonged abstinence from extended access to oxycodone self-administration leads to profoundly increased cue-induced reinstatement in females. Next, they found that prolonged abstinence increased PVT-NAcSh MSN synaptic strength, an effect that was likely due to presynaptic adaptation (paired-pulse ratio was decreased in both sexes).
While this paper is certainly interesting, and well-written, and the experiments seem to be well performed, the behavioral and physiological effects observed are somewhat divorced. Specifically, what accounts for the heightened relapse in females? Since no opioid-related sex differences were observed in PVT-NAcSh neurophysiology, it is unclear how the behavioral and neurophysiological data fit together. Furthermore, the lack of functional manipulation of PVT-NAcSh circuitry leaves one to wonder if this circuit is even important for the behavior that the authors are measuring. I would be more positive about this study if the authors were able to resolve either of the two issues noted above.
I also noted more moderate weaknesses that the authors should consider:
(1) There are insufficient animals in some cases. For example, in Figure 4, the Male Saline 14-day abstinence group (n = 3 rats) has less than half of the excitability as compared to the Male Saline 1-day abstinence group (n = 7 rats). This is likely due to variance between animals and, possibly, oversampling. Thus, more rats need to be added to the 14-day abstinence group. Additionally, the range of n neurons/rat should be reported for each experiment to ensure readers that oversampling from single animals is not occurring.
(2) The IPSC data, for example in Figure 4, is one of the more novel experiments in the manuscript. However, it is quite challenging to see the difference between males and females, saline and oxycodone, at low stimulation intensities within the graph. Authors should expand this so that reviewers/readers can see those data, especially considering other work suggesting that PVT synaptic input onto select NAc interneurons is disrupted following opioid self-administration. Additional comment: It's also interesting that the IPSC amplitude seems to be maximal at ~2mW of light, whereas ~11 mW is required to evoke maximal EPSC amplitude. It would be interesting to know the authors' thoughts on why this may be.
(3) There is an inadequate description of what has been done to date on the PVT-NAc projection regarding opioid withdrawal, seeking, disinhibition, and the effects on synaptic physiology therein. For example, a critical paper, Keyes et al., 2020 Neuron, is not cited. Additionally, Paniccia et al., 2024 Neuron is inaccurately cited and insufficiently described. Both manuscripts should be described in some detail within the introduction, and the findings should be accurately contextualized within the broader circuit within the discussion.
(4) Related to the above, the authors should provide a more comprehensive description of how PVT synapses onto cell-type specific neurons in the NAc which expands beyond MSNs, especially considering that PVT has been shown to influence drug/opioid seeking through the innervation of NAc neurons that are not MSNs. For example, see PMIDs 33947849, 36369508, 28973852, 38141605.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This manuscript examines expression of orexin receptors in midbrain - with a focus on dopamine neurons - and uses several fairly sophisticated manipulation techniques to explore the role of this peptide neurotransmitter in reward-related behaviors. Specifically, in situ hybridization is used to show that substantia nigra dopamine neurons predominantly express orexin receptor 1 subtype and then go on to delete this receptor in dopamine transporter-expressing neurons using a transgenic strategy. Ex vivo calcium imaging of midbrain neurons is used to show that, in the absence of this receptor, orexin is no longer able to excite dopamine neurons of the substantia nigra.
The authors proceed to use this same model to study the effect of orexin receptor 1 deletion on a series of behavioral tests, namely, novelty-induced locomotion and exploration, anxiety-related behavior, preference for sweet solutions, cocaine-induced conditioned place preference, and energy metabolism. Of these, the most consistent effects are seen in the tests of novelty-induced locomotion and exploration in which the mice with orexin 1 receptor deletion are observed to show greater levels of exploration, relative to wild-type, when placed in a novel environment, an effect that is augmented after icv administration of orexin.
In the final part of the paper, the authors use PET imaging to compare brain-wide activity patterns in the mutant mice compared to wildtype. They find differences in several areas both under control conditions (i.e., after injection of saline) as well as after injection of orexin. They focus in on changes in dorsal bed nucleus of stria terminalis (dBNST) and the lateral paragigantocellular nucleus (LPGi) and perform analysis of the dopaminergic projections to these areas. They provide anatomical evidence that these regions are innervated by dopamine fibers from midbrain, are activated by orexin in control, but not mutant mice, and that dopamine receptors are present. They also show changes in receptor expression in the transgenic mice. Thus, they argue these anatomical data support the hypothesis that behavioral effects of orexin receptor 1 deletion in dopamine neurons are due to changes in dopamine signaling in these areas.
Strengths:
Understanding how orexin interacts with the dopamine system is an important question and this paper contains several novel findings along these lines. Specifically:<br /> (1) Distribution of orexin receptor subtypes in VTA and SN is explored thoroughly.<br /> (2) Use of the genetic model that knocks out a specific orexin receptor subtype from dopamine-transporter-expressing neurons is a useful model and helps to narrow down the behavioral significance of this interaction.<br /> (3) PET studies showing how central administration of orexin evokes dopamine release across the brain is intriguing, especially since two key areas are pursued - BNST and LPGi - where the dopamine projection is not as well described/understood.
Weaknesses:
The role of the orexin-dopamine interaction is not explored in enough detail. The manuscript presents several related findings, but the combination of anatomy and manipulation studies do not quite tell a cogent story. Ideally, one would like to see the authors focus on a specific behavioral parameter and show that one of their final target areas (dBNST or LPGi) was responsible or at least correlated with this behavioral readout. In addition, the authors' working model for how they think orexin-dopamine interactions contribute to behavior under normal physiological conditions is not well-described.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors have tested effects of partial- or whole-chromosome aneuploidy on the m6A RNA modification in Drosophila. The data reveal that overall m6A levels trend up but that the number of sites found by meRIP-seq trend down, which seems to suggest that aneuploidy causes a subset of sites become hyper-methylated. Subsequent bioinformatic analysis of other published datasets establish correlations between activity of the H4K16 acetyltransferase dosage compensation complex (DCC) and expression of m6A components and m6A abundance, suggesting that DCC and m6A can act in a feedback loop. Western blots confirm that Msl2 and MOF alleles alter levels of Mettl3 complex components, but the underlying mechanism remains undefined.
Strengths:
• Thorough bioinformatic analysis of their data<br /> • Incorporation of other published datasets that enhances scope and rigor<br /> • Finds trends that suggest that a chromosome counting mechanism can control m6A, as fits with pub data that the Sxl mRNA is m6A modified in XX females and not XY males<br /> • Provides preliminary evidence that this counting mechanism may be due to DCC effects on expression of m6A components.
Weaknesses:
• The linkage between H4K16 machinery and m6A levels on specific sites remains unclear in this revision.<br /> • The paper relies on m6A comparisons across tissues and developmental stages, which introduces some uncertainty about where and when the DCC-m6A loop acts.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors aimed to investigate how noradrenergic and glucocorticoid activity after retrieval influence subsequent memory recall with a 24-hour interval, by using a controlled three-day fMRI study involving pharmacological manipulation. They found that noradrenergic activity after retrieval selectively impairs subsequent memory recall, depending on hippocampal and cortical reactivation during retrieval.
Overall, there are several significant strengths for this well-written manuscript.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
The manuscript by Erli Jin and Jennifer Briggs et al. utilizes light sheet microscopy to image islet beta cell calcium oscillations in 3D and determine where beta cell populations are located that begin and coordinate glucose-stimulated calcium oscillations. The light sheet technique allowed clear 3D mapping of beta cell calcium responses to glucose, glucokinase activation, and pyruvate kinase activation. The manuscript finds that synchronized beta-cells are found at the islet center, that leader beta cells showing the first calcium responses are located on the islet periphery, that glucokinase activation helped maintain beta cells that lead calcium responses, and that pyruvate kinase activation primarily increases islet calcium oscillation frequency. The study is well-designed, contains a significant amount of high quality data, and the conclusions are largely supported by the results.
Comments on revisions:
The manuscript by Erli Jin et al. has been improved with the revisions, which have addressed my previous concerns. The manuscript significantly improves the mechanistic underpinnings of islet calcium oscillations and resulting pulsatile insulin secretion.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors describe the development of a novel inhibitor (AVI-4206) for the first macrodomains of the nsp3 protein of SARS-CoV-2 (Mac1). This involves both medical chemical synthesis, structural work as well as biochemical characterisation. Subsequently, the authors present their findings of the efficacy of the inhibitor both on cell culture, as well as animal models of SARS-CoV-2 infection. They find that despite high affinity for Mac1 and the known replicatory defects of catalytically inactive Mac1 only moderate beneficial effects can be observed in their chosen models.
Strengths:
The authors employ a variety of different assay to study the affinity, selectivity and potency of the novel inhibitor and thus the in vitro data are very compelling.<br /> Similarly, the authors use several cell culture and in vivo models to strengthen their findings.
Weaknesses:
(a) The selection of Targ1 and MacroD2 as off-target human macrodomains is poor as several studies have shown that the first macrodomains of PARP9 and PARP14 are much closer related to coronaviral macrodomains and both macrodomains are implicated in antiviral defence and immunity.
(b) The authors utilize only replication efficiency and general infection markers as read out for their Mac1 inhibitor. It would be good if they could show impact on the ADP-ribosylation of a known Mac1 target such as PARP14.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Striking experimental results by Chettih et al 2024 have identified high-dimensional, sparse patterns of activity in the chickadee hippocampus when birds store or retrieve food at a given site. These barcode-like patterns were interpreted as "indexes" allowing the birds to retrieve from memory the locations of stored food.<br /> The present manuscript proposes a recurrent network model that generates such barcode activity and uses it to form attractor-like memories that bind information about location and food. The manuscript then examines the computational role of barcode activity in the model by simulating two behavioral tasks, and by comparing the model with an alternate model in which barcode activity is ablated.
Strengths of the study:
- Proposes a potential neural implementation for the indexing theory of episodic memory<br /> - Provides a mechanistic model of striking experimental findings: barcode-like, sparse patterns of activity when birds store a grain at a specific location<br /> - A particularly interesting aspect of the model is that it proposes a mechanism for binding discrete events to a continuous spatial map, and demonstrates the computational advantages of this mechanism
Weaknesses:
- The relation between the model and experimentally recorded activity needs some clarification<br /> - The relation with indexing theory could be made more clear<br /> - The importance of different modeling ingredients and dynamical mechanisms could be made more clear<br /> - The paper would be strengthened by focusing on the most essential aspects
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
The authors have conducted a valuable comparative analysis of perturbation responses in three nonlinear kinetic models of E. coli central carbon metabolism found in the literature. They aimed to uncover commonalities and emergent properties in the perturbation responses of bacterial metabolism. They discovered that perturbations in the initial concentrations of specific metabolites, such as adenylate cofactors and pyruvate, significantly affect the maximal deviation of the responses from steady-state values. Furthermore, they explored whether the network connectivity (sparse versus dense connections) influences these perturbation responses. The manuscript is reasonably well written.
Comments on revised version:
The authors have addressed my concerns to a large extent. However, a few minor issues remain, as listed below:
(1) The authors identified key metabolites affecting responses to perturbations in two ways: (i) by fixing a metabolite's value and (ii) by performing a sensitivity analysis. It would be helpful for the modeling community to understand better the differences and similarities in the obtained results. Do both methods identify substrate-level regulators? Is freezing a metabolite's dynamics dramatically changing the metabolic response (and if yes, which ones are so different in the two cases)? Does the scope of the network affect these differences and similarities?
(2) Regarding the issues the authors encountered when performing the sensitivity analysis, they can be approached in two ways. First, the authors can check the methods for computing conserved moieties nicely explained by Sauro's group (doi:10.1093/bioinformatics/bti800) and compute them for large-scale networks (but beware of metabolites that belong to several conserved pools). Otherwise, the conserved pools of metabolites can be considered as variables in the sensitivity analysis-grouping multiple parameters is a common approach in sensitivity analysis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The group around Prof. Scheiffele has made seminal discoveries reg. alternative splicing that is reflected by a current ERC advanced grant and landmark papers in eLife (2015), Science (2016), and Nature Neuroscience (2019). Recently, the group investigated proteins that contain an RRM motif in the mouse cortex. One of them, termed RBM20, was originally thought to be muscle-specific and involved in alternative splicing in cardiomyocytes. However, upon close inspection, RBP20 is expressed in a particular set of interneurons (PV positive cells of the somatosensory cortex) in the cortex as well as in mitral cells of the olfactory bulb (OB). Importantly, they used CLIP to identify targets in the OB and heart. Next and quite importantly, they generated a knock-in mouse line with a His-biotin acceptor peptide and a HA epitope to perform specific biochemistry. Not surprisingly, this allowed them to specifically identify transcripts with long introns, however, most of the intronic binding sites were very distant to the splice sites. Closer GO term inspection revealed that RBM20 specifically regulates synapse-related transcripts. In order to get in vivo insight into its function in the brain, the authors generated both global as well as conditional KO mice. Surprisingly, there were no significant differences in in RBM20 ΔPV interneurons, however, 409 transcripts were deregulated in in OB glutamatergic neurons. Here, CLIP sites were mostly found to be very distant from differentially expressed exons. Furthermore, loss-of-function RBM20 primarily yields loss of transcripts, whereas upregulation appears to be indirect. Together, these results strongly suggest a role of RBM20 in the inclusion of cryptic exons thereby promoting target degradation.
Strengths:
The quality of the data and the figures is high, impressive and convincing. The reported results strongly suggest a role of RBM20 in the inclusion of cryptic exons thereby promoting target degradation.
Weaknesses:
I would not use the term weakness here.<br /> The description of the results is sometimes too dense and technical. As eLife does not have a size limit, there is no reason for the results section to be less than three pages. Especially the last paragraph of the results part (p4) does not do justice to the high importance of Fig. 5, which I consider of high importance and originality. Here are a few suggestions from a person that is not working on splicing, to improve the text part of this important manuscript.
(1) Introduction: too short, include a paragraph on splicing and cryptic exons<br /> (2) Results:<br /> - shortly describe the phenotypes of the mice mentioned<br /> - expand the section on Fig. 5 and cryptic exons especially<br /> (3) Discussion: too short, expand on the possible new role of RBM20 and target degradation, possibly by adding a scheme?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This manuscript investigates the inhibition of Aurora A and its impact on β-glucan-induced trained immunity via the FOXO3/GNMT pathway. The study demonstrates that inhibition of Aurora A leads to overconsumption of SAM, which subsequently impairs the epigenetic reprogramming of H3K4me3 and H3K36me3, effectively abolishing the training effect.
Strengths:
The authors identify the role of Aurora A through small molecule screening and validation using a variety of molecular and biochemical approaches. Overall, the findings are interesting and shed light on the previously underexplored role of Aurora A in the induction of β-glucan-driven epigenetic change.
Weaknesses:
Given the established role of histone methylations, such as H3K4me3, in trained immunity, it is not surprising that depletion of the methyl donor SAM impairs the training response. Nonetheless, this study provides solid evidence supporting the role of Aurora A in β-glucan-induced trained immunity in murine macrophages. The part of in vivo trained immunity antitumor effect is insufficient to support the final claim as using Alisertib could inhibits Aurora A other cell types other than myeloid cells.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Fortier and Pritchard investigated the breadth and depth of trans-species polymorphism (TSP) within six primate classical (antigen-presenting) major histocompatibility complex (MHC) genes (three MHC class I and three MHC class II). The MHC is of wide interest because of its unique evolutionary patterns within the genomes of jawed vertebrates and for its extensive and consistent associations with disease phenotypes. The findings of the paper are:<br /> 1) Trans-species polymorphism (TSP) within major histocompatibility complex (MHC) genes, whereby some alleles are more similar between rather than within species, occurs between humans and non-human primates despite rapid allelic turnover.<br /> 2) Highly polymorphic/rapidly evolving sites are mostly involved in peptide binding.<br /> 3) The identified, rapidly-evolving sites are associated with disease.
However, because these general findings have been previously demonstrated to varying extents by numerous other studies, these are not the strength of this paper. The strength and importance of this paper are in its utilization of a large evolutionary range of species and genes and its methodological approach and the extent of analyses undertaken to characterize the depth and extent of the TSP among primates. The major contribution of this paper is showing that TSP in the MHC is widespread among diverse primate taxa, and, depending on the particular MHC gene, TSP can be detected between humans and non-human primates as distantly diverged from the human lineage as new world monkeys of the Americas, ~45 million years ago. The paper, overall, made good methodological choices to account for the fascinating but challenging nature of the MHC, which includes its extensive allelic polymorphism (much of which is only characterized for the peptide-binding domain, encoded by exons 2 and 3), the difficulty in assessing phylogenetic relationships (particularly due to recombination and/or interallelic gene conversion), and differentiating convergence from conservation. There is no single analysis that can perfectly account for all these factors. This paper used two methods to test for TSP, Bayesian evolutionary analysis and synonymous nucleotide distances (dS), each with their respective strengths and limitations articulated. TSP, to varying degrees, is supported by both analyses. The paper further identifies rapidly evolving positions within the MHC molecules (predominantly located in the MHC peptide-binding domain), quantitatively shows that they are more likely to be in proximity to the bound peptide within the peptide binding domain, and shows, via a literature review of HLA fine-mapping studies, that those positions are associated with both infectious and autoimmune disease.
The conclusions of the paper, therefore, are supported and appropriate with the most important caveats noted, but the paper would benefit from:<br /> 1) Addressing how copy number variation of MHC class I genes among primate species might have affected their analyses and results (only single representative genes of the class II MHC, which also exhibit copy number variation, were used for this study).<br /> 2) Considering the differences between class I and class II MHC roles in immune function and how those might relate to the observed patterns.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The manuscript makes the claim that pUb is elevated in a number of degenerative conditions including Alzheimer's Disease and cerebral ischaemia. Some of this is based on antibody staining which is poorly controlled and difficult to accept at this point. They confirm previous results that a cytosolic form of PINK1 accumulates following proteasome inhibition and that this can be active. Accumulation of pUb is proposed to interfere with proteostasis through inhibition of the proteasome. Much of the data relies on over-expression and there is little support for this reflecting physiological mechanisms.
Weaknesses:
The manuscript is poorly written. I appreciate this may be difficult in a non-native tongue, but felt that many of the problems are organisational. Less data of higher quality, better controls and incision would be preferable. Overall the referencing of past work is lamentable.<br /> Methods are also very poor and difficult to follow.
Until technical issues are addressed I think this would represent an unreliable contribution to the field.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
In this study, Maillie et al. have carried out a set of multiscale molecular dynamics simulations to investigate the interactions between the viral membrane and four broadly neutralizing antibodies that target the membrane proximal exposed region (MPER) of the HIV-1 envelope trimer. The simulation recapitulated in several cases the binding sites of lipid head groups that were observed experimentally by X-ray crystallography, as well as some new binding sites. These binding sites were further validated using a structural bioinformatics approach. Finally, steered molecular dynamics was used to measure the binding strength between the membrane and variants of the 4E10 and PGZL1 antibodies.
The use of multiscale MD simulations allows for a detailed exploration of the system at different time and length scales. The combination of MD simulations and structural bioinformatics provides a comprehensive approach to validate the identified binding sites. Finally, the steered MD simulations offer quantitative insights into the binding strength between the membrane and bnAbs.
While the simulations and analyses provide qualitative insights into the binding interactions, they do not offer a quantitative assessment of energetics. The coarse-grained simulations exhibit artifacts and thus require careful analysis.
This study contributes to a deeper understanding of the molecular mechanisms underlying bnAb recognition of the HIV-1 envelope. The insights gained from this work could inform the design of more potent and broadly neutralizing antibodies.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The author provide evidence that helps resolve long-standing questions about the differential involvement of frontal and posterior cortex in working memory. They show that whereas early visual cortex shows stronger decoding of memory content in a memorization task vs a more complex categorization task, frontal cortex shows stronger decoding during categorization tasks than memorization tasks. They find that task-optimized RNNs trained to reproduce the memorized orientations show some similarities in neural decoding to people. Together, this paper presents interesting evidence for differential responsibilities of brain areas in working memory.
Strengths:
This paper was overall strong. It had a well-designed task, best-practice decoding methods, and careful control analyses. The neural network modeling adds additional insight into the potential computational roles of different regions.
Weaknesses:
Few. While more could be perhaps done to understand the RNN-fMRI correspondence, the paper contributes a compelling set of empirical findings and interpretations that can inform future research.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This paper extends a Bayesian perception/action model of habituation behavior (RANCH) to infant-looking behavior. The authors test the model predictions against data from several groups of infants and adults tested in habituation paradigms that vary the number of familiarisation stimuli and the nature of the test stimuli. Model sampling was taken as a proxy for looking times. The predictions of the model generally resemble the empirical data collected, though there are some potentially important differences.
Strengths:
This study addresses an important question, given the fundamental nature of habituation to learning and memory. Previous explanations of infant habituation have typically not been in the form of formal models, making falsification difficult. This Bayesian model is relatively simple but also incorporates a CNN to which the actual stimulus image can be presented, which enables principled predictions about image similarity to be derived.
The paper contains data from a relatively large number of adults and infants, allowing parameter differences across age to be probed.
The data suggests that the noise prior parameter is higher in infants, suggesting one mechanism through which infant and adult habituation is different, though of course, this depends on whether there is sufficient empirical evidence that other explanations can be ruled out, which isn't clear in the manuscript currently.
Weaknesses:
There are no formal tests of the predictions of RANCH against other leading hypotheses or models of habituation. This makes it difficult to evaluate the degree to which RANCH provides an alternative account that makes distinct predictions from other accounts. I appreciate that because other theoretical descriptions haven't been instantiated in formal models this might be difficult, but some way of formalising them to enable comparison would be useful.
The justification for using the RMSEA fitting approach could also be stronger - why is this the best way to compare the predictions of the formal model to the empirical data? Are there others? As always, the main issue with formal models is determining the degree to which they just match surface features of empirical data versus providing mechanistic insights, so some discussion of the level of fit necessary for strong inference would be useful.
The difference in model predictions for identity vs number relative to the empirical data seems important but isn't given sufficient weight in terms of evaluating whether the model is or is not providing a good explanation of infant behavior. What would falsification look like in this context?
For the novel image similarity analysis, it is difficult to determine whether any differences are due to differences in the way the CNN encodes images vs in the habituation model itself - there are perhaps too many free parameters to pinpoint the nature of any disparities. Would there be another way to test the model without the CNN introducing additional unknowns?
Related to that, the model contains lots of parts - the CNN, the EIG approach, and the parameters, all of which may or may not match how the infant's brain operates. EIG is systematically compared to two other algorithms, with KL working similarly - does this then imply we can't tell the difference between an explanation based on those two mechanisms? Are there situations in which they would make distinct predictions where they could be pulled apart? Also in this section, there doesn't appear to be any formal testing of the fits, so it is hard to determine whether this is a meaningful difference. However, other parts of the model don't seem to be systematically varied, so it isn't always clear what the precise question addressed in the manuscript is (e.g. is it about the algorithm controlling learning? or just that this model in general when fitted in a certain way resembles the empirical data?)
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
The article titled "Identification of neurodevelopmental organization of the cell populations of juvenile Huntington's disease using dorso-ventral HD organoids and HD mouse embryos" analyses an in vitro human brain organoid model containig dorsal and ventral telencephalum structures derived from human iPSC from Huntington's disease patients or control subjects.
The authors describe differences in the pattern of expression of genes related to proliferation and neuronal maturation, with a slower pattern of differentiation present in HD cells. Moreover, the authors described a higher differentiation capacity of HD cells to generate choroid plexus identity following dorsal telencephalon prime protocol differentiation when compared to control cells. Whereas the claims related to Choroid plexus identity are intriguing, most of the claims made through the manuscript are not sustained by quantitative data or consistent results in the different conditions analysed, or many experiments seem to be missing to reach final conclusions.
In addition, the quality of the organoids used for experiments does not seem to have been assessed or satisfactorily presented in the figures of this paper. Many important details related to the experimental execution are missing in the current version of this manuscript.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Shin et al aim to identify in a very extensive piece of work a mechanism that contributes to dynamic regulation of synaptic output in the rat cortex at the second time scale. This mechanism is related to a new powerful model is well versed to test if the pool of SV ready for fusion is dynamically scaled to adjust supply demand aspects. The methods applied are state-of-the-art and both address quantitative aspects with high signal to noise. In addition, the authors examine both excitatory output onto glutamatergic and GABAergic neurons, which provides important information on how general the observed signals are in neural networks, The results are compellingly clear and show that pool regulation may be predominantly responsible. Their results suggests that a regulation of release probability, the alternative contender for regulation, is unlikely to be involved in the observed short term plasticity behavior (but see below). Besides providing a clear analysis pof the underlying physiology, they test two molecular contenders for the observed mechanism by showing that loss of Synaptotagmin7 function and the role of the Ca dependent phospholipase activity seems critical for the short term plasticity behavior. The authors go on to test the in vivo role of the mechanism by modulating Syt7 function and examining working memory tasks as well as overall changes in network activity using immediate early gene activity. Finally, they model their data, providing strong support for their interpretation of TS pool occupancy regulation.
Strengths:
This is a very thorough study, addressing the research question from many different angles and the experimental execution is superb. The impact of the work is high, as it applies recent models of short term plasticity behavior to in vivo circuits further providing insights how synapses provide dynamic control to enable working memory related behavior through nonpermanent changes in synaptic output.
Weaknesses:
While this work is carefully examined and the results are presented and discussed in a detailed manner, the reviewer is still not fully convinced that regulation of release provability is not a putative contributor to the observed behavior. No additional work is needed but in the moment I am not convinced that changes in release probability are not in play. One solution may be to extend the discussion of changes in rules probability as an alternative.
Fig 3 I am confused about the interpretation of the Mean Variance analysis outcome. Since the data points follow the curve during induction of short term plasticity, aren't these suggesting that release probability and not the pool size increases? Related, to measure the absolute release probability and failure rate using the optogenetic stimulation technique is not trivial as the experimental paradigm bias the experiment to a given output strength, and therefore a change in release probability cannot be excluded.
Fig4B interprets the phorbol ester stimulation to be the result of pool overfilling, however, phorbol ester stimulation has also been shown to increase release probability without changing the size of the readily releasable pool. The high frequency of stimulation may occlude an increased paired pulse depression in presence of OAG, which others have interpreted in mammalian synapses as an increase in release probability.
The literature on Syt7 function is still quite controversial. An observation in the literature that loss of Syt7 function in the fly synapse leads to an increase of release probability. Thus the observed changes in short term plasticity characteristics in the Syt7 KD experiments may contain a release probability component. Can the authors really exclude this possibility? Figure 5 shows for the Syt7 KD group a very prominent depression of the EPSC/IPSC with the second stimulus, particularly for the short interpulse intervals, usually a strong sign of increased release probability, as lack of pool refilling can unlikely explain the strong drop in synaptic output.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors make the interesting discovery of increased chromosome non-dysjunction in aging yeast mother cells. The phenotype is quite striking and well supported with solid experimental evidence. This is quite significant to a haploid cell (as used here) - loss of an essential chromosome leads to death soon thereafter. The authors then work to tie this phenotype to other age-associated phenotypes that have been previously characterized: accumulation of extrachromosomal rDNA circles that then correlate with compromised nuclear pore export functions, which correlates with "leaky" pores that permit unspliced mRNA messages to be inappropriately exported to the cytoplasm. They then infer that three intron containing mRNAs that encode portions in resolving sister chromatid separation during mitosis, are unspliced in this age-associated defect and thus lead to the non-dysjunction problem.
Strengths: The discovery of age-associated chromosome non-dysjunction is an interesting discovery, and it is demonstrated in a convincing fashion with "classic" microscopy-based single cell fluorescent chromosome assays that are appropriate and seem robust. The correlation of this phenotype with other age-associated phenotypes - specifically extrachromosomal rDNA circles and nuclear pore dysfunction - is supported by in vivo genetic manipulations that have been well-characterized in the past.
In addition, the application of the single cell mRNA splicing defect reporter showed very convincingly that general mRNA splicing is compromised in aged cells. Such a pleiotropic event certainly has big implications.
Weaknesses:
The biggest weakness is "connecting all the dots" of causality and linking the splicing defect to chromosome disjunction. I commend the authors for making a valiant effort in this regard, but there are many caveats to this interpretation. While the "triple intron" removal suppressed the non-dysjunction defect in aged cells, this could simply be a kinetic fix, where a slowdown in the relevant aspects of mitosis, could give the cell time to resolve the syntelic attachment of the chromatids. To this point, I note that the intronless version of GLC7, which affects the most dramatic suppression of the three genes, is reported by one of the authors to have a slow growth rate (Parenteau et al, 2008 - https://doi.org/10.1091/mbc.e07-12-1254).
Lastly, the Herculean effort to perform FISH of the introns in the cytoplasm is quite literally at the statistical limit of this assay. The data were not as robust as the other assays employed through this study. The data show either "no" signal for the young cells or a signal of 0, 1,or 2 FISH foci in the aged cells. In a Poisson distribution, which this follows, it is improbable to distinguish between these differences.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This paper by Misra and Pessoa uses switching linear dynamical systems (SLDS) to investigate the neural network dynamics underlying threat processing at varying levels of proximity. Using an existing dataset from a threat-of-shock paradigm in which threat proximity is manipulated in a continuous fashion, the authors first show that they can identify states that each has their own linear dynamical system and are consistently associated with distinct phases of the threat-of-shock task (e.g., "peri-shock", "not near", etc). They then show how activity maps associated with these states are in agreement with existing literature on neural mechanisms of threat processing, and how activity in underlying brain regions alters around state transitions. The central novelty of the paper lies in its analyses of how intrinsic and extrinsic factors contribute to within-state trajectories and between-state transitions. A final set of analyses shows how the findings generalize to another (related) threat paradigm.
Strengths:
The analyses for this study are conducted at a very high level of mathematical and theoretical sophistication. The paper is very well written and effectively communicates complex concepts from dynamical systems. I am enthusiastic about this paper, but I think the authors have not yet exploited the full potential of their analyses in making this work meaningful toward increasing our neuroscientific understanding of threat processing, as explained below.
Weaknesses:
(1) I appreciate the sophistication of the analyses applied and/or developed by the authors. These methods have many potential use cases for investigating the network dynamics underlying various cognitive and affective processes. However, I am somewhat disappointed by the level of inferences made by the authors based on these analyses at the level of systems neuroscience. As an illustration consider the following citations from the abstract: "The results revealed that threat processing benefits from being viewed in terms of dynamic multivariate patterns whose trajectories are a combination of intrinsic and extrinsic factors that jointly determine how the brain temporally evolves during dynamic threat" and "We propose that viewing threat processing through the lens of dynamical systems offers important avenues to uncover properties of the dynamics of threat that are not unveiled with standard experimental designs and analyses". I can agree to the claim that we may be able to better describe the intrinsic and extrinsic dynamics of threat processing using this method, but what is now the contribution that this makes toward understanding these processes?
(2) How sure can we be that it is possible to separate extrinsically and intrinsically driven dynamics?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This is a strong and well-described study showing for the first time the use and publicly available resources to use a specific PET tracer to track proliferating transplanted cells in vivo, in a full murine immunecompetent environment.
In this study the authors described a previously developed set of VHH-based PET tracers to track transplants (cancer cells, embryo's) in a murine immune-competent environment.
Strengths:
Unique set of PET tracer and mouse strain to track transplanted cells in vivo without genetic modification of the transplanted cells. This is a unique asset, and a first-in-kind.
Weaknesses:
-some methodological aspects and controls are missing
-no clinical relevance?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This is an interesting, timely, and high-quality study on the potential neuroprotective capabilities of C-C chemokine receptor type 5 (CCR5) antagonists in ischemic stroke. The focus is on preclinical investigations.
Strengths:
The results are timely and interesting. An outstanding feature is that stroke patient representatives have directly participated in the work. Although this is often called for, it is hardly realized in research practice, so the work goes beyond established standards.
The included studies were assessed regarding the therapeutic impact and their adherence to current quality assurance guidelines such as STAIR and SRRR, another important feature of this work. While overall results were promising, there were some shortcomings regarding guideline adherence.
The paper is very well written and concise yet provides much highly useful information. It also has very good illustrations and extremely detailed and transparent supplements.
Weaknesses:
Although the paper is of very high quality, a couple of items that may require the authors' attention to increase the impact of this exciting work further. Specifically:
Major aspects:
(1) I hope I did not miss that (apologies if I did), but when exactly was the search conducted? Is it possible to screen the recent literature (maybe up to 12/2024) to see whether any additional studies were published?
(2) Please clearly define the difference between "study" and "experiment," as this is not entirely clear. Is an "experiment" a distinct investigation within a particular publication (=study) that can describe more than one such "experiment"? Thanks for clarifying.
(3) Is there an opportunity to conduct a correlation analysis between the quality of a study (for instance, after transforming the ROB assessment into a kind of score) and reported effect sizes for particular experiments or studies? This might be highly interesting.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The inferior colliculus (IC) has been explored for its possible functions in behavioral tasks and has been suggested to play more important roles rather than simple sensory transmission. The authors show us two major findings based on their experiments. The first one is climbing effect, which means that neurons' activities continue to increase along time course. The second one is reward effect, which refers to sudden increase of IC neurons' activities when the rewarding is given. Climbing effect is a surprising finding, but reward effect has not been explored clearly here.
Strengths:
Complex cognitive behaviors can be regarded as simple ideals of generating output based on information input, which depends on all kinds of input from sensory systems. The auditory system has hierarchic structures no less complex than those areas in charge of complex functions. Meanwhile, IC receives projections from higher areas, such as the auditory cortex, which implies IC is involved in complex behaviors. Experiments in behavioral monkeys are always time-consuming work with hardship, and this will offer more approximate knowledge of how the human brain works.
Weaknesses:
These findings are more about correlation but not causality of IC function in behaviors.
About 'reward effect', it is still unknown if the true nature of reward effect is the simple response to the sound elicited by the electromagnetic valve of rewarding system. The authors claimed the testing space is sound-proofed and believed this is enough to support their opinion. Since the electromagnetic valve was connected to the water tube, and the water tube was attached to a monkey-chair or even in monkey's mouth, the click sound may transmit to the monkey independently on air. There are simple ways to test what happens. One is to add a few trials without reward and see what happens, or to vary the latency between sound sequence and reward.
Only one of the major findings is convincing, this definitely reduces the credibility of the authors' statements.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
This study addresses the question of how UBCs transform synaptic input patterns into spiking output patterns and how different glutamate receptors contribute to their transformations. The first figure utilizes recorded patterns of mossy fiber firing during eye movements in the flocculus of rhesus monkeys obtained from another laboratory. In the first figure, these patterns are used to stimulate mossy fibers in the mouse cerebellum during extracellular recordings of UBCs in acute mouse brain slices. The remaining experiments stimulate mossy fiber inputs at different rates or burst durations, which is described as 'mossy-fiber like', although they are quite simpler than those recorded in vivo. As expected from previous work, AMPA mediates the fast responses, and mGluR1 and mGluR2/3 mediate the majority of longer-duration and delayed responses. The manuscript is well organized and the discussion contextualizes the results effectively.
Comments on revisions:
The authors have adequately addressed my concerns.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this study, Solomon and colleagues demonstrate that trained immunity induced by BCG can reprogram myeloid cells within localised tissue, which can sustain prolonged protective effects. The authors further demonstrate an activation of STAT1-dependent pathways.
Strengths:
The main strength of this paper is the in-depth investigation of cell populations affected by BCG training, and how their transcriptome changes at different time points post-training. Through use of flow cytometry and sequencing methods, the authors identify a new cell population derived from classical monocytes. They also show that long-term trained immunity protection in the spleen is dependent on resident cells. Through sequencing, drug and recombinant inhibition of IFNg pathways, the authors reveal STAT1-dependent responses are required for changes in the myeloid population upon training, and recruitment of trained monocytes.
Weaknesses:
A significant amount of work has already been performed for this study. No significant weaknesses were found.
Comments on revisions:
I thank the authors for carefully considering all reviewer comments. I have no further recommendations for the authors.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
(1) Summary<br /> Kleinman and Foster's study investigates the role of dopamine signaling in the ventral tegmental area (VTA) on hippocampal replay and sharp-wave ripples (SWR) in rats exposed to changes in reward magnitude and environmental novelty. The authors utilize chemogenetic silencing techniques to modulate dopamine neuron activity in the VTA while conducting simultaneous electrophysiological recordings from the hippocampal CA1 region. Their findings suggest that VTA dopamine signaling is critical for modulating hippocampal replay in response to changes in reward context and novelty, with specific disruptions observed in replay dynamics when VTA is inhibited, particularly in novel environments.
(2) Strengths<br /> The research addresses a significant gap in our understanding of the neurobiological underpinnings of memory and spatial learning, highlighting the importance of dopamine-mediated processes. The methodological approach is robust, combining chemogenetic silencing with precise electrophysiological measurements, which allows for a detailed examination of the neural circuits involved. The study provides important insights into how hippocampal replay and SWR are influenced by reward prediction errors, as well as the role of dopamine in these processes. Specifically, the authors note that VTA silencing unexpectedly did not prevent increases in ripple activities where reward was increased, but induced significant aberrant increases in environments where reward levels were unchanged, highlighting a novel dependency of hippocampal replay on dopamine and a VTA-independent reward prediction error signal in familiar environments. These findings are critical for understanding the consolidation of episodic memory and the neural basis of learning.
(3) Weaknesses<br /> Despite the strengths in methodology and conceptual framework, the study has several weaknesses that could affect the interpretation of the results. There is a need for more rigorous histological validation to confirm the extent and specificity of viral expression (from all animals ideally), which is crucial for ensuring the accuracy of the findings. Variability in the dosing and timing of chemogenetic interventions could also lead to inconsistencies in the data, suggesting a need for more standardized experimental protocols.
Comments on revisions:
I commend the authors for their work in addressing my and the other reviewers' comments. I think these changes have improved the paper, and no further changes are absolutely necessary.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The study investigates the brain's functional connectivity (FC) dynamics across different timescales using simultaneous recordings of intracranial EEG/source-localized EEG and fMRI. The primary research goal was to determine which of three convergence/divergence scenarios is the most likely to occur.
The results indicate that despite similar FC patterns found in different data modalities, the timepoints were not aligned, indicating spatial convergence but temporal divergence.
The researchers also found that FC patterns in different frequencies do not overlap significantly, emphasizing the multi-frequency nature of brain connectivity. Such asynchronous activity across frequency bands supports the idea of multiple connectivity states that operate independently and are organized into a multiplex system.
Strengths:
The data supporting the authors' claims are convincing and come from simultaneous recordings of fMRI and iEEG/EEG, which has been recently developed and adapted.
The analysis methods are solid and involved a novel approach to analyzing the co-occurrence of FC patterns across modalities (cross-modal recurrence plot, CRP) and robust statistics, including replication of the main results using multiple operationalizations of the functional connectome (e.g., amplitude, orthogonalized, and phase-based coupling).
In addition, the authors provided a detailed interpretation of the results, placing them in the context of recent advances and understanding of the relationships between functional connectivity and cognitive states.
The authors also did a control analysis and verified the effect of temporal window size or different functional connecvitity operationalizations. I also applaud their effort to make the analysis code open-sourced.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Yamawaki et al., conducted a series of neuroanatomical tracing and whole cell recording experiments to elucidate and characterise a relatively unknown pathway between the endopiriform (EN) and CA1 of the ventral hippocampus (vCA1) and to assess its functional role in social and object recognition using fibre photometry and dual vector chemogenetics. The main findings were that the EN sends robust projections to the vCA1 that collateralise to the prefrontal cortex, lateral entorhinal cortex and piriform cortex, and these EN projection neurons terminate in the stratum lacunosum-moleculare (SLM) layer of distal vCA1, synapsing onto GABAergic neurons that span across the Pyramidal-Stratum Radiatum (SR) and SR-SML borders. It was also demonstrated that EN input disynaptically inhibits vCA1 pyramidal neurons. vCA1 projecting EN neurons receive afferent input from piriform cortex, and from within EN. Finally, fibre photometry experiments revealed that vCA1 projecting EN neurons are most active when mice explore novel objects or conspecifics, and pathway-specific chemogenetic inhibition led to an impairment in the ability to discriminate between novel vs. familiar objects and conspecifics.
This is an interesting mechanistic study that provides valuable insights into the function and connectivity patterns of afferent input from the endopiriform to the CA1 subfield of the ventral hippocampus. The authors propose that the EN input to the vCA1 interneurons provides a feedforward inhibition mechanism by which memory-based novelty detection could be promoted. The experiments are carefully conducted, and the methodological approaches used are sound. The conclusions of the paper are supported by the data presented.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Liu et al. applied hidden Markov models (HMM) to fMRI data from 64 participants listening to audio stories. The authors identified three brain states, characterized by specific patterns of activity and connectivity, that the brain transitions between during story listening. Drawing on a theoretical framework proposed by Berwick et al. (TICS 2023), the authors interpret these states as corresponding to external sensory-motor processing (State 1), lexical processing (State 2), and internal mental representations (State 3). States 1 and 3 were more likely to transition to State 2 than between one another, suggesting that State 2 acts as a transition hub between states. Participants whose brain state trajectories closely matched those of an individual with high comprehension scores tended to have higher comprehension scores themselves, suggesting that optimal transitions between brain states facilitated narrative comprehension.
Overall, the conclusions of the paper are well-supported by the data. Several recent studies (e.g., Song, Shim, and Rosenberg, eLife, 2023) have found that the brain transitions between a small number of states; however, the functional role of these states remains under-explored. An important contribution of this paper is that it relates the expression of brain states to specific features of the stimulus in a manner that is consistent with theoretical predictions.
The correlation between narrative features and brain state expression was reliable, but relatively low (~0.03). As discussed in the manuscript, this could be due to measurement noise, as well as narrative features accounting for a small proportion of cognitive processes underlying the brain states.
A strength of the paper is that the authors repeated the HMM analyses across different tasks (Figure 5) and an independent dataset (Figure S3) and found that the data was consistently best fit by 3 brain states. Across tasks, however, the spatial regions associated with each state varied. For example, state 2 during narrative comprehension was similar to both states 2 and 3 during rest (Fig. 5A), suggesting that the organization of the three states was task dependent.
The three states identified in the manuscript correspond rather well to areas with short, medium, and long temporal timescales (see Hasson, Chen & Honey, TiCs, 2015). Given the relationship with behavior, where State 1 responds to acoustic properties, State 2 responds to word-level properties, and State 3 responds to clause-level properties, a "single-process" account where the states differ in terms of the temporal window for which one needs to integrate information over may offer a more parsimonious account than a multi-process account where the states correspond to distinct processes. This possibility is mentioned briefly in the introduction, but not developed further.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
This paper examined how the activity of neurons in the entopeduncular nucleus (EPN) of mice relates to kinematics, value, and reward. The authors recorded neural activity during an auditory cued two-alternative choice task, allowing them to examine how neuronal firing relates to specific movements like licking or paw movements, as well as how contextual factors like task stage or proximity to a goal influence the coding of kinematic and spatiotemporal features. The data shows that the firing of individual neurons is linked to kinematic features such as lick or step cycles. However, the majority of neurons exhibited activity related to both movement types, suggesting that EPN neuronal activity does not merely reflect muscle-level representations. This contradicts what would be expected from traditional action selection or action specification models of the basal ganglia.
The authors also show that spatiotemporal variables account for more variability compared to kinematic features alone. Using demixed Principal Component Analysis, they reveal that at the population level, the three principal components explaining the most variance were related to specific temporal or spatial features of the task, such as ramping activity as mice approached reward ports, rather than trial outcome or specific actions. Notably, this activity was present in neurons whose firing was also modulated by kinematic features, demonstrating that individual EPN neurons integrate multiple features. A weakness is that what the spatiotemporal activity reflects is not well specified. The authors suggest some may relate to action value due to greater modulation when approaching a reward port, but acknowledge action value is not well parametrized or separated from variables like reward expectation.
A key goal was to determine whether activity related to expected value and reward delivery arose from a distinct population of EPN neurons or was also present in neurons modulated by kinematic and spatiotemporal features. In contrast to previous studies (Hong & Hikosaka 2008 and Stephenson-Jones et al., 2016), the current data reveals that individual neurons can exhibit modulation by both reward and kinematic parameters. Two potential differences may explain this discrepancy: First, the previous studies used head-fixed recordings, where it may have been easier to isolate movement versus reward-related responses. Second, those studies observed prominent phasic responses to the delivery or omission of expected rewards - responses that are present but not common in the current paper. This suggests a possibility that the VGlut2+ EPN neurons that project to the LHb were under/not sampled, antidromic or optogenetic tagging would have been needed to confirm the identity of the populations that were recorded. Alternatively, in the head-fixed recordings, kinematic/spatial coding may have gone undetected due to the forced immobility.
Overall, this paper offers needed insight into how the basal ganglia output encodes behavior. The EPN recordings from freely moving mice clearly demonstrate that individual neurons integrate reward, kinematic, and spatiotemporal features, challenging traditional models. However, the specific relationship between the spatiotemporal activity and factors like action value remains unclear.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Kreeger et.al provided mechanistic evidence for flexible coincidence detection of auditory nerve synaptic inputs by octopus cells in the mouse cochlear nucleus. The octopus cells are highly specialized neurons that, with appropriate stimuli, can fire repetitively at very high rates (> 800 Hz in vivo), yield responses dominated by the onset of sound for simple stimuli, and integrate auditory nerve inputs over a wide frequency span. Previously, it was thought that octopus cells received little inhibitory input, and their integration of auditory input depended principally on temporally precise coincidence detection of excitatory auditory nerve inputs, coupled with a low input resistance established by high levels of expression of certain potassium channels and hyperpolarization-activated channels.
This study provides convincing evidence that octopus cells do in fact receive glycinergic synaptic input that can influence the efficacy of excitatory dendritic synaptic activity. By coupling selected genetic mouse models to characterize synaptic inputs and enable optogenetic stimulation of subsets of afferents, fluorescent microscopy, detailed reconstructions of the location of inhibitory synapses on the soma and dendrites of octopus cells, slice physiology, and computational modeling, they have been able to clarify the presence of functional inhibition and elucidate some of the features of the inhibitory inputs to octopus cells at a biophysical level. They also show through modeling that inhibition is predicted to both provide shunting of synaptic currents and to change the peak timing of dendritic EPSPs as they travel to the soma. Both of these effects are potentially critically important in integration in these fast, coincidence-detecting neurons, and the magnitudes of the effects could have physiological significance. Overall, this work extends thinking about the functional sensory processing roles of octopus cells beyond the pre-existing hypotheses that are focussed primarily on the coincidence detection of excitatory inputs.
The authors have addressed all of my prior concerns, including improving several aspects of the presentation. The modeling is better described, which is critical because it provides a foundation to help interpret some of the physiology and to propose specific functions.
-
-
-
Reviewer #3 (Public review):
Summary and strengths:
In the manuscript, Abd El Hay et al investigate the role of thermally sensitive ion channels TRPM2 and TRPV1 in warm preference and their dynamic response features to thermal stimulation. They develop a novel thermal preference task, where both the floor and air temperature are controlled, and conclude that mice likely integrate floor with air temperature to form a thermal preference. They go on to use knockout mice and show that TRPM2-/- mice play a role in the avoidance of warmer temperatures. Using a new approach for culturing DRG neurons they show the involvement of both channels in warm responsiveness and dynamics. This is an interesting study with novel methods that generate important new information on the different roles of TRPV1 and TRPM2 on thermal behavior.
Comments on revisions:
Thanks to the authors for addressing all the points raised. They now include more details about the classifier, better place their work in context of the literature, corrected the FOVs, and explained the model a bit further. The new analysis in Figure 2 has thrown up some surprising results about cellular responses that seem to reduce the connection between the cellular and behavioral data and there are a few things to address because of this:
TRPM2 deficient responses: The differences in the proportion of TRPM2 deficient responders compared to WT are only observed at one amplitude (39C), and even at this amplitude the effect is subtle. Most surprisingly, TRPM2 deficient cells have an enhanced response to warm compared to WT mice to 33C, but the same response amplitude as WT at 36C and 39C. The authors discuss why this disconnect might be the case, but together with the lack of differences between WT and TRPM2 deficient mice in Fig 3, the data seem in good agreement with ref 7 that there is little effect of TRPM2 on DRG responses to warm in contrast to a larger effect of TRPV1. This doesn't take away from the fact there is a behavioral phenotype in the TRPM2 deficient mice, but the impact of TRPM2 on DRG cellular warm responses is weak and the authors should tone down or remove statements about the strength of TRPM2's impact throughout the manuscript, for example:<br /> "Trpv1 and Trpm2 knockouts have decreased proportions of WSNs."<br /> "this is the first cellular evidence for the involvement of TRPM2 on the response of DRG sensory neurons to warm-temperature stimuli"<br /> "we demonstrate that TRPV1 and TRPM2 channels contribute differently to temperature detection, supported by behavioural and cellular data"<br /> "TRPV1 and TRPM2 affect the abundance of WSNs, with TRPV1 mediating the rapid, dynamic response to warmth and TRPM2 affecting the population response of WSNs."<br /> "Lack of TRPV1 or TRPM2 led to a significant reduction in the proportion of WSNs, compared to wildtype cultures".
The new analysis also shows that the removal of TRPV1 leads to cellular responses with smaller responses at low stimulus levels but larger responses with longer latencies at higher stimulus levels. Authors should discuss this further and how it fits with the behavioral data.
Analysis clarification: authors state that TRPM2 deficient WSNs show "Their response to the second and third stimulus, however, are similar to wildtype WSNs, suggesting that tuning of the response magnitude to different warmth stimuli is degraded in Trpm2-/- animals." but is there a graded response in WT mice? It looks like there is in terms of the %responders but not in terms of response amplitude or AUC. Authors could show stats on the figure showing differences in response amplitude/AUC/responders% to different stimulus amplitudes within the WT group.
New discussion point: sex differences are "similar to what has been shown for an operant-based thermal choice assay (11,56)", but in their rebuttal, they mention that ref 11 did not report sex differences. 56 does. Check this.
The authors added in new text about the drift diffusion model in the results, however it's still not completely clear whether the "noise" is due to a perceptual deficit or some other underlying cause. Perhaps authors could discuss this further in the discussion.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public review):
Summary:
Günther and colleagues leverage ancient DNA data to track the genomic history of one of the most important farm animals (cattle) in Iberia, a region showing peculiarities both in terms of cultural practices as well as a climatic refugium during the LGM, the latter of which could have allowed the survival of endemic lineages. They document interesting trends of hybridisation with wild aurochs over the last 8-9 millennia, including a stabilisation of auroch ancestry ~4000 years ago, at ~20%, a time coincidental with the arrival of domestic horses from the Pontic steppe. Modern breeds such as the iconic Lidia used in bullfighting or bull running retain a comparable level of auroch ancestry.
Strengths:
The generation of ancient DNA data has been proven crucial to unravel the domestication history of traditional livestock, and this is challenging due to the environmental conditions of the Iberian peninsula, less favourable to DNA preservation. The authors leverage samples unearthed from key archaeological sites in Spain, including the karstic system of Atapuerca. Their results provide fresher insights into past management practices and permit characterisation of significant shifts in hybridization with wild aurochs.
Comments on revisions:
The authors have satisfactorily addressed my previous concerns. Last questions:
- How many MCMC iterations were run for Structf4? Can they show the likelihood of the last 10% of MCMC iterations? The results seem way too different for K = 4 vs. K = 5, but only for moo014 and moo019.
- I guess the authors also lack an "a" superindex in Table 1 for moo019.
- That Gyu2-related ancestry appears systematically for K=5 suggests that the Caucasus-related ancestry was already present in the pool that led to domesticates. Is it not important to discuss the implications of this possibility, for future analyses?
- If monophyletic, why choose between Bed3 and CPC98 if both could be combined as a single population to further reduce qpAdm and f4 confidence intervals?
- Why not combine all auroch Iberian samples as a single population for testing gene flow from this whole group of samples to ancient Iberian cattle? Would be the resulting coverage still too low?
- What is subindex 1 in the denominator of the f4 ratio (main methods)?
Thanks for your efforts
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
uORFs, short open reading frames located in the 5' UTR, are pervasive in genomes. However, their roles in maintaining protein abundance are not clear. In this study, the authors propose that uORFs act as "molecular dam", limiting the fluctuation of the translation of downstream coding sequences. First, they performed in silico simulations using an improved ICIER model, and demonstrated that uORF translation reduces CDS translational variability, with buffering capacity increasing in proportion to uORF efficiency, length, and number. Next, they analzed the translatome between two related Drosophila species, revealing that genes with uORFs exhibit smaller fluctuations in translation between the two species and across different developmental stages within the same specify. Moreover, they identified that bicoid, a critical gene for Drosophila development, contains a uORF with substantial changes in translation efficiency. Deleting this uORF in Drosophila melanogaster significantly affected its gene expression, hatching rates, and survival under stress condition. Lastly, by leveraging public Ribo-seq data, the authors showed that the buffering effect of uORFs is also evident between primates and within human populations. Collectively, the study advances our understanding of how uORFs regulate the translation of downstream coding sequences at the genome-wide scale, as well as during development and evolution.
The conclusions of this paper are mostly well supported by data, but some definitions and data analysis need to be clarified and extended.
(1) There are two definitions of translation efficiency (TE) in the manuscript: one refers to the number of 80S ribosomes that complete translation at the stop codon of a CDS within a given time interval, while the other is calculated based on Ribo-seq and mRNA-seq data (as described on Page 7, line 209). To avoid potential misunderstandings, please use distinct terms to differentiate these two definitions.
(2) Page 7, line 209: "The translational efficiencies (TEs) of the conserved uORFs were highly correlated between the two species across all developmental stages and tissues examined, with Spearman correlation coefficients ranging from 0.478 to 0.573 (Fig. 2A)." However, the authors did not analyze the correlation of translation efficiency of conserved CDSs between the two species, and compare this correlation to the correlation between the TEs of CDSs. These analyzes will further support the authors conclusion regarding the role of conserved uORFs in translation regulation.
(3) Page 8, line 217: "Among genes with multiple uORFs, one uORF generally emerged as dominant, displaying a higher TE than the others within the same gene (Fig. 2C)." The basis for determining dominance among uORFs is not explained and this lack of clarification undermines the interpretation of these findings.
(4) According to the simulation, the translation of uORFs should exhibit greater variability than that of CDSs. However, the authors observed significantly fewer uORFs with significant TE changes compared to CDSs. This discrepancy may be due to lower sequencing depth resulting in fewer reads mapped to uORFs. Therefore, the authors may compare this variability specifically among highly expressed genes.
(5) If possible, the author may need to use antibodies against bicoid to test the effect of ATG deletion on bicoid expression, particularly under different developmental stages or growth conditions. According to the authors' conclusions, the deletion mutant should exhibit greater variability in bicoid protein abundance. This experiment could provide strong support for the proposed mechanisms.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
This study by Cook and colleagues utilizes genomic techniques to examine gene regulation in the craniofacial region of the fat-tailed dunnart at perinatal stages. Their goal is to understand how accelerated craniofacial development is achieved in marsupials compared to placental mammals.
The authors employ state-of-the-art genomic techniques, including ChIP-seq, transcriptomics, and high-quality genome assembly, to explore how accelerated craniofacial development is achieved in marsupials compared to placental mammals. This work addresses an important biological question and contributes a valuable dataset to the field of comparative developmental biology. The study represents a commendable effort to expand our understanding of marsupial development, a group often underrepresented in genomic studies.
The dunnart's unique biology, characterized by a short gestation and rapid craniofacial development, provides a powerful model for examining developmental timing and gene regulation. The authors successfully identified putative regulatory elements in dunnart facial tissue and linked them to genes involved in key developmental processes such as muscle, skin, bone, and blood formation. Comparative analyses between dunnart and mouse chromatin landscapes suggest intriguing differences in deployment of regulatory elements and gene expression patterns.
Strengths
(1) The authors employ a broad range of cutting-edge genomic tools to tackle a challenging model organism. The data generated - particularly ChIP-seq and RNA-seq from craniofacial tissue - are a valuable resource for the community, which can be employed for comparative studies. The use of multiple histone marks in the ChIP-seq experiments also adds to the utility of the datasets.
(2) Marsupial occupy an important phylogenetic position, but they remain an understudied group. By focusing on the dunnart, this study addresses a significant gap in our understanding of mammalian development and evolution. Obtaining enough biological specimens for these experiments studies was likely a big challenge that the authors were able to overcome.
(3) The comparison of enhancer landscapes and transcriptomes between dunnarts and can serve as the basis of subsequent studies that will examine the mechanisms of developmental timing shifts. The authors also carried out liftover analyses to identify orthologous enhancers and promoters in mice and dunnart.
Weaknesses and Recommendations
(1) The absence of genome browser tracks for ChIP-seq data makes it difficult to assess the quality of the datasets, including peak resolution and signal-to-noise ratios. Including browser tracks would significantly strengthen the paper by provide further support for adequate data quality.
(2) The first two figures of the paper heavily rely in gene orthology analysis, motif enrichment, etc, to describe the genomic data generated from the dunnart. The main point of these figures is to demonstrate that the authors are capturing the epigenetic signature of the craniofacial region, but this is not clearly supported in the results. The manuscript should directly state what these analyses aim to accomplish - and provide statistical tests that strengthen confidence on the quality of the datasets.
(3) The observation that "promoters are located on average 106 kb from the nearest TSS" raises significant concerns about the quality of the ChIP-seq data and/or genome annotation. The results and supplemental information suggest a combination of factors, including unannotated transcripts and enhancer-associated H3K4me3 peaks - but this issue is not fully resolved in the manuscript. The authors should confirm that this is not caused by spurious peaks in the CHIP-seq analysis - and possibly improve genome annotation with the transcriptomic datasets presented on the study.
(4) The comparison of gene regulation between a single dunnart stage (P1) and multiple mouse stages lacks proper benchmarking. Morphological and gene expression comparisons should be integrated to identify equivalent developmental stages. This "alignment" is essential for interpreting observed differences as true heterochrony rather than intrinsic regulatory differences.
(5) The low conservation of putative enhancers between mouse and dunnart (0.74-6.77%) is surprising given previous reports of higher tissue-specific enhancer conservation across mammals. The authors should address whether this low conservation reflects genuine biological divergence or methodological artifacts (e.g., peak-calling parameters or genome quality). Comparisons with published studies could contextualize these findings.
(6) Focusing only on genes associated with shared enhancers excludes potentially relevant genes without clear regulatory conservation. A broader analysis incorporating all orthologous genes may reveal additional insights into craniofacial heterochrony.
In conclusion, this study provides an important dataset for understanding marsupial craniofacial development and highlights the potential of genomic approaches in non-traditional model organisms. However, methodological limitations, including incomplete genome annotation and lack of developmental benchmarking weaken the robustness and of the findings. Addressing these issues would significantly enhance the study's utility to the field and its ability to support the study's central conclusion that dunnart-specific enhancers drive accelerated craniofacial development.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The manuscript by the Root laboratory and colleagues describes how the posterolateral cortical amygdala (plCoA) generates valenced behaviors. Using a suite of methods, the authors demonstrate that valence encoding is mediated by several factors, including spatial localization of neurons within the plCoA, glutamatergic markers, and projection. The manuscript shows convincingly that multiple features (spatial, genetic, and projection) contribute to overall population encoding of valence. Overall, the authors conduct many challenging experiments, each of which contains the relevant controls, and the results are interpreted within the framework of their experiments.
Strengths:
-For a first submission the manuscript is well constructed, containing lots of data sets and clearly presented, in spite of the abundance of experimental results.<br /> -The authors should be commended for their rigorous anatomical characterizations and post-hoc analysis. In the field of circuit neuroscience, this is rarely done so carefully, and when it is, often new insights are gleaned as is the case in the current manuscript.<br /> -The combination of molecular markers, behavioral readouts and projection mapping together substantially strengthen the results.<br /> -The focus on this relatively understudied brain region in the context is valence is well appreciated, exciting and novel.
Weaknesses:
-Interpretation of calcium imaging data is very limited and requires additional analysis and behavioral responses specific to odors should be considered. If there are neural responses behavioral epochs and responses to those neuronal responses should be displayed and analyzed.<br /> -The effect of odor habituation is not considered.<br /> -Optogenetic data in the two subregions relies on very careful viral spread and fiber placement. The current anatomy results provided should be clear about the spread of virus in A-P, and D-V axis, providing coordinates for this, to ensure readers the specificity of each sub-zone is real.<br /> -The choice of behavioral assays across the two regions doesn't seem balanced and would benefit from more congruency,<br /> -Rationale for some of the choices of photo-stimulation experiment parameters isn't well defined.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary
In this study, the authors characterized population genetic variation in the MHC locus across primates and looked for signals of long-term balancing selection (specifically trans-species polymorphism, TSP) in this highly polymorphic region. To carry out these tasks, they used Bayesian methods for phylogenetic inference (i.e. BEAST2) and applied a new Bayesian test to quantify evidence supporting monophyly vs. transspecies polymorphism for each exon across different species pairs. Their results, although mostly confirmatory, represent the most comprehensive analyses of primate MHC evolution to date and novel findings or possible discrepancies are clearly pointed out. However, as the authors discuss, the available data are insufficient to fully capture primates' MHC evolution.
Strengths of the paper include: using appropriate methods and statistically rigorous analyses; very clear figures and detailed description of the results methods that make it easy to follow despite the complexity of the region and approach; a clever test for TSP that is then complemented by positive selection tests and the protein structures for a quite comprehensive study.
That said, weaknesses include: lack of information about how many sequences are included and whether uneven sampling across taxa might results in some comparisons without evidence for TSP; frequent reference to the companion paper instead of summarizing (at least some of) the critical relevant information (e.g., how was orthology inferred?); no mention of the quality of sequences in the database and whether there is still potential effects of mismapping or copy number variation affecting the sequence comparison.
-
-
medium.com medium.com
-
As we consider the complexity of people, the layered, living contexts of problems faced and the entangled factors that contribute — the monster metaphor seems appropriate
for - multiple reinforcing feedback loops between many different levels - source - article - Medium - Dancing with "Monsters" - Donna Nelham - 2022, May 2
-
We are not separate from the systems and structures that affect us.
for - wicked problems - source - article - Medium - Dancing with "Monsters" - Donna Nelham - 2022, May 2
-
for - article - Medium - Dancing with "Monsters" - Donna Nelham - 2022, May 2
Tags
- multiple reinforcing feedback loops between many different levels - source - article - Medium - Dancing with "Monsters" - Donna Nelham - 2022, May 2
- article - Medium - Dancing with "Monsters" - Donna Nelham - 2022, May 2
- wicked problems - source - article - Medium - Dancing with "Monsters" - Donna Nelham - 2022, May 2
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This manuscript describes the creation and curation of a collection of genetic driver lines that specifically label small numbers of neurons, often just a single to handful of cell types, in the central nervous system of the fruit fly, Drosophila melanogaster. The authors screened over 77,000 split hemidriver combinations to yield a collection of 3060 lines targeting a range of cell types in the adult Drosophila central nervous system and 1373 lines characterized in third-instar larvae. These genetic driver lines have already contributed to several important publications and will no doubt continue to do so. It is a truly valuable resource that represents the cooperation of several labs throughout the Drosophila community.
Strengths:
The authors have thoughtfully curated and documented the lines that they have created, so that they may be maximally useful to the greater community. This documentation includes confocal images of neurons labeled by each driver line and when possible, a list of cell types labeled by the genetic driver line and their identity in an EM connectome dataset. The authors have also made available some information from the other lines they created and tested but deemed not specific or strong enough to be included as part of the collection. This additional resource will be a valuable aid for those seeking to label cell types that may not be included in the main collection.
The added revisions help to clarify important points relating to the creation of the lines, which lines were included as part of this specific collection, and caveats to be mindful of when using any of the described lines. These revisions will increase the manuscript's utility to users who may be less familiar with this resource.
Weaknesses:
The major weakness, which is also in some ways a strength, is the stringent requirement that lines that be included be highly specific across the CNS. As a result, the lines that are part of this specific collection are sparse and specific but also limited in which cell types they cover. Doubtless there are many missing cell types.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Patsy R. Tomlinson et al; investigated the impact of different p85 alpha variants associated with SHORT syndrome or APDS2 on insulin mediated signaling in dermal fibroblasts and preadipocytes. They perform this study as APDS2 patients oftern present with features of SHORT syndrome. They found no evidence of hyperactive PI3K signalling monitored by pAKT in a APDS2 patient-derived dermal fibroblast cells. In these cells p110 alpha protein levels were comparable to levels in control cells, however, p110 delta protein levels were strongly reduced. Remarkably, the truncated APDS2-causal p85 alpha variant was less abundant in these cells than p85 alpha wildtype. Afterwards they studied the impact of ectopically expressed p85 alpha variants on insulin mediated PI3K signaling in 3T3-L1 preadipocytes. Interestingly they found that the truncated APDS2-causal p85 alpha variant impaired insulin induced signaling. Using immunoprecipitation of p110 alpha they did not find truncated APDS2-causal p85 alpha variant in p110 alpha precipitates. Furthermore, by immunoprecipitating IRS1 and IRS2 they observed that the truncated APDS2-causal p85 alpha variant was very abundant in IRS1 and IRS2 precipitates, even in the absence of insulin stimulation. These important findings add in an interesting way possible mechanistic explanation for the growing number of APDS2 patients described with features of SHORT syndrome.
Strengths:
Based on state-of-the-art functional studies, the authors show that the p85 alpha variant responsible for APDS2, known to be associated with increased PI3K-delta signaling, can attenuate PI3K-alpha signalling in preadipocytes, providing a possible mechanistic explanation for the growing number of APDS2 patients with features of SHORT syndrome.
Weaknesses:
The proposed paradigm is based on one cell line derived from an APDS2 patient and an overexpressing system. The investigation of a larger number of cell lines derived from APDS2 patients would further substantiate the conclusion.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Zhang et al. analyzed the functional role of hepatocyte RIPK1 during metabolic stress, particularly its scaffold function rather than kinase function. They show that Ripk1 knockout sensitizes the liver to cell death and inflammation in response to short-term fasting, a condition that would not induce obvious abnormality in wild-type mice.
Strengths:
The findings are based on a knockout mouse model and supported by bulk RNA-seq and scRNA-seq. The work consolidates the complex role of RIPK1 in metabolic stress.
Comments on revision:
The authors have addressed my concerns. The added experiments consolidated the findings. I do not have further comments.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The article by Shuai et al. describes a comprehensive collection of over 800 split-GAL4 and split-LexA drivers, covering approximately 300 cell types in Drosophila, aimed at advancing the understanding of associative learning. The mushroom body (MB) in the insect brain is central to associative learning, with Kenyon cells (KCs) as primary intrinsic neurons and dopaminergic neurons (DANs) and MB output neurons (MBONs) forming compartmental zones for memory storage and behavior modulation. This study focuses on characterizing sensory input as well as direct upstream connections to the MB both anatomically and, to some extent, behaviorally. Genetic access to specific, sparsely expressed cell types is crucial for investigating the impact of single cells on computational and functional aspects within the circuitry. As such, this new and extensive collection significantly extends the range of targeted cell types related to the MB and will be an outstanding resource to elucidate MB-related processes in the future.
Strengths:
The work by Shuai et al. provides novel and essential resources to study MB-related processes and beyond. The resulting tools are publicly available and, together with the linked information, will be foundational for many future studies. The importance and impact of this tool development approach, along with previous ones, for the field cannot be overstated. One of many interesting aspects arises from the anatomical analysis of cell types that are less stereotypical across flies. These discoveries might open new avenues for future investigations into how such asymmetry and individuality arise from development and other factors, and how it impacts the computations performed by the circuitry that contains these elements.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Knudstrup and colleagues investigate response to short and rapid sequences of stimuli in layer 2/3 of mouse visual cortex. To quote the authors themselves: "the work continues the recent tradition of providing ambiguous support for the idea that cortical dynamics are best described by predictive coding models". Unfortunately, the ambiguity here is largely a result of the choice of experimental design and analysis, and the data provide only incomplete support for the authors' conclusions.
The authors have addressed some of the concerns of the first revision. However, many still remain.
(1) From the first review: "There appears to be some confusion regarding the conceptual framing of predictive coding. Assuming the mouse learns to expect the sequence ABCD, then ABBD does not probe just for negative prediction errors, and ACBD not just positive prediction errors. With ABBD, there is a combination of a negative prediction error for the missing C in the 3rd position, and a positive prediction error for B in 3rd. Likewise, with ACBD, there is negative prediction error for the missing B at 2nd and missing C at 3rd, and a positive prediction error for the C in 2nd and B in 3rd. Thus, the authors' experimental design does not have the power to isolate either negative or positive prediction errors. Moreover, looking at the raw data in Figure 2C, this does not look like an "omission" response to C, more like a stronger response to a longer B. The pitch of the paper as investigating prediction error responses is probably not warranted - we see no way to align the authors' results with this interpretation."
The authors acknowledge in their response that this is a problem, but do not appear to discuss this in the manuscript. This should be fixed.
(2) From the first review: "Recording from the same neurons over the course of this paradigm is well within the technical standards of the field, and there is no reason not to do this. Given that the authors chose to record from different neurons, it is difficult to distinguish representational drift from drift in the population of neurons recorded. "
The authors respond by pointing out that what they mean by "drift" is within day changes. This has been clarified. However, the analyses in Figures 3 and 5 still are done across days. Figure 3: "Experience modifies activity in PCA space ..." and figure 5: "Stimulus responses shift with training". Both rely on comparisons of population activity across days. This concern remains unchanged here. It would probably be best to remove any analysis done across days - or use data where the same neurons were tracked. Performing chronic two-photon imaging experiments without tracking the same neurons is simply bad practice (assuming one intends to do any analysis across recording sessions).
(3) From the first revision: "The block paradigm to test for prediction errors appears ill chosen. Why not interleave oddball stimuli randomly in a sequence of normal stimuli? The concern is related to the question of how many repetitions it takes to learn a sequence. Can the mice not learn ACBD over 100x repetitions? The authors should definitely look at early vs. late responses in the oddball block. Also the first few presentations after block transition might be potentially interesting. The authors' analysis in the paper already strongly suggests that the mice learn rather rapidly. The authors conclude: "we expected ABCD would be more-or-less indistinguishable from ABBD and ACBD since A occurs first in each sequence and always preceded by a long (800 ms) gray period. This was not the case. Most often, the decoder correctly identified which sequence stimulus A came from." This would suggest that whatever learning/drift could happen within one block did indeed happen and responses to different sequences are harder to interpret."
Again, the authors acknowledge the problem and state that "there is no indication that this is a learned effect". However, they provide no evidence for this and perform no analysis to mitigate the concern.
(4) Some of the minor comments also appear unaddressed and uncommented. E.g. the response amplitudes are still shown in "a.u." instead of dF/F or z-score or spikes.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Yonk and colleagues show that the posterior medial thalamus (POm), which is interconnected with sensory and motor systems, projects directly to major categories of neurons in the striatum, including direct and indirect pathway MSNs, and PV interneurons. Activity in POm-striatal neurons during a sensory-based learning task indicates a relationship between reward expectation and arousal. Inhibition of these neurons slows reaction to stimuli and overall learning. This circuit is positioned to feed salient event activation to the striatum to set the stage for effective learning and action selection.
Strengths:
The results are well presented and offer interesting insight into an understudied thalamostriatal circuit. In general, this work is important as part of a general need for an increased understanding of thalamostriatal circuits in complex learning and action selection processes, which have generally received less attention than corticostriatal systems.
Weaknesses:
There could be a stronger connection between the connectivity part of the data - showing that POm neurons context D1, D2, and PV neurons in striatum but with some different properties - and the functional side of the project. One wonders whether the POm neurons projecting to these subtypes or striatal neurons have unique signaling properties related to learning, or if there is a uniform, bulk signal sent to striatum. This is not a weakness per se, as it's reasonable for these questions to be answered in future papers.
All the in vivo activity-related conclusions stem from data from just 5 mice, which is a relatively small sample set. Optogenetic groups are also on the small side.
Comments on revisions:
The revision has a lot of thoughtful discussion added. I think overall the paper is more thorough and will also be a nice set up for a number of future research questions.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This paper aimed to determine the role EP sst+ neurons play in a probabilistic switching task.
Strengths:
- The in vivo recording of the EP sst+ neurons activity in the task is one of the strongest parts of this paper. Previous work had recorded from the EP-LHb population in rodents and primates in head fixed configurations, the recordings of this population in a freely moving context is a valuable addition to these studies and has highlighted more clearly that these neurons respond both at the time of choice and outcome.
- The use of a refined intersectional technique to record specifically the EP sst+ neurons is also an important strength of the paper. This is because previous work has shown that there are two genetically different types of glutamatergic EP neurons that project to the LHb. Previous work had not distinguished between these types in their recordings so the current results showing that the bidirectional value signaling is present in the EP sst+ population is valuable.
Weaknesses:
- One of the main weaknesses of the paper is to do with how the effect of the EP sst+ neurons on the behavior was assessed.
o All the manipulations (blocking synaptic release and blocking glutamatergic transmission) are chronic and more importantly the mice are given weeks of training after the manipulation before the behavioral effect is assessed. This means that as the authors point out in their discussion the mice will have time to adjust to the behavioral manipulation and compensate for the manipulations. The results do show that mice can adapt to these chronic manipulations and that the EP sst+ are not required to perform the task. What is unclear is whether the mice have compensated for the loss of EP sst+ neurons and whether they play a role in the task under normal conditions. Acute manipulations or chronic manipulations without additional training would be needed to assess this.
o Another weakness is that the effect of the manipulations was assessed in the 90/10 contingency version of the task. Under these contingencies, mice integrate past outcomes over fewer trials to determine their choice and animals act closer to a simple win-stay-lose switch strategy. Due to this it is unclear if the EP sst+ neurons would play a role in the task when they must integrate over a larger number of conditions in the less deterministic 70/30 version of the task. Indeed it is not clear that lesioning any other regions involved in evaluation of action outcomes such as VTA dopamine neurons, that encode reward prediction errors, would have any deficit when assessed in this way. Due to this, it's not clear if the mice have adapted to solve the task without evaluating action outcomes at all and are just acting in a more deterministic lose switch manner that would not presumably involve any of the circuitry in evaluating action outcomes.
- The authors conclude that they do not see any evidence for bidirectional prediction errors. It is not possible to conclude this. First, they see a large response in the EP sst+ neurons to the omission of an expected reward. This is what would be expected of a negative reward prediction error. There are much more specific well controlled tests for this that are commonplace in head-fixed and freely moving paradigms that could be tested to probe this. The authors do look at the effect of previous trials on the response and do not see strong consistent results, but this is not a strong formal test of what would be expected of a prediction error, either a positive or negative. The other way they assess this is by looking at the size of the responses in different recording sessions with different reward contingencies. They claim that the size of the reward expectation and prediction error should scale with the different reward probabilities. If all the reward probabilities were present in the same session this should be true as lots of others have shown for RPE. Because however this data was taken from different sessions it is not expected that the responses should scale, this is because reward prediction errors have been shown to adaptively scale to cover the range of values on offer (Tobler et al., Science 2005). A better test of positive prediction error would be to give a larger than expected reward on a subset of trials. Either way there is already evidence that responses reflect a negative prediction error in their data and more specific tests would be needed to formally rule in or out prediction error coding especially as previous recordings have shown it is present in previous primate and rodent recordings.
- There are a lot of variables in the GLM that occur extremely close in time such as the entry and exit of a port. If two variables occur closely in time and are always correlated it will be difficult if not impossible for a regression model to assign weights accurately to each event. This is not a large issue, but it is misleading to have regression kernels for port entry and exits unless the authors can show these are separable due to behavioral jitter or a lack of correlation under specific conditions, which does not seem to be the case.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public review):
Summary:
Bell and colleagues studied how different splice isoforms of voltage-gated CaV2 calcium channels affect channel expression, localization, function, synaptic transmission, and locomotor behavior at the larval Drosophila neuromuscular junction. They reveal that one mutually exclusive exon located in the fourth transmembrane domain encoding the voltage sensor is essential for calcium channel expression, function, active zone localization, and synaptic transmission. Furthermore, a second mutually exclusive exon residing in an intracellular loop containing the binding sites for Caβ and G-protein βγ subunits promotes the expression and synaptic localization of around ~50% of CaV2 channels, thereby contributing to ~50% of synaptic transmission. This isoform enhances release probability, as evident from increased short-term depression, is vital for homeostatic potentiation of neurotransmitter release induced by glutamate receptor impairment, and promotes locomotion. The roles of the two other tested isoforms remain less clear.
Strengths:
The study is based on solid data that was obtained with a diverse set of approaches. Moreover, it generated valuable transgenic flies that will facilitate future research on the role of calcium channel splice isoforms in neural function.
Weaknesses:
Comments on revisions:
The authors addressed most points. However, from my point of view, the new data (somatodendritic cac currents in adult motoneurons of IS4B mutants without the pre-pulse, and localization of IS4A channels in the larval brain) do not strongly support that the IS4B exon is required for cacophony localization. According to their definition of localization, IS4B is required for cacophony channels to enter motoneuron boutons and to localize to active zones. In case of a true localization defect (without degradation, as they claim), IS4A channels should mislocalize to the soma, axon, or dendrite. However, they do not find them in motoneurons of IS4B mutants. Furthermore, I find the interpretation of the voltage clamp data in flight motoneurons rather difficult. On the one hand, sustained HVA cac currents are strongly attenuated/absent in IS4B mutants. On the other hand, total cac currents (without the -50 mV pre-pulse, not shown in the original submission) are less affected in IS4B mutants. Based on these data, they conclude that IS4B is required for sustained HVA cac currents and that IS4A channel isoforms are expressed and functional. How does this relate to a localization defect at the NMJ? Finally, detecting IS4A channels in other cell types and regions is not a strong argument for a localization defect at the NMJ. I, therefore, suggest toning down the conclusions regarding a localization defect in IS4B mutants/a role for the IS4B exon in cac localization. It should be also discussed how a splice isoform in S4 may result in no detectable cac channels at the NMJ or regulate subcellular channel localization.
I have a few additional points, mainly related to the responses to my previous points:
(1) The authors state "active zones at the NMJ contain only cac isoforms with the IS4B exon. Nevertheless, the small representative EPSC remaining in IS4B mutants suggests that there is synchronous release in the absence of IS4B (Fig. 3B). Are the small EPSCs in dIS4B (Fig. 3B) indeed different from noise/indicative of evoked release? If yes, which cac channels may drive these EPSCs? IS4A channels?<br /> (2) (Related to previous point 4) The authors argue that EPSC amplitudes are not statistically different between Canton S and IS4A mutants (Fig. 2F). However, the Canton S group appears undersampled, thus precluding conclusions based on statistics. Moreover, the effect size Canton S vs. dIS4A looks similar to the one of Canton S vs. dIS4A/dIS4B.<br /> (3) (Related to previous point 11): Can they cite a paper relating calcium channel inactivation to EPSC half width/decay kinetics to support their speculation that "decreased EPSC half width could be caused by significantly faster channel inactivation kinetics" (p. 42, l.42). In addition, many papers have demonstrated that mini decay kinetics provide valuable insights into GluR subunit composition at the Drosophila NMJ (e.g., Schmid et al., 2008 https://doi.org/10.1038/nn.2122). Thus, the statement "Mini decay kinetic analysis because this depends strongly on the distance of the recording electrode to the actual site of transmission in these large muscle cells" is not valid and should be revised.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Guo et al. benchmarked and optimized methods for detecting Identity-By-Descent (IBD) segments in Plasmodium falciparum (Pf) genomes, which are characterized by high recombination rates and low marker density. Their goal was to address the limitations of existing IBD detection tools, which were primarily developed for human genomes and do not perform well in the genomic context of highly recombinant genomes. They first analysed various existing IBD callers, such as hmmIBD, isoRelate, hap-IBD, phased-IBD, refinedIBD. They focused on the impact of recombination on the accuracy, which was calculated based on two metrics, the false negative rate and the false positive rate. The results suggest that high recombination rates significantly reduce marker density, leading to higher false negative rates for short IBD segments. This effect compromises the reliability of IBD-based downstream analyses, such as effective population size (Ne) estimation.<br /> They showed that the best tool for IBD detection in Pf is hmmIBD, because it has relatively low FN/FP error rates and is less biased for relatedness estimates. However, this method is the less computationally efficient.<br /> Their suggestion is to optimize human-oriented IBD methods and use hmmIBD only for the estimation of Ne.
Strengths:
Although I am not an expert on Plasmodium falciparum genetics, I believe the authors have developed a valuable benchmarking framework tailored to the unique genomic characteristics of this species. Their framework enables a thorough evaluation of various IBD detection tools for non-human data, such as high recombination rates and low marker density, addressing a key gap in the field.<br /> This study provides a comparison of multiple IBD detection methods, including probabilistic approaches (hmmIBD, isoRelate) and IBS-based methods (hap-IBD, Refined IBD, phased IBD). This comprehensive analysis offers researchers valuable guidance on the strengths and limitations of each tool, allowing them to make informed choices based on specific use cases. I think this is important beyond the study of Pf.<br /> The authors highlight how optimized IBD detection can help identify signals of positive selection, infer effective population size (Ne), and uncover population structure.<br /> They demonstrate the critical importance of tailoring analytical tools to suit the unique characteristics of a species. Moreover, the authors provide practical recommendations, such as employing hmmIBD for quality-sensitive analyses and fine-tuning parameters for tools originally designed for non-P. falciparum datasets before applying them to malaria research.
Overall, this study represents a meaningful contribution to both computational biology and malaria genomics, with its findings and recommendations likely to have an impact on the field.
Weaknesses:
One weakness of the study is the lack of emphasis on the broader importance of studying Plasmodium falciparum as a critical malaria-causing organism. Malaria remains a significant global health challenge, causing hundreds of thousands of deaths annually. The authors could have introduced better the topic, even though I understand this is a methodological paper. While the study provides a thorough technical evaluation of IBD detection methods and their application to Pf, it does not adequately connect these findings to the broader implications for malaria research and control efforts. Additionally, the discussion on malaria and its global impact could have framed the study in a more accessible and compelling way, making the importance of these technical advances clearer to a broader audience, including researchers and policymakers in the fight against malaria.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This manuscript reports the results of an observational study conducted in Dar es Salaam, Tanzania, investigating potential associations between genetic variation in M. tuberculosis and human host vs. disease severity. The headline finding is that no such associations were found, either for host / bacillary genetics as main effects or for interactions between them.
Strengths:
Strengths of the study include its large size and rigorous approaches to classification of genetic diversity for host and bacillus.
Weaknesses:
(1) There are some limitations of the disease severity read-outs employed: X-ray scores and Xpert cycle thresholds from sputum analysis can only take account of pulmonary disease. CXR is an insensitive approach to assessing 'lung damage', especially when converted to a binary measure. What was the basis for selection of Ralph score of 71 to dichotomise patients? If outcome measures were analysed as continuous variables, would this have been more sensitive in capturing associations of interest?
(2) There is quite a lot of missing data, especially for TB scores - could this have introduced bias? This issue should be mentioned in the discussion.
(3) The analysis adjusted for age, sex, HIV status, age, smoking and cough duration - but not for socio-economic status. This will likely be a major determinant of disease severity. Was adjustment made for previous TB (i.e. new vs repeat episode) and drug-sensitivity of the isolate? Cough duration will effectively be a correlate/consequence of more severe disease - thus likely highly collinear with disease severity read-outs - not a true confounder. How does removal of this variable from the model affect results? Data on socioeconomic status should be added to models, or if not possible then lack of such data should be noted as a limitation.
(4) Recruitment at hospitals may have led to selection bias due to exclusion of less severe, community cases. The authors already acknowledge this limitation in the Discussion however.
(5) Introduction: References refer to disease susceptibility, but the authors should also consider the influences of host/pathogen genetics on host response - both in vitro (PMIDs 11237411, 15322056) and in vivo (PMID 23853590). The last of these studies encompassed a broader range of ethnic variation than the current study, and showed associations between host ancestry and immune response - null results from the current study may reflect the relative genetic homogeneity of the population studied.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this work, the authors present a differentiable version of the widely-used Gillespie Algorithm. The Gillespie Algorithm has been used for decades to simulate the behavior of stochastic biochemical reaction networks. But while the Gillespie Algorithm is a powerful tool for the forward simulation of biochemical systems given some set of known reaction parameters, it cannot be used for reverse process, i.e. inferring reaction parameters given a set of measured system characteristics. The Differentiable Gillespie Algorithm ("DGA") overcomes this limitation by approximating two discontinuous steps in the Gillespie Algorithm with continuous functions. This makes it possible to calculate of gradients for each step in the simulation process which, in turn, allows the reaction parameters to be optimized via powerful backpropagation techniques. In addition to describing the theoretical underpinnings of DGA, the authors demonstrate different potential use-cases for the algorithm in the context of simple models of stochastic gene expression.
Overall, the DGA represents an important conceptual step forward for the field, and should lay the groundwork for exciting innovations in the analysis and design of stochastic reaction networks. At the same time, significantly more work is needed to establish when the approximations made by DGA are valid, and to demonstrate the viability of the algorithm in the context of complicated reaction networks.
Strengths:
This work makes an important conceptual leap by introducing a version of the Gillespie Algorithm that is end-to-end differentiable. This idea alone has the potential to drive a number of exciting innovations in the analysis, inference, and design of biochemical reaction networks. Beyond the theoretical adjustments, the authors also implement their algorithm in a Python-based codebase that combines DGA powerful optimization libraries like PyTorch. This codebase has the potential to be of interest to a wide range of researchers, even if the true scope of the method's applicability remains to be fully determined.
The authors also demonstrate how DGA can be used in practice both to infer reaction parameters from real experimental data (Figure 7) and to design networks with user-specified input-output characteristics (Figure 8). These illustrations should provide a nice roadmap for researchers interested in applying DGA to their own projects/systems.
Finally, although it does not stem directly from DGA, the exploration of pairwise parameter dependencies in different network architectures provides an interesting window into the design constraints (or lack thereof) that shape the architecture of biochemical reaction networks.
Weaknesses:
While it is clear that the DGA represents an important conceptual advancement, the authors do not do enough in the present manuscript to (i) validate the robustness of DGA inference and (ii) demonstrate that DGA inference works in the kinds of complex biochemical networks where it would actually be of legitimate use.
It is to the authors' credit that they are open and explicit about the potential limitations of DGA due to breakdowns in its continuous approximations. However they do not provide the reader with nearly enough empirical (i.e. simulation-based) or theoretical context to assess when, why, and to what extent DGA will fail in different situations. In Figure 2, they compare DGA to GA (i.e. ground-truth) in the context of a simple two state model of a stochastic transcription. Even in this minimal system, we see that DGA deviates notably from ground-truth both in the simulated mRNA distributions (Figure 2A) and in the ON/OFF state occupancy (Figure 2C). This begs the question of how DGA will scale to more complicated systems, or systems with non-steady state dynamics. Will the deviations become more severe? This is important because, in practice, there is really not much need for using DGA with a simple 2 state system-we have analytic solutions for this case. It is the more complex systems where DGA has the potential to move the needle.
A second concern is that the authors' present approach for parameter inference and error calculation does not seem to be reliable. For example, in Figure 5A, they show DGA inference results for the ON rate of a two-state system. We see substantial inference errors in this case, even though the inference problem should be non-degenerate in this case. One reason for this seems to be that the inference algorithm does not reliably find the global minimum of the loss function (Figure 2B). To turn DGA into a viable approach, it is paramount that the authors find some way to improve this behavior, perhaps by using multiple random initializations to better search the loss space.
Finally, the authors do a good job of illustrating how DGA might be used to infer biological parameters (Figure 7) and design reaction networks with desired input-output characteristics (Figure 8). However, analytic solutions exist for both of the systems they select for examples. This means that, in practice, there would be no need for DGA in these contexts, since one could directly optimize, e.g., the expressions for the mean and Fano Factor of the system in Figure 7A. I still believe that it is useful to have these examples, but it seems critical to add a use-case where DGA is the only option.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this work, Gupta & Murphy present several parallel efforts. On one side, they present the hardware and software they use to build a head-fixed mouse experimental setup that they use to track in "real-time" the calcium activity in one or two spots at the surface of the cortex. On the other side, the present another setup that they use to take advantage of the "real-time" version of DeepLabCut with their mice. The hardware and software that they used/develop is described at length, both in the article and in a companion GitHub repository. Next, they present experimental work that they have done with these two setups, training mice to max out a virtual cursor to obtain a reward, by taking advantage of auditory tone feedback that is provided to the mice as they modulate either (1) their local cortical calcium activity, or (2) their limb position.
Strengths:
This work illustrates the fact that thanks to readily available experimental building blocks, body movement and calcium imaging can be carried using readily available components, including imaging the brain using an incredibly cheap consumer electronics RGB camera (RGB Raspberry Pi Camera). It is a useful source of information for researchers that may be interested in building a similar setup, given the highly detailed overview of the system. Finally, it further confirms previous findings regarding the operant conditioning of the calcium dynamics at the surface of the cortex (Clancy et al. 2020) and suggests an alternative based on deeplabcut to the motor tasks that aim to image the brain at the mesoscale during forelimb movements (Quarta et al. 2022).
Weaknesses:
This work covers 3 separate research endeavors: (1) The development of two separate setups, their corresponding software. (2) A study that is highly inspired from the Clancy et al. 2020 paper on the modulation of the local cortical activity measured through a mesoscale calcium imaging setup. (3) A study of the mesoscale dynamics of the cortex during forelimb movements learning. Sadly, the analyses of the physiological data appears uncomplete, and more generally the paper tends to offer overstatements regarding several points:<br /> - In contrast to the introductory statements of the article, closed-loop physiology in rodents is a well-established research topic. Beyond auditory feedback, this includes optogenetic feedback (O'Connor et al. 2013, Abbasi et al. 2018, 2023), electrical feedback in hippocampus (Girardeau et al. 2009), and much more.<br /> - The behavioral setups that are presented are representative of the state of the art in the field of mesoscale imaging/head fixed behavior community, rather than a highly innovative design. In particular, the closed-loop latency that they achieve (>60 ms) may be perceived by the mice. This is in contrast with other available closed-loop setups.<br /> - Through the paper, there are several statements that point out how important it is to carry out this work in a closed-loop setting with an auditory feedback, but sadly there is no "no feedback" control in cortical conditioning experiments, while there is a no-feedback condition in the forelimb movement study, which shows that learning of the task can be achieved in the absence of feedback.<br /> - The analysis of the closed-loop neuronal data behavior lacks controls. Increased performance can be achieved by modulating actively only one of the two ROIs, this is not clearly analyzed (for instance looking at the timing of the calcium signal modulation across the two ROIs. It seems that overall ROIs1 and 2 covariate, in contrast to Clancy et al. 2020. How can this be explained?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Approach
In this study, Yogesh et al. aimed at characterizing hemodynamic occlusion in two photon imaging, where its effects on signal fluctuations are underappreciated compared to that in wide field imaging and fiber photometry. The authors used activity-independent GFP fluorescence, GCaMP and GRAB sensors for various neuromodulators in two-photon and widefield imaging during a visuomotor context to evaluate the extent of hemodynamic occlusion in V1 and ACC. They found that the GFP responses were comparable in amplitude to smaller GCaMP responses, though exhibiting context-, cortical region-, and depth-specific effects. After quantifying blood vessel diameter change and surrounding GFP responses, they argued that GFP responses were highly correlated with changes in local blood vessel size. Furthermore, when imaging with GRAB sensors for different neuromodulators, they found that sensors with lower dynamic ranges such as GRAB-DA1m, GRAB-5HT1.0, and GRAB-NE1m exhibited responses most likely masked by the hemodynamic occlusion, while a sensor with larger SNR, GRAB-ACh3.0, showed much more distinguishable responses from blood vessel change.
Strengths
This work is of broad interest to two photon imaging users and GRAB developers and users. It thoroughly quantifies the hemodynamic driven GFP response and compares it to previously published GCaMP data in a similar context, and illustrates the contribution of hemodynamic occlusion to GFP and GRAB responses by characterizing the local blood vessel diameter and fluorescence change. These findings provide important considerations for the imaging community and a sobering look at the utility of these sensors for cortical imaging.
Importantly, they draw clear distinctions between the temporal dynamics and amplitude of hemodynamic artifacts across cortical regions and layers. Moreover, they show context dependent (Dark versus during visual stimuli) effects on locomotion and optogenetic light-triggered hemodynamic signals.
Most of the first generation neuromodulator GRAB sensors showed relatively small responses, comparable to blood vessel changes in two photon imaging, which emphasizes a need for improved the dynamic range and response magnitude for future sensors and encourages the sensor users to consider removing hemodynamic artifacts when analyzing GRAB imaging data.
Weaknesses
The largest weakness of the paper is that, while they convincingly quantify hemodynamic artifacts across a range of conditions, they do not quantify any methods of correcting for them. The utility of the paper could have been greatly enhanced had they tested hemodynamic correction methods (e.g. from Ocana-Santero et al., 2024) and applied them to their datasets. This would serve both to verify their findings-proving that hemodynamic correction removes the hemodynamic signal-and to act as a guide to the field for how to address the problem they highlight.
The paper attributes the source of 'hemodynamic occlusion' primarily to blood vessel dilation, but leaves unanswered how much may be due to shifts in blood oxygenation. Figure 4 directly addresses the question of how much of the signal can be attributed to occlusion by measuring the blood vessel dilation, but notably fails to reproduce any of the positive transients associated with locomotion in Figure 2. Thus, an investigation into or at least a discussion of what other factors (movement? Hb oxygenation?) may drive these distinct signals would be helpful.
Along these lines, the authors carefully quantified the correlation between local blood vessel diameter and GFP response (or neuropil fluorescence vs blood vessel fluorescence with GRAB sensors). To what extent does this effect depend on proximity to the vessels? Do GFP/ GRAB responses decorrelate from blood vessel activity in neurons further from vessels (refer to Figure 5A and B in Neyhart et al., Cell Reports 2024)?
Raw traces are shown in Figure 2 but we are never presented with the unaveraged data for locomotion of stimulus presentation times, which limits the reader's ability to independently assess variability in the data. Inclusion of heatmaps comparing event aligned GFP to GCaMP6f may be of value to the reader.
More detailed analysis of differences between the kinds of dynamics observed in GFP vs GCaMP6f expressing neurons could aid in identifying artifacts in otherwise clean data. The example neurons in Figure 2A hint at this as each display unique waveforms and the question of whether certain properties of their dynamics can reveal the hemodynamic rather than indicator driven nature of the signal is left open. Eg. do the decay rate and rise times differ significantly from GCaMP6f signals?
The authors suggest that signal to noise ratio of an indicator likely affects the ability to separate hemodynamic response from the underlying fluorescence signal. Does the degree of background fluorescence affect the size of the artifact? If there was variation in background and overall expression level in the data this could potentially be used to answer this question. Could lower (or higher!) expression levels increase the effects of hemodynamic occlusion?<br /> The choice of the phrase 'hemodynamic occlusion' may cause some confusion as the authors address both positive and negative responses in the GFP expressing neurons, and there may be additional contributions from changes in blood oxygenation state.
The choice of ACC as the frontal region provides a substantial contrast in location, brain movement, and vascular architecture as compared to V1. As the authors note, ACC is close to the superior sagittal sinus and thus is the region where the largest vascular effects are likely to occur. The reader is left to wonder how much of the ROI may or may not have included vasculature in the ACC vs V1 recordings as the only images of the recording sites provided are for V1. We are left unable to conclude whether the differences observed between these regions are due to the presence of visible vasculature, capillary blood flow or differences in neurovasculature coupling between regions. A less medial portion of M2 may have been a more appropriate comparison. At least, inclusion of more example imaging fields for ACC in the supplementary figures would be of value.
In Figure 3, How do the proportions of responsive GFP neurons compare to GCaMP6f neurons?
How is variance explained calculated in Figure 4? Is this from a linear model and R^2 value? Is this variance estimate for separate predictors by using single variable models? The methods should describe the construction of the model including the design matrix and how the model was fit and if and how cross validation was run.
Cortical depth is coarsely defined as L2/3 or L5, without numerical ranges in depth from pia.
Overall Assessment:
This paper is an important contribution to our understanding of how hemodynamic artifacts may corrupt GRAB and calcium imaging, even in two-photon imaging modes. Certain useful control experiments, such as intrinsic optical imaging in the same paradigms, were not reported, nor were any hemodynamic correction methods investigated. Thus, this limits both mechanistic conclusions and the overall utility with respect to immediate applications by end users. Nevertheless, the paper is of significant importance to anyone conducting two-photon or widefield imaging with calcium and GRAB sensors and deserves the attention of the broader neuroscience and in-vivo imaging community.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The study presents significant findings that elucidate the relationship between multi-dimensional social relationships and social attention in rhesus macaques. By integrating advanced computational methods, behavioral analyses, and neuroendocrine manipulation, the authors provide strong evidence for how oxytocin modulates attention within social networks. The results are robust and address critical gaps in understanding the dynamics of social attention in primates.
Strengths:
(1) The use of YOLOv5 for automatic behavioral detection is an exceptional methodological advance. The combination of automated analyses with manual validation enhances confidence in the data.<br /> (2) The study's focus on three distinct dimensions of social interaction (aggression, grooming, and proximity) is comprehensive and provides nuanced insights into the complexity of primate social networks.<br /> (3) The investigation of oxytocin's role adds a compelling neuroendocrine dimension to the findings, providing a bridge between behavioral and neural mechanisms.
Weaknesses:
(1) The study's conclusions are based on observations of only four monkeys, which limits the generalizability of the findings. Larger sample sizes could strengthen the validity of the results.<br /> (2) The limited set of stimulus images (in-group and out-group faces) may introduce unintended biases. This could be addressed by increasing the diversity of stimuli or incorporating a broader range of out-group members.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The paper from Kondo et al., addresses how the functional organization of synaptic inputs in 2/3 pyramidal neurons contributes to their output firing. Expressing GCamp6s to monitor calcium activity and the bi-stable inhibitory opsin SwiChR++ to inhibit the somatic activity of the imaged neurons, the authors were able to image up to ~5700 spines in basal dendrites from 6 neurons. Mapping the functional responses of such a large number of dendritic spines and relating it to the output firing of the parent neuron is a remarkable feat. The authors studied the clustering of similarly tuned spines within individual dendrites and found that while some dendrites are similarly tuned to the same orientation of the parent neuron, other dendrites exhibit tuning to other orientations and moreover a significant proportion of dendrites exhibit no tuning. Modelling work suggests that the clustering of spines in a small proportion of dendrites should suffice to give rise to the tuning of the parent cell.
Strengths:
(1) Removal of the potential confound of somatic firing via optogenetic inhibition is convincing and validates a useful tool for the neuroscientific community. As discussed by the authors the tool would be most valuable for the study of excitatory inputs in inhibitory neurons.
(2) The comparison of optogenetic inhibition of somatic responses and isolation of spine-specific signals using the removal of backpropagating action potential by robust regression is an important control and constitutes an important affirmation of previously published work.
(3) The large dataset size provides enough statistical power to test for clustering of similarly tuned spines in basal dendrites.
(4) The study provides a useful replication of previously published results.
(5) Modelling work in the study shows that as in the ferret visual cortex (Wilson et al., 2016), a combination of dendritic nonlinearity and spike thresholding contribute to the sharpness of orientation tuning in the mouse visual cortex.
Weaknesses:
(1) One of the main conclusions of the study, the classification of dendrites according to the presence or absence of visual responses, lacks quantification.
(2) Some of the statistics employed in combination with shuffling controls are not adequate.
(3) All the neurons imaged are very highly tuned (with a very high orientation selectivity index (OSI)). The performance of the models is evaluated by the correlation coefficient between the predicted and the measured somatic tuning curve. The high OSI of the neurons reduces the sensitivity of the evaluation of the models, as it results in extremely high or low correlation coefficients (Figure 8a). It would be important to recapitulate the results from the model for neurons with lower OSI, given that not all L2/3 neurons are so highly tuned.
(4) It is very hard to understand how the modelling results relate to the experimental data, as the definitions of what constitutes a clustered dendrite in the model or in the experimental data are unclear.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
In this paper Chang et al follow up on their lab's previous findings about the secreted protein Shv and its role in activity-induced synaptic remodeling at the fly NMJ. Previously they reported that shv mutants have impaired synaptic plasticity. Normally a high stimulation paradigm should increase bouton size and GluR expression at synapses but this does not happen in shv mutants. The phenotypes relating to activity dependent plasticity were completely recapitulated when Shv was knocked down only in neurons and could be completely rescued by incubation in exogenously applied Shv protein. The authors also showed that Shv activation of integrin signaling on both the pre- and post- synapse was the molecular mechanism underlying its function. Here they extend their study to consider the role of Shv derived from glia in modulating synaptic features at baseline and remodeling conditions. This study is important to understand if and how glia contribute to these processes. Using cell-type specific knockdown of Shv only in glia causes abnormally high baseline GluR expression and prevents activity-dependent increases in bouton size or GluR expression post-stimulation. This does not appear to be a developmental defect as the authors show that knocking down Shv in glia after basic development has the same effects as life long knockdown, so Shv is acting in real time. Restoring Shv in ONLY glia in mutant animals is sufficient to completely rescue the plasticity phenotypes and baseline GluR expression, but glial-Shv does not appear to activate integrin signaling which was shown to be the mechanism for neuronally derived Shv to control plasticity. This led the authors to hypothesize that glial Shv works by controlling the levels of neuronal Shv and extracellular glutamate. They provide evidence that in the absence of glial Shv, synaptic levels of Shv go up overall, presumably indicating that neurons secrete more Shv. In this context which could then work via integrin signaling as described to control plasticity. They use a glutamate sensor and observe decreased signal (extracellular glutamate) from the sensor in glial Shv KD animals, however, this background has extremely high GluR levels at the synapse which may account for some or all of the decreases in sensor signal in this background. Additional controls to test if increased GluR density alone affects sensor readouts and/or independently modulating GluR levels in the glial KD background would help strengthen this data. In fact, glial-specific shv KD animals have baseline levels of GluR that are potentially high enough to have hit a ceiling of expression or detection that accounts for the inability for these levels to modulate any higher after strong stimulation and such a ceiling effect should be considered when interpreting the data and conclusions of this paper. Several outstanding questions remain-why can't glial derived Shv activate integrin pathways but exogenously applied recombinant Shv protein can? The effects of neuronal specific rescue of shv in a shv mutant are not provided vis-à-vis GluR levels and bouton size to compare to the glial only rescue. Inclusion of this data might provide more insight to outstanding questions of how and why the source of Shv seems to matter for some aspects of the phenotypes but not others despite the fact that exogenous Shv can rescue and in some experimental paradigms but not others.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors employ a novel CRISPRi FACS screen and uncover the lysosomal transport complex BORC as a regulator of TDP-43 protein levels in iNeurons. They also find that BORC subunit knockouts impair lysosomal function, leading to slower protein turnover and implicating lysosomal activity in the regulation of TDP-43 levels. This is highly significant for the field given that a) other proteins could also be regulated in this way, b) understanding mechanisms that influence TDP-43 levels are significant given that its dysregulation is considered a major driver of several neurodegenerative diseases and c) the novelty of the proposed mechanism.
Strengths:
The novelty and information provided by the CRISPRi screen. The authors provide evidence indicating that BORC subunit knockouts impair lysosomal function, leading to slower protein turnover and implicating lysosomal activity in the regulation of TDP-43 levels and show a mechanistic link between lysosome mislocalization and TDP-43 dysregulation. The study highlights the importance of localized lysosome activity in axons and suggests that lysosomal dysfunction could drive TDP-43 pathologies associated with neurodegenerative diseases like FTD/ALS. Further, the methods and concepts will have an impact to the larger community as well. The work also sets up for further work to understand the somewhat paradoxical findings that even though the tagged TDP-43 protein is reduced in the screen, it does not alter cryptic exon splicing and there is a longer TDP-43 half-life with BORC KD.
Weaknesses:
While the data is very strong, the work requires some additional clarification.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This study investigates in mice neural mechanisms generating sighs, which are periodic large-amplitude breaths occurring during normal breathing that subserve physiological pulmonary functions and are associated with emotional states such as relief, stress, and anxiety. Sighs are generated by a structure called the preBötzinger complex (preBötC) in the medulla oblongata that generates various forms of inspiratory activity including sighs. The authors have previously described a circuit involving neurons producing bombesin-related peptides Neuromedin B (NMB) and gastrin releasing peptide (GRP) that project to preBötC neurons expressing receptors for NMB (NMBRs) and GRP (GRPRs) and that activation of these preBötC neurons via these peptide receptors generates sighs. In this study the authors further investigated mechanisms of sigh generation by applying optogenetic and chemogenetic strategies to selectively activate the subpopulations of preBötC neurons expressing NMBRs and/or GRPRs, and a separate subpopulation of neurons expressing somatostatin (SST) but not NMBRs and GRPRs. The authors present convincing evidence that sigh-like inspirations can be evoked by photostimulation of the preBötC neurons expressing NMBRs or GRPRs. Photostimulation of SST neurons can independently evoke sighs, and chemogenetic inhibition of these neurons can abolish sighs. The results presented support the authors' conclusion that the preBötC neurons expressing NMBRs or GRPRs produce sighs via pathways to downstream SST neurons. Thus, these studies have identified some of the preBötC cellular elements likely involved in generating sighs.
Strengths:
(1) This study employs an effective combination of electrophysiological, transgenic, optogenetic, chemogenetic, pharmacological, and neuron activity imaging techniques to investigate sigh generation by distinct subpopulations of preBötC neurons in mice.
(2) The authors extend previous studies indicating that there is a peptidergic circuit consisting of NMB and GRP expressing neurons that project from the parafacial (pF) nucleus region to the preBötC and provides sufficient input to generate sighs, since photoactivation of either pF NMB or GRP neurons evoke ectopic sighs in this study.
(3) Solid evidence is presented that sighs can be evoked by direct photostimulation of preBötC neurons expressing NMBRs and/or GRPRs, and also a separate subpopulation of neurons expressing somatostatin (SST) but not NMBRs and GRPRs.
(4) The mRNA-expression data presented from in situ hybridization indicates that most preBötC neurons expressing NMBR, GRPR (or both) are glutamatergic and excitatory.
(5) Measurements in slices in vitro indicate that only the NMBR expressing neurons are normally rhythmically active during normal inspiratory activity and endogenous sigh activity.
(6) Evidence is presented that activation of preBötC NMBRs and/or GRPRs is not necessary for sigh production, suggesting that sighs are not the unique product of the preBötC bombesin-peptide signaling pathway.
(7) The novel conclusion is presented that the preBötC neurons expressing NMBRs and/or GRPRs produce sighs via the separate downstream population of preBötC SST neurons, which the authors demonstrate can independently generate sighs, whereas chemogenetic inhibition of preBötC SST neurons selectively abolishes sighs generated by activating NMBRs and GRPRs.
Weaknesses:
(1) While these studies have identified subpopulations of preBötC neurons capable of episodically evoking sigh-like inspiratory activity, mechanisms producing the normal slow sigh rhythm were not investigated and remain unknown.
(2) The authors have addressed some of the reviewers' main technical concerns and issues relating to interpretation of the results in their rebuttal letter, but have minimally revised the manuscript. Accordingly, there remain important technical and interpretation issues requiring resolution in the revised manuscript.
Comments on revisions:
The authors have clarified in their rebuttal letter the rationale for utilizing two different photostimulation paradigms but have not incorporated any of this explanation in Methods, which would be helpful for readers.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this paper, the authors assess the function of Rab10 in dense core vesicle (DCV) exocytosis using RNAi and cultured neurons. The author provides evidence that their knockdown (KD) is effective and provides evidence that DCV is compromised. They also perform proteomic analysis to identify potential pathway that are affected upon KD of Rab10 that may be involved in DCV release. Upon focusing on ER morphology and protein synthesis, the authors conclude that defects in protein synthesis and ER Ca2+ homeostasis contributes to the DVC release defect upon Rab10 KD.
Strengths:
The data related to Rab10's role in DCV release seems to be strong and carried out with rigor. While the paper lacks in vivo evidence that this gene is indeed involved in DCV in a living mammalian organism, I feel the cellular studies have value. The identification of ER defect in Rab10 manipulation is not truly novel but it is a good conformation of studies performed in other systems. The finding that DCV release defect and protein synthesis defect seen upon Rab10 KD can be significantly suppressed by Leucine supplementation is also a strength of this work.
Weaknesses:
The weaknesses mentioned in my previous comments have been addressed through the revision process.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary.
Some forms of Artificial Intelligence (AI), particularly those based on artificial neural networks (ANNs), draw inspiration from biological brains and neurons. Understanding the functional repertoire and underlying logic of real neurons could, therefore, help improve ANNs. While the cell bodies and axons of neurons produce rapid, high-amplitude action potentials (~100 mV over ~2 ms), dendrites-constituting about 80% of neuronal membrane area-generate smaller but longer-lasting electrical signals, known as glutamate-mediated dendritic plateau potentials (~50 mV over >100 ms). The authors have designed artificial neurons capable of producing these dendritic plateau potentials and, through simulations, demonstrate that such prolonged dendritic signals reduce the negative effects of temporal jitter in real or artificial neural networks. Specifically, they show that in ANNs with neurons capable of dendritic plateau potentials, reliable sparse spiking computation can occur without the need for precise input synchronization. This means that despite fluctuations in network activity (such as delays in the brain circuit responses, for example), neurons can still link related network events. Thus, dendritic plateau potentials enable neurons to retain information longer, connecting events that are not exactly simultaneous. Interestingly, one of the indirect conclusions of the current study is that neurons equipped with dendritic plateau potentials may reduce the total number of cells (nodes, units) required to perform robust computations.
Strengths.
Most studies in neuroscience are descriptive, focusing on observations and measurements. Fewer tackle the more challenging task of explaining the rationale behind specific natural designs. This study does just that, addressing the fundamental problem of asynchrony in neural communication caused by conduction delays and noise. Given that neurons with short membrane time constants can integrate only nearly simultaneous inputs, the authors propose a solution: dendritic plateau potentials. These potentials, generated through glutamate-mediated depolarization within dendritic branches, effectively broaden the temporal integration window, allowing neurons to handle temporal jitter, variability, stochasticity, and maintain reliable computation. Thus, dendritic plateau potentials appear to be an adaptive feature evolved to support rapid, reliable CNS computations.
Weaknesses.
The authors have appropriately revised unsupported statements from previous versions, but the manuscript could benefit from examples of testable hypotheses derived from their findings. For example, what specific experimental questions could be investigated to validate these computational predictions? Providing concrete examples of potential experimental tests would make the work more accessible and actionable for experimentalists, assuming such experiments are feasible.
Additionally, many readers may lack a background in computational modeling or Artificial Neural Networks. To enhance accessibility, key terms and concepts should be explained at a level suitable for first-year graduate students, ensuring clarity for a broader audience.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #2 (Public review):
Summary:
The results presented demonstrate AAV2-CFI gene therapy delivers long-term and marginally higher FI protein in vitreous humor that results in a concomitant reduction in the FB activation product Ba. However, the lack of clinical efficacy in the phase I/II study, possibly due to lower in vitro potency when compared to currently approved pegcetacoplan, raise important considerations for the utility of this therapeutic approach. Despite the early termination of the PPY988 clinical development program, the study achieved significant milestones, including the implementation of subretinal gene therapy delivery in older adults, complement biomarker comparison between serial vitreous humor and aqueous humor samples and vitreous humor proteomic assessment via Olink.
Strengths:
Long-term augmentation of FI protein in vitreous humor over 96-weeks and reduction of FB breakdown product Ba in vitreous humor suggests modulation of the complement system. Developed a novel in vitro assay suggesting FI's ability to reduce C3 convertase activity is weaker than pegcetacoplan and FH and may suggest a higher dose of FI will be required for clinical efficacy. Warn of the poor correlation between vitreous humor and aqueous humor biomarkers and suggest aqueous humor may not be a reliable proxy for vitreous humor with regard to complement activation/inhibition studies.
Weaknesses:
The vitrectomy required for subretinal route of administration causes long-term loss of total protein and may influence interpretation of complement biomarker results even with normalization. The modified in vitro assay of complement activation suggests a several hundred-fold increase in FI protein is required to significantly affect C3a levels. Interestingly, the in vitro assay demonstrates 100% inhibition of C3a with pegcetacoplan and FH therapeutics, but only a 50% reduction with FI even at the highest concentrations tested. This observation suggests FI may not be rate-limiting for negative complement regulation under the in vitro conditions tested and potentially in the eye. It is unclear if pharmacokinetic and pharmacodynamic properties in aqueous humor and vitreous humor compartments are a reliable predictor of FI level/activity after subretinal delivery AAV2-CFI gene therapy.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
The factors that influence the differentiation of EBs and RBs during Chlamydial development are not clearly understood. A previous study had shown a redox oscillation during the Chlamydial developmental cycle. Based on this observation, the authors hypothesize that the bacterial redox state may play a role in regulating the differentiation in Chlamydia. To test their hypothesis, they make knock-down and overexpression strains of the major ROS regulator, ahpC. They show that the knock-down of ahpC leads to a significant increase in ROS levels leading to an increase in the production of elementary bodies and overexpression leads to a decrease in EB production likely caused by a decrease in oxidation. From their observations, they present an interesting model wherein an increase in oxidation favors the production of EBs.
Comments on revisions:
Major concerns have been satisfactorily addressed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public review):
Summary:
Suzuki-Okutani and collogues reported a new live-attenuated SARS-CoV-2 vaccine (BK2102) containing multiple deletion/substitution mutations. They show that the vaccine candidate is highly attenuated and demonstrates great safety profile in multiple animal models (hamsters and Tg-Mice). Of importance, their data show that singe intranasal immunization with BK2102 leads to strong protection of hamsters against D614G and BA.5 challenge in both lungs and URT (nasal wash). Both humoral and cellular responses were induced, and neutralization activity remained for >360 after single inoculation.
Strengths:
The manuscript describes a comprehensive study that evaluates safety, immunogenicity, and efficacy of a new live-attenuated vaccine. Strengths of the study include: 1) strong protection against immune evasive variant BA.5 in both lungs and NW; 2) durability of immunity for >360 days; 3) confirmation of URT protection through a transmission experiment.<br /> While first-generation COVID-19 vaccines have achieved much success, new vaccines that provide mucosal and durable protection remain needed. Thus, the study is significant.
Weaknesses:
Lack of a more detailed discussion of this new vaccine approach in the context of reported live-attenuated SARS-CoV-2 vaccines in terms of its advantages and/or weakness<br /> Antibody endpoint titers could be presented.<br /> Lack of elaboration on immune mechanisms of protection at the upper respiratory tract (URT) against an immune evasive variant in the absence of detectable neutralizing antibodies
Comments on revisions:
In the revised submission, the authors have added new data and have modified the manuscript accordingly. They have reasonably addressed my comments raised in the previous round of review. The quality and clarity of the manuscript are improved.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In this work, Vivian Salgueiro et al. have comprehensively investigated the role of VirR in the vesicle production process in Mtb using state-of-the-art omics, imaging, and several biochemical assays. From the present study, authors have drawn a positive correlation between cell membrane permeability and vasculogenesis and implicated VirR in affecting membrane permeability, thereby impacting vasculogenesis.
Strengths:
The authors have discovered a critical factor (i.e. membrane permeability) that affects vesicle production and release in Mycobacteria, which can broadly be applied to other bacteria and may be of significant interest to other scientists in the field. Through omics and multiple targeted assays such as targeted metabolomics, PG isolation, analysis of Diaminopimelic acid and glycosyl composition of the cell wall, and, importantly, molecular interactions with PG-AG ligating canonical LCP proteins, the authors have established that VirR is a central scaffold at the cell envelope remodelling process which is critical for MEV production.
Comments on the revision.
Authors have addressed the concerns, specifically regarding the expression of downstream genes. It appears that they are not altered significantly.
Data in Fig 6C shows significantly higher expresssion of VirR compared to control or knock down. In the absence of using a regulatable expression such as nitrile, this is expected from a constitutive promoter.
I have no further questions for the author.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
This is an interesting manuscript where a CA-only CG model (Mpipi) was used to examine the critical temperature (Tc) of phase separation of a set of 140 variants of prion-like low complexity domains (PLDs). The key result is that Tc of these PLDs seems to have a linear dependence on substitutions of various sticker and space residues. This is potentially useful for estimating the Tc shift when making novel mutations of a PLD.
Comments on revisions: The authors have addressed concerns raised previously.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The study examined 10 congenitally blind patients who recovered vision through the surgical removal of bilateral dense cataracts, measuring neural activity and neuro chemical profiles from the visual cortex. The declared aim is to test whether restoring visual function after years of complete blindness impacts excitation/inhibition balance in the visual cortex.
Strengths:
The findings are undoubtedly useful for the community, as they contribute towards characterising the many ways in which this special population differs from normally sighted individuals. The combination of MRS and EEG measures is a promising strategy to estimate a fundamental physiological parameter - the balance between excitation and inhibition in the visual cortex, which animal studies show to be heavily dependent upon early visual experience. Thus, the reported results pave the way for further studies, which may use a similar approach to evaluate more patients and control groups.
Weaknesses:
The main methodological limitation is the lack of an appropriate comparison group or condition to delineate the effect of sight recovery (as opposed to the effect of congenital blindness). Few previous studies suggested that Excitation/Inhibition ratio in the visual cortex is increased in congenitally blind patients; the present study reports that E/I ratio decreases instead. The authors claim that this implies a change of E/I ratio following sight recovery. However, supporting this claim would require showing a shift of E/I after vs. before the sight-recovery surgery, or at least it would require comparing patients who did and did not undergo the sight-recovery surgery (as common in the field).
There are also more technical limitations related to the correlation analyses, which are partly acknowledged in the manuscript. A bland correlation between GLX/GABA and the visual impairment is reported, but this is specific to the patients group (N=10) and would not hold across groups (the correlation is positive, predicting the lowest GLX/GABA ratio values for the sighted controls - opposite of what is found). There is also a strong correlation between GLX concentrations and the EEG power at the lowest temporal frequencies. Although this relation is intriguing, it only holds for a very specific combination of parameters (of the many tested): only with eyes open, only in the patients group.
Conclusions:
The main claim of the study is that sight recovery impacts the excitation/inhibition balance in the visual cortex, estimated with MRS or through indirect EEG indices. However, due to the weaknesses outlined above, the study cannot distinguish the effects of sight recovery from those of visual deprivation. Moreover, many aspects of the results are interesting but their validation and interpretation require additional experimental work.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The overall question that is addressed in this study is how the S. coelicolor contractile injection system (CISSc) works and affects both cell viability and differentiation, which it has been implicated to do in previous work from this group and others. The CISSc system has been enigmatic in the sense that it is free-floating in the cytoplasm in an extended form and is seen in contracted conformation (i.e. after having been triggered) mainly in dead and partially lysed cells, suggesting involvement in some kind of regulated cell death. So, how do the structure and function of the CISSc system compare to those of related CIS from other bacteria, does it interact with the cytoplasmic membrane, how does it do that, and is the membrane interaction involved in the suggested role in stress-induced, regulated cell death? The authors address these questions by investigating the role of a membrane protein, CisA, that is encoded by a gene in the CIS gene cluster in S. coelicolor. Further, they analyse the structure of the assembled CISSc, purified from the cytoplasm of S. coelicolor, using single-particle cryo-electron microscopy.
Strengths:
The beautiful visualisation of the CIS system both by cryo-electron tomography of intact bacterial cells and by single-particle electron microscopy of purified CIS assemblies are clearly the strengths of the paper, both in terms of methods and results. Further, the paper provides genetic evidence that the membrane protein CisA is required for the contraction of the CISSc assemblies that are seen in partially lysed or ghost cells of the wild type. The conclusion that CisA is a transmembrane protein and the inferred membrane topology are well supported by experimental data. The cryo-EM data suggest that CisA is not a stable part of the extended form of the CISSc assemblies. These findings raise the question of what CisA does.
Weaknesses:
The investigations of the role of CisA in function, membrane interaction, and triggering of contraction of CIS assemblies, are important parts of the paper and are highlighted in the title. However, the experimental data provided to answer these questions appear partially incomplete and not as conclusive as one would expect.
The stress-induced loss of viability is only monitored with one method: an in vivo assay where cytoplasmic sfGFP signal is compared to FM5-95 membrane stain. Addition of a sublethal level of nisin lead to loss of sfGFP signal in individual hyphae in the WT, but not in the cisA mutant (similarly to what was previously reported for a CIS-negative mutant). Technically, this experiment and the example images that are shown give rise to some concern. Only individual hyphal fragments are shown that do not look like healthy and growing S. coelicolor hyphae. Under the stated growth conditions, S. coelicolor strains would normally have grown as dense hyphal pellets. It is therefore surprising that only these unbranched hyphal fragments are shown in Fig. 4ab. Further, S. coelicolor would likely be in a stationary phase when grown 48 h in the rich medium that is stated, giving rise to concern about the physiological state of the hyphae that were used for the viability assay. It would be valuable to know whether actively growing mycelium is affected in the same way by the nisin treatment, and also whether the cell death effect could be detected by other methods.
The model presented in Fig. 5 suggests that stress leads to a CisA-dependent attachment of CIS assemblies to the cytoplasmic membrane, and then triggering of contraction, leading to cell death. This model makes testable predictions that have not been challenged experimentally. Given that sublethal doses of nisin seem to trigger cell death, there appear to be possibilities to monitor whether activation of the system (via CisA?) indeed leads to at least temporally increased interaction of CIS with the membrane. Further, would not the model predict that stress leads to an increased number of contracted CIS assemblies in the cytoplasm? No clear difference in length of the isolated assemblies if Fig. S7 is seen between untreated and nisin-exposed cells, and also no difference between assemblies from WT and cisA mutant hyphae.
The interaction of CisA with the CIS assembly is critical for the model but is only supported by Alphafold modelling, predicting interaction between cytoplasmic parts of CisA and Cis11 protein in the baseplate wedge. An experimental demonstration of this interaction would have strengthened the conclusions.
The cisA mutant showed a similarly accelerated sporulation as was previously reported for CIS-negative strains, which supports the conclusion that CisA is required for function of CISSc. But the results do not add any new insights into how CIS/CisA affects the progression of the developmental life cycle and whether this effect has anything to do with the regulated cell death that is caused by CIS. The same applies to the effect on secondary metabolite production, with no further mechanistic insights added, except reporting similar effects of CIS and CisA inactivations.
Concluding remarks:<br /> The work will be of interest to anyone interested in contractile injection systems, T6SS, or similar machineries, as well for people working on the biology of streptomycetes. There is also a potential impact of the work in the understanding of how such molecular machineries could have been co-opted during evolution to become a mechanism for regulated cell death. However, this latter aspect remains still poorly understood. Even though this paper adds excellent new structural insights and identifies a putative membrane anchor, it remains elusive how the Streptomyces CIS may lead to cell death. It is also unclear what the advantage would be to trigger death of hyphal compartments in response to stress, as well as how such cell death may impact (or accelerate) the developmental progression. Finally, it is inescapable to wonder whether the Streptomyces CIS could have any role in protection against phage infection.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
The main strength of this work is the impressive performance of a microscope assembled for a fraction of the cost of a commercial, turnkey system. The authors have created a very clever design that removes everything that is not essential. They show compelling time-lapse data looking at single molecules, tracking particles visible in brightfield mode, and looking at cell division with multiple labels in a live cell preparation.
The weaknesses of the paper include:<br /> (1) the lack of more comprehensive explanations of the microscope and what it takes to build and operate it.<br /> For example, the dimensions of the microscope, how samples are mounted, which lenses are compatible, and whether eduWOSMs have been built by groups other than the authors would be useful information.<br /> (2) the absence of more detailed descriptions of some of the experiments, such as frame rates and Z-stack information.<br /> (3) the lack of standardized measures of performance.<br /> For example, images of subresolution tetraspeck beads and measurements of PSF would provide estimates on resolution in XY, resolution in Z, axial chromatic aberrations and lateral chromatic aberrations. Repeating these measurements on different eduWOSMs will provide an idea of how reliably the performance can be achieved.<br /> If these issues were addressed, it would make it more likely that other groups could build and operate this system successfully.
Overall, the authors have designed and built an impressive system at low cost. Providing a bit more information in the manuscript would make it much more likely that other laboratories could replicate this design in their own environments.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors present a paper that attempts to tackle an important question, with potential impact far beyond the field of animal behavior research: what are the relative contributions of innate personality traits versus early life experience on individual behavior in the wild? The study, performed on Egyptian fruit bats that are caught in the wild and later housed in an outdoor colony, is solidly executed, and benefits greatly from a unique setup in which controlled laboratory experiments are combined with monitoring of individuals as they undertake undirected, free exploration of their natural environment.
The primary finding of the paper is that there is a strong effect of early life experience on behavior in the wild, where individual bats that were exposed to an enriched environment as juveniles later travelled farther and over greater distances when permitted to explore and forage ad libitum, as compared with individual bats who were subjected to a more impoverished environment. Meanwhile, no prominent effect of innate "personality", as assessed by indices of indoor foraging behavior early on, before the bats were exposed to the controlled environmental treatment, was observed on three metrics of outdoor foraging behavior. The authors conclude that the early environment plays a larger role than innate personality on the behavior of adult bats.
Strengths:
(1) Elegant design of experiments and impressive combination of methods<br /> Bats used in the experiment were taken from wild colonies in different geographical areas, but housed during the juvenile stage in a controlled indoor environment. Bats are tested on the same behavioral paradigm at multiple points in their development. Finally, the bats are monitored with GPS as they freely explore the area beyond the outdoor colony.
(2) Development of a behavioral test that yields consistent results across time<br /> The multiple-foraging box paradigm, in which behavioral traits such as overall activity, levels of risk-taking, and exploratoriness can be evaluated as creative, and suggestive of behavioral paradigms other animal behavior researchers might be able to use. It is especially useful, given that it can be used to evaluate the activity of animals seemingly at most stages of life, and not just in adulthood.
Weaknesses:
(1) Robustness and validity of personality measures<br /> Coming up with robust measures of "personality" in non-human animals is tricky. While this paper represents an important attempt at a solution, some of the results obtained from the indoor foraging paradigm raise questions as to the reliability of this task for assessing "personality".
(2) Insufficient exploitation of data<br /> Between the behavioral measures and the very multidimensional GPS data, the authors are in possession of a rich data set. However, I don't feel that this data has been adequately exploited for underlying patterns and relationships. For example, many more metrics could be extracted from the GPS data, which may then reveal correlations with early measures of personality or further underscore the role of the early environment. In addition, the possibility that these personality measures might in combination affect outdoor foraging is not explored.
(3) Interpretation of statistical results and definition of statistical models<br /> Some statistical interpretations may not be entirely accurate, particularly in the case of multiple regression with generalized linear models. In addition, some effects which may be present in the data are dismissed as not significant on the basis of null hypothesis testing.
Below I have organized the main points of critique by theme, and ordered subordinate points by order of importance:
(1) Assessing personality metrics and the indoor paradigm: While I applaud this effort and think the metrics used are justified, I see a few issues in the results as they are currently presented:<br /> (a) [Major] I am somewhat concerned that here, the foraging box paradigm is being used for two somewhat conflicting purposes: (1) assessing innate personality and (2) measuring changes in personality as a result of experience. If the indoor foraging task is indeed meant to measure and reflect both at the same time, then perhaps this can be made more explicit throughout the manuscript. In this circumstance, I think the authors could place more emphasis on the fact that the task, at later trials/measurements, begins to take on the character of a "composite" measure of personality and experience.
(b) [Major] Although you only refer to results obtained in trials 1 and 2 when trying to estimate "innate personality" effects, I am a little worried that the paradigm used to measure personality, i.e. the stable components of behavior, is itself affected by other factors such as age (in the case of activity, Fig. 1C3, S1C1-2), the environment (see data re trial 3), and experience outdoors (see data re trials 4/5).
Ideally, a study that aims to disentangle the role of predisposition from early-life experience would have a metric for predisposition that is relatively unchanging for individuals, which can stand as a baseline against a separate metric that reflects behavioral differences accumulated as a result of experience.
I would find it more convincing that the foraging box paradigm can be used to measure personality if it could be shown that young bats' behavior was consistent across retests in the box paradigm prior to any environmental exposure across many baseline trials (i.e. more than 2), and that these "initial settings" were constant for individuals. I think it would be important to show that personality is consistent across baseline trials 1 and 2. This could be done, for example, by reproducing the plots in Fig. 1C1-3 while plotting trial 1 against trial 2. (I would note here that if a significant, positive correlation were to be found (as I would expect) between the measures across trial 1 and 2, it is likely that we would see the "habituation effect" the authors refer to expressed as a steep positive slope on the correlation line (indicating that bold individuals on trial 1 are much bolder on trial 2).)
(c) Related to the previous point, it was not clear to me why the data from trial 2 (the second baseline trial) was not presented in the main body of the paper, and only data from trial 1 was used as a baseline.
In the supplementary figure and table, you show that the bats tended to exhibit more boldness and exploratory behavior, but fewer actions, in trial 2 as compared with trial 1. You explain that this may be due to habituation to the experimental setup, however, the precise motivation for excluding data from trial 2 from the primary analyses is not stated. I would strongly encourage the authors to include a comparison of the data between the baseline trials in their primary analysis (see above), combine the information from these trials to form a composite baseline against which further analyses are performed, or further justify the exclusion of data as a baseline.
(2) Comparison of indoor behavioral measures and outdoor behavioral measures<br /> Regarding the final point in the results, correlation between indoor personality on Trial 4 and outdoor foraging behavior: It is not entirely clear to me what is being tested (neither the details of the tests nor the data or a figure are plotted). Given some of the strong trends in the data - namely, (1) how strongly early environment seems to affect outdoor behavior, (2) how strongly outdoor experience affects boldness, measured on indoor behavior (Fig. 1D) - I am not convinced that there is no relationship, as is stated here, between indoor and outdoor behavior. If this conclusion is made purely on the basis of a p-value, I would suggest revisiting this analysis.
(3) Use of statistics/points regarding the generalized linear models<br /> While I think the implementation of the GLMM models is correct, I am not certain that the interpretation of the GLMM results is entirely correct for cases where multivariate regression has been performed (Tables 4s and S1, and possibly Table 3). (You do not present the exact equation they used for each model (this would be a helpful addition to the methods), therefore it is somewhat difficult to evaluate if the following critique properly applies, however...)
The "estimate" for a fixed effect in a regression table gives the difference in the outcome variable for a 1 unit increase in the predictor variable (in the case of numeric predictors) or for each successive "level" or treatment (in the case of categorical variables), compared to the baseline, the intercept, which reflects the value of the outcome variable given by the combination of the first value/level of all predictors. Therefore, for example, in Table 4a - Time spend outside: the estimate for Bat sex: male indicates (I believe) the difference in time spent outside for an enriched male vs. an enriched female, not, as the authors seem to aim to explain, the effect of sex overall. Note that the interpretation of the first entry, Environmental condition: impoverished, is correct. I refer the authors to the section "Multiple treatments and interactions" on p. 11 of this guide to evaluating contrasts in G/LMMS: https://bbolker.github.io/mixedmodels-misc/notes/contrasts.pdf
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In the manuscript, "Prophage regulation of Shewanella fidelis 3313 motility and biofilm formation: implications for gut colonization dynamics in Ciona robusta", the authors are experimentally investigating the idea that integrated viruses (prophages) within a bacterial colonizer of the host Ciona robusta affect both the colonizer and the host. They found a prophage within the Ciona robusta colonizing bacterium Shewanella fidelis 3313, which affected both the bacteria and host. This prophage does so by regulating the phosphodiesterase gene pdeB in the bacterium when the bacterium has colonized the host. The prophage also regulates the activity of the host immune gene VCBP-C during early bacterial colonization. Prophage effects on both these genes affect the precise localization of the colonizing bacterium, motility of the bacterium, and bacterial biofilm formation on the host. Interestingly, VCBP-C expression also suppressed a prophage structural protein, creating a tripartite feedback loop in this symbiosis. This is exciting research that adds to the emerging body of evidence that prophages can have beneficial effects not only on their host bacteria but also on how that bacteria interacts in its environment. This study establishes the evolutionary conservation of this concept with intriguing implications of prophage effects on tripartite interactions.
Strengths:
This research effectively shows that a prophage within a bacterium colonizing a model ascidian affects both the bacterium and the host in vivo. These data establish the prophage effects on bacterial activity and expand these effects to the natural interactions within the host animal. The effects of the prophage through deletion on a suite of host genes are a strength, as shown by striking microscopy.
Weaknesses:
Unfortunately, there are abundant negative data that cast some limitations on the interpretation of the data. That is, examining specific gene expression has its limitations, which could be avoided by global transcriptomics of the bacteria and the host during colonization by the prophage-containing and prophage-deleted bacteria (1 hour and 24 hours). In this way, the tripartite interactions leading to mechanism could be better established.
Impact:
The authors are correct to speculate that this research can have a significant impact on many animal microbiome studies, since bacterial lysogens are prevalent in most microbiomes. Screening for prophages, determining whether they are active, and "curing" the host bacteria of active prophages are effective tools for understanding the effects these mobile elements have on microbiomes. There are many potential effects of these elements in vivo, both positive and negative, this research is a good example of why this research should be explored.
Context:
The research area of prophage effects on host bacteria in vitro has been studied for decades, while these interactions in combination with animal hosts in vivo have been recent. The significance of this research shows that there could be divergent effects based on whether the study is conducted in vitro or in vivo. The in vivo results were striking. This is particularly so with the microscopy images. The benefit of using Ciona is that it has a translucent body which allows for following microbial localization. This is in contrast to mammalian studies where following microbial localization would either be difficult or near impossible.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
The manuscript by Sarkar et al has demonstrated the infection of liver cells/hepatocytes with Mtb and the significance of liver cells in the replication of Mtb by reprogramming lipid metabolism during tuberculosis. Besides, the present study shows that similar to Mtb infection of macrophages (reviewed in Chen et al., 2024; Toobian et al., 2021), Mtb infects liver cells but with a greater multiplication owing to consumption of enhanced lipid resources mediated by PPARg that could be cleared by its inhibitors. The strength of the study lies in the clinical evaluation of the presence of Mtb in human autopsied liver samples from individuals with miliary tuberculosis and the presence of a clear granuloma-like structure. The interesting observation is of granuloma-like structure in liver which prompts further investigations in the field.
The modulation of lipid synthesis during Mtb infection, such as PPARg upregulation, appears generic to different cell types including both liver cells and macrophage cells. It is also known that infection affect PPARγ expression and activity in hepatocytes. It is also known that this can lead to lipid droplet accumulation in the liver and the development of fatty liver disease (as shown for HCV). This study is in a similar line for M.tb infection. As the liver is the main site for lipid regulation, the availability of lipid resources is greater and higher is the replication rate. In short, the observations from the study confirm the earlier studies with these additional cell types. It is known that higher the lipid content, the greater are Lipid Droplet-positive Mtb and higher is the drug resistance (Mekonnen et al., 2021). The DMEs of liver cells add further to the phenotype.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This important theoretical and computational study by Burger and Gerland attempts to set environmental, compositional, kinetic, and thermodynamic constraints on the proposed virtual circular genome (VCG) model for the early non-enzymatic replication of RNA. The authors create a solid kinetic model using published kinetic and thermodynamic parameters for non-enzymatic RNA ligation and (de)hybridization, which allows them to test a variety of hypotheses about the VCG. Prominently, the authors find that the length (longer is better) and concentration (intermediate is better) of the VCG oligos have an outsized impact on the fidelity and yield of VCG production with important implications for future VCG design. They also identify that activation of only RNA monomers, which can be achieved using environmental separation of the activation and replication, can relax the constraints on the concentration of long VCG component oligos by avoiding the error-prone oligo-oligo ligation. Finally, in a complex scenario with multiple VCG oligo lengths, the authors demonstrate a clear bias for the extension of shorter oligos compared to the longer ones. This effect has been observed experimentally (Ding et al., JACS 2023) but was unexplained rigorously until now. Overall, this manuscript will be of interest to scientists studying the origin of life and the behavior of complex nucleic acid systems.
Strengths:
- The kinetic model is carefully and realistically created, enabling the authors to probe the VCG thoroughly.<br /> - Fig. 6 outlines important constraints for scientists studying the origin of life. It supports the claim that the separation of activation and replication chemistry is required for efficient non-enzymatic replication. One could easily imagine a scenario where activation of molecules occurs, followed by their diffusion into another environment containing protocells that encapsulate a VCG. The selective diffusion of activated monomers across protocell membranes would then result in only activated monomers being available to the VCG, which is the constraint outlined in this work. The proposed exclusive replication by monomers also mirrors the modern biological systems, which nearly exclusively replicate by monomer extension.<br /> - Another strength of the work is that it explains why shorter oligos extend better compared to the long ones in complex VCG mixtures. This point is independent of the activation chemistry used (it simply depends on the kinetics and thermodynamics of RNA base-pairing) so it should be very generalizable.
Weaknesses:
- Most of the experimental work on the VCG has been performed with the bridged 2-aminoimidazolium dinucleotides, which are not featured in the kinetic model of this work. Oher studies by Szostak and colleagues have demonstrated that non-enzymatic RNA extension with bridged dinucleotides have superior kinetics (Walton et al. JACS 2016, Li et al. JACS 2017), fidelity (Duzdevich et al. NAR 2021), and regioselectivity (Giurgiu et al. JACS 2017) compared to activated monomers, establishing the bridged dinucleotides as important for non-enzymatic RNA replication. Therefore, the omission of these species in the kinetic model presented here can be perceived as problematic. The major claim that avoidance of oligo ligations is beneficial for VCGs may be irrelevant if bridged dinucleotides are used as the extending species, because oligo ligations (V + V in this work) are kinetically orders of magnitude slower than monomer extensions (F + V in this work) (Ding et al. NAR 2022). Formally adding the bridged dinucleotides to the kinetic model is likely outside of the scope of this work, but perhaps the authors could test if this should be done in the future by simply increasing the rate of monomer extension (F + V) to match the bridged dinucleotide rate without changing rate of V + V ligation?<br /> - The kinetic and thermodynamic parameters for oligo binding appear to be missing two potentially important components. First, base-paired RNA strands that contain gaps where an activated monomer or oligo can bind have been shown to display significantly different kinetics of ligation and binding/unbinding than complexes that do not contain such gaps (see Prywes et al. eLife 2016, Banerjee et al. Nature Nanotechnology 2023, and Todisco et al. JACS 2024). Would inclusion of such parameters alter the overall kinetic model? Second, it has been shown that long base-paired RNA can tolerate mismatches to an extent that can result in monomer ligation to such mismatched duplexes (see Todisco et al. NAR 2024). Would inclusion of the parameters published in Todisco et al. NAR 2024 alter the kinetic model significantly?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The work set out to better understand the phenomenon of antibiotic persistence in mycobacteria. Three new observations are made using the pathogenic Mycobacterium abscessus as an experimental system: phenotypic tolerance involves suppression of ROS, protein synthesis inhibitors can be lethal for this bacterium, and levofloxacin lethality is unaffected by deletion of catalase, suggesting that this quinolone does not kill via ROS.
Strengths:
The ROS experiments are supported in three ways: measurement of ROS by a fluorescent probe, deletion of catalase increases lethality of selected antibiotics, and a hypoxia model suppresses antibiotic lethality. A variety of antibiotics are examined, and transposon mutagenesis identifies several genes involved in phenotypic tolerance, including one that encodes catalase. The methods are adequate for making these statements.
Weaknesses:
The work can be improved in two major ways. First, word-choice decisions could better conform to the published literature. Alternatively, novel definitions could be included. In particular, the data support the concept of phenotypic tolerance, not persistence. Second, two of the novel observations could be explored more extensively to provide mechanistic explanations for the phenomena.
Overall impact: Showing that ROS accumulation is suppressed during phenotypic tolerance, while expected, adds to the examples of the protective effects of low ROS levels. Moreover, the work, along with a few others, extends the idea of antibiotic involvement with ROS to mycobacteria. These are field-solidifying observations.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this manuscript, Espejo et al describe a method, SICKO, that allows for long-term longitudinal examination of bacterial colonization in the gut of C. elegans. SICKO utilizes a well-plate format where single worms are housed in each well with a small NGM pad surrounded by an aversive palmitic acid barrier to prevent worms from fleeing the well. The main benefit of this method is that it captures longitudinal data across individual worms with the ability to capture tens to hundreds of worms at once. The output data of SICKO in the heatmap is also very clear and robustly shows bacterial colonization in the gut across a large sample size, which is far superior to the current gold standard of imaging 10-20 worms in a cross-sectional matter at various timepoints of aging. They then provide a few examples of how this method can be applied to understand how colonization correlates with animal health.
Strengths:
-The method presented in this manuscript is sure to be of great utility to the host-pathogen field of C. elegans. The method also allows for utilization of large sample sizes and a way to present highly transparent data, both of which are excellent for promoting rigor and reproducibility of science.<br /> -The manuscript also does a great job in describing the limitations of the system, which is always appreciated.<br /> -The methods section for the SICKO data analysis pipeline and the availability of the code on Github are strong pluses.
Weaknesses:
-There are minor weaknesses in the methods that could be addressed relatively easily by expanding the explanation of how to set up the individual worm chambers (see comment 1 below).
I am making all my comments and suggestions to the reviewers public, as I believe these comments can be useful to the general readership as well. Comment 1 is important to make the methods more accessible and comment 2 is important to make the data presentation more accessible to a broader audience. However, comments 3-4 are things/suggestions that should be considered by the authors and future users of SICKO for interpretation of all the data presented in the manuscript.
(1) The methods section needs to be described in more detail. Considering that this is a methods development paper, more detailed explanation is required to ensure that readers can actually adapt these experiments into their labs.<br /> (a) What is the volume of lmNGM in each well?<br /> (b) Recommended volume of bacteria to seed in each well?<br /> (c) A file for the model for the custom printed 3D adaptor should be provided.<br /> (d) There should be a bit more detail on how the chambers should be assembled with all the components. After reading this, I am not sure I would be able to put the chamber together myself.<br /> (e) What is the recommended method to move worms into individual wells? Manual picking? Pipetting in a liquid?<br /> (f) Considering that a user-defined threshold is required (challenging for non-experienced users), example images should be provided on what an acceptable vs. nonacceptable threshold would look like.
(2) The output data in 1e is very nice - it is a very nice and transparent plot, which I like a lot. However, since the data is complex, a supplemental figure to explain the data better would be useful to make it accessible for a broader audience. For example, highlighting a few rows (i.e., individual worms) and showing the raw image data for each row would be useful. What I mean is that it would be useful to show what does the worm actually look like for a "large colony size" or "small colony size"? What is the actual image of the worm that represents the yellow (large), versus dark blue (small), versus teal (in the middle)? And also the transition from dark blue to yellow would also be nice to be shown. This can probably also just be incorporated into Fig. 1d by just showing what color each of those worm images from day 1 to day 8 would represent in the heat map (although I still think a dedicated supplemental figure where you highlight a few rows and show matching pictures for each row in image files would be better).
(3) I am not sure that doing a single-time point cross-sectional data is a fair comparison since several studies do multi-timepoint cross-sectional studies (e.g., day 1, day 5, day 9). This is especially true for using only day 1 data - most people do gut colonization assays at later timepoints since the gut barrier has been shown to break down at older ages, not day 1. The data collected by SICKO is done every day across many individuals worms and is clearly superior to this type of cross-sectional data (even with multiple timepoints), and I think this message would be further strengthened by comparing it directly to cross-sectional data collected across more than 1 timepoint of aging.
(4) The authors show that SICKO can detect differences in wild-type vs. pmk-1 loss of function and between OP50 and PA14. However, these are very dramatic conditions that conventional methods can easily detect. I would think that the major benefit of SICKO over conventional methods is that it can detect subtle differences that cross-sectional methods would fail to visualize. It might be useful to see how well SICKO performs for these more subtle effects (e.g., OP50 on NGM vs. bacteria-promoting media; OP50 vs. HT115; etc.).<br /> (a) Similar to the above comment, the authors discuss how pmk-1 has colonization-independent effects on host-pathogen interactions. Maybe using a more direct approach to affect colonization (e.g., perturbing gut actin function like act-5) would be better.
-
- Dec 2024
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
More and more genes and genetic loci are being linked to bone fragility disorders like osteoporosis and osteogenesis imperfecta through GWAS and clinical sequencing. In this study, the authors seek to develop a pipeline for validating these new candidate genes using crispant screening in zebrafish. Candidates were selected based on GWAS bone density evidence (4 genes) or linkage to OI cases plus some aspect of bone biology (6 genes). NGS was performed on embryos injected with different gRNAs/Cas9 to confirm high mutagenic efficacy, and off-target cutting was verified to be low. Bone growth, mineralization, density, and gene expression levels were carefully measured and compared across crispants using a battery of assays at three different stages.
Strengths:
(1) The pipeline would be straightforward to replicate in other labs, and the study could thus make a real contribution towards resolving the major bottleneck of candidate gene validation.
(2) The study is clearly written and extensively quantified.
(3) The discussion attempts to place the phenotypes of different crispant lines into the context of what is already known about each gene's function.
(4) There is added value in seeing the results for the different crispant lines side by side for each assay.
(5) Caveats to the interpretability of crispant data and limitations of their gene-focused analyses and RT-PCR assays are discussed.
Weaknesses:
(1) The study uses only well-established methods and is strategy-driven rather question/hypothesis-driven. This is in line with the researchers' primary goal of developing a workflow for rapid in vivo functional screening of candidate genes. However, this means that less attention is paid to what the results obtained for a given gene may mean regarding potential disease mechanisms, and how contradictions with prior reports of mouse or fish null mutant phenotypes might be explained.
(2) Normalization to body size was not performed. Measurements of surface area covered by osteoblasts or mineralized bone (Fig. 1) are typically normalized to body size - especially in larvae and juvenile fish - to rule out secondary changes due to delayed or accelerated overall growth. This was not done here; the authors argue that "variations in growth were considered as part of the phenotypic outcome." This is reasonable, but because standard length was reported only for fish at 90 dpf (not significantly different in any line), the reader is not given the opportunity to consider whether earlier differences in, e.g. surface area covered by osteoblasts at 14 dpf, could be accounted for by delayed or accelerated overall growth. Images in Figure S5 were not taken at the same magnification, further confounding this effort.
Comments on latest version:
The authors have largely addressed my comments by making changes to the text.
However, in response to one of my original comments ("It would be helpful to note the grouping of candidates into OI vs. BMD GWAS throughout the figures"), they added a sentence to this effect to the legends. However, because two of the lines were larval-lethal, the legends to Figs. S6-8 are now incorrect in referring to ten genes when only eight mutants are shown.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This manuscript presents data demonstrating NopT's interaction with Nod Factor Receptors NFR1 and NFR5 and its impact on cell death inhibition and rhizobial infection. The identification of a truncated NopT variant in certain Sinorhizobium species adds an interesting dimension to the study. These data try to bridge the gaps between classical Nod-factor-dependent nodulation and T3SS NopT effector-dependent nodulation in legume-rhizobium symbiosis. Overall, the research provides interesting insights into the molecular mechanisms underlying symbiotic interactions between rhizobia and legumes.
Strengths:
The manuscript nicely demonstrates NopT's proteolytic cleavage of NFR5, regulated by NFR1 phosphorylation, promoting rhizobial infection in L. japonicus. Intriguingly, authors also identify a truncated NopT variant in certain Sinorhizobium species, maintaining NFR5 cleavage but lacking NFR1 interaction. These findings bridge the T3SS effector with the classical Nod-factor-dependent nodulation pathway, offering novel insights into symbiotic interactions.
Weaknesses:
(1) In the previous study, when transiently expressed NopT alone in Nicotiana tobacco plants, proteolytically active NopT elicited a rapid hypersensitive reaction. However, this phenotype was not observed when expressing the same NopT in Nicotiana benthamiana (Figure 1A). Conversely, cell death and a hypersensitive reaction were observed in Figure S8. This raises questions about the suitability of the exogenous expression system for studying NopT proteolysis specificity.
(2) NFR5 Loss-of-function mutants do not produce nodules in the presence of rhizobia in lotus roots, and overexpression of NFR1 and NFR5 produces spontaneous nodules. In this regard, if the direct proteolysis target of NopT is NFR5, one could expect the NGR234's infection will not be very successful because of the Native NopT's specific proteolysis function of NFR5 and NFR1. Conversely, in Figure 5, authors observed the different results.
(3) In Figure 6E, the model illustrates how NopT digests NFR5 to regulate rhizobia infection. However, it raises the question of whether it is reasonable for NGR234 to produce an effector that restricts its own colonization in host plants.
(4) The failure to generate stable transgenic plants expressing NopT in Lotus japonicus is surprising, considering the manuscript's claim that NopT specifically proteolyzes NFR5, a major player in the response to nodule symbiosis, without being essential for plant development.
Comments on revised version:
This version has effectively addressed most of my concerns. However, one key issue remains unresolved regarding the mechanism of NopT in regulating nodule symbiosis. Specifically, the explanation of how NopT catabolizes NFR5 to regulate symbiosis is still not convincing within the current framework of plant-microbe interaction, where plants are understood to genetically control rhizobial colonization.
While alternative regulatory mechanisms in plant-microbe interactions are plausible, the notion that the NRG234-secreted effector NopT could reduce its own infection by either suppressing plant immunity or degrading the symbiosis receptor remains unsubstantiated. I believe further revisions are needed in the discussion section to more clearly address and clarify these findings and any lingering uncertainties.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public review):
This revision and the accompanying rebuttal indicates the authors want to publish their studies without providing several of the reviewer requested additional experiments (such as determining the impact of other Myc family members on metastatic behavior and expression characteristics compared to overexpression of c-Myc), and determining whether the tumors were responsive or not to standard clinically used therapies. Their argument is the author team has moved on to other endeavors, it is important to communicate their findings to the research field, and they have indicated these issues in the Discussion. All of these things are reasonable. However, there two things that would help. The first is to have the authors clearly state in the Discussion section "Limitations of the current study" and then list these out. In the current format the indication that the authors recognize the "limitations" is not clearly stated. An example - of such a limitation is how well their model now provides a human SCLC like tumor that metastasizes. We know that in patients SCLC is widely metastatic, but in SCLC patient derived xenografts with subcutaneous injection that is not seen, so if their model now generated widely metastatic behavior like that seen in patients, this report and the associated resources would be a significant advance to the field. However, their data shows that using their model the subcutaneous tumors don't metastasize, and even with renal capsule models metastases are not common and do not go to important sites (e.g. brain). Second, a major reason for publishing this paper is that their model system would be available as a resource for the field to study. However, I could not find in the paper or the Methods section any statement as to the availability of this presumable important resource. If the resources will not be easily available in a format that others can readily study (e.g. with instructions on how to handle the cells which would seem to be more complicated than other patient derived SCLC models) then of course the value of this paper to the field as a whole is dramatically reduced. I would assume the authors want their model to be used by other investigators and thus a clear statement of model availability and how to routinely handle their model is important to include in their manuscript.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this study the authors have used pull-down experiments in a cell line overexpressing tagged SERPINE1 mRNA binding protein 1 (SERBP1) followed by mass spectrometry-based proteomics, to establish its interactome. Extensive analyses are performed to connect the data to published resources. The authors attempt to connect SERBP1 to stress granules and Alzheimer's disease associated tau pathology. Based on the interactome, the authors propose a cross-talk between SERBP1 and PARP1 functions.
Strengths:
The main strength of this study lies in the extensive proteomics data analysis, and its effort to connect the data to published studies.
Weaknesses:
Support for the proposed model: While the authors propose a feedback regulatory model for SERBP1 and PARP1 function, strong evidence for PARylation modulating SERBP1 functions is lacking. PARP inhibition decreasing the amount of PARylated proteins associated with SERBP1 and likely all other PARylated proteins is expected.<br /> Evidence from autopsy brain tissue: This study shows unexplained round, punctate staining for SERBP1 in immunohistochemistry (IHC) staining. This may be due to poor preservation of cellular structures in frozen autopsy brain tissue. SERBP1 and pTau co-staining lacks an age matched non-AD control. Most quantifications of human IHC staining and co-localization do not indicate the number of cases and what data points are shown.<br /> The link to stress granules (SGs): G3BP1 staining indicates cytoplasmic mislocalization and perhaps aggregation pathology, but not necessarily SGs. It is not clear whether physiological transient stress granules are preserved in autopsy brain tissue. The co-localization of abundant cytoplasmic G3BP1 and SERBP1 under normal conditions does not indicate association with SGs. Stress granule proteins assemble phase-separated granules in the cytoplasm under cellular stress, whereas here it is shown that normally cytoplasmic SERBP1 has a nucleocytoplasmic distribution in the presence of H2O2, with no evidence for SG formation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors use a combination of techniques including viral genetics, in vitro reporters, and purified proteins and RNA to interrogate how the Japanese encephalitis virus maintains translation of its RNA to produce viral proteins after the host cell has shut down general translation as a means to block viral replication. They report a role for the RNA helicase DDX3 in promoting virus translation in a cap-independent manner through binding a dumbbell RNA structure in the 3' untranslated region previously reported to drive Japanese encephalitis virus cap-independent translation and a stem-loop at the viral RNA 5' end.
Strengths:
The authors clearly show that the Japanese encephalitis virus does not possess an IRES activity to initiate translation using a range of mono- and bi-cistronic mRNAs. Surprisingly, using a replicon system, the translation of a capped or uncapped viral RNA is reported to have the same translation efficiency when transfected into cells. The authors have applied a broad range of techniques to support their hypotheses.
Weaknesses:
(1) The authors' original experiments in Figure 1 where the virus is recovered following transfection of in vitro transcribed viral RNA with alternative 5' ends such as capped or uncapped ignore that after a single replication cycle of that transfected RNA, the subsequent viral RNA will be capped by the viral capping proteins making the RNA in all conditions the same.
(2) The authors report that deletion of the dumbbell and the large 3' stem-loop RNA reduce replication of a Japanese encephalitis virus replicon. These structures have been reported for other flaviviruses to be important respectively for the accumulation of short flaviviral RNAs that can regulate replication and stability of the viral RNA that lacks a polyA tail. The authors don't show any assessment of RNA stability or degradation state.
(3) The authors propose a model for DDX3 to drive 5'-3' end interaction of the Japanese encephalitis virus viral genome but no direct evidence for this is presented.
(4) The authors' final model in Figure 10 proposes a switch from a cap-dependent translation system in early infection to cap-independent DDX3-driven translation system late in infection. The replicon data that measures translation directly however shows identical traces for capped and uncapped RNAs in all untreated conditions so that which mechanism is used at different stages of the infection is not clear.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
This manuscript submitted by Takagi et al. details the molecular characterization of the FT-expressing cell at a single-cell level. The authors examined what genes are expressed specifically in FT-expressing cells and other phloem companion cells by exploiting bulk nuclei and single-nuclei RNA-seq and transgenic analysis. The authors found the unique expression profile of FT-expressing cells at a single-cell level and identified new transcriptional repressors of FT such as NIGT1.2 and NIGT1.4.
Although previous researchers have known that FT is expressed in phloem companion cells, they have tended to neglect the molecular characterization of the FT-expressing phloem companion cells. To understand how FT, which is expressed in tiny amounts in phloem companion cells that make up a very small portion of the leaf, can be a key molecule in the regulation of the critical developmental step of floral transition, it is important to understand the molecular features of FT-expressing cells in detail. In this regard, this manuscript provides insight into the understanding of detailed molecular characteristics of the FT-expressing cell. This endeavor will contribute to the research field of flowering time.
Here are my comments on how to improve this manuscript.
(1) The most noble finding of this manuscript is the identification of NTGI1.2 as the upstream regulator of FT-expressing cluster 7 gene expression. The flowering phenotypes of the nigtQ mutant and the transgenic plants in which NIGT1.2 was expressed under the SUC2 gene promoter support that NIGT1.2 functions as a floral repressor upstream of the FT gene. Nevertheless, the expression patterns of NIGT1.2 genes do not appear to have much overlap with those of NIGT1.2-downstream genes in the cluster 7 (Figs S14 and F3). An explanation for this should be provided in the discussion section.<br /> (2) To investigate gene expression in the nuclei of specific cell populations, the authors generated transgenic plants expressing a fusion gene encoding a Nuclear Targeting Fusion protein (NTF) under the control of various cell type-specific promoters. Since the public audience would not know about NTF without reading reference 16, some explanation of NTF is necessary in the manuscript. Please provide a schematic of constructs the authors used to make the transformants.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The manuscript by Chabukswar et al. describes a comprehensive attempt to identify and describe the diversity of retroviral envelope (env) gene sequences present in primate genomes in the form of ancient endogenous retrovirus (ERV) sequences.
Strengths:
The focus on env can be justified because of the role the Env proteins likely played in determining viral tropism and host range of the viruses that gave rise to the ERV insertions, and to a lesser extent, because of the potential for env ORFs to be coopted for cellular functions (in the rare cases where the ORF is still intact and capable of encoding a functional Env protein). In particular, these analyses can reveal the potential roles of recombination in giving rise to novel combinations of env sequences. The authors began by compiling env sequences from the human genome (from human endogenous retrovirus loci, or "HERVs") to build consensus Env protein sequences, and then they use these as queries to screen other primate genomes for group-specific envs by tBLASTn. The "groups" referred to here are previously described, as unofficial classifications of endogenous retrovirus sequences into three very broad categories - Class I, Class II and Class III. These are not yet formally recognized in retroviral taxonomy, but they each comprise representatives of multiple genera, and so would fall somewhere between the Family and Genus levels. The retrieved sequences are subject to various analyses, most notably they are screened for evidence of recombination. The recombinant forms appear to include cases that were probably viral dead-ends (i.e. inactivating the env gene) even if they were propagated in the germline.<br /> The availability of the consensus sequences (supplement) is also potentially useful to others working in this area.
Weaknesses:
The weaknesses are largely in presentation. Discussions of ERVs are always complicated by the lack of a formal and consistent nomenclature and the confusion between ERVs as loci and ERVs as indirect information about the viruses that produced them. For this reason, additional attention needs to be paid to precise wording in the text and/or the use of illustrative figures.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this manuscript, the authors aim to identify genetic determinants associated with the invasion profile of Streptococcus pyogenes strains of the emm89 type, which has been increasingly linked to invasive infections. The study leverages both in-house sequenced genomes and publicly available genomic data. Several GWAS approaches are applied to these datasets, leading to the identification of potential genetic targets. For these targets, the authors conduct additional analyses, including three-dimensional structural modeling of the encoded proteins, as well as the development of mutant strains. The functional impact of these mutations is further explored through transcriptomic comparisons between the mutants and wild-type strains
Strengths:
The strengths of this manuscript include the large amount of data analyzed and the various methodologies applied. The identification of CovS, a gene known to influence the invasion profile, as a significant variation further validates the methodology employed in this study. Then, the gene fhuD is an intriguing target, identified through both bioinformatics and wet lab approaches.
Weaknesses:
I do not identify any additional weaknesses in the manuscript, beyond those already acknowledged by the authors themselves.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
To fuse, differentiated muscle cells must rearrange their cytoskeletaon and assemble actin-enriched cytoskeletal structures. These actin foci are proposed to generate mechanical forces necessary to drive close membrane apposition and fusion pore formation.
While the study of these actin-rich structures has been conducted mainly in drosophila, the present manuscript presents clear evidence this mechanism is necessary for the fusion of adult muscle stem cells in vivo, in mice.
However, the authors need to tone down their interpretation of their findings and remember that genetic proof for cytoskeletal actin remodeling to allow muscle fusion in mice has already been provided by different labs (Vasyutina E, et al. 2009 PMID: 19443691; Gruenbaum-Cohen Y, et al., 2012 PMID: 22736793; Hamoud et al., 2014 PMID: 24567399). In the same line of thought, the authors write they "demonstrated a critical function of branched actin-propelled invasive protrusions in skeletal muscle regeneration". I believe this is not a premiere, since Randrianarison-Huetz V, et al., previously reported the existence of finger-like actin-based protrusions at fusion sites in mice myoblasts (PMID: 2926942) and Eigler T, et al., live-recorded said "fusogenic synapse" in mice myoblasts (PMID: 34932950).
Hence, while the data presented here clearly demonstrate that ARP2/3 and SCAR/WAVE complexes are required for differentiating satellite cell fusion into multinucleated myotubes, this is an incremental story, and the authors should put their results in the context of previous literature.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Makarova et al. provide the first complete cellular-level reconstruction of an insect eye. They use the extremely miniaturized parasitoid wasp, Megaphragma viggiani, and apply improved and optimized volumetric EM methods they can describe, the size, volume, and position of every single cell in the insect compound eye.
This data has previously only been inferred from TEM cross-sections taken in different parts of the eye, but in this study and in the associated 3d datasets video and stacks, one can observe the exact position and orientation in 3D space.
The authors have made a very rigorous effort to describe and assess the variation in each cell type and have also compared two different classes of the dorsal rim and non-dorsal rim ommatidia and the associated visual apparatus for each, confirming previous known findings about the distribution and internal structure that assists in polarization detection in these insects.
Strengths:
The paper is well written and strives to compare the data with previous literature wherever possible and goes beyond cell morphology, calculating the optical properties of the different ommatidia and estimating light sensitivity and spatial resolution limits using rhabdom diameter, focal length and showing how this varies across the eye.
Finally, the authors provide very informative and illustrative videos showing how the cones, lenses, photoreceptors, pigment cells, and even the mitochondria are arranged in 3D space, comparing the structure of the dorsal rim and non-dorsal rim ommatidia. They also describe three 'ectopic' photoreceptors in more anatomical detail providing images and videos of them.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors aimed to determine whether a cryptic pocket in the VP35 protein of Zaire ebolavirus has a functional role in RNA binding and, by extension, in immune evasion. They sought to address whether this pocket could be an effective therapeutic target resistant to evolutionary evasion by studying its role in dsRNA binding among different filovirus VP35 homologs. Through simulations and experiments, they demonstrated that cryptic pocket dynamics modulate the RNA binding modes, directly influencing how VP35 variants block RIG-I and MDA5-mediated immune responses.
The authors successfully achieved their aim, showing that the cryptic pocket is not a random structural feature but rather an allosteric regulator of dsRNA binding. Their results not only explain functional differences in VP35 homologs despite their structural similarity but also suggest that targeting this cryptic pocket may offer a viable strategy for drug development with reduced risk of resistance.
This work represents a significant advance in the field of viral immunoevasion and therapeutic targeting of traditionally "undruggable" protein features. By demonstrating the functional relevance of cryptic pockets, the study challenges long-standing assumptions and provides a compelling basis for exploring new drug discovery strategies targeting these previously overlooked regions.
Strengths:
The combination of molecular simulations and experimental approaches is a major strength, enabling the authors to connect structural dynamics with functional outcomes. The use of homologous VP35 proteins from different filoviruses strengthens the study's generality, and the incorporation of point mutations adds mechanistic depth. Furthermore, the ability to reconcile functional differences that could not be explained by crystal structures alone highlights the utility of dynamic studies in uncovering hidden allosteric features.
Weaknesses:
While the methodology is robust, certain limitations should be acknowledged. For example, the study would benefit from a more detailed quantitative analysis of how specific mutations impact RNA binding and cryptic pocket dynamics, as this could provide greater mechanistic insight. This study would also benefit from providing a clear rationale for the selection of the amber03 force field and considering the inclusion of volume-based approaches for pocket analysis. Such revisions will strengthen the robustness and impact of the study.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors have previously shown that the mouse neonatal cerebellum can regenerate damage to granule cell progenitors in the external granular layer, through reprogramming of gliogenic nestin-expressing progenitors (NEPs). The mechanisms of this reprogramming remain largely unknown. Here the authors used scRNAseq and ATACseq of purified neonatal NEPs from P1-P5 and showed that ROS signatures were transiently upregulated in gliogenic NEPs ve neurogenic NEPs 24 hours post injury (P2). To assess the role of ROS, mice transgenic for global catalase activity were assessed to reduce ROS. Inhibition of ROS significantly decreased gliogenic NEP reprogramming and diminished cerebellar growth post-injury. Further, inhibition of microglia across this same time period prevented one of the first steps of repair - the migration of NEPs into the external granule layer. This work is the first demonstration that the tissue microenvironment of the damaged neonatal cerebellum is a major regulator of neonatal cerebellar regeneration. Increased ROS is seen in other CNS damage models including adults, thus there may be some shared mechanisms across age and regions, although interestingly neonatal cerebellar astrocytes do not upregulate GFAP as seen in adult CNS damage models. Another intriguing finding is that global inhibition of ROS did not alter normal cerebellar development.
Strengths:
This paper presents a beautiful example of using single cell data to generate biologically relevant, testable hypotheses of mechanisms driving important biological processes. The scRNAseq and ATACseq analyses are rigorously conducted and conclusive. Data is very clearly presented and easily interpreted supporting the hypothesis next tested by reduce ROS in irradiated brains.
Analysis of whole tissue and FAC sorted NEPS in transgenic mice where human catalase was globally expressed in mitochondria were rigorously controlled and conclusively show that ROS upregulation was indeed decreased post injury and very clearly the regenerative response was inhibited. The authors are to be commended on the very careful analyses which are very well presented and again, easy to follow with all appropriate data shown to support their conclusions.
Weaknesses:
The authors also present data to show that microglia are required for an early step of mobilizing gliogenic NEPs into the damaged EGL. While the data that PLX5622 administration from P0-P5 or even P0-P8 clearly shows that there is an immediate reduction of NEPs mobilized to the damaged EGL, there is no subsequent reduction of cerebellar growth such that by P30, the treated and untreated irradiated cerebella are equivalent in size. There is speculation in the discussion about why this might be the case, but there is no explanation for why further, longer treatment was not attempted nor was there any additional analyses of other regenerative steps in the treated animals. The data still implicate microglia in the neonatal regenerative response, but how remains uncertain.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Gylemo et al. present a manuscript focused on identifying the X-inactivation or X-inactivation escape status for 380 genes across 30 normal human tissues. X-inactivation status of X-linked genes across tissues is important for understanding sex-specific differences in X-linked gene expression and therefore traits, and the likely effect of X-linked pathogenic variants in females. These new data are significant as they double the number of genes that have been classified in the human, and double the number of tissues studied previously.
Strengths:
The strengths of this work are that they analyse 3 individuals from the GTex dataset (2 newly identified, 1 previously identified and published) that have highly/ completely skewed X inactivation, which allows the study of escape from X inactivation in bulk RNA-sequencing. The number of individuals and breadth of tissues analysed add significantly to both the number of genes that have been classified and the weight of evidence for their claims. The additional 198 genes that have been classified and the reclassification of genes that previously had only limited support for their status is useful for the field.
In analysing the data they find that tissue-specific escape from X inactivation appears relatively rare. Rather, if genes escape, even variably, it tends to occur across tissues. Similarly, if a gene is inactivated, it is stable across tissues.
Weaknesses:
In my view there are only minor weaknesses in this work, that tend to come about due to the requirement to study individuals with highly skewed X inactivation. I wonder whether the cause of the highly skewed X inactivation may somehow influence the likelihood of observing tissue-specific escape from X inactivation. In this light, it would be interesting to further understand the genetic cause for the highly skewed X inactivation in each of these three cases in the whole exome sequencing data. Future additional studies may validate these findings using single-cell approaches in unrelated individuals across tissues, where there is normal X inactivation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
The major conclusion of the manuscript is expressed in the title: "NR2F2 is required in the embryonic testis for Fetal Leydig Cell development" and also at the end of the introduction and all along the result part. All the authors' assertions are supported by very clear and statistically validated results from ISH, IHC, precise cell counting and gene expression levels by qPCR. The authors used two different conditional Nr2f2 gene ablation systems that demonstrate the same effects at the FLC level. They also showed that the haplo-insufficiency of Wt1 in the first system (knock-in Wt1-cre-ERT2) aggravated the situation in FLC differentiation by disturbing the differentiation of Sertoli cells and their secretion of pro-FLC factors, which had a confounding effect and encouraged them to use the second system. This demonstrates the great rigor with which the authors interpreted the results. In conclusion, all authors' claims and conclusions are justified by their high-quality results.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Conceptually, this study is interesting and is the first attempt to account for the potentially interactive effects of seasonality and blood source on mosquito fitness, which the authors frame as a possible explanation for previously observed host-switching of Culex quinquefasciatus from birds to mammals in the fall. The authors hypothesize that if changes in fitness by blood source change between seasons, higher fitness on birds in the summer and on mammals in the autumn could drive observed host switching. To test this, the authors fed individuals from a colony of Cx. quinquefasciatus on chickens (bird model) and mice (mammal model) and subjected each of these two groups to two different environmental conditions reflecting the high and low temperatures and photoperiod experienced in summer and autumn in Córdoba, Argentina (aka seasonality). They measured fecundity, fertility, and hatchability over two gonotrophic cycles. The authors then used generalized linear mixed models to evaluate the impact of host species, seasonality, and gonotrophic cycle on fecundity, fertility, and hatchability. The authors were trying to test their hypothesis by determining whether there was an interactive effect of season and host species on mosquito fitness. This is an interesting hypothesis; if it had been supported, it would provide support for a new mechanism driving host switching. While the authors did report an interactive impact of seasonality and host species, the directionality of the effect was the opposite from that hypothesized. The authors have done a very good job of addressing many of the reviewer's concerns, especially by adding two additional replicates. Several minor concerns remain, especially regarding unclear statements in the discussion.
Strengths:
(1) Using a combination of laboratory feedings and incubators to simulate seasonal environmental conditions is a good, controlled way to assess the potentially interactive impact of host species and seasonality on the fitness of Culex quinquefasciatus in the lab.<br /> (2) The driving hypothesis is an interesting and creative way to think about a potential driver of host switching observed in the field.
Weaknesses:
(1) The methods would be improved by some additional details. For example, clarifying the number of generations for which mosquitoes were maintained in colony (which was changed from 20 to several) and whether replicates were conducted at different time points.<br /> (2) The statistical analysis requires some additional explanation. For example, you suggest that the power analysis was conducted a priori, but this was not mentioned in your first two drafts, so I wonder if it was actually conducted after the first replicate. It would be helpful to include further detail, such as how the parameters were estimated. Also, it would be helpful to clarify why replicate was included as a random effect for fecundity and fertility but as a fixed effect for hatchability. This might explain why there were no significant differences for hatchability given that you were estimating for more parameters.<br /> (3) A number of statements in the discussion are not clear. For example, what do you mean by a mixed perspective in the first paragraph? Also, why is the expectation mentioned in the second paragraph different from the hypothesis you described in your introduction?<br /> (4) According to eLife policy, data must be made freely available (not just upon request).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
The authors developed the TaG-EM system to address challenges in multiplexing Drosophila samples for behavioral and transcriptomic studies. This system integrates DNA barcodes upstream of the polyadenylation site in a UAS-GFP construct, enabling pooled behavioral measurements and cell type tracking in scRNA-seq experiments. The revised manuscript expands on the utility of TaG-EM by demonstrating its application to complex assays, such as larval gut motility, and provides a refined analysis of its limitations and cost-effectiveness.
Strengths
(1) Novelty and Scope: The study demonstrates the potential for TaG-EM to streamline multiplexing in both behavioral and transcriptomic contexts. The additional application to labor-intensive larval gut motility assays highlights its scalability and practical utility.
(2) Data Quality and Clarity: Figures and supplemental data are mostly clear and significantly enhanced in the revised manuscript. The addition of Supplemental Figures 18-21 addresses initial concerns about scRNA-seq data and driver characterization.
(3) Cost-Effectiveness Analysis: New analyses of labor and cost savings (e.g., Supplemental Figure 8) provide a practical perspective.
(4) Improvements in Barcode Detection and Analysis: Enhanced enrichment protocols (Supplemental Figures 18-19) demonstrate progress in addressing limitations of barcode detection and increase the detection rate of labeled cells.
Weaknesses
(1) Barcode Detection Efficiency: While improvements are noted, the low barcode detection rate (~37% in optimized conditions) limits the method's scalability in some applications, such as single-cell sequencing experiments with complex cell populations.
(2) Sparse Labeling: Sparse labeling of cell populations, particularly in scRNA-seq assays, remains a concern. Variability in driver strength and regional expression introduces inconsistencies in labeling density.
(3) Behavioral Applications: The utility of TaG-EM in quantifying more complex behaviors remains underexplored, limiting the generalizability of the method beyond simpler assays like phototaxis and oviposition.
(4) Driver Line Characterization: While improvements in driver line characterization were made, variability in expression patterns and sparse labeling emphasize the need for further refinement of constructs and systematic backcrossing to standardize the genetic background.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors analyzed Xenopus oocytes at different stages of meiosis using quantitative phosphoproteomics. Their advanced methods and analyses revealed changes in protein abundances and phosphorylation states to an unprecedented depth and quantitative detail. In the manuscript they provide an excellent interpretation of these findings putting them in the context of past literature in Xenopus as well as in other model systems.
Strengths:
High quality data, careful and detailed analysis, outstanding interpretation in the context of the large body of the literature.
Weaknesses:
Merely a resource, none of the findings are tested in functional experiments.
I am very impressed by the quality of the data and the careful and detailed interpretation of the findings. In this form the manuscript will be an excellent resource to the cell division community in general, and it presents a very large number of hypotheses that can be tested in future experiments.
Xenopus has been and still is a popular and powerful model system that led to critical discoveries around countless cellular processes, including the spindle, nuclear envelope, translational regulation, just to name a few. This also includes a huge body of literature on the cell cycle describing its phosphoregulation. It is indeed somewhat frustrating to see that these earlier studies using phospho-mutants and phospho-antibodies were just scratching the surface. The phosphoproteomics analysis presented here reveals much more extensive and much more dynamic changes in phosphorylation states. Thereby, in my opinion, this manuscript opens a completely new chapter in this line of research, setting the stage for more systematic future studies.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
The work by Gupta et al. addresses the role of tissue compressibility as a driver of cell competition. The authors use a planar epithelial monolayer system to study cell competition between wild type and transformed epithelial cells expressing HRasV12. They combine imaging and traction force measurements from which the authors propose that wild type cells generate compressive forces on transformed epithelial cells. The authors further present a novel setup to directly measure the compressibility of adherent epithelial tissues. These measurements suggest a higher compressibility of transformed epithelial cells, which is causally linked to a reduction in cell-cell adhesion in transformed cells. The authors support their conclusions by theoretical modelling using a self-Propelled Voronoi model that supports differences in tissue compressibility can lead to compression of the softer tissue type.
The experimental framework to measure tissue compressibility of adherent epithelial monolayers establishes a novel tool, however additional controls of this measurement appear required. Moreover, the experimental support of this study is mostly based on single representative images and would greatly benefit from additional data and their quantitative analysis to support the authors' conclusions. Specific comments are also listed in the following:
Major points:
It is not evident in Fig2A that traction forces increase along the interface between wild type and transformed populations and stresses in Fig2C also seem to be similar at the interface and surrounding cell layer. Only representative examples are provided and a quantification of sigma_m needs to be provided.
In Figure 1-3 only panel 2G and 2H provide a quantitative analysis, but it is not clear how many regions of interest and clusters of transform cells were quantified.
Several statements appear to be not sufficiently justified and supported by data.<br /> For example the statement on pg 3. line 38 seems to lack supportive data 'This comparison revealed that the thickness of HRasV12-expressing cells was reduced by more than 1.7-fold when they were surrounded by wild type cells. These observations pointed towards a selective, competition-dependent compaction of HRasV12-expressing transformed cells but not control cells, in the intestinal villi of mice.'<br /> Similarly, the statement about a cell area change of 2.7 fold (pg 3 line 47) lacks support by measurements.
What is the rationale for setting 𝐾p = 1 in the model assumptions if clear differences in junctional membranes of transformed versus wild type cells occur, including dynamic ruffling? This assumption does not seem to be in line with biological observations.
The novel approach to measure tissue compressibility is based on pH dependent hydrogels. As the pH responsive hydrogel pillar is placed into a culture medium with different conditions, an important control would be if the insertion of this hydrogel itself would change the pH or conditions of the culture assays and whether this alters tissue compressibility or cell adhesion. The authors could for example insert a hydrogel pillar of a smaller diameter that would not lead to compression or culture cells in a larger ring to assess the influence of the pillar itself.
The authors focus on the study of cell compaction of the transformed cells, but how does this ultimately lead to a competitive benefit of wild type cells? Is a higher rate of extrusion observed and associated with the compaction of transformed cells or is their cell death rate increased? While transformed cells seem to maintain a proliferative advantage it is not clear which consequences of tissue compression ultimately drive cell competition between wild type and transformed cells.
The argumentation that softer tissues would be more easily compressed is plausible. However, which mechanism do the authors suggest is generating the actual compressive stress to drive the compaction of transformed cells? They exclude a proliferative advantage of wild type cells, which other mechanisms will generate the compressive forces by wild type cells?
-
Reviewer #2 (Public review):
The work by Gupta et al. addresses the role of tissue compressibility as a driver of cell competition. The authors use a planar epithelial monolayer system to study cell competition between wild type and transformed epithelial cells expressing HRasV12. They combine imaging and traction force measurements from which the authors propose that wild type cells generate compressive forces on transformed epithelial cells. The authors further present a novel setup to directly measure the compressibility of adherent epithelial tissues. These measurements suggest a higher compressibility of transformed epithelial cells, which is causally linked to a reduction in cell-cell adhesion in transformed cells. The authors support their conclusions by theoretical modelling using a self-Propelled Voronoi model that supports differences in tissue compressibility can lead to compression of the softer tissue type.
The experimental framework to measure tissue compressibility of adherent epithelial monolayers establishes a novel tool, however additional controls of this measurement appear required. Moreover, the experimental support of this study is mostly based on single representative images and would greatly benefit from additional data and their quantitative analysis to support the authors' conclusions. Specific comments are also listed in the following:
Major points:
It is not evident in Fig2A that traction forces increase along the interface between wild type and transformed populations and stresses in Fig2C also seem to be similar at the interface and surrounding cell layer. Only representative examples are provided and a quantification of sigma_m needs to be provided.
In Figure 1-3 only panel 2G and 2H provide a quantitative analysis, but it is not clear how many regions of interest and clusters of transform cells were quantified.
Several statements appear to be not sufficiently justified and supported by data.<br /> For example the statement on pg 3. line 38 seems to lack supportive data 'This comparison revealed that the thickness of HRasV12-expressing cells was reduced by more than 1.7-fold when they were surrounded by wild type cells. These observations pointed towards a selective, competition-dependent compaction of HRasV12-expressing transformed cells but not control cells, in the intestinal villi of mice.'<br /> Similarly, the statement about a cell area change of 2.7 fold (pg 3 line 47) lacks support by measurements.
What is the rationale for setting 𝐾p = 1 in the model assumptions if clear differences in junctional membranes of transformed versus wild type cells occur, including dynamic ruffling? This assumption does not seem to be in line with biological observations.
The novel approach to measure tissue compressibility is based on pH dependent hydrogels. As the pH responsive hydrogel pillar is placed into a culture medium with different conditions, an important control would be if the insertion of this hydrogel itself would change the pH or conditions of the culture assays and whether this alters tissue compressibility or cell adhesion. The authors could for example insert a hydrogel pillar of a smaller diameter that would not lead to compression or culture cells in a larger ring to assess the influence of the pillar itself.
The authors focus on the study of cell compaction of the transformed cells, but how does this ultimately lead to a competitive benefit of wild type cells? Is a higher rate of extrusion observed and associated with the compaction of transformed cells or is their cell death rate increased? While transformed cells seem to maintain a proliferative advantage it is not clear which consequences of tissue compression ultimately drive cell competition between wild type and transformed cells.
The argumentation that softer tissues would be more easily compressed is plausible. However, which mechanism do the authors suggest is generating the actual compressive stress to drive the compaction of transformed cells? They exclude a proliferative advantage of wild type cells, which other mechanisms will generate the compressive forces by wild type cells?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Suzuki and colleagues aim to develop an in vitro organoid system to recapitulate the developmental process of the olfactory epithelium. The authors have succeeded in using a combination of niche factors to induce organoid development, which gives rise to multiple cell types including those with characteristics of mature olfactory sensory neurons. By comparing different cultural media in inducing lineage specification in the organoids, the authors show that the niche factors play an important role in the neuronal lineage whereas serum promotes the development of the respiratory epithelium. The authors further utilized single-cell RNASeq and trajectory analysis to demonstrate that the organoids recapitulate the developmental process of the olfactory epithelium and that some of the factory sensory neurons express only one receptor type per cell. Using these analyses, the authors proposed that a specific set of guidance modules are associated with individual receptor types to enable the formation of the factory map.
Strengths:
The strength of the paper is that the authors have demonstrated that olfactory epithelium organoids can develop from dissociated cells from embryonic or tissue. This provides a valuable tool for studying the development of processes of the factory epithelium in vitro. Defining various factors in the media that influence the development trajectories of various cell types also provides valuable information to guide further development of the method. Single-cell RNA-Seq experiments provide information about the developmental processes of the olfactory system.
Weaknesses:
The manuscript is also marked by a number of weaknesses. The premise of the studies is not well argued. The authors set out to use organoid culture to study the developmental process in order to unravel the mechanisms of single receptor choice, and its role in setting up the factory map. However, the paper has mostly focused on characterizing the organization rather than providing insights into the problem. The statement that the organoids can develop from single cells is misleading, because it's mostly likely that organoids develop after the dissociated cells form aggregates before developing into organoids. It is not known whether coarsely separated tissue chunks can develop into organoids with the same characteristics. Re-aggregation of the cells to form organoids is in and of itself is interesting. Unfortunately, the heterogeneity of the cells and how they contribute to the development of overnight is not explored. There is also a missed opportunity to compare single-cell RNASeq data from this study with existing ones. The in vitro system is likely to be different from embryonic development. It is critical to compare and determine how much the organoid is recapitulating the development of the OSNs in vivo. There are a number of comprehensive datasets from the OE in addition to that presented in the Fletcher paper. Finally, the quality of the functional assay (calcium imaging) of factory sensory neurons is poor. Experiments are of high quality are needed to verify the results.
Major points:
(1) Adding FBS in organoid culture medium has been shown to negatively affect the organoid formation and growth. Previous OE organoids culture method did not use FBS. Also, day 10 is an odd choice to compare the two conditions after showing day 20 of NF+ culture shows a better differentiation state. It is not known whether and how the differentiation may be different on day 20. Moreover, comparing Figure 2R to 2S, FBS treatment alone appears to have not only more Foxj1+ cells but also more Tuj1+ cells than NFs/FBS. This is inconsistent with the model. The authors should provide statistics for Tuj1+ cells as well.
(2) As opposed to the statement in the manuscript, Plxnb2 had been shown to be expressed by the OSNs (Mclntyre et al. 2010; JNR), specifically in immature OSNs. It would be important to mention that Plxnb2 is expressed in OMP+ OSNs in the OE organoid system and its potential reasons to better guide the readers of the system mimicking the in vivo OSNs. Similarly, OSN expression of Cdh2 has been shown by Akins and colleagues. As Plxnb2 showed an expression pattern (immunofluorescence) with an anterior-posterior axis while Cdh2 expression level was not, it would be informative to show the odorant receptor types regarding the expression pattern of Plxnb2 (versus that of Cdh2) using single cell RNAseq data4.
(3) There is no real layering of the organoids, although some cells show biases toward one side or the other in some regions of the organoid. The authors should not make a sweeping claim that the organoids establish layered structures.
(4) Figure 2P, it is clear whether OMP is present in the cell bodies. The signal is not very convincing. Even the DAPI signal does not seem to be on a comparable scale compared to Figures 2N and 2O.
(5) Annotation of the cell types in different single-cell RNA-Seq analysis. The iOSN is only marked in Figure 3A. In the marker expression panel, it appears that those marked as mOSN have high GAP43, which are an iOSN marker. These discrepancies are not detailed nor discussed.
(6) The authors should merge the single-cell datasets from day 10 organoids cultured in NF-medium and FBS-medium to compare their differences.
(7) The quality of the calcium imaging experiment is poor. Labeling and experimental details are not provided. The concentration of IVA, the manner of its delivery, and delivery duration are not provided. How many ROIs have been imaged, and what percentage of them responded to IVA? Do they respond to more than one odor? Do they respond to repeated delivery? There is no control for solution osmolarity. Cell body response was not recorded. Given that only a small number of cells express a receptor, it seems extraordinary that these axons respond to IVA receptors. The authors should also determine whether IVA receptor genes are found in their dataset.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Van der Linden et al. describe the addition of the T203Y mutation to their previously described fluorescence lifetime calcium sensor Tq-Ca-FLITS to shift the fluorescence to green emission. This mutation was previously described to similarly red-shift the emission of green and cyan FPs. Tq-Ca-FLITS_T203Y behaves as a green calcium sensor with opposite polarity compared with the original (lifetime goes down upon calcium binding instead of up). They then screen a library of variants at two linker positions and identify a variant with slightly improved lifetime contrast (Tq-Ca-FLITS_T203Y_V27A_N271D, named G-Ca-FLITS). The authors then characterize the performance of G-Ca-FLITS relative to Tq-Ca-FLITS in purified protein samples, in cultured cells, and in the brains of fruit flies.
Strengths:
This work is interesting as it extends their prior work generating a calcium indicator scaffold for fluorescent protein-based lifetime sensors with large contrast at a single wavelength, which is already being adopted by the community for production of other FLIM biosensors. This work effectively extends that from cyan to green fluorescence. While the cyan and green sensors are not spectrally distinct enough (~20-30nm shift) to easily multiplex together, it at least shifts the spectra to wavelengths that are more commonly available on commercial microscopes.
The observations of organellar calcium concentrations were interesting and could potentially lead to new biological insight if followed up.
Weaknesses:
The new G-Ca-FLITS sensor doesn't appear to be significantly improved in performance over the original Tq-Ca-FLITS, no specific benefits are demonstrated.
Although it was admirable to attempt in vivo demonstration in Drosophila with these sensors, depolarizing the whole brain with high potassium is not a terribly interesting or physiological stimulus and doesn't really highlight any advantages of their sensors; G-Ca-FLITS appears to be quite dim in the flies.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
With this report, I suggest what are in my opinion crucial additions to the otherwise very interesting and credible research manuscript "Cluster size determines morphology of transcription factories in human cells".
Strengths:
The manuscript in itself is technically sound, the chosen simulation methods are completely appropriate the figures are well-prepared, the text is mostly well-written spare a few typos. The conclusions are valid and would represent a valuable conceptual contribution to the field of clustering, 3D genome organization and gene regulation related to transcription factories, which continues to be an area of most active investigation.
Weaknesses:
However, I find that the connection to concrete biological data is weak. This holds especially given that the data that are needed to critically assess the applicability of the derived cross-over with factory size is, in fact, available for analysis, and the suggested experiments in the Discussion section are actually done and their results can be exploited. In my judgement, unless these additional analysis are added to a level that crucial predictions on TF demixing and transcriptional bursting upon TU clustering can be tested, the paper is more fitted for a theoretical biophysics venue than for a biology journal.
Major points
(1) My first point concerns terminology. The Merriam-Webster dictionary describes morphology as the study of structure and form. In my understanding, none of the analyses carried out in this study actually address the form or spatial structuring of transcription factories. I see no aspects of shape, only size. Unless the authors want to assess actual shapes of clusters, I would recommend to instead talk about only their size/extent. The title is, by the same argument, in my opinion misleading as to the content of this study.
(2) Another major conceptual point is the choice of how a single TF:pol particle in the model relates to actual macromolecules that undergo clustering in the cell. What about the fact that even single TF factories still contain numerous canonical transcription factors, many of which are also known to undergo phase separation? Mediator, CDK9, Pol II just to name a few. This alone already represents phase separation under the involvement of different species, which must undergo mixing. This is conceptually blurred with the concept of gene-specific transcription factors that are recruited into clusters/condensates due to sequence-specific or chromatin-epigenetic-specific affinities. Also, the fact that even in a canonical gene with a "small" transcription factory there are numerous clustering factors takes even the smallest factories into a regime of several tens of clustering macromolecules. It is unclear to me how this reality of clustering and factory formation in the biological cell relates to the cross-over that occurs at approximately n=10 particles in the simulations presented in this paper.
(3) The paper falls critically short in referencing and exploiting for analysis existing literature and published data both on 3D genome organization as well as the process of cluster formation in relation to genomic elements. In terms of relevant literature, most of the relevant body of work from the following areas has not been included:
(i) mechanisms of how the clustering of Pol II, canonical TFs, and specific TFs is aided by sequence elements and specific chromatin states
(ii) mechanisms of TF selectivity for specific condensates and target genomic elements
(iii) most crucially, existing highly relevant datasets that connect 3D multi-point contacts with transcription factor identity and transcriptional activity, which would allow the authors to directly test their hypotheses by analysis of existing data
Here, especially the data under point iii are essential. The SPRITE method (cited but not further exploited by the authors), even in its initial form of publication, would have offered a data set to critically test the mixing vs. demixing hypothesis put forward by the authors. Specifically, the SPRITE method offers ordered data on k-mers of associated genomic elements. These can be mapped against the main TFs that associate with these genomic elements, thereby giving an account of the mixed / demixed state of these k-mer associations. Even a simple analysis sorting these associations by the number of associated genomic elements might reveal a demixing transition with increasing association size k. However, a newer version of the SPRITE method already exists, which combines the k-mer association of genomic elements with the whole transcriptome assessment of RNAs associated with a particular DNA k-mer association. This can even directly test the hypotheses the authors put forward regarding cluster size, transcriptional activation, correlation between different transcription units' activation etc.
To continue, the Genome Architecture Mapping (GAM) method from Ana Pombo's group has also yielded data sets that connect the long-range contacts between gene-regulatory elements to the TF motifs involved in these motifs, and even provides ready-made analyses that assess how mixed or demixed the TF composition at different interaction hubs is. I do not see why this work and data set is not even acknowledged? I also strongly suggest to analyze, or if they are already sufficiently analyzed, discuss these data in the light of 3D interaction hub size (number of interacting elements) and TF motif composition of the involved genomic elements.
Further, a preprint from the Alistair Boettiger and Kevin Wang labs from May 2024 also provides direct, single-cell imaging data of all super-enhancers, combined with transcription detection, assessing even directly the role of number of super-enhancers in spatial proximity as a determinant of transcriptional state. This data set and findings should be discussed, not in vague terms but in detailed terms of what parts of the authors' predictions match or do not match these data.
For these data sets, an analysis in terms of the authors' key predictions must be carried out (unless the underlying papers already provide such final analysis results). In answering this comment, what matters to me is not that the authors follow my suggestions to the letter. Rather, I would want to see that the wealth of available biological data and knowledge that connects to their predictions is used to their full potential in terms of rejecting, confirming, refining, or putting into real biological context the model predictions made in this study.
References for point (iii):
RNA promotes the formation of spatial compartments in the nucleus<br /> https://www.cell.com/cell/fulltext/S0092-8674(21)01230-7?dgcid=raven_jbs_etoc_email
Complex multi-enhancer contacts captured by genome architecture mapping<br /> https://www.nature.com/articles/nature21411
Cell-type specialization is encoded by specific chromatin topologies<br /> https://www.nature.com/articles/s41586-021-04081-2
Super-enhancer interactomes from single cells link clustering and transcription<br /> https://www.biorxiv.org/content/10.1101/2024.05.08.593251v1.full
For point (i) and point (ii), the authors should go through the relevant literature on Pol II and TF clustering, how this connects to genomic features that support the cluster formation, and also the recent literature on TF specificity. On the last point, TF specificity, especially the groups of Ben Sabari and Mustafa Mir have presented astonishing results, that seem highly relevant to the Discussion of this manuscript.
(4) Another conceptual point that is a critical omission is the clarification that there are, in fact, known large vs. small transcription factories, or transcriptional clusters, which are specific to stem cells and "stressed cells". This distinction was initially established by Ibrahim Cisse's lab (Science 2018) in mouse Embryonic Stem Cells, and also is seen in two other cases in differentiated cells in response to serum stimulus and in early embryonic development:
Mediator and RNA polymerase II clusters associate in transcription-dependent condensates<br /> https://www.science.org/doi/10.1126/science.aar4199
Nuclear actin regulates inducible transcription by enhancing RNA polymerase II clustering<br /> https://www.science.org/doi/10.1126/sciadv.aay6515
RNA polymerase II clusters form in line with surface condensation on regulatory chromatin<br /> https://www.embopress.org/doi/full/10.15252/msb.202110272
If "morphology" should indeed be discussed, the last paper is a good starting point, especially in combination with this additional paper:
Chromatin expansion microscopy reveals nanoscale organization of transcription and chromatin<br /> https://www.science.org/doi/10.1126/science.ade5308
(5) The statement "scripts are available upon request" is insufficient by current FAIR standards and seems to be non-compliant with eLife requirements. At a minimum, all, and I mean all, scripts that are needed to produce the simulation outcomes and figures in the paper, must be deposited as a publicly accessible Supplement with the article. Better would be if they would be structured and sufficiently documented and then deposited in external repositories that are appropriate for the sharing of such program code and models.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #2 (Public review):
Summary:
ACVR2A is one of a handful of genes for which significant correlations between associated SNPs and the incidences of preeclampsia have been found in multiple populations. It is one of the TGFB family receptors, and multiple ligands of ACVR2A, as well as its coreceptors and related inhibitors, have been implicated in placental development, trophoblast invasion, and embryo implantation. This useful study builds on this knowledge by showing that ACVR2A knockout in trophoblast-related cell lines reduces trophoblast invasion, which could tie together many of these observations. Support for this finding is incomplete, as reduced proliferation may be influencing the invasion results. The implication of cross-talk between the WNT and ACRV2A/SMAD2 pathways is an important contribution to the understanding of the regulation of trophoblast function.
Strengths:
(1) ACVR2A is one of very few genes implicated in preeclampsia in multiple human populations, yet its role in pathogenesis is not very well studied and this study begins to address that hole in our knowledge.
(2) ACVR2A is also indirectly implicated in trophoblast invasion and trophoblast development via its connections to many ligands, inhibitors, and coreceptors, suggesting its potential importance.
(3) The authors have used multiple cell lines to verify their most important observations.
Weaknesses:
(1) There are a number of claims made in the introduction without attribution. For example, there are no citations for the claims that family history is a significant risk factor for PE, that inadequate trophoblast invasion of spiral arteries is a key factor, and that immune responses, and renin-angiotensin activity are involved.
(2) The introduction states "As a receptor for activin A, ACVR2A..." It's important to acknowledge that ACVR2A is also the receptor for other TGFB family members, with varying affinities and coreceptors. Several TGFB family members are known to regulate trophoblast differentiation and invasion. For example, BMP2 likely stimulates trophoblast invasion at least in part via ACVR2A (PMID 29846546).
(3) An alternative hypothesis for the potential role of ACVR2A in preeclampsia is its functions in the endometrium. In the mouse ACVR2A knockout in the uterus (and other progesterone receptor-expressing cells) leads to embryo implantation failure.
(4) In the description of the patient population for placental sample collections, preeclampsia is defined only by hypertension, and this is described as being in accordance with ACOG guidelines. ACOG requires a finding of hypertension in combination with either proteinuria or one of the following: thrombocytopenia, elevated creatinine, elevated liver enzymes, pulmonary, edema, and new onset unresponsive headache.
(5) I believe that Figures 1a and 1b are data from a previously published RNAseq dataset, though it is not entirely clear in the text. The methods section does not include a description of the analysis of these data undertaken here. It would be helpful to include at least a brief description of the study these data are taken from - how many samples, how were the PE/control groups defined, gestational age range, where is it from, etc. For the heatmap presented in B, what is the significance of the other genes/ why are they being shown? If the purpose of these two panels is to show differential expression specifically of ACVR2A in this dataset, that could be shown more directly.
(6) More information is needed in the methods section to understand how the immunohistochemistry was quantified. "Quantitation was performed" is all that is provided. Was staining quantified across the whole image or only in anchoring villous areas? How were HRP & hematoxylin signals distinguished in ImageJ? How was the overall level of HRP/DAB development kept constant between the NC and PE groups?
(7) In Figure 1E it is not immediately obvious to many readers where the EVT are. It is probably worth circling or putting an arrow to the little region of ACVR2A+ EVT that is shown in the higher magnification image in Figure 1E. These are actually easier to see in the pictures provided in the supplement Figure 1. Of note, the STB is also staining positive. This is worth pointing out in the results text.
(8) It is not possible to judge whether the IF images in 1F actually depict anchoring villi. The DAPI is really faint, and it's high magnification, so there isn't a lot of context. Would it be possible to include a lower magnification image that shows where these cells are located within a placental section? It is also somewhat surprising that this receptor is expressed in the cytoplasm rather than at the cell surface. How do the authors explain this?
(9) The results text makes it sound like the data in Figure 2A are from NCBI & Protein atlas, but the legend says it is qPCR from this lab. The methods do not detail how these various cell lines were grown; only HTR-SVNeo cell culture is described. Similarly, JAR cells are used for several experiments and their culture is not described.
(10) Under RT-qPCR methods, the phrase "cDNA reverse transcription cell RNA was isolated..." does not make any sense.
(11) The paragraph beginning "Consequently, a potential association..." is quite confusing. It mentions analyzing ACVR2A expression in placentas, but then doesn't point to any results of this kind and repeats describing the results in Figure 2a, from various cell lines.
(12) The authors should acknowledge that the effect of the ACVR2A knockout on proliferation makes it difficult to draw any conclusions from the trophoblast invasion assays. That is, there might be fewer migrating or invading cells in the knockout lines because there are fewer cells, not because the cells that are there are less invasive. Since this is a central conclusion of the study, it is a major drawback.
(13) The legend and the methods section do not agree on how many fields were selected for counting in the transwell invasion assays in Figure 3C. The methods section and the graph do not match the number of replicate experiments in Figure 3D (the number of replicate experiments isn't described for 3C).
(14) Discussion says "Transcriptome sequencing analysis revealed low ACVR2A expression in placental samples from PE patients, consistent with GWAS results across diverse populations." The authors should explain this briefly. Why would SNPs in ACVR2A necessarily affect levels of the transcript?
(15) "The expression levels of ACVR2A mRNA were comparable to those of tumor cells such as A549. This discovery suggested a potential pivotal role of ACVR2A in the biological functions of trophoblast cells, especially in the nurturing layer." Alternatively, ACVR2A expression resembles that of tumors because the cell lines used here are tumor cells (JAR) or immortalized cells (HTR8). These lines are widely used to study trophoblast properties, but the discussion should at least acknowledge the possibility that the behavior of these cells does not always resemble normal trophoblasts.
(16) The authors should discuss some of what is known about the relationship between the TCF7/c-JUN pathway and the major signaling pathway activated by ACVR2A, Smad 2/3/4. The Wnt and TGFB family cross-talk is quite complex and it has been studied in other systems.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors conducted a comparative analysis of four networks, varying in the presence of excitatory assemblies and the architecture of inhibitory cell assembly connectivity. They found that co-tuned E-I assemblies provide network stability and a continuous representation of input patterns (on locally constrained manifolds), contrasting with networks with global inhibition that result in attractor networks.
Strengths:
The findings presented in this paper are very interesting and cutting-edge. The manuscript effectively conveys the message and presents a creative way to represent high-dimensional inputs and network responses. Particularly, the result regarding the projection of input patterns onto local manifolds and continuous representation of input/memory is very Intriguing and novel. Both computational and experimental neuroscientists would find value in reading the paper.
Weaknesses:
Intuitively, classification (decodability) in discrete attractor networks is much better than in networks with continuous representations. This could also be shown in Figure 5B, along with the performance of the random and tuned E-I networks. The latter networks have the advantage of providing network stability compared to the Scaled I network, but at the cost of reduced network salience and, therefore, reduced input decodability. Thus, tuned E-I networks cannot always perform better than any other network.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This paper develops an under-flow migration tracker to evaluate all the steps of the extravasation cascade of immune cells across the BBB. The algorithm is useful and has important applications.
Strengths:
The algorithm is almost as accurate as manual tracking and importantly saves time for researchers. The authors have discussed how their tool compares to other tracking methods.
Weaknesses:
Applicability can be questioned because the device used is 2D and physiological biology is in 3D. However, the authors have addressed this point in their manuscript.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public review):
Summary:
Cell lineage tracing necessitates continuous visible tracking or permanent molecular markers that daughter cells inherit from their progenitors. To successfully trace cell lineages, it is essential to generate and detect sufficient new markers during each cell division. Thus, molecular cell lineages have been predominantly studied with stably inherited genetic markers in animal models and somatic DNA mutations in the human brain. DNA methylation is unstable across cell divisions and differentiation, and is hardly called barcodes. The use of "Human Brain Barcodes" in the title and across the whole paper lacks convincing evidence - it is questionable that CpG methylation is always stably inherited by daughter cells.
Strengths:
Analysis of DNA methylation.
Weaknesses:
The unstable nature of CpG methylation would introduce significant problems in inferring the true cell lineage. To establish DNA methylation as a means for lineage tracing, it is necessary to test whether the DNA methylation patterns can faithfully track cell lineages with in vitro differentiated & visibly tracked cell lineages.
The unreliable CpG methylation status also raises the question of what the "Barcodes" refer to in the title and across this study. Barcodes should be stable in principle and not dynamic across cell generations, as defined in the Reference #1. The CRISPR/Cas9 mutable barcodes or the somatic mutations may be considered barcodes, but the reviewer is not convinced that the "dynamic" CpG methylation fits the "barcodes" terminology. This problem is even more concerning in the last section of the results, where CpG status fluctuates in post-mitotic cells.
The manuscript frequently states assumptions in a tone of conclusions and interprets results without rejecting alternative hypotheses. For example, the title "Human Brain Barcodes" should be backed with solid supporting evidence. For another example, the author assumed that the early-formed brain stem would resemble progenitors better and have a higher average methylation level than the forebrain - however, this difference in DNA methylation status could well reflect cell-type-specific gene expression instead of cell lineage progression.
Other points:
(1) The conclusion that excitatory neurons undergo tangential migration is unclear - how far away did the author mean for the tangential direction? Lateral dispersion is known, but it is hard to believe that the excitatory neurons travel across different brain regions. More importantly, how would the author interpret shared or divergent methylation for the same cell type across different brain regions?
(2) The sparsity and resolution of the single-cell DNA methylation data. The methylation status is detected in only a small fraction (~500/31,000 = 1.6%) of fCpGs per cell, with only 48 common sites identified between cell pairs. Given that the human genome contains over 28 million CpG sites, it is important to evaluate whether these fCpGs are truly representative.
(3) While focusing on the X-chromosome may simplify the identification of polymorphic fCpGs, the confidence in determining its methylation status (0 or 1) is questionable when a CpG site is covered by only one read.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The main aim of this research was to explore whether and how self-associations (as opposed to other-associations) bias early attentional selection, and whether this can explain well-known self-prioritization phenomena, such as the self-advantage in perceptual matching tasks. The authors adopted the Visual Attention Theory (VAT) by estimating VAT parameters using a hierarchical Bayesian model from the field of attention and applied it to investigate the mechanisms underlying self-prioritization. They also discussed the constraints on the self-prioritization effect in attentional selection. The key conclusions reported were: (1) self-association enhances both attentional weights and processing capacity, (2) self-prioritization in attentional selection occurs automatically but diminishes when active social decoding is required, and (3) social and perceptual salience capture attention through distinct mechanisms.
Strengths:
Transferring the Theory of Visual Attention parameters estimated by a hierarchical Bayesian model to investigate self-prioritization in attentional selection was a smart approach. This method provides a valuable tool for accessing the very early stages of self-processing, i.e., the attention selection. The authors conclude that self-associations can bias visual attention by enhancing both attentional weights and processing capacity, and that this process occurs automatically. These findings offer new insights into the self-prioritization from the perspective of early stage of attentional selection.
Weaknesses:
The results are still not convincing enough to definitively support their conclusions. The generalization of the findings needs further examination. Whether this attentional selection mechanism of self-prioritization can be generalized to other stimuli, such as self-name, self-face, or other domains of self-association advantages, remains to be tested. More empirical data are needed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Microglia have been implicated in brain development, homeostasis, and diseases. "Microglia replacement" has gained traction in recent years, using primary microglia, bone marrow or blood-derived myeloid cells, or human iPSC-induced microglia. Here, the authors extended their previous work in the area and provided evidence to support: (1) Estrogen-regulated (ER) homeobox B8 (Hoxb8) conditionally immortalized macrophages from bone marrow can serve as stable, genetically manipulated cell lines. These cells are highly comparable to primary bone marrow-derived (BMD) macrophages in vitro, and, when transplanted into a microglia-free brain, engraft the parenchyma and differentiate into microglia-like cells (MLCs). Taking advantage of this model system, the authors created stable, Adar1-mutated ER-Hoxb8 lines using CRISPR-Cas9 to study the intrinsic contribution of macrophages to the Aicardi-Goutières Syndrome (AGS) disease mechanism.
Strengths:
The studies are carefully designed and well-conducted. The imaging data and gene expression analysis are carried out at a high level of technical competence and the studies provide strong evidence that ER-Hoxb8 immortalized macrophages from bone marrow are a reasonable source for "microglia replacement" exercise. The findings are clearly presented, and the main message will be of general interest to the neuroscience and microglia communities.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This manuscript describes two new sets of data involving budgerigar hearing: 1) auditory-nerve tuning curves (ANTCs), which are considered the 'gold standard' measure of cochlear tuning, and 2) stimulus-frequency otoacoustic emissions (SFOAEs), which are a more indirect measure (requiring some assumptions and transformations to infer cochlear tuning) but which are non-invasive, making them easier to obtain and suitable for use in all species, including humans. By using a tuning ratio (relating ANTC bandwidths and SFOAE delay) derived from another bird species (chicken), the authors show that the tuning estimates from the two methods are in reasonable agreement with each other over the range of hearing tested (280 Hz to 5.65 kHz for the ANTCs), and both show a slow monotonic increase in cochlear tuning quality over that range, as expected. These new results are then compared with (much) older existing behavioral estimates of frequency selectivity in the same species.
Strengths:
This topic is of interest, because there are some indications from the older behavioral literature that budgerigars have a region of best tuning, which the current authors refer to as an 'acoustic fovea', at around 4 kHz, but that beyond 5 kHz the tuning degrades. Earlier work has speculated that the source could be cochlear or higher (e.g., Okanoya and Dooling, 1987). The current study appears to rule out a cochlear source to this phenomenon.
Weaknesses:
The conclusions are rendered questionable by two major problems.
The first problem is that the study does not provide new behavioral data, but instead relies on decades-old estimates that used techniques dating back to the 1970s, which have been found to be flawed in various ways. The behavioral techniques that have been developed more recently in the human psychophysical literature have avoided these well-documented confounds, such as nonlinear suppression effects (e.g., Houtgast, https://doi.org/10.1121/1.1913048; Shannon, https://doi.org/10.1121/1.381007; Moore, https://doi.org/10.1121/1.381752), perceptual confusion between pure-tone maskers and targets (e.g., Neff, https://doi.org/10.1121/1.393678), beats and distortion products produced by interactions between simultaneous maskers and targets (e.g., Patterson, https://doi.org/10.1121/1.380914), unjustified assumptions and empirical difficulties associated with critical band and critical ratio measures (Patterson, https://doi.org/10.1121/1.380914), and 'off-frequency listening' phenomena (O'Loughlin and Moore, https://doi.org/10.1121/1.385691). More recent studies, tailored to mimic to the extent possible the techniques used in ANTCs, have provided reasonably accurate estimates of cochlear tuning, as measured with ANTCs and SFOAEs (Shera et al., 2003, 2010; Sumner et al., 2010). No such measures yet exist in budgerigars, and this study does not provide any. So the study fails to provide valid behavioral data to support the claims made.
The second, and more critical, problem can be observed by considering the frequencies at which the old behavioral data indicate a worsening of tuning. From the summary shown in the present Fig. 2, the conclusion that behavioral frequency selectivity worsens again at higher frequencies is based on four data points, all with probe frequencies between 5 and 6 kHz. Comparing this frequency range with the absolute thresholds shown in Fig. 3 (as well as from older budgerigar data) shows it to be on the steep upper edge of the hearing range. Thus, we are dealing not so much with a fovea as the point where hearing starts to end. The point that anomalous tuning measures are found at the edge of hearing in the budgerigar has been made before: Saunders et al. (1978) state in the last sentence of their paper that "the size of the CB rapidly increases above 4.0 kHz and this may be related to the fact that the behavioral audibility curve, above 4.0 kHz, loses sensitivity at the rate of 55 dB per octave."
Hearing abilities are hard to measure accurately on the upper frequency edge of the hearing range, in humans as well as in other species. The few attempts to measure human frequency selectivity at that upper edge have resulted in quite messy data and unclear conclusions (e.g., Buus et al., 1986, https://doi.org/10.1007/978-1-4613-2247-4_37). Indeed, the only study to my knowledge to have systematically tested human frequency selectivity in the extended high frequency range (> 12 kHz) seems to suggest a substantial broadening, relative to the earlier estimates at lower frequencies, by as much as a factor of 2 in some individuals (Yasin and Plack, 2005; https://doi.org/10.1121/1.2035594) - in other words by a similar amount as suggested by the budgerigar data. The possible divergence of different measures at the extreme end of hearing could be due to any number of factors that are hard to control and calibrate, given the steep rate of threshold change, leading to uncontrolled off-frequency listening potential, the higher sound levels needed to exceed threshold, as well as contributions from middle-ear filtering. As a side note, in the original ANTC data presented in this study, there are actually very few tuning curves at or above 5 kHz, which are the ones critical to the argument being forwarded here. To my eye, all the estimates above 5 kHz in Fig. 3 fall below the trend line, potentially also in line with poorer selectivity going along with poorer sensitivity as hearing disappears beyond 6 kHz.
The basic question posed in the current study title and abstract seems a little convoluted (why would you expect a behavioral measure to reflect cochlear mechanics more accurately than a cochlear-based emissions measure?). A more intuitive (and likely more interesting) way of framing the question would be "What is the neural/mechanical source of a behaviorally observed acoustic fovea?" Unfortunately, this question does not lend itself to being answered in the budgerigar, as that 'fovea' turns out to be just the turning point at the end of the hearing range. There is probably a reason why no other study has referred to this as an acoustic fovea in the budgerigar.
Overall, a safe interpretation of the data is that hearing starts to change (and becomes harder to measure) at the very upper frequency edge, and not just in budgerigars. Thus, it is difficult to draw any clear conclusions from the current work, other than that the relations between ANTC and SFOAEs estimates of tuning are consistent in budgerigar, as they are in most (all?) other species that have been tested so far.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors tested:
(1) Whether mice learn that they are more/less likely to receive an aversive air puff outcome at different corners of a square-shaped open field apparatus, under 75%/25% probabilistic contingencies;
(2) Whether stimulating basal forebrain cholinergic neurons and terminals in the prefrontal cortex affects learning in this context; and
(3) Whether stimulating cholinergic neurons affects prefrontal cortical single neuron calcium signaling about outcome expectations during learning and contingency changes. They found that mice that received cholinergic stimulation approached high and low aversive outcome probability sites at similar velocities, while control mice approached high probability sites slower, suggesting that cholinergic stimulation impaired learning. Cholinergic stimulation reduced cortical neuron calcium activity during trials on the high-probability corner when the outcome was not delivered. The authors provide additional characterization of cellular responses during delivery/omission trials in high/low probability corners, using running speed as a proxy for low versus high expectations. The study will likely be of interest to those who are interested in prediction and error signaling in the cortex; however, the task and analyses do not permit very easy or clear dissociation of prediction versus prediction error signaling and place field versus place field-expectation multiplexing. The study has several strengths but some weaknesses, which are discussed below.
Strengths:
It is clear the authors were very careful and did a great job with their image processing and segmentation procedures. The details in the methods are appreciated, as are the supplemental descriptive statistics on cell counts.
There are careful experimental controls - for example, the authors showed that the effects of cholinergic stimulation with air puff present are greater than without it, thus ruling out effects of stimulation on cellular physiology that were independent of learning or the task.
The addition of a channelrhodopsin stimulation group is helpful to show that the effects are robust and not wavelength/opsin-specific.
The prefrontal cortex cholinergic terminal stimulation experiment is a great addition. It shows that the behavioral effects of cell body stimulation, which was used in the imaging experiments, are similar to cortical terminal stimulation, where the imaging was performed.
Weaknesses:
The analyses were a bit difficult to follow and therefore it is difficult to determine whether the cells are signaling predictions versus prediction errors - a very important distinction.
The task does not fully dissociate place field coding, since learning about the different probabilities necessarily took place at different areas in the apparatus. Some additional analyses could help address this.
-
-
-
Reviewer #2 (Public review):
Summary:
The authors study a panel of sparsely labeled neuronal lines in Drosophila that each form multiple synapses. Critically, each axonal branch can be injured without affecting the others, allowing the authors to differentiate between injuries that affect all axonal branches versus those that do not, creating spared branches. Axonal injuries are known to cause Wnd (mammalian DLK)-dependent retrograde signals to the cell body, culminating in a transcriptional response. This work identifies a fascinating new phenomenon that this injury response is not all-or-none. If even a single branch remains uninjured, the injury signal is not activated in the cell body. The authors rule out that this could be due to changes in the abundance of Wnd (perhaps if incrementally activated at each injured branch) by Wnd, Hiw's known negative regulator. Thus there is both a yet-undiscovered mechanism to regulate Wnd signaling, and more broadly a mechanism by which the neuron can integrate the degree of injury it has sustained. It will now be important to tease apart the mechanism(s) of this fascinating phenomenon. But even absent a clear mechanism, this is a new biology that will inform the interpretation of injury signaling studies across species.
Strengths:
(1) A conceptually beautiful series of experiments that reveal a fascinating new phenomenon is described, with clear implications (as the authors discuss in their Discussion) for injury signaling in mammals.
(2) Suggests a new mode of Wnd regulation, independent of Hiw.
Weaknesses:
(1) The use of a somatic transcriptional reporter for Wnd activity is powerful, however, the reporter indicates whether the transcriptional response was activated, not whether the injury signal was received. It remains possible that Wnd is still activated in the case of a spared branch, but that this activation is either local within the axons (impossible to determine in the absence of a local reporter) or that the retrograde signal was indeed generated but it was somehow insufficient to activate transcription when it entered the cell body. This is more of a mechanistic detail and should not detract from the overall importance of the study
(2) That the protective effect of a spared branch is independent of Hiw, the known negative regulator of Wnd, is fascinating. But this leaves open a key question: what is the signal?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
In this manuscript, Hallacy et al. used a compressed sensing-based optogenetic screening method to investigate the crucial neurons that regulate pathogenic avoidance behavior in C. elegans. They further substantiate their findings using complementary optogenetic activation and imaging techniques to confirm the roles of the key neurons identified through extensive screening efforts. Notably, they identified AIY and SIA as pivotal neurons in the dynamic process of pathogenic avoidance. Their significant discovery is the delayed or stalled reentry process, which drives avoidance behavior; to my knowledge, this dynamic has not been previously documented. Additionally, the successful integration of quantitative optogenetic tools and compressed sensing algorithms is noteworthy, demonstrating the potential for obtaining highly quantitative data from the C. elegans nervous system. This approach is quite rare in this field, yet it represents a promising direction for studying this simple nervous system.
However, the paper's main weakness lies in its lack of a detailed mechanism explaining how the delayed reentry process directly influences the actual locomotor output that results in avoidance. The term 'delayed reentry' is used as a dynamic metric for quantifying the screening, yet the causal link between this metric and the mechanistic output remains unclear. Despite this, the study is well-structured, with comprehensive control experiments, and is very well constructed.
Comments on revisions:
The authors have addressed all my concerns and suggestions. They particularly further clarified the AIY's role in navigation by providing a new figure. They also provided supplementary videos representing the re-entry process.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This manuscript explores in zebrafish the impact of genetic manipulation of individual microexons and two regulators of microexon inclusion (Srrm3 and Srrm4). The authors compare molecular, anatomical, and behavioral phenotypes in larvae and juvenile fish. The authors test the hypothesis that phenotypes resulting from Srrm3 and 4 mutations might in part be attributable to individual microexon deletions in target genes.
The authors uncover substantial alterations in in vitro neurite growth, locomotion, and social behavior in Srrm mutants but not any of the individual microexon deletion mutants. The individual mutations are accompanied by broader transcript level changes which may resemble compensatory changes. Ultimately, the authors conclude that the severe Srrm3/4 phenotypes result from additive and/or synergistic effects due to the de-regulation of multiple microexons.
Strengths:
The work is carefully planned, well-described, and beautifully displayed in clear, intuitive figures. The overall scope is extensive with a large number of individual mutant strains examined. The analysis bridges from molecular to anatomical and behavioral read-outs. Analysis appears rigorous and most conclusions are well-supported by the data.
Overall, addressing the function of microexons in an in vivo system is an important and timely question.
Weaknesses:
The main weakness of the work is the interpretation of the social behavior phenotypes in the Srrm mutants. It is difficult to conclude that the mutations indeed impact social behavior rather than sensory processing and/or vision which precipitates apparent social alterations as a secondary consequence. Interpreting the phenotypes as "autism-like" is not supported by the data presented.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors of this manuscript aim to investigate the formation of place fields (PFs) in hippocampal CA1 pyramidal cells. They focus on the role of behavioral time scale synaptic plasticity (BTSP), a mechanism proposed to be crucial for the formation of new PFs. Using in vivo two-photon calcium imaging in head-restrained mice navigating virtual environments, employing a classification method based on calcium activity to categorize the formation of place cells' place fields into BTSP, non-BTSP-like, and investigated their properties.
Strengths:
A new method to use calcium imaging to separate BTSP and non-BTSP place field formation. This work offers new methods and factual evidence for other researchers in the field.
The method enabled the authors to reveal that while many PFs are formed by BTSP-like events, a significant number of PFs emerge with calcium dynamics that do not match BTSP characteristics, suggesting a diversity of mechanisms underlying PF formation. The characteristics of place fields under the first two categories are comprehensively described, including aspects such as formation timing, quantity, and width.
Weaknesses:
There are some issues about data and statistics that need to be addressed before these research findings can be considered as rigorous conclusions.
While the authors mentioned 3 features of PF generated by BTSP during calcium imaging in the Introduction, the classification method used features 1 and 2. The confirmation by feature 3 in its current form is important but not strong enough.
Some key data is missing such as the excluded PFs, the BTSP/non-BTSP of each animal, etc
Impact:
This work is likely to provide a new method to classify BTSP and non-BTSP place field formation using calsium image to the field.
-
-
arxiv.org arxiv.org
-
Reviewer #2 (Public review):
Summary:
This study investigates whether individuals can learn to adopt egalitarian norms that incur a personal monetary cost, such as rejecting offers that benefit them more than the giver (advantageous inequitable offers). While these behaviors are uncommon, two experiments demonstrate that individuals can learn to reject such offers through vicarious learning - by observing and acting in line with a "teacher" who follows these norms. The authors use computational modelling to argue that learners adopt these norms through a sophisticated process, inferring the latent structure of the teacher's preferences, akin to theory of mind.
Strengths:
This paper is well-written and tackles a critical topic relevant to social norms, morality, and justice. The findings, which show that individuals can adopt just and fair norms even at a personal cost, are promising. The study is well-situated in the literature, with clever experimental design and a computational approach that may offer insights into latent cognitive processes. Findings have potential implications for policymakers.
Weaknesses:
Note: in the text below, the "teacher" will refer to the agent from which a participant presumably receives feedback during the learning phase.
(1) Focus on Disadvantageous Inequity (DI): A significant portion of the paper focuses on responses to Disadvantageous Inequitable (DI) offers, which is confusing given the study's primary aim is to examine learning in response to Advantageous Inequitable (AI) offers. The inclusion of DI offers is not well-justified and distracts from the main focus. Furthermore, the experimental design seems, in principle, inadequate to test for the learning effects of DI offers. Because both teaching regimes considered were identical for DI offers the paradigm lacks a control condition to test for learning effects related to these offers. I can't see how an increase in rejection of DI offers (e.g., between baseline and generalization) can be interpreted as speaking to learning. There are various other potential reasons for an increase in rejection of DI offers even if individuals learn nothing from learning (e.g. if envy builds up during the experiment as one encounters more instances of disadvantageous fairness).
(2) Statistical Analysis: The analysis of the learning effects of AI offers is not fully convincing. The authors analyse changes in rejection rates within each learning condition rather than directly comparing the two. Finding a significant effect in one condition but not the other does not demonstrate that the learning regime is driving the effect. A direct comparison between conditions is necessary for establishing that there is a causal role for the learning regime.
(3) Correlation Between Learning and Contagion Effects:<br /> The authors argue that correlations between learning effects (changes in rejection rates during the learning phase) and contagion effects (changes between the generalization and baseline phases) support the idea that individuals who are better aligning their preferences with the teacher also give more consideration to the teacher's preferences later during generalization phase. This interpretation is not convincing. Such correlations could emerge even in the absence of learning, driven by temporal trends like increasing guilt or envy (or even by slow temporal fluctuations in these processes) on behalf of self or others. The reason is that the baseline phase is temporally closer to the beginning of the learning phase whereas the generalization phase is temporally closer to the end of the learning phase. Additionally, the interpretation of these effects seems flawed, as changes in rejection rates do not necessarily indicate closer alignment with the teacher's preferences. For example, if the teacher rejects an offer 75% of the time then a positive 5% learning effect may imply better matching the teacher if it reflects an increase in rejection rate from 65% to 70%, but it implies divergence from the teacher if it reflects an increase from 85% to 90%. For similar reasons, it is not clear that the contagion effects reflect how much a teacher's preferences are taken into account during generalization.
(4) Modeling Efforts: The modelling approach is underdeveloped. The identification of the "best model" lacks transparency, as no model-recovery results are provided, and fits for the losing models are not shown, leaving readers in the dark about where these models fail. Moreover, the reinforcement learning (RL) models used are overly simplistic, treating actions as independent when they are likely inversely related (for example, the feedback that the teacher would have rejected an offer provides feedback that rejection is "correct" but also that acceptance is "an error", and the later is not incorporated into the modelling). It is unclear if and to what extent this limits current RL formulations. There are also potentially important missing details about the models. Can the authors justify/explain the reasoning behind including these variants they consider? What are the initial Q-values? If these are not free parameters what are their values?
(5) Conceptual Leap in Modeling Interpretation: The distinction between simple RL models and preference-inference models seems to hinge on the ability to generalize learning from one offer to another. Whereas in the RL models learning occurs independently for each offer (hence to cross-offer generalization), preference inference allows for generalization between different offers. However, the paper does not explore RL models that allow generalization based on the similarity of features of the offers (e.g., payment for the receiver, payment for the offer-giver, who benefits more). Such models are more parsimonious and could explain the results without invoking a theory of mind or any modelling of the teacher. In such model versions, a learner learns a functional form that allows to predict the teacher's feedback based on said offer features (e.g., linear or quadratic form). Because feedback for an offer modulates the parameters of this function (feature weights) generalization occurs without necessarily evoking any sophisticated model of the other person. This leaves open the possibility that RL models could perform just as well or even show superiority over the preference learning model, casting doubt on the authors' conclusions. Of note: even the behaviourists knew that as Little Albert was taught to fear rats, this fear generalized to rabbits. This could occur simply because rabbits are somewhat similar to rats. But this doesn't mean little Alfred had a sophisticated model of animals he used to infer how they behave.
(6) Limitations of the Preference-Inference Model: The preference-inference model struggles to capture key aspects of the data, such as the increase in rejection rates for 70:30 DI offers during the learning phase (e.g. Figure 3A, AI+DI blue group). This is puzzling.
Thinking about this I realized the model makes quite strong unintuitive predictions that are not examined. For example, if a subject begins the learning phase rejecting the 70:30 offer more than 50% of the time (meaning the starting guilt parameter is higher than 1.5), then overleaning the tendency to reject will decrease to below 50% (the guilt parameter will be pulled down below 1.5). This is despite the fact the teacher rejects 75% of the offers. In other words, as learning continues learners will diverge from the teacher. On the other hand, if a participant begins learning to tend to accept this offer (guilt < 1.5) then during learning they can increase their rejection rate but never above 50%. Thus one can never fully converge on the teacher. I think this relates to the model's failure in accounting for the pattern mentioned above. I wonder if individuals actually abide by these strict predictions. In any case, these issues raise questions about the validity of the model as a representation of how individuals learn to align with a teacher's preferences (given that the model doesn't really allow for such an alignment).
-
-
-
Reviewer #2 (Public review):
Summary:
The authors examine the ability of the human visual system to adapt to optically induced phase shifts. The study shows clear adaptation to the relative phase created by exposure to vertical coma. The study assesses the impact of adaptation to the coma on the perceived relative phase of f and 3f compound gratings. It is observed that during the first couple of minutes of a 1-hour exposure to induced vertical coma, the apparent relative locations of the f and 3f shifted in the opposite direction to that induced by the coma, a classic adaptation effect. This result highlights a neural mechanism by which flawed information is used to create seemingly accurate perceptions of the visual environment.
Strengths:
Sophisticated and rigorous optical and psychophysical methods, and a clear research question. The manuscript is well-written and the data quality is very high. The authors are to be congratulated on this challenging and complex optics and psychophysics study.
Weaknesses:
Some more details on the phase and amplitude consequences of the induced coma would add value to the reader.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #2 (Public review):
Summary:
In this present Mendelian randomization-phenome-wide association study, the authors found BMI to be positively associated with many health-related conditions, such as heart disease, heart failure, and hypertensive heart disease. They also found sex differences in some traits such as cancer, psychological disorders, and ApoB.
Strengths:
The use of the UK-biobank study with detailed phenotype and genotype information.
Weaknesses:
Previous studies have performed this analysis using the same cohort, with in-depth analysis. See this paper: Searching for the causal effects of body mass index in over 300,000 participants in UK Biobank, using Mendelian randomization. https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007951
I believe that the authors' claim, "To our knowledge, no sex-specific PheWAS has investigated the effects of BMI on health outcomes," is not well supported. They have not cited a relevant paper that conducted both overall and sex-stratified PheWAS using UK Biobank data with a detailed analysis. Given the prior study linked above, I am uncertain about the additional contributions of the present research.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this manuscript, Banse et al. experimentally validate the power of computational approaches that predict anti-aging molecules using the multi-species approach of the Caenorhabditis Intervention Testing Program (CITP). Filtering candidate molecules based on transcriptional profiles, ML models, literature searches, and the DrugAge database, they selected 16 compounds for testing. Of those, eight did not affect C.elegan's lifespan, three shortened it, and five extended C.elegan's lifespan, resulting in a hit rate of over 30%. Of those five, they then focused on all-trans-retinoic acid (atRA), a compound that has previously resulted in contradictory effects. The lifespan-extending effect of atRA was consistent in all C. elegans strains tested, was absent in C. briggsae, and a small effect was observed in some C. tropicalis strains. Similar results were obtained for measures of healthspan. The authors then investigated the mechanism of action of atRA and showed that it was only partially dependent on daf-16 but required akt-1, akt-2, skn-1, hsf-1, and, to some degree, pmk-1. The authors further investigate the downstream effects of atRA exposure by conducting RNAseq experiments in both wild-type and mutant animals to show that some, but surprisingly few, of the gene expression changes that are observed in wild-type animals are lost in the hsf-1 and aak-2 mutants.
Strengths:
Overall, this study is well conceived and executed as it investigates the effect of atRA across different concentrations, strains, and species, including life and health span. Revealing the variability between sites, assays, and the method used is a powerful aspect of this study. It will do a lot to dispel the nonsensical illusion that we can determine a percent increase in lifespan to the precision of two floating point numbers.
An interesting and potentially important implication arises from this study. The computational selection of compounds was agnostic regarding strain or species differences and was predominantly based on observations made in mammalian systems. The hit rate calculated is based on the results of C. elegans and not on the molecules' effectiveness in Briggsae or Tropicalis. If it were, the hit rate would be much lower. How is that? It would suggest that ML models and transcriptional data obtained from mammals have a higher predictive value for C. elegans than for the other two species. This selectivity for C.elegans over C.tropicalis and C.Briggsae seems both puzzling and unexpected. The predictions for longevity were based on the transcriptional data in cell lines. Would it be feasible to compare the mammalian data to the transcriptional data in Figure 5 and see how well they match? While this is clear beyond the focus of this study, an implied prediction is that running RNAseqs for all these strains exposed to atRA would reveal that the transcriptional changes observed in the strains where it extends lifespan the most should match the mammalian data best. Otherwise, how could the mammalian datasets be used to predict the effects of C.elegans over C.Briggsae or C.Tropicalis have more predictive for one species than the other? There are a lot of IFs in this prediction, but such an experiment would reconsider and validate the basis on which the original predictions were made.
Weaknesses:
Many of the most upregulated genes, such as cyps and pgps are xenobiotic response genes upregulated in many transcriptional datasets from C.elegans drug studies. Their expression might be necessary to deal with atRA breakdown metabolites to prevent toxicity rather than confer longevity. Because atRA is very light sensitive and has toxicity of breakdown, metabolites may explain some of the differences observed with the lifespan of machine effects compared to standard assay practices.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
This paper presents an interesting and fresh approach as it investigates whether female moths utilize plant-emitted ultrasounds, particularly those associated with dehydration stress, in their egg-laying decision-making process.
Female moths showed a preference for moist, fresh plants over dehydrated ones in experiments using actual plants. Additionally, when both plants were fresh but ultrasonic sounds specific to dehydrated plants were presented from one side, the moths chose the silent plant. However, in experiments without plants, contrary to the hypothesis derived from the above results, the moths preferred to oviposit near ultrasonic playback mimicking the sounds of dehydrated plants.
The results are intriguing, and I think the experiments are very well designed. However, if female moths use the sounds emitted by dehydrated plants as cues to decide where to oviposit, the hypothesis would predict that they would avoid such sounds. The discussion mentions the possibility of a multi-modal moth decision-making process to explain these contradictory results, and I also believe this is a strong possibility. However, since this remains speculative, careful consideration is needed regarding how to interpret the findings based solely on the direct results presented in the results section.
Additionally, the final results describing differences in olfactory responses to drying and hydrated plants are included, but the corresponding figures are placed in the supplementary materials. Given this, I would suggest reconsidering how to best present the hypotheses and clarify the overarching message of the results. This might involve reordering the results or re-evaluating which data should appear in the main text versus the supplementary materials.
There were also areas where more detailed explanations of the experimental methods would be beneficial.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
This manuscript proposes that primary hepatocytes can replicate their DNA without the six-subunit ORC. This follows previous studies that examined mice that did not express ORC1 in the liver. In this study, the authors suppressed expression of ORC2 or ORC1 plus ORC2 in the liver.
Comments:
(1) I find the conclusion of the authors somewhat hard to accept. Biochemically, ORC without the ORC1 or ORC2 subunits cannot load the MCM helicase on DNA. The question arises whether the deletion in the ORC1 and ORC2 genes by Cre is not very tight, allowing some cells to replicate their DNA and allow the liver to develop, or whether the replication of DNA proceeds via non-canonical mechanisms, such as break-induced replication. The increase in the number of polyploid cells in the mice expressing Cre supports the first mechanism, because it is consistent with few cells retaining the capacity to replicate their DNA, at least for some time during development.
(2) Fig 1H shows that 5 days post infection, there is no visible expression of ORC2 in MEFs with the ORC2 flox allele. However, at 15 days post infection, some ORC2 is visible. The authors suggest that a small number of cells that retained expression of ORC2 were selected over the cells not expressing ORC2. Could a similar scenario also happen in vivo?
(3) Figs 2E-G shows decreased body weight, decreased liver weight and decreased liver to body weight in mice with recombination of the ORC2 flox allele. This means that DNA replication is compromised in the ALB-ORC2f/f mice.
(4) Figs 2I-K do not report the number of hepatocytes, but the percent of hepatocytes with different nuclear sizes. I suspect that the number of hepatocytes is lower in the ALB-ORC2f/f mice than in the ORC2f/f mice. Can the authors report the actual numbers?
(5) Figs 3B-G do not report the number of nuclei, but percentages, which are plotted separately for the ORC2-f/f and ALB-ORC2-f/f mice. Can the authors report the actual numbers?
(6) Fig 5 shows the response of ORC2f/f and ALB-ORC2f/f mice after partial hepatectomy. The percent of EdU+ nuclei in the ORC2-f/f (aka ALB-CRE-/-) mice in Fig 5H seems low. Based on other publications in the field it should be about 20-30%. Why is it so low here? The very low nuclear density in the ALB-ORC2-f/f mice (Fig 5F) and the large nuclei (Fig 5I) could indicate that cells fire too few origins, proceed through S phase very slowly and fail to divide.
(7) Fig 6F shows that ALB-ORC1f/f-ORC2f/f mice have very severe phenotypes in terms of body weight and liver weight (about on third of wild-type!!). Fig 6H and 6I, the actual numbers should be presented, not percentages. The fact that there are EYFP negative cells, implies that CRE was not expressed in all hepatocytes.
(8) Comparing the EdU+ cells in Fig 7G versus 5G shows very different number of EdU+ cells in the control animals. This means that one of these images is not representative. The higher fraction of EdU+ cells in the double-knockout could mean that the hepatocytes in the double-knockout take longer to complete DNA replication than the control hepatocytes. The control hepatocytes may have already completed DNA replication, which can explain why the fraction of EdU+ cells is so low in the controls. The authors may need to study mice at earlier time points after partial hepatectomy, i.e. sacrifice the mice at 30-32 hours, instead of 40-52 hours.
(9) Regarding the calculation of the number of cell divisions during development: the authors assume that all the hepatocytes in the adult liver are derived from hepatoblasts that express Alb. Is it possible to exclude the possibility that pre-hepatoblast cells that do not express Alb give rise to hepatocytes? For example the cells that give rise to hepatoblasts may proliferate more times than normal giving rise to a higher number of hepatoblasts than in wild-type mice.
(10) My interpretation of the data is that not all hepatocytes have the ORC1 and ORC2 genes deleted (eg EYFP-negative cells) and that these cells allow some proliferation in the livers of these mice.
-
-
www.windowscentral.com www.windowscentral.com
-
for - article - Windows Central - AI safety researcher warns there's a 99.999999% probability AI will end humanity, but Elon Musk "conservatively" dwindles it down to 20% and says it should be explored more despite inevitable doom - 2024, Ape 2 - AI safety researcher warns there's a 99.999999% probability AI will end humanity
// - Comment - In fact, the heading is misleading. - It should be the other way around. - Elon Musk made the claim first but the AI Safety expert commented on Elon Musk's claim.
Tags
- AI safety researcher warns there's a 99.999999% probability AI will end humanity
- article - Windows Central - AI safety researcher warns there's a 99.999999% probability AI will end humanity, but Elon Musk "conservatively" dwindles it down to 20% and says it should be explored more despite inevitable doom - 2024, Ape 2
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Peng et al. present a study using scRNA-seq to examine phenotypic properties of cervical cancer, contrasting features of both adenocarcinomas (ADC) and squamous cell carcinoma (SCC), and HPV-positive and negative tumours. They propose several key findings: unique malignant phenotypes in ADC with elevated stemness and aggressive features, interactions of these populations with immune cells to promote an immunosuppressive TME, and SLC26A3 as a biomarker for metastatic (>=Stage III ) tumours.
Strengths:
This study provides a valuable resource of scRNA-seq data from a well-curated collection of patient samples. The analysis provides a high-level view of the cellular composition of cervical cancers. The authors introduce some mechanistic explanations of immunosuppression and the involvement of regulatory T cells that is intriguing.
Weaknesses:
I believe many of the proposed conclusions are over-interpretations or unwarranted generalizations of the single-cell analysis. I believe there may also be some artifacts in the data that may not reflect true biology--eg. The presentation of KRT+ neutrophils, which may reflect doublets with cancer cells. In some cases there is mention of quality control steps to remove contaminant cell clusters, but there is no method or supplemental figure to describe and/or justify these steps.
The key limitation is related to the "ADC-specific" Epi_10_CYSTM1 cluster, which is a central focus of the paper. This population only contains cells from one of the 11 ADC samples and represents only a small fraction of the malignant cells from that sample. Yet, this population is used to derive SLC26A3 as a potential biomarker. SLC26A3 transcripts are only detected in this small population of cells (none of the other ADC samples), which makes me question the specificity of the IHC staining on the validation cohort. The manuscript does not address why this marker is so rare in the scRNA-seq data, but abundant in the IHC.
While I understand it may be out of the scope of this individual study, many of the conclusions are inferred from the data analysis with little follow-up in experimental models or orthogonal assays.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #2 (Public Review):
Summary:
In the manuscript, Yu et al reported a two-sample Mendelian randomization study to evaluate the causation between polyunsaturated fatty acids (PUFA) and cerebral aneurysm, based on summary statistics from published genome-wide association studies. The authors identified that omega-3 fatty acids and Docosahexaenoic acid decreased the risk for intracranial aneurysm (IA) and aneurysmal subarachnoid haemorrhage (aSAH). COLOC analysis suggested that the acids and IA, aSAH likely share causal variants in gene fatty acid desaturase 2.
Strengths:
The methodology is sound, with appropriate sensitivity analysis.
Weaknesses:
The results did not provide significant novel findings.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Ziółkowska et al. characterize the synaptic mechanisms at the basis of the RE-dCA1 contribution to the consolidation of fear memory extinction. In particular, they describe a layer specific modulation of RE-dCA1 excitatory synapses modulation associated to contextual fear extinction which is impaired by transient chemogenetic inhibition of this pathway. These results indicate that RE activity-mediated modulation of synaptic morphology contributes to contextual fear extinction
Strengths:
The manuscript is well conceived, the statistical analysis is solid and methodology appropriate. The strength of this work is that it nicely builds up on existing literature and provides new molecular insight on a thalamo-hippocampal circuit previously known for its role in fear extinction. In addition, the quantification of pre- and post-synapses is particularly thorough.
Weaknesses:
The results illustrated in this manuscript show nice incremental evidence about the neural mechanisms contributing to the RE-CA1 modulation of fear extinction. The novelty of this manuscript is therefore not exceptional, but still highly relevant for the field.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This manuscript introduced a volumetric trans-scale imaging system with an ultra-large field-of-view (FOV) that enables simultaneous observation of millions of cellular dynamics in centimeter-wide 3D tissues and embryos. In term of technique, this paper is just a minor improvement of the authors' previous work, which is a fluorescence imaging system working at visible wavelength region (https://www.nature.com/articles/s41598-021-95930-7).
Strengths:
In this study, the authors enhanced the system's resolution and sensitivity by increasing the numerical aperture (NA) of the lens. Furthermore, they achieved volumetric imaging by integrating optical sectioning and computational sectioning. This study encompasses a broad range of biological applications, including imaging and analysis on organoids, mouse brains, and quail embryos, respectively. Overall, this method is useful and versatile.
Weaknesses:
What is the unique application that only can be done by this high-throughput system remains vague. Meanwhile, there are also several outstanding issues in this paper, such as the lack of technical advances, unclear method details and non-standardized figures.
Comments on revisions:
The revised manuscript has significantly improved in response to the initial review comments, particularly with the detailed additions regarding the objective lens and confocal imaging modes, which enhance the clarity and comprehensibility of the paper. While the structure and arguments are much clearer overall, there are still key issues that need to be addressed, specifically regarding algorithm validation, computational sectioning presentation, and volume imaging rate.
Algorithm Validation:<br /> The validation of the algorithm's accuracy is not sufficiently robust. Reviewer 1's comment is entirely reasonable, and the authors should validate the algorithm's accuracy using well-established methods as ground truth. In the revised version, the authors attempt to demonstrate the fidelity of the algorithm by employing deep learning methods for high-accuracy cell recognition. However, this validation relies solely on comparisons between deep learning results and manual annotation results. The problem lies in the fact that both manual annotations and deep learning outcomes are derived from algorithm-processed data, which fails to prove the authenticity or validity of the data itself. To strengthen the validation, the authors should incorporate independent, gold-standard methods for comparison.
Computational Sectioning:<br /> In the revised manuscript, the authors effectively demonstrate the ability of optical sectioning to improve axial resolution using fluorescent beads, as shown in Fig. S3, which is a strong point. However, the manuscript lacks a direct comparison for computational sectioning and does not provide a clear evaluation of axial resolution before and after applying computational sectioning. While some related information is included in Figs. 5.C and D, the details are insufficient, and intensity profiles are absent. I recommend that the authors include more direct visual demonstrations of computational sectioning, along with comparisons of axial resolution before and after applying computational sectioning. This would better showcase the method's effectiveness.
Volume Imaging Rate:<br /> The manuscript currently omits critical details about the method's volume imaging rate. In the description of the quail embryo imaging experiment, key parameters such as exposure time and imaging speed are missing. Additionally, the manuscript does not discuss the maximum imaging rate supported by the system in confocal mode. The volume imaging rate is an essential factor for biological researchers to evaluate the applicability of the technique. Therefore, this information should be included, ideally in the abstract and introduction. Furthermore, the authors could describe how the volume imaging rate performs under different conditions and discuss its potential applications across various biological research contexts. Including such details would significantly enhance the paper's utility and appeal to the broader research community.
These adjustments will further strengthen the manuscript and address the reviewers' concerns effectively.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors evaluate spectral changes in electroencephalography (EEG) data as a function of the congruency of audio and visual information associated with biological motion (BM) or non-biological motion. The results show supra-additive power gains in the neural response to gait dynamics, with trials in which audio and visual information was presented simultaneously producing higher average amplitude than the combined average power for auditory and visual conditions alone. Further analyses suggest that such supra-additivity is specific to BM and emerges from temporoparietal areas. The authors also find that the BM-specific supra-additivity is negatively correlated with autism traits.
Strengths:
The manuscript is well-written, with a concise and clear writing style. The visual presentation is largely clear. The study involves multiple experiments with different participant groups. Each experiment involves specific considered changes to the experimental paradigm that both replicate the previous experiment's finding yet extend it in a relevant manner.
Weaknesses:
In the revised version of the paper, the manuscript better relays the results and anticipates analyses, and this version adequately resolves some concerns I had about analysis details. Still, it is my view that the findings of the study are basic neural correlate results that do not provide insights into neural mechanisms or the causal relevance of neural effects towards behavior and cognition. The presence of an inversion effect suggests that the supra-additivity is related to cognition, but that leaves open whether any detected neural pattern is actually consequential for multi-sensory integration (i.e., correlation is not causation). In other words, the fact that frequency-specific neural responses to the [audio & visual] condition are stronger than those to [audio] and [visual] combined does not mean this has implications for behavioral performance. While the correlation to autism traits could suggest some relation to behavior and is interesting in its own right, this correlation is a highly indirect way of assessing behavioral relevance. It would be helpful to test the relevance of supra-additive cortical tracking on a behavioral task directly related to the processing of biological motion to justify the claim that inputs are being integrated in the service of behavior. Under either framework, cortical tracking or entrainment, the causal relevance of neural findings toward cognition is lacking.
Overall, I believe this study finds neural correlates of biological motion, and it is possible that such neural correlates relate to behaviorally relevant neural mechanisms, but based on the current task and associated analyses this has not been shown.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public review):
Summary:
The authors study temporal summation of caged EPSPs in dendrite-targeting hippocampal CA1 interneurons. The data indicate non-linear summation, which is larger in dendrites of NDNF-expressing neurogliaform cells versus OLM cells. However, the underlying mechanisms are largely unclear.
Strengths:
Synaptic integration in dendrites of cortical GABAergic interneurons is important and still poorly investigated. Focal 2-photon uncaging of glutamate is a nice and detailed method to study temporal summation of small potentials in dendritic segments. 2P calcium imaging is a powerful method to potentially disentangle dendritic signal processing in interneuron dendrites.
Weaknesses:
Due to several experimental limitations of the study including a relatively low number of recorded dendrites, lack of voltage-clamp recordings, lack of NMDA-dependent calcium signals in OLM cells and lack of wash-out during pharmacological experiments (AP5-application), the mechanistic insights are limited.
(1) NMDA-receptor signalling in NDNF-IN. The authors nicely show that temporal summation in dendrites of NDNF-INs is to a certain extent non-linear. Pharmacology with AP5 hints towards contribution of NMDA receptors. However, the authors report that the non-linearity in not significantly dependent on EPSP amplitude (Fig. S2), which should be the case if NMDA-receptors are involved. Unfortunately, there are no voltage-clamp data showing NMDA and AMPA currents, potentially providing a mechanistic explanation for the non-linear summation.
(2) Recovery of drug effect. Pharmacological application of AP5 is the only argument for the involvement of NMDA receptors. However, as long-lasting experiments were apparently difficult to obtain, there is no washout-data presented - only drug effect versus baseline. For all the other drugs (TTX, Nimodipine, CPA) recordings were even shorter, lacking a baseline recording. Thus, it remains open to what extent the AP5-effect might be affected by rundown of receptors or channels during whole-cell recordings or beginning phototoxicity.
(3) Nonlinear EPSP summation in OLM-IN. The authors do similar experiments in dendrite-targeting OLM-INs and show that the non-linear summation is smaller than in NDNF cells. The reason for this remains unclear. The diameter of proximal dendrites in OLM cells is larger than the diameter in NDNF cells. However, there is probably also an important role of synapse density and glutamate receptor density, which was shown to be very low in proximal dendrites of OLM cells and strongly increase with distance (Guirado et al. 2014, Cerebral Cortex 24:3014-24, Gramuntell et al. 2021, Front Aging Neurosci 13:782737). Therefore, it would have been helpful to see experiments quantifying synapse density (counting spines, PSD95-puncta, ...) and show how this density compares with non-linearity in the analyzed NDNF and OLM dendrites.
(4) NMDA in OLM-IN. Similar to the NDNF cells, the authors argue for an involvement of NMDA receptors in OLM cells, based on bath-application of AP5 (Fig. 8). Again, there seems to be no significant dependence on EPSP amplitude (Fig. S3). Even more remarkable, the authors claim that there is no dendritic calcium increase after activation of NMDA receptors without showing data. Therefore, it remains unclear whether the calcium signals are just below detection threshold, or whether the non-linearity depends on other calcium-impermeable channels and receptors. To understand this phenomenon different calcium sensors, different Ca2+/Mg2+ concentrations or voltage-clamp data would have helped.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
HIV-1 infection induces CPSF6 aggregates in the nucleus that contain the viral protein CA. The study of the functions and composition of these nuclear aggregates have raised considerable interest in the field, and they have emerged as sites in which reverse transcription is completed and in the proximity of which viral DNA becomes integrated. In this work, the authors have mutated several regions of the CPSF6 protein to identify the domains important for nuclear aggregation, in addition to the already-known FG region; they have characterized the kinetics of fusion between CPSF6 aggregates and SC35 nuclear speckles and have determined the role of two nuclear speckle components in this process (SRRM2, SUN2).
Strengths:
The work examines systematically the domains of CPSF6 of importance for nuclear aggregate formation in an elegant manner in which these mutants complement an otherwise CPSF6-KO cell line. In addition, this work evidences a novel role for the protein SRRM2 in HIV-induced aggregate formation, overall advancing our comprehension of the components required for their formation and regulation.
Weaknesses:
Some of the results presented in this manuscript, in particular the kinetics of fusion between CPSF6-aggregates and SC35 speckles have been published before (PMID: 32665593; 32997983).
The observations of the different effects of CPSF6 mutants, as well as SRRM2/SUN2 silencing experiments are not complemented by infection data which would have linked morphological changes in nuclear aggregates to function during viral infection. More importantly, these functional data could have helped stratify otherwise similar morphological appearances in CPSF6 aggregates.
Overall, the results could be presented in a more concise and ordered manner to help focus the attention of the reader on the most important issues. Most of the figures extend to 3-4 different pages and some information could be clearly either aggregated or moved to supplementary data.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
In this manuscript, the authors leverage multiple cellular models including the drosophila fat body and cultured hepatocytes to investigate the metabolic programs governing cell size. By profiling gene programs in the larval fat body during the third instar stage - in which cells cease proliferation and initiate a period of cell growth - the authors uncover a coordinated downregulation of genes involved in mitochondrial pyruvate import and metabolism. Enforced expression of the mitochondrial pyruvate carrier restrains cell size, despite active signaling of mTORC1 and other pathways viewed as traditional determinants of cell size. Mechanistically, the authors find that mitochondrial pyruvate import restrains cell size by fueling gluconeogenesis through the combined action of pyruvate carboxylase and phosphoenolpyruvate carboxykinase. Pyruvate conversion to oxaloacetate and use as a gluconeogenic substrate restrains cell growth by siphoning oxaloacetate away from aspartate and other amino acid biosynthesis, revealing a tradeoff between gluconeogenesis and provision of amino acids required to sustain protein biosynthesis. Overall, this manuscript is extremely rigorous, with each point interrogated through a variety of genetic and pharmacologic assays. The major conceptual advance is uncovering the regulation of cell size as a consequence of compartmentalized metabolism, which is dominant even over traditional signaling inputs. The work has implications for understanding cell size control in cell types that engage in gluconeogenesis but more broadly raise the possibility that metabolic tradeoffs determine cell size control in a variety of contexts.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Jaber et al. describe the generation and characterization of a knock-in mouse strain expressing the p53 Y217C hot-spot mutation. While the homozygous mutant cells and mice reflect the typical loss-of-p53 functions, as expected, the Y217C mutation also appears to display gain-of-function (GOF) properties, exemplified by elevated metastasis in the homozygous context (as noted with several hot-spot mutations). Interestingly, this mutation does not appear to exhibit any dominant-negative effects associated with most hot-spot p53 mutations, as determined by the absence of differences in overall survival and tumor predisposition of the heterozygous mice, as well as target gene activation upon nutlin treatment.
In addition, the authors noted a severe reduction in the female 217/217 homozygous progeny, significantly more than that observed with the p53 null mice, due to exencephaly, leading them to conclude that the Y217C mutation also has additional, non-cancer-related GOFs. Though this property has been well described and attributed to p53 functional impairment, the authors conclude that the Y217C has additional properties in accelerating the phenotype.
Transcriptomic analyses of thymi found additional gene signature differences between the p53 null and the Y217C strains, indicative of novel target gene activation, associated with inflammation.
Strengths:
Overall, the characterisation of the mice highlights the expected typical outcomes associated with most hot-spot p53 mutations published earlier. The quality of the work presented is well done and good, and the conclusions and reasonably well justified.
Weaknesses:
The manuscript would benefit from the provision of additional data to strengthen the claims made, as follows:
(1) Oncogenic GOF - the main data shown for GOF are the survival curve and enhanced metastasis. Often, GOF is exemplified at the cellular level as enhanced migration and invasion, which are standard assays to support the GOF. As such, the authors should perform these assays using either tumor cells derived from the mice or transformed fibroblasts from these mice. This will provide important and confirmatory evidence for GOF for Y217C.
(2) Novel target gene activation - while a set of novel targets appears to be increased in the Y217C cells compared to the p53 null cells, it is unclear how they are induced. The authors should examine if mutant p53 can bind to their promoters through CHIP assays, and, if these targets are specific to Y217C and not the other hot-spot mutations. This will strengthen the validity of the Y217C's ability to promote GOF.
(3) Dominant negative effect - the authors' claim of lack of DN effect needs to be strengthened further, as most p53 hot-spot mutations do exhibit DN effect. At the minimum, the authors should perform additional treatment with nutlin and gamma irradiation (or cytotoxic/damaging agents) and examine a set of canonical p53 target genes by qRT-PCR to strengthen their claim.
-
-
www.researchsquare.com www.researchsquare.com
-
Reviewer #2 (Public review):
Summary:
The manuscript by Fang et al., provides a tour-de-force study uncovering cancer cell's varied dependencies on several gene programs for their survival under different biological contexts. The authors addressed genomic differences in 2D vs 3D cultures and how hypoxia affects gene expression. They used a Myc-driven murine liver cancer model grown in 2D monolayer culture in normoxia and hypoxia as well as cells grown as 3D spheroids and performed CRISPR-based genome-wide KO screen to identify genes that play important roles in cell fitness. Some context-specific gene effects were further validated by in-vitro and in-vivo gene KO experiments.
Strengths:
The key findings in this manuscript are:
(1) Close to 50% of differentially expressed genes were common between 2D Hypoxia and 3D spheroids conditions but they had differences in chromatin accessibility.<br /> (2) VHL-HIF1a pathway had differential cell fitness outcomes under 2D normoxia vs 2D hypoxia and 3D spheroids.<br /> (3) Individual components of the mitochondrial respiratory chain complex had contrasting effects on cell fitness under hypoxia.<br /> (4) Knockout of organogenesis or developmental pathway genes led to better cell growth specifically in the context of 3D spheroids and knockout of epigenetic modifiers had varied effects between 2D and 3D conditions.<br /> (5) Another key program that leads to cells fitness outcomes in normoxia vs hypoxia is the lipid and fatty acid metabolism.<br /> (6) Prmt5 is a key essential gene under all growth conditions, but in the context of 3D spheroids even partial loss of Prmt5 has a synthetic lethal effect with Mtap deletion and Mtap is epigenetically silenced specifically in the 3D spheroids.
Issues to address:
(1) The authors should clarify the link between the findings of the enrichment of TGFb-SMAD signaling REACTOME pathway to the findings that knocking out TGFb-SMAD pathway leads to better cell fitness outcomes for cells in the 3D growth conditions.
(2) Supplementary Figure 4C has been cited in the text but doesn't exist in the supplementary figures section.
(3) A small figure explaining this ABC-Myc driven liver cancer model in Supplementary Figure 1 would be helpful to provide context.
(4) The method for spheroids formation is not found in the method section.
(5) In Supplementary Figure 1b, the comparisons should be stated the opposite way - 3D vs 2D normoxia and 2D-Hypoxia vs 2D-Normoxia.
(6) There are typos in the legend for Supplementary Figure 10.
(7) Consider putting Supplementary Figure 1b into the main Figure 1.
(8) Please explain only one timepoint (endpoint) for 3D spheroids was performed for the CRISPR KO screen experiment, while several timepoints were done for 2D conditions? Was this for technical convenience?
(9) In line 372, it is indicated that Bcor KO (Fig 5e) had growth advantage - this was observed in only one of the gRNA -- same with Kmt2d KO in the same figure where there was an opposite effect. Please justify the use of only one gRNA.
(10) Why was CRISPR based KO strategy not used for the PRMT5 gene but rather than the use of shRNA.? Note that one of the shRNA for PRMT5 had almost no KO (PRMT5-shRNA2 Figure 7B) but still showed phenotype (Figure 7D) - please explain.
(11) In Figure 7D, which samples (which shRNA group) were being compared to do the t-test?
(12) In line 240, it is stated that oxphos gene set is essential for NEJF10 cell survival in both normoxia and hypoxia conditions. But shouldn't oxphos be non-essential in hypoxia as cells move away from oxphos and become glycolytic?
(13) In line 485 it is mentioned that Pmvk and Mvd genes which are involved in cholesterol synthesis when knocked out had a positive effect on cell growth in 3D conditions and since cholesterol synthesis is essential for cell growth how does this not matter much in the context of 3D - please explain.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Shengsheng Zhao et al. investigated the role of nucleolar and coiled-body phosphoprotein 1 (NOLC1) in relegating gastric cancer (GC) development and cisplatin-induced drug resistance in GC. They found a significant correlation between high NOLC1 expression and the poor prognosis of GC. Meanwhile, upregulation of NOLC1 was associated with cis-resistant GC. Experimentally, the authors demonstrate that knocking down NOLC1 increased GC sensitivity to Cis possibly by regulating ferroptosis. Mechanistically, they found NOLC1 suppressed ferroptosis by blocking the translocation of P53 from the cytoplasm to the nucleus and promoting its degradation. In addition, The authors also evaluated the effect of combinational treatment of anti-PD-1 and cisplatin in NOLC1 -knockdown tumor cells, revealing a potential role of NOLC1 in the targeted therapy for GC.
Strengths:
Chemoresistance is considered a major reason causing failure of tumor treatment and death of cancer patients. This paper explored the role of NOLC1 in the regulation of Cis-mediated resistance, which involves a regulated cell death named ferroptosis. These findings provide more evidence highlighting the study of regulated cell death to overcome drug resistance in cancer treatment, which could give us more potential strategies or targets for combating cancer.
Weaknesses:
More evidence supporting the regulation of ferroptosis induced by Cisplatin by NOLC1 should be added. Particularly, the role of ferroptosis in the cisplatin-resistance should be verified and whether NOLC1 regulates ferroptosis induced by additional FINs should be explored. Besides, the experiments to verify the regulation of ferroptosis sensitivity by NOLC1 are sort of superficial. The role of MDM2/p53 in ferroptosis or cisplatin resistance mediated by NOLC1 should be further studied by genetic manipulation of p53, which is the key evidence to confirm its contribution to NOLC1 regulation of GC and relative cell death.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This study provides a novel understanding of CoV-host interaction, leading potential therapeutics for SARS-CoV2 infection. Tian et al. identified and demonstrated that the two E3 ligases UBR5 and MARCHF7 both interact with and catalyze the ubiquitination of NSP16 protein of SARS-CoV2, thereby leading to its degradation by the ubiquitin-proteasome system (UPS) and inhibiting SARS-CoV-2 replication. It is interesting to see that the two E3 ligases perform their functions on the same target independently.
Strengths:
Overall, the topic and initial discoveries appear interesting. The experimental designs of this study were rigorous and logical, most of the work has been carefully done, and the conclusions drawn from this study are relatively convincing and reliable.
Weaknesses:
The quality of the presentation could be improved with better organization, a more conservative interpretation of the data, and further clarity in the writing.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors conducted a study to evaluate the potential of circulating HPV cell-free DNA (cfDNA) as a biomarker for monitoring recurrent or metastatic HPV+ cervical cancer. They analyzed serum samples from 28 patients, measuring HPV cfDNA levels via digital droplet PCR and comparing these to squamous cell carcinoma antigen (SCC-Ag) levels in 26 SCC patients, while also testing the association between HPV cfDNA levels and clinical outcomes. The main hypothesis that the authors set out to test was whether circulating HPV cfDNA levels correlated with metastatic patterns and/or treatment response in HPV+ CC.
The main claims put forward by the paper are that:
(1) HPV cfDNA was detected in all 28 CC patients enrolled in the study and levels of HPV cfDNA varied over a median 2-month monitoring period.<br /> (2) 'Median baseline' HPV cfDNA varied according to 'metastatic pattern' in individual patients.<br /> (3) Positivity rate for HPV cfDNA was more consistent than SCC-Ag.<br /> (4) In 20 SCC patients monitored longitudinally, concordance with changes in disease status was 90% for HPV cfDNA.
This study highlights HPV cfDNA as a promising biomarker with advantages over SCC-Ag, underscoring its potential for real-time disease surveillance and individualized treatment guidance in HPV-associated cervical cancer.
Strengths:
This study presents valuable insights into HPV+ cervical cancer with potential translational significance for management and guiding therapeutic strategies. The focus on a non-invasive approach is particularly relevant for women's cancers, and the study exemplifies the promising role of HPV cfDNA as a biomarker that could aid personalized treatment strategies.
Weaknesses:
While the authors acknowledge the study's small cohort and variability in sequential sampling protocols as a limitation, several revisions should be made to ensure that (1) the findings are presented in a way that aligns more closely with the data without overstatement and (2) that the statistical support for these findings is made more clear. Specific suggestions are outlined below.
(1) The authors should provide source data for Figures 2, 3, and 4 as supplementary material.
(2) Description of results in Figure 2: Figure 2 would benefit from clearer annotations regarding HPV virus subtypes. For example, does the color-coding in Figure 2B imply that all samples in the LR subgroup are of type HPV16? If that is the case, is it possible that detection variations are due to differences in subtype detection efficiency rather than cfDNA levels? The authors should clarify these aspects. Annotation of Figure 2B suggests that the p-value comes from comparing the LR and LN+H+DSM groups. This should be clarified in the legend. If this p-value comes from comparing HPV cfDNA copies for the (LR, LNM, HM) and (LN+HM, LN+HM+DSM) groups, did the authors carry out post-hoc pairwise comparisons? It would be helpful to include acronyms for these groups in the legend also.
(3) Interpretation of results in Figure 2 and elsewhere: Significant differences detected in Figure 2B could imply potential associations between HPV cfDNA levels (or subtypes) and recurrence/metastasis patterns. Figure 2C shows that there is a difference in cfDNA levels between the groups compared, suggesting an association but this would not necessarily be a direct "correlation". Overall, interpretation of statistical findings would benefit from more precise language throughout the text and overstatement should be avoided.
(4) The authors state that six patients showed cfDNA elevation with clinically progressive disease, yet only three are represented in Figure 3B1 under "Patients whose disease progressed during treatment." What is the expected baseline variability in cfDNA for patients? If we look at data from patients with early-stage cancer would we see similar fluctuations? And does the degree of variability vary for different HPV subtypes? Without understanding the normal fluctuations in cfDNA levels, interpreting these changes as progression indicators may be premature.
(5) It would be helpful if where p-values are given, the test used to derive these values was also stated within parentheses e.g. (P < 0.05, permutation test with Benjamini-Hochberg procedure).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
This work presents a self-supervised method for the segmentation of 3D cells in microscopy images, an annotated dataset, as well as a napari plugin. While the napari plugin is potentially useful, there is insufficient evidence in the manuscript to support the claim that the proposed method is able to segment cells in other light-sheet microscopy image datasets than the four specific ones used here.
I acknowledge that the revision is now more upfront about the scope of this work. However, my main point still stands: even with the slight modifications to the title, this paper suggests to present a general method for self-supervised 3D cell segmentation in light-sheet microscopy data. This claim is simply not backed up.
I still think the authors should spell out the assumptions that underlie their method early on (cells need to be well separated and clearly distinguishable from background). A subordinate clause like "often in cleared neural tissue" does not serve this purpose. First, it implies that the method is also suitable for non-cleared tissue (which would have to be shown). Second, this statement does not convey the crucial assumptions of well separated cells and clear foreground/background differences that the method is presumably relying on.
It does appear that the proposed method works very well on the four investigated datasets, compared to other pre-trained or fine-tuned models. However, it still remains unclear whether this is because of the proposed method or the properties of those specific datasets (namely: well isolated cells that are easily distinguished from the background). I disagree with the authors that a comparison to non-learning methods "is unnecessary and beyond the scope of this work". In my opinion, this is exactly what is needed to proof that CellSeg3D's performance can not be matched with simple image processing.
As I mentioned in the original review, it appears that thresholding followed by connected component analysis already produces competitive segmentations. I am confused about the authors' reply stating that "[this] is not the case, as all the other leading methods we fairly benchmark cannot solve the task without deep learning". The methods against which CellSeg3D is compared are CellPose and StarDist, both are deep-learning based methods. That those methods do not perform well on this dataset does not imply that a simpler method (like thresholding) would not lead to competitive results. Again, I strongly suggest the authors include a simple, non-learning based baseline method in their analysis, e.g.:<br /> * comparison to thresholding (with the same post-processing as the proposed method)<br /> * comparison to a normalized cut segmentation (with the same post-processing as the proposed method)
Regarding my feedback about the napari plugin, I apologize if I was not clear. The plugin "works" as far as I tested it (i.e., it can be installed and used without errors). However, I was not able to recreate a segmentation on the provided dataset using the plugin alone (see my comments in the original review). I used the current master as available at the time of the original review and default settings in the plugin.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary
This study provides a detailed analysis and dissociation between two effects of activation of lateral inhibitory circuits in the olfactory bulb on ongoing single mitral/tufted cell (MTC) spiking activity, namely enhanced synchronization in the gamma frequency range or lateral inhibition of firing rate.
The authors use a clever combination of single cell recordings, optogenetics with variable spatial stimulation of MTCs and sensory stimulation in vivo, and established mathematical methods, to describe changes in autocorrelation/synchronization of a single MTC's spiking activity upon activation of other, lateral glomerular MTC ensembles. This assay is rounded off by a gain of function experiment in which the authors enhance granule cell (GC) excitation to establish a causal relation between GC activation and enhanced synchronization of a single MTC's spiking to the gamma rhythm. They had used the same optogenetic manipulation in their previous paper Dalal & Haddad 2022, but use a smaller illumination spot here for spatially restricted activation.
Strengths
This study is of high interest for olfactory processing since it shows directly that interactions between only two selected active receptor channels are sufficient to enhance synchronization of single neurons to gamma in one receptor channel and thus by inference most likely in both. Such synchronization across co-active receptor channels in turn would enable upstream neurons in olfactory cortices to read out odour identity.
The authors find that these interactions are distance-independent over many 100s of µms and thus can allow for non-topographical inhibitory action across the bulb, in contrast to the center-surround lateral inhibition known from other sensory modalities. In my view, analogies between vision and olfaction might have been overemphasized so far, since the combinatorial encoding of olfactory stimuli across the glomerular map might require different mechanisms of lateral interaction versus vision. This result is indicative of such a major difference.
Such enhanced local synchronization to gamma in one channel was observed in a subset of activated channel pairs; in addition, the authors report another type of lateral interaction that does involve reduction of firing rates, drops off with distance and most likely is caused by a different circuit mediated by PV+ neurons (PVN). The evidence for the latter is more circumstantial since no manipulations of PVNs were performed.
Weaknesses/Room for improvement
This study is an impressive proof of concept that however does not yet allow for broad generalization. Thus the framing of results should be slightly more careful IMHO. While the claims in the initial version of this preprint have been toned down quite substantially, the authors do not provide direct hard evidence for synchronization across channels. Admittedly, this would be hard to achieve since it would require paired recordings from MTCs in different locations in vivo. Therefore, the term „lateral synchronization" as it is used in the abstract is still problematic, as well as the title which should rather say „can enable" instead of „enables". That being said, this study definitely provides important evidence regarding the concept of "lateral synchronization".
The other comments and recommendations have been well taken care of in the new version.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this work, the authors trained RNN to perform a reversal task also performed by animals while PFC activity is recorded. The authors devised a new method to train RNN on this type of reversal task, which in principle ensures that the behavior of the RNN matches the behavior of the animal. They then performed some analysis of neural activity, both RNN and PFC recording, focusing on the neural representation of the reversal probability and its evolution across trials. Given the analysis presented, it has been difficult for me to assess at which point RNN can reasonably be compared to PFC recordings.
Strengths:
Focusing on a reversal task, the authors address a challenge in RNN training, as they do not use a standard supervised learning procedure where the desired output is available for each trial. They propose a new way of doing that.
They attempt to confront RNN and neural recordings in behaving animals.
Weaknesses:
The design of the task for the RNN does not seem well suited to support the claim of the paper: no action is required to be performed by neurons in the RNN, instead, the choice of the animal is determined by applying a non-linearity to the RNN's readout (equation 7), no intervening behavior is thus performed by neurons on which the analysis is performed throughout the paper. Instead, it would have been nice to mimic more closely the task structure of the experiments on monkeys, with a fixation period where the read-out is asked to be at a zero value, and then asked to reach a target value (not just taking its sign), depending on the expected choice after a cue presentation period.
The comparison between RNN and neural data focuses on very specific features of neural activity. It would have been nice to see how individual units in the RNN behave over the course of the trial, do all units show oscillatory behavior like the readout shown in Figure 1B?
It would be nice to justify why it has been chosen to take a network of inhibitory neurons and to know whether the analysis can also be performed with excitatory neurons. All the analysis relies on the dimensionality reduction. It would have been nice to have some other analysis confirming the claim of the absence of a line attractor in the neural data. Or at least to better characterize this dimensionality reduction procedure, e.g. how much of the variance is explained by this analysis for instance?
It is thus difficult to grasp, besides the fact that reversal behavior is similar, to what extent the RNN is comparable to PFC functioning and to what extent we learn anything about the latter.
Other computational works (e.g. [1,2]) have developed procedures to train RNN on reversal-like tasks, it would have been nice to compare the procedure presented here with these other works.
[1] H Francis Song & Xiao-Jing Wang. Reward-based training of recurrent neural networks for cognitive and value-based tasks. eLife doi:10.7554/elife.21492.001.
[2] Molano-Mazón, M. et al. Recurrent networks endowed with structural priors explain suboptimal animal behavior. Current Biology 33, 622-638.e7 (2023).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The manuscript from Calhoun et al. uses a well-established screening protocol to investigate the functions of microexons in zebrafish neurodevelopment. Microexons have gained prominence recently due to their enriched expression in neural tissues and misregulation in autism spectrum disease. However, screening of microexon functionality has thus far been limited in scope. The authors address this lack of knowledge by establishing zebrafish microexon CRISPR deletion lines for 45 microexons chosen in genes likely to play a role in CNS development. Using their high throughput protocol to test larval behaviour, brain activity, and brain structure, a modest group of 9 deletion lines was revealed to have neurodevelopmental functions, including 2 previously known to be functionally important.
Strengths:
(1) This work advances the state of knowledge in the microexon field and represents a starting point for future detailed investigations of the function of 7 microexons.
(2) The phenotypic analysis using high-throughput approaches is sound and provides invaluable data.
Weaknesses:
(1) There is not enough information on the exact nature of the deletion for each microexon.
(2) Only one deletion is phenotypically analysed, leaving space for the phenotype observed to be due to sequence modifications independent of the microexon itself.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Li et al. investigated the potential anti-ageing role of 17α-Estradiol on the hypothalamus of aged rats. To achieve this, they employed a very sophisticated method for single-cell genomic analysis that allowed them to analyze effects on various groups of neurons and non-neuronal cells. They were able to sub-categorize neurons according to their capacity to produce specific neurotransmitters, receptors, or hormones. They found that 17α-Estradiol treatment led to an improvement in several factors related to metabolism and synaptic transmission by bringing the expression levels of many of the genes of these pathways closer or to the same levels to those of young rats, reversing the ageing effect. Interestingly, among all neuronal groups, the proportion of Oxytocin-expressing neurons seems to be the one most significantly changing after treatment with 17α-Estradiol, suggesting an important role of these neurons on mediating its anti-ageing effects. This was also supported by an increase in circulating levels of oxytocin. It was also found that gene expression of corticotropin-releasing hormone neurons was significantly impacted by 17α-Estradiol even though it was not different between aged and young rats, suggesting that these neurons could be responsible for side effects related to this treatment. This article revealed some potential targets that should be further investigated in future studies regarding the role of 17α-Estradiol treatment in aged males.
Strengths:
• The single nucleus mRNA sequencing is a very powerful method for gene expression analysis and clustering. The supervised clustering of neurons was very helpful in revealing otherwise invisible differences between neuronal groups and helped identify specific neuronal populations as targets.<br /> • There is a variety of functions used that allowed the differential analysis of a very complex type of data. This led to a better comparison between the different groups in many levels.<br /> • There were some physiological parameters measured such as circulating hormone levels that helped the interpretation of the effects of the changes in hypothalamic gene expression.
Weaknesses:
• One main control group is missing from the study, the young males treated with 17α-Estradiol.<br /> • Even though the technical approach is a sophisticated one, analyzing the whole rat hypothalamus instead of specific nuclei or subregions makes the study weaker.<br /> • Although the authors claim to have several findings, the data fail to support these claims.<br /> • The study is about improving ageing but no physiological data from the study demonstrated such claim with the exception of the testes histology which was not properly analyzed and was not even significantly different between the groups.<br /> • Overall, the study remains descriptive with no physiological data to demonstrate that any of the effects on hypothalamic gene expression is related to metabolic, synaptic or other function.
Comments on revisions:
The authors revised part of the manuscript to address some of the reviewers' comments This improved the language and the text flow to a certain extent. They also added an additional analysis including glial cells. However, they failed to address the main weaknesses brought up by the reviewers and did not add any experimental demonstration of their claims on lifespan expansion induced by 17α-estradiol in rats. In addition, they insisted i keeping parts in the discussion that are not directly linked to any of the papers' findings.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
In this study, the authors sought to elucidate the neural mechanisms underlying the role of Naa10 in neurodevelopmental disruptions with a focus on its role in the hippocampus. The authors use an impressive array of techniques to identify a chain of events that occurs in the signaling pathway starting from Naa10 acetylating Btbd3 to regulation of F-actin dynamics that are fundamental to neurite outgrowth. They provide convincing evidence that Naa10 acetylates Btbd3, that Btbd3 facilitates CapZb binding to F-actin in a Naa10 acetylation-dependent manner, and that this CapZb binding to F-actin is key to neurite outgrowth. Besides establishing this signaling pathway, the authors contribute novel lists of Naa10 and Btbd3 interacting partners, which will be useful for future investigations into other mechanisms of action of Naa10 or Btbd3 through alternative cell signaling pathways. The evidence presented for an anxiety-like behavioral phenotype as a result of Naa10 dysfunction is mixed and tenuous, and assays for the primary behaviors known to be altered by Naa10 mutations in humans were not tested. As such, behavioral findings and their translational implications should be interpreted with caution. Finally, while not central to the main cell signaling pathway delineated, the characterization of brain region-specific and cell maturity of Naa10 expression patterns was presented in few to single animals and not quantified, and as such should also be interpreted with caution. On a broader level, these findings have implications for neurodevelopment and potentially, although not tested here, synaptic plasticity in adulthood, which means this novel pathway may be fundamental for brain health.
Summarized list of minor concerns
(1) The early claims of the manuscript are supported by very small sample sizes (often 1-3) and/or lack of quantification, particularly in Figures S1 and 1.
(2) Evidence is insufficient for CA1-specific knockdown of Naa10.
(3) The relationship between the behaviors measured, which centered around mood, and Ogden syndrome, was not clear, and likely other behavioral measures would be more translationally relevant for this study. Furthermore, the evidence for an anxiety-like phenotype was mixed.
(4) Btbd3 is characterized by the authors as an OCD risk gene, but its status as such is not well supported by the most recent, better-powered genome-wide association studies than the one that originally implicated Btbd3. However, there is evidence that Btbd3 expression, including selectively in the hippocampus, is implicated in OCD-relevant behaviors in mice.
(5) The reporting of the statistics lacks sufficient detail for the reader to deduce how experimental replicates were defined.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Bisht et al detail a novel interaction between the chaperone, Prefoldin 5, microtubules, and tau-mediated neurodegeneration, with potential relevance for Alzheimer's disease and other tauopathies. Using Drosophila, the study shows that Pfdn5 is a microtubule-associated protein, which regulates tubulin monomer levels and can stabilize microtubule filaments in the axons of peripheral nerves. The work further suggests that Pfdn5/6 may antagonize Tau aggregation and neurotoxicity. While the overall findings may be of interest to those investigating the axonal and synaptic cytoskeleton, the detailed mechanisms for the observed phenotypes remain unresolved and the translational relevance for tauopathy pathogenesis is yet to be established. Further, a number of key controls and important experiments are missing that are needed to fully interpret the findings.
The strength of this study is the data showing that Pfdn5 localizes to axonal microtubules and the loss-of-function phenotypic analysis revealing disrupted synaptic bouton morphology. The major weakness relates to the experiments and claims of interactions with Tau-mediated neurodegeneration. In particular, it is unclear whether knockdown of Pfdn5 may cause eye phenotypes independent of Tau. Further, the GMR>tau phenotype appears to have been incorrectly utilized to examine age-dependent, neurodegeneration.
This manuscript argues that its findings may be relevant to thinking about mechanisms and therapies applicable to tauopathies; however, this is premature given that many questions remain about the interactions from Drosophila, the detailed mechanisms remain unresolved, and absent evidence that tau and Pfdn may similarly interact in the mammalian neuronal context. Therefore, this work would be strongly enhanced by experiments in human or murine neuronal culture or supportive evidence from analyses of human data.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This work addresses an important question of chromosome architecture changes associated with organotopic metastatic traits, showing important trends in genome reorganization. The most important observation is that 3D genome changes consistent with adaptations for new microenvironments, including lung metastatic breast cells exhibiting signatures of the genome architecture typical to a lung cell-like conformation and brain metastatic prostate cancer cells showing compartment shifts toward a brain-like state.
Strengths:
This work presents interesting original results, which will be important for future studies and biomedical implications of epigenetic regulation in norm and pathology.
Weaknesses:
The authors used publicly available data for 15 cell types. They should show how many different sources the data were obtained from and demonstrate that obtained results are consistent if the data from different sources were used.
-
-
52.53.155.43 52.53.155.43
-
Reviewer #2 (Public review):
Summary:
This study by Dorn et al. from Dr. Henrike Scholz's group investigates the function of serotonin signaling in state-dependent feeding control for protein and sugar intake. Using a dominant-negative serotonin transporter to block serotonin reuptake and optogenetics to activate serotoninergic neurons, the authors identified that serotonin released from a small group of Sert3-expressing neurons specifically reduces sucrose consumption of the fed files but not in the starved flies. Conversely, blocking serotonin reuptake in broad serotonergic neurons increases yeast consumption only in starved flies but does not affect fed flies. These results suggest prolonged serotonin signals may suppress sucrose appetite in fed flies while promoting protein intake in starved flies.
Although the phenotypes presented are intriguing and fundamental to animal fitness, the data in its current form is insufficient to support the proposed mechanisms underlying the state-dependent diet control by serotonin signals. Specifically, the authors should carefully analyze the requirement of serotonin by showing the efficiency of the serotonin reuptake blockade caused by the dominant-negative serotonin and validating the requirement of serotonin in the optogenetic activation of Sert3-expressing neurons. Additionally, the conclusions based on the overexpressed Sert3::gfp transgene should be retrieved as the overexpression affects sucrose consumption. Therefore, I recommend some alternative interpretations and approaches below for authors to verify the current form of conclusions.
Strengths:
The authors identified the state-dependent diet control for sucrose and yeast intake regulated by a restricted population of serotonin neurons expressing Sert3.
Weaknesses:
The data only partially supports most conclusions. Specifically, findings based on the use of the transgene Sert3::GFP lack sufficient rigor, as the authors overlooked potential overexpression effects.
Major issues
(1) The authors try to distinguish the motivation to feed on sucrose or protein in fed or starved conditions using "sucrose appetite" and "protein hunger", respectively. However, appetite and hunger should be synonymous in the current context. When specifying protein hunger, readers will expect the craving for protein in the protein-deprived situation. In the current study, starved flies were prepared by starvation on wet tissues so the flies are supposed to be hungry for sugar and protein. To avoid confusion, "sucrose appetite in fed flies" and "protein appetite in starved flies" are better descriptions.
(2) In Figure 1A-1I (lines 141-142), it remains unclear whether additional serotonergic neurons are required or if the serotonergic neurons labeled exclusively by R50H05-Gal4 and Tph-Gal4 are necessary to regulate yeast consumption in starved flies. The overlapping expressions of these two drivers with the Sert3-Gal4 make it hard to distinguish these two possibilities.
(3) The data in Figure 1L-1M suggests that the serotonin-dependent regulation in yeast consumption of starved flies is suppressed by sucrose supplementation. However, the neurons required for yeast consumption remain undefined due to the overlapping expression. This result implies that the neurons labeled by R50H05-Gal4 and Tph-Gal4 influence both sucrose and yeast consumption but not specific to yeast.
(4) The regulatory relationship between insulin receptors and serotonin signaling in sucrose appetite remains unclear. How do the authors interpret the result that both the constitutively active and dominant-negative forms of the insulin receptor (InR) reduce sucrose appetite in Figure 4? One possibility is that insulin receptors are involved in two parallel pathways to regulate sucrose consumption that converge to the same phenotype. However, the insulin receptor (InR) pathways can still be independent of the serotonin signaling pathway despite showing a comparable reduction of sucrose consumption in fed flies. This issue should be discussed further following lines 229-231.
(5) The quantification of Figure 5 should be revised. First, as the transgene Sert3::GFP affects sucrose consumption, quantifying the transgene signals may not explain its endogenous function. Second, the quantification lacks a Gal4 expression control using an untagged fluorescent marker, preferably a different color so that the authors can quantify it in the same individual as the comparison. Lastly, it is hard to be convinced that the distance between two layers represents the broad expression of Sert3::GFP in response to insulin receptor alterations. Quantifying the area size of each layer with fixed imaging conditions such as the intervals of brain sections and the laser intensity may be a better alternative approach.
(6) The conclusions drawn based on the Sert3::GFP transgene failed to explain the endogenous function of the serotonin transporter Sert3 in regulating sucrose consumption. Expressing the constitutive-active form of the insulin receptor in Sert3-expressing neurons reduces the total sucrose consumption of fed flies in Figure 4A, which appears inconsistent with the fly line with an additional Sert3::GFP expression shown in Figures 6F, where the suppression of sucrose consumption is not shown for the normalized sucrose intake. This inconsistency suggests that Sert3::GFP transgene itself affects sucrose consumption.
(7) In lines 324-326, the authors should investigate whether IR60b neurons are indeed the downstream of serotoninergic neurons SE1 to regulate sucrose consumption in fed flies. First, synaptic connections could be confirmed by additional approaches. Following this, the authors could demonstrate that the knockdown of serotonin receptors in IR60b neurons eliminates the suppression in sucrose consumption induced by the activation of Sert3-expressing neurons or by the expression of the dominant-negative serotonin transporter in fed flies.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This manuscript reports high-resolution functional MRI data and MEG data revealing additional mechanistic information about an established paradigm studying how foveal regions of the primary visual cortex (V1) are involved in processing peripheral visual stimuli. Because of the retinotopic organization of V1, peripheral stimuli should not evoke responses in the regions of V1 that represent stimuli in the center of the visual field (the fovea). However, functional MRI responses in foveal regions do reflect the characteristics of peripheral visual stimuli - this is a surprising finding first reported in 2008. The present study uses fMRI data with sub-millimeter resolution to study how responses at different depths in the foveal gray matter do or don't reflect peripheral object characteristics during 2 different tasks: one in which observers needed to make detailed judgments about object identity, and one in which observers needed to make more coarse judgments about object orientation. FMRI results reveal interesting and informative patterns in these two conditions. A follow-on MEG study yields information about the timing of these responses. Put together, the findings settle some questions in the field and add new information about the nature of visual feedback to V1.
Strengths:
(1) Rigorous and appropriate use of "laminar fMRI" techniques.
(2) The introduction does an excellent job of contextualizing the work.
(3) Control experiments and analyses are designed and implemented well
Weaknesses:
(1) While not necessarily a weakness, I do not fully agree with the description of the 2 kinds of feedback information as "low-order" and "high-order". I understand the motivation to do this - orientation is typically considered a low-level visual feature. But when it's the orientation of an entire object, not a single edge, orientation can only be defined after the elements of the object are grouped. Also, the discrimination between spikies and smoothies requires detecting the orientations of particular edges that form the identifying features. To my mind, it would make more sense to refer to discrimination of object orientation as "coarse" feature discrimination, and orientation of object identity as "fine" feature discrimination. Thus, the sentence on line 83, for example, would read "Interestingly, feedback with fine and coarse feature information exhibits different laminar profiles.".
(2) Figure 2 and text on lines 185, and 186: it is difficult to interpret/understand the findings in foveal ROIs for the foveal control task without knowing how big the ROI was. Foveal regions of V1 are grossly expanded by cortical magnification, such that the central half-degree can occupy several centimeters across the cortical surface. Without information on the spatial extent of the foveal ROI compared to the object size, we can't know whether the ROI included voxels whose population receptive fields were expected to include the edges of the objects.
(3) Line 143 and ROI section of the methods: in order for the reader to understand how robust the responses and analyses are, voxel counts should be provided for the ROIs that were defined, as well as for the number (fraction) of voxels excluded due to either high beta weights or low signal intensity (lines 505-511).
(4) I wasn't able to find mention of how multiple-comparisons corrections were performed for either the MEG or fMRI data (except for one Holm-Bonferonni correction in Figure S1), so it's unclear whether the reported p-values are corrected.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This manuscript examined the impact of sulcal morphology on reading development. A very specific feature on the ventral surface of the brain was identified, namely the presence of an interruption in the posterior portion of the left occipitotemporal sulcus (pOTS). Compared to children with a continuous pOTS, children with an interruption at age 5 years had better reading ability at age 8. This was a large effect measured in 43 children. Surprisingly, this morphological feature was a better predictor of reading ability than measures of pre-literacy cognitive skills, such as phonological awareness. The effect was tested and reproduced across several different measures of reading ability. The authors hypothesised that the mechanism underlying this benefit related to greater local connectivity, which confers a computational advantage. This was demonstrated using analysis of diffusion-weighted imaging data in 29 of the children obtained at age 8.
Strengths:
The novelty of the manuscript is threefold: (i) the measure was made in children who were pre-literate (previous work was in older children and adults); (ii) longitudinal brain imaging and behavioural data were analysed; and (iii) diffusion data were analysed to test a hypothesis about the underlying mechanism.
The manuscript is exceptionally well written. The methods are detailed and easily reproduced. The approach is thoughtful and meticulous. All possible alternatives appear to have been considered. Where possible, further analyses have been done to address these alternatives. For example, the testing of the specificity of the sulcal interruption to left pOTS was an important addition. None predicted reading skills.
Weaknesses:
The correlation of the interruption with all kinds of literacy measures and in particular reading comprehension and then PIQ suggest this interruption might confer a more general cognitive advantage rather than specifically a reading one.
It would be interesting to know if the anatomical difference predicts any other cognitive ability or if there might be any cognitive cost (a negative correlation) of this sulcal interruption.<br /> The location of the interruption in the sulcus is quite variable and in some cases, there is more than one interruption. The sample size is probably not big enough to compare these different patterns or to evaluate the influence of the location of the sulcal interruption.
The sample is quite high-functioning and the generalisability of the findings outside of this specific population is inevitably limited.
-
-
4thgenerationcivilization.substack.com 4thgenerationcivilization.substack.com
-
The idea here is a potential ‘entanglement’ between the local and the translocal level, which creates new levels of strength and capacity for the local.
for - key insight - leverage point of the 99% - our numbers - from Substack article - The Cosmo-Local Plan for our Next Civilization - Michel Bauwens - 2024, Dec 20 - key insight - 6 levels of individual / collective gestalt - from Substack article - The Cosmo-Local Plan for our Next Civilization - Michel Bauwens - 2024, Dec 20
key insight - 6 embedded levels of individual / collective gestalt, - first level is from individual quanta to collective atoms - second level is from individual atom to collective molecules - third is from individual molecule too collective living cells - fourth is from individual living cells too collective multicellular living organism - fifth is from individual multi-cellular organism to collective culture at local level - sixth is from individual local culture to to collective trans-national alliances - At each level except the first, a perspective shift occursc in which the collective is seen from a different lens as an individual
key insight - leverage point of the 99% - our numbers - The trans-national companies power is in their capital - The trans-national alliances leverage point is our large numbers of people - Through our strength in numbers, we can mobilize trans-alliance resources such as human innovation resources, which most local actors are lacking in
Tags
- key insight - leverage point of the 99% - our numbers - from Substack article - The Cosmo-Local Plan for our Next Civilization - Michel Bauwens - 2024, Dec 20 - key insight - 2 levels of individual / collective gestalt - from Substack article - The Cosmo-Local Plan for our Next Civilization - Michel Bauwens - 2024, Dec 20
- key insight - 6 levels of individual / collective gestalt - from Substack article - The Cosmo-Local Plan for our Next Civilization - Michel Bauwens - 2024, Dec 20
Annotators
URL
-
-
en.wikipedia.org en.wikipedia.org
-
Thinking, Fast and Slow is a 2011 popular science book by psychologist Daniel Kahneman. The book's main thesis is a differentiation between two modes of thought: "System 1" is fast, instinctive and emotional; "System 2" is slower, more deliberative, and more logical.
for - similar to - - Daniel Kahnaman's system 1 fast, instinctive, emotional and system 2 slow, deliberative, logical is similar to - Ian McGilhirist's left brain, right brain
-
-
medium.com medium.com
-
Here is one exercise that can help you get started. Pick two related sense fields. For me it was my sight and my mind’s eye (where mental imagery is), but it could also be sound and internal voice or something else that suits you best. You gently alternate between the two, observing how they interplay.
for - potential BEing journey - Dzogchen - alternating between 2 related sense fields - from Medium article - Heart Sutra and the nyams of Dzogchen - Aleander Vezhnevets - 2022, Sept 7
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public review):
This paper addresses a long-standing problem in microbiology: the evolution of bacterial cell shape. Bacterial cells can take a range of forms, among the most common being rods and spheres. The consensus view is that rods are the ancestral form and spheres the derived form. The molecular machinery governing these different shapes is fairly well understood but the evolutionary drivers responsible for the transition between rods and spheres is not. Enter Yulo et al.'s work. The authors start by noting that deletion of a highly conserved gene called MreB in the Gram-negative bacterium Pseudomonas fluorescens reduces fitness but does not kill the cell (as happens in other species like E. coli and B. subtilis) and causes cells to become spherical rather than their normal rod shape. They then ask whether evolution for 1000 generations restores the rod shape of these cells when propagated in a rich, benign medium.
The answer is no. The evolved lineages recovered fitness by the end of the experiment, growing just as well as the unevolved rod-shaped ancestor, but remained spherical. The authors provide an impressively detailed investigation of the genetic and molecular changes that evolved. Their leading results are:
(1) the loss of fitness associated with MreB deletion causes high variation in cell volume among sibling cells after cell division;<br /> (2) fitness recovery is largely driven by a single, loss-of-function point mutation that evolves within the first ~250 generations that reduces the variability in cell volume among siblings;<br /> (3) the main route to restoring fitness and reducing variability involves loss of function mutations causing a reduction of TPase and peptidoglycan cross-linking, leading to a disorganized cell wall architecture characteristic of spherical cells.
The inferences made in this paper are on the whole well supported by the data. The authors provide a uniquely comprehensive account of how a key genetic change leads to gains in fitness and the spectrum of phenotypes that are impacted and provide insight into the molecular mechanisms underlying models of cell shape.
Suggested improvements and clarifications include:<br /> (1) A schematic of the molecular interactions governing cell wall formation could be useful in the introduction to help orient readers less familiar with the current state of knowledge and key molecular players;<br /> (2) It remains unclear whether corrections for multiple comparisons are needed when more than one construct or strain is compared to the common ancestor, as in Supp Fig 19A (relative PG density of different constructs versus the SBW25 ancestor). The author's response did not clarify matters: was data for the WT obtained independently alongside each each strain/construct (justifying a paired t-test) or was a single set of data for the WT obtained and used to compare against all other strains/constructs (which would demand a correction for multiple comparisons)?<br /> (3) The authors refrain from making strong claims about the nature of selection on cell shape, perhaps because their main interest is the molecular mechanisms responsible. They identify sources of stabilizing selection favouring an intermediate cell size (lack of DNA in small cells and disorganized DNA in large cells). Their interpretation of stabilizing selection in the review is correct and entirely consistent with the mechanistic causes identified here. I think this is valuable and interesting, although I recognize it is not the focus of the paper.
Comments on revisions:
Please further clarify the experimental design and replication for the contrast between mutants and WT to address the issue of multiple comparisons.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This study evaluated the aperiodic component in the medial prefrontal cortex (mPFC) using resting-state EEG recordings from 149 individuals with chronic pain and 115 healthy participants. The findings showed no significant differences in the aperiodic component of the mPFC between the two groups, nor was there any correlation between the aperiodic component and pain intensity. These results were consistent across various chronic pain subtypes and were corroborated by whole-brain analyses. The study's robustness was further reinforced by preregistration and multiverse analyses, which accounted for a wide range of methodological choices.
Strengths:
This study was rigorously conducted, yielding clear and conclusive results. Furthermore, it adhered to stringent open and reproducible science practices, including preregistration, blinded data analysis, and Bayesian hypothesis testing. All data and code have been made openly available, underscoring the study's commitment to transparency and reproducibility.
Weaknesses:
The aperiodic exponent of the EEG power spectrum is often regarded as an indicator of the excitatory/inhibitory (E/I) balance. However, this measure may not be the most accurate or optimal for quantifying E/I balance, a limitation that the authors might consider addressing in the future.
Comments on revisions:
All my comments have been well addressed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Bloch et al. studied the relationships between aerial foragers (lesser swifts) tracked using an automated radio telemetry system (Atlas) and their prey (flying insects) monitored using a small vertical-looking radar (BirdScan MR1). The aim of the study was to check whether swifts optimise their foraging according to the abundance of their prey. The results provide evidence that small swifts can increase their foraging rate when aerial insect abundance is high, but found no correlation between insect abundance and flight energy expenditure.
Key points:
This study fills gaps in fundamental knowledge of prey-predator dynamics in the air. It describes the coincidence between the abundance of flying insects and the characteristics derived from monitoring individual swifts.
Weaknesses:
The paper uses assumptions largely derived from optimal foraging theory, but mixes up the form of natural selection: parental energy, parental survival (predation risk), nestling foraging and reproductive success. The results are partly inconsistent, and confounding factors (e.g., the brooding phase versus the nestling phase) remained ignored. In conclusion, the analyses performed are insufficient to rigorously assess whether lesser swifts are optimising their foraging beyond making shorter foraging trips.<br /> The filters applied to the monitoring data are necessary but may strongly influence the characteristics derived based on maximum or mean values. Sensitivity tests or the use of characteristics that are less dependent on extreme values could provide more robust results.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This theoretical paper examines genetic drift in scenarios deviating from the standard Wright-Fisher model. The authors discuss Haldane's branching process model, highlighting that the variance in reproductive success equates to genetic drift. By integrating the Wright-Fisher model with the Haldane model, the authors derive theoretical results that resolve paradoxes related to effective population size.
Strengths:
The most significant and compelling result from this paper is perhaps that the probability of fixing a new beneficial mutation is 2s/V(K). This is an intriguing and potentially generalizable discovery that could be applied to many different study systems.
The authors also made a lot of effort to connect theory with various real-world examples, such as genetic diversity in sex chromosomes and reproductive variance across different species.
Comments on revisions:
The author has addressed some of the concerns in my review, and I think the revised manuscript is more clear. I like the discussion about the caveats of the WFH model.
I hope the authors could also discuss the conditions needed for V(K)/Ne to be a reasonable approximation. It is currently unclear how the framework should be adopted in general.
The idea about estimating male-female V(K) ratios from population genetic data is interesting. Unfortunately, the results fell short. The accuracy of their estimators (derived using approximation Ne/V(K) approximation, and certain choice of theta, and then theta estimated with Watterson's estimator) should be tested with simulated results before applying to real data. The reliability of their estimator and their results from real data are unclear.
Arguments made in this paper sometimes lack precision (perhaps the authors want to emphasize intuition, but it seems more confusing than otherwise). For example: The authors stated that "This independence from N seems intuitively obvious: when an advantageous mutation increases to say, 100 copies in determining a population (depending mainly on s), its fixation would be almost certain, regardless of N.". Assuming large Ne, and with approximation, one could assume the probability of loss is e^(-2sn), but the writing about "100 copies" and "almost certain" is very imprecise, in fact, a mutation with s=0.001 segregating at 100 copies in a large Ne population is most probably lost. Whereas in a small population, it will be fixed. Yet the following sentence states "regardless of N. This may be a most direct argument against equating genetic drift, certainly no less important than 1/ N . with N, or Ne (which is supposed to be a function of N's)." I find this new paragraph misleading.
Some of the statements/wordings in this paper still seem too strong to me.
-
-
arxiv.org arxiv.org
-
Reviewer #2 (Public review):
Summary:
In this paper, Lin and colleagues aim to understand the role of different salts on the phase behavior of a model protein of significant biological interest, Caprin1, and its phosphorylated variant, pY-Caprin1. To achieve this, the authors employed a variety of methods to complement experimental studies and obtain a molecular-level understanding of ion partitioning inside biomolecular condensates. A simple theory based on rG-RPA is shown to capture the different salt dependencies of Caprin1 and pY-Caprin1 phase separation, demonstrating excellent agreement with experimental results. The application of this theory to multivalent ions reveals many interesting features with the help of multicomponent phase diagrams. Additionally, the use of CG model-based MD simulations and FTS provides further clarity on how counterions can stabilize condensed phases.
Strengths:
The greatest strength of this study lies in the integration of various methods to obtain complementary information on thermodynamic phase diagrams and the molecular details of the phase separation process. The authors have also extended their previously proposed theoretical approaches, which should be of significant interest to other researchers. Some of the findings reported in this paper, such as bridging interactions, are likely to inspire new studies using higher-resolution atomistic MD simulations.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This is a well written manuscript describing studies directed at identifying the cell type responsible for pacemaking in murine collecting lymphatics. Using state-of-the-art approaches, the authors identified a number of different cell types in the wall of these lymphatics and then using targeted expression of Channel Rhodopsin and GCaMP, the authors convincingly demonstrate that only activation of lymphatic muscle cells produces coordinated lymphatic contraction and that only lymphatic muscle cells display pressure-dependent Ca2+ transients as would be expected of a pacemaker in these lymphatics.
Strengths:
The use of targeted expression of channel rhodopsin and GCaMP to test the hypothesis that lymphatic muscle cells serve as the pacemakers in musing lymphatic collecting vessels.
Weaknesses:
The only significant weakness was the lack of quantitative analysis of most of the imaging data shown in Figures 1-11. In particular, the colonization analysis should be extended to show cells not expected to demonstrate colocalization as a negative control for the colocalization analysis that the authors present. These weaknesses have been resolved by revision and addition of new and novel RNAseq data, additional colocalization data and membrane potential measurements.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In this work, the authors combine diffusion MRI and high-resolution x-ray synchrotron phase-contrast imaging in monkey and mouse brains to investigate the 3D organization of brain white matter across different scales and species. The work is at the forefront of the anatomical investigation of the human connectome and aligns with several current efforts to bridge the resolution gap between what we can see in vivo at the millimeter scale and the complexity of the human brain at the sub-micron scale. The authors compare the 3D white matter organization across modalities within 2 small regions in one monkey brain (body of the corpus callosum, centrum semiovale) and within one region (splenium of the corpus callosum) in healthy mice and in one murine model of focal demyelination. The study compares measures of tissue anisotropy and fiber orientations across modalities, performs a qualitative comparison of fasciculi trajectories across brain regions and tissue conditions using streamlined tractography based on the structure tensor, and attempts to quantify the shape of fasciculi trajectories by measuring the tortuosity index and the maximum deviation for each reconstructed streamline. Results show measures of anisotropy and fiber orientations largely agree across modalities, especially for larger FOV data. The high-resolution data allows us to explore the fiber trajectories in relation to tissue complexity and pathology. The authors claim the study reveals new common organization principles of white matter fibers across species and scales, for which axonal fasciculi arrange into sheet-like laminar structures.
Strengths:
The aim of the study is of central importance within present efforts to bridge the gap between macroscopic structures observable in vivo in humans using conventional diffusion MRI and the microscopic organization of white matter tissue. Results obtained from this type of study are important to interpret data obtained in vivo, inform the development of novel methodologies, and expand our knowledge of the structural and thus functional organization of brain circuits.
Multi-scale data acquired across modalities within the same sample constitute extremely valuable data that is often hard to acquire and represent a precious resource for validation of both diffusion MRI tractography and microstructure methods.
The inclusion of multi-species data adds value to the study, allowing the exploration of common organization principles across species.
The addition of data from a murine cuprizone model of focal demyelination adds interesting opportunities to study the underlying biological changes that follow demyelination and how these impact tissue anisotropy and fiber trajectories. These data can inform the interpretation and development of diffusion MRI microstructure models.
[Editors' note: The Reviewing Editor considers that the authors addressed the reviewers' questions adequately. The original reviews are here: https://elifesciences.org/reviewed-preprints/94917/reviews]
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
Here the authors address the idea that postural and movement control are differentially impacted with stroke. Specifically, they examined whether resting postural forces influenced several metrics of sensorimotor control (e.g., initial reach angle, maximum lateral hand deviation following a perturbation, etc.) during movement or posture. The authors found that resting postural forces influenced control only following the posture perturbation for the paretic arm of stroke patients, but not during movement. They also found that resting postural forces were greater when the arm was unsupported, which correlated with abnormal synergies (as assessed by the Fugl-Meyer). The authors suggest that these findings can be explained by the idea that the neural circuitry associated with posture is relatively more impacted by stroke than the neural circuitry associated with movement. They also propose a conceptual model that differentially weights the reticulospinal tract (RST) and corticospinal tract (CST) to explain greater relative impairments with posture control relative to movement control, due to abnormal synergies, in those with stroke.
Comments on revisions:
The authors should be commended for being very responsive to comments and providing several further requested analyses, which have improved the paper. However, there is still some outstanding issues that make it difficult to fully support the provided interpretation.
The authors say within the response, "We would also like to stress that these perturbations were not designed so that responses are directly compared to each other ***(though of course there is an *indirect* comparison in the sense that we show influence of biases in one type of perturbation but not the other)***." They then state in the first paragraph of the discussion that "Remarkably, these resting postural force biases did not seem to have a detectable effect upon any component of active reaching but only emerged during the control of holding still after the movement ended. The results suggest a dissociation between the control of movement and posture." The main issue here is relying on indirect comparisons (i.e., significant in one situation but not the other), instead of relying on direct comparisons. Using well-known example, just because one group / condition might display a significant linear relationship (i.e., slope_1 > 0) and another group / condition does not (slope_2 = 0), does not necessarily mean that the two groups / conditions are statistically different from one another [see Figure 1 in Makin, T. R., & Orban de Xivry, J. J. (2019). Ten common statistical mistakes to watch out for when writing or reviewing a manuscript. eLife, 8, e48175.].
The authors have provided reasonable rationale of why they chose certain perturbation waveforms for different. Yet it still holds that these different waveforms would likely yield very different muscular responses making it difficult to interpret the results and this remains a limitation. From the paper it is unknown how these different perturbations would differentially influence a variety of classic neuromuscular responses, including short-range stiffness and stretch reflexes, which would be at play here.
Much of the results can be interpreted when one considers classic neuromuscular physiology. In Experiment 1, differences in resting postural bias in supported versus unsupported conditions can readily be explained since there is greater muscle activity in the unsupported condition that leads to greater muscle stiffness to resist mechanical perturbations (Rack, P. M., & Westbury, D. R. (1974). The short-range stiffness of active mammalian muscle and its effect on mechanical properties. The Journal of physiology, 240(2), 331-350.). Likewise muscle stiffness would scale with changes in muscle contraction with synergies. Importantly for experiment 2, muscle stiffness is reduced during movement (Rack and Westbury, 1974) which may explain why resting postural biases do not seem to be impacting movement. Likewise, muscle spindle activity is shown to scale with extrafusal muscle fiber activity and forces acting through the tendon (Blum, K. P., Campbell, K. S., Horslen, B. C., Nardelli, P., Housley, S. N., Cope, T. C., & Ting, L. H. (2020). Diverse and complex muscle spindle afferent firing properties emerge from multiscale muscle mechanics. eLife, 9, e55177.). The concern here is that the authors have not sufficiently considered muscle neurophysiology, how that might relate to their findings, and how that might impact their interpretation. Given the differences in perturbations and muscle states at different phases, the concern is that it is not possible to disentangle whether the results are due to classic neurophysiology, the hypothesis they propose, or both. Can the authors please comment.
The authors should provide a limitations paragraph. They should address 1) how they used different perturbation force profiles, 2) the muscles were in different states which would change neuromuscular responses between trial phase / condition, 3) discuss a lack of direct statistical comparisons that support their hypothesis, and 4) provide a couple of paragraphs on classic neurophysiology, such as muscle stiffness and stretch reflexes, and how these various factors could influence the findings (i.e., whether they can disentangle whether the reported results are due to classic neurophysiology, the hypothesis they propose, or both).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The paper describes an effort to identify the factors responsible for intron retention and alternate exon splicing in a complex system known to be regulated by the O-GlcNAc cycling system. The CRISPR/Cas9 system was used to identify potential factors. The bioinformatic analysis is sophisticated and compelling. The conclusions are of general interest and advance the field significantly.
Strengths:
(1) Exhaustive analysis of potential splicing factors in an unbiased screen.
(2) Extensive genome wide bioinformatic analysis.
(3) Thoughtful discussion and literature survey.
Weaknesses:
(1) No firm evidence linking SFSWA to an O-GlcNAc specific mechanism.
(2) Resulting model leaves many unanswered questions.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The authors generated three mouse lines harboring ASD, Schizophrenia, and Bipolar-associated variants in the TRIO gene. Anatomical, behavioral, physiological, and biochemical assays were deployed to compare and contrast the impact of these mutations in these animals. In this undertaking, the authors sought to identify and characterize the cellular and molecular mechanisms responsible for ASD, Schizophrenia, and Bipolar disorder development.
Strengths:
The establishment of TRIO dysfunction in the development of ASD, Schizophrenia, and Bipolar disorder is very recent and of great interest. Disorder-specific variants have been identified in the TRIO gene, and this study is the first to compare and contrast the impact of these variants in vivo in preclinical models. The impact of these mutations was carefully examined using an impressive host of methods. The authors achieved their goal of identifying behavioral, physiological, and molecular alterations that are disorder/variant specific. The impact of this work is extremely high given the growing appreciation of TRIO dysfunction in a large number of brain-related disorders. This work is very interesting in that it begins to identify the unique and subtle ways brain function is altered in ASD, Schizophrenia, and Bipolar disorder.
Weaknesses:
(1) Most assays were performed in older animals and perhaps only capture alterations that result from homeostatic changes resulting from prodromal pathology that may look very different.
(2) Identification of upregulated (potentially compensating) genes in response to these disorder-specific Trio variants is extremely interesting. However, a functional demonstration of compensation is not provided.
(3) There are instances where data is not shown in the manuscript. See "data not shown". All data collected should be provided even if significant differences are not observed.
I consider weaknesses 1 and 2 minor. While they would very interesting to explore, these experiments might be more appropriate for a follow-up study. I would recommend that the missing data in 3 should be provided in the supplemental material.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:<br /> The authors use a genetic screen in C. elegans to investigate the physiological roles of polyunsaturated fatty acids (PUFAs). They screen for mutations that rescue fat-2 mutants, which have strong reductions in PUFAs. As a result, either mutations in fat-2 itself, or mutations in genes involved in the HIF-1 pathway, were found to rescue fat-2 mutants.
Strengths:<br /> As C. elegans can produce PUFAs de novo as essential lipids, the genetic model is well suited to study the fundamental roles of PUFAs, and the results are very interesting. The genetic screen finds mutations in convergent pathways, suggesting that it has reached near-saturation. The link between the HIF-1 pathway and lipid unsaturation is very interesting. As many of the mutations found to rescue fat-2 mutants are of gain-of-function, it is unlikely that similar discoveries could have been made with other approaches like genome-wide CRISPR screenings, making the current study distinctive.
Weaknesses:<br /> The authors make very important statements, but some are not sufficiently supported by data. In page 5, they conclude that membrane rigidity is a minor cause of fat-2 mutant defects, which is a relevant observation regarding why PUFAs are important. However, they use treatments that have rescued fluidity in another mutant (paqr-2), but do not test if they have the same fluidifying effects in fat-2 mutants.
The screening results seem to converge into the HIF-1 pathway, which is hypothetically correct according to the literature. However, the authors do not validate this hypothesis, which is a critical limitation, especially because many of the mutations they obtained seem to be of gain-of-function. Therefore, without experimental testing, it cannot be concluded that the mutations have the expected effect on the HIF-1 pathway.
In some of the mutants, the rescues in lipid compositions seem to be weak, and it is arguable whether phenotypic rescues are really via a restoration in lipid compositions.
The hypothesis linking iron homeostasis and the rescue of fat-2 mutants is interesting, but the data of rescue by iron repletion seem to be against it. The results might be due to the inefficiency in iron repletion, as the authors suggest, but this has not been formally addressed.
Therefore, the authors propose multiple very interesting and important hypotheses, but experimental validations remain limited.
-